

ibm.com/redbooks

XML for DB2
Information Integrationnformation Integration

Bart Steegmans
Ronald Bourret

Owen Cline
Olivier Guyennet

Shrinivas Kulkarni
Stephen Priestley

Valeriy Sylenko
Ueli Wahli

Marrying XML documents and
databases

Scenarios of XML usage

Using IBM WebSphere Studio
Application Developer to
build Web Services and XML

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

XML for DB2 Information Integration

July 2004

International Technical Support Organization

SG24-6994-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2004)

This edition applies to V8.1 FixPak 2 of DB2 UDB for Windows 2000/NT and V5.1 of WebSphere
Studio Application Developer.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxvii.

Contents

Figures . xiii

Tables . xix

Examples. xxi

Notices .xxvii
Trademarks . xxviii

Preface . xxix
The team that wrote this redbook. xxx
Become a published author . xxxiii
Comments welcome. xxxiii

Part 1. Overview . 1

Chapter 1. XML and databases . 3
1.1 Why use XML with a database? . 4
1.2 A common misconception . 6
1.3 How is XML used with databases? . 7
1.4 XML-enabled database: using XML to exchange data 11

1.4.1 XML as a data exchange format . 12
1.4.2 Mapping a database schema to an XML schema 12

1.5 Native XML DB: managing documents and semi-structured data. 17
1.5.1 Use cases . 18
1.5.2 Technical definition of a native XML database 18

1.6 Summary . 21

Chapter 2. XML services in DB2 and DB2 Information Integrator 23
2.1 SQL/XML. 24

2.1.1 XML data type . 24
2.1.2 SQL/XML functions . 26
2.1.3 XML2CLOB function . 27

2.2 DB2 XML Extender . 27
2.2.1 XML collections . 28
2.2.2 XML columns . 33

2.3 Net Search Extender . 37
2.3.1 Creating indexes . 38
2.3.2 Full-text searches . 39

© Copyright IBM Corp. 2004. All rights reserved. iii

2.3.3 Structural queries . 40
2.4 XML wrapper . 42

2.4.1 Registering a wrapper and server . 42
2.4.2 Mapping an XML schema . 43
2.4.3 Identifying an XML document . 45
2.4.4 Querying an XML document through the XML Wrapper 46
2.4.5 Shredding an XML document using the XML Wrapper. 47

2.5 WebSphere MQ. 49
2.6 WebSphere Studio . 49
2.7 What products should I use?. 50

2.7.1 XML-enabled storage or native XML storage? 51
2.7.2 Products for XML-enabled storage . 52
2.7.3 Products for native XML storage. 54

Chapter 3. Designing XML and database schemas 57
3.1 Local and global XML schemas . 58
3.2 What schemas do you need to design? . 60

3.2.1 On using industry-standard XML schemas . 60
3.2.2 You have a database schema. 62
3.2.3 You have an XML schema . 62
3.2.4 You have both database and XML schemas 63

3.3 Does my XML schema match my database schema? 64
3.4 Creating an XML schema from a database schema 68

3.4.1 The algorithm . 69
3.4.2 Using the generated XML schema with DB2 XML Extender. 70

3.5 Creating a database schema from an XML schema 70
3.5.1 Creating a local XML schema from a global XML schema 70
3.5.2 Creating a database schema from a local XML schema. 72

3.6 Designing XML schemas. 74
3.6.1 Who will use the XML schema? . 74
3.6.2 What XML schema language should you use?. 75
3.6.3 General guidelines for designing XML schemas. 76
3.6.4 Normalizing your XML schema . 80
3.6.5 XML schema styles to avoid . 85
3.6.6 Unsupported XML schema structures by DB2 products 88

Part 2. Processing XML documents . 91

Chapter 4. Storing whole XML documents . 93
4.1 Storing outside of DB2 in the file system. 94

4.1.1 File system storage considerations. 94
4.1.2 Accessing data stored in the file system . 94

4.2 Storing XML in DB2 without using XML columns 96
4.2.1 Using DB2 data types without XML Extender functions 97

iv XML for DB2 Information Integration

4.2.2 Using XML Extender UDFs to insert XML documents into a normal DB2
column . 98

4.3 DB2 XML Extender storage methods . 100
4.4 Storing intact XML documents with XML Extender 101

4.4.1 Using the XML Extender data type . 101
4.4.2 When to use an XML column to store data 102
4.4.3 Building the DAD file . 103
4.4.4 Creating the table that will contain the XML column 106
4.4.5 Inserting the DTD into the DTD_REF table. 107
4.4.6 Enabling the XML column . 108
4.4.7 Creating indexes on the side tables . 110
4.4.8 Using XML Extender UDFs to insert XML documents 110

Chapter 5. Working with XML documents stored in XML columns 113
5.1 Retrieving, extracting, updating, and deleting XML columns 114
5.2 Retrieving XML documents stored in XML columns 114

5.2.1 Retrieving the entire XML document. 114
5.2.2 Retrieving elements and attributes from XML documents 117
5.2.3 Retrieving fragments from data stored in an XML column 123
5.2.4 Filtering the XML documents you want to retrieve 126

5.3 Retrieving XML columns using an XML wrapper 133
5.4 Updating XML documents stored in an XML column 138

5.4.1 Using the SQL UPDATE statement . 138
5.4.2 Using the Update() UDF . 138

5.5 Deleting XML documents stored in an XML column 140
5.6 Best practices . 140

5.6.1 Use side tables as much as possible . 140
5.6.2 Where to filter . 141
5.6.3 Using location path expressions . 142

Chapter 6. Shredding XML into relational tables 143
6.1 Shredding overview. 144

6.1.1 What is shredding? . 144
6.1.2 When should you use shredding?. 144

6.2 Shredding using DB2 XML Extender. 146
6.2.1 Shredding — planning and design . 146
6.2.2 Planning and design: hints and tips . 153
6.2.3 Shredding: configuration and execution . 175

6.3 Alternatives to shredding with DB2 XML Extender 178
6.3.1 Using the XML wrapper. 178
6.3.2 Writing your own code. 178

6.4 Shredding with XML Extender: a step-by-step example 184
6.4.1 Step 1 - XML enabling of your database. 185

 Contents v

6.4.2 Step 2 - Creating the DAD file. 186
6.4.3 Step 3 - Enablement of the XML collection 189
6.4.4 Step 4 - Decomposing the XML data into relational tables 189
6.4.5 Step 5 - Checking the result using the SELECT statement 189

Chapter 7. Bulk processing of XML documents. 191
7.1 An XML cutter to process repetitive documents 192

7.1.1 The SAXCutter sample tool. 193
7.1.2 The CutterTester sample application . 194
7.1.3 Writing your own application . 195

7.2 Using XSLT for bulk inserts. 196
7.2.1 Flattening XML documents . 197
7.2.2 Converting from XML to the DB2 load format 200
7.2.3 The XSLT stylesheet. 201
7.2.4 Cutting the flattened document . 203
7.2.5 Importing or loading the data . 207

Chapter 8. Publishing data as XML . 209
8.1 Publishing data using SQL/XML . 210

8.1.1 Constructing elements and attributes . 210
8.1.2 A more complex example . 216
8.1.3 Behind the scenes: the XML data type . 219

8.2 Publishing data with XML Extender. 221
8.2.1 DAD files . 222
8.2.2 Publishing XML documents using a DAD file 223
8.2.3 DB2 XML Extender publishing stored procedures 237
8.2.4 Writing your own code to publish data as XML 245

8.3 Best practices . 245
8.3.1 SQL/XML. 246
8.3.2 XML Extender . 246

Chapter 9. Additional XML functionality . 247
9.1 Transformation . 248

9.1.1 XSL, stylesheets and transformation . 248
9.1.2 Why transform?. 253
9.1.3 Transforming XML documents with SAX . 256

9.2 Validation. 259
9.2.1 Validating XML documents using UDFs . 259
9.2.2 Validating the DAD file . 262

9.3 Importing and exporting XML documents using UDF 265
9.3.1 Importing or storing XML documents . 266
9.3.2 Exporting or retrieving XML documents . 266

Chapter 10. Web services in DB2. 269

vi XML for DB2 Information Integration

10.1 Introduction to Web services . 270
10.1.1 Motivation . 270
10.1.2 Requirements for a service-oriented architecture 271
10.1.3 Service-oriented architecture overview . 271
10.1.4 Characteristics of the Web service architecture 273
10.1.5 Web services approach for a SOA architecture 273
10.1.6 Properties of the service-oriented architecture 275
10.1.7 More information . 277

10.2 DB2 as Web service provider . 277
10.2.1 Web Services Object Runtime Framework 278
10.2.2 Installing WORF on IBM WebSphere Application Server 279
10.2.3 Creating DB2 Web services . 280
10.2.4 Deploying the Web application . 287
10.2.5 Starting the enterprise application. 290
10.2.6 Testing the DB2 Web services . 290
10.2.7 DADX and auto-deploy feature of WORF 293
10.2.8 WORF test facility . 293

10.3 DB2 as Web service consumer . 294
10.3.1 Prerequisites . 295
10.3.2 Enabling DB2 Web service consumer UDFs 295
10.3.3 Using the Web service consumer UDFs . 295
10.3.4 Web service consumer UDFs . 296
10.3.5 From WSDL to Web service consumer function 296
10.3.6 Testing the Web service consumer functions 300
10.3.7 Creating a wrapper UDF to Web services consumer function . . . 301

Chapter 11. XML wrapper . 305
11.1 Introducing the XML wrapper . 306
11.2 XML wrapper explained. 306

11.2.1 Using the XML wrapper. 308
11.2.2 Registering the XML wrapper . 308
11.2.3 Creating the server . 309
11.2.4 Creating nicknames . 309
11.2.5 Accessing non-root nicknames . 313
11.2.6 Creating federated views for non-root nicknames. 314
11.2.7 Options for specifying the XML data source for nicknames 315
11.2.8 Altering XML nicknames . 319

11.3 Working with XML wrapper via DB2 Control Center 320
11.4 Best practices . 331

Part 3. XML tools for database systems . 335

Chapter 12. XML and database tools in Application Developer 337
12.1 Application Developer tools overview . 338

 Contents vii

12.1.1 Perspectives . 338
12.1.2 Authoring and generation tools . 338
12.1.3 Preparation . 340

12.2 XML tools walkthrough . 340
12.2.1 Creating a database connection . 340
12.2.2 Database editors . 344
12.2.3 XML Schema, table DDL, and DDT . 344
12.2.4 Creating an SQL statement. 346
12.2.5 Creating a user-defined function (UDF) . 352
12.2.6 Generating XML from an SQL statement 356
12.2.7 Updating relational tables from XML . 359
12.2.8 XSL transformations . 361
12.2.9 Mapping the relational table to XML . 365
12.2.10 Mapping the SQL query to XML . 369
12.2.11 Generating a DAD file . 370

12.3 Web services tools . 375
12.3.1 Creating a DADX group configuration. 375
12.3.2 Creating a DADX file from an SQL statement 378
12.3.3 Creating a Web service from DADX . 380

Part 4. Worked examples . 391

Chapter 13. Worked scenario . 393
13.1 Scenario introduction. 394
13.2 Scenario 1: Insurance quotes . 396
13.3 Scenario 2: Processing the insurance policy. 397
13.4 Scenario 3: Generating XML documents . 398
13.5 Scenario 4: Gathering information for investments 399

Chapter 14. Scenario implementation using DB2 functionality 401
14.1 Setting up the system for the scenario . 402
14.2 Scenario 1: Web service provider . 403

14.2.1 Overview . 403
14.2.2 The XML wrapper . 403
14.2.3 Context . 404
14.2.4 XML wrapper implementation . 404

14.3 Scenario 2: storing insurance policies. 416
14.3.1 Shredding XML documents into relational tables 416
14.3.2 Shredding implementation details . 417
14.3.3 Storing XML documents intact in XML columns 429
14.3.4 XML column implementation details . 430

14.4 Scenario 3: composing XML documents. 432
14.4.1 Publishing XML from relational . 432
14.4.2 Publishing XML from relational data implementation 433

viii XML for DB2 Information Integration

14.4.3 Publishing XML data from XML column information 447
14.5 Scenario 4: Web service requestor . 449

14.5.1 Context . 449
14.5.2 Implementation . 449

Chapter 15. Scenario with Application Developer tools 453
15.1 Sample scenario report . 454

15.1.1 DAD file . 455
15.1.2 DTD file . 457
15.1.3 DAD file . 458

15.2 Using Application Developer for the scenario . 459
15.2.1 Creating project and folders . 459
15.2.2 Connecting to the database and importing a local copy 459
15.2.3 Creating the DTD . 459
15.2.4 Creating the RDB to the XML mapping session 461
15.2.5 Using the RDB to XML mapping editor . 464
15.2.6 Enabling DB2 for the XML Extender . 471
15.2.7 Using the test harness to execute the DAD files. 471

Chapter 16. DB2 Web services and XML with Application Developer . . 475
16.1 Insurance scenario . 476

16.1.1 Business context . 476
16.1.2 Technical implementation overview . 476
16.1.3 Preparing for the insurance application. 478

16.2 Insurance application as Web service provider. 479
16.2.1 Setting the Web services interoperability compliance level 479
16.2.2 Creating the Web project . 480
16.2.3 Creating the DADX group . 481
16.2.4 DADX file. 482
16.2.5 Importing the DADX file. 483
16.2.6 Creating the SQL query . 483
16.2.7 Creating the DADX file . 490
16.2.8 Creating the DADX Web services . 490
16.2.9 Testing the DADX Web services. 492
16.2.10 Publishing the Insura Web service to the Test Registry 494
16.2.11 Summary. 499

16.3 Discovering the Insura Web service . 499
16.3.1 Creating the broker Web project . 499
16.3.2 Discovering the Web service. 499
16.3.3 Creating a real client using XSL transformation 505
16.3.4 Using a data source for DB2 Web services 509
16.3.5 Summary. 511

16.4 Insurance Web application with DB2 XML access 512

 Contents ix

16.4.1 Creating the proposedPremium SQL query 512
16.4.2 Generating Web pages from SQL queries 513
16.4.3 Testing the Insura Web application. 517
16.4.4 Summary. 518

16.5 Insurance application as a Web service requestor 518
16.5.1 Creating a scalar Web service UDF . 519
16.5.2 Creating a table Web service UDF . 525
16.5.3 Creating a Web client that uses the UDFs 527
16.5.4 Summary. 529

Chapter 17. Deployment of DB2 Web services . 531
17.1 Preparing the WebSphere Application Server. 532
17.2 Deployment without Application Developer. 532
17.3 Deployment with Application Developer . 532

17.3.1 Exporting the enterprise applications . 532
17.3.2 Configuring the application server. 533
17.3.3 Installing the enterprise applications in the server 538
17.3.4 Starting the enterprise application. 539

17.4 Running the Web services applications . 540
17.5 Using a real HTTP server . 540

Part 5. Appendixes . 543

Appendix A. Installation . 545
DB2 V8.1 with FixPak 2 . 546

Enabling a database for XML Extender . 546
Enabling a database with Web service consumer UDFs 546

DB2 Information Integrator . 547
WebSphere Application Server V5. 548

Verifying the installation . 550
Installing FixPak 2 . 550

WebSphere Studio Application Developer V5.1. 550

Appendix B. Introduction to XML. 553
What is XML? . 554
XML business benefits . 555

Information sharing . 555
Content delivery . 556

Technological benefits of XML . 556
An example of using XML . 557
Major benefits . 557

XML concepts. 559
Document validity and well-formedness . 559
Document type definition. 560

x XML for DB2 Information Integration

Namespaces . 566
DTD versus XML Schemas. 567

XPath . 568
eXtensible Stylesheet Language (XSL) . 569

Cascading Stylesheets . 570
XSL = fo: + XSLT . 571
XSL transformations . 572

Processing XML using Java . 572
XML applications. 573
SAX . 573
DOM . 577
SAX or DOM? . 579

Appendix C. Table-based and object-relational mappings 581
Table-based mapping. 582
Object-relational mapping . 585

Simple and complex types . 588
Mapping complex element types. 590
Mapping attributes. 590
Mapping references to simple element types . 591
Mapping references to complex element types. 593
Mapping complicated content models. 595
(Not) mapping wrapper element types . 595

Summary of the object-relational mapping. 597

Appendix D. DAD DTD reference . 599
DTD for DAD documents . 600
XML column DAD documents . 601

DTD. 601
Element type and attribute reference . 601

SQL mapping DAD documents . 603
DTD. 603
Element type and attribute reference . 604

RDB node mapping DAD documents. 609
DTD. 610
Element type and attribute reference . 611

Appendix E. Sample XML Tools . 619
Using XMLFilters . 620

Implementing XMLFilters . 620
Using XMLFilters from a SAX application . 622

The NameChanger sample . 623
The NameChanger tool . 623
The NameTester application . 627

 Contents xi

The SAXCutter sample. 635
The SAXCutter tool . 635
The CutterTester application. 642

The TableCutter tool. 649

Appendix F. Additional material . 655
Locating the Web material . 655
Using the Web material . 656

System requirements for downloading the Web material 656
How to use the Web material . 656

Related publications . 659
IBM Redbooks . 659
Other publications . 659
Online resources . 660
How to get IBM Redbooks . 660

Index . 661

xii XML for DB2 Information Integration

Figures

1-1 Publishing relational data as XML through a Web service. 4
1-2 Storing data from an XML document in a database. 4
1-3 Managing XML documents in a database . 6
1-4 Shredding and publishing XML documents . 7
1-5 Storing XML documents in a database . 8
1-6 Sales order document that uses a table-based mapping. 13
1-7 Sales order document that uses an object-relational mapping 14
1-8 A tree of sales order objects . 14
1-9 Implementing XQuery over a relational database 16
2-1 Side tables for a sales order document . 35
2-2 Transforming XML documents between local and global schemas. . . . 52
3-1 XML document and relational tables with matching schemas 58
3-2 XML document and relational tables with non-matching schemas 58
3-3 Transforming XML documents between local and global schemas. . . . 59
3-4 Map complex element types to tables . 66
3-5 Remove unmapped root elements. 66
3-6 Flatten unmapped complex element types . 67
3-7 Map attributes and references to simple child elements to columns . . . 67
4-1 XLM documents stored outside of DB2 . 95
4-2 Mapping of an XML document to relational tables 96
4-3 An XML document stored intact. 100
4-4 The PROJ_XML_TB table . 106
4-5 Columns created in the side tables . 109
4-6 Side table contents . 111
5-1 XML column DAD file . 118
5-2 getstart.xml document . 134
5-3 XML document structure . 135
6-1 From mixed content element to element content element 154
6-2 A simple example of decomposition into a relational table 162
6-3 A multi-tables decomposition . 162
6-4 Shredded without multi_ocurrence setting. 166
6-5 Shredded with multi_occurrence=”YES” . 167
6-6 Decomposition into multiple tables . 167
6-7 Result of partial DAD mapping. 171
6-8 Logical structure of an application using SAX 179
6-9 Example structure generated DOM tree . 180
6-10 The SAMPLE database used in our example 184
7-1 Cutting a repetitive document and insert sub-documents into the DB . 193

© Copyright IBM Corp. 2004. All rights reserved. xiii

7-2 Using an existing application with the SAXCutter class 193
8-1 XMLElement and XMLAttributes function . 211
8-2 Result of the more complex SQL/XML statement 219
8-3 XMLSERIALIZE syntax diagram . 220
8-4 XML_OVERRIDE expression syntax . 243
9-1 XSL architectural overview . 249
10-1 Web services roles and operations . 272
10-2 Main building blocks in an SOA approach based on Web services. . . 275
10-3 WORF architecture . 278
10-4 WebSphere Administrative Console startup page 287
10-5 Install an enterprise application . 288
10-6 Installation messages . 289
10-7 Enterprise Application administration page . 290
10-8 Web application welcome page . 291
10-9 DB2 Web service: department list . 291
10-10 DB2 Web service: WSDL. 292
10-11 WORF test facility . 294
11-1 Overview of XML wrapper . 307
11-2 Creating nicknames using DB2 Control Center 321
11-3 Create wrapper dialog . 322
11-4 XML wrapper successfully created . 323
11-5 Create Server dialog . 324
11-6 Server created successfully . 324
11-7 Create Nicknames dialog. 325
11-8 Discover XML-to-relational mapping automatically 326
11-9 XML-to-relational mappings discovered automatically. 327
11-10 Nickname properties . 328
11-11 Nicknames Created . 329
11-12 Properties of ORDERS_NN nickname. 330
11-13 Discovering possible nicknames and views combined 331
12-1 Database connection . 341
12-2 DB Servers view after connecting to the database 342
12-3 Imported files in a Web project . 343
12-4 Data Definition view after import . 343
12-5 Table editor . 344
12-6 XML Schema editor: graph view expanded . 345
12-7 Creating an SQL statement: guided or builder. 346
12-8 Creating an SQL statement: database selection 347
12-9 Creating an SQL statement: name . 347
12-10 Creating an SQL statement: table selection . 348
12-11 Creating an SQL statement: join . 349
12-12 Creating an SQL statement: condition . 349
12-13 Creating an SQL statement: execute. 350

xiv XML for DB2 Information Integration

12-14 SQL Builder . 351
12-15 DB Output view with SQL execution . 351
12-16 Creating a user-defined function: SQL statement 352
12-17 Creating a user-defined function: return type. 353
12-18 Creating a user-defined function: parameters 354
12-19 Creating a user-defined function: summary . 354
12-20 Testing a UDF in Application Developer . 355
12-21 Generating XML from SQL query: initial . 357
12-22 Generating XML from SQL query: select SQL statement 357
12-23 Generating XML from SQL query: transformation settings 358
12-24 Generating XML from SQL query: HTML output 359
12-25 Table insert from XML: select XML file . 360
12-26 Table insert from XML: action . 361
12-27 Table insert from XML: columns . 361
12-28 XSL transformation . 362
12-29 XSL Debug perspective . 363
12-30 XML to XML mapping: mapping file . 364
12-31 XML to XML mapping: source and target files 364
12-32 XML to XML mapping: completed mapping . 365
12-33 RDB to XML mapping: output file. 366
12-34 RDB to XML mapping: mapping type. 367
12-35 RDB to XML mapping: table selection . 367
12-36 RDB to XML mapping: DTD selection . 368
12-37 RDB to XML mapping: root element . 368
12-38 RDB to XML mapping: mapping editor . 369
12-39 SQL query to XML mapping: mapping editor . 370
12-40 Generate DAD file: output . 371
12-41 Generate DAD file: enclose document. 371
12-42 Generate DAD file: test harness . 372
12-43 Web services tool selection . 376
12-44 Adding a DADX group . 376
12-45 DADX group properties . 377
12-46 DADX generation: select SQL statement. 379
12-47 DADX generation: select DAD file . 379
12-48 DADX generation: output file . 380
12-49 Web Service wizard: initial . 381
12-50 Web Service wizard: deployment environment 382
12-51 Web Service wizard: DADX selection . 382
12-52 Web Service wizard: proxy . 383
12-53 Web Service wizard: XML to Java mappings. 383
12-54 Web Service wizard: test client . 384
12-55 Web Service wizard: publish to UDDI . 384
12-56 Web service test client . 385

 Figures xv

12-57 Web service testing with WORF . 386
12-58 WSDL editor. 388
13-1 Overview of the players and processes . 395
13-2 Getting the insurance quote. 397
13-3 Processing incoming policies . 398
13-4 Generating XML documents . 399
13-5 ITSO Insurance, Inc. as a Web service consumer. 400
14-1 Starting the discovery process. 406
14-2 XML nickname discovery . 407
14-3 Input file selection . 408
14-4 Discover XML_Server window . 409
14-5 Generated nicknames and views. 410
14-6 Change properties . 411
14-7 Change column settings . 411
14-8 Change column settings -2 . 412
14-9 Show SQL window. 413
14-10 Logical data model . 421
14-11 Shredding sequence . 423
14-12 Result of SQL/XML query . 434
15-1 RDB to XML mapping: target folder and file . 462
15-2 RDB to XML mapping: table selection . 463
15-3 RDB to XML mapping tool . 465
15-4 RDB to XML mapping complete. 466
15-5 RDB to XML mapping: join conditions . 467
15-6 Generate DAD: location and name . 468
15-7 Generate DAD: test harness . 469
16-1 Insurance scenario: high-level implementation diagram 477
16-2 ItsoDB2XMLInsura enterprise application and Web project 481
16-3 DADX insuraGroup in Project Navigator view 482
16-4 INSURA database connection . 484
16-5 Database connection imported into the Web project 485
16-6 Adding tables to the SQL query . 487
16-7 SQL Query Builder: adding conditions and finalizing query 488
16-8 Testing an SQL statement . 489
16-9 Creating DADX Web Service: options . 491
16-10 Creating DADX Web services: XML to Java mapping 492
16-11 Testing the DADX Web service . 493
16-12 Publishing a business entity to the BM UDDI Test Registry 496
16-13 Publishing Insura Web service: defining WSDL URL 498
16-14 Web service published to the IBM UDDI Test Registry 498
16-15 Discovering Insura Web service . 500
16-16 Importing WSDL file into Web project . 502
16-17 Creating Broker Web service client . 503

xvi XML for DB2 Information Integration

16-18 Selecting the client runtime environment . 503
16-19 Proxy generation . 504
16-20 Methods of the test client . 505
16-21 Defining XSL transformation . 507
16-22 Testing the Web service with XSL transformation 508
16-23 Testing the real broker client application . 508
16-24 Creating a data source in the server configuration 510
16-25 Server configuration data source page . 511
16-26 DB Web Pages wizard: select target, statement type, and model 514
16-27 Database Web Pages wizard: select SQL statement 515
16-28 Database Web Pages wizard: input form. 516
16-29 Create Database Web Pages wizard: Design the Select View 517
16-30 Sample database application run. 518
16-31 Create Web service UDF: database connection and schema 520
16-32 Create Web service UDF: general options . 521
16-33 Create Web service UDF: summary page . 523
16-34 Building Web service DB2 UDF . 524
16-35 DB2 Web service UDF: successful build . 524
16-36 DB2 Web service UDF: testing . 525
16-37 UDF table function parameters . 526
16-38 UDF table function result . 526
16-39 Web client invoking Web service UDFs . 528
17-1 Exporting an enterprise application . 533
17-2 Verifying the JDBC driver path. 534
17-3 Defining a JDBC provider . 535
17-4 Defining the data source for the EJBBANK database 536
17-5 Defining an authentication alias . 537
17-6 Defining container authentication for the data source 537
17-7 Install an enterprise application . 538
A-1 Installation of Information Integrator . 548
A-2 WebSphere Application Server LaunchPad. 549
A-3 Application Developer Installation window. 551
B-1 SAX application components . 574
B-2 DOM interface hierarchy . 578
B-3 Sample DOM tree . 578
C-1 Transforming a nested document into a table-based document 585
C-2 Mapping a tree of tables to a nested XML document 586
C-3 Mapping an XML document to objects, then to tables 586
C-4 Tree of sales order objects . 587
C-5 DOM tree for the sales order document. 588
C-6 Mapping complex element types to classes, then to tables 590
C-7 Mapping attributes to properties, then to columns 591
C-8 Mapping references to simple element types to properties to columns 592

 Figures xvii

C-9 Map references to complex element types to pointers then to keys . . 593
E-1 An XML filter . 620
E-2 The XML FilterImpl class . 621
E-3 Extending the XML FilterImpl class . 621

xviii XML for DB2 Information Integration

Tables

1-1 Sales order. 8
1-2 Items table . 9
1-3 Documents table . 9
1-4 Elements table . 9
1-5 Attributes table . 10
1-6 Text table . 10
1-7 SalesOrder table . 15
1-8 Items table . 15
2-1 OrderDocuments table. 34
2-2 Product overview . 50
4-1 XML Extender storage UDFs . 99
5-1 Default cast functions. 115
5-2 Extracting UDFs summary . 120
8-1 ORDER _TAB . 222
8-2 PART_TAB . 222
8-3 SHIP_TAB . 222
9-1 SVALIDATE parameters . 260
9-2 DVALIDATE parameters . 261
10-1 From WSDL to Web service consumer function parameters 300
11-1 Results of query . 314
12-1 XML from SQL generated files. 358
14-1 insur CTE . 437
15-1 XML to table column mapping . 456
B-1 DTD symbols . 563
B-2 Attribute types . 564
B-3 Default value for attributes . 564

© Copyright IBM Corp. 2004. All rights reserved. xix

xx XML for DB2 Information Integration

Examples

1-1 Sample sales order . 8
2-1 Legal values for the XML data type . 25
2-2 Using XMLELEMENT and XMLATTRIBUTES. 26
2-3 CustomerXML column . 26
2-4 SQL statement for a DAD mapping file . 30
2-5 SQL statement DAD mapping . 30
2-6 Resulting XML document . 31
2-7 RDB_node mapping. 32
2-8 Query retrieving info using side tables. 35
2-9 Retrieving XML documents from an XML column using side table info . 35
2-10 XColumn DAD file . 36
2-11 Using the Update() UDF . 37
2-12 Using the extractInteger() function. 37
2-13 Creating an index. 39
2-14 Using the CONTAINS() function . 39
2-15 Using a thesaurus . 40
2-16 Structural search query . 40
2-17 Document model file specification . 41
2-18 Create structural search index . 41
2-19 Selecting documents using a structural search index 41
2-20 XML document. 43
2-21 Creating nicknames for XML documents . 43
2-22 Using a URI on the CREATE NICKNAME . 45
2-23 Querying non-root nicknames . 46
2-24 Insert into Orders . 47
2-25 Insert into Items . 47
2-26 Sales order XML document . 48
3-1 Customer element type . 63
3-2 Sample DTD . 64
3-3 Sample database schema . 65
3-4 Outer wrapper element type . 71
3-5 More outer wrapper element types . 71
3-6 Using wrap related elements . 77
3-7 Item as repeating subgroup . 78
3-8 Items wrapper . 78
3-9 Unnormalized XML document . 80
3-10 Root element with no attributes . 82
3-11 Handling many to one relationships - Ignore . 83

© Copyright IBM Corp. 2004. All rights reserved. xxi

3-12 Handling many to one relationships - ID/IDREF 83
3-13 Handling many to one relationships - Xlink . 84
3-14 Schema that encodes data as order . 86
3-15 XML document for a book chapter. 87
3-16 Primary key in parent element . 89
3-17 Primary key in child element . 89
4-1 An INSERT statement to store an XML document 97
4-2 An INSERT using the XMLVarcharFromFile() UDF. 99
4-3 Project.xml document . 103
4-4 An example DAD file for the Project XML document 104
4-5 Create table to store XML column . 106
4-6 Insert into DTD_REF . 107
4-7 Project.dtd . 107
4-8 Enabling an XML column . 108
4-9 Insert data into the XML column . 110
5-1 Using the side table . 119
5-2 getstart.dtd . 121
5-3 Using extractvarchar . 121
5-4 Using extractintegers . 122
5-5 Using extractintegers -2 . 122
5-6 Using extractintegers -3 . 123
5-7 Using ExtractCLOB() . 124
5-8 Using ExtractCLOBs . 125
5-9 Filtering using side tables . 126
5-10 Default view definition . 128
5-11 Retrieving data using the default view . 128
5-12 Joining XMLcolumn table with an individual side table 129
5-13 Using extract UDFs in the WHERE clause . 130
5-14 Using extract UDFs in the WHERE clause -2 130
5-15 Using extract UDFs in the WHERE clause -3 131
5-16 Filtering inside the extract UDFs . 131
5-17 Filtering inside the extract UDFs -2 . 132
5-18 Inserting into XMLFILE XML column . 133
5-19 Setting up the XML wrapper definitions . 135
5-20 Query against XML wrapper nickname . 137
5-21 Query against XML wrapper nickname -2 . 137
5-22 Deleting XML documents from an XML column. 140
5-23 Exctractxxx() UDF filtering . 141
6-1 Column type specification for RDB node during shredding 147
6-2 An XML document with employee information. 147
6-3 EMPLOYEE and EMP_ACT table definitions 148
6-4 The DAD file for employee XML document . 150
6-5 XML document with non-unique names. 155

xxii XML for DB2 Information Integration

6-6 DAD mapping for non-unique names. 156
6-7 Table content after decomposition. 158
6-8 An XML document and DAD file with recursion 159
6-9 The DAD file for our multi-tables decomposition example 163
6-10 An XML document with 2 pairs of sibling elements 165
6-11 RDB_NODE DAD file without multi_occurence=yes 165
6-12 DAD for decomposition into multiple tables . 168
6-13 Sample XML document for NOT NULL column shredding 169
6-14 DAD for partial mapping. 170
6-15 Simple XML document . 172
6-16 A simple DTD. 172
6-17 Simple XML Schema . 173
6-18 Sample SAX program . 183
6-19 The DDL for XPROJECT and XEMPLOYEE . 185
6-20 XML document: Project.xml . 186
6-21 DTD file: Project.dtd. 186
6-22 DAD file: Project.dad . 187
6-23 Result of the shredding operation . 190
7-1 Sample XML document . 192
7-2 CutterTester sample code . 194
7-3 startDocument and endDocument methods of CutterTester 195
7-4 Orders document before flattening . 197
7-5 Flattened orders document . 198
7-6 Output of XSLT transformation . 201
7-7 Stylesheet to flatten and convert . 201
7-8 Cut up document into separate load files. 204
7-9 TableCutter - cut method . 205
7-10 startElement method . 206
7-11 characters method . 206
7-12 endElement method. 207
8-1 Using XMLELEMENT and XMLATTRIBUTES. 211
8-2 Result of XMLELEMENT and XMLATTRIBUTES 212
8-3 Using XMLFOREST. 212
8-4 Result of XMLFOREST . 212
8-5 Using XMLCONCAT . 213
8-6 Result of XMLCONCAT . 214
8-7 Using XMLAGG . 214
8-8 Result of XMLAGG . 215
8-9 XMLNAMESPACES function . 215
8-10 Result of XMLNAMESPACES function . 216
8-11 Producing an HTML document using SQL/XML 216
8-12 Resulting HTML table . 218
8-13 Using XMLSERIALIZE . 221

 Examples xxiii

8-14 Result of XMLSERIALIZE . 221
8-15 Generated XML fragment . 223
8-16 SQL statement in a DAD file . 225
8-17 RDB_node tables and conditions. 226
8-18 Shaping the structure of the XML document . 226
8-19 Adding element_node tags . 227
8-20 Adding attribute_node tags . 228
8-21 Adding text_nodes . 228
8-22 Adding column tags . 229
8-23 Attribute mapping with RDB_node. 230
8-24 RDB_node in a text_node . 230
8-25 Producing a single XML document . 231
8-26 DAD file for an XML collection using SQL mapping. 232
8-27 Using multi-occurrence . 233
8-28 Specifying header information . 233
8-29 Full SQL composition DAD . 234
8-30 DAD file for an XML Collection using RDB node mapping 235
8-31 Sample usage of dxxGenXML(). 238
8-32 Result of dxxGenXML . 239
8-33 Using dxxRetrieveXML . 241
8-34 Result from dxxRetrieve() retrieved from the result_table 241
8-35 dxxGenXML using SQL_OVERRIDE. 244
8-36 Result of dxxGenXML() with override . 245
8-37 Escaping element and attribute names . 246
9-1 Simple XSL stylesheet . 249
9-2 Source XML document . 250
9-3 Target XML document . 250
9-4 Simple XSL stylesheet . 251
9-5 Sample XML file . 254
9-6 Transformed XML document . 255
9-7 NameTester code snippet . 257
9-8 startElement in NameChanger. 258
9-9 startElement in NameTester . 258
9-10 Specifying validation during composition . 261
9-11 DAD checker sample output . 264
10-1 List.dadx. 280
10-2 Skeleton Web application . 281
10-3 Sample group.properties file . 283
10-4 Servlet configuration information that goes into web.xml. 283
10-5 Contents of index.html . 284
10-6 Contents of web.xml . 285
10-7 Final directory structure of the sample Web application 286
10-8 WSDL for the Delayed Stock Quote Request Web service 297

xxiv XML for DB2 Information Integration

10-9 GetStockQuote UDF . 301
10-10 Web service consumer UDF wrapper returning a table 302
10-11 Sample result . 303
11-1 Customers.xml . 309
11-2 Create the root nickname: customers . 310
11-3 Create the non-root nickname: orders . 311
11-4 Create the non-root nickname: payments . 311
11-5 Create the non-root nickname: ITEMS . 312
11-6 Results of SQL query using XML wrapper . 312
11-7 Error message for accessing a non-root nickname 313
11-8 Querying non-root nickname with JOIN with root nickname 313
11-9 Creating federated view for non-root nicknames 314
11-10 Creating items_view. 315
11-11 Create the root nickname using the FILE_PATH option 315
11-12 Create the root nickname using the DIRECTORY_PATH option 316
11-13 Create the root nickname using the DOCUMENT option FILE 317
11-14 Create the root nickname using the DOCUMENT option DIRECTORY317
11-15 Create the root nickname using the DOCUMENT option URI 318
11-16 Create the root nickname using the DOCUMENT option COLUMN . . 318
11-17 Query using DOCUMENT option COLUMN . 319
11-18 Query using COLUMN option with XML data as part of the query . . . 319
11-19 XML - Create nickname statement . 332
12-1 Generating XML from SQL query: XML output 359
12-2 Table insert from XML: input file . 360
12-3 Generate DAD file: generated DAD file with correction 374
12-4 DADX group.properties file . 378
14-1 Layout of the insurance history XML document 405
14-2 CreateWrapperDefsCS.sql . 413
14-3 Sample query using XML wrapper. 415
14-4 Query using CLAIMS_V view. 415
14-5 Policy DTD . 417
14-6 Sample policy XML document . 419
14-7 DAD file to shred into ORG, OWNER and/or PERSON. 424
14-8 ShredXMLDocs.bat . 428
14-9 ShredSeq.bat . 428
14-10 SetupXMLColumn.bat . 430
14-11 BrokerXcolumn.dad . 431
14-12 Insert data into the XML column . 432
14-13 SQL/XML query . 435
14-14 Building the insur CTE . 437
14-15 Planinfo CTE . 438
14-16 Top-level SQL statement . 438
14-17 SQL statement DAD . 439

 Examples xxv

14-18 Invoking SQL statement based DAD document generation 442
14-19 RDB_node mapping for retrieval from an XML collection 442
14-20 Creating an RDB_node based XML document 445
14-21 Resulting XML document from RDB_node mapping 445
14-22 Total premium by broker . 448
14-23 Total premium by broker using SQL/XML . 448
14-24 Broker456Policies.sql . 448
14-25 Retrieving stock headlines using DB2 as Web service consumer 450
14-26 Web service consumer UDF wrapper returning a table 450
14-27 Invoking the table UDF to retrieve stock headlines 451
15-1 Sample report: GetOrgReportRDBnode . 454
15-2 Root element: RDB_node . 456
15-3 OrgReport.dtd . 457
15-4 Generated DTD (abbreviated) . 460
15-5 Updating the DAD file with a non-root condition 471
16-1 SQL statement for proposed premium. 513
B-1 A simple CSS stylesheet . 571
B-2 Sax example . 575
C-1 Sales order XML document . 582
C-2 Sales order document with line items . 582
C-3 Attributes - elements mixture . 583
C-4 Tables and schemas . 584
C-5 Using nesting with table-based mapping . 584
C-6 Using complex types in XML Schemas . 589
C-7 XML document with primary key from parent element. 594
C-8 XML document with primary key from child element 594
C-9 Wrapper element mapped to separate table . 596
C-10 Wrapper element mapped to same table . 596
E-1 Translator class . 622
E-2 RunTranslator class . 623
E-3 NameChanger class . 624
E-4 NameTester class . 628
E-5 SAXCutter class. 635
E-6 CutterTester class . 642
E-7 TableCutter class . 649

xxvi XML for DB2 Information Integration

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. xxvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
alphaWorks®
ibm.com®
iSeries™
z/OS®
zSeries®
AIX®

Cloudscape™
DB2 Universal Database™
DB2®
DRDA®
Informix®
IBM®
IMS™
Lotus®
MQSeries®

Notes®
OS/2®
OS/390®
Redbooks™
Redbooks (logo)™
S/390®
Tivoli®
TME®
WebSphere®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

xxviii XML for DB2 Information Integration

Preface

In many organizations, relational databases are the backbone for data storage
and retrieval. Over the last couple of years, XML has become the de facto
standard to exchange information between organizations, as well as between
departments or applications within the same organization.
Since data tends to live in databases, it needs to be converted from a relational
format into an XML format when involved in those data exchanges, as well as
converted (back) from XML into a relational format for storage, or for handling by
other applications.

How can we achieve this?

This IBM® Redbook describes how to design the mapping between XML and
relational data, and vice versa, to enable a flexible exchange of information.

IBM provides a number of products to help you bridge the gap between XML and
its relational database, DB2®. The DB2 engine itself provides support to
generate XML fragments from relational data through the use of SQL/XML
built-in functions. DB2 also provides the DB2 XML Extender. It allows you to
perform XML composition, like SQL/XML, but also provides functionality to
decompose XML documents, as well as store XML documents intact inside the
database. In addition, XML Extender provides a set of transformation and
validation functions. Another option to work with XML is to use the XML wrapper
that is part of the set of non-relational wrappers of DB2 Information Integrator.

This redbook also looks at the IBM tools available to assist you when dealing
with XML, more specifically WebSphere® Application Developer and DB2
Control Center.

To give the whole discussion a more practical angle, the use of these functions
and products is illustrated through the development of a simple application.

© Copyright IBM Corp. 2004. All rights reserved. xxix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, San Jose Center.

Bart Steegmans is a DB2 Product Support Specialist from IBM Belgium
currently on assignment at the ITSO in San Jose. He has over 15 years of
experience in DB2. Before joining IBM in 1997, Bart worked as a DB2 system
administrator within a banking and insurance group. His areas of expertise
include DB2 performance, database administration, and backup and recovery.

Ronald Bourret is a freelance programmer, technical writer, and researcher. His
work includes XML-DBMS, a set of Java™ packages for transferring data
between XML documents and relational databases, an XML schema language
(DDML), several widely read papers on XML and databases, and the XML
Namespaces FAQ. He has lectured on XML and databases at both commercial
and academic conferences and has contributed articles to both XML.com and
xmlhack.

Owen Cline is a member of the IBM Software Services for the WebSphere team
based in San Diego, CA. He earned a BS in Computer Science from the
University of Pittsburgh and an MS from San Diego State University. He has over
20 years of experience in the software development field. He holds four software
patents, has written IBM Redbooks™ and has presented at multiple technical
conferences. For the past five years, Owen has specialized in J2EE application
development and deployment with a special emphasis on the WebSphere
platform. He has also worked on many high-profile Web sites over the past few
years.

Olivier Guyennet is a Data Management IT Engineer at IBM Japan Systems
Engineering with three years of experience in the DB2 family of products. He is
an IBM Certified Solutions Expert on DB2 UDB Database Administration and
provides technical support for DB2 UDB on UNIX® and Intel® platforms. His
areas of expertise include DB2 UDB system administration as well as
perfomance tuning, DB2 XML Extender and DB2 Content Manager system
administration.

Shrinivas Kulkarni is a Software Architect working in IBM India Software Labs
in Bangalore. His areas of interest include Business Integration, XML, software
architecture and component-based solutions. He specializes in Object
Technology and is an IBM certified OO analyst and designer. Shrinivas has been
working with IBM for four and a half years. He holds a graduate degree in
Computer Science from the University of Mysore.

Stephen Priestley is a Business Intelligence Technical Specialist based in
Melbourne, Australia, with six years of experience within the IBM Software

xxx XML for DB2 Information Integration

Group. Prior to joining IBM, Stephen was a data architect with Dun and
Bradstreet Information Services, where he worked on data enhancement and
expansion projects. Stephen has been involved in many business intelligence
and data management projects with many of the largest organizations in
Australia. He has extensive experience in front-end BI Tools, OLAP, ETL tools
and databases. Stephen's work with IBM makes him a regular presenter at IBM
conferences.

Valeriy Sylenko is a Lead Software Developer for The Lowe-Martin Group,
Ottawa, Ontario, Canada. He has eight years of experience in the field of
information technology. Valeriy is a Sun Certified Programmer for the Java 2
Platform 1.4 and holds a PhD degree in Physics and Mathematics from the
Institute of Semiconductor Physics, Ukraine, Kiev. His areas of expertise include
object-oriented analysis and design, data modeling and J2EE application
development using WebSphere Application Developer and WebSphere
Application Server.

Ueli Wahli is a Consultant IT Specialist at the IBM International Technical
Support Organization in San Jose, California. Before joining the ITSO 19 years
ago, Ueli worked in technical support at IBM Switzerland. He writes extensively
and teaches IBM classes worldwide on application development, object
technology, WebSphere Application Server, and lately, WebSphere Studio
products. Ueli holds a degree in Mathematics from the Swiss Federal Institute of
Technology.

 Preface xxxi

Thanks to the following people for their contributions to this project:

Cecilia Bardy
International Technical Support Organization, Raleigh Center

Emma Jacobs
International Technical Support Organization, San Jose Center

Yannick Barel
David Bertoni
Martin Breining
Seeling Cheung
Chris Holstrom
Susan Malaika
Dung Nguyen
Matthias Nicola
Mayank Pradhan
Angel Reyda
Hardeep Singh
Dave Salinero
Singgih Tanumihardjo
Kyla Town
Dirk Wollscheid
Patsy Yu
IBM Silicon Valley Laboratories, San Jose

Morgan Tong
IBM Austin

Jasmi John
Ernest Mah
Shili S Yang
IBM Toronto Lab, Canada

Tim Brown
IBM UK

xxxii XML for DB2 Information Integration

Become a published author
Join us for a two- to six-week residency program! Help write an IBM redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an Internet note to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

 Preface xxxiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://www.redbooks.ibm.com/contacts.html

xxxiv XML for DB2 Information Integration

Part 1 Overview

Part 1

© Copyright IBM Corp. 2004. All rights reserved. 1

2 XML for DB2 Information Integration

Chapter 1. XML and databases

This chapter describes the following topics:

� Reasons to use XML with a database
� Whether XML is itself a database
� How XML is used with databases
� XML-enabled databases
� Native XML databases

1

© Copyright IBM Corp. 2004. All rights reserved. 3

1.1 Why use XML with a database?
There are a number of reasons to use XML with a database. Perhaps the most
common of these is to publish data stored in an existing database as XML. For
example, suppose a database contains information about stock prices. A Web
service might return the current price of a stock as an XML document
(Figure 1-1).

Figure 1-1 Publishing relational data as XML through a Web service

Similarly, data may be transferred from an application to a database in the form
of an XML document. For example, an insurance agency may submit data for a
new insurance policy as an XML document. As part of processing this document,
an application within the insurance company extracts this data from the XML
document and stores it in a database (Figure 1-2).

Figure 1-2 Storing data from an XML document in a database

Another use of XML (and one that is increasingly popular) is to model
semi-structured data, especially in the life sciences area. One of the primary
advantages of XML in this case is its extensibility. Because life sciences are such
a rapidly growing field, it is impossible to predict all the kinds of data that may be
available in the near future. Therefore, trying to determine a relational schema for
life sciences data is an exercise in planned obsolescence. Furthermore, the
volumes of data in this field are enormous, dictating the need for a database to
store, manage, and query data in the form of XML documents.

Web
Service

Web
ServiceDatabase

JDBC XML
ClientClient

ApplicationApplication Database
XML JDBC

Insurance
Agent

Insurance
Agent

4 XML for DB2 Information Integration

The XML documents in the previous examples are data-centric. That is, the XML
documents generally contain discrete pieces of data with a fairly regular
structure.
Another class of XML documents is that of document-centric documents.
Examples of these are end-user documentation, marketing brochures, and Web
pages. Document-centric documents are characterized by mixed content and
irregular structure.

The Extensible HyperText Markup Language (XHTML) is a family of document
types and modules that reproduce, subset, and extend HTML, but reformulate it
in XML. XHTML document types are XML-based. XHTML can be seen as the
successor of HTML.

The most common reason to use a database with document-centric documents
is to manage and query them. For example, the amount of end-user
documentation for large projects (such as for a commercial aircraft) can be
enormous and being able to manage these documents in a database is critical.
The advantage of using XML in this case is that it is easy to build new documents
from fragments of existing documents, as well as to perform structured queries
over the contents of the documents (Figure 1-3 on page 6).

Note: Semi-structured data has some structure, but the structure is not highly
regular. For example, the white pages of a telephone book are structured;
each entry has a name, an optional address, and a telephone number. Yellow
pages are semi-structured. As in the white pages, each entry has a name, an
optional address, and a telephone number, but entries might also have items
such as fax numbers, maps, descriptions of services available, and license
numbers. Thus, while it is possible to describe most item categories found in
entries of the yellow pages, there may be considerable variation in how items
use a given entry.

Note: Mixed content is a mixture of child text and elements. For example, the
<p> element in XHTML has mixed content:

<p>This is an example of <i>mixed</i> content.</p>

In contrast to mixed content is element content, where an element's content
consists of nothing but child elements, and PCDATA-only content, where an
element's content is a single piece of text. Both are shown in the following
fragment:

<Name> <!-- <Name> has element content -->
<First>John</First> <!-- <First> has PCDATA-only content -->
<Last>Doe</Last> <!-- <Last> has PCDATA-only content -->

</Name>

 Chapter 1. XML and databases 5

Figure 1-3 Managing XML documents in a database

A final example of using XML with databases is archiving XML documents,
whether data-centric or document-centric. For example, suppose a stock
brokerage company receives transaction requests from the Web in the form of
XML documents. If the brokerage is required to retain these requests for a
certain period of time, archiving them in a database increases their value, since
they are secure and can be easily queried and retrieved.

1.2 A common misconception
Before we describe how XML interacts with databases, we need to dispel a
common misconception, which holds that XML can be used directly as a
database. This misconception arises from the observation that XML documents
are a natural format for storing data. The question is, is this a good idea?

That is, should you use XML as a database?

There are actually several arguments in favor of this. The hierarchical model
used by XML is ideal for describing a wide variety of data, XML's use of Unicode
makes XML documents portable across many systems, and the text format used
by XML makes XML documents easily readable by humans. In addition, the XML
family includes schema languages (XML Schemas, DTDs), query languages
(XQuery, XPath), APIs (SAX, DOM, JDOM), and many other technologies useful
in a database setting.

In spite of this, there are many more arguments against using XML as a
database. The most important of these is that XML is an inefficient storage

XML
documents

Document
management

system

Document
management

system

Store

Retrieve
(query)

Note: By convention, the term XML Schemas (with an upper-case S) refers to
the XML Schema language defined by the W3C. The term XML schemas (with
a lower-case s) refers to an XML schema represented in any language,
including DTDs and XML Schemas.

6 XML for DB2 Information Integration

format. It is verbose and the need to parse it means that any data access will be
slow, even for modestly large documents. But even if these problems could be
solved, the XML family lacks many of the technologies commonly found in
modern databases, such as indexes, transactions, multi-user access, security,
logging, referential integrity, triggers, and so on.

As a result, using XML documents and surrounding technologies as a database
means that you will need to write a lot of the code already found in modern
databases. So while it might make sense to use XML for small, single-user
databases (configuration files, small contact lists, and so on) most production
environments require a real database.

1.3 How is XML used with databases?
XML is used with databases in two ways:

� XML documents are used to exchange data between a database and an
application or another database. For example, suppose a relational database
contains information about stock prices. A Web service can return the current
price of a stock as an XML document.

The process of extracting data from a database and constructing an XML
document (or XML fragments) is known as publishing or composition. The
reverse process (extracting data from an XML document (or XML fragment)
and storing it in the database) is known as shredding or decomposition.
These processes are shown in Figure 1-4.

Figure 1-4 Shredding and publishing XML documents

� XML documents are stored in a database. For example, end-user
documentation written in DocBook (an XML dialect) can be managed in a
database, as shown in Figure 1-5 on page 8.

<SalesOrder Number="123">
<Date>2003-07-28</Date>
<CustNum>456</CustNum>
<Item Number="1">

<PartNum>XY-47</PartNum>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
</SalesOrder>

<SalesOrder Number="123">
<Date>2003-07-28</Date>
<CustNum>456</CustNum>
<Item Number="1">

<PartNum>XY-47</PartNum>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
</SalesOrder>

Shredding Publishing

 Chapter 1. XML and databases 7

Figure 1-5 Storing XML documents in a database

To see the difference between these two uses, we will look "inside" the database
and see what the stored data looks like. Consider the different ways to store the
XML sales order document of Example 1-1.

Example 1-1 Sample sales order

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>
<CustomerNumber>456</CustomerNumber>
<Item Number="1">

<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item Number="2">

<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</SalesOrder>

If this XML document is used only as a way to exchange data, we can shred it
into the database. That is, we can extract its data and store that data in Table 1-1
and Table 1-2 on page 9 shown below. Similarly, if the data was already in these
tables, we can publish it as a sales order document.

Table 1-1 Sales order

Number Date Customer

123 2330-07-28 456

...

XML
documents

8 XML for DB2 Information Integration

Table 1-2 Items table

Regardless of whether we are shredding or publishing XML documents, there
are two important things to notice here.
First, there is no XML "visible" inside the database. That is, the XML document is
completely external to the database. It is constructed from data already in the
database or is used as a source of new data to store in the database.
Second, the database schema matches the XML schema. That is, a different
XML schema is needed for each database schema. Databases that use XML in
this fashion are known as XML-enabled databases.

On the other hand, if the document itself is stored in the database, it can be
stored in a set of tables (see Table 1-3 through Table 1-6 on page 10) designed
especially to store XML documents. Note that the document ID, below, is a value
generated by the database or assigned by the application. It does not necessarily
contain data extracted from the document itself.

Table 1-3 Documents table

Table 1-4 Elements table

SONumber Number PartNumber Quantity Price

123 1 "XY-47" 14 16.80

123 2 "B-987" 6 2.34

...

ID Name

34 "SalesOrder123.xml"

DocumentID ElementID ParentID Name OrderInParent

34 1 NULL "SalesOrder" 1

34 2 1 "OrderDate" 1

34 3 1 "CustomerNumber" 2

34 4 1 "Item" 3

34 5 4 "PartNumber" 4

34 6 4 "Quantity" 2

34 7 4 "Price" 3

34 8 1 "Item" 4

34 9 8 "PartNumber" 1

 Chapter 1. XML and databases 9

Table 1-5 Attributes table

Table 1-6 Text table

In this case, the XML is "visible" inside the database. That is, the database
contains information such as element type and attribute names. Furthermore, a
single database schema can be used to store all XML documents. That is, the
database schema models XML documents, not the data in those documents.
Databases that use XML in this fashion are known as native XML databases.

A more technically correct view of the difference between XML-enabled
databases and native XML databases entails that XML adds a new data model to
the world of databases. That is, in addition to the existing hierarchical, relational,
object-oriented, multi-valued, and other data models, XML adds its own model.
The XML data model is an ordered tree with typed, labeled branch nodes and
data stored in unlabeled leaf nodes.

In this view, an XML-enabled database is one that uses a non-XML data model
and maps instances of this model (such as the tables needed to store sales order

34 10 8 "Quantity" 2

34 11 8 "Price" 3

DocumentID AttributeID ParentID Name Value

34 1 1 "Number" 123

34 2 4 "Number" 1

34 3 8 "Number" 2

DocumentID TextID ParentID Value OrderInParent

34 1 2 "2003-07-28" 1

34 2 3 "456" 1

34 3 5 "XY-47" 1

34 4 6 "14" 1

34 5 7 "16.80" 1

34 6 9 "B-987" 1

34 7 10 "6" 1

34 8 11 "234" 1

DocumentID ElementID ParentID Name OrderInParent

10 XML for DB2 Information Integration

information) to instances of the XML data model (such as an XML schema for a
sales order document). A native XML database is one that uses the XML data
model directly.

1.4 XML-enabled database: using XML to exchange data
As we have seen, an XML-enabled database is one that has a data model other
than XML. Most commonly, this is the relational model. Individual instances of
this data model are mapped to one or more instances of the XML data model.
For example, a relational schema for sales order data can be mapped to different
XML schemas, such as a schema for a sales order document, or a report
showing sales by region.

XML-enabled databases generally include software for transferring data between
themselves and XML documents. This software can be integrated into the
database engine or external to the engine. For example, DB2 XML Extender, the
XML Wrapper, and SQL/XML can all transfer data between XML documents and
the DB2 database. XML Extender and XML Wrapper are external to the
database engine, while SQL/XML support is integrated into the DB2 database
engine itself. For more information about these products, see Chapter 2, “XML
services in DB2 and DB2 Information Integrator” on page 23.

As a general rule, the software used by XML-enabled databases cannot handle
all possible XML documents. Instead, it can handle the subclass of documents
that are needed to model the data found in the database. For example, data
transfer software that works with relational databases rarely handles mixed
content XML documents, since mixed content is not easily modeled using the
relational model.

Note: The XML Extender is a DB2 extender for working with XML documents.
The XML Wrapper is a wrapper in DB2 Information Integrator that treats XML
documents as a relational data source. SQL/XML is a standard set of
extensions to SQL for publishing data as XML.

Important: The primary advantage of using an XML-enabled database is that
it keeps existing data and applications intact. That is, adding XML functionality
to the database is simply a matter of adding and configuring the software that
transfers data between XML documents and the database. There is no need
to change existing data or applications.

 Chapter 1. XML and databases 11

1.4.1 XML as a data exchange format
As a general rule, XML-enabled databases use XML only as a data exchange
format, and the documents used by the database have no permanent identity.
For example, suppose XML is used to transfer temperature data from a weather
station to a database. After the data from a particular document is stored in the
database, the document is discarded.

"Retrieving" the document means querying the database for the desired data and
constructing an XML document from the results. It is not possible to ask for the
document by name, and there is no guarantee that the original document can be
exactly reconstructed. Because of this, it is not a good idea to shred a document
into an XML-enabled database as a way of storing the XML document. Instead,
you should think in terms of publishing existing relational data (regardless of its
source) as XML.

This is in contrast to native XML databases, which do retain document identity.
For example, suppose a user's manual is written in XML and stored in a native
XML database. In this case, XML is not just a way to exchange the chapters and
sections in the user's manual with another application; the XML documents that
comprise the user's manual are in the native format of the manual, and are
retained as such by the database.

An important consequence of using XML as a data exchange format is that an
XML-enabled database will only retain information that its own model considers
important. In the case of an XML-enabled relational database, this means the
data itself and the hierarchical relationships (parent, child, sibling) among the
data. All other information, including entity references, CDATA sections,
comments, processing instructions, and the DTD, are ignored. Even the order in
which elements appear in their parent is lost, since relational databases have no
concept of order among columns or rows.

1.4.2 Mapping a database schema to an XML schema
When using an XML-enabled database, it is necessary to map the database
schema to the XML schema (or vice versa). Such mappings are many-to-many.
For example, a database schema for sales order information can be mapped to
an XML schema for sales order documents, or it can be mapped to an XML
schema for reports showing the total sales by region.

Mapping database schemas to XML schemas, like writing queries, is generally a
design time operation. Although it is possible to generate mappings from a given
database schema to an XML schema and vice versa, such mappings are usually
just a starting point, since the process that generates the mapping must make a
number of assumptions about the schemas, not all of which are correct.

12 XML for DB2 Information Integration

There are three important kinds of mappings, all of which are supported by the
DB2 family of products: the table-based mapping, the object-relational mapping,
and query languages. The table-based mapping and the object-relational
mapping are important because they define bi-directional mappings. That is, the
same mapping can be used to transfer data both to and from the database. While
XML query languages only define a mapping in one direction (currently, from the
database to XML), they are important because they are much more flexible than
the other two mappings.

Table-based mapping
When using a table-based mapping, the XML document must have the same
structure as a relational database. That is, the data is grouped into "rows,” and
rows are grouped into "tables.” For example, the document in Figure 1-6 uses a
table-based mapping to list the data in sales order 123.

Figure 1-6 Sales order document that uses a table-based mapping

For more information about the table-based mapping, see “Table-based
mapping” on page 582.

Object-relational mapping
When using object-relational mapping, an XML document is viewed as a set of
serialized objects and is mapped to the database with an object-relational

<Database>
<SalesOrders>

<SalesOrder>
<Number>123</Number>
<OrderDate>2003-07-28</OrderDate>
<CustomerNumber>456</CustomerNumber>

</SalesOrder>
</SalesOrders>
<Items>

<Item>
<Number>1</Number>
<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item>

<Number>2</Number>
<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</Items>

</Database>

Sales order data

Line item data

 Chapter 1. XML and databases 13

mapping. That is, objects are mapped to tables, properties are mapped to
columns, and inter-object relationships are mapped to primary key / foreign key
relationships.

To see how the object-relational mapping works, consider the sales order
document shown earlier (Figure 1-7).

Figure 1-7 Sales order document that uses an object-relational mapping

This document can be viewed as the serialization of the tree of objects shown in
Figure 1-8.

Figure 1-8 A tree of sales order objects

<SalesOrder>
<Number>123</Number>
<OrderDate>2003-07-28</OrderDate>
<CustomerNumber>456</CustomerNumber>
<Item>

<Number>1</Number>
<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item>

<Number>2</Number>
<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</SalesOrder>

Sales
order
object

Item
object

Item
object

SalesOrder
Number = 123
OrderDate = 2003-07-28
CustomerNumber = 456
Items = {pointers to Item objects}

Item Item
Number = 1 Number = 2
PartNumber = "XY-47" PartNumber = "B-987"
Quantity = 14 Quantity = 6
Price = 16.80 Price = 2.34

14 XML for DB2 Information Integration

Using an object-relational mapping, this can be mapped to the sales order
(Table 1-7) and line item table (Table 1-8).

Table 1-7 SalesOrder table

Table 1-8 Items table

Unlike the table-based mapping, where the data from different tables is listed in
separate parts of the XML document, the object-relational mapping uses nesting
to show the relationship between data from different tables. For example, the
data from the line item table is nested inside the data from the sales order table.

For more information about the object-relational mapping, see “Object-relational
mapping” on page 585.

Query languages
While the table-based mapping and the object-relational mapping require the
XML schema to closely match the database schema, query languages provide
more flexibility in constructing XML documents.

SQL/XML
For XML-enabled relational databases, the most important query language is
SQL/XML, which is a set of extensions to SQL for creating XML documents and
fragments from relational data. The main features of SQL/XML are an XML data
type, a set of scalar functions for creating XML (XMLELEMENT,
XMLATTRIBUTES, XMLFOREST, and XMLCONCAT), and an aggregate
function for creating XML (XMLAGG).

For example, the following call to the XMLELEMENT function:

XMLELEMENT(NAME Customer,
XMLELEMENT(NAME Name, customers.name),
XMLELEMENT(NAME ID, customers.id))

constructs the following Customer element for each row in the customers table:

Number Date Customer

123 2003-07-28 456

...

SONumber Number PartNumber Quantity Price

123 1 "XY-47" 14 16.80

123 2 "B-987" 6 2.34

 Chapter 1. XML and databases 15

<Customer>
 <Name>customer name</Name>
 <ID>customer id</ID>

</Customer>

For more information about SQL/XML, see 2.1, “SQL/XML” on page 24 and
Chapter 8, “Publishing data as XML” on page 209.

XQuery
XQuery is an XML query language being defined by the W3C. As of this writing, it
is not yet finished. However, more than twenty implementations of XQuery
already exist.

XQuery is designed to query XML documents, not relational databases. Thus, to
implement it over a relational database, it is necessary to first map the relational
database to one or more virtual documents. The easiest way to do this is to map
each table to a separate document using the table-based mapping. Thus, an
XQuery statement querying a virtual document can be mapped to a SELECT
statement querying a table (Figure 1-9).

Figure 1-9 Implementing XQuery over a relational database

XQuery
query

Virtual XML
documents
Virtual XML
documents

XQuery engine

Query
results

Database

DataSELECTs

Table
mappings

16 XML for DB2 Information Integration

For example, the following XQuery statement is equivalent to the SQL/XML
statement in the previous section:

FOR $c IN document("customers")/row/Customer
RETURN

 <Customer>
 <Name>{$c/name}</Name>

 <ID>{$c/id}</ID>
</Customer>

For a prototype implementation of XQuery over DB2, see the XML for Tables
project on the alphaWorks® Web site:

http://alphaworks.ibm.com/tech/xtable

For more information about XQuery, see the W3C's XQuery Web site:

http://www.w3.org/XML/Query

1.5 Native XML DB: managing documents and
semi-structured data

A native XML database is one that uses the XML data model directly. That is, it
uses a set of structures that can store arbitrary XML documents. This makes
native XML databases a good choice for two general situations:

� Those in which the schema of the documents to be stored is not known at
design time.

� Those in which the data to be modeled does not fit well in other models, such
as the relational model.

XML-enabled databases do not work well in the first case because they require
that the database be configured for each XML schema for which data is to be
stored. Although this can be done at runtime, this procedure is generally
error-prone and results in less-than-optimal mappings. XML-enabled databases
might work for the second case, but only for some classes of data. For example,
although the XHTML schema can be mapped to a relational schema, the heavy
use of mixed content in XHTML requires almost one table per element type. This
results in poor performance when retrieving data.

In addition to providing XML-enabled storage in DB2, XML Extender provides
simple native XML storage in DB2. It does this by storing complete XML
documents in “text” columns, which can then be queried in a variety of ways. Net
Search Extender also provides simple native XML storage in DB2 by providing
XML-aware full-text searches and structural searches. For more information on

 Chapter 1. XML and databases 17

http://alphaworks.ibm.com/tech/xtable
http://www.w3.org/XML/Query

both products, see Chapter 2, “XML services in DB2 and DB2 Information
Integrator” on page 23.

1.5.1 Use cases
The best way to understand native XML databases is to consider real-world use
cases. For example:

� Document management, that is, managing things like end-user
documentation, marketing brochures, Web pages, and so on. Native XML
databases are particularly well suited for this case, because the XML data
model fits this kind of document well.

� Semi-structured data. Semi-structured data fits very well into the XML data
model for two reasons. First, the XML data model accommodates a sparsely
populated schema without wasting any space. Second, the XML data model
is arbitrarily extensible, so a fixed schema is not required.

� Long-running transactions. Many e-commerce transactions now use XML
documents as a way to exchange state information between different parts of
the application. Since these transactions can often last several weeks (for
example, each part might require human approval), a native XML database is
a good way to store the state of the transaction while it is being performed,
even if the final state of the transaction is stored in a relational database. A
native XML database allows the current state of the transaction to be queried
with an XML query language, and may provide other XML tools, such as
XSLT transformations and versioning.

� Archiving documents. Many companies, such as those in the pharmaceutical
and financial industries, must archive documents for legal reasons. If these
are XML documents, then a native XML database is a natural choice for
archiving, since its XML query language support allows documents to be
used as a source of historical data for trend analysis and, etc.

1.5.2 Technical definition of a native XML database
Before discussing the different IBM products, software, and software
components that support XML in a database environment, we discuss the
technical definition of a native XML database on a slightly more theoretical level.

Although there is no absolute definition, the following definition from the XML:DB
Initiative (see http://www.xmldb.org)—a coalition of native XML database
vendors—is widely quoted. A native XML database is one that:

Note: Net Search Extender is a DB2 extender that provides full-text search
capabilities for text documents stored in columns.

18 XML for DB2 Information Integration

http://www.xmldb.org

� Defines a data model for XML. The minimal model includes elements,
attributes, text, and document order.

� Uses an XML document as its fundamental (logical) unit of storage.

� Can use any physical storage strategy.

Let's now look at each part of this definition in more detail.

XML data model
An XML data model describes what parts of an XML document are logically
significant. For example, all XML data models include elements, attributes, text,
and document order. But some models also include things like entity references
and CDATA sections, while others do not. Whether this makes a difference
depends on the application; these are critical for XML editors and a nuisance for
health data.

XML data models are used as the basis for XML query languages and define the
minimum amount of information that a native XML database must store. Native
XML databases are free to define their own XML data model because, at the time
native XML databases were first created, there was no standard XML data
model. As a result, there are native XML databases based on the info set, DOM
objects, the XPath 1.0 data model, and the XQuery data model, among others.
Fortunately, many native XML databases (including DB2 XML Extender) support
XPath 1.0 and its data model today, and most of them will probably use the
XQuery data model in the future.

For more information about the XPath 1.0 data model, see:

http://www.w3.org/TR/xpath

For more information on the XQuery (and XPath 2.0) data model, see:

http://www.w3.org/TR/xpath-datamodel/

Fundamental unit of storage
A fundamental unit of storage is the smallest grouping of data that logically fits
together in storage. In a relational database, this is a row. In a native XML
database, this is a document. Since any document fragment headed by a single
element is potentially an XML document, the choice of what constitutes an XML
document is purely a design decision. Here are some examples:

� A book written in XML. While most people would agree that the book should
probably be split across multiple documents, and that it would be silly to have
separate documents for each paragraph, what the ideal document size
should be is not clear. For example, should each document contain a
chapter? A section? A subsection? This depends entirely on the book and
how it will be used.

 Chapter 1. XML and databases 19

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath-datamodel/

� Medical data stored as XML documents. There might be a separate XML
document for each patient, for each medical provider (doctor, hospital, clinic,
and so on), and for each insurance company. Thus, the database schema is
to a certain extent normalized, although this normalization is not as complete
as might be achieved in a relational database.

� XML search engine documents. In this case, no attempt is made to find an
ideal document size. Instead, each document is simply stored in the
database, regardless of whether its size is ideal.

Implementation
A native XML database can use any implementation. For example, native XML
databases have been implemented in all of the following ways:

� Store whole XML documents in CLOBs in a relational database, and index
individual element and attribute values. This is what DB2 XML Extender does.

� Store parsed XML documents in a fixed set of tables (elements, attributes,
text, and so on) in a relational database.

� Store parsed XML documents as DOM trees in an object-oriented database.

� Store parsed XML documents in an indexed set of hash tables.

How a native XML database is implemented can significantly affect performance.
Perhaps the biggest single factor affecting performance is whether the document
is stored as a whole, or in parsed form. For example, a document stored in an
indexed CLOB is stored whole. A document stored as a DOM tree in an
object-oriented database is stored in parsed form, since it is parsed at insert
time, and stored as individual elements and attributes.

To see how this affects performance, consider the following classes of queries:

� Queries that retrieve whole documents based on indexed values. Databases
that store whole documents provide the best performance on these queries,
since there is no need to rebuild or re-serialize the document, as is the case
when a document is stored in parsed form.

� Queries that retrieve indexed values. Given equivalent indexing schemes, all
databases perform equally well on these queries, since they can be resolved
simply by searching the indexes.

� Queries that retrieve unindexed values or document fragments. Databases
that store pre-parsed documents perform best on these, since databases that
store whole documents must parse each document to resolve these queries.
For the latter databases, performance might be acceptable if the query needs
to parse only a few documents. It will almost certainly be unacceptable if the
query parses a large number of documents.

20 XML for DB2 Information Integration

� Queries that update documents. Databases that store pre-parsed documents
perform best on these, since they can update, insert, or delete individual
nodes. Databases that store whole documents must not only parse and
modify the document; they must also rewrite the entire document to storage
after updating it.

1.6 Summary
In this chapter, we have looked at the two main ways XML is used with
databases.

In an XML-enabled database, existing data can be used to create XML
documents, a process known as publishing. Similarly, data from an XML
document can be stored in the database, a process known as shredding. In an
XML-enabled database, no XML is "visible" inside the database and the
database schema must be mapped to an XML schema. XML-enabled databases
are used when XML is used as a data exchange format and requires no changes
to existing applications.

In a native XML database, a set of generic structures is used to store any and all
XML documents. Because of this, XML is "visible" inside the database. No
schema mapping is necessary since native XML databases use the XML data
model directly. Native XML databases support an XML query language and can
be built from scratch or on top of an existing database. They are best used for
storing documents (such as user's manuals, static Web pages, and marketing
brochures) and semi-structured data.

 Chapter 1. XML and databases 21

22 XML for DB2 Information Integration

Chapter 2. XML services in DB2 and
DB2 Information Integrator

This chapter describes the XML services available in DB2 and DB2 Information
Integrator:

� SQL/XML (DB2)
� XML Extender (DB2)
� Net Search Extender (DB2)
� XML Wrapper (DB2 Information Integrator)
� WebSphere MQ
� WebSphere Studio

In addition, this chapter discusses what products you should use to implement
these services.

2

© Copyright IBM Corp. 2004. All rights reserved. 23

2.1 SQL/XML
For XML-enabled relational databases, the most important query language is
SQL/XML, which is a set of extensions to SQL for creating XML documents and
fragments from relational data. It is part of the ISO SQL specification (Information
technology - Database languages - SQL - Part 14: XML-Related Specifications
(SQL/XML) ISO/IEC 9075-14:2003). SQL/XML support can be found in DB2
UDB for Linux®, Unix and Windows®, and in DB2 for z/OS® V8.

SQL/XML adds a number of new features to SQL. The most important of these
are a new data type (the XML data type), a set of scalar functions for creating
XML (XMLELEMENT, XMLATTRIBUTES, XMLFOREST, and XMLCONCAT),
and an aggregation function (XMLAGG) for creating XML. It also defines how to
map database identifiers to XML identifiers.

The following sections briefly describe the main features of SQL/XML. For the
complete specification, please refer to the official standard document mentioned
above.

ftp://sqlstandards.org/SC32/WG3/Progression_Documents/Informal_working_drafts/

2.1.1 XML data type
The XML data type can have three different values: NULL, an XML document
with an XML declaration, or element content. Element content is anything that is
legal in an XML element, such as text, elements, comments, and processing
instructions. All entries (*) in Example 2-1 on page 25 are “legal” values of the
XML data type.

24 XML for DB2 Information Integration

ftp://sqlstandards.org/SC32/WG3/Progression_Documents/Informal_working_drafts/

Example 2-1 Legal values for the XML data type

* NULL 1

* <?xml version="1.0"?> 2
<Book>
 <Title>XML Made Easy</Title>
 <Author>Jim Hu</Author>
</Book>

* XML Made Easy 3

* <Title>XML Made Easy</Title> 4
<!-- A comment -->
<Author>Jim Hu</Author>

* This is a good book. 5

* <p>This is a good book.</p> 6

Just as the SQL specification does not state how the DOUBLE data type should
be implemented, the SQL/XML specification does not state how the XML data
type should be implemented. For example, the XML data type could be
implemented using DOM nodes, strings, or proprietary structures. (DB2 currently
externalizes the XML data type using CLOBs. However, this is an
implementation detail and you should not think of the XML data type as a CLOB,
especially since attempts to treat XML values as CLOBs and vice versa will
result in syntax errors.)

Note: The XML data type is not a text data type and XML values are not
necessarily strings.
For example, consider the string "<Database>DB2</Database>". While it is
tempting to think of this as a database element whose value is "DB2", this is
not the case; it is simply a string. Because this string uses the syntax specified
in the XML 1.0 recommendation, we can parse it and create a database
element whose value is "DB2", but that is different from the string itself.

Note: When an XML value is serialized as a string, the result is not
necessarily well-formed and therefore might not be parseable by an XML
parser. For example, in Example 2-1, only XML data values of examples 2 and
6 are well-formed.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 25

The main reason that the XML data type supports non-well-formed values is so it
can use these as intermediate values while executing queries. That said, there
are good reasons to return non-well-formed values as well. For example, an
application might use SQL/XML to create a forest of <tr> (table row) elements,
then insert these into a <table> element inside an XHTML document it is
constructing. While the values returned by SQL/XML are not well-formed, the
document constructed by the application is well-formed.

2.1.2 SQL/XML functions
The functions defined by SQL/XML can be used to construct XML values from
SQL expressions, such as column names or constants, or from other XML
values. For example, the SELECT statement in Example 2-2 uses
XMLELEMENT and XMLATTRIBUTE to construct Customer elements.

Example 2-2 Using XMLELEMENT and XMLATTRIBUTES

SELECT XML2CLOB(
XMLELEMENT(NAME Customer, XMLATTRIBUTES(customers.id AS ID),

XMLELEMENT(NAME Name, customers.name),
XMLELEMENT(NAME Street, customers.street),
XMLELEMENT(NAME City, customers.city),
XMLELEMENT(NAME State, customers.state),
XMLELEMENT(NAME PostCode, customers.postcode),
XMLELEMENT(NAME Country, customers.country)
)

)
AS CustomerXML

FROM customers

For each row in the customers table, this statement returns the following value
(see Example 2-3) in the CustomerXML column:

Example 2-3 CustomerXML column

<Customer ID="customer id">
 <Name>customer name</Name>
 <Street>street address</Street>
 <City>city name</City>
 <State>state name</State>
 <PostCode>postal code</PostCode>
 <Country>country</Country>

</Customer>

26 XML for DB2 Information Integration

The other SQL/XML functions are:

� XMLFOREST. Creates a forest of XML elements from a list of SQL
expressions, such as column names.

� XMLCONCAT. Concatenates a list of XML values into a forest of XML values.

� XMLAGG. Also concatenates a list of XML values into a forest. The difference
between XMLCONCAT and XMLAGG is that the XML values used by
XMLCONCAT must all be created from a single row, while the XML values
used by XMLAGG are aggregated across rows.

2.1.3 XML2CLOB function
In the previous example, you may have noticed the use of the XML2CLOB
function. This function casts an XML value (XML data type) —in this case, the
value returned by the XMLELEMENT function— to a CLOB. This function is
defined by DB2 and is needed because DB2 does not have a way to return XML
values directly to the application.

More details on the SQL/XML functions, as well as examples, are provided in 8.1,
“Publishing data using SQL/XML” on page 210.

Until DB2 UDB for Linux, UNIX, and Windows V8.2, XML2CLOB was the only
supported operation to convert (serialize) an XML data type value to a string data
type value. Serialization is the inverse operation of parsing; it is the process of
converting a parsed XML value into a textual XML value.

A new standard SQL/XML function, XMLSERIALIZE (with the CONTENT option)
will be introduced in DB2 UDB for Linux, UNIX and Windows V8.2 (still under
development at the time of writing of this publication). It will allow you to convert
an XML data type value into a result string data type that is appropriate for the
length of the XML output. XMLSERIALIZE converts an XML expression into an
SQL string value which, in turn, can be bound out to host character variables.
With XMLSERIALIZE, you can specify a result type such as CHAR or
VARCHAR, which might be more appropriate and result in better performance
than CLOB.

2.2 DB2 XML Extender
The XML Extender is a DB2 Extender that provides both XML-enabled and
native XML capabilities for DB2. XML-enabled capabilities are provided through
XML collections, while native XML capabilities are provided through XML
columns.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 27

DB2 XML Extender consists of a number of user-defined data types,
user-defined functions, and stored procedures. These must be installed in each
database (for DB2 for z/OS that is a DB2 subsystem or a data sharing group) on
which they are used. This process is known as enabling the database for XML
use. DB2 XML Extender is shipped with DB2 UDB for Linux, Unix and Windows,
V7 and later. In version 7, it is installed separately, while in version 8, it is
installed as part of DB2 (although you still have to enable the database for XML
use). XML Extender is also a free, separately installable component, of DB2 for
z/OS V7 and later.

2.2.1 XML collections
XML collections are the way that DB2 XML Extender provides XML-enabled
capabilities for DB2. An XML collection is a collection of tables that has been
mapped from the database to an XML document by means of a DAD (Data
Access Definition) document.

There are two types of DAD documents used by XML collections: SQL mapping
documents and RDB node mapping (relational database node mapping)
documents. Both documents use a mapping roughly the same as an
object-relational mapping, but have different techniques for specifying that
mapping. The main differences between the two types of documents are:

� SQL statement mapping DAD documents contain a SELECT statement and
information about how the columns returned by that statement are mapped to
an XML document. They can only be used to publish (compose) relational
data as XML.

� RDB node mapping DAD documents use a mapping language that specifies
how nodes (elements and attributes) in the XML document are mapped to
tables and columns in a DB2 database. This type of DAD document allows
the XML Extender to construct both INSERT and SELECT statements, so
RDB node documents can be used both to publish data to XML and to shred
(decompose) XML into the database. That is, the mapping is bi-directional.

To publish data as XML using XML Extender, an application uses the
dxxGenXML, dxxGenXMLClob, dxxRetrieveXML, or dxxRetrieveXMLClob stored

Note: There is nothing special about the data in an XML collection, and DB2
does not know which data is in an XML collection and which data is not. In
particular, you should not think of an XML collection as a collection that is
composed only of XML data, since the data can come from any source, not
just from XML documents. Furthermore, because it is possible to map the
same data using many different DAD documents, a given piece of data can
reside in more than one XML collection.

28 XML for DB2 Information Integration

procedures.
The main difference between these procedures is whether or not you need to
pass a DAD document to the procedure.

� dxxGenXML and dxxGenXMLClob accept a DAD document as an input
argument.

� dxxRetrieveXML and dxxRetrieveXMLClob accept an XML collection name
instead.
The XML collection name is used to retrieve the DAD document from a
special table (XML_USAGE) that is managed by XML Extender. The DAD is
stored in this table when the collection is enabled (enabling a collection does
nothing more than storing the DAD document in the XML_USAGE table, and
create the tables if they do not yet exist).

To shred XML documents, an application calls the XML Extender through the
dxxShredXML or dxxInsertXML stored procedures. As before, the main
difference between both stored procedures is whether they use a DAD or XML
collection name as an input parameter.

� dxxShredXML uses a DAD as an input parameter
� dxxInsertXML uses an XML collection as an input parameter

Let us now look at both types of mapping documents in more detail.

SQL statement mapping DAD documents
SQL mapping documents can only be used to publish data as XML. They contain
a SELECT statement that specifies what data is to be published. This statement
must meet the following conditions:

� Each column in the result set must have a unique name. If two columns have
the same name, you can use the AS clause to assign unique names to one or
both columns.

� The columns in the select list must be grouped by table.

� The first column in the select list from each table must uniquely identify a row
of the table. This column may come from the table—for example, it can be a
single-column primary key—or be a generated column.

� The order in which tables appear in the select list must match the nesting of
the XML document.

� The result set must be ordered by the unique columns for each table.

These rules guarantee that the data is returned in the result set in the same order
as it appears in the XML document. By checking when key column values
change, DB2 XML Extender can determine when to create the elements that
wrap the data from each table. For example, the following statement

 Chapter 2. XML services in DB2 and DB2 Information Integrator 29

(Example 2-4) can be used to select data for sales orders 123 and 124 from the
sales order and line item tables.

Example 2-4 SQL statement for a DAD mapping file

SELECT Orders.Number AS SONumber,
Orders.Customer AS CustNumber,

 Items.Number AS ItemNumber,
Items.Part AS PartNumber

FROM Orders, Items
WHERE (SONumber = Items.SONumber) AND

((SONumber = 123) OR (SONumber = 124))
ORDER BY SONumber, ItemNumber

The SQL statement mapping DAD document not only contains the SQL
statement that provides the data content for the XML document, but also maps
the result set of the query to the XML document structure. It contains a template
in which element_node, attribute_node, and text_node elements outline the
structure of the XML document. element_node elements may contain
attribute_node, text_node, and other element_node elements. attribute_node
and text_node elements specify the result set column from which an individual
data value is to be retrieved. For example, the following document fragment
maps the result set from the SELECT statement in Example 2-4:

Example 2-5 SQL statement DAD mapping

<element_node name="SalesOrder">
<attribute_node name="Number">

 <column name="SONumber" />
</attribute>
<element_node name="CustomerNumber">
 <text_node>

 <column name="CustNumber" />
 </text_node>
</element_node>
<element_node name="Item" multi_occurrence="YES">

 <attribute_node name="Number">
 <column name="ItemNumber" />

 </attribute>
<element_node name="PartNumber">

 <text_node>
 <column name="PartNumber" />

 </text_node>
</element_node>

</element_node>

30 XML for DB2 Information Integration

</element_node>

When DB2 XML Extender is called with a SQL mapping document, it executes
the SELECT statement and constructs one XML document for each unique value
of the key column in the outermost table. For example, DB2 XML Extender
constructs the following two XML documents (Example 2-6) from the preceding
SELECT statement and mapping information:

Example 2-6 Resulting XML document

<?xml version="1.0"?>
<SalesOrder Number="123">
 <CustomerNumber>456</CustomerNumber>

<Item Number="1">
PartNumber>XY-47</PartNumber>

</Item>
<Item Number="2">

<PartNumber>B-987</PartNumber>
</Item>

</SalesOrder>

<?xml version="1.0"?>
<SalesOrder Number="124">

<CustomerNumber>456</CustomerNumber>
<Item Number="1">

<PartNumber>XY-47</PartNumber>
</Item>
<Item Number="2">

 <PartNumber>B-987</PartNumber>
 </Item>
</SalesOrder>

One additional feature of SQL mapping documents is that an application can
pass a different SELECT statement at runtime than that which appears in the
DAD document. Because this statement uses the mapping information in the
DAD document, it must return a result set with the same structure as that
returned by the SELECT statement in the DAD document. However, the result
set can contain different data. In other words, both SELECT statements should
have the same select list, FROM clause, join conditions, and ORDER BY clause,
but can have different criteria in their WHERE clauses.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 31

RDB node mapping documents
RDB node mapping documents can be used both to publish relational data as
XML, and to shred XML documents into the database. Instead of a SELECT
statement, they contain information that maps elements and attributes to tables
and columns. This allows DB2 XML Extender to create both SELECT statements
(during composition) and INSERT statements (during decomposition or
shredding) from the same information.

The structure of the mapping information is essentially the same as that in SQL
mapping DAD documents; that is, it is a template that outlines the structure of the
XML document. The main difference is that attribute_node and text_node
elements contain RDB_node elements instead of column elements.

These RDB_node elements specify the table and column to which an attribute or
text node is mapped, as well as any search conditions that apply to that column.
In addition, a special RDB_node element in the first element_node element lists
the names of the tables used by the mapping and the conditions used to join
them.

For example, the following RDB node mapping document (Example 2-7) is
equivalent to the SQL mapping in the previous section.

Example 2-7 RDB_node mapping

<element_node name="SalesOrder">
<RDB_node>

<table name="Orders" key="Number" />
<table name="Items" key="SONumber Number" />
<condition>Orders.Number=Items.SONumber</condition>

</RDB_node>
 <attribute_node name="Number">

<RDB_node>
<table name="Orders" />
<column name="Number" type="integer"/>
<condition>(Orders.Number=123) OR (Orders.Number=124)</condition>

</RDB_node>
 </attribute>

<element_node name="CustomerNumber">
<text_node>

<RDB_node>
<table name="Orders" />
<column name="Customer" type="integer"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Item" multi_occurrence="YES">

<attribute_node name="Number">

32 XML for DB2 Information Integration

<RDB_node>
<table name="Items" type="integer"/>
<column name="Number" />

</RDB_node>
</attribute>
<element_node name="PartNumber">

<text_node>
<RDB_node>

<table name="Items" />
<column name="Part" type="varchar(10)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>

An additional feature of RDB node mapping documents is that the application
can pass different conditions at runtime than those that appear in the DAD
document. An location path expression specifies the element or attribute to
which the condition applies.

2.2.2 XML columns
XML columns are the way that DB2 XML Extender provides simple native XML
storage in DB2. An XML column is a column in a DB2 table that is used to store
a complete XML document. It must have a data type of XMLVARCHAR,
XMLCLOB (XMLDBCLOB if your database is enabled for DBCS), or XMLFILE
and all of the XML documents stored in a particular XML column should use the
same XML schema. For example, Table 2-1 on page 34 shows how sales order
documents can be stored in the OrderDocuments table.

Note: XMLVARCHAR, XMLCLOB, XMLDBCLOB, and XMLFILE are
user-defined types defined by DB2 XML Extender. They are based on the
VARCHAR, CLOB, DBCLOB and VARCHAR, DB2 built-in data types,
respectively. In the case of XMLFILE, the name of the XML file, rather than its
contents, are stored in the XML column.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 33

Table 2-1 OrderDocuments table

The documents stored in an XML column can be indirectly indexed and queried
by using side tables. Side tables are tables that are separate from the table that
contains the XML column. They contain values extracted from the XML
documents in the XML column, and a foreign key column (although the
relationship is not explicitly defined by XML Extender) that points back to the
table that contains the XML column. DB2 XML Extender automatically maintains
the data in side tables.

A subset of XPath 1.0 is used to specify which values of the XML document
should be stored in side tables.

For example, Figure 2-1 on page 35 shows how side tables may be built from a
sales order XML document. The sales order number, date, and customer number
are stored in one side table. The part numbers used in the sales order are stored
in a different side table. In both side tables, the DocID column is a foreign key
pointing back to the table containing the XML column.

DocID Document

1 <SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

<CustomerNumber>456</CustomerNumber
>

<Item Number="1">
<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item Number="2">

<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</SalesOrder>

2

34 XML for DB2 Information Integration

Figure 2-1 Side tables for a sales order document

Applications can effectively query individual values in the XML document by
querying the side tables. These queries are equivalent to queries that a database
engine resolves by reading only indexes. They can also retrieve documents that
match a particular "index" value (entry in the side table) or values, by querying
the side tables and then retrieving the corresponding documents from the
document table. The performance of these queries can be optimized by indexing
the values in the side tables.

For example, the query in Example 2-8 can be used to retrieve the numbers of
sales orders that contain part XY-47.

Example 2-8 Query retrieving info using side tables

SELECT OrderSideTable.SONumber
FROM OrderSideTable, PartSideTable
WHERE OrderSideTable.DocID = PartSideTable.DocID AND

PartSideTable.PartNumber = 'XY-47'

And the following query (Example 2-9) can be used to retrieve the sales order
documents that contain part XY-47:

Example 2-9 Retrieving XML documents from an XML column using side table info

SELECT OrderDocuments.Document
FROM OrderDocuments
WHERE OrderDocuments.DocID IN

 (SELECT PartSideTable.DocID

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>
<CustomerNumber>456</CustomerNumber>
<Item Number="1">

<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item Number="2">

<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</SalesOrder>

OrderSideTable

PartSideTable

DateCustNumberSONumberDocID

…………

0307274561231

………

2B-9871

1XY-471

Dxx_seqnoPartNumberDocID

 Chapter 2. XML services in DB2 and DB2 Information Integrator 35

 FROM PartSideTable
 WHERE PartSideTable.PartNumber = 'XY-47'

)

To specify which values in the XML document are to be extracted and stored in
side tables, we also use a DAD document. This type of DAD uses a different
format from the DAD documents used by XML collections. For example, the
fragment of a DAD document in Example 2-10 shows how to specify the layout of
the side tables in the preceding examples.

Example 2-10 XColumn DAD file

<Xcolumn>
<table name="OrderSideTable">

<column name="SONumber" type="integer"
 path="/SalesOrder/@Number" multi_occurrence="NO" />

<column name="CustNumber" type="integer"
 path="/SalesOrder/CustomerNumber" multi_occurrence="NO" />

<column name="Date" type="date"
 path="/SalesOrder/OrderDate" multi_occurrence="NO" />
</table>
<table name="PartSideTable">

<column name="PartNumber" type="varchar(10)"
 path="/SalesOrder/Item/PartNumber" multi_occurrence="YES" />
</table>

</Xcolumn>

After you have created a DAD document for a given XML column, you must
enable that column. This is done with the dxxadm command, the parameters of
which include the table name, column name, and DAD file name.

Specific elements and attributes of XML documents stored in XML columns can
be updated with the Update user-defined function. This function is defined by
DB2 XML Extender and accepts the name of an XML column, a location path
expression, and a new value as its parameters. For example, the SQL UPDATE
statement in Example 2-11 on page 37 changes the customer number in sales
order 123 (which has a DocID of 1) to 457 using the XML Extender Update UDF.

Note: The XML Extender can create a default view that joins the table in
which the document is stored with all of its side tables. Applications can query
this view directly, which saves them from having to join the tables themselves.
A sample default view can be found in Example 5-10 on page 128.

36 XML for DB2 Information Integration

Example 2-11 Using the Update() UDF

UPDATE OrderDocuments
 SET Document=Update(Document, '/SalesOrder/CustomerNumber', '457')

 WHERE DocID = 1

It should be noted that a partial update of an XML document stored in an XML
column is potentially an expensive operation. This is because the document
must be parsed, the value changed, and the new document serialized and stored
back into the XML column. (When you update the entire document by replacing
it, parsing and reserialization is not required.) Thus, updates of XML columns
should be done sparingly or only to small XML documents.

Location path expressions can also be used to extract individual values from an
XML document using user-defined functions defined by DB2 XML Extender.
There are two UDFs for each data type that can be extracted (varchar, integer,
date, and so on).

� The first UDF for each type returns a scalar value, for example
extractCLOB(), and is used with location path expressions that return single
values.

� The second UDF returns a table with a single column, for example
extractCLOBs(), and is used with location path expressions that return
multiple values.

For example, the statement in Example 2-12 extracts the order date from sales
order 123.

Example 2-12 Using the extractInteger() function

SELECT extractInteger(Document, '/SalesOrder/OrderDate') AS OrderDate
FROM OrderDocuments

WHERE DocID = 1

Like updates, the location path-based extraction functions are expensive
because the document must be parsed. Therefore, frequently-queried values
should be extracted at insert time and stored in side tables.

2.3 Net Search Extender
DB2 Net Search Extender provides simple native XML functionality for DB2 in
the form of XML-aware full-text searches and structural searches. An

 Chapter 2. XML services in DB2 and DB2 Information Integrator 37

XML-aware full-text search is one that only searches the text (element and
attribute values) in an XML document, but not the markup (element and attribute
names, comments, and so on). An XML-aware structural search is one that
searches only the values of a particular element type or attribute.

You can use Net Search Extender with columns that have a data type of CHAR,
VARCHAR, LONG VARCHAR, CLOB, DBCLOB, BLOB, GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC, or DATALINK, as well as with columns
that have types that can be converted to these types, such as the XMLVARCHAR
and XMLCLOB data types defined by the XML Extender.

Just like DB2 XML Extender, DB2 Net Search Extender contains a number of
functions, stored procedures, as well as views of catalog information. These
must be installed in each database on which they are used, a process known as
enabling the database for use by Net Search Extender.

DB2 Net Search Extender requires version 8.1 or later of DB2 for Linux, Unix and
Windows.

2.3.1 Creating indexes
To create a full-text index on a column, you use the CREATE INDEX statement.
This allows you to specify the name of the table and column whose documents
are to be indexed, the code page used by the documents, the document format,
how often the index is to be updated, and so on.

When creating an index on a column used to store XML documents, you will
need to specify the following information:

� Format. This is always XML.

� Code page. The Net Search Extender does not follow the rules of the XML
1.0 recommendation for determining the code page used by an XML
document. In particular, it ignores the encoding declarations in XML
declarations and text declarations. Instead, it requires that all XML documents
stored in a column use the same code page. You can specify this code page
in the CREATE INDEX statement. If you do not specify a code page, the
default code page for the database is used.

� Conversion function. If the data type of the column in which the XML
documents are stored is not one of the directly supported data types (CHAR,
VARCHAR, and so on), you must specify the name of a function that can

Note: This is not the same as the SQL CREATE INDEX statement used in
DB2 to create an index on a table. It has a different syntax and is executed by
Net Search Extender, not DB2.

38 XML for DB2 Information Integration

convert the data in the column to one of the supported types. In the case of
the UDTs defined by XML Extender, you can use the casting functions
provided by the XML Extender, such as DB2XML.VARCHAR().

� Document model. This describes the set of elements and attributes whose
values are to be indexed. If no document model is provided, all elements and
attributes are indexed.

2.3.2 Full-text searches
DB2 Net Search Extender has three scalar functions (CONTAINS,
NUMBEROFMATCHES, and SCORE), a table-valued function (TEXTSEARCH),
and a stored procedure (also named TEXTSEARCH) for performing full-text
searches. For each of these, a search argument specifies what terms to search
for and how to search for them. For example, you can choose to search for a
single word, any or all of a list of words, words in the same sentence or
paragraph, synonyms of a word, words that match a wild card, and so on.

For example, suppose we store XML sales order documents in the Document
column, a LONG VARCHAR column in the OrderDocuments table. We create an
index on this column with the following statement (Example 2-13).

Example 2-13 Creating an index

CREATE INDEX OrderIndex
 FOR TEXT ON OrderDocuments (Document) FORMAT XML

To search for all documents that contain the word "wrench", we use the
CONTAINS function, passing in the name of the column and a simple search
argument (Example 2-14). The single quotes (') in the search argument delimit
the search argument string within the SELECT statement. The double quotes (")
delimit search values —as opposed to key words— within the search argument
itself. The CONTAINS() function returns 1 if the document satisfies the search
argument, and 0 if it does not.

Example 2-14 Using the CONTAINS() function

SELECT Document
FROM OrderDocuments

WHERE CONTAINS(Document, '"wrench"') = 1

A more complex query might search for documents that contain synonyms for
the word "wrench" or contain the phrase "Automotive Suppliers" (Example 2-15

 Chapter 2. XML services in DB2 and DB2 Information Integrator 39

on page 40). In this case, MechanicThesaurus is the name of a thesaurus we
have created that contains words used by mechanics.

Example 2-15 Using a thesaurus

SELECT Document
FROM OrderDocuments

WHERE CONTAINS(Document,
 'THESAURUS "MechanicThesaurus"

 EXPAND SYNONYM TERM OF "wrench" |
 "Automotive Suppliers"') = 1

2.3.3 Structural queries
A structural query is one that queries a particular section of the document, where
a section is defined by an XPath expression. (Only a subset of XPath is
supported. In particular, only the child (/), attribute (@), and descendant-or-self
(//) axes are supported. Predicates are not supported.) You can use the default
document model or define your own sections in a document model file.

The default document model indexes all elements and attributes in the
document. Each element or attribute is identified by its XPath. For example, to
search for all documents in which the value of the PartNumber element contains
XY-47, we again use the CONTAINS function. We use the name (XPath) of the
section (element) to specify which part of the document to search, as shown in
Example 2-16.

Example 2-16 Structural search query

SELECT Document
FROM OrderDocuments

WHERE DB2TX.CONTAINS(Document,
 'SECTION ("/SalesOrder/Item/PartNumber") "XY-47"') = 1

Note: DB2 Net Search Extender allows you to create custom thesauruses. To
do this, you create a text file containing your synonyms, then pass this file to
Net Search Extender, which compiles it into a thesaurus file.

Tip: The CONTAINS function searches for strings that contain a particular
token, not match it exactly. Thus, the preceding query also returns documents
where the part number is "XY-47 subpart A", "This is part XY-47", and so on.

40 XML for DB2 Information Integration

To define your own document model, you first construct a document model file.
This file contains information about the parts of the document you want to index.
For example, suppose you only want to index part numbers and customer
numbers. You would specify the XPath expressions for these elements in the
document model file, using a special XML syntax (Example 2-17).

Example 2-17 Document model file specification

<XMLModel>
 <XMLFieldDefinition name="PartNumber"

 locator="/SalesOrder/Item/PartNumber" />
<XMLFieldDefinition name="CustomerNumber"

 locator="/SalesOrder/CustomerNumber" />
</XMLModel>

Next, you specify the logical name of your document model, as well as the path
of the file containing it, in your CREATE INDEX statement, as shown in
Example 2-18.

Example 2-18 Create structural search index

CREATE INDEX OrderIndex FOR TEXT ON Orders (OrderDoc)
 FORMAT XML

 DOCUMENTMODEL MyDocumentModel IN C:\MyModels\MyModel.xml

With this index, you can only search for values in the PartNumber and
CustomerNumber elements. For example, to search for all documents in which
the value of the PartNumber element contains XY-47 and the value of the
Customer element contains 456, we can use the following statement
(Example 2-19).

Example 2-19 Selecting documents using a structural search index

SELECT OrderDoc
FROM Orders

WHERE DB2TX.CONTAINS(OrderDoc,
'SECTION ("PartNumber") "XY-47" &
SECTION ("CustomerNumber") "456"'

) = 1

 Chapter 2. XML services in DB2 and DB2 Information Integrator 41

Note that we use the section names we defined in our model document rather
than the XPath expressions we used in the previous statement. This is because
the XPath expressions in the previous statement were not really XPath
expressions —they were just default section names that happened to look like
XPath expressions.

2.4 XML wrapper
The XML wrapper provides XML-enabled capabilities for DB2 Information
Integrator by treating an XML document as a source of relational data. In XML
terms, it shreds a portion of the XML document according to an object-relational
mapping and returns the data as a table. Note that XML Wrapper queries are
potentially expensive because the XML Wrapper must parse each document it
queries. Thus, if a query queries a large number of documents, or if you
frequently query the same XML document, you may want to shred these
documents into tables in your database, assuming this is possible.

The XML Wrapper is shipped with version 8.1 or later of DB2 Information
Integrator.

2.4.1 Registering a wrapper and server
Before using the XML Wrapper, you must register it with the federated server.
Registering the XML wrapper tells DB2 where the wrapper library (DLLs) can be
found. You must then register a server for the XML Wrapper. For many data
sources, a server represents a specific data source, such as the Informix®
database in the accounting department, or the Microsoft® SQL Server database
in the shipping department. This is not true for the XML Wrapper, for which you
can use a single server for all your XML documents.

Wrapper: A wrapper is a component in a federated database management
system. That is a system that can query data from multiple sources in a single
SQL statement. Each wrapper knows how to communicate with a particular
type of data source and, if necessary, converts the data to the model used by
the federated system. (Most federated systems today are built on top of
relational databases and therefore use the relational model.) For example, a
wrapper for a particular e-mail system might treat each e-mail message as a
separate row in a table, with separate columns for to, cc, from, subject, and
the body of the message.

42 XML for DB2 Information Integration

2.4.2 Mapping an XML schema
To use the XML Wrapper with a set of documents that use a particular XML
schema, you must map the element types and attributes in that schema to one or
more tables. Each table is mapped separately using a CREATE NICKNAME
statement. (A nickname is a set of data in a data source that is treated as a table.
It is easiest to think of a nickname as being a remote table and you may want to
substitute the word "table" for the word "nickname" while reading the rest of this
section.)

A CREATE NICKNAME is similar to a CREATE TABLE statement, in that it
allows you to specify nickname and column names, column data types, column
nullability, and primary and foreign key columns. Unlike a CREATE TABLE
statement, CREATE NICKNAME (on a server that refers to an XML wrapper)
allows you to specify an XPath expression that points to an element type that
corresponds to a row in the nickname, the XPath expressions that point to
element types or attributes that correspond to columns, and the location of the
XML document.

For example, suppose we have the following XML document (Example 2-20):

Example 2-20 XML document

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>
<Item Number="1">

 <PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>

 <Price>16.80</Price>
</Item>
<Item Number="2">

<PartNumber>B-987</PartNumber>
 <Quantity>6</Quantity>

 <Price>2.34</Price>
 </Item>
</SalesOrder>

We can map the schema of this document to a set of nicknames with the
following CREATE NICKNAME statements (Example 2-21). We use the suffix
"NN" on these nicknames to distinguish them from the Orders and Items tables
already in the database.

Example 2-21 Creating nicknames for XML documents

 Chapter 2. XML services in DB2 and DB2 Information Integrator 43

CREATE NICKNAME OrdersNN
(ID VARCHAR(16) NOT NULL OPTIONS(PRIMARY_KEY 'YES'),
Number INTEGER NOT NULL OPTIONS(XPATH './@Number'),

 OrderDate DATE NOT NULL OPTIONS(XPATH './OrderDate'),
 CustNum INTEGER NOT NULL OPTIONS(XPATH './CustomerNumber'))

FOR SERVER xml_server
 OPTIONS(DIRECTORY_PATH 'c:\OrderDocs\', XPATH '/SalesOrder')

CREATE NICKNAME ItemsNN
 (ParentID VARCHAR(16) NOT NULL OPTIONS(FOREIGN_KEY 'OrdersNN'),

 Number INTEGER NOT NULL OPTIONS(XPATH './@Number'),
 PartNum VARCHAR(10) NOT NULL OPTIONS(XPATH './PartNumber'),

 Quantity INTEGER NOT NULL OPTIONS(XPATH './Quantity'),
 Price DECIMAL(8,2) NOT NULL OPTIONS(XPATH './Price'))

 FOR SERVER xml_server
OPTIONS(XPATH '/SalesOrder/Item')

Like CREATE TABLE statements, these statements specify a name (nickname),
followed by a set of column definitions. However, the other parts of the statement
are different, and we will look at each of them in turn.

� The FOR SERVER clause specifies the name of the server that was
registered for the XML Wrapper. The name used in the CREATE SERVER
statement is the same for all CREATE NICKNAME statements for all XML
documents.

� The XPATH clause at the end of the statement specifies the row element type
—that is, the element type that corresponds to a row in the nickname. The
number of elements returned by the expression determines the number of
rows in the nickname. For example, the expression /SalesOrder in the first
statement always returns a single element for sales order documents. Thus,
the OrdersNN nickname will always have one row for a particular document.
On the other hand, the /SalesOrder/Item expression in the second statement
can return multiple elements —one for each Item element— and the ItemsNN
nickname can contain multiple rows, depending on the actual XML document.

� The XPATH clause used in the column definitions specifies the location of the
element type or attribute from which the column's data is to be retrieved.
Notice that this XPath expression is relative to the row element type. For
example, the XPath expression ./@Number is used in both CREATE
NICKNAME statements. In the first statement, it specifies the Number
attribute of the SalesOrder element type; in the second statement, it specifies
the Number attribute of the Item element type.

� The PRIMARY_KEY 'YES' clause in the definition of the ID column in the
OrdersNN nickname, specifies that this column contains a primary key
generated by the XML Wrapper.

44 XML for DB2 Information Integration

� The FOREIGN_KEY 'OrdersNN' clause in the definition of the ParentID
column in the ItemsNN nickname specifies that this column contains a foreign
key that points to the OrdersNN nickname.

Primary and foreign keys are used to join different nicknames defined over the
same set of XML documents. This is necessary when querying data in any
nickname other than the root nickname —that is, the nickname whose row
element is highest in the XML document. In more deeply nested documents, a
nickname can have both a foreign key pointing to a parent nickname and a
primary key pointing to one or more child nicknames.

2.4.3 Identifying an XML document
There are several ways to specify which XML document or documents are to be
queried through a nickname. In the CREATE NICKNAME statement for the
OrdersNN nickname (Example 2-21 on page 43), the DIRECTORY_PATH option
specifies the directory containing one or more XML documents. If this option is
used, the XML Wrapper will query all documents with a .xml extension in the
specified directory. The FILE_PATH option is similar to DIRECTORY_PATH,
except that it specifies a single XML file.

While the DIRECTORY_PATH and FILE_PATH options require you to specify the
XML document or documents to be queried at design time, the document column
options allow you to specify the XML document or documents to be queried at
query execution time.

The document column options require you to define an additional column in the
nickname. This column does not correspond to any element types or attributes in
the XML document. Instead, it is a placeholder whose name is used in the
WHERE clause of a SELECT statement to specify the location of the XML
document or documents to be queried.

For example, suppose we want to query a sales order document that exists on
the Web. Instead of specifying the DIRECTORY_PATH option for the root
nickname, we create a document column (which we name Doc) with the URI
option, as shown in Example 2-22:

Example 2-22 Using a URI on the CREATE NICKNAME

CREATE NICKNAME OrdersNN
 (Doc VARCHAR(255) OPTIONS(DOCUMENT 'URI'),

 ID VARCHAR(16) NOT NULL OPTIONS(PRIMARY_KEY 'YES'),
 Number INTEGER NOT NULL OPTIONS(XPATH './@Number'),

OrderDate DATE NOT NULL OPTIONS(XPATH './OrderDate'),
 CustNum INTEGER NOT NULL OPTIONS(XPATH './CustomerNumber'))

 Chapter 2. XML services in DB2 and DB2 Information Integrator 45

 FOR SERVER xml_server
 OPTIONS(XPATH '/SalesOrder')

When we write a query using this nickname, we also have to specify the URI of
the document in the WHERE clause of the SELECT statement. For example:

SELECT * FROM OrdersNN WHERE Doc='http://samples.ibm.com/order123.xml'

Other document column options are FILE (a file path), DIRECTORY (a directory
path), and COLUMN (an SQL expression that resolves to a column, such as a
column name).

2.4.4 Querying an XML document through the XML Wrapper

Root nickname queries
The root nickname is queried like any table in the database. For example, to
retrieve the numbers of all sales orders for customer 456, we can use the
following SELECT statement, assuming we use our original CREATE
NICKNAME statements, which specifies that we are to search all documents with
a .xml extension in the c:\OrderDocs directory (Example 2-21 on page 43).

SELECT Number FROM OrdersNN WHERE CustNum = 456

Non-root nickname queries
Querying non-root nicknames is slightly more complex, since we must join all
ancestor nicknames. This is necessary for two reasons. First, the location of the
XML document or documents to be queried is only specified in the CREATE
NICKNAME statement for the root nickname. Second, it allows us to specify
additional filtering conditions on columns in the ancestor nicknames. For
example, to find the total number of part XY-47 ordered by customer 456, we use
the SELECT statement in Example 2-23.

Example 2-23 Querying non-root nicknames

SELECT SUM(Quantity)
FROM OrdersNN, ItemsNN
WHERE OrdersNN.ID = ItemsNN.ParentID AND

CustNum = 456 AND
PartNum = ‘XY-47‘

Notice that we use the primary key of the OrdersNN nickname (the ID column)
and the foreign key of the ItemsNN nickname (the ParentID column) to join the
nicknames. Should we define nicknames for more deeply nested documents, we

46 XML for DB2 Information Integration

would need to join each of the nicknames in the path leading to the lowest level
nickname.

2.4.5 Shredding an XML document using the XML Wrapper
In addition to querying XML documents, we can use the XML Wrapper to shred
XML documents into relational tables. To do this, we use an INSERT INTO ...
SELECT statement. For example, to insert rows into the Orders table, we use the
following INSERT statement (Example 2-24).

Example 2-24 Insert into Orders

INSERT INTO Orders (Number, Date, Customer)
 SELECT Number, OrderDate, CustNum FROM OrdersNN

This statement retrieves the values of the Number attribute of the Order element,
the OrderDate element, and the CustomerNumber element and inserts them into
the Orders table.

Similarly, we can use the following INSERT statement to insert rows into the
Items table (Example 2-25).

Example 2-25 Insert into Items

INSERT INTO Items (SONumber, Number, PartNumber, Quantity, Price)
 SELECT OrdersNN.Number, ItemsNN.Number, PartNum, Quantity, Price

 FROM OrdersNN, ItemsNN
 WHERE OrdersNN.ID = ItemsNN.ParentID

There are two important things to notice here. First, we retrieve the sales order
number from the OrdersNN nickname and use this to populate the SONumber
column of the Items table. This is because there is no sales order number in the
Items nickname. Second, we still use the OrdersNN.ID and ItemsNN.ParentID
columns to join the nicknames, even though we join the corresponding tables in
the database with the Orders.Number and Items.SONumber columns.

Finally, if you do use the XML Wrapper to shred XML documents into relational
tables, you must be careful to populate the tables in the correct order to maintain
referential integrity. In our case, we inserted data into the Orders table first and
the Items table second, since the Items table has a foreign key column
(SONumber) that points to the primary key column (Number) of the Orders table.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 47

Note that because you control the insert order yourself, you can use the XML
Wrapper to shred documents that cannot be shredded by the XML Extender. In
particular, you can shred documents in which a child element is mapped to a
table that contains the primary key in the relationship with the table to which its
parent element is mapped.

For example, suppose you map the following XML document (Example 2-26) to
the database in the obvious way, with the SalesOrder element type mapped to
the Orders table, the Customer element type mapped to the Customers table,
and the Item element type mapped to the Items table.

Example 2-26 Sales order XML document

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <Customer Number="456">
<Name>ITSO Insurance, Inc.</Name>

 <Street>123 Main St.</Street>
 <City>Chicago</City>

 <State>IL</State>
 <PostCode>60609</PostCode>

 <Country>US</Country>
</Customer>

 <Item Number="1">
 <PartNumber>XY-47</PartNumber>

 <Quantity>14</Quantity>
 <Price>16.80</Price>

 </Item>
<Item Number="2">

 <PartNumber>B-987</PartNumber>
 <Quantity>6</Quantity>

 <Price>2.34</Price>
 </Item>

</SalesOrder>

DB2 XML Extender cannot shred this document because it inserts data into the
database in the order the data occurs in the XML document. That is, it attempts
to insert data into the Orders table, then into the Customers table, and finally into
the Items table. Unfortunately, this fails when inserting the row into the Orders
table unless the customer row already exists in the Customer table. If you use
the XML Wrapper to shred this document, you can insert rows in the correct
order: Customers, then Orders, then Items.

48 XML for DB2 Information Integration

2.5 WebSphere MQ
DB2 XML Extender can be used with WebSphere MQ (formerly known as
MQSeries®) to send XML documents to and retrieve XML documents from
message queues. In particular, XML Extender includes a number of user-defined
functions and stored procedures for publishing XML documents to a publication
service, sending XML documents to message queues, and reading (read but not
remove) or receiving (read and remove) XML documents from message queues.
It also includes stored procedures for using XML collections with message
queues — reading XML documents from message queues and then shredding
them, as well as publishing relational data as XML documents and then sending
them to message queues. However, the use of these functions is beyond the
scope of this publication. More information can be found in DB2 XML Extender
Administration and Programming.

2.6 WebSphere Studio
The WebSphere Studio family of products is a set of development tools for
enterprise e-business Java-based applications. Besides programming tools, it
also enables the developers to test and deploy their application from the
common environment. The rich set of utilities and wizards helps developers to
simplify common tasks so that they can concentrate on more creative parts of
their jobs and be more productive.

WebSphere Studio provides these tools for development of XML and DB2
applications:

� Editors for XML files, DTDs, XML Schemas, and XSL files

� Generation of XML from SQL statements

� Run XSL transformations

� Editors for DB2 data descriptors (database, schema, tables, keys)

� Import and export of data descriptors from and to DB2 databases

� DDL generator

� Creation of SQL statements for Web application generation

� Creation of stored procedures and user-defined functions (UDF)

� Creation of document access definitions (DAD) for XML Extender

� Execute DAD files against DB2 XML Extender

� Creation of Web services from SQL statements, stored procedures, and DAD

� Usage of Web services in UDFs

 Chapter 2. XML services in DB2 and DB2 Information Integrator 49

We will explore most of these functions in Part 3 and Part 4 of this document.

2.7 What products should I use?
In this section, we will try to help you decide which products to use when working
with your XML documents.

Product overview
Table 2-2 summarizes what products you can use to accomplish various tasks.
These are explained further in the sections that follow.

Table 2-2 Product overview

Task Product Comments

Publishing data as
XML (composition)

SQL/XML Best choice due to flexibility.

XML Extender Most useful if you want bi-directional
mappings. (Use RDB node mapping).

Write your own code Realistically limited to table-based
mapping.

Shredding XML
documents
(decomposition)

XML Extender Use the RDB node mapping (and XML
collections).

XML Wrapper Avoids minor limitations of RDB node
mapping. Application must do more
work.

Write your own code Realistically limited to table-based
mapping.

Storing complete
XML documents

XML Extender Automatically maintains side tables
that can be indexed and queried when
using XML columns.

Querying XML
documents

XML Extender Can query side tables or use a location
path expression to query document.

Net Search Extender Full-text and structural searches.

XML Wrapper Treats document as if they are a
relational source. Document can be on
the Web.

50 XML for DB2 Information Integration

2.7.1 XML-enabled storage or native XML storage?
Before you decide what products to use, you need to decide what kind of storage
you want to use: XML-enabled storage or native XML storage. The best way to
answer this question is to look at your XML documents. Here are some
possibilities:

� Your XML documents will contain data that is currently stored in your
database. For example, you have historical stock data that you want to
publish as XML. By definition, you are using XML-enabled storage and need
a way to publish your current data as XML. You may also want to shred
incoming XML documents into your existing tables.

� Your XML documents represent a new source of data that is similar to data
currently stored in your database. For example, a new business partner is
sending you sales orders as XML documents. You will probably want to shred
these documents into your existing tables; this is XML-enabled storage. You
may also want to store whole (intact) incoming documents in a single column,
such as for legal reasons; this is native XML storage.

� Your XML documents represent an entirely new form of data. For example,
you are moving from paper invoices to computerized invoices and want to use
XML to send and receive invoices. Or you are migrating your documentation
from a word processor to DocBook (an XML dialect for writing books). What
to do in this case usually depends on what kind of documents you have and
how you intend to use them.

– If your documents are data-centric, then you will usually want to store the
data in them in an XML-enabled database. That is, you will shred incoming
documents into relational tables and construct outgoing documents from
the data in those tables. By storing your data in relational tables, you will
be able to work with it using non-XML applications.

– The main exception to this is when your data is semi-structured.
Semi-structured data is sparsely populated; that is, there are many fields,
most of which are not used at any one time. Such data is not easily stored
in a relational database. The main choices in that case are, either to use
many tables (requiring many joins to retrieve data), or a single table with
many columns (most of which are null for a given row). Because of this,
documents containing semi-structured data are often best stored in a
single column; that is, using native XML storage.

Updating XML
documents

XML Extender Location path expression-based
updates.

Write your own code More flexible, more work.

Task Product Comments

 Chapter 2. XML services in DB2 and DB2 Information Integrator 51

– On the other hand, if your documents are document-centric, then you will
usually want to store them in a single column; that is, using native XML
storage. There are two reasons for this.

• First, you will preserve document order, entity usage, comments, and
so on, something that XML-enabled storage cannot do.

• Second, while it is possible to map document-centric XML schemas to
relational schemas, the mapping is very inefficient (too many tables are
involved) and does not scale well.

2.7.2 Products for XML-enabled storage
There are two XML operations you can perform on data stored in XML-enabled
storage; publishing data in the storage as XML, and shredding XML documents
into that storage.

Local and global XML schemas
One issue with using XML-enabled storage is that you are often constrained as
to what XML schemas your documents can use. This is because the
object-relational mapping used by the XML Extender and the XML Wrapper
requires the XML schema to roughly match the database schema. (SQL/XML
does not impose this requirement.)

When your XML schema does not match your database schema —that is, when
you cannot map the XML schema to the database schema using the DAD
mapping language (XML Extender) or CREATE NICKNAME statements (XML
Wrapper) — then you will need two XML schemas: a local XML schema and a
global XML schema. The local XML schema matches the database schema and
can be mapped to that schema. The global XML schema is the schema that your
applications use. That is, it is the schema of XML documents that you exchange
with other applications and databases.

To convert between these two schemas, your application generally uses XSLT.
That is, it uses XSLT to convert incoming documents from the global XML
schema to the local XML schema. Similarly, it converts outgoing documents from
the local XML schema to the global XML schema. This is shown in Figure 2-2.

Figure 2-2 Transforming XML documents between local and global schemas

XML document
(global schema)

XML document
(local schema)

XSLT

XSLT Publish

Shred

Database

52 XML for DB2 Information Integration

Publishing relational data as XML
If you want to publish relational data as XML, the best choice is to use SQL/XML.
SQL/XML is extremely flexible and allows almost arbitrary XML documents to be
constructed. This saves you from having to use local (database-specific) and
global XML schemas — you can usually publish directly to the global XML
schema.

The second choice is to use the publishing capabilities of DB2 XML Extender.
There are two possibilities here: SQL statement mapping and RDB node
mapping. Of these two, SQL statement mapping is probably easier to use for
simple documents— you just construct the SELECT statement you want and
map it to an XML document. However, since SQL statement mapping DAD files
have a number of restrictions (see “SQL statement mapping DAD documents” on
page 29), it makes them less suited for more complex documents. RDB node
mapping may more difficult to get your arms around because XML Extender
constructs the SELECT statement(s) for you (based on the RDB nodes in your
DAD file). For example, you cannot use GROUP BY or ORDER BY clauses in
RDB node mapping.
On the other hand, you must use RDB node mapping if you also want to shred
XML documents that use the same XML schema. Regardless of which type of
mapping you use, you will often need to use XSLT to transform the resulting XML
document to one that uses your global XML schema.

The third choice is to write your own code. There are two choices here: writing
code that is specific to a particular XML schema and database schema, and
writing generic code that is driven by external information, such as a mapping
file. The first allows you to easily handle complex XML documents, but can be
expensive to maintain. The second is easy if you use the table-based mapping,
but that limits the XML documents you can handle. It is significantly harder if you
use more complex mappings, such as an object-relational mapping. Perhaps the
best compromise when you decide to write code yourself, is to write generic code
that uses the table-based mapping and use XSLT to transform between a local,
table-based XML schema and a global XML schema.

Shredding XML documents into relational tables
If you want to shred XML documents into relational tables, the best choice is to
use DB2 XML Extender with an RDB node mapping (there is no SQL based
mapping when shredding). You can also use the XML Wrapper to shred XML
documents. This requires you to insert the data for each table separately, but
does allow you to shred some documents that cannot be handled by the XML
Extender due to referential integrity constraints.

You can also write your own code to shred XML documents into relational tables.
As with writing your own code to publish relational data as XML, the best
compromise when writing all the code yourself, is to write generic code that uses

 Chapter 2. XML services in DB2 and DB2 Information Integrator 53

the table-based mapping and use XSLT to transform between a local,
table-based XML schema and a global XML schema.

2.7.3 Products for native XML storage
There are three XML operations you can perform on documents stored in native
XML storage; storing the documents, querying them, and updating them.

Storing complete XML documents
If you want to store complete (intact) XML documents, the best choice is to use
DB2 XML Extender, and store the documents in an XML column of type
XMLVARCHAR, XMLCLOB (XMLDBCLOB if the database allows DBCS), or
XMLFILE. This allows you to use side tables to index the documents.

You can also store complete documents in another type of text column, such as a
VARCHAR or CLOB column. However, there seems little reason to do this,
especially since you can use the XMLVARCHAR, XMLCLOB, XMLDBCLOB, and
XMLFILE data types without having to enable an XML column (although you still
must enable the database for XML Extender).

Querying XML documents
There are several ways to query complete XML documents. The kind of query
you want to run determines how you should store and query the XML document.

If you want to query individual values —that is, element or attribute values — in
the XML document, you can:

� Store the document in an XML column, construct side tables for the data you
want to query, and query the side tables. This is the best choice for several
reasons.
First, by querying the side tables, you avoid re-parsing the XML document.
Second, the side tables can use any data type (date, integer, float, and so
on), so extracted data values can be stored in the type that makes most
sense for them.
Third, the side tables are always up to date, as the XML Extender updates
them each time a document is inserted (or re-inserted) into an XML column.

� Store the document in a text column or an XML column and query it with one
of the location path-based extraction functions that come with XML Extender.
The main advantage of this is that you can perform ad hoc queries, rather
than having to decide what data you want to query when you create the table.
In addition, the extraction functions can convert data in the XML document to
the type of your choice, such as an integer, date, or float. The disadvantage is
that the XML document must be parsed, so performance may be an issue.

54 XML for DB2 Information Integration

� Store the document in a text column or an XML column and perform a
structured query with Net Search Extender. While structured queries are
similar to XPath queries or querying side tables, there are three significant
differences.
First, Net Search Extender only tests for the existence of a value; it does not
return the value itself.
Second, all comparisons are text based. Thus, "2", "02", and "2.0" are
different values.
Third, comparisons are whether an element or attribute contains a given
value, rather than strictly equalling that value.

� Wrap the document using XML Wrapper and query a subset of it as a table.
The advantage of this is that it allows you to store the document in a column
or in the file system, or to use documents retrieved from the Web. The
disadvantage is that the XML document must be parsed, so performance may
be an issue.

If you want to perform a full-text search:

� Store the document in a text column or an XML column, create a full-text
index on the column, and perform a full-text query with Net Search Extender.

Updating XML documents
If you want to update XML documents, you can:

� Store the document in an XML column and update the column with the
location path-based update function defined by the XML Extender. The
advantage of this is that you can easily specify the value you want to change.
There are also several disadvantages.
First, the XML document must be parsed, so performance may be an issue.
Second, even though only a single value (element or attribute) is changed,
the entire document is re-written to the column, again affecting performance.
Third, the document may be changed. Because the document is converted
into its internal representation, updated, and serialized again, some of its
content may have changed during the processing of the document.
Fourth, not all XPath functionality is supported in location path expressions.

� Store the document in a text or XML column, retrieve the document, update it
locally, and re-write the document to the column. The advantage of this is that
you can make any changes you want. There are several disadvantages as
well.
First, the XML document must be parsed, so performance may be an issue.
Second, the entire document is re-written to the column, again affecting
performance.
Third, writing the code to update the document may be a lot of work.

 Chapter 2. XML services in DB2 and DB2 Information Integrator 55

56 XML for DB2 Information Integration

Chapter 3. Designing XML and
database schemas

This chapter discusses what XML and/or database schemas you need to design.
It is divided into the following sections:

� Local and global XML schemas
� Determining what schemas you need to design
� Whether your XML schema matches your database schema
� Creating an XML schema from a database schema
� Creating a database schema from an XML schema
� Designing an XML schema

3

© Copyright IBM Corp. 2004. All rights reserved. 57

3.1 Local and global XML schemas
As was briefly discussed in 2.7.2, “Products for XML-enabled storage” on
page 52, one issue with using XML-enabled storage is that you are often limited
as to what XML schemas your documents can use. This is because the
object-relational mapping used by DB2 XML Extender and the XML Wrapper
requires the XML schema and the database schema to roughly "match.” This is
rarely a problem with SQL/XML, since that language is flexible enough to
construct almost any XML document. However, SQL/XML can only be used to
publish relational data as XML. It cannot be used to shred XML documents.

For example, the schemas of the XML document and relational tables in
Figure 3-1 match while the schemas of the XML document and relational tables
in Figure 3-2 do not match.

Figure 3-1 XML document and relational tables with matching schemas

Figure 3-2 XML document and relational tables with non-matching schemas

It is common for the XML schema to not match the database schema, because
the database schema and the XML schema are often defined by two different
groups of people. For example, the XML schema could be an industry-standard

<SalesOrder>
<Number>123</Number>
<OrderDate>2003-07-28</OrderDate>
<CustomerNumber>456</CustomerNumber>
<Item>

<Number>1</Number>
<PartNumber>XY-47</PartNumber>
<Quantity>14</Quantity>
<Price>16.80</Price>

</Item>
<Item>

<Number>2</Number>
<PartNumber>B-987</PartNumber>
<Quantity>6</Quantity>
<Price>2.34</Price>

</Item>
</SalesOrder>

SalesOrders Table
Number
Date
Customer

Items Table
SONumber
Number
PartNumber
Quantity
Price

<Student>
<Name>Jim Smith</Name>
<Age>28</Age>
<Major>Biology</Major>
<AverageGrade>3.2<AverageGrade>

</Student>

Students Table
ID
FirstName
LastName
Major
Minor

Grades Table
StudentID
ClassID
Grade

58 XML for DB2 Information Integration

schema, while the database schema is designed to work with local applications.
Or the XML schema could be designed to share data among many departments,
while each department has their own database schema.

But even when a single group of people has control over both the XML schema
and the database schema, the schemas might not match. For example, the XML
schema might be normalized for ease of use, while the database schema might
be denormalized for better performance. Or the XML schema is designed to work
with newer applications that use XML's hierarchical data structures, while the
database schema was be designed to work with older applications that use
relational structures.

When your XML schema does not match your database schema, you will need
two XML schemas: a local XML schema and a global XML schema.
The local XML schema is used when transferring data to and from the database,
and must match the database schema.
The global XML schema is used by your applications, as well as to exchange
data with other applications or databases. It might be an industry-standard
schema, or a schema that all external users of your XML documents have
agreed upon.

When you are using local and global XML schemas, your application must
transform incoming documents from the global schema to the local schema
before storing the data in those documents in the database. Your application
must also transform outgoing documents from the local schema to the global
schema after those documents have been constructed from data in the database
(Figure 3-3).

Figure 3-3 Transforming XML documents between local and global schemas

There are several ways to transform XML documents. These are:

� XSLT. This is the most common way to transform XML documents.

http://www.w3.org/TR/xslt

The advantage of XSLT is that it is a standard technology and is widely
available. Furthermore, it only requires you to write XSLT stylesheets, not

XML document
(global schema)

XML document
(local schema)

Transform

Transform Publish

Shred

Database

 Chapter 3. Designing XML and database schemas 59

http://www.w3.org/TR/xslt

code, in order to transform documents. The disadvantage of XSLT is that it
can be slow and may need to read the entire document into memory. The
latter problem prohibits its use with very large XML documents.

� Custom SAX applications. If your transformation is simple and can be
performed while reading through the document from start to finish, then you
might be able to write a simple SAX program to perform the transformation.
The advantage of SAX is that it is generally faster than XSLT. Furthermore, it
does not read the entire document into memory, so it can be used with
arbitrarily large documents. For more information about custom SAX
applications, see 9.1.3, “Transforming XML documents with SAX” on
page 256.

� Third-party transformation packages. There are some third-party packages
available for performing specific types of transformations. For example, the
Regular Fragmentations package uses regular expressions to create multiple
elements from a single element. For example, you can use this to create Year,
Month, and Day elements from a Date element.

http://regfrag.sourceforge.net/

Of course, if you can use a single XML schema, as is generally the case when
using SQL/XML, and sometimes the case when using the XML Extender or the
XML Wrapper, then you should use only a single XML schema. The reason is
that transformations can be expensive, so your application will generally perform
better without them.

3.2 What schemas do you need to design?
In this section, we discuss what XML schemas and database schemas you need
to design. In most cases, you will already have a database schema and need to
design one or more XML schemas. In a few cases, you will have an XML schema
and need to design a corresponding database schema.

3.2.1 On using industry-standard XML schemas
One of the first design decisions you will need to make is whether to use an
industry-standard XML schema like ebXML (the XML version of EDI), FIXML (the
XML version of the Financial Information eXchange protocol), or ACORD XML
for Life Insurance.

The primary advantage of industry-standard XML schemas is interoperability. If
you decide to use one of these schemas, you will (hopefully) be able to exchange
data with other companies that use the same schema. A secondary advantage is

60 XML for DB2 Information Integration

http://regfrag.sourceforge.net/

that somebody else has already designed the schema —designing a robust XML
schema is a potentially complex task and can take months or years.

Unfortunately, industry-standard XML schemas also have drawbacks. For
example:

� The schema might not have everything you need. One solution to this
problem is to add the element types and attributes that you and your trading
partners need. Unfortunately, this means that your schema will no longer be
standard, so it might not work with standard software (if any exists) and you
might not be able to exchange data with new partners. If you do add new
element types and attributes, you should always add element types and
attributes that are in your own XML namespace.

� The schema requires element types or attributes that you do not need. When
shredding incoming XML documents, you should be able to ignore the
unneeded element types and attributes. When publishing data as XML, you
will need to add the elements or attributes to the outgoing document, perhaps
using default values. This is easy to do with SQL/XML, as you can use a
constant value. If you are using DB2 XML Extender, you will need to
transform the document to add the element or attribute.

� You are using DB2 XML Extender or an XML Wrapper, and the
industry-standard schema does not match your database schema. This will
be true except in the uncommon case that you have designed your database
schema specifically to match the industry-standard XML schema. The
solution to this is to use a local (database-specific) schema as was described
earlier in this chapter. This means you will have to transform documents
between the local schema and the industry-standard (global) schema.

In spite of these drawbacks, you should still consider an industry-standard XML
schema. Even if you need to modify the schema to work with specific trading
partners, just using an industry-standard schema will often create more
opportunities than problems.

For a further discussion of these issues, see "Interoperability Without Authority:
Loosely Coupled XML Processing without Shared Schemas" by Michael
Champion. The paper is available on the Web at:

http://idealliance.org/papers/xml02/dx_xml02/papers/04-04-04/04-04-04.html

Note: XML namespaces are a way to create universally unique element
types and attribute names. Each name has two parts: a URI and a local
name, such as http://www.w3.org/1999/xsl/transform and stylesheet.
For more information, see http://www.w3.org/TR/REC-xml-names.

 Chapter 3. Designing XML and database schemas 61

http://www.w3.org/TR/REC-xml-names
http://www.idealliance.org/papers/xml02/dx_xml02/papers/04-04-04/04-04-04.html

For a list of industry-standard XML schemas, see the XML.org Web site at:

http://www.xml.org

or the Cover Pages at:

http://xml.coverpages.org

The next sections will consider what you need to do in specific situations.

3.2.2 You have a database schema
Perhaps the most common starting point for building XML/database applications
is that you have an existing database, and now want to use XML as a way to
exchange data. You have three choices:

� Use an industry-standard XML schema. The advantages and disadvantages
of this were discussed in the previous section. Because you have an existing
database schema, you will almost certainly need to create a local schema if
you want to use XML Extender or XML Wrapper.

� Create an XML schema that matches your relational schema. While this is the
simplest option and gives the best performance, you should consider this
option carefully before doing it. The main problem is that the resulting XML
schema may not be the best XML schema for your users. For example,
suppose your database uses lookup tables. This will result in an extra (and
unnecessary) element in your XML document corresponding to the lookup
table.

� Create an XML schema from scratch. If there are no industry-standard XML
schemas that apply to your data, then this is probably the best option, as the
resulting schema is most likely to meet the needs of your users. If you are
only using SQL/XML, then the only disadvantage of this option is that
designing an XML schema takes time. If you are using DB2 XML Extender or
an XML Wrapper, then an added disadvantage is that you may not be able to
map the resulting schema to your database schema directly. As a result, your
application will have to transform documents between the new (global)
schema and a local (database-specific) schema.

3.2.3 You have an XML schema
A less common situation is that you have an XML schema and want to build
structures in your database to store the data in documents conforming to that
schema. If you have a set of XML documents you want to store in your database,
you need to decide if you really want to store the data from these documents into
a set of schema-specific tables, or you are simply interested in storing the
documents themselves. In other words, are you interested in XML-enabled
storage or native XML storage?

62 XML for DB2 Information Integration

http://www.xml.org
http://xml.coverpages.org

If you want to use native XML storage —that is, you simply want to store the XML
documents— you should consider using the XML column feature of DB2 XML
Extender. This allows you to store whole documents in a single column. The
documents can then be indexed and searched using side tables. For more
information about XML columns, see Chapter 4, “Storing whole XML documents”
on page 93.

If you want to use XML-enabled storage —that is, you want to shred the
documents into a set of relational tables— you will need to design those tables.
Although it is possible to design a database schema that exactly matches your
XML schema, this is often a bad idea. The reason is that XML schemas often
include structure that is not strictly necessary. This results in inefficient storage of
the data. For example, consider the following customer element type in
Example 3-1.

Example 3-1 Customer element type

<Customer>
 <Number>456</Number>
 <Address>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 <Country>US</Country>
 </Address>
</Customer>

Creating a database schema that exactly matches the XML schema for this
element type means that you will need two tables: one for customers and one for
addresses. However, it generally makes more sense to store the customer's
address directly in the customer table.

A better solution is to start with a database schema that matches your XML
schema and then modify it to create a more efficient database schema.
Depending on your modifications, you may then need to create a local XML
schema that matches your database schema and write XSLT stylesheets to
transform documents between your original (global) schema and this local
schema.

3.2.4 You have both database and XML schemas
This is another common case. For example, when you have an existing database
and someone external to your organization requests data in the form of a specific

 Chapter 3. Designing XML and database schemas 63

XML document, such as one that uses an industry-standard XML schema. Or
you gather a certain type of data, and a new source of that data becomes
available in the form of XML documents.

If you are only publishing data to XML, you should be able to write SQL/XML
statements that create documents conforming to the desired XML schema.

If you are shredding XML documents into your database, then it is very likely that
your XML schema will not match your database schema. In this case, you will
need to write a local XML schema that matches your database schema and write
XSLT stylesheets to transform documents between the global XML schema and
this schema.

3.3 Does my XML schema match my database schema?
If you are using DB2 XML Extender or the XML Wrapper, your XML schema must
match your database schema. This is because these products use an
object-relational model that defines a fairly rigid mapping between the XML
schema and the database schema. Although the languages used to specify
these mappings —DAD documents in the XML Extender and CREATE
NICKNAME statements in the XML Wrapper— support minor transformations,
they are not general transformation languages.

The following procedure may be used to determine if an XML schema matches a
database schema. Note that this procedure is sufficient, but not necessary. That
is, if an XML schema and a database schema satisfy this procedure, it will be
possible to map the XML schema to the database schema. However, it may still
be possible to map an XML schema to a database schema even if they do not
satisfy this procedure.

We will illustrate this procedure with the DTD shown in Example 3-2,

Example 3-2 Sample DTD

<!ELEMENT SalesOrders (SalesOrder+)>

<!ELEMENT SalesOrder (OrderDate, Customer, Item+)>
<!ATTLIST SalesOrder

Note: If you are using SQL/XML to publish data to XML, your XML schema
does not need to match your database schema. This is because SQL/XML is
very flexible and, assuming the necessary data is in your database, you
should be able to construct almost any document you need.

64 XML for DB2 Information Integration

 Number CDATA #REQUIRED>

<!ELEMENT Customer (Name, Address)>
<!ATTLIST Customer

 Number CDATA #REQUIRED>

<!ELEMENT Address (Street, City, State, PostCode, Country)>

<!ELEMENT Item (Part, Quantity, Price)>
<!ATTLIST Item

 Number CDATA #REQUIRED>

<!ELEMENT Part (Name, Description)>
<!ATTLIST Part

 Number CDATA #REQUIRED>

<!-- Element type declarations for
 PCDATA-only element types not shown. -->

and the database schema shown in Example 3-3.

Example 3-3 Sample database schema

SalesOrders (Number, Date, CustomerNumber)
Items (SONumber, ItemNumber, PartNumber, Quantity, Price)
Customers (Number, Street, City, State, PostCode, Country)
Parts (Number, Name, Description)

To determine if your XML schema matches your database schema, first perform
the following procedure:

1. Map complex element types to tables as desired. For example, map the
SalesOrder element type to the SalesOrders table, the Item element type to
the Items table, and so on (Figure 3-4 on page 66).

 Chapter 3. Designing XML and database schemas 65

Figure 3-4 Map complex element types to tables

2. If the root element type is not mapped and does not have any attributes, and
only has complex element types as children, then remove it. Repeat this step
until: (a) the root element type has one or more attributes, (b) the root element
type has one or more children that only contain PCDATA, or (c) the root
element type is mapped to a table (Figure 3-5).

Figure 3-5 Remove unmapped root elements

<!ELEMENT SalesOrders (SalesOrder+)>

<!ELEMENT SalesOrder (OrderDate, Customer, Item+)> SalesOrders table
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>

<!ELEMENT Customer (Name, Address)> Customers table
<!ATTLIST Customer

Number CDATA #REQUIRED>

<!ELEMENT Address (Street, City, State, PostCode, Country)>

<!ELEMENT Item (Part, Quantity, Price)> Items table
<!ATTLIST Item

Number CDATA #REQUIRED>

<!ELEMENT Part (Name, Description)> Parts table
<!ATTLIST Part

Number CDATA #REQUIRED>

<!ELEMENT SalesOrders (SalesOrder+)> Delete

<!ELEMENT SalesOrder (OrderDate, Customer, Item+)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>

<!ELEMENT Customer (Name, Address)>
<!ATTLIST Customer

Number CDATA #REQUIRED>

<!ELEMENT Address (Street, City, State, PostCode, Country)>

<!ELEMENT Item (Part, Quantity, Price)>
<!ATTLIST Item

Number CDATA #REQUIRED>

<!ELEMENT Part (Name, Description)>
<!ATTLIST Part

Number CDATA #REQUIRED>

66 XML for DB2 Information Integration

3. Recursively flatten any remaining complex element types. That is, move the
attributes and child elements of the unmapped element type to its parent
element type. For example, you can flatten the Address element type
(Figure 3-6).

Figure 3-6 Flatten unmapped complex element types

4. Map attributes and references to simple child elements to columns as
desired. For example, map the Number attribute of the SalesOrder element
type to the Number column of the SalesOrders table and the Quantity child
element to the Quantity column of the Items table (Figure 3-7).

Figure 3-7 Map attributes and references to simple child elements to columns

<!ELEMENT SalesOrders (SalesOrder+)>

<!ELEMENT SalesOrder (OrderDate, Customer, Item+)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>

<!ELEMENT Customer (Name, Address)>
<!ATTLIST Customer

Number CDATA #REQUIRED>

<!ELEMENT Address (Street, City, State, PostCode, Country)> Flatten

<!ELEMENT Item (Part, Quantity, Price)>
<!ATTLIST Item

Number CDATA #REQUIRED>

<!ELEMENT Part (Name, Description)>
<!ATTLIST Part

Number CDATA #REQUIRED>

<!ELEMENT SalesOrders (SalesOrder+)>

<!ELEMENT SalesOrder (OrderDate, Customer, Item+)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED SalesOrders.Number column>

<!ELEMENT Customer (Name, Street, City, State, PostCode, Country)>
<!ATTLIST Customer

Number CDATA #REQUIRED>

<!ELEMENT Item (Part, Quantity, Price)> Items.Quantity column
<!ATTLIST Item

Number CDATA #REQUIRED>

<!ELEMENT Part (Name, Description)> etc.
<!ATTLIST Part

Number CDATA #REQUIRED>

 Chapter 3. Designing XML and database schemas 67

Your XML schema matches your database schema if the modified XML schema
meets all of the following criteria:

� Attributes and child element types are mapped to columns in the table of their
parent element type.

� No flattened element type can occur more than once in its parent. Element
types that occur more than once in their parent must be mapped to separate
tables.

� No mapped element types or attributes have an unmapped ancestor.

� No two element types are mapped to the same table and each element type
mapped to a table is mapped only once.

� No two element types or attributes are mapped to the same column and each
element type or attribute mapped to a column is mapped only once.

� Any child element type mapped to a column can occur at most once in its
parent.

� If you are publishing data as XML, then all unmapped element types and
attributes are optional. If you are shredding XML documents, then all
unmapped columns are nullable or have a default.

� If you know the data type of an element type or attribute (such as when you
are using XML Schemas), then it must be possible to convert this type to the
data type of the column to which the element type or attribute is mapped and
vice versa.

� If a child element type is mapped to a table, then there must be a candidate
key / foreign key relationship between the table of the parent element type
and the table of the child element type.

In addition, if you are shredding XML documents with the XML Extender,
then:

– The candidate key must be a primary key,
– The candidate key must be in the table of the parent element type, and
– All columns in the primary key must be mapped.

3.4 Creating an XML schema from a database schema
This section explains how to create an XML schema from a database schema.
The resulting schema will match the structures in the database. For example, if
the database schema is non-normal, the XML schema will also be non-normal.
Whether you want to use this schema as your global XML schema —that is, the
schema you use when exchanging data with other applications— is a separate
design decision.

68 XML for DB2 Information Integration

3.4.1 The algorithm
To create an XML schema from a database schema, you need to do the following
steps. Note that WebSphere Studio can do this for you automatically; see
Chapter 12, “XML and database tools in Application Developer” on page 337 for
more on this.

1. Determine what tables you want to use and arrange these tables into a
hierarchy. That is, choose a root table and determine which keys you will use
to link to the other tables in the hierarchy.

2. For each table, create a complex element type.

3. From each table, decide which data columns you need. Data columns are
columns that are not primary key columns and are not part of a foreign key
that is used to join the tables in your hierarchy.

4. For each data column you choose, create an attribute or a simple element
type. Add references to these element types to the content model (a
sequence) of the table's element type. If the column is nullable, then the
attribute or reference is optional. If you are using XML Schemas, be sure to
specify the data type of the attribute.

5. For each primary key column, decide whether to add the column to the XML
schema. Primary keys fall into two categories: object identifiers and keys with
business significance. Object identifiers simply identify a row in the database.
They might be unique on a per-table or per-database basis. Keys with
business significance are things like part numbers, flight numbers, and
employee IDs.

As a general rule, you should include object identifiers in the XML schema
only if you will need them at a later time to identify the row, such as for an
update. (Note that the XML Extender does not support updates for XML
collections, so you will need to write your own code to do this.) Otherwise,
there is no point in including them as they have no significance outside the
database.

You should always include keys with business significance in your XML
schema.

For each primary key column you choose to add to the XML schema, follow
the procedures in step 4.

6. For each table in the hierarchy, add a reference to the content model of the
element type corresponding to the parent table. If the relationship between
the parent table and the child table is one-to-one, the reference may be
required or optional. If the relationship is one-to-many, the reference may be
zero-or-more or one-or-more.

For information about how to handle many-to-many and many-to-one
relationships, see the section “Third normal form” on page 82.

 Chapter 3. Designing XML and database schemas 69

3.4.2 Using the generated XML schema with DB2 XML Extender
If you want to use the XML schema created by this algorithm to shred documents
with XML Extender, then you must be sure that the following is true:

� No two leaf nodes (attributes or PCDATA-only element types) may have the
same name.

� All non-nullable columns that do not have defaults must have corresponding
element types or attributes in the XML schema. The only exception to this is
foreign key columns used to join tables in your hierarchy.

� The tables in the hierarchy must be arranged so that the primary key used to
join parent and child tables is always in the parent table.

3.5 Creating a database schema from an XML schema
This section explains how to create a database schema from an XML schema.
The resulting database schema will match the structures in the XML schema. For
example, if the XML schema is non-normal, the database schema will also be
non-normal.

3.5.1 Creating a local XML schema from a global XML schema
It is often a bad idea to create a database schema directly from your global XML
schema —that is, the schema for the documents that you use to exchange data
with other applications. The reason is that the global schema is designed for
exchanging data in a particular situation and its structure might not represent the
best structure for storing data in the database. For example, the global XML
schema might use wrapper elements to improve human readability but that
structure does not need to be duplicated in the database.

Therefore, before you create a database schema from your global XML schema,
you should first create a local XML schema. In many ways, this is equivalent to
designing your database schema, since the structure of the local XML schema
will match your database schema. Here are some things to do when creating a
local XML schema from a global XML schema:

� Remove outer wrapper elements types. An outer wrapper element type is a
wrapper element type whose ancestors are all wrapper element types. The
most common use of an outer wrapper element type is to satisfy the rule that
an XML document has a single root element. For example, in the following
XML schema (Example 3-4 on page 71), SalesOrders is an outer wrapper
element type:

70 XML for DB2 Information Integration

Example 3-4 Outer wrapper element type

<!ELEMENT SalesOrders (SalesOrder+)>
<!ELEMENT SalesOrder (OrderDate, Customer, Item+)>
<!ATTLIST SalesOrder

 Number CDATA #REQUIRED

Similarly, you might have two or more outer wrapper element types that serve
only to group the actual data. For example, in the following XML schema
(Example 3-5), Orders, SalesOrders, and PurchaseOrders are all outer
wrapper elements types:

Example 3-5 More outer wrapper element types

<!ELEMENT Orders (SalesOrders, PurchaseOrders)>
<!ELEMENT SalesOrders (SalesOrder+)>
<!ELEMENT PurchaseOrders (PurchaseOrder+)>

Outer wrapper element types generally do not have any attributes or child
elements that can be used as primary keys in a database. In other words, the
collection of data that they represent —a group of sales orders, a set of
employees, and so on— does not have any identity in and of itself. It merely
represents a set of data that happened to be grouped together for some
non-significant purpose, such as replicating a database.

Because of this, outer wrapper element types should be removed from the
local XML schema, as they do not have a corresponding structure in the
database. Because outer wrapper element types are often root element
types, this may result in the XML schema being split into two or more XML
schemas.

� Remove unneeded data. Global XML schemas sometimes contain data that
is not relevant to your company. This is particularly true for industry-standard
XML schemas, which are designed to satisfy the needs of many companies.
Remove any element types or attributes that contain data not needed by your
company.

� Add needed data. Global XML schemas also sometimes do not contain data
that is relevant to your company. Again, this is particularly true with
industry-standard XML schemas. If you need data that is not in the global
XML schema, add element types or attributes for this data to your local XML
schema. (You can also add it later to the database schema.)

� Flatten inner wrapper element types. Inner wrapper element types are
wrapper element types that occur inside a data structure. They exist only for

 Chapter 3. Designing XML and database schemas 71

clarity and ease of processing and do not have a corresponding structure in
the database. Inner wrapper element types can occur either zero or one time
in their parent and can often be recognized because they have no attribute or
child element that can be used as a primary key in a database. For example,
the Address element type in the following XML schema is an inner wrapper
element type:

<!ELEMENT Customer (Number, Address)>
<!ELEMENT Address (Street, City, State, PostCode, Country)>

Inner wrapper element types should be flattened. That is, they should be
removed from the schema, their attributes moved to their parent element
type, and their children moved to the content model of their parent element
type. (To prevent naming conflicts, you may need to change the names of the
attributes or element types that you move.) For example:

<!ELEMENT Customer (Number, Street, City, State, PostCode, Country)>

� Think again. Remember that your local XML schema has the same structure
that your database schema will have. Before constructing a database schema
from it, you should be sure that the resulting database schema is the best way
to store your data. Remember, complex element types will be converted to
tables and attributes and simple element types will be converted to columns.

3.5.2 Creating a database schema from a local XML schema
To create a database schema from a local XML schema, you need to do the
following. Note that WebSphere Studio can do this for you automatically. See
12.2.3, “XML Schema, table DDL, and DDT” on page 344 for details.

1. For each complex element type, create a table.

2. For each attribute, create a column in the table of the parent element type.
Set the column metadata as follows:

– If the attribute is optional, the column is nullable.

– If the attribute has a default, the column should have the same default.

– If you are using XML Schemas, set the column data type to the SQL data
type that is closest to the attribute's data type. If you are using DTDs, set
the column data type to VARCHAR or CLOB, depending on the expected
values of the attribute.

3. For each simple child element that can occur zero or one time in its parent
element type, create a column in the table of the parent element type. (If a
child element appears in a subgroup, this may affect the number of times it
can appear in its parent.) Set the column metadata as follows:

– If the child element can occur zero times, the column is nullable.

72 XML for DB2 Information Integration

– If you are using XML Schemas and the child element has a default, the
column should have the same default.

– If you are using XML Schemas, set the column data type to the SQL data
type that is closest to the child element's data type. If you are using DTDs,
set the column data type to VARCHAR or CLOB, depending on the
expected values of the child element type.

4. For each pair of complex element types that are a parent and child, determine
the primary key and foreign key used to link the tables corresponding to these
element types. Note that the primary key can be in either table. There are two
potential problems here:

– If there are no columns that can be used as the primary key, then DB2
XML Extender cannot be used to shred documents corresponding to the
local XML schema. The solution to this is to add a child element or
attribute to the local XML schema that can be used as the primary key.
The value of this element or attribute can be generated before the
document is passed to XML Extender, such as with an XSLT extension
function.

– If the primary key is in the table corresponding to child element type, then
XML Extender cannot be used to shred documents corresponding to the
local XML schema. There are two possible solutions to this.
First, rearrange the document so that the child element type is in a
separate part of the document or in a separate document. (For more
information, see “Third normal form” on page 82.)
Second, use the XML Wrapper to shred the document. (For more
information, see 2.4, “XML wrapper” on page 42.)

5. For each uniqueness constraint in the XML schema, such as an ID attribute in
a DTD or a unique element in an XML Schema, consider adding a
uniqueness constraint to the database schema. Note that uniqueness
constraints in XML schemas only guarantee uniqueness within a single
document or part of that document, not across all documents that correspond
to the XML schema. Therefore, they might not correspond to uniqueness
constraints in the database.

6. For each referential constraint in the XML schema, such as ID/IDREF
attributes in a DTD or key/keyref elements in an XML schema, consider
adding a candidate key / foreign key constraint to the database schema. Note
that referential constraints in an XML schema corresponds to referential
integrity in the database only if the key value is unique across all documents
that correspond to the XML schema.

 Chapter 3. Designing XML and database schemas 73

3.6 Designing XML schemas
In this section we describe some general rules for designing XML schemas. It
applies primarily to designing global XML schemas -- that is, schemas for XML
documents that will be used by applications other than your own. (Because local
XML schemas must match your database schema, they may not follow all of
these rules.)

This section is not meant to be a complete discussion of designing XML
schemas. For additional information, see any guidelines for designing
object-oriented systems, as the structures found in data-centric XML schemas
are essentially objects (a recommended Web site is http://www.ambysoft.com).

Finally, remember that designing XML schemas, like designing database
schemas or object-oriented schemas, is a difficult process and may take a
significant amount of time. Not only are you trying to characterize your data and
provide future migration routes, you are trying to resolve political and technical
differences among a wide variety of users.

Next, we discuss the following topics:

� Who will use your XML schema?
� What XML schema language should you use?
� General guidelines for designing XML schemas
� Normalizing your XML schema
� XML schema styles to avoid
� XML schema structures not supported by the XML Extender

3.6.1 Who will use the XML schema?
Before you design your XML schema, you should consider who will be using your
XML documents. Will they be local to a single application? Used within your
department? Used with current trading partners? Exposed to the entire world
through the Web?

With each wider set of potential users, you bring in a larger community and a
larger set of requirements. Hence, the design of an XML schema becomes more
complex and more political as competing requirements make technical solutions
more difficult. This is best illustrated by the prediction that industry-standard XML
schemas would arrive a year or two after the XML 1.0 recommendation was
published in 1998. In fact, most are only just now [2004] arriving.

One thing to remember when you are trying to resolve differences between
multiple user communities is that you might not be limited to a single XML
schema for a single set of data. This is particularly true when publishing data as
XML, where an XML document is just a query result. It is less true when

74 XML for DB2 Information Integration

http://www.ambysoft.com

shredding XML documents, as constraints in your database might limit the set of
XML documents you can use to populate that database.

3.6.2 What XML schema language should you use?
Another thing to consider is what XML schema language you should use. While a
number of these have been proposed, only four seem to be in widespread use
today:

� DTDs. These are simple, standard, and widely supported, although some
products are replacing DTD support with XML Schema support. Their major
disadvantage is that DTDs do not support data types. For more information,
see the XML 1.0 recommendation:

http://www.w3.org/TR/REC-xml

� XML Schemas. These are also standard and widely supported. They support
data types and have a variety of reusable constructs, such as complex types,
attribute groups, and model groups. They also include support for
documentation and application-specific extensions. Their major disadvantage
is that they are difficult to learn and read, although editing tools may reduce
these problems. For more information, see the XML Schema
recommendation:

http://www.w3.org/TR/xmlschema-1/

� RELAX NG. This is an XML schema language developed through OASIS and
is being standardized by ISO. It is generally considered to be easier to learn
and more flexible than XML Schemas. However, far fewer products support it.
For more information, see the RELAX NG home page:

http://relaxng.org/

� Schematron. This is not a schema language in the sense of the other
languages in that it doesn't explicitly define element types and attributes.
Instead, it is better thought of as a constraint language. For example, it is
possible to specify constraints such as, "When the value of the Sex element is
'M', the value of the Title element must be 'Mr.'" Thus, Schematron is best
used as a supplemental language for specifying constraints that cannot be
expressed in any of the other languages. For more information, see the
Schematron home page:

http://www.ascc.net/xml/resource/schematron/schematron.html

Note: OASIS is a global consortium that develops e-business standards.
For more information, see http://www.oasis-open.org and
http://www.xml.org.

 Chapter 3. Designing XML and database schemas 75

http://www.oasis-open.org
http://www.xml.org
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xmlschema-1/
http://relaxng.org/
http://www.ascc.net/xml/resource/schematron/schematron.html

3.6.3 General guidelines for designing XML schemas
The following are a set of general guidelines for designing XML schemas.

Names
The following are guidelines for constructing XML element type and attribute
names.

� Avoid abbreviations. Database schemas often use abbreviations, such as
FLTTM and PRTNO. Unfortunately, abbreviations often make sense only to
their inventor and may be impossible for non-native speakers to understand.
Fortunately, you are not required to use the same names in your XML schema
that you use in your database schema. Therefore, you should avoid
abbreviations in XML schemas and use understandable names like
FlightTime and PartNumber instead. This will make your XML schema easier
to read, especially by an international audience. And don't worry about name
length: XML compresses well due to repeating structures.

� Use context to distinguish names. If an element type or attribute can logically
appear in more than one place, use it in both places rather than creating two
different element types or attributes. For example, if you are creating an XML
schema for a book, use a single Title element type, rather than creating
separate BookTitle, ChapterTitle, and SectionTitle element types.

Note that this does not apply to different uses of the same data type. For
example, if you have separate ship-to and bill-to addresses, you will need to
different element types —ShipToAddress and BillToAddress— as context
alone cannot distinguish between these uses.

� Use one or more XML namespaces. You should always use XML
namespaces, even if there are not any current collisions between your
element type names and other element type names. This will make it easier
for other people to combine your documents with other documents and give
you a good migration path for the future. You should use multiple XML
namespaces only if you expect your schema to be modular. That is, if you
expect people to reuse subsets of your schema in a well-defined manner.

� Do not encode values in names. For example, do not construct names like
PartXY-47or Transaction-47-01120-17-6. This confuses data and metadata
and is difficult to process. Instead, construct general names like Part or
Transaction and use a child element or attribute like Number to provide
specific values.

Note: DB2 XML Extender and XML Wrapper do not support XML
namespaces, so the local (database-specific) schemas used with those
products cannot use them. (SQL/XML does support XML namespaces.)

76 XML for DB2 Information Integration

Structures
The following are guidelines for constructing structures in XML schemas.

� Use complex types. If two different element types have the same complex
type, then this should be defined separately. For example, BillToAddress and
ShipToAddress can both use an Address complex type. This can be done
with parameter entities in DTDs, and complex types in XML Schemas.

This also applies to sets of attributes and elements that do not constitute a
complete type, such as a subgroup found in the content models of many
different element types. (Note that XML Schemas have separate constructs
for such sets: attribute groups and model groups.)

There are several good reasons for doing this: it reduces the chance for
errors as a schema evolves, it promotes schema consistency, and it may
allow the reuse of software designed to process a particular complex type.

� Reuse element types. As was mentioned in the section on names, whenever
an element type or attribute can appear in more than one context, it should be
reused, rather than constructing separate element types or attributes for each
context.

� Wrap related elements. The hierarchical structure of XML makes it natural to
wrap related elements. In some cases, this simply enhances readability. For
example, an Address element can be used to group elements that represent
the different parts of an address. (see Example 3-6).

Example 3-6 Using wrap related elements

<Customer ID="456">
<Name>ITSO Insurance, Inc.</Name>

 <Address>
 <Street>123 Main St.</Street>

 <City>Chicago</City>
 <State>IL</State>

 <PostCode>60609</PostCode>
 <Country>US</Country>

 </Address>
</Customer>

In other cases, it may make processing easier. For example, items in a sales
order can form a repeating subgroup inside a SalesOrder element type:

 Chapter 3. Designing XML and database schemas 77

Example 3-7 Item as repeating subgroup

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>
<Item Number="1">

 ...
</Item>

 <Item Number="2">
 ...

 </Item>
</SalesOrder>

or be grouped inside an Items element (Example 3-8).

Example 3-8 Items wrapper

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>
<Items>

 <Item Number="1">
 ...

 </Item>
 <Item Number="2">

 ...
 </Item>

 </Items>
</SalesOrder>

The latter is not only easier to read, it is easier to process. (When shredding
an XML document, the XML Extender requires repeating subgroups to be
placed inside a wrapper element.)

� Elements or attributes? A perennial question in XML schema design is
whether to use simple element types or attributes. There is no absolute
answer for this question and the newer schema languages are removing
many earlier reasons. Here are some of the issues:

– Order. Attributes are always unordered. Elements are always ordered.
However, not all applications treat elements as ordered. In fact, for many
data-centric documents, sibling order is only significant during validation.
That said, XML Schemas have limited support for unordered sibling
elements and RELAX NG has full support for unordered sibling elements.

78 XML for DB2 Information Integration

– Data types. DTDs support very limited data typing for attributes and no
data typing for simple element types. Both XML Schemas and RELAX NG
support data typing for attributes and simple element types.

– Multiple values. DTDs support multi-valued attributes —that is, values
separated by white space. Both XML Schemas and RELAX NG support
multiple values for attributes and simple element types.

– Repeatability. Attributes can never be repeated. Child elements can
always be repeated.

– Structure. Attributes are always scalar-valued. Element types may be
scalar-valued or have structure. This is commonly cited as a reason to use
element types, since a simple element type may be changed to a complex
element type without disrupting the content model of the parent element
type. Whether this is actually any less disruptive than changing from an
attribute to an element type is not clear.

For more details, see http://xml.coverpages.org/elementsAndAttrs.html.

Constraints
The following are guidelines for constraints in XML schemas. The main reasons
to add constraints to your XML schemas —even if parallel constraints do not
appear in your database schemas— are that they help application developers to
better understand your data and map it to the database and they help
applications to automate constraint checking. As a general rule, automated
constraint checking is better than coding constraints inside your application,
since the latter is hidden from view, more difficult to change, and can only be
used inside that application.

� Use simple data types. Both XML Schemas or RELAX NG support a large
number of simple data types and have facilities for adding additional
constraints to these types.

� Use unique and referential constraints. Unique constraints are supported in
DTDs with ID attributes and in XML Schemas with the unique and key
elements. Referential constraints are supported in DTDs with IDREF
attributes and in XML Schemas with the keyref element.

Unfortunately, both constructs are less than ideal for use with databases. In
both cases, uniqueness is limited. ID values must be unique within the
document and key and unique values must be unique within a document
fragment defined by an XPath expression. Neither guarantees uniqueness

Note: Sibling order is the order in which child elements and PCDATA
appear in their parent element.

 Chapter 3. Designing XML and database schemas 79

http://xml.coverpages.org/elementsAndAttrs.html

across documents, which is what is needed to guarantee uniqueness once
data is transferred from an XML document to the database.

ID attributes are further restricted in that their values must match the Nmtoken
production in the XML 1.0 recommendation. This requires that values start
with a letter or underscore and consist of only letters, underscores, hyphens,
and periods. ID attributes therefore cannot be used to represent numeric key
values from the database.

� Consider using Schematron to define additional constraints.

Documentation
The following are guidelines for documentation in XML schemas.

� Document your schema. The declarations in an XML schema are not enough
to fully describe the element types and attributes in that schema. For
example, what are the legal units for a Price element type? Documentation
will both improve the quality of your schema and reduce your support load,
especially in cases where your XML documents are widely used, such as with
Web services. You can document your schema with comments in DTDs and
annotation elements in XML Schemas.

3.6.4 Normalizing your XML schema
Normalization is formally defined in terms of relational schemas, not XML
schemas. In spite of this, the rules of normalization can be applied to XML
schemas, although not always with the technical precision that is used in
normalizing relational schemas. For example, most people would agree that the
schema for the following XML document (Example 3-9) is not normalized, since
the sales order number, order date, and customer number are repeated in each
item.

Example 3-9 Unnormalized XML document

<SalesOrder>
<Item SONumber="123" ItemNumber="1">

 <OrderDate>2003-07-28</OrderDate>
 <CustomerNumber>456</CustomerNumber>

 <PartNumber>XY-47</PartNumber>
 <Quantity>14</Quantity>

 <Price>16.80</Price>
</Item>

 <Item SONumber="123" ItemNumber="2">
 <OrderDate>2003-07-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>
 = <PartNumber>B-987</PartNumber>

 <Quantity>6</Quantity>

80 XML for DB2 Information Integration

 <Price>2.34</Price>
 </Item>
</SalesOrder>

This section assumes that you have a basic understanding of normalization. If
you do not, you can find articles about normalization in database textbooks or on
the Web, such as at:

http://www.utexas.edu/cc/database/datamodeling/rm/rm7.html

First normal form
First normal form requires two things:

� Column values are atomic (single values)
� A primary key is assigned.

While the XML data model does not require atomic values —child elements can
occur multiple times— the first part of this form does suggest that there should
only be one (repeating) child element type for a given type of data. For example,
instead of using multiple, similarly named child elements like the following:

<!ELEMENT Book (Title, Author1, Author2, Author3, ..., Content)>

use a single child element that can occur multiple times, as this does not
artificially restrict the number of values:

<!ELEMENT Book (Title, Author+, Content)>

The second part of first normal form —assigning a primary key— does apply to
XML schemas. A primary key uniquely identifies a row and implies that the data
in a row represents a single, indivisible set of data. (This is not necessarily true
for tables in first normal form —later forms may remove some columns— but it is
true for tables in third normal form.)

While a primary key cannot always be assigned to an XML document —for
example, there might not be any element or attribute value in an XHTML
document that uniquely identifies it— the idea that an XML document should
represent a single, indivisible set of data does makes sense. For example, an
XML document should contain a single invoice or Web page, rather than a set of
invoices or Web pages.

Documents that violate this form are easily identified because the root element
type exists only to meet the requirement that an XML document have a single
root element. That is, the root element type has no attributes and only has
repeating child elements or child elements that are wrapper elements
surrounding repeating child elements, as shown in Example 3-10 on page 82.

 Chapter 3. Designing XML and database schemas 81

http://www.utexas.edu/cc/database/datamodeling/rm/rm7.html

Example 3-10 Root element with no attributes

<!ELEMENT SalesOrders (SalesOrder+)>
or:

<!ELEMENT Database (SalesOrders, Items, Parts, Customers)>
<!ELEMENT SalesOrders (SalesOrder*)>
<!ELEMENT Items (Item*)>
<!ELEMENT Parts (Part*)>
<!ELEMENT Customers (Customer*)>

Thus, to conform to first normal form, the document should contain a single set of
data.

Note that documents that do not conform to first normal form are still useful in
some cases. For example, when replicating a database, it is useful to send
multiple sets of data in a single document, since this allows the receiving
database to optimize processing by using bulk loading.

Second normal form
Second normal form splits a table into two tables when there is a one-to-many
relationship between some columns, such as between sales order header
information and sales order items. This form does not apply to the XML data
model, as a parent and child can have a one-to-many relationship.

As a matter of good design, you should wrap the "many" children in a wrapper
element, rather than using repeating subgroups. This makes the intent of the
schema clearer and may make processing easier. (DB2 XML Extender and XML
Wrapper both require this to handle repeating children.) For example, use:

<!ELEMENT SalesOrder (Number, OrderDate, Customer, Item+)>
<!ELEMENT Item (Number, Part, Quantity)>

instead of:

<!ELEMENT SalesOrder (Number, OrderDate, Customer,
 (ItemNumber, Part, Quantity)+)>

Third normal form
Third normal form splits a table into two tables when there is a many-to-one
relationship between some columns, such as between sales order header
information and customer information in a sales order. While this form does apply
to XML schemas, there is no clear best choice here due to the inability of the
XML data model to easily handle many-to-one relationships.

There are three possible ways to handle many-to-one relationships:

82 XML for DB2 Information Integration

� Ignore the problem and repeat the "many" data in each place it logically
appears (Example 3-11).

Example 3-11 Handling many to one relationships - Ignore

<SalesOrder Number="123">
 <OrderDate>2003-07-28</OrderDate>

 <Customer Number="456">
 <Name>ITSO Insurance, Inc.</Name>

 <Street>123 Main St.</Street>
 <City>Chicago</City>

 <State>IL</State>
 <PostCode>60609</PostCode>

 <Country>US</Country>
</Customer>

 <Item Number="1">
 ...

 </Item>
 <Item Number="2">

 ...
 </Item>

</SalesOrder>

� Place the "many" data in a separate part of the document and reference it as
needed, such as with ID/IDREF attributes (Example 3-12).

Example 3-12 Handling many to one relationships - ID/IDREF

<SalesOrderDoc>
 <SalesOrder Number="123">

 <OrderDate>2003-07-28</OrderDate>
 <Customer IDREF="A">

 <Item Number="1">
 ...

 </Item>
 <Item Number="2">

 ...
 </Item>

 </SalesOrder>
 <Customer ID="A" Number="456">

 <Name>ITSO Insurance, Inc.</Name>
 <Street>123 Main St.</Street>

 <City>Chicago</City>
 <State>IL</State>

 <PostCode>60609</PostCode>
 <Country>US</Country>

 Chapter 3. Designing XML and database schemas 83

 </Customer>
</SalesOrderDoc>

� Place the "many" data in a separate document and reference it through an
XLink or external entity reference (Example 3-13).

Example 3-13 Handling many to one relationships - Xlink

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <Customer xmlns:xlink="http://www.w3.org/1999/xlink"
 xlink:href="customer456.xml">

 <Item Number="1">
 ...

 </Item>
<Item Number="2">

 ...
</Item>

</SalesOrder>

<Customer Number="456">
<Name>ITSO Insurance, Inc.</Name>

 <Street>123 Main St.</Street>
<City>Chicago</City>

 <State>IL</State>
<PostCode>60609</PostCode>

 <Country>US</Country>
</Customer>

Which choice to use depends on your situation. The first and second choices are
equivalent, as they keep all of the data in a single document. The main difference
is that the first choice is easier for humans to read, while the second choice will
never have any repeated data. These choices are commonly used in two
situations: query results and business documents.

Business documents present a special case, as these are often stored intact for
historical or legal reasons. Such storage is usually secondary. That is, the
document is stored intact, but its data is also extracted and stored separately,
such as in a set of relational tables. Because the document storage is secondary,
duplicate data is not an issue, as the documents are generally read-only.

The third choice is most commonly used when the XML documents are used for
primary storage of the data, such as in a native XML database. The advantage of
this choice is that no data is repeated across documents. For example, a medical

84 XML for DB2 Information Integration

database might place information about patients in one set of documents,
information about insurance companies in another set of documents, and
information about doctors in a third set of documents, with cross-references
between documents as needed.

Furthermore, the second choice may cause problems because the XML
Extender does not have update-or-insert or soft insert semantics. That is, it can
only insert data into the database. It cannot check if that data is already in the
database. Because of this, if the "many" data is already in the database, an insert
error will occur when the XML Extender tries to re-insert the data.

The solution to this problem is to use XSLT to transform incoming documents into
many documents (the third choice). One document (inserted first) will contain the
"one" data. The other documents will each contain a single row of "many" data.
The data from these can be inserted one document (row) at a time and any insert
errors are trapped separately.

3.6.5 XML schema styles to avoid
XML is extremely flexible, making it possible to define almost any data structure.
Some of those that are best avoided are listed in the sections that follow.

Generic schemas
It is possible to define an XML schema that is 100% generic. That is, an XML
schema that can store any data that can be stored in any other XML schema. For
example:

<!ELEMENT Structure (Structure | Property)+>
<!ATTLIST Structure Name CDATA #REQUIRED>
<!ELEMENT Property (#PCDATA)>
<!ATTLIST Property Name CDATA #REQUIRED>

Such a schema is a bad idea because:

� It subverts the idea of using element and attribute names as metadata — that
is, to label data.

� It is difficult for humans to read, making it difficult to debug.

� The code to process it is extremely generic, making it unnecessarily complex
and error prone.

Note: If you are shredding XML documents with DB2 XML Extender, then you
cannot use the first choice. This is because the XML Extender requires the
primary key in parent / child relationships to be in the table corresponding to
the parent element type.

 Chapter 3. Designing XML and database schemas 85

Furthermore, neither XML Extender, nor XML Wrapper can process this in the
expected way. That is, neither product will map table and column names to
structure and property names. Instead, both products can only use this kind of
XML schema with a similarly generic database schema.

Schemas with role attributes
A role attribute is an attribute whose value affects how another element type or
attribute is interpreted. That is, the value of the attribute effectively casts another
element type or attribute. For example, suppose you have an XML schema for
bibliographic information.

<!ELEMENT Entry (Title, Author+, Publisher, Identifier)>
<!ATTLIST Entry
 Type "Book | Article | Paper">

In this schema, all entries use an Entry element type, but the meaning of the
Identifier element type depends on the value of the Type attribute. For example,
if Type is "Book", then Identifier is an ISBN. If Type is "Article" or "Paper", then
Identifier is the name of the journal containing the article or paper.

This kind of schema is confusing for the same reasons that generic schemas are.
And like generic schemas, most tools designed to work with data-centric XML will
not be able to make decisions based on the value of the Type attribute. For
example, XML data binding products cannot instantiate different classes based
on the value of the Type attribute, nor can DB2 XML Extender store data in
different tables or columns based on its value.

That said, attributes that simply provide status information and do not change the
way that other elements or attributes are interpreted are not a problem. For
example, entries in a membership list might have entries that indicate if the
member is active or inactive.

Schemas that encode data as order
Encoding data as order means that the order in which child elements appear is
interpreted as a data value. For example, in the sales order document of
Example 3-14, the item number is calculated from the position of the Item
element.

Example 3-14 Schema that encodes data as order

<SalesOrder Number="123">
<OrderDate>2003-07-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>
<Item>

 ...
</Item>

86 XML for DB2 Information Integration

 <Item>
 ...

 </Item>
</SalesOrder>

The problem with this is that many tools for processing XML documents cannot
perform this calculation. This is particularly true for tools designed to process
data-centric XML documents, as such tools often ignore the order in which child
elements appear. For example, if you are using DB2 XML Extender or the XML
Wrapper to shred an XML document, neither can calculate the item number from
the position and store this value in a column.

The prohibition on encoding data as order is not absolute. For example, suppose
an XML document represents a chapter in a book (Example 3-15).

Example 3-15 XML document for a book chapter

<Chapter>
<Title>Using XSLT</Title>

 <Section>
 ...

 </Section>
<Section>

 ...
</Section>

 <Section>
 ...

 </Section>
</Chapter>

Explicitly assigning numbers to each section, such as with a Number attribute on
the Section element, makes editing the document more difficult, as each time
you insert a new section you must renumber all subsequent sections. In this
case, it makes more sense to leave sections unnumbered and let the publishing
software calculate section numbers. For example, this could be done by an XSLT
stylesheet that published the chapter as XHTML.

Schemas that contain actions
It is possible to write XML schemas in which some elements represent actions to
be taken. The most well-known of these is SOAP, where the elements in the
envelope (outer) part of the document describe how the data elements in the
body (inner) part of the document are to be processed.

 Chapter 3. Designing XML and database schemas 87

While there is nothing wrong with such schemas, they all have one thing in
common; they are specific to a particular product or specification. (In particular,
neither DB2 XML Extender, nor the XML Wrapper will be able to interpret these
actions.) As a result, such schemas are not a good way to represent data that is
not tied to a specific processing model.

A better solution is to develop a schema that represents only your data. This can
be used by any consumer and, should they need that data in a form that can be
interpreted by a specific product, they can transform it as necessary.

Schemas that use element types for data types
It is possible to use element types to indicate data types. For example, in the
following schema, the Money element type is used to tell the application that a
particular element type is a monetary value:

<!ELEMENT Money (#PCDATA)>
<!ELEMENT FullPrice (Money)>
<!ELEMENT SalePrice (Money)>

While this might have made sense when DTDs were the only way to define XML
schemas, it is no longer necessary. A better solution is to assign simple or
complex types with XML Schemas.

3.6.6 Unsupported XML schema structures by DB2 products
There are a number of structures that are not supported by DB2 XML Extender.
Some of these are also not supported by the XML Wrapper. Just because these
structures are not supported does not mean you should not use them; in fact,
many of them are reasonable choices for use in a global XML schema. All it
means is that your local (database-specific) XML schema cannot use them.

The unsupported structures are:

� Duplicate names. When shredding XML documents, DB2 XML Extender does
not allow any two leaf nodes (attributes or simple element types) to have the
same name. This restriction has been removed by DB2 V8.1 FixPak 3 or DB2
V7.2 Fixpak 11.

� Recursive element types. These are element types that have themselves as
children. For example, it is possible to represent a family tree with the
following element type, where a child of a Person element literally represents
that person's child:

<!ELEMENT Person (Name, Birthday, Sex, Person*)>

While XML Extender and XML Wrapper can handle these structures, they
cannot do so automatically. That is, it is not sufficient to map the Person
element a single time — it must be mapped each time it occurs. As a result, a

88 XML for DB2 Information Integration

different map (DAD document or set of nicknames) is needed for each
possible document depth.

� Primary key in table of child element type. When shredding XML documents,
DB2 XML Extender requires the primary key in a primary key/foreign key
relationship to be in the table corresponding to the parent element type. For
example, suppose the primary key in the relationship between the customer
and sales order tables is in the customer table. DB2 XML Extender can shred
the document in Example 3-16.

Example 3-16 Primary key in parent element

<Customer>

 <!-- The following element types map to
 columns in the customer table. -->

 <Number>456</Number>
<Street>123 Main St.</Street>

 <City>Chicago</City>
<State>IL</State>

 <PostCode>60609</PostCode>
<Country>US</Country>

 <!-- SalesOrder maps to the sales order table. -->

 <SalesOrder Number="123">
 <OrderDate>2003-7-28</OrderDate>

 </SalesOrder>
<SalesOrder Number="124">

 <OrderDate>2003-7-30</OrderDate>
</SalesOrder>

 <SalesOrder Number="125">
 <OrderDate>2003-8-1</OrderDate>

 </SalesOrder>
</Customer>

but cannot shred the document in Example 3-17.

Example 3-17 Primary key in child element

<SalesOrder Number="123">

 <!-- OrderDate and the Number attribute map
 to columns in the sales order table. -->

 <OrderDate>2003-7-28</OrderDate>

 Chapter 3. Designing XML and database schemas 89

 <!-- Customer maps to the customer table. -->

 <Customer>
 <Number>456</Number>

 <Street>123 Main St.</Street>
 <City>Chicago</City>

 <State>IL</State>
 <PostCode>60609</PostCode>

 <Country>US</Country>
</Customer>

</SalesOrder>

There are two ways to solve this problem with the latter document.
First, it can be transformed into two separate documents —one that contains
customer information and one that contains sales order information, including
the customer number.
Second, you can use the XML Wrapper to shred the document. (For more
information, see 2.4.5, “Shredding an XML document using the XML
Wrapper” on page 47).

� Missing primary keys. When shredding XML documents, DB2 XML Extender
requires the document to contain a primary key for any element type that has
a child element type that is mapped to a table. In particular, it cannot use keys
generated by the database.

� Multi-valued attributes and elements. A multi-valued attribute or element is
one that contains a number of values separated by spaces. For example:

<WinningNumbers>1 3 7 12 36 38</WinningNumbers>

Both the XML Extender and the XML Wrapper treat such values as a single
string.

� More than 10240 rows. The XML Extender cannot insert more than 10240
rows into any table when shredding an XML document.

90 XML for DB2 Information Integration

Part 2 Processing
XML documents

Part 2

© Copyright IBM Corp. 2004. All rights reserved. 91

92 XML for DB2 Information Integration

Chapter 4. Storing whole XML
documents

This chapter introduces one of the storage and access methods provided by
XML Extender, namely the XML column. The following topics are covered:

� Storing XML data outside of DB2
� Storing XML documents in DB2 without DB2 XML Extender
� Storing XML documents in DB2 using DB2 XML Extender
� Considerations when using XML columns to store XML documents

4

© Copyright IBM Corp. 2004. All rights reserved. 93

4.1 Storing outside of DB2 in the file system
An XML document is just a text file. You have many options as to how and where
to store an XML document. In this section, we briefly discuss how you can store
an XML document in the file system (local or remote) and how you can reference
those XML documents kept in the file system. It is only mentioned here for
completeness since there are many disadvantages to this approach.

4.1.1 File system storage considerations
If you have a very simple set of XML documents, the easiest way to store them is
in the file system. You can use editing tools provided by the operating system, or
any applications to query and/or modify those XML documents.

Storing data outside of DB2 is fairly easy, but has some disadvantages:

� The integrity of the data in your XML document is not guaranteed. No log is
created when modifications are made to the XML documents.

� You cannot rely on DB2 to manage concurrent accesses (locking) to your
XML documents.

� You cannot benefit from utilities provided by DB2 UDB for Linux, UNIX, and
Windows, such as BACKUP or RESTORE (the DB2 for z/OS equivalent
utilities are COPY and RECOVER). You need to take action at the operating
system level to ensure that proper backups of the data/XML documents are
taken.

� You need to consider the security requirements of your files. A DBMS usually
provides more granular security control mechanisms than files that are stored
in the file system

For a more detailed discussion on XML and databases, see 1.1, “Why use XML
with a database?” on page 4.

4.1.2 Accessing data stored in the file system
Accessing XML documents stored in a file system can be done using:

� Home grown applications
� DB2 Information Integrator XML wrapper

Home grown applications
To access XML data stored in the file system, you can write your own
applications that retrieve the XML document, parse it (for example using SAX or
DOM) and process the document. Such an application can combine information
from the XML document with other information stored in a database (Figure 4-1

94 XML for DB2 Information Integration

on page 95). Because this book focuses on XML and databases, we will not
explore this option any further. In our opinion, you should only revert to this
approach if everything else (that follows in this publication) fails.

Figure 4-1 XLM documents stored outside of DB2

Accessing XML documents via the XML wrapper
While the base DB2 for Linux, Unix and Windows product only provides
wrappers to access members of the DB2 Family (through DRDA®) and Informix
data sources, the DB2 Information Integrator (II) product provides additional
relational and non-relational wrappers enabling access to all sorts of non-DB2
data sources, such as Oracle databases, Excel spreadsheets, as well as XML
documents.

The DB2 II product allows you to create a so-called XML wrapper to access XML
documents. For each XML document (or set of documents adhering to the same
DTD), you need to create a nickname (or a number of nicknames). The
nickname allows you to present the XML document as a table (or a set of tables).
Users can then access these nicknames (and the underlying XML document(s))
as if they were (a) DB2 table(s), for example by querying them using a standard
SQL SELECT statement.

In this section, we only provide a brief introduction to the XML wrapper. More
details can be found in Chapter 11, “XML wrapper” on page 305.

The creation of a nickname with the XML wrapper involves the following tasks:

Database

XML
documents

APPLICATION

File system

 Chapter 4. Storing whole XML documents 95

� Appropriate setup of the FEDERATED parameter in the database manager
configuration file (should be set to YES)

� Generation of the XML wrapper

� Definition of the server for the XML wrapper

� Creation of the nickname itself, by defining the mapping between the XML
elements or attributes and the columns in relational tables

Figure 4-2 shows a possible mapping between the XML document on the left and
the relational tables (nicknames) on the right.

Figure 4-2 Mapping of an XML document to relational tables

4.2 Storing XML in DB2 without using XML columns
In this section, we briefly discuss the capability that DB2 has to store XML
documents, though without using the functionality offered by DB2 XML Extender,
that is, without using the user-defined types (UDT) provided by DB2 XML
Extender.

<?xml version="1.0" encoding="UTF-8"?>

<data>

<project>

<projectID id="123ABC" />
<description>XXXXX</description>

<startdate>2003-04-28</startdate>

<employee>

<employeeID empid="2300“ />

<department>D01</department>

<firstname>Olivier</firstname>
<latsname>Guyennet</latsname>

</employee>
<employee>

<employeeID empid="5090“ />

<department>B05</department>
<firstname>Stephen</firstname>

<latsname>Priestley</latsname>

</employee>

</project>

</data>

2003-04-28XXXXX123ABC

datedescriptionpjid

123ABCPriestleyStephenB055090

123ABCGuyennetOlivierD012300

pjidlastnamefirstnamedepartmentempid

referential constraint

Primary
key

Foreign
key

re
du

nd
an

cy

96 XML for DB2 Information Integration

However, not using the DB2 XML Extender UDTs does not mean that you cannot
use the DB2 XML Extender stored procedures and user-defined functions (UDF)
that are created when the database is XML-enabled.

4.2.1 Using DB2 data types without XML Extender functions
Because an XML document is nothing more than a text file, it is possible to store
its content using the following DB2 data types (the list below is not exhaustive).

� VARCHAR (up to 32,672 byte, 32,704 on DB2 for z/OS)
� VARGRAPHIC (up to 16,336 double-byte characters long, 16,352 on z/OS)
� CLOB (up to 2Gb -1 byte)

You can use a regular SQL INSERT statement to store the document in a column
of your DB2 table.

Example 4-1 shows a DDL statement to create a simple table, and shows how to
insert two records (XML documents) into it using an SQL INSERT statement.

Example 4-1 An INSERT statement to store an XML document

CREATE TABLE my_tab_clob
(

id INTEGER NOT NULL,
myxmldata CLOB NOT LOGGED,
PRIMARY KEY (ID)

)

INSERT INTO my_tab_clob (id, myxmldata) VALUES
(1,‘<root><text>Hello World</text><type>information</type></root>‘),
(2,‘<root><text>Network will go down</text><type>alert</text></root>‘)

Administering whole XML documents in DB2 shows ease in management and
more security granularity, since it is easy to protect XML documents at the
document (DB2 row) level. However, relying on just DB2 capabilities to store
XML data still has weaknesses, such as:

� Identification of the XML document itself is difficult just by looking at the
catalog metadata.

� The validity of the XML documents is not checked by DB2.

� No indexing is possible on actual data stored within the XML document.

Even with the disadvantages described above, there might be a case to use
normal DB2 data types to store XML documents.

 Chapter 4. Storing whole XML documents 97

When you enable your DB2 database for XML, a number of user-defined data
types (UDT) provided by the XML Extender are created. These are:

� XMLVARCHAR
� XMLCLOB
� XMLDBCLOB
� XMLFILE

When you define a UDT (or in this case when XML Extender defines the UDT),
you must specify a length for it. This means that, for example, all XMLVARCHAR
columns in all tables that use that UDT have the same (maximum) length. For
DB2 UDB, this is 3K. For this reason, you may want to avoid these fixed length
restrictions of XML Extender XMLCLOB and XMLVARCHAR data types. The
XMLDBCLOB data type is only created when the database is enabled for DBCS.

The good thing about XML Extender is that a lot of the functionality is also
available to you when the column that harbors the XML document is not defined
as an XML Extender UDT, or is not an XML Extender enabled column. The
section below shows how you can still use XML Extender user-defined functions
(UDFs) with columns that are not XML Extender enabled or columns that are not
defined as an XML Extender UDT. The database, however, has to be enabled for
XML to be able to use these UDFs.

4.2.2 Using XML Extender UDFs to insert XML documents into a
normal DB2 column

DB2 XML Extender provides four types of functions for storing, searching,
updating XML documents, and for extracting XML elements or attributes. You
use XML user-defined functions (UDFs) to perform those operations.

In this section, we will only deal with the storage UDFs that allow you to insert
XML documents into “regular” DB2 relational tables.

One of the first steps when using the DB2 XML Extender is to enable the
database for XML. This is done via the administration command dxxadm. At the

Note: If 3K is not enough, you can pre-create the XMLVARCHAR, XMLCLOB,
and XMLDBCLOB UDTs with the desired size prior to enabling the database.

Note: XML UDFs can be used for XML columns or non-XML columns, but
cannot be used with XML collections. XML columns are discussed in more
detail in 4.3, “DB2 XML Extender storage methods” on page 100 and 4.4,
“Storing intact XML documents with XML Extender” on page 101.

98 XML for DB2 Information Integration

time of enablement, XML Extender UDTs, UDFs and stored procedures are
created.

The storage related UDFs created by the XML Extender are shown in Table 4-1.

Table 4-1 XML Extender storage UDFs

To use the UDF for storing XML documents, you just have to make sure that
there is no problem with data type compatibility. For example, you cannot use
XMLVARCHARFromFile to store data into a CLOB. However, the database itself has
to be XML-enabled; otherwise, the storage UDFs have not been created.

Example 4-2 shows how to insert an XML document called data.xml in the
myxmldata column of a DB2 table my_tab. We use the XLM Extender storage
UDF XMLVarcharFromFile().

Example 4-2 An INSERT using the XMLVarcharFromFile() UDF

CREATE TABLE my_tab
(

id INTEGER NOT NULL,
myxmldata VARCHAR(200),
PRIMARY KEY (id)

)

INSERT INTO my_tab (id, myxmldata) VALUES
(123, db2xml.XMLVarcharFromFile(‘C:\xmldata\data.xml’))

Storage UDF Return type Description

XMLVarcharFromFile() XMLVARCHAR Reads an XML document from a
file, and returns the document as
an XMLVARCHAR type

XMLCLOBFromFile() XMLCLOB Reads an XML document from a
file, and returns the document as
an XMLCLOB type

XMLFileFromVarchar() XMLFILE Reads an XML document from
memory as VARCHAR, writes it to
an external file, and returns the
file name and path as an
XMLFILE type

XMLFileFromCLOB() XMLFILE Reads an XML document from
memory as CLOB locator, writes
it to an external file, and returns
the file name and path as an
XMLFILE type

 Chapter 4. Storing whole XML documents 99

Figure 4-3 illustrates the storage of an entire XML document in a DB2 relational
table column. Note that the type of the column can either be a DB2 built-in data
type, or an XML Extender data type (that is, XMLVARCHAR, XMLCLOB).

Figure 4-3 An XML document stored intact

4.3 DB2 XML Extender storage methods
DB2 XML Extender provides two storage methods to use DB2 as an XML
repository:

� XML column
� XML collection

Deciding which of these methods best matches your needs for accessing and
manipulating XML data is an important first step. Both methods are described
below.

XML column
This method allows you to store an entire XML document as it is, in DB2.
Documents are inserted into columns enabled for XML, and can then be
updated, retrieved and searched. Elements and attributes data can be mapped
to so-called side tables, which can be indexed for fast searches.

Database Table

<? xml version="1.0" ?>
<root>
 <data>

 </data>
 <data>

 </data>
</root>

XML
document

100 XML for DB2 Information Integration

XML collection
Using this method allows you to map XML document structures to DB2 tables, so
that you can decompose XML documents into DB2 tables, and compose XML
documents from the existing DB2 data.

The nature of your application determines which access and storage method is
most suitable, as well as how to structure your XML data.

In this chapter, we have seen, so far, how to store an XML document outside
DB2, or in DB2 using only DB2 functionality.

The rest of this chapter discusses the usage of DB2 XML Extender to store XML
documents intact and “as is” into DB2 relational tables.
Chapter 6, “Shredding XML into relational tables” on page 143 shows how to
decompose (shred) XML documents into one or more relational tables using DB2
XML Extender.

4.4 Storing intact XML documents with XML Extender
As discussed previously, when you enable a database for XML usage, a number
of UDTs, UDFs and stored procedures are created. After the database is
XML-enabled, you can enable an XML column. Once the column is enabled, you
can start inserting complete XML documents into the XML column, using the
UDFs provided by XML Extender.

4.4.1 Using the XML Extender data type
DB2 XML Extender provides XML user-defined types (UDTs) that you can use to
define a column to hold XML documents. These UDTs are created when the
database is XML-enabled by the administration command:

dxxadm enable_db database_name

The data types generated by XML Extender are:

XMLVARCHAR The XMLVARCHAR data type is based on DB2’s VARCHAR
built-in data type. XMLVARCHAR is mostly used to store small
documents in DB2. The maximum length of the
XMLVARCHAR data type is 3K.

XMLCLOB Stores an entire XML document as a CLOB data type within
DB2. XMLCLOB is normally used for large documents stored
in DB2. The maximum length of the XMLCLOB data type is
2Gb -1.

 Chapter 4. Storing whole XML documents 101

XMLDBCLOB Stores an entire XML document as a DBCLOB data type within
DB2. XMLDBCLOB is normally used for large documents
stored in DB2. The maximum length of the XMLDBCLOB data
type is 2Gb -1. XMLDBCLOB only applies when the database
is enabled for double byte character set data.

XMLFILE Stores the file name of an XML document in DB2, and keeps
the XML document itself in the file system, local to the DB2
server. This data type can be used for XML documents stored
outside DB2. The maximum length of a XMLFILE data type (to
represent the external file name that harbors the XML
document) is 512 bytes.

4.4.2 When to use an XML column to store data
You may use XML columns in the following situations:

� The XML documents already exist or come from an external source and you
prefer to store the documents in the native XML format. You want to store
them in DB2 for integrity, archival, and auditing purposes.

� The XML documents are read frequently, but rarely or not updated.

� You want to use file name data types to store the XML documents external to
DB2 in the local or remote file system and use DB2 for management and
search operations.

� The documents have elements with large text blocks, and you want to use
DB2 Net Search Extender for structural text searches while keeping the entire
documents intact.

Keep in mind also that white space (blanks and blank sections) is important. By
storing the XML document intact, you can preserve the white space.

You can use so-called “side tables” to perform range searches based on the
values of XML elements or attributes, if you know what elements or attributes will
frequently be the search arguments. In addition, you can build normal DB2
indexes on those side tables to speed up access even more.

When you want to store data in an XML colum, you need to do the following
things:

1. Enable the database for XML using the dxxadm enable_db database_name
command.

2. Build a DAD file. In the case of storing XML documents in an XML column,
the DAD file specifies whether or not validation of the XML document needs
to be performed, as well as which elements and attributes to use to build side
tables.

102 XML for DB2 Information Integration

3. Create the table in which you want to store the XML documents.

4. If the DAD file specifies that validation is required, insert the DTD into the
DTD_REF table.

5. Enable the XML column.

6. Create indexes on the side tables to provide faster access.

7. Insert data into the XML column.

4.4.3 Building the DAD file
The intent of this section is not to cover all the details about creating a DAD file,
but rather to try to help you understand what you need to do to build the most
appropriate DAD file.

When you enable an XML column, you have to specify a Document Access
Definition (DAD) file. The DAD file is used for many different things, but when
used with an XML column, it specifies whether or not validation is required, as
well as what side tables and side table columns to create. The DAD file is an
XML document. For a detailed description of what you can code in a DAD and
what is allowed according to the DAD’s DTD, see Appendix D, “DAD DTD
reference” on page 599.

As an example, we use the following project XML document (Figure 4-3).

Example 4-3 Project.xml document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE data SYSTEM "C:\Documents and
Settings\resident\Desktop\chap3\project.dtd">
<data>

<project>
<projectID id="123ABC"/>
<description>XXXXX</description>
<startdate>2003-04-28</startdate>
<employee>

<employeeID empid="2300"/>
<department>D01</department>
<firstname>Olivier</firstname>
<lastname>Guyennet</lastname>

</employee>
<employee>

<employeeID empid="5090"/>
<department>B05</department>
<firstname>Stephen</firstname>
<lastname>Priestley</lastname>

</employee>

 Chapter 4. Storing whole XML documents 103

</project>
</data>

The DAD file shown in Example 4-4 can be used to store the XML document in
an XML column, and populate the appropriate side tables for easy access.

Example 4-4 An example DAD file for the Project XML document

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "C:\DB2\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>

<dtdid>c:\xmldata\project.dtd</dtdid>
<validation>YES</validation>
<Xcolumn>

<table name="XProject">
<column name="pjid" type="char(6)"

 path="/data/project/projectID/@id"
 multi_occurrence="NO"/>

<column name="description" type="varchar(40)"
 path="/data/project/description"
 multi_occurrence="NO"/>

<column name="date" type="DATE"
 path="/data/project/startdate"
 multi_occurrence="NO"/>

</table>
<table name="XEmployee_ID">

<column name="empid" type="char(4)"
 path="/data/project/employee/employeeID/@empid"
 multi_occurrence="YES"/>

</table>
<table name="XEmployee_Name">

<column name="lastname" type="varchar(20)"
 path="/data/project/employee/lastname"
 multi_occurrence="YES"/>

</table>
</Xcolumn>

</DAD>

For XML columns, the DAD file specifies a Document Type Description (DTD) file
(<dtdid>c:\data\project.dtd</dtdid>) to use for automatic validation

Note: The structure of a DAD file varies depending on whether you are using
XML columns or XML collections, and/or whether you are shredding or
composing XML documents.

104 XML for DB2 Information Integration

(<validation>YES</validation>) of the documents inserted into the XML
column. It also specifies how documents that are stored in XML columns are to
be ”indexed.” To do so, the XML Extender creates so-called side tables.

Side tables are standard DB2 tables that are used to store parts of an XML
document (elements and attributes) that will be searched frequently. You can use
the side tables as an “index” to look up an XML document based on the value of
certain attributes and elements stored in the side tables. When the XML
document that is stored in the XML column is updated, the values in the side
tables are automatically updated as well.

Before you create the DAD file, you need to:

� Decide which elements or attributes you expect to use often in your searches.
The elements or attributes that you specify are extracted from the XML
document at insert time and stored into the side tables for fast searches by
the XML Extender (or SQL statements that your write yourself).

� Define the location path for each element or attribute that is to be stored in a
column of a side table. To specify the location path, DB2 XML Extender uses
the XPATH notation. For information about the subset of XPath that is
supported in XML Extender location path expressions, see “Working with an
XML Extender location path” in the XML Extender Administration and
Programming manual.

� Specify the DB2 column name and data type that you want the element or
attribute to have when it is stored in the side table by DB2 XML Extender.

� An important planning decision when using XML columns, is whether to index
the side tables for XML column documents. This decision should be made
based on how often you need to access the data, how big the side tables are,
and how critical performance is during structural searches.

You must keep the following considerations in mind when creating a side table:

� You can create multiple side tables on a single XML column.

� For each element or attribute in an XML document that can occur multiple
times, you must create a separate side table, and specify the
multi_occurrence="YES" keyword in the DAD file (in Example 4-4 on
page 104, this is the case for the XEmployee_ID and XEmployee_Name
tables). This is due to the complex structure of XML documents.

� You can associate side tables with the table storing the XML document in the
XML column:

– Use the primary key in the table that contains the XML column. When you
enable the XML column, you can specify the primary key as the ROOT ID
via the -r option. This way, the column that you specified as the ROOT ID
is also created (and populated) for each of the side tables. This method is

 Chapter 4. Storing whole XML documents 105

recommended. However, if you decide to use the primary key of the
application table containing the XML column to be the ROOT ID, it cannot
be a composite key.

– If the single primary key does not exist in the application table, or for some
reason you don’t want to use it, you can also have XML Extender create a
DXXROOT_ID column for you (in the table containing the XML column, as
well as all side tables). XML Extender will add a column, DXXROOT_ID, to
the table containing the XML column. This column contains a unique ID
that is generated at insertion time. All side tables will also have the same
DXXROOT_ID column with same value as the row that is inserted into the
table containing the XML column.

See also 4.4.6, “Enabling the XML column” on page 108 for additional
information about side tables.

4.4.4 Creating the table that will contain the XML column
You can create or add a column to an existing table that will contain the XML
document data in an XML column. We create the XML_PROJECT table to store
our project XML documents in the PROJ_XML XML column (see Example 4-5 and
Figure 4-4).

Example 4-5 Create table to store XML column

create table PROJ_XML_TB
(PROJ_ID integer not null,
PROJ_XML db2xml.xmlclob not logged,
primary key (PROJ_ID)

)

Figure 4-4 The PROJ_XML_TB table

 proj_id proj_xml

PROJ_XML_TB

106 XML for DB2 Information Integration

4.4.5 Inserting the DTD into the DTD_REF table
If, in the DAD file, you request validation of the XML documents that you insert
into the XML column, you need to “register” the Data Type Definition (DTD) with
XML Extender. This is done by inserting the DTD in the DTD_REF table. The
DTD_REF table is created when you enable the database for XML. You can use
the following INSERT statement (Example 4-6) to do so.

Example 4-6 Insert into DTD_REF

INSERT INTO db2xml.DTD_REF
 VALUES(‘c:\xmldata\project.dtd’,
 db2xml.XMLCLOBFromFile(‘c:\xmldata\project.dtd’),

0,
‘bart’,
’bart’,
‘bart’
)

Example 4-7 shows the project.dtd information that we are inserting into the
DTD_REF table that will be used to validate the XML documents when they are
inserted into the XML column later on (see 4.4.8, “Using XML Extender UDFs to
insert XML documents” on page 110).

Example 4-7 Project.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT data (project)>

<!ELEMENT project (projectID, description, startdate, employee*)>
<!ELEMENT projectID EMPTY>
<!ELEMENT description (#PCDATA)>
<!ELEMENT startdate (#PCDATA)>
<!ATTLIST projectID id CDATA #REQUIRED>

<!ELEMENT employee (employeeID, department, firstname, lastname)>
<!ELEMENT employeeID EMPTY>
<!ELEMENT department (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ATTLIST employeeID empid CDATA #REQUIRED>

 Chapter 4. Storing whole XML documents 107

4.4.6 Enabling the XML column
Since we only have one administration command for DB2 XML Extender, the
command to enable an XML column remains dxxadm, but this time we use the
enable_column option (Example 4-8). The required parameters are:

� The database name
� The name of the table containing the XML column
� The name of the XML column in that table
� The DAD file to be associated with this XML column

There are also some optional arguments:

� Tablespace (-t): The table space where the side tables are created. You
specify this option only if you want to put the side tables into a specific table
space.

� Default_view (-v): The name of the default view joining the user table
containing the XML column and the side tables.

� Root_id (-r): The name of the single primary key in the user table that is
added to the side tables. The root_id is the way to tie the side tables together
with the user table. We recommend that you use the primary key that is
defined on the user table as the root_id. If you do not specify a root_id, or if
your application table has no primary key, a DXXROOT_ID column is added
to the user table containing the XML column (at enable column time) for
storing a unique ID generated when you insert a row into the XML column. All
side tables will then have that same column, DXXROOT_ID.

Example 4-8 Enabling an XML column

dxxadm enable_column PROJ_XML_TB
 PROJ_XML
 “c:\xmldata\project.dad”
 -r PROJ_ID

When you enable an XML column, DB2 XML Extender performs the following
actions:

� Add a new row to the XML_USAGE table (this table is created when the
database is enabled for XML). This new entry keeps information about the
relation between the user table, the XML column in that table, the DTDID and
the DAD file. The DAD file is stored as a CLOB in the XML_USAGE table.

� Create the side tables with the desired columns corresponding to the
elements and attributes from the XML document based on information in the
DAD file.

108 XML for DB2 Information Integration

� Create (three) triggers on the user table containing the XML column to
maintain the side tables.

� If you decide to validate the XML document, the USAGE_COUNT column in
the DTD_REF table is increased for the relevant row. You cannot delete the
entry in the DTD_REF table when the USAGE_COUNT for this DTD is not
zero (enforced by a trigger on the DTD_REF table).

To illustrate the side table concept (Figure 4-5), we use the Project XML
document and its DAD file again. The side tables are created when you enable
the XML column.

Figure 4-5 Columns created in the side tables

Note that all side tables contain the PROJ_ID column (-r option during dxxadmin
enable_column). Also note that a dxx_seqno column has been added to the
Xemployee_ID and Xemployee_Name table. When an attribute or element can
occur multiple times in a single XML document (multi_occurrence="YES" in the
DAD file), a sequence number is automatically provided to identify each
occurrence. This allows you to access individual entries of the attributes and
elements of a single XML document using the side tables in the same order as
they occur in the actual XML document.

PROJ_ID datedescriptionpjid

XProject

empidPROJ_ID dxx_seqno

XEmployee_ID

PROJ_ID dxx_seqno lastname

XEmployee_Name

 Chapter 4. Storing whole XML documents 109

4.4.7 Creating indexes on the side tables
After you have enabled an XML column, and the side tables are available, you
can create indexes on columns of the side tables using the DB2 CREATE INDEX
statement. Indexing the side tables helps you improve the performance of the
queries against the side tables when retrieving information from the side tables
or retrieving XML documents.

4.4.8 Using XML Extender UDFs to insert XML documents
As explained in 4.2.2, “Using XML Extender UDFs to insert XML documents into
a normal DB2 column” on page 98, DB2 XML Extender provides functions for
storing XML documents in relational tables. Those storage functions are:

� XMLVarcharFromFile
� XMLCLOBFromFile
� XMLFileFromVarchar
� XMLFilefromCLOB

In Example 4-9, we insert an XML document (project.xml) into the
PROJ_XML_TB table that contains an XML column (PROJ_XML) defined as
XMLCLOB.

Example 4-9 Insert data into the XML column

INSERT INTO PROJ_XML_TB
VALUES (1,db2xml.XMLCLOBFromFile(’c:\xmldata\project.xml’))

After inserting the project.xml document into the PROJ_XML column, the XML
column should contain the XML document, and the side tables should look like
Figure 4-6 on page 111.

Important: DB2 XML Extender populates the side tables at insertion or
update time with the triggers that are created when the XML column is
enabled. This means that if your column already contains XML documents
before being enabled, the content of these XML documents will not be
reflected in the side tables. The same is true if you decide to add side tables
(to provide additional “fast” search criteria) after the table is populated with
XML documents.

Note: These UDFs are created in the DB2XML schema.

110 XML for DB2 Information Integration

Figure 4-6 Side table contents

 Chapter 4. Storing whole XML documents 111

112 XML for DB2 Information Integration

Chapter 5. Working with XML
documents stored in XML
columns

This chapter describes how to work with XML documents that have been stored
in an XML column:

� We first look at how to retrieve complete XML documents stored in an XML
column

� Next, we describe how to extract parts (elements and attributes) of an XML
document

� We also describe how to filter which XML documents we want to retrieve

� Then we look at how we can use an XML wrapper to retrieve information that
is stored in an XML column

� We describe how to update and delete XML documents

� In conclusion, we give some words of advice on how XML columns are best
used

5

© Copyright IBM Corp. 2004. All rights reserved. 113

5.1 Retrieving, extracting, updating, and deleting XML
columns

In the previous chapter, we focused on storing XML documents in XML columns.
In this chapter, we show how to perform other operations like searching,
retrieving and updating XML documents that are stored in XML columns.

DB2 XML Extender provides user-defined functions (UDFs) for these operations.

For a detailed description concerning the syntax and arguments of these
functions, refer to DB2 XML Extender Administration and Programming V8,
SC27-1234.
In addition, we also look at how to use the XML wrapper to access information
stored in an XML column.

In the following subsections, we describe these functions and illustrate some of
them using simple examples.

5.2 Retrieving XML documents stored in XML columns
There are various ways of retrieving the XML document you stored in the
database as an XML column.

First, we focus on retrieving the document itself, either the entire document, or
parts of it; that is, we focus on the SELECT clause of the SQL statement.

In the next part of this section, we investigate how to filter the documents we
want to retrieve, that is, the WHERE clause of the SQL statement.

5.2.1 Retrieving the entire XML document
When we want to retrieve an entire XML document that is stored in an XML
column, we can use normal SQL SELECT statements. We just specify the XML
columns that we want to retrieve in the SELECT clause of the SQL statement (as
we normally would with any other column). DB2 does an automatic conversion of
the XML data type to a DB2 “native” data type, or we can do it explicitly by using
one of the default cast functions. These are generated when the user-defined
distinct type (that XML Extender uses) is created (at database enablement time).

Note: XML Extender does not use stored procedures when working with XML
columns. Operations are done through UDFs.

114 XML for DB2 Information Integration

This does not apply to XML documents stored in an XML column defined using
the XMLFILE data type.

In the following section, we use different flavors of the same table, sales_tab.

sales_tab_varchar Orders are stored in an XMLVARCHAR column
sales_tab_clob Orders are store in an XMLCLOB column
sales_tab_file Orders are store in an XMLFILE column

Into host variables
As mentioned above, when using XMLVARCHAR, XMLCLOB and to store your
XML documents, they can be easily retrieved by specifying the column in the
select list of your SQL statement. (You can also use XMLDBCLOB if your
database supports DBCS data.) For example, when storing XML documents in
an (XML-enabled) column called order, declared as an XMLVARCHAR, we can
select documents from it as follows:

select order from sales_tab_varchar

However, if we need to perform additional operations on the result, for example
applying the length function, we must cast the XML data type to a source data
type, for example:

select length(db2xml.varchar(order)) from sales_tab_varchar

When the XML UDTs are defined, DB2 also generates default casting functions
for those data types, as shown in Table 5-1.

Table 5-1 Default cast functions

Do not forget to qualify your cast function in case DB2XML is not part of your
function resolution PATH, as shown in the example above.

Cast function to specify
in the SELECT statement

Result data type Description

VARCHAR(xmlvarchar) VARCHAR XML document stored as
XMLVARCHAR is casted
to a source VARCHAR

CLOB(xmlclob) CLOB XML document residing in
XMLCLOB is converted to
CLOB

DBCLOB(xmldbclob) DBCLOB XML document residing in
XMLDBCLOB is converted
to DBCLOB

VARCHAR(xmlfile) VARCHAR XML filename is converted
to a VARCHAR.

 Chapter 5. Working with XML documents stored in XML columns 115

When using XMLFILE, however, retrieving the content of the XML document
cannot be achieved by just specifying the column name of the XML column. For
example, when the order column is defined as XMLFILE, using:

select order from sales_tab_file

We only retrieve the external file name where the XML document is stored, and
not the content itself, for example:

C:\XMLdocs\order0001.xml

To retrieve the actual content you must use the CONTENT() UDF. The content
function exists in multiple flavors; it is a so-called overloaded function.

Unfortunately we can only directly retrieve the content of an XML document,
stored in an XMLFILE column, into an XMLCLOB (CLOB locator).

For example, to retrieve our document above, we can use:

select db2xml.content(order)from sales_tab_file

If we prefer a varchar, we can cast it to a varchar as follows:

select varchar(db2xml.clob(db2xml.content(order))) from sales_tab_file

You have to use the db2xml.clob cast function first (to cast between XMLCLOB
and a source CLOB) before you can cast the CLOB to a VARCHAR.

Into an external file
You can also retrieve the information of the XML column (XMLVARCHAR or
XMLCLOB) and store the result directly into a external file. This is also done by
using the content() function.

For example, to retrieve an XML document stored in an XMLCLOB and store it in
an external file, you can use:

select db2xml.content(order,'c:\exportxml\extractorder.xml')
from sales_tab_clob

The result of the statement is:

c:\exportxml\extractorder.xml

The result of the content() function is the filename that the XML document was
stored in. The XML document that was retrieved from the XMLCLOB column, is
stored in the file system under the name extractorder.xml in the c:\exportxml
directory.

116 XML for DB2 Information Integration

The Content() function works identical when the XML document is stored as an
XMLVARCHAR. Unfortunately there is no equivalent function for XMLDBCLOB
columns.

To summarize, there are three flavors of the Content() function, depending on the
type of parameters:

� The Content() UDF to export an XML document from an XMLVARCHAR
format to an external file

� The Content() UDF to export an XML document from an XMLCLOB format to
an external file

� The Content() UDF to export an XML document from an XMLFILE format to a
CLOB locator

5.2.2 Retrieving elements and attributes from XML documents
Depending on where the information is stored, there are different ways to retrieve
elements and attributes of XML documents stored in an XML column.

From side tables
Remember that when you enable the XML column, XML Extender can create
side table(s), based on information provided in the DAD file. These side tables
contain element and attribute values, extracted from the XML document when it
is inserted (stored) into the XML column. If the information you want to retrieve is

Important: Make sure that when you retrieve multiple rows (multiple XML
documents) your application program assigns different external file names for
each row that you retrieve. Otherwise the content is overwritten each time.

To avoid this, you may want to include the key of the table that stores the XML
document as part of the external file name. In our sales_tab_file, invoice_num
is the key column.

select
db2xml.content(order,'c:\exportxml\extractorder'||'invoice_num'||'.xml')
from sales_tab_clob

When using the DB2 command line processor you may have to include the
entire statement in “ (double quotes) in order for it to run properly.

Tip: When using XML columns, the XML document can be retrieved in the
exact same form it was originally using before it was stored, including white
space. This is normally not the case when using XML collections.

 Chapter 5. Working with XML documents stored in XML columns 117

available in the side table, you can select the information from the side table,
instead of using the XML column itself.

Let us look at an example. In our sales_tab_xmlc table, we store XML
documents as an XML column in the order column as an XMLCLOB data type.
We also created a number of side tables; one of them is the ORDER_SIDE
_TAB. This side table contains the invoice number (that is to be used to correlate
all information belonging to the same order), and two “fields” extracted from the
XML documents, namely order_key and customer. The DAD is shown in
Figure 5-1.

Figure 5-1 XML column DAD file

So if we want to retrieve the customer that placed our sales orders, we can use
the column in the side table instead of having to use the actual XML document.
For example, when using the DB2 CLP (Example 5-1 on page 119):

118 XML for DB2 Information Integration

Example 5-1 Using the side table

db2 select customer from order_side_tab

CUSTOMER
--
American Motors
European Engines

 2 record(s) selected.

Note again that we did not specify a where condition in the example, as we are
still focusing on retrieving the data itself, not filtering out rows based on selection
criteria. We will deal with that later on in this chapter.

From the XML document itself
When the data you want to retrieve is not available in side tables, you can
retrieve it from the XML document stored in the XML column itself. To do so, you
can use so-called extraction UDFs. Extraction UDFs are based on the location
path expressions (XPath notation) to locate the desired element or attribute.

The extracting UDFs are divided into these groups:

� Scalar extracting UDFs: These allow you to find an element or attribute within
an XML document. This element or attribute must have only one occurrence
in the whole XML document. These UDFs return a scalar SQL data type.

� Table extracting UDFs: These give the possibility to find a multiple occurring
elements or attributes within an XML document and return a DB2 table having
multiple rows of the considered SQL data type.

Each extracting UDF expects two input parameters:

� The XML document to be searched (XMLFile, XMLVarchar, or XMLCLOB)

� The location path expressed in XPath notation to identify the element or
attribute you are looking for

The extracting UDFs convert the value of an element or attribute in the XML
document to one of the following SQL data types:

� CHAR
� VARCHAR
� CLOB
� INTEGER
� SMALLINT
� DOUBLE

 Chapter 5. Working with XML documents stored in XML columns 119

� REAL
� DATE
� TIME
� TIMESTAMP

Table 5-2 summarizes the existing extracting functions. Refer to DB2 XML
Extender Administration and Programming V8, SC27-1234 for a more detailed
description of each of these functions.

Table 5-2 Extracting UDFs summary

Let us look at a few examples:

Example 1
We want to construct a list of e-mail addresses of our customers. Unfortunately
we do not “extract” this information and put it into side tables, when we store the
XML document in the XML column. However, using the extract functions we can
still obtain that information. Because the e-mail address can only occur once in
an order document (according to the DTD shown in Example 5-2 on page 121),
we can use the scalar version of the extract UDFs.

Scalar UDF Table UDF Return type Returned column
name (table function)

extractInteger extractIntegers INTEGER returnedInteger

extractSmallint extractSmallints SMALLINT returnedSmallint

extractDouble extractDoubles DOUBLE returnedDouble

extractReal extractReals REAL returnedReal

extractChar extractChars CHAR returnedChar

extractVarchar extractVarchars VARCHAR returnedVarchar

extractCLOB exrtactCLOBs CLOB returnedCLOB

extractDate extractDates DATE returnedDate

extractTime extractTimes TIME returnedTime

extractTimestamp extractTimestamps TIMESTAMP returnedTimestamp

120 XML for DB2 Information Integration

Example 5-2 getstart.dtd

<?xml encoding="US-ASCII"?>

<!ELEMENT Order (Customer, Part+)>
<!ATTLIST Order key CDATA #REQUIRED>
<!ELEMENT Customer (Name, Email)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Email (#PCDATA)>
<!ELEMENT Part (key,Quantity,ExtendedPrice,Tax, Shipment+)>
<!ELEMENT key (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT ExtendedPrice (#PCDATA)>
<!ELEMENT Tax (#PCDATA)>
<!ATTLIST Part color CDATA #REQUIRED>
<!ELEMENT Shipment (ShipDate, ShipMode)>
<!ELEMENT ShipDate (#PCDATA)>
<!ELEMENT ShipMode (#PCDATA)>

Because we want to extract the e-mail address as a VARCHAR, we use the
exctractVarchar UDF, as shown in Example 5-3.

Example 5-3 Using extractvarchar

db2 "select substr(db2xml.extractVarchar(order,'/Order/Customer/Email')
,1,40) from sales_tab"

1
--
parts@am.com
parts2@eu.com

 2 record(s) selected.

Note that our sample table contains more rows than the sample table that ships
with XML Extender. This is to be able to illustrate some additional items in later
sections.

Example 2
Find out what parts have been ordered. Again, the part key is not stored in a side
table, and we have to retrieve the information from the actual XML document
stored in the XML column. Because we can have multiple parts in a single XML
order document (see the DTD in Example 5-2), we use the table UDF flavour

 Chapter 5. Working with XML documents stored in XML columns 121

(ending on “s”), extractintegers. As part numbers are integer numbers, we use
the integer data type (we may just as well use a character data type in this case,
since we have no plans to do arithmetic on the extracted information).
Example 5-4 shows our first attempt.

Example 5-4 Using extractintegers

db2 select * from table(db2xml.extractintegers(
(select order from sales_tab),'/Order/Part/key')

) a

RETURNEDINTEGER

SQL0811N The result of a scalar fullselect, SELECT INTO statement, or
VALUES INTO statement is more than one row. SQLSTATE=21000

Why did we receive an SQL error? We are using the table UDF to handle
multi-occurrences. That is true, however, the first argument of the (table) UDF
needs to be a single XML document. In our case, we have multiple rows in the
sales_tab and the query fails. We can re-code the query as follows
(Example 5-5):

Example 5-5 Using extractintegers -2

db2 "select *
from table(db2xml.extractintegers(

(select order from sales_tab where invoice_num ='123456')
,'/Order/Part/key'

)
) a"

RETURNEDINTEGER

 68
 128

 2 record(s) selected.

Although this works, it only allows us to extract the part keys from a single XML
document (row in the table), where invoice_num = ‘123456’, and not all part
keys of all stored documents.

122 XML for DB2 Information Integration

Since we want to look at all stored XML documents, we use the following SQL
statement (Table 5-6):

Example 5-6 Using extractintegers -3

db2 select x.returnedinteger
from sales_tab, table(db2xml.extractintegers(order,

'/Order/Part/key')
) as x

RETURNEDINTEGER

 68
 128
 99
 128

 4 record(s) selected.

In the query, we pass the order column of the sales_tab (containing the XML
documents) for every row to the table UDF, to extract (one or more) part keys of
that XML document. Using this technique we use the extractintegers table UDF
to extract multiple occurrences of the part key out of an XML document, as well
as request each row (XML document) in the sales_tab to be searched. Note that
in the SELECT clause we only select the column (returnedinteger) that is
returned by the table UDF (extractintegers).

5.2.3 Retrieving fragments from data stored in an XML column
You can use the ExtractCLOB() or ExtractCLOBs() UDFs to extract (a)
fragment(s) of an XML documents, including its element and attribute markup,
and content of elements and attributes, including sub-elements. The
ExtractCLOB(s) function is different from the other extract functions.
The other extract functions (for example ExtractVarchar and ExtractVarchars)

Tip: Using the extract UDFs, we can access all the information stored in the
XML document, even when no side table is constructed on the element or
attribute. Note however that using the extract UDFs requires XML Extender to
parse each individual XML document and retrieve the requested elements and
attributes. This is ok for occasional searches and/or when the table does not
contain a large number of XML documents, or only small XML documents.
Therefore, for performance reasons, it is highly recommended to construct
side tables on all frequently accessed elements and attributes.

 Chapter 5. Working with XML documents stored in XML columns 123

only returns the content of elements and attributes. They are used to return
simple values.
The ExtractCLOB and ExtractCLOBs functions are used to extract document
fragments.

Therefore, if you want to extract more than just a single element content or the
value of an attribute, you can use ExtractCLOB() or ExtractCLOBs() to do so.
The difference between ExtractCLOB() and ExtractCLOBs() function is similar to
comparing ExtractVARCHAR() and ExtractVARCHARs(). ExtractCLOB() is a
scalar UDF and returns a single fragment, whereas ExtractCLOBs() returns a
table, with potentially multiple fragments. When the element (and its
subelements or attributes) that you extract can occur multiple times, you must
use the table flavor of the UDF.

Example 5-7 shows how to extract the customer fragment from our order XML
column. Note that it extracts the <customer> tag, as well as its dependent tags,
<Name> and <Email>. Note also that when the result of the SQL statement (after
applying the WHERE clause) returns multiple XML documents, the <customer>
tags of all returned documents are extracted (as shown in the bottom part of the
example).

Example 5-7 Using ExtractCLOB()

db2 select substr(db2xml.extractclob(order,'/Order/Customer'),1,100)as RESULT
from sales_tab
where invoice_num = '123456'

RESULT

<Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>

 1 record(s) selected.

-- When more than one document is returned, all fragments from all xml column
-- rows are extracted.

db2 select substr(db2xml.extractclob(order,'/Order/Customer'),1,100) as RESULT
from sales_tab

RESULT

<Customer>

124 XML for DB2 Information Integration

 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
<Customer>
 <Name>European Engines</Name>
 <Email>parts2@eu.com</Email>
 </Customer>
<Customer>
 <Name>ITSO Insurance, Inc.</Name>
 <Email>my-email@asia.gov</Email>
 </Customer>

 3 record(s) selected.

Example 5-8 shows how to use the ExtractCLOBs UDF. In the example, we
extract the parts fragment. As there can be multiple parts within a single XML
order document we must use the ExtractCLOBs function instead of the
ExtractCLOB function.

Example 5-8 Using ExtractCLOBs

db2 select substr(a.returnedclob,1,400) as RESULT
from sales_tab s,

table(db2xml.extractclobs(s.order,'/Order/Part'))a
where s.invoice_num = '123456'

RESULT

<Part color="black ">
 <key>68</key>
 <Quantity>36</Quantity>
 <ExtendedPrice>34850.16</ExtendedPrice>
 <Tax>6.000000e-2</Tax>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 </Part>
<Part color="red ">
 <key>128</key>
 <Quantity>28</Quantity>

 Chapter 5. Working with XML documents stored in XML columns 125

 <ExtendedPrice>38000.00</ExtendedPrice>
 <Tax>7.000000e-2</Tax>
 <Shipment>
 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 </Part>

 2 record(s) selected.

Note that with this query can also be used when multiple (order) XML documents
are processed (when multiple rows are returned after applying the conditions in
the WHERE clause).

Using this UDF can be very useful when decomposing complex XML documents,
especially when the standard DAD shredding capabilities are not sufficient.

5.2.4 Filtering the XML documents you want to retrieve
In this section we look at how to construct the WHERE clause of our SQL
statements to filter which XML documents (or parts thereof) we want to retrieve.

Using side tables
When we set up the XML column, we can also specify for which elements and
attributes we want XML Extender to create side tables through a DAD file (see
Figure 5-1 on page 118). These side tables are the best way to guarantee good
performance when retrieving information stored in XML columns. The side tables
are populated when the documents are inserted.

You can use these side tables to perform filtering in the WHERE clause. For
example, the price information is stored in a side table (part_side_tab). To
retrieve the name of the salesperson that sold parts > $2500, you can use the
following query (Example 5-9).

Example 5-9 Filtering using side tables

db2 "select sales_person
from sales_tab
where invoice_num in (select invoice_num

from part_side_tab
where price > 2500.00)"

SALES_PERSON

126 XML for DB2 Information Integration

Sriram Srinivasan
Willy The Whale

 2 record(s) selected.

OR

db2 "select sales_person
from sales_tab T,part_side_tab S
where T.invoice_num = S.invoice_num
and price > 2500.00"

SALES_PERSON

Sriram Srinivasan
Sriram Srinivasan
Willy The Whale

 3 record(s) selected.

We use the invoice_num column to “merge” the information from the side table
(part_side_tab) that contains the price information, and the table that contains
the XML documents (sales_tab) and the sales_person. Invoice_num is the
primary key in the sales_tab and was specified as the root_id at XML column
enable time (-r option). Therefore the invoice_num column also exists in all the
side_tables.
Note that it is better to use a subselect (top query in Example 5-9 on page 126)
than a join (bottom query in Example 5-9 on page 126) for this type of queries.
Using a subselect filters out duplicates in the IN-list. This means that by using a
join, you may end up with duplicates (as shown in the result of the bottom query
of Example 5-9 on page 126). These duplicates may exist because of multiple
occurrences of certain attributes or elements within the same document
(multi_occurrence =”yes” elements or attributes). In our example above we use
the price to do filtering. The price column in the side table is populated through
the multi_occurrence element “ExtendedPrice”, which explain the fact that
“Sriram Srinivasan” shows up twice in the result.

Using a joined view
When you enable the XML column, you can also have a default view created
(using the -v option on the dxxadm enable_column command). This default view
joins the application table and all the side tables that you specify in the DAD
using a unique ID (specified on the -r option of the dxxadm enable_column
command or a DXXROOT_ID column created by XML Extender). The advantage
of the default view is that it provides a single virtual view of the application table

 Chapter 5. Working with XML documents stored in XML columns 127

and its side tables. The disadvantage is that the more side tables you have, the
slower your queries against the default view will run, since each new side table
adds an extra table to the join. For our sales table, using the DAD of Figure 5-1
on page 118, the default view definition looks like Example 5-10.

Example 5-10 Default view definition

CREATE VIEW sales_order_view
AS SELECT SALES_TAB.INVOICE_NUM,SALES_TAB.ORDER,SALES_TAB.SALES_PERSON

,order_side_tab.order_key,order_side_tab.customer
,part_side_tab.price
,ship_side_tab.date

FROM order_side_tab,part_side_tab,ship_side_tab,SALES_TAB
WHERE SALES_TAB.invoice_num = order_side_tab.invoice_num
AND SALES_TAB.invoice_num = part_side_tab.invoice_num
AND SALES_TAB.invoice_num = ship_side_tab.invoice_num

Again, still looking for salespersons (sales_person) who have sold line item
orders with a price over $2500, you can issue a simple query against the default
view (Example 5-11).

Example 5-11 Retrieving data using the default view

db2 "select sales_person
from sales_order_view
where price > 2500.00"

SALES_PERSON

Sriram Srinivasan
Sriram Srinivasan
Sriram Srinivasan
Sriram Srinivasan
Sriram Srinivasan
Sriram Srinivasan
Willy The Whale
Willy The Whale
Willy The Whale

 9 record(s) selected.

Note that the result is even more prone to duplicates being returned, since the
default view contains all combinations of the base and side tables. Note also that

128 XML for DB2 Information Integration

the filtering (price > 2500) is performed on a column that is part of a side table,
included in the default view.

You can also create views yourself, for example joining the table containing the
XML documents (sales_tab) with a single side table (order_side_tab) as shown
in Example 5-12.

Example 5-12 Joining XMLcolumn table with an individual side table

CREATE VIEW sales_order_only_view
 AS SELECT SALES_TAB.INVOICE_NUM,SALES_TAB.ORDER,SALES_TAB.SALES_PERSON
 ,order_side_tab.order_key,order_side_tab.customer
 FROM order_side_tab,SALES_TAB
 WHERE SALES_TAB.invoice_num = order_side_tab.invoice_num

Using this view makes it easier to retrieve information related to the sales_tab
and the order related information stored in its side table (order_side_tab). For
example, you can retrieve the complete XML document related to orders from a
certain customer (from the side table),

select order
from sales_order_only_view
where customer = 'American Motors'

When you try this using the sales_order_view (the default view created at XML
column enable time),

select order
from sales_order_view
where customer = 'American Motors'

you will receive duplicates. Because you cannot use a DISTINCT on a CLOB
column, using the sales_order_only_view is a good solution. Note that this
technique may not work in cases where you have a side_table on a
multi_occurrence=”yes” element or attribute.

Using Extractxxx() UDFs
You can also use XML Extender’s Extractxxx() UDFs to filter on elements and
attributes on which you did not create side tables. As with retrieving attributes
and elements in the SELECT clause of an SQL statement, using the extractxxx()
UDFs in the WHERE clause requires XML Extender to retrieve the entire XML
document and parse it. This can be a very expensive operation, especially for
large XML documents, and/or tables that contain many XML documents, as DB2
XML Extender needs to parse all of them to be able to apply the filtering.

 Chapter 5. Working with XML documents stored in XML columns 129

Example 5-13 gives a simple example of how to find the salespersons who did
business with IBM.

Example 5-13 Using extract UDFs in the WHERE clause

C:\Program Files\IBM\SQLLIB\BIN>db2 "select sales_person from sales_tab
where db2xml.extractvarchar(order,'/Order/Customer/Name') like 'IBM%'"

SALES_PERSON

 0 record(s) selected.

Because the customer name is also part of a side table, it is probably more
meaningful to select this information directly from the side table, as shown
previously.

The next example (Example 5-14) lists all customers that have a government
e-mail address (.gov). As mentioned above, the customer name itself is in a side
table (order_side_table) and does not need to be extracted from the XML
document. The e-mail address on the other hand, is not part of any side table
and needs to be extracted. Again, we can write this as a subselect or a join.
However, since invoice_number is the primary key of the sales table, there
cannot be any duplicates. As a matter of fact, DB2 is likely to convert the
subselect into a join during query rewrite.

Example 5-14 Using extract UDFs in the WHERE clause -2

db2 "select customer
from order_side_tab
where invoice_num in

(select invoice_num
from sales_tab
where db2xml.extractvarchar(order,'/Order/Customer/Email')

like '%.gov')"

CUSTOMER
--
Asian Manicure

 1 record(s) selected.

db2 "select customer
from order_side_tab a,sales_tab b
where a.invoice_num = b.invoice_num

130 XML for DB2 Information Integration

and db2xml.extractvarchar(order,'/Order/Customer/Email')
like '%.gov'"

CUSTOMER
--
Asian Manicure

 1 record(s) selected.

To make things a bit more complicated, Example 5-15 tries to find the
salesperson responsible for sending shipments by air (which are very
expensive).

Example 5-15 Using extract UDFs in the WHERE clause -3

db2 "select sales_person
from sales_tab

,table(db2xml.extractvarchars(order,
'/Order/Part/Shipment/ShipMode')

) x
where x.returnedvarchar = 'AIR'"

SALES_PERSON

Sriram Srinivasan

 1 record(s) selected.

Note that we need to use the table version of the UDF as we can have multiple
shipments per order.

Predicates in the location path
Extractxxx() UDFs support location paths that have predicates with attributes, not
elements. This means that if you need to do filtering on an attribute, you can do it
within the UDF itself, and not as part of the WHERE clause of the SQL
statement.

In Example 5-16, we retrieve the invoice number and the price of all black orders.

Example 5-16 Filtering inside the extract UDFs

db2 "select invoice_num, x.returnedreal
from sales_tab

,table(db2xml.extractreals(

 Chapter 5. Working with XML documents stored in XML columns 131

order
,'/Order/Part[@color="""black """]/ExtendedPrice'

)
)x"

INVOICE_NUM RETURNEDREAL
----------- ------------------------
123456 +3.48502E+004
555555 +1.23160E+002

 2 record(s) selected.

As part of the extract UDF, we code the filtering on color while retrieving the
price.

'/Order/Part[@color="""black """]/ExtendedPrice'

Note that in a “native” DB2 CLP window, we have to treble the “ (double quotes).
This is not required in the DB2 Command Center.

Note also that you must specify a single blank after the filtering predicate,
because the data in the original XML document that was inserted contains that
blank (<Part color="black ">).

[@color="""black """]

So, you must specify “black “ and not “black”.

As mentioned before, unfortunately you can only use this filtering inside the UDF
on attributes, not on elements. Therefore Example 5-17 returns an error.

Example 5-17 Filtering inside the extract UDFs -2

db2 "select sales_person
from sales_tab

,table(db2xml.extractvarchars
(order
 ,'/Order/Part/Shipment/ShipMode = """TRUCK """')

) x "

SALES_PERSON

Tip: Be careful when using Internet Explorer to view XML documents. It
seems to consider trailing blanks as insignificant and displays the <part>
element above as <Part color="black">

132 XML for DB2 Information Integration

SQL0443N Routine "*VARCHARS" (specific name "") has returned an error
SQLSTATE with diagnostic text "DXXD002E A syntax error occurred near
position "29" in the". SQLSTATE=38X09

Since filtering inside the Extractxxx() UDF is likely to be cheaper than having to
pass the results back to the SQL layer, and do the filtering in the WHERE clause,
when you expect to do ad hoc queries and you are in charge of the layout of the
XML documents, it may be worth considering to design potential search fields as
attributes instead of elements. If multiple predicates are required, that means
multiple invocations of the Extracxxx() function, and will require multiple
parsings.

5.3 Retrieving XML columns using an XML wrapper
The XML wrapper is part of the family of DB2 Information Integrator’s
non-relational wrappers. It allows you to define a “relational look” over an XML
document. For more information on using the XML wrapper, see Chapter 11,
“XML wrapper” on page 305.

The XML wrapper can also provide read-only access to XML documents that are
stored in an XML column. To illustrate its use with an XML column, we use a
number of XML documents stored in an XMLFILE XML column. They were
inserted into the XMLFILE column (order) using statements similar to those
shown in Example 5-18.

Example 5-18 Inserting into XMLFILE XML column

db2 "insert into sales_tab(invoice_num, sales_person, order)
values('123456'

,'Sriram Srinivasan'
,db2xml.xmlfilefromvarchar(

db2xml.varchar(
db2xml.XMLVarcharFromFile('C:\SQLLIB\samples\db2xml\xml

\getstart.xml'
)

)
,'C:\XMLDOCS\getstart.xml'

)
)"

Because in our example, the input is made up of existing XML documents in the
file system, inserting them into an XMLFILE column may seem a bit artificial.

 Chapter 5. Working with XML documents stored in XML columns 133

Notice that we read the XML document from the file system
(C:\SQLLLIB\samples\db2xml\xml) using the XMLVarcharFromFile UDF, convert
the result to a VARCHAR, and insert the VARCHAR into the XMLFILE order
column, resulting in the file to be put into the C:\XMLDOCS directory.

However, in real life it may very well be that the XML document comes in via MQ
Series or any other type of application, and has to be stored into an XMLFILE
XML column. In addition, by inserting into the XMLFILE column, the side tables
are automatically populated and can be used to access the data as well.

The source of the XML document that we inserted in Example 5-18 on page 133
is shown in Figure 5-2.

Figure 5-2 getstart.xml document

The hierarchical structure of the XML document is shown in Figure 5-3.

134 XML for DB2 Information Integration

Figure 5-3 XML document structure

Note that this structure was derived from the XML document shown in Figure 5-2
on page 134. If you have an XML Schema or DTD definition, you should use that
instead, as a sample document may not represent the full structure.

We use the following DDL to set up the wrapper, server, nicknames and views
(Example 5-19).

Example 5-19 Setting up the XML wrapper definitions

CREATE WRAPPER "XMLWRAP" LIBRARY 'db2lsxml.dll';

CREATE SERVER XMLSERV WRAPPER "XMLWRAP";

CREATE NICKNAME ORDER_XWT (CUSTOMER_NAME VARCHAR (48) OPTIONS(XPATH'./Customer/Name/text()')
,CUSTOMER_EMAIL VARCHAR (48) OPTIONS(XPATH'./Customer/Email/text()')
,ORDER_XWT_ID VARCHAR (16) OPTIONS(PRIMARY_KEY 'YES')
,KEY INTEGER OPTIONS(XPATH './@key'))

FOR SERVER "XMLSERV" OPTIONS(XPATH '//Order' , DIRECTORY_PATH 'C:\XMLDOCS');

PART

SHIPMENT

CUSTOMER

ORDER

ORDER_XW_ID

ORDER_XW_FID

PART_XW_ID

PART_XW_FID

ORDER_XWT

PART_XWT

SHIPMENT_XWT

 Chapter 5. Working with XML documents stored in XML columns 135

CREATE NICKNAME PART_XWT (KEY INTEGER OPTIONS(XPATH './key/text()')
,QUANTITY INTEGER OPTIONS(XPATH './Quantity/text()')
,EXTENDEDPRICE DECIMAL (10,2) OPTIONS(XPATH'./ExtendedPrice/text()')
,TAX REAL OPTIONS(XPATH './Tax/text()')
,PART_XWT_ID VARCHAR (16) OPTIONS(PRIMARY_KEY 'YES')
,COLOR VARCHAR (48) OPTIONS(XPATH './@color')
,ORDER_XWT_FID VARCHAR (16) OPTIONS(FOREIGN_KEY 'ORDER_XWT'))

FOR SERVER "XMLSERV" OPTIONS(XPATH './Part');

CREATE NICKNAME SHIPMENT_XWT (SHIPDATE DATE OPTIONS(XPATH './ShipDate/text()')
,SHIPMODE VARCHAR (48) OPTIONS(XPATH'./ShipMode/text()')
,PART_XWT_FID VARCHAR (16) OPTIONS(FOREIGN_KEY 'PART_XWT'))

FOR SERVER "XMLSERV" OPTIONS(XPATH './Shipment');

CREATE VIEW ORDER_XWV AS
SELECT Order.Customer_Name, Order.Customer_Email, Order.Order_XWT_ID, Order.key
FROM Order_XWT Order;

CREATE VIEW PART_XWV AS
SELECT Part.key, Part.Quantity, Part.ExtendedPrice, Part.Tax, Part.Part_XWT_ID

,Part.color, Order.Order_XWT_ID
FROM Part_XWT Part, Order_XWT Order
WHERE Order.Order_XWT_ID = Part.Order_XWT_FID;

CREATE VIEW SHIPMENT_XWV AS
SELECT Shipment.ShipDate, Shipment.ShipMode, Part.Part_XWT_ID
FROM Shipment_XWT Shipment, Part_XWT Part, Order_XWT Order
WHERE Part.Part_XWT_ID = Shipment.Part_XWT_FID
AND Order.Order_XWT_ID = Part.Order_XWT_FID;

For more details on the meaning of all these definitions, see Chapter 11, “XML
wrapper” on page 305. For now, it is sufficient to know that these definitions allow
us to access all XML documents (files with an .xml extension) that reside in the
C:\XMLDOCS directory via SQL statements. The different views allow us to
address the different hierarchical levels (order, customer, part, and shipment)
inside the XML documents. Because we validated the documents (via the DAD
specification at enable XML column time), we can be sure all documents have
the same “XML structure.”

136 XML for DB2 Information Integration

Now let us look at a few questions that we can answer using XML wrapper
functionality.

Example 1
List the shipping modes we used for shipments since 01/01/2000. The query and
result is shown in Example 5-20.

Example 5-20 Query against XML wrapper nickname

db2 "select distinct (shipmode)
from shipment_xwv
where shipdate > '01/01/2000'"

SHIPMODE
--
BIKE
ELEPHANT
FOOT
MULE

 4 record(s) selected.

Note that we used a view in the previous example. When querying parts of an
XML document within the same “hierarchy” level, it is easier to use the views,
since they give you direct access to this information.

Example 2
Find out the parts, customer, and order number for orders that were shipped by
bike (Example 5-21).

Example 5-21 Query against XML wrapper nickname -2

db2 "select o.customer_name, o.key as order_key, p.key as part_key
, p.quantity from part_xwt p , order_xwt o, shipment_xwt s

Note: We use the DIRECTORY_PATH option when creating the root-level
nickname. This way, we access the XML documents directly in the file system,
and not via the XML column. We can access XML documents through the
XML column by using the DOCUMENT COLUMN option. However, using the
DOCUMENT COLUMN option, you can only access a single XML document
at a time, whereas using by using the DIRECTORY_PATH option, you can
access all XML documents in the directory.

 Chapter 5. Working with XML documents stored in XML columns 137

where o.order_xwt_id = p.order_xwt_fid
and p.part_xwt_id = s.part_xwt_fid
and s.shipmode ='BIKE'"

CUSTOMER_NAME ORDER_KEY PART_KEY QUANTITY
------------------------------------ ----------- ----------- -----------
European Engines 2 128 58

 1 record(s) selected.

In the example above, we use the actual nicknames instead of the views. It may
complicate coding somewhat but it offers more flexibility.

5.4 Updating XML documents stored in an XML column
There are two ways to update an XML document that is residing in an XML
column:

� Using the SQL UPDATE statement
� Using the Update() UDF

5.4.1 Using the SQL UPDATE statement
You can use the UPDATE SQL statement to replace an XML document by
another one. For example to replace the existing document stored in the XML
column “order”, with a new XML document located on the file system, you can
use the following SQL statement:

update sales_tab_clob set order =
db2xml.XMLCLOBFromFile('c:\SG246994\orderbis.xml')

where invoice_num = ‘123456’;

When you replace an XML document using the SQL UPDATE statement, the
side tables are immediately updated to stay synchronized with the content of the
XML document.

5.4.2 Using the Update() UDF
You can use the Update() UDF that comes with XML Extender to replace the
XML document stored in an XML column, by only changing an element or
attribute value without needing a complete updated XML document in the file
system. The Update() function uses the location path to locate the attribute or
element whose value must be changed.

138 XML for DB2 Information Integration

For example, the following SQL statement changes the value of the Name
element of the XML document stored in the XML column that has an invoice
number of 999999:

update sales_tab_xclob set order =
db2xml.Update(order,’/Order/Customer/Name’ , ‘IBM’)

where invoice_num = ‘999999’;

Note that the Update() UDF also automatically updates the side tables if the
element or attribute that you are updating is part of a side table.

If the location path that you specify occurs more than once in a document, the
Update() UDF replaces all of the existing values with the value provided in the
Update() UDF (‘IBM’ in the example above). So the value of every element or
attribute that matches the location path is updated.
This is important when using the Update() UDF with XML documents with
multiple occurrences. The following statement:

update sales_tab set order =
db2xml.Update(order,'/Order/Part/Tax' , '9.000000e-2')

where invoice_num = '555555'

updates the tax value for all parts in the order with invoice number 555555. If
there are multiple <Part> elements in the order with a <Tax> element, all of them
will be replaced by ‘9.000000e-2’.

As with the Extractxxx() UDFs, the Update() UDF allows filtering on attributes,
not on elements. For more details, see “Predicates in the location path” on
page 131. If you can perform attribute filtering in the location path, only those that
qualify the attribute filter are updated. The following example updates the <Tax>
element in XML documents that correspond with invoice number 555555, but
only for those parts that have a black color.

db2 update sales_tab set order =
db2xml.Update(order

,'/Order/Part[@color="""black """]/Tax'
,'6.000000e-2')

where invoice_num ='555555'

However, if you cannot use an attribute filter to limit which attributes or elements
you want updated in an XML with multiple occurrences of an element, you should
not use the Update() UDF.

Another thing you should be aware of when using the Update() UDF is that it can
change the “look” of your XML document. This has to do with the fact that the
document is parsed, processed and put together again. Based on the output of
the XML parser, some parts of the original document are preserved, while others
are lost or changed. Usually the changes are not major, but it is definitely

 Chapter 5. Working with XML documents stored in XML columns 139

worthwhile checking out the details in section of the XML Extender
Administration and Programming manual that describes the Update() UDF.

5.5 Deleting XML documents stored in an XML column
You can use the SQL DELETE statement to delete the row containing an XML
document from an XML column. You can specify a WHERE clause to delete
specific documents.

Example 5-22 deletes all documents that have a value for <ExtendedPrice>
greater than 2500.00. As the <ExtendedPrice> element is part of a side table
(part_side_table), we can use the side table to quickly retrieve the corresponding
invoice numbers and use them to delete the corresponding rows containing the
XML column (order) rows from the table.

Example 5-22 Deleting XML documents from an XML column

DELETE from sales_tab_clob
WHERE invoice_num in (SELECT invoice_num

FROM part_side_tab
WHERE price >2500.00

)

The corresponding rows in the side tables are automatically deleted when the
XML document in the XML column is deleted (through the delete triggers). This is
also the case when you archive your XML documents elsewhere, and delete
them from their original location in the XML column.

5.6 Best practices
In this section, we give a few guidelines on how to retrieve information from XML
documents stored in an XML column.

5.6.1 Use side tables as much as possible
Using side tables is the fastest way to retrieve information that is stored in an
XML column. This is true for information that you pass back to the application
(columns in the SELECT clause), as well as when filtering out which information
to pass back (WHERE clause predicates). If the information exists in a side table,
you should always use it.

140 XML for DB2 Information Integration

Because it is very difficult to add or change side tables after the XML column is
populated with data, it is imperative to implement a good design of the side
tables from day one. Here are a few tips:

� Make sure that all elements and attributes that are frequently retrieved or
used to filter documents exist in a side table. Because maintaining the side
tables is done at insert, update and delete time, you do not want to create a
side table column for every element and attribute. It would increase the insert,
update, and delete time considerably.

� Whenever possible, put multiple, related fields in the same side table. This
minimizes the number of joins in queries. (Each side table is joined back to
the table with the XML column in the default view.)

� Be sure to create an index on the columns in the side table. XML Extender
does not automatically create an index on the side table column when the
side table is created.

We strongly recommend that you do not update the side tables directly, because
doing so can easily cause data inconsistency problems. You must update the
original XML documents stored in the XML columns. Those will trigger automatic
updates of the side tables.

5.6.2 Where to filter
When filtering documents, try to perform filtering using the following techniques,
preferably in the order presented here:

1. Filter using side table columns in the WHERE clause. It prevents DB2 from
having to parse the XML document, and as you normally have an index on
the columns in the side table, DB2 can use an access path that uses the
index for fast retrieval of the value and evaluation of the WHERE clause
predicate.

2. If the element or attribute that you want to filter on, is not available in a side
table, you can use the Extractxxx() UDF in a WHERE clause.

3. In addition, when it is possible to do additional filtering inside the UDF, by
specifying a simple predicate. It can be worth doing so, as it can avoid having
to parse the document multiple times. However, be aware that location path
filtering only applies to simple predicates, and is only allowed on attributes as
well. Another example is shown in Example 5-23.

Example 5-23 Exctractxxx() UDF filtering

select sales_person
from sales_tab
,table(db2xml.extractvarchars(order, '/Order/Part/Shipment/ShipMode')

 Chapter 5. Working with XML documents stored in XML columns 141

) x
,table(db2xml.extractvarchars(order, '/Order/Part/@color')

) y
where y.returnedvarchar = 'black'
and x.returnedvarchar = 'FOOT'

-- ---

select sales_person
from sales_tab

,table(db2xml.extractvarchars(
order
,'/Order/Part[@color="black "/Shipment/ShipMode'

)
) x

where x.returnedvarchar = 'FOOT'

Both queries return the same result. However, in the top query we parse the
order documents twice, whereas we only parse the documents once in the
bottom query, which should help performance considerably, especially when
dealing with many and/or long documents.

4. Use filtering in the location path in the SELECT clause only if the filtering
cannot be done in the WHERE clause. Again, if possible, it can be worthwhile
to do the filtering in the SELECT clause to avoid having to parse the
document multiple times.

5.6.3 Using location path expressions
Queries using a location path do not scale well because the XML document must
be parsed (and potentially parsed multiple times). Therefore, use location path
queries only in the following situations:

� Infrequently occurring ad hoc queries

� Ad hoc queries that extract information from single documents that have been
filtered out using predicates on side table columns in the WHERE clause

� Querying all documents in an XML column only if there are very few columns.

142 XML for DB2 Information Integration

Chapter 6. Shredding XML into
relational tables

In this chapter, we discuss how to decompose XML documents into DB2
relational tables. The following topics are covered:

� An overview of the shredding concepts using DB2 XML Extender and the
XML wrapper

� A detailed discussion on shredding with DB2 XML Extender, including:

� Planning and design
� Configuration and execution

� Alternatives to XML Extender to decompose XML documents, such as writing
your own code or using the XML wrapper for shredding

� A set of best practices

� A step-by-step example

6

© Copyright IBM Corp. 2004. All rights reserved. 143

6.1 Shredding overview
Before going into the shredding details, we start out with an overview of what is
meant by shredding XML documents, and when you want to use this technique.

6.1.1 What is shredding?
Shredding, or decomposing, is the process of breaking down an XML document
and storing the contents of the XML elements or attributes (the data contained in
your XML document) in new or existing database tables. The data is stored
untagged in the relational tables. Note that shredding is not restricted to just
relational tables. However, in this publication, we assume that we are shredding
into a relational database management system, DB2 in particular.

In order to transfer data between XML documents and a relational database, it is
necessary to map the schema of the XML document to the relational database
schema. To be able to do this, the structure of the document must exactly match
the structure expected by the mapping. Otherwise, prior to transferring data to
the database, the XML document has to be transformed (using XSLT
transformation for instance) to transform the original document into one that
matches the structure expected by the mapping.

In this chapter, we give a detailed description of how to decompose XML
documents into DB2 relational tables, using both the XML collection features of
XML Extender, as well as the XML wrapper provided by DB2 Information
Integrator (DB2 II).

6.1.2 When should you use shredding?
In addition to allowing storage of an entire XML document in a column of a
relational table using an XML column (see 4.4, “Storing intact XML documents
with XML Extender” on page 101for details), DB2 XML Extender also provides a
method for storing XML documents in relational tables, by shredding, or
decomposing them. This is called an XML collection.

An XML collection is a set of relational tables that contain data mapped to an
XML document. The XML collection method allows you to decompose XML
documents into DB2 tables.

You can also use XML collections when you need to generate XML documents
from a particular set of (normal) relational column data. If the source information
is composed of XML documents, you need to decompose (shred) the documents
first, and store them into regular relational tables. Then, you can generate “new”
XML documents based on that now relational information. For more information

144 XML for DB2 Information Integration

about composing XML documents from relational data, see Chapter 8,
“Publishing data as XML” .

Shredding into relational tables has an advantage when you need to update
individual attributes and/or elements on a regular basis. When the XML
documents are stored in XML columns, updating parts of the document involves
reading the entire document, parsing it, performing the update, re-assembling
the XML document, and writing the entire document back to the database. This
can be a time-consuming task when frequent updates have to be made,
especially on large documents.
If the XML document is shredded, you can use normal SQL UPDATE statements
to update individual elements and attributes that are now stored as columns of a
relational table. This will improve performance considerably.

You use a Document Access Definition file (DAD file) to map XML data to DB2
tables using the XML collection access and storage methods. The DAD file is an
important part of administering DB2 XML Extender. It specifies how the XML
document structure relates to your DB2 data that resides in relational tables. The
DAD file is discussed in more detail in 6.2, “Shredding using DB2 XML Extender”
on page 146.

We recommend using XML collections in the following situations:

� You have XML documents that map well to an existing relational model, and
the XML documents contain information that needs to be stored with existing
data in relational tables.

� You want to create different views of your relational data using different
mapping schemes.

� You have XML documents that come from other data sources. You are
interested in the data but not the tags, and want to store pure data in your
database. You want the flexibility to decide whether to store the data in
existing tables or in new tables.

� A small subset of your XML documents needs to be updated often, and
performance of those updates is critical. Since the data is stored in regular
DB2 columns after shredding, you can use normal SQL UPDATE statements
(therefore not using XML Extender functionality, since shredding itself does
not support updates) to directly update those columns that require changes.

� If you do not need to store the XML document intact, but still want to store all
data contained in the XML document, you can shred the XML document into
relational tables, and retrieve only those columns that are currently used by
applications using normal SQL SELECT operations.

� You have data in existing relational tables, you want to compose XML
documents (that adhere to a certain DTD), and you do not have SQL/XML at
your disposition because you are not yet using DB2 V8.

 Chapter 6. Shredding XML into relational tables 145

As an alternative to using XML collections, you can use the XML wrapper for
seamless access to XML documents, providing the user with a relational ‘view’ of
the XML document. XML wrapper in a way simulates the decomposition of the
XML document into relational tables. However, keep in mind that the XML
wrapper offers only SELECT functionality, and does not allow you to make any
changes (INSERT, UPDATE or DELETE) to your XML document data.

6.2 Shredding using DB2 XML Extender
We now discuss shredding using DB2 XML Extender in more detail.

6.2.1 Shredding — planning and design
As explained in Chapter 2, “XML services in DB2 and DB2 Information
Integrator” , at the time of enablement, an XML collection must be configured
with a DAD file. The purpose of the DAD file is to map relational tables and
columns to the XML data.

Two types of mapping between relational and XML are supported by DB2 XML
Extender’s DAD file:

� RDB node mapping. This is an object-relational mapping which can be used
to map information in a way that it specifies the relationship between tables
and columns in the relational model, and element and attribute values in the
XML documents. RDB node mapping allows both SELECT statements
(composition - publishing), and INSERT statements (shredding) to use the
same DAD document. An RDB node DAD document can be used both for
decomposition (going from an XML document to a set of relational tables), or
publishing (going from a set of relational tables to an XML document).

� SQL mapping. This is a template-based language in which the user specifies
an SQL SELECT statement and states where the results of the query should
be placed within the template (that defines the layout of the XML document).
SQL mapping can only be used to transfer data from relational tables to an
XML document, and cannot be used for decomposition. See 8.2.2,
“Publishing XML documents using a DAD file” on page 223 for more details
on using SQL mapping for publishing.

Since we are interested in storing (decomposing) XML documents in this
chapter, we use the bi-directional RDB node mapping to shred XML data. (As
suggested by the name ‘bi-directional’, RDB node mapping can also be used for
publishing XML data from relational. For more information, see 8.2.2, “Publishing
XML documents using a DAD file” on page 223.

146 XML for DB2 Information Integration

How to create a decomposition DAD file
The main difference between a DAD file used for composition (publishing) and
DAD file used for decomposition (shredding) is that the column type for each
attribute or text node that you intend to map must be specified. Column types are
defined by adding the “type” attribute to the column element, as shown in
Example 6-1.

Example 6-1 Column type specification for RDB node during shredding

<element_node name="firstname">
<text_node>

<RDB_node>
<table name="EMPLOYEE"/>
<column name="firstnme" type="VARCHAR(12)"/>

</RDB_node>
</text_node>

</element_node>

A sample DAD file
Example 6-4 on page 150 shows a DAD document using RDB node mapping,
specifying a mapping between the XML document shown in Example 6-2, and
the EMPLOYEE and EMP_ACT tables of DB2 SAMPLE database.

Example 6-2 An XML document with employee information

<?xml version="1.0" encoding="UTF-8"?>
<employees>

<employee id="EMP010" dept="X01" sex="M">
<firstname>Olivier</firstname>
<midnameinit>G</midnameinit>
<lastname>Guyennet</lastname>
<educlevel>15</educlevel>
<hiredate>2001-04-01</hiredate>
<job>TS</job>
<projactivity>

<project>XML001</project>
<activity>100</activity>
<time>1</time>
<startdate>2003-04-28</startdate>
<enddate>2003-06-13</enddate>

</projactivity>
</employee>

</employees>

 Chapter 6. Shredding XML into relational tables 147

Example 6-3 shows the DDL for the definition of the EMPLOYEE and EMP_ACT
table.

Example 6-3 EMPLOYEE and EMP_ACT table definitions

CREATE TABLE "EMPLOYEE" (
 "EMPNO" CHAR(6) NOT NULL ,
 "FIRSTNME" VARCHAR(12) NOT NULL ,
 "MIDINIT" CHAR(1) NOT NULL ,
 "LASTNAME" VARCHAR(15) NOT NULL ,
 "WORKDEPT" CHAR(3) ,
 "PHONENO" CHAR(4) ,
 "HIREDATE" DATE ,
 "JOB" CHAR(8) ,
 "EDLEVEL" SMALLINT NOT NULL ,
 "SEX" CHAR(1) ,
 "BIRTHDATE" DATE ,
 "SALARY" DECIMAL(9,2) ,
 "BONUS" DECIMAL(9,2) ,
 "COMM" DECIMAL(9,2))
 IN "USERSPACE1" ;

CREATE TABLE "EMP_ACT" (
 "EMPNO" CHAR(6) NOT NULL ,
 "PROJNO" CHAR(6) NOT NULL ,
 "ACTNO" SMALLINT NOT NULL ,
 "EMPTIME" DECIMAL(5,2) ,
 "EMSTDATE" DATE ,
 "EMENDATE" DATE)
 IN "USERSPACE1" ;

The mapping between the XML document shown above, and the EMPLOYEE
and the EMP_ACT tables in the SAMPLE database of DB2, that is building a
DAD file using RDB node mapping, can be done as follows:

1. A DAD file is also an XML document. It needs a definition for a header, and a
root element. The <DAD> root element contains all the other elements.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\PDB2\SQLLIB\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

2. If you intend to validate your XML document against a DTD in the DTD
repository table, set the <validation> element to “YES”.

<validation>YES</validation>

148 XML for DB2 Information Integration

In our example, we are not validating, so we insert the following code:

<validation>NO</validation>

3. Next, you use the <Xcollection> and </Xcollection> tags to indicate that the
storage (and access) method is an XML collection.

<Xcollection>...</Xcollection>

4. When using the RDB_node mapping, you need to use the RDB_node
element for defining the element_node, attribute_node and text_node of the
XML document.

Now, we discuss the RDB_node element, and its use in element, attribute and
text nodes in more detail. Note that the spelling for RDB_node is case sensitive.

Definition of the RDB_node for the top element
The top element_node in the DAD file represents the root element of the XML
document. When specifying an RDB_node for the top element:

� Specify all tables that are associated with the XML document. For the
mapping in our example, we must specify the two tables involved in the
RDB_node of the <employees> element in Example 6-2 on page 147, which is
the top element node.

� Also specify the join condition(s) between the tables in the top element node
in a <condition> tag.

<element_node name="employees">
<RDB_node>

<table name="EMPLOYEE"/>
<table name="EMP_ACT"/>
<condition>

EMPLOYEE.empno=EMP_ACT.empno
</condition>

</RDB_node>

Definition of the RDB_node for an attribute_node
You also need to define an RDB_node for each attribute_node, to specify the
table and column that map the XML data in the attribute_node. In our example,
the table and column name for the attribute “id” of the employee element are
table EMPLOYEE and column EMPNO. This is reflected in the DAD file as
follows:

<element_node name="employee">
<attribute_node name="id">

<RDB_node>
<table name="EMPLOYEE"/>
<column name="empno" type="CHAR(6)"/>

</RDB_node>
</attribute_node>

 Chapter 6. Shredding XML into relational tables 149

Definition of the RDB_node for a text_node
You need to define an RDB_node for each text_node to specify the mapping
between the table and column, and the data in the XML document. In our
example, the text_node for the element <firstname> is mapped to column
firstnme of table EMPLOYEE.

<element_node name="firstname">
<text_node>

<RDB_node>
<table name="EMPLOYEE"/>
<column name="firstnme" type="VARCHAR(12)"/>

</RDB_node>
</text_node>

</element_node>

Let us now look at the complete DAD document used for mapping of the XML
document shown in Example 6-2 on page 147 to the EMP and EMP_ACT tables.

Example 6-4 The DAD file for employee XML document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\DB2\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="employees">
<RDB_node>

<table name="EMPLOYEE"/>
<table name="EMP_ACT"/>
<condition>

EMPLOYEE.empno=EMP_ACT.empno
</condition>

</RDB_node>
<element_node name="employee">

<attribute_node name="id">
<RDB_node>

<table name="EMPLOYEE"/>
<column name="empno" type="CHAR(6)"/>

</RDB_node>
</attribute_node>
<attribute_node name="dept">

<RDB_node>
<table name="EMPLOYEE"/>
<column name="workdept" type="CHAR(3)"/>

</RDB_node>

150 XML for DB2 Information Integration

</attribute_node>
<attribute_node name="sex">

<RDB_node>
<table name="EMPLOYEE"/>
<column name="sex" type="CHAR(1)"/>

</RDB_node>
</attribute_node>
<element_node name="firstname">

<text_node>
<RDB_node>

<table name="EMPLOYEE"/>
<column name="firstnme" type="VARCHAR(12)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="midnameinit">

<text_node>
<RDB_node>

<table name="EMPLOYEE"/>
<column name="midinit" type="CHAR(1)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="lastname">

<text_node>
<RDB_node>

<table name="EMPLOYEE"/>
<column name="lastname" type="VARCHAR(15)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="educlevel">

<text_node>
<RDB_node>

<table name="EMPLOYEE"/>
<column name="edlevel" type="SMALLINT"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="hiredate">

<text_node>
<RDB_node>

<table name="EMPLOYEE"/>
<column name="hiredate" type="DATE"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="job">

<text_node>

 Chapter 6. Shredding XML into relational tables 151

<RDB_node>
<table name="EMPLOYEE"/>
<column name="job" type="CHAR(8)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="projactivity" multi_occurrence="YES">

<element_node name="project">
<text_node>

<RDB_node>
<table name="EMP_ACT" />
<column name="projno" type="CHAR(6)" />

</RDB_node>
</text_node>

</element_node>
<element_node name="activity">

<text_node>
<RDB_node>

<table name="EMP_ACT" />
<column name="actno" type="SMALLINT" />

</RDB_node>
</text_node>

</element_node>
<element_node name="time">

<text_node>
<RDB_node>

<table name="EMP_ACT" />
<column name="emptime" type="DECIMAL(5,2)" />

</RDB_node>
</text_node>

</element_node>
<element_node name="startdate">

<text_node>
<RDB_node>

<table name="EMP_ACT" />
<column name="emstdate" type="DATE" />

</RDB_node>
</text_node>

</element_node>
<element_node name="enddate">

<text_node>
<RDB_node>

<table name="EMP_ACT" />
<column name="emendate" type="DATE" />

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>

152 XML for DB2 Information Integration

</element_node>
</root_node>

</Xcollection>
</DAD>

6.2.2 Planning and design: hints and tips
In this section, we describe a set of recommendations and things that are worth
knowing when setting up your shredding environment.

XML document design
If you have control over the structure of the XML document, we provide some
design guidelines for XML documents, in case they need to be shredded by DB2
XML Extender.

Mixed content
An element can have four types of content:

� Empty content. An element with empty content is an element that carries no
information such as the element below:

<data /> or <data></data>

� Simple content. An element has simple content when it carries only text (also
known as text content). A simple content element can look like this:

<data>Hello Universe</data>

� Element content. An element is said to have element content when it contains
other elements. It is also said to be a parent element.

<data>
<child1>Hello</child1>
<child2>World</child2>

</data>

 Chapter 6. Shredding XML into relational tables 153

� Mixed content. An element with mixed content is an element that contains
both elements and text.

<data>My flowers are Beautiful.
<child1>Hello</child1>
<child2>World</child2>

</data>

DB2 XML Extender does not support shredding of elements with mixed content.
Suppose you have an XML document that you want to decompose and that XML
document has elements with mixed contents. In order to be able to shred it into
tables, you would have to go through a transformation of your XML document in
order to change the mixed content elements to either simple content elements, or
elements content elements. This is illustrated in Figure 6-1 below, where the
element <chapter> has an attribute number, and contains both an element
<title> and text “or not to be ...“ . After transformation, the text part is moved
under a (new) element <text>.

Figure 6-1 From mixed content element to element content element

Before transformation, the mapping would not have been supported because of
the element <chapter> and its mixed content. After transformation, we have
simple-content elements, element-content elements (elements that contain other
elements) but no more mixed-content element, which allows us to create a
mapping and decompose the document into relational tables.

Note, however, that transformation is not the solution for all mixed-content
elements. As text can appear anywhere when dealing with mixed content, it is
not possible to write a DAD for the case that multiple <text> elements can appear
anywhere among children of an element node.

<xmlbook>
...
<chapter number="1">

<title>To be...</title>
or not to be ...

</chapter>
...

</xmlbook>

<xmlbook>
...
<chapter number="1">

<title>To be...</title>
<text>or not to be ...<text>

</chapter>
...

</xmlbook>

154 XML for DB2 Information Integration

You can find more details on how to transform your XML document in 9.1,
“Transformation” on page 248.

Decomposition with non-unique attribute and element names
In XML documents, different attributes and elements can have identical names.
They appear with the same name but in different contexts. In Example 6-5, the
ID attribute is used multiple times within the same XML document, but in a
different context, with a different meaning. It occurs for the Order, Customer and
Salesperson tag. The same is true for the Name element. It occurs twice; once
under the Customer element and once under the Salesperson element.

This type of non-uniqueness in attribute or element names was not supported
with XML Extender in the past. However with FP3 of UDB V8, or FP11 for DB2
UDB V7, or later, this functionality is supported.

You can now decompose documents that contain non-unique attributes and/or
non-unique element names that map to different columns (of the same or
different tables) without receiving the DXXQ045E error. Example 6-5 shows an
XML document with non-unique attributes and non-unique element names.

Example 6-5 XML document with non-unique names

<Order ID="0001-6789">
 <!-- Note: attribute name ID is non-unique -->
 <Customer ID = "1111">
 <Name>John Smith</Name>
 </Customer>
 <!-- Note: element name Name is non_unique -->
 <Salesperson ID = "1234">
 <Name>Jane Doe</Name>
 </Salesperson>
 <OrderDetail>
 <ItemNo>xxxx-xxxx</ItemNo>
 <Quantity>2</Quantity>
 <UnitPrice>12.50</UnitPrice>
 </OrderDetail>
 <OrderDetail>
 <ItemNo>yyyy-yyyy</ItemNo>
 <Quantity>4</Quantity>
 <UnitPrice>24.99</UnitPrice>
 </OrderDetail>
</Order>

The accompanying DAD, which maps the duplicate elements/attributes to
different columns, looks like Example 6-6 on page 156:

 Chapter 6. Shredding XML into relational tables 155

Example 6-6 DAD mapping for non-unique names

<element_node name="Order">
 <RDB_node>
 <table name="order_tab" key="order_id"/>
 <table name="detail_tab"/>
 <condition>
 order_tab.order_id = detail_tab.order_id
 </condition>
 </RDB_node>

 <!-- attribute ID duplicated below, but mapped to a different column -->
 <attribute_node name="ID">
 <RDB_node>
 <table name="order_tab" />
 <column name="order_id" type="char(9)"/>
 </RDB_node>
 </attribute_node>

 <element_node name="Customer">
 <!-- attribute ID duplicate, but mapped to a different column -->
 <attribute_node name="ID">
 <RDB_node>
 <table name="order_tab" />
 <column name="cust_id" type="integer"/>
 </RDB_node>
 </attribute_node>

 <!-- element name duplicate, but mapped to a different column -->
 <element_node name="Name">
 <text_node>
 <RDB_node>
 <table name="order_tab" />
 <column name="cust_name" type="char(20)" />
 </RDB_node>
 </text_node>
 </element_node>
 </element_node>

 <element_node name="Salesperson">
 <!-- attribute ID duplicate, but mapped to a different column -->
 <attribute_node name="ID">
 <RDB_node>
 <RDB_node>
 <table name="order_tab" />
 <column name="salesp_id" type="integer"/>
 </RDB_node>
 </attribute_node>

156 XML for DB2 Information Integration

 <!-- element name duplicate, but mapped to a different column -->
 <element_node name="Name">
 <text_node>
 <RDB_node>
 <table name="order_tab" />
 <column name="salesp_name" type="char(20)" />
 </RDB_node>
 </text_node>
 </element_node>
 </element_node>

 <element_node name="OrderDetail" multi_occurrence="YES">
 <element_node name="ItemNo">
 <text_node>
 <RDB_node>
 <table name="detail_tab" />
 <column name="itemno" type="char(9)"/>
 </RDB_node>
 </text_node>
 </element_node>
 <element_node name="Quantity">
 <text_node>
 <RDB_node>
 <table name="detail_tab" />
 <column name="quantity" type="integer"/>
 </RDB_node>
 </text_node>
 </element_node>
 <element_node name="UnitPrice">
 <text_node>
 <RDB_node>detail_tab" />
 <table name="detail_tab" />
 <column name="unit_price" type="decimal(7,2)"/>
 </RDB_node>
 </text_node>
 </element_node>
 </element_node>
</element_node>

The contents of the tables look like Example 6-7 on page 158 after the document
above is decomposed:

 Chapter 6. Shredding XML into relational tables 157

Example 6-7 Table content after decomposition

ORDER _TAB:

ORDER_ID CUST_ID CUST_NAME SALESP_ID SALESP_NAME
0001-6789 1111 John Smith 1234 Jane Doe

DETAIL_TAB:

ORDER_ID ITEMNO QUANTITY UNIT_PRICE
0001-6789 xxxx-xxxx 2 12.50
0001-6789 yyyy-yyyy 4 24.99

Recursion
If the recursion has a fixed length (that is, you know how many levels deep the
recursion is), it is possible to write a DAD file for the mapping of your XML
documents. For instance, consider an XML document that you want to
decompose into a single table. For example, an XML document that has
manager/employees information, where an employee can be manager of one or
more employees. You have several ways to write an XML document to represent
such a hierarchy, for example by using a structure with an element <employees>
and empty-content subelements <employee> with attributes.

<employees>
<employee empid=”0010” name="Bart STEEGMANS"/>
<employee empid=”0060” name=”Irving STERN” mgrid=”0010”/>
<employee empid=”0220” name=”Jennifer LUTZ” mgrid=”0060”/>
<employee empid=”0170” name=”Masatoshi YOSHIMURA” mgrid=”0060”/>

</employees>

It is also possible that the XML document uses a recursive way to represent this
information. In this case, the element <employee> has attributes and
element-content, the <manages> element which itself has the very same
<employee> element with attributes.

<?xml version="1.0" encoding="UTF-8"?>
<xml>

<employee name="Bart STEEGMANS" id="0010">
<manages>

<employee name="Irving STERN" id="0060">
<manages>

Note: Multiple element/attribute mappings to the same column of the same
table are not allowed regardless of whether the element/attribute names are
different or the same.

158 XML for DB2 Information Integration

<employee name="Jennifer LUTZ" id="0220"/>
<employee name=”Masatoshi YOSHIMURA” id=”0170”/>

</manages>
</employee>

</manages>
</employee>

</xml>

Example 6-8 shows a DAD file to handle this type of XML document for
shredding purposes.

Example 6-8 An XML document and DAD file with recursion

<root_node>
<element_node name="xml">
<RDB_node>

<table name="employee" key="id"/>
<table name="manager_1line" key="id"/> <!-- create alias manager_1line for employee -->
<table name="manager_2line" key="id"/> <!-- create alias manager_2line for employee -->
<condition>

manager_1line.id=employee.managerid AND
manager_2line.id=manager_1line.managerid

</condition>
</RDB_node>
<element_node name="employee" multi_occurrence="NO">

<attribute_node name="name">
<RDB_node>

<table name="manager_2line"/>
<column name="name" type="varchar(50)"/>

</RDB_node>
</attribute_node>
<attribute_node name="id">

<RDB_node>
<table name="manager_2line"/>
<column name="id" type="char(10)"/>

</RDB_node>
</attribute_node>

<element_node name="manages" multi_occurrence="NO">
<element_node name="employee">

<attribute_node name="name">
<RDB_node>

<table name="manager_1line"/>
<column name="name" type="varchar(50)"/>

</RDB_node>
</attribute_node>
<attribute_node name="id">

<RDB_node>

 Chapter 6. Shredding XML into relational tables 159

<table name="manager_1line"/>
<column name="id" type="char(10)"/>

</RDB_node>
</attribute_node>
<element_node name="manages" multi_occurrence="NO">

<element_node name="employee">
<attribute_node name="name">

<RDB_node>
<table name="employee"/>
<column name="name" type="varchar(50)"/>

</RDB_node>
</attribute_node>
<attribute_node name="id">

<RDB_node>
<table name="employee"/>
<column name="id" type="char(10)"/>

</RDB_node>
</attribute_node>

</element_node> <!-- employee -->
</element_node> <!-- manages -->

</element_node> <!-- employee -->
</element_node> <!-- manages -->

</element_node> <!-- employee -->
</element_node> <!-- xml -->

</root_node>

Mapping to DB2 relational tables
In the following section, we discuss some considerations when shredding XML
documents into relational tables using DB2 XML Extender.

Important: If fixed length recursion mapping is to be handled, remember that
the shredding of "different" elements with the same name into different
columns is supported by the XML Extender with FP3 of DB2 UDB V8 and
FP11 for DB2 UDB V7.

Note: Unlimited recursion is not supported by DB2 XML Extender for
decomposition of XML documents as it cannot be represented by a DAD file.

Also note that a DAD that is written to shred a document with recursion, when
used to recompose the document, may produce a document with a slightly
different structure.

160 XML for DB2 Information Integration

UPDATE considerations of shredded data (only INSERT)
Suppose you receive an XML document with sales and customer information to
be shredded in to a CUSTOMER and SALES table. If there is no existing record
for this customer (new customer), you perform an INSERT on both CUSTOMER
and SALES tables, while shredding the XML document. However, if you already
have a record for that customer, but you want to update it with a new address for
example, you would expect the shredding process to replace the address
information (street, city, postcode, ...) in the CUSTOMER table.

The DB2 XML Extender shredding component currently does not support update
operations. Shredding always results in inserting a new record in your
CUSTOMER table, which will result in an error if you have a primary key
specified, for example on customer ID.

To avoid such problem, you can:

� Transform your XML document prior to performing the actual shredding, so
that you split customer information and sales information into two XML
documents. You can then shred your sales information, and check in the XML
document whether the customer information exists/needs to be updated/is
new.

� Use a staging table in DB2 where you shred your XML documents. After
populating the staging table, you can update the CUSTOMER table, and
INSERT sales information into SALES table, using triggers, or some batch
process.

� Write your own application for processing customer information from the XML
document, and shred the XML document in your SALES table by mapping
only the sales information that you require (see “Decomposing parts of an
XML document” on page 169 later in this chapter).

Decomposition of one element or attribute value
� Into different columns of one table

In an XML document that is to be decomposed, attribute values or element
content can populate at most only one column of a table. To have the same
data inserted into two columns, the document must have two elements or
attributes that contain the same data.

Figure 6-2 on page 162 shows the decomposition of a very simple XML
document into a relational table. One column of data can be generated for the
attribute <a>, and elements , <c> and <d>.

 Chapter 6. Shredding XML into relational tables 161

Figure 6-2 A simple example of decomposition into a relational table

� Into multiple tables

The only case where an attribute value or element content can be used to
populate more than 1 column of different tables is if the XML data is destined
for a column that is part of a primary key-foreign key relationship. This is
expressed via join conditions in the DAD file.

To illustrate this, we modify the XML document of the previous example. We
want to shred the XML data into two tables, Table1 and Table2 like in
Figure 6-3.

Figure 6-3 A multi-tables decomposition

To perform such decomposition requires only one <RDB_node> mapping for the
XML element or attribute involved in the join condition defined in the <RDB_node>
of the top element in the DAD file. In our case, the attribute a is used in the join
condition between Table1 and Table2.

<xml>
<data a="11111">

22222
<c>33333</c>
<d>44444</d>

</data>
</xml>

COL_A COL_B COL_C COL_D

11111 22222 33333 44444

Table 1

<xml>
<data a="11111">

22222
<extra>

<c>33333</c>
<d>44444</d>

</extra>
</data>

</xml>

Table 1

Table 2

COL_A COL_B

11111 22222

COL_A COL_C COL_D

11111 33333 44444

162 XML for DB2 Information Integration

The join condition we use for the decomposition is:

<condition> Table1.COL_A = Table2.COL_A </condition>

The column that is unmapped is automatically populated during decomposition
because of the join condition specification. Note that the root element of the
subtree that contains all the mappings to the child table (table that contains the
unmapped column— Table 2) must be an element that is mapped to the parent
table (Table 1).

The complete DAD file that can be used for the mapping shown in Figure 6-3 on
page 162, is provided in Example 6-9 below.

Example 6-9 The DAD file for our multi-tables decomposition example

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\PDB2\SQLLIB\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="xml">
<RDB_node>

<table name="Table1"/>
<table name="Table2"/>
<condition>

Table1.COL_A=Table2.COL_A 1
</condition>

</RDB_node>
<element_node name="data">

<attribute_node name="a">
<RDB_node>

<table name="Table1"/>
<column name="COL_A" type="INTEGER"/> 2

</RDB_node>
</attribute_node>
<element_node name="b">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_B" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="extra" multi_occurrence=”YES”> 3

<element_node name="c">

 Chapter 6. Shredding XML into relational tables 163

<text_node>
<RDB_node>

<table name="Table2"/>
<column name="COL_C" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="d">

<text_node>
<RDB_node>

<table name="Table2"/>
<column name="COL_D" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>
</element_node>

</root_node>
</Xcollection>

</DAD>

The attribute a is specified only for Table1 on line 2, but Table2 will be
automatically populated because of the join condition we defined on line 1, for
COL_A.
In the next paragraph, we discuss the multi_occurrence attribute that is
specified in line annotated 3 of the DAD file).

Multi occurrence with a wrapper element
A wrapper element in a DAD file is an element that:

� Has no attributes or text element
� Has one or more child elements (with or without attributes) that map to the

same table.

In the following case, the multi_occurrence setting is mandatory:

Suppose we have the XML document shown in Example 6-10 on page 165,
where all elements are mapping the same table Table1, and element <c> and <d>
and grouped under the element <data> (<c> and <d> are sibling).

164 XML for DB2 Information Integration

Example 6-10 An XML document with 2 pairs of sibling elements

<xml>
<a>11111
22222
<data>

<c>33333</c>
<d>44444</d>

</data>
</xml>

We use the RDB_node DAD file shown in Example 6-11 for the mapping of our
four elements to the columns in Table1.

Example 6-11 RDB_NODE DAD file without multi_occurence=yes

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\PDB2\SQLLIB\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="xml"> *
<RDB_node>

<table name="Table1"/>
</RDB_node>
<element_node name="a">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_A" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="b">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_B" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="data" >

<element_node name="c">

 Chapter 6. Shredding XML into relational tables 165

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_C" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="d">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_D" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>
</root_node>

</Xcollection>
</DAD>

When shredding using the DAD file above, the XML document populates Table1
with several incomplete rows, as illustrated in Figure 6-4.

Figure 6-4 Shredded without multi_ocurrence setting

When we insert a multi_occurrence attribute in the * line in Example 6-11 on
page 165,

<element_node name="xml" multi_occurrence="YES">

this setting will ensure that element nodes that map to the same table populate
the same row. The table populated with the updated DAD file now looks like
Figure 6-5 on page 167.

COL_A COL_B COL_C COL_D

11111
-
-
-

-
22222

-
-

-
-

33333
-

-
-
-

44444

Table 1

166 XML for DB2 Information Integration

Figure 6-5 Shredded with multi_occurrence=”YES”

We illustrate the usage of multi_occurrence with a another example. We want to
decompose the same XML document as described in Example 6-10 on
page 165, but this time, we map elements <c> and <d> to a second table Table2.
COL_A is used as foreign key by Table2. As a basis, we use the DAD file from the
example above, and modify it as follows:

� Specify multi_occurrence=“YES“ in element_node <xml> and <data>. This will
ensure that both tables are populated with one single row.

� Add Table2 to the root <RDB_node>.
� Add a join condition Table1.COL_A=Table2.COL_A to the root <RDB_node>.
� Map elements <c> and <d> to Table2. (Because COL_A of Table2 is part of the

join condition, it does not need to be mapped. This column will be populated
automatically during decomposition.)

The populated tables Table1 and Table2 are illustrated in Figure 6-6.

Figure 6-6 Decomposition into multiple tables

The complete DAD file to perform such a decomposition is shown in
Example 6-12 on page 168.

COL_A COL_B COL_C COL_D

11111 22222 33333 44444

Table 1

<xml>
<a>11111
22222
<data>

<c>33333</c>
<d>44444</d>

</data>
</xml>

Table 1

Table 2

COL_A COL_B

11111 22222

COL_A COL_C COL_D

11111 33333 44444

 Chapter 6. Shredding XML into relational tables 167

Example 6-12 DAD for decomposition into multiple tables

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\DB2\SQLLIB\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="xml" multi_occurrence="YES">
<RDB_node>

<table name="Table1"/>
<table name="Table2"/>
<condition>Table1.COL_A=Table2.COL_A</condition>

</RDB_node>
<element_node name="a">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_A" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="b">

<text_node>
<RDB_node>

<table name="Table1"/>
<column name="COL_B" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="data" multi_occurrence="YES">

<element_node name="c">
<text_node>

<RDB_node>
<table name="Table2"/>
<column name="COL_C" type="INTEGER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="d">

<text_node>
<RDB_node>

<table name="Table2"/>
<column name="COL_D" type="INTEGER"/>

</RDB_node>
</text_node>

168 XML for DB2 Information Integration

</element_node>
</element_node>

</element_node>
</root_node>

</Xcollection>
</DAD>

Decomposing parts of an XML document
DB2 XML Extender supports the existence of unmapped elements in a DAD file.
This means that if you have a set of elements or attributes in your XML
document, but only half of them are defined in the mapping of your tables to be
populated, XML Extender does not generate any error. It just ignores the
unmapped elements and attributes.

The opposite is also possible. You do not have to specify all the columns of the
tables that you shred into, in the DAD file. However, this implies that the column
in the populated relational table, is defined without the NOT NULL option. If the
column is defined with the NOT NULL option, the element must be specified in
the XML document, as well as in the DAD file.

For example, we have the following XML document shown in Example 6-13:

Example 6-13 Sample XML document for NOT NULL column shredding

<xml>
<employee id="000270">

<firstname>MARIA</firstname>
<lastname>PEREZ</lastname>
<workdept>D21</workdept>
<hiredate>1980-09-30</hiredate>
<job>CLERK</job>

</employee>
</xml>

We want to map only the attribute id and the elements <firstname> and
<lastname>, ignoring the rest of the document. The consequent DAD file is
shown in Example 6-14 on page 170.

 Chapter 6. Shredding XML into relational tables 169

Example 6-14 DAD for partial mapping

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\DB2\SQLLIB\SAMPLES\DB2XML\DTD\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="xml">
<RDB_node>

<table name="my_EMPLOYEE"/>
</RDB_node>
<element_node name="employee">

<attribute_node name="id">
<RDB_node>

<table name="my_EMPLOYEE"/>
<column name="empid" type="CHAR(6)"/>

</RDB_node>
</attribute_node>
<element_node name="firstname">

<text_node>
<RDB_node>

<table name="my_EMPLOYEE"/>
<column name="firstname" type="CHAR(15)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="lastname">

<text_node>
<RDB_node>

<table name="Table2"/>
<column name="lastname" type="CHAR(20)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>
</root_node>

</Xcollection>
</DAD>

Decomposing the XML document using the DAD above, results in populating the
table my_EMPLOYEE as illustrated in Figure 6-7 on page 171. Only the

170 XML for DB2 Information Integration

elements defined in the DAD file are decomposed, and no error is generated by
the XML Extender.

Figure 6-7 Result of partial DAD mapping

About OrderBy
The orderby attribute can be specified in the root element RDB_node, as an
attribute of a table (table definition). It allows to define the name of the columns
that determine the sequence order of multi-occurring text or attribute values
when generating (composing, publishing) XML documents.

Whether or not the orderby attribute is set in the DAD file has no impact on the
shredding activity, as XML Extender is ignoring it at decomposition time.

Features to consider when shredding
The following sections describes another set of shredding considerations.

Validation against XML Schema
XML Schema is an XML-based alternative to a DTD, to define the specifications
of the content of XML documents. The XML Schema uses the XML format to
define the element and attribute names within an XML document, and defines
the type of content the elements and attributes are allowed to contain.

DTDs are easier to code and validate than XML Schemas. However, there are
several advantages in using an XML Schema, which are listed below:

� XML Schemas are valid XML documents that can be processed by tools such
as the XSD Editor in WebSphere Studio Application Developer (WSAD).

� XML Schemas are more powerful than DTDs. Everything that can be defined
by DTD can also be defined by XML Schemas, but not vice versa.

� XML Schemas support a set of data types, similar to the ones used in most
common programming languages, and provide the ability to create additional
types. You can constrain the document content to the appropriate type. For
example, you can replicate the properties of fields found in DB2.

empid first name last name work
dept hiredate job

000270 MARIA PEREZ - - -

my_EMPLOYEE

 Chapter 6. Shredding XML into relational tables 171

� XML Schemas support regular expressions to set constraints on character
data, which is not possible if you use a DTD.

� XML Schemas provide better support for XML namespaces, which enable
you to validate documents that use multiple namespaces, and to reuse
constructs from schemas already defined in different namespaces.

� XML Schemas provide better support for modularity and reuse with include
and import elements.

� XML Schemas support inheritance for element, attribute and data type
definitions.

Example 6-15 shows a simple XML document containing employee information
such as employee-id, name, phone numbers, working department and position.

Example 6-15 Simple XML document

<xmldata>
<employee empid=”8310”>

<name>
<firstname>Olivier</firstname>
<lastname>Guyennet</lastname>

</name>
<phone type=”Office”>555-12345</phone>
<phone type=”Portable”>555-56789</phone>
<job dept=”ITSO”>Clerk</job>

</employee>
</xmldata>

The DTD document in Example 6-16 allows validation of the XML document
above.

Example 6-16 A simple DTD

<!ELEMENT xmldata (employee+)>
<!ELEMENT employee (name,phone+,(job|position)?)>1

<!ATTLIST employee empid CDATA #REQUIRED>
<!ELEMENT name (firstname,lastname)>

<!ELEMENT firstname CDATA #REQUIRED>
<!ELEMENT lastname CDATA #REQUIRED>

<!ELEMENT phone CDATA #REQUIRED>
<!ATTLIST phone type CDATA #IMPLIES>

<!ELEMENT job CDATA #REQUIRED>
<!ATTLIST job dept CDATA #REQUIRED>

<!ELEMENT position CDATA #REQUIRED>
<!ATTLIST position experience CDATA #REQUIRED>

172 XML for DB2 Information Integration

In the DTD above, some key information is defined in line 1 :

<!ELEMENT employee (name,phone+,(job|position)?)>

The key information is:

� The ’+’ symbol after phone, indicating that the child element <phone> must
appear one or more time inside the <employee> element.

� (job | position) declares that the <employee> element must contain either a
<job> or a <position> child element.

� The question mark (?) after the alternative statement (job|position)
specifies that one of the two eventual child elements can occur zero or one
time inside the <employee> element.

The XML Schema for the same XML document is shown in Example 6-17, which
is easier to understand than the equivalent DTD.

Example 6-17 Simple XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- definition of simple elements -->
<xs:element name="firstname" type="xs:string"/>
<xs:element name="lastname" type="xs:string"/>

<!-- definition of attributes -->
<xs:attribute name="empid" type="xs:string"/>
<xs:attribute name="type" type="xs:string"/>
<xs:attribute name="dept" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="name">

<xs:complexType>
<xs:sequence>

<xs:element ref="firstname"/>
<xs:element ref="lastname"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="phone">

<xs:complexType>
<xs:SimpleContent>

<xs:extension base="xs:string">
<xs:attribute ref="type"/>

 Chapter 6. Shredding XML into relational tables 173

</xs:extension>
</xs:SimpleContent>

</xs:complexType>
</xs:element>
<xs:element name="job">

<xs:complexType>
<xs:SimpleContent>

<xs:extension base="xs:string">
<xs:attribute ref="dept"/>

</xs:extension>
</xs:SimpleContent>

</xs:complexType>
</xs:element>

<xs:element name="employee">
<xs:complexType>

<xs:sequence>
<xs:element ref="name"/>
<xs:element ref="phone" minoccurs="1" maxOccurs="unbounded"/>
<xs:element ref="job" minOccurs="0"/>

</xs:sequence>
<xs:attribute ref="empid" use="required"/>

</xs:complexType>
</xs:element>

<xs:element name="xmldata">
<xs:complexType>

<xs:sequence>
<xs:element ref="employee" maxOccurs="1"/>

</xs:sequence>
</xs:complexType>

</xs:element>

</xs:schema>

DB2 XML Extender can use the SVALIDATE() UDF to validate XML documents
against an XML Schema. See 9.2.1, “Validating XML documents using UDFs” on
page 259 for more details on DB2 XML Extender’s validation capabilities.

Commit control
When running XML Extender UDFs, be aware of the following commitment
control guidelines:

� XML Extender assumes that the application handles COMMIT and
ROLLBACK, and so, the stored procedures never perform these actions.

� It is recommended that application design include all XML Extender UDF,
XML Extender stored procedures, and any INSERT, UPDATE, or DELETE

174 XML for DB2 Information Integration

which use XML Extender triggers, within one commitment control definition.
This commit definition should be completed by your application with the
appropriate COMMIT or ROLLBACK.

� Because XML Extender UDFs require isolation level CS (Cursor Stability), it
is required that the application explicitly performs a COMMIT before
performing another SQL action on the same row that has already been
updated by an XML Extender UDF or another SQL query.

6.2.3 Shredding: configuration and execution
The following sections address considerations about the configuration and
execution of shredding.

Enabling an XML collection
When you enable an XML collection, DB2 XML Extender performs the following
tasks:

� It creates an XML collection usage entry in the XML_USAGE table.

� It creates the tables to store the XML collection, specified in the DAD file, in
case the tables do not already exist in the database. However, to have better
control over where the tables are created (for example in which table space),
and to avoid potential problems with complex RI structures for example, it is
best to create the tables manually, before you enable the collection.

� When you enable an XML collection, the DAD file is parsed to map the tables
and columns related to the XML document and this information is stored in
the XML_USAGE table.

To enable an XML collection from the DB2 command window, issue the following
command:

dxxadm enable_collection dbName collection DAD_file -t tablespace

In this command:

� dbName is the name of the database.

� collection is the name of the XML collection. This value is used as a
parameter for the stored procedures that can operate on an XML collection.

� DAD_file is the name of the file that contains the Document Access Definition
(DAD).

� Tablespace specifies an existing table space that is to be used to create the
new DB2 tables that are created for decomposition. If not specified, the
default table space will be used.

 Chapter 6. Shredding XML into relational tables 175

Note that the database itself has to be enabled for XML before you can enable a
collection.

Executing XML Extender decomposition stored procedures
The decomposition stored procedures provided by XML Extender are
dxxInsertXML() and dxxShredXML(). They are used to break down or shred
incoming XML documents, and to store data in relational tables.

� The dxxShredXML() stored procedure takes a DAD file as input. It does not
require an enabled XML collection.

� The dxxInsertXML() stored procedure takes an enabled XML collection name
as input. It therefore obviously requires you to enable the collection first.

dxxShredXML()
This stored procedure can be used by applications that do occasional updates or
applications that do not want the overhead of administering the XML data. The
stored procedure dxxShredXML() does not required an enabled collection. It
uses a DAD file as input parameter instead.

The stored procedure dxxShredXML() takes two input parameters:

� A DAD file and
� The XML document that is to be decomposed

It returns two output parameters:

� A return code and
� A return message

The dxxShredXML() stored procedure decomposes the XML document, and
inserts the data into a set of relational tables according to the <Xcollection>
specification in the input DAD file.
The tables that are specified in the <Xcollection> of the DAD file must exist at
the time the document is shredded, and the columns are assumed to meet the
data types specified in the DAD mapping. If this is not true, an error message is
returned.

The definition of the dxxShredXML stored procedure is as follows:

dxxShredXML(CLOB(100K) DAD, /*input */
CLOB(1M) xmlobj, /*input */
long returnCode, /*output */
varchar(1024) returnMsg) /*output */

The stored procedure dxxShredXML() does not require a primary-foreign key
relationship among joining tables.

176 XML for DB2 Information Integration

To make the use of the stored procedure somewhat easier, DB2 comes with a
sample client program dxxshrd. This program will invoke the dxxShredXML()
stored procedure. You can execute the program, providing a database name, the
name of the DAD file, and the XML document that you want to shred, as follows:

dxxshrd mydb C:\Progra~1\IBM\SQLLIB\samples\db2xml\dad\neworder2.dad
C:\Progra~1\IBM\SQLLIB\samples\db2xml\xml\neworder2.xml

There is also a sample Java program shipped with DB2 XML Extender which can
be used to decompose to XML document. The source is located under the
samples\db2xml\jdbc\ directory where the XML Extender is installed, as
shred.java.

dxxInsertXML()

The stored procedure dxxInsertXML() works the same as dxxShredXML(),
except that dxxInsertXML() takes an enabled XML collection as its first input
parameter. The stored procedure dxxInsertXML() inserts data from an XML
document into an enabled XML collection, which is associated with a DAD file.
That DAD file contains specifications of the XML collection tables and the
mapping between the XML document and the relational tables. The XML
collection tables are checked according to the specifications in the <Xcollection>.
The stored procedure dxxInsertXML() then decomposes the XML document
according to the mapping, and inserts the data into the tables of the named XML
collection.

The declaration for the dxxInsertXML stored procedure follows:

dxxInsertXML(char(UDB_SIZE) collectionName, /*input */
CLOB(1M) xmlobj, /*input */
long returnCode, /*output */
varchar(1024) returnMsg) /*output */

Again, to make the use of the stored procedure somewhat easier, DB2 comes
with a sample client program dxxisrt. This program invokes the dxxInsertXML()
stored procedure. You can execute the program, providing a database name, the
name of the XML collection, and the XML document that you want to shred, as
follows:

dxxisrt mydb abc C:\Progra~1\IBM\SQLLIB\samples\db2xml\xml\neworder1.xml

For more details about the dxxShredXML() and dxxInsertXML() stored
procedures, please refer to DB2 XML Extender Administration and Programming
V8, SC27-1234, also available online at:

http://www.ibm.com/software/data/db2/library

 Chapter 6. Shredding XML into relational tables 177

http://www.ibm.com/software/data/db2/library

6.3 Alternatives to shredding with DB2 XML Extender
In this section, we look at a few other techniques to decompose XML documents
into a relational model.

6.3.1 Using the XML wrapper
One of the non-relational wrappers provided by DB2 Information Integrator V8.1
is the XML wrapper. It enables you to give a representation of XML data as if the
information contained in the XML document was stored in relational tables,
without the constraint of actually having to import or load the data.

Refer to Chapter 11, “XML wrapper” for more information and details on the XML
wrapper creation and usage.

Consider a simple XML document stored in a file system, or (as is) in a column of
a relation table. The location is not the point here, but rather, the consideration
that the data in the XML document can be mapped and made to look like a
relational table (or usually a set of relational tables).

Using the Cross Loader utility provided by DB2 allows you to LOAD data from
one relational table or nickname to another table. In that way, you can keep an
intact copy of your XML documents, while also providing a simulated document
shred into relational tables through the XML wrapper.
You can map a single XML document to a nickname (a virtual table of (part of)
your XML document), an entire file directory, a URI or a column of a (DB2) table.

However, you must keep in mind that every time you access the XML document
through a nickname using a SELECT statement (insert, update, delete are not
supported for XML files), the entire XML document has to be parsed. The bigger
your XML documents are, the heavier parsing becomes, both in terms of time
and memory requirements.

6.3.2 Writing your own code
Instead of using DB2 XML Extender to shred XML documents, you can of course
also write your own programs to do so. In this section, we briefly describe two
interfaces to manipulate XML documents, SAX and DOM.

Important: Keep in mind that if your XML wrapper nickname references an
XML document stored in a column of a DB2 table, the table containing that
column must be located in the same database.

178 XML for DB2 Information Integration

Shredding simple documents with SAX
At the heart of every XML application is an XML processor that parses an XML
document, so that the document elements or attributes can be retrieved and
transformed into a presentation understood by the target client. The other
responsibility of the parser is to check the syntax and structure of the XML
document.

SAX is the Simple API for XML, originally a Java-only API. SAX was the first
widely adopted API for XML in Java. SAX APIs are event-based APIs, which
report parsing events (such as start and end elements) directly to the application
through callbacks, and does not usually build an internal tree. These
event-driven APIs are used for accessing XML documents and extracting
information from them.

They cannot be used to manipulate the internal structures of XML documents. As
the XML document is parsed, the application using SAX receives information
about the various parsing events. The application implements handlers to deal
with these different events, much like handling events in a graphical user
interface. The logical structure of an application using the SAX API as a parser is
shown in Figure 6-8.

SAX parses XML documents by event, so there is no need to cache the entire
document in memory or secondary storage. You can parse documents that are
much larger than your available system memory.

Figure 6-8 Logical structure of an application using SAX

XML Application

SAX API

XML Parser

XML Document

 Chapter 6. Shredding XML into relational tables 179

Using the Document Object Model (DOM)
The Document Object Model (DOM) defines a set of interfaces to access
tree-structured XML documents. DOM specifies how XML and HTML documents
can be represented as objects. Unlike SAX, DOM allows creating and
manipulating the contents of XML documents.

DOM provides a set of standard object interfaces that an XML parser can use to
expose the contents of a document to a client application. These interfaces
provide access to all the information from the original document, organized in a
hierarchical tree structure. The base interface for navigating this tree structure is
the Node interface that defines the necessary methods to navigate and
manipulate the tree structure of XML documents. The methods include getting,
deleting, and modifying the children of a node, as well as inserting new children
to it.

The sample structure shown in Figure 6-9 can be traversed using the parent,
child and sibling links available through the node interface.

Document represents the complete document. The interface defines methods for
creating elements, attributes, comments, and so on. Attributes of a node are
manipulated using the methods of the element interface.

Figure 6-9 Example structure generated DOM tree

SAX versus DOM
Unlike SAX, a DOM parser requires the entire document to be copied into
memory for processing. This is usually not a problem with small XML documents,

Element

Element

Text

Element

Text

Element

Element

Text

Document

Element

Text

180 XML for DB2 Information Integration

but when it comes to larger files, memory requirement might become a problem.
In the worst case, the SAX-based tool buffers all of the data in a document. On
the other hand, at best, all of the DOM-based tools buffer a DOM tree plus one
row of data. Because the DOM tree contains all of the data, DOM-based tools
necessarily use more memory. How much more memory depends on the
average size of the data per node. A DOM level 1 node contains 9 pointers to
other nodes or, at 4 bytes per pointer, 36 bytes of pointers per node. It also
contains other information such as the name and type of the node. If the data is
large with respect to the node overhead (for example, 1000 bytes per node) then
the size of the DOM tree is roughly the size of the data in that tree. If the data is
small with respect to the node overhead (for example, 10 bytes per node, which
is more common in data-centric applications) then the size of the DOM tree can
be several times the size of the data.

With respect to speed, the SAX parser tends to show better performance than
the DOM parser. The SAX API can provide faster and less costly processing of
XML data when you do not need to access all of the data in an XML document.
SAX-based tools visit each node only once. Furthermore, the SAX-based tools
do not need to spend time building a DOM tree and also traverses the document
more quickly, mainly because traversing the document is part of parsing and
does not require any extra method calls.

When using the object-based mapping to transfer data from XML documents to
the database, SAX-based tools are always faster and use less memory than
DOM-based tools. However, you should keep in mind that SAX is better used
with simple structured XML documents.

It is worth noting that XML documents used by the SAX-based tool can be
"tuned,” that is, they can be designed to minimize the amount of data that needs
to be buffered. To do this, each set of siblings must be arranged in the following
order: primary key elements, data elements, foreign key elements. When this is
done, the SAX-based tool buffers only one row of data at a time and scales to
arbitrarily large documents.

Example of shredding using SAX
The code to transfer data from an XML document to the database follows a
common pattern, regardless of whether it uses SAX or DOM:

� Table element start: Prepare an INSERT statement
� Row element start: Clear INSERT statement parameters
� Column elements: Buffer PCDATA and set INSERT statement

parameters
� Row element end: Execute INSERT statement
� Table element end: Close INSERT statement

 Chapter 6. Shredding XML into relational tables 181

The code does not make any assumptions about the names of the tags. In fact, it
uses the name of the table-level tag to build the INSERT statement and the
names of the column-level tags to identify parameters in the INSERT statement.
Thus, these names could correspond exactly to the names in the database or
could be mapped to names in the database using a configuration file.

182 XML for DB2 Information Integration

SAX reads a document in a single pass, in depth-first, width-second order. This
means that one or more rows of data will have to be buffered while processing
documents. How many rows must be buffered depends on how the document is
mapped to the database and the intelligence of the transfer tool.

Example 6-18 shows a code sample using SAX for a document containing a
single table:

Example 6-18 Sample SAX program

int state = UNKNOWN;
 PreparedStatement stmt;
 StringBuffer data;

 public void startElement(String uri, String name, String qName,
 Attributes attr) {
 if (state == UNKNOWN) {
 stmt = getInsertStmt(name);
 state = TABLE;
 }
 else if (state == TABLE) {
 state = ROW;
 stmt.clearParameters();
 } else if (state == ROW) {
 state = COLUMN;
 data = new StringBuffer();
 } else { // if (state == COLUMN)
 throw new SAXException("XML document nested too deep.");
 }
 }

 public void characters (char[] chars, int start, int length) {
 if (state == COLUMN)
 data.append(chars, start, length);
 }

 public void endElement(String uri, String name, String qName) {
 if (state == TABLE) {
 stmt.close();
 state = UNKNOWN;
 }
 else if (state == ROW) {
 stmt.executeUpdate();
 state = TABLE;
 } else if (state == COLUMN) {
 setParameter(stmt, name, data.toString());
 state = ROW;
 } else { // if (state == UNKNOWN)

 Chapter 6. Shredding XML into relational tables 183

 throw new SAXException("Invalid program state.");
 }
 }

6.4 Shredding with XML Extender: a step-by-step
example

This section provides a very simple scenario that demonstrates the steps to go
through when you want to shred an XML document into a set of relational tables
using DB2 XML Extender.
We assume that your database has not yet been enabled for XML Extender. We
use the same XML document used in 4.4, “Storing intact XML documents with
XML Extender” on page 101. In this example, we decompose the XML data into
two new relational tables; XPROJECT and XEMPLOYEE, as shown in
Figure 6-10. To allow decomposition into multiple tables, we have to make
modifications to the DAD file, such as adding a wrapper element <participant>
for the <employee> element. This modification implies a modification of the DTD
file and the XML document.

Figure 6-10 The SAMPLE database used in our example

The DDL for constructing our tables XEMPLOYEE and XPROJECT is shown in
the Example 6-19 on page 185.

XPROJECT

SAMPLE
XEMPLOYEE

184 XML for DB2 Information Integration

Example 6-19 The DDL for XPROJECT and XEMPLOYEE

--
-- DDL Statements for table "XPROJECT"
--

 CREATE TABLE "XPROJECT" (

 "PROJID" SMALLINT NOT NULL ,
 "PROJDESC" CHAR(50) ,
 "PROJSTART" DATE)
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "XPROJECT"

ALTER TABLE "XPROJECT"
ADD PRIMARY KEY

("PROJID");

--
-- DDL Statements for table "XEMPLOYEE"
--

 CREATE TABLE "XEMPLOYEE" (

 "EMPID" CHAR(4) NOT NULL ,
 "DEPT" CHAR(3) ,
 "FIRSTNME" CHAR(15) ,
 "LASTNAME" CHAR(15) ,
 "PROJID" SMALLINT)
 IN "USERSPACE1" ;

-- DDL Statements for primary key on Table "XEMPLOYEE"

ALTER TABLE "XEMPLOYEE"
ADD PRIMARY KEY

("EMPID");

6.4.1 Step 1 - XML enabling of your database
Enable the SAMPLE database to XML using the dxxadm command from a DB2
command window:

dxxadm enable_db MYXMLDB

 Chapter 6. Shredding XML into relational tables 185

6.4.2 Step 2 - Creating the DAD file
When you enable an XML collection, the DAD file specified in the command is
parsed to identify the tables and columns related to the XML document. This
information is stored in the XML_USAGE table. So before enabling the XML
collection, you have to design your DAD file.

The XML, DTD and DAD files that we used are shown in Example 6-20,
Example 6-21 and Example 6-22 on page 187, respectively.

Example 6-20 XML document: Project.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE data SYSTEM "C:\CHAP6\project.dtd">
<data>

<project>
<projectID id="1234"/>
<description>Writing a Redbook</description>
<startdate>2003-04-28</startdate>
<participant>

<employee>
<employeeID empid="2300"/>
<department>D01</department>
<firstname>Olivier</firstname>
<lastname>Guyennet</lastname>

</employee>
<employee>

<employeeID empid="5090"/>
<department>B05</department>
<firstname>Stephen</firstname>
<lastname>Priestley</lastname>

</employee>
</participant>

</project>
</data>

The DTD file Project.dtd is shown next.

Example 6-21 DTD file: Project.dtd

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT data (project)>
<!ELEMENT project (projectID, description, startdate, participant)>
<!ELEMENT projectID EMPTY>
<!ELEMENT description (#PCDATA)>
<!ELEMENT startdate (#PCDATA)>

186 XML for DB2 Information Integration

<!ATTLIST projectID id CDATA #REQUIRED>

<!ELEMENT participant (employee*)>

<!ELEMENT employee (employeeID, department, firstname, lastname)>
<!ELEMENT employeeID EMPTY>
<!ELEMENT department (#PCDATA)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ATTLIST employeeID empid CDATA #REQUIRED>

Here, you find the DAD file that we used.

Example 6-22 DAD file: Project.dad

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "c:\pdb2\sqllib\samples\db2xml\dtd\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype/>
<root_node>

<element_node name="data">
<RDB_node>

<table name="XPROJECT"/>
<table name="XEMPLOYEE"/>
<condition>XPROJECT.projid=XEMPLOYEE.projid</condition>

</RDB_node>
<element_node name="project" multi_occurrence="YES">

<element_node name="projectID">
<attribute_node name="id">

<RDB_node>
<table name="XPROJECT"/>
<column name="projid" type="smallint"/>

</RDB_node>
</attribute_node>

</element_node>
<element_node name="description">

<text_node>
<RDB_node>

<table name="XPROJECT"/>
<column name="projdesc" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="startdate">

 Chapter 6. Shredding XML into relational tables 187

<text_node>
<RDB_node>

<table name="XPROJECT"/>
<column name="projstart" type="date"/>

</RDB_node>
</text_node>

</element_node>

<element_node name="participant">
<element_node name="employee" multi_occurrence="YES">

<element_node name="employeeID">
<attribute_node name="empid">

<RDB_node>
<table name="XEMPLOYEE"/>
<column name="empid" type="char(4)"/>

</RDB_node>
</attribute_node>

</element_node>
<element_node name="department">

<text_node>
<RDB_node>

<table name="XEMPLOYEE"/>
<column name="dept" type="char(3)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="firstname">

<text_node>
<RDB_node>

<table name="XEMPLOYEE"/>
<column name="firstnme" type="char(15)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="lastname">

<text_node>
<RDB_node>

<table name="XEMPLOYEE"/>
<column name="lastname" type="char(15)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>

188 XML for DB2 Information Integration

</element_node>
</element_node>

</root_node>
</Xcollection>

</DAD>

6.4.3 Step 3 - Enablement of the XML collection
The command to enable our XML collection is:

dxxadm enable_collection MYXMLDB mycollection project.dad

6.4.4 Step 4 - Decomposing the XML data into relational tables
We use the shred utility dxxshrd provided by DB2 XML Extender. The command
requires you to specify the database name, the DAD file name and an XML
document name:

dxxshrd MYXMLDB project.dad project.xml

Since we are using an XML collection, we can also use the dxxisrt program:

dxxisrt MYXMLDB mycollection project.xml

6.4.5 Step 5 - Checking the result using the SELECT statement
The result of the decomposition we just performed on our XML document can be
seen by running a SELECT statement against both the XPROJECT and
XEMPLOYEE table. The result is shown in Example 6-23 on page 190.

 Chapter 6. Shredding XML into relational tables 189

Example 6-23 Result of the shredding operation

db2 SELECT * FROM XPROJECT

PROJID PROJDESC PROJSTART
------ -- ----------
 1234 Writing a Redbook 2003-04-28

 1 record(s) selected.

db2 SELECT * FROM XEMPLOYEE

EMPID DEPT FIRSTNME LASTNAME PROJID
----- ---- --------------- --------------- ------
2300 D01 Olivier Guyennet 1234
5090 B05 Stephen Priestley 1234

 2 record(s) selected.

190 XML for DB2 Information Integration

Chapter 7. Bulk processing of XML
documents

This chapter describes two ways to process XML documents in bulk:

� Using an XML cutter to process repetitive documents
� Using XSLT and load / import for bulk inserts

7

© Copyright IBM Corp. 2004. All rights reserved. 191

7.1 An XML cutter to process repetitive documents
Many data-centric XML documents are actually composed of many smaller
documents. The document in Example 7-1 contains many sales orders
documents.

Example 7-1 Sample XML document

<SalesOrders>
<SalesOrder>

 ...
</SalesOrder>

 <SalesOrder>
 ...

 </SalesOrder>
 ...

 <SalesOrder>
 ...

 </SalesOrder>
</SalesOrders>

Such documents are common in bulk-loading situations, such as when
replicating the contents of a database. What is important about the structure of
these documents is that a single element type defines the start of each
sub-document. This makes it easy to cut each document into many smaller
documents, each of which has this element type as its root. For example, the
sub-documents in the preceding example each start with the SalesOrder
element. Those elements outside the sub-documents are ignored.

There are a number of reasons for cutting repetitive documents into
sub-documents. For example:

� You want to store each sub-document in an XML column.

� You want to use separate transactions to shred each sub-document into a set
of tables. (When you shred a document with DB2 XML Extender, the entire
shredding operation takes place in a single transaction. If an error occurs

Note: These smaller documents are XML documents in a limited sense. In
particular, they start with a root element and do not have a prolog (a prolog
precedes the root element in an XML document. It may contain an XML
declaration, a DOCTYPE declaration, comments, processing instructions, and
whitespace).

192 XML for DB2 Information Integration

while inserting any of the data, the entire transaction must be rolled back and
none of the data will be inserted.)

� You want to transform each sub-document, but XSLT runs out of memory
when trying to process the entire document.

In the following sections, we describe a sample tool for cutting XML documents.
A formal cutting tool from IBM may be made available at a future date.

7.1.1 The SAXCutter sample tool
SAXCutter is a sample tool written in Java for cutting XML documents.
SAXCutter is an XMLFilter. That is, it functions as both a SAX application and a
SAX parser. It functions as a SAX application by implementing the
ContentHandler interface, which receives SAX events from an XML parser. It
functions as an XML parser by firing SAX events to a SAX application. For
example, Figure 7-1 shows how an application could use SAXCutter to cut a
repetitive XML document and insert sub-documents into an XML column.

Figure 7-1 Cutting a repetitive document and insert sub-documents into the DB

If you have an existing SAX application, you can write a small controller to hook
this up with the SAXCutter (Figure 7-2). In this case, the application will not
realize that the ultimate source of the documents it is processing is a large,
repetitive document. All it will see is a series of small documents.
The SAXCutter class is described in more detail in “The SAXCutter sample” on
page 635.

Figure 7-2 Using an existing application with the SAXCutter class

XML
document

XML
parser

SAXCutter Application
Database

Parse SAX events
for whole
document

SAX events
for sub-

documents

Insert sub-
documents

XML
parser

SAXCutter Application

Controller

1. Connect parser, cutter, and application
2. Start parsing

 Chapter 7. Bulk processing of XML documents 193

7.1.2 The CutterTester sample application
As an example of a SAX application that uses SAXCutter, the following code
(Example 7-2) is from the CutterTester. This is a sample application that uses
SAXCutter to cut a repetitive document into pieces and store each one in a
separate file. This code accepts the name of an XML file, and the namespace
URI, and the local name of the element type to cut on. It then instantiates an
XMLReader (1), instantiates a SAXCutter and hooks this up to the XMLReader
(2), sets up some global variables (3), and calls the parse method on the
XMLReader (4).

Example 7-2 CutterTester sample code

public void run(String filename, String uri, String localName)
 throws Exception
 {
 XMLReader xmlReader;
 SAXCutter cutter;
 // 1. Get a new XMLReader and set namespace processing on.
 xmlReader = getXMLReader();
 xmlReader.setFeature("http://xml.org/sax/features/namespaces", true);
 xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",

true);
 // 2. Get a new SAXCutter, set the ContentHandler to
 // this CutterTester object, and set the cut element type.
 cutter = new SAXCutter(xmlReader);
 cutter.setContentHandler(this);
 cutter.setCutElementType(uri, localName);
 // 3. Set up the global variables.
 baseName = getBaseName(filename);
 extension = getExtension(filename);
 fileNumber = 1;
 // 4. Parse the input file.
 cutter.parse(new InputSource(new FileInputStream(filename)));
 }

The actual work is done in the ContentHandler methods. For example, the
CutterTester implements the following startDocument and endDocument
methods (see Example 7-3 on page 195). startDocument constructs a new
filename and opens a FileWriter over it. Methods like startElement, endElement,
and characters use this Writer to serialize the XML document to the file.
endDocument simply closes the file.

194 XML for DB2 Information Integration

Example 7-3 startDocument and endDocument methods of CutterTester

public void startDocument () throws SAXException
 {
 String filename;
 // Construct the next filename and increment the file number,
 // then open a FileWriter over the file.
 filename = baseName + String.valueOf(fileNumber) + extension;
 fileNumber++;
 try
 {
 writer = new FileWriter(filename);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
public void endDocument() throws SAXException
 {
 // Close the file.
 try
 {
 writer.close();
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

7.1.3 Writing your own application
Of course, you will probably want to use SAXCutter for something different. The
easiest way to do this is to modify the CutterTester class. For example, you can
easily modify CutterTester to insert each sub-document into an XML column.
Suppose we have a table with two columns, SalesOrderNumber and
SalesOrderDocument. To insert sub-documents into this table, we would need to:

� Allocate global variables to hold the sales order number, a JDBC Connection,
and a JDBC PreparedStatement:

private int salesOrderNumber;
private Connection conn;
private PreparedStatement insert;

 Chapter 7. Bulk processing of XML documents 195

� Change the code that sets up global variables to allocate the connection and
prepare an INSERT statement:

// Call a private function to get a connection, then allocate and
// prepare an insert statement.

conn = getConnection();
insert = conn.prepareStatement("INSERT INTO OrderDocs " +

 "VALUES (?, XMLVARCHAR(?))");

� Add code to startElement to get the sales order number. For example, if this is
stored in the Number attribute of the SalesOrder element, this would be:

if (localName.equals("SalesOrder"))
{

 String s = attrs.getValue("", "Number");
salesOrderNumber = (Integer.valueOf(s)).intValue();
}

� Change the code in startDocument to use a StringWriter instead of a
FileWriter:

public void startDocument () throws SAXException
{

 writer = new StringWriter();
}

� Change the code in endDocument to insert the string into the database:

public void endDocument() throws SAXException
{

 try
 {

 insert.setInt(1, salesOrderNumber);
 insert.setString(2, writer.toString());

 insert.executeUpdate();
 conn.commit();

 }
 catch (SQLException e)

 {
 throw new SAXException(e);

 }
}

7.2 Using XSLT for bulk inserts
For large files, it is sometimes possible to increase the performance of shredding
by using XSLT combined with the DB2 Load or Import utility. This is particularly
true when the document contains large amounts of data to be inserted into only a
few tables, as is the case with repetitive documents. More details on XSLT

196 XML for DB2 Information Integration

transformations can be found in 9.1.1, “XSL, stylesheets and transformation” on
page 248.

7.2.1 Flattening XML documents
The process has two steps. First, you use XSLT to flatten the document.
Flattening is the process of taking a deeply nested document and transforming it
into one that can be used with the table-based mapping. That is, the data for
each table is grouped together and all tables are at the same nesting level. For
example, when we flatten the document in Example 7-4,

Example 7-4 Orders document before flattening

<Orders>
 <SalesOrder SONumber="123">
 <Customer CustNumber = "543">
 <CustName>ITSO Insurance, Inc.</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Customer>
 <OrderDate>20030708</OrderDate>
 <Item LineNumber="1">
 <Part PartNumber="TW47">
 <Description>Turkey wrench</Description>
 <Price>9.95</Price>
 </Part>
 <Quantity>10</Quantity>
 </Item>
 <Item LineNumber="2">
 <Part PartNumber="SEP12">
 <Description>Stuffing separator</Description>
 <Price>13.27</Price>
 </Part>
 <Quantity>5</Quantity>
 </Item>
 </SalesOrder>
 <SalesOrder SONumber="456">
 <Customer CustNumber = "563">
 <CustName>XYZ Industries</CustName>
 <Street>11 Pine St.</Street>
 <City>San Jose</City>
 <State>CA</State>
 <PostCode>95120</PostCode>
 </Customer>
 <OrderDate>20031029</OrderDate>

 Chapter 7. Bulk processing of XML documents 197

 <Item LineNumber="1">
 <Part PartNumber="CD32">
 <Description>T3 Bolt: Cast iron</Description>
 <Price>0.65</Price>
 </Part>
 <Quantity>100</Quantity>
 </Item>
 <Item LineNumber="2">
 <Part PartNumber="HSA230">
 <Description>Fan blade</Description>
 <Price>14.46</Price>
 </Part>
 <Quantity>8</Quantity>
 </Item>
 </SalesOrder>
</Orders>

we get the document in Example 7-5.

Example 7-5 Flattened orders document

<Tables>
 <Table Name="Orders">
 <Row>
 <SONumber>123</SONumber>
 <OrderDate>20030708</OrderDate>
 <CustomerNumber>543</CustomerNumber>
 </Row>
 <Row>
 <SONumber>456</SONumber>
 <OrderDate>20031029</OrderDate>
 <CustomerNumber>563</CustomerNumber>
 </Row>
 </Table>
 <Table Name="Customers">
 <Row>
 <CustomerNumber>543</CustomerNumber>
 <CustName>ITSO Insurance, Inc.</CustName>
 <Street>123 Main St.</Street>
 <City>Chicago</City>
 <State>IL</State>
 <PostCode>60609</PostCode>
 </Row>
 <Row>
 <CustomerNumber>563</CustomerNumber>
 <CustName>XYZ Industries</CustName>
 <Street>11 Pine St.</Street>

198 XML for DB2 Information Integration

 <City>San Jose</City>
 <State>CA</State>
 <PostCode>95120</PostCode>
 </Row>
 </Table>
 <Table Name="Items">
 <Row>
 <SONumber>123</SONumber>
 <LineNumber>1</LineNumber>
 <PartNumber>TW47</PartNumber>
 <Quantity>10</Quantity>
 </Row>
 <Row>
 <SONumber>123</SONumber>
 <LineNumber>2</LineNumber>
 <PartNumber>SEP12</PartNumber>
 <Quantity>5</Quantity>
 </Row>
 <Row>
 <SONumber>456</SONumber>
 <LineNumber>1</LineNumber>
 <PartNumber>CD32</PartNumber>
 <Quantity>100</Quantity>
 </Row>
 <Row>
 <SONumber>456</SONumber>
 <LineNumber>2</LineNumber>
 <PartNumber>HSA320</PartNumber>
 <Quantity>8</Quantity>
 </Row>
 </Table>
 <Table Name="Parts">
 <Row>
 <PartNumber>TRW7</PartNumber>
 <Description>Turkey wrench</Description>
 <Price>9.95</Price>
 </Row>
 <Row>
 <PartNumber>SEP12</PartNumber>
 <Description>Stuffing separator</Description>
 <Price>13.27</Price>
 </Row>
 <Row>
 <PartNumber>CD32</PartNumber>
 <Description>T3 Bolt: Cast iron</Description>
 <Price>0.65</Price>
 </Row>
 <Row>
 <PartNumber>HSA320</PartNumber>

 Chapter 7. Bulk processing of XML documents 199

 <Description>Fan blade</Description>
 <Price>14.46</Price>
 </Row>
 </Table>
</Tables>

One important thing to notice here is that we have copied primary key values to
the rows that reference them. For example, we copied the customer number from
the CustNumber attribute of the Customer element to the CustomerNumber
element in each sales order row. And we have copied the sales order number
from the SONumber attribute of the SalesOrder element to the SONumber
element in each line item row. This ensures that the rows will be properly linked
together in the database.

7.2.2 Converting from XML to the DB2 load format
In addition to flattening the XML document, we also need to convert the data
from elements and attributes to the DB2 load format. In this format, column
values are separated by commas and rows are separated by new line characters
(x’0A’). In addition, specific formats are used for each data type. For example,
strings are quoted with a double quote, dates use yyyymmdd format, and null
values are indicated by no data between column delimiters —that is, two
commas in a row.

To convert the data to the DB2 load format, we use the same stylesheet as the
one that flattens our document. Thus, the output of our XSLT transformation is
actually the following document (Example 7-6 on page 201).

Note: On Windows or OS/2®, this can also be a carriage return/line feed
(x’0D0A’). On EBCDIC systems, this should be the EBCDIC LF character
(x’25’).

Tip: If the data in your XML document does not use the formats used by the
DB2 load format (for example, your dates use the yy-mm-dd format instead of
the yyyymmdd format), you must either convert the data to before transforming
the document, or you must call formatting routines from your stylesheet. For a
complete description of the DB2 load format, see Appendix C,
Export/Import/Load Utility File Formats, of the Data Movement Utilities Guide
and Reference.

200 XML for DB2 Information Integration

Example 7-6 Output of XSLT transformation

<Tables>
 <Table Name="Orders">123,20030708,543

456,20031029,563
</Table>

 <Table Name="Customers">
543,"ITSO Insurance, Inc.","123 Main St.","Chicago","IL","60609"
563,"XYZ Industries","11 Pine St.","San Jose","CA","95120"

 </Table>
 <Table Name="Items">123,1,"TW47",10

123,2,"SEP12",5
456,1,"CD32",100
456,2,"HSA320",8

 </Table>
 <Table Name="Parts">"TRW7","Turkey wrench",9.95

"SEP12","Stuffing separator",13.27
"CD32","T3 Bolt: Cast iron",0.65
"HSA320","Fan blade",14.46

 </Table>
</Tables>

This conforms to the following DTD:

<!ELEMENT Tables (Table+)>
<!ELEMENT Table (#PCDATA)>
<!ATTLIST Table
 Name CDATA #REQUIRED>

7.2.3 The XSLT stylesheet
The stylesheet we use to flatten and convert the document is shown in
Example 7-7.

Example 7-7 Stylesheet to flatten and convert

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 xmlns:xalan="http://xml.apache.org/xslt">
<xsl:output method="xml" encoding="UTF-8" indent="yes"

xalan:indent-amount="2"/>
<xsl:strip-space elements="*"/>

 Chapter 7. Bulk processing of XML documents 201

 <!-- ************************ -->
 <!-- Construct Table elements -->
 <!-- ************************ -->
 <xsl:template match="/">
 <Tables>
 <Table name="Orders">
 <xsl:for-each select="/Orders/SalesOrder">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </Table>
 <Table name="Customers">
 <xsl:for-each select="/Orders/SalesOrder/Customer">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </Table>
 <Table name="Items">
 <xsl:for-each select="/Orders/SalesOrder/Item">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </Table>
 <Table name="Parts">
 <xsl:for-each select="/Orders/SalesOrder/Item/Part">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </Table>

 </Tables>
 </xsl:template>

 <!-- ****************** -->
 <!-- Construct row data -->
 <!-- ****************** -->
 <xsl:template name="order" match="/Orders/SalesOrder">
 <xsl:value-of select="./@SONumber"/>,<xsl:value-of

select="./Customer/@CustNumber"/>,<xsl:value-of select="./OrderDate/text()"/>
 </xsl:template>
 <xsl:template name="customer" match="/Orders/SalesOrder/Customer">
 <xsl:value-of select="./@CustNumber"/>,"<xsl:value-of

select="./CustName/text()"/>","<xsl:value-of select="./Street/text()"/>",
"<xsl:value-of select="./City/text()"/>","<xsl:value-of

select="./State/text()"/>","<xsl:value-of select="./PostCode/text()"/>"
 </xsl:template>

 <xsl:template name="item" match="/Orders/SalesOrder/Item">
 <xsl:value-of select="../@SONumber"/>,<xsl:value-of

202 XML for DB2 Information Integration

select="./@LineNumber"/>,"<xsl:value-of

select="./Part/@PartNumber"/>","<xsl:value-of select="./Quantity/text()"/>"
 </xsl:template>

 <xsl:template name="part" match="/Orders/SalesOrder/Item/Part">
 "<xsl:value-of select="./@PartNumber"/>","<xsl:value-of

select="./Description"/>",<xsl:value-of select="./Price/text()"/>
 </xsl:template>
</xsl:stylesheet>

The first part of the stylesheet flattens the document. It constructs a separate
<Table> element for the data to be inserted into each table. For example, the
following template constructs a <Table> element for the Parts table:

 <Table name="Parts">
 <xsl:for-each select="/Orders/SalesOrder/Item/Part">
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </Table>

The second part of the document constructs the rows for each table. For
example, the following template constructs rows for the Parts table:

 <xsl:template name="part" match="/Orders/SalesOrder/Item/Part">
 "<xsl:value-of select="./@PartNumber"/>","<xsl:value-of

select="./Description"/>",<xsl:value-of select="./Price/text()"/>
 </xsl:template>

Individual values are extracted with the xsl:value-of element. If the value is a
string, such as the part number or description, its value is placed in double
quotes. If the value is a number, such as the price, its value is inserted without
any further formatting. Commas separate each value. Note that if a value is
missing from the XML document —in database terms, this is a null value— then
the result is two consecutive commas. This is the format that DB2 uses to
indicate a null value.

7.2.4 Cutting the flattened document
Although we have flattened the document and converted the data to the DB2
load format, we are still not ready to load the data into DB2. The reason is that
the transformed document still contains XML markup, as well as data to be
inserted into multiple tables. The Load and Import utilities do not understand
XML and require that a file contain the data for a single table. We therefore need

 Chapter 7. Bulk processing of XML documents 203

to remove the XML markup from our document and cut it into separate
documents, each of which contain the data for a single table.

Although we could have created these files directly from the original document,
this is more expensive than using our intermediate format. The problem is that
XSLT can only create one output document per transformation. Thus, we would
need to perform one XSLT transformation per target table. Since parsing is
expensive, this means that performance will degrade as the number of target
tables increases. By using our intermediate format, we parse only two
documents: we parse the first document during transformation to our
intermediate format, and we parse the intermediate document while cutting it into
per-table documents.

To cut intermediate documents into separate DB2 load files, we use a Java
application named TableCutter. This uses the SAXCutter class discussed in 7.1,
“An XML cutter to process repetitive documents” on page 192. For example, if we
cut our transformed document with this application, the output is four DB2 load
files shown in Example 7-8.

Example 7-8 Cut up document into separate load files

Orders.del

123,20030708,543
456,20031029,563

Customers.del

543,"ITSO Insurance, Inc.","123 Main St.","Chicago","IL","60609"
563,"XYZ Industries","11 Pine St.","San Jose","CA","95120"

Items.del

123,1,"TW47",10
123,2,"SEP12",5
456,1,"CD32",100
456,2,"HSA320",8

204 XML for DB2 Information Integration

Parts.del

"TRW7","Turkey wrench",9.95
"SEP12","Stuffing separator",13.27
"CD32","T3 Bolt: Cast iron",0.65
"HSA320","Fan blade",14.46

The command line syntax of the TableCutter application is:

java TableCutter <filename> <output-directory>

where <filename> is the name of the intermediate file, and <output-directory>
is the directory in which to place the load files. TableCutter can also be called
programmatically through its cut method. For example:

TableCutter cutter = new TableCutter();
cutter.cut(filename, outputDirectory);

There are two important parts to the TableCutter application. The cut method
instantiates an XMLReader (1), instantiates a SAXCutter and hooks this up to the
XMLReader (2), sets up some global variables (3), and calls the parse method on
the XMLReader (4). See for details Example 7-9.

Example 7-9 TableCutter - cut method

public void cut(String filename, String outputDirectory)
 throws Exception
 {
 XMLReader xmlReader;
 SAXCutter cutter;
 // 1. Get a new XMLReader and set namespace processing on.
 xmlReader = getXMLReader();
 xmlReader.setFeature("http://xml.org/sax/features/namespaces", true);
 xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",

true);
 // 2. Get a new SAXCutter, set the ContentHandler to
 // this TableCutter object, and set the cut element type to Table.
 cutter = new SAXCutter(xmlReader);
 cutter.setContentHandler(this);
 cutter.setCutElementType("", "Table");
 // 3. Set the global variables.
 this.outputDirectory = outputDirectory;
 writer = null;
 // 4. Parse the input file.
 cutter.parse(new InputSource(new FileInputStream(filename)));
 }

 Chapter 7. Bulk processing of XML documents 205

The startElement method looks for Table elements. When it finds one, it opens a
new file (Example 7-10).

Example 7-10 startElement method

public void startElement (String uri, String localName, String qName,
Attributes attrs)

 throws SAXException
 {
 String tableName, filename;
 // If we are not on the Table element, just return.
 if ((uri.length() != 0) || (!localName.equals("Table"))) return;
 // Create a new output file.
 try
 {
 tableName = attrs.getValue("Name");
 filename = outputDirectory + tableName + ".del";
 writer = new FileWriter(filename);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

The characters method (Example 7-11) writes the load data out to the file:

Example 7-11 characters method

public void characters (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 if (writer != null) writer.write(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

The endElement method closes the file when it finds a Table element
(Example 7-12 on page 207).

206 XML for DB2 Information Integration

Example 7-12 endElement method

public void endElement (String uri, String localName, String qName)
throws SAXException

 {
 // If we are not on the Table element, just return.
 if ((uri.length() != 0) || (!localName.equals("Table"))) return;
 // Close the file.
 try
 {
 writer.close();
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 // Set the writer to null so that we only write to the file when
 // we are inside the Table element.
 writer = null;
 }

For the complete code of the TableCutter class, see “The TableCutter tool” on
page 649.

7.2.5 Importing or loading the data
To load the data into DB2, we can use the Import utility or the Load utility. The
Import utility inserts data from an input file into a table or updateable view. It can
either replace existing data or append the new data to the existing data. The
Load utility also inserts data from an input file into a table (but not a view) and
can either replace existing data or append the new data to the existing data.

The main difference between the utilities is that Load is faster than Import. This is
because:

� Load writes directly to the database table, while Import uses INSERT
statements.

� Load builds indexes after inserting all the data, while Import builds indexes as
it inserts rows.

� Import logs all data, while Load performs minimal logging.

Of course, better performance comes at a price. Load does not fire triggers, does
not perform referential or table constraints checking (other than validating the
uniqueness of the indexes), and does not support updateable views. For a

 Chapter 7. Bulk processing of XML documents 207

complete list of differences between the Import and Load utilities, see “Appendix
B. Differences Between the Import and the Load Utility” in the Data Movement
Utilities Guide and Reference.

Import and Load can both be invoked from the command line, the Control Center,
or through an API (sqluimpr or sqluload). For example, to import data from the
Items.del file into the ITEMS table, we use the following command:

IMPORT FROM "C:\load\Items.del" OF DEL METHOD P (1, 2, 3, 4)
INSERT INTO ITEMS (SONUMBER, LINENUMBER, PARTNUMBER, QUANTITY)

FROM gives the name of the file from which to load data. OF DEL means that we
are using comma-delimited files (DEL=delimited). METHOD P lists the positions
of the fields in our file to import; in our case, we are loading all four fields.
INSERT INTO gives the name of the table and the names of the columns into
which the data is to be loaded. The order of the column names corresponds to
the fields listed in the METHOD P clause.

To load data into the Items table, we use the following command:

LOAD FROM "C:\load\Items.del" OF DEL METHOD P (1, 2, 3, 4)
INSERT INTO ITEMS (SONUMBER, LINENUMBER, PARTNUMBER, QUANTITY)

For more information about the Import and Load utilities, see the Data Movement
Utilities Guide and Reference.

208 XML for DB2 Information Integration

Chapter 8. Publishing data as XML

In this chapter, we take a look at the different ways of publishing XML from
relational data.

First, we walk through the SQL/XML support which is new in DB2 UDB V8. Then,
we take a look at DB2 XML Extender which is now shipped as part of the DB2 V8
product code. We dissect the DAD file which is required by the XML Extender to
publish documents, and we look at the stored procedures provided by DB2 XML
Extender to externalize the documents.
We also take some time to look at the pros and cons of writing your own code to
publish documents, best practices, and limitations of SQL/XML and DB2 XML
Extender.

This chapter consist of the following topics:

� Publishing data using SQL/XML

� Publishing data with XML Extender

� Writing your own code to publish data as XML

8

© Copyright IBM Corp. 2004. All rights reserved. 209

8.1 Publishing data using SQL/XML
Relational data is the backbone of many businesses. With XML as a universal
data exchange format, the capability of constructing XML data from existing
relational data, while preserving the power of SQL, tremendously simplifies
business-to-business (B2B) application development.

To help integrate both worlds, an informal group of companies, including IBM,
Microsoft, Oracle, and Sybase began to define XML extensions for SQL in early
2000 in a working group called SQLX (http://www.sqlx.org). The group focuses
on SQL capabilities and consciously avoids vendor extensions, while
encouraging state-of-the-art and projected future developments. SQLX forwards
proposals to the INCITS (International Committee for Information Technology
Standards) H2 Database Committee for approval.

Currently the following functions are available in DB2 UDB for Linux, UNIX and
Windows, V8:

� XMLELEMENT and XMLATTRIBUTES to construct XML elements with
attributes

� XMLFOREST to construct a sequence of XML elements

� XMLCONCAT to concatenate XML elements

� XMLAGG to aggregate XML elements

These functions are also available with DB2 for z/OS V8. In addition, DB2 for
z/OS supports the XMLNAMESPACES function, which was recently added to the
SQL/XML standard. XMLNAMESPACES will also be supported in V8.2 of DB2
UDB for Linux, UNIX and Windows.

Let us now look at each of these SQL/XML functions in more detail. To
demonstrate their use, and make it easy for the reader to reproduce them, we
use the SAMPLE database supplied with DB2.

8.1.1 Constructing elements and attributes
To construct XML elements and attributes, we use the XMLELEMENT,
XMLATTRIBUTES, and XMLFOREST SQL/XML functions.

XMLELEMENT and XMLATTRIBUTES
XMLELEMENT() is used to construct a new XML element (with attributes and
content). The syntax diagram is shown in Figure 8-1 on page 211. XML element
content is constructed from a variable list of value expressions.

210 XML for DB2 Information Integration

http://www.sqlx.org

Figure 8-1 XMLElement and XMLAttributes function

Attribute names and values are specified via the XMLATTRIBUTES() function
through column names or aliases for value expressions.

The result of the value expressions is mapped from SQL to XML according to the
mapping rules specified in SQL/XML. SQL/XML defines rules to map SQL
identifiers and XML identifiers, SQL data types and XML Schema types, and
SQL data and XML data at a value, table, schema, and catalog level.

The following examples all use the XML2CLOB() cast function. This function is
used to externalize the internal XML data type as a CLOB, as explained in 8.1.3,
“Behind the scenes: the XML data type” on page 219. All SQL/XML queries need
to be cast their result set data to a CLOB.

In Example 8-1, we produce an XML fragment that includes some employee
details and their total salary, made up of their normal salary, bonuses and
commission.

Example 8-1 Using XMLELEMENT and XMLATTRIBUTES

SELECT
XML2CLOB(
XMLELEMENT (NAME "EmployeeSalary",

XMLATTRIBUTES (e.empno AS "id"),
XMLELEMENT (NAME "Firstname", e.firstnme),
XMLELEMENT (NAME "Lastname", e.lastname),
XMLELEMENT (NAME "TotalSalary",(e.salary+e.bonus+e.comm))

)
)

FROM employee e WHERE SEX = 'F'

The query returns a result set, where each row contains an XML fragment like
Example 8-2 on page 212.

XMLELEMENT

XML-element-content

 (NAME) XML-element-name

XML-attributes ,
 ,

XML-attributes:

XMLATTRIBUTES

AS
 (

 ,
XM-attribute-value

XML-attribute-name
)

 Chapter 8. Publishing data as XML 211

Example 8-2 Result of XMLELEMENT and XMLATTRIBUTES

<EmployeeSalary id="000010">
<Firstname>CHRISTINE</Firstname>
<Lastname>HAAS</Lastname>
<TotalSalary>000057970.00</TotalSalary>

</EmployeeSalary>XMLFOREST

XMLFOREST
XMLFOREST() simplifies the coding of SQL/XML queries, as it constructs
sequences of XML elements from SQL value expressions in the order of the
expressions. XMLFOREST is a short-hand for a sequence of XMLELEMENT
invocations. XMLFOREST takes a variable list of SQL value expressions as
input, and produces for each expression an XMLELEMENT with, the column
name or alias of the expression as the tag name, and the value of the expression
as the element content. An example is shown in Example 8-3.

Example 8-3 Using XMLFOREST

select
XML2CLOB (
XMLELEMENT (NAME "EmployeeSalary",

XMLATTRIBUTES(e.empno AS "id"),
XMLFOREST(e.firstnme AS "Firstname",

e.lastname AS "lastname",
e.salary+e.bonus+e.comm as "salary")

)
)

FROM employee e WHERE SEX = 'F’

This XMLFOREST query produces the following result (Example 8-4).

Example 8-4 Result of XMLFOREST

<EmployeeSalary id="000010">
<Firstname>CHRISTINE</Firstname>
<lastname>HAAS</lastname>
<salary>000057970.00</salary>

</EmployeeSalary>

212 XML for DB2 Information Integration

XMLFOREST and XMLELEMENT handle null values differently.
XMLFOREST ignores a null value, and does not include it in the result, whereas
XMLELEMENT returns an empty element.

Concatenation using XMLCONCAT
XMLCONCAT() takes a variable number of XML value expressions and constructs a
single XML value as a sequence of XML values. This function is used to
construct an XML element from pieces of independently constructed XML. An
example is shown in Example 8-5.

Example 8-5 Using XMLCONCAT

select XML2CLOB(
XMLCONCAT(

XMLELEMENT(NAME "Employee",
XMLATTRIBUTES(e.firstnme ||' '|| e.lastname as "Name"),

XMLELEMENT(NAME "Salary",e.salary)
),
XMLELEMENT(NAME "Employee",

XMLATTRIBUTES(e.firstnme ||' '|| e.lastname as "Name"),
XMLELEMENT(NAME "Bonus",e.bonus)

),
XMLELEMENT(NAME "Employee",

XMLATTRIBUTES(e.firstnme ||' '|| e.lastname as "Name"),
XMLELEMENT(NAME "Commission",e.comm)

)
)

)
from employee e where sex = 'F'

This query returns the following result (Example 8-6 on page 214).

 Chapter 8. Publishing data as XML 213

Example 8-6 Result of XMLCONCAT

<Employee Name="CHRISTINE HAAS">
<Salary>0052750.00</Salary>

</Employee>
<Employee Name="CHRISTINE HAAS">

<Bonus>0001000.00</Bonus>
</Employee>
<Employee Name="CHRISTINE HAAS">

<Commission>0004220.00</Commission>
</Employee>

Aggregating data across rows using XMLAGG
XMLAGG() is an aggregate function, which constructs an XML value from a
collection of XML value expressions. XMLAGG resolves the 1:n relationships in
XML. The expression to be aggregated, and the expressions in the
ORDER BY clause, do not need to be functionally dependent on the
grouping columns.

The ORDER BY in Example 8-7 is used to list the names in alphabetical order
and we use the GROUP BY clause to allow wrapping of the employees by
department.

Example 8-7 Using XMLAGG

select XML2CLOB (
XMLELEMENT(

NAME "Department",
XMLATTRIBUTES(e.workdept as "Name"),
XMLAGG(

XMLELEMENT(NAME "Employee", e.firstnme||' '||e.lastname)
 order by e.lastname)

)
)

from employee e
group by workdept

This query returns the following result (Example 8-6):

214 XML for DB2 Information Integration

Example 8-8 Result of XMLAGG

<Department Name="A00">
<Employee>CHRISTINE HAAS</Employee>
<Employee>VINCENZO LUCCHESSI</Employee>
<Employee>SEAN O'CONNELL</Employee>

</Department>

<Department Name="B01">
<Employee>MICHAEL THOMPSON</Employee>

</Department>

<Department Name="C01">
<Employee>SALLY KWAN</Employee>
<Employee>HEATHER NICHOLLS</Employee>
<Employee>DOLORES QUINTANA</Employee>

</Department>

Note that the different employees under the same department are extracted from
multiple rows in the DB2 table.

XMLNAMESPACES
DB2 UDB V8.2 for Linux, UNIX, and Windows (as well as DB2 for z/OS V8)
introduce a new SQL/XML function, XMLNAMESPACES(). It provides XML
namespace declarations within the SQL/XML publishing functions
XMLELEMENT and XMLFOREST. An XML namespace is a collection of names
that is identified by a uniform reference identifier (URI). Namespaces are used in
XML documents as element types and attribute names.

To give the reader some impression of this, we provide a simple example.
Example 8-9 generates a sequence of elements produced from arguments of an
XMLFOREST function. The example declares a default namespace to be
associated with the first element, and a namespace whose prefix is “d”,
associated with the second element.

Example 8-9 XMLNAMESPACES function

SELECT empno, XMLSERIALIZE(CONTENT
XMLFOREST (XMLNAMESPACES(DEFAULT ’http://hr.org’,

’http://fed.gov’AS "d"
),

lastname,
job AS "d:job"
) AS CLOB

) AS "Result"

 Chapter 8. Publishing data as XML 215

FROM employee
WHERE edlevel = 12

The result of the query is shown in Example 8-10. This query generates an XML
value with a textual representation (the output is formatted here for convenience;
the output XML fragment has no extraneous white space characters, and the
output generally appears as one line).

Example 8-10 Result of XMLNAMESPACES function

EMPNO Result
----- --
000290 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">PARKER

</LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR
</d:job>

000310 <LASTNAME xmlns="http://hr.org" xmlns:d="http://fed.gov">SETRIGHT
</LASTNAME>
<d:job xmlns="http://hr.org" xmlns:d="http://fed.gov">OPERATOR
</d:job>

8.1.2 A more complex example
In this example (Example 8-11) we combine all of the functions we have
described before, and use them to produce an HTML table displaying,
Department Number, Department Name, Employee, Name and Phone. What
makes this query interesting it the ability to use XMLCONCAT and XMLAGG to
create a hierarchy.

When we wrote this redbook, you could only run this query against DB2 for z/OS
V8. The ability to use a subquery in an XMLAGG function was not supported on
the DB2 for LUW V8 FixPak 4 at the time of writing of this publication.

Example 8-11 Producing an HTML document using SQL/XML

SELECT VARCHAR(
XML2CLOB(XMLELEMENT(NAME "TABLE",

XMLATTRIBUTES('1' AS "BORDER"),
XMLELEMENT(NAME CAPTION,'DEPARTMENT-EMPLOYEE TABLE'),
XMLELEMENT(NAME TR,XMLFOREST('DEPT NO' AS TH,

'DEPARTMENT'AS TH,
'EMP NO' AS TH,

216 XML for DB2 Information Integration

'EMP NAME' AS TH,
'PHONE' AS TH)

),
XMLAGG(

XMLCONCAT(
XMLELEMENT(NAME TR, XMLELEMENT(NAME TD,

XMLATTRIBUTES(X.CNT+1 AS "ROWSPAN"),D.DEPTNO),
XMLELEMENT(NAME TD,

XMLATTRIBUTES(X.CNT+1 AS "ROWSPAN"),D.DEPTNAME)
),
(SELECT XMLAGG(XMLELEMENT(NAME TR,

XMLFOREST(EMPNO AS TD,FIRSTNME||' '||LASTNAME AS TD,
PHONENO AS TD

)
)
)

FROM DSN8810.EMP E
WHERE E.WORKDEPT = D.DEPTNO

)
)

)
)

)
)

FROM DSN8810.DEPT D,(SELECT WORKDEPT,COUNT(*)
FROM DSN8810.EMP GROUP BY WORKDEPT) X(DEPTNO,CNT)

WHERE D.DEPTNO = X.DEPTNO AND D.DEPTNO IN ('A00','C01')

 Chapter 8. Publishing data as XML 217

The above example produces the following HTML table (Example 8-12).

Example 8-12 Resulting HTML table

<TABLE BORDER="1"><CAPTION>DEPARTMENT-EMPLOYEE TABLE</CAPTION>
<TR><TH>DEPT NO</TH><TH>DEPARTMENT</TH><TH>EMP NO</TH><TH>EMP
NAME</TH><TH>PHONE</TH></TR>
<TR><TD ROWSPAN="6">A00</TD><TD ROWSPAN="6">SPIFFY COMPUTER SERVICE
DIV.</TD></TR>
<TR><TD>000010</TD><TD>CHRISTINE HAAS</TD><TD>3978</TD></TR>
<TR><TD>000110</TD><TD>VINCENZO LUCCHESI</TD><TD>3490</TD></TR>
<TR><TD>000120</TD><TD>SEAN O'CONNELL</TD><TD>2167</TD></TR>
<TR><TD>200010</TD><TD>DIAN HEMMINGER</TD><TD>3978</TD></TR>
<TR><TD>200120</TD><TD>GREG ORLANDO</TD><TD>2167</TD></TR>
<TR><TD ROWSPAN="5">C01</TD><TD ROWSPAN="5">INFORMATION CENTER</TD></TR>
<TR><TD>000030</TD><TD>SALLY KWAN</TD><TD>4738</TD></TR>
<TR><TD>000130</TD><TD>DOLORES QUINTANA</TD><TD>4578</TD></TR>
<TR><TD>000140</TD><TD>HEATHER NICHOLLS</TD><TD>1793</TD></TR>
<TR><TD>200140</TD><TD>KIM NATZ</TD><TD>1793</TD></TR></TABLE>

When you store this result in a file and open it with a Web browser, the result
looks like Figure 8-2 on page 219.

218 XML for DB2 Information Integration

Figure 8-2 Result of the more complex SQL/XML statement

In the emp name column the name Sean O’Connell has been displayed as
SEAN 'CONNELL. This is XML standard representation of an apostrophe.
This is the result of applying the DB2 to XML mapping rules.

8.1.3 Behind the scenes: the XML data type
SQL/XML is part of the ISO SQL specification (Information technology -
Database languages - SQL - Part 14: XML-Related Specifications (SQL/XML)
ISO/IEC 9075-14:2003). It became an “official” standard in December 2003.
SQL/XML support can be found in DB2 UDB for Linux, Unix and Windows, and in
DB2 for z/OS V8.

One of the goals of SQL/XML is to provide a rich set of XML operations to permit
XML data to be accessed/generated from within SQL. The SQL/XML functions
discussed earlier are designed precisely to help achieve this goal of constructing
XML values and persisting them within the XML data type.

Because the standardization work for the XML data type is not yet finalized
(although a first “attempt” is part of the aforementioned standard, but is likely to
change in the near future), DB2 has not yet implemented a native XML data type
at the time of writing of this publication.

 Chapter 8. Publishing data as XML 219

However, DB2 is able to support the SQL/XML functions without a true XML data
type. To overcome this problem, DB2 returns the XML values as an internal data
type, and the function XML2CLOB enables client applications to transform them
from the internal data type to a CLOB, and to process the XML result as a CLOB
data type.

Valid values for the XML data type include:

� An element
� An XMLforest of elements
� The textual content of an element
� An empty XML value

Until DB2 UDB for Linux, UNIX, and Windows V8.2, XML2CLOB was the only
supported operation to convert (serialize) an XML data type value to a string data
type value. Serialization is the inverse operation of parsing; it is the process of
converting a parsed XML value into a textual XML value.

A new standard SQL/XML function, XMLSERIALIZE (with the CONTENT option)
will be introduced in DB2 UDB for Linux, UNIX and Windows V8.2 (still under
development at the time of writing of this publication). It will allow you to convert
an XML data type value into a result string data type that is appropriate for the
length of the XML output. XMLSERIALIZE converts an XML expression into an
SQL string value which, in turn, can be bound out to host character variables.
With XMLSERIALIZE (Figure 8-3), you can specify a result type like CHAR or
VARCHAR, which might be more appropriate and result in better performance
than CLOB.

Figure 8-3 XMLSERIALIZE syntax diagram

The CONTENT option specifies that the value of XML-value-function can consist
of more than one top-level element. Example 8-13 on page 221 shows the use of
the XMLSERIALIZE function instead of XML2CLOB.

XMLSERIALIZE:

 XMLSERIALIZE (CONTENT CHAR (integer)) XML-value-function AS

 VARCHAR (integer)

 CLOB (integer K/M/G)
 XML-value-function:

 XML-agg-function

 XML-element-function

 XML-concat-function

 XML-forest-function

220 XML for DB2 Information Integration

Example 8-13 Using XMLSERIALIZE

SELECT XMLSERIALIZE(CONTENT XMLELEMENT(NAME "Emp_Exempt",
XMLATTRIBUTES(e.firstnme,

e.lastname AS "Lastname",
e.midinit)) AS CLOB) AS "Result"

FROM employee e
WHERE e.lastname=’GEYER’

Example 8-14 shows the result of the previous query.

Example 8-14 Result of XMLSERIALIZE

<Emp_Exempt
FIRSTNME="JOHN"
Lastname="GEYER"
MIDINIT="B">

</Emp_Exempt>

8.2 Publishing data with XML Extender
As an alternative to publishing (creating) XML using SQL/XML, you can use DB2
XML Extender to create XML documents from data that is stored in relational
tables.

In this section we use the samples supplied with DB2 XML Extender. You can
find these in the [install directory]\samples\db2xml, where [install directory] is
your DB2 install directory.

To use these examples we create and enable the SALES_DB database as
follows:

1. Open a DB2 Command Window

2. Run the following commands to create the SALES_DB database, where
[install directory] refers to the directory where DB2 is installed; the
default for Windows is c:\program files\ibm\sqllib.

cd \[install directory]\sample\db2xml\cmd\, and press Enter
getstart_db, and press Enter

3. Now we need to prepare the database for the XML Extender stored
procedures and DB2 CLI by running:

 Chapter 8. Publishing data as XML 221

getstart_prep

The tables (Table 8-1 through Table 8-3) that are created, are structured as
follows.

Table 8-1 ORDER _TAB

Table 8-2 PART_TAB

Table 8-3 SHIP_TAB

8.2.1 DAD files
DB2 XML Extender uses Document Access Definition (DAD) files. The DAD is an
XML formatted document. The DAD is used for a number of different things
within XML Extender. It allows you to associate XML document structure with a
DB2 database. The structure of a DAD file is different when using an XML

Column name Data type

ORDER_KEY INTEGER

CUSTOMER VARCHAR(16)

CUSTOMER_NAME VARCHAR(16)

CUSTOMER_EMAIL VARCHAR(16)

Column name Data type

PART_KEY INTEGER

COLOR CHAR(6)

QUANTITY INTEGER

PRICE DECIMAL(10,2)

TAX REAL

ORDER_KEY INTEGER

Column name Data type

DATE DATE

MODE CHAR(6)

COMMENT VARCHAR(128)

PART_KEY INTEGER

222 XML for DB2 Information Integration

column or an XML collection. When publishing XML data with DB2 XML
Extender, the DAD file is used to map the relational data to an XML document
(structure).

8.2.2 Publishing XML documents using a DAD file
When publishing XML data via XML Extender ‘s DAD files, you can use two
different notations in the DAD file to describe the mapping between relational and
XML data.

� SQL Composition: This notation uses an SQL SELECT statement, followed
by instructions on how the resulting rows should be tagged as XML

� RDB (relational database) Node: This notation includes a list of the tables
whose contents is to be tagged as XML, together with the primary foreign key
relationships between the tables. The list of tables is followed by instructions
on how the contents (or more typically a subset of the contents) should be
tagged as XML.

Hereafter we discuss the construction of XML data using DAD files. We describe
seven steps to consider when generating a DAD for publishing XML data.

1. Scoping the document content

2. Shaping the document structure

3. Mapping the relational content to the document

4. Controlling the number of documents generated

5. Outputting document header information

6. Validating the generated documents

7. Transforming the generated documents (for example, to HTML)

The steps we describe can be used to produce the following XML document from
relational data (Example 8-15):

Example 8-15 Generated XML fragment

<order id=”4711”>
<signdate>2002-03-18</signdate>
<amount>24000</amount>

</order>
<order id=”4712”>

<signdate>2002-03-19</signdate>
<amount>44000</amount>

</order>

 Chapter 8. Publishing data as XML 223

General constructs in DAD files used for XML publishing
A DAD itself is also an XML document. To be valid it has to adhere to the DTD for
DADs. Here are some general things that you must code in every DAD that is
used to generate XML documents from relational data (XML publishing).

� Create the DAD header

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\progra~1\ibm\sqllib\samples\db2xml\dtd\dad.dtd">

� Insert the <DAD> and </DAD> tag. This element will contain all the other
elements that make up the DAD.

� Insert the <validation> and </validation> tag to indicate whether DB2 XML
Extender validates the XML document using the DTD in the DTD repository
table (DTD_REF). Either specify:

– <validation>NO</validation> ,if you do not want to validate

– <validation>YES</validation>, if you intended to validate

Validation is usually recommended, especially when you are exchanging
information, and the other party expects the XML document to adhere to a
certain structure (DTD). In our example, we decided to keep it simple and not
use validation. Otherwise we would have had to create a DTD as well.

� Insert the <Xcollection> and </Xcollection> tags to specify the access and
storage method as XML collection. XML Extender publishing functions using
a DAD all use Xcollection (indicating that the data is stored in a collection of
relational tables). All the other tags of the DAD go between the <Xcollection>
and </Xcollection> tag.

1. Scoping the content of the generated documents
As mentioned above, there are two ways to ‘code’ DAD files for XML publishing:

� SQL composition
� RDB node mapping

Using an SQL composition DAD
The first part of the SQL composition DAD contains an SQL SELECT statement
that retrieves all the rows and columns that are required in the XML document
that we want to generate. The SQL statement is a regular SQL statement and
can include join operations, subselects and SQL functions, as shown in
Example 8-16 on page 225. The SQL statement is specified between the
<SQL_stmt> and </SQL_stmt> tag.

224 XML for DB2 Information Integration

Example 8-16 SQL statement in a DAD file

<SQL_stmt>
SELECT o.order_key,customer_name,customer_email,p.part_key,color,

quantity,price,tax,ship_id,date,mode
FROM order_tab o,part_tab p,

table(select substr(char(timestamp(generate_unique())),16) as ship_id
,date,mode,part_key

from ship_tab) s
WHERE o.order_key = 1 and

p.price > 20000 and
p.order_key =o.order_key and
s.part_key =p.part_key

ORDER BY order_key,part_key,ship_id
</SQL_stmt>

Use the following guidelines when creating the SQL statement:

� Columns are specified in top-down order, by the hierarchy of the XML
document structure

� The columns from the DB2 tables that will make up the an entity in the XML
document are grouped together, and each group has an ‘object ID’ (candidate
key) column; order_key, part_key, ship_id. The ‘object ID’ column is the first
column in each group. For example, o.order_key precedes the columns
related to the order element and p.part_key precedes columns for the part
element. The SHIP_TAB table does not have a single key column, and
therefore, the generate_unique DB2 built-in function is used to generate the
ship_id column.

� The ‘object ID’ columns are then listed in top-down order in an ORDER BY
statement.

Using a RDB_node mapping DAD
When using RDB_node mapping, the top element_node in the DAD file
represents the root element of the XML document. Specify an RDB_node (using
the <RDB_node> and </RDB_node> tags) for the top element_node as follows:

Note: As you can see, RDB_node mapping uses the <RDB_node> tag instead
of the <SQL_stmt> tag that is used for SQL statement mapping. In contrast to
SQL statement DAD files, where the <SQL_stmt> tag is only used when
specifying the SQL statement that makes up the XML document, RDB_node
DAD files use the <RDB_node> tag also when defining elements and attributes.
This is explained in more detail in the upcoming sections.

 Chapter 8. Publishing data as XML 225

� Specify all tables that are associated with the XML document. The top
element RDB_node contains a list of tables whose rows form the content of
the generated document. The key relationships between the tables are listed
here; the scoping portion of the DAD. Example 8-17 specifies three tables in
the RDB_node of the element_node <Order>, which is the top element_node.

Example 8-17 RDB_node tables and conditions

<element_node name="Order">
<RDB_node>

<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>

<condition>order_tab.order_key=part_tab.order_key AND
part_tab.part_key=ship_tab.part_key </condition>

</RDB_node>

� Use the orderBy attribute to recompose XML documents containing elements
or attributes with multiple occurrence back to their original structure. This
attribute allows you to specify the name of a column that will be used to
preserve the order of the document. The orderBy attribute is part of the table
element in the DAD file, and it is an optional attribute.

As you can see we only specified the join condition in the previous example. A
condition can be added to restrict the documents generated. For example, to see
only those that have an ‘open’ status, we can insert the following check into the
DAD:

<condition>status=’open’</condition>

2. Shaping the structure of the generated documents
For both the SQL composition DAD and RDB_node DAD, the shape of the
output document is governed by the structural tag layout in the second part of the
DAD. Multiple hierarchies can be generated in a single document, and the way
elements repeat can be controlled. Example 8-18 shows this for an SQL
composition DAD.

Example 8-18 Shaping the structure of the XML document

Note: While DAD files using SQL statement mapping are only used for XML
publishing, DAD files using RDB_node mapping can also be used for
shredding. They are called bi-directional. In this chapter we only discuss the
XML publishing capabilities of a DAD file using RDB_node mapping.

226 XML for DB2 Information Integration

<root_node>
<element_node name=”order”>

<attribute_node name=”id”>
<column name=”id”/>

</attribute_node>
<element_node name=”signdate”>

<text_node>
<column name=”cdate”/>

</text_node>
</element_node>
<element_node name=”amount”>

<text_node>
<column name=”total”/>

</text_node>
</element_node>

</element_node>
</root_node>

Shape the XML document structure using the following types of nodes:

element_node
Specifies an element in the XML document. element_nodes can have child
element_nodes.

attribute_node
Specifies the attribute of an element in the XML document.

Follow these guidelines for each type of node.

� For each element in the XML document, define an <element_node> tag with
the name attribute (name=) set to the element’s name, as shown in
Example 8-19.

Example 8-19 Adding element_node tags

<root_node>
<element_node name="Order">

<element_node name="Customer">
<element_node name="Name">
</element_node>
<element_node name="Email">
</element_node>

</element_node>
...
</element_node>
</root_node>

 Chapter 8. Publishing data as XML 227

� For each attribute in the XML document define an <attribute_node> tag with
the name attribute (name=) set to the attribute’s name. The attribute_node
elements are nested in their element_node (see Example 8-20).

Example 8-20 Adding attribute_node tags

<root_node>
<element_node name="Order">

<attribute_node name="key">
</attribute_node>

<element_node name="Customer">
...

3. Mapping the relational content to XML
For both the SQL composition DAD and RDB _node DAD, the mapping is
governed by instructions that appear alongside the structural tags in the second
part of the DAD by specifying text_node and column tags.

SQL statement mapping DAD files
To map the relational data to XML we use the following constructs:

text_node
Specifies the text content of the element and the column data in a relational table
for bottom-level element_nodes.

column tags
Specifies the DB2 column name that is to be used for the XML element or
attribute.

To do the mapping we use the following technique:

� For each element at the lowest level, define <text_node> tags indicating that
the element contains character data to be extracted from DB2 when
composing the document (see Example 8-21).

Example 8-21 Adding text_nodes

<root_node>
<element_node name="Order">

<attribute_node name="key">
</attribute_node>

<element_node name="Customer">

228 XML for DB2 Information Integration

<element_node name="Name">
<text_node>
</text_node>

</element_node>
<element_node name="Email">

<text_node>
</text_node>

</element_node>
</element_node>
...

� For each bottom-level element_node, define a <column> tag. These tags
specify from which DB2 column (either an actual table column, or an assigned
column name in the query) to extract data when composing the XML
document. <column> tags are typically inside the <attribute_node> or the
<text_node> tags (see Example 8-22). Remember, the columns defined here
must be in the <SQL_stmt> SELECT clause when using the SQL statement
mapping.

Example 8-22 Adding column tags

<root_node>
<element_node name="Order">

<attribute_node name="key">
<column name="order_key"/> <!-in an attribute node->

</attribute_node>
<element_node name="Customer">

<element_node name="Name">
<text_node>

<column name="customer_name"/> <!-in a text node->
</text_node>

</element_node>
<element_node name="Email">

<text_node>
<column name="customer_email"/>

</text_node>
</element_node>

</element_node>
<...

RDB_node DAD files
When using RDB_node mapping, you need to specify an RDB_node for each
attribute_node to specify from which table and which column and query condition
to use to get the data.

 Chapter 8. Publishing data as XML 229

RDB_node
Specifies that we are doing RDB_node mapping for elements and attributes.

text_node
Specifies the text content of the element and the column data in a relational table
for bottom-level element_nodes.

table tag
Specifies the table that the values are to be extracted from.

column tag
Specifies the column name in the table the value of the attribute or element is
extracted from.

Attribute mapping
� When using RDB_node DAD files and we need to map an XML attribute, we

specify the table name and column name having the required data using a
<table> and <column> tag respectively. Both tags have to be specified inside
an <RDB_node> tag, as shown in Example 8-23.

Example 8-23 Attribute mapping with RDB_node

<element_node name="Part">
<attribute_node name="Key">

<RDB_node>
<table name="part_tab"/>
<column name="part_key"/>

</RDB_node>
</attribute_node>

Element mapping using text_node
� You need to define an RDB_node for each text_node (representing an XML

element), and specify from which table (using the <table> tag) and which
column (using the <column> tag to get the data from.

� You can optionally specify a query condition (using a <condition> tag) to filter
some of the data. Example 8-24 shows how to code the RDB_node inside a
text_node.

Example 8-24 RDB_node in a text_node

<element_node name="ExtendedPrice">
<text_node>

230 XML for DB2 Information Integration

<RDB_node>
<table name="part_tab"/>
<column name="price"/>
<condition>price >2500.00</condition>

</RDB_node>
</text_node>

</element_node>

4. Controlling the number of documents generated
All the elements and attributes that make up the XML document are specified
within a so called root_node. Therefore you must add Add the <root_node>
</root_node> tags to define the root element.

You must specify a child element under the root_node, which can only be used
once. The element_node under the root_node is actually the root_node of the
XML document.

� For SQL composition, the number of documents that a DAD produces can be
controlled by the SQL statement in the DAD. The number of documents
produced is equal to the number of rows grouped by the first grouping
expression.

� For RDB_node, the number of documents produced can be controlled by the
options supplied on the root element in the DAD.

Example 8-25 shows how to produce a single document by adding a highest
level ‘grouping it all together’ <orders> tag.

Example 8-25 Producing a single XML document

<orders>
<order id=“4711”>

<signdate>2002-03-18</signdate>
<amount>24000</amount>

</order>
<order id=“4712”>

<signdate>2002-03-19</signdate>
<amount>44000</amount>

</order>
</orders>

When certain elements can occur multiple times at the same level within the XML
document, you must specify the multi_occurrence attribute and set its value to

 Chapter 8. Publishing data as XML 231

yes. This is shown in Example 8-26 for the shipment element, as there can be
more than one shipment per part.

Example 8-26 DAD file for an XML collection using SQL mapping

<root_node>
<element_node name="Order">

<attribute_node name="key">
<column name="order_key"/>

</attribute_node>
<element_node name="Customer">

<element_node name="Name">
<text_node><column name="customer_name"/></text_node>

</element_node>
<element_node name="Email">

<text_node><column name="customer_email"/></text_node>
</element_node>

</element_node>
<element_node name="Part">

<attribute_node name="color">
<column name="color"/>

</attribute_node>
<element_node name="key">

<text_node><column name="part_key"/></text_node>
</element_node>
<element_node name="Quantity">

<text_node><column name="quantity"/></text_node>
</element_node>
<element_node name="ExtendedPrice">

<text_node><column name="price"/></text_node>
</element_node>
<element_node name="Tax">

<text_node><column name="tax"/></text_node>
</element_node>
<element_node name="Shipment" multi_occurrence="YES">

<element_node name="ShipDate">
<text_node><column name="date"/></text_node>

</element_node>
<element_node name="ShipMode">

<text_node><column name="mode"/></text_node>
</element_node>

</element_node>
</element_node>

</element_node>
</root_node>

232 XML for DB2 Information Integration

Note that there should not be more than one order that is returned by DB2, as we
did not specify multi_occurrence=”yes” on the Order element. If that is the case,
we have to change multi_occurrence to yes, and add an extra level to the
document, just under the root_node, for example <orders> (note the ’s’ at the
end).Example 8-27 shows how the option is specified.

Example 8-27 Using multi-occurrence

<root_node>
<element_node name=“orders”>

<element_node name="Order" multi_occurrence=“yes”>
...

5. Outputting document header information
Header information such as XML declarations, DTD references, and processing
instructions can be generated through statements in the DAD. Following is an
example of how to do so (Example 8-28).

Example 8-28 Specifying header information

<prolog>?xml version“1.0”?</prolog>
<doctype>

!DOCTYPE Order SYSTEM “orders.dtd”
</doctype>

6. Validating the generated documents
For both SQL composition and RDB_node mapping, it is possible to validate the
generated documents against an XML Schema or a DTD. For XML document
validation there are three options:

� Use the validation option in the DAD as follows:

<dtdid>order.dtd</dtdid>
<validation>yes</validation>

DB2 XML Extender will perform the validation against the specified DTD
stored in the file system, or stored in a special table called the DTD_REF
table.

� Use the dvalidate() user-defined function (UDF), as follows:

db2xml.dvalidate(doc, dtd)

� For Schema validation, the svalidate() UDF is available, as follows:

 Chapter 8. Publishing data as XML 233

db2xml.svalidate(doc, xmlschema)

7. Transforming the generated documents
It is possible to apply further transformations to the generated documents, for
example to convert an XML document into HTML.

There are a number of ways to do transformation.

� Place an XSL processing instruction in the header information.

� Use DB2 XML Extender supplied XSLT UDFs, as follows:

XSLTransformToClob(xmldoc, stylesheet, parameters, validate)

More information about transformation can be found in 9.2, “Validation” on
page 259.

In the previous sections we only showed DAD fragments. Let us now look at two
complete DAD files, one using SQL Composition DAD (Example 8-29),

Example 8-29 Full SQL composition DAD

<?xml version“1.0”?>
<!DOCTYPE DAD SYSTEM “dad.dtd”>
<DAD>

<validation>no</validation>
<Xcollection>

<SQL_stmt>
SELECT

o.oid AS id,
o.contractdate AS cdate,
SUM(oi.orderitem) AS total,

FROM orders AS o, orderItems AS oi
WHERE oi.oid o.oid AND status ‘open’
ORDER BY id;

</SQL_stmt>
<prolog>?xml version”1.0”?</prolog>
<doctype>

!DOCTYPE Order SYSTEM gorders.dtdh
</doctype>
<root_node>

<element_node name=”order”>
<attribute_node name=”id”>
<column name=”id”/>
</attribute_node>

<element_node name=”signdate”>
<text_node>

<column name=”cdate”/>
</text_node>

234 XML for DB2 Information Integration

</element_node>
<element_node name=”amount”>

<text_node>
<column name=”total”/>

</text_node>
</element_node>
</element_node>

</root_node>
</Xcollection>

</DAD>

and a complete DAD file using RDB_node mapping (Example 8-30).

Example 8-30 DAD file for an XML Collection using RDB node mapping

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "c:\dxx\dtd\dad.dtd>
<DAD>

<dtdid>c:\examples\dtd\lineItem.dtd</dtdid>
<validation>YES</validation>

<Xcollection>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Order SYSTEM "C:\examples\dad\order.dtd"</doctype>

<root_node>
<element_node name="Order">

<RDB_node>
<table name="order_tab"/>
<table name="part_tab"/>
<table name="ship_tab"/>
<condition>order_tab.order_key=part_tab.order_key AND

part_tab.part_key=ship_tab.part_key </condition>
</RDB_node>
<attribute_node name="Key">

<RDB_node>
<table name="order_tab"/>
<column name="order_key"/>

</RDB_node>
</attribute_node>
<element_node name="Customer">

<element_node name="Name">
<text_node>

<RDB_node>
<table name="order_tab"/>
<column name="customer_name"/>

</RDB_node>
</text_node>

</element_node>

 Chapter 8. Publishing data as XML 235

<element_node name="Email">
<text_node>

<RDB_node>
<table name="order_tab"/>
<column name="customer_email"/>

</RDB_node>
</text_node>

</element_node>
</element_node>
<element_node name="Part">

<attribute_node name="Key">
<RDB_node>

<table name="part_tab"/>
<column name="part_key"/>

</RDB_node>
</attribute_node>
<element_node name="ExtendedPrice">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="price"/>
<condition>price >2500.00</condition>

</RDB_node>
</text_node>

</element_node>
<element_node name="Tax">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="tax"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Quantity">

<text_node>
<RDB_node>

<table name="part_tab"/>
<column name="qty"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Shipment"multi_occurrence="YES">

<element_node name="ShipDate">
<text_node>

<RDB_node>
<table name="ship_tab"/>
<column name="date"/>
<condition>date >'1966-01-01 '</condition>

</RDB_node>

236 XML for DB2 Information Integration

</text_node>
</element_node>
<element_node name="ShipMode">

<text_node>
<RDB_node>

<table name="ship_tab"/>
<column name="mode"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Comment">

<text_node>
<RDB_node>

<table name="ship_tab"/>
<column name="comment"/>

</RDB_node>
</text_node>

</element_node>
</element_node><!--end of element Shipment-->

</element_node><!--end of element Part -->
</element_node><!--end of element Order -->

</root_node>
</Xcollection>
</DAD>

8.2.3 DB2 XML Extender publishing stored procedures
DB2 XML Extender provides four stored procedures to compose XML
documents from relational data. The frequency with which you plan to update the
XML document is a key factor in selecting the stored procedure that you should
use.

� dxxGenXML()
� dxxGenXMLCLOB()
� dxxRetrieveXML()
� dxxRetrieveXMLCLOB()

dxxGenXML and dxxGenXMLCLOB
The dxxGenXML stored procedure constructs XML documents using data that is
stored in relational tables, which are specified by the <Xcollection> element in
the DAD file. This stored procedure inserts each XML document as a row into a
results table. You can also open a cursor on the results table and fetch the result
set. The results table should be created by the application and should have one
VARCHAR, CLOB, XMLVARCHAR, or XMLCLOB column.

 Chapter 8. Publishing data as XML 237

Additionally, if the DAD file contains a <validation> element with a value of YES,
DB2 XML Extender adds the DXX_VALID column (data type INTEGER) to the
results table (if the DXX_VALID column is not in the table yet). DB2 XML
Extender inserts a value of 1 for a valid XML document, and 0 for an invalid
document. into the DXX_VALID column.

The dxxGenXML stored procedure also allows to specify the maximum number
of rows that are to be generated in the results table. This can shorten processing
time. The stored procedure returns the actual number of rows in the table, along
with any return codes and messages.

The declaration for the dxxGenXML stored procedure follows:

dxxGenXML(DAD CLOB(100K)DAD, /*input */
resultTabName char(UDB_SIZE), /*input */
overrideType integer, /*input */
override varchar(1024), /*input */
maxRows integer, /*input */
numRows integer, /*output */
returnCode long, /*output */
returnMsg varchar(1024)) /*output */

Example 8-31 shows an example of how to call the dxxgenxml stored procedure.
It is un against the SALES_DB sample XML Extender database.

Example 8-31 Sample usage of dxxGenXML()

call
db2xml.dxxgenxml(db2xml.xmlclobfromfile('C:\IBM\SQLLIB\samples\db2xml\dad\

getstart_xcollection.dad'
),

'result_tab',
0,
'',
200,
?,
?,
?)

Let’s walk though the call statement’s parameters. The first thing to notice it that
we need to use a DB2 Extender function (XMLCLOBFROMFILE) to include the DAD
file from the file system. This function takes a file and converts it into a CLOB.
result_tab is the table the XML document is to be written to. Next we assign an
override type parameter, and the override text. More details can be found in
“Dynamically overriding values in the DAD file” on page 242. We then provide the

238 XML for DB2 Information Integration

number of records we want to return. Finally we assign place holders for the
three output parameters.

If we run a select statement on the result_tab table, DB2 returns the following
result (Example 8-32):

Example 8-32 Result of dxxGenXML

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "C:\Program
Files\IBM\SQLLIB\samples\db2xml\dtd\getstart.dtd">
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 <Part color="black ">
 <key>68</key>
 <Quantity>36</Quantity>
 <ExtendedPrice>34850.16</ExtendedPrice>
 <Tax>6.000000E-002</Tax>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 </Part>
 <Part color="red ">
 <key>128</key>
 <Quantity>28</Quantity>
 <ExtendedPrice>38000.00</ExtendedPrice>
 <Tax>7.000000E-002</Tax>
 <Shipment>
 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 <Shipment>

 Chapter 8. Publishing data as XML 239

 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 </Part>
</Order>

If your document is only generated occasionally, use the dxxGenXML stored
procedure to compose the document. You do not have to enable an XML
collection to use this stored procedure. It uses a DAD file as input.

dxxRetrieveXML dxxRetrieveXMLCLOB
The dxxRetrieveXML stored procedure works the same way as the dxxGenXML
stored procedure, except that it uses the name of an enabled XML collection
instead of a DAD file as input. When an XML collection is enabled, a DAD file is
stored in the XML_USAGE table. Therefore, DB2 XML Extender retrieves the
DAD file, and uses it to compose the document in the same way as the
dxxGenXML stored procedure.

The definition of the dxxRetrieveXML stored procedure is as follows:

dxxRetrieveXML(collectionName char(UDB_SIZE), /*input */
resultTabName char(UDB_SIZE), /*input */
overrideType integer, /*input */
override varchar(1024), /*input */
maxRows integer, /*input */
numRows integer, /*output */
returnCode long, /*output */
returnMsg varchar(1024)) /*output */

Let us now take a look at an example of composing an XML document using the
dxxRetrieveXML stored procedure. We use the SALES_DB database again.

If you ran the example for the dxxGenXML stored procedure before, you need to
delete the records from the result_tab. You can do so from the DB2 Command
Window using the following SQL statement:

db2 delete from result_tab where doc is not null

Now that the results table is empty we can prepare the database to run this
example. As mentioned before, dxxRetrieveXML requires you to have an XML
collection. To enable an XML collection, run the following commend from a DB2
Command Window:

dxxadm enable_collection sales_db Orders
[install directory]\samples\db2xml\dad\getstart_xcollection.dad

240 XML for DB2 Information Integration

-l resident -p bartr

The collection name is ‘Orders’ (the name is case sensitive).

Example 8-33 shows how to invoke the dxxRetreiveXML() stored procedure to
generate an XML document based on an XML Extender collection name.

Example 8-33 Using dxxRetrieveXML

call
db2xml.dxxRetrieveXML('Orders','result_tab',0,'NO_OVERRIDE',1000,?,?,?)

Notice that the call statement for dxxRetrieveXML is similar to the dxxGenXML
stored procedure call statement. In this case we do not have to cast the DAD file
to an XMLCLOB because the DAD file is stored in the DB2 database when it
XML Extender collection enabled. dxxRetrivevXML manages to find the
associated DAD file via the name of the XML collection (Orders). result_tab is the
table the XML documents are to be written to. Next, we indicate that we do not
want to override a parameter and override text. Overwrites are described in more
detail in “Dynamically overriding values in the DAD file” on page 242. We then
provide the number of records we want to return. Finally, we assign place holders
for the three output parameters.

If we now run a select statement on the result_tab table, we return the following
result (Example 8-34)

Example 8-34 Result from dxxRetrieve() retrieved from the result_table

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM

"C:\ProgramFiles\IBM\SQLLIB\samples\db2xml\dtd\getstart.dtd">
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 <Part color="black ">
 <key>68</key>
 <Quantity>36</Quantity>
 <ExtendedPrice>34850.16</ExtendedPrice>
 <Tax>6.000000E-002</Tax>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>

 Chapter 8. Publishing data as XML 241

 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>BOAT </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-08-19</ShipDate>
 <ShipMode>AIR </ShipMode>
 </Shipment>
 </Part>
 <Part color="red ">
 <key>128</key>
 <Quantity>28</Quantity>
 <ExtendedPrice>38000.00</ExtendedPrice>
 <Tax>7.000000E-002</Tax>
 <Shipment>
 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 <Shipment>
 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 </Part>
</Order>

If your document is updated frequently, use the dxxRetrieveXML stored
procedure to compose the document. Because the same tasks are repeated,
improved performance is important.

Dynamically overriding values in the DAD file
For dynamic queries we can use two parameters in the dxxGenXML stored
procedure to override conditions in the DAD file. The parameters we use to
override conditions are the overrideType and override parameters. These
parameters have the following values and rules:

overrideType
This parameter is a required input parameter (IN) that flags the type of the
override parameter. overrideType has the following values:

� NO_OVERRIDE Specifies not to override a condition in the DAD file

242 XML for DB2 Information Integration

� SQL_OVERRIDE: Specifies to override a condition in the DAD file with an
SQL statement

� XML_OVERRIDE: Specifies to override a condition in the DAD file with
RDB_node mapping using an XPath-based condition

When calling a composition stored procedure, the override type parameter has to
be set to 0 for NO_OVERRIDE, 1 for SQL_OVERRIDE and 2 for
XML_OVERRIDE.

override
This parameter is an optional input parameter (IN) that specifies the override
condition for the DAD file. The input value syntax corresponds to the value
specified on the overrideType.

� If you specify NO_OVERRIDE, the input value is a NULL string.

� If you specify SQL_OVERRIDE, the input value is a valid SQL statement. If
you use SQL_OVERRIDE and an SQL statement, you must use the SQL
mapping scheme in the DAD file. The input SQL statement overrides the SQL
statement specified by the <SQL_stmt> tag in the DAD file.

� If you use XML_OVERRIDE, the input value is a string which contains one or
more expressions. If you use XML_OVERRIDE and an expression, you must
use the RDB_node mapping scheme in the DAD file. The input XML
expression overrides the RDB_node condition specified in the DAD file. The
expression uses the syntax shown in Figure 8-4 for the XML expression. It is
worth noting that you cannot override the join condition specified in the top
RDB_node. You can only override the condition specified in the element node
(that matches the specified path).

Figure 8-4 XML_OVERRIDE expression syntax

This expression is made up of the following parts:

AND

 Simple location path Value
 >
 =

 <
 <>
 =>
 =<

 Like

 Chapter 8. Publishing data as XML 243

Simple location path
This is a simple location path using the syntax defined by XPath.

Operators
A space can be used to separate the operator from the other parts of the
expression.

Value
This can be a numeric value or a single quoted string.

When the XML_OVERRIDE value is specified, the condition for the RDB_node in
the text_node or attribute_node that matches the simple location path is
overridden by the specified expression. XML_OVERRIDE is not completely
XPath compliant. The simple location path is only used to identify the element or
attribute that is mapped to a column.

Similarly, you can use override when you are using the dxxRetrieveXML stored
procedure.

Let’s take a look at an example using an SQL_OVERRIDE. We use the
SALES_DB that already has an enabled collection. The override principle is the
same for all the XML Extender composition (or publishing) stored procedures.

Example 8-35 shows how to override the SQL statement stored in the DAD file
which lists prices greater than 20000, to only show prices greater than 35000.
The only difference to the dxxGenXML statement in Example 8-31 on page 238
is that the “overrideType” parameter is set to 1, and the statement is included in
the “override” parameter.

Example 8-35 dxxGenXML using SQL_OVERRIDE

call
db2xml.dxxGenXML(
db2xml.xmlclobfromfile('C:\Program Files\IBM\SQLLIB\samples\

db2xml\dad\getstart_xcollection.dad'),
'result_tab',
1,
'SELECT o.order_key, customer_name, customer_email, p.part_key,color,

quantity, price, tax, ship_id, date, mode
FROM order_tab o, part_tab p,

table(select substr(char(timestamp(generate_unique())),16) as ship_id,
date, mode, part_key

from ship_tab) s
WHERE o.order_key = 1 and p.price > 35000 and

p.order_key = o.order_key and
s.part_key = p.part_key

244 XML for DB2 Information Integration

ORDER BY order_key, part_key, ship_id',
1000,?,?,?)

The result returned from this statement looks like Example 8-36:

Example 8-36 Result of dxxGenXML() with override

<?xml version="1.0"?>
<!DOCTYPE Order SYSTEM "C:\Program Files\IBM\SQLLIB\samples\db2xml\

dtd\getstart.dtd">
<Order key="1">
 <Customer>
 <Name>American Motors</Name>
 <Email>parts@am.com</Email>
 </Customer>
 <Part color="red ">
 <key>128</key>
 <Quantity>28</Quantity>
 <ExtendedPrice>38000.00</ExtendedPrice>
 <Tax>7.000000E-002</Tax>
 <Shipment>
 <ShipDate>1998-12-30</ShipDate>
 <ShipMode>TRUCK </ShipMode>
 </Shipment>
 </Part>
</Order>

Notice that the returned XML document only shows orders with a price over
35000.

8.2.4 Writing your own code to publish data as XML
DB2 provides many facilities to publish XML documents, either through its native
SQL/XML publishing functions, or via DB2 XML Extender. Using these facilities,
you should be able to build whole XML documents, or XML fragments. Unless
there is an XML structure you are unable to produce using the supplied
functions, it is best to avoid building your own publishing applications.

8.3 Best practices
The preferred tool for XML publishing is using SQL/XML. Generally speaking, it
is more flexible and versatile than the DB2 XML Extender publishing functions.

 Chapter 8. Publishing data as XML 245

However, if for some reason you cannot use SQL/XML to get the job done, you
can try to accomplish your goal using XML Extender, and as a last resort, if XML
Extender is also not up to the job, write your own application to publish relational
data as XML.

8.3.1 SQL/XML
There are a few limitations in SQL/XML that you should be aware of, and that
can determine whether or not to use these functions during XML publishing. The
major limitations we found with SQL/XML during the writing of this chapter are:

� On the distributed platforms (Linux, Unix and Windows) using DB2 V8 Fixpak
4, when using the XMLAGG function we are unable to use a subselect
statement. This is supported on the zSeries® platform. Therefore, we are
unable to produce Example 8-11 on page 216 on DB2 for LUW.

� When writing a SQL/XML statement and prefixing it with the DB2 command,
you must escape double quotation marks bordering element and attribute
names. If you run the statement without escaping the quotes, DB2 returns all
element and attribute names in upper case. Example 8-37 shows a statement
using correct escaping of the double quotes.

Scripts produce the correct result without the escape characters.

Example 8-37 Escaping element and attribute names

SELECT xml2clob(
XMLELEMENT (NAME \"EmployeeSalary\",

XMLATTRIBUTES (e.empno AS \"id\"),
XMLELEMENT (NAME \"Firstname\", e.firstnme),
XMLELEMENT (NAME \"Lastname\", e.lastname),
XMLELEMENT (NAME \"TotalSalary\",(e.salary+e.bonus+e.comm)
)

)
)

FROM employee e WHERE SEX = 'F'

8.3.2 XML Extender
When publishing using DB2 XML Extender, we need to be diligent and plan our
publishing method based on the recommendations in the section 8.2.3, “DB2
XML Extender publishing stored procedures” on page 237. This governs which
stored procedures you will use to generate your document.

246 XML for DB2 Information Integration

Chapter 9. Additional XML functionality

This chapter describes additional XML functionality, such as:

� Transformation of XML documents using XSL and SAX
� Validation of XML documents and DAD files
� Importing and exporting XML documents using DB2 XML Extender UDFs

9

© Copyright IBM Corp. 2004. All rights reserved. 247

9.1 Transformation
In general, there are two commonly used techniques to transform XML
documents. The first one is to use the Extensible Stylesheet Language (XSL).
The second one is to use the Simple API for XML, better know as SAX.

9.1.1 XSL, stylesheets and transformation
A stylesheet, in a generic sense, guides the transformation of data from one
format to another. Extensible Stylesheet Language or XSL is the language for
expressing stylesheets in XML. XSL helps in restructuring, restyling, or
converting XML data to another form.

XSL consists of three parts:

� XSLT, the language for transforming XML documents based on rule matching
� XPath, an expression language used by XSLT for addressing parts of an XML

document
� XSL Formatting Objects, an XML vocabulary for specifying formatting

semantics

Figure 9-1 on page 249 gives an overview of how XSL works.

The source XML document that needs to be transformed is supplied to an XSLT
engine. The XSLT engine refers to the transformation rules specified in XSLT
and identifies the XML nodes from the source XML document. It then performs
actions/transformations specified in the action part of the transformation rules on
these identified XML nodes. The application of actions on all such XML nodes of
the source XML document results in the transformed document. This
transformed document can be another XML document or any other type of
document.

If this transformed document needs to be formatted, it is further passed to the
formatting engine. The formatting engine reads the formatting rules from the
supplied formatting document written in XSL-FO and applies the rules to the
transformed document. The formatting engine can use other resources such as
images and fonts to create the formatted document.

248 XML for DB2 Information Integration

Figure 9-1 XSL architectural overview

In the database world, XSL is primarily used for restructuring or restyling XML
data. When working with databases you rarely come across situations wherein
you need to apply different formatting mechanisms to the XML data. Hence in
this section we only deal with XSLT.

XSLT uses XML syntax to define the transformation rules (thus, an XSLT
document is a valid XML document). An XSLT document contains one or more
template rules. A template rule consists of a pattern and an action. The pattern
specifies the XML entities or the nodes to which the template rule applies. A
pattern is expressed using XPath expressions. The action part of the template
rule specifies the action to be taken when the pattern matches. The action can be
as simple as outputting some markup, add new data, and/or copy some data out
of the source XML document, or it can be a more complex action.

A typical XSL stylesheet is shown in Example 9-1:

Example 9-1 Simple XSL stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet>
 <!-- other directives -->
 <xsl:template match="title">
 <xsl:apply-templates/>

<XML>
….
….

</XML>

<XML>
….
….

</XML>

<XSLT>
….
….

</XSLT>

<XSLT>
….
….

</XSLT>

XSLT
engine

Transformed
Document

Images and
other resources Formatting

engine

 Chapter 9. Additional XML functionality 249

 <!-- Any other Action element -->
 </xsl:template>
 …

…
</xsl:stylesheet>

The XSLT engine uses both the XML document to be transformed, and the XSLT
stylesheet as input. The engine reads through the XML document and tries to
match the patterns defined in the template rules against each XML node it comes
across. If a pattern matches, its associated action is executed. This is known as
invoking the template rule.

A simple XSL stylesheet
Let us take a sample XML snippet and try to write XSLT rules to transform this
snippet into another XML snippet of our choice. Suppose that an insurance
company ITSO Insurance, Inc. stores the details of its agents in XML in the
following format (Example 9-2):

Example 9-2 Source XML document

<agent id="1234">
 <name> James Bont </name>
 <area> London </area>
</agent>

Now an insurance brokerage firm XYZ Ltd. that caters to many insurance
companies wants to collect details about all the agents of all the companies.
However, the brokerage firm XYZ Ltd. stores the details of each insurance agent
in the following format (Example 9-3):

Example 9-3 Target XML document

<insuranceAgent name="James Bont" location=" London "/>

To transform the XML data stored in ITSO Insurance, Inc., to the format XYZ Ltd.
expects, we can use the following simple XSL stylesheet (Figure 9-4 on
page 251):

250 XML for DB2 Information Integration

Example 9-4 Simple XSL stylesheet

1 <?xml version="1.0"?>
2 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

3 <xsl:template match="/agent" >
4 <xsl:element name="insuranceAgent">
5 <xsl:apply-templates/>
6 </xsl:element>
7 </xsl:template>

8 <xsl:template match="/agent/name">
9 <xsl:attribute name="name">
10 <xsl:apply-templates/>
11 </xsl:attribute>
12 </xsl:template>

13 <xsl:template match="/agent/area">

<xsl:attribute name="location">
<xsl:apply-templates/>

</xsl:attribute>
14 </xsl:template>

Simple stylesheet dissected
Let us now look at Example 9-4, and dissect it line by line to understand how XSL
transformation works.

1 The first line states that the XSL Stylesheet is an XML 1.0 document.

2 An XSL stylesheet contains exactly one <xsl:stylesheet> element and this
encloses the entire stylesheet. In our example it appears on the second line.

3 One or more <xsl:template> elements can appear in a stylesheet. The first
template rule has the XPath expression “/agent” as its matching criteria. This
expression addresses all the <agent> element nodes of the source XML
document. For more information about XPath, you can go to the following
Web site:

http://www.w3.org/TR/xpath

4 Specifies the action to be taken when an <agent> node is encountered in the
source XML document.
As per our transformation requirements (to transform the XML document of
Example 9-2 on page 250 into Example 9-3 on page 250), we have to create
a new XML element, <insuranceAgent>. Then we have to extract the values of
<name> and <area> child elements of the <agent> element, and copy them into
the attributes “name” and “location” respectively of the new <insuranceAgent>
element.

 Chapter 9. Additional XML functionality 251

http://www.w3.org/TR/xpath

To create our new <insuranceAgent> element., we use an XSL directive
<xsl:element>.

5 A very interesting thing is happening in this line. By using
<xsl:apply-templates/>, we are asking the XSLT engine to continue
applying template rules recursively down the hierarchy. If we do not tell this to
the XSLT engine it just does not continue to traverse any children further, and
no templates that are targeted for the children of this node will ever be
invoked. By now you must have started wondering how this template rule
ever got applied, as it is a child of the root node, and we never asked the root
node to apply its template. In fact, we did not define a template rule targeted
for the root node at all! The answer is the following built-in template rule is
defined for the root node:

<xsl:template match="*|/">
 <xsl:apply-templates/>
</xsl:template>

Thus by saying <xsl:apply-templates/> we are ensuring that the XSLT
engine tries to match patterns for <name> and <area> elements as well.

6 After templates are applied to all the children of this node, this line is
executed, and the closing tag for the <insuranceAgent> element is created.

7 This line signifies the end of the first template rule body.

8 Here we encounter the start of a new template rule. This template is targeted
for the <name> element, a child of the <agent> element.

9 Create the “name” attribute.

10 We ask the XSLT engine to apply the templates down the hierarchy again. In
our case, the node down the hierarchy from the <name> node, is a “text” node.
We have a built-in template rule for “text” nodes as well:

<xsl:template match="text() | @*">
 <xsl:value-of select="."/>
</xsl:template

This rule also caters to any attribute value. The action part of this built-in rule
specifies to write the contents of a “text” node to the output XML document.
So with this, we populate the value of the attribute node that we created in the
previous line.

11 This line completes the creation of the XML ”name” attribute node.

12 This line signifies the end of second template rule.

13 The following lines are doing the same as described above; the only change
here is that the name of the attribute node being created, and the name of the
source element node are different, location and area respectively.

14 This line indicates the end of stylesheet.

252 XML for DB2 Information Integration

Running the sample
To run the sample we just discussed, you need an XSLT engine. Apache’s Xalan
is one of the more widely used XSLT engines. It implements XSLT 1.0 and XPath
1.0. It can be used from the command line, in an applet or a servlet, or as a
module in a program. Please refer to the Xalan documentation at:

http://xml.apache.org/xalan-j/ or
http://xml.apache.org/xalan-c/index.html

for further information.

9.1.2 Why transform?
While dealing with XML in databases, there are many situations wherein the XML
data has to be restructured. In some cases, the output format has to change as
well, for example from an XML document into HTML. In this section we look at
some of the candidate scenarios that require such transformations.

Before storing the data into relational tables
In real life scenarios, data comes from various sources and in various formats.
No matter how much we try to standardize the structure of data being exchanged
using XML, we still find minor variations in the ”standard” structures of XML data,
from one source to another. Sometimes, even though the XML data from various
sources conforms to one standard schema, we come across situations where the
structure of the XML data stored in the host database system differs slightly from
the standard for various reasons. In such cases we have to restructure the
incoming XML documents to conform to the host database schema so that it can
be stored.

In some other cases, the database system imposes some restrictions on the
structure of incoming XML data so that it can be decomposed/shredded before
storing the data in relational tables. DB2 XML Extender uses DAD files to guide
the shredding of XML data into relational tables. Prior to DB2 V8.1 FixPak3 or V7
FixPak 11, one of the restrictions imposed by the DAD file was that the incoming
XML document should not contain two elements with the same names, even
though their XPath expressions are different. For example, consider the XML
snippet shown in Example 9-5 on page 254.

 Chapter 9. Additional XML functionality 253

http://xml.apache.org/xalan-j/
http://xml.apache.org/xalan-c/index.html

Example 9-5 Sample XML file

<insurancePolicy id=”1234”>

<insurer>
 <name> Bertram Zooster </name>
 <address> Droney Club </address>
 </insurer>

<nominee>
 <name> Jeevey </name>
 <relationToInsurer> valet </relationToInsurer>
 </nominee>

 <policyDetails>
 ...
 </policyDetails>

</insurancePolicy >

The preceding piece of XML contains two <name> elements. This is perfectly valid
in XML, since the two elements appear under different parent nodes. However,
DB2 XML Extender considers them as duplicate elements. In this case we have
to transform the input XML document before passing it to DB2 XML Extender.
The piece of code given in Example 9-6 on page 255 shows the restructured
XML data. Note that the two <name> elements have been renamed as
<insurance_name> and <nominee_name>.

254 XML for DB2 Information Integration

Example 9-6 Transformed XML document

<insurancePolicy id=”1234”>

 <insurer>
 <insurer_name> Bertram Zooster </insurer_name>
 <address> Droney Club </address>
 </insurer>

 <nominee>
 <nominee_name> Jeevey </nominee_name>
 <relationToInsurer> valet </relationToInsurer>
 </nominee>

 <policyDetails>
 ...
 </policyDetails>

</insurancePolicy >

After publishing the data from relational tables
To retrieve data stored in relational tables and publish it as XML, we can use both
SQL/XML and DB2 XML Extender. SQL/XML statements in case of SQL/XML, or
DAD files in case of DB2 XML Extender, guide the (re)construction of the XML
data from the relational data. However, due to certain limitations, such as those
imposed by the DAD, as we discussed earlier, we end up creating XML
documents that do not conform to the schema the client application is expecting.
In such cases, we can use XSL transformation to restructure the output XML
document.

Also in some cases, we need to present the XML data to a Web client. In this
case we can also use XSL to transform the XML document into HTML just before
returning the results to the Web client.

DB2 XML Extender provides two user-defined functions that perform XSL
transformation on an XML document that is stored as a CLOB object. These help
to transform XML document objects from within the DB2 environment.

� XSLTransformToClob() reads an XML document as a CLOB locator and a
stylesheet as a CLOB or from a file, and returns the document as a CLOB.

� XSLTransformToFile() reads an XML document as a CLOB and a stylesheet
as a CLOB or from a file. The XSLTransformToFile() user-defined
function(UDF) then writes the results from the stylesheet and XML document

 Chapter 9. Additional XML functionality 255

into a file. When a directory and a file extension are given as parameters, the
UDF will create a file with a unique filename in this directory.

9.1.3 Transforming XML documents with SAX
If your transformation is simple and can be performed while reading through the
document from start to finish, then you may be able to write a simple SAX
program to perform the transformation. The advantage of SAX is that it is
generally faster than XSLT and, because it works with documents linearly, it can
be used with arbitrarily large documents.

For example, DAD documents do not allow a leaf element type to be mapped
differently in different contexts. Unfortunately, this is a common occurrence. For
example, an XML schema that describes bibliographies may have several
element types, such as Book, Article, and Paper, that all have the Title element
type as a child. To work around this limitation, you only need to change the name
of the Title element type to a context-dependent name, such as BookTitle,
ArticleTitle, and PaperTitle. Each of these can then be mapped separately.

One way to do this is to create a SAX XMLFilter that changes the names. For
example, the NameChanger sample program takes a list of element type names
to change and a corresponding list of new names to change into. The list of
names to change provides both parent and child names so that NameChanger
can change child names on a per-parent basis.

The following code fragment (Example 9-7 on page 257) is from the NameTester
application. This is a sample application that uses the NameChanger application
to change the names in an XML document depending on their context. This code
accepts the name of XML input and output files, and the names of Java
properties files containing the element type and attribute names to change. The
NameTester and NameChanger applications are available for download. See
Appendix F, “Additional material” on page 655 for details.

Note: An XMLFilter is a SAX program that serves as both a SAX application
and a SAX parser. As a SAX application, it implements the ContentHandler
interface and listens for SAX events. As a SAX parser, it implements the
XMLReader interface and fires new SAX events. What is important about
XMLFilters is that they are not required to fire the same events that they
receive. Thus, they can be used to filter XML documents.

256 XML for DB2 Information Integration

Example 9-7 NameTester code snippet

public void run(String oldXMLFilename, String newXMLFilename,
String elemFilename, String attrFilename)

 throws Exception
{
XMLReader xmlReader;
NameChanger changer;
// 1. Get a new XMLReader and set namespace processing off.
xmlReader = getXMLReader();
xmlReader.setFeature("http://xml.org/sax/features/namespaces", false);
xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",

true);
// 2. Get a new NameChanger and set the ContentHandler to this
// NameTester object.
changer = new NameChanger(xmlReader);
changer.setContentHandler(this);
// 3. Set the new element type and attribute names.
changer.setElementTypeNames(getProperties(elemFilename));
changer.setAttributeNames(getProperties(attrFilename));
// 4. Open the output file for writing, parse the input file, and
// close the output file.
writer = new FileWriter(newXMLFilename);
changer.parse(new InputSource(new FileInputStream(oldXMLFilename)));
writer.close();
}

The code instantiates an XMLReader (1), instantiates a NameChanger and
hooks this up to the XMLReader (2), sets the names to change (3), and opens a
Writer over the output file and calls the parse method on the XMLReader (4).

The actual work is done in the NameChanger code. This simply passes events to
the ContentHandler (in this case, the NameTester application) except that it
checks if the current element type name or attribute name is supposed to be
changed when that element type or attribute occurs in the current parent.

For example, here is the code for startElement (Example 9-8 on page 258).
Notice that it calls getNewQName and getNewAttributes to get the (possibly)
changed names, then calls super.startElement to pass the startElement event on
to the NameTester.

 Chapter 9. Additional XML functionality 257

Example 9-8 startElement in NameChanger

public void startElement(String uri, String localName, String qName,
Attributes attrs)

 throws SAXException
 {
 String newQName;
 Attributes newAttrs;
 // Get the new QName. This may be the same as the
 // existing QName.
 newQName = getNewQName(qName);
 // Get attributes that use the new names. These
 // may use existing names.
 newAttrs = getNewAttributes(qName, attrs);
 // Pass on the startElement event with the new names.
 super.startElement(uri, "", newQName, newAttrs);
 // Push the local name of the current element onto the stack.
 parentStack.push(qName);
 }

The ContentHandler methods in NameTester simply write the (possibly) new
elements, attributes, and PCDATA to the output document. The startElement
method is shown in Example 9-9.

Example 9-9 startElement in NameTester

public void startElement (String uri, String localName, String qName,
Attributes attrs)

 throws SAXException
 {
 int i;
 // Start the element.
 try
 {
 writer.write('<');
 writer.write(qName);
 // Append the attributes. Note that this includes xmlns attributes.
 for (i = 0; i < attrs.getLength(); i++)
 {
 writer.write(' ');
 writer.write(attrs.getQName(i));
 writer.write("=\"");
 appendEscapedString(attrs.getValue(i));
 writer.write('"');
 }
 // Close the element.

258 XML for DB2 Information Integration

 writer.write('>');
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

SAX applications can also be used to do things like inserting default values for
elements required by the database but not present in the XML document,
changing attributes to child elements, and combining element values, such as
combining the values of a FirstName element and a LastName element into a
Name element.

9.2 Validation
Validation of an XML document is the process of verifying if the document
conforms to a given “schema.” An XML document is said to be valid, if its
structure satisfies all the constraints mandated by the corresponding schema.
The XML schema dictates the structure of an XML document. The schema for
XML documents is either written in Document Type Definition language (DTD), or
in XML Schema Definition language (XSD). XSD is becoming more popular
because of its superior expressiveness over of DTD.

Generally, XML documents are validated before storing them in the database, or
after publishing the stored data. Though DB2 does not impose any restriction on
storing XML documents that are not valid, it may affect the working of the
applications that rely on this data. Hence, unless you are storing XML documents
for archival purposes, it is recommended that you first validate them before
storing them into DB2.
In cases where you are sure that the XML document being stored is valid, or you
expect validation to severely impact performance, you may consider the option of
storing or publishing without validation.

9.2.1 Validating XML documents using UDFs
DB2 XML Extender offers two user-defined functions (UDFs) which validate XML
documents against either an XML Schema or a DTD. These functions cannot
only be used to validate XML documents during storing and publishing but can
also be invoked at any other time if needed. The functions are:

� db2xml.svalidate(): Validates an XML document against a specified XSD

� db2xml.dvalidate(): Validates an XML document against a specified DTD

 Chapter 9. Additional XML functionality 259

svalidate() function
This function validates an XML document against a specified schema written in
XSD (or the schema named in the XML document). The UDF returns 1 if the
document is valid, or 0 if not. This function assumes an XML document and a
schema exist, either in the file system, or as a CLOB in DB2.

Before executing the SVALIDATE() function, ensure that XML Extender is
enabled for your database. If the XML document fails the validation, an error
message is written to the XML Extender trace file, provided that tracing is
enabled before executing the SVALIDATE() function.

The function can be invoked as:

� db2xml.svalidate(xmlObj, schemaDoc)
� db2xml.svalidate(xmlObj)

Table 9-1 lists the parameters and their allowed types for this function

Table 9-1 SVALIDATE parameters

dvalidate() function
This function validates an XML document against a specified DTD (or the DTD
named in the XML document). The UDF returns 1 if the document is valid, or 0 if
not. This function assumes an XML document and a schema exist in the file
system, or as a CLOB in DB2.

Before executing the DVALIDATE() function, ensure that XML Extender is
enabled for your database. If the XML document fails the validation, an error
message is written to the XML Extender trace file)provided that the trace was
enabled before executing the SVALIDATE() command).

Parameter Data type Description

xmlObj VARCHAR(256)

CLOB (2G)

Fully qualified file path of the XML
document to be verified

CLOB containing the XML document to
be verified

schemaDoc
(optional
parameter)

VARCHAR(256)

CLOB (2G)

Fully qualified file path of the schema
document

CLOB containing the schema to verify
against

260 XML for DB2 Information Integration

The function can be invoked as:

� db2xml.dvalidate(xmlObj, dtdDoc)
� db2xml.svalidate(xmlObj)

Table 9-2 lists the parameters and their allowed types for this function.

Table 9-2 DVALIDATE parameters

Automatic XML document validation against a DTD
When you are using DB2 XML Extender functionality to store the XML
documents, either as an XML column, or an XML collection, you can
automatically validate the documents without using the previously mentioned
UDFs. You can do so by specifying YES for the <validation> tag in the DAD file.
To have a document validated when it is stored into DB2, you must specify the
DTD you want to validate against within the <dtdid> element or in the
<!DOCTYPE> specification in the original document.
To have a document validated when it is composed from an XML collection in
DB2, you must specify a DTD within the <dtdid> element or within the
<!DOCTYPE> element in the DAD file (Example 9-10).

Example 9-10 Specifying validation during composition

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>

<validation>YES</validation>
<Xcollection>
.....

Parameter Data type Description

xmlObj VARCHAR(256)

CLOB (2G)

Fully qualified file path of the XML
document to be verified

CLOB containing the XML document to
be verified

dtdDoc
(optional
parameter)

VARCHAR(256)

CLOB (2G)

Fully qualified file path of the DTD
document

CLOB containing the DTD document
(either from the DTD_REF table or from
a regular table)

 Chapter 9. Additional XML functionality 261

DB2 XML Extender does not support the validation of data after it has been
inserted into DB2.

9.2.2 Validating the DAD file
The <!DOCTYPE ...> tag of the DAD file contains the location of a DTD file
against which the DAD document itself is to be validated. The XML parser uses
this DTD to perform syntactic validation of the DAD file.

DAD Checker is a tool that verifies the semantics of a DAD file and provides error
messages and recommendations for correcting the DAD. DAD Checker is
available for free and can be downloaded from DB2 XML Extender Web site that
can be found at:

http://www-306.ibm.com/software/data/db2/extenders/xmlext/index.html

DAD Checker is a Java application that is started from the command line. When
invoked, it produces two output files that contain errors, warnings and success
indicators. The two files are equivalent.
One is a plain text file that you use to check for errors or warnings, the other is an
XML file, ’errorsOutput.xml’, which communicates the results of the DAD
Checker application to other applications. The name of the output text file is
user-defined. If no name is specified, the standard output is used.

Installing the DAD Checker
After you download the DADChecker.zip file, extract all files into a directory of
your choice. Make sure you have a JRE or JDK V1.3.1 or later installed on your
system.

Running the DAD Checker
As mentioned before,the DAD checker is a Java program, that can run on JDK
version 1.3.1. and later. To run the DAD checker:

From a command line change to the /bin subdirectory in the directory where you
installed the DAD checker

CD \[dadchecker-dir]\bin

Execute the following commands:

setcp -- (This command executes a .bat file that set the CLASSPATH)

java dadchecker.Check_dad_xml [-dad | -xml] [-all] [-dup dupName]
[-enc encoding] [-dtd dtdPath]
[-doc xmlDocument]
[-db driver dbURL userID password]
[-out outputFile] fileToCheck

262 XML for DB2 Information Integration

http://www-306.ibm.com/software/data/db2/extenders/xmlext/index.html

The different parameters have the following meaning:

fileToCheck: Specifies the path of the file to be checked. This
parameter is required. It must be the final parameter.

-dad: Indicates that the file that is to be checked is a DAD file.
This is the default option.

-xml: Indicates that the file that is to be checked is an XML
document rather than a DAD file.
For this kind of check, only the output text file is
generated: no output XML file is provided.

For large XML documents (several MB), the Java Virtual
Machine might run out of memory, producing a
java.lang.OutOfMemoryError exception. In such cases,
the -Xmx option can be used to allocate more memory to
the Java Virtual Machine. Refer to the JDK documentation
for details.

-all: The output will show all occurrences of tags that are in
error.

-dup dupName: For DAD files, only the duplicate tags whose name
attribute values are dupName are displayed. For XML
documents, only the duplicate tags or attributes whose
names are dupName are displayed.

-enc encoding: Specifies the encoding of the file that is to be checked.
encoding can be either a MIME encoding or a Java
encoding. This option is used when the encoding
declaration in the XML file does not match its actual
encoding. It allows you to specify the actual encoding of
the document and specifies that the XML parser should
ignore the encoding declaration in the file.

-dtd dtdPath: Overrides the DTD declared in the XML document. The
dtdPath parameter specifies the path for a DTD in the file
system to be used to validate the DAD. The XML parser
will then use dtdPath to locate the DTD instead of the
DTD declared in the file.

The validation against the DTD is dynamic: it will only be
done if a DTD is declared in the file. Consequently, using
this option has no effect when a DTD is not declared in
the file.

-doc xmlDocument: Specifies an XML document whose structure is to be
checked against the DAD's structure. The DAD checker
will check that the attributes and leaf tags of

 Chapter 9. Additional XML functionality 263

xmlDocument are mapped in the DAD. This option cannot
be used when checking an XML document with the -xml
option.

-db driver dbURL userID password: Specifies the name of the driver to access
DB2 with JDBC, the URL of the database to which the
DAD checker connects, the user ID and the password
needed to connect to the database. Here is an example of
use of this option: -db COM.ibm.db2.jdbc.app.DB2Driver
jdbc:db2:sales_db "" ""

-out outputFile: Specifies the output text file name. If omitted, the
standard output is used.

Note that a second output file, errorsOutput.xml is also
created in the same directory as the DAD file, except
when the -xml option is used. This file contains in XML
form the same information as the output text file except all
parser warnings and errors.

-help: Displays command line option information.

-version: Dsplays version information. We used version 1.3

Example 9-11 shows sample output from running the DAD checker utility against
a DAD.

Example 9-11 DAD checker sample output

C:\dadcheck\bin>java dadchecker.Check_dad_xml
C:\Progra~1\IBM\SQLLIB\samples\db2xml\dad\getstart_xcollection.dad

Checking DAD document:
C:\Progra~1\IBM\SQLLIB\samples\db2xml\dad\getstart_xcollection.dad

1 duplicate naming conflict(s) were found
A total of 2 tags are in error (total occurrences: 2)

The following tags are duplicates:

<DAD>
 <Xcollection>
 <root_node>
 <element_node name="Order">
 <element_node name="Part">
5 <element_node name="key"> line(s): 26
 <text_node>
 <column name="part_key">

264 XML for DB2 Information Integration

<DAD>
 <Xcollection>
 <root_node>
 <element_node name="Order">
4 <attribute_node name="key"> line(s): 11
 <column name="order_key">

--

**
**
No type attributes are missing for <column> tags.
**
**
All <column> tags are properly enclosed.
**
**
The 'name' attributes for the <table> and <column> tags are all non empty
strings.
**
**
No <element_node> tags have been found with the same names and different
mappings.

No <attribute_node> tags have been found with the same names and different
mappings.
**
**
No missing multi_occurrence="YES" has been found.
**
**
FIXPAK 3 or earlier only:
no <attribute_node> tag mapping order problems were found.

For more information, such as the various kinds of error checks performed and
sample files, please refer to the documentation that comes with the DAD checker
download.

9.3 Importing and exporting XML documents using UDF
Using DB2 XML Extender is the preferred way of dealing with XML documents in
DB2. However if for some reason if you decide not to use XML Extender, you can
still define your table columns using UDTs that support XML data types such as

 Chapter 9. Additional XML functionality 265

XMLCLOB, XMLVarchar and XMLFile. The following UDFs can then be used to
convert XML data types to and from DB2 base data types.

9.3.1 Importing or storing XML documents
To store the XML data in XML UDTs, you can either use the default casting
functions of a UDT directly in INSERT or SELECT statements, or use the UDFs
provided by the XML Extender that take XML documents from sources other than
the UDT base data type and convert them to the specified UDT.

XMLCLOBFromFile()
This UDF reads an XML document from a (server) file and returns an XMLCLOB
type.

� XMLCLOBFromFile(fileName) where fileName is the fully qualified server file
name of type VARCHAR(512).

XMLFileFromCLOB()
XMLFileFromCLOB consumes an XML document as a CLOB locator, writes it to an
external (server) file, and returns the file name and path as an XMLFILE type.

� XMLFileFromCLOB (buffer, fileName) where buffer is the CLOB containing
the XML document, and fileName is the fully qualified (server) file name.

XMLFileFromVarchar()
This UDF reads an XML document from memory as VARCHAR, writes it to an
external (server) file, and returns the file name and path as an XMLFILE type.

� XMLFileFromCLOB (buffer, fileName) where buffer is the memory buffer of
type VARCHAR(3k) that contains the XML document and fileName is the fully
qualified (server) file name.

XMLVarcharFromFile()
This UDF reads an XML document from a server file, and returns the document
as an XMLVARCHAR type.

� XMLVarcharFromFile(fileName) where fileName is the fully qualified (server)
file name.

9.3.2 Exporting or retrieving XML documents
To retrieve XML data stored in columns that contain XML data types, you can
either use the default casting functions, or the overloaded content() UDF. The
following are the different forms of the overloaded content() function.

266 XML for DB2 Information Integration

Content (XMLFile xmlObj)
This form of content() takes an object of type XMLFile, retrieves the data from
the (server) file specified in the XMLFile object and returns the result as a CLOB
locator.

Content (XMLVARCHAR xmlObj , VARCHAR (512) fileName)
This overloaded form of content() retrieves the XML content that is stored as an
XMLVARCHAR type, and stores it in an external (server) file specified in
fileName. If a file with the specified name already exists, the contents of the file is
overwritten.

Content (XMLCLOB xmlObj , VARCHAR(512) fileName)
This overloaded form of content() retrieves the XML content that is stored as an
XMLCLOB type, and stores it in an external (server) file specified in fileName. If
a file with the specified name already exists, the contents of the file is
overwritten.

DB2 XML Extender also provides functions to extract values from XML
documents and convert them to other data types such as INTEGER, REAL,
CLOB etc. For more details on these functions please refer to Chapter 5,
“Working with XML documents stored in XML columns” on page 113, and DB2
XML Extender Administration and Programming V8, SC27-1234.

 Chapter 9. Additional XML functionality 267

268 XML for DB2 Information Integration

Chapter 10. Web services in DB2

In this chapter, we explore the facilities provided by DB2 for Web services. We
look at DB2 both as a Web service provider and as a Web service consumer.

As a Web service provider, DB2 can build Web services from SQL statements
and from stored procedures.

As a Web service consumer, DB2 can build user-defined functions (UDF) that
access Web services and return results as scalar values or tables.

10

© Copyright IBM Corp. 2004. All rights reserved. 269

10.1 Introduction to Web services
We start this chapter with a short introduction to Web services. This section is an
extract from the IBM Redbook WebSphere V5 Web Services Handbook,
SG24-6891.

10.1.1 Motivation
Although the rush of the dot-com era seems to have faded, there has been a
strong trend in recent years for companies to increasingly integrate existing
systems in order to implement IT support for business processes that cover the
entire business value chain. Today, interactions already exist using a variety of
schemes that range from very rigid point-to-point electronic data interchange
(EDI) interactions to open Web auctions. Many companies have already made
some of their IT systems available to all of their divisions and departments, or
even their customers or partners on the Web. However, techniques for
collaboration vary from one case to another and are thus proprietary solutions;
systems often collaborate without any overarching vision or architecture.

Thus, there is an increasing demand for technologies that support the connecting
or sharing of resources and data in a very flexible and standardized manner.
Because technologies and implementations vary across companies and even
within divisions or departments, unified business processes could not be
smoothly supported by technology. Integration has been developed only between
units that are already aware of each other and use the same static applications.

Furthermore, there is a need to further structure large applications into building
blocks in order to use well-defined components within different business
processes. A shift toward a service-oriented approach will not only standardize
interaction, but also allow for more flexibility in the process. The complete value
chain within a company is divided into small modular functional units, or services.
A service-oriented architecture, therefore, has to focus on how services are
described and organized to support their dynamic, automated discovery and use.

Companies and their sub-units should be able to easily provide services. Other
business units can use these services to implement their business processes.
This integration can be ideally performed during the runtime of the system, not
just at design time.

270 XML for DB2 Information Integration

10.1.2 Requirements for a service-oriented architecture
For an efficient use of a service-oriented scenario, a number of requirements
have to be fulfilled:

� Interoperability between different systems and programming languages

The most important basis for a simple integration between applications on
different platforms is a communication protocol, which is available for most
systems and programming languages.

� Clear and unambiguous description language

To use a service offered by a provider, it is necessary to be able to access the
provider system, and the syntax of the service interface must be clearly
defined in a platform-independent fashion.

� Retrieval of the service

To allow a convenient integration at design time or even at runtime of the
system, we require a mechanism that provides search facilities to retrieve
suitable available services. Such services should be classified into
computer-accessible, hierarchical categories, or taxonomies, based upon
what the services in each category do and how they can be invoked.

10.1.3 Service-oriented architecture overview
This section offers a short introduction to the key concepts of a service-oriented
architecture.

Each component in a service-oriented architecture can play one (or more) of
three roles: service provider, broker, and requestor, which perform the operations
shown in Figure 10-1 on page 272.

 Chapter 10. Web services in DB2 271

Figure 10-1 Web services roles and operations

1. The service provider creates a Web service and possibly publishes its
interface and access information to the service registry.

Each provider must decide which services to expose, how to implement
trade-offs between security and easy availability, how to price the services (or,
if they are free, how to exploit them for other value). The provider also has to
decide what category the service should be listed in for a given broker service
and what sort of trading partner agreements are required to use the service.

2. The service broker (also known as the service registry) is responsible for
making the Web service interface and implementation access information
available to any potential service requestor.

The implementers of a broker have to make a decision about the scope of the
broker. Public brokers are available all over the Internet, while private brokers
are only accessible to a limited audience, for example users of a
company-wide intranet. Furthermore, the width and breadth of the offered
information has to be decided. Some brokers will specialize in breadth of
listings. Others will offer high levels of trust in the listed services. Some will
cover a broad landscape of services and others will focus on a given industry.
Brokers will also be available that simply catalog other brokers. Depending on
the business model, a broker may attempt to maximize look-up requests,
number of listings, or accuracy of the listings.

3. The service requestor locates entries in the broker registry using various find
operations and then binds to the service provider in order to invoke one of its
Web services.

Service
Requestor Internet Service

Provider

Legacy
system

Service
Broker

1

3

2

272 XML for DB2 Information Integration

One important issue for users of services is the degree to which services are
statically chosen by designers compared to those dynamically chosen at
runtime. Even if most initial usage is largely static, any dynamic choice opens
up the issues of how to choose the best service provider and how to assess
quality of service. Another issue is how the user of services can assess the
risk of exposure to failures of service suppliers.

10.1.4 Characteristics of the Web service architecture
The presented service-oriented architecture employs a loose coupling between
the participants. Such a loose coupling provides greater flexibility:

� In this architecture, a client is not coupled to a server, but to a service. Thus,
the integration of the server to use takes place outside of the scope of the
client application programs.

� Old and new functional blocks are encapsulated into components that work
as services.

� Functional components and their interfaces are separated. Therefore, new
interfaces can be plugged in more easily.

� Within complex applications, the control of business processes can be
isolated. A business rule engine can be incorporated to control the workflow
of a defined business process. Depending on the state of the workflow, the
engine calls the respective services.

� Services can be incorporated dynamically during runtime.

� Bindings are specified using configuration files and can thus easily be
adapted to new needs.

10.1.5 Web services approach for a SOA architecture
Web services are a rather new technology that implements the above
service-oriented architecture. During the development of this technology, a major
focus was put on making functional building blocks accessible over standard
Internet protocols that are independent from platforms and programming
languages.

Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. Web services perform
encapsulated business functions, ranging from simple request-reply to full
business process interactions.

These services can be new applications or just wrapped around existing legacy
systems to make them network-enabled. Services can rely on other services to
achieve their goals.

 Chapter 10. Web services in DB2 273

The following are the core technologies used for Web services. These
technologies are covered in detail in the subsequent chapters.

� XML (eXtensible Markup Language) is the markup language that underlies
most of the specifications used for Web services. XML is a generic language
that can be used to describe any kind of content in a structured way,
separated from its presentation to a specific device.

� SOAP (formerly referred to as Simple Object Access Protocol, or
Service-Oriented Architecture Protocol—in fact, similarly to JDBC, it is no
longer an acronym) is a network, transport, and programming
language-neutral protocol that allows a client to call a remote service. The
message format is XML.

� WSDL (Web services description language) is an XML-based interface and
implementation description language. The service provider uses a WSDL
document in order to specify the operations a Web service provides, as well
as the parameters and data types of these operations. A WSDL document
also contains the service access information.

� UDDI (universal description, discovery, and integration) is both a client-side
API and a SOAP-based server implementation that can be used to store and
retrieve information on service providers and Web services.

Figure 10-2 on page 275 shows the relationship between the core elements of
the SOA.

274 XML for DB2 Information Integration

Figure 10-2 Main building blocks in an SOA approach based on Web services

� All elements use XML including XML namespaces and XML Schemas.

� Service requestor and provider communicate with each other.

� WSDL is one alternative to make service interfaces and implementations
available in the UDDI registry.

� WSDL is the base for SOAP server deployment and SOAP client generation.

10.1.6 Properties of the service-oriented architecture
The service-oriented architecture offers the following properties:

� Web services are self-contained.

On the client side, no additional software is required. A programming
language with XML and HTTP client support is enough to get you started. On
the server side, merely a Web server and a SOAP server are required. It is
possible to Web services enable an existing application without writing a
single line of code.

WSDL

UDDI
(Broker)

SOAP

HTTP

J2EE other

other

ProviderRequestor

XSD

SOA Runtime

Metadata/vocabulary

Runtime
transports

Implementation

Service description

XML

 Chapter 10. Web services in DB2 275

� Web services are self-describing.

Neither the client nor the server knows or cares about anything besides the
format and content of request and response messages (loosely coupled
application integration). The definition of the message format travels with the
message; no external metadata repositories or code generation tool are
required.

� Web services can be published, located, and invoked across the Web.

This technology uses established lightweight Internet standards such as
HTTP. It leverages the existing infrastructure. Some additional standards that
are required to do so include SOAP, WSDL, and UDDI.

� Web services are language-independent and interoperable.

Client and server can be implemented in different environments. Existing
code does not have to be changed in order to be Web service enabled.

� Web services are inherently open and standard-based.

XML and HTTP are the major technical foundation for Web services. A large
part of the Web service technology has been built using open-source projects.
Therefore, vendor independence and interoperability are realistic goals this
time.

� Web services are dynamic.

Dynamic e-business can become reality using Web services because, with
UDDI and WSDL, the Web service description and discovery can be
automated.

� Web services can be composed.

Simple Web services can be aggregated to more complex ones, either using
workflow techniques or by calling lower-layer Web services from a Web
service implementation. Web services can be chained together to perform
higher-level business functions. This shortens development time and enables
best-of-breed implementations.

� Web services build on proven mature technology.

There are a lot of commonalities, as well as a few fundamental differences to
other distributed computing frameworks. For example, the transport protocol
is text based and not binary.

� Web services are loosely coupled.

Traditionally, application design has depended on tight interconnections at
both ends. Web services require a simpler level of coordination that allows a
more flexible re-configuration for an integration of the services in question.

276 XML for DB2 Information Integration

� Web services provide programmatic access.

The approach provides no graphical user interface; it operates at the code
level. Service consumers have to know the interfaces to Web services but do
not have to know the implementation details of services.

� Web services provide the ability to wrap existing applications.

Already existing stand-alone applications can easily be integrated into the
service-oriented architecture by implementing a Web service as an interface.

10.1.7 More information
General introductions to Web services can be found at:

http://www.ibm.com/developerworks/webservices/
http://xml.watson.ibm.com/

The following Web site provides a collection of IBM resources on the topic at
hand. For example, you can find an introduction to the SOA in a white paper
titled Web Services Conceptual Architecture (WSCA 1.0):

http://www.ibm.com/software/solutions/webservices/resources.html

More information is provided in the article Energize e-business with Web
services from the IBM WebSphere software platform at:

http://www.ibm.com/developerworks/library/ibm-lunar.html

10.2 DB2 as Web service provider
Web services are XML-based application functions that can be invoked over the
Internet. The Web Services Object Runtime Framework (WORF) that ships with
DB2 for Linux, UNIX and Windows V8.1 provides an environment to easily create
simple Web services that access DB2. The Web Services Object Runtime
Framework (WORF) will also be made available on DB2 for z/OS with the PTF
for APAR PQ91315 (still open at the time of writing this redbook). WORF uses
Apache SOAP 2.2 or later and the document access definition extension
(DADX). A DADX document specifies how to create a Web service using a set of
operations that are defined by SQL statements (including stored procedure calls)
and, optionally, XML Extender document access definition (DAD) files. The Web
services that are created from a DADX file are called DADX Web services or
DB2 Web services.

WORF can use all DB2 XML publishing (composition) functions, namely
SQL/XML and XML Extender discussed in Chapter 8, “Publishing data as XML”

 Chapter 10. Web services in DB2 277

http://www.ibm.com/developerworks/webservices
http://xml.watson.ibm.com/
http://xml.watson.ibm.com/
http://www.ibm.com/software/solutions/webservices/resources.html
http://www.ibm.com/developerworks/library/ibm-lunar.html
http://www-106.ibm.com/developerworks/library/ibm-lunar.html

on page 209, or use the WORF XML composition when using non-SQL/XML
SELECT statements.

Figure 10-3 on page 278 represents the architecture of WORF.

Figure 10-3 WORF architecture

10.2.1 Web Services Object Runtime Framework
WORF provides the following features:

� Resource-based deployment and invocation

� Automatic service redeployment at development time when defining
resources change

� HTTP GET and POST bindings in addition to SOAP

� Automatic WSDL and XSD generation, including support for UDDI best
practices

� Automatic documentation and test page generation

In the following sections, we explain how to:

� Install WORF on IBM WebSphere Application Server

Stored
Procedures

XML Extender

Tables

DADDADDADXDADX

SOAP Service Runtime

WORF
(DADX processor)

SOAP Request

JDBC
(Connection Pool)

DB2

Stored
Procedures

XML Extender

Tables

DADDADDADXDADX

SOAP Service Runtime

WORF
(DADX processor)

SOAP Request

JDBC
(Connection Pool)

DB2

278 XML for DB2 Information Integration

� Create a simple Web service that exposes the result of SQL statements, and
generating a Web application that hosts a Web service

� Deploy the Web application in WebSphere

� Test the Web service

10.2.2 Installing WORF on IBM WebSphere Application Server
In this section, we assume the following installation setup:

� WebSphere Application Server 5.0 is installed in C:\WebSphere\AppServer.
We call this location <washome>. SOAP 2.2 ships by default with WebSphere
Application Server V4.01 onwards. Ensure that you have soap.jar in
<washome>\lib.

� DB2 8.1 Fixpack 2 is installed in C:\SQLLIB. We call this location <db2home>.
WORF requires JDBC 2.0, which is the default in DB2 8.1. For DB2 7.2,
select JDBC 2.0 by running the <db2home>\java12\usejdbc2.bat file.

� The DB2 SAMPLE database is created. If not, you can create it using the First
Steps wizard (Start -> Programs -> IBM DB2 -> Set-up Tools -> First
Steps).

To install WORF on WebSphere Application Server, complete the following
steps:

1. Locate dxxworf.zip in your <db2home>\samples\java\Websphere directory. If
you cannot find it there, you can download it from the following Web site.
However, it should be noted that this download ONLY applies to DB2 V7.2
(FixPak 7). The Web site also contains valuable information about DB2 Web
services implementations. WORF ships with DB2 UDB V8.1 and as part of
WebSphere Studio.

http://www.ibm.com/developerworks/db2/zones/webservices/worf/

2. Unzip the dxxworf.zip to a directory, such as <washome>\worf. The directory
has the following contents:

– readme.html—explanation of files

– lib\worf.jar—WORF runtime for WebSphere Application Server

– lib\worf-servlets.jar—servlets used for DB2 Web services that have to be
included in your Web applications using WORF

– lib\services.war—sample Web application with DB2 Web services

– schemas—directory with XML Schemas for the DADX and NST XML files

– tools—directory with DAD and DADX syntax checkers

3. Copy worf.jar to <washome>\lib

 Chapter 10. Web services in DB2 279

http://www.ibm.com/developerworks/db2/zones/webservices/worf/

4. Start the WebSphere Administration Server.

10.2.3 Creating DB2 Web services
In this section, we show you how to create a simple DB2 Web service based on
the SAMPLE database. For simplicity we only consider exposing SQL statements
as Web services.

Creating the DADX document
A DADX file defines a Web service by specifying a set of operations. Operations
are similar to methods that you can invoke. The definition of an operation
consists of a list of parameters and an action to be performed. The action to
perform is defined using SQL statements or DAD file references. DADX uses
XML syntax to define the Web service.

The operations in a DADX Web service can be defined by the following operation
types:

� SQL operations

– <query>—queries the database
– <update>—performs an update, insert or delete operation against the

database
– <call>—calls stored procedures

� XML collection operations (requires DB2 XML Extender)

– <retrieveXML>—generates XML documents
– <storeXML>—stores XML documents

Let us look at a sample DADX file. Example 10-1 is a sample DADX file that
exposes two operations, listSales and listDepartments, as Web service
operations. For simplicity we use only the SQL operations in this DADX example.

Example 10-1 List.dadx

<?xml version="1.0" encoding="UTF-8"?>
<DADX xmlns="http://schemas.ibm.com/db2/dxx/dadx">

<operation name="listDepartments">
<documentation> Lists all the departments in the DEPARTMENT table of

the SAMPLE database </documentation>
<query>

<SQL_query>SELECT * FROM department</SQL_query>
</query>

</operation>

<operation name="listSales">
<query>

280 XML for DB2 Information Integration

<SQL_query>SELECT * FROM sales WHERE SALES_PERSON = :name</SQL_query>
<parameter name="name" type="xsd:string"/>

</query>
</operation>

</DADX>

Creating the Web application
To invoke the Web service defined in the DADX document, we have to deploy it
in the Application Server as part of a Web application. In this section we create a
Web application that can host our DB2 Web service. Here we show you how to
create a Web application manually, without using any of the tools. This is mainly
to show which are the components that are required and how to obtain the
information and configure the setup. In real life, you would most likely use a tool
like WebSphere Studio to create you Web service. This is explained in 12.3,
“Web services tools” on page 375.

Starting from a Web application skeleton
A skeleton of a simple Web application consists of a WEB-INF folder and a
welcome page in HTML. The WEB-INF folder contains a file named web.xml,
also called the deployment descriptor that contains the details about deployment
of various resources of the Web application. WEB-INF contains two more folders
named classes and lib. Both these folders are in the classpath of the class
loader. Generally, we keep all the JAR files in the lib folder and other invokable
resources under classes.

Before building our sample Web application let us create a skeleton Web
application by creating the directory structure as shown in Example 10-2. Keep
the index.html and web.xml blank for the time being. WORFTest is the base
directory for our Web application for the rest of this chapter.

Example 10-2 Skeleton Web application

WORFTest
|
|-- index.html
|
|-- WEB-INF

 |
 |-- web.xml
|

Note: The second operation, listSales, has the salesperson’s name as a
parameter.

 Chapter 10. Web services in DB2 281

|-- classes
|
|-- lib

Defining the group for Web services
We create a group for each set of related Web services. When we say related, in
this context, we mean Web services that access the same database. As part of
the group definition we create a connection configuration for the database used
by the Web services. Each such group forms a directory in the file system. These
groups are created under the /WEB-INF/classes/groups directory. The DADX
files are stored in the directories defined for these groups.

Let us create a group for our Web service and configure it for the SAMPLE
database. Let us call our group the TestGroup.

1. Create the groups directory: WORFTest/WEB-INF/classes

2. Create the TestGroup directory: WORFTest/WEB-INF/classes/groups

3. Create the group.properties file in TestGroup and add the lines listed in
Example 10-3 on page 283

4. Store the List.dadx file under WORFTest/WEB-INF/classes/groups/TestGroup

282 XML for DB2 Information Integration

Example 10-3 Sample group.properties file

initialContextFactory=
datasourceJNDI=
dbDriver=COM.ibm.db2.jdbc.app.DB2Driver
dbURL=jdbc:db2:sample
userID=database-user-id
password=password-for-the-above-user-id
namespaceTable=
autoReload=true
reloadIntervalSeconds=5
groupNamespaceUri=
enableXmlClob=true

You can leave userID and password empty if your logon ID and the WebSphere
ID are authorized for DB2. It is also possible to use a data source instead of a
JDBC driver, but this requires more configuration. Groups with data sources are
covered in “Creating a DADX group configuration” on page 375.

Define the servlet for the group
Now we have to inform the application server about the existence of this group,
so that at runtime the correct group is looked up for DADX documents. We do
this by creating a servlet for each group. This servlet is an instance of the
DxxInvoker servlet that is part of the worf-servlets.jar. The name of this servlet
instance should be the same as the name of the Web service group, which is
TestGroup in our case. When a request is issued to serve a DADX document,
defined under a particular group, the servlet instance associated with this group
gets invoked.The DxxInvoker servlet determines where to find DADX files by
looking for a directory that matches its servlet name.

1. Copy the worf-servlets.jar into WORFTest/WEB-INF/lib. This jar file is part of
dxxworf.zip we unzipped in “Creating the Web application” on page 281.

2. Our next step is to create an instance of the DxxInvoker servlet named
TestGroup. We do this by adding the lines listed in Example 10-4 to our
web.xml.

Example 10-4 Servlet configuration information that goes into web.xml

<web-app>
<servlet>

<servlet-name>TestGroup</servlet-name>
<servlet-class>

com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker
</servlet-class>

 Chapter 10. Web services in DB2 283

<init-param >
<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
<load-on-startup>-1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>TestGroup</servlet-name>
<url-pattern>/testing/*</url-pattern>

</servlet-mapping>
</web-app>

If you analyze the definition of our servlet 'TestGroup' you see that the url-pattern
for this servlet is /testing/*. Hence, when WebSphere Application Server gets
the request for /testing/List.dadx, it invokes the TestGroup servlet. This servlet
instance looks for a directory called TestGroup (its own name) under
/WEB-INF/classes/groups directory. In this directory it searches for List.dadx and
invokes the Web service operation.

Packaging the Web application
Now is the time to create our welcome file associate it with the Web application.
enter the text shown in Example 10-5 into WORFTest/index.html file and save it.

Example 10-5 Contents of index.html

<html>
<head> <title>Simple DB2 Web Services </title> </head>
<body>
 <h1> Simple DB2 Web Services </h1>
 <hr>

Test the
listDepartments Web Service

Test the
listSales Web Service for LEE

Generate WSDL

Generate XSD
</body>
</html>

Note: For every group you want to create, you have to follow the steps
mentioned above.

284 XML for DB2 Information Integration

Now, to associate the index.html file as the welcome file for the Web application,
we insert the following lines into our web.xml between <webapp> and </webapp>.

<welcome-file-list>
<welcome-file>index.html </welcome-file>

</welcome-file-list>

Now the completed web.xml file should look as shown in Example 10-6.

Example 10-6 Contents of web.xml

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.2//EN" "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">

<web-app>
<servlet >

<servlet-name>TestGroup</servlet-name>
<servlet-class>

com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker
</servlet-class>
<init-param >

<param-name>faultListener</param-name>
<param-value>org.apache.soap.server.DOMFaultListener</param-value>

</init-param>
<load-on-startup>-1</load-on-startup>

</servlet>
<servlet-mapping>

<servlet-name>TestGroup</servlet-name>
<url-pattern>/testing/*</url-pattern>

</servlet-mapping>
<welcome-file-list>

<welcome-file>index.html </welcome-file>
</welcome-file-list>

</web-app>

Note: We are using a fixed name as the name parameter for this simple test.
We could use Java script or a servlet to pass the name from a form.

Here we call a Web service from a static HTML page. We can do this because
WORF supports GET bindings. (Plain Apache SOAP or Apache Axis do not
have GET bindings). As WORF also supports POST bindings, you can have
the user to enter the name instead of have a fixed name if the user creates an
HTML form.

 Chapter 10. Web services in DB2 285

With this step, we come to the end of our Web application construction. By now
you should have the directory structure as shown in Example 10-7 ready with
each file containing the contents discussed in the previous sections. We can now
proceed to package the Web application as a Web archive or WAR file by
entering this command (from the WORFTest directory):

jar -cvf SimpleWorfTest.war

Note. The . at the end of the command is required.

Example 10-7 Final directory structure of the sample Web application

WORFTest
|
|-- index.html
|
|-- WEB-INF

 |
 |-- web.xml
|
|-- lib
| |
| |-- worf-servlets.jar
|
|-- classes

|
|-- groups

|
|--TestGroup

|
|-- group.properties
|-- List.dadx

In case you want to set up the security for the Web service provider application,
you need to do so at this point. In our example we did not want to complicate
things by adding security. Please refer to the following article on the Web for
more details:

http://www-106.ibm.com/developerworks/db2/library/techarticle/
dm-0404wollscheid/index.html

Now we have created a Web application that can be deployed to WebSphere
Application Server.

286 XML for DB2 Information Integration

http://www-106.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid/index.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid/index.html

10.2.4 Deploying the Web application
In this section, we show you how to deploy the Web application on WebSphere
5.0 or 5.0.2.

1. Make sure the WebSphere server is started.

2. Start the WebSphere Administrative Console from the WebSphere program
group or by typing the following URL in the Web browser’s address bar:

http://localhost:9090/admin

3. Enter your user ID and the Administrative Console opens (Figure 10-4).

Figure 10-4 WebSphere Administrative Console startup page

4. Select Install New Applications under Applications. Provide the path of the
Web application you created and also provide a context name in the
appropriate input field. (Figure 10-5 on page 288). Note that the context root
is part of the URL that you specify to invoke the Servlet.

 Chapter 10. Web services in DB2 287

.

Figure 10-5 Install an enterprise application

5. Click Next and keep accepting the default values for the next few panels:

– The default virtual host is default_host.

– The application name is SimpleWorfTest_war.

– The SimpleWorfTest.war maps to the default_host virtual host.

– The module is installed on the selected server.

– The summary panel recapitulates the options.

– Click Finish and the enterprise application is installed. The installation
messages are shown in Figure 10-6 on page 289.

288 XML for DB2 Information Integration

Figure 10-6 Installation messages

6. Select Save to Master Configuration. Click Save on the confirmation
panel.

This saves the details about the Web application into the WebSphere
repository. Once the save action is completed, the window shown in
Figure 10-4 on page 287 is displayed again. Now you can start the Web
application to test our Web services.

Note: If you have never used DB2 with you WebSphere Application Server
before, you must set up the correct CLASSPATH for the server before you can
start the application.

To verify that DB2 JDBC drivers are included as part of the CLASSPATH, you
use the WebSphere Administrative Console. Go to Servers -> Application
Servers -> <name of your server> -> Process Definition -> Java Virtual
Machine. The correct value, which in our case is C:\SQLLIB\java\db2java.zip,
should then be entered into the CLASSPATH field.

 Chapter 10. Web services in DB2 289

10.2.5 Starting the enterprise application
In this section, we assume that you completed all the instructions detailed in the
previous sections and your Web application is successfully deployed and your
WebSphere Administrative client is displaying the main page as shown in
Figure 10-4 on page 287.

1. Select Enterprise Applications under Applications.

2. In the Enterprise Applications panel (Figure 10-7) select the
SimpleWorfTest_war application (that you just installed) and click Start.

Figure 10-7 Enterprise Application administration page

If you are able to start the Web application a green arrow replaces the red cross.

10.2.6 Testing the DB2 Web services
Now it is time for us to see our DB2 Web services in action. In this section we test
the DB2 Web services that we developed and deployed.

1. Open a Web browser and type the following URL in the address bar
(Figure 10-8 on page 291):

http://localhost:9080/simpleWORFTest/

290 XML for DB2 Information Integration

Figure 10-8 Web application welcome page

2. Select listDepartments to test the Web service that lists the departments of
the SAMPLE database (Figure 10-9). The SQL statement for this operation is:

select * from DEPARTMENT

Figure 10-9 DB2 Web service: department list

 Chapter 10. Web services in DB2 291

3. Similarly you can also select listSales to invoke the listSales operation of
the sample Web service. You can also achieve the same result by directly
typing the URL:

http://localhost:9080/simpleWorfTest/testing/List.dadx/listSales

4. As mentioned in the introduction WORF automatically generates the WSDL
and XSD for the Web service hosted. You can view the WSDL for the Web
service defined by List.dadx by selecting the WSDL link on the welcome
page (Figure 10-10). You can also directly invoke this by entering the URL:

http://localhost:9080/simpleWorfTest/testing/List.dadx/WSDL

Figure 10-10 DB2 Web service: WSDL

5. In the same way, you can view the XSD file:

http://localhost:9080/simpleWorfTest/testing/List.dadx/XSD

292 XML for DB2 Information Integration

10.2.7 DADX and auto-deploy feature of WORF
If you want to add another operation to the same Web service, all you have to do
is add another operation element into the List.dadx file and save the file. WORF
will automatically pick up the new operation when you invoke it, if the group
properties (Example 10-3 on page 283) specify:

autoReload=true

Also if you want to create another related Web service with one or more
operations in it, you can create a new DADX file similar to Example 10-1 on
page 280 and place it in the same directory as the deployed List.dadx:

<Washome>\installedApps\<your-node-name>\SimpleWorfTest_war.ear
\SimpleWorfTest.war\WEB-INF\classes\groups\TestGroup

You do not have to redeploy your Web application. WORF will pick up the new
DADX automatically when the DADX is invoked.

In the preceding sections, we showed you how to expose an SQL query
statement as a Web service. In fact, WORF is capable of exposing any SQL
statement, as well as features provided by DB2 XML Extender. If you are
interested in learning more about other features of DADX, you can install the
sample Web application services.war, that is part of DB2 Web services provider
package as mentioned in 10.2.2, “Installing WORF on IBM WebSphere
Application Server” on page 279. This sample Web application has many more
examples of DADX files that you can play around with.

10.2.8 WORF test facility
To run the WORF test facility (Figure 10-11 on page 294), start a browser and
enter the URL:

http://localhost:9080/simpleWorfTest/testing/List.dadx/TEST

Tip: In case the services application does not work, you may try renaming
soap-ibm.xml as soap.xml, and dds-example.xml as dds.xml in the
services.war folder after installing the services.war file.

 Chapter 10. Web services in DB2 293

Figure 10-11 WORF test facility

1. Select one of the operations (listSales in our example).
2. Enter the parameter (salesperson name, LEE or GOUNOT) and click Invoke.

The resulting XML is shown in the bottom pane.

This concludes our examples with DB2 as a Web service provider.

10.3 DB2 as Web service consumer
Web services are increasingly used to integrate information processing within
and between enterprises. When building service-based applications, Web
services often have to be integrated with relational data. To accomplish this,
applications must access both Web services and database management
systems.

294 XML for DB2 Information Integration

IBM DB2 Web service consumer user-defined functions (UDFs) are now
available to help with this task. These new Web service consumer UDFs enable
databases to directly invoke Web services using SQL. This eliminates the need
to transfer data between Web services and the database. The result is increased
productivity and better performance. The Web services consumer converts
existing WSDL interfaces into DB2 table or scalar functions.

In the sections that follow, we show you how to enable DB2 as a Web service
consumer and write a sample UDF that acts as a consumer to a standard Web
service that fetches delayed stock quote given the stock symbol.

10.3.1 Prerequisites
You should have DB2 XML Extender installed before you begin enabling the DB2
Web service consumer UDFs. DB2 XML Extender is packaged with DB2 UDB for
Linux, UNIX and Windows V8.1. See “DB2 V8.1 with FixPak 2” on page 546 for
installation instructions.

The Web services consumer code is packaged with DB2 UDB V8.1 FixPak 2 and
later. The Web services consumer functionality will also be made available on
DB2 for z/OS with the PTF for APAR PQ91316 (still open at the time of writing
this redbook).

The following discussion assumes that you have DB2 UDB version 8.1 FixPak 2.
The commands to enable the Web services consumer UDFs may differ if you are
on a different DB2 level. Please refer to the documentation or the following Web
site, for more information:

http://www7b.software.ibm.com/dmdd/zones/webservices/wsconsumer/

10.3.2 Enabling DB2 Web service consumer UDFs
To enable the Web service consumer UDFs you first have to enable the database
for XML Extender, then run the commands to enable the Web service consumer.

Follow the instructions in “Enabling a database for XML Extender” on page 546
and “Enabling a database with Web service consumer UDFs” on page 546.

10.3.3 Using the Web service consumer UDFs
In this section, we show you how to use the Web service consumer UDFs. We
first introduce the Web service consumer UDFs and explain their parameters.
We then use the Delayed Stock Quote Web service, provided by xmethods, as an
example. Finally, we show you how to find out the values of different parameters
for the consumer UDFs.

 Chapter 10. Web services in DB2 295

http://www7b.software.ibm.com/dmdd/zones/webservices/wsconsumer/
http://www7b.software.ibm.com/dmdd/zones/webservices/wsconsumer/

10.3.4 Web service consumer UDFs
The db2xml.soaphttp DB2 UDF is a function that composes a SOAP request,
post the request to the service endpoint, receives the SOAP response, and
returns the content of the SOAP body. The function is overloaded depending on
the soap body to return a VARCHAR or CLOB.

db2xml.soaphttpv returns VARCHAR():
 db2xml.soaphttpv (endpoint_url VARCHAR(256),
 soap_action VARCHAR(256),
 soap_body VARCHAR(3072)) | CLOB(1M))
 RETURNS VARCHAR(3072)

db2xml.soaphttpc returns CLOB():
 db2xml.soaphttpc (endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body VARCHAR(3072) | CLOB(1M))
 RETURNS CLOB(1M)

db2xml.soaphttpcl returns CLOB() as locator:
 db2xml.soaphttpcl(endpoint_url VARCHAR(256),
 soapaction VARCHAR(256),
 soap_body varchar(3072))
 RETURNS CLOB(1M) as locator

DB2 requires the following information to build a SOAP request and receive a
SOAP response:

� Service endpoint, for example:

http://services.xmethods.net/soap/servlet/rpcrouter

� SOAP action URI reference (it is optional and may be a null string)

� XML content of the SOAP body, which are:

– Name of operation with request namespace URI
– Encoding style
– Input arguments

10.3.5 From WSDL to Web service consumer function
The WSDL for the Delayed Stock Quote Request Web service listed in
Example 10-8 on page 297 describes the details of the Web service interface. It
provides the information on how to connect to the Web service and invoke the
operation. This WSDL is also available at:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

Note again that in this section we show how to create the functions manually to
give you a better understanding what pieces are required and how they fit

296 XML for DB2 Information Integration

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

together. WebSphere Studio has tooling that allow you to generate Web service
consumer function from WSDL very easily. This is described in more detail in
16.5.1, “Creating a scalar Web service UDF” on page 519.

Example 10-8 WSDL for the Delayed Stock Quote Request Web service

<?xml version='1.0' encoding='UTF-8'?>

<definitions name='net.xmethods.services.stockquote.StockQuote'
targetNamespace='http://www.themindelectric.com/wsdl

/net.xmethods.services.stockquote.StockQuote/'
xmlns:tns='http://www.themindelectric.com/wsdl

/net.xmethods.services.stockquote.StockQuote/'
xmlns:electric='http://www.themindelectric.com/'
xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
xmlns:xsd='http://www.w3.org/2001/XMLSchema'
xmlns:soapenc='http://schemas.xmlsoap.org/soap/encoding/'
xmlns:wsdl='http://schemas.xmlsoap.org/wsdl/'
xmlns='http://schemas.xmlsoap.org/wsdl/'>

<message name='getQuoteResponse1'>
<part name='Result' type='xsd:float'/>

</message>

<message name='getQuoteRequest1'>
<part name='symbol' type='xsd:string'/>

</message>

<portType name='net.xmethods.services.stockquote.StockQuotePortType'>
<operation name='getQuote' parameterOrder='symbol'>

<input message='tns:getQuoteRequest1'/>
<output message='tns:getQuoteResponse1'/>

</operation>
</portType>

<binding name='net.xmethods.services.stockquote.StockQuoteBinding'
type='tns:net.xmethods.services.stockquote.StockQuotePortType'>

<soap:binding style='rpc'
transport='http://schemas.xmlsoap.org/soap/http'/>

<operation name='getQuote'>
<soap:operation soapAction='urn:xmethods-delayed-quotes#getQuote'/>
<input>

<soap:body use='encoded' namespace='urn:xmethods-delayed-quotes'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>

</input>
<output>

<soap:body use='encoded' namespace='urn:xmethods-delayed-quotes'
encodingStyle='http://schemas.xmlsoap.org/soap/encoding/'/>

 Chapter 10. Web services in DB2 297

</output>
</operation>

</binding>

<service name='net.xmethods.services.stockquote.StockQuoteService'>
<documentation>net.xmethods.services.stockquote.StockQuote web

service</documentation>
<port name='net.xmethods.services.stockquote.StockQuotePort'

binding='tns:net.xmethods.services.stockquote.StockQuoteBinding'>
<soap:address location='http://66.28.98.121:9090/soap'/>

</port>
</service>

</definitions>

Let us analyze the WSDL and find out how to map the elements of this WSDL to
parameters of Web service consumer functions.

The service section of the WSDL contains the port definition for the SOAP
interface:

<port name='net.xmethods.services.stockquote.StockQuotePort'
binding='tns:net.xmethods.services.stockquote.StockQuoteBinding'>

<soap:address location='http://66.28.98.121:9090/soap'/>
</port>

The location of soap:address shows the service endpoint of the Web service.
This is the first parameter of the Web service consumer functions. If there are
multiple ports for different bindings, you have to find the port with a SOAP
binding, for example:

<soap:binding transport="http://schemas.xmlsoap.org/soap/http " .../>

The binding section of the WSDL lists all the operations of the service.

<binding name='net.xmethods.services.stockquote.StockQuoteBinding'
type='tns:net.xmethods.services.stockquote.StockQuotePortType'>

<soap:binding style='rpc'transport='http://schemas.xmlsoap.org/soap/http'/>
<operation name='getQuote'>

<soap:operation soapAction='urn:xmethods-delayed-quotes#getQuote'/>
...
...

</operation>
</binding>

The soapAction of the desired Web service operation is the value of the second
parameter of the Web service consumer functions. In our case we are interested

298 XML for DB2 Information Integration

in invoking the getQuote operation and hence the relevant soapAction as
described in the WSDL is urn:xmethods-delayed-quotes#getQuote.

Now we are left with finding the structure of the soap body, the third argument of
the Web service consumer functions. The portType definition provides you this
information. The portType may define many operations. Each operation typically
contains an input and an output message element. Occasionally it may contain
fault elements as well. For simplicity we consider only input and output
elements in our discussion.

<portType name='net.xmethods.services.stockquote.StockQuotePortType'>
<operation name='getQuote' parameterOrder='symbol'>

<input message='tns:getQuoteRequest1'/>
<output message='tns:getQuoteResponse1'/>

</operation>
</portType>

You can construct the structure of the soap body using the operation element of
the portType. The name of the operation becomes the top-level node. You then
have to flatten out the input or output message element to get the rest of the
structure. Thus in our case the getQuote forms the top-level element and the
flattening of input message getQuoteRequest1 yields the second level element
symbol. In many cases this flattening of input or output message may yield quite
complex structure. Thus in our case the structure of the soap body becomes:

<stock:getQuote xmlns:stock="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<symbol xsi:type="xsd:string">Stock symbol to be supplied</symbol>

</stock:getQuote>

This is the third parameter of the Web service consumer functions for our
example.

Similarly you can find out the structure of the result by flattening the output
message element. In our case it looks as follows:

<n:getQuoteResponse xmlns:n="urn:xmethods-delayed-quotes">
<Result xsi:type="xsd:float">Quote value returned</Result>

</n:getQuoteResponse>

Table 10-1 on page 300 summarizes our discussion and provides hints for finding
the different parameter values for the Web service consumer functions.

 Chapter 10. Web services in DB2 299

Table 10-1 From WSDL to Web service consumer function parameters

10.3.6 Testing the Web service consumer functions
Let us now test the Web service consumer functions by accessing the stock
quote of IBM:

1. Connect to the database that you enabled for SOAP functions (SAMPLE or
INSURA in our case). To enable these functions, see a “Enabling a database
with Web service consumer UDFs” on page 546

2. Type the following command in a DB2 command line and execute it:

VALUES db2xml.soaphttpv ('http://66.28.98.121:9090/soap',
'urn:xmethods-delayed-quotes#getQuote',
varchar ('<stock:getQuote xmlns:stock="urn:xmethods-delayed-quotes"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<symbol xsi:type="xsd:string"> IBM </symbol>

</stock:getQuote>'))

3. You should be able to see the XML result, similar to this:

<n:getQuoteResponse xmlns:n="urn:xmethods-delayed-quotes">
<Result xsi:type="xsd:float">83.52</Result></n:getQuoteResponse>

4. If you are running DB2 UDB V8.1, you can also use an SQL/XML query to
construct the soap body. The example that follows is the same as the
previous, except that it is written in SQL/XML and uses the overloaded
soaphttpv function that takes a soap body as a CLOB:

No Parameter XPath to look for

1 Service endpoint URL /definition/port/soap:address/@location

2 SOAP action /definitions/binding/soap:binding/operation/
soap:operation/@soapAction

3 SOAP body /definitions/portType/operation

Note: If you want to enter this as a DB2 command, the easiest is to put the
command in a file (stockquote.txt) with an ending semicolon, and execute:
db2 -tf stockquote.txt

300 XML for DB2 Information Integration

VALUES db2xml.soaphttpv
('http://66.28.98.121:9090/soap',
 'urn:xmethods-delayed-quotes#getQuote',
 xml2clob
 (XMLElement(name "getQuote",

XMLAttributes('urn:xmethods-delayed-quotes' AS "xmlns:stock"),
XMLElement(name "symbol", 'IBM'))

)
)

10.3.7 Creating a wrapper UDF to Web services consumer function
In order for applications to work with DB2 and Web services seemlessly, we
make Web services calls using the DB2 UDFs that we installed and enabled.

However, invoking these UDFs clutters the application code and reduces the
readability and understandability of the code. Also, every time we call the Web
service we have to pass the URL of the Web service and the operation name.
Therefore, we can wrap the call to a Web service in a UDF and invoke this UDF
to invoke a Web service operation.

In our case, instead of calling the db2xml.soaphttpv(...) for a stock quote
request, we create a wrapper UDF that takes only the stock symbol as parameter
and internally calls the db2xml.soaphttpv function.

Let us define our wrapper UDF getStockQuote, which takes only one parameter
(symbol) as a VARCHAR(256) and returns Result as FLOAT. Example 10-9 shows
the code for our getStockQuote UDF. The result of the call to db2xml.soaphttpv is
a CLOB; we extract the value contained in the Result element by using the XPath
/*/Result.

Example 10-9 GetStockQuote UDF

CREATE FUNCTION itso.getStockQuote (symbol VARCHAR(100))
 RETURNS DECIMAL(5,2) SPECIFIC xmethods_getQuote
 LANGUAGE SQL CONTAINS SQL
 EXTERNAL ACTION NOT DETERMINISTIC
 RETURN

 db2xml.extractREAL(
db2xml.xmlclob(

db2xml.soaphttpv(
'http://66.28.98.121:9090/soap',
'urn:xmethods-delayed-quotes#getQuote',
varchar(

'<m:getQuote xmlns:m="urn:xmethods-delayed-quotes"
SOAP-ENV:encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/">

 Chapter 10. Web services in DB2 301

<symbol xsi:type="xsd:string">' || symbol || '</symbol>
</m:getQuote>'

)
)

), '/*/Result'
)

This UDF can be invoked in a DB2 command window as follows:

DB2 VALUES itso.getStockQuote('IBM')

In Example 10-9 on page 301 we saw how to invoke a consumer UDF for Web
services returning one value. DB2 also allows to write UDFs that invoke Web
services returning multiple results. In such cases we return a table with each row
containing one result element.

For example, take the Web service Xignite News provided by
http://www.xignite.com/xnews.asmx. The WSDL for this Web service is
available at http://www.xignite.com/xnews.asmx?WSDL. One of the operations
provided by this Web service is GetStockHeadlines, with two parameters (list of
symbols, number of headlines wanted). The service returns an XML document in
the format:

<GetStockHeadlinesResult>
<StockNews>

<Outcome>Success</Outcome><Headline>a headline</Headline>
<Ticker>stocksymbol</Ticker><Date>date</Date><Time>time</Time>
<Source>source of headline</Source><Url>url for information</Url>

</StockNews>
<StockNews>......</StockNews>
</GetStockHeadlinesResult>

We write a UDF to access this Web service operation and extract the headline
element (Example 10-10).

Example 10-10 Web service consumer UDF wrapper returning a table

CREATE FUNCTION itso.GetStockHeadlines (Symbols VARCHAR(100),
HeadlineCount INTEGER)

 RETURNS TABLE (StockNews VARCHAR(3000))
 LANGUAGE SQL CONTAINS SQL
 EXTERNAL ACTION NOT DETERMINISTIC
 RETURN

 Select * from Table (db2xml.extractVarchars(
DB2XML.XMLCLOB(

db2xml.soaphttpc(
'http://www.xignite.com/xnews.asmx',

302 XML for DB2 Information Integration

http://www.xignite.com/xnews.asmx
http://www.xignite.com/xnews.asmx?WSDL

'http://www.xignite.com/services/GetStockHeadlines',
'<m:GetStockHeadlines xmlns:m="http://www.xignite.com/services/"

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">'

|| '<m:Symbols>' || Symbols || '</m:Symbols>'
|| '<m:HeadlineCount>' || rtrim(char(HeadlineCount)) ||

'</m:HeadlineCount>'
|| '</m:GetStockHeadlines>'

)
), '//StockNews/Headline'

)) as X ;

In this wrapper UDF, we extract only the Headline elements from the result of the
Web service, construct a table from these elements, and return the table.

You can invoke this UDF as follows:

db2 select substr(stocknews,1,79) as headlines
from table (itso.getStockheadlines('IBM',10)) as y

By issuing this query, we are seeking for 10 or less news headlines related to
IBM stock. A sample result is shown in Example 10-11:

Example 10-11 Sample result

HEADLINES

UPDATE - AMD shares jump on hopes for new chips
Open Text says poised for consolidating market
Horror Story
[external] HP Revenue May Come In A Little Light
The Web-Content Management Boom
State of the Art: Server Load Balancing
[external] Apple's G5 In Stores Today
IBM Cuts 600 Jobs from Microchip Division
[external] IBM Claims Wins Over H-P in Server Wars
UPDATE - Post-9/11 steps help business computers in outage

 Chapter 10. Web services in DB2 303

304 XML for DB2 Information Integration

Chapter 11. XML wrapper

In this chapter, we discuss the XML wrapper functionalities; this includes:

� An introduction to the XML wrapper

� A detailed discussion on how to set up, and use the XML wrapper

� A discussion about using the XML wrapper from the DB2 Control Center

� A set of best practices when using the XML wrapper

11

© Copyright IBM Corp. 2004. All rights reserved. 305

11.1 Introducing the XML wrapper
The XML wrapper technology lets you view an XML data source as a relational
data source by creating a wrapper, for the XML data source, in your federated
system. In Chapter 4, “Storing whole XML documents” on page 93 and
Chapter 6, “Shredding XML into relational tables” on page 143, we discussed the
storage options available in DB2 XML Extender while working with XML
documents. We suggested to:

� Use XML collection when:

– Partial updates of your XML document are very frequent
– The structure of your XML document is fairly regular

� Use XML column when:

– You need to store your XML document as a whole, and/or
– The structure of XML documents is not regular except for a few elements

Now, what if your requirement is such that neither of the above mentioned
storage options is adequate? For instance, this could be the case if:

� Your XML document needs to be stored as a whole and

� The XML documents are stored in a relational column of another database
and we do not want to replicate them in our database and be burdened with
synchronizing our XML documents with the ones stored in the other
database.

� Some or most of your XML documents are not stored in a local file system or
a database but are available on some Web site as Web pages (maybe owned
by you or someone else, to which you have read only access).

� The volume of existing XML documents is so huge that you don’t want to load
them into a relational database, but would still like to view the elements of
these XML documents as relational entities.

If you are facing some or all of the above mentioned requirements, then you have
found the right page of the right book! In the following sections, we provide an
introduction to XML wrapper and present a few examples to showcase some of
the commonly used features of XML wrapper. We also show you how to create
XML wrapper definitions using DB2 Control Center.

11.2 XML wrapper explained
In this section, we assume that you are familiar with the concept of data
federation and DB2 wrappers. For more details, see Data Federation with IBM
DB2 Information Integrator V8.1, SG24-7052.

306 XML for DB2 Information Integration

XML wrapper is a powerful tool to map XML documents into the relational world
of DB2 II federated systems without the need to load/unload data. Figure 11-1
gives an overview of the XML wrapper architecture.

Figure 11-1 Overview of XML wrapper

The XML wrapper functionality ships as part of the DB2 Information Integrator
product, and its functionality is not available on the z/OS or iSeries™ platform.
Information on how to install DB2 Information Integrator can be found in, “DB2
Information Integrator” on page 547.

As can be seen from Figure 11-1, an XML wrapper is built around an XML
document, a directory in the file system, a database column or a Universal
Reference Identifier (URI). The wrapper maps the entities of the XML world
(elements and attributes) to those in the relational world (tables and columns),
thereby acting as a mediator between the XML document and the DB2 database.
In fact there is no restriction in DB2 that a wrapper be associated with exactly
one XML document. The wrapper can be associated with:

DB2 Universal
Database

Federated
Database

XML file

URI

Directory

Database columnDB2
Client

Relational
Result Table

SQL
XML Wrapper

 Chapter 11. XML wrapper 307

� An individual XML document stored in file system
� A set of XML documents contained in a directory
� XML document stored in a database column
� XML document accessible through a URI

When we create XML-to-relational mapping using the XML wrapper, we observe
the following:

� Hierarchical relationships in the XML data are preserved in the parent-child
relationship of nicknames

� Individual XML elements map to columns through standard XPath syntax

� Sequences of XML elements map to nicknames through XPath syntax

11.2.1 Using the XML wrapper
In order to view the XML data as relational data, you need to do the following:

1. Register the XML wrapper with the federated system
2. Create a server using the wrapper registered above
3. Create nicknames specifying the XML-to-relational mapping
4. Create federated views for non-root nicknames

You can then start using the nicknames and views just like any other relational
entity. However, using these nicknames and views, you can only extract the XML
data for processing with read-only access. That is, you cannot insert or update
XML data using the XML wrapper.

11.2.2 Registering the XML wrapper
A wrapper is a mechanism that federated servers use to communicate with and
retrieve data from a category of data sources. wrappers are installed on your
system as library files. You can register the wrapper using the CREATE
WRAPPER SQL statement.

For example, to register the XML wrapper called my_wrap on a Windows system
from the default library file, db2lsxml.dll, issue the following SQL statement on
the DB2 command line:

CREATE WRAPPER my_wrap LIBRARY 'db2lsxml.dll'

You may optionally set the DB2_DJ_COMM environment variable to improve
query performance.This variable determines whether the federated server loads
the wrapper during initialization. To set the DB2_DJ_COMM DB2 profile variable,
use the db2set command with the wrapper library that corresponds to the

308 XML for DB2 Information Integration

wrapper that you specified in the associated CREATE WRAPPER statement. In
our case we issue the following command:

db2set DB2_DJ_COMM='db2lsxml.dll'

Ensure that there are no spaces on either side of the equal sign (=).

Processor usage of your system increases when the federated server loads the
wrapper libraries during database startup. To avoid excessive usage, specify
only the libraries that you intend to access.

11.2.3 Creating the server
After you register the wrapper, you should create a corresponding server. A
server defines a data source to a federated database. You can create the server
using the CREATE SERVER SQL statement.

For example, to create a server called xml_server using our wrapper my_wrap,
you issue the following SQL statement on the DB2 command line:

CREATE SERVER xml_server WRAPPER my_wrap

Note that we do not specify the target data source (XML data source in our case)
anywhere, when defining the server. We do this when we define the nicknames.

11.2.4 Creating nicknames
In order to map your XML data to DB2’s relational entities, you create nicknames
that correspond to the tree structure of your XML data source. A root nickname is
the top-level nickname in the nickname hierarchy. (It may or may not reference
the root element in the XML document.) Parent nicknames map to the parent
elements of the XML document. Child nicknames correspond to the elements
that are nested within the element for the parent nickname.

In this section, we take a simple XML document, listed in Example 11-1, as our
target data source, and explain different ways of creating nicknames.

Example 11-1 Customers.xml

<?xml version="1.0" ?>

<customer id='123'>
<name>Shrinivas Kulkarni</name>

 Chapter 11. XML wrapper 309

<address>IBM Bangalore</address>

<order>
<amount>200</amount>
<date>2003-03-01</date>
<item quant='12'>

<name>Notebook</name>
</item>
<item quant='4'>

<name>Colored Pen</name>
</item>

</order>

<order>
</order>

<payment>
<number>BGM1877</number>
<date>2003-04-01</date>

</payment>
</customer>

To create the root nickname called customers, issue the following command:

Example 11-2 Create the root nickname: customers

CREATE NICKNAME customers
(
 id VARCHAR(5) OPTIONS (XPATH '@id'),
 cname VARCHAR(50) OPTIONS (XPATH './name/text()'),
 cid VARCHAR(20) OPTIONS (PRIMARY_KEY 'YES')
)
FOR SERVER xml_server
 OPTIONS (XPATH '/customer',
 FILE_PATH 'C:\Shrini\Customers.xml')

This statement creates the nickname customers over the XML file specified in the
FILE_PATH (C:\Shrini\Customers.xml). Let us analyze the statement.

We are creating a nickname called customers containing the columns id, name
and cid. As OPTIONS for the id and name columns, we provide the information to
populate the values these columns will contain, from the XML document
mentioned in the FILE_PATH. We provide this information using XPATH syntax.
These XPATH values(./name and @id) are relative to the XML element specified
by the XPATH clause in the OPTIONS of the FOR SERVER clause (/customer).

310 XML for DB2 Information Integration

Only the root nicknames can contain XML document location information. All
other child nicknames refer to this or other parent nicknames (generally through
a foreign key).

Note that the cid primary key column does not actually exist in the XML
document. It is generated by the system when the XML document is accessed to
reflect the parent-child relationships inside the rest of the XML document.

We can now create nicknames for the children of the customers nickname, that
is, orders, payments, and items.

Issue the following statement to create the orders nickname.

Example 11-3 Create the non-root nickname: orders

CREATE NICKNAME orders
(
 amount INTEGER OPTIONS(XPATH './amount/text()'),
 date VARCHAR(10) OPTIONS(XPATH './date/text()'),
 oid VARCHAR(20) OPTIONS(PRIMARY_KEY 'YES'),
 cid VARCHAR(20) OPTIONS(FOREIGN_KEY 'CUSTOMERS')
)
FOR SERVER xml_server

OPTIONS(XPATH './order')

Note that the oid primary key column and cid foreign key column do not actually
exist in the XML document. They are generated by the wrapper when the XML
document is accessed to reflect the parent-child relationships inside the XML
document.

Issue the following command to create the payments nickname.

Example 11-4 Create the non-root nickname: payments

CREATE NICKNAME payments
(
 number INTEGER OPTIONS(XPATH './number/text()'),

Tip: We use the “/customer” XPATH expression. We could have used the
“//customer” XPATH expression. It is correct and convenient. However, it is not
very efficient. The self-or-descendant operator “//” is very costly. (The XPath
processor has to recursively parse the entire document). Therefore, if
possible, we encourage you use absolute XPath expressions.

 Chapter 11. XML wrapper 311

 date VARCHAR(10) OPTIONS(XPATH './date/text()'),
 cid VARCHAR(16) OPTIONS(FOREIGN_KEY 'CUSTOMERS')
)
FOR SERVER xml_server
OPTIONS(XPATH './payment')

Issue the following command to create the items nickname.

Example 11-5 Create the non-root nickname: ITEMS

CREATE NICKNAME items
(
 cname VARCHAR(20) OPTIONS(XPATH './name/text()'),
 quantity INTEGER OPTIONS(XPATH './@quant'),
 oid VARCHAR(16) OPTIONS(FOREIGN_KEY 'ORDERS')
)
FOR SERVER xml_server
OPTIONS(XPATH './item')

Now all the XML elements of our customers.xml document (XML data source for
the XML wrapper) are mapped to relational entities, and we can query the XML
data source just as if it were a relational data source.

For example, we can issue the following SQL statement from the DB2 command
line (Example 11-6) to retrieve all items ordered by all customers.

Example 11-6 Results of SQL query using XML wrapper

db2 select c.cname, i.name, i.quantity
from customers c, orders o, items i
where c.cid = o.cid
and o.oid = i.oid

CNAME NAME QUANTIFY
--------------------- ---------------------------- ----------
Shrinivas Kulkarni Notebook 12
Shrinivas Kulkarni Colored Pen 4

2 record(s) selected.

312 XML for DB2 Information Integration

11.2.5 Accessing non-root nicknames
We know that in a federated system, a nickname is just like a database table or a
view, and we can perform any legal operation that we do on a regular database
table or a view. So logically, the nicknames we defined in the previous section
should be no exception. Is this the case? Let us try the very simple query given
below:

SELECT o.date, o.amount FROM orders o

Naturally, we would expect two rows: one containing null values and another
containing valid values “2003-03-01” and “200” for DATE and AMOUNT columns
respectively. However, when we run this query, we get the following message
(Example 11-7):

Example 11-7 Error message for accessing a non-root nickname

DBA2191E SQL execution error.

com.ibm.db.DataException: A database manager error occurred.
: [IBM][CLI Driver][DB2/NT]
SQL0901N The SQL statement failed because of a non-severe system error.
Subsequent SQL statements can be processed.
(Reason "sqlno_crule_save_plans [100]:rc(0)".)
SQLSTATE=58004

What could have gone wrong? Well, the answer is that you cannot access
non-root nicknames stand-alone. If you remember, while creating the non-root
nicknames, we never mentioned the location of our XML document. So DB2 does
not know from where to fetch the XML data and hence it fails, throwing the above
error message. The next question is: what do we do if we want the above query
and similar ones to work?

The solution is to perform a join with the root nickname as part of the query. So
our revised query looks like this (Example 11-8):

Example 11-8 Querying non-root nickname with JOIN with root nickname

SELECT o.date, o.amount
FROM orders o, customers c
WHERE o.cid = c.cid

 Chapter 11. XML wrapper 313

Now try running the query given in Example 11-8 on page 313. You should see
the proper results, as given in Table 11-1.

Table 11-1 Results of query

11.2.6 Creating federated views for non-root nicknames
In the previous section, we discussed that nicknames cannot appear in a query
without a join to the root nickname. To avoid having to code this join in each
query, we can simplify our queries by defining federated views so that not every
query containing a non-root nickname must explicitly code the join operation.
Defining federated views ensures that the queries that join pieces of an XML
nickname hierarchy but do not include the root nickname, run properly. The same
is true for queries that join columns but, not code the join on the “special”
PRIMARY_KEY and FOREIGN_KEY columns.

To define federated views that include all required predicates and a full path to
the top node, follow these steps:

1. Define a view for each non-root nickname as a join of all the nicknames on
the path to the root

2. In the WHERE clause, make the join predicates over the PRIMARY_KEY and
FOREIGN_KEY columns of the subsequent nicknames

3. In the SELECT list, include all the columns of the non-root nickname except
the column that is designated with the FOREIGN_KEY nickname column
option.

4. In the SELECT list, include the column of the parent nickname designated
with the PRIMARY_KEY option.

Following the above guidelines, we define our view for the non-root nickname
orders as follows:

Example 11-9 Creating federated view for non-root nicknames

CREATE VIEW order_view AS
SELECT o.amount, o.date, o.oid, c.cid

FROM customers c, orders o
WHERE c.cid = o.cid

DATE AMOUNT

2003-03-01 200

- -

314 XML for DB2 Information Integration

Now we can run the following query to get the results shown in Table 11-1 on
page 314.

SELECT o.date, o.amount FROM order_view o

Similarly, you can define a view to easily access the items nickname as follows
(Example 11-10):

Example 11-10 Creating items_view

CREATE VIEW items_view AS
SELECT i.name, i.quantity, o.oid
FROM customers c, orders o, items i
WHERE c.cid = o.cid
and o.oid = i.oid

11.2.7 Options for specifying the XML data source for nicknames
When creating a root nickname using the CREATE NICKNAME statement, we can
specify the location of the XML data source in multiple ways. In “Creating
nicknames” on page 309, we showed how to specify an individual XML document
as a data source. In this sub-section we explain different ways of specifying the
XML data source.

XML data source as a hard-coded file name
This is the simplest form of XML data source that we discussed in “Creating
nicknames” on page 309. Sample code for creating a nickname for an individual
XML file is given in Example 11-11.

Example 11-11 Create the root nickname using the FILE_PATH option

CREATE NICKNAME customers
(
 id VARCHAR(5) OPTIONS (XPATH '@id'),
 cname VARCHAR(50) OPTIONS (XPATH './name/text()'),
 cid VARCHAR(20) OPTIONS (PRIMARY_KEY 'YES')
)
FOR SERVER xml_server
 OPTIONS (XPATH '/customer',
 FILE_PATH 'C:\Shrini\Customers.xml')

 Chapter 11. XML wrapper 315

The full XML file (directory and file name) is specified in the FILE_PATH option.

XML data source as a set of XML files in a fixed directory
We can also specify the name of a file system directory as XML data source. All
XML files in this directory with a .xml extension make up the data source.
Whenever a query is run using this nickname, all the XML files in this directory
are parsed and analyzed to produce the results of the query. If the XML data
having similar structure is scattered among multiple files, then you should
probably consider using this option. Sample code for creating a nickname for a
set of XML files in a directory is provided in Example 11-12.

Example 11-12 Create the root nickname using the DIRECTORY_PATH option

CREATE NICKNAME customers
(
 id VARCHAR(5) OPTIONS(XPATH './@id')
 cname VARCHAR(16) OPTIONS(XPATH './name/text()'),

cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES')
)
FOR SERVER xml_server

OPTIONS(XPATH '/customer'
DIRECTORY_PATH 'C:\Shrini')

The directory containing the XML files is specified in the DIRECTORY_PATH option.
The XML wrapper uses only those files with an .xml extension that are located in
the directory that you specify. The XML wrapper ignores all other files in this
directory.

If you specify either the DIRECTORY_PATH or FILE_PATH nickname option, you
should not specify a DOCUMENT column.

XML data source as a parameterized file name
With the DOCUMENT option, we can create a wrapper around an individual XML
file. However, in this case, the name of the file is not statically bound when the
nickname is created, but will be provided at the runtime as a parameter.
Example 11-13 on page 317 shows a sample of how to create a nickname using
this option.

316 XML for DB2 Information Integration

Example 11-13 Create the root nickname using the DOCUMENT option FILE

CREATE NICKNAME customers
(
 doc VARCHAR(100) OPTIONS(DOCUMENT 'FILE'),
 cname VARCHAR(16) OPTIONS(XPATH './name/text()'),
 cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES')
)
 FOR SERVER xml_server
 OPTIONS(XPATH '/customer')

doc is an additional column in the nickname that is used to reference the actual
XML file at runtime. When you run a query against the customers nickname, you
can specify the location of the XML document in the WHERE clause:

SELECT * FROM customers WHERE doc = 'C:\Shrini\Customers.xml'

XML data source as a parameterized directory name
This DOCUMENT option is similar to the one discussed above, with the only
difference that a directory name is specified instead of a file name, and the
wrapper looks up for all the XML files contained in the specified directory .
Example 11-14 shows an example of how to create a nickname using this option.

Example 11-14 Create the root nickname using the DOCUMENT option DIRECTORY

CREATE NICKNAME customers
(
 doc VARCHAR(100) OPTIONS(DOCUMENT 'DIRECTORY'),
 cname VARCHAR(16) OPTIONS(XPATH './name/text()'),
 cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES')
)
 FOR SERVER xml_server
 OPTIONS(XPATH '/customer')

You can then run the following query against the customers nickname, specifying
the directory containing the XML documents in the WHERE clause:

SELECT * FROM customers WHERE doc = 'C:\Shrini’

 Chapter 11. XML wrapper 317

XML data source as a URI
The XML wrapper also allows you to specify a URI as an XML data source. The
URI address indicates the (remote) location of the XML file, for example on the
Web. Example 11-15 shows sample code that creates a nickname using this
option.

Example 11-15 Create the root nickname using the DOCUMENT option URI

CREATE NICKNAME customers
(
 doc VARCHAR(100) OPTIONS(DOCUMENT 'URI'),
 cname VARCHAR(16) OPTIONS(XPATH './name/text()'),
 cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES')
)
 FOR SERVER xml_server
 OPTIONS(XPATH '/customer')

You can then run the following query on the customers nickname to retrieve the
XML data from the remote location:

SELECT * FROM customers WHERE doc = 'http://www.mycorp.com/results.xml'

XML data source as a database column
The XML wrapper lets you access a column of a relational database as an XML
data source. The column that contains the XML document is specified at runtime.
Example 11-16 shows sample code that creates a nickname using this option.

Example 11-16 Create the root nickname using the DOCUMENT option COLUMN

CREATE NICKNAME customers
(
 doc VARCHAR(100) OPTIONS(DOCUMENT 'COLUMN'),
 cname VARCHAR(16) OPTIONS(XPATH './name/text()'),
 cid VARCHAR(16) OPTIONS(PRIMARY_KEY 'YES')
)
 FOR SERVER xml_server
 OPTIONS(XPATH '/customer')

You can then run the following query on the customers nickname to retrieve the
XML data (Example 11-17 on page 319).

318 XML for DB2 Information Integration

Example 11-17 Query using DOCUMENT option COLUMN

SELECT *
FROM customers c, xml_data x
WHERE c.doc = x.data

In the above query, xml_data is a valid table or a view or a nickname, and data is
relational column that contains XML data.

You can also run the following query (Example 11-18) to get similar results.

Example 11-18 Query using COLUMN option with XML data as part of the query

SELECT *
FROM customers c
WHERE c.doc = '<?xml version="1.0" encoding="UTF-8"?>

<customer id='123'>
<name>Shrinivas Kulkarni</name>

</customer>
<customer id='456'>

<name>Bart Steegmans</name>
</customer>'

11.2.8 Altering XML nicknames
You can use the ALTER NICKNAME statement to modify the federated database
representation of a data source. Use this statement to:

� Change local data type of a column:

alter nickname customers alter column cname local type varchar (45)

� Change local column name:

alter nickname customers alter column cname local name CUSTOMER_NAME

� Add the streaming option (since DB2 V8.1 FixPak 3):

alter nickname customers options (ADD STREAMING 'YES')

Restriction: When using the DOCUMENT ‘COLUMN’ option, you can only
process a single XML document at a time (in a single query). You have to
make sure that your query results in a single row being retrieved from the
table that contains the column with the XML documents. This restriction may
be lifted in a future release.

 Chapter 11. XML wrapper 319

� Drop the streaming option:

alter nickname customers options (DROP STREAMING)

More information on the streaming option can be found in “Handling large XML
documents” on page 332.

11.3 Working with XML wrapper via DB2 Control Center
In this section we show you how to create an XML wrapper, server and
nicknames using the DB2 Control Center GUI. Manually creating nicknames is a
tedious and laborious task if the structure of the XML document is complex. You
also need to understand XPATH really well if you want to map the XML elements
and attributes correctly to nickname columns. The DB2 Control Center
automates most of the work, leaving you to just selecting which elements and
attributes to map, rather than how to map them.

1. Launch the DB2 Control Center. Click All Cataloged Systems ->
<NodeName> -> Instances -> DB2 -> Databases -> <databasename>. You
should see a window similar to the one shown in Figure 11-2 on page 321.

320 XML for DB2 Information Integration

Figure 11-2 Creating nicknames using DB2 Control Center

2. Right-click Federated Database Objects. Click Create Wrapper... This
opens up the dialog shown in Figure 11-3 on page 322.

 Chapter 11. XML wrapper 321

Figure 11-3 Create wrapper dialog

3. Select the Data source value as XML from the pull-down menu. The selection
automatically fills the Library name field with db2lsxml.dll. Enter the wrapper
name of choice in the Wrapper name text field. The figure shows the value
my_xml_wrapper being entered. Now click the OK button to create the XML
wrapper. If the wrapper is successfully created, you should see a window
similar to the one shown in Figure 11-4 on page 323.

322 XML for DB2 Information Integration

Figure 11-4 XML wrapper successfully created

If not, you may want to right-click the Federated Database Objects again
and select the Refresh option.

4. Now right-click Servers, listed under the XML wrapper we just created. Select
Create... and click it to open the Create Server dialog as shown in
Figure 11-5 on page 324.

 Chapter 11. XML wrapper 323

Figure 11-5 Create Server dialog

5. Enter the name of the server in the Name field. We use my_xml_server. Then
click OK. The server gets created and you should see a window similar to the
one shown in Figure 11-6.

Figure 11-6 Server created successfully

Now we can create the nicknames on this server. We show how to create one
nickname. You can create the rest of the nicknames similarly. Here we show
how to create the root nickname for our sample XML file we used in “Creating
nicknames” on page 309.

324 XML for DB2 Information Integration

6. Right-click Nicknames. Select Create and click it to open up the Create
Nicknames dialog as shown in Figure 11-7.

Figure 11-7 Create Nicknames dialog

We can either specify the XML element to relational mapping manually by
clicking the Add button or use the tool to automatically discover possible
mappings by clicking the Discover button. Let us see how much our mapping
work is simplified by the automated tool.

7. Click the Discover button. It opens up the window shown in Figure 11-8 on
page 326.

 Chapter 11. XML wrapper 325

Figure 11-8 Discover XML-to-relational mapping automatically

We could also have gone to this window by right-clicking the name of the XML
server name MY_XML_SERVER, and selecting Discover.

In this window, we specify which type of XML data source we want to use,
and provide the DB2 Control Center with the information it needs to determine
how to set up the nicknames.

– We choose either an XML file, or an XML Schema file that describes your
XML document. The tool then parses through the contents of this file and
determines the possible XML-to-relational mappings. (Note that DTDs are
currently not supported.)

326 XML for DB2 Information Integration

– After parsing through the XML elements, the top level XML element name
is displayed in the “ XML file top-level element ” field. If the tool finds more
than one top-level XML element, the tool allows you to choose the element
for which you want to create nickname.

– We can choose different XML wrapper options from the “XML wrapper
options ” section of the window. We can choose one of the four values for
DOCUMENT type option, namely DIRECTORY, FILE, COLUMN, URI.
The meanings of these is similar to the ones we explained in “Options for
specifying the XML data source for nicknames” on page 315. We can also
choose if we want to specify the name of the FILE or DIRECTORY at
query execution time by selecting the radio button named “Provide data
source at query time ”.

8. After entering all the desired values for the window shown in Figure 11-8 on
page 326, click OK. If you used the sample XML file shown in Example 11-1
on page 309 for discovering the mappings, you should see a window as
shown in Figure 11-9.

9. Note that the window in Figure 11-9 also has a Show SQL button. It allows us
to look at the actual SQL statements that will be executed when we click OK.
We can also select all SQL statements (Ctl+a) and copy them to the clipboard
(Ctl+c) for reuse, or manual execution later on.

Figure 11-9 XML-to-relational mappings discovered automatically

10.Now highlight the CUSTOMER_NN nickname and click the Properties button
to find out the mapping details, such as which columns mapped to what
XPATH. You see a window like the one shown in Figure 11-10 on page 328.

 Chapter 11. XML wrapper 327

Figure 11-10 Nickname properties

11.We can change the data types of the mapped columns. When we use an XML
Schema as input for the mapping, DB2 Control Center is able to determine
the data types for the columns in the nicknames, based on the schema
information. When we use an actual XML document as input, the tool maps
all elements and attributes to VARCHAR, for lack of other information. Using
this window, we have the possibility to change the length as well as the data
type of the columns that will be used for the nicknames (by selecting a column
and using the Change... button).

12.Click OK when done. This takes us back to the window shown in Figure 11-9
on page 327. Click OK again. We see the window as shown in Figure 11-11
on page 329. Now we have created two nicknames: CUSTOMER_NN and
ORDERS_NN.

328 XML for DB2 Information Integration

Figure 11-11 Nicknames Created

Notice that the tool created only two nicknames whereas we had created four
nicknames (customers, orders, items, payments) from the same XML file in
“Creating nicknames” on page 309. Did the tool miss the other mappings even for
such a simple XML file? The answer is no. All the elements in the sample XML
file have been mapped. However the tool managed to map all the elements in
only two nicknames.

Let us look at the columns contained in the ORDER_NN nickname and find out
what they are mapped to. Figure 11-12 on page 330 shows the properties of the
ORDERS_NN nickname. The two highlighted lines defining the columns
ITEM_NAME and ITEM_QUANT were actually part of our ITEMS nickname in
“Creating nicknames” on page 309. Similarly, if you look at Figure 11-10 on
page 328, lines 2 and 3 define the columns PAYMENT_NUMBER and
PAYMENT_DATE, and account for our other missing nickname, namely
PAYMENTS.

 Chapter 11. XML wrapper 329

Figure 11-12 Properties of ORDERS_NN nickname

In “Creating federated views for non-root nicknames” on page 314, we discussed
the need for creating federated views. In fact we can create all the possible
nicknames and views in one shot by right-clicking your XML server name and
then selecting the Discover option. This results in identifying the nicknames and
views as shown in Figure 11-13 on page 331.

330 XML for DB2 Information Integration

Figure 11-13 Discovering possible nicknames and views combined

11.4 Best practices
Consider the following items when deciding whether or not to use the XML
wrapper :

� The complexity of the XML document
� The size of the XML document (limited by the available virtual memory)
� XML files must be accessible to the DB2 Information Integrator server (same

machine or on a network accessible shares/mounts).
� INSERT, UPDATE, DELETE are not supported when using the XML wrapper
� Whether namespace support is required. Currently XML wrapper does not

support namespaces. Namespace support may be made available in a future
release.

Since DB2 is a cost engine, some specific parameters were added for the XML
wrapper:

� INSTANCE_PARSE_TIME (for root-nicknames only): Time required in
milliseconds to parse the XML document

� XPATH_EVAL_TIME: Time required in milliseconds to evaluate a nickname
XPath expression

 Chapter 11. XML wrapper 331

You can use the default values or modify them at CREATE NICKNAME time to
optimize your queries.

You can also set the DB2_DJ_COMM profile variable to load the wrapper during
the database startup:

db2set DB2_DJ_COMM='libdb2lsxml.a' (AIX)
db2set DB2_DJ_COMM='libdb2lsxml.sl' (HP-UX)
db2set DB2_DJ_COMM='libdb2lsxml.so' (Solaris, and Linux)
db2set DB2_DJ_COMM='db2lsxml.dll' (Windows)

Handling large XML documents
When an XML document’s size or complexity exceeds a threshold, the memory
requirement to process a query can exceed the virtual storage available. When
this occurs, the query will terminate and the XML wrapper returns:

SQL0901N The SQL statement failed because of a non-severe system
error.Subsequent SQL statements can be processed.(Reason "Unspecified
exception while parsing input document".)SQLSTATE=58004

To avoid this problem, you can use the STREAMING nickname option for the
XML wrapper (available starting with DB2 V8.1 FixPak 3). The STREAMING
option (see Example 11-19) specifies whether the XML source document is
separated into logical fragments that correspond to the node that matches the
XPath expression of the nickname. The XML wrapper then parses and
processes the XML source data fragment by fragment, reducing the total
memory required to read the document. You can specify streaming for any XML
source document (FILE, DIRECTORY, URI, or COLUMN). This option is
accepted only for columns of the root nickname (the nickname that identifies the
elements at the top level of the XML document). The default streaming value is
NO.

Note that you should not set the STREAMING parameter to YES, if you also set
the VALIDATE parameter to YES. If you set both parameters to YES, you will
receive an error message. Example 11-19 shows a create nickname statement
using the STREAMING option.

Example 11-19 XML - Create nickname statement

CREATE NICKNAME customers
(
 id VARCHAR(5) OPTIONS (XPATH '@id'),
 cname VARCHAR(50) OPTIONS (XPATH './name/text()'),
 cid VARCHAR(20) OPTIONS (PRIMARY_KEY 'YES')
)
FOR SERVER xml_server
 OPTIONS (XPATH '/customer'

332 XML for DB2 Information Integration

,FILE_PATH 'C:\Shrini\Customers.xml'
,STREAMING 'YES')

 Chapter 11. XML wrapper 333

334 XML for DB2 Information Integration

Part 3 XML tools for
database
systems

Part 3

© Copyright IBM Corp. 2004. All rights reserved. 335

336 XML for DB2 Information Integration

Chapter 12. XML and database tools in
Application Developer

In this chapter, we introduce the various XML and database tools that are
provided by Application Developer.

We walk through some simple examples based on the INSURA database that is
used in the scenario.

12

Note: To run the examples, you must have created the INSURA database as
described in “Setting up the INSURA database” on page 402. You do not have
to go through the whole scenario.

© Copyright IBM Corp. 2004. All rights reserved. 337

12.1 Application Developer tools overview
In this section, we list the tools provided by Application Developer for XML and
database activities.

12.1.1 Perspectives
Application Developer includes three perspectives that are most often used when
authoring, generating or transforming XML files:

� Data—The Data perspective contains various tools to import and export data
as XML from all databases having a JDBC driver.

� XML—The XML perspective contains various tools author, edit and transform
XML related files (XML, XML Schema, DTD, XSL stylesheet, and so forth).

� XSL Debug—The XSL Debug perspective enables you to debug XSL
transformations in a symbolic debugger.

12.1.2 Authoring and generation tools
Application Developer provides a comprehensive visual XML development
environment. The tool set includes components for building DTDs, XML
Schemas, XML files , and XSL files:

� XML editor—The XML editor is a tool for creating and viewing XML files. You
can use it to create new XML files, either from scratch, existing DTDs, or
existing XML Schemas. You can also use it to edit XML files, associate them
with DTDs or schemas, and validate them.

� DTD editor—The DTD editor is a tool for creating and viewing DTDs. Using
the DTD editor, you can create DTDs, generate XML Schema files, and
generate Java beans. You can also use the DTD editor to generate a default
HTML form based on the DTDs you create.

� XML Schema editor—The XML Schema editor is a tool for creating, viewing,
and validating XML Schemas. You can use the XML Schema editor to
perform tasks such as creating XML Schema components, importing and
viewing XML Schemas, generating DTDs and relational table definitions from
XML Schemas, and generating Java beans for creating XML instances of an
XML Schema.

� XSL editor—The XSL editor can be used to create new XSL files or to edit
existing ones. You can use content assist and various wizards to help you
create or edit the XSL file. Once you have finished editing your file, you can
also validate it. You can also associate an XML instance file with the XSL
source file you are editing and use that to provide guided editing when
defining constructions such as an XPath expression.

338 XML for DB2 Information Integration

� XPath Expression wizard—You can use the XPath expression wizard to
create XPath expressions. XPath expressions can be used to search through
XML documents, extracting information from the nodes (such as an element
or attribute).

� XSL tools—You can use the XSL debugging and transformation tool to apply
XSL files to XML files, transforming them into new XML, HTML, or text files.
After the transformation has taken place, the XSL Debug perspective enables
you to visually step through an XSL transformation script, highlighting the
transformation rules as they are fired. You can use the views in the XSL
Debug perspective to help you debug the XML or XSL files.

� SQL Query wizard and SQL Builder—You can use either the SQL Query
wizard or SQL Builder to create SQL statements for XML generation or for
database applications.

� User-defined function—You can build and deploy SQL user-defined
functions that can be used in SQL statements.

� Stored procedures—Application Developer includes the stored procedure
builder in a fully integrated way. Java and SQL stored procedures can be built
and deployed.

� XML and SQL Query wizard—You can use the XML and SQL Query wizard
to create an XML file from the results of an SQL query or take an XML file and
store it in a relational table. When creating an XML file from an SQL query,
you can optionally choose to create an XML Schema or DTD file that
describes the structure that the XML file has for use in other applications. Two
Java class libraries SQLToXML (sqltoxml.jar) and XMLToSQL (xmltosql.jar) are
included so you can use them in your applications at runtime. These JAR
files are located in:

<wsadhome>\wstools\eclipse\plugins\com.ibm.etools.sqltoxml\jars

� XML to XML mapping editor—The XML to XML mapping editor is a tool
used to map one or more source XML files to a single target XML file. You can
add XPath expressions, groupings, Java methods or conversion functions to
your mapping. Mappings can also be edited, deleted, or persisted for later
use. After defining the mappings, you can generate an XSLT script. The
generated script can then be used to combine and transform any XML files
that conform to the source DTDs.

� RDB to XML mapping editor—The RDB to XML mapping editor is a tool for
defining the mapping between one or more relational tables and an XML file.
After you have created the mapping, you can generate a document access
definition (DAD) script which can be run by the DB2 XML Extender to either
compose XML files from existing DB2 data, or decompose XML files into DB2
data.

 Chapter 12. XML and database tools in Application Developer 339

� Web Service wizard—Application Developer can create Web services from
SQL statements and stored procedures. In a first step, a document access
definition extended (DADX) file is created from the SQL statement or stored
procedure; in a second step a Web service is created from the DADX file.

12.1.3 Preparation
To prepare for the tools walkthrough, set up a workspace, for example:

c:\WSAD51sg246994

Start Application Developer using the new workspace by typing the workspace
directory name at the prompt, or by setting up a startup icon that points to the
workspace:

<wsadhome>\wsappdev.exe -data C:\WSAD51sg246994

Web project
Create a Web project named ItsoInsuraTest:

1. Select File -> New -> Other -> Web -> Dynamic Web Project.

2. Enter ItsoInsuraTest as name and click Finish.

3. The Web project is added to a DefaultEAR enterprise application.

12.2 XML tools walkthrough
In this section, we discuss the various XML tools using simple examples based
on the INSURA database.

You must have run the scenario to define the database and insert some test data
into the tables.

12.2.1 Creating a database connection
Many of the tools that will be described later depend on you having already
established a connection to your database and then importing the database
schema into Application Developer.

Connection dialog
To start, you must create a connection to the database containing the schema
and data in question. You do this in the Data perspective. Bring up the context
menu in the DB Servers view and select New Connection. The Database

340 XML for DB2 Information Integration

Connection dialog is displayed (Figure 12-1). Fill in the database connection
information and click Finish.

You could use the Filter dialog to limit the set of tables that are retrieved.

Figure 12-1 Database connection

After that, you should see that the DB Servers view has imported the database
schema from the database server (Figure 12-2 on page 342).

 Chapter 12. XML and database tools in Application Developer 341

Figure 12-2 DB Servers view after connecting to the database

Importing database objects
To work with database objects in Application Developer, you have to import the
objects into a project for further processing.

Often, you will import the database schema into a Simple project or a Web
project, but this really depends on how you intend to use the database schema in
your application. For example, if you only want to transform some data into an
XML file, use a Simple project. If, on the other hand, you intend to build a Web
application that extracts the data and then transform it into an HTML page to be
output to a Web browser, import it into a Web project.

To import the database, schema, and tables into a project, select the database or
one of the schema names (ITSO) in the DB Servers view and select Import to
Folder (context). Next, select the project to import the database schema into
and click Finish. Notice that depending on the project type (Simple, Web), the
default final destination folder will be different.

Figure 12-3 on page 343 shows the imported files in the ItsoInsuraTest Web
project after importing the ITSO tables. Notice the files that were imported into the
WEB-INF subdirectory databases.

342 XML for DB2 Information Integration

Figure 12-3 Imported files in a Web project

Data Definition view
The Data Definition view shows the imported objects in a hierarchical list
(Figure 12-4).

Figure 12-4 Data Definition view after import

connection
ITSO schema

tables

database

 Chapter 12. XML and database tools in Application Developer 343

12.2.2 Database editors
You can edit any of the imported definitions by opening (double-clicking) the files.
Using these editors, you can also create new tables, schema, databases, and
views. Figure 12-5 shows the table editor for the POLICY table.

Figure 12-5 Table editor

12.2.3 XML Schema, table DDL, and DDT
Application Developer provides generation utilities from table definitions to XML
Schema and DDL.

You can generate an XML Schema (XSD) file from a relational table. You can
then can further customize that file in the XML Schema editor.

To generate a XML Schema file from a relational table, follow these steps:

1. In the Data Definition view, select the table (ITSO.INSURED) and Generate
XML Schema (context).

2. Select a project or folder to contain the XML file and type a name for it. The
name of the file must end in .xsd. For now leave the defaults and click
Finish.

3. The INSURED.xsd file is generated and opened in the XML Schema editor.
You can either view the source or the graph of the XML Schema (Figure 12-6
on page 345).

344 XML for DB2 Information Integration

Figure 12-6 XML Schema editor: graph view expanded

To generate the DDL file for a table, select the table (ITSO.INSURED) in the Data
Definition view and Generate DDL (context). Leave the default filename of
INSURED.sql for the generated output. The content of the file is:

CREATE TABLE ITSO.INSURED
 (INSURED_ID SMALLINT NOT NULL,
 FIRST_NAME CHARACTER(20) NOT NULL,
 LAST_NAME CHARACTER(20) NOT NULL,
 MARITAL_STATUS CHARACTER(2) NOT NULL,
 AGE SMALLINT NOT NULL);

ALTER TABLE ITSO.INSURED
 ADD CONSTRAINT INSURED_PK PRIMARY KEY (INSURED_ID);

You can generate a relational table definition (DDL) from an XML Schema (XSD)
file:

1. Select the INSURED.xsd file in the Navigator view and click Generate ->
DDL.

2. Select the project or folder that will contain the relational table. Enter an
output name of INSURED1.sql. Click Finish.

 Chapter 12. XML and database tools in Application Developer 345

3. Open the generated file and compare it to the previously generated DDL file.
One difference is that the file generated from the XML Schema does not show
all the NOT NULL clauses.

From the XML Schema, you can generate a DTD, an XPath expression, or a
sample XML file. For example, the generated DTD would look as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT INSURED_TABLE (INSURED*)>
<!ELEMENT INSURED (INSURED_ID,FIRST_NAME,LAST_NAME,MARITAL_STATUS,AGE)>
<!ELEMENT INSURED_ID (#PCDATA)>
<!ELEMENT AGE (#PCDATA)>
<!ELEMENT FIRST_NAME (#PCDATA)>
<!ELEMENT LAST_NAME (#PCDATA)>
<!ELEMENT MARITAL_STATUS (#PCDATA)>

12.2.4 Creating an SQL statement
This wizard is used to write a SQL statement based on a database schema that
has been imported into a WSAD project.

For example, we can create an SQL statement that lists insured people, their
policy number and policy plan.

You can start the wizard by selecting File -> New -> Other -> Data and SQL
Statement and clicking Next.

In the first wizard panel (Figure 12-7), you select either Be guided through
creating an SQL statement or Create an SQL resource and invoke the
SQL Builder. We will show the SQL Builder later. Deselect Create a new
database connection (we use the existing imported database).

Figure 12-7 Creating an SQL statement: guided or builder

346 XML for DB2 Information Integration

In the second panel (Figure 12-8), click Browse to locate the imported
database.

Figure 12-8 Creating an SQL statement: database selection

In the third panel (Figure 12-9), enter the name of the SQL statement as
InsuredPolicies and click Next.

Figure 12-9 Creating an SQL statement: name

Now we construct the actual SQL statement. First, select the three tables
INSURED, P_TYPE, and POLICY and click > (Figure 12-10 on page 348).

 Chapter 12. XML and database tools in Application Developer 347

Figure 12-10 Creating an SQL statement: table selection

On the Columns page, expand the tables, select FIRST_NAME and
LAST_NAME from INSURED, POLICY_NUMBER from POLICY, and PLAN_NAME
and PREMIUM from P_TYPE. Click > for each selection to get the correct
sequence.

On the Joins page, rearrange the tables, then join INSURED and POLICY on
INSURED_ID, and POLICY and P_TYPE on POLICY_TYPE_ID (Figure 12-11 on
page 349). To join two tables, drag a join column from one table to the matching
column in the other table.

Note that you can select the columns also on the Join page.

348 XML for DB2 Information Integration

Figure 12-11 Creating an SQL statement: join

On the Conditions page (Figure 12-12), add a condition to select by
MARRIED_STATUS. Select the column and the operator using the pull-down menus,
and type in a variable name (:marriedstatus).

Figure 12-12 Creating an SQL statement: condition

Click Next and the complete SQL statement is displayed.

Click Execute to test the statement. You are prompted for the variable. Enter 'M'
(with quotes) for the :marriedstatus and click Finish. The results are displayed
(Figure 12-13 on page 350).

 Chapter 12. XML and database tools in Application Developer 349

Select the table(s) that your SQL statement will use and then select the Next
button.

Figure 12-13 Creating an SQL statement: execute

Click Finish to save the SQL statement. The SQL Builder opens (Figure 12-14
on page 351).

You can also construct an SQL statement in the SQL Builder by dragging tables
to the top or middle pane, selecting columns, making joins, and entering
conditions.

350 XML for DB2 Information Integration

Figure 12-14 SQL Builder

Select SQL -> Execute to run the statement again. Enter 'S' as a parameter.
The output is displayed in the DB Output view (Figure 12-15).

Figure 12-15 DB Output view with SQL execution

We also create a second SQL statement named AllInsured that lists the
INSURED table as:

SELECT ITSO.INSURED.INSURED_ID, ITSO.INSURED.FIRST_NAME,
 ITSO.INSURED.LAST_NAME, ITSO.INSURED.MARITAL_STATUS, ITSO.INSURED.AGE
FROM ITSO.INSURED
ORDER BY INSURED_ID ASC

 Chapter 12. XML and database tools in Application Developer 351

12.2.5 Creating a user-defined function (UDF)
Application Developer supports the development of user-defined functions
(UDFs).

For example, let’s create a UDF that returns the total premium for an insured.

To start the UDF wizard, either select File -> New -> Other -> Data ->
User-Defined Function or expand the INSURA database and the ITSO
schema in the Data Definition view, then select User-Defined Functions and
New -> SQL User-defined Function (context).

If you use the first option, click Browse to locate the ITSO schema in the
INSURA database. If you use the second option, this selection is bypassed.

Then, specify the name of the UDF, for example, InsuredPremium.

Next, you specify the UDF definition. Click Change to specify the SQL
statement. You can use the SQL Assist wizard or just type the statement
(Figure 12-16).

Figure 12-16 Creating a user-defined function: SQL statement

352 XML for DB2 Information Integration

Enter this SQL statement:

SELECT SUM(ITSO.POLICY.ACTUAL_PREMIUM)
FROM ITSO.INSURED, ITSO.POLICY

WHERE ITSO.INSURED.INSURED_ID = ITSO.POLICY.INSURED_ID
AND ITSO.INSURED.INSURED_ID = :id

The return data type from a UDF is either a scalar or a table. In the next step
(Figure 12-17), set the return type to DECIMAL(10,2).

Figure 12-17 Creating a user-defined function: return type

Next, you can define all of the parameters (and their SQL data types) for the
UDF. We require one parameter, id, a SMALLINT (Figure 12-18 on page 354).

 Chapter 12. XML and database tools in Application Developer 353

Figure 12-18 Creating a user-defined function: parameters

Next, you can specify a specific name (or leave it empty), and you can choose to
have the UDF built immediately. The build can also be done manually later.

Finally, you are presented with a summary dialog for the creation of the UDF
(Figure 12-19). Click Finish.

Figure 12-19 Creating a user-defined function: summary

354 XML for DB2 Information Integration

The UDF is saved and opened in the editor:

CREATE FUNCTION ITSO.InsuredPremium(id SMALLINT)
 RETURNS DECIMAL(10,2)
--
-- SQL UDF (Scalar)
--
F1: BEGIN ATOMIC
 RETURN SELECT SUM(ITSO.POLICY.ACTUAL_PREMIUM)
FROM
 ITSO.INSURED, ITSO.POLICY
WHERE
 ITSO.INSURED.INSURED_ID = ITSO.POLICY.INSURED_ID
 AND ITSO.INSURED.INSURED_ID = InsuredPremium.id;
END

If you selected Build, then the UDF is built and stored in the database.
Otherwise select the new UDF in the Data Definition view and Build (context).

To test the UDF, select the InsuredPremium UDF in the Data Definition view
and Run (context). Enter 987 as a parameter, click OK, and the result is
displayed in the DB Output view ().

Figure 12-20 Testing a UDF in Application Developer

 Chapter 12. XML and database tools in Application Developer 355

Testing UDFs with SQL statements
You can use UDFs in SQL statements, for example in a DB2 command window:

db2 select insured_id, itso.insuredpremium(insured_id) as Induredpremium
from itso.insured

INSURED_ID INDUREDPREMIUM
---------- --------------
 555 9876.54
 556 222.25
 666 -
 987 1479.31

db2 "select * from itso.insured where itso.insuredpremium(insured_id)>1000"

INSURED_ID FIRST_NAME LAST_NAME MARITAL_STATUS AGE
---------- -------------------- -------------------- -------------- ------
 987 Shrinivas Kulkarni S 25
 555 Eva Vanhex M 35

12.2.6 Generating XML from an SQL statement
The XML and SQL Query wizard allows you to extract data from a relational
database and save it in an XML file.

First, you must have already established a connection to the database (refer to
12.2.1, “Creating a database connection” on page 340). Then, you must create
an SQL Query statement to extract the data desired. Finally, you can invoke this
wizard and use the SQL Query statement to extract the data and then save it into
a XML file.

We use the SQL statement, InsuredPolicies, created in 12.2.4, “Creating an
SQL statement” on page 346 to extract the data from the database and write it
out as an XML file.

First, invoke the XML and SQL Query wizard. You can start the wizard by
selecting File -> New -> Other -> XML -> XML and SQL Query.

In the first panel select Create XML from SQL query and click Next
(Figure 12-21 on page 357).

356 XML for DB2 Information Integration

Figure 12-21 Generating XML from SQL query: initial

On the next panel, expand the project, select the SQL statement to be used and
click Next (Figure 12-22).

Figure 12-22 Generating XML from SQL query: select SQL statement

On the next panel, customize the transformation settings in regard to generation
of elements or attributes, set the output folder, and click Finish (Figure 12-23 on
page 358).

 Chapter 12. XML and database tools in Application Developer 357

Figure 12-23 Generating XML from SQL query: transformation settings

You are prompted for the :marriedstatus parameter; enter either 'M' or 'S'.

Output files
Table 12-1lists all of the files that are generated.

Table 12-1 XML from SQL generated files

Example 12-1 on page 359 shows the generated XML file and Figure 12-24 on
page 359 shows the generated HTML file when opened in Page Designer.

File Name Description

InsuredPolicies.xml XML file with database data

InsuredPolicies.xsd
InsuredPolicies.dtd

XML Schema or DTD, if selected

InsuredPolicies.xsl XSL stylesheet to transform XML into HTML

InsuredPolicies.html HTML file is generated from XML using XSL

InsuredPolicies.xst Query Template with connection information and SQL
statement; can be used in application programs to run
SQL-to-XML transformation

358 XML for DB2 Information Integration

Example 12-1 Generating XML from SQL query: XML output

<?xml version="1.0" encoding="UTF-8"?>
<SQLResult xmlns="http://www.ibm.com/INSURED_POLICY_P_TYPE"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ibm.com/INSURED_POLICY_P_TYPE
InsuredPolicies.xsd">

 <INSURED_POLICY_P_TYPE>
 <FIRST_NAME>Eva</FIRST_NAME>
 <LAST_NAME>Vanhex</LAST_NAME>
 <POLICY_NUMBER>11</POLICY_NUMBER>
 <PLAN_NAME>Divorce Plan</PLAN_NAME>
 <PREMIUM>8500.00</PREMIUM>
 </INSURED_POLICY_P_TYPE>
 <INSURED_POLICY_P_TYPE>
 <FIRST_NAME>Sam</FIRST_NAME>
 <LAST_NAME>Elliot</LAST_NAME>
 <POLICY_NUMBER>22</POLICY_NUMBER>
 <PLAN_NAME>Health</PLAN_NAME>
 <PREMIUM>350.00</PREMIUM>
 </INSURED_POLICY_P_TYPE>
</SQLResult>

Figure 12-24 Generating XML from SQL query: HTML output

12.2.7 Updating relational tables from XML
Besides being able to extract data and save it into an XML file, the XML and SQL
Query wizard can read an XML file and update, insert or delete data in a
database. In the next example, we insert a new row into the INSURED table.

We will start by creating a file called NewInsured.xml (Example 12-2 on
page 360). The format of the file can be created using the wizard from a simple
SQL statement that lists the table (AllInsured).

 Chapter 12. XML and database tools in Application Developer 359

Example 12-2 Table insert from XML: input file

<?xml version="1.0" encoding="UTF-8"?>
<SQLResult>
 <INSURED INSURED_ID="666">
 <FIRST_NAME>Unknown</FIRST_NAME>
 <LAST_NAME>Lady</LAST_NAME>
 <MARITAL_STATUS>S</MARITAL_STATUS>
 <AGE>24</AGE>
 </INSURED>
</SQLResult>

We start the wizard (New -> XML -> XML and SQL Query). This time, we
select Create relational data from XML document and click Next
(Figure 12-21 on page 357).

In the next panel, select the XML file to be used as input and click Next
(Figure 12-25).

Figure 12-25 Table insert from XML: select XML file

In the next panel, we connect to the database using the existing ConInsura
connection and click Next.

Next, we select the INSERT action (Figure 12-26 on page 361).

360 XML for DB2 Information Integration

Figure 12-26 Table insert from XML: action

Finally, we select the columns to be updated and click Finish (Figure 12-27).

Figure 12-27 Table insert from XML: columns

The database is updated with the content of the XML file. You can verify this
using a DB2 command window:

INSURED_ID FIRST_NAME LAST_NAME MARITAL_STATUS AGE
---------- -------------------- -------------------- -------------- ------
 987 Shrinivas Kulkarni S 25
 555 Eva Vanhex M 35
 556 Sam Elliot M 45
 666 Unknown Lady S 24

12.2.8 XSL transformations
With XSL, you can transform an XML file into many other formats. The XML and
SQL Query wizard (see 12.2.6, “Generating XML from an SQL statement” on
page 356) used XSL to transform the XML output of the SQL query into HTML.

 Chapter 12. XML and database tools in Application Developer 361

You can manually perform the transformation again by selecting both the
InsuredPolicies.xml and InsuredPolicies.xsl files and clicking Transform ->
XML (Figure 12-28).

Figure 12-28 XSL transformation

An HTML output file named InsuredPolicies_InsuredPolicies_transform.html is
generated and displayed in a browser window.

XSL debugging
The same transformation can be run using the XSL debugger. This time select
the XML and XSL files and click Transform -> Debug.

The XSL Debug perspective opens (Figure 12-29 on page 363).

Use the step icon in the Sessions view to step through the XSL and XML code.
The current XSL element is displayed (top right) and the generated HTML is
displayed in the XSL Transformation Output view.

You can also set breakpoints in the XSL and run to the breakpoint.

362 XML for DB2 Information Integration

Figure 12-29 XSL Debug perspective

XML to XML transformation
XSL transformation can also transform an XML file into another XML file where
the mapping is constructed from a source XML, XSD or DTD file to a target XML,
XSD or DTD file.

Suppose we want to transform the XML file for database insert (Example 12-2 on
page 360) into a new format:

<SQLResult> <SQLResult>
<INSURED INSURED_ID="666"> <INSURED>

<ID>666</ID>
<FIRST_NAME>Unknown</FIRST_NAME> <FIRST>Unknown</FIRST>
<LAST_NAME>Lady</LAST_NAME> <LAST>Lady</LAST>
<MARITAL_STATUS>S</MARITAL_STATUS> <MARRIED>S</MARRIED>
<AGE>24</AGE> <AGE>24</AGE>

</INSURED> </INSURED>
</SQLResult> </SQLResult>

step

generated HTML

current line

current elementWeb output

 Chapter 12. XML and database tools in Application Developer 363

The original file is NewInsured.xml, the target file is NewInsured2.xml.

The XML to XML Mapping wizard can generate a mapping and an XSL file for us.
Start the wizard using File -> New -> Other -> XML -> XML to XML
Mapping.

On the first panel, select the output folder and mapping file name (Figure 12-30).

Figure 12-30 XML to XML mapping: mapping file

On the next two panels, select the source and target files (Figure 12-31).

Figure 12-31 XML to XML mapping: source and target files

364 XML for DB2 Information Integration

On the final panel, select the root element (SQLResult) and click Finish.

The mapping file (xmlmap.xmx) opens in the mapping editor. Complete the
mapping by drag and drop of elements of the source to the target (or opposite).
Figure 12-32 shows the completed mapping.

Figure 12-32 XML to XML mapping: completed mapping

Save the mapping file. Before closing the mapping editor, select Mapping ->
Generate XSLT Script. In the dialog, select the target folder (WebContent)
and target file name (NewInsured2.xsl).

To execute the transformation, select both the NewInsured.xml and
NewInsured2.xsl files and click Transform -> XML. The translated file opens
in a browser and looks identical to the NewInsured2.xml file.

This transformation can be executed for any XML file that matches the original
layout. In many cases, the original and target layout would be given by XSD or
DTD files.

12.2.9 Mapping the relational table to XML
To store XML files in relational tables using XML Extender, you require a
document access definition (DAD) file. To create a DAD file, you need a mapping
between XML and a relational table (or a set of tables). For simplicity’s sake, we
will only use one table in this example.

 Chapter 12. XML and database tools in Application Developer 365

Generating a DTD
To create a mapping between XML and a table, we require a DTD that specifies
the format of the XML files.

We can generate a DTD from an existing XML file:

1. Select the NewInsured2.xml file and click Generate -> DTD (context).

2. Select the target folder and set the output file name (NewInsured2.dtd).

3. Click Finish and the DTD is generated.

Creating an RDB to XML mapping
Start the RDB to XML Mapping wizard by selecting File -> New -> Other ->
XML -> RDB to XML Mapping and clicking Next.

In the first panel (Figure 12-33), select the output folder (WebContent) and the
mapping file name (NewInsured.rmx).

Figure 12-33 RDB to XML mapping: output file

In the next panel (Figure 12-34 on page 367), select RDB table to XML
mapping. The other choice is SQL Query to XML mapping, where you
would use an existing SQL statement.

This creates a mapping between a relational database table and an XML
document. The DAD file you generate from this type of mapping can be used to
store and retrieve data from DB2 databases.

366 XML for DB2 Information Integration

Figure 12-34 RDB to XML mapping: mapping type

On the next panel (Figure 12-35), you select the database table to use. Notice
that you must already have imported the database schema into the project.

Figure 12-35 RDB to XML mapping: table selection

On the next panel (Figure 12-36 on page 368), you select a target DTD file to
map the database table. If you want to use a DTD file that is not currently in the
workbench, click Import File and fill in the fields in the Import wizard as
necessary. Click Next.

 Chapter 12. XML and database tools in Application Developer 367

Figure 12-36 RDB to XML mapping: DTD selection

Next, you select the appropriate root element (Figure 12-37). When your DTD is
transformed into an XML document for mapping, the selected element will be
used as the root element.

Figure 12-37 RDB to XML mapping: root element

At this point, the RDB to XML mapping editor is displayed with the source and
target that you specified. You drag source elements from the Tables pane and
drop them on top of target elements in the XML pane to establish a mapping
(Figure 12-38 on page 369).

368 XML for DB2 Information Integration

Figure 12-38 RDB to XML mapping: mapping editor

Save the mapping. We will use this mapping to create a DAD file.

12.2.10 Mapping the SQL query to XML
The mapping of an SQL SELECT statement to XML is almost the same as the
mapping of a table.

Use the same RDB to XML Mapping wizard:

1. Set the output file as AllInsured.rmx (Figure 12-33 on page 366).

2. Select SQLQuery to XML mapping (Figure 12-34 on page 367).

3. Select the SQL statement (instead of a table). Expand the WebContent folder
and the INSURA database until you can select the AllInsured SQL
statement.

4. Select the same DTD (Figure 12-36 on page 368).

5. Select the same root element (Figure 12-37 on page 368).

6. In the mapping editor, map the columns of the SQL result to the XML
elements (Figure 12-39 on page 370). Save the mapping when finished.

 Chapter 12. XML and database tools in Application Developer 369

Figure 12-39 SQL query to XML mapping: mapping editor

12.2.11 Generating a DAD file
The relational database (RDB) to XML mapping editor generates a RMX file
which can be used to generate a document access definition (DAD) file that can
be used with the IBM DB2 XML Extender to generate XML documents from
existing relational data, or to decompose XML documents into relational data.

The DAD file is an XML formatted document that associates an XML document
structure with tables in a DB2 database.

Once you have generated a RMX file using the RDB to XML Mapping wizard,
you can generate a DAD file in two ways:

� Open the RMX file and selecting Mapping -> Generate DAD.
� Select the RMX file in the Project Navigator and click Generate DAD

(context).

We will use the NewInsured.rmx file to generate a DAD file.

On the first panel, select the destination directory and the file name for the DAD
file (Figure 12-40 on page 371).

370 XML for DB2 Information Integration

Figure 12-40 Generate DAD file: output

On the next panel, you can choose to enclose the output into a new root element
(Figure 12-41).

Figure 12-41 Generate DAD file: enclose document

 Chapter 12. XML and database tools in Application Developer 371

If the root element of your target XML document has an attribute, or can contain
PCDATA, the DB2 XML Extender query will return multiple XML documents.
Select Enclose entire document with a new root element tag to add a
new tag to the XML document that will enclose the contents of the file so the XML
Extender query result is returned as a single XML document. Specify the tag
name, then click Next.

Note: If you select this option for an RDB to XML mapping DAD, you will be able
to retrieve XML content, but will not be able to store XML content in the
database.

If you wish to create your DAD file without generating a test harness, click
Finish.

To generate a test harness to test your script, select Generate test harness
(Figure 12-42). A test harness is a series of script files used to enable a DB2
database for use by the DB2 XML Extender. Once enabled, it tests composing
XML from data as well as decomposing XML files into relational data.

Figure 12-42 Generate DAD file: test harness

1. Type the path of the DB2 SQLLIB directory, for example C:\SQLLIB

2. Type the path of the DB2 XML Extender directory, for example C:\DXX. If you
are working with DB2 UDB V8.1, this field will not appear because V8.1
includes DB2 XML Extender.

372 XML for DB2 Information Integration

3. In the XMLDIR text field, type the path of the directory in which you want the
output XML file to be created. This is the same directory where the source
XML files used to store information in the database are located. For example,
enter c:\SG246994\Scenario\TestHarness.

4. Select the radio button that corresponds to the destination platform (the
platform on which the test harness will be executed).

5. The default output folder is WebContent (you can change that by clicking
Browse).

6. Click Finish.

The generated files are:

� NewInsured2.dad (Example 12-3 on page 374)

� readme.txt—instructions for test harness

� Four bat files of the test harness (setup.bat, retrieveXML.bat, storeXML.bat,
and updateDTD_REF.bat)

The DAD file opens in the editor. When testing, we found out that the table
element that repeats must have the attribute multi_occurrence="YES" added:

<element_node name="INSURED" multi_occurrence="YES">

Test harness
To use the test harness, select the NewInsured2.dad, the NewInsured2.dtd,
and the four BAT files, and click Export. Select File system and export the
files to the directory specified in Figure 12-42 on page 372:

c:\SG246994\Scenario\TestHarness

In a command window, go to the TestHarness directory and execute:

setup.bat ==> start a DB2 command window
retrieveXML.bat ==> run XML Extender with the DAD file

 Chapter 12. XML and database tools in Application Developer 373

An extract of the generated XML is shown here:

<?xml version="1.0"?>
<!DOCTYPE SQLResult PUBLIC "NewInsured2Id" "NewInsured2.dtd">
<SQLResult>
 <INSURED>
 <ID>987</ID>
 <FIRST>Shrinivas </FIRST>
 <LAST>Kulkarni </LAST>
 <MARRIED>S </MARRIED>
 <AGE>25</AGE>
 </INSURED>
 <INSURED>
......

</SQLResult>

Example 12-3 Generate DAD file: generated DAD file with correction

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD PUBLIC "dadId" "dad.dtd">
<DAD>
 <dtdid>NewInsured2.dtd</dtdid>
 <validation>NO</validation>
 <Xcollection>
 <prolog>?xml version="1.0"?</prolog>
 <doctype>!DOCTYPE SQLResult PUBLIC "NewInsured2Id"
"NewInsured2.dtd"</doctype>
 <root_node>
 <element_node name="SQLResult">
 <RDB_node>
 <table name="ITSO.INSURED" key="INSURED_ID"/>
 <condition>
 ITSO.INSURED.INSURED_ID=ITSO.INSURED.INSURED_ID
 </condition>
 </RDB_node>
 <element_node name="INSURED" multi_occurrence="YES"> <==== modify
 <element_node name="ID">
 <text_node>
 <RDB_node>
 <table name="ITSO.INSURED"/>
 <column name="INSURED_ID" type="SmallInt"/>
 </RDB_node>
 </text_node>
 </element_node>
 <element_node name="FIRST">
 <text_node>
 <RDB_node>
 <table name="ITSO.INSURED"/>
 <column name="FIRST_NAME" type="Character(20)"/>

374 XML for DB2 Information Integration

 </RDB_node>
 </text_node>
 </element_node>
 <element_node name="LAST">
 <text_node>
 <RDB_node>
 <table name="ITSO.INSURED"/>
 <column name="LAST_NAME" type="Character(20)"/>
 </RDB_node>
 </text_node>
 </element_node>

................
 </element_node>
 </element_node>
 </root_node>
 </Xcollection>
</DAD>

12.3 Web services tools
The creation of Web services from SQL statements or stored procedures is a
multi-step process:

1. Create a DADX group configuration that specifies how the database is
accessed.

2. Create a DADX file from an SQL statement or stored procedure.

3. Create a Web service from the DADX file.

12.3.1 Creating a DADX group configuration
Before you can create a DADX file from a SQL statement and then create a Web
service from the DADX file, you have to create a DADX group configuration.

To get started, select File -> New -> Other -> Web Services -> Web
Service DADX Group Configuration (Figure 12-43 on page 376).

 Chapter 12. XML and database tools in Application Developer 375

Figure 12-43 Web services tool selection

You will be presented with a list of the existing Web projects to add your group to.
Highlight the Web project to add your group to and then select the Add Group
button. You should then enter the name of the group.

Figure 12-44 Adding a DADX group

Next, select the group and click Group properties to specify the database
connection parameters. Figure 12-45 on page 377 shows the group properties
dialog.

376 XML for DB2 Information Integration

Figure 12-45 DADX group properties

Enter the correct DB URL and optional user ID and password. To use a data
source instead of a JDBC driver, enter a data source name (jdbc/insura) and
the WebSphere context factory:

com.ibm.websphere.naming.WsnInitialContextFactory

The properties are stored in the group.properties file under
JavaSource/groups.InsuraGroup (Example 12-4 on page 378).

Note: You should set the value of Use document style to true to generate
Web Service Interoperability (WS-I) compliant Web Services. The value false
generates rpc-type Web services that are not WS-I compliant.

 Chapter 12. XML and database tools in Application Developer 377

Example 12-4 DADX group.properties file

#Wed Aug 06 16:30:31 PDT 2003
namespaceTable=namespacetable.nst
groupNamespaceUri=
reloadIntervalSeconds=5
dbDriver=COM.ibm.db2.jdbc.app.DB2Driver
dbURL=jdbc\:db2\:INSURA
enableXmlClob=true
useDocumentStyle=false
password=
datasourceJNDI=jdbc/insura
initialContextFactory=com.ibm.websphere.naming.WsnInitialContextFactory
userID=
autoReload=true

12.3.2 Creating a DADX file from an SQL statement
The DADX wizard supports the creation of a DADX file from a combination of one
or more SQL statements, stored procedures, and DAD files. A DADX file is an
XML file used to create a Web service that accesses a relational database.

A document access definition (DAD) file is a user-specified file that provides
control over the mapping of XML document elements to DB2 database columns
for storage and retrieval using DB2 XML Extender. The DADX wizard supports
only Xcollection DAD. The types of mappings and operations supported by the
DADX wizard are as follows:

� SQL statement operations (query and update operations based on SQL
statements are supported)

� RDB_node mapping (storeXML and retrieveXML operations based on DAD
file mappings are supported).

If the DAD file defines an SQL statement mapping, you may have to
customize the SQL_OVERRIDE information to specify the parameters you
want to override from the SQL host variables.

� Stored procedure calls

The SQL statement or stored procedure must exist in the workspace to complete
the DADX wizard.

To start the wizard, select File -> New -> Other -> Web Services -> DADX
File.

378 XML for DB2 Information Integration

In the first panel, select the SQL statements or stored procedures involved.
Expand the project folders until you can select the statements and/or stored
procedures (Figure 12-46).

Figure 12-46 DADX generation: select SQL statement

Next, optionally select the DAD files involved (Figure 12-47).

Figure 12-47 DADX generation: select DAD file

You can use this page to select one or more DAD files that you would like to
include in your DADX file. If needed, click Import Files to import a DAD file
from your file system.

 Chapter 12. XML and database tools in Application Developer 379

In the next panel (Figure 12-48), you specify the output location and DADX file
name. Enter a file name for the DADX file, for example, Insured.dadx. It must
have the extension of .dadx.

For execution, DADX files must be in the DADX group folder:

JavaSource/groups.InsuraGroup

Any relevant DAD files also have to be in this folder. At runtime, this is where
these files will be expected to be located. If this is not true, you may experience
database or server errors.

You can optionally modify or add text to the Operation or Description fields by
selecting the row, then selecting the cell that you wish to modify. The Operation
field provides a name for the name attribute of the operation tag in the generated
DADX file and the Description field provides a description text for the document
tag. Type your changes, then press Enter.

Figure 12-48 DADX generation: output file

Click Finish to generate the Insured.dadx file. The file opens in the editor.

12.3.3 Creating a Web service from DADX
You can easily generate a Web service from a DADX file using the Web Service
wizard. To start the wizard, select the generated Insured.dadx file and click File
-> New -> Other -> Web Services -> Web Service.

In the first panel of the Web Service dialog (Figure 12-49 on page 381), make
sure that the Web service type is set to DADX Web Service. Then, for testing

380 XML for DB2 Information Integration

purposes, you want to create a test client. Select Generate a proxy and Test
the generated proxy. A second Web project will be automatically created to
hold the test client. If the primary project’s name is MyProject, the test client
project name will be MyProjectClient.

Figure 12-49 Web Service wizard: initial

In the next panel (Figure 12-50 on page 382), we set up the deployment
configuration. We can select an existing test server, or we can have a server
created for us (we have not defined a server yet). Make sure that the project
names are correct:

� ItsoInsuraTest—our Web project
� ItsoInsuraTestClient—a new Web project for the proxy and the test client

Click Edit for the server-side deployment selection. A WebSphere v5.0 Test
Environment server will be created.

Click Next. You will get a warning stating that the Web service is not WS-I
compliant. DB2 Web services are not created using the latest Web services
standards. Click Ignore.

 Chapter 12. XML and database tools in Application Developer 381

Figure 12-50 Web Service wizard: deployment environment

In the next panel (Figure 12-51), select the DADX file. If you did not select the file
before starting the wizard, click Browse to locate the DADX file. You will find the
DADX file usually in the groups folder under JavaSource.

Figure 12-51 Web Service wizard: DADX selection

At this point, a default server is created for testing.

The next panel displays the group properties (see Figure 12-45 on page 377).
You can make modifications to the properties or accept the defaults that you set
up earlier.

382 XML for DB2 Information Integration

The server is now started (be patient). In the next panel (Figure 12-52), you
specify how the Web service bindings are generated. Select SOAP binding
and Show mappings.

The proxy is generated into the ItsoInsuraTestClient project.

Figure 12-52 Web Service wizard: proxy

In the next panel (Figure 12-53), you select how the Web service XML stream is
mapped to Java. If you do not want to further transform the XML with XSL, select
Show and use the default Java bean mapping. Otherwise, select Show
and use the default DOM Element mapping.

Figure 12-53 Web Service wizard: XML to Java mappings

 Chapter 12. XML and database tools in Application Developer 383

Skip the next panel; it only confirms the mapping you have selected.

On the next panel (Figure 12-54), the options for the test client are displayed.
Accept the defaults.

Figure 12-54 Web Service wizard: test client

On the final panel (Figure 12-55), you can choose to start the Web Services
Explorer to publish the Web service to a UDDI registry.

Figure 12-55 Web Service wizard: publish to UDDI

Click Finish and the Web service is started in the server. Additionally, a Web
browser is opened with the test client.

384 XML for DB2 Information Integration

Testing with the test client
In the test client, select the InsuredPolicies method, enter the marriedstatus
value (M or S), click Invoke and the result XML is displayed.

You should see the XML stream returned by the Web service containing the data
queried from the database (Figure 12-56).

Figure 12-56 Web service test client

Testing with WORF
DB2 provides a Web Service Object Runtime Facility (WORF) for testing of DB2
Web services. To use WORF, enter this URL in the browser:

http://localhost:9080/ItsoInsuraTest/InsuraGroup/Insured.dadx/TEST

In the WORF test facility (Figure 12-57 on page 386), select the InsuredPolicies
method, enter the marriedstatus value (M or S), click Invoke and the result XML
is displayed.

Also click WSDL and XML Schema to see the generated WSDL and XML
Schema files.

 Chapter 12. XML and database tools in Application Developer 385

Figure 12-57 Web service testing with WORF

Generated files
Let us review all the files that are generated in the two projects.

Web service project: ItsoInsuraTest
In the project where the Web service is installed, we find:

� WebContent/admin—folder with a small administrative Web application to
display the installed Web services. Select the index.html file and Run on
Server to see the Web services.

� WebContent/WEB-INF/isd—folder with the deployment descriptor
(Insured.isd) for this Web service. This file is then added to the dds.xml file
(below).

� WebContent/WEB-INF/lib—folder with runtime JAR files.

� WebContent/WEB-INF/web.xml—Web deployment descriptor. If you open it,
you will find that a servlet named InsureGroup has been added, pointing to
com.ibm.etools.webservice.rt.dxx.servlet.DxxInvoker.

386 XML for DB2 Information Integration

� WebContent/worf—folder with the WORF test facility (HTML and JSP).

� WebContent/wsdl—folder with the WSDL file InsuredService.wsdl.

Web service client project: ItsoInsuraTestClient
In the client project, we find:

� JavaSource/org.tempuri.itsoinsuratest.insuragroup.insured.dadx.xsd—a
JavaBean that describes the result row.

� JavaSource/proxy.soap—Java package with the proxy class
(InsuredProxy).

� WebContent/sample/Insured—folder with the test client JSPs (select the
TestClient.jsp and Run on Server to launch the test client).

� WebContent/WEB-INF/lib—folder with client runtime JAR files.

WSDL file
Open the InsuredService.wsdl file and expand the service and port types to get a
better understanding of the Web service operations (Figure 12-58 on page 388).

 Chapter 12. XML and database tools in Application Developer 387

Figure 12-58 WSDL editor

Server
Open the Server perspective and explore the views:

� In the Navigator view, you can see a Servers project, where server definitions
are stored.

� In the Server Configuration view, you find the WebSphere v5.0 Test
Environment server that was defined automatically.

� In the Servers view, you can also see the server, with an indication that it is
started.

� In the Console view, you can see the messages from starting the server,
loading the DefaultEAR enterprise application, and executing the tests.

Remember that we specified a data source in the group configuration
(Figure 12-45 on page 377). This data source was not used because a data
source must be defined in the server.

388 XML for DB2 Information Integration

Data sources are defined by opening the server configuration of the server,
selecting a JDBC driver on the Data sources page, and then defining a data
source.

 Chapter 12. XML and database tools in Application Developer 389

390 XML for DB2 Information Integration

Part 4 Worked ked
examples

Part 4

© Copyright IBM Corp. 2004. All rights reserved. 391

392 XML for DB2 Information Integration

Chapter 13. Worked scenario

This chapter describes a scenario featuring an hypothetical insurance company
that is starting to use XML functionality in their day-to-day business. The
following simple scenarios will be discussed:

� Providing stock quotes through a Web Service provider, and XML wrapper
functionality.

� Storing XML documents, both intact and by shredding them into relational
tables, using DB2 XML Extender features.

� Exploiting the information from the stored XML documents, intact or
shredded, using XML Extender functionality (RDB_node and SQL statement
DAD mappings) and via SQL/XML.

� Obtaining stock news information through Web Service requestor (UDF)
functionality to assist in stock purchases.

13

© Copyright IBM Corp. 2004. All rights reserved. 393

13.1 Scenario introduction
In this chapter, we describe a hypothetical insurance company called ITSO
Insurance, Inc. We do not attempt to describe the full business processes used
by a real insurance company. All our scenarios are very simple, and their only
purpose is to illustrate some of the ways in which you may incorporate XML
documents in a database-oriented environment, using DB2, DB2 XML Extender
and DB2 Information Integrator. For details on what versions of these products
are required, and how to install them, see Appendix A, “Installation” on page 545.

ITSO Insurance, Inc. is a well-established insurance company that mainly works
with their self-employed agents who work only for ITSO Insurance, Inc. A while
ago, it was decided that ITSO Insurance, Inc. needed to expand its horizons, and
should also try to sell insurance policies through insurance brokers.

As it turns out, insurance brokers are very much into XML. To standardize
requests for quotes and providing policy information to insurance companies,
they have agreed on a set of XML DTDs that all brokers use.

Since we already have an existing infrastructure to handle new insurance
policies (remember that we normally use self-employed agents to sell our
insurance policies), we want to keep that existing infrastructure in place, and
reuse it for policies coming in through our new broker channel.

ITSO Insurance, Inc.’s existing infrastructure is based on a relational database
model using DB2 to store and process all their data. Because the policies coming
in through the broker channel are XML documents, we need to build some XML
technology into our existing infrastructure to handle these new incoming policies,
and build new means of communication with the broker channel to exchange
requests (for example, stock quotes and broker reports) as XML documents.

In the scenario, we have the following players:

� ITSO Insurance, Inc.

This is the company we just described and it has to implement the additional
processes described hereafter to be able to handle the new broker channel.

� Insurance agents

These are self-employed people who work exclusively for ITSO Insurance,
Inc. So far, ITSO Insurance, Inc. has only worked with these agents. A wide
range of applications have been developed to provide these insurance agents
with the necessary tools to do a good job of selling insurance policies, as well
as handling claims for their customers. The insurance agents do not play a
significant role in these scenarios, although they have been the main driver

394 XML for DB2 Information Integration

behind the existing application and data infrastructure that we want to reuse
as much as possible.

� Insurance brokers

Customers go to insurance brokers to ask for quotes for certain types of
policies and conditions. Unlike insurance agents, insurance brokers are not
tied to any specific company. Insurance brokers can go and find the best deal
of any company. We want insurance brokers to find their way to ITSO
Insurance, Inc. by providing them with state of the art XML functionality to
handle their requests.

� Stock brokers

The insurance company re-invests the premiums into long-term investments.
To get the best deal, the insurance company gathers information about its
options from different stock brokers in order to select the best solution. To be
able to make wise investment decisions, ITSO Insurance, Inc. needs to be
able to obtain up-to-date information about companies from a reliable source.

The players in the scenario are shown in Figure 13-1.

Figure 13-1 Overview of the players and processes

Stock
broker Insurance

broker

ITSO
Insurance,

Inc.

Insurance
agent

Web

Services

Provider

Process policy

Existing I/T

Infra
stru

cture

Get R
eports

1

2

3

Employee

4

Get Reports

ITSO Insurance,

Inc. as Web
Services

Consumer

 Chapter 13. Worked scenario 395

Next, we briefly describe the scenarios that we implemented. We discuss them in
much more detail later on.

13.2 Scenario 1: Insurance quotes
The insurance broker is one of many brokers who go to the insurance company
for price quotes. Price quotes used to be formerly provided by a person over the
phone, but now the information is provided through a Web Service. In this case,
our insurance company ITSO Insurance, Inc. is the Web service provider. They
use the Web Object Runtime Framework (WORF) to provide the service. The
request of the broker specifies such things as the name of the potential
customer, insurance period, or other information that they are asked to provide
as input to the Web service. To calculate a premium, we use the customer’s
insurance history information (the number and amount of previous claims). After
the premium has been calculated, we return the information in the reply of the
Web service to the broker.

This scenario is made up of two parts:

� Using the WORF to provide a Web service. For more details on the actual
implementation of this part of the scenario, see 16.2, “Insurance application
as Web service provider” on page 479.

� Using an XML wrapper to process the customer’s insurance history
information. For more details on the actual implementation of this part of the
scenario, see 14.2.2, “The XML wrapper” on page 403.

This scenario is also shown in Figure 13-2 on page 397.

396 XML for DB2 Information Integration

Figure 13-2 Getting the insurance quote

13.3 Scenario 2: Processing the insurance policy
When the insurance broker accepts our quote, we (ITSO Insurance, Inc.) need to
start processing the information. The broker uses an industry-wide standard file
format for insurance contracts based on XML to submit the accepted deal.

When the insurance broker submits the accepted deal, the XML document is
shredded into relational tables (in an XML collection), so that existing (legacy)
processes and applications, which are currently used to process policies coming
in from agents, can pick up the new policies coming through the broker channel.

However, ITSO Insurance, Inc. has not fully implemented the data model that is
used to exchange the data (XML schema) in their legacy applications. Since
ITSO Insurance, Inc. does not use the full model yet, some information that is in
the XML document cannot be represented in ITSO Insurance, Inc.’s existing
relational model. Therefore, we also store the entire document as an XML
column.

Insurance
broker

ITSO
Insurance,

Inc.

Web
Services
Provider

SQL queryClient

Insurance
broker

UDDI

SOAP

SOAP

Get insurance quote
WORF

XX
MM
LL

DB2

ITSO
Insurance, Inc.

Provider of insurance quotes

1

Insurance History XML Business Partner

XML Wrapper

 Chapter 13. Worked scenario 397

This is shown in Figure 13-3.

Figure 13-3 Processing incoming policies

A detailed description of the implementation can be found in 14.3, “Scenario 2:
storing insurance policies” on page 416.

13.4 Scenario 3: Generating XML documents
The information that has been stored in XML columns (stored intact), and/or
shredded into a set of relational tables (XML collection), can also be used as a
source to generate XML document from.
As mentioned in the introduction, the brokers are rather fond of XML and like to
get reports on their sales (broker sales report) in XML format.
In addition, many of our corporate customers like to receive reports on the
policies they have with us (ITSO Insurance, Inc.), for example for their
employees who have a health plan with us, which the employees pay for. These
reports are produced on demand in XML format and forwarded to the corporate
customers.

Insurance
broker

Process
Policy

Client

Database

RDBMS

Insurance
broker

FTP policy as XML

DB2

Process policy

Existing App

XML ExtenderXML Extender

ShredShred

Store intactStore intact1

XML

XML column

XML collection

transparant
to existing appl

ITSO
Insurance,

Inc.

ITSO
Insurance, Inc.

398 XML for DB2 Information Integration

In this scenario, we demonstrate how to generate XML documents from:

� Information stored in the XML column’s side tables using SQL/XML
� Information stored in the XML collection using:

– XML Extender’s RDB_node and SQL statement mapping
– SQL/XML

This scenario is shown graphically in Figure 13-4, and described in more detail in
14.4, “Scenario 3: composing XML documents” on page 432.

Figure 13-4 Generating XML documents

13.5 Scenario 4: Gathering information for investments
An insurance company has to invest the premiums that it receives and put them
into long-term investments. ITSO Insurance, Inc. uses the stock market to do this
(probably bonds). To get the best deal, the insurance company asks for bids.

To ask for bids, the insurance company uses Web services again. However, in
this case, the insurance company is the Web service consumer. To implement
this, we use the DB2 Web service consumer UDFs, as shown in Figure 13-5 on
page 400.

Generate
XML

documents

Client

Employee

Compose XML

DB2

Compose XML documents
XM

L extender
XM

L extender

XML collection

SQ
L/XM

L
SQ

L/XM
L

Client

Insurance
broker

XML column

ITSO
Insurance,

Inc.

ITSO Insurance, Inc.

 Chapter 13. Worked scenario 399

Figure 13-5 ITSO Insurance, Inc. as a Web service consumer

A detailed description of how to implement this scenario using “native” DB2
services can be found in 14.5, “Scenario 4: Web service requestor” on page 449.
A complete implementation using WebSphere Studio Application Developer
functionality can be found in 16.5, “Insurance application as a Web service
requestor” on page 518.

Stock
broker

Web
Services

Consumer

UDF

Client

Database

RDBMS

Stock
broker

UDDI

SOAP

SOAP

Get stock quote

XX
MM
LL

DB2
Application

Consumer (requestor)
 of stock quotes

ITSO
Insurance,

Inc.

ITSO
Insurance, Inc.

400 XML for DB2 Information Integration

Chapter 14. Scenario implementation
using DB2 functionality

This chapter shows you how to implement the scenarios outlined in the previous
chapter using standard DB2 SQL queries and tools like the DB2 Control Center.

First, we describe how to install and set up the scenario database in order for the
scenario to be implemented.

Topics in this chapter include:

� “Setting up the system for the scenario” on page 402
� “Scenario 1: Web service provider” on page 403
� “Scenario 2: storing insurance policies” on page 416
� “Scenario 3: composing XML documents” on page 432
� “Scenario 4: Web service requestor” on page 449

14

© Copyright IBM Corp. 2004. All rights reserved. 401

14.1 Setting up the system for the scenario
The files that make up the scenario are made available for download from the
ITSO Web site. For instructions, see Appendix F, “Additional material” on
page 655. The scenario files should be unzipped to a directory called:

C:\SG246994\Scenario

Most .bat files take a database name (and sometimes additional parameters) as
input. The database name defaults to INSURA.

Note: All *.DAD files reference DAD.DTD as follows:

<!DOCTYPE DAD SYSTEM "C:\sg246994\Scenario\dad.dtd">

That is, we copied the dad.dtd file that comes with XML Extender to our
\Scenario directory to make the scenario self-contained. You can change the
reference to the actual location where you installed the DB2 XML Extender code,
normally:

[DB2Installdir]\samples\db2xml\dtd\dad.dtd

Setting up the INSURA database
By default all the scenario objects are created in a DB2 database named
INSURA. Most .bat files accept other database names as input parameters in
case you want to use a different name or create an additional database.

� Start a DB2 command window.

� Change the directory to the one where the scenario samples are located:

CD C:\SG246994\Scenario

� Run SetupDB.bat (or SetupDB databasename). This command creates the
database, enables it for XML Extender, sets up the tables, and loads sample
data into some of the tables.

� Run SetupXMLColumn.bat. This command file enables a column as an XML
column (Policy_Doc in the Policy_Docs table).

� Run SetupXMLWrapper.bat. This command file creates XML wrapper
nicknames for Customers, Insurances, and Claims. (Note that in order to be
able to use the XML Wrapper, you must have the DB2 Information Integrator
product installed. See, “DB2 Information Integrator” on page 547 for details on
how to install DB2 Information Integrator.)

� Run SetupUDF.bat to set up the soap UDFs for the Web Service requestor
functions and Headlines table UDF.

� The directory also contains a file called scenario-readme.txt. It contains the
latest information on how to successfully set up, and run the scenario.

402 XML for DB2 Information Integration

14.2 Scenario 1: Web service provider
In this first scenario, we provide a simple business case in which it makes sense
to use Web services. Then, we provide details showing how to implement such a
scenario.

14.2.1 Overview
When a customer goes to an insurance broker, the broker company will go out
and look for the best fit for the customer’s need that exists in the market. To
facilitate the information gathering process, insurance brokers make use of Web
services. They invoke Web services provided by different insurance companies.

For this scenario we use a fictitious insurance company named ITSO Insurance,
Inc. The first thing ITSO Insurance, Inc. must do to be able to convince insurance
brokers to recommend its insurance policies to customers is to provide them with
an insurance policy quote system for certain types of policies. This could be
delivered using a Web service. We do this by using the Web Services Object
Runtime Framework (WORF).

To determine the premium to quote for the policy, we look up the potential
customer’s insurance history and analyze his previous claims. The more claims,
the higher the proposed premium will be. To analyze the insurance history, we
use the XML wrapper (as the insurance history is provided as an XML file).

Therefore this scenario is composed of two parts:

� Setting up a Web service using WORF. More details on how to set up and use
WORF is discussed in 10.2.2, “Installing WORF on IBM WebSphere
Application Server” on page 279.

� Analyzing the insurance history file using the XML wrapper

14.2.2 The XML wrapper
In this section we focus on the XML wrapper aspects of the scenario. A
description of a sample implementation for our scenario using WebSphere
Studio Application Developer can be found in 16.2, “Insurance application as
Web service provider” on page 479.

As mentioned previously, using XML wrapper requires that you have DB2
Information Integrator installed. For details, see Appendix A, “Installation” on
page 545.

 Chapter 14. Scenario implementation using DB2 functionality 403

14.2.3 Context
ITSO Insurance, Inc. uses the services of a business partner that keeps track of
every person's insurance history across all the insurance companies. This
history includes details such as the number of claims the person has had so far
and the amount of each claim. Based on the customer’s identity, ITSO Insurance,
Inc. queries the business partner for the insurance history of this potential
customer. The insurance history is provided as an XML file available through the
Web as a URI; however, to keep it simple, we use a file in the local file system
from here on. The algorithm used to calculate the quote for a given customer
takes into account the total amount of money claimed so far using this simple
formula:

regular premium + 4% of claims

For simplicity, we assume that all insurance requests are initiated by brokers. The
IT system for ITSO Insurance, Inc. does not keep track of brokers. The broker
details are sent to Web services as part of the XML request document.

14.2.4 XML wrapper implementation
To enable brokers to request motor vehicle insurance quotes from us, we use a
Web service. The Web service takes the request, looks up the insurance history
of the person involved, calculates the quote, and returns a reply. The Web
services part of the story is described in more detail in Chapter 16, “DB2 Web
services and XML with Application Developer” on page 475. In this section, we
focus on how to retrieve the information from the insurance history (XML file)
provided by our business partner by using the XML wrapper.

404 XML for DB2 Information Integration

InsuranceHistory.xml document layout
Example 14-1 shows the layout of the insurance history document.

Example 14-1 Layout of the insurance history XML document

<InsuranceHistory>
<Customer>

<MotorVehicleInsurance>
<claim>
</claim>
...

</MotorVehicleInsurance>
...

</Customer>
...

</InsuranceHistory>

Creating nicknames for the XML document
In the \Scenario directory, there are two sets of definitions for the XML wrapper.
They provide equal functionality as far as generating the policy quote is
concerned. The latter maps all elements and attributes of the XML insurance
history file, whereas the former only maps those elements that are required to be
able to return the insurance quote.

� The SetupXMLWrapper.bat file creates:
– Wrapper definition for the XML wrapper
– Server definition for the XML wrapper
– Three nicknames to map our insurance history document:

• Customers
• Insurances
• Claims

� The SetupXMLWrappercs.bat file creates:
– Wrapper definition for the XML wrapper
– Server definition for the XML wrapper
– Three nicknames to map our insurance history document:

• Customers
• Insurances
• Claims

– Three views of these nicknames:
• Customers_V
• Insurances_V
• Claims_V

 Chapter 14. Scenario implementation using DB2 functionality 405

These definitions were generated by the DB2 Control Center. In the proceeding
pages, we show how to generate the nicknames using the DB2 Control Center.
(For more information on XML wrapper, see Chapter 11, “XML wrapper” on
page 305.)

Automatic nickname discovery by the DB2 Control Center
After creating a wrapper for the XML wrapper, as well as a server definition, you
can use the DB2 Control Center to discover the structure of the XML file that you
are trying to map. This is shown on the next set of figures and the procedure
below.

1. To start the discovery process, right-click the server name (XML_SERVER)
that you defined for the XML wrapper (MY_XML), as shown in Figure 14-1.

This takes you to Figure 14-2 on page 407.

Figure 14-1 Starting the discovery process

406 XML for DB2 Information Integration

2. In this window, you can indicate where to look for the mapping of the XML file.
It can either be an XML Schema or an XML file. Either fill in the full file path
and file name, or click the dots (...) to the right of the field called XML or
schema input file as shown in Figure 14-2.

Figure 14-2 XML nickname discovery

This takes you to Figure 14-3 on page 408, where we select the
InsuranceHistory.xml file.

 Chapter 14. Scenario implementation using DB2 functionality 407

Figure 14-3 Input file selection

3. Click OK when done. This takes us back to the Discover XML_Server
window. In this window, the file name and the top-level element name (root)
are already filled in by the Control Center, as InsuranceHistory, as shown in
Figure 14-4 on page 409.

4. We also use ITSO as the schema name to make sure the nicknames are
created in the same schema as the other tables in our scenario. We do not
change the other DDL options at this time. We will change them later.

Note: Note that we select the “URI” wrapper option. This allows us to
specify a URI at execution time of the queries against the XML wrapper
nicknames. We use this option as it provides us with the flexibility of
changing the location of the InsuranceHistory.xml file at execution time. In
our case the file is a local file in the file system, but in real life this file is
likely to be maintained by an external company, and we can reach the file
through a Web page that we specify in the URI.

408 XML for DB2 Information Integration

Figure 14-4 Discover XML_Server window

5. Click OK when ready.

This takes us to the window in Figure 14-5 on page 410. The DB2 Control
Center discovered three hierarchy levels and therefore proposes to create
three nicknames, CUSTOMER_NN, MOTORVEHICLEINSURANCE_NN and
CLAIM_NN. The tool also suggests that we create three views to access the
information in each hierarchical level.

 Chapter 14. Scenario implementation using DB2 functionality 409

Figure 14-5 Generated nicknames and views

6. Because we want to change some of the attributes of the nickname, like the
column definition, we click the Properties button.

This takes us to Figure 14-6 on page 411.

7. Select the DOCUMENT column (this is the default column name generated to
specify the URI at execution time), and click the Change button.

410 XML for DB2 Information Integration

Figure 14-6 Change properties

This takes you to a window shown in Figure 14-7 below.

Figure 14-7 Change column settings

 Chapter 14. Scenario implementation using DB2 functionality 411

8. Change the column name to URI and the length to 256. Click the Settings tab
to verify that the field actually is the URI field we want as shown in
Figure 14-8.

Figure 14-8 Change column settings -2

9. Click OK when you are done.

This takes you back to the window shown in Figure 14-6 on page 411,

10.Repeat the previous steps for any other columns in the nickname that need to
be changed.

11.After you set up your nicknames, click OK.

This returns you to the window shown in Figure 14-5 on page 410.

12.Then make changes to all other nicknames and views. When done, click the
SHOW SQL button. Or you can click the OK button to generate the SQL
statements.

This takes you to the window shown in Figure 14-9 on page 413.

412 XML for DB2 Information Integration

Figure 14-9 Show SQL window

13.You can select all the generated SQL by clicking inside the Show SQL
window, pressing Ctrl+A. To select the entire content, press Ctrl+C to copy
the SQL statements and then paste them into an editor, Notepad, for
example.

14.Edit the SQL statements as needed. You probably will want to make some
additional changes if you want to generate the views as well. Changes you
make to column names in the nickname are not reflected in the CREATE
VIEW statement. In Example 14-2, we added the URI column to the
INSURANCES_V and CLAIMS_V view, as this is not automatically generated
by the Control Center, and you cannot use the views without the URI column
reference. Lastly, the Customer.Name column was added to the default
CLAIMS_V view, to make the execution of our proposed premium SQL
statement easier to code. After the necessary editing, the SQL statements
resemble the code in Example 14-2.

Example 14-2 CreateWrapperDefsCS.sql

CREATE NICKNAME ITSO.CUSTOMERS
 (URI VARCHAR (256) OPTIONS(DOCUMENT 'URI'),
 CUSTOMER_ID VARCHAR (16) OPTIONS(PRIMARY_KEY 'YES'),
 NAME VARCHAR (50) OPTIONS(XPATH './@name'))
 FOR SERVER "XML_SERVER" OPTIONS(XPATH '//Customer');

CREATE NICKNAME ITSO.INSURANCES
 (INSURER VARCHAR (50) OPTIONS(XPATH './Insurer/text()'),
 POLICYTYPE VARCHAR (48) OPTIONS(XPATH './PolicyType/text()'),
 INSURANCE_ID VARCHAR (16) OPTIONS(PRIMARY_KEY 'YES'),
 PREMIUMPAYMENTLAPSES VARCHAR (48)

OPTIONS(XPATH './PremiumPaymentLapses/text()'),
 START_DATE VARCHAR (10) OPTIONS(XPATH './@startDate'),
 END_DATE VARCHAR (10) OPTIONS(XPATH './@endDate'),
 POLICYCLOSURE_REASON VARCHAR (100)

 Chapter 14. Scenario implementation using DB2 functionality 413

OPTIONS(XPATH './PolicyClosure/Reason/text()'),
 POLICYCLOSURE_INITIATEDBY VARCHAR (48)

OPTIONS(XPATH './PolicyClosure/@initiatedBy'),
 CUSTOMER_FID VARCHAR (16) OPTIONS(FOREIGN_KEY 'CUSTOMERS'))
 FOR SERVER "XML_SERVER" OPTIONS(XPATH './MotorVehicleInsurance');

CREATE NICKNAME ITSO.CLAIMS
 (DESCRIPTION VARCHAR (256) OPTIONS(XPATH './Description/text()'),
 AMOUNT VARCHAR (10) OPTIONS(XPATH './AmountClaimed/text()'),
 DATE VARCHAR (10) OPTIONS(XPATH './@claimDate'),
 INSURANCE_FID VARCHAR (16) OPTIONS(FOREIGN_KEY 'INSURANCES'))
 FOR SERVER "XML_SERVER" OPTIONS(XPATH './Claim');

CREATE VIEW ITSO.CUSTOMERS_V
 AS SELECT Customer.Uri, Customer.Customer_ID, Customer.name

FROM ITSO.Customers Customer;

CREATE VIEW ITSO.INSURANCES_V
 AS SELECT Insurance.Insurer, Insurance.PolicyType,
 Insurance.Insurance_ID, Insurance.PremiumPaymentLapses,
 Insurance.start_Date, Insurance.end_Date,

Insurance.PolicyClosure_Reason,
 Insurance.PolicyClosure_initiatedBy,
 Customer.Customer_ID , Customer.URI

FROM ITSO.Insurances Insurance, ITSO.Customers Customer
WHERE Customer.Customer_ID = Insurance.Customer_FID;

CREATE VIEW ITSO.CLAIMS_V
 AS SELECT Claim.Description, Claim.Amount, Claim.Date,

Insurance.Insurance_ID,Customer.URI,Customer.Name
FROM ITSO.Claims Claim, ITSO.Insurances Insurance,

ITSO.Customers Customer
WHERE Insurance.Insurance_ID = Claim.Insurance_FID
 AND Customer.Customer_ID = Insurance.Customer_FID;

Using the XML nicknames
As mentioned before, we use the insurance history information to determine a
proposed insurance premium for motor vehicle insurance policies. The algorithm
to calculate the quote for a given customer takes into account the total amount of
money claimed so far, using this simple formula:

regular premium + 4% of claims

The regular (base) premium is stored in the Premium column of the P_TYPE
table for Motor insurance. To determine the additional premium, we look up the

414 XML for DB2 Information Integration

person in the insurance history XML file, sum all this person’s previous claims,
and take 4% to be added to his base premium.

To get to the claims information in the insurance history XML file, we need to join
the claims nickname with the higher levels in the hierarchy (Insurances and
Customers) using their PK-FK relationships. We SUM all the amount(s) for the
different claims we find. Note that we use the COALESCE built-in function. This
is to make sure the query adds 0 additional premium in case the person does not
have an insurance history. This query is shown in Example 14-3.

Example 14-3 Sample query using XML wrapper

-- Do a premium calculation for a Motor insurance quote
-- add 4% of past motor vehicle claims to the premium

Select p.Premium + cs.additional as proposed_premium
 from ITSO.P_TYPE p,

 (select coalesce(sum(cast(cl.amount AS DECIMAL(10,2)))*0.04,0)
AS additional

 from ITSO.Customers c, ITSO.Insurances i, ITSO.claims cl
 where uri = 'file:C:\SG246994\Scenario\InsuranceHistory.xml '

and c.customer_id = i.customer_fid
and i.insurance_id = cl.insurance_fid
and rtrim(c.name) = rtrim('Shrinivas')||' '||rtrim('Kulkarni')

) AS cs
where rtrim(p.plan_name) = rtrim('Motor')

;

This query is also provided with the scenario as:

C:\sg246994\Scenario>GetProposedPremiumWrapper

We can also use the CLAIMS_V view that we created to return this information.
Using this view makes the query a lot easier to code as shown in Example 14-4.

Example 14-4 Query using CLAIMS_V view

Select p.Premium + cs.additional as proposed_premium
 from ITSO.P_TYPE p,

 (select coalesce(sum(cast(cl.amount AS DECIMAL(10,2))) * 0.04 , 0)
AS additional

 from ITSO.claims_v cl
where cl.uri = 'file:C:\SG246994\Scenario\InsuranceHistory.xml '
and rtrim(cl.name) = rtrim('Shrinivas')||' '||rtrim('Kulkarni')

) AS cs

 Chapter 14. Scenario implementation using DB2 functionality 415

 where rtrim(p.plan_name) = rtrim('Motor')
;

The result of both queries should be:

PROPOSED_PREMIUM

 556.3360

14.3 Scenario 2: storing insurance policies
In this scenario, we look at how to process the insurance policies that come in as
XML documents from insurance brokers after they have been signed by the
customers. As mentioned before, there are two techniques for doing this:

� Shredding the documents into relational tables
� Storing the documents intact in an XML column

14.3.1 Shredding XML documents into relational tables
In this section, we provide an example of how you can shred incoming XML
documents and store them in a set of relational DB2 tables using DB2 XML
Extender.

Context
After receiving our policy quote back from the Web service, usually after some
additional negotiations with the customer, the insurance broker draws up an
insurance policy and sends it to our fictitious insurance company, ITSO
Insurance, Inc. As mentioned before, insurance brokers are XML fans, so the
policy information that they send us is an XML document.

Since we already have our existing infrastructure to handle new insurance
policies, we want to keep that existing infrastructure in place and reuse it for
policies coming in through our new broker channel. Remember that we normally
use self-employed agents to sell our insurance policies.

Our existing infrastructure is based on a relational database model using DB2 to
store and process all of our data. Because the policies coming in through the
broker channel are XML documents, we need to transform and shred them so we
can store them in an existing set of tables to be processed by our application that
handles new policies.

416 XML for DB2 Information Integration

As an alternative to shredding the incoming broker XML documents into the
actual DB2 tables for processing, you can shred the XML documents into a set of
shadow tables. These shadow tables have an identical layout to the tables of the
application that handles the new policies. Another application can first validate
the data from the shadow tables before putting it into the actual tables that are
used by the application that handles the new policies. Since we do not have the
same validation process in place for incoming information from brokers as we do
from agents, this might be a wise step to take.

14.3.2 Shredding implementation details
The following items are discussed:

� Insurance policy DTD
� Relational data model to be used for shredding XML documents
� Shredding sequence
� Shredding details

Insurance policy DTD
The insurance broker sends us a new policy in the form of an XML document.
This document adheres to the following DTD (Example 14-5). More details on the
DTD syntax can be found in “Document type definition” on page 560.

Example 14-5 Policy DTD

<!--
 DTD for an insurance policy.
-->
<!--
 Insurance policy entities:

 - MaritalStatus gives the marital status of an owner
 or insured person. We use an attribute because it allows
 us to restrict the set of legal values.
 S= Single, M=Married, D=Divorced, W=Widowed

-->
<!ENTITY % MaritalStatus "MaritalStatus (S | M | D | W) #REQUIRED">
<!ENTITY % ID "ID CDATA #REQUIRED">
<!--
 Policy is the root element type.
-->
<!ELEMENT Policy (Number, Owner, Insured, PolicyType, Broker)>
<!ELEMENT Number (#PCDATA)>
<!--
 Owner is the entity that pays for the insurance policy and is

 Chapter 14. Scenario implementation using DB2 functionality 417

 the beneficiary of it. An owner can be a person or an organization.
-->
<!ELEMENT Owner (Address, (Person | Organization))>
<!ATTLIST Owner oID CDATA #REQUIRED>
<!--
 Address is a generic address. State is optional because not
 all countries have states.
-->
<!ELEMENT Address (Street1, Street2?, City, State?, PostCode, Country)>
<!ELEMENT Street1 (#PCDATA)>
<!ELEMENT Street2 (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT PostCode (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!--
 Person describes a person who owns (pays for and benefits
 from) an insurance policy.
-->
<!ELEMENT Person (Name)>
<!ATTLIST Person

%MaritalStatus;
>
<!ELEMENT Name (FirstName, LastName)>
<!ELEMENT FirstName (#PCDATA)>
<!ELEMENT LastName (#PCDATA)>
<!--
 Organization describes an organization that owns (pays for and benefits
 from) an insurance policy.
-->
<!ELEMENT Organization (OrganizationName, TradingName1?, TradingName2?)>
<!ELEMENT OrganizationName (#PCDATA)>
<!ELEMENT TradingName1 (#PCDATA)>
<!ELEMENT TradingName2 (#PCDATA)>
<!--
 Insured describes a person who is covered by a insurance policy.
-->
<!ELEMENT Insured (Name, Age)>
<!ATTLIST Insured %MaritalStatus;>
<!ATTLIST Insured iID CDATA #REQUIRED>
<!ELEMENT Age (#PCDATA)>
<!--
 PolicyType describes one of a pre-defined set of policies,
 such as life insurance for someone who is of a certain age.
-->
<!ELEMENT PolicyType (PlanName, PlanType, ActualPremium)>
<!ATTLIST PolicyType pID CDATA #REQUIRED>
<!ELEMENT PlanName (#PCDATA)>
<!ELEMENT PlanType (#PCDATA)>

418 XML for DB2 Information Integration

<!ELEMENT ActualPremium (#PCDATA)>
<!--
 Broker describes a third party (broker) who sells insurance
 policies on behalf of the insurance company.
-->
<!ELEMENT Broker (BrokerName, Address)>
<!ATTLIST Broker bID CDATA #REQUIRED>
<!ELEMENT BrokerName (#PCDATA)>

As you can see, the structure of our scenario is not very complex. XML
documents adhering to this DTD contain the following important information that
needs to be mapped to a set of relational tables during the shredding process:

� Policy information, such as a policy number
� Owner information, such as the person who owns the policy or organization

that pays the premium
� Information about the insured, such as the person who is actually covered by

the policy
� Policy type information, such as the kind of policy (health or homeowners,

etc.) being quoted
� Broker information, such as the broker who closes the deal on the policy

Example 14-6 shows a sample policy document that adheres to the DTD
demonstrated in Example 14-5 on page 417.

Example 14-6 Sample policy XML document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Policy SYSTEM "policy.dtd">
<Policy>

<Number>99</Number>
<Owner oID="123">

<Address>
<Street1>550 W Hamilton Avenue</Street1>
<Street2/>
<City>Campbell</City>
<State>California</State>
<PostCode>95008</PostCode>
<Country>US</Country>

</Address>
<Person MaritalStatus="S">

<Name>
<FirstName>Olivier</FirstName>
<LastName>Guyennet</LastName>

</Name>
</Person>

 Chapter 14. Scenario implementation using DB2 functionality 419

</Owner>
<Insured MaritalStatus="S" iID="987">

<Name>
<FirstName>Shrinivas</FirstName>
<LastName>Kulkarni</LastName>

</Name>
<Age>25</Age>

</Insured>
<PolicyType pID="789">

<PlanName>MyPlan</PlanName>
<PlanType>It is a very nice plan type</PlanType>
<ActualPremium>1234.56</ActualPremium>

</PolicyType>
<Broker bID="456">

<BrokerName>Stephen Priestley</BrokerName>
<Address>

<Street1>Wombat Street</Street1>
<City>Melbourne</City>
<PostCode>5555</PostCode>
<Country>Australia</Country>

</Address>
</Broker>

</Policy>

Relational model to be used in the shredding process
When we shred incoming XML documents, we use a set of existing tables (or a
set of shadow tables). To start off, we show you the relational data model that we
use in this scenario. Figure 14-10 on page 421 shows the logical data model that
is used by ITSO Insurance, Inc.

420 XML for DB2 Information Integration

Figure 14-10 Logical data model

The heart of the model is the POLICY table. It contains the Policy_Number as the
unique identifier of any one policy as well as the Actual_Premium that is to be
paid for this policy. The rest of the columns of the POLICY table contain
references (foreign keys) to other tables, such as INSURED, OWNER and
P_TYPE.

P_TYPE describes the different policy types, the plans offered by ITSO
Insurance, Inc., as well as a base premium (starting point for calculations) for
each policy type or plan.

The INSURED table contains information about the person who is being
protected by the policy from the risks it covers.

Another table in the model is the OWNER table. It contains information about the
person who is paying for the insurance. In our case, this can be a person or an

ORG
Owner_ID
Name
Trading_Name1
Trading_Name2

FK

PERSON

Owner_ID
First_Name
Last_Name
Marital_Status

FK

OWNER
Owner_ID
Post_Code
City
State
Country
Street1
Street2

PK

POLICY
Policy_Number
Policy_Type_Id
Owner_Id
Insured_Id
Actual_Premium

PK
FK
FK
FK

P_TYPE
Policy_Type_Id
Plan_Name
Plan_Type
Premium

PK

INSURED
Insured_Id
First_Name
Last_Name
Marital_Status
Age

PK

BROKER_SALES
Policy_Doc_Id
Broker_Id
Actual_Premium

POLICY_DOCS
Policy_Doc_Id
Policy_Doc

XML Column
XML Collection

 Chapter 14. Scenario implementation using DB2 functionality 421

organization. More detailed information about the person(s) picking up the bill
can be found in the PERSON table. If an organization is providing health
insurance coverage for their employees, more details can be found in the ORG
table. For any Owner_ID in the OWNER table, more details can be found in
either in the ORG table or in the PERSON table, never in both.

The POLICY_DOCS and BROKER_SALES tables are only shown for
completeness. They are not used during the shredding process. These tables
are used for storing the intact XML documents using XML columns. This is
described in more detail in 14.3.3, “Storing XML documents intact in XML
columns” on page 429.

Shredding sequence
In many real life cases, it will be impossible to take an XML document and shred
it directly into a set of relational tables. Our insurance company scenario is no
exception.

Because of the referential integrity relationships that exist between the tables in
the relational model, you must always have a parent row before you can insert a
child row into a dependent table. They way the XML document is structured, the
way the DAD has to be built for shredding, as well as the fact that DB2 always
enforces INSERT rules at the statement level (not at the unit of work level), make
it impossible to shred our policy document in a single shredding operation.

Because we want to shred into an existing relational model (that is fixed because
it is used by existing applications) and are also forced to stick to the layout of the
XML document (imposed on us by the broker companies), we must transform the
XML document prior to shredding, or use multiple shred operations of parts of
the document into a few tables at a time. We will use the multiple-step method in
our scenario.

Figure 14-11 on page 423 shows the sequence we used to shred the XML
documents into our set of relational tables in a three-step process:

1. First, we do the initial shredding operation to populate the OWNER table and
tables directly related to it: ORG and PERSON. Notice that we always shred
into the OWNER table, but only to one or the other ORG or PERSON tables
for any given incoming policy.

2. Next, we shred into the INSURED table.

3. Last, we populate the POLICY table.

422 XML for DB2 Information Integration

Figure 14-11 Shredding sequence

Shredding details
As stated in the note above, even though the P_TYPE information is provided in
the incoming XML document, there is no need to shred this information because
it is already present in the database. The PK-FK relationship between POLICY
and P_TYPE guarantees that a valid policy type is provided in the incoming XML
document.

Note: We do not shred into the P_TYPE table. Even though this information is
provided in the XML document, it is ignored. The reason for ignoring this data
is that a broker sending in an insurance policy is not allowed to send a policy
with a new policy type without the new policy type first being approved by
ITSO Insurance, Inc. Therefore, it is reasonable to assume that the P_TYPE
table is already populated by other business processes used by ITSO
Insurance, Inc.

ORG
Owner_ID
Name
Trading_Name1
Trading_Name2

FK

PERSON

Owner_ID
First_Name
Last_Name
Marital_Status

FK

OWNER
Owner_ID
Post_Code
City
State
Country
Street1
Street2

PK

POLICY
Policy_Number
Policy_Type_Id
Owner_Id
Insured_Id
Actual_Premium

PK
FK
FK
FK

P_TYPE
Policy_Type_Id
Plan_Name
Plan_Type
Premium

PK

INSURED
Insured_Id
First_Name
Last_Name
Marital_Status
Age

PK

BROKER_SALES
Policy_Doc_Id
Broker_Id
Actual_Premium

POLICY_DOCS
Policy_Doc_Id
Policy_Doc

XML Column
XML Collection

#2
#3
#4

#2

#3

#4

 Chapter 14. Scenario implementation using DB2 functionality 423

Shredding into OWNER, ORG and/or PERSON
To shred the OWNER, ORG or PERSON data from the XML document into the
corresponding relational tables, we use the DAD file shown in Example 14-7.

Example 14-7 DAD file to shred into ORG, OWNER and/or PERSON

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\SG24-6994\Scenario\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Policy SYSTEM "policy.dtd"</doctype>
<root_node>

<element_node name="Policy" multi_occurrence="YES">
<RDB_node>

<table name="OWNER"/>
<table name="PERSON"/>
<table name="ORG"/>
<condition>

OWNER.owner_id=PERSON.owner_id AND
OWNER.owner_id=ORG.owner_id

</condition>
</RDB_node>
<element_node name="Owner" multi_occurrence="YES">

<attribute_node name="oID">
<RDB_node>

<table name="OWNER"/>
<column name="owner_id" type="smallint"/>

</RDB_node>
</attribute_node>
<!-- BEG OF ADDRESS -->
<element_node name="Address" multi_occurrence="YES">

<element_node name="Street1">
<text_node>

<RDB_node>
<table name="OWNER"/>
<column name="street1" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Street2">

<text_node>
<RDB_node>

<table name="OWNER"/>
<column name="street2" type="char(50)"/>

</RDB_node>
</text_node>

424 XML for DB2 Information Integration

</element_node>
<element_node name="City">

<text_node>
<RDB_node>

<table name="OWNER"/>
<column name="city" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="State">

<text_node>
<RDB_node>

<table name="OWNER"/>
<column name="state" type="char(10)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="PostCode">

<text_node>
<RDB_node>

<table name="OWNER"/>
<column name="post_code" type="char(10)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="Country">

<text_node>
<RDB_node>

<table name="OWNER"/>
<column name="country" type="char(10)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>
<!-- END OF ADDRESS -->
<!-- BEG OF PERSON -->
<element_node name="Person" multi_occurrence="YES">

<attribute_node name="MaritalStatus">
<RDB_node>

<table name="PERSON"/>
<column name="marital_status" type="char(2)"/>

</RDB_node>
</attribute_node>
<element_node name="Name">

<element_node name="FirstName">
<text_node>

<RDB_node>
<table name="PERSON"/>
<column name="first_name" type="char(20)"/>

 Chapter 14. Scenario implementation using DB2 functionality 425

</RDB_node>
</text_node>

</element_node>
<element_node name="LastName">

<text_node>
<RDB_node>

<table name="PERSON"/>
<column name="last_name" type="char(20)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>
<!-- END OF PERSON -->
<!-- BEG OF ORGANIZATION -->
<element_node name="Organization" multi_occurrence="YES">

<element_node name="OrganizationName">
<text_node>

<RDB_node>
<table name="ORG"/>
<column name="name" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="TradingName1">

<text_node>
<RDB_node>

<table name="ORG"/>
<column name="trading_name1" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="TradingName2">

<text_node>
<RDB_node>

<table name="ORG"/>
<column name="trading_name2" type="char(50)"/>

</RDB_node>
</text_node>

</element_node>
</element_node>
<!-- END OF ORGANIZATION -->

</element_node>
</element_node>

</root_node>
</Xcollection>

</DAD>

426 XML for DB2 Information Integration

The root node must specify all tables involved as well as the join conditions
between those tables. The rest of the DAD file is a description of how the
elements and attributes of the XML document map to the relational tables. Note
that you must use RDB node mapping in the DAD file when shredding.

To invoke the shredding operation, DB2 XML Extender provides you with a little
program, called dxxshrd. For example to shred the policy1.xml document, you
can use:

dxxshrd INSURA PolicyShredSeq2.dad “policy1.xml”

where INSURA is the name of the DB2 database, and PolicyShredSeq2.dad is the
name of the DAD file.

Similar logic is used to shred into the INSURED and POLICY tables.

Shredding into the INSURED table
To shred part of the policy document into the INSURED table, we use the
PolicyShredSeq3.dad file.

Shredding into the POLICY table
To shred part of the policy document into the POLICY table, we use the
PolicyShredSeq4.dad file.

To invoke the shredding function, you can use the following batch file:

C:\sg246994\Scenario>ShredXMLDocs

This command file shreds our policy documents into our relational tables. It is
normal that the shredding of policy4.xml generates an error message when
shredding, because the same OWNER_ID already exists. This is due to the fact
that policy3.xml has the same OWNER_ID. You can just ignore this message.
Real life applications should test for proper error code, making sure it is safe to
ignore the error. The same applies to INSURED, because we already have this
information from another policy.

ShredXMLDocs uses 2 batch files as shown in Example 14-8 on page 428 and
Example 14-9 on page 428.

Note: To verify the validity of your DAD file, you can download a DAD checker
utility from:

http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

 Chapter 14. Scenario implementation using DB2 functionality 427

http://www.ibm.com/software/data/db2/extenders/xmlext/downloads.html

Example 14-8 ShredXMLDocs.bat

REM Shred (4) XML policy documents into multiples tables
REM PARAM 1 = DB Name

call ShredSeq.bat %1 "policy1.xml"
call ShredSeq.bat %1 "policy2.xml"
call ShredSeq.bat %1 "policy3.xml"
call ShredSeq.bat %1 "policy4.xml"

Example 14-9 ShredSeq.bat

REM Shreds the given Policy document into multiples tables
REM PARAM 1 = DB Name
REM PARAM 2 = XML Document file name
REM (Ex.Policy1.xml passed in using double quotes)

REM PolicyShredSeq2.dad specifies shredding into ORG, OWNER and PERSON
REM PolicyShredSeq3.dad specifies shredding into INSURED table
REM PolicyShredSeq4.dad specifies shredding into POLICY table

dxxshrd %1 PolicyShredSeq2.dad %2
dxxshrd %1 PolicyShredSeq3.dad %2
dxxshrd %1 PolicyShredSeq4.dad %2

The dxxshrd program invokes the dxxShredXML shredding stored procedure.
The program dxxshrd comes with DB2 XML Extender and resides in the
your-DB2-install-dir\SQLLIB\BIN directory.

Notice that DB2 XML Extender can only insert new data into a set of specified
relational tables when shredding an XML document. If the data already exists,
you will get a negative SQL code indicating that a primary key with that value
already exists.

To make sure your data is handled properly, applications should test for these
situations and take proper action when shredding. This may be another case
where it makes sense to shred into a set of shadow tables instead of directly
shredding into the actual tables used by other applications.

Due to time constraints, we did not implement such proper testing in this
scenario. In real life applications, you should do this.

428 XML for DB2 Information Integration

14.3.3 Storing XML documents intact in XML columns
In this section, we demonstrate how ITSO Insurance, Inc. can store incoming
XML documents intact using the DB2 XML Extender, XML column feature.

Context
As mentioned before, we want to start using independent insurance brokers as
additional channels to sell our insurance policies. However, all our existing
applications assume that policies come in through our network of self-employed
agents. Our current IT systems are not capable of handling information
pertaining to brokers. On the other hand, we do not want to wait for the existing
IT infrastructure to be changed before we start selling insurance policies through
the broker channel.

How do we solve this problem?
We can implement full broker support in stages. Because we want to start using
the broker channel as soon as possible, we do the minimum amount of work to
get the process up and running.

This means that all the information (except the broker information) that we need
for processing policies as we normally do is extracted from the incoming XML
policy document and is stored in existing (or shadow) relational tables as
described in 14.3.1, “Shredding XML documents into relational tables” on
page 416.

So as not to loose any of the information coming in via XML policy documents
through the broker channel, and also for legal reasons, we store the XML
documents in the XML column verbatim.

The broker information (and corresponding details that are part of the insurance
policy XML document) is not shredded at this stage. It is stored as part of the
entire XML document in the XML column using XML Extender’s XML column
feature.

Storing the full incoming XML document intact in an XML column also gives us
the possibility to reprocess these documents during a subsequent
implementation phase when there are more resources available to implement full
broker support in our IT operating environment.

However, even in this first implementation phase, we may encounter cases that
require us to retrieve customer records for a particular broker. To achieve this, we
create a side table (a feature of using an XML column to provide fast access to
frequently needed elements or attributes of an XML document) on BROKER_ID
and ACTUAL_PREMIUM.

 Chapter 14. Scenario implementation using DB2 functionality 429

14.3.4 XML column implementation details
We describe the following implementation steps:

� Steps to enable the XML column
� Inserting data into the XML column

Enabling the POLICY_DOC column as an XML column
To be able to store intact XML documents in an XML column, you must first insert
the DTD into the DTD_REF table (created by XML Extender when the database
was enabled for XML usage) as well as enable the XML column. This is
described in more detail in 4.4, “Storing intact XML documents with XML
Extender” on page 101. The DTD_REF table information is used when you
specify that validation is required.

We used the following .bat file to set up the XMLColumn as shown in
Example 14-10.

C:\sg246994\Scenario>SetupXMLColumn

If you have been following all the steps of this scenario, you have already
enabled the XML column as was covered in “Setting up the INSURA database”
on page 402.

Example 14-10 SetupXMLColumn.bat

REM -- Assumes all related files are located under C:\SG246994\Scenario
REM -- Should be modified in commands below in case path differs
REM -- PARM 1 DBname

db2 connect to %1

db2 "insert into db2xml.dtd_ref (dtdid,content,usage_count,author,creator,
updator) values ('C:\SG246994\Scenario\policy.dtd',
db2xml.XMLCLOBFromFile('C:\SG246994\Scenario\policy.dtd'),0,'xml','xml','
xml')

dxxadm enable_column INSURA Policy_Docs Policy_Doc
"C:\SG246994\Scenario\BrokerXcolumn.dad" -r POLICY_DOC_ID

As you can see, we first inserted the policy.dtd information into the DTD_REF
control table. Then we enabled the Policy_Doc column in the Policy_Docs table
in the INSURA database. In the enable_column command, you can also indicate
the DAD file that is to be used when storing information into the XML column.

430 XML for DB2 Information Integration

When you are storing intact XML documents in an XML column, the DAD file is
used to indicate what side table(s) need to be created, what information
(columns) makes up the side table, and how to retrieve that information from the
XML document.

Example 14-11 shows the BrokerXcolumn DAD file that we used for the scenario.
As you can see, we use a single side table, Broker_Sales, with two columns,
Broker_Id and Actual_Premium. For both columns we use a location path
expression to indicate where this information can be found in the XML document.
For example for Broker_Id, the path is the bID attribute that can be found using
the /Policy/Broker/ path into the XML document. Notice that we also indicate the
DB2 data type that is to be used for the side table columns.

Example 14-11 BrokerXcolumn.dad

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\SG24-6994\Scenario\dad.dtd">
<DAD>

<dtdid/>
<validation>NO</validation>
<Xcolumn>

<table name="Broker_Sales">
<column name="Broker_Id" type="smallint"

path="/Policy/Broker/@bID"
multi_occurrence="NO"/>

<column name="Actual_Premium" type="decimal(10,2)"
path="/Policy/PolicyType/ActualPremium"
multi_occurrence="NO"/>

</table>
</Xcolumn>

</DAD>

When you enable the XML column, XML Extender processes the information
from the DAD file and creates the side table(s). It also creates a set of triggers
(an insert, an update and a delete trigger) for maintaining the side tables. Using
this method, the side tables get automatically populated when an insert is done
into the POLICY_DOC column of the POLICY_DOCS table. The same is true for
an update or delete operation. When dealing with XML columns, the side tables

Note: The dtdid does not need to be the same as the file name. In fact, since
our DAD in Example 14-11 specifies that no validation is required, inserting
the DTD into the DTD_REF table is unnecessary. However, we included this in
our example in case we may want to switch the validation on later.

 Chapter 14. Scenario implementation using DB2 functionality 431

are kept current when update and delete operations occur on information in the
XML column. (Remember that this is not the case when doing shredding.)

Inserting data into the POLICY_DOCS table
Once the XML column is enabled, you just insert, update or delete into the
XML-enabled column like you would for any other table. The triggers on the
XML-enabled column ensure that the side tables are kept in sync with the base
data in the XML column.

To store all our policy documents in the XML column, you can use the following
batch file:

C:\sg246994\Scenario>StoreXMLColumn

This command file stores the policy documents as complete XML documents in
our XML column (Policy_Doc in the Policy_Docs table) and populates the side
tables. Example 14-12 shows how to insert a single XML document into the XML
column.

Example 14-12 Insert data into the XML column

db2 "insert into POLICY_DOCS
values (1,db2xml.XMLCLOBFromFile('C:\SG24-6994\Scenario\policy1.xml'))"

To guarantee that the side tables and XML column information are kept in sync,
you must have a unique key on the table that contains the XML-enabled column.
You can provide this information when enabling the XML column by providing a
root name (-r option on the dxxadmin enable_column command). We used
POLICY_DOC_ID in Example 14-10 on page 430.

14.4 Scenario 3: composing XML documents
In this scenario, we demonstrate how the ITSO Insurance, Inc. can publish XML
documents from data that is stored, either in a set of relational tables (XML
collection or regular tables), or from data stored in an XML column.

14.4.1 Publishing XML from relational
This section shows how we can create XML documents based on data that is
stored in relational tables. We show how ITSO Insurance, Inc. can generate
reports based on information stored in the shredded documents.

432 XML for DB2 Information Integration

Context
We like to provide our corporate and other business customers with an overview
of the types of policies they have with us, the employees who are insured, and
the amounts of their individual premiums. We call this report the orgreport
(organization report).

14.4.2 Publishing XML from relational data implementation
As has been described throughout this publication, there are different ways to
publish XML documents from data stored in relational tables. The preferred
method is to use SQL/XML. In the following pages, we describe how to publish
XML documents from relational tables using SQL/XML, a DAD using RDB_node
mapping, and a DAD using an SQL statement as input.

Using SQL/XML
As stated earlier, the objective in this scenario is to list all the policy types an
organization has with our insurance company as well as the people who are
insured through these policies.

Figure 14-12 on page 434 shows the results of an SQL/XML query that satisfies
the stated objectives. Let’s first analyze its structure.

 Chapter 14. Scenario implementation using DB2 functionality 433

Figure 14-12 Result of SQL/XML query

SQL/XML queries themselves normally only produce so-called XML fragments.
You can of course concatenate some strings to make it a well-formed complete
XML document or use XSLT for that purpose.

The structure that we use here is an organization (IBM), the different policy types
the organization has with us (only Health in this case), the insured employees
(Sam and Shrinivas), and their respective policy numbers and premiums.

The SQL/XML query that was used to produce the results in Figure 14-12 is
shown in Example 14-13 on page 435. It also comes as part of the scenario files
and you can invoke this query using the following batch file:

C:\sg246994\Scenario>GetOrgReportSQLXML3

434 XML for DB2 Information Integration

Example 14-13 SQL/XML query

WITH insur(policy_type_id, insurelement)AS
 (select ITSO.POLICY.POLICY_TYPE_ID,

xmlelement(name"Insured",
xmlelement(name"InsuredID",ITSO.POLICY.INSURED_ID),
xmlelement(name"InsuredName",

xmlelement(name"InsuredFirstName", ITSO.INSURED.FIRST_NAME),
xmlelement(name"InsuredLastName", ITSO.INSURED.LAST_NAME)

),
xmlelement(name"PolicyNumber" ,ITSO.POLICY.POLICY_NUMBER),
xmlelement(name"ActualPremium" ,ITSO.POLICY.ACTUAL_PREMIUM)

)
 FROM

ITSO.POLICY ,
 ITSO.INSURED

WHERE
ITSO.POLICY.INSURED_ID = ITSO.INSURED.INSURED_ID

),

 planinfo (plan_name,planelement) AS

 (select ITSO.P_TYPE.PLAN_NAME,

xmlelement(name"Planinfo",
 xmlelement(name"InsurancePlan",ITSO.P_TYPE.PLAN_NAME),
 xmlelement(name"Plan_type",ITSO.P_TYPE.POLICY_TYPE_ID),

(SELECT XMLAGG(insur.insurelement)
 FROM insur

 WHERE
ITSO.P_TYPE.POLICY_TYPE_ID = insur.POLICY_TYPE_ID

)
)

 from ITSO.P_TYPE
)

select
 varchar(
 xml2clob(

xmlelement(name "Owner",
 xmlattributes (ITSO.OWNER.OWNER_ID AS "ID"),
 xmlelement(name "Organization",
 xmlelement(name"OrganizationName", ITSO.ORG.NAME),
 xmlelement(name"TradingName", ITSO.ORG.TRADING_NAME1)
),

 xmlelement(name "OwnerAddress",
xmlelement(name "Ownerstreet", ITSO.OWNER.STREET1)
),

 Chapter 14. Scenario implementation using DB2 functionality 435

(select XMLAGG(planelement)
 from planinfo
 where planinfo.plan_name = ITSO.P_TYPE.PLAN_NAME)

)
),3000)

FROM
 ITSO.OWNER,
 ITSO.ORG,

ITSO.POLICY,
ITSO.P_TYPE,

 ITSO.INSURED

WHERE
ITSO.OWNER.OWNER_ID = ITSO.ORG.OWNER_ID AND
ITSO.OWNER.OWNER_ID = ITSO.POLICY.OWNER_ID AND
ITSO.POLICY.POLICY_TYPE_ID = ITSO.P_TYPE.POLICY_TYPE_ID AND
ITSO.POLICY.INSURED_ID = ITSO.INSURED.INSURED_ID AND
ITSO.ORG.TRADING_NAME1='IBM'

GROUP BY ITSO.P_TYPE.PLAN_NAME,ITSO.OWNER.OWNER_ID
,ITSO.ORG.NAME,ITSO.ORG.TRADING_NAME1,ITSO.OWNER.STREET1
 ;

This seems like a difficult query to write, but let us look at it in more detail. When
we do, we find that it really is not all that bad.

The current version of DB2 does not support nesting of XMLAGG functions, so
we have to use common table expressions (CTE), as in our example above, or
inline views. You need to create a CTE for each fragment nesting level you want
to create, then nest the fragments by joining them using their PK-FK
relationships.

First of all, we are looking for the policy the IBM organization has with us:

ITSO.ORG.TRADING_NAME1='IBM'

When coding the CTEs, we start at the lowest (deepest) level in the XML
document. This is the insured person. Using this method, we build the insur CTE
as shown in Example 14-14 on page 437:

436 XML for DB2 Information Integration

Example 14-14 Building the insur CTE

WITH insur(policy_type_id, insurelement)AS
 (select ITSO.POLICY.POLICY_TYPE_ID,

xmlelement(name"Insured",
xmlelement(name"InsuredID",ITSO.POLICY.INSURED_ID),
xmlelement(name"InsuredName",

xmlelement(name"InsuredFirstName",
ITSO.INSURED.FIRST_NAME),

xmlelement(name"InsuredLastName",
ITSO.INSURED.LAST_NAME)

),
xmlelement(name"PolicyNumber" ,ITSO.POLICY.POLICY_NUMBER),
xmlelement(name"ActualPremium" ,ITSO.POLICY.ACTUAL_PREMIUM)

)
 FROM

ITSO.POLICY ,
 ITSO.INSURED

 WHERE
ITSO.POLICY.INSURED_ID = ITSO.INSURED.INSURED_ID

)

The insur CTE has two columns, which are described in Table 14-1:

Table 14-1 insur CTE

The planinfo CTE looks like Example 14-15 on page 438:

Column name Definition

insurelement This column constructs the <Insured>
element and its sub-elements
<InsuredID>, <InsuredName>,
<PolicyNumber> and
<ActualPremium>. To do so we join
the POLICY and INSURED tables on
INSURED_ID.

policy_type_id This column is required so we can use
the insur CTE later with the planinfo
CTE information.

 Chapter 14. Scenario implementation using DB2 functionality 437

Example 14-15 Planinfo CTE

planinfo (plan_name,planelement) AS
 (select ITSO.P_TYPE.PLAN_NAME,

 xmlelement(name"Planinfo",
xmlelement(name"InsurancePlan",ITSO.P_TYPE.PLAN_NAME),
xmlelement(name"Plan_type",ITSO.P_TYPE.POLICY_TYPE_ID),
(SELECT XMLAGG(insur.insurelement)

FROM INSUR
WHERE

ITSO.P_TYPE.POLICY_TYPE_ID = insur.POLICY_TYPE_ID
)

)
 from ITSO.P_TYPE

)

Notice that in Example 14-15, we aggregate the insurelement that we built in the
insur CTE inside the planinfo CTE and correlate it to the POLICY_TYPE_ID
column. This is why we needed to extract that column during the insur CTE
execution.This CTE creates the <planinfo> element (in the planelement
column). Also notice that this time, we extract an extra column (plan_name) to be
able to join this information in the top-level query that we discuss later.

Example 14-16 Top-level SQL statement

select
 varchar(
 xml2clob(

xmlelement(name "Owner",
 xmlattributes (ITSO.OWNER.OWNER_ID AS "ID"),
 xmlelement(name "Organization",

xmlelement(name"OrganizationName", ITSO.ORG.NAME),
xmlelement(name"TradingName",

ITSO.ORG.TRADING_NAME1)
),

xmlelement(name "OwnerAddress",
xmlelement(name "Ownerstreet", ITSO.OWNER.STREET1)

),
(select XMLAGG(planelement)

from planinfo
where planinfo.plan_name = ITSO.P_TYPE.PLAN_NAME

)
)

),3000)

FROM
 ITSO.OWNER,
 ITSO.ORG,

438 XML for DB2 Information Integration

ITSO.POLICY,
ITSO.P_TYPE,

 ITSO.INSURED
WHERE

ITSO.OWNER.OWNER_ID = ITSO.ORG.OWNER_ID AND
ITSO.OWNER.OWNER_ID = ITSO.POLICY.OWNER_ID AND
ITSO.POLICY.POLICY_TYPE_ID = ITSO.P_TYPE.POLICY_TYPE_ID AND
ITSO.POLICY.INSURED_ID = ITSO.INSURED.INSURED_ID AND
ITSO.ORG.TRADING_NAME1='IBM'

GROUP BY ITSO.P_TYPE.PLAN_NAME,ITSO.OWNER.OWNER_ID
,ITSO.ORG.NAME,ITSO.ORG.TRADING_NAME1,ITSO.OWNER.STREET1

In Example 14-16 on page 438, we include the XML2CLOB function to convert
from the internal XML data type to a CLOB data type as this is a top-level query.
To make it easy to process for us in the DB2 command window, we convert the
CLOB to a VARCHAR.

Again, we use the same techniques as before, creating some elements and
attributes, and nesting in the result from the previous planinfo CTE using the
XMLAGG function.

Notice that we have to join all five tables to be able to obtain all relevant
information relevant to the IBM organization. As SQL does not allow GROUP BY
PLAN_NAME and OWNER_ID, we also include the other columns.

Using SQL statement mapping in the DAD
Let us now try to construct a similar output using the SQL statement mapping
technique.

Example 14-17 uses a DAD file with an SQL statement to construct the same
organization report that we used in the previous section. It can also be obtained
using the following batch file from the scenario:

C:\sg246994\Scenario>GetOrgReportSQL3

Example 14-17 SQL statement DAD

<?xml version="1.0"?>
<!DOCTYPE DAD SYSTEM "C:\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>
<validation>YES</validation>
<Xcollection>
<SQL_stmt>
SELECT ITSO.OWNER.OWNER_ID,

ITSO.ORG.NAME,

 Chapter 14. Scenario implementation using DB2 functionality 439

ITSO.ORG.TRADING_NAME1,
ITSO.OWNER.STREET1,
ITSO.P_TYPE.POLICY_TYPE_ID,
ITSO.P_TYPE.PLAN_NAME,
ITSO.POLICY.INSURED_ID,
ITSO.POLICY.POLICY_NUMBER,
ITSO.INSURED.LAST_NAME,
ITSO.INSURED.FIRST_NAME,
ITSO.POLICY.ACTUAL_PREMIUM

 FROM
ITSO.OWNER,
ITSO.ORG,
ITSO.POLICY,
ITSO.P_TYPE,
ITSO.INSURED

WHERE
ITSO.OWNER.OWNER_ID = ITSO.ORG.OWNER_ID AND
ITSO.OWNER.OWNER_ID = ITSO.POLICY.OWNER_ID AND
ITSO.POLICY.POLICY_TYPE_ID = ITSO.P_TYPE.POLICY_TYPE_ID AND
ITSO.POLICY.INSURED_ID = ITSO.INSURED.INSURED_ID AND
ITSO.ORG.TRADING_NAME1='IBM'

ORDER BY OWNER_ID , POLICY_TYPE_ID, INSURED_ID
</SQL_stmt>
<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE OWNER POLICYS "C:\db2xml\dtd\orgreport.dtd"</doctype>
<root_node>
<element_node name="Owner">

<attribute_node name="ID">
<column name="OWNER_ID"/>

</attribute_node>
<element_node name="Organization">

<element_node name="OrganizationName">
<text_node><column name="NAME"/></text_node>

</element_node>
<element_node name="TradingName1">

<text_node><column name="TRADING_NAME1"/></text_node>
</element_node>

</element_node>
<element_node name="OwnerAddress">

<element_node name="OwnerStreet">
<text_node><column name="STREET1"/></text_node>

</element_node>
</element_node>
<element_node name="Planinfo" multi_occurrence="YES">

<element_node name="InsurancePlan">
<text_node><column name="PLAN_NAME"/></text_node>

</element_node>
<element_node name="Plan_type">

440 XML for DB2 Information Integration

<text_node><column name="POLICY_TYPE_ID"/></text_node>
</element_node>

<element_node name="Insured" multi_occurrence="YES">
<element_node name="InsuredID">

<text_node><column name="INSURED_ID"/></text_node>
</element_node>
<element_node name="InsuredName" >

<element_node name="InsuredFirstName">
<text_node><column name="FIRST_NAME"/></text_node>

</element_node>
<element_node name="InsuredLastName">

<text_node><column name="LAST_NAME"/></text_node>
</element_node>

</element_node>
<element_node name="PolicyNumber">

<text_node><column name="POLICY_NUMBER"/></text_node>
</element_node>
<element_node name="ActualPremium">

<text_node><column name="ACTUAL_PREMIUM"/></text_node>
</element_node>

</element_node>
</element_node>
</element_node>

</root_node>
</Xcollection>
</DAD>

The DAD file is fairly straightforward. The SQL statement in the <SQL_stmt> tag
gathers the data that you need to put into the resulting XML document. To obtain
all information related to plans and insured people for the IBM organization, we
need to use a five-way join. It is easiest to list the columns in the select clause in
the same order as they appear in the XML document (although that is not a
requirement). You also need to specify an ORDER BY to be able to handle the
multi_occurrence=”yes” elements properly. After the </SQL_stmt> tag, the
layout of the XML document starts and the mapping of the columns returns the
SQL statement to the elements and attributes of the XML document.

To invoke the generation of the XML document, you can use the following
statement (Example 14-18 on page 442):

 Chapter 14. Scenario implementation using DB2 functionality 441

Example 14-18 Invoking SQL statement based DAD document generation

db2 call db2xml.dxxgenxmlclob(
db2xml.xmlclobfromfile('C:\SG246994\Scenario\OrgReportSQL3.dad'),
0,
'',
?,
?,
?,
?,
?)

Using RDB_node mapping in the DAD
In Example 14-19, we produce a similar report, listing the plans and employees
within the plan for the organization. However, in this case we use RDB_node
mapping to generate the results.

Example 14-19 RDB_node mapping for retrieval from an XML collection

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DAD SYSTEM "C:\SQLLIB\samples\db2xml\dtd\dad.dtd">
<DAD>

<validation>NO</validation>
<Xcollection>

<prolog>?xml version="1.0"?</prolog>
<doctype>!DOCTYPE Report SYSTEM "C:\SG246994\Scenario\orgreport.dtd"</doctype>
<root_node>
<element_node name="Owner">

<RDB_node>
<table name="ITSO.ORG"/>
<table name="ITSO.OWNER"/>
<table name="ITSO.P_TYPE"/>
<table name="ITSO.POLICY"/>
<table name="ITSO.INSURED"/>
<condition>

ITSO.P_TYPE.POLICY_TYPE_ID=ITSO.POLICY.POLICY_TYPE_ID AND
ITSO.OWNER.OWNER_ID=ITSO.ORG.OWNER_ID AND
ITSO.ORG.OWNER_ID=ITSO.POLICY.OWNER_ID AND
ITSO.POLICY.INSURED_ID=ITSO.INSURED.INSURED_ID

</condition>
</RDB_node>
<attribute_node name="ID">

<RDB_node>
<table name="ITSO.ORG"/>

442 XML for DB2 Information Integration

<column name="OWNER_ID"/>
</RDB_node>

</attribute_node>
<element_node name="Organization">

<element_node name="OrganizationName">
<text_node>

<RDB_node>
<table name="ITSO.ORG"/>
<column name="NAME"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="TradingName1">

<text_node>
<RDB_node>

<table name="ITSO.ORG"/>
<column name="TRADING_NAME1"/>
<condition>trading_name1 = 'IBM'</condition>

</RDB_node>
</text_node>

</element_node>
</element_node>
<element_node name="OwnerAddress">

<element_node name="OwnerStreet">
<text_node>

<RDB_node>
<table name="ITSO.OWNER"/>
<column name="STREET1"/>

</RDB_node>
</text_node>

</element_node>
</element_node>
<element_node name="Planinfo" multi_occurrence="YES">

<element_node name="Plan_type">
<text_node>

<RDB_node>
<table name="ITSO.P_TYPE"/>
<column name="POLICY_TYPE_ID"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="InsurancePlan">

<text_node>
<RDB_node>

<table name="ITSO.P_TYPE"/>
<column name="PLAN_NAME"/>

</RDB_node>
</text_node>

</element_node>

 Chapter 14. Scenario implementation using DB2 functionality 443

<element_node name="Insured" multi_occurrence="YES">
<element_node name="InsuredID">

<text_node>
<RDB_node>

<table name="ITSO.POLICY"/>
<column name="INSURED_ID"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="InsuredName" multi_occurrence="YES">

<element_node name="InsuredFirstName">
<text_node>

<RDB_node>
<table name="ITSO.INSURED"/>
<column name="FIRST_NAME"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="InsuredLastName">

<text_node>
<RDB_node>

<table name="ITSO.INSURED"/>
<column name="LAST_NAME"/>

</RDB_node>
</text_node>

</element_node>
</element_node>
<element_node name="PolicyNumber">

<text_node>
<RDB_node>

<table name="ITSO.POLICY"/>
<column name="POLICY_NUMBER"/>

</RDB_node>
</text_node>

</element_node>
<element_node name="ActualPremium">

<text_node>
<RDB_node>

<table name="ITSO.POLICY"/>
<column name="ACTUAL_PREMIUM"/>

</RDB_node>
</text_node>

</element_node>
</element_node>

</element_node>
</element_node>
</root_node>

</Xcollection>
</DAD>

444 XML for DB2 Information Integration

In Example 14-19 on page 442, the root node <RDB_node> tag contains the list of
tables involved as well as the <condition> tag that indicates how they relate to
each other. Each attribute that is present in the resulting document has an
<RDB_node> tag describing the table and column that the value for that attribute is
coming from. Each element has a <text_node> element with the <RDB_node> tag
inside, describing the table and column that the value for that element is coming
from. You can have additional filtering conditions inside the <RDB_node> tag. In
our example, we only want to see the information for a particular organization,
based on its trading name (<condition>trading_name1 = 'IBM'</condition>).

You can generate the XML document using the RDB_node method by using the
statement shown in Example 14-20.

Example 14-20 Creating an RDB_node based XML document

db2 call db2xml.dxxgenxmlclob(
db2xml.xmlclobfromfile(

'C:\SG246994\Scenario\OrgReportRDBnode3.dad'),
0,
'',
?,
?,
?,
?,
?)

You can also use the following batch file to generate it:

C:\sg246994\Scenario>GetOrgReportRDBnode3

The XML document that is produced using RDB_node mapping is shown in
Example 14-21.

Example 14-21 Resulting XML document from RDB_node mapping

Value of output parameters

 Parameter Name : RESULTDOC
 Parameter Value : <?xml version="1.0"?>
<!DOCTYPE Report SYSTEM "C:\SG246994\Scenario\orgreport.dtd">
<Owner ID="122">
 <Organization>
 <OrganizationName>International Business Machines </OrganizationName>

 Chapter 14. Scenario implementation using DB2 functionality 445

 <TradingName1>IBM </TradingName1>
 </Organization>
 <OwnerAddress>
 <OwnerStreet>999 Wally World Avenue </OwnerStreet>
 </OwnerAddress>
 <Planinfo>
 <Plan_type>789</Plan_type>
 <InsurancePlan>MyPlan </InsurancePlan>
 </Planinfo>
 <Planinfo>
 <Plan_type>232</Plan_type>
 <InsurancePlan>Divorce Plan </InsurancePlan>
 </Planinfo>
 <Planinfo>
 <Plan_type>239</Plan_type>
 <InsurancePlan>Health </InsurancePlan>
 <Insured>
 <InsuredID>556</InsuredID>
 <InsuredName>
 <InsuredFirstName>Sam </InsuredFirstName>
 <InsuredLastName>Elliot </InsuredLastName>
 </InsuredName>
 <PolicyNumber>22</PolicyNumber>
 <ActualPremium>222.25</ActualPremium>
 </Insured>
 <Insured>
 <InsuredID>987</InsuredID>
 <InsuredName>
 <InsuredFirstName>Shrinivas </InsuredFirstName>
 <InsuredLastName>Kulkarni </InsuredLastName>
 </InsuredName>
 <PolicyNumber>23</PolicyNumber>
 <ActualPremium>244.75</ActualPremium>
 </Insured>
 </Planinfo>
 <Planinfo>
 <Plan_type>555</Plan_type>
 <InsurancePlan>Motor </InsurancePlan>
 </Planinfo>
 <Planinfo>
 <Plan_type>111</Plan_type>
 <InsurancePlan>Housing </InsurancePlan>
 </Planinfo>
</Owner>

 Parameter Name : VALID
 Parameter Value : -

 Parameter Name : NUMDOCS

446 XML for DB2 Information Integration

 Parameter Value : 1

 Parameter Name : RETURNCODE
 Parameter Value : 0

 Parameter Name : RETURNMSG
 Parameter Value : DXXQ020I XML successfully generated.

 Return Status = 0

14.4.3 Publishing XML data from XML column information
In the following section, we show how ITSO Insurance, Inc. can generate an
XML fragment from data stored inside tables of an XML column.

Context
The current table design for ITSO Insurance, Inc. does not include a table to
store broker-related information. Up until now they only worked with agents that
work exclusively for ITSO Insurance, Inc. Now that the company is using brokers,
ITSO Insurance, Inc. would like to provide brokers with reports showing them
how much revenue they’ve generated through us.

In anticipation of this need, when the complete XML document was stored in an
XML column, we extracted this information and stored it in tables (see 14.3.3,
“Storing XML documents intact in XML columns” on page 429).

Exploiting side table information
In our BROKER_SALES side table, we have the following information:

� POLICY_DOC_ID
� BROKER_ID
� ACTUAL_PREMIUM

For example, if we want to calculate the revenue generated from premiums by
each broker, we can easily do so using the query in Example 14-22 on page 448.

 Chapter 14. Scenario implementation using DB2 functionality 447

Example 14-22 Total premium by broker

select
 broker_id AS "Id" ,sum(actual_premium) AS "Total_Premium_Sales"
from broker_sales
group by broker_id

This query uses only information (actual_premium and broker_id) in the side
table (broker_sales) to generate the result.

If you want to present the result as an XML document you can use SQL/XML to
do this, as shown in Example 14-23, or use the batch file from the scenario
below.

C:\sg246994\Scenario>GetBrokerSalesSQLXML

Example 14-23 Total premium by broker using SQL/XML

select
 varchar(

xml2clob(
XMLELEMENT(NAME "Broker", XMLATTRIBUTES (BROKER_ID AS "Id"),

XMLELEMENT(NAME "Total_Premium_Sales", sum(actual_premium))
)

),300
)

from broker_sales
group by broker_id

You can also combine information from the side table with information in the XML
column. For example, if after running the previous query and analyzing the
results, you discover that broker_id 456 brings in the most revenue, you can list
all the policies for broker 456 by using the statement in Example 14-24.

Example 14-24 Broker456Policies.sql

select varchar(cast(policy_doc as clob),2000)
 from broker_sales bs, policy_docs pd
 where bs.policy_doc_id=pd.policy_doc_id and
 broker_id = 456

448 XML for DB2 Information Integration

Notice that we use the side table to have easy access to the broker_id
information and join the broker_sales side table to the policy_docs table that
actually contains the XML documents in the policy_doc XML column.

The VARCHAR function is not really needed; it is just used to make the output
easier to read. We also found that if you do not put in the VARCHAR function
when using the DB2 Command Center, no actual data is returned. This is most
likely a Control Center problem which can be easily circumvented by using the
VARCHAR function.

To ensure fast access to the data inside the BROKER_SALES side table, you
can create indexes on any of the columns (or combinations of columns) as you
would do with any table.

14.5 Scenario 4: Web service requestor
This section deals with ITSO Insurance, Inc. acting as a Web service requestor,
also known as a Web service consumer.

14.5.1 Context
As a good insurance company, we receive a lot of money from customers that
pay their insurance policy premiums. As we do not want to keep all that money in
a stocking under our bed, we reinvest part of the premium money in short- and
long-term investments. In this scenario, we look at how part of that money can be
invested in the short run by buying shares of stock through the stock market. To
obtain information about what is going on at the stock market in order to make
sound investment decisions, we use a Web service provided by
www.xignite.com. This Web service can provide headline information for
particular stocks. Ideally, before we decide to buy a certain stock, our investment
specialists can invoke this Web service to get some recent background
information about the stock for evaluation purposes.

14.5.2 Implementation
You can find out how to set up DB2 as a Web service consumer by reading 10.3,
“DB2 as Web service consumer” on page 294.

Here we show how to use a Web service from within an application program
using a simple SQL statement.

As our Web service can return multiple rows (multiple headline items) for a
certain stock, in our application, we use a table function reference to retrieve the

 Chapter 14. Scenario implementation using DB2 functionality 449

information from the Web service. Example 14-25 shows how to invoke the stock
headline information from the Web service using an SQL statement.

Example 14-25 Retrieving stock headlines using DB2 as Web service consumer

SELECT * FROM TABLE (
 DB2XML.EXTRACTVARCHARS(
DB2XML.XMLCLOB(
DB2XML.SOAPHTTPC(
'http://www.xignite.com/xnews.asmx',
'http://www.xignite.com/services/GetStockHeadlines',
'<m:GetStockHeadlines xmlns:m="http://www.xignite.com/services/"

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<m:Symbols>IBM</m:Symbols><m:HeadlineCount>12</m:HeadlineCount>
</m:GetStockHeadlines>'

)
), '////StockNews/Headline'

)
) AS X

Because we ask the Web service to return the last 12 headlines for IBM stock,
the result can be more than one row. Therefore we retrieve the result of the Web
service using a table function reference. The table function reference provides a
way to temporarily store the results of the Web service so that the SQL SELECT
statement can retrieve them. Otherwise we might have to create some sort of
temporary table to hold the results returned by the Web service. However, using
a table function reference is much more flexible.

As you can see, this method makes it easy to integrate Web services into
existing applications. If you think your programmers will have a hard time coding
an SQL statement like the one in Example 14-25, you can hide this logic from the
programmers be encapsulating all of this in a user-defined function like the one
shown in Example 14-26.

Example 14-26 Web service consumer UDF wrapper returning a table

CREATE FUNCTION itso.GetStockHeadlines (Symbols VARCHAR(100),
HeadlineCount INTEGER)

 RETURNS TABLE (StockNews VARCHAR(3000))
 LANGUAGE SQL CONTAINS SQL
 EXTERNAL ACTION NOT DETERMINISTIC
 RETURN

 Select * from Table (db2xml.extractVarchars(
DB2XML.XMLCLOB(

db2xml.soaphttpc(

450 XML for DB2 Information Integration

'http://www.xignite.com/xnews.asmx',
'http://www.xignite.com/services/GetStockHeadlines',
'<m:GetStockHeadlines xmlns:m="http://www.xignite.com/services/"

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">'

|| '<m:Symbols>' || Symbols || '</m:Symbols>'
|| '<m:HeadlineCount>' || rtrim(char(HeadlineCount)) ||

'</m:HeadlineCount>'
|| '</m:GetStockHeadlines>'

)
), '//StockNews/Headline'

)) as X ;

In this “wrapper UDF,” we extract only the Headline elements from the result of
the Web service, construct a table from these elements, and return the table. In
Example 14-26 on page 450, we replaced the fixed symbol tag IBM with a
variable Symbols and the fixed headline count of 12 with the HeadlineCount
variable. Both Symbols and HeadlineCount are input variables to the table UDF.

You can invoke this UDF with the statement shown in Example 14-27. By issuing
this query, we are searching for 10 or less news headlines related to IBM stock. A
sample result is also shown in Example 14-27 under the title, Headlines.

Example 14-27 Invoking the table UDF to retrieve stock headlines

db2 select substr(stocknews,1,79) as headlines
from table (itso.getStockheadlines('IBM',10)) as y

HEADLINES

[external] SPECIAL REPORT: Less Bounce in This Tech Rebound
UPDATE - IBM wins big Delta Lloyd outsourcing contract
IBM switches on Europe's most powerful computer
IBM Embraces Eclipse Environment for Autonomic Computing Technologies
[external] U.S. Equities Close With Losses
[external] Cisco, IBM team up on technology security
Linux Moves In On The Desktop
CSC, facing new woes, may hang on to most IRS work
Multimedia Available: IBM Perfects New Method for Making Low Power
Advanced Digital shares tumble on revenue concerns

 10 record(s) selected.

 Chapter 14. Scenario implementation using DB2 functionality 451

This query is also available as part of this scenario using the following batch file:

C:\sg246994\Scenario>getheadlines

When you get error messages when trying to invoke these consumer UDFs
using the Web service:

� Make sure that the Web service itself is available by checking the Web site:
http://www.xignite.com/xNews.asmx?op=GetStockHeadlines

� Make sure that when trying to establish a socket call your requests are not
stopped by any intermediate firewalls that may be installed. It may very well
be that you can invoke the Web service from the Xignite Web site, but that it
fails when invoking it from the DB2 SOAP UDFs.

This query to create the table UDF using SOAP UDFs was constructed manually,
You can also use WebSphere Studio Application Developer to generate this table
function in a much easier and less error prone way. For more details, see 16.5,
“Insurance application as a Web service requestor” on page 518.

452 XML for DB2 Information Integration

http://www.xignite.com/xNews.asmx?op=GetStockHeadlines

Chapter 15. Scenario with Application
Developer tools

So far, the scenario files were all created manually. In this chapter, we
demonstrate how to develop these same files with various Application Developer
tools.

15

© Copyright IBM Corp. 2004. All rights reserved. 453

15.1 Sample scenario report
Let’s first discuss the following report that is provided as part of the scenario. We
assume that you have installed the scenario files and run this report command:

C:\SG246994\Scenario>GetOrgReportRDBnode

The output of the report is shown in Example 15-1.

Example 15-1 Sample report: GetOrgReportRDBnode

<?xml version="1.0"?>
<!DOCTYPE Report SYSTEM "C:\SG246994\Scenario\orgreport.dtd">
<Owner ID="122">
 <Organization>
 <OrganizationName>International Business Machines</OrganizationName>
 <TradingName1>IBM</TradingName1>
 </Organization>
 <OwnerAddress>
 <OwnerStreet>999 Wally World Avenue</OwnerStreet>
 </OwnerAddress>
 <Insured>
 <InsuredID>556</InsuredID>
 <ActualPremium>222.25</ActualPremium>
 <InsuredName>
 <InsuredFirstName>Sam</InsuredFirstName>
 <InsuredLastName>Elliot</InsuredLastName>
 </InsuredName>
 <Planinfo>
 <Plan_type>239</Plan_type>
 <InsurancePlan>Health</InsurancePlan>
 </Planinfo>
 </Insured>
 <Insured>
 <InsuredID>987</InsuredID>
 <ActualPremium>244.75</ActualPremium>
 <InsuredName>
 <InsuredFirstName>Shrinivas</InsuredFirstName>
 <InsuredLastName>Kulkarni</InsuredLastName>
 </InsuredName>
 <Planinfo>
 <Plan_type>239</Plan_type>
 <InsurancePlan>Health</InsurancePlan>
 </Planinfo>
 </Insured>
</Owner>

454 XML for DB2 Information Integration

This report is created using the IBM DB2 XML Extender.

Remember that the DB2 XML Extender is an extension of DB2 that provides the
ability to store XML documents or generate XML documents from existing
relational data. The DB2 XML Extender also provides new data types, functions,
and stored procedures to manage XML data in DB2.

15.1.1 DAD file
If you examine the GetOrgReportRDBnode.bat command file that is used to
generate this report, you can see the DB2 XML Extender command that is
invoked:

db2 call db2xml.dxxgenxmlclob(db2xml.xmlclobfromfile
('C:\SG246994\Scenario\OrgReportRDBnode.dad'),0,'',?,?,?,?,?)

Notice the document access definition (DAD) file that this command is based on:

C:\SG246994\Scenario\OrgReportRDBnode.dad

Remember that a DAD file is an XML-formatted file that associates XML
document structure with a DB2 database. It is used by the DB2 XML Extender to
compose and decompose XML data into relational data.

Creating a DAD file to be used by DB2 XML Extender is the ultimate goal. But,
before you can do that successfully, you must know:

� The tables to be used
� The join conditions linking those tables
� The table columns to be used

Let’s start by analyzing the OrgReportRDBnode.dad file.

If you open the file, you see the tables and the join conditions (Example 15-2 on
page 456).

 Chapter 15. Scenario with Application Developer tools 455

Example 15-2 Root element: RDB_node

<RDB_node>
 <table name="ITSO.ORG"/>
 <table name="ITSO.OWNER"/>
 <table name="ITSO.P_TYPE"/>
 <table name="ITSO.POLICY"/>
 <table name="ITSO.INSURED"/>
 <condition>
 ITSO.OWNER.OWNER_ID=ITSO.ORG.OWNER_ID AND
 ITSO.ORG.OWNER_ID=ITSO.POLICY.OWNER_ID AND
 ITSO.P_TYPE.POLICY_TYPE_ID=ITSO.POLICY.POLICY_TYPE_ID AND
 ITSO.POLICY.INSURED_ID=ITSO.INSURED.INSURED_ID
 </condition>
</RDB_node>

If you examine the DAD file further, you notice the linkage of table columns to
XML elements or attributes as shown in Table 15-1.

Table 15-1 XML to table column mapping

Next, you should take note of all of the XML elements that have as an attribute:
multi_occurrence="YES". They are: Insured, InsuredName, and Planinfo.

The presence of these attributes indicates to the DB2 XML Extender that the
marked elements can repeat (that is, they can have multiple rows). The method

XML Element/Attribute Table Column

ID ITSO.ORG OWNER_ID

OrganizationName ITSO.ORG NAME

TradingName1 ITSO.ORG TRADING_NAME1

OwnerStreet ITSO.OWNER STREET1

InsuredID ITSO.POLICY INSURED_ID

ActualPremium ITSO.POLICY ACTUAL_PREMIUM

InsuredFirstName ITSO.INSURED FIRST_NAME

InsuredLastName ITSO.INSURED LAST_NAME

Plan_type ITSO.P_TYPE POLICY_TYPE_ID

InsurancePlan ITSO.P_TYPE PLAN_NAME

456 XML for DB2 Information Integration

that is used to include these attributes uses the required DTD file, which
describes the schema of the output XML file generated be DB2 Extender.

We have not yet mentioned that to use the Application Developer tools to create
a DAD file, you must have already created a DTD file. We will elaborate on this a
bit later.

Finally, notice that there is a condition on the XML element: TradingName1. Here
is the condition:

<condition>trading_name1 = 'IBM'</condition>

So, now that we are finished with the analysis of the DAD file already included
with the scenario files, let’s use the Application Developer tools to recreate the
same DAD file.

15.1.2 DTD file
The first step is to create a DTD file describing the structure of the XML file that
DB2 XML Extender is to output.

If you use the XML file above and reverse engineer it, the DTD file shown in
Example 15-3 describes the XML output.

Actually, there is one aspect of the final DTD file that is not clear from looking at
the XML output presented above. You cannot discern that the InsuredName and
the Planinfo elements are repeating. That is because there is not enough data in
the scenario database to make that clear (for example, there are no multiple
names for insured).

Example 15-3 OrgReport.dtd

<?xml version='1.0' encoding="UTF-8"?>
<!ELEMENT ActualPremium (#PCDATA)>
<!ELEMENT InsurancePlan (#PCDATA)>
<!ELEMENT InsuredFirstName (#PCDATA)>
<!ELEMENT InsuredID (#PCDATA)>
<!ELEMENT InsuredLastName (#PCDATA)>
<!ELEMENT OrganizationName (#PCDATA)>
<!ATTLIST Owner ID CDATA #IMPLIED>
<!ELEMENT OwnerStreet (#PCDATA)>

Restriction: Although this is valid from the standpoint of the DB2 XML
Extender, the Application Developer tool used to create the RDB table to XML
mapping does not support conditions at non-root levels. In other words, if you
need such a condition, you will have to manually edit the generated DAD file.

 Chapter 15. Scenario with Application Developer tools 457

<!ELEMENT Plan_type (#PCDATA)>
<!ELEMENT TradingName1 (#PCDATA)>
<!ELEMENT Owner (Organization,OwnerAddress,Insured+)>
<!ELEMENT Organization (OrganizationName,TradingName1)>
<!ELEMENT OwnerAddress (OwnerStreet)>
<!ELEMENT Insured (InsuredID,ActualPremium,InsuredName+,Planinfo+)>
<!ELEMENT InsuredName (InsuredFirstName,InsuredLastName)>
<!ELEMENT Planinfo (Plan_type,InsurancePlan)>

You can use Application Developer to help you create a DTD file using these
steps:

1. Run the GetOrgReportRDBnode.bat file to create an output file:

GetOrgReportRDBnode.bat >OrgReportRDBnode.output

2. Edit the result file (OrgReportRDBnode.output) and remove the front and
back to leave only the result XML file (see Example 15-1 on page 454). Save
the file as OrgReportRDBnode.xml.

3. Import the XML file into an Application Developer project.

4. Select the XML file and click Generate -> DTD (context).

5. Edit the DTD to make the InsuredName and Planinfo elements repeat.

15.1.3 DAD file
Once you have the DTD file, you can use the RDB to XML Mapping wizard (see
12.2.9, “Mapping the relational table to XML” on page 365) to create an RMX file.
The RDB to XML Mapping editor is designed to work in conjunction with the DB2
XML Extender. It simplifies development tasks by:

� Providing a visual interface to easily define mappings between relational data
and XML elements and attributes.

� Providing automatic generation of DAD files that would normally need to be
coded by hand and could be quite error prone.

� Providing automatic generation of a test harness on multi-platforms that can
be used to enable the DB2 database for use by the DB2 XML Extender, as
well as store and retrieve XML files from relational data.

The RMX file can then be used to generate a DAD file by selecting Generate
DAD (see 12.2.11, “Generating a DAD file” on page 370).

Now that we have a high-level overview of the process of creating a DAD file with
Application Developer, let’s do it.

458 XML for DB2 Information Integration

15.2 Using Application Developer for the scenario
In this section, we use Application Developer to recreate the files for the
GetOrgRDBnode report.

15.2.1 Creating project and folders
We have to prepare a project and import the underlying files to prepare the DTD
that is used for the report.

Creating the project
First, we define a Simple project called InsuranceScenario:

1. Open the XML perspective.

2. Select File -> New -> Other -> Simple -> Project.

3. Enter InsuranceScenario as the project name and click Finish.

Creating the folders
In the InsuranceScenario project, create four folders (select the project and click
New -> Folder from the context menu):

� database—import of INSURA database schema
� xmlsource—XML files, DTD
� xmlmapping—mapping files (RMX, DAD)
� xmltest—generated files for testing

15.2.2 Connecting to the database and importing a local copy
Follow the instructions in 12.2.1, “Creating a database connection” on page 340
to import the tables into the ItsoInsuranceWeb project:

1. You can define a new connection to the INSURA database, or use the
existing ConInsura connection. If the existing connection is disconnected,
select the connection and click Reconnect (context).

2. Select the ITSO schema for import. Select the InsuranceScenario/database
folder as the target.

3. Click Finish and confirm the prompts to create the folders.

15.2.3 Creating the DTD
We can create the DTD manually (Example 15-3 on page 457), or we can use an
existing XML file to create the DTD:

 Chapter 15. Scenario with Application Developer tools 459

1. Select the xmlsource folder and click Import (context). Select File system
and locate the sample OrgReportRDBnode.xml file.

2. Import the file. Note that the Tasks lists shows an error because of the
missing DTD that is referenced. Remove the DTD reference:

<!DOCTYPE Report SYSTEM "C:\SG246994\Scenario\orgreport.dtd">

3. Select the OrgReportRDBnode.xml file and click Generate DTD (context).
Change the output name to OrgReport.dtd. Accept the output folder
(xmlsource).

4. The OrgReport.dtd file opens in the editor (Example 15-4). It is formatted very
differently from Example 15-3 on page 457, but logically the same, with one
exception. We have to change the Insured element to allow multiple
InsuredName and Planinfo:

<!ELEMENT Insured
 (InsuredID,ActualPremium,InsuredName+,Planinfo+)
>

Example 15-4 Generated DTD (abbreviated)

<?xml version='1.0' encoding="UTF-8"?>
<!ELEMENT ActualPremium
 (#PCDATA)
>
<!ELEMENT InsurancePlan
 (#PCDATA)
>
<!ELEMENT Insured
 (InsuredID,ActualPremium,InsuredName+,Planinfo+) <=== changed
>
<!ELEMENT InsuredFirstName
 (#PCDATA)
>
<!ELEMENT InsuredID
 (#PCDATA)
>
<!ELEMENT InsuredLastName
 (#PCDATA)
>
<!ELEMENT InsuredName
 (InsuredFirstName,InsuredLastName)
>
<!ELEMENT Organization
 (OrganizationName,TradingName1)
>
<!ELEMENT OrganizationName
 (#PCDATA)

460 XML for DB2 Information Integration

>
<!ELEMENT Owner
 (Organization,OwnerAddress,Insured+)
>
<!--
 <annotation>
 <appinfo source='com.ibm.DDbEv2.Models.AbstractXModel.POSSIBLE'>
 <restriction base='string'/>
 </appinfo>
 </annotation>
-->
..........................

5. Optionally open the OrgReportRDBnode.xml file and add the reference to the
DTD:

<?xml version="1.0"?>
<!DOCTYPE Owner SYSTEM "OrgReport.dtd">
<Owner ID="122">

6. Save and close the files.

15.2.4 Creating the RDB to the XML mapping session
Before you can create your mappings, you have to create an RDB to XML
mapping session. The information about this mapping session, including source
tables, the target DTD file, any mappings created, and join conditions are stored
in a file with a .rmx extension. This file is necessary for you to persist information
about any mappings you have created so that you can easily reload or modify
them in the future. The steps to create your initial RDB to XML mapping session
are:

1. Start the RDB to XML mapping wizard.
2. Name the RDB to XML mapping session.
3. Choose the type of mapping.
4. Choose the source RDB tables.
5. Choose the target DTD file.
6. Choose the root element for the target DTD file.

Starting the RDB to XML Mapping wizard
Select File -> New -> Other -> XML -> RDB to XML Mapping. Click Next. The
New RDB to XML Mapping Session wizard opens. There is also an icon in the
XML perspective to start the wizard ().

 Chapter 15. Scenario with Application Developer tools 461

Naming the RDB to XML Mapping session
On this page, you specify the name and location where you want the session file
to be created (Figure 15-1):

Figure 15-1 RDB to XML mapping: target folder and file

1. Select the InsuranceScenario/xmlmapping folder (you created it earlier).
2. Specify the file name as OrgReport.rmx.
3. Click Next.

Choosing the type of mapping
The RDB to XML Mapping tools provide two ways of mapping relational
information to XML data, either through the RDB table mapping or the SQL
statement mapping. Both of these methods of mapping use the DAD file to
represent their mappings, but use different tags:

� RDB table mapping— maps RDB columns to XML data. Optional join
conditions can be specified. This method is useful if you want to simply
extract or store information in database tables. The DAD file created from an
RDB table mapping can be used for both decomposing an XML file and
storing it as relational data, and also for taking relational data and composing
an XML file from it.

� SQL statement mapping—takes an SQL statement and enables you to map
the result columns from executing an SQL statement to XML attributes and
elements. This method is useful if you have complex queries that you would
like to represent as XML data. These SQL statements must have been

462 XML for DB2 Information Integration

created using the SQL wizard or SQL Builder (see “Creating an SQL
statement” on page 346).

The key difference between the RDB table mapping and SQL statement mapping
is that the SQL statement map can only be used for taking relational data and
composing an XML file from it, not the reverse.

For the scenario you will be working with an RDB table mapping. Select RDB
table to XML mapping and click Next.

Choose the source RDB tables
In this page, you select the tables that you want to map columns from. For the
scenario, you are interested in these tables:

� ITSO.INSURED
� ITSO.ORG
� ITSO.OWNER
� ITSO.P_TYPE
� ITSO.POLICY

Expand the InsuranceScenario project and select the required tables
(Figure 15-2).

Figure 15-2 RDB to XML mapping: table selection

Selecting the target DTD file
Expand the InsuranceScenario project and select the DTD file:

InsuranceScenario/xmlsource/OrgReport.dtd

 Chapter 15. Scenario with Application Developer tools 463

Selecting the root element for the target DTD file
Here, you have to select the root element of the target DTD file. This will be used
to allow you to represent the DTD file in an XML format, so that you can map
RDB table columns to particular elements and attributes of an XML document:

1. Select Owner in the Root element list.
2. Click Finish.

You have now created an RDB to XML mapping session. The session is opened
in the RDB to XML mapping editor.

15.2.5 Using the RDB to XML mapping editor
The RDB to XML mapping editor is where you do most of the work:

� Create mappings for the RDB columns to XML elements and attributes.

� Specify join conditions for the source tables.

� Generate a DAD file and a test harness.

In the mapping editor, you see two panes (Figure 15-3 on page 465). The left
pane (Tables) shows the tables, expanded with column, and the right pane (XML)
shows the XML structure according to the DTD, with Owner as the root element
(expand the structure to see all the elements).

464 XML for DB2 Information Integration

Figure 15-3 RDB to XML mapping tool

Besides the RDB to XML Mapping view, two other views are available:

� Overview view, which shows a summary view of the XML document as well
as everything that has been mapped to the XML document attributes and
elements.

� Outline view, which shows all of the current mappings. If the Outline view is
not open, select Window -> Show View -> Outline, then move the view to
the bottom left, for example.

Creating mappings
In the RDB to XML Mapping view, you can define mappings between relational
data and XML elements and attributes. To create a mapping between a column
and an element, you have two choices:

� Select a column in the left pane, an element or attribute in the right pane, and
click Create Mapping (context menu in either pane).

 Chapter 15. Scenario with Application Developer tools 465

� Select a column in the left pane and drag it over the element or attribute in the
right pane. Release the cursor when an arrow appear. You can also drag from
right to left.

Completed mappings are indicated with a small arrow icon by the column and
element, and they also appear in the Overview and Outline views. When you
generate a DAD file, this mapping information will be reflected in it and can be
used by the DB2 XML Extender to compose or decompose XML files to relational
data.

Perform the mappings as shown in Figure 15-4. If you make a mistake, select the
mapping in the Overview and click Remove Mapping (context).

Figure 15-4 RDB to XML mapping complete

drag - drop

466 XML for DB2 Information Integration

� ITSO.ORG.OWNER_ID column <==> ID XML attribute under Owner
� ITSO.ORG.NAME <==> OrganizationName under Organization
� ITSO.ORG.TRADING_NAME1 <==> TradingName1 under Organization
� ITSO.OWNER.STREET1 <==> OwnerStreet under OwnerAddress
� ITSO.POLICY.INSURED_ID <==> InsuredID under Insured
� ITSO.POLICY.ACTUAL_PREMIUM <==> ActualPremium under Insured
� ITSO.INSURED.FIRST_NAME <==> InsuredFirstName under Insured
� ITSO.INSURED.LAST_NAME <==> InsuredLastName under Insured
� ITSO.P_TYPE.POLICY_TYPE_ID <==> Plan_type under Insured
� ITSO.P_TYPE.PLAN_NAME <==> InsurancePlan under Insured

Specifying join conditions
Because you have more than one table, you have to specify join conditions for
the tables. A join condition is used to specify which column in a table is to be
matched with a column in another table. If a join condition between two tables is
not specified, a result set will be returned containing all possible combinations of
the two tables and this may return incorrect results.

If you try to generate a DAD file, and you have more than one source table and
no join conditions, a warning message will appear.

Here are the join conditions that have to be entered (Figure 15-5):

� ITSO.OWNER.OWNER_ID=ITSO.ORG.OWNER_ID
� ITSO.ORG.OWNER_ID=ITSO.POLICY.OWNER_ID
� ITSO.P_TYPE.POLICY_TYPE_ID=ITSO.POLICY.POLICY_TYPE_ID
� ITSO.POLICY.INSURED_ID=ITSO.INSURED.INSURED_ID

Figure 15-5 RDB to XML mapping: join conditions

 Chapter 15. Scenario with Application Developer tools 467

To specify join conditions, follow these steps:

1. Select Mapping -> Edit Join Conditions or use the icon.

2. Select the first row and double-click it in the first column. Select the first
column name from the pull-down. An "=" is populated in the second column
(you cannot edit this value, it is the only possible value).

3. Double-click in the third column. Select the second column name from the
pull-down.

4. When you add more join conditions, the AND column is populated as well.

Once the appropriate join conditions have been created, click Finish. Save the
OrgReport.rmx file.

Generating the DAD file and test harness
After all of the mappings have been created and all of the join conditions
specified, it is time to generate a DAD file.

Select Mapping -> Generate DAD or use the icon to start the wizard.

You must specify the location and name of the DAD file to be generated
(Figure 15-6). Select the InsuranceScenario/xmltest folder and set the name
as OrgReport.dad.

Figure 15-6 Generate DAD: location and name

468 XML for DB2 Information Integration

If you were only interested in generating a DAD file, you could click Finish and
generate the file. However, to specify an enclosing tag and generate a test
harness, click Next.

Enclosing tag
Specifying an enclosing tag is an option that allows you to specify a tag to
enclose the entire document. This is useful in the situation where you are
composing an XML file, and the top element of an XML document contains
PCDATA or an attribute, and the value of this PCDATA or attribute can have
multiple values. In this case, multiple XML files may be generated as output,
since we have multiple top elements. The enclosing tag option allows a
convenient way to specify a single tag that would be used to enclose the results,
and consequently, only one XML document will be returned. In the case where
this option is chosen, the store XML feature will not work with the generated DAD
file. In our scenario, you do not specify an enclosing tag. Click Next.

Test harness
The purpose of the test harness is to provide operating system-specific
command line files that will enable the DB2 database for the XML Extender, and
process the DAD file in order to generate XML from relational data or to
decompose XML data into relational data.

To generate the test harness, select Generate Test Harness, and complete the
panel (Figure 15-7):

Figure 15-7 Generate DAD: test harness

 Chapter 15. Scenario with Application Developer tools 469

1. In the Destination Folder field, click Browse to locate the folder:

\InsuranceScenario\xmltest

Now you provide the environment variable values that contain specific path
information about the destination machine where the test harness will be
executed. This does not necessarily have to be on the same machine or
operating system that you are currently running.

2. In the SQLLIB field, type the location of the DB2 SQLLIB directory.

3. In the DB2 EXTENDER field, type the location of the DB2 XML Extender
directory. Generally, this directory contains dxx in it (that is, e:\dxx on
Windows or /home/db2inst1/dxx on Linux). If you are working with V8.1 of
DB2 UDB, this field does not appear as this directory is the same as the DB2
UDB directory (that is, DB2 XML Extender is included with V8.1 of DB2 UDB).

4. In the XMLDIR field, type the location where you want the generated XML file
to be placed. This is the same location where storeXML will look for source
XML files. This directory must exist before you execute the test harness. We
use c:\SG246994\Scenario\xmltest.

5. Now select the destination platform. The destination platform is the platform
on which the test harness files will actually be executed. This is very
important because it determines OS-specific information in the generated test
harness files, such as file separators and how environment variables are
accessed.

Click Finish to generate the test harness files.

The test harness files are generated in the directory specified in the Folder field.
The DAD file is opened in an editor. The changes made to the generated DAD
file are local to the DAD file, and are not reflected in the RDB to XML Mapping
session file. As a result, the next time a regeneration of the DAD file occurs, any
previous changes are not restored.

Specifying non-root conditions
Our DAD file requires a condition at a non-root element level. We have to add a
condition element to the TradingName1 element, as shown in Example 15-5 on
page 471.

470 XML for DB2 Information Integration

Example 15-5 Updating the DAD file with a non-root condition

<element_node name="TradingName1">
<text_node>
<RDB_node>
<table name="ITSO.ORG"/>
<column name="TRADING_NAME1" type="Character(50)"/>
<condition>trading_name1 = 'IBM'</condition>

</RDB_node>
</text_node>

</element_node>

Generating files
The xmltest folder contains the generated files:

� OrgReport.dad—the DAD file
� readme.txt—instructions for the test harness
� setup.bat—sets up environment variables for the other commands
� retrieveXML.bat—generates an XML file from the database tables
� storeXML.bat—stores the contents of an XML file in the database tables
� updateDTD_REF.bat—stores the DTD file into DB2 for XML validation

15.2.6 Enabling DB2 for the XML Extender
Before you can store and retrieve XML documents from DB2 with the DB2 XML
Extender, you have to enable the database for XML. As stated in the DB2 XML
Extender documentation, this will:

� Create all the user-defined types (UDT) and user-defined functions (UDF).

� Create and populate control tables with the necessary metadata that the XML
Extender requires.

� Create the db2xml schema and assign the necessary privileges.

The enabling of the database for XML is done for you in the test harness files,
retrieveXML and storeXML. For more information, and to find out how to
manually enable the database for XML, refer to the DB2 XML Extender
documentation.

15.2.7 Using the test harness to execute the DAD files
Execution of the DAD file requires the DTD. Copy the OrgReport.dtd file from
xmlsource into the xmltest folder (select the DTD file and click Copy, then select
the xmltest folder and click Paste).

 Chapter 15. Scenario with Application Developer tools 471

In Windows, open a Windows command prompt to execute the test harness.

Go to the directory where the test harness was generated:

<WSAD_WORKSPACE_ROOT>\InsuranceScenario\xmltest

Alternatively, export the xmltest folder to the c:\SG246994\Scenario directory.
(Select the folder and click Export, select File system, and set the target
directory.) Then go to the c:\SG246994\Scenario directory at the command
prompt.

Make sure that the database has been started before executing any of the test
harness files.

Running the setup command
Run setup.bat in the command prompt. This file sets up the environment
variables that the other files use. After running setup.bat on Windows, an
initialized DB2 shell appears. All other test harness files have to be run from this
shell.

Running the updateDTD_REF command
Note: For our scenario, you do not have to run this command.

If you require XML validation or want the DTD file to be inserted into the
DB2XML.DTD_REF table:

1. Edit the OrgReport.dad file and specify YES for <validation>. By default, its
value is NO.

2. Run the updateDTD_REF file.

Running the retrieveXML command
The retrieveXML file is used to enable the DB2 database for DB2 XML Extender,
as well as retrieve relational data and store it in an XML file following the
mappings defined in the DAD file.

The result of enabling the database, as well as the resulting XML data, are
displayed to the screen. The resulting XML data is also be written to a file in the
XMLDIR directory you specified, and will have the same name as the DTD file
but with a .xml extension. In our example, this file will be called OrgReport.xml. If
multiple XML files are returned, only the first one will be written to XMLDIR.

The output file is generated as:

c:\SG246994\Scenario\xmltest\OrgReport.xml

472 XML for DB2 Information Integration

Running the storeXML command
Note: For our scenario, you do not have to run this command.

The storeXML file is used to enable the DB2 database for DB2 XML Extender
and store the data of the XML elements and attributes in tables.

Be careful, because the command deletes all the rows in the tables before it
inserts the data from the XML file.

This command takes the input XML file from the XMLDIR directory. It looks for a
file with the same name as your session file, but with a .xml extension. In this
example, c:\SG246994\Scenario\xmltest\OrgReport.xml.

To validate that the store worked correctly:

� Check the database manually for the data that you expect to be there, or

� Run the retrieveXML command, copy the file for later (renamed), run the
storeXML command with the output file, then run the retrieve again and
compare the resulting XML file to the original file.

 Chapter 15. Scenario with Application Developer tools 473

474 XML for DB2 Information Integration

Chapter 16. DB2 Web services and XML
with Application Developer

In this chapter, we create DB2 Web services-based applications for a
hypothetical insurance company called ITSO Insurance, Inc. We do not attempt
to cover the full business processes used by a real insurance company. Our
scenario is very simple, and its only purpose is to illustrate some of the ways in
which you may incorporate XML documents in a database-oriented environment,
using DB2, DB2 XML Extender, and DB2 Information Integrator.

16

© Copyright IBM Corp. 2004. All rights reserved. 475

16.1 Insurance scenario
The Insurance scenario was developed to demonstrate how multiple features of
WebSphere Studio are combined in an end-to-end development scenario to build
an e-business application. To develop this application, you will rapidly employ
DB2 capabilities both as Web service provider and requestor using Application
Developer XML and Web service tools.

16.1.1 Business context
As explained in Chapter 13, “Worked scenario” on page 393, ITSO Insurance,
Inc. (hereafter referred to as ITSO Insurance, or just the company) is a well
established insurance company that mainly works with their self-employed
agents that only work for ITSO Insurance, Inc. To expand their horizon, ITSO
Insurance, Inc. has decided to also sell insurance policies through freelance
insurance brokers.

The first application ITSO Insurance, Inc. decided to implement is to provide
insurance brokers with insurance quotes for certain types of policies that ITSO
Insurance, Inc. wants to sell through the broker channel. This is implemented as
a Web service.

ITSO Insurance, Inc. invests the money it gets from insurance premiums in
stocks. The online quotes and headline information for a certain stock can be
obtained by invoking a free Web service available in third-party Web sites.
Therefore, before the company decides to buy a certain stock, the investment
specialist can invoke these Web services to get some recent background
information about the stock they think is a good investment.

16.1.2 Technical implementation overview
The technical implementation of the Insurance scenario is composed of four
business cases:

1. Create an Insura Web service to provide broker applications with required
information in XML format. Here, we are demonstrating DB2 capabilities as a
Web service provider. We also publish the Web service to the IBM UDDI
Business Test Registry.

2. Create and publish a Web page where brokers can get a policy quote for a
given customer. The policy quote takes into account the insurance history of
the customer (XML file), which can be reached either in the local file system
or over the Internet. This part serves as a showcase, demonstrating DB2
XMLwrapper’s ability to provide a relational view of XML files.

476 XML for DB2 Information Integration

3. Provide ITSO Insurance, Inc.’s investment specialists with a Web page where
they can receive relevant information (quote and news headlines) on a certain
stock, showing DB2 as a Web service consumer.

4. Create a broker Web page serving as a client to the previously published
Insura Web service and provide a user with a humanly readable interface to
the Web service response. Here, we demonstrate XSL transformation of
SOAP XML to HTML format.

The sample application that we develop consists of the Insura Web service
application and the broker client application running on logically different
application servers. The Insurance application server has an XML-enabled DB2
database as a back end, runs a DADX Web service, and provides users with
data access Web pages. The broker application server provides a front end to
the Insura Web service. Figure 16-1 shows a logical implementation diagram of
the complete application.

Figure 16-1 Insurance scenario: high-level implementation diagram

As was discussed in Chapter 12, “XML and database tools in Application
Developer” on page 337, Application Developer provides a set of tools for
discovering, creating, and publishing Web services that are created from a
number of artifacts such as JavaBeans, DADX files, Enterprise JavaBeans, and
URLs.

Broker

client

Insurance

client

Broker

Insurance

Server

INSURA

database

SOAP UDFs

XML Wrapper

DADX Web
service

Third Party
Web services

SOAP

XML Files

JDBC

 Server
 Web

Web

 Chapter 16. DB2 Web services and XML with Application Developer 477

The Document Access Definition Extension (DADX) Web service enable you to
wrap DB2 XML Extender Document Access Definition (DAD) files or regular SQL
statements inside a Web service. DADX is an XML document that specifies how
to create a Web service using a set of operations that are defined by DAD
documents and SQL statements. The DADX file defines the operations available
to the DADX runtime environment, and the input and output parameters for the
SQL operation.

Web tools assist you in developing Web applications that you can configure as a
Web service. Web applications are developed in a Web project, and server tools
enable you to use the unit test environment to test and deploy your Web
services.

Implementation of the Web services requestor part of the Insurance application is
based on Application Developer tools capable of generating DB2 Web service
requestor user-defined functions (UDFs).

16.1.3 Preparing for the insurance application
Before you can develop the sample application, you have to perform the
following steps:

� Install the prerequisite software on your workstation
� Create the INSURA database

The following sections provide details about each of these tasks.

System prerequisites
You need the following software installed on your workstation:

� DB2 Universal Database™ (UDB) for Windows V8.1 FixPak 2, or V7.2 FixPak
7 or later

� WebSphere Studio Application Developer 5.0 or 5.1

� WebSphere Application Server 5.0 or 5.0.2 for deployment of the application

See Appendix A, “Installation” on page 545 for detailed instructions.

Creating the INSURA database
The INSURA database must be created and enabled. See “Setting up the
INSURA database” on page 402 for detailed instructions.

Once you have completed the preparation tasks, you are ready to develop the
Insurance application.

478 XML for DB2 Information Integration

16.2 Insurance application as Web service provider
In this section, we are implementing the business case #1 of the Insurance
scenario in two ways:

� Starting from a prearranged DADX file
� Creating an SQL statement and the DADX file

To create the DB2 Insura Web Services using Application Developer tooling, we
perform these steps:

1. Set the Web services interoperability compliance level.

2. Create the Web project that will contain the Insurance application.

3. Create a DADX group within the Web project.

4. Create SQL statements that query the INSURA database for policy quotes
and business amount information.

5. Create a proxy and a test client for the Insura Web Service.

6. Publish a business entity and a Web service to a UDDI registry.

We use Application Developer wizards wherever possible.

The Insura Web Services respond to requests for policy quotes and business
amount information from the broker server. They implement a DADX Web
services to query the INSURA database and return the results to the broker
application as a SOAP-encoded XML document.

16.2.1 Setting the Web services interoperability compliance level
WS-I is an organization designed to promote Web service interoperability across
platforms, operating systems, and programming languages. For more
information on WS-I, refer to their Web site:

http://www.ws-i.org/

This site contains resources such as an overview of Web services
interoperability, usage scenarios, and specifications.

The WS-I Basic Profile is a outline of requirements to which WSDL and Web
service protocol (SOAP/HTTP) traffic must comply in order to claim WS-I
conformance. The Web services WS-I validation tools currently support WS-I
Basic Profile 1.0. To view the specifications, refer to the WS-I Web site and under
Resources, select Documentation.

Depending on the type of Web service being created, you may or may not want
your Web service to comply with the WS-I Basic Profile. WebSphere Studio

 Chapter 16. DB2 Web services and XML with Application Developer 479

http://www.ws-i.org/

allows you to set your level of compliance. The default level of compliance is to
generate a warning if a non-complaint Web service option is selected.

By default, the level of WS-I compliance is set to Suggest, which means that any
non-compliant choices that are selected generate a warning dialog box, but you
will be able to continue.

The insurance sample may generate a non-compliant Web service, depending
on the value of the group property Use document style (see Figure 12-45 on
page 377). If you get a warning message, click Ignore. This warning message
currently occurs even if you set Use document style to true, although the
generated WSDL file is WS-I compliant.

To change the level of WS-I compliance:

1. Select Window -> Preferences.
2. Expand Web Services and select WS-I Compliance.
3. Select Ignore WS-I compliance.

16.2.2 Creating the Web project
Web services are created within a Web project. All the resources required by the
Web services, such as your Web settings and WSDL files, must exist within the
project. To create a Web project, follow these steps in Application Developer:

1. Switch to the Web perspective (Window -> Open Perspective -> Other ->
Web).

2. From the workbench, click File -> New -> Dynamic Web Project.

3. Type ItsoDB2XMLInsuraWeb in the Project name field. Select Configure
advanced options and click Next.

4. Type ItsoDB2XMLInsura in the EAR project field. Leave the J2EE level as 1.3.
Click Finish.

The ItsoDB2XMLInsuraWeb and ItsoDB2XMLInsura projects are created and
your Project Navigator view should look like Figure 16-2 on page 481. The
enterprise application project stores the Web project as a WAR file embedded in
an EAR file that can be exported to a server.

480 XML for DB2 Information Integration

Figure 16-2 ItsoDB2XMLInsura enterprise application and Web project

16.2.3 Creating the DADX group
The DADX group contains connection and other information that is shared
between DADX files. To create the DADX group:

1. In the Project Navigator, select ItsoDB2XMLInsuraWeb.

2. Select File -> New -> Other -> Web Services in order to display the various
Web service wizards. Select the Web Service DADX Group Configuration
wizard. Click Next.

3. Select ItsoDB2XMLInsuraWeb and click Add group. In the DADX group
name text field, type insuraGroup. Click OK.

4. Expand ItsoDB2XMLInsuraWeb, select insuraGroup, and click Group
Properties. In the DADX Group Property dialog (see Figure 12-45 on
page 377):

a. Change the DB URL to jdbc:db2:insura

b. Enter the Context factory as:
com.ibm.websphere.naming.WsnInitialContextFactory

c. Enter the Datasource as: jdbc/insura

d. Set Use document style to true to generate a WS-I compliant Web
service

e. Click OK

Database connections for DADX Web services can be made using JDBC
drivers or data sources. Data sources are tried first; JDBC drivers are used if
the data source access fails.

 Chapter 16. DB2 Web services and XML with Application Developer 481

5. Click Finish. The DADX group is generated in the directory
ItsoDB2XMLInsuraWeb\JavaSource\groups (Figure 16-3).

Figure 16-3 DADX insuraGroup in Project Navigator view

16.2.4 DADX file
The DAD Extension (DADX) file is an XML document that specifies how to create
a Web service using a set of operations that are defined by DAD documents and
SQL statements. The DADX file can be constructed from one or more SQL
statements, stored procedures, XML Extender DAD files, or a combination of all
three types.

In this section, we are going to generate the insura.dadx file containing the DB2
queries and a description of the required account parameter.

482 XML for DB2 Information Integration

16.2.5 Importing the DADX file
To import the DADX file, follow this path:

� In the Project navigator view, select the groups.insuraGroup folder (under
JavaSource) and click File -> Import to open the Import wizard.

� Click File system and Next.

� In the Directory text field, specify the following location of the DADX file. Use
the Browse button if necessary:

c:\SG246994\Scenario\wsad

� Select only the insura.dadx file and click Finish. The file is imported into the
ItsoDB2XMLInsuraWeb project.

� Now that you have imported the DADX file, continue the scenario with 16.2.8,
“Creating the DADX Web services” on page 490.

16.2.6 Creating the SQL query
To create the SQL query, you perform these tasks:

� Define the database connection
� Define the SQL statement
� Test the query

The following sections provide details about each of these tasks.

Defining the database connection
First, you have to define the connection to the INSURA database:

1. Open the Data perspective (Window -> Open Perspective -> Other ->
Data).

Important: You can either import the insura.dadx file, or generate your own by
creating the necessary SQL queries and/or stored procedures and generating
a DADX file from the results using the SQL from XML wizard.

� To import the insura.dadx file, follow the directions in 16.2.5, “Importing the
DADX file” on page 483”, then skip “16.2.6, “Creating the SQL query” on
page 483” and “16.2.7, “Creating the DADX file” on page 490”.

� To create the insura.dadx file, skip 16.2.5, “Importing the DADX file” on
page 483 and follow the directions in 16.2.6, “Creating the SQL query” on
page 483 and 16.2.7, “Creating the DADX file” on page 490.

 Chapter 16. DB2 Web services and XML with Application Developer 483

2. In the DB Servers view, select New Connection (context). The New
Connection wizard opens.

3. In the Connection Name entry field, type insura_connection.

4. In the Database entry field, type insura.

5. In the Database vendor type field, ensure that the correct database driver is
selected.

6. In the JDBC driver field, ensure that the correct JDBC driver is selected (IBM
DB2 APP DRIVER).

7. In the Class location field, ensure that the path to your to your JDBC driver
class (in db2java.zip) is correct.

8. Click Finish. A connection to the INSURA database is defined.

Your DB Servers view should resemble the following (Figure 16-4):

Figure 16-4 INSURA database connection

With the database connection defined, you have to copy the table definitions to
the ItsoDB2XMLInsuraWeb project:

1. In the DB Servers view, expand insura_connection, select
insura(jdbc:db2:insura) and Import to Folder (context). The Import to
Folder dialog opens. Click Browse and select the ItsoDB2XMLInsuraWeb
project.

Note that you can also select only the ITSO schema and click Import to
Folder. We only use the ITSO.xxxxxx tables for the SQL statement.

2. Click OK, then click Finish.

Click Yes to confirm the creation of the databases folder. If you expand the
ItsoDB2XMLInsuraWeb project, you get a folder structure similar to the one
shown in Figure 16-5 on page 485.

484 XML for DB2 Information Integration

Figure 16-5 Database connection imported into the Web project

Defining the policyQuote SQL statement
There are two alternative ways of creating an SQL statement in Application
Developer:

� SQL Statement Wizard—The SQL Statement Wizard is a guided dialog
through a number of panels, with an SQL statement as the result.

� SQL Query Builder—The SQL Query Builder is an editor for an advanced
user.

Both tools can be used to build an SQL statement. After using the SQL
Statement Wizard, you can use the SQL Query Builder to update the SQL
statement or, alternatively, you can build an SQL statement from scratch using
SQL Query Builder.

For detailed instructions on how to use SQL Statement Wizard, refer to 12.2.4,
“Creating an SQL statement” on page 346. For this example, we are developing
our SELECT statements against the INSURA database using the SQL Query
Builder.

We start by designing the policy quote query. Because our insurance brokers
want to get a quote (a price) for a certain policy type, we return the insurance
policy plan name, plan type, and the standard and actual premium for a selected
type of policy. Basically, we construct this SQL statement:

SELECT
 ITSO.P_TYPE.PLAN_NAME,
 ITSO.P_TYPE.PLAN_TYPE,
 ITSO.P_TYPE.PREMIUM,
 ITSO.POLICY.ACTUAL_PREMIUM
FROM

 Chapter 16. DB2 Web services and XML with Application Developer 485

 ITSO.POLICY, ITSO.P_TYPE
WHERE
 ITSO.POLICY.POLICY_TYPE_ID = ITSO.P_TYPE.POLICY_TYPE_ID
 AND ITSO.P_TYPE.PLAN_NAME = :planname

See the policyQuote.sql file in c:\SG246994\Scenario\wsad.

To define the SQL statement in Application Developer, follow these steps:

1. In the Data perspective Data Definition view, click ItsoDB2XMLInsuraWeb ->
WebContent -> WEB-INF -> databases -> insura database -> Statements
(folder).

2. Select Statements and New -> Select Statement (context).

3. Enter policyQuote as name and click OK. This launches the SQL Query
Builder.

4. In the Outline view, or in the middle pane labeled Tables, select Add Table
(context). The Add Table dialog box opens.

5. From the Table name list select ITSO.P_TYPE, then click OK. This specifies
that the policyQuote SQL statement includes the P_TYPE table belonging to
the ITSO schema. As you can see, the table has been added to the SELECT
statement in the top pane.

6. You can also use the “drag-and-drop” technique to incorporate the POLICY
table into the query (Figure 16-6 on page 487).

486 XML for DB2 Information Integration

Figure 16-6 Adding tables to the SQL query

7. Next, select the columns from each table using the check boxes. For the
P_TYPE table select all columns except POLICY_TYPE_ID. For the POLICY
table only select the ACTUAL_PREMIUM column. As you select the
columns, the SELECT statement is updated in the top pane and the columns
are added in the bottom pane.

8. Next, join the tables together. To join the tables, select the POLICY_TYPE_ID
column in the P_TYPE table and drag it across to the corresponding column
in the POLICY table. A link symbol is shown between the tables, and the
SELECT statement is updated with the corresponding WHERE clause.

9. Finally, we want to add the a condition (PLAN_NAME = :planname). Use the
Conditions tab in the bottom pane to add the condition using the drop-down
menus, or type it directly into the SQL statement and the Conditions tab is
updated (Figure 16-7 on page 488).

 Chapter 16. DB2 Web services and XML with Application Developer 487

Figure 16-7 SQL Query Builder: adding conditions and finalizing query

Save the statement. You are prompted for the host variables; just click Cancel to
dismiss the dialog.

For more detailed information how to use Application Developer SQL tools,
please refer to WebSphere Studio Application Developer V5 Programming
Guide, SG24-6957.

Testing the query
After creating an SQL query, you should test it to ensure that it returns the correct
result. To test the query:

1. Select the statement in the Statements folder an click Execute (context) or
select SQL -> Execute in the menu bar.

Restriction: Do not use an underscore in a parameter (:plan_name). Creating
a DADX Web services based on parametric SQL statements where the
parameter name contains an underscore sign (_) fails in Application
Developer V5.0 and 5.1.

488 XML for DB2 Information Integration

2. Enter 'Health' as the value for the :planname variable in the Host Variable
Values window, press Enter and then click Finish to execute the query.

The result of the query appears in the DB Output pane (Figure 16-8). If the query
was successful, the Status column will indicate Success.

Figure 16-8 Testing an SQL statement

Defining the brokerSales SQL statement
Now we are going to construct the second query that answers the question of
how much business has been generated with us by the broker. This SQL
statement will be further referred to as brokerSales and looks like this
(brokerSales.sql file in c:\SG246994\Scenario\wsad):

SELECT
 ITSO.BROKER_SALES.BROKER_ID,
 SUM(ITSO.BROKER_SALES.ACTUAL_PREMIUM) AS Total_Premium_Sales
FROM
 ITSO.BROKER_SALES
WHERE
 ITSO.BROKER_SALES.BROKER_ID = :brokerid
GROUP BY
 ITSO.BROKER_SALES.BROKER_ID

To construct the brokerSales statement, use the SQL Query Builder. To create
the SUM function, select Build expression in the Column drop-down menu of the
Columns tab. Select Function, select SUM, SUM(DECIMAL) -> DECIMAL, then
select the ACTUAL_PREMIUM column. Enter Total_Premium_Sales as the
Alias. Define the grouping in the Groups tab by selecting the column.

Save the query and test it by entering 456 as the value for the :brokerid variable.
If you have done everything correctly, you should get 11111.1 as the result.

Now that you have created the SQL queries, continue the scenario with “16.2.7,
“Creating the DADX file” on page 490”.

 Chapter 16. DB2 Web services and XML with Application Developer 489

16.2.7 Creating the DADX file
To create the DADX file, follow the instructions in 12.3.2, “Creating a DADX file
from an SQL statement” on page 378:

1. In the Web perspective, select File -> New -> Other -> Web Services ->
DADX File. Click Next. The Create DADX wizard opens.

2. Expand the ItsoDB2XMLInsuraWeb project and select both policyQuote and
brokerSales statements, then click Next.

3. Click Next to bypass the Select DAD files page.

4. In the DADX generation page, type insura.dadx in the File name field.

5. Select /ItsoDB2XMLInsuraWeb/JavaSource/groups/insuraGroup as the
output folder.

6. Click Finish.

The DADX file opens in the XML editor. Examine the file then close the editor.
Note that both constructed SQL statements are incorporated in the newly
created DADX file.

Now that you have generated the DADX file, continue the scenario with “16.2.8,
“Creating the DADX Web services” on page 490”.

16.2.8 Creating the DADX Web services
We now implement the policyQuote and brokerSales information queries as
DADX Web services. These Web services enable the Insurance application to
retrieve information about a certain type of policy and a broker’s generated
business from the INSURA database using a DB2 query. The results are
returned to the Insurance server as a SOAP-encoded XML document
(Figure 16-1 on page 477). The Insurance application uses a JSP file to display
the corresponding records.

To create the Insura Web Services from the insura.dadx file:

1. In the Web perspective expand the ItsoDB2XMLInsuraWeb project and select
the JavaSource/groups.insuraGroup/insura.dadx file.

2. Select File -> New -> Other -> Web Services -> Web Service and click Next
to start the Web service wizard.

3. In the Web Services page of the wizard, ensure that DADX Web service is
selected from the Web service type menu. Select Start Web service in Web
project, Generate a proxy, Overwrite file without warning and Test the
generated proxy (Figure 16-9 on page 491). Click Next.

490 XML for DB2 Information Integration

Figure 16-9 Creating DADX Web Service: options

4. In the Service Deployment Configuration page, ensure that the server is set to
WebSphere v5.0 Test Environment, ItsoDB2XMLInsuraWeb is selected as
the Service Web project, and ItsoDB2XMLInsuraWebClient is set as the Client
Web Project. Click Next.

5. In the Web Service DADX File Selection page, the insura.dadx file is
preselected. Click Next.

6. The Web Service DADX Group properties page of the wizard is used to
update your group properties. Ensure the DB URL field displays
jdbc:db2:insura. Click Next.

7. In the Web Service Binding Proxy Generation page, select soap binding,
leave the proxy as proxy.soap.insuraProxy, and select Show mappings.
The client proxy provides a remote procedure call interface to your Web
service. Click Next.

8. In the Web Service XML to Java Mappings page of the wizard (Figure 16-10
on page 492), select each entry and look at the mapping. Leave the
JavaBean mapping for the two parameters, but select Show and use the
default DOM Element mapping for the two results
(http://tempuri.org/ItsoDB2XMLInsuraWeb/...). Click Next.

 Chapter 16. DB2 Web services and XML with Application Developer 491

Figure 16-10 Creating DADX Web services: XML to Java mapping

9. In the Web Service SOAP Binding Mapping Configuration page, review the
SOAP binding mapping configurations. Click Next to accept the default
values.

10.In the Web Service Test page, ensure that Test the generated proxy and
Run test on server are selected and that Web service sample JSPs appears
in the Test facility text field (note that the Universal Test Client is not well
suited to test Web services that return a DOM element). Leave the target
folder for the test client as sample/insura. Click Finish.

It may take a few minutes for the Web services to be generated. The Web
services are deployed to the WebSphere Application Server Test Environment,
the server is started and an internal Web browser is launched to demonstrate the
sample application.

Now that you have created the Insura Web Services, deployed and launched
them on the built-in Application Server, you may want to test the methods of the
Insurance DADX Web services, policyQuote and brokerSales.

16.2.9 Testing the DADX Web services
The browser is launched with the test client. You can also manually start the test
client by selecting the TestClient.jsp in the sample/insura folder of the client
project (ItsoDB2XMLInsuraWebClient).

To examine the methods of the sample Web application:

1. Select the brokerSales method in the Methods pane.

492 XML for DB2 Information Integration

2. In the brokerid field of the Inputs pane, type 456 or 789 and click Invoke. The
Result pane displays the total of the broker’s generated business
(Figure 16-11).

Figure 16-11 Testing the DADX Web service

3. In the same manner, you can test the policyQuote method. Enter Health (or
MyPlan or Divorce Plan) into the planname text field and click Invoke. When
you have finished examining the methods of the Insurance Web application,
exit the Web browser.

Testing the Web service with the Web Services Explorer
The Web Services Explorer can be used to test a Web service based on the
generated WSDL file:

1. Expand the ItsoDB2XMLInsuraWeb project (WebContent/wsdl), select the
insuraService.wsdl file and click Web Services -> test with Web Services
Explorer (context).

2. An internal server starts; be patient. When the Web Services Explorer opens,
expand the service in the Navigator pane (left side).

Important: Any changes you make to your Web services can be retested by
returning to the Web browser. When running a test environment, the server is
running against the resources that are in the workbench. The server will pick
up any changes you make to the Web project without being restarted.

 Chapter 16. DB2 Web services and XML with Application Developer 493

3. Select the brokerSales or policyQuote method.

4. Enter a parameter value in the entry field (right side) and click Go.

5. Select Source in the Status pane (bottom) and study the input and output
SOAP messages, for example, the brokerSales output:

- <SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">

- <SOAP-ENV:Body>
- <ns1:brokerSalesResponse

xmlns:ns1="http://tempuri.org/insuraGroup/insura.dadx"
SOAP-ENV:encodingStyle="http://xml.apache.org/xml-soap/literalxml">

- <return>
- <xsd1:brokerSalesResult

xmlns:xsd1="http://tempuri.org/ItsoDB2XMLInsuraWeb/insuraGroup
/insura.dadx/XSD" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <brokerSalesRow>
 <BROKER_ID>456</BROKER_ID>
 <TOTAL_PREMIUM_SALES>11111.10</TOTAL_PREMIUM_SALES>
 </brokerSalesRow>
 </xsd1:brokerSalesResult>
 </return>
 </ns1:brokerSalesResponse>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

16.2.10 Publishing the Insura Web service to the Test Registry
For the external world to be able to use the Web service, it should be published
to a UDDI registry. You have a number of choices for publishing of a Web
service:

� UDDI Business registry—Official UDDI registry, a replicated registry run by
IBM, Microsoft, and SAP. You can find the IBM Business registry at:

https://uddi.ibm.com/ubr/registry.html

� IBM UDDI Test Registry—a test registry where anybody can make entries
for testing, You can find the IBM Test Registry (Microsoft and SAP also
provide test registries) at:

https://uddi.ibm.com/testregistry/registry.html

� Private registry—IBM ships a private registry product with WebSphere
Application Server V5 Network Deployment. This registry can be installed into
a WebSphere server.

494 XML for DB2 Information Integration

https://uddi.ibm.com/ubr/registry.html
https://uddi.ibm.com/testregistry/registry.html

� Unit Test UDDI—a private registry that can be installed within Application
Developer (select New -> Web Services -> Unit Test UDDI then select
Cloudscape™ or DB2 as the database).

To illustrate UDDI publishing, we are using the IBM UDDI Test Registry.

IBM UDDI Test Registry
Before you publish your Web service to the test registry, you must get an IBM ID
and password.

Prerequisite: Register with the IBM UDDI Test Business Registry.

WebSphere Studio provides a Web Services Explorer tool that enables you to
publish and maintain your business entity, business services, and service
interfaces. For more information on UDDI data structure types, refer to the Web
service tools in the online help for WebSphere Studio.

The business entity contains information about the business, for example contact
information and URLs.

Important: To register with the IBM UDDI Test Business Registry, follow the
instructions provided by the registry’s Web site. In order to activate your
account, you must initially log in to the registry from:

https://uddi.ibm.com/testregistry/registry.html

Important: The IBM UDDI Test Registry allows for only one business entity to
be published per user ID. If you previously published a business entity to the
IBM UDDI Registry, you can either remove the existing business entity, or
publish the new Web service using your existing business entity. For
information on removing a business entity, refer to the Web services tools in
the online help.

To remove the existing business entity, refer to “Removing a business entity,
Web service, or service interface from a registry” in the online help. Once you
have unpublished your business entity, follow the steps in ”Publishing the
business entity” and ”Publishing the Web service”.

To publish the Insura Web service using your existing business entity, skip the
steps in “Publishing the business entity” on page 496 and follow the directions
in ”Discovering the business entity” and “Publishing the Web service” on
page 497.

 Chapter 16. DB2 Web services and XML with Application Developer 495

http://www.ibm.com/services/uddi
https://uddi.ibm.com/testregistry/registry.html

Publishing the business entity
To publish your business entity using the Web Services Explorer:

1. Launch the Web Services Explorer by selecting Run -> Launch the Web
Services Explorer in the main toolbar.

2. In the Navigator pane, select the UDDI Main node. In the Actions pane, IBM
UDDI Test Registry will appear in the Registry Name field. Click Go
(Figure 16-12).

Figure 16-12 Publishing a business entity to the BM UDDI Test Registry

3. In the toolbar of the Actions pane, click the Publish icon .

4. From the Publish list, select Business.

5. Select Simple.

6. In the Publish URL field, keep the default URL. Enter your user ID, password,
a suitable business entity name (in further discussion to be referred to as
YourBusinessEntityName), and a description of the business entity in the
respective fields. In this particular instance, we used ItsoDB2XMLRedBook as
our business entity name and test web service as a description.

496 XML for DB2 Information Integration

Be sure to select your own business name and not YourBusinessEntityName.

7. Click Go. The Web Services Explorer is automatically updated with your
published business entity.

Discovering the business entity
You can find your business entity using the Web Services Explorer in this way:

1. In the Navigator pane, select the IBM UDDI Test Registry node.

2. In the toolbar of the Actions pane, click the Find icon .

3. From the Search for list, select Businesses.

4. Give your query a descriptive name, in our case ItsoDB2XMLRedBook Business
Entity.

5. Select Simple.

6. In the Name field of the Actions pane, enter the YourBusinessEntityName
name and click Go.

Publishing the Web service
To publish a Web service under your business entity follow these steps:

1. In the Navigator pane, select YourBusinessEntityName name under the
Published Businesses node.

2. In the toolbar of the Actions pane, click the Publish Service icon .

3. Select Simple.

4. To enter the WSDL URL, click Browse to select the WSDL URL for your Web
project. If your Web service is currently running, your pop-up WSDL Browser
window should look like Figure 16-13 on page 498 with a WSDL URL
automatically selected:

http://localhost:9080/ItsoDB2XMLInsuraWeb/wsdl/insuraGroup/insuraService.wsdl

If it is not the case, just select the WSDL file from the drop-down list. Click Go.

 Chapter 16. DB2 Web services and XML with Application Developer 497

http://localhost:9080/ItsoDB2XMLInsuraWeb/wsdl/insuraGroup/insuraService.wsdl

Figure 16-13 Publishing Insura Web service: defining WSDL URL

Note: Because the address points to localhost:9080 you can only interact
with the registry if your server is running.

5. In the Name field of the Actions pane, type Insura, and in the Description field
type Insura Test Web Service.

6. When you have finished entering the service information, click Go.

The Web Services Explorer is automatically updated with your published Web
service. If your update is successful, the Status pane informs you that the Web
service interface and Web service were successfully published. The Navigator
pane of the Web Services Explorer is shown in Figure 16-14

Figure 16-14 Web service published to the IBM UDDI Test Registry

When you have finished publishing your Web service, you may exit the Web
Services Explorer.

498 XML for DB2 Information Integration

16.2.11 Summary
In this section, we successfully imported the INSURA database resources into
our workspace and created two SQL statements, policyQuote and brokerSales.
We created a DADX Group configuration file and a DADX file that contains both
queries. Using Application Developer tools, we generated the Web service and a
test client application that helped us to examine and visualize the Web services
in real time through a set of generated JSP files. The output seen was an XML
file. Then we published the Web service to the IBM UDDI Test Registry.

16.3 Discovering the Insura Web service
This part of our scenario shows how another developer in our partner broker
company could use WebSphere Studio to discover the Web service that you just
registered (business case #4). You will begin by creating a Web project into
which you will import the discovered WSDL document. You will now play the role
of a broker discovering a Insura Web service.

16.3.1 Creating the broker Web project
We will discover the Web service and then implement a Web client application
that uses the Web service. Therefore, we create another Web project to simulate
the broker client. We could use the generated ItsoDB2XMLInsuraWebClient
project, but it is cleaner to show the process in a new project, simulating the fact
that this would be done on another machine.

We are going to make our instructions brief because the process is the same as
for the ItsoDB2XMLInsuraWeb project. Create an ItsoDB2XMLBrokerWebClient
project attached to an ItsoDB2XMLBroker enterprise application. Follow the
instructions in “Creating the Web project” on page 480.

16.3.2 Discovering the Web service
You can discover a Web service by searching for a business entity, business
service, or service interface. In this sample, you will query the registry with the
name of business entity that you created when you were playing the role of a
developer publishing a Web service. To discover the Insura Web service using
the Web Services Explorer:

1. Launch the Web Services Explorer by clicking Run -> Launch the Web
Services Explorer in the main toolbar.

2. In the Web Services Explorer toolbar, select the Favorites icon .

 Chapter 16. DB2 Web services and XML with Application Developer 499

3. Expand Favorite UDDI Registries and select the IBM UDDI Test Registry
node.

4. In the Actions toolbar, click the Add to UDDI Page icon (or link under the
same name at the bottom of the pane).

5. In the Actions toolbar, click the Find icon (or link with the same name at the
bottom).

6. In the Actions pane, type Insura as the query name.

7. Select Simple. In the Name text field, type the name of the business that
published the Insura Web service: YourBusinessEntityName. Click Go. If your
query was successful, you receive all related Business Details for your
YourBusinessEntityName in the Actions pane.

8. In the Actions toolbar, click the Get Services icon . The Actions pane is
shown in Figure 16-15.

Figure 16-15 Discovering Insura Web service

500 XML for DB2 Information Integration

Once you have discovered a Web service, you can import the WSDL document
to your Web project and launch the Web Service Client wizard to test the Web
service.

Importing the WSDL document
To import the WSDL document into the ItsoDB2XMLBrokerWebClient project:

1. In the Actions toolbar of Web Services Explorer, click the Import WSDL To
workbench icon .

2. In the Import WSDL to workbench page of the Actions pane, select
ItsoDB2XMLBrokerWebClient from the Workbench project: drop-down list.
Leave the WSDL file name field with insuraService.wsdl by default
(Figure 16-16 on page 502). Click Go. The insuraService.wsdl file is imported
in the ItsoDB2XMLBrokerWebClient project folder.

Important: Remember, each UDDI registry service entry only references the
actual Web server where this Web service runs. In our case, WSDL points to
our localhost machine where we deployed the Insura Web service on the
WebSphere V5.0 Test Environment Application server. That is why our Web
service, though registered on IBM UDDI Test Business Registry, won’t be
reachable from the external world, unless you replace localhost with your
machine’s actual IP.

To be able to discover your Web services, you have to keep the WebSphere
V5.0 Test Environment server running.

 Chapter 16. DB2 Web services and XML with Application Developer 501

Figure 16-16 Importing WSDL file into Web project

Creating the Web service client
To implement a client application, we require a proxy and (optionally) a test
client. These are generated by the Web Service Client wizard. To generate a
proxy and a test client for the Insura Web service, perform these steps:

1. Expand the ItsoDB2XMLBrokerWebClient folder and select the
insuraService.wsdl file (Figure 16-17 on page 503). Select File -> New ->
Other -> Web Services-> Web Service Client. Click Next.

Note: In Application Developer V5.1 you can select Web Services ->
Generate Client as a short cut.

You are forwarded to the first page of the Web Service Client wizard.

502 XML for DB2 Information Integration

Figure 16-17 Creating Broker Web service client

2. Make sure that the Client proxy type is Java Proxy, and that Test the
generated proxy, Overwrite file without warning and Create folders when
necessary are selected. Click Next.

3. In the Client Environment Configuration page of the wizard select Explore
options. In the Web service runtime: pane, select IBM SOAP and ensure that
in the Server pane WebSphere v5.0 Test Environment is selected and that
the Client Web Project is ItsoDB2XMLBrokerWebClient (Figure 16-18). Click
Next.

Figure 16-18 Selecting the client runtime environment

 Chapter 16. DB2 Web services and XML with Application Developer 503

4. The Web Service Selection page provides you with options to enter a URI to a
WSDL or other defining Web service document. Click Next to accept the
prefilled name of your WSDL file.

5. In the Web Service Binding Proxy Generation page, select soap binding and
Show mappings (Figure 16-19). Click Next.

Figure 16-19 Proxy generation

6. In the Web Service XML to Java Mappings page of the wizard, leave the
settings for the parameters untouched, but change the mapping of the two
results to Show and use the default DOM Element mapping (see Figure 16-10
on page 492). Click Next.

7. In the Web Service SOAP Binding Mapping Configuration page, review the
SOAP binding mapping configurations. Click Next to accept the default
values.

8. In the Web Service Test page, ensure that the Test the generated proxy and
Run test on server check boxes are selected and that Web service sample
JSPs appears in the Test facility text field.

For simplicity, we limit our considerations to only one method of the Insura
Web service that returns a policy quote (Figure 16-20 on page 505):

a. Enter sample/insuraPolicyQuote as the target folder
b. Deselect all other methods in the Methods pane.
c. Click Finish.

504 XML for DB2 Information Integration

Figure 16-20 Methods of the test client

The ItsoDB2XMLBroker EAR application is deployed to the WebSphere
Application Server Test Environment, the server is started and an internal Web
browser is launched to test the Web service.

As you might have already noticed, we very closely repeated steps that were
performed when we created DADX Web service.

Test the Insura Web service by follow the instructions in 16.2.9, “Testing the
DADX Web services” on page 492. Your resulting Web browser view is basically
the same as Figure 16-11 on page 493, with the exception that it contains only
one method (policyQuote).

Now that you have created the Broker Web client application for the Insura Web
service, deployed it on the server, and tested it by invoking methods of the actual
Insura Web service, you, as a broker’s software developer, want to make a nicer
Web front end.

16.3.3 Creating a real client using XSL transformation
In this section of our scenario, you, as a broker’s software developer, are going
to take the XML file that is being produced by the Web service and use XSL to
transform the output to an HTML file containing the result in a table.

 Chapter 16. DB2 Web services and XML with Application Developer 505

We take the generated Result.jsp of the test client and modify it to apply an XSL
stylesheet. We invoke the JSP from a simple HTML page.

Preparation
Create a folder named client in the ItsoDB2XMLBrokerWebClient project (under
WebContent).

Import these three files from c:\SG246994\Scenario\wsad into the client folder:

� policyQuote.xml—this is a sample result from running the Web service. You
could create this file yourself by running the Web service in the test client and
copy/paste the Results pane into a new XML file.

� ClientInput.html—a simple HTML file with a form to enter the plan name and
to invoke the JSP.

� ClientResult.jsp—A simplified copy of the Results.jsp that runs the Web
service and applies an XSL style sheet named policyQuote/xsl.

The ClientResult.jsp has these modifications from the original Result.jsp:

– The heading is replaced by:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="policyQuote.xsl"?>

– The trailer is deleted (</BODY></HTML>).

– The markup method does not perform any substitution:

public static String markup(String text) {
 return text;
}

– Two instances of
 are deleted. Note that for the second one, the
preceding if is deleted as well.

– The logic of the method selection is deleted; we only run one method.

Creating the XSL stylesheet
Although you could import the policyQuote.xsl file as well, it can be generated
easily from the sample XML result file:

1. Create an XSL file using File -> New -> Other -> XML -> XSL.

2. Set the output folder to the client folder and the name to policyQuote.xsl.

3. To select an XML file, expand the ItsoDB2XMLBrokerWebClient project and
select the policyQuote.xml file.

4. Click Finish.

506 XML for DB2 Information Integration

The XSL editor opens and we can now map our sample XML file into an HTML
formatted table:

1. Add a few lines in front of the trailing </xsl:stylesheet> tag. Make sure that
your cursor stays at one of these blank lines.

2. Launch the Create a table in XSL wizard by clicking the icon or select
XSL -> HTML Table.

3. Expand and select the first policyQuoteRow element. Select both Wrap
table in a template and Include header (Figure 16-21).

Figure 16-21 Defining XSL transformation

4. Click Next. Specify 2 in the Border field and click Finish.

5. Add a heading before the table:

<xsl:template match="xsd1:policyQuoteResult">
 <h1>Broker Client Result</h1>
 <table border="2">
......

6. Save and close the XSL file. Compare your file with the policyQuote.xsl file
provided in c:\SG246994\Scenario\wsad.

 Chapter 16. DB2 Web services and XML with Application Developer 507

Testing the XSL transformation
We can test the transformation on our sample XML file:

Select both the policyQuote.xml and policyQuote.xsl files and click Transform
-> XML (context). A Web browser opens with the resulting HTML file
(Figure 16-22).

Figure 16-22 Testing the Web service with XSL transformation

Running the Web service
Finally, we can run the real client application:

1. Select the ClientInput.html file and Run on Server.
2. Enter a plan name (Health) and click Run Web Service.

The result is shown in Figure 16-23.

Figure 16-23 Testing the real broker client application

508 XML for DB2 Information Integration

16.3.4 Using a data source for DB2 Web services
The group configuration (see “Creating the DADX group” on page 481 and
Figure 12-45 on page 377) allows the specification of a JDBC driver and/or a
data source. If a data source is specified, it is tried first at execution time.

For a data source to be used, it must be configured in the server. In the Server
Configuration view, open the configuration of the WebSphere V5.0 Test
Environment server (double-click):

1. Go to the Data source page and select the Default DB2 JDBC Driver.

2. Click Add next to the data source list.

3. Select the DB2 Legacy driver, V5.0 data source, and click Next.

4. Complete the data source information (Figure 16-24 on page 510). The JNDI
name must match the specification in the group properties. Authentication
aliases are a way to store user IDs and passwords used by WORF to connect
in WebSphere as opposed to group.properties. Please refer to the following
article on the Web for more details:

http://www-106.ibm.com/developerworks/db2/library/techarticle/
dm-0404wollscheid/index.html

5. Click Next.

 Chapter 16. DB2 Web services and XML with Application Developer 509

http://www-106.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid/index.html
http://www-106.ibm.com/developerworks/db2/library/techarticle/dm-0404wollscheid/index.html

Figure 16-24 Creating a data source in the server configuration

6. For the databaseName property, enter a value of INSURA, and click Finish.

The data source is added to the list (Figure 16-25 on page 511).

510 XML for DB2 Information Integration

Figure 16-25 Server configuration data source page

7. Save and close the server configuration.

8. Rerun the client application; you will be able to see messages regarding the
data source in the Console view.

16.3.5 Summary
In this section, we used WebSphere Studio to discover the Insura Web service
that was registered in the preceding section.

Acting as broker’s developer, we discovered our partner’s business entity in the
IBM UDDI Test Registry. After that, we identified the Insura Web service and
imported the corresponding WSDL document into our Web application. From the
WSDL file, we created the client proxy and a test client. Using the generated test
client code, we created a real client that transforms the resulting SOAP XML
output into HTML using an XSL stylesheet. We created the XSL file from a
sample XML output and formatted the output rows into an HTML table. We tested
the transformation and finally run our broker Web service client by invoking the
DADX Web service.

 Chapter 16. DB2 Web services and XML with Application Developer 511

16.4 Insurance Web application with DB2 XML access
In this section, we implement business case #2, which is to create and publish a
Web page where brokers can get a policy quote for a given customer. The
algorithm to calculate the quote for a given customer takes into account the total
amount of money claimed so far, using the formula:

regular premium + 4% of claims

The claims data is stored in the c:\SG246994\Scenario\InsuranceHistory.xml file,
which, generally speaking, can be reached either in the local file system or over
the Internet.

There are a number of ways in which you can access databases from a Web
application. You can write your own Java classes and access the database using
standard JDBC calls. Alternatively, Application Developer supplies a library of
database access beans, called DB Beans. These can be used in a JSP through
the <useBean> tag and can also be accessed through a set of JSP tags supplied
in a tag library. An application using DB Beans or tags can be generated for you
by Application Developer using a wizard based on an SQL statement.

We will use this Database Web Pages wizard to create an application based on
JSPs using the DB Beans tag library by starting from an SQL statement.

16.4.1 Creating the proposedPremium SQL query
We implement the Web application in the ItsoDB2XMLInsuraWeb project.

To construct the proposedPremium statement (Example 16-1 on page 513), you
can use the SQL Query Builder and follow the steps that were described in
“Defining the policyQuote SQL statement” on page 485“. You have to type the
complicated select expression.

Alternatively, you can create a shortcut by copying and pasting the SQL
statement into the SQL Source pane of the SQL Query Builder:

c:\SG246994\Scenario\wsad\proposedPremium.sql

Save the query and test it by entering these values for the host variables:

:history_file_uri: 'file:C:\SG246994\Scenario\InsuranceHistory.xml'
:customer_name: 'Shrinivas Kulkarni'
:plan_name: 'Motor'

Note. You can copy and paste these values from the file:

c:\SG246994\Scenario\wsad\proposedPremiumInputValues.txt

512 XML for DB2 Information Integration

If you have done everything correctly, you should get 556.28 as the resulting
proposed premium.

Example 16-1 SQL statement for proposed premium

SELECT DISTINCT
 (ITSO.P_TYPE.PREMIUM +
 (
 SELECT
 COALESCE((SUM(CAST (ITSO.CLAIMS.AMOUNT AS DECIMAL)) * 0.04), 0)
 FROM
 ITSO.CLAIMS
 WHERE
 ITSO.CUSTOMERS.CUSTOMER_ID = ITSO.INSURANCES.CUSTOMER_FID
 AND ITSO.INSURANCES.INSURANCE_ID = ITSO.CLAIMS.INSURANCE_FID
)) AS proposed_premium
FROM
 ITSO.CUSTOMERS, ITSO.INSURANCES, ITSO.CLAIMS, ITSO.P_TYPE
WHERE
 ITSO.CUSTOMERS.CUSTOMER_ID = ITSO.INSURANCES.CUSTOMER_FID
 AND ITSO.INSURANCES.INSURANCE_ID = ITSO.CLAIMS.INSURANCE_FID
 AND ITSO.CUSTOMERS.URI = :history_file_uri
 AND ITSO.CUSTOMERS.NAME = :customer_name
 AND ITSO.P_TYPE.PLAN_NAME = :plan_name

16.4.2 Generating Web pages from SQL queries
Application Developer provides a wizard to help you create a set of Web pages
and supporting Java classes starting from an existing or new SQL query. The
wizard generates the required HTML pages, JSPs, and Java classes to quickly
create a working skeleton application without you having to write any code. You
can then expand and modify the generated code to create the finished
application.

To start generating Web pages from the proposedPremium query, proceed with
these steps:

1. Select the target folder ItsoDB2XMLInsuraWeb/WebContent.

2. Start the Database Web Pages wizard by selecting File -> New -> Other ->
Web -> Database Web Pages and click Next.

3. The first page of the wizard is displayed. Complete the dialog as shown in
Figure 16-26 on page 514:

– Destination folder: folder where the generated Web pages are stored.
Make sure that the folder is /ItsoDB2XMLInsuraWeb/WebContent.

 Chapter 16. DB2 Web services and XML with Application Developer 513

– Java package: package where Java classes are generated. Enter
itso.db2xml.databaseweb as Java package name.

– SQL Statement Type: the type of action to perform on the database.
Ensure that Select Statement is selected.

– Model: select IBM Database Access Tag Library- Select Statement.

Figure 16-26 DB Web Pages wizard: select target, statement type, and model

4. Clicking Next brings up the second wizard page where you can select an
existing SQL statement. Make sure to select Use Existing SQL statement.
Keep expanding the ItsoDB2XMLInsuraWeb project until you find and select
the proposedPremium query in the Statements folder (Figure 16-27 on
page 515). Click Next.

514 XML for DB2 Information Integration

Figure 16-27 Database Web Pages wizard: select SQL statement

5. The Runtime Connection Page of the wizard allows you to specify the
database connection you would like to use at runtime. For our scenario, we
are using a simple JDBC connection. Ensure that Use driver manager
connection is selected; in the fields Driver name and URL, you should have
COM.ibm.db2.jdbc.app.DB2Driver and jdbc.db2.insura respectively.

Alternatively, if you created the data source in the server configuration (see
16.3.4, “Using a data source for DB2 Web services” on page 509) then use
the same data source name jdbc/insura here.

6. Click Next.

7. In the Controller Page, click Next, accepting the default values (store results
in Request, Do not use a front controller).

8. On the Design the Input From page, the HTML input form is displayed
(Figure 16-28 on page 516). Here you can make changes to page and field
properties. Notice that the three input fields are automatically generated. This
is where the :history_file_uri, :customer_name and :plan_name host
variable values will come from.

 Chapter 16. DB2 Web services and XML with Application Developer 515

Figure 16-28 Database Web Pages wizard: input form

Select each host variable and change the label to the desired text, for
example, History File URI, Customer Full Name, and Plan Name. Once this
is done and the following pages have been generated, you can make further
changes using the Page Designer.

On the Page tab, you could change the heading (Input Form).

Click Next.

9. In Design the Select View page of the wizard, select the entry in Result set
columns and change the Label field to Proposed Premium (Figure 16-29 on
page 517).

On the Page tab, you could change the heading (Select Result View).

Click Next.

History File URI

516 XML for DB2 Information Integration

Figure 16-29 Create Database Web Pages wizard: Design the Select View

10.In the Specify Prefix page, you may change the suggested prefix for the
generated HTML files, for example, propPremium. Click Finish.

It takes some time to generate the output files:

� Input HTML page: propPremiumInputForm.html
� Output JSP: propPremiumSelectView.jsp

Study the generated code. All the database access is in the JSP using the DB
Beans tag library. If we had chosen another model (Figure 16-26 on page 514),
we could have generated a servlet with JavaBeans for the database access.

16.4.3 Testing the Insura Web application
To test the generated database application, select the generated HTML input
form, propPremiumInputForm.html, and Run on Server (context).

A sample run is shown in Figure 16-30 on page 518.

 Chapter 16. DB2 Web services and XML with Application Developer 517

Figure 16-30 Sample database application run

16.4.4 Summary
In this section, we showed how to build an SQL statement and then create a
skeleton Web application from the SQL statement.

16.5 Insurance application as a Web service requestor
This section of the scenario deals with business case #3, that is, the Insurance
application acting as a Web service requestor. This is also called a Web service
consumer. In our example, we are creating a scalar Web service UDF returning
the stock quote for a selected stock and a table Web service UDF returning
headline information for the selected company.

Normally, you use the Application Developer tools to create DB2 Web service
consumer UDFs by following these steps:

1. Enable DB2 Web service requestor capabilities.
2. Create the Web project that will contain the source files for the application.
3. Create Web service UDFs.
4. Build and run the generated Web service UDFs.
5. Use created Web service UDFs in SQL statements.

Because our INSURA database has been already enabled for XML Extender and
SOAP UDFs have been registered, and the Web project ItsoDB2XMLInsuraWeb
has been created as well, we can start our path by creating the UDFs.

518 XML for DB2 Information Integration

16.5.1 Creating a scalar Web service UDF
First, we are creating a scalar Web service UDF returning a stock quote for the
selected stock by using a freely available DelayedStockQuote Web service from
the Web site:

http://www.xmethods.com

This Web service provides 20 minute delayed stock quotes. You can find the
detailed description and the WSDL file of the Web service at:

http://services.xmethods.net/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B
-D456-0E54A527EDEE

To generate the scalar SOAP UDF in Application Developer:

1. Select File -> New -> Other -> Data -> Web Service User-Defined
Function and click Next to start the Web service UDF wizard.

2. On the first page of the wizard, specify the WSDL file that will be used to
generate the UDF. For the scenario, copy and paste the WSDL URL from
Web site listed above, or enter the URL manually:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

Click Next.

3. The next page of the wizard shows the database connection and a schema
for which the UDF will be created (Figure 16-31 on page 520). Click Browse
to locate the database schema. Click ItsoDB2XMLInsuraWeb ->
WebContent -> WEB-INF -> databases -> insura -> ITSO. Make sure that
the insura database also contains a DB2XML schema.

Select the ITSO schema and click OK. If no connection to the specified
database is available, a pop-up dialog will ask you for connection information.

You can choose to deploy the generated UDF into the database immediately
or generate a UDF model in the Application Developer workspace only. For
this example, we are going to deploy the generated UDF later. Therefore, do
not change the default options; click Next.

Note: The absence of the DB2XML schema in a database folder means that
your DB2 XML Extender was not enabled by running the command:

dxxadm enable_db insura

 Chapter 16. DB2 Web services and XML with Application Developer 519

http://www.xmethods.com
http://www.xignite.com
http://www.xignites.com
http://www.xmethods.com
http://services.xmethods.net/ve2/ViewListing.po?key=uuid:889A05A5-5C03-AD9B-D456-0E54A527EDEE
http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

Figure 16-31 Create Web service UDF: database connection and schema

The Select the user-defined functions (UDFs) that you want to create page of
the wizard shows operations described in the WSDL document. The wizard
will generate one UDF for every operation that is selected. This Web service
provides only one operation, getQuote, and it is automatically selected. Click
Next.

4. The Specify Options page appears once for every operation selected in the
previous page. It allows you to specify options for the UDF, such as changing
the function name and providing a comment. This page also allows you to
choose whether to build a scalar or a table function. Make sure that Create a
scalar function option is selected on the General Options tab (Figure 16-32
on page 521).

520 XML for DB2 Information Integration

Figure 16-32 Create Web service UDF: general options

Additionally, you can choose to generate a UDF with dynamic access to the
Web service. When the service location (the location attribute of the
soap:address element) is not specified in the WSDL document, a dynamic

Scalar or table function: By default, a scalar function is generated when
a simple XML type is returned by the Web service. A table function is
generated when a complex XML type is returned. The table function
automatically maps the complex XML type into one or more columns.

Switching from a table function to a scalar function makes sense when the
returned types should not be automatically mapped, but returned as an
XML fragment.

On the other hand, switching from a scalar to a table function allows us to
use the UDF in a FROM clause. It also makes it possible to include the
input parameters as columns in the output table by selecting Echo input
parameters.

 Chapter 16. DB2 Web services and XML with Application Developer 521

function must be generated. You can select dynamic access even when the
service location is specified, to make use of late binding. When a dynamic
function is generated, you need to specify the service location at runtime as a
parameter of the UDF.

When using a Web service that can return responses of more than 3000
characters, you have to select big SOAP envelop. By default, small SOAP
envelop is selected because it results in better performance for most Web
services. If we select small SOAP envelop and the Web service returns a
SOAP message that is too big, the UDF will return a descriptive error
message. It is also possible to not parse the SOAP envelope. This is useful
for debugging purposes.

5. Select the Parameter tab to review the parameter and result mapping from
WSDL types to DB2 SQL types.

6. Select the Advanced Options tab to specify the name for the UDF. If the
name is not specified, a unique name is automatically generated by the
database when the UDF is deployed. Leave the input text field blank and click
Next.

7. The Review Your Settings summary page of the wizard shows the database
and schema and it displays the create statement that will be issued against
the database (Figure 16-33 on page 523):

CREATE FUNCTION ITSO.getQuote (
 symbol VARCHAR(100))
 RETURNS DOUBLE LANGUAGE SQL CONTAINS SQL
 EXTERNAL ACTION NOT DETERMINISTIC
 RETURN with
 soap_input (in)
 AS
 (VALUES varchar(
 '<m:getQuote xmlns:m="urn:xmethods-delayed-quotes"

SOAP-ENV:encodingStyle=
"http://schemas.xmlsoap.org/soap/encoding/">' ||

'<symbol xsi:type="xsd:string">' || symbol|| '</symbol>' ||
 '</m:getQuote>')),

 soap_output(out)
 AS
 (VALUES db2xml.soaphttpv('http://66.28.98.121:9090/soap',
 'urn:xmethods-delayed-quotes#getQuote',
 (SELECT in FROM soap_input)))
 select
 db2xml.extractDouble(db2xml.xmlclob(x.out), '/*/*')
 from soap_output x

By clicking Finish, the UDF is generated. If you selected Generate and
deploy on the Select Database Connection and Schema page of the wizard
(Figure 16-31 on page 520), clicking Finish would also deploy the UDF.

522 XML for DB2 Information Integration

Figure 16-33 Create Web service UDF: summary page

The generated getQuote UDF is placed in the User-Defined Functions folder of
the insura database under the ITSO schema in the Data Definition view.

Building and testing the scalar UDF
You can run the Web Service UDF directly from the workspace. If the UDF was
generated but not deployed to the database, you first have to build the UDF:

1. In the Data Definition view of the Data perspective, expand the
ItsoDB2XMLInsuraWeb project, select the getQuote UDF and Build from the
context menu (Figure 16-34 on page 524).

 Chapter 16. DB2 Web services and XML with Application Developer 523

Figure 16-34 Building Web service DB2 UDF

2. Building a UDF takes some time. Once you get the Success status in the DB
Output view, the UDF is built and deployed to the database (Figure 16-35).

Figure 16-35 DB2 Web service UDF: successful build

3. To test the deployed UDF, right-click the getQuote UDF in the tree and select
Run. The Run Settings dialog is displayed. Enter a single-quoted value, for
example, 'IBM', as an input parameter and click OK. The output is displayed
in the DB Output view (Figure 16-36 on page 525).

524 XML for DB2 Information Integration

Figure 16-36 DB2 Web service UDF: testing

16.5.2 Creating a table Web service UDF
For the second UDF, we use another public function to query the headlines of a
stock. The WSDL file is available at:

http://www.xignite.com/xnews.asmx?WSDL

Create the UDF in the same way as in “Building and testing the scalar UDF” on
page 523, with these changes:

1. Select only the GetStockHeadlines function.

2. Set the name as GetHeadlines (we already have a GetStockheadlines UDF
from 10.3.7, “Creating a wrapper UDF to Web services consumer function” on
page 301.

3. Select Create a table function and Echo input parameters in the output
table (Figure 16-32 on page 521).

4. On the Parameters page, change the two IN parameter names to Symbols
and Count, and the output result to Headlines (Figure 16-37 on page 526).

 Chapter 16. DB2 Web services and XML with Application Developer 525

http://www.xignite.com/xnews.asmx?WSDL

Figure 16-37 UDF table function parameters

5. Build and test the UDF. The result is a table of three columns, with the stock
symbol, the number of headlines, and an XML document with the headlines
(Figure 16-38).

Figure 16-38 UDF table function result

6. In the HEADLINES column, click ... to see the full result:

<GetStockHeadlinesResult>
<StockNews>

<Outcome>Success</Outcome>
<Headline>IBM Continues to Advance Linux Leadership, ...</Headline>
<Ticker>IBM</Ticker><Date>8/13/2003</Date><Time>4:03 pm</Time>
<Source>Market Wire</Source>
<Url>http://biz.yahoo.com/iw/030813/056429.html</Url>

</StockNews>
<StockNews>......</StockNews>
</GetStockHeadlinesResult>

526 XML for DB2 Information Integration

16.5.3 Creating a Web client that uses the UDFs
The objective of the Web client is to use the two scalar functions to investigate a
stock. This can be performed in one SQL statement (the parameters are shown
in bold):

select itso.getquote('IBM') as quote, t.symbols, t.count,
substr(t.headlines,1,1000) as headlines

from table(itso.getheadlines('IBM',2)) as t

Note. The headlines column returns a CLOB(1M), not very suitable to display. The
substr function can be used to limit the output to a given number of characters.

The Web service requestor client application consists of these parts:

� StockWatch.java—a servlet that executes the SQL statement and prepares
an XML string for the output JSP.

� StockWatch.html—an HTML input page to enter a stock symbol and a
headline count, then the servlet is invoked.

� StockWatch.jsp—an output JSP that uses XSL to translate XML into HTML.

� StockWatch.xsl—an XSL stylesheet for the transformation.

The four parts are provided in c:\SG246994\Scenario\wsad.

Import the StockWatch servlet into an itso.stock package (under JavaSource).
Open the Web deployment descriptor (web.xml) and on the Servlets page click
Add to add the servlet. Select the new servlet and click Add for URL mappings
to define a mapping of /StockWatch.

Import the other three files (HTML, JSP, and XSL) into the WebContent folder.

Open the four parts and study the code:

1. The HTML file passes the two input fields as symbol and count to the servlet.

2. The servlet accepts the parameters (symbol, count) from the HTML, then
prepares the XML output string, calls a method to execute the SQL
statement, and completes the XML string:

<xsd1:Stockwatch>
<Symbol>IBM</Symbol>
<Count>2</Count>
<Quote>81.1999969482421875</Quote> <=== output from scalar UDF
<GetStockHeadlinesResult> <=== output from table UDF

<StockNews> </StockNews> <=== output from table UDF
</GetStockHeadlinesResult> <=== output from table UDF

</xsd1:Stockwatch>

 Chapter 16. DB2 Web services and XML with Application Developer 527

3. The JSP displays the XML output using XSL:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="StockWatch.xsl"?>
<%= request.getAttribute("result") %>

4. The XSL file was created in a similar way to that depicted in 16.3.3, “Creating
a real client using XSL transformation” on page 505:

– The parameters and the stock quote are displayed as headings.

– The headlines are displayed in a table. Because of the size of the URL
column it is formatted as a separate line.

Running the client application
A sample run of the client application is shown in Figure 16-39.

Figure 16-39 Web client invoking Web service UDFs

Note: The servlet uses a data source (jdbc/insura). If the data source is not
defined then a JDBC driver must be used.

528 XML for DB2 Information Integration

16.5.4 Summary
In this section, we showed how to generate Web service UDFs with Application
Developer and use them to access Web services from database application.
With the Web services UDF wizard, you can quickly generate and test Web
service UDFs. The generated UDFs facilitate access to dynamic data sources
and allow them to be integrated into DB2 applications.

Restriction: It is currently not possible in Application Developer to build and
use SQL statements that use UDFs. It is possible to use such SQL statements
in Java code.

 Chapter 16. DB2 Web services and XML with Application Developer 529

530 XML for DB2 Information Integration

Chapter 17. Deployment of DB2 Web
services

This chapter explains how to deploy an enterprise application with Web services
to a WebSphere Application Server V5.0.

In this chapter, we tell you how to:

� Export an enterprise application to an EAR file
� Set up a J2C authentication alias
� Create a data source using the authentication alias
� Deploy the application to the default server and start it
� Test the deployed Web applications

For detailed information about WebSphere Application Server, see the IBM
Redbook IBM WebSphere Application Server V5.0 Handbook, SG24-6195.

17

© Copyright IBM Corp. 2004. All rights reserved. 531

17.1 Preparing the WebSphere Application Server
Running DB2 Web services in a WebSphere Application Server requires the
Web Services Object Runtime Framework (WORF) runtime. See 10.2.2,
“Installing WORF on IBM WebSphere Application Server” on page 279 for
details.

In short:

� Locate dxxworf.zip in your <db2home>\samples\java\Websphere directory,
where <db2home> is the directory where DB2 is installed.

� Unzip the dxxworf.zip to any directory.

� Copy worf.jar from the unzipped lib subdirectory to <washome>\lib, where
<washome> is the directory where WebSphere Application Server is installed.

17.2 Deployment without Application Developer
If you manually create a Web application with DB2 Web services and you want to
deploy the application to a WebSphere server, follow the instructions in 10.2.4,
“Deploying the Web application” on page 287.

17.3 Deployment with Application Developer
In this section, we describe in detail how to deploy the ItsoDB2XMLInsura and
ItsoDB2XMLBroker enterprise applications developed in Chapter 16, “DB2 Web
services and XML with Application Developer” on page 475.

The major steps in this process are:

1. Export the enterprise applications from Application Developer.
2. Configure the application server.
3. Install the enterprise applications in the server.
4. Start the enterprise applications.

17.3.1 Exporting the enterprise applications
After having tested the enterprise applications in Application Developer, we can
install them on a real WebSphere Application Server.

Make sure that the internal WebSphere servers are stopped in Application
Developer, if you are installing the applications on the same machine. By default,
the external and internal servers use the same ports.

532 XML for DB2 Information Integration

To export an enterprise application, select the application, for example
ItsoDB2XMLInsura, in the Project Navigator or J2EE Hierarchy view, and click
File -> Export (or Export from the context menu). The Export dialog opens:

1. Select the EAR file and click Next.

2. Set the destination file on your local system (Figure 17-1).

Figure 17-1 Exporting an enterprise application

– If you deploy to the same machine, you can export directly into the
<washome>\installableApps directory.

– If you deploy to a remote machine, copy the exported EAR file into the
<washome>\installableApps directory on the remote machine.

– To install an enterprise application, the source files are not required.

3. Click Finish.

Repeat the export for any other enterprise applications (ItsoDB2XMLBroker) that
you want to deploy.

17.3.2 Configuring the application server
Configuration of the application server is required if your enterprise applications
use data sources or other facilities (JMS) that you had to configure on the test
server.

To configure the application server, follow these steps:

1. Start the WebSphere server.

 Chapter 17. Deployment of DB2 Web services 533

2. Start the WebSphere Administrative Console from the WebSphere program
group or by typing the following URL in the Web browser’s address bar:

http://localhost:9090/admin

3. Enter your user ID and the Administrative Console opens (Figure 10-4 on
page 287).

JDBC driver path
1. Select Environment (left side) and Manage WebSphere Variables.
2. Select DB2 JDBC DRIVER PATH.
3. Verify or enter the directory of the db2java.zip file (c:\SQLLIB\java).
4. Click OK (Figure 17-2).

Figure 17-2 Verifying the JDBC driver path

JDBC driver
1. Select Resources (left side) and select JDBC Providers.

2. Select Node (should be preselected)

3. Click New (under JDBC Providers):

a. Select DB2 JDBC Provider from the pull-down and click Apply.

b. All the defaults should be fine. Check that the implementation class is
COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource. Note that the classpath
entry points to ${DB2_JDBC_DRIVER_PATH}/db2java.zip (Figure 17-3 on
page 535).

c. Click Apply.

534 XML for DB2 Information Integration

Figure 17-3 Defining a JDBC provider

Data source
1. Under Additional Properties select Data Sources.

a. Click New (Figure 17-4 on page 536).

b. Enter INSURA a the name and jdbc/insura as the JNDI name (to match
what we used in the application).

c. Deselect Use this Data Source in container-managed persistence
(CMP). This is for enterprise JavaBeans (EJB) only.

d. The data source helper class should be filled in as
com.ibm.websphere.rsadapter.DB2DataStoreHelper.

e. Click Apply.

 Chapter 17. Deployment of DB2 Web services 535

Figure 17-4 Defining the data source for the EJBBANK database

2. Under Additional Properties, select Custom Properties, then select
databaseName, enter INSURA as the value and click OK.

3. Go back to the data source (select INSURA at the top of the page). Under
Related Items, select J2C Authentication Data Entries, then click New
(Figure 17-5 on page 537):

a. Enter DB2user as the alias.

b. Enter a valid user ID and password, for example what was used to install
DB2.

c. Click OK. The new alias appears in the list, prefixed with the node name.

536 XML for DB2 Information Integration

Figure 17-5 Defining an authentication alias

4. Go back to the data source (select INSURA at the top of the page):

For the component- and container-managed authentication alias, select the
{node}/DB2user from the pull-down and click OK (Figure 17-6).

Figure 17-6 Defining container authentication for the data source

5. If you select Security (left side) and JAAS Configuration, you can find the
new alias by selecting J2C Authentication Data.

Note: Due to Web browser caching, the alias may not appear in the
pull-down list. If this happens, refresh your Web browser by pressing F5
and then navigate to this entry again.

 Chapter 17. Deployment of DB2 Web services 537

Saving the configuration and restarting the server
1. Save the configuration (select Save in the toolbar). There should be no

problems.

2. Close the administrative console (select Logout in the toolbar).

3. Stop the server, then start it again.

17.3.3 Installing the enterprise applications in the server
The server is now ready for installation of the enterprise applications. You have
two options:

� Install the EAR files using the administrative console.
� Install the EAR files using commands.

Installing an EAR file using the administrative console
This process was described in detail in 10.2.4, “Deploying the Web application”
on page 287. The only difference is that we point to the exported EAR file:

1. Start the administrative console.

2. Select Install New Applications under Applications. Provide the path of the
exported EAR file (Figure 17-7).

Figure 17-7 Install an enterprise application

538 XML for DB2 Information Integration

3. Click Next and keep accepting the default values for the next panels. Click
Finish on the summary panel.

4. Click Save to master configuration. Click Save on the confirmation panel.

Installing an EAR file using commands
WebSphere Application Server provides the wsadmin facility which can be used
with commands to perform all kinds of configuration tasks. For example, we can
install an enterprise application using commands:

1. Open a command window and navigate to the <washome>\bin directory.

2. Enter wsadmin.

3. To install the ItsoDB2XMLBroker enterprise application, enter:

$AdminApp install <washome>/installableApps/ItsoDB2XMLBroker.ear
$AdminConfig save
quit

Be sure to use forward slashes! Enter the fully qualified name for <washome>,
for example, c:/WebSphere/AppServer.

17.3.4 Starting the enterprise application
You can start the enterprise application using the administrative console as
described in 10.2.5, “Starting the enterprise application” on page 290:

1. Select Enterprise Applications under Applications.

2. In the Enterprise Applications panel, select the ItsoDB2XMLInsura
application and click Start.

An alternative way is to install an enterprise application using the wsadmin
facility:

1. Start wsadmin in a command window.

2. To start the ItsDB2XMLBrokers enterprise application, enter (on one line),
where mycell and mynode are your machine name (you can find the names
under <washome>\config\cells):

set appManager [$AdminControl queryNames
cell=mycell,node=mynode,type=ApplicationManager,process=server1,*]

Note: You have to log out and log in to see the application that you
installed using commands.

 Chapter 17. Deployment of DB2 Web services 539

Then enter:

$AdminControl invoke $appManager startApplication ItsoDB2XMLBroker
quit

17.4 Running the Web services applications
Open a browser to test the installed applications. You can use these URLs to test
the various applications:

� Web services from SQL statements:

http://localhost:9080/ItsoDB2XMLInsuraWebClient/sample/insura
/TestClient.jsp

Enter Health for policyQuote and 456 for brokerSales.

� Proposed premium:

http://localhost:9080/ItsoDB2XMLInsuraWeb/propPremiumInputForm.html

Enter these parameter values:

file:C:\SG246994\Scenario\InsuranceHistory.xml
Shrinivas Kulkarni
Motor

� Stock watch:

http://localhost:9080/ItsoDB2XMLInsuraWeb/StockWatch.html

Enter a stock symbol (IBM) and number of headlines (3).

� Broker test client and real client:

http://localhost:9080/ItsoDB2XMLBrokerWebClient/sample/insuraPolicyQuote
/TestClient.jsp

http://localhost:9080/ItsoDB2XMLBrokerWebClient/client/ClientInput.html

Enter Health as parameter.

17.5 Using a real HTTP server
In the tests, we used http://localhost:9080 to run the applications. This uses a
WebSphere internal HTTP server.

To use a real HTTP server on port 80, you have to configure the HTTP server
with a WebSphere plugin:

1. Start the administrative console.

2. Expand Environment and select Update Web Server Plugin.

540 XML for DB2 Information Integration

3. Click OK to update the plugin. You will see a confirmation message at the top.

4. Stop and restart the HTTP server to activate the plugin.

 Chapter 17. Deployment of DB2 Web services 541

542 XML for DB2 Information Integration

Part 5 Appendixes

Part 5

© Copyright IBM Corp. 2004. All rights reserved. 543

544 XML for DB2 Information Integration

Appendix A. Installation

This appendix describes the installation prerequisites for:

� DB2 UDB V8
� DB2 Information Integrator V8
� WebSphere Application Server V5
� WebSphere Studio Application Developer V5.1

as well as how to install these software products.

A

© Copyright IBM Corp. 2004. All rights reserved. 545

DB2 V8.1 with FixPak 2
Installing DB2 UDB V8.1 for Linux, UNIX and Windows, is straightforward. Just
follow the installation panels. You do not have to install all the components, such
as data warehousing and performance tools.

After the base installation, you have to install Fixpack 2 or later.

Suggested installation directory: C:\SQLLIB

Starting with DB2 UDB for Linux, Unix, and Windows V8, XML Extender installs
with the base DB2 installation. No extra seps are required to install the XML
Extender code.

XML Extender is also a free, separately installable component, of DB2 for z/OS
V7 and later. For installation instructions for DB2 XML Extender for z/OS and
OS/390®, see DB2 UDB for z/OS V8 XML Extender Administration and
Programming,SC18-743, as well as the following document with installtion hints
and tips on the Web:

http://www.ibm.com/software/data/db2/extenders/xmlext/docs/v71390/
xmlehints.pdf

Enabling a database for XML Extender
However, even with V8, you still have to enable a database for the usage of XML
Extender.

To enable a database for XML Extender run this command in a DB2 command
window:

dxxadm enable_db database_name
dxxadm enable_db insura <=== scenario sample

Enabling a database with Web service consumer UDFs
The database you want to enable for DB2 Web services consumer must be first
enabled for DB2 XML Extender.

To enable the Web service consumer UDFs, issue the following command from
the DB2 command line to register five user-defined functions:

db2enable_soap_udf -n dbName [-u uID] [-p password] [-force]
db2enable_soap_udf -n insura -u db2admin -p db2admin <=== scenario sample

546 XML for DB2 Information Integration

http://www.ibm.com/software/data/db2/extenders/xmlext/docs/v71390/xmlehints.pdf

The parameters have the following definitions:

� dbName—The database name to be enabled

� uID user—D for accessing the database

� password—The password associated with the user ID

� -force—Attempts to drop any existing functions.

The enable command copies the shared library with the implementation of the
functions to your sqllib/function directory, and then it enables your database to
use the functions.

To make sure that you enabled the database correctly ensure that you have the
following UDFs defined.

db2xml.soaphttpv (VARCHAR(256), VARCHAR(256), VARCHAR(3072))
db2xml.soaphttpv (VARCHAR(256), VARCHAR(256), CLOB(1M))
db2xml.soaphttpc (VARCHAR(256), VARCHAR(256), varchar(3072))
db2xml.soaphttpc (VARCHAR(256), VARCHAR(256), CLOB(1M))
db2xml.soaphttpcl (VARCHAR(256), VARCHAR(256), varchar(3072))

And also ensure that db2soapudf.dll is copied to sqllib/function directory of
your DB2 installation.

You can disable the UDFs by executing the following command from DB2
command line:

db2disable_soap_udf -n dbName -u uID -p password

The meanings of the parameters are the same as above.

Refer to DB2 Web services consumer documentation available in DB2
Information Integrator V8 Developer’s Guide, SC18-7359.

DB2 Information Integrator
DB2 Information Integrator installs on top of DB2 V8.1. It is required if you want
to use the XML Wrapper.

Start the process by running the iiSetup.exe, and the is installation panel is
displayed (Figure A-1 on page 548).

 Appendix A. Installation 547

Figure A-1 Installation of Information Integrator

Click Install Products and the installation starts:

� You have a choice to install relational wrappers or non-relational wrappers.
For the XML Wrapper, it is enough to select non-relational wrappers only.

� For each selection, a new installation wizard starts to guide you through the
installation of the wrapper.

WebSphere Application Server V5
First, start the LaunchPad (launchpad.bat) to access the product overview, the
ReadMe file, and installation guides.

1. Select Install the product to launch the installation wizard (Figure A-2 on
page 549).

548 XML for DB2 Information Integration

Figure A-2 WebSphere Application Server LaunchPad

2. In the first window panel, select the language and click OK.

3. Click Next in the Welcome panel.

4. After confirming that we agree with the license agreement, we have to decide
between two installation choices: Typical and Custom. Typical installs the
entire product, whereas the Custom installation option allows you to deselect
components you do not want to install. We chose Typical installation.

5. The installation directories for the selected components are entered in the
next panel. Suggested installation directories are:

C:\WebSphere\AppServer
C:\IBMHttpServer
C:\WebSphere MQ

6. In the following panel, enter a node name and host name or IP address. In
addition, select to install both WebSphere Application Server and IBM HTTP
Server as a service on Windows NT® or 2000.

7. After the Summary window, the installation starts.

8. The First Steps window is started automatically at the end of the installation.

 Appendix A. Installation 549

Verifying the installation
Installation verification can be started from the menu. In Windows 2000, select
Start -> IBM WebSphere -> Application Server v5.0 -> First Steps. Then
select Verify Installation. We can also start the command ivc localhost.

If the install was successful, you should see messages similar to the following:

OS: Windows 2000
locale: en_US
hostname: NODENAME
cmd.exe /c "C:\WebSphere\AppServer\bin\ivt" NODENAME 9080
C:\WebSphere\AppServer
IVT0006I: Connecting to the WebSphere Server NODENAME on Port:9080
IVT0007I:WebSphere Server NODENAME is running on Port:9080
IVT0060I: Servlet Engine Verification: Passed
IVT0065I: JSP Verification: Passed
IVT0066I: EJB Verification: Passed
IVT00100I: IVT Verification Succeeded
IVT0015I: Scanning the file
D:\WebSphere\AppServer\logs\server1\SystemOut.log for
errors and warnings
IVT0020I: 0 Errors/Warnings were detected in the file
D:\WebSphere\AppServer\logs\server1\SystemOut.log
IVT0110I: Installation Verification is complete.

Installing FixPak 2
To install FixPak 2, follow these steps:

1. Open a command window.

2. Run the command c:\WebSphere\AppServer\bin\setupcmdline.bat
(from the directory where WebSphere is installed)

3. Run the updateWizard.bat file (from the directory of the FixPak 2) to install the
Fix Pack. Follow the instructions in the prompt.

WebSphere Studio Application Developer V5.1
We are using V5.1 of Application Developer.

The installation of the Application Developer is a very straightforward process.
Perform the following steps:

1. Double-click setup.exe and the Installation Launcher window appears
(Figure A-3 on page 551).

550 XML for DB2 Information Integration

Figure A-3 Application Developer Installation window

3. Select Install IBM WebSphere Studio Application Developer.

4. In the Welcome page, click Next.

5. In the License Agreement page, accept the agreement and click Next.

6. In the Destination Folder page, browse to a folder of your choice and then
click Next. The suggested installation directory is:

C:\WSAD51

7. In the Custom Setup page, accept the defaults and click Next.

8. In the next page, click Install.

9. After a rather long time period, the next page tells you about the success of
the installation. Click Finish.

10.Start Application Developer. When asked to specify the location of the
workspace, enter c:\WSAD51sg246994.

Optionally, restart the installation launcher window and select Install
embedded messaging client and server. This component is optional for
JMS messaging to feed a message-driven bean using WebSphere MQ. This
is not required for the examples in this publication.

1. Install Application
Developer

2. Install embedded
messaging
(optional)

 Appendix A. Installation 551

11.If you installed WebSphere Application Server, installing the embedded
messaging locates the existing WebSphere MQ installation and only tailors
the Application Developer to use the existing code.

12.If WebSphere MQ is not installed on this machine, then it will be installed now.

552 XML for DB2 Information Integration

Appendix B. Introduction to XML

This appendix provides an introduction to XML. We give a brief overview of XML,
explain its business and technological benefits, and discuss basic XML concepts.
At the end of this appendix we look at some examples of using XML in
applications.

B

© Copyright IBM Corp. 2004. All rights reserved. 553

What is XML?
XML stands for eXtensible Markup Language. XML is a meta-markup language
and is used for creating your own markup languages. Using XML, you can define
the tags for your markup language. XML tags are used to describe the contents
of the document. This means that any type of data can be easily defined using
XML.

XML is universal not only by its range of applications but also by its ease of use:
Its text-based nature makes it easy to create tools, and it is also an open,
license-free, cross-platform standard, which means anyone can create, develop,
and use tools for XML. What also makes XML universal is its power. Data is
transmitted and stored in computers in many different ways: Originally it was
stored in flat-files, with fixed-length or delimited formats, and then it moved into
databases, and often into complex binary formats. XML is a structured data
format, which allows it to store complex data, whether it is originally textual,
binary, or object-oriented. To this day, very few data-driven technologies have
managed to address all these different aspects in one package — except XML.

A brief comparison of XML and HTML
XML and HTML both descend from common roots. However, because XML is
still fairly new, most data on the Web is still stored in HTML format. The amount
of data currently stored on the Web is hard to imagine — for the latest survey (by
OCLC Research) see the following Web site:

http://wcp.oclc.org

This survey indicates that there are 1.4 billion public pages on the Web (2002). In
fact, the amount of data available may be much higher, because counting pages
ignores the fact that one dynamically generated page can act as a gateway to a
large database.

The problem with data available in HTML format is that it is formatted for people
to view, and not for computers to use. HTML consists of a pre-defined set of tags,
the purpose of which are known. This makes it a language that is easy to learn
and accessible, but makes it hard to re-use the data.

This is where XML enters the picture. As its name indicates, XML is extensible,
which means that you can define your own set of tags and make it possible for
others (people or programs) to know and understand these tags. This makes
XML much more flexible than HTML. In fact, because XML tags represent the
logical structure of the data, they can be interpreted and used in various ways by
different applications.

Much of the value of the Web comes from re-using data. For example, one of the
great success stories of the Web are the search engines. They work on the basis

554 XML for DB2 Information Integration

http://wcp.oclc.org
http://wcp.oclc.org

of a universal communications method (HTTP), and a universal markup
language (HTML), to catalog Web pages. However, search engines work on very
limited information, because only a tiny part of an HTML document is designed to
be used by a search engine. Imagine how much more powerful search engines
could be if the data that they search was stored in a simple, structured, re-usable
format.

XML business benefits
To date, XML has three main applications:

� Sharing of information between computer systems and between businesses

� Storage and transmission of information within a single application

� Content delivery — delivering information to users

The early usage of XML has been in the first two of these areas, where the
benefits of XML are easiest to achieve.

Information sharing
The benefits of using XML to share information between computer systems and
businesses are probably the greatest and easiest to achieve: XML allows
businesses to define data formats in XML, and to easily build tools which read
data, write data, and transform data between XML and other formats. This has
allowed a number of businesses and industry consortiums to build standard XML
data formats. Areas such as Electronic Data Interchange (EDI), inter-bank
payments, supply-chain, trading, and document management are all the subject
of ongoing XML-based standardization by industry consortiums.

By using XML, the standard can be published, extended, and easily used by new
applications. Data transformation tools exist that can convert between existing
formats and XML, and new tools are emerging. The ability to link enterprise
applications, known as Enterprise Application Integration (EAI), is a key focus for
many companies, and has produced cost savings and increased revenue for
many enterprise customers. In particular, many businesses aim to improve
Customer Relationship Management (CRM) by creating a single logical view of
each customer across multiple existing systems. XML is an important technology
to create this single customer view.

Furthermore, because XML makes it easy to relate structure to content, XML
subsets can be defined with specific industries or applications in mind. For
example, XML has been used to define standard data formats for the banking

 Appendix B. Introduction to XML 555

industry. In the same manner, a standard could be developed specifically for
flight booking systems, thereby allowing airlines to easily exchange information.

XML inside a single application
The business benefits of using XML within a single application are less
compelling, but they are very easy to achieve, and so we have seen a number of
applications that use XML internally. The benefits of this approach are speed of
development and future extensibility.

XML is a very powerful and flexible language for describing the complexities of
the real world. Because XML can describe complex data, it means that it can be
a powerful tool to creating new applications. The extensibility of XML means that
the application can grow and develop without major changes. Finally, when the
application needs to connect to other applications, XML makes an excellent way
of linking the application with others.

Content delivery
XML has a number of key benefits for content delivery. The main benefits are the
ability to support different users and channels, and to build more efficient
applications. Channels are information delivery mechanisms — for example,
Digital TV, phone, Web, and multimedia kiosk. Supporting different channels is
an important step in delivering e-business applications to customers through
their chosen medium. XML is a key technology for this.

For example, a customer and a supplier both need to access the same on-line
product catalogue. Although the information is the same, the visual emphasis will
differ, depending on who the user is: The customer will be more interested in
looking for information on functionality, pricing, and availability, while the supplier
will want to have easy access to catalog maintenance and inventory information.
All this information might be stored in a single XML document and be displayed
differently by the application.

Using XML for content delivery requires XML-enabled browsers. Microsoft
Internet Explorer 5.0 was the first browser to support XML directly. As people
become more familiar with this technology, this particular strength of XML is likely
to be exploited more often.

Technological benefits of XML
In order to see the technological benefits of XML, let us consider an example.

556 XML for DB2 Information Integration

An example of using XML
Many libraries offer their catalogs over the Web. Usually, there is a simple Web
form where you enter a title, name, or subject, and you are presented with some
search results. If you want to search several libraries, you need to go to each of
their Web sites. It would be useful and convenient if there could be a single Web
page which could search many libraries. To build that today would require
extracting the data (title, author, ISBN, and so forth) from each search results
page. However, each search results page is formatted differently, and the data is
mixed in with presentation information. To collate the results of many searches
would require complex programming for each libraries Web site, separating the
data from the presentation.

Suppose, instead, that there were a single format for returning search results
from libraries: Let us call it A Book Catalog Markup Language or ABCML.
ABCML would define tags for the author, title, and so on, thus making it easy for
a computer to extract the data. Building the meta-catalog suddenly becomes
easier.

ABCML would also help the libraries, because they could re-use each other’s
software. Also, when a new book comes in, the publisher can provide the book’s
catalog information in ABCML, and save the librarian the effort of typing it into the
catalog.

Major benefits
So ABCML would help us build a meta-catalog, and also help the libraries re-use
existing data. Those arguments may not be enough to persuade a particular
library’s IT director to rewrite his online catalog. However, there are a number of
further technical benefits to using XML. As well as re-using data, these benefits
include: separating data from display, extensibility, and adding semantic content
to the data.

Re-use of data
We have seen the benefit of re-using data: The librarian could re-use the
publisher’s data, because it was in a common format, and we could re-use the
data when we built our meta-catalog. Of course there are many common file
formats in the world of computing that have allowed data re-use. However, these
have usually been proprietary and application specific. XML is neither of those.

Separation of data and display
What are the benefits of separating data and presentation? First, without this
separation, we could not achieve the simple re-use of the data. Second, the
presentation changes. If you look at the Web sites of 5 years ago, and the Web

 Appendix B. Introduction to XML 557

sites of today, they are radically different. If you look at any successful Web site,
you will probably see at least one redesign a year. That is not simply because it is
trendy — successful Web sites analyze and react to feedback from users, and
redesign the site to be more productive and intuitive. Let us return to the library
Web site — the Web site gets a redesign, but the underlying data remains in
place — so it makes sense to separate the data output from the Web site design.

There is still another even more compelling reason to separate data and display:
the rise of pervasive computing. Pervasive computing means that computing
devices become integrated into common everyday appliances: mobile phones,
televisions, printers, and palm computers. Each of these appliances may have a
different display technology, and require different instructions on how to display
the data. The same search of the library catalog should be viewable on a mobile
phone or a high-resolution PC.

Extensibility
HTML has been a constantly evolving standard since it emerged, and one of the
problems it has faced is that it has often been extended by companies wishing to
go beyond HTML. Browser suppliers regularly add non-standard extensions to
HTML. Similarly, Web server manufacturers build “server-side” extensions to
HTML: These include NCSA includes, Microsoft Active Server Pages, Java
Server Pages, and many others. This has led to many confusing variants of the
HTML standard, causing difficulties for Web developers, tool vendors, and
ultimately for end-users.

As the name implies, eXtensible Markup Language was designed from the
beginning to allow extensions. If we go back to our example of the library, when
they first indexed books, the Web did not exist. Probably the library catalog has
no references to Web sites in it. Nowadays, many books have a companion Web
site, and the librarian may wish to reference it. If XML were used to develop the
catalog, then this could easily be accomplished. Importantly, with XML, old
software is not disrupted by the addition of new information.

Semantic information
The final major benefit of XML is that it builds semantic information into the
document. Semantic information (or meaning) is what allows readers to decide
whether the book is about the color Brown, or written by Brown. An HTML-based
Web search engine cannot do that, because it cannot distinguish between the
title and author in the document — there isn’t enough semantic information in the
HTML page. With XML, the document includes self-descriptive terms that show
the meaning of the document.

558 XML for DB2 Information Integration

Other benefits
The other main benefits of XML are that it is human-readable, tree-based, and
easy to program. As time goes on, a large number of XML tools are emerging
from both existing software vendors and XML startup companies.
It is human-readable, because it is based on text and simple tagging. This means
that it can be understood by humans, and it can be written using nothing more
than a text-editor or word-processor. This is important in the sense that
programmers can interpret the data faster when writing new applications, but
once they start running, no one reads the data (only the applications). The
tree-based structure of XML is much more powerful than fixed-length data
formats. Because objects are tree structures as well, XML is ideally suited to
working with object-oriented programming. In particular, many people believe
that there is an excellent affinity between Java and XML.

Finally, XML is easy to program, because there are already standards for XML
parsers. XML parsers are the subsystems that read the XML and allow
programmers to work with XML. Because XML parsers are available to be
re-used in new computer systems, many programmers are starting to use XML,
even if they do not need any of the previously mentioned benefits.

XML concepts
In this section we try to cover a few basic concepts of XML, however this is not
intended to be an XML reference manual. Since most people are familiar with
HTML, we often make comparisons between HTML and XML. While people’s
familiarity with HTML will hopefully simplify their task in understanding XML, it is
also important to emphasize the differences between the two languages.

Document validity and well-formedness
XML is a metalanguage, which means that it is a language for describing markup
languages. This is done by defining a set of tags for each markup language. XML
does not predefine any tags. It allows you to create your own tags. However the
process of defining tags and creating documents using the tag is not arbitrary.
Therefore, there are a few rules that XML tags and documents should adhere to,
in order to ensure that they are usable by any XML application.

XML has tighter constraints as compared to HTML, which tolerate minor
structural irregularities in the documents during parsing, such as unclosed tags.
A well formed XML document should start with an XML declaration and should
have a root element which contains all other elements. XML parsers will not
accept documents that contain start tags, such as <AUTHOR>, without their
corresponding end tags, in this example </AUTHOR>. This differs from HTML,

 Appendix B. Introduction to XML 559

which can be parsed even without any explicit end tags. On the other hand, XML
does accept empty tags such as <AUTHOR />. Well-formedness constraints also
deal with attribute names, which should be unique within an element, and
attribute values, which must not contain the character “<“. A document is said to
be well-formed when it conforms to these constraints, which are referred to as
the well-formedness constraints (WFC) defined in the XML 1.0 Recommendation
(refer to http://www.w3.org/XML/ for more information).

The notion of validity applies to XML documents which have a Document Type
Definition (DTD) associated with them. A Document Type Definition specifies the
structure of the XML document by providing with a list of elements, attributes,
notations and entities that a document can contain. When an XML document has
a DTD associated with it, a validating parser will read the DTD and checks
whether the document adheres to the rules specified in the DTD. For example,
for a document to be valid, all tags and attributes appearing in the document
must have corresponding declarations in the DTD, and all elements appearing
within other elements must respect the content model defined in the DTD.

It is worth noting that validity and well-formedness are two different aspects of an
XML document. While well-formedness insures that XML parsers will be able to
read the document, validity determines whether an XML document adheres to a
DTD or schema. An XML application will check for and reject documents that are
not well-formed before checking whether these documents comply with its
validity constraints (VC). After a document is tested, validity checking can be
turned off to improve performance.

Document type definition
In this section we briefly describe what a document type definition (DTD) is.

What is a DTD?
Since it is not the intent of this book to serve as an XML reference manual, we
will not describe all the syntax elements of a DTD here. However, it is essential to
understand the purpose and use of a DTD, and that is what we will focus on in
this section. DTDs are extensively used by DB2 XML Extender, so we will look at
them in a bit more detail.

The DTD specifies the structure of an XML document, thereby allowing XML
parsers to understand and interpret the document’s contents. The DTD contains
the list of tags which are allowed within the XML document and their types and
attributes. More specifically, the DTD defines how elements relate to one another
within the document’s tree structure, and specifies which attributes may be used
with which elements. Therefore, it also constrains the element types that can be
included in the document and determines its conformance: An XML document
which conforms to its DTD is said to be valid.

560 XML for DB2 Information Integration

http://www.w3.org/XML/

A DTD can either be stored in a separate file or embedded within the same XML
file. XML documents referencing a DTD will contain the <!DOCTYPE> declaration
which either contains the entire DTD declaration, or specifies the location of an
external DTD, as shown in the following example:

<!DOCTYPE LibraryCatalogue SYSTEM “library.dtd”>

An XML document is not required to have a DTD. However, with most
applications, it will prove beneficial or even necessary to build a DTD which
conveys efficiently the meaning behind the XML file’s contents. DTDs provide
parsers with clear instructions on what to check for when they are determining
the validity of an XML document.

Having the logical definition of an XML file stored separately allows for the
resulting DTD to be shared across organizations, industries, or the Web. When
building XML applications, it is probably a good idea to look for existing DTDs
that might suit your purpose.

For more information on the latest emerging XML standards, the following sites
may prove a good starting point:

http://www.w3.org
http://www.oasis-open.org

DTD example
The DTD has its own syntax, but is similar to XML in that it also uses markup
tags. The following sample shows a simple internal DTD:

<?xml version = “1.0”?>
<!DOCTYPE authors [
<!ELEMENT authors(author)+>
<!ELEMENT author(firstname, lastname, title)>
<!ELEMENT firstname(#PCDATA)>
<!ELEMENT lastname(#PCDATA)>
<!ELEMENT title(#PCDATA)>
]>
...
[insert XML data here]
...

In the above example, the DOCTYPE statement represents the Document Type
Declaration and the statements included within the square brackets make up the
Document Type Definition. Both terms share the same acronym (DTD), which
can be confusing, but it is usually clear from the context which of the two
meanings is being referred to.

 Appendix B. Introduction to XML 561

A well-formed XML document must contain a root element. The DOCTYPE name
specified in the declaration must match that root element, in this case authors :

<!DOCTYPE authors [
<!ELEMENT authors(author)+>

The second line constitutes an element declaration, and the “+” indicates that the
authors element can contain one or more author elements, which in turn are
declared like this:

<!ELEMENT author(firstname, lastname, title)>

Similarly, the author element contains several elements: firstname, lastname,
title. However, only one instance of each is allowed in this case:

<!ELEMENT firstname(#PCDATA)>
<!ELEMENT lastname(#PCDATA)>
<!ELEMENT title(#PCDATA)>

These last three elements contain only text and are therefore defined as parse
character data or PCDATA. The adjunction of the # character marks the
PCDATA type as a reserved word, and it cannot be used for names created by
the author.

As mentioned earlier in this chapter, the DTD can either be stored within the XML
document which it validates, or in an external file. The following is an example of
a Document Type Declaration specifying an external DTD:

<?xml version = “1.0”?>
<!DOCTYPE authors SYSTEM “authors.dtd”>

The use of the SYSTEM keyword indicates to the parser that this is an external
declaration and that the set of rules for this XML document can be found in the
specified file.

What’s in a DTD?
A Document Type Definition can contain different types of declarations. A list of
these different types follows:

� Elements constitute the basic building blocks of an XML file and are declared
like this:

<!ELEMENT elementName(allowed element contents)>

Example:

<!ELEMENT greeting (#PCDATA)>
<greeting> Hello, World! </greeting>

Table B-1 on page 563 lists all the declaration attributes allowed inside an
element declaration.

562 XML for DB2 Information Integration

Table B-1 DTD symbols

� Attributes, as their name indicates, are attributes of an element which must
be declared in the same DTD:

<!ATTLIST elementName attributeName attributeType attributeDefault>

Here is an example:

<!ELEMENT BOOK(#PCDATA)>
<!ATTLIST BOOK
 ID ID #REQUIRED
 TYPE (Harcover | Paperback) "Hardcover"
 STORELOC CDATA #FIXED "5th Avenue"
 COMMENT CDATA #IMPLIED

Table B-2 on page 564 provides a description of the various attribute types
which can be used in attribute declarations, and lists these attribute types.

Symbol Meaning Example Description

, (comma) Means “and” in
specified order

TITLE, AUTHOR TITLE and AUTHOR in that order

| Means “or” TITLE | AUTHOR TITLE or AUTHOR

? Means “optional”,
but no more than
one is allowed

ISBN? ISBN does not have to be present, but if it is,
there can be no more than one.

* Means 0 or more
Elements.

(TITLE | AUTHOR) * Any number of TITLE or AUTHOR elements
can be present

+ Means 1 or more
Elements

AUTHOR+ At least one or more AUTHOR elements
must be present

() Used to group
elements

<!ELEMENT BOOK
(AUTHOR | TITLE,
YEAR-PUBLISHED,
ISBN)>

An AUTHOR or a TITLE element must be
present and must precede the
YEAR-PUBLISHED and ISBN elements.

 Appendix B. Introduction to XML 563

Table B-2 Attribute types

Table B-3 lists all the default attribute values.

Table B-3 Default value for attributes

� Entities are used to represent one or more characters in an XML document
and act as constants, the value of which can be changed without the need to
edit corresponding XML documents:

<!ENTITY entityName “character string represented”>

Example:

<!ENTITY prodname “ACME Calendar”>

(XML file:)
Thank you for choosing &prodname; as your primary scheduling program

Attribute type Description

CDATA Can contain any kind of character data.

ID Must have unique values within the element. In the example
below, TYPEID is of the ID type, and so requires unique values
within the range of BOOK elements:

<BOOK TYPEID=”ch1”>See Spot Run</BOOK>
<BOOK TYPEID=”ch2”>Jack and Jill</BOOK>

IDREF The value of an ID type attribute of an element in the document.

IDREFS Multiple ID’s of elements separated by whitespace.

(enumerated) Attributes can have a specified list of acceptable values.

ENTITY The name of an entity declared in the DTD.

ENTITIES The attribute is optional.

NMTOKEN The attribute is fixed (the syntax is of the type “#FIXED Value”).

NOTATION The name of a notation declared in the DTD.

NMTOKENS Multiple XML names separated by whitespace.

Attribute value Description

#REQUIRED The attribute is required.

#IMPLIED The attribute is optional.

#FIXED The attribute is fixed (the syntax is of the type “#FIXED Value”).

564 XML for DB2 Information Integration

(rendered:)
Thank you for choosing ACME Calendar as your primary scheduling program

� Parameter entities are entities which are used within the DTD itself. Their
declaration differs by the inclusion of the % character:

<!ENTITY % entityName “character string represented”>

Example:

<!ENTITY % commonAtts
 "ID ID #REQUIRED
 MAKE CDATS #IMPLIED
 MODEL CDATA #IMPLIED">

<!ELEMENT CAR (#PCDATA)>
<!ATTLIST CAR %commonAtts>

<!ELEMENT COMPUTER (#PCDATA)>
<!ATTLIST COMPUTER %commonAtts>

� Notations are used to refer to data from an outside (non-XML) source. They
provide a basic means by which non-textual information can be handled
within a document:

<!NOTATION name ExternalID>

Example:

<!NOTATION jpeg SYSTEM "jpeg.exe">
<!NOTATION gif SYSTEM "gif.exe">

<!ELEMENT person (#PCDATA)>
<!ATTLIST person
 picformat NOTATION (jpeg | gif) #REQUIRED>

(XML file:)
<person picformat=”jpeg”>Kelly Brown</person>

� Comments can be inserted inside the DTD by using the following notation:

<!-- insert comment text here -->

Example:

<!-- XML Comments Example -->

 Appendix B. Introduction to XML 565

Namespaces
Namespaces are useful when there is a need for elements and attributes of the
same name to take on a different meaning depending on the context in which
they are used.

For instance, a tag called <TITLE> takes on a different meaning, depending on
whether it is applied to a person or a book. If both entities (a person and a book)
need to be defined in the same document, for example, in a library entry which
associates a book with its author, we need some mechanism to distinguish
between the two and apply the correct semantic description to the <TITLE> tag
whenever it is used in the document. Namespaces provide a mechanism that
allows us to write XML documents which contain information relevant to many
software modules. Consider this example:

<?xml version=”1.0”?>
<library-entry xmlns:authr=”authors.dtd”
 xmlns:bk=”books.dtd”>
 <bk:book>
 <bk:title>XML Sample</bk:title>
 <bk:pages>210</bk:pages>
 <bk:isbn>1-868640-34-2</bk:isbn>
 <authr:author>
 <authr:firstname>Joe</authr:firstname>
 <authr:lastname>Bloggs</authr:lastname>
 <authr:title>Mr</authr:title>
 </authr:author>
 </bk:book>
</library-entry>

As we can see, the <TITLE> tag is used twice, but in a different context, once
within the <AUTHOR> element and once within the <BOOK> element. Note the use of
the xmlns keyword in the namespace declaration. Interestingly, the XML
recommendation does not specify whether a namespace declaration should
point to a valid URI (Uniform Resource Identifier), only that it should be unique
and persistent.

In the previous example, in order to illustrate the relationship of each element to
a given namespace, we chose to specify the relevant namespace prefix before
each element. However, it is assumed that once a prefix is applied to an element
name, it applies to all descendants of that element unless it is over-ridden by
another prefix. The extent to which a namespace prefix applies to elements in a
document is defined as the namespace scope. If we were to use scoping, the
above example would then look like this:

<?xml version”1.0”?>
<library-entry xmlns:authr=”authors.dtd”
 xmlns:bk=”books.dtd”>

566 XML for DB2 Information Integration

 <bk:book>
 <title>XML & WebSphere</title>
 <pages>210</pages>
 <isbn>1-868640-34-2</isbn>
 <authr:author>
 <firstname>Joe</firstname>
 <lastname>Bloggs</lastname>
 <title>Mr</title>
 </authr:author>
 </bk:book>
</library-entry>

In this example, it is clear that all elements within the <BOOK> element are
associated with the bk namespace, except for the elements within the <AUTHOR>
element which belong to the authr namespace.

DTD versus XML Schemas
The DTD provides a relatively easy-to-use way to describe the syntax and
semantics of XML documents. However, to achieve this simplicity, a compromise
was made when porting DTD support over from SGML to XML, which resulted in
the expected simplification, but also in limitations that prevented the DTD from
performing a high degree of semantic checking.

For example, a DTD allows for limited conditional checking by specifying allowed
values, but there is no support for more complex semantic rules. For instance, it
is impossible to check that an element which should contain a date actually does
contain a date. There are also limitations when it comes to defining complex
relationships between data elements and their usage, especially when XML
documents also use namespaces which might define elements conflicting with
DTD declarations.

Therefore, there is a need for a way to specify more complex semantic rules and
provide type-checking within an XML document. XML Schemas, aim to provide
such functionality and also introduce new semantic capabilities such as support
for namespaces and type-checking.

For more information on XML Schemas, refer to the specification documents
from the W3C:

XML Schema Part 1: Structures

http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Datatypes

http://www.w3.org/TR/xmlschema-2/

 Appendix B. Introduction to XML 567

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

XPath
The name XPath comes from its use as notations in URIs for navigating through
XML documents. The aim of an XPath is to address parts of an XML document.
XPath uses a compact syntax, and it operates on the logical structure underlying
XML to facilitate usage of XPath within URIs and XML attribute values. Xpath
supports XML namespaces because XPath models an XML document as a tree
of nodes (root nodes, element nodes, attribute nodes, text nodes, namespace
nodes, processing instruction nodes, and comment nodes). The basic syntactic
construct in XPath is the expression. An object is obtained by evaluating an
expression, which has one of the following four basic types:

� Node-set (an unordered collection of nodes without duplicates)

� Boolean

� Number

� String

XPath uses path notation to define locations within a document. A path starting
with a “/” signifies an absolute path. A simple example of this follows.

Let us consider an XML document (Library.xml) that describes a library system.
This document will be used for XPath examples.

<? xml version=”1.0”?>
<!DOCTYPE LIBRARY SYSTEM “library.dtd”>
<LIBRARY>
<BOOK ID=”B1.1”>
<TITLE>xml</TITLE>
<COPIES>5</COPIES>

</BOOK>
<BOOK ID=”B2.1”>
<TITLE>WebSphere</TITLE>
<COPIES>10</COPIES>

</BOOK>
<BOOK ID=”B3.2”>
<TITLE>great novel</TITLE>
<COPIES>10</COPIES>

</BOOK>
<BOOK ID=”B5.5”>
<TITLE>good story</TITLE>
<COPIES>10</COPIES>

</BOOK>
</LIBRARY>

568 XML for DB2 Information Integration

The path /child::book/child::copies selects all copies element children of
book which are defined under the document’s root. The above path can also be
written as /book/copies.

The XPath location step makes the selection of a document part based on the
basis and the predicate. The basis performs a selection based on Axis Name
and Node Test. Then the predicate performs additional selections based on the
outcome of the selection from the basis. A simple example of this is as follows:

The path /child::book[position()-1] selects the first book element under root.
This location step can also be written as /book[1] if you wish.

For example, the path /book/author/@* would have selected all the author
elements’ attributes.

The path /book/author[@type=’old’] would have selected all the author
elements with type attribute equal to “old”.

eXtensible Stylesheet Language (XSL)
XSL is the language defined by the W3C to add formatting information to XML
data. Stylesheets allow data to be formatted based on the structure of the
document, so one stylesheet can be used with many similar XML documents.

XSL is based on two existing standards, Cascading Style Sheets (CSS) and
Document Style Semantics and Specification Language (DSSSL).

CSS is the stylesheet language for HTML 4.0, and as such, is well supported in
Web design tools, such as IBM WebSphere Studio. XSL is mainly based on
CSS, and so a short description of CSS is provided below. CSS can also be used
as a formatting language for XML, but it is less powerful than XSL. Because CSS
was designed for the Web, it is excellent for defining the presentation of data for
Web browsers.

XML aims to support any possible display, and printed output has a number of
challenges that browsers do not face. DSSSL is the stylesheet language of
SGML and has mainly been used for printed output. Therefore, elements of
DSSSL that go beyond CSS have been incorporated into XSL. More information
on DSSSL can be found at the following Web address:

http://www.jclark.com/dsssl/

 Appendix B. Introduction to XML 569

http://www.jclark.com/dsssl/

Cascading Stylesheets
Cascading Stylesheets were designed to help separate presentation from data
with HTML. The reason that they are called Cascading Stylesheets is because
HTML, like XML, has a tree structure, and styles which are applied to the root of
a tree cascade down to the branches and leaves. CSS allows the Web developer
to define styles that apply:

� To any given type of element (for example, all paragraphs)

� To a class of elements (for example, all paragraphs which contain code
samples)

� To a particular element (for example, the third paragraph)

This is achieved by specifying classes and ids in the HTML, and applying styles
to them.

A very simple stylesheet is presented in Example B-1 on page 571. This
stylesheet defines a standard font and colors for all text in the BODY of the HTML
file. It defines a specific class of text which is twice the normal size, bold and
capitalized (.largeClass), and finally it specifies that a particular element
labelled THISID should be displayed in fuschia-colored cursive text.

The benefits of CSS are well-understood: Web developers can easily change the
layout and presentation of a whole site by editing a single stylesheet.
CSS can be used with XML if the display engine supports it, for example
Microsoft Internet Explorer.

570 XML for DB2 Information Integration

Example: B-1 A simple CSS stylesheet

BODY{
font-family : Verdana,sans-serif;
font-weight : normal;
color : black;
background-color : white;
text-decoration : none;

}
.largeClass{

font-size : 200%;
font-weight : bolder;
text-transform : capitalize;

}
#THISID{

font-family : cursive;
color : fuchsia;

}

CSS can be used within a document, or referenced in a separate stylesheet,
which is the more common approach. For more information on CSS, see:

http://www.w3.org/Style/CSS

XSL = fo: + XSLT
Although XSL has derived much from CSS, the approach of XSL is much more
powerful, and has major differences from CSS. XSL is W3C Recommendation.
More information can be found at the following URL:

http://www.w3.org/TR/xsl/

XSL actually consists of two different standards, the transformation language,
and the formatting objects.

The transformation language is called XSLT, and is defined as a W3C
Recommendation at the following URL:

http://www.w3.org/TR/xslt/

XSLT defines a common language for transforming one XML document into
another. It defines how to create a result tree from a source tree.

The formatting objects (FO) define how to display the result tree. This is the part
of XSL which is most closely related to CSS. Formatting objects are referred to

 Appendix B. Introduction to XML 571

http://www.w3.org/Style/CSS
http://www.w3.org/Style/CSS
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xslt/

as fo: in the XSL code. The main difference between CSS and XSL FO is that
XSL is based on an XML format, properly defined with a DTD, and CSS is not.

Because XSL defines an extra step in presenting data, it can do much more
powerful presentation tasks than CSS can. CSS always retains the order of the
source tree, whereas XSL can re-order the data. A simple example might be
where two stylesheets can be used to display the same data, one ordered by
name, and the other ordered by location.

XSL transformations
XSLT works on two principles: pattern matching and templates. Remember that
XSLT transforms a source tree into a result tree. The XSLT processor takes two
inputs; the XSL stylesheet and the source tree; and produces one output — the
result tree. The stylesheet associate patterns with templates. The patterns
identify parts of the source tree. When a match is made, the associated template
is applied.

XSL stylesheets can also filter the input data, based on logical tests, and
re-order the data. The templates can also contain arbitrary tags, formatting
instructions or data. The result of this is that an XSL stylesheet can perform very
powerful transformations on the input data. For example, a stylesheet can be
used to create an HTML display of a list of bank accounts, sorted by balance,
with overdrawn accounts colored red, and large balances colored green. The
same data can be used with another stylesheet which graphically represented
the data by transforming it into Structured Vector Graphics (SVG), which is an
XML format for drawing graphics.

Processing XML using Java
In a perfect world, computer applications would just exchange XML documents.
In real life, applications often have to be able to support multiple client types, all
with different capabilities. The dominant client type for Web application servers is
currently a browser (usually Netscape or Internet Explorer), but it will not be like
that forever. We might have cellular phones and other front-end devices, all with
different XML capabilities.

We also do not want to send the same XML document to every client, because
some users of the application might be authorized to see more data than others.
We must have the ability to process XML documents and generate the kind of
response to the client that is adequate for the client type.

On the server side, the Web application server usually connects to a back-end
data store like a relational database that does not natively support data

572 XML for DB2 Information Integration

interchange using XML. We need to be able to extract the necessary information
from an XML document and pass that information to the database, as well as
transform the information coming from the database to XML. To fulfill both the
client and the server requirements, we need an XML processor.

While the XML document format is the most natural form of data exchange in the
Internet, Java is the most natural language to be used in Internet applications
and application servers. This is because of Java’s nature: object-oriented and
distributed.

One technical advantage of Java over other languages is its built-in support for
Unicode. With other languages, XML processing has to be done using tricks or
by developing additional libraries to support Unicode in that language
environment. IBM does have a C++ implementation of an XML parser, as well as
supporting Unicode libraries, but, to summarize, Java is an excellent language in
implementing XML processors and other XML related tools and applications.

XML applications
At the heart of every XML application is an XML processor that parses the
well-formed XML document, so that the document elements can be retrieved and
transformed into data that can be understood by the application and task in hand.
The other responsibility of the parser is to check the syntax and structure (validity
and well-formedness) of the document.

Anyone has the freedom to implement a parser that can read and print an XML
document. The XML 1.0 Recommendation defines how an XML processor
should behave when reading and printing a document, but the API to be used is
not defined. However, there are standards that define how XML documents
should be accessed and manipulated. Currently, the following two APIs used are
widely used:

� Simple API for XML

� Document Object Model

SAX
Simple API for XML (SAX) was developed by David Megginson and a number of
people on the xml-dev mailing list on the Web, because a need was recognized
for simple, common way of processing XML documents. As such, SAX 1.0 is not
a W3C recommendation, but it is the de-facto standard for interfacing with an
XML parser, with many commonly available Java parsers supporting it.

SAX is an event-driven lightweight API for accessing XML documents and
extracting information from them. It cannot be used to manipulate the internal

 Appendix B. Introduction to XML 573

structures of XML documents. As the document is parsed, the application using
SAX receives information about the various parsing events. The logical structure
of an application using SAX API with the parser is shown in
Figure B-1.

Figure B-1 SAX application components

The SAX driver can be implemented by the XML parser vendor, or as an add-on
to the parser. That makes the application using the parser via SAX independent
of the parser.

SAX classes and interfaces
The SAX 1.0 API defines two sets of interfaces, one of which is meant to be
implemented by XML parsers, and one by XML applications. The interfaces that
parsers have to implement are:

� Parser
� AttributeList
� Locator (optional)

The first thing an XML application has to do is to register SAX event handlers to
a parser object that implements the Parser interface. As the XML document is
processed by a parser, SAX notifies the application whenever an event occurs.
The events that can be captured depend on the registered event handlers, the
interfaces of which are:

� DocumentHandler
� DTDHandler
� ErrorHandler

XML APPLICATION

SAX API

XML PARSER

XML DOCUMENT

574 XML for DB2 Information Integration

The most important and commonly used interface is DocumentHandler, because
it can be used to track basic document-related events like the start and end of
elements and character data. The events occur in the order that is directly
related to the order of elements that are found in the tree-formed XML document
that is being parsed.

DTDHandler notifies the application about unparsed external entity declarations
or when a notation declaration is encountered. ErrorHandler notifies the
application whenever an error occurs while parsing the XML document.

The SAX specification also provides a HandlerBase class, which implements all
interfaces and provides default behavior. Instead of implementing the
appropriate interfaces, an XML application can extend the HandlerBase class
and override just the methods that need to be customized.

The Java implementation of SAX is organized in two Java packages:

� org.xml.sax
� org.xml.sax.helpers

The first of the above-mentioned packages contains the SAX core
implementation classes, interfaces and exceptions. The second one contains
convenience classes and a Java-specific class (ParserFactory) for dynamically
loading SAX parsers.

The implementation can be downloaded from http://www.megginson.com/SAX/.
The same location also contains full descriptions (in JavaDoc format) of all
classes and interfaces defined in SAX 1.0.

SAX example
For a Java application to be able to use SAX, we need a class that implements
an interface most suitable for the job. The following code fragment shows the
relevant methods of DocumentHandler that are implemented to track start and
end of elements and the whole document. It also prints out the actual data within
the elements (Example B-2):

Example: B-2 Sax example

public class MyDocHandler implements org.xml.sax.DocumentHandler
...
public void characters(char[] arg1, int start, int length) throws
org.xml.sax.SAXException {

System.out.println(new String(arg1, arg2, arg3));
}
public void startDocument() throws org.xml.sax.SAXException {

System.out.println("Start of document");

 Appendix B. Introduction to XML 575

http://www.megginson.com/SAX/

}
public void endDocument() throws org.xml.sax.SAXException {

System.out.println("End of document");
}
public void startElement(String name, org.xml.sax.AttributeList arg2)
throws org.xml.sax.SAXException {

System.out.println("Start of element " + name);
}public void endElement(String name) throws org.xml.sax.SAXException {

System.out.println("End of element " + name);

The application that uses the DocumentHandler implementation above is simple.
IBM’s XML for Java implements the Parser interface in SAXParser class, which
the following example uses:

...
Parser parser = ParserFactory.makeParser("com.ibm.xml.parsers.SAXParser");
SampleDocumentHandler hndlr = new SampleDocumentHandler();
parser.setDocumentHandler(hndlr);
parser.parse(anXMLFileURL);
...

Given the following XML document as input:

<?xml version="1.0"?>
<personnel>

<person id="jedi1">
<name>

<lastname>Skywalker</lastname>
<firstname>Luke</firstname>

</name>
</person>

</personnel>

The output of the SAX application looks like this:

Start of document
Start of element personnel
Start of element person
Start of element name
Start of element lastname
Skywalker
End of element lastname
Start of element firstname
Luke
End of element firstname
End of element name
End of element person
End of element personnel
End of document

576 XML for DB2 Information Integration

DOM
While XML is a language to describe tree-structured data, the Document Object
Model (DOM) defines a set of interfaces to access tree-structured XML
documents. DOM specifies how XML and HTML documents can be represented
as objects. Unlike SAX, DOM also allows creating and manipulating the contents
of XML documents. Basically, the DOM interfaces are platform and language
neutral.

DOM originated from the need to dynamically render HTML content (DHTML).
The current DOM Level 1 Recommendation has two parts: Core and HTML.
Core contains fourteen interfaces, seven of which are applicable to both HTML
and XML documents. Six remaining interfaces are specific to XML. DOM HTML
defines additional convenience methods that are useful for client side scripting.

DOM hierarchy
The DOM API is a set of interfaces that must be implemented by a DOM
implementation such as IBM’s XML for Java. The interfaces, being originally
described in IDL, form a hierarchy (see Figure B-2 on page 578).

The root of the inheritance tree is Node, that defines the necessary methods to
navigate and manipulate the tree-structure of XML documents. The methods
include getting, deleting, and modifying the children of a node, as well as
inserting new children to it. Document represents the whole documents, and the
interface defines methods for creating elements, attributes, comments, and so
on. Attributes of a Node are manipulated using the methods of the Element
interface. DocumentFragment allows extracting parts of a document.

Note that while a DOM application reads an XML document and an object
representation if formed, that representation remains only in memory. Changing
a DOM object in memory does not automatically modify the original file. That is
something an application program has to do for itself.

 Appendix B. Introduction to XML 577

Figure B-2 DOM interface hierarchy

The W3C DOM Level 1 Recommendation can be found at:

http://www.w3.org/DOM/

DOM example
When the simple XML document we used in our SAX example (see listing on
page 576) is processed using DOM, the resulting object tree will look like the one
in Figure B-3. The shaded rectangles represent character data, and the others
represent elements.

Figure B-3 Sample DOM tree

Node

NodeList

NamedNodeMap

DOMImplementation

Attr

CharacterData

DocumentType

DocumentFragment

Document

Element

Entity

EntityReference

Notation

ProcessingInstruction

Comment

Text CDATASection

DOMException
(class)

p e rso n n e l

p e rso n id = "je d i1 "

n a m e

firs tn a m e

L u k e

la s tn a m e

S k yw a lk e r

578 XML for DB2 Information Integration

http://www.w3.org/DOM/

Reading an XML document using DOM is relatively easy, provided that a good
parser is available. Among other things, IBM’s XML Parser for Java provides a
robust and very complete implementation of the W3C DOM API. The following
code fragment shows a simplified example of how to read and manipulate an
XML document using the DOMParser class:

DOMParser parser = new DOMParser();
parser.parse(uri);
Document document = parser.getDocument();
print(document); // implemented in our own code
Node n = document.getLastChild().getFirstChild();
n.setNodeValue("ZAP! You’re history!");
print(document);

SAX or DOM?
There are certainly applications that could use either SAX or DOM to get the
necessary functionality needed when processing XML documents. However,
these two approaches to XML processing each have their strengths and
weaknesses.

SAX advantages and disadvantages
SAX provides a standardized and commonly used interface to XML parsers. It is
ideal for processing large documents whose content and structure does not need
to be changed. Because the parser only tells about the events that the
application is interested in, the application is typically small, and has a small
memory footprint. This also means that SAX is fast and efficient, and a good
choice for application areas such as filtering and searching, where only certain
elements are extracted from a possibly very large document.

Because the events must be handled as they occur, it is impossible for a SAX
application, for example, to traverse backwards in the document that is under
processing. It is also beyond SAX’s capabilities to create or modify the contents
and internal structure of an XML document.

DOM advantages and disadvantages
Because every element of an XML document is represented as a DOM object to
the application using the DOM API, it is possible to make modifications to the
original XML document. Deleting a DOM node means deleting the corresponding
XML element and so on. This makes DOM a good choice for XML applications
that want to manipulate XML documents, or to create new ones.

DOM is not originally an event driven API like SAX, even though DOM Level 2
specifies events. To extract even a small piece of data from an XML document,

 Appendix B. Introduction to XML 579

the whole DOM tree has to be created. There is no way of creating lightweight
applications using DOM. If the original XML document is large, the DOM
application that manipulates the document requires a lot of memory. In practice,
DOM is mostly used only when creating or manipulating XML documents is a
requirement.

580 XML for DB2 Information Integration

Appendix C. Table-based and
object-relational mappings

When using an XML-enabled database, it is necessary to map the database
schema to the XML schema (or vice versa). There are a number of different
types of mappings. This chapter describes two of the most common ones:

� The table-based mapping

� The object-relational mapping

Common to both of these mappings (and not discussed in the following sections)
is that the mappings allow both names and data types to be changed during the
mapping. That is, names in the XML schema are not required to match names in
the database schema. Similarly, data types in the XML schema are not required
to match data types in the database schema, although it must be possible to
convert between the data types in each schema and the values in instance
documents must be convertible to the data type in the database schema.

C

© Copyright IBM Corp. 2004. All rights reserved. 581

Table-based mapping
Table-based mapping requires the XML document to have a structure
corresponding to a single table or a set of tables. For example, an XML
document corresponding to a sales order table may look like Example C-1.

Example: C-1 Sales order XML document

<SalesOrders>
 <SalesOrder>
 <Number>123</Number>
 <OrderDate>2003-7-28</OrderDate>
 <CustomerNumber>456</CustomerNumber>
 </SalesOrder>
 ...
</SalesOrders>

And an XML document corresponding to a sales order table and the related rows
from a line item table might look like Example C-2.

Example: C-2 Sales order document with line items

<Database>
 <SalesOrders>
 <SalesOrder>
 <Number>123</Number>
 <OrderDate>2003-7-28</OrderDate>
 <CustomerNumber>456</CustomerNumber>
 </SalesOrder>
 ...
 </SalesOrders>
 <Items>
 <Item>
 <SONumber>123</SONumber>
 <Number>1</Number>
 <PartNumber>XY-47</PartNumber>
 <Quantity>14</Quantity>
 <Price>16.80</Price>
 </Item>
 <Item>
 <SONumber>123</SONumber>
 <Number>2</Number>
 <PartNumber>B-987</PartNumber>
 <Quantity>6</Quantity>
 <Price>2.34</Price>
 </Item>

582 XML for DB2 Information Integration

 ...
 </Items>
</Database>

There are three important things to notice about the second document.

� First, the data from each table is listed separately, rather than having the line
item data nested inside the corresponding sales order data as might be
expected in an XML document. This is the major limitation of the table-based
mapping.

� Second, the sales order number, which is used to link the two tables, is listed
twice; once in the data for the sales order table, and once in the data for the
line item table. This is because the sales order number appears in both tables
in the database.

� Third, the document has a wrapper element around all the other elements.
This element does not correspond to any structure in the database, but is
needed because XML requires a single root element.

The table-based mapping can use child elements, attributes, or a mixture of the
two to represent data. For example, both of the documents in Example C-3
represent the same data as the first document, even though these are technically
different XML documents.

Example: C-3 Attributes - elements mixture

<SalesOrders>
 <SalesOrder Number="123" OrderDate="2003-7-28" CustomerNumber="456" />
 ...
</SalesOrders>

<SalesOrders>
 <SalesOrder Number="123">
 <OrderDate>2003-7-28</OrderDate>
 <CustomerNumber>456</CustomerNumber>
 </SalesOrder>
 ...
</SalesOrders>

Although the preceding examples show how rows in the database can be
represented in an XML document, the mapping itself is actually done at the
schema level. That is, the database schema is mapped to an XML schema. For

 Appendix C. Table-based and object-relational mappings 583

example, the sales order and line item tables might be mapped to a DTD
(Example C-4).

Example: C-4 Tables and schemas

Tables:
Orders (Number, OrderDate, CustomerNumber)
Items (SONumber, Number, PartNumber, Quantity, Price)

Schema:
<!ELEMENT Database (SalesOrders, Items)>

<!ELEMENT SalesOrders (SalesOrder*)>
<!ELEMENT SalesOrder (Number, OrderDate, CustomerNumber)>
<!ELEMENT Number (#PCDATA)>
<!ELEMENT OrderDate (#PCDATA)>
<!ELEMENT CustomerNumber (#PCDATA)>

<!ELEMENT Items (Item*)>
<!ELEMENT Item (SONumber, Number, PartNumber, Quantity, Price)>
<!ELEMENT PartNumber (#PCDATA)>
<!ELEMENT Quantity (#PCDATA)>
<!ELEMENT Price (#PCDATA)>

The table-based mapping is important because of its simplicity. It is very easy to
write the software that transfers data between XML documents and the database
according to this mapping. Furthermore, the table-like structure of the XML
document means that inserts can be performed efficiently; documents can be
processed linearly (limiting memory usage), and the data can be inserted with
bulk inserts (improving performance).

The table-based mapping is most commonly used to serialize result sets, update
existing data, and transfer large amounts of relational data, such as during
database replication. It is also the basis for implementing XQuery over a
relational database, with each table viewed as a single XML document.

In spite of the fact that the table-based mapping requires data from different
tables to be listed separately, it can be used with more deeply nested documents,
as shown in Example C-5.

Example: C-5 Using nesting with table-based mapping

<SalesOrder Number="123">
<OrderDate>2003-7-28</OrderDate>

 <CustomerNumber>456</CustomerNumber>

584 XML for DB2 Information Integration

<Item Number="1">
 <PartNumber>XY-47</PartNumber>

 <Quantity>14</Quantity>
 <Price>16.80</Price>

</Item>
 <Item Number="2">

<PartNumber>B-987</PartNumber>
 <Quantity>6</Quantity>

 <Price>2.34</Price>
 </Item>
</SalesOrder>

To do this, the application uses XSLT to transform this document into the
table-based document and vice versa, as is shown in Figure C-1. Thus, when
retrieving data from the database, a table-based document is constructed first,
and then XSLT is used to create a more deeply nested document. (This
transformation requires keys to determine how the data should be nested.)
Similarly, when inserting data into the database, XSLT can be used to transform
a deeply-nested document into a table-based document, and the data then
transferred according to a table-based mapping.

Figure C-1 Transforming a nested document into a table-based document

For more information, see Chapter 7, “Bulk processing of XML documents” on
page 191.

Object-relational mapping
Unlike the table-based mapping, the object-relational mapping handles deeply
nested XML documents directly. The object-relational mapping can be viewed in
one of two ways.

From a database perspective, individual rows are mapped with a table-based
mapping, but primary key/foreign key relationships in the database determine
how the rows will be nested in the XML document. Thus, a tree of tables in the

Nested XML
document

Table-based
XML document Database

XSLT Data transfer
software

 Appendix C. Table-based and object-relational mappings 585

database becomes a tree of elements in the XML documents shown in
Figure C-2.

Figure C-2 Mapping a tree of tables to a nested XML document

From an XML perspective, an XML document is viewed as a serialized tree of
objects with nesting indicating the relationships between objects and properties
in the obvious way. The objects are then mapped to the database using
traditional object-relational mapping techniques. That is, objects are mapped to
tables, properties are mapped to columns, and inter-object relationships are
mapped to primary key/foreign key relationships, as sown in Figure C-3.

Figure C-3 Mapping an XML document to objects, then to tables

SalesOrders

Items Customers

Parts

<SalesOrder>
...
<Customer>

...
</Customer>
<Item>

...
<Part>

...
</Part>

</Item>
...

</SalesOrder>

SalesOrders

Items Customers

Parts

<SalesOrder>
...
<Customer>

...
</Customer>
<Item>

...
<Part>

...
</Part>

</Item>
...

</SalesOrder>

Order

Item Item Customer

Part Part

586 XML for DB2 Information Integration

Although the preceding diagram shows the result of mapping an XML document
to an object tree, and then to rows in a table, the mapping itself is actually done
at the schema level. It is also important to note that the objects used in this
mapping are specific to each XML schema and are not DOM objects. In other
words, they model the data found in the document, not the document itself. To
see the difference, Figure C-4 shows the tree of objects used in the preceding
example.

Figure C-4 Tree of sales order objects

Figure C-5 on page 588 shows a DOM tree that models the same document.

Order

Item Item Customer

Part Part

 Appendix C. Table-based and object-relational mappings 587

Figure C-5 DOM tree for the sales order document

Furthermore, the objects are only used only to visualize the mapping. That is,
they are not instantiated when data is transferred between the XML document
and the database.

In the following sections, we briefly describe how to map XML schemas to
relational schemas, using DTD notation for simplicity. Mapping relational
schemas to XML schemas is just the reverse of this process, and is somewhat
simpler. For a more complete description, see "Mapping DTDs to Databases" on
XML.com:

http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html

Simple and complex types
Before we describe the actual mapping, we need to define the terms simple type
and complex type. Although these come from XML Schemas, they are equally
useful in describing types found in DTDs.

� A simple type is a scalar type, such as a string or an integer.

In DTDs, element types support a single scalar type: PCDATA (a string).
Attributes can have a number of different scalar types, including CDATA, ID,
IDREF, NMTOKEN, and enumerated types. However, since databases do not
directly support these types, they are most easily thought of as strings.

Element

(OrderDate)

Element

(Customer)

Element

(Item)

Element

(Item)

Attribute

(Number)

Text more
elements

. . .

more
elements

. . .

more
elements

. . .

Element

(Order)

588 XML for DB2 Information Integration

http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html

XML Schemas support a larger variety of simple types, including strings,
integers, floats, dates, and times. In addition, users can define their own
simple types. The simple types in XML Schemas can be used to assign types
to attributes and to element types that contain only PCDATA.

� A complex type is a structure. This structure may be expressed using
attributes and/or a content model —that is, a set of child elements.

DTDs do not directly support the concept of a complex type as something
separate from an element type. That is, if you want two different element
types to have the same content, you must repeat the content model and/or
attributes. For example:

<!ELEMENT ShipToAddress (Street, City, State, PostCode, Country)>
<!ELEMENT BillToAddress (Street, City, State, PostCode, Country)>

Parameter entities appear to be similar to complex types. For example:

<!ENTITY % Address "Street, City, State, PostCode, Country">
<!ELEMENT ShipToAddress (%Address;)>
<!ELEMENT BillToAddress (%Address;)>

However, there is one important difference: parameter entities are a physical
construct used for string substitution, while complex types are a logical
construct like an element type.

In XML Schemas, you can define complex types separately and declare that
an element type uses a complex type, as shown in Example C-6.

Example: C-6 Using complex types in XML Schemas

<xsd:complexType name="Address">
<xsd:sequence>

 <xsd:element name="Street" type="xsd:string"/>
 <xsd:element name="City" type="xsd:string"/>

 <xsd:element name="State" type="xsd:string"/>
 <xsd:element name="PostCode" type="xsd:string"/>

 <xsd:element name="Country" type="xsd:string"/>
 </xsd:sequence>

</xsd:complexType>

<xsd:element name="ShipToAddress" type="Address">
<xsd:element name="BillToAddress" type="Address">

Note: When using simple types in XML Schemas, it is important to
remember that the data in an XML document is always a string; the simple
type specifies the format of a particular data value.

 Appendix C. Table-based and object-relational mappings 589

For the purposes of mapping XML schemas to database schemas, it is only
important to understand that simple types are scalar types and complex types
are structures.

Mapping complex element types
Element types that have a complex type are known as complex element types.
These are mapped to classes, then to tables (Figure C-6).

Figure C-6 Mapping complex element types to classes, then to tables

Mapping attributes
Attributes are mapped to properties in the class of their parent element type, then
to columns in the parent's table (Figure C-7 on page 591).

<!ELEMENT SalesOrder (...)>
...

class SalesOrder
{

...
}

CREATE TABLE SalesOrders
(...)

590 XML for DB2 Information Integration

Figure C-7 Mapping attributes to properties, then to columns

The data type of the attribute must be convertible to the data type of the column.
For example, it is an error to map an attribute with a “date” data type to a column
with a “boolean” data type.

Mapping references to simple element types
Like attributes, references in the content model to simple element types are
mapped to properties in the class of their parent element type, then to columns in
the parent's table (Figure C-8 on page 592).

<!ELEMENT SalesOrder (...)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>
...

class SalesOrder
{

int number;
...

}

CREATE TABLE SalesOrders
(Number INTEGER,
...)

 Appendix C. Table-based and object-relational mappings 591

Figure C-8 Mapping references to simple element types to properties to columns

As with attributes, the data type of the element type must be convertible to the
data type of the column.

Note that we say we are mapping a reference to an element type, rather than
mapping the element type itself. The distinction is important when the same
element type occurs in more than one content model. For example, suppose we
have an XML schema that describes books and that both the Chapter and the
Appendix element types refer to the Title element type in their content models:

<!ELEMENT Chapter (Number, Title, Section+)>
<!ELEMENT Appendix (Letter, Title, Section+)>

Each of these references must be mapped separately. That is, even though both
content models refer to the Title element type, each reference results in a
different column in the database. When the Title element type appears in the
Chapter element type, it is mapped to a column in the Chapters table, and when
it appears in the Appendix element type, it is mapped to a column in the
Appendixes table:

<!ELEMENT SalesOrder (OrderDate, CustomerNumber, ...)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>
...

class SalesOrder
{

int number;
Date orderDate;
int customerNumber;
...

}

CREATE TABLE SalesOrders
(Number INTEGER,
OrderDate DATE,
CustomerNumber INTEGER,
...)

592 XML for DB2 Information Integration

CREATE TABLE Chapters (Number INTEGER, Title VARCHAR(50))
CREATE TABLE Appendixes (Letter CHAR(1), Title VARCHAR(50))

Mapping references to complex element types
Like references to simple element types, references to complex element types
are mapped to properties in the class of their parent element type. However,
there are two differences. First, the data type of the property is the class to which
the referenced element type is mapped. Second, the property is mapped to a
primary key/foreign key relationship between the tables of the parent element
type and the child element type. For example, Figure C-9 shows how the
reference to the Item element type is mapped:

Figure C-9 Map references to complex element types to pointers then to keys

It is important to note that the primary key can be in the table of either the parent
element type or the child element type. For example, consider the relationship
between sales orders and customers: A customer can have many sales orders,
so there is a foreign key in the sales order table that points to a primary key in the
customer table. To demonstrate that the primary key can be in the table of the
parent or child element type, Example C-7 on page 594 shows an XML

<!ELEMENT SalesOrder (OrderDate, CustomerNumber, Item+)>
<!ATTLIST SalesOrder

Number CDATA #REQUIRED>
<!ELEMENT Item (PartNumber, Quantity, Price)>
<!ATTLIST Item

Number CDATA #REQUIRED>

class SalesOrder
{

int number;
Date orderDate;
int customerNumber;
Item[] items;

}

class Item
{

int number;
String partNumber;
int quantity;
float price;

}

CREATE TABLE SalesOrders
(Number INTEGER,
OrderDate DATE,
CustomerNumber INTEGER,
PRIMARY KEY (Number))

CREATE TABLE Items
(SONumber INTEGER,
Number INTEGER,
PartNumber VARCHAR(10),
Quantity INTEGER,
Price DECIMAL(5,2),
PRIMARY KEY (SONumber, Number),
FOREIGN KEY (SONumber)

REFERENCES SalesOrders (Number))

 Appendix C. Table-based and object-relational mappings 593

document where the primary key is in the table of the parent element type (the
Customer element type),

Example: C-7 XML document with primary key from parent element

<Customer>

 <!-- The following element types map to
 columns in the customer table. -->

 <Number>456</Number>
<Street>123 Main St.</Street>

 <City>Chicago</City>
<State>IL</State>

 <PostCode>60609</PostCode>
<Country>US</Country>

 <!-- SalesOrder maps to the sales order table. -->

 <SalesOrder Number="123">
 <OrderDate>2003-7-28</OrderDate>

 </SalesOrder>
<SalesOrder Number="124">

 <OrderDate>2003-7-30</OrderDate>
</SalesOrder>

 <SalesOrder Number="125">
 <OrderDate>2003-8-1</OrderDate>

 </SalesOrder>
</Customer>

and Example C-8 shows an XML document where the primary key is in table of
the child element type (again the Customer element type):

Example: C-8 XML document with primary key from child element

<SalesOrder Number="123">

 <!-- OrderDate and the Number attribute map
 to columns in the sales order table. -->

 <OrderDate>2003-7-28</OrderDate>

 <!-- Customer maps to the customer table. -->

 <Customer>
 <Number>456</Number>

594 XML for DB2 Information Integration

 <Street>123 Main St.</Street>
 <City>Chicago</City>

 <State>IL</State>
 <PostCode>60609</PostCode>

 <Country>US</Country>
</Customer>

</SalesOrder>

Mapping complicated content models
Although the details are beyond the scope of this book, here is a quick summary
of how more complicated content models are mapped. (For simplicity, the term
child element is used instead of the more correct reference to an element type.)

� Optional child elements (? operator) are mapped to nullable columns.

� Child elements that occur in choice groups (as opposed to sequences) are
mapped to nullable columns.

� Child elements that can be repeated (* and + operators) must be mapped to
separate tables.

� Subgroups can largely be ignored. That is, child elements are mapped
according to the rules in the previous sections, regardless of whether they are
in a subgroup.

� Subgroups are important in determining whether a child element is optional or
may be repeated. This affects how the child element is mapped.

For more information, see the previously mentioned article on XML.com.

(Not) mapping wrapper element types
Many XML schemas contain element types that exist only to help organize the
data in the XML document. For example, in the following XML schema, the
Address element type is not strictly necessary, as the parts of the address still
belong to the customer:

<!ELEMENT Customer (Number, Name, Address)>
<!ELEMENT Address (Street, City, State, PostCode, Country)>

 Appendix C. Table-based and object-relational mappings 595

Element types like Address are called wrapper element types because they wrap
a set of child elements. They generally have no corresponding structure in the
database.

For example, the Address element type could be mapped to a separate address
table as shown in Example C-9.

Example: C-9 Wrapper element mapped to separate table

CREATE TABLE Customers (Number VARCHAR(10),
 Name VARCHAR(30),
 AddressID INTEGER,
 FOREIGN KEY AddressID REFERENCES Addresses (ID))
CREATE TABLE Addresses (ID INTEGER,
 Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 PostCode VARCHAR(9),
 Country CHAR(2),
 PRIMARY KEY (ID))

but it is more likely that it will be ignored in the mapping and its children stored
directly in the customer table (Example C-10).

Example: C-10 Wrapper element mapped to same table

CREATE TABLE Customers (Number VARCHAR(10),
 Name VARCHAR(30),
 Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 PostCode VARCHAR(9),
 Country CHAR(2))

Note: Wrapper element types are completely unrelated to wrappers—such as
the XML wrapper—in DB2 Information Integrator. A wrapper element type is
an element type whose sole purpose is to "wrap" (surround) other element
types. A wrapper in DB2 Information Integrator is a piece of software whose
job is to "wrap" a data source. That is, transfer data between the data source
and DB2 Information Integrator.

596 XML for DB2 Information Integration

Wrappers can also contain other wrappers. For example, the Address element
type itself is wrapped inside a ContactInformation element type. As long as each
wrapper occurs only once, its attributes and child elements can be mapped as if
they belonged to the parent of the highest level wrapper.

<!ELEMENT Customer (Number, ContactInformation)>
<!ELEMENT ContactInformation (Address, Phone)>
<!ELEMENT Address (Street, City, State, PostCode, Country)>

Summary of the object-relational mapping
The basic object-relational mapping can be summarized as follows:

� Complex element types are mapped to tables

� Attributes are mapped to columns

� References in the content model to simple element types are mapped to
columns

� References in the content model to complex element types are mapped to
primary key/foreign key relationships

The following points are also important:

� Names in the XML schema can be different from names in the database
schema

� Data types in the XML schema can be different from data types in the
database schema

� The primary key can be in the table of the parent element type or the child
element type

� Wrapper element types may be ignored during the mapping process

Note: It is possible to ignore wrappers —and map their child elements as if
they belonged to the parent element type— only if the wrapper occurs at most
once in the parent. If the wrapper can occur more than once, it must be
mapped to a separate table.

 Appendix C. Table-based and object-relational mappings 597

598 XML for DB2 Information Integration

Appendix D. DAD DTD reference

This appendix describes the DTD used by DAD documents. The DAD DTD
actually describes three different document types: XML column DAD documents,
SQL mapping DAD documents, and RDB node mapping DAD documents.
Because of this, it is somewhat general and cannot show all of the constraints
that actually exist for each document type.

To make the structure of each type of DAD document more understandable, this
appendix describes four DTDs — the actual DAD DTD and the DTDs that
describe each document type. Note that only the actual DAD DTD is shipped
with the XML Extender. The other DTDs are described here for illustrative
purposes only.

D

© Copyright IBM Corp. 2004. All rights reserved. 599

DTD for DAD documents
This is the actual DTD for DAD documents.

<!-- DAD is the root element type -->
<!ELEMENT DAD ((schemabindings |dtdid)?,validation,(Xcolumn|Xcollection))>
<!ELEMENT schemabindings (nonamespacelocation)>
<!ELEMENT nonamespacelocation EMPTY>
<!ATTLIST nonamespacelocation location CDATA #REQUIRED>
<!-- this is where to specify absolute path (assessible from db2 server)

to xml schema file to be used for validation -->
<!ELEMENT dtdid (#PCDATA)>
<!ELEMENT validation (#PCDATA)>
<!-- Xcolumn elements describe an XML column and side tables -->
<!ELEMENT Xcolumn (table*)>
<!ELEMENT table (column*)>
<!ATTLIST table
 name CDATA #REQUIRED
 key CDATA #IMPLIED
 orderBy CDATA #IMPLIED>
<!ELEMENT column EMPTY>
<!ATTLIST column
 name CDATA #REQUIRED
 type CDATA #IMPLIED
 path CDATA #IMPLIED
 multi_occurrence CDATA #IMPLIED>
<!-- Xcollection elements describe an XML collection -->
<!ELEMENT Xcollection (SQL_stmt?,prolog, doctype?, stylesheet?, root_node)>
<!ELEMENT SQL_stmt (#PCDATA)>
<!ELEMENT prolog (#PCDATA)>
<!ELEMENT doctype (#PCDATA)>
<!ELEMENT root_node (element_node)>
<!ELEMENT element_node (RDB_node?,
 attribute_node*,
 text_node?,
 element_node*,
 namespace_node*,
 process_instruction_node*,
 comment_node*)>
<!ATTLIST element_node
 name CDATA #REQUIRED
 ID CDATA #IMPLIED
 multi_occurrence CDATA "NO"
 BASE_URI CDATA #IMPLIED>
<!ELEMENT attribute_node (column | RDB_node)>
<!ATTLIST attribute_node
 name CDATA #REQUIRED>
<!ELEMENT text_node (column | RDB_node)>
<!ELEMENT RDB_node (table+, column?, condition?)>

600 XML for DB2 Information Integration

<!ELEMENT condition (#PCDATA)>
<!ELEMENT comment_node (#PCDATA)>
<!ELEMENT namespace_node EMPTY>
<!ATTLIST namespace_node
 name CDATA #IMPLIED
 value CDATA #IMPLIED>
<!ELEMENT process_instruction_node (#PCDATA)>

XML column DAD documents
This section describes XML column DAD documents

DTD
Here is the DTD for XML column DAD documents.

<!-- DAD is the root element type -->
<!ELEMENT DAD (dtdid?, validation, Xcolumn>)
<!ELEMENT dtdid (#PCDATA)>
<!ELEMENT validation (#PCDATA)>
<!-- Xcolumn elements describe an XML column and side tables -->
<!ELEMENT Xcolumn (table*)>
<!ELEMENT table (column+)>
<!ATTLIST table
 name CDATA #REQUIRED>
<!ELEMENT column EMPTY>
<!ATTLIST column
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 path CDATA #REQUIRED
 multi_occurrence (YES | NO | Yes | No) "NO">

Note that any combination of upper, lower, and mixed case of yes and now is
usually allowed in the DAD.

Element type and attribute reference
This section describes the element types and attributes used in XML column
DAD documents.

column
Syntax: <!ELEMENT column EMPTY>

Appears in: table

 Appendix D. DAD DTD reference 601

Description: The column element specifies the column in a side table
in which the data returned by a location path expression
will be stored.

column (attributes)
Syntax: <!ATTLIST column

 name CDATA #REQUIRED
 type CDATA #REQUIRED
 path CDATA #REQUIRED
 multi_occurrence (YES | NO | Yes | No) "NO">

Description: The name attribute specifies the name of the column.

The type attribute specifies the type of the column. This
can be any valid SQL type name.

The path attribute contains a location path expression that
specifies the data which is to be stored in the column. For
information about the subset of XPath that is supported,
see the “Working with an XML Extender location path” in
the XML Extender Administration and Programming
manual.

The multi_occurrence attribute specifies whether the
location path expression in the path attribute can return
multiple values. Its value must be YES or NO; by default it
is NO. If the value is YES, then the DAD document cannot
map any other columns to the side table in which this
column occurs.

DAD
Syntax: <!ELEMENT DAD (dtdid?, validation, Xcolumn)>

Appears in: --

Description: The DAD element is the root element type for DAD
documents.

dtdid
Syntax: <!ELEMENT dtdid (#PCDATA)>

Appears in: DAD

Description: The dtdid element contains the ID of the DTD against
which the XML document is to be validated. This value is
used to retrieve the DTD from the DTD_REF table, so its
value must be in the DTDID column of that table.

602 XML for DB2 Information Integration

table
Syntax: <!ELEMENT table (column+)>

Appears in: Xcolumn

Description: The table element describes a side table. It contains a list
of column elements, each of which describes a column in
which data from the XML document will be stored.

table (attributes)
Syntax: <!ATTLIST table

 name CDATA #REQUIRED>

Description: The name attribute specifies the name of the side table.

validation
Syntax: <!ELEMENT validation (#PCDATA)>

Appears in: DAD

Description: The validation element specifies whether the XML
document is to be validated before it is stored in the XML
column. The value of the validation element must be YES
or NO (mixed case is also allowed).

Xcolumn
Syntax: <!ELEMENT Xcolumn (table*)>

Appears in: DAD

Description: The Xcolumn element specifies that the DAD document is
an XML column DAD document. The Xcolumn element
contains a list a side tables (if any) in which data from the
XML document is to be stored.

SQL mapping DAD documents
This section describes SQL mapping DAD documents

DTD
Here is the DTD for SQL mapping DAD documents.

<!-- DAD is the root element type -->
<!ELEMENT DAD (dtdid?, validation, Xcollection>)
<!ELEMENT dtdid (#PCDATA)>
<!ELEMENT validation (#PCDATA)>

 Appendix D. DAD DTD reference 603

<!-- Xcollection elements describe an XML collection -->
<!ELEMENT Xcollection (SQL_stmt, prolog, doctype?, root_node)>
<!ELEMENT SQL_stmt (#PCDATA)>
<!ELEMENT prolog (#PCDATA)>
<!ELEMENT doctype (#PCDATA)>
<!ELEMENT root_node (element_node)>
<!ELEMENT element_node (attribute_node*,
 (text_node? | element_node*),
 namespace_node*,
 process_instruction_node*,
 comment_node*)>
<!ATTLIST element_node
 name CDATA #REQUIRED
 ID CDATA #IMPLIED
 multi_occurrence (YES | NO) "NO"
 BASE_URI CDATA #IMPLIED>
<!ELEMENT attribute_node (column)>
<!ATTLIST attribute_node
 name CDATA #REQUIRED>
<!ELEMENT text_node (column)>
<!ELEMENT comment_node (#PCDATA)>
<!ELEMENT namespace_node EMPTY>
<!ATTLIST namespace_node
 name CDATA #IMPLIED
 value CDATA #IMPLIED>
<!ELEMENT process_instruction_node (#PCDATA)>
<!ELEMENT column EMPTY>
<!ATTLIST column
 name CDATA #REQUIRED
 type CDATA #IMPLIED>
<!ELEMENT attribute_node (column)>
<!ATTLIST attribute_node
 name CDATA #REQUIRED>

Element type and attribute reference
This section describes the element types and attributes used in SQL mapping
DAD documents.

attribute_node
Syntax: <!ELEMENT attribute_node (column)>

Appears in: element_node

Description: The attribute_node element maps a column selected by
the SQL statement to an attribute.

604 XML for DB2 Information Integration

attribute_node (attributes)
Syntax: <!ATTLIST attribute_node

name CDATA #REQUIRED>

Description: The name attribute specifies the name of the attribute.

column
Syntax: <!ELEMENT column EMPTY>

Appears in: attribute_node, text_node

Description: The column element specifies the column selected by the
SQL statement to which an element or attribute is
mapped. (Because a text_node can only appear in an
element_node, a column element in a text_node element
effectively maps an element to a column.)

column (attributes)
Syntax: <!ATTLIST column

 name CDATA #REQUIRED
 type CDATA #IMPLIED>

Description: The name attribute specifies the name of the column.
The type attribute is ignored in SQL composition.

DAD
Syntax: <!ELEMENT DAD (dtdid?, validation, Xcollection)>

Appears in: --

Description: The DAD element is the root element type for DAD
documents.

doctype
Syntax: <!ELEMENT doctype (#PCDATA)>

Appears in: Xcollection

Description: The doctype element contains the DOCTYPE declaration
to be used in the XML document, except for the starting
less than sign (<) and the ending greater than sign (>).
For example:

<doctype>!DOCTYPE Order SYSTEM
"dxx_install/samples/db2xml/dtd/getstart.dtd"</doctype>

If this includes an internal subset, the less than and
greater than signs used in element type, attribute, entity,
and notation declarations, as well as in processing

 Appendix D. DAD DTD reference 605

instructions and comments, must be escaped with
references to the lt and gt entities.It is not necessary to
escape the percent sign (%) in references to parameter
entities, although doing so does no harm. “%” does not
have a predefined entity. Only “<“ and “&” need to be
escaped with predefined entities.

dtdid
Syntax: <!ELEMENT dtdid (#PCDATA)>

Appears in: DAD

Description: The dtdid element contains the ID of the DTD against
which the XML document is to be validated. This value is
used to retrieve the DTD from the DTD_REF table, so its
value must be in the DTDID column of that table. If the
value is not in the DTD_REF table, it must specify an
absolute path by which the DTD can be accessed by
DB2.

element_node
Syntax: <!ELEMENT element_node (attribute_node*,

 (text_node? | element_node*),
 namespace_node*,
 process_instruction_node*,

comment_node*)>

Appears in: root_node, element_node

Description: Along with attribute_node and text_node elements,
element_node elements define the structure of the XML
document to be published. (It is easiest to think of these
elements as forming a template for the actual XML
document.) An element_node element:

� Contains one attribute_node element for each attribute
of the corresponding element in the XML document.
Each attribute_node element specifies the column
selected by the SQL statement to which the attribute is
mapped.

� Contains a text_node element if the element is mapped
to a column selected by the SQL statement. The
text_node element specifies the column to which the
element is mapped. If an element_node element
contains a text_node element, it cannot contain any
element_node elements.

606 XML for DB2 Information Integration

� Contains one element_node element for each child of
the corresponding element in the XML document. If an
element_node element contains other element_node
elements, it cannot contain a text_node element.

� namespace_node, process_instruction_node, or
comment_node have not been implemented.

element_node (attributes)
Syntax: <!ATTLIST element_node

 name CDATA #REQUIRED
 ID CDATA #IMPLIED
 multi_occurrence (YES | NO | Yes | No) "NO"
 BASE_URI CDATA #IMPLIED>

Description: The name attribute specifies the name of the element.

The multi_occurrence attribute specifies whether the
corresponding element may occur more than once in its
parent. Its value must be YES or NO; by default, it is NO.

The ID and BASE_URI attributes have not been
implemented.

namespace_node (attributes)
Syntax: <!ATTLIST namespace_node

 name CDATA #IMPLIED
 value CDATA #IMPLIED>

Description: The name attribute specifies the namespace prefix. This
node is currently not implemented. It is reserved for future
use.

prolog
Syntax: <!ELEMENT prolog (#PCDATA)>

Appears in: Xcollection

Description: The prolog element specifies the XML declaration to be
used in the XML document. The value of the prolog is the
XML declaration, except for the starting less than sign (<)
and the ending greater than sign (>). For example:

<prolog>?xml version="1.0"?</prolog>

Note that:

� This “prolog” is different from the prolog specified in the
XML 1.0 recommendation. In particular, this prolog can

 Appendix D. DAD DTD reference 607

only contain an XML declaration. It cannot contain any
processing instructions or comments, nor can it contain
a DOCTYPE declaration. (The DOCTYPE declaration
is specified with the doctype element.)

� The result document is not converted to the code page
specified by the encoding declaration. It is just written
into the resulting XML document, as part of the output
of the XML declaration. XML Extender uses the code
page of the server when creating the XML document.
Thus, the generated document is encoded in the
database code page.

root_node
Syntax: <!ELEMENT root_node (element_node)>

Appears in: Xcollection

Description: The root_node element is a container for the
element_node that specify the structure of the XML
document.

SQL_stmt
Syntax: <!ELEMENT SQL_stmt (#PCDATA)>

Appears in: Xcollection

Description: The SQL_stmt element specifies the SELECT statement
that retrieves data to be returned as an XML document.
The SELECT statement must structure the result set as
follows:

� Columns in the select list must be grouped by the table
they come from.

� The first column in each group must uniquely identify a
row for the table consisting of columns in its group. It
can either be a single column primary key retrieved
from the table or a generated key.

� The groups must be ordered from left to right according
to the nesting hierarchy in the XML document.

stylesheet
Syntax: <!ELEMENT stylesheet (#PCDATA)>

Appears in: Xcollection

608 XML for DB2 Information Integration

Description: During composition, you can specify instructions for
stylesheets, using the stylesheet tag excluding the
beginning "<" and ending ">", in the form '?xml-stylesheet'
(S PseudoAtt)* S? '?' as specified in
http://www.w3.org/TR/xml-stylesheet. As in <doctype>,
less than and amperstand signs must be escaped with
their predefined entities.

text_node
Syntax: <!ELEMENT text_node (column)>

Appears in: element_node

Description: The text_node element maps a column selected by the
SQL statement to an element. (The mapped element is
specified by the parent of the text_node element.)

validation
Syntax: <!ELEMENT validation (#PCDATA)>

Appears in: DAD

Description: The validation element specifies whether the XML
document is to be validated after it is created. The value
of the validation element must be YES or NO. Mixed case
is also allowed.

Xcollection
Syntax: <!ELEMENT Xcollection (SQL_stmt, prolog, doctype?,

stylesheet?, root_node)>

Appears in: DAD

Description: The Xcollection element specifies that the DAD document
is a SQL mapping DAD document or RDB node DAD
document. The XML Extender determines the document
type by checking if the Xcollection element contains a
SQL_stmt element.

RDB node mapping DAD documents
This section describes RDB node mapping DAD documents

 Appendix D. DAD DTD reference 609

http://www.w3.org/TR/xml-stylesheet

DTD
Here is the DTD for RDB node mapping DAD documents.

<!-- DAD is the root element type -->
<!ELEMENT DAD (dtdid?, validation, Xcollection)>
<!ELEMENT dtdid (#PCDATA)>
<!ELEMENT validation (#PCDATA)>
<!-- Xcollection elements describe an XML collection -->
<!ELEMENT Xcollection (prolog, doctype?, root_node)>
<!ELEMENT prolog (#PCDATA)>
<!ELEMENT doctype (#PCDATA)>
<!ELEMENT root_node (element_node)>
<!ELEMENT element_node (RDB_node?,
 attribute_node*,
 (text_node? | element_node*),
 namespace_node*,
 process_instruction_node*,
 comment_node*)>
<!ATTLIST element_node
 name CDATA #REQUIRED
 ID CDATA #IMPLIED
 multi_occurrence CDATA "NO"
 BASE_URI CDATA #IMPLIED>
<!ELEMENT attribute_node (RDB_node)>
<!ATTLIST attribute_node
 name CDATA #REQUIRED>
<!ELEMENT text_node (RDB_node)>
<!ELEMENT RDB_node (table+, column?, condition?)>
<!ELEMENT condition (#PCDATA)>
<!ELEMENT comment_node (#PCDATA)>
<!ELEMENT namespace_node EMPTY>
<!ATTLIST namespace_node
 name CDATA #IMPLIED
 value CDATA #IMPLIED>
<!ELEMENT process_instruction_node (#PCDATA)>
<!ELEMENT table EMPTY>
<!ATTLIST table
 name CDATA #REQUIRED
 key CDATA #IMPLIED
 orderBy CDATA #IMPLIED>
<!ELEMENT column EMPTY>
<!ATTLIST column
 name CDATA #REQUIRED
 type CDATA #IMPLIED>

610 XML for DB2 Information Integration

Element type and attribute reference
This section describes the element types and attributes used in RDB node
mapping DAD documents.

attribute_node
Syntax: <!ELEMENT attribute_node (RDB_node)>

Appears in: element_node

Description: The attribute_node element maps a column in a table to
an attribute.

attribute_node (attributes)
Syntax: <!ATTLIST attribute_node

name CDATA #REQUIRED>

Description: The name attribute specifies the name of the attribute.
This name must be different from the names of all other
attributes and all elements that are mapped to columns
(except during decomposition).

column
Syntax: <!ELEMENT column EMPTY>

Appears in: RDB_node

Description: The column element specifies the column in a table to
which an element or attribute is mapped. (Because a
text_node can only appear in an element_node, a column
element in a text_node element effectively maps an
element to a column.) The column must be in the table
specified by the sibling table element.

column (attributes)
Syntax: <!ATTLIST column

 name CDATA #REQUIRED
 type CDATA #IMPLIED>

Description: The name attribute specifies the name of the column.

The type attribute specifies the type of the column. This
can be any valid SQL type name, including the name of a
user-defined type when doing decomposition. The type
attribute is ignored during composition.

 Appendix D. DAD DTD reference 611

condition
Syntax: <!ELEMENT condition (#PCDATA)>

Appears in: RDB_node

DAD type: RDB node mapping

Description: The meaning of a condition element depends on where its
parent RDB_node element appears.

If the RDB_node element is a child of the top-most
element_node element, then the condition element
specifies the columns by which 2 tables are related. The
join conditions must be of the form
table-name.column-name = table-name.column-name.
The join conditions must be separated by whitespace,
followed by the keyword AND, followed by whitespace.

If the RDB_node element occurs in an attribute_node or
text_node element, then the condition element specifies a
condition that restricts the data retrieved for the attribute
or text node when publishing relational data as XML.In
this case, the condition must be a valid SQL predicate.

DAD
Syntax: <!ELEMENT DAD (dtdid?, validation, Xcollection)>

Appears in: --

Description: The DAD element is the root element type for DAD
documents.

doctype
Syntax: <!ELEMENT doctype (#PCDATA)>

Appears in: Xcollection

Description: The doctype element contains the DOCTYPE declaration
to be used when publishing data in an XML document,

Notes:

� It does NOT matter whether the name of the parent table and column
appears on the left side of the join condition and/or the name of the child
table and column appears on the right side of the join condition.

� Note that the ANDs are not significant; they are simply used to separate
the join conditions; that is, all predicates of the join condition are NOT
applied simultaneously (like in a “normal” SQL query)

612 XML for DB2 Information Integration

except for the starting less than sign (<) and the ending
greater than sign (>). For example:

<doctype>!DOCTYPE Order SYSTEM
"dxx_install/samples/db2xml/dtd/getstart.dtd"</doctype>

If this includes an internal subset, the less than and
greater than signs used in element type, attribute, entity,
and notation declarations, as well as in processing
instructions and comments, must be escaped with
references to the lt and gt entities. It is not necessary to
escape the percent sign (%) in references to parameter
entities, although doing so does no harm. “%” does not
have a predefined entity. Only “<“ and “&” need to be
escaped with predefined entities.

dtdid
Syntax: <!ELEMENT dtdid (#PCDATA)>

Appears in: DAD

Description: The dtdid element contains the ID of the DTD against
which the XML document is to be validated. This value is
used to retrieve the DTD from the DTD_REF table, so its
value must be in the DTDID column of that table. It must
also be the value of the system identifier used in the
DOCTYPE declaration, if one is specified by the doctype
element. If the value is not in the DTD_REF table, it must
specify an absolute path by which the DTD can be
accessed by DB2.

element_node
Syntax: <!ELEMENT element_node (RDB_node?,

 attribute_node*,
 (text_node? | element_node*),
 namespace_node*,
 process_instruction_node*,
 comment_node*)>

Appears in: root_node, element_node

Description: Along with attribute_node and text_node elements,
element_node elements define the structure of the XML
document to be published. (It is easiest to think of these
elements as forming a template for the actual XML
document.) An element_node element:

 Appendix D. DAD DTD reference 613

� Must contain an RDB_node element if it is the top-most
element_node element — that is, the element_node
element in the root_node element. The RDB_node
element specifies the tables to which the document is
mapped and the conditions used to join those tables.

� Contains one attribute_node element for each attribute
of the corresponding element in the XML document.
Each attribute_node element specifies the table and
column to which the attribute is mapped.

� Contains a text_node element if the element is mapped
to a column. The text_node element specifies the table
and column to which the element is mapped. If an
element_node element contains a text_node element,
it cannot contain any element_node elements.

� Contains one element_node element for each child of
the corresponding element in the XML document. If an
element_node element contains other element_node
elements, it cannot contain a text_node element.

� namespace_node, process_instruction_node, and
comment_node elements have not been implemented.

element_node (attributes)
Syntax: <!ATTLIST element_node

name CDATA #REQUIRED
ID CDATA #IMPLIED
multi_occurrence (YES | NO) "NO"
BASE_URI CDATA #IMPLIED>

Description: The name attribute specifies the name of the element. If
the element is mapped to a column (it contains a
text_node element), then this name must be different from
the names of all attributes and the names of all other
elements that are mapped to columns (except during
decomposition).

� The multi_occurrence attribute specifies whether the
corresponding element may occur more than once in its
parent. Its value must be YES or NO. Mixed case is also
allowed. By default, multi_occurrence is NO.

� The ID and BASE_URI attributes are not implemented.

614 XML for DB2 Information Integration

namespace_node (attributes)
Syntax: <!ATTLIST namespace_node

 name CDATA #IMPLIED
 value CDATA #IMPLIED>

Description: The node is currently not implemented, and is reserved
for future use.

prolog
Syntax: <!ELEMENT prolog (#PCDATA)>

Appears in: Xcollection

Description: The prolog element specifies the XML declaration to be
used when publishing data to an XML document. The
value of the prolog is the XML declaration, except for the
starting less than sign (<) and the ending greater than
sign (>). For example:

<prolog>?xml version="1.0"?</prolog>

Note that:

� This “prolog” is different from the prolog specified in the
XML 1.0 recommendation. In particular, this prolog can
only contain an XML declaration. It cannot contain any
processing instructions or comments, nor can it contain
a DOCTYPE declaration. (The DOCTYPE declaration is
specified with the doctype element.)

� The result document is not converted to the code page
specified by the encoding declaration. It is just written
into the resulting XML document, as part of the output of
the XML declaration. XML Extender uses the code page
of the server when creating the XML document. Thus,
the generated documented is encoded in the database
code page.

RDB_node
Syntax: <!ELEMENT RDB_node (table+, column?, condition?)>

Appears in: element_node, attribute_node, text_node

Description: RDB_nodes have two different functions and syntaxes,
depending on where they appear.

In the top-most element_node element, the RDB_node
element specifies the tables to which the XML document

 Appendix D. DAD DTD reference 615

is mapped and the conditions used to join these tables.
The syntax in this case is:

<!ELEMENT RDB_node (table+, condition)>

where each table element specifies a table and the
condition element specifies the join conditions.

In an attribute_node or text_node element, the RDB_node
element specifies the table and column to which an
attribute or element is mapped. The syntax in this case is:

<!ELEMENT RDB_node (table, column, condition?)>

where the table element specifies the table, the column
element specifies the column, and the condition element
specifies a condition that restricts the data retrieved for
the attribute or text node when publishing relational data
as XML. The logical AND of all conditions for a table, is
used as the filter for the retrieved data from a table.

root_node
Syntax: <!ELEMENT root_node (element_node)>

Appears in: Xcollection

Description: The root_node element is a container for the
element_nodes that specify the structure of the XML
document.

stylesheet
Syntax: <!ELEMENT stylesheet (#PCDATA)>

Appears in: Xcollection

Description: During composition, you can specify instructions for
stylesheets, using the stylesheet tag excluding the
beginning "<" and ending ">", in the form '?xml-stylesheet'
(S PseudoAtt)* S? '?' as specified in
http://www.w3.org/TR/xml-stylesheet. As in <doctype>,
less than and amperstand signs must be escaped with
their predefined entities.

table
Syntax: <!ELEMENT table EMPTY>

Appears in: RDB_node

Description: The table element specifies a table.

616 XML for DB2 Information Integration

http://www.w3.org/TR/xml-stylesheet

table (attributes)
Syntax: <!ATTLIST table

 name CDATA #REQUIRED
 key CDATA #IMPLIED
 orderBy CDATA #IMPLIED>

Description: The name attribute specifies the name of the table.

The key attribute contains a space-separated list of the
columns in the primary key. It is required only when
shredding XML documents and only in the <table> tag(s)
children of the top <RDB_node> tag.

The orderBy attribute specifies the name of the column
used to sort the rows for the table when publishing data
as XML.

text_node
Syntax: <!ELEMENT text_node (column)>

Appears in: element_node

Description: The text_node element maps a column to an element.
(The mapped element is specified by the parent of the
text_node element.)

validation
Syntax: <!ELEMENT validation (#PCDATA)>

Appears in: DAD

Description: The validation element specifies whether the XML
document is to be validated before it is shredded or after it
is created. The value of the validation element must be
YES or NO. Mixed case is also allowed.

Xcollection
Syntax: <!ELEMENT Xcollection (SQL_stmt, prolog, doctype?,

root_node)>

Appears in: DAD

Description: The Xcollection element specifies that the DAD document
is a SQL mapping DAD document or RDB node DAD
document. The XML Extender determines the document
type by checking if the Xcollection element contains a
SQL_stmt element.

 Appendix D. DAD DTD reference 617

618 XML for DB2 Information Integration

Appendix E. Sample XML Tools

This appendix introduces XMLFilters and describes a number of sample tools
developed during this project.

� Using XMLFilters
� The NameChanger tool
� The SAXCutter tool
� The TableCutter tool

E

© Copyright IBM Corp. 2004. All rights reserved. 619

Using XMLFilters
An XMLFilter is a SAX program that serves as both a SAX application and a SAX
parser. As a SAX application, it implements the ContentHandler interface and
listens for SAX events. As a SAX parser, it implements the XMLReader interface
and fires new SAX events. Thus, it sits in a chain of SAX programs and fires new
events in response to the events it receives (Figure E-1).

Figure E-1 An XML filter

XMLFilters can perform simple transformations. These are usually linear, where
the XMLFilter fires a new event in response to each event it receives. As a
simple example, you could use an XMLFilter to translate element type names
from English to French. For example, in response to receiving a startElement
event for a “Book” element, an XMLFilter could fire a startElement event for a
“Livre” element. And in response to receiving a startElement event for a “Name”
element, it could fire a startElement event for a “Nom” element.

XMLFilters can be used for more complex tasks as well. This appendix discusses
two XMLFilter applications. The first XMLFilter is NameChanger, which changes
child element names and attribute names depending on their context — that is,
depending on their parent element type. For example, it can change the name of
the “Title” element to “BookTitle” when it occurs inside a “Book” element and to
“ArticleTitle” when it occurs inside an “Article” element. The second XMLFilter is
SAXCutter, which cuts a document with repeating child elements (such as a list
of sales orders) into a set of separate documents (such as individual sales
orders).

Implementing XMLFilters
The easiest way to implement an XMLFilter is to extend the XMLFilterImpl class.
This class implements both SAX application interfaces (ContentHandler,
DTDHandler, ErrorHandler, and EntityResolver) and SAX parser interfaces
(XMLFilter, which extends XMLReader). It does so in a very simple way: in
response to each SAX event it receives, it passes the same event to the handlers
registered with it. For example, when it receives a startElement event, it calls

XML
parser

XMLFilter Application

X
M

L
R

ead
er

X
M

L
R

ead
erC

o
n

te
n

tH
an

d
le

r

C
o

n
te

n
tH

an
d

le
r

SAX
events

Filtered
SAX

events

620 XML for DB2 Information Integration

startElement in the ContentHandler that is registered with its XMLReader
interface (Figure E-2).

Figure E-2 The XML FilterImpl class

Because of this, a class that extends XMLFilterImpl only needs to override the
methods it is interested in. For example, to implement an XMLFilter that
translates element type names, you would need to override only two methods:
startElement and endElement. Typically, any overridden methods will call the
same method in its superclass (XMLFilterImpl). This allows the XMLFilterImpl
code to pass the event on to the next SAX application (Figure E-3).

Figure E-3 Extending the XML FilterImpl class

XMLFilterImpl
class

C
o

n
te

n
tH

an
dl

er X
M

L
R

ead
er

startElement startElement

Incoming
startElement

event

Outgoing
startElement

event

XMLFilterImpl
class

C
o

n
te

n
tH

an
d

le
r

X
M

L
R

ead
er

startElement startElement

Incoming
startElement

event

Filtered
outgoing

startElement
event

Translation class
(Inherits from XMLFilterImpl)

C
o

n
te

n
tH

an
d

le
r

startElement:
•Overrides startElement in superclass
•First filters event
•Then calls startElement in superclass

 Appendix E. Sample XML Tools 621

This is shown in the code in Example E-1:

Example: E-1 Translator class

public class Translator extends XMLFilterImpl
 public Translator()
 {
 super();
 }
 public Translator(XMLReader xmlReader)
 {
 super(xmlReader);
 }
 public void startElement(String uri, String localName, String qName,
 Attributes attrs)
 throws SAXException
 {
 String newLocalName = translate(localName);
 super.startElement(uri, newLocalName, "", attrs);
 }
 public void endElement(String uri, String localName, String qName),
 throws SAXException
 {
 String newLocalName = translate(localName);
 super.endElement(uri, newLocalName, "", attrs);
 }
 private String translate(String name)
 {
 // Code not shown.
 }

Using XMLFilters from a SAX application
Applications that use XMLFilters are SAX applications. That is, they implement
interfaces such as ContentHandler. To use an XMLFilter, an application must:

� Instantiate an XMLReader (parser).
� Instantiate an XMLFilter and register the XMLReader with the XMLFilter.
� Register itself with the XMLFilter.
� Call the parse method in the XMLReader.

See Example E-2 on page 623:

622 XML for DB2 Information Integration

Example: E-2 RunTranslator class

public class RunTranslator {
 // Constructors not shown
 public void runTranslator(String xmlFilename)
 {
 XMLReader xmlReader = getXMLReader(); // Step 1
 Translator translator = new Translator(xmlReader); // Step 2
 translator.setContentHandler(this); // Step 3
 InputSource src = new InputSource(new FileInputStream(xmlFilename));
 xmlReader.parse(src); // Step 4
 }
 // ContentHandler implementation not shown. Note that all of the
 // work of the application is done in ContentHandler methods.

In this manner, a SAX application can chain together a number of XMLFilters,
passing each to the constructor of the next. A transformation is thus broken down
into a number of distinct steps, each performed by a different XMLFilter.

The NameChanger sample
The NameChanger sample consists of two Java classes: NameChanger and
NameTester. NameChanger is an XMLFilter that changes element and attribute
names. NameTester is a sample SAX application that uses NameChanger.

The NameChanger tool
The NameChanger class is an XMLFilter that changes names based on context.
That is, it can change an element or attribute name based on a parent-specific
basis. For example, it might change the name of the Title element to BookTitle
when it appears in a “Book” element and to “ChapterTitle” when it appears in a
“Chapter” element. New names do not have to concatenate the parent and child
names. For example, you might change the name of a “Number” element to
“ISBN” when it appears in the a “Book” element.

The NameChanger class is useful when shredding XML documents into
relational tables, since the XML Extender in the past did not allow any two leaf
nodes (element types or attributes) to have the same name.

An application specifies what names to change by passing in a hash table. The
keys of the hash table give the name of the parent element type and the child
element type or the attribute, separated by a caret (^). For example:

 Appendix E. Sample XML Tools 623

Chapter^Title
Book^Title

The values of the hash table are the new names. Since the java.util.Property
class extends the java.util.Hashtable class, the sets of element type and attribute
names to change can be stored in Java property files. For example:

Chapter^Title=ChapterTitle
Book^Title=BookTitle

Most of the work in NameChanger is done in the startElement and endElement
classes, which call private functions to change element type and attribute names

The code for the NameChanger class is shown in Example E-3:

Example: E-3 NameChanger class

import java.util.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
/*
 * XMLFilter that changes the names of elements attributes
 * based on their context.
 *
 * <p>NameChanger changes the names of elements and attributes
 * based on their context -- that is, the parent element in which
 * they appear.</p>
 *
 * <p>The names to be changed are passed in in hashtables. The
 * keys of these hashtables have the form:</p>
 *
 * <pre>
 * <parent-name>^<child-name>
 * </pre>
 *
 * <p>where <parent-name> is the local name of the parent
 * element and >child-name> is the local name of the child
 * element or attribute.</p>
 *
 * <p>The values of these hashtables are the names to which the child
 * element or attribute is to be changed.</p>

Note: The NameChanger class is not namespace aware, and must be run
with XML namespace processing off. That is, the application must set the
value of the http://xml.org/features/namespaces feature in the XMLReader to
false and the value of the http://xml.org/features/namespace-prefixes feature
to true.

624 XML for DB2 Information Integration

 *
 * <p>Note that a Properties object is a Hashtable, so this information
 * is very easily stored in a Properties file. For example:</p>
 *
 * <pre>
 * Magazine^Title=MagazineTitle
 * Book^Title=BookTitle
 * Book^Number=ISBN
 * </pre>
 *
 * <p>WARNING! This class does not support XML namespaces. It must
 * be called using a parser whose namespace processing is turned off.
 * (The namespace property is false and the namespace-prefix property
 * is true.)</p>
 *
 * @version 1.0
 */
public class NameChanger extends XMLFilterImpl
 private Hashtable elementNames = null, attrNames = null;
 private Stack parentStack = new Stack();
 /*
 * Create a new NameChanger.
 */
 public NameChanger()
 {
 super();
 }
 /*
 * Create a new NameChanger and set the parent XMLReader.
 *
 * @param parent The parent XMLReader
 */
 public NameChanger(XMLReader parent)
 {
 super(parent);
 }
 /*
 * Set a hashtable of element names to change.
 *
 * <p>For more information, see the introduction.</p>
 *
 * @param elementNames The hashtable. May be null.
 */
 public void setElementTypeNames(Hashtable elementNames)
 {
 this.elementNames = elementNames;
 }
 /*
 * Set a hashtable of attribute names to change.

 Appendix E. Sample XML Tools 625

 *
 * <p>For more information, see the introduction.</p>
 *
 * @param attrNames The hashtable. May be null
 */
 public void setAttributeNames(Hashtable attrNames)
 {
 this.attrNames = attrNames;
 }
 //**
 //* Overridden ContentHandler methods
 //**
 public void startElement(String uri, String localName, String qName,
Attributes attrs)
 throws SAXException
 {
 String newQName;
 Attributes newAttrs;
 // Get the new QName. This may be the same as the
 // existing QName.
 newQName = getNewQName(qName);
 // Get attributes that use the new names. These
 // may use existing names.
 newAttrs = getNewAttributes(qName, attrs);
 // Pass on the startElement event with the new names.
 super.startElement(uri, "", newQName, newAttrs);
 // Push the local name of the current element onto the stack.
 parentStack.push(qName);
 }
 public void endElement(String uri, String localName, String qName)
 throws SAXException
 {
 String newQName;
 // Pop the name of the current element off the stack.
 parentStack.pop();
 // Get the new QName. This may be the same as the
 // existing QName.
 newQName = getNewQName(qName);
 // Pass on the endElement event with the new names.
 super.endElement(uri, "", newQName);
 }
 //**
 //* Private methods
 //**
 private String getNewQName(String qName)
 {
 String key, name, parent;
 // If there are no new element names, just return the QName.
 if (elementNames == null) return qName;

626 XML for DB2 Information Integration

 // Build a key from the parent element's QName and this
 // element's QName. If there is a corresponding new name
 // in the hashtable of element names, use it. Otherwise, use the
 // existing name.
 parent = (parentStack.empty()) ? "" : (String)parentStack.peek();
 key = parent + "^" + qName;
 name = (String)elementNames.get(key);
 if (name != null)
 return name;
 else
 return qName;
 }
 private Attributes getNewAttributes(String qName, Attributes attrs)
 {
 AttributesImpl attrsImpl;
 String key, name, attrName;
 // If there are no new attribute names, just return the attributes.
 if (attrNames == null) return attrs;
 // Create a new AttributesImpl object and copy the attributes
 // to it, changing names as necessary.
 attrsImpl = new AttributesImpl();
 for (int i = 0; i < attrs.getLength(); i++)
 {
 // Build a key from the element's QName and the attribute's
 // QName. If there is a corresponding new name in the
 // hashtable of attribute names, use it. Otherwise, use the
 // existing name.
 attrName = attrs.getQName(i);
 key = qName + "^" + attrName;
 name = (String)attrNames.get(key);
 if (name != null) attrName = name;
 // Add the attribute.
 attrsImpl.addAttribute(attrs.getURI(i),
 "",
 attrName,
 attrs.getType(i),
 attrs.getValue(i));
 }
 return attrsImpl;
 }

The NameTester application
The NameTester class is a SAX application that uses the NameChanger
XMLFilter. Its command line syntax is:

java NameTester <input-file> <output-file> <elem-file> <attr-file>

 Appendix E. Sample XML Tools 627

where <input-file> and <output-file> are the names of the XML input and
output files, and <elem-file> and <attr-file> are the names of Java properties
files.

The properties files specify which element and attribute names are to be
changed. They use the format shown in the previous section, where the parent
and child element names (or element and attribute names) are concatenated
with a caret (^) to form the property name, and the property value is the new
element or attribute name. For example:

Chapter^Title=ChapterTitle
Book^Title=BookTitle

The ContentHandler methods in the NameTester class write the modified XML
document to a file using the FileWriter class. If you want to do something else
with the modified document, you might want to use a different Writer class. For
example, to store the document in a database, use the StringWriter class to first
write the document to a string, then pass this string to the database.

Example E-4 shows the code for the NameTester class.

Example: E-4 NameTester class

import java.util.*;
import java.io.*;
import javax.xml.parsers.SAXParserFactory;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
/**
 * SAX application that tests the NameChanger.
 *
 * <p>NameTester is a SAX application (ContentHandler) that uses
 * the NameChanger class to change names in an XML document, then
 * writes this to an output file.</p>
 *
 * <p>The command line syntax of the NameTester is:</p>
 *
 * <pre>
 * java NameTester <input-file> <output-file> <elem-file>
<attr-file>
 * </pre>
 *
 * <p>where <elem-file> and <attr-file> are the names of property
 * files containing the new names. In these files, property names are of
 * the form:
 *
 * <pre>
 * parent-element-name^child-element-name=new-element-name

628 XML for DB2 Information Integration

 * </pre>
 *
 * <p>or:</p>
 *
 * <pre>
 * element-name^attribute-name=new-attribute-name
 * </pre>
 *
 * <p>For example:</p>
 *
 * <pre>
 * Magazine^Title=MagazineTitle
 * Book^Title=BookTitle
 * Book^Number=ISBN
 * </pre>
 *
 * <p>NameChanger uses a FileWriter to write to the changed document
 * to a file. If you want to do something else with the document,
 * you can modify the code. For example, to store the document in
 * a database, use a StringWriter to build a string from a document,
 * then pass this to the database with an INSERT statement.</p>
 *
 * @version 1.0
 */
public class NameTester implements ContentHandler
 private Writer writer;
 /*
 * Create a new NameTester.
 */
 public NameTester()
 {
 }
 /*
 * Run the NameTester from the command line.
 *
 * <p>See the introduction for the command line syntax.</p>
 */
 public static void main (String[] argv)
 {
 try
 {
 NameTester test = new NameTester();
 if (argv.length != 4)
 throw new Exception("Syntax: java NameTester " +
 "<input-file> <output-file> <elem-file> <attr-file>");
 else
 {
 test.run(argv[0], argv[1], argv[2], argv[3]);
 }

 Appendix E. Sample XML Tools 629

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 /*
 * Run the NameTester.
 *
 * @param oldXMLFilename Name of the XML file to change names of.
 * @param newXMLFilename Name of the XML file to write to.
 * @param elemFilename Name of the file containing new element type
names.
 * May be null.
 * @param attrFilename Name of the file containing new attribute names.
 * May be null.
 */
 public void run(String oldXMLFilename, String newXMLFilename,
 String elemFilename, String attrFilename)
 throws Exception
 {
 XMLReader xmlReader;
 NameChanger changer;
 // Get a new XMLReader and set namespace processing off.
 xmlReader = getXMLReader();
 xmlReader.setFeature("http://xml.org/sax/features/namespaces",
false);

xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",
true);
 // Get a new NameChanger and set the ContentHandler to this
 // NameTester object.
 changer = new NameChanger(xmlReader);
 changer.setContentHandler(this);
 // Set the new element type and attribute names.
 changer.setElementTypeNames(getProperties(elemFilename));
 changer.setAttributeNames(getProperties(attrFilename));
 // Open the output file for writing, parse the input file, and
 // close the output file.
 writer = new FileWriter(newXMLFilename);
 changer.parse(new InputSource(new FileInputStream(oldXMLFilename)));
 writer.close();
 }
 //**
 //* ContentHandler methods
 //**
 /** For internal use only. */
 public void startDocument () throws SAXException
 {

630 XML for DB2 Information Integration

 }
 /** For internal use only. */
 public void endDocument() throws SAXException
 {
 }
 /** For internal use only. */
 public void startElement (String uri, String localName, String qName,
Attributes attrs)
 throws SAXException
 {
 int i;
 // Start the element.
 try
 {
 writer.write('<');
 writer.write(qName);
 // Append the attributes. Note that this includes xmlns
attributes.
 for (i = 0; i < attrs.getLength(); i++)
 {
 writer.write(' ');
 writer.write(attrs.getQName(i));
 writer.write("=\"");
 appendEscapedString(attrs.getValue(i));
 writer.write('"');
 }
 // Close the element.
 writer.write('>');
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 /** For internal use only. */
 public void endElement (String uri, String localName, String qName)
throws SAXException
 {
 try
 {
 writer.write("</");
 writer.write(qName);
 writer.write('>');
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

 Appendix E. Sample XML Tools 631

 /** For internal use only. */
 public void characters (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 appendEscapedString(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 /** For internal use only. */
 public void ignorableWhitespace (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 writer.write(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 /** For internal use only. */
 public void processingInstruction (String target, String data)
 throws SAXException
 {
 try
 {
 writer.write("<?");
 writer.write(target);
 writer.write(' ');
 writer.write(data);
 writer.write("?>");
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 /** For internal use only. */
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException
 {
 }
 /** For internal use only. */

632 XML for DB2 Information Integration

 public void endPrefixMapping(String prefix)
 throws SAXException
 {
 }
 /** For internal use only. */
 public void setDocumentLocator (Locator locator)
 {
 }
 /** For internal use only. */
 public void skippedEntity(String name)
 throws SAXException
 {
 }
 //**
 //* Private methods
 //**
 private XMLReader getXMLReader()
 throws Exception
 {
 // Get an XMLReader. See the documentation for
 // javax.xml.parsers.SAXParserFactory for information
 // about configuring your system to use your XML parser.
 SAXParserFactory factory = SAXParserFactory.newInstance();
 return factory.newSAXParser().getXMLReader();
 }
 private Properties getProperties(String filename)
 throws IOException
 {
 Properties props;
 if (filename == null) return null;
 props = new Properties();
 props.load(new FileInputStream(filename));
 return props;
 }
 private void appendEscapedString(String string)
 throws IOException
 {
 appendEscapedString(string.toCharArray(), 0, string.length());
 }
 private void appendEscapedString(char[] chars, int start, int length)
 throws IOException
 {
 int save;
 // This method appends a string to the sub-document StringBuffer.
 // It replaces &, <, >, ', and " with entity references.
 save = start;
 for (int i = start; i < start + length; i++)
 {
 switch(chars[i])

 Appendix E. Sample XML Tools 633

 {
 case '&':
 case '<':
 case '>':
 case '\'':
 case '"':
 // When we encounter a character that needs to be escaped as
 // an entity, append any characters that haven't been
written,
 // adjust the save point, and append the entity reference.
 if (save < i)
 {
 writer.write(chars, save, i - save);
 }
 save = i + 1;
 switch(chars[i])
 {
 case '&':
 writer.write("&");
 break;
 case '<':
 writer.write("<");
 break;
 case '>':
 writer.write(">");
 break;
 case '\'':
 writer.write("'");
 break;
 case '"':
 writer.write(""");
 break;
 }
 default:
 break;
 }
 }
 // If there are any characters that haven't yet been appended,
 // append them now.
 if (save < start + length)
 {
 writer.write(chars, save, start + length - save);
 }
 }

634 XML for DB2 Information Integration

The SAXCutter sample
The SAXCutter sample consists of two classes: SAXCutter and CutterTester.
SAXCutter is an XMLFilter that cuts a document into smaller documents.
CutterTester is a sample SAX application that uses SAXCutter.

The SAXCutter tool
The SAXCutter class is an XMLFilter that cuts a document into smaller
documents. That is, when it encounters an element of a particular type, it starts a
new document, using that element as the root element. This is useful for cutting
large documents that consist of many repeating sub-documents into smaller
documents.

For example, suppose you want to copy a large number of XML sales order
documents from one database to another. You could extract them from the first
database and build a single, large XML document that contains all of them, which
you would then pass to the second database. Using the SAXCutter class, you
could extract each document — cutting on the name of the root element type of
these documents — and store it in the second database.

As input, the SAXCutter takes the namespace URI and local name of the
element type you want to cut on. It then calls the complete set of SAX events
(starting with startDocument and ending with endDocument) for each
sub-document it finds.

Most of the work in SAXCutter is done in the startElement and endElement
methods, which track whether it is inside or outside a cut element. When it is
inside a cut element, it passes all events to the application. When it is outside a
cut element, it traps (ignores) all events except namespace events, which it
tracks to ensure that each sub-document has the proper namespace
declarations.

Example E-5 shows the code for the SAXCutter class.:

Example: E-5 SAXCutter class

import org.xml.sax.*;
import org.xml.sax.helpers.*;

Important: The SAXCutter class is namespace aware, and must be run with
XML namespace processing on. That is, the application must set the value of
both the http://xml.org/features/namespaces feature and the
http://xml.org/features/namespace-prefixes feature in the XMLReader to true.

 Appendix E. Sample XML Tools 635

import java.io.*;
import java.util.*;
/**
 * XMLFilter that cuts an XML document into sub-documents.
 *
 * <p>A common characteristic of data-centric XML documents is
 * that they are often a series of smaller documents with identical
 * schemas that are wrapped in a single root element and passed as
 * a larger document. For example:</p>
 *
 * <pre>
 * <SalesOrders>
 * <SalesOrder>
 * ...
 * </SalesOrder>
 * <SalesOrder>
 * ...
 * </SalesOrder>
 * ...
 * <SalesOrder>
 * ...
 * </SalesOrder>
 * </SalesOrders>
 *
 * <p>SAXCutter is an XMLFilter that cuts such documents into a series
 * of sub-documents, based on the name of a cut element type. For example,
 * the previous document would most likely be cut on the SalesOrder element
 * type. Everything outside a cut element (except namespace declarations)
 * is ignored. Everything inside the cut element (including the cut element
 * itself) is passed on to the next SAX ContentHandler in the chain.</p>
 *
 * <p>WARNING! SAXCutter is always namespace-aware and must be run with
 * XML namespace processing on. That is, the namespace and
namespace-prefixes
 * properties of the parser must be set to true.</p>
 *
 * @version 1.0
 */
public class SAXCutter extends XMLFilterImpl
 private boolean cutting;
 private int cutElementDepth;
 private String cutURI, cutLocalName;
 private Hashtable uriStacks = new Hashtable();
 /*
 * Create a new SAXCutter.
 */
 public SAXCutter()
 {
 super();

636 XML for DB2 Information Integration

 }
 /*
 * Create a new SAXCutter and set the parent XMLReader.
 *
 * @param parent The parent XMLReader
 */
 public SAXCutter(XMLReader parent)
 {
 super(parent);
 }
 /*
 * Set the name of the element type to cut on.
 *
 * @param uri Namespace URI of the element type.
 * @param localName Local name of the element type.
 */
 public void setCutElementType(String uri, String localName)
 {
 if (uri == null)
 throw new IllegalArgumentException("SAXCutter.setCutElementType: "
+
 "If there is no namespace URI, use an empty string, not a
null.");
 cutURI = uri;
 cutLocalName = localName;
 }
 //**
 //* Overridden ContentHandler methods
 //**
 // The methods in ContentHandler look for an element of the
 // type to cut on. When they find this element, they start a
 // new document and pass the element's contents on to the
 // next ContentHandler in the chain. When they reach the end
 // of this element, they end the document.
 //
 // Everything outside a cut element (except prefix/URI mappings)
 // is ignored.
 /* ContentHandler method for internal use. */
 public void parse(InputSource input)
 throws IOException, SAXException
 {
 if (cutLocalName == null)
 throw new SAXException("Cutter element type not set.");
 cutting = false;
 super.parse(input);
 }
 /* ContentHandler method for internal use. */
 public void parse(String systemId)
 throws IOException, SAXException

 Appendix E. Sample XML Tools 637

 {
 if (cutLocalName == null)
 throw new SAXException("Cutter element type not set.");
 cutting = false;
 super.parse(systemId);
 }
 /* ContentHandler method for internal use. */
 public void startDocument()
 throws SAXException
 {
 // Trap the call to startDocument so it isn't passed on to the
application.
 }
 /* ContentHandler method for internal use. */
 public void endDocument()
 throws SAXException
 {
 // Trap the call to endDocument so it isn't passed on to the
application.
 }
 /* ContentHandler method for internal use. */
 public void startElement(String uri, String localName, String qName,
Attributes attrs)
 throws SAXException
 {
 AttributesImpl attrsImpl;
 String nsPrefix, nsURI, attrName;
 if (uri.equals(cutURI) && localName.equals(cutLocalName))
 {
 if (!cutting)
 {
 // If the current element is a cut element and we are not
 // already cutting, then set the global variables and start
 // a new sub-document.
 cutting = true;
 cutElementDepth = 1;
 super.startDocument();
 // If there are prefix/URI mappings, we need to add xmlns
 // attributes for these, as well as calling startPrefixMapping
 // and endPrefixMapping.
 if (!uriStacks.isEmpty())
 {
 // Copy the attributes to a new AttributesImpl object so we
 // can add more xmlns attributes.
 attrsImpl = new AttributesImpl();
 for (int i = 0; i < attrs.getLength(); i++)
 {
 attrsImpl.addAttribute(attrs.getURI(i),
 attrs.getLocalName(i),

638 XML for DB2 Information Integration

 attrs.getQName(i),
 attrs.getType(i),
 attrs.getValue(i));
 }
 // Loop through the prefix/URI mappings.
 Enumeration prefixes = uriStacks.keys();
 while (prefixes.hasMoreElements())
 {
 // Call startPrefixMapping.
 nsPrefix = (String)prefixes.nextElement();
 nsURI = (String)((Stack)uriStacks.get(nsPrefix)).peek();
 super.startPrefixMapping(nsPrefix, nsURI);
 // Add xmlns attributes that are not in the list.
 attrName = (nsPrefix.length() == 0) ? "xmlns" : "xmlns:"
+ nsPrefix;
 if (attrsImpl.getIndex(attrName) == -1)
 {
 attrsImpl.addAttribute("", nsPrefix, attrName,
"CDATA", nsURI);
 }
 }
 // Set attrs to use the new attributes.
 attrs = attrsImpl;
 }
 }
 else // if (cutting)
 {
 // If the current element is a cut element and we are already
 // cutting, then increment the cut element depth. We need to
 // track this in case cut elements are nested inside cut
elements.
 cutElementDepth++;
 }
 }
 // If we are cutting, pass on the startElement event.
 if (cutting)
 {
 super.startElement(uri, localName, qName, attrs);
 }
 }
 /* ContentHandler method for internal use. */
 public void endElement(String uri, String localName, String qName)
 throws SAXException
 {
 if (cutting)
 {
 // Pass on the endElement event.
 super.endElement(uri, localName, qName);
 // If the current element is a cut element, decrement the

 Appendix E. Sample XML Tools 639

 // cut element depth.
 if (uri.equals(cutURI) && localName.equals(cutLocalName))
 {
 cutElementDepth--;
 }
 // If the cut element depth falls to 0, this sub-document is done.
 if (cutElementDepth == 0)
 {
 // Call endPrefixMapping to tear down the prefix/URI mappings.
 Enumeration prefixes = uriStacks.keys();
 while (prefixes.hasMoreElements())
 {
 String prefix = (String)prefixes.nextElement();
 super.endPrefixMapping(prefix);
 }
 // Set the cutting flag to false and end the document.
 cutting = false;
 super.endDocument();
 }
 }
 }
 /* ContentHandler method for internal use. */
 public void characters (char[] ch, int start, int length)
 throws SAXException
 {
 if (cutting)
 super.characters(ch, start, length);
 }
 /* ContentHandler method for internal use. */
 public void ignorableWhitespace (char[] ch, int start, int length)
 throws SAXException
 {
 if (cutting)
 super.ignorableWhitespace(ch, start, length);
 }
 /* ContentHandler method for internal use. */
 public void processingInstruction(String target, String data)
 throws SAXException
 {
 if (cutting)
 super.processingInstruction(target, data);
 }
 /* ContentHandler method for internal use. */
 public void skippedEntity(String name)
 throws SAXException
 {
 if (cutting)
 super.skippedEntity(name);
 }

640 XML for DB2 Information Integration

 /* ContentHandler method for internal use. */
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException
 {
 // The SAX 2.0 specification is not clear if a default prefix
 // is a null string or an empty string. We need an empty string.
 if (prefix == null) prefix = "";
 if (cutting)
 {
 // If we are cutting, just pass on startPrefixMapping events.
 super.startPrefixMapping(prefix, uri);
 }
 else // if (!cutting)
 {
 // If we are not cutting, we need to cache the namespace
 // for later use, since it may affect the prefix/URI mappings
 // used in the cut part of the document.
 //
 // We cache URIs in a Hashtable keyed by prefix. Since each
 // prefix can be used multiple times (masking a higher level
 // use of the same prefix) we store stacks of URIs in the
 // hashtable, rather than the URIs themselves.
 // Get the stack for the prefix. If the prefix is not yet
 // used, add a new stack to the hashtable.
 Stack stack = (Stack)uriStacks.get(prefix);
 if (stack == null)
 {
 stack = new Stack();
 uriStacks.put(prefix, stack);
 }
 // Push the URI onto the stack.
 stack.push(uri);
 }
 }
 /* ContentHandler method for internal use. */
 public void endPrefixMapping(String prefix)
 throws SAXException
 {
 // The SAX 2.0 specification is not clear if a default prefix
 // is a null string or an empty string. We need an empty string.
 if (prefix == null) prefix = "";
 if (cutting)
 {
 // If we are cutting, just pass on endPrefixMapping events.
 super.endPrefixMapping(prefix);
 }
 else // if (!cutting)
 {
 // Get the stack for the prefix and pop off the top-level

 Appendix E. Sample XML Tools 641

 // URI. If the stack is empty, remove it from the hashtable.
 Stack stack = (Stack)uriStacks.get(prefix);
 stack.pop();
 if (stack.empty())
 uriStacks.remove(prefix);
 }
 }

The CutterTester application
The CutterTester class is a SAX application that uses the SAXCutter XMLFilter.
Its command line syntax is:

java CutterTester <input-file> <local-element-type-name> [<uri>]

where <input-file> is the name of the XML input file and
<local-element-type-name> and <uri> are the local name and optional
namespace URI of the element type to cut on.

The ContentHandler methods in the CutterTester class write the sub-documents
to separate files whose names are constructed by appending the numbers 1, 2,
3, ... to the basename of the input file. For example, if the name of the input file is
orders.xml, the name of the output files will be orders1.xml, orders2.xml, and so
on. If you want to do something else with the sub-documents, you might want to
use a different Writer class. For example, to store the sub-documents in a
database, use the StringWriter class to first write each document to a string, then
pass this string to the database.

Example E-6 shows the code for the CutterTester class:

Example: E-6 CutterTester class

import java.io.*;
import java.util.*;
import org.xml.sax.*;
import javax.xml.parsers.SAXParserFactory;
/**
 * SAX application that tests the SAXCutter.
 *
 * <p>CutterTester is a SAX application (ContentHandler) that uses
 * the SAXCutter class to cut an XML document into sub-documents,
 * it then writes to separate files. The output filenames are constructed
 * by appending 1, 2, 3, ... to the base name of the original file.
 * For example, if the original filename is orders.xml, the output
 * filenames are orders1.xml, orders2.xml, and so on.</p>
 *

642 XML for DB2 Information Integration

 * <p>The command line syntax of the CutterTester is:</p>
 *
 * <pre>
 * java CutterTester <filename> <local-element-type-name>
[<<uri>]
 * </pre>
 *
 * <p>where <local-element-type-name> is the local name of the
 * element type to cut on and <uri> is the (optional) namespace uri
 * of the element type to cut on.</p>
 *
 * <p>CutterTester uses a FileWriter to write to the sub-documents
 * to files. If you want to do something else with the sub-documents,
 * you can modify the code. For example, to store sub-documents in
 * a database, use a StringWriter to build a string from a sub-document,
 * then pass this to the database with an INSERT statement.</p>
 *
 * @version 1.0
 */
public class CutterTester implements ContentHandler
 private String baseName, extension;
 private int fileNumber;
 private Writer writer;
 /*
 * Create a new CutterTester.
 */
 public CutterTester()
 {
 }
 /*
 * Run the CutterTester from the command line.
 *
 * <p>See the introduction for the command line syntax.</p>
 */
 public static void main (String[] argv)
 {
 try
 {
 CutterTester test = new CutterTester();
 if ((argv.length == 0) || (argv.length > 3))
 throw new Exception("Syntax: java CutterTester <filename>
<local-element-type-name> [<uri>]");
 else
 {
 String uri = (argv.length == 3) ? argv[2] : "";
 test.run(argv[0], uri, argv[1]);
 }
 }
 catch(Exception e)

 Appendix E. Sample XML Tools 643

 {
 e.printStackTrace();
 }
 }
 /*
 * Run the CutterTester.
 *
 * @param filename Name of the file to cut.
 * @param uri Namespace URI of the element type to cut on.
 * @param localName Local name of the element type to cut on.
 */
 public void run(String filename, String uri, String localName)
 throws Exception
 {
 XMLReader xmlReader;
 SAXCutter cutter;
 // Get a new XMLReader and set namespace processing on.
 xmlReader = getXMLReader();
 xmlReader.setFeature("http://xml.org/sax/features/namespaces", true);

xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",
true);
 // Get a new SAXCutter, set the ContentHandler to
 // this CutterTester object, and set the cut element type.
 cutter = new SAXCutter(xmlReader);
 cutter.setContentHandler(this);
 cutter.setCutElementType(uri, localName);
 // Set up the global variables.
 baseName = getBaseName(filename);
 extension = getExtension(filename);
 fileNumber = 1;
 // Parse the input file.
 cutter.parse(new InputSource(new FileInputStream(filename)));
 }
 //**
 //* ContentHandler methods
 //**
 public void startDocument () throws SAXException
 {
 String filename;
 // Construct the next filename and increment the file number,
 // then open a FileWriter over the file.
 filename = baseName + String.valueOf(fileNumber) + extension;
 fileNumber++;
 try
 {
 writer = new FileWriter(filename);
 }
 catch (IOException io)

644 XML for DB2 Information Integration

 {
 throw new SAXException(io);
 }
 }
 public void endDocument() throws SAXException
 {
 // Close the file.
 try
 {
 writer.close();
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void startElement (String uri, String localName, String qName,
Attributes attrs)
 throws SAXException
 {
 int i;
 try
 {
 // Start the element.
 writer.write('<');
 writer.write(qName);
 // Append the attributes. Note that this includes xmlns
attributes.
 for (i = 0; i < attrs.getLength(); i++)
 {
 writer.write(' ');
 writer.write(attrs.getQName(i));
 writer.write("=\"");
 appendEscapedString(attrs.getValue(i));
 writer.write('"');
 }
 // Close the element.
 writer.write('>');
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void endElement (String uri, String localName, String qName)
throws SAXException
 {
 try
 {

 Appendix E. Sample XML Tools 645

 writer.write("</");
 writer.write(qName);
 writer.write('>');
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void characters (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 appendEscapedString(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void ignorableWhitespace (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 writer.write(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void processingInstruction (String target, String data)
 throws SAXException
 {
 try
 {
 writer.write("<?");
 writer.write(target);
 writer.write(' ');
 writer.write(data);
 writer.write("?>");
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }

646 XML for DB2 Information Integration

 public void startPrefixMapping(String prefix, String uri)
 throws SAXException
 {
 }
 public void endPrefixMapping(String prefix)
 throws SAXException
 {
 }
 public void setDocumentLocator (Locator locator)
 {
 }
 public void skippedEntity(String name)
 throws SAXException
 {
 }
 //**
 //* Private methods
 //**
 private XMLReader getXMLReader()
 throws Exception
 {
 // Get an XMLReader. See the documentation for
 // javax.xml.parsers.SAXParserFactory for information
 // about configuring your system to use your XML parser.
 SAXParserFactory factory = SAXParserFactory.newInstance();
 return factory.newSAXParser().getXMLReader();
 }
 private String getBaseName(String filename)
 {
 int period = filename.lastIndexOf('.');
 if (period == -1) return filename;
 return filename.substring(0, period);
 }
 private String getExtension(String filename)
 {
 int period = filename.lastIndexOf('.');
 if (period == -1) return null;
 return filename.substring(period);
 }
 private void appendEscapedString(String string)
 throws IOException
 {
 appendEscapedString(string.toCharArray(), 0, string.length());
 }
 private void appendEscapedString(char[] chars, int start, int length)
 throws IOException
 {
 int save;
 // This method appends a string to the sub-document StringBuffer.

 Appendix E. Sample XML Tools 647

 // It replaces &, <, >, ', and " with entity references.
 save = start;
 for (int i = start; i < start + length; i++)
 {
 switch(chars[i])
 {
 case '&':
 case '<':
 case '>':
 case '\'':
 case '"':
 // When we encounter a character that needs to be escaped as
 // an entity, append any characters that haven't been
written,
 // adjust the save point, and append the entity reference.
 if (save < i)
 {
 writer.write(chars, save, i - save);
 }
 save = i + 1;
 switch(chars[i])
 {
 case '&':
 writer.write("&");
 break;
 case '<':
 writer.write("<");
 break;
 case '>':
 writer.write(">");
 break;
 case '\'':
 writer.write("'");
 break;
 case '"':
 writer.write(""");
 break;
 }
 default:
 break;
 }
 }
 // If there are any characters that haven't yet been appended,
 // append them now.
 if (save < start + length)
 {
 writer.write(chars, save, start + length - save);
 }
 }

648 XML for DB2 Information Integration

The TableCutter tool
The TableCutter tool is used to help convert XML documents to a set of files that
use the DB2 load format. As input, it accepts a document that conforms to the
following DTD, where the contents of the Table element use the DB2 load format.
(This document is constructed by transforming the original document with XSLT.)

<!ELEMENT Tables (Table+)>
<!ELEMENT Table (#PCDATA)>
<!ATTLIST Table
 Name CDATA #REQUIRED>

The TableCutter tool uses the SAXCutter class to extract the contents of each
Table element and stores them in separate files.

Example E-7 shows the code for the TableCutter class.

Example: E-7 TableCutter class

import java.io.*;
import java.util.*;
import org.xml.sax.*;
import javax.xml.parsers.SAXParserFactory;
/**
 * Cuts a document that uses the load table format into DB2 load files.
 *
 * <p>The TableCutter is designed to cut a document that uses the load
 * table format into separate DB2 load files. The load table format is
 * very simple:
 *
 * <pre>
 * <!ELEMENT Tables (Table+)>
 * <!ELEMENT Table (#PCDATA)>
 * <!ATTLIST Table
 * Name CDATA #REQUIRED>
 * </pre>
 *
 * The PCDATA in the table element matches the load format used by DB2.
 * For example, a document that contains the data for two tables might
 * look like:
 *
 * <pre>
 * <Tables>
 * <Table Name="Orders">"123",20030708,"543"

 Appendix E. Sample XML Tools 649

 * "456",20030709,"563"</Table>
 * <Table Name="Items">"123",1,"123",10
 * "123",2,"ab-c",5
 * "456",1,"CD32",100
 * "456",2,"HSA230",8</Table><Tables>
 * </pre>
 *
 * <p>The command line syntax of the TableCutter is:</p>
 *
 * <pre>
 * java TableCutter <filename> <output-directory>
 * </pre>
 *
 * @version 1.0
 */
public class TableCutter implements ContentHandler
 private Writer writer;
 private String outputDirectory;
 /*
 * Create a new TableCutter.
 */
 public TableCutter()
 {
 }
 /*
 * Run the TableCutter from the command line.
 *
 * <p>See the introduction for the command line syntax.</p>
 */
 public static void main (String[] argv)
 {
 try
 {
 TableCutter cutter = new TableCutter();
 if (argv.length != 2)
 throw new Exception("Syntax: java TableCutter <filename>
<output-directory>");
 else
 {
 cutter.cut(argv[0], argv[1]);
 }
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 /*
 * Cut the document.

650 XML for DB2 Information Integration

 *
 * @param filename Full path of the file to cut.
 * @param outputDirectory Full path of the output directory.
 */
 public void cut(String filename, String outputDirectory)
 throws Exception
 {
 XMLReader xmlReader;
 SAXCutter cutter;
 // Get a new XMLReader and set namespace processing on.
 xmlReader = getXMLReader();
 xmlReader.setFeature("http://xml.org/sax/features/namespaces", true);

xmlReader.setFeature("http://xml.org/sax/features/namespace-prefixes",
true);
 // Get a new SAXCutter, set the ContentHandler to
 // this TableCutter object, and set the cut element type to Table.
 cutter = new SAXCutter(xmlReader);
 cutter.setContentHandler(this);
 cutter.setCutElementType("", "Table");
 // Set the global variables.
 this.outputDirectory = outputDirectory;
 writer = null;
 // Parse the input file.
 cutter.parse(new InputSource(new FileInputStream(filename)));
 }
 //**
 //* ContentHandler methods
 //**
 public void startDocument () throws SAXException
 {
 }
 public void endDocument() throws SAXException
 {
 }
 public void startElement (String uri, String localName, String qName,
Attributes attrs)
 throws SAXException
 {
 String tableName, filename;
 // If we are not on the Table element, just return.
 if ((uri.length() != 0) || (!localName.equals("Table"))) return;
 // Create a new output file.
 try
 {
 tableName = attrs.getValue("Name");
 filename = outputDirectory + tableName + ".del";
 writer = new FileWriter(filename);
 }

 Appendix E. Sample XML Tools 651

 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void endElement (String uri, String localName, String qName)
throws SAXException
 {
 // If we are not on the Table element, just return.
 if ((uri.length() != 0) || (!localName.equals("Table"))) return;
 // Close the file.
 try
 {
 writer.close();
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 // Set the writer to null so that we only write to the file when
 // we are inside the Table element.
 writer = null;
 }
 public void characters (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 if (writer != null) writer.write(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void ignorableWhitespace (char ch[], int start, int length)
 throws SAXException
 {
 try
 {
 if (writer != null) writer.write(ch, start, length);
 }
 catch (IOException io)
 {
 throw new SAXException(io);
 }
 }
 public void processingInstruction (String target, String data)
 throws SAXException

652 XML for DB2 Information Integration

 {
 }
 public void startPrefixMapping(String prefix, String uri)
 throws SAXException
 {
 }
 public void endPrefixMapping(String prefix)
 throws SAXException
 {
 }
 public void setDocumentLocator (Locator locator)
 {
 }
 public void skippedEntity(String name)
 throws SAXException
 {
 }
 //**
 //* Private methods
 //**
 private XMLReader getXMLReader()
 throws Exception
 {
 // Get an XMLReader. See the documentation for
 // javax.xml.parsers.SAXParserFactory for information
 // about configuring your system to use your XML parser.
 SAXParserFactory factory = SAXParserFactory.newInstance();
 return factory.newSAXParser().getXMLReader();
 }

 Appendix E. Sample XML Tools 653

654 XML for DB2 Information Integration

Appendix F. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246994

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246994.

F

© Copyright IBM Corp. 2004. All rights reserved. 655

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246994.zip Sample code for following the samples throughout the

book

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space 3 GB
Operating System Windows 2000 or Windows NT
Processor 700 MHz or better
Memory 512 MB, recommended 784 MB

How to use the Web material
Unzip the contents of the Web material sg2469947code.zip file onto your hard
drive. This creates the folder structure c:\SG246994\Scenario:

Scenario Files required to go through the scenario (Chapter 14,
“Scenario implementation using DB2 functionality” on
page 401 and Chapter 13, “Worked scenario” on
page 393)

...\testharness Files generated by Application Developer for testing
retrieveXML and storeXML (Chapter 12, “XML and
database tools in Application Developer” on page 337)

...\xmltest Files generated by Application Developer for testing
retrieveXML and storeXML (Chapter 15, “Scenario with
Application Developer tools” on page 453)

...\wsad Files required for DB2 Web services (Chapter 16, “DB2
Web services and XML with Application Developer” on
page 475)

...\SampleTools Contains the code for the tools used in Chapter 7, “Bulk
processing of XML documents” on page 191, and
described in more detail in Appendix E, “Sample XML
Tools” on page 619.

...\WORFTest Sample code for manual creation of a WORF Web
application (Chapter 10, “Web services in DB2” on
page 269)

656 XML for DB2 Information Integration

...\udf Sample UDF functions and invocations

...\worf-soap-code JAR files required to install WORF and DB2 Web services
in WebSphere Application Server.

 Appendix F. Additional material 657

658 XML for DB2 Information Integration

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 660. Note that some of the documents referenced here may be available
in softcopy only.

� Data Federation with IBM DB2 Information Integrator V8.1, SG24-7052

Other publications
These publications are also relevant as further information sources:

� DB2 XML Extender Administration and Programming V8, SC27-1234

� DB2 UDB for z/OS V8 XML Extender Administration and
Programming,SC18-7431

� DB2 UDB V8 Data Movement Utilities Guide and Reference, SC09-4830

� DB2 Information Integrator V8 Developer’s Guide, SC18-7359

© Copyright IBM Corp. 2004. All rights reserved. 659

Online resources
These Web sites and URLs are also relevant as further information sources:

� DB2 XML Extender Web site

http://www-306.ibm.com/software/data/db2/extenders/xmlext/index.html

� W3C Web site

http://www.w3c.org

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

660 XML for DB2 Information Integration

http://www-306.ibm.com/software/data/db2/extenders/xmlext/index.html
http://www.w3c.org
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

Index

Symbols
(Not) mapping wrapper element types 595
+ symbol 173
? option 173
| option 173

Numerics
10240 rows limit 90
9075-14 2003 specification 24, 219
9080 port 498

A
ACORD XML 60
Action 249
Administrative console 538
AlphaWorks Web site 17
ALTER NICKNAME 319
Application Developer 338

Create a DADX file from SQL statement 378
Create mappings 465
Create RDB to XML mapping 461
Create the DTD 459
Creating SQL statement 346
Creating user-defined functions 352
Data Definition view 343
Database connection 340
Editors 338
Generate a DAD file 370
Generate a Web service from a DADX 380
Generate test harness 372
Generate the DAD file and test harness 468
Generate XML Schema 344
Importing database objects 342
Map a SELECT statement to XML 369
Map relational table to XML 365
Perspectives 338
RDB table mapping 462
Select the target DTD file 463
SQL Builder 350
SQL statement mapping 462
Testing Web service 385
Using the RDB to XML mapping editor 464

© Copyright IBM Corp. 2004. All rights reserved.
Web services 475
Web services tools 375
XML and SQL Query wizard 356
XSL debugger 362
XSL transformations 361

Atomic values 81
Attribute groups 77
Attribute mapping 67, 230
attribute_node 30, 149, 227
Attributes 563
Authentication

Alias 531
Auto-deploy 293
Automatic XML document validation 261
autoReload 293

B
B2B 210
Bi-directional 28
Bi-directional mapping 13
Build and deploy SQL user-defined functions 339
Built-in template rules 252
Bulk processing 191

C
Candidate key 68
Casting XML data type 114
CDATA 12, 19, 564
Child element mapping 67
Child element type 68, 593
Child nickname 311
CLOB 20, 211
CLOB locator 99
Collection

XML 28
Collections 27
Column

XML 33
Column tag 228, 230
Comments 565
COMMIT 175
Commit control 174
Common table expression 436

 661

Complex element type 65, 72
Complex type 589
Composition 7

See publishing
condition 226
Condition tag 149, 445
Constraints 79
CONTAINS() 39
Content 267

Element 5
Mixed 5
PCDATA-only 5

Content model 589
Content UDF 117
CONTENT() 116
ContentHandler 258, 642
ContentHandler interface 193, 620
Controller page 515
Converting XML documents to DB2 load format
200
Create a DADX group 481
Create a Web service from DADX 380
Create an RDB to XML mapping 366
Create DADX Web service 490
CREATE NICKNAME 43, 310
CREATE SERVER 44, 309
Create the DADX file 490
CREATE WRAPPER 308
Creating a client using XSL transformation 505
Creating a user-defined function 352
CRM 555
Cross Loader 178
CTE 436
Ctrl+A 413
Ctrl+C 413
Cursor stability 175
CutterTester 642
CutterTester sample application 194
Cutting flattened documents 203

D
DAD 28–29, 64, 102, 145, 222, 378, 478

RDB node mapping 146
RDB_node mapping 225
SQL composition 224
SQL mapping 146

DAD Checker 262
DAD DTD reference 599

DAD Extension file 482
DAD file 53, 187, 365

Building 103
multi_occurrence 105
Overriding values 242

DAD file condition 470
DAD header 224
DADX 280, 478, 482

Creation 280
Group configuration 375

Data Access Definition
see DAD

Data Definition view 343
Data exchange format 12
Data federation 306
Data perspective 338, 340
Data source 535

Application Server 535
Data types 79
Database

XML enablement 28
Database editors 344
Database perspective 585
Database schema 58, 62, 68, 70

Creating XML schema from 68
Deriving XML schema from 62
From a local schema 72
Mapping 12
Matching XML schema 64

Databases
Native XML 10
XML-enabled 9

Data-centric 5, 51
Data-centric XML documents 192
DB2 as Web service consumer 294
DB2 as Web service provider 277
DB2 built-in data type 33
DB2 Control Center 320

Discover nicknames 325
Federated views 330

DB2 Information Integrator 42, 307, 596
Installation 547

DB2 load format 649
DB2 UDB Version 8.1 installation 546
DB2 Web service consumer

Creating a wrapper UDF 301
Enabling 295
Prerequisites 295
Testing the functions 300

662 XML for DB2 Information Integration

Using the UDFs 295
DB2 Web services

Deployment 531
Testing 290

DB2 XML Extender
See XML Extender

DB2_DJ_COMM 308, 332
DB2ConnectionPoolDataSource 534
db2enable_soap_udf 546
db2java.zip 534
DBA2191E 313
Decompose XML documents 101
Decomposition 7

See shredding
Decomposition DAD file 147
Deleting XML documents in an XML column 140
Denormalized 59
Design the Input From page 515
DHTML 577
DIRECTORY_PATH 137, 316
DIRECTORY_PATH option 45
Discovering a Web service 499
Discovering the business entity 497
DLLs 42
DocBook 7
DOCTYPE 561
DOCTYPE declaration 192
DOCUMENT 'COLUMN' 318
DOCUMENT 'DIRECTORY' 317
DOCUMENT 'URI' 318
DOCUMENT ’FILE’ 317
Document Access Definition 103, 145, 222, 478

See also DAD
DOCUMENT COLUMN 137
Document fragments 124
Document management 18
Document model file 40
Document Object Model

See also DOM
Document Object Model (DOM) 573, 577, 579

API 577, 579
DocumentFragment 577
DOM HTML 577

Document prolog 192
Document Type Declaration 561–562
Document Type Definition 259, 560
Document Type Description 104
Documentation 80
Document-centric 5

DOM 6, 20, 94, 587
Element interface 180
Node interface 180
See also Document Object Model
Shredding using 180

DTD 12, 64, 75, 79, 104, 107, 259, 560, 584
RDB node mapping DAD 609
SQL mapping DAD 603
XML column DAD 601

DTD editor 338
DTD file 186
DTD for DAD documents 600
DTD references 233
DTD_REF 430
DTD_REF table 103, 107
DTDHandler 620
dvalidate() 233, 259
dxxadm 98, 102

enable_collection 175
enable_column 108
enable_db 102, 546

dxxGenXML 29, 237
dxxGenXMLCLOB 237
dxxGenXMLClob 28
dxxInsertXML 176–177
dxxisrt 177
DXXQ045E 155
dxxRetrieveXML 28, 237
dxxRetrieveXMLCLOB 237
dxxRetrieveXMLClob 28
DXXROOT_ID 106, 108, 127
dxxshrd 177, 427
dxxShredXML 176, 428

E
EAR application 505
ebXML 60
e-commerce 18
Electronic Data interchange 270
Electronic Data Interchange (EDI) 555
Element content 5, 153
Element hierarchy 69
Element interface 180
Element mapping using text_node 230
element_node 30, 226–227
Elements 562
Empty content 153
Enable an XML collection 175

 Index 663

Enable an XML column 108
Enable the database for XML 28
Enable Web service consumer UDFs 546
enable_column 108
Enclosing tag 469
endDocument 196
endElement 194, 621
Entities 564
EntityResolver 620
Envelope 87
ErrorHandler 620
Exporting XML documents 265
exrtactCLOB(s) 120
Extensibility 4
eXtensible Markup Language

see XML
Extensible Stylesheet Language 248
external DTD 562
External entity reference 84
extractChar(s) 120
extractCLOB() 37
ExtractCLOB(s) 123
extractCLOB(s) 120
extractDate(s) 120
extractDouble(s) 120
Extracting UDFs

Scalar 119
Table 119

extractInteger(s) 120
Extraction UDFs 119
extractReal(s) 120
extractSmallint(s) 120
extractTime(s) 120
extractTimestamp(s) 120
extractVarchar(s) 120
Extractxxx 129

F
FEDERATED 96
Federated system 42
Federated view 314
File system 94

Accessing data 94
Accessing via XML wrapper 95
Storage considerations 94

FILE_PATH 310
FILE_PATH option 45
Filter dialog 341

Filtering XML documents 126
First normal form 81
FIXML 60
Flattened element type 68
Flattening XML documents 197
FOR SERVER clause 44
Foreign key 70, 73
FOREIGN_KEY 314
From WSDL to Web service consumer function 296
Full-text search 17, 38
Fundamental unit of storage 19

G
Generate a DAD file 370
Generate a DTD file 366
Generate a proxy 381
Generate XML from an SQL statement 356
Generic schemas 85
getNewAttributes 257
getNewQName 257
Global XML schema 52, 58, 70

H
Hierarchical 10
Hierarchy level 137
HTML 554–555, 559
HTTP 275, 555
HTTP server 540

I
IBM HTTP Server 549
IBM UDDI Test Registry 494–495
ID attributes 83
IDREF 588
IDREF attribute 79
IDREF attributes 83
Implementing XMLFilters 620
Import a DADX 483
Import database objects 342
Import utility 207
Importing a WSDL document 501
Importing XML documents 265
INCITS 210
Information Integrator 178
Inner wrapper element type 71
Insert, delete, extract, and update functions 114
Install an EAR file 538

664 XML for DB2 Information Integration

Installation
DB2 Information Integrator 547
DB2 Version 8.1 546
Verification 550
WebSphere Application Server 548
WebSphere Studio Application Developer 550

INSTANCE_PARSE_TIME 331
Inter-object relationships 586
Interoperability 271
ISO SQL specification 24, 219
ISO/IEC 24, 219

J
J2EE Hierarchy view 533
JAR files 281
Java class libraries

SQLToXML 339
XMLToSQL 339

Java Proxy 503
Java Server Pages 513
java.util.Hashtable 624
java.util.Property 624
JDBC

driver 534
path 534

JDBC DRIVER PATH 534
JDBC Provider 534
JDOM 6
JMS 533
JSP 513

K
Keyref element 79

L
Language-independent 276
Leaf node 70
Legacy systems 273
Life sciences 4
Load utility 207
Local XML schema 52, 58

Creating a database schema from 72
Creating from global schema 70

Localhost machine 501
Location path 131, 142
Location path expression 33
Long-running transactions 18

M
Many-to-one relationship 82
Map relational table to XML 365
Map SQL query to XML 369
Mapping

Bi-directional 13
Object-relational 13
RDB node 28
SQL 28
Table-based 13
XML to relational 308

Mapping a reference 592
Mapping an XML schema 43
Mapping attributes 590
Mapping complex element types 590
Mapping complicated content models 595
Mapping references to complex element types 593
Mapping references to simple element types 591
Misconception 6
Missing primary keys 90
Mixed content 5, 153–154
Model groups 77
MQSeries 49
multi_occurrence 105, 109, 129, 164, 231, 233,
441
Multiple occurring elements or attributes 119
Multi-valued 10
Multi-valued attributes 90
Multi-valued elements 90

N
NameChanger 256, 620, 623
Namespace prefix 566
Namespace URI 635
Namespaces 566
NameTester 256, 627
Native XML database 17, 20–21
Native XML databases 10
Native XML storage 51, 63

Products 54
NCSA 558
Net Search Extender 17, 37, 102
Nickname 43, 96, 135
NMTOKEN 588
NO_OVERRIDE 243
Node 577
Node interface 180
Non-root nickname queries 46

 Index 665

Normalization 80
First normal form 81
Second normal form 82
Third normal form 82

NOT NULL option 169
Notations 565

O
OASIS 75
Object-relational mapping 13, 42, 58, 581, 585

Summary 597
One-to-many relationship 69, 82
Optional child element 595
ORDER BY clause 31, 214
OrderBy 171
orderBy attribute 226
Outer wrapper element type 70
Override 243
overrideType 242
Overriding values in the DAD file 242

P
Packaging 284
Parameter Entities 565
Parent element type 68, 590, 593
Pattern 249
PCDATA 66, 70, 79, 258, 372, 469, 562, 588
PCDATA-only content 5
portType 299
Primary key 69, 73, 81
Primary key in table of child element type 89
Primary key/foreign key relationships 586
PRIMARY_KEY 314
Private registry 494
Processing instructions 233
Proxy 381
Publish a Web service 497
Publishing 7, 21, 53

Best practices 245
DAD files 222
Writing your own code 245
XML Extender functions 221

Q
Query languages

SQL/XML 15
XQuery 16

Querying XML documents 54

R
-r option 105
RDB Node 223
RDB node

Condition tag 149
Join condition 149

RDB node mapping 28, 32, 146
RDB node mapping DAD documents 609
RDB to XML mapping editor 339
RDB_node 32, 165, 226, 231

attribute_node 149
Orderby attribute 171
text_node 150
Top element 149

RDB_node DAD file 229
RDB_node mapping 378
RDB_node mapping DAD 225
RDBnodes 53
Recursion 158
Recursive element types 88
Redbooks Web site 660

Contact us xxxiii
Reference mapping 67
Reference to an element type 595
Referential constraint 73
Referential constraints 79
Register XML wrapper 308
Registering

Server 42
Wrapper 42

RELAX NG 75, 79
Re-parsing 54
Repeating child elements 81
requirements 271
Re-serialize 20
retrieveXML command 472
Retrieving elements and attributes 117
Retrieving XML documents 266
RMX file 370
ROLLBACK 175
Root element type 66
ROOT ID 105
Root nickname 311
Root nickname queries 46
root_id 127
Row element type 44

666 XML for DB2 Information Integration

Runtime Connection page 515

S
SAX 6, 60, 94, 248

AttributeList 574
ContentHandler interface 193
DocumentHandler 574
DTDHandler 574
endDocument 196
endElement 194
ErrorHandler 574
Locator 574
NameChanger 256
NameTester 256
Parser 574
Shredding with 179
startDocument 196
startElement 194
TableCutter application 205

SAX application 620
SAX events 193, 620
SAX parser 193, 620
SAX versus DOM 180
SAXCutter 193, 204, 620, 635, 642
Scalar extracting UDFs 119
Scenario

Application Developer tools 453
Automatic nickname discovery 406
Broker Web client application 505
brokerSales SQL statement 489
Building and testing the scalar UDF 523
Composing XML documents 432
Create a table Web service UDF 525
Create a Web client to use the UDFs 527
Create an XSL stylesheet 506
Create scalar Web service UDF 519
Create the Web service client 502
Creating the proposedPremium SQL query 512
DAD file with AD 455, 458
DB2 Control Center 406
Discovering the Insura Web service 499
DTD file with AD 457
Exploiting side table 447
Federated view 413
Gather information for investments 399
Generate Web pages from SQL queries 513
Generate XML documents 398
Import a WSDL document 501

Insurance policy DTD 417
Insurance quotes 396
Introduction 394
policyQuote SQL statement 485
Process insurance policy 397
Publishing from XML column data 447
Publishing Insura Web service 494
Publishing the business entity 496
Publishing using RDB_node mapping DAD 442
Publishing using SQL statement mapping DAD
439
Publishing using SQL/XML 433
RDB to XML mapping editor 464
Relational model to be shredded into 420
Running the Web service 508
Sample report 454
Setting up 402
Shredding details 423
Shredding implementation details 417
Shredding sequence 422
Shredding XML documents 416
Storing insurance policies 416
Storing intact in XML columns 429
Testing the Insura Web application 517
Testing the XSL transformation 508
The players 395
Using a data source for DB2 Web services 509
Using Application Developer 459
Using the test harness 471
Web application with DB2 XML access 512
Web service consumer 399, 449, 518
Web service provider 403, 479
Web service requestor 449, 518
Web services implementation overview 476
Wrapper UDF 451
XML collection 399
XML column 399
XML column details 430
XML nicknames 414
XML wrapper 403

scenario-readme.txt 402
Scenarios

Create mappings 465
Schema 6

Matching database and XML schema 64
XML 6

Schema validation during shredding 171
Schemas that contain actions 87
Schemas that encode data as order 86

 Index 667

Schemas that use element types for data types 88
Schemas with role attributes 86
Schematron 75
Second normal form 82
Semantic validation 262
Semi-structured data 5, 18, 51
Serialization 14
Serialized object 13
Server 96
Server perspective 388
Service broker 271–272
Service Deployment Configuration page 491
Service endpoint 298
Service endpoint URL 300
Service provider 271–272
Service requestor 271–272
Service-oriented approach 270
Service-oriented architecture 271

concepts 271
Properties 275

Service-oriented architecture overview 271
Servlet 283
SetupDB.bat 402
SetupUDF.bat 402
SetupXMLColumn.bat 402
SetupXMLWrapper.bat 402, 405
SetupXMLWrappercs.bat 405
SHOW SQL button 412
Shredding 7, 21, 397

Commit control 174
Configuration and execution 175
Hints and tips 153
Into different columns of one table 161
Into multiple tables 162
Mixed content 154
Multi occurrence with a wrapper element 164
Non-unique names 155
Parts of an XML document 169
Planning and design 146
RDB node mapping 146
Recursion 158
Sample DAD file 147
SAX example 181
SQL mapping 146
UPDATE considerations 161
Using DOM 180
Using SAX 179
Using XML Extender 146
Using XML wrapper 178

Validation 171
When 144
XML collection 144
XML Extender example 184
XML Wrapper 47

Shredding overview 144
Sibling order 79
Side tables 100, 102, 126, 140

Retrieving data using 117
Side tables indexes 110
Simple API for XML 248, 573
Simple child element 72
Simple content 153
Simple location path 244
Simple Object Access Protocol

see SOAP
Simple type 588
Simple XSL stylesheet 250
SOAP 87, 274–275
SOAP action 300
SOAP body 300
SOAP envelop 522
SOAP interface 298
SOAP UDFs 452
soapAction 299
soaphttp 296
Specify join conditions 467
Specify non-root conditions 470
SQL Builder 339, 350
SQL Composition 223
SQL composition 231
SQL composition DAD 224
SQL mapping 28, 146
SQL mapping DAD documents 603
SQL Query Builder 485, 512
SQL Query wizard 339
SQL Statement Wizard 485
SQL/XML 24, 53, 58, 210, 246, 399

More complex example 216
XML data type 219
XML2CLOB 211
XMLAGG 210, 214
XMLATTRIBUTES 210
XMLCONCAT 210, 213
XMLELEMENT 210
XMLFOREST 210, 212
XMLNAMESPACES 210
XXMLATTRIBUTES 210

SQL/XML functions 26

668 XML for DB2 Information Integration

SQL_OVERRIDE 243
SQL0901N 313
SQLSTATE

58004 313
sqluimpr 208
sqluload 208
startDocument 196
startElement 194, 196
startElement event 620
Stored procedure builder 339
Stored procedures

dxxGenXML 28
dxxGenXMLClob 29
dxxInsertXML 29
dxxRetrieveXML 29
dxxRetrieveXMLClob 29
dxxShredXML 29

storeXML command 473
Storing data outside of DB2 94
STREAMING 332
Streaming 319
StringWriter 642
Structural queries 40
Structures 77
svalidate 259
svalidate() 233
SVALIDATE() UDF 174

T
-t option 108
Table extracting UDFs 119
table tag 230
Table UDF 123
Table-based mapping 13, 53, 581–582
TableCutter 204, 649
Template rules 249
Template-based language 146
Test harness 372–373, 469
Testing DADX Web services 492
Testing the Web service 493
Testing UDFs with SQL statements 356
text_node 30, 150, 228, 230
Third normal form 82
Transformation 59, 154, 248

Using SAX 256
Why 253

Tree-structured XML documents 180

U
UDDI 274
UDDI Business registry 494
UDDI registry 384, 501
UDF wrapper 450
Uniform Resource Identifier 566
Uniqueness constraint 73
Unit Test UDDI 495
Universal description, discovery, and integration

see UDDI
Universal Reference Identifier 307
Unsupported XML schema structures 88
UPDATE 138
Update UDF 138
Update() 138
updateDTD_REF command 472
Updating relational tables from XML 359
Updating XML documents in an XML column 138
URI 307, 318, 408, 566
USAGE_COUNT column 109
User-defined functions 114

V
-v option 108
Validation 224, 259

Automatic 261
DAD Checker 262
DAD file 262

Validation of XML documents 148
validity 573
Validity checking 97
VARCHAR 99
Verifying the installation 550
Views 135
Visible XML 9

W
W3C 6, 16
WAR file 286
Web application

Deployment 287
Skeleton 281

Web project 340, 480
Web service 396, 478

Create SQL query 483
Parametric SQL statements 488

Web service architecture
Characteristics 273

 Index 669

Web Service Binding Proxy Generation page 491
Web Service Client wizard 502
Web service consumer 294, 399
Web Service DADX Group properties page 491
Web Service SOAP Binding Mapping Configuration
page 492, 504
Web Service Test page 492, 504
Web service tools 375
Web Service wizard 340
Web Service XML to Java Mappings page 491, 504
Web services 270, 276

Deployment with Application Developer 532
Deployment without Application Developer 532
Running them 540

Web services description language
see WSDL

Web Services Explorer 384, 493, 495
Web services group 282
Web services interoperability compliance level 479
Web Services Object Runtime Framework
277–278, 532
web.xml 281
WEB-INF folder 281
WebSphere Administrative client 290
WebSphere Application Server 278, 532, 549
WebSphere Application Server installation 548
WebSphere Application Server Test Environment
505
WebSphere MQ 49
WebSphere repository 289
WebSphere Studio 72, 171, 569
WebSphere Studio Application Developer installa-
tion 550
WebSphere Studio family 49
Well-formed 560
Well-formedness 573
White space 102
WORF 277–278, 385, 396, 403, 532

Auto-deploy 293
Installation 279
Test facility 293

WORF test facility 385
Wrap a UDF 301
Wrapper 135
Wrapper element types vs. XML wrapper 596
Wrapper elements 81
Wrapper elements type 70
WSAD 171
WSDL 274, 296, 501, 520

WSDL file 387
WS-I 479

X
Xalan 253
Xcollection 176, 187, 224
Xcolumn 104
XHTML 17, 26
XLink 84
XML 274

DB Initiative 18
XML collection 28, 101, 144, 398

enable_collection 175
XML column 27, 33, 54, 100

Best practices 140
Cast functions 114
DAD file 104
Default_view option 108
Deleting documents 140
Enabling 108
Enabling the database 102
Inserting the DTD 107
Retrieve, extract, update, delete 114
Retrieving entire XML document 114
Root_id option 108
Tablespace option 108
Updating documents 138
Using XML wrapper with 133
When to use 102

XML columns 398
XML cutter 192
XML data model 10, 19
XML data source

Database column 318
Fixed directory 316
Hard-coded file name 315
Parameterized directory name 317
Parameterized file name 316
URI 318

XML data type 24, 219
XML declarations 233
XML document

Filtering 126
Validity checking 97

XML documents
Data-centric 5
Document-centric 5

XML editor 338–339

670 XML for DB2 Information Integration

XML Extender 54, 246
Extract UDFs 123
Storing intact XML 101
Table UDF 123
UDFs 114
User-defined distinct types 98

XML Extender data type 101
XML Extender decomposition stored procedures
176
XML Extender publishing

Controlling number of documents 231
Document header 233
General constructs 224
Mapping the relational to XML 228
Scoping the content 224
Shaping the structure 226
Transforming generated documents 234
Validating generated documents 233

XML Extender publishing stored procedures 237
XML Extender storage methods 100

XML collection 100
XML column 100

XML Extender stored procedures
dxxGenXML 237
dxxGenXMLCLOB 237
dxxInsertXML 176
dxxRetrieveXML 240
dxxRetrieveXMLCLOB 240
dxxShredXML 176

XML Extender UDFs
Content 267
Content() 117
dvalidate 233, 260
extractChar(s) 120
ExtractCLOB(s) 124
extractDate(s) 120
extractDouble(s) 120
extractInteger(s) 120
extractReal(s) 120
extractSmallint(s) 120
extractTime(s) 120
extractTimestamp(s) 120
Extractxxx 129
Insert into normal DB2 column 98
svalidate 174, 234, 260
XMLCLOBFromFile 266
XMLCLOBFromFile() 99
XMLFileFromCLOB 266
XMLFileFromCLOB() 99

XMLFileFromVarchar() 99
XMLVarcharFromFile 266
XMLVarcharFromFile() 99
XSLTransformToClob 234, 255
XSLTransformToFile 255

XML for Tables 17
XML mapping editor 339
XML namespace 76
XML namespaces 61
XML parsers 559
XML perspective 338, 586
XML query language 13
XML schema 58, 62, 73, 75, 344, 583

Constraints 79
Creating database schema from 70
Deriving database schema from 62
Design guidelines 76
Designing 74
Documentation 80
Global 58
IDREF attributes 79
Industry standard 60, 74
Local 58
Mapping 12
Matching database schema 64
Normalizing 80
Structures 77
Styles to avoid 85
Unsupported schema structures 88
Using with DB2 XML Extender 70

XML Schema Definition language 259
XML Schema editor 338
XML schema language 75
XML Schemas 6, 567, 589
XML to XML transformation 363
XML tools walkthrough 340
XML user-defined types 101
XML wizard 339
XML wrapper 42, 94, 146, 396, 403, 596

Accessing non-root nicknames 313
Accessing XML documents 95
Alter nickname 319
Best practices 331
Create nickname 309
Creating the server 309
DB2 Control Center 320
Details 306
DIRECTORY_PATH option 137, 316
DOCUMENT COLUMN option 137

 Index 671

Federated views for non-root nicknames 314
FILE_PATH 310
FILE_PATH option 316
FOREIGN_KEY 314
Introduction 306
Non-root nickname 311
PRIMARY_KEY 314
Register 308
Registering 308
Retrieving data from XML columns 133
Root nickname 310
Shredding using 178
Streaming option 320
Top-level XML element 327

XML_OVERRIDE 243
XML_USAGE 175
XML_USAGE table 29, 108
XML2CLOB 27, 211, 439
XMLAGG 24, 27, 210, 214, 436
XMLATTRIBUTES 24, 210–211
XML-aware full-text search 38
XML-aware structural search 38
XMLCLOB 33, 54, 98–99, 101, 115, 119
XMLCLOBFromFile 110, 266
XMLCLOBFromFile() 99
XMLCONCAT 24, 27, 210, 213
XMLDBCLOB 98, 102
XMLELEMENT 24, 210
XML-enabled database 11, 21
XML-enabled databases 9, 12
XML-enabled storage 51, 63

Products 52
XMLFILE 33, 54, 98–99, 102, 134
XMLFile 119
XMLFileFromCLOB 266
XMLFilefromCLOB 110
XMLFileFromCLOB() 99
XMLFileFromVarchar 110, 266
XMLFileFromVarchar() 99
XMLFilter 256, 622, 642
XMLFilterImpl 620–621
XMLFilters 620
XMLFOREST 24, 210, 212
XMLNAMESPACES 210
XMLReader 194, 205, 257, 620–622
XML-to-relational mapping 308
XMLVARCHAR 33, 54, 98–99, 101, 115
XMLVarchar 119
XMLVarcharFromFile 110, 266

XMLVarcharFromFile() 99
XPATH 105, 310
XPath 6, 19, 40, 248, 308, 568
XPATH clause 44
XPath expression 79
XPath expression wizard 339
XPATH_EVAL_TIME 331
XQuery 6, 19, 584
XSD 259, 344
XSL 234, 248, 569
XSL Debug perspective 338
XSL directive 252
XSL editor 338
XSL Formatting Objects 248
XSL stylesheet

Example 250
XSL tools 339
XSL transformations 361
XSL-FO 248
XSLT 52, 59, 85, 196, 248, 585, 649

Action 249
Built-in template rule 252
Pattern 249
Template rules 249

XSLT stylesheet 201
XSLT transformation 200
XSLTransformToClob 234, 255
XSLTransformToFile 255

672 XML for DB2 Information Integration

(1.0” spine)
0.875”<->

1.498”
460 <->

 788 pages

XM
L for DB2 Inform

ation Integration

®

SG24-6994-00 ISBN 0738490032

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

XML for DB2
Information Integration

Marrying XML
documents and
databases

Scenarios of XML
usage

Using IBM
WebSphere Studio
Application
Developer to build
Web Services and
XML

In many organizations, relational databases are the backbone for data
storage and retrieval. Over the last couple of years, XML has become
the de facto standard to exchange information between
organizations, as well as between departments or applications within
the same organization. Since data tends to live in databases, it needs
to be converted from a relational format into an XML format when
involved in those data exchanges, as well as converted (back) from
XML into a relational format for storage, or for handling by other
applications.
How can we achieve this? This IBM Redbook describes how to design
the mapping between XML and relational data, and vice versa, to
enable a flexible exchange of information.
IBM provides a number of products to help you bridge the gap
between XML and its relational database, DB2. The DB2 engine itself
provides support to generate XML fragments from relational data
through the use of SQL/XML built-in functions. DB2 also provides the
DB2 XML Extender. It allows you to perform XML composition, like
SQL/XML, but also provides functionality to decompose XML
documents and store XML documents intact inside the database. XML
Extender also provides a set of transformation and validation
functions. Another option to work with XML is to use the XML
wrapper, a part of the set of non-relational wrappers of DB2
Information Integrator. This redbook also looks at the IBM tools
available to assist you when dealing with XML, specifically
WebSphere Application Developer and DB2 Control Center.
To add a more practical angle, these functions and products are
illustrated through the development of a simple application.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Figures
	Tables
	Examples
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Overview
	Chapter 1. XML and databases
	1.1 Why use XML with a database?
	1.2 A common misconception
	1.3 How is XML used with databases?
	1.4 XML-enabled database: using XML to exchange data
	1.4.1 XML as a data exchange format
	1.4.2 Mapping a database schema to an XML schema

	1.5 Native XML DB: managing documents and semi-structured data
	1.5.1 Use cases
	1.5.2 Technical definition of a native XML database

	1.6 Summary

	Chapter 2. XML services in DB2 and DB2 Information Integrator
	2.1 SQL/XML
	2.1.1 XML data type
	2.1.2 SQL/XML functions
	2.1.3 XML2CLOB function

	2.2 DB2 XML Extender
	2.2.1 XML collections
	2.2.2 XML columns

	2.3 Net Search Extender
	2.3.1 Creating indexes
	2.3.2 Full-text searches
	2.3.3 Structural queries

	2.4 XML wrapper
	2.4.1 Registering a wrapper and server
	2.4.2 Mapping an XML schema
	2.4.3 Identifying an XML document
	2.4.4 Querying an XML document through the XML Wrapper
	2.4.5 Shredding an XML document using the XML Wrapper

	2.5 WebSphere MQ
	2.6 WebSphere Studio
	2.7 What products should I use?
	2.7.1 XML-enabled storage or native XML storage?
	2.7.2 Products for XML-enabled storage
	2.7.3 Products for native XML storage

	Chapter 3. Designing XML and database schemas
	3.1 Local and global XML schemas
	3.2 What schemas do you need to design?
	3.2.1 On using industry-standard XML schemas
	3.2.2 You have a database schema
	3.2.3 You have an XML schema
	3.2.4 You have both database and XML schemas

	3.3 Does my XML schema match my database schema?
	3.4 Creating an XML schema from a database schema
	3.4.1 The algorithm
	3.4.2 Using the generated XML schema with DB2 XML Extender

	3.5 Creating a database schema from an XML schema
	3.5.1 Creating a local XML schema from a global XML schema
	3.5.2 Creating a database schema from a local XML schema

	3.6 Designing XML schemas
	3.6.1 Who will use the XML schema?
	3.6.2 What XML schema language should you use?
	3.6.3 General guidelines for designing XML schemas
	3.6.4 Normalizing your XML schema
	3.6.5 XML schema styles to avoid
	3.6.6 Unsupported XML schema structures by DB2 products

	Part 2 Processing XML documents
	Chapter 4. Storing whole XML documents
	4.1 Storing outside of DB2 in the file system
	4.1.1 File system storage considerations
	4.1.2 Accessing data stored in the file system

	4.2 Storing XML in DB2 without using XML columns
	4.2.1 Using DB2 data types without XML Extender functions
	4.2.2 Using XML Extender UDFs to insert XML documents into a normal DB2 column

	4.3 DB2 XML Extender storage methods
	4.4 Storing intact XML documents with XML Extender
	4.4.1 Using the XML Extender data type
	4.4.2 When to use an XML column to store data
	4.4.3 Building the DAD file
	4.4.4 Creating the table that will contain the XML column
	4.4.5 Inserting the DTD into the DTD_REF table
	4.4.6 Enabling the XML column
	4.4.7 Creating indexes on the side tables
	4.4.8 Using XML Extender UDFs to insert XML documents

	Chapter 5. Working with XML documents stored in XML columns
	5.1 Retrieving, extracting, updating, and deleting XML columns
	5.2 Retrieving XML documents stored in XML columns
	5.2.1 Retrieving the entire XML document
	5.2.2 Retrieving elements and attributes from XML documents
	5.2.3 Retrieving fragments from data stored in an XML column
	5.2.4 Filtering the XML documents you want to retrieve

	5.3 Retrieving XML columns using an XML wrapper
	5.4 Updating XML documents stored in an XML column
	5.4.1 Using the SQL UPDATE statement
	5.4.2 Using the Update() UDF

	5.5 Deleting XML documents stored in an XML column
	5.6 Best practices
	5.6.1 Use side tables as much as possible
	5.6.2 Where to filter
	5.6.3 Using location path expressions

	Chapter 6. Shredding XML into relational tables
	6.1 Shredding overview
	6.1.1 What is shredding?
	6.1.2 When should you use shredding?

	6.2 Shredding using DB2 XML Extender
	6.2.1 Shredding - planning and design
	6.2.2 Planning and design: hints and tips
	6.2.3 Shredding: configuration and execution

	6.3 Alternatives to shredding with DB2 XML Extender
	6.3.1 Using the XML wrapper
	6.3.2 Writing your own code

	6.4 Shredding with XML Extender: a step-by-step example
	6.4.1 Step 1 - XML enabling of your database
	6.4.2 Step 2 - Creating the DAD file
	6.4.3 Step 3 - Enablement of the XML collection
	6.4.4 Step 4 - Decomposing the XML data into relational tables
	6.4.5 Step 5 - Checking the result using the SELECT statement

	Chapter 7. Bulk processing of XML documents
	7.1 An XML cutter to process repetitive documents
	7.1.1 The SAXCutter sample tool
	7.1.2 The CutterTester sample application
	7.1.3 Writing your own application

	7.2 Using XSLT for bulk inserts
	7.2.1 Flattening XML documents
	7.2.2 Converting from XML to the DB2 load format
	7.2.3 The XSLT stylesheet
	7.2.4 Cutting the flattened document
	7.2.5 Importing or loading the data

	Chapter 8. Publishing data as XML
	8.1 Publishing data using SQL/XML
	8.1.1 Constructing elements and attributes
	8.1.2 A more complex example
	8.1.3 Behind the scenes: the XML data type

	8.2 Publishing data with XML Extender
	8.2.1 DAD files
	8.2.2 Publishing XML documents using a DAD file
	8.2.3 DB2 XML Extender publishing stored procedures
	8.2.4 Writing your own code to publish data as XML

	8.3 Best practices
	8.3.1 SQL/XML
	8.3.2 XML Extender

	Chapter 9. Additional XML functionality
	9.1 Transformation
	9.1.1 XSL, stylesheets and transformation
	9.1.2 Why transform?
	9.1.3 Transforming XML documents with SAX

	9.2 Validation
	9.2.1 Validating XML documents using UDFs
	9.2.2 Validating the DAD file

	9.3 Importing and exporting XML documents using UDF
	9.3.1 Importing or storing XML documents
	9.3.2 Exporting or retrieving XML documents

	Chapter 10. Web services in DB2
	10.1 Introduction to Web services
	10.1.1 Motivation
	10.1.2 Requirements for a service-oriented architecture
	10.1.3 Service-oriented architecture overview
	10.1.4 Characteristics of the Web service architecture
	10.1.5 Web services approach for a SOA architecture
	10.1.6 Properties of the service-oriented architecture
	10.1.7 More information

	10.2 DB2 as Web service provider
	10.2.1 Web Services Object Runtime Framework
	10.2.2 Installing WORF on IBM WebSphere Application Server
	10.2.3 Creating DB2 Web services
	10.2.4 Deploying the Web application
	10.2.5 Starting the enterprise application
	10.2.6 Testing the DB2 Web services
	10.2.7 DADX and auto-deploy feature of WORF
	10.2.8 WORF test facility

	10.3 DB2 as Web service consumer
	10.3.1 Prerequisites
	10.3.2 Enabling DB2 Web service consumer UDFs
	10.3.3 Using the Web service consumer UDFs
	10.3.4 Web service consumer UDFs
	10.3.5 From WSDL to Web service consumer function
	10.3.6 Testing the Web service consumer functions
	10.3.7 Creating a wrapper UDF to Web services consumer function

	Chapter 11. XML wrapper
	11.1 Introducing the XML wrapper
	11.2 XML wrapper explained
	11.2.1 Using the XML wrapper
	11.2.2 Registering the XML wrapper
	11.2.3 Creating the server
	11.2.4 Creating nicknames
	11.2.5 Accessing non-root nicknames
	11.2.6 Creating federated views for non-root nicknames
	11.2.7 Options for specifying the XML data source for nicknames
	11.2.8 Altering XML nicknames

	11.3 Working with XML wrapper via DB2 Control Center
	11.4 Best practices

	Part 3 XML tools for database systems
	Chapter 12. XML and database tools in Application Developer
	12.1 Application Developer tools overview
	12.1.1 Perspectives
	12.1.2 Authoring and generation tools
	12.1.3 Preparation

	12.2 XML tools walkthrough
	12.2.1 Creating a database connection
	12.2.2 Database editors
	12.2.3 XML Schema, table DDL, and DDT
	12.2.4 Creating an SQL statement
	12.2.5 Creating a user-defined function (UDF)
	12.2.6 Generating XML from an SQL statement
	12.2.7 Updating relational tables from XML
	12.2.8 XSL transformations
	12.2.9 Mapping the relational table to XML
	12.2.10 Mapping the SQL query to XML
	12.2.11 Generating a DAD file

	12.3 Web services tools
	12.3.1 Creating a DADX group configuration
	12.3.2 Creating a DADX file from an SQL statement
	12.3.3 Creating a Web service from DADX

	Part 4 Worked examples
	Chapter 13. Worked scenario
	13.1 Scenario introduction
	13.2 Scenario 1: Insurance quotes
	13.3 Scenario 2: Processing the insurance policy
	13.4 Scenario 3: Generating XML documents
	13.5 Scenario 4: Gathering information for investments

	Chapter 14. Scenario implementation using DB2 functionality
	14.1 Setting up the system for the scenario
	14.2 Scenario 1: Web service provider
	14.2.1 Overview
	14.2.2 The XML wrapper
	14.2.3 Context
	14.2.4 XML wrapper implementation

	14.3 Scenario 2: storing insurance policies
	14.3.1 Shredding XML documents into relational tables
	14.3.2 Shredding implementation details
	14.3.3 Storing XML documents intact in XML columns
	14.3.4 XML column implementation details

	14.4 Scenario 3: composing XML documents
	14.4.1 Publishing XML from relational
	14.4.2 Publishing XML from relational data implementation
	14.4.3 Publishing XML data from XML column information

	14.5 Scenario 4: Web service requestor
	14.5.1 Context
	14.5.2 Implementation

	Chapter 15. Scenario with Application Developer tools
	15.1 Sample scenario report
	15.1.1 DAD file
	15.1.2 DTD file
	15.1.3 DAD file

	15.2 Using Application Developer for the scenario
	15.2.1 Creating project and folders
	15.2.2 Connecting to the database and importing a local copy
	15.2.3 Creating the DTD
	15.2.4 Creating the RDB to the XML mapping session
	15.2.5 Using the RDB to XML mapping editor
	15.2.6 Enabling DB2 for the XML Extender
	15.2.7 Using the test harness to execute the DAD files

	Chapter 16. DB2 Web services and XML with Application Developer
	16.1 Insurance scenario
	16.1.1 Business context
	16.1.2 Technical implementation overview
	16.1.3 Preparing for the insurance application

	16.2 Insurance application as Web service provider
	16.2.1 Setting the Web services interoperability compliance level
	16.2.2 Creating the Web project
	16.2.3 Creating the DADX group
	16.2.4 DADX file
	16.2.5 Importing the DADX file
	16.2.6 Creating the SQL query
	16.2.7 Creating the DADX file
	16.2.8 Creating the DADX Web services
	16.2.9 Testing the DADX Web services
	16.2.10 Publishing the Insura Web service to the Test Registry
	16.2.11 Summary

	16.3 Discovering the Insura Web service
	16.3.1 Creating the broker Web project
	16.3.2 Discovering the Web service
	16.3.3 Creating a real client using XSL transformation
	16.3.4 Using a data source for DB2 Web services
	16.3.5 Summary

	16.4 Insurance Web application with DB2 XML access
	16.4.1 Creating the proposedPremium SQL query
	16.4.2 Generating Web pages from SQL queries
	16.4.3 Testing the Insura Web application
	16.4.4 Summary

	16.5 Insurance application as a Web service requestor
	16.5.1 Creating a scalar Web service UDF
	16.5.2 Creating a table Web service UDF
	16.5.3 Creating a Web client that uses the UDFs
	16.5.4 Summary

	Chapter 17. Deployment of DB2 Web services
	17.1 Preparing the WebSphere Application Server
	17.2 Deployment without Application Developer
	17.3 Deployment with Application Developer
	17.3.1 Exporting the enterprise applications
	17.3.2 Configuring the application server
	17.3.3 Installing the enterprise applications in the server
	17.3.4 Starting the enterprise application

	17.4 Running the Web services applications
	17.5 Using a real HTTP server

	Part 5 Appendixes
	Appendix A. Installation
	DB2 V8.1 with FixPak 2
	Enabling a database for XML Extender
	Enabling a database with Web service consumer UDFs

	DB2 Information Integrator
	WebSphere Application Server V5
	Verifying the installation
	Installing FixPak 2

	WebSphere Studio Application Developer V5.1

	Appendix B. Introduction to XML
	What is XML?
	XML business benefits
	Information sharing
	Content delivery

	Technological benefits of XML
	An example of using XML
	Major benefits

	XML concepts
	Document validity and well-formedness
	Document type definition
	Namespaces
	DTD versus XML Schemas

	XPath
	eXtensible Stylesheet Language (XSL)
	Cascading Stylesheets
	XSL = fo: + XSLT
	XSL transformations

	Processing XML using Java
	XML applications
	SAX
	DOM
	SAX or DOM?

	Appendix C. Table-based and object-relational mappings
	Table-based mapping
	Object-relational mapping
	Simple and complex types
	Mapping complex element types
	Mapping attributes
	Mapping references to simple element types
	Mapping references to complex element types
	Mapping complicated content models
	(Not) mapping wrapper element types

	Summary of the object-relational mapping

	Appendix D. DAD DTD reference
	DTD for DAD documents
	XML column DAD documents
	DTD
	Element type and attribute reference

	SQL mapping DAD documents
	DTD
	Element type and attribute reference

	RDB node mapping DAD documents
	DTD
	Element type and attribute reference

	Appendix E. Sample XML Tools
	Using XMLFilters
	Implementing XMLFilters
	Using XMLFilters from a SAX application

	The NameChanger sample
	The NameChanger tool
	The NameTester application

	The SAXCutter sample
	The SAXCutter tool
	The CutterTester application

	The TableCutter tool

	Appendix F. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

