

ibm.com/redbooks

IBM WebSphere and
Microsoft .NET
Interoperability

Edward Oguejiofor
Ken Childers

David Dhuyvetter
Peter Hood
Vijay Mann

Sudhakar Nagarajan
Gerd Sommerhäuser

Application interoperability overview

Component and Web Services
interoperability

Inteoperability scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

IBM WebSphere and Microsoft .NET Interoperability

July 2006

International Technical Support Organization

SG24-6799-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2006)

This edition applies to IBM WebSphere Application Server V6.0 (product number D51HNLL), IBM
Rational Application Developer for WebSphere Software V6.0 (product number D54SDLL), Java 2
Platform, Enterprise Edition (J2EE) 1.4, Microsoft Visual Studio .NET 2003, and the Microsoft
.NET Framework Version 1.1.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
What this redbook is about. xi
What this redbook is not about. xii
The target audience . xii
Structure of this book . xiii
The team that wrote this redbook. xiv
Become a published author . xvi
Comments welcome. xvii

Part 1. Introduction . 1

Chapter 1. Application interoperability overview . 3
1.1 Drivers for application interoperability . 4

1.1.1 Technology transition . 4
1.1.2 Best of breed integration . 5
1.1.3 The extended enterprise . 5

1.2 Application interoperability models . 6
1.2.1 Application architecture model . 6
1.2.2 Interoperability scenarios . 9

1.3 Approaches for interoperability . 25
1.3.1 Service-oriented approach . 25
1.3.2 Class level approach. 25

1.4 Elements of interoperability . 27
1.4.1 Application interoperability stack. 27
1.4.2 Activities . 29
1.4.3 Constraints . 29

Chapter 2. Introduction to J2EE and WebSphere platform 31
2.1 Introduction to J2EE . 32

2.1.1 Roles in J2EE environment. 33
2.1.2 J2EE n-tier architecture. 35
2.1.3 J2EE component model . 38
2.1.4 J2EE application environment. 42
2.1.5 Security in J2EE . 48
2.1.6 Technologies supporting J2EE architecture 52

2.2 The WebSphere platform . 54

© Copyright IBM Corp. 2006. All rights reserved. iii

2.2.1 The WebSphere family . 56
2.2.2 The WebSphere Application Server family . 61
2.2.3 Stand-alone server configuration . 62
2.2.4 Distributed server configuration . 63

2.3 IBM Rational Software Development Platform . 66
2.3.1 IBM Rational Software Development Platform technologies. 68
2.3.2 The IBM Rational Software Development Platform products 72

Chapter 3. Introduction to .NET platform . 91
3.1 The .NET initiative . 92

3.1.1 Windows DNA . 92
3.1.2 Evolution of .NET . 96

3.2 The .NET suite . 100
3.2.1 The .NET Framework . 101
3.2.2 ASP.NET. 115
3.2.3 .NET enterprise servers . 119

3.3 Developing .NET applications . 121
3.3.1 Writing a C# application using text editor . 121
3.3.2 Developing applications using Microsoft Visual Studio .NET 124
3.3.3 Testing . 127

3.4 Deploying and managing .NET applications . 133
3.4.1 Deployment . 134
3.4.2 Runtime. 136
3.4.3 Administration . 136
3.4.4 Windows Services. 138
3.4.5 Object pooling . 139
3.4.6 Remote invocation . 139
3.4.7 Web Services . 140
3.4.8 Transaction management . 141
3.4.9 Security . 142
3.4.10 Load balancing and failover . 144
3.4.11 Application logging . 144

Part 2. Component interoperability . 147

Chapter 4. Introduction to component interoperability 149
4.1 Components overview. 150

4.1.1 Client side components. 150
4.1.2 Server side components . 153

4.2 Introduction to component interoperability . 159
4.3 Why choose component interoperability? . 162

4.3.1 Interface . 162
4.3.2 Transaction . 162
4.3.3 Interaction . 162

iv IBM WebSphere and Microsoft .NET Interoperability

4.3.4 Events . 163

Chapter 5. Designing component interoperability 165
5.1 Application considerations. 166

5.1.1 Interaction and state management . 166
5.1.2 Message format . 175
5.1.3 Life cycle management . 176

5.2 Data considerations. 176
5.2.1 Type mapping . 177
5.2.2 Pass by value or reference . 178
5.2.3 Callbacks. 179

5.3 Control considerations. 179
5.3.1 Factors . 180
5.3.2 Approaches . 181
5.3.3 Products . 182

5.4 Transport considerations. 187
5.4.1 Run on the same machine . 187
5.4.2 Different machines . 190

Chapter 6. Component interoperability scenario 191
6.1 Scenario description . 192

6.1.1 Basic interaction outline . 192
6.1.2 Message format . 193
6.1.3 The calculator service . 194
6.1.4 Messaging using WebSphere MQ . 196
6.1.5 System prerequisites. 201

6.2 Solution overview . 201
6.3 Queues installation and configuration . 203

6.3.1 Install and configure the WebSphere MQ Server on the server . . . 203
6.3.2 Install and configure WebSphere MQ Client on the client. 210

6.4 Create messaging resources, schemas, and classes 211
6.4.1 Create JMS resources in WebSphere Application Server 211
6.4.2 Create the XML schema for messages. 219
6.4.3 Generate the .NET classes corresponding to the XML schema . . . 221
6.4.4 Generate the Java classes corresponding to the XML schema . . . 221

6.5 Developing the .NET Windows Form client application. 222
6.5.1 Developing the interoperability adapter. 222
6.5.2 Developing the Windows Form .NET client. 230

6.6 Developing the WebSphere calculator component 234
6.7 Testing the sample application . 244

6.7.1 Troubleshooting . 246

Part 3. Web Services interoperability . 247

 Contents v

Chapter 7. Introduction to Web Services Interoperability 249
7.1 Introduction to Web Services . 250

7.1.1 Web Services background . 250
7.1.2 Web Services model . 251
7.1.3 Web Services specifications . 253
7.1.4 Web Services architecture model . 261

7.2 Overview of Web Services Interoperability . 262
7.2.1 Profiles . 263
7.2.2 Sample applications . 266
7.2.3 Testing tools . 267

Chapter 8. Designing Web Services interoperability 269
8.1 Elements of Web Services interoperability . 270

8.1.1 Web Services activities . 270
8.1.2 Web Services constraints . 272

8.2 Web Services description . 273
8.3 Web Services invocation . 278
8.4 Web Services constraints . 281

8.4.1 WS-I Basic Profile V1.1. 281
8.4.2 WS-I Attachments Profile V1.0 . 282
8.4.3 WS-I Support. 283
8.4.4 Web Services description constraints . 285

8.5 WS-Security support . 291

Chapter 9. Web Services interoperability scenario 293
9.1 Introduction to the claims processing scenario . 294
9.2 Building the WebSphere Claims Web Service . 295

9.2.1 Configure the Development Environment . 295
9.2.2 Create Web Service from Session EJB . 297
9.2.3 Testing with the Web Services Explorer . 306
9.2.4 Deploying the Web Service. 309

9.3 Building the .NET Claims Web Service . 313
9.3.1 Create Web service project . 313
9.3.2 Import existing classes . 315
9.3.3 Update the Web Service code . 317
9.3.4 Building and deploying the Web Service on IIS6 318
9.3.5 Test the Microsoft .NET Web Service . 320

9.4 The client application. 324
9.4.1 Import the existing client . 325
9.4.2 Update the client to use the .NET Web Service 326
9.4.3 Test the updated client . 336
9.4.4 Update the .NET Service to call WebSphere findCustomer 338
9.4.5 Test the complete solution . 341

vi IBM WebSphere and Microsoft .NET Interoperability

9.5 Web Services security. 342
9.5.1 Encrypting messages to .NET Web Service 342
9.5.2 Signing requests from .NET to WebSphere Web Services. 354

9.6 Difference between the two Web Services . 368
9.6.1 Exception handling . 368
9.6.2 Object array management. 371
9.6.3 Parameter multiplicity specification . 373

Part 4. Appendices . 375

Appendix A. Additional material . 377
Locating the Web material . 377
Using the Web material . 377

System requirements for downloading the Web material 378
How to use the Web material . 378

Abbreviations and acronyms . 381

Related publications . 385
IBM Redbooks . 385
IBM Redpapers . 385
Other publications . 386
Online resources . 386
How to get IBM Redbooks . 390
Help from IBM . 390

Index . 391

 Contents vii

viii IBM WebSphere and Microsoft .NET Interoperability

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information about the products and services currently available in your
area. Any reference to an IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

ClearCase MultiSite®
ClearCase®
ClearQuest®
developerWorks®
DB2®
Everyplace®
IBM®
Lotus®
MQSeries®

ProjectConsole™
PurifyPlus™
Rational Developer Network®
Rational Rose®
Rational Suite®
Rational Unified Process®
Rational®
Redbooks™
Redbooks (logo) ™

RequisitePro®
RUP®
ScriptAssure™
SoDA®
Team Unifying Platform™
Tivoli®
WebSphere®
Workplace™
XDE™

The following terms are trademarks of other companies:

Enterprise JavaBeans, EJB, Java, Java Naming and Directory Interface, JavaBeans, JavaMail, JavaScript,
JavaServer, JavaServer Pages, JDBC, JMX, JRE, JSP, JVM, J2EE, J2SE, Sun, Sun Microsystems, and all
Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Active Directory, ActiveX, BizTalk, IntelliMirror, IntelliSense, Internet Explorer, JScript, Microsoft, MSDN,
Visual Basic, Visual C++, Visual C#, Visual Studio, Windows NT, Windows Server, Windows, and the
Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Pentium, Xeon, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

x IBM WebSphere and Microsoft .NET Interoperability

Preface

In today's enterprise environment, the existence of heterogeneous platforms is a
reality. The need for interoperability between the different technology platforms is
not just a question of desirability but rather one of necessity. Interoperability
between the two of the most widely deployed platforms, the Java™ 2 platform
Enterprise Edition (J2EE™) and .NET, is paramount for most cases.

In this IBM® Redbook, we will explore the different interoperability models for the
IBM WebSphere® and the Microsoft® .NET platforms. This book is a good
source of information for solution designers, application integrators, and
developers who wish to develop solutions that incorporate interoperability of
applications running on WebSphere and .NET platforms.

This book builds on two prior IBM Redbooks™, WebSphere and .Net
Interoperability Using Web Services, SG24-6395, which is available at:

http://www.redbooks.ibm.com/abstracts/sg246395.html?Open

And WebSphere and .NET Coexistence, SG24-7027, which is available at:

http://www.redbooks.ibm.com/abstracts/sg247027.html?Open

What this redbook is about
This redbook is about:

� Application interoperability

It is about business and technology drivers for application interoperability and
the mapping of multi-tiered architecture models to interoperability models.

This book introduces the concept of Application Interoperability Stack, which
defines a structured approach for interoperability considerations and design.
Considerations for interoperability include types of application interaction
(synchronous or asynchronous), activities, and constraints that are applied to
the application interoperability stack to realize interoperability in different
scenarios.

� Component interoperability

It addresses interoperability at the component technology level between
J2EE components (Java Bean and Enterprise Java Bean) and .NET
components which are classes that implement the
System.ComponentModel.IComponent interface.

© Copyright IBM Corp. 2006. All rights reserved. xi

http://www.redbooks.ibm.com/abstracts/sg246395.html?Open
http://www.redbooks.ibm.com/abstracts/sg247027.html?Open

� Web Services interoperability

This redbook is also about realizing one of the main promises of Web
Services, interoperability across platforms, applications, and programming
languages. It focuses on the use of Web Services technologies to achieve
interoperability between applications running on WebSphere and .NET
platforms.

What this redbook is not about
This redbook is not about:

� Competitive comparison of IBM WebSphere and Microsoft .NET

This redbook is not about comparing the two technology platforms for
technical merits and advantages. And when we do make comparisons, it is for
the purpose of identifying the issues that you need to consider as you make
interoperability design decisions.

� Java or C# programming

While this redbook is about interoperability between WebSphere/J2EE and
.NET, it is not a tutorial on how to program in Java or Java 2 platform
Enterprise Edition technologies. Nor does it address programming in C# or
.NET. There are lots of texts that address programming in IBM WebSphere
and Microsoft’s .NET.

� Web Services programming

Though we discuss interoperability using Web Services, it is not the goal of
this redbook to teach you Web Services programming either on IBM
WebSphere or Microsoft’s .NET.

The target audience
This redbook is aimed at the diverse set of professionals who have the
responsibility for designing and implementing interoperability solutions between
applications running on IBM WebSphere and Microsoft’s .NET platforms. These
include IT architects who have to architect the solution, and IT specialists,
application integrators and developers who have to design, code, and test the
interoperability solutions.

xii WebSphere Application Server V6 and .NET Coexistence

Structure of this book
Part 1, “Introduction” on page 1 consists of three chapters that provide an
overview of application interoperability. Starting with the drivers for
interoperability, we identify business and technical reasons for implementing
interoperability between IBM WebSphere and the Microsoft .NET platforms. This
part introduces you to application interoperability models and the concept of
Application Interoperability Stack, which provides the structure for analyzing and
designing interoperability solutions.

To round-up the Introduction part, we introduce the IBM WebSphere and
Microsoft .NET platforms. It is not unusual to discover that while architects,
developers and IT specialists working on one of these platforms have garnered
much experience on that platform, their exposure to the other platform is either
non-existent or just minimal. The introduction provides an overview of both
platforms.

Part 2, “Component interoperability” on page 147 addresses interoperability at
the component level between Java Bean and Enterprise Java Bean components,
and .NET components. This part provides an overview of J2EE and .NET
component models and technologies. We follow this with discussions on
designing component level interoperability solutions and conclude with a sample
component interoperability implementation between WebSphere and .NET.

Part 3, “Web Services interoperability” on page 247 provides an overview of
interoperability using Web Services technologies. This part also includes
discussions on designing Web Services interoperability and a sample Web
Services interoperability implementation between WebSphere and .NET.

Part 4, “Appendices” on page 375 provides additional information and pointers to
related publications.

 Preface xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

The IBM redbook team (left to right): Sudharkar Nagarajan, Vijay Mann, Edward
Oguejiofor, Peter Hood.

Edward Oguejiofor is a project leader at the International Technical Support
Organization, Raleigh Center. He has over 20 years experience in distributed and
enterprise systems architecture and design. His areas of expertise include Web
Services and Service-Oriented Architecture. He also provides technical and
thought leadership in emerging technologies and collaborative services. He
holds a degree in Computer Science from the Imperial College of Science and
Technology.

Ken Childers is a software engineer at IBM Austin working in the WebSphere
System test group since 2001 developing test cases for WebSphere releases. He
has worked on Versions 3.5, 4, 5, 5.1, 6, and 6.x of WebSphere. For the last two
years, he has focused mainly on Web Services and interoperability between
WebSphere and .NET. Prior to 2001, he worked in software development for
several years, developing network stack projects on UNIX® and as a software
consultant working on special projects on customer engagements.

xiv WebSphere Application Server V6 and .NET Coexistence

David Dhuyvetter is a Senior Software Engineer with the WebSphere
Enablement Team. He has been with IBM since 2000, and has over 10 years
experience in distributed transactional systems. David has focused on
application development and migration, and is a co-author of the migration
Redbooks for WebSphere Versions 5 and 6. David received his Master’s of
Science in Computer Science from California State Polytechnic University,
Pomona in 1993.

Peter Hood is a IT Specialist in Australia. He has seven years of experience in
IBM A/NZ Global Services working as an IT Specialist. He has experience in a
number of technologies, ranging from IBM WebSphere and Microsoft .NET to
general Internet based technology. He has utilized a number of different
architectures ranging from high-performance n-tier Web applications to more
traditional client-server models. As a result of his experience, Peter has been
involved in consulting and assisting a number of troubled projects in both short
and long term secondments. He works in teams ranging from several people of
similar skills to large multi-disciplinary teams with a range of backgrounds and
skill-sets. Peter has been involved in the design of many Internet-based
applications and been the lead developer in many of these. He holds a
Bachelor’s degree in Computer Science from Melbourne University and also a
Master’s degree in Internet and Web computing from the Royal Institute of
Technology. Peter has also co-authored Patterns: Implementing Self-Service in a
SOA Environment, SG24-6680.

Vijay Mann is a Technical Staff Member at the IBM India Research Laboratory in
New Delhi, India. He is currently a part of the WebSphere Application Server
eXtended Deployment (XD) development team and has been working on the
various health monitoring features in XD. He has been with IBM since 2003 and
has worked extensively with various WebSphere Application Server offerings in
the areas of BPEL4WS based business processes, Web Services, performance
tuning, and problem determination. His overall experience includes six years of
systems programming in C/C++ and Java using various EAI technologies, such
as CORBA, RMI, and SOAP. He holds a Bachelor’s degree in Electronics and
Telecommunications from Malaviya National Institute of Technology, Jaipur, India
and a Master’s degree in Computer Engineering from Rutgers, The State
University of New Jersey, USA.

Sudhakar Nagarajan is an Advisory Software Engineer, engaged in the
WebSphere quality initiative and focusing on IBM middleware product integration
in the Software group at Research Triangle Park (RTP), North Carolina. Prior to
joining the Software group, he was an IT specialist at Global Services. His
background includes over ten years of application design, development, and
project management on both mainframe-based and distributed systems across a
wide variety of industries and platforms including Government industry. He has

 Preface xv

worked extensively with WebSphere, J2EE and Java programming. He holds a
Master's degree in Manufacturing Engineering".

Gerd Sommerhäuser is an IT Specialist for Microsoft technologies at the IBM
Global Services AMS Organization in Germany. He has been responsible for
architecting several global e-business solutions in different Microsoft
environments over the last years. Being a core member of IBM Germany's .NET
Web Services community, he focuses on his expertise in .NET technologies,
e-business and Internet technologies, and is working as a technical and
architectural consultant in customer projects.

Thanks to the following people for their contributions to this project.

From the International Technical Support Organization, Raleigh Center:

� Saida Davis
� Carla Sadtler
� Margaret Ticknor
� Jeanne S Tucker

From International Technical Support Organization, Poughkeepsie Center:

Cheryl Pecchia

From IBM WebSphere SVT Group, Austin, Texas:

� Huiran Wang
� Tam Dinh

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, and customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

xvi WebSphere Application Server V6 and .NET Coexistence

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

 Preface xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii WebSphere Application Server V6 and .NET Coexistence

Part 1 Introduction

Part 1

© Copyright IBM Corp. 2006. All rights reserved. 1

2 IBM WebSphere and Microsoft .NET Interoperability

Chapter 1. Application interoperability
overview

The heterogeneous computing environment that exists either within
organizations or across the extended enterprise make support for application
interoperability essential for driving end-to-end business processes, providing
seamless experience for customers, and for collaborating with business partners
and suppliers.

In this chapter, we provide an overview of application interoperability starting
from the drivers for interoperability, and the review of different interoperability
models. Finally, we introduce interoperability taxonomy and structures for
analyzing and designing interoperability solutions.

This chapter contains the following sections:

� Drivers for application interoperability
� Application interoperability models
� Approaches for interoperability
� Elements of interoperability

1

© Copyright IBM Corp. 2006. All rights reserved. 3

1.1 Drivers for application interoperability
If your organization is anything like most, your information technology (IT)
department has defined your enterprise architecture, which specifies your IT
principles, guidelines, and standards. And your IT standards include the
technology platform that is approved and mandated for use throughout your
organization. In most cases, the technology platform is either J2EE or .NET, the
two most widely deployed platforms today.

Having standardized on a technology platform, it takes compelling reasons for an
organization to deviate from its established standard. IT organizations usually
find themselves constrained by budget cuts while facing increasing pressures to
deliver solutions to the business. One of the most common challenges that you
face under these conditions is that of developing solutions in a heterogeneous
environment. It quickly becomes obvious that ripping and replacing pieces of
your systems in order to conform to the prescribed standard technology platform
is not the safe and practical choice.

The reasons for interoperability vary from organization to organization and from
one given situation to another; however, they tend to fall into broad categories,
some of which include the following.

1.1.1 Technology transition
Companies constantly undergo change. Whether business or technology driven,
some of the changes result in technology transition. The changes may impact the
technology platform and when they do, it is not always feasible to ensure the
continued use of the mandated technology platform.

Mergers or acquisitions
IT departments are constantly faced with managing and executing the
technology transition following a merger or an acquisition. In addition to
integrating disparate and distributed systems infrastructure, IT departments are
expected to show rapid return on investment by seamlessly integrating the
enterprise applications and business processes.

Interoperability is perhaps the best means for meeting the goal of providing a
single system view to customers, employees, and business partners of the
merged company with minimal disturbance.

Note: The focus of this redbook is on interoperability between WebSphere,
the IBM implementation of the J2EE specification, and Microsoft’s .NET. You
will find that these drivers hold true regardless of the technology platforms.

4 IBM WebSphere and Microsoft .NET Interoperability

Platform migration
When making technology platforms shift, for example, changing the back end of
an e-commerce Web site from Microsoft .NET to WebSphere in order to take
advantage of WebSphere’s scalability, your transition strategy may require that
you run the two systems in parallel. If that is the case, interoperability becomes a
necessity.

Emerging technologies
The emergence of certain technologies are such that to remain competitive you
must adopt the new technology immediately. The World Wide Web is an
example of such technology. Web Services is another example and in Chapter 7,
“Introduction to Web Services Interoperability” on page 249, we address
interoperability using Web Services.

1.1.2 Best of breed integration
One approach many companies adopted for their e-business enablement to
reduce costs, increase productivity, and ensure return on investment was the
deployment of Best of Breed applications.

Best of Breed (BoB) applications provide higher quality and deeper functionality
for each business function. However, to take advantage of the BoB applications,
you have to enable information sharing between the different applications.
Application interoperability offer the means for integrating the various BoB
applications and your existing applications.

1.1.3 The extended enterprise
To gain collaborative advantage, enterprises are extending their business
processes and IT systems beyond the organizational boundary to include
business partners, suppliers, and even customers.

The extent to which information flows seamlessly through the extended
enterprise depends on the interoperability between disparate systems and
applications.

 Chapter 1. Application interoperability overview 5

1.2 Application interoperability models
A quick review of the drivers for interoperability reveal how prevalent the need for
interoperability is in today’s heterogeneous and networked systems environment.
It is inevitable, therefore, that sooner or later you will be faced with having to
implement interoperability between systems. So it is necessary to consider
interoperability as an integral part of your IT systems design and not as an after
thought.

Quoting from ISO/IEC 2382-01, Information Technology Vocabulary,
Fundamental Terms1, interoperability is defined as follows:

"The capability to communicate, execute programs, or transfer data among
various functional units in a manner that requires the user to have little or no
knowledge of the unique characteristics of those units".

It is not practical for us to address every possible interoperability scenario in this
redbook, so we introduce interoperability models as a means for categorizing
interoperability scenarios. We do so through interoperability points that map to
the n-tier application architecture model.

1.2.1 Application architecture model
The preferred architecture model for today’s enterprise scale system is the client
server model, specifically, the n-tier client server architecture model. In an n-tier
architected system, well defined layers form tiers, each performing a distinct and
separate function. In addition to making it possible to reuse functionality and
distribute the application in a network environment, multiple tiers make it easier
to implement interoperability. The different functions in each tier can be designed,
developed, and deployed on different technology platforms.

Most client server applications consists of three tiers:

� Presentation
� Business logic
� Data tiers

However, n-tier applications can have more tiers. Both WebSphere (J2EE) and
.NET support multi-tiered architecture models that can include one or more
sub-tiers in the presentation, business logic, or data tiers.

1 http://jtc1sc36.org/doc/36N0646.pdf

6 IBM WebSphere and Microsoft .NET Interoperability

http://jtc1sc36.org/doc/36N0646.pdf

Figure 1-1 shows the n-tier architecture model.

Figure 1-1 N-tier architecture model

Client tier
Client tiers support three basic types of client applications. These are the
light-weight Web browser based thin clients, the stand-alone rich application
clients, and smart clients.

� Thin application clients

Usually browser based. The browser renders the user interface and typically
hosts components and a scripting engine that provide complex presentation
logic.

Client tierClient tier

Consists of light-weight Web browser-
based thin client or the standalone rich
application client that provides the front-
end for multi-tiered applications.

Presentation tierPresentation tier

Often consists of two parts, one that runs
on the client-side and another that runs on
the server side. Formats and presents
application data to the user and receives
user inputs which it forwards to the
business logic tier.

Business logic tierBusiness logic tier

Receives user input from the presentation
tier, interacts with the data tier to process
the user request, and sends back
responses to the presentation tier. Runs on
servers which can be based different
technology platforms.

Data tierData tier

Manages all interaction with data stored in
databases and in file systems. This tier
provides a level of abstraction from persistent
data.

 Chapter 1. Application interoperability overview 7

� Rich application clients

Are stand-alone applications that run on client machines and provide user
interface functionality, such as toolbars, menubars, support drag and drop,
context sensitive help, and undo/redo.

� Smart Clients

You can also have smart clients, which are simply an evolution of rich clients
combined with thin client features. Smart clients use compiled code to provide
application user interface and client logic without relying on the Web browser.

Figure 1-2 shows clients in a multi-tier architecture model.

Figure 1-2 Clients in a multi-tier architecture model

Presentation tier
The presentation tier drives the application user interface and captures all user
interactions. It handles the visual presentations, accessibility, translation of user
inputs to application events, invocation of services in the business logic tier, and
management of interaction state.

Client tierClient tier

Business tierBusiness tier

Data tierData tier

Smart clientSmart client Rich clientRich client Web clientWeb client

Web serverWeb server

Application serverApplication server

Database & file systemsDatabase & file systems

8 IBM WebSphere and Microsoft .NET Interoperability

The presentation tier is distributed between the client and the server. The client-
side of presentation tier leverages the client tier to provide the application user
experience. The server-side presentation tier interfaces with the business logic
tier and manages the interaction between the user and the application logic.

Business logic tier
In the classic 3-tier architecture model, there is a single business logic tier.
However, it is typical to have sub-tiers, such as the Web tier in this middle layer.
The business logic tier implements the core application functionality, which
usually makes use of the component model for the technology platform. For
example, COM+ for .NET and Enterprise JavaBeans™ (EJB™) for WebSphere
and J2EE. These business tier components run on Application Servers, which
provides the platform for the components.

Data tier
The data tier provides a level of abstraction from all persistent data and manages
all interaction with data stored in databases and in file systems. Its primary
function is retrieving, storing, and updating of data. This tier provides data
services that can be accessed mainly from the business logic and in some cases
from the presentation tier as well.

1.2.2 Interoperability scenarios
In the previous section, we presented the n-tier architecture model. Each tier in
the n-tier model is a possible interoperability point between WebSphere and
.NET applications. An enumeration of the platform and tier interactions show that
not all possible scenarios are feasible. In this section, we present and discuss
the different interactions and identify the scenarios that are feasible and those
that are highly improbable.

Client tier interoperability
Interoperability between the client tier and other tiers in an n-tier architected
application scenario depend on the type of client. For example, while client tier to
client tier interoperability between two thin client applications is impractical,
interoperability between the client tier and the other tiers (business logic and data
tiers) is feasible.

Note: We explicitly discuss one-to-one interoperability between WebSphere
applications and .NET applications. Depending on the scale of your system, it
is likely that you will need to consider potentially added complexities (such as
concurrency and quality of service) of many-to-many, one-to-many, or
many-to-one runtime interoperability dynamics.

 Chapter 1. Application interoperability overview 9

Client to client tier interoperability
Direct interoperability between a WebSphere and J2EE thin client application
with a .NET thin client application is highly improbable. Smart and rich clients
interoperability, however, are more likely. A Java rich client application, such as a
Swing or an AWT application (possibly deployed in the WebSphere client
container), can interoperate in a peer-to-peer setting with a .NET rich client
application, where each client application exposes specialized functions.

A potential hybrid scenario is a peer-to-peer setting with a thin client application
interoperating with a rich client application (via http). With this scenario, in
addition to exposing specialized functions, the rich client application also
functions as a pseudo Presentation tier to the thin client and incorporates a Web
server (see Figure 1-3).

Figure 1-3 Client tier to client tier interoperability

Although interoperability between client tiers is technically possible, it is highly
unlikely that you will design or implement client tier to client tier enterprise scale
solutions between WebSphere and .NET.

WebSphereWebSphere ..NETNET

Client tierClient tier

Rich clientRich client

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

Rich clientRich client

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

10 IBM WebSphere and Microsoft .NET Interoperability

Client tier to presentation tier interoperability
Interaction between the client tier and the presentation tier is a normal
occurrence in an n-tier architected application. In a WebSphere and .NET
interoperability setting, you will find that the need for a WebSphere client to
interoperate with a .NET presentation tier or vice versa will occur quite frequently.
However, the scenario where the client and the presentation tiers are
implemented on the same platform and interoperating with a business logic tier
that is implemented using the other technology platform is the most commonly
occurring interoperability scenario.

� WebSphere client tier to .NET presentation tier

In this scenario, you can have a Java thin client application (possibly a Java
Applet) or a rich (or smart) client, such as a Swing (or AWT) client application
deployed in the WebSphere client container, interoperating with the
presentation tier of a .NET application (possibly an ASP.NET artifact
deployed in IIS) (see Figure 1-4).

Figure 1-4 WebSphere client to .NET presentation tier interoperability

WebSphereWebSphere ..NETNET

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

 Chapter 1. Application interoperability overview 11

� .NET client tier to WebSphere presentation tier

A .NET client application, for example, a rich or smart client application, such
as a Windows® Form application interoperating with a Java application
(possibly a JSP™ or Servlet) deployed in the WebSphere Web container.

Figure 1-5 gives an overview of this tier.

Figure 1-5 .NET client to WebSphere presentation tier interoperability

Client to business tier interoperability
This is a frequently occurring scenario where you have the need to replace the
technology platform for your business logic tier while preserving the client tier
applications.

A typical example of this type of scenario is a two-tier application, where a rich
client application interacts with the business logic that resides on the server, for
example, a rich (or smart) client, such as a Swing client application or an AWT
client application, deployed in the WebSphere client container, interoperating
with .NET business tier components. Or a .NET rich (or smart) client application,
such as a Windows Form application, interoperating with Servlets and EJBs
deployed in the WebSphere Web and EJB containers.

WebSphereWebSphere ..NETNET

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

12 IBM WebSphere and Microsoft .NET Interoperability

Figure 1-6 gives an overview of this interoperability.

Figure 1-6 Rich and smart client to business tier interoperability

Thin client applications also have the capability to interoperate directly with the
business logic tier. With the growing support for XMLHttpRequest object, which is
implemented by most browsers using the Asynchronous JavaScript™ and XML
(AJAX) design pattern, you can implement interoperability from a thin client
application to the business logic tier.

Client tierClient tier

Rich/Smart Rich/Smart
ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

Rich/Smart Rich/Smart
ClientClient

 Chapter 1. Application interoperability overview 13

Using JavaScript and XML serializers and deserializers, you can create an AJAX
based browser SOAP Web Services client that can be used to invoke Web
Services in the business and data tiers (see Figure 1-7).

Figure 1-7 Client tier to business logic tier interoperability using AJAX design pattern

Using DHTML behaviors, you can also enable client tier to business logic tier
interoperability. The use of Web Services behavior in the client tier application
enables invocation of business tier functionality exposed as Web Services using
SOAP and Web Services Description Language (WSDL) (see Figure 1-8 on
page 15).

Client tierClient tier

Web ClientWeb Client

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Web ServiceWeb Service

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

Web ClientWeb Client

XMLHttpRequestXMLHttpRequest

14 IBM WebSphere and Microsoft .NET Interoperability

Figure 1-8 Client tier to business logic tier interoperability using DHTML behaviors

Client tierClient tier

Web ClientWeb Client

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Web ServiceWeb Service

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

Web ClientWeb Client

Web Web Service.HTCService.HTC

SOAPSOAP
(HTTP)(HTTP)

Web
Page

Web
Page

 Chapter 1. Application interoperability overview 15

Client to data tier interoperability
By their very nature, rich and smart client applications can implement the entire
application logic in the client piece and interact with the data tier simply for
persistence. This two tier client application scenario is true of both WebSphere
and .NET platforms. In this scenario, a client implemented in .NET or WebSphere
J2EE platform, interoperates with resources in the data tier that is running on the
other platform (see Figure 1-9).

Figure 1-9 Two tier rich client application: client to data tier interoperability

The client tier to data tier interaction using browser thin clients can be
implemented using the AJAX design pattern or DHTML.

Note: Although the technical capability is there to implement client to data tier
interoperability, unless you are developing a simple data driven application,
you should not embark on this track for an enterprise scale distributed system.

Client tierClient tier

Rich/Smart Rich/Smart
ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

Rich/Smart Rich/Smart
ClientClient

16 IBM WebSphere and Microsoft .NET Interoperability

Presentation tier interoperability
The presentation tier provides the management, coordination, and orchestration
of the user interface and user interactions in n-tier architected applications. It
renders the application’s visual appearance and layout, maintains state through
user sessions and business logic process flow, and invokes services in the
business logic tier.

In 2-tier and 3-tier applications, the presentation tier usually includes the client
tier as well. However, in n-tier applications, where the two tiers exist separately,
you can have client tier to presentation tier interoperability (see “Client tier to
presentation tier interoperability” on page 11). The following are additional cross
tier interactions from the presentation tier.

Presentation tier to presentation tier
Presentation tier interaction results in scenarios where WebSphere presentation
components, such as JSP, servlet, or JavaBeans deployed in the Web container,
interoperate with ASP.NET or underpinning assemblies deployed in IIS.

 Chapter 1. Application interoperability overview 17

Applications in this scenarios tend to be thin client applications (rich or smart
client presentation tier interoperability are similar to client tier interoperability in
“Client to client tier interoperability” on page 10). This scenario presents a
number of issues, such as session and state management, making it impractical
for creating robust and scalable solutions between WebSphere and .NET (see
Figure 1-10).

Figure 1-10 Presentation to presentation tier interoperability

One practical use of presentation tier interoperability is redirection of URLs. URL
redirection is used for a number of reasons, such as forcing HTTP requests to
HTTPS or redirecting requests sent to a URL and meant for the associated Web
server so the request is handled by another Web server. This can be realized
through client side redirection where the Web server responds with a Location:
header directing the client to the second URL, or through the server side
redirecting or forwarding. For example, a Web server can transparently rewrite a
requested URL for a WebSphere Web site to a .NET Web site.

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

18 IBM WebSphere and Microsoft .NET Interoperability

Presentation tier to business tier
This is the most common occurring interoperability scenario between
WebSphere and .NET. Consider, for example, the scenario where you replace
your .NET business tier with WebSphere J2EE implementation just so you can
take advantage of WebSphere security, reliability, and scalability. Your ASP.NET
presentation tier application will have to interoperate with Servlets and Enterprise
JavaBeans (EJB) components, which implements the business functions. You
can equally have the scenario where JSP presentation tier application
interoperates with COM+ components.

In Chapter 7, “Introduction to Web Services Interoperability” on page 249 and
Chapter 9, “Web Services interoperability scenario” on page 293, we present
example scenarios that show implementation detail for presentation tier to
business tier interoperability going from WebSphere to .NET and vice versa (see
Figure 1-11).

Figure 1-11 Presentation tier to business tier interoperability

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

 Chapter 1. Application interoperability overview 19

Presentation tier to data tier
Data driven Web sites that display static and dynamic information are examples
of this type of scenario. While data driven applications such as online shopping,
online auctions, and business to business applications do include significant
application logic that reside in the business tier, a great deal of useful data driven
applications have little or no business logic.

Imagine that you have to build a dynamic Web application that generates pages
on the fly from data residing in a database and accepts user data for insertion to
the database or for updating of records already in the database. With such an
application, where you have no business logic, you bypass the business tier and
go directly to the data tier from the presentation tier.

Consider that you have a WebSphere data driven application (using Java Server
Faces (JSF) or JSP) that accesses data from .NET using ADO.NET. Or a .NET
application (using WebForm, WinForm or ASP.NET) which interoperates with
WebSphere using JDBC™ or SDO for data access (see Figure 1-12).

Figure 1-12 Presentation tier to data tier interoperability

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

20 IBM WebSphere and Microsoft .NET Interoperability

Business tier interoperability
Interoperability between business tiers is driven primarily by the need to reuse
business functions that already exist. The single most important benefit of
reusing business function is the cost avoidance in duplicating the functionality.
You also avoid the high degree of risk typically involved in developing new
software. In some cases, such as credit checking and shipping tracking in
e-commerce applications, you may not have the option to reimplement the
business function.

The business tier include business functions and processes that create, process,
and persist data. These processes and functions rely on the data tier for access
to and persistence of data. Hence, interoperability between the business logic
and data tiers is a necessity.

 Chapter 1. Application interoperability overview 21

Business tier to business tier
Imagine that you have an e-commerce application where you have a .NET front
end that includes your order processing and to take advantage of WebSphere’s
robust scalability, your fulfilment, CRM, and supply chain applications are
implemented using WebSphere. Consider that your end-to-end e-commerce
solution will have .NET COM+ components interoperating with Servlets and
EJBs running in WebSphere EJB containers, as well as third-party services,
such as credit checking, to seamlessly meet your customer needs (see
Figure 1-13).

Figure 1-13 Business tier to business tier interoperability

Business tier to data tier
The data resource tier in the .NET architecture is primarily about accessing data
and interacting with resources using ADO.NET. However, it also includes
Services that are used to connect to systems external to .NET through Service
Agents.

The data tier in J2EE n-tier architecture is the Enterprise Information Systems
(EIS) tier. EIS provide connectivity to enterprise systems (for example, ERP
systems) and supports business-to-business (B2B) transactions using the J2EE
Connector Architecture (JCA). EIS is similar to “Services” in the .NET data tier.
Persistence and access to data in J2EE is realized through the use of Entity
Enterprise JavaBeans, which runs in the business tier.

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

22 IBM WebSphere and Microsoft .NET Interoperability

Interoperability between the business and data tiers is not necessary for access
to and persistence of data only. Consider a Servlet or EJB running in a
WebSphere EJB container interoperating with .NET data tier; the Servlet or EJB
will be interacting with either ADO.NET to access data that is persisted in .NET,
or with a Service Agent to a service that is external to .NET.

On the other hand, a .NET business function component (COM+ component or
assembly) running in the business tier and interacting with WebSphere data tier
will, in effect, be interoperating with an external system through the J2EE
Connector Architecture (JCA).

Note: Persistence in J2EE is handled by use of Entity Enterprise JavaBeans.
This is either container managed, where the container implements and
handles the persistence, or component managed, where the developer of the
component provides the code to handle persistence. Entity EJBs run in the
EJB container in the business logic tier. This is in contrast to .NET, where all
persistence is handled in the data tier.

Note: In the case where the business tier is interacting with either Services in
.NET or EIS in J2EE, the interoperability is similar to business tier to business
tier interoperability.

 Chapter 1. Application interoperability overview 23

Figure 1-14 gives an overview of this interoperability.

Figure 1-14 Business tier to data tier interoperability

Data tier interoperability
The data tier in .NET performs two distinct functions. The first is to access and
persist data through ADO.NET. The second function is to access services
external to .NET through Service adapters.

The WebSphere equivalent of the data tier is the Enterprise Information Systems
(EIS) tier. EIS provides access to external systems just like Services in .NET.
Unlike .NET, the WebSphere data access and persistence is provided mainly
through Entity Enterprise JavaBeans, which run in the business logic tier.

In addition to typical data access, interoperating at the data tier is usually
associated with accessing business functions or processes through Service
adapters in .NET or using the J2EE Connector Architecture (JCA) to connect to
enterprise systems or any other systems for which there is an adapter.

Client tierClient tier

ClientClient

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Presentation Presentation
tiertier

PresentationPresentation

Business tierBusiness tier

Business logicBusiness logic

Data tierData tier

Database & file systemsDatabase & file systems

Client tierClient tier

ClientClient

24 IBM WebSphere and Microsoft .NET Interoperability

Data tier to data tier
Data tier interoperability between WebSphere and .NET enable interoperability
between WebSphere EIS and Services in .NET. By interoperating through
WebSphere EIS or .NET Services, it is possible to make calls to and
interoperating with yet a third system.

1.3 Approaches for interoperability
Interoperability is the capability to communicate, execute programs, or transfer
data, and there are a number of options for accomplishing this. These options fall
into two basic types: the first is service-oriented interoperability approach, and
the other is the class level approach. The service-oriented approach makes use
of Web Services technologies to expose functionality in either WebSphere or
.NET to the other platform. The second approach is interoperability at the class
level, where Java or .NET classes can make calls to the other seamlessly.

1.3.1 Service-oriented approach
The Web Services model, specifications, and service-oriented distributed
architecture are widely adopted industry approaches for building systems that
interoperate. This is certainly one approach for implementing WebSphere and
.NET interoperability. You can have your ASP.NET presentation tier application or
functions running in the business logic tier interoperating with Web Services
deployed in the WebSphere business tier. The reverse is also applicable, where
you have JSP application or Servlets and EJBs running in the WebSphere Web
or EJB containers interoperating with Web Services deployed in .NET. We
provide a detailed discussion of the Web Service interoperability approach in
Part 3, “Web Services interoperability” on page 247.

1.3.2 Class level approach
The other approach for interoperability between WebSphere and .NET is the
class level approach. With this approach, you are able to call .NET classes from
Java and vice versa. There are a number of options available for accomplishing
class level interoperability, which include the following.

Note: You can develop a J2EE Connector Architecture or .NET “Service”
adapter for connecting to any system or service of your choice.

 Chapter 1. Application interoperability overview 25

Porting
This is a rather tedious approach where you port the entire .NET framework to
Java or vice versa. Both Java and .NET platforms are very large with thousands
of classes to port. The hard work does not end with that the initial port and its
accurate implementation; you still have the difficult task of repeating the effort
with each new release of Java or .NET platform. There are also issues with
supporting namespaces that are tied too closely to .NET runtime.

Cross compilation
Java and any language supported in .NET can be compiled into an intermediate
bytecode. You can, for example, cross compile a Java class into the Microsoft
Intermediate Language (MSIL) that runs in the .NET Common Language
Runtime (CLR). With .NET cross language capability, you can then call or inherit
the Java class from any other class written in, say, C# or Visual Basic®. You can
also convert the MSIL of a .NET C# or Visual Basic class into Java bytecode,
which then executes in a Java Virtual Machine.

Remote procedure calls
You can use the remote procedure call mechanism available on either Java or
.NET to create interoperability solutions. Java offers the Java Remote Method
Invocation API, or Java RMI. Using Java RMI, you can perform remote procedure
calls where an object on one Java virtual machine invokes methods on an object
in another Java virtual machine. You can introduce a bridge that will enable you
to use Java RMI to create binary and XML interoperability with .NET applications.

On the .NET side, you have .NET remoting, which is the .NET framework for
allowing objects in different AppDomains, processes, and in different machines to
communicate. You can use .NET remoting to implement binary and XML
communication between Java/J2EE and .NET systems.

Bridging
The bridging approach for class level interoperability enables Java classes
running in a Java Virtual machine (JVM™) and .NET classes running in a CLR to
seamlessly access and invoke each other. This is accomplished through bridging
software, which exposes classes on one platform to the other through the use of
proxy classes that are created on each platform. The proxy classes appear and
behave as the native classes and can be inherited from.

26 IBM WebSphere and Microsoft .NET Interoperability

Messaging and queuing
Messaging and queuing allow applications running on different platforms and at
different times to communicate. The IBM WebSphere MQ and Microsoft’s MSMQ
are messaging and queuing products that you can use to implement
interoperability between Java in WebSphere and .NET, exchanging both binary
and XML messages.

Part 2, “Component interoperability” on page 147 provides a detailed discussion
of the class level interoperability approach.

1.4 Elements of interoperability
Whether you implement Web Services or class level interoperability, there are a
number of steps that are common to both approaches. Regardless of the
approach, you have to pass data from either the Java application to the .NET
application or vice versa. You need a mechanism for the control of function calls
and the transport of data between the two platforms.

We identified three core interoperability elements. These are the application
interoperability stack, which categorizes the different functions for interoperability,
the set of activities performed in each of the functional category in the stack, and
the constraints that are applied to the activities to ensure best interoperability.

1.4.1 Application interoperability stack
The application interoperability stack consist of four layers, which represent key
functions for communicating and exchanging data between systems for all
interoperability scenarios. The layers include the application layer, which
provides the interface with your application semantics, the data layer, which
ensures that the syntactic and semantic aspects are maintained for data
exchanged between the systems, the control layer, which provides the
mechanism for making remote functions available for local invocation, and finally

Note: You can also implement Web Services interoperability between
WebSphere and .NET using WebSphere MQ or Microsoft MSMQ. WebSphere
MQ can be used as a transport mechanism for the invocation of the Web
Service by modifying the SOAP protocol wrapper to utilize WebSphere MQ
rather than HTTP.

For more details, see the IBM Redbook WebSphere MQ Solutions in a
Microsoft .NET Environment, SG24-7012.

 Chapter 1. Application interoperability overview 27

the transport layer, which handles the different means for transporting data and
function calls between interoperating platforms.

Figure 1-15 gives an overview of the stack.

Figure 1-15 Application interoperability stack

Application layer
The application layer is where you extend your applications semantics to the
remote system. The application interaction logic, such as synchronous and
asynchronous interactions, transaction management, and security constraints,
are all handled in this layer. You will also implement all necessary state
management for synchronous and asynchronous interactions, and transactions
in this layer.

Note: Interoperability between IBM WebSphere and Microsoft .NET platforms
include definition of activities that implement the flow and execution of
business processes in the application layer. However, we do not discuss
business process interoperability in this redbook.

IPC TCP/IP HTTP RPC Messaging
Queuing…

A
pp

lic
at

io
n

La
ye

r • App semantics
• Security
• Transactions
• …

D
at

a
La

ye
r • Data types

• Parameters
• Marshalling
• …

Custom
code

Component
Bridge

Web
Services…..

C
on

tr
ol

La
ye

r
Tr

an
sp

or
t

La
ye

r

28 IBM WebSphere and Microsoft .NET Interoperability

Data layer
An important aspect of application interoperability is the exchange of messages
between the interoperating applications. These include the input parameters and
return values to function calls. In a distributed and heterogeneous computing
environment, you have to ensure that the data passed between systems are
matched syntactically and semantically.

The data layer provides the following interoperability services:

� Data serialization and marshalling

Technology platforms have their unique data types and data representation.
The data layer provides the serialization and marshalling services to ensure
accurate syntactic and semantic exchange of data between interoperating
platforms.

� Data access performance

The data layer also implements a service that supports data access
strategies with performance considerations, such as data aggregation,
chunky, or chatty data access.

Control layer
The control layer is where the implementation of the functional and procedural
means for interoperating between disparate systems is realized. Any one of the
different class level interoperability mechanisms or Web Service technology can
be used.

Transport layer
This layer provides reliable transfer between interoperating applications. It
includes the different mechanisms by which the interoperating applications can
exchange data, ranging from shared memory for processes running on the same
machine to asynchronous messaging using messaging and queuing technology.

1.4.2 Activities
Associated with each layer in the application interoperability stack are a set of
activities. Activities are the actual operations that comprise a class level Web
Services interoperability. For example, Web Services activities for the control
layer include writing and processing SOAP envelope.

1.4.3 Constraints
Where the application interoperability stack and activities define the functions
and operations necessary for Web Services interaction, constraints are applied
to each activity specific to interoperability.

 Chapter 1. Application interoperability overview 29

Constraints vary depending on the type of interoperability (class level or Web
Services), the activity, and application requirements. Security constraints are
example of application requirements constraints.

30 IBM WebSphere and Microsoft .NET Interoperability

Chapter 2. Introduction to J2EE and
WebSphere platform

The purpose of this chapter is to provide an overview of the Java 2 Enterprise
Edition (J2EE) specifications and IBM's implementation of the specifications.
This chapter is for readers who have experience developing applications using
Microsoft .NET framework and need to become familiar with J2EE and the IBM
WebSphere platform.

This chapter contains the following sections:

� Introduction to J2EE
� The WebSphere platform
� IBM Rational Software Development Platform

2

© Copyright IBM Corp. 2006. All rights reserved. 31

2.1 Introduction to J2EE
J2EE is a comprehensive set of specifications for designing, developing, and
deploying multitier, server-based applications. The J2EE specifications was
designed through an open process that involved a large number of contributors.
The J2EE specification defines the following key elements:

� Standard application model for developing multitier applications

� Standard platform for hosting applications

� Compatibility test suite for verifying that J2EE products comply with the J2EE
specification

� Reference implementation that provide an operational definition of J2EE

The J2EE multi-tiered architecture defines a client tier, a middle tier (consisting of
one or more sub tiers), and an enterprise information system back-end tier. The
client tier supports two basic types of client applications:

� Web applications

These use Web browsers as the client software.

� Stand-alone client applications

These are full fledged client side applications that are more often than not
written in Java. The stand-alone client application runs on client machines
and provide user interface functionalities, such as toolbars, menu bars,
support drag and drop, context sensitive help, and undo/redo.

The middle tier includes two sub-tiers:

� The Web tier
� The Enterprise JavaBeans (EJB) tier

This tier provides business logic, client, component, and data services through
Web and EJB containers. The enterprise information system (EIS) tier supports
access to information sources and external systems.

Figure 2-1 on page 33 shows the J2EE architecture.

32 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-1 J2EE architecture overview

2.1.1 Roles in J2EE environment
The J2EE specification defines a number of distinct roles in the application
development and deployment workflow. The roles serve to identify the tasks to
be performed and the responsibilities of various team members involved in the
development, deployment, and management of J2EE applications.
Understanding this separation of roles is important when developing and
deploying J2EE applications.

Client tierClient tier

Business tierBusiness tier

Data tierData tier

FirewallFirewall

HTML, XML, HTML, XML, ServletsServlets, JSP, JSP

EJBEJBEJBEJB

EJBEJB

Business tierBusiness tier

Web containerWeb container

JMS, JNDI, JMS, JNDI, JavaMailJavaMail

EJB containerEJB container

Enterprise information systemEnterprise information system

RDBMS, ERP, Host systemsRDBMS, ERP, Host systems

ClientClient

ClientClient ClientClient

 Chapter 2. Introduction to J2EE and WebSphere platform 33

The following are the defined J2EE platform roles:

� Product provider

The product provider designs and offers the J2EE platform, APIs, and other
features defined in the J2EE specification for purchase. Providers are
typically system, database, application server, or Web server vendors. They
implement products that meet the J2EE specifications, including component
containers and J2EE platform APIs.

� Tool provider

The tool provider creates tools used for the development and packaging of
application components.

� Application component provider

The application component provider creates Web components, enterprise
beans, applets, or application clients to use in J2EE applications. Application
Component Providers produce the building blocks of a J2EE application.
They typically have expertise in developing reusable components as well as
sufficient business domain knowledge.

� Application assembler

The application assembler takes a set of components developed by
component providers and assembles them in the form of an enterprise
archive (EAR) file.

� Deployer

The developer is responsible for deploying an enterprise application into a
specific operational environment.

� System administrator

The system administrator is responsible for the operational environment on
which the application runs.

Figure 2-2 on page 35 shows the J2EE application life cycle.

34 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-2 J2EE application life cycle

2.1.2 J2EE n-tier architecture
The J2EE platform defines an n-tiered architecture that consists of a
presentation tier (the client tier), two business logic tiers (the Web and EJB sub
tiers), and the data resource tier (Enterprise Information System). In the J2EE
world, applications are often designed using the so called Model View Controller
(MVC) paradigm. The MVC architecture pattern decouples data access,
business logic, data presentation and the user interaction. The model maintains
the business logic and data. Views render the content of models, and maintain
visual consistency of changes in the model. Views also capture and forward user
inputs to the controller. Controllers define application behavior and interpret user
inputs into actions to be performed by the model. In the world of J2EE
applications, views are implemented using JavaServer™ Pages™, controllers
are typically implemented using Servlets, and models are realized with
Enterprise JavaBeans.

DeploymentDeploymentCreationCreation

J2EE container/serverJ2EE container/server

Created by Created by
component component

providerprovider

AssemblyAssembly

Assembled Assembled
and and

augmented by augmented by
Application Application
assemblerassembler

Processed by Processed by
DeployerDeployer

Enterprise Enterprise
componentscomponents

J2EE AppJ2EE AppJ2EE ModuleJ2EE Module

D
ep

lo
y

D
ep

lo
y

 Chapter 2. Introduction to J2EE and WebSphere platform 35

Figure 2-3 shows the MVC architecture pattern.

Figure 2-3 MVC architecture pattern

J2EE presentation tier
The J2EE client layer hosts client applications. Client applications perform a
number of functions, including the following:

� Presenting the user interface
� Validating of user inputs
� Communicating with the server
� Managing conversational state

Two types of clients are supported: Web clients and application clients. They are
explained as follows:

� Web clients

Java Web clients run in Web browsers and render the Web tier content in
applications, and the browsing experience is enhanced through Applets and
JavaScript. Applets are GUI components used to create a highly dynamic
user interface for J2EE applications. Although they can execute in any
environment that supports the applet programming model, applets typically
execute in a Web browsers. Communication between a browser-based applet

Model

View Controller

• Encapsulates application
state
• Responds to state queries
• Exposes application
functionality
• Notifies views of changes

• Renders the models
• Requests updates from
models
• Sends users gestures to
controller
• Allows controller to select
view

• Defines application behavior
• Maps user actions to model
update
• Selects view for response
• Notifies views of changes
• One for each functionality

Method invocations
Events

State
Query

Change
Notification

State
Change

View Selection

User gestures

36 IBM WebSphere and Microsoft .NET Interoperability

and the server side is over HTTP, while the data interchange is facilitated
through XML. Non-Java clients written in, say, C++ or Visual Basic can
communicate with and make use of the J2EE Web and EJB tiers. They either
run in a browser or provider their own HTML rendering.

� Application clients

Application clients are like traditional desktop stand-alone applications. Java
application clients are packaged in JAR files and execute in their own Java
virtual machines. Application clients may be installed explicitly on client
machines or provisioned on demand using Java Web Start. Just like Java
components, Java application clients run inside J2EE containers and rely on
them for system services. Non-Java application clients make use of the J2EE
Web and EJB tiers.

J2EE business logic tier
The J2EE business logic tier consists of two sub-tiers, the Web tier which
handles requests from and responses to the presentation tier clients, and the
Enterprise JavaBeans (EJB) tier, which hosts the application specific business
logic components.

� Web tier

The Web tier hosts two J2EE components (Servlets and JavaServer Pages)
for processing requests from the presentation tier clients and generating
responses that are sent back to clients. Servlets and JSP are hosted by the
Web container. It provides the network services for handling the requests and
responses. Web containers provide access to J2EE services and
communications APIs.

� EJB tier

The EJB tier hosts the application business objects that are typically
implemented as Entity and Session Beans, data access, and value objects.
The EJB container provides system level services, such as transaction
management, concurrency control, and security.

J2EE data resources tier
The data resource tier in J2EE is the Enterprise Information Systems (EIS) tier.
This tier handles integration with existing enterprise systems and data sources.
EIS tier relies on EJB container services, a number of J2EE APIs, and the J2EE
Connector Architecture to provide connectivity to enterprise systems and support
business-to-business (B2B) transactions.

 Chapter 2. Introduction to J2EE and WebSphere platform 37

Figure 2-4 shows the J2EE multi-tier architecture.

Figure 2-4 J2EE multi tier architecture

2.1.3 J2EE component model
Java components are reusable application level software modules that you can
develop and assemble to create sophisticated applications. There are four basic
types of components in the J2EE environment.

Client tierClient tier

Business tierBusiness tier

Data tierData tier

Web containerWeb container

JSP, JSP, ServletsServlets, …, …

Web clientWeb client

HTML, XML, …HTML, XML, …

Rich clientRich client

Java, Visual Basic, C++, …Java, Visual Basic, C++, …

EJB containerEJB container

EJB, JMS, JTA, JDBC, …EJB, JMS, JTA, JDBC, …

EIS resourcesEIS resources

38 IBM WebSphere and Microsoft .NET Interoperability

JavaBeans
JavaBeans are Java classes written to conform to the JavaBeans specification.
They are actually part of the Java 2 Standard Edition platform (J2SE™).
JavaBeans components can be used by any application or component that
understands the JavaBeans format.

Web components
These components typically execute in business logic tier and may respond to
HTTP requests. There are four types of Web components, including Servlets,
JSP pages, filters, and Web event listeners:

� Servlets are Java classes.

These used to extend the capabilities of servers. They are commonly used to
extend the applications hosted by Web servers. Servlets support dynamic
Web page content, provide database access, and serve multiple clients at any
one time.

� JavaServer Pages (JSP).

JSPs are a server-side scripting technology that enable Java code to be
dynamically embedded within Web pages (HTML files) and executed when
the page is served, in order to return dynamic content to clients. JSPs are
compiled at runtime into servlets that execute to generate the resulting
dynamic HTML. Subsequent calls to the same JSP simply execute the
compiled servlet.

� Filters

Filters are objects that can transform a request or modify a response. Unlike
Servlets, they do not create responses. They preprocess requests before
they reach Servlet, and postprocess responses leaving Servlets.

Note: J2EE is built on Java 2 Standard Edition platform (J2SE) and it relies on
J2SE for a number of its services, of which JavaBeans support is one.

 Chapter 2. Introduction to J2EE and WebSphere platform 39

Enterprise JavaBeans components
An Enterprise JavaBeans is a server-side component that encapsulates the
business logic. In the Model-View-Controller (MVC) design pattern EJBs
represent the model. There are three types of EJBs:

� Session EJB

Performs tasks on behalf of a client. Within a session EJB, there are two
implementation types:

– Stateful

Acts on behalf of a single client and maintains client-specific session
information across multiple method calls and transactions. It exists for the
duration of a single client/server session. Because the client interacts
(talks) with its bean, this state is often called the conversational state. The
state is retained for the duration of the client-bean session. If the client
removes the bean or terminates, the session ends and the state
disappears.

– Stateless

Are pooled by their container to handle multiple requests from multiple
clients. During a client invocation of a stateless bean’s method, the bean’s
instance variable may contain a state, but only for the duration of the
invocation. When the method is finished, the state is no longer retained.
All instances of a stateless bean are equivalent, allowing the EJB
container to assign an instance to any client.

� Entity EJB

An entity EJB, once created (either explicitly or implicitly), can be
subsequently found with a key for use by a client application. It persists until
the remove operation is invoked by a client application or until the data is
explicitly removed from the underlying store. There are two types of entity
EJB, depending on how persistence is managed:

– Container-managed persistence (CMP)

Container managed persistence handles all database access required by
the entity bean. The EJB's code contains no database access (SQL) calls.
As a result, the EJB's code is not tied to a specific database. Because of
this flexibility, even if you redeploy the same entity EJB on different J2EE
servers that use different databases, you do not have to modify or
recompile the EJB's code.

– Bean-managed persistence (BMP)

With bean-managed persistence, the developer handles all storage
specific access required by the entity bean. This allows the developer to
use non-relational storage options.

40 IBM WebSphere and Microsoft .NET Interoperability

� Message-driven bean (MDB)

Message-driven EJBs receive and process JMS messages. MDBs have no
interfaces. They can be accessed only through messaging and they do not
maintain any conversational state. MDBs interact with asynchronous clients
through listener queues, and provides separation between message
processing and business logic.

Client components
These are code that execute in the client Java virtual machine. There are two
types of client components:

� Application clients

Application clients are stand-alone GUI desktop applications written in the
Java programming language that offer the native operating system user
experience. Application clients have access to all J2EE middle tier facilities.

� Applets

Applets are GUI components that run in a Java enabled Web browser.
Applets embedded in Web pages are used to provide a user interface for
J2EE applications.

 Chapter 2. Introduction to J2EE and WebSphere platform 41

Figure 2-5 shows the n-tier architecture components.

Figure 2-5 Components in the n-tier architecture

2.1.4 J2EE application environment
The Java 2 Enterprise Edition platform is the Java platform for developing and
running distributed multi-tier architected Java applications. Java platform is the
virtual machine runtime environment known as the Java Virtual Machine (JVM),
which acts as an abstraction layer between the host operating system and the
Java application, enabling platform independence. Like any physical machine,
the virtual machine has an instruction set and provides services to Java
applications, such as memory management and input and output operations.

Java programs are compiled into machine independent byte code. The Java
Virtual Machine interprets this byte code at runtime. Optimizations are provided
through just in time compilation. This works by identifying frequently executed

Client tierClient tier

Presentation tierPresentation tier

Business logic tierBusiness logic tier

Data/Resource tierData/Resource tier

Applet

Applet containerApplet container

Application
Client

R
M

I-IIO
P

JD
B

C

JN
D

I

JM
S

Application client Application client
containercontainer

WebWeb
containercontainer

JSP Servlet
JTA

JN
D

I

JM
S

JAF

Java
Mail

JD
B

C

R
M

I-IIO
P

EJBEJB
containercontainer

JTA

JN
D

I

JM
S

JAF

Java
Mail

JD
B

C

R
M

I-IIO
PEJB EJB

42 IBM WebSphere and Microsoft .NET Interoperability

code segments and then repeatedly optimizing them for execution. Operating
system specific optimizations also exist, allowing the Java Virtual Machine to
scale.

Java programming language
The JVM bytecode interpreter is language neutral; however, in practice, Java
platforms advocate the use of the Java programming language. J2EE
applications are almost exclusively developed using the Java programming
language. Java is an object-oriented programming language suitable for
developing a wide range of applications from programs that run in the browser
and applications that run on consumer devices to enterprise scale distributed
applications. The advantage of developing your J2EE application entirely in Java
is that you can easily move the application to any other operating system
environment so long as a JVM exists for the environment.

Application packaging
J2EE applications are packaged as Enterprise Archive (EAR) files. An EAR file is
composed of a set of modules. Each module includes a deployment descriptor
that specifies how to assemble and deploy the module in a runtime environment.
Customized information can be provided at both assembly time and deployment
time without having to recompile the application objects.

Note: Java applications can interact with applications written for the native
platform (for example, a C-style function within a Dynamic Link Library (DLL)
on Windows) through the Java Native Interface (JNI). The Java Native
Interface allow you to call unmanaged native code from within the J2EE
application and vice-versa.

 Chapter 2. Introduction to J2EE and WebSphere platform 43

Figure 2-6 shows the J2EE packaging files.

Figure 2-6 WebSphere J2EE packaging files

An EAR file is composed of any number of the following components:

� EJB modules

An EJB module contained in an EJB JAR file contains one or more EJBs.

� Web modules

A Web module is a single Web application in a Web archive (WAR) file. An
EAR file can contain multiple Web applications; each Web application in an
EAR file must have a unique deployment context.

� Application client modules

An application client module contains a single, stand-alone Java application
that is intended to run within an application client container. It includes a
specialized deployment descriptor and is composed similarly to an EJB JAR
file. The JAR file contains the classes required to run the stand-alone client

44 IBM WebSphere and Microsoft .NET Interoperability

and any libraries needed to access JDBC, JMS, JAXP, JAAS, or an EJB
client.

� Resource adapter modules

Resource adapter modules are packaged in Resource Adapter Archive (RAR)
files. An RAR file contains Java classes and native libraries required to
implement a Java Connector Architecture (JCA) resource adapter to an
enterprise information system. Resource adapters do not execute within a
container. Rather, they are designed to execute as a bridge between an
Application Server and an external Enterprise Information System (EIS).

� JAR files

Optionally, additional JAR files, so-called utility JARs, containing dependent
classes or other components required by multiple modules.

Containers
The Java 2 Enterprise Edition application server facilitates development of
distributed applications by providing a number of containers that provide services
to the applications deployed within them. The type of services provided to the
application by the container include security, transactions, object pooling, and
naming services. The availability of such services enables the application
developer to focus on implementing business and presentation logic.

Attention: The IBM WebSphere Application Server V6.0 provides an
extension of the J2EE EAR configuration information for resources
typically required by J2EE applications. It is not mandatory to supply the
additional information at packaging time. The Enhanced EAR Editor can be
used to edit several WebSphere Application Server V6 configurations
settings and published with the EAR at the time of deployment.

Enhanced EAR resources supported include:

� JDBC Providers
� DataSources
� Substitution variables
� Class loader policies
� Shared libraries
� JAAS authentication aliases
� Virtual hosts

 Chapter 2. Introduction to J2EE and WebSphere platform 45

The following containers are defined by the J2EE specification:

� Web container

In addition to managing the Web applications and components that are
deployed within it, the Web container is responsible for providing the following
services to Web applications:

– On startup of the application server, the container establishes a transport
mechanism between the Web server and the Web container. This
communication channel is used by the container to receive requests and
send responses on behalf of the Web applications running within it.

– The container manages a configurable pool of worker threads for the
processing of servlet and Java Server Page requests.

– Session management is also provided by the Web container. It is
responsible for creating and invalidating sessions, providing a session
tracking mechanism, and writing and reading session data on behalf of the
Web application.

– The Web container also provides a virtual hosting mechanism, allowing a
single application server to masquerade as multiple Web sites.

� EJB container

The EJB container is responsible for managing the life cycle of the Enterprise
Java Beans deployed within it and providing threading and transaction
support to them. The container also provides a caching mechanism to
optimize access to EJBs.

� Client container

The client container is installed separately on the client and manages the
runtime environment for fat client applications. J2EE application client
containers provide standard services to the client application, including
remote object discovery and remote method invocation, thus allowing the
application client to access business logic on server side components, such
as EJBs, and also providing access to other resources.

Figure 2-7 on page 47 shows J2EE containers and components.

46 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-7 J2EE containers and components

Life cycle management
In Java 2 Enterprise Edition, there are two levels of object life cycle
management. The Java Virtual Machine provides life cycle management of Java
objects, while life cycle management of J2EE application components is a
function of the container; see “Containers” on page 45.

In Java, it is the responsibility of the Java Virtual Machine to dynamically load,
link, and initialize classes and interfaces. The task of loading a class is delegated
either to the bootstrap classloader of the JVM or a user defined classloader. To
load a class or interface, the classloader will first attempt to locate a binary
representation of the class or interface by traversing the classpath and then
create an object instance from the binary representation. Linking is the process
of taking the class or interface and combining it into the runtime state of the Java
virtual machine so that it can be executed. Upon successful instantiation, the
class or interface is finally initialized by executing its init() method.

During the life cycle of an object, the JVM maintains a table of references to that
object.

Applet
Container

Application
Client
Container

R
M

I-IIO
P

JD
B

C

JN
D

I

JM
S

Web Container

JTA

JN
D

I

JM
S

JAF

Java
Mail JD

B
C

R
M

I-IIO
P

EJB Container

JTA

JN
D

I

JM
S

JAF

Java
Mail JD

B
C

R
M

I-IIO
P

Applet

Application
Client

JSP Servlet EJB

Database

EJB

 Chapter 2. Introduction to J2EE and WebSphere platform 47

Object destruction is also the responsibility of the Java Virtual Machine. This is
achieved by means of a garbage collection process that runs periodically to
clean up any dereferenced objects. The algorithm used in garbage collection is
dependent upon the implementation of the JVM. Generally, though, garbage
collection is implemented as a mark and sweep algorithm. In this algorithm, the
garbage collection process starts by locating all dereferenced objects in the
memory heap and marks them for deletion. In the second phase, the garbage
collector removes, or sweeps, the marked objects from the memory heap. JVM
technology has improved significantly, resulting in improved performance of the
garbage collection process. These enhancements include optimizations such as
memory heap defragmentation, short and long lived object heaps, and
multi-threaded garbage collection.

The life cycle management of J2EE components such as servlets and EJBs is
the responsibility of the container in which they reside.

Object pooling
Object pooling is a mechanism employed in many object-oriented languages that
enables the reuse of objects. The advantages of using a pooling mechanism is
that it avoids the overhead of continuous object creation and destruction, and
improves memory usage. Fewer objects have to be created since they are
shared among clients.

Java 2 Enterprise Edition application servers incorporate object pooling
mechanisms to improve application performance. In WebSphere Application
Server, object pools, such as JDBC connection pools, are created by the
application server and made available as resources to J2EE applications. It is the
responsibility of the application server to manage the object pool.

2.1.5 Security in J2EE
Almost every enterprise has security requirements and specific mechanisms and
infrastructure to meet them. While the implementation and levels of service
provided by enterprise security systems may vary, they all address the following
considerations to some extent:

� Authentication

This mechanism addresses how entities that are attempting to communicate
prove to one another that they are who they say they are.

� Access control for resources

This is the process of ensuring that access to protected application resources
is restricted to only those users or groups of users who have authority to
access them.

48 IBM WebSphere and Microsoft .NET Interoperability

� Data integrity

Data integrity considerations address how to validate that data passed
between two entities has not been modified in some way by a third party while
in transit.

� Confidentiality or data privacy

Mechanisms relating to confidentiality or data privacy deal with how to ensure
that data can only be read by those users who are authorized to do so.

� Non-repudiation

Non-repudiation is a way of providing absolute proof that a particular user
performed some action.

� Auditing

Auditing is the process of creating a tamper proof trail of security-related
events in order to evaluate security policies and mechanisms, and when used
in conjunction with non-repudiation, to provide evidence of malicious user
actions.

The J2EE specification defines a number of goals for security within J2EE
applications:

� Portability

The J2EE security model must support the concept of portability. In other
words, it must be implemented in such a manner that J2EE applications are
decoupled from the underlying security implementation.

� Transparency

J2EE application developers wishing to implement security in their
components should not need to understand security in order to do so.
However, in practice, a developer should at least have an understanding of
the security considerations addressed above.

� Isolation

This is related to the portability requirement. What the specification says here
is that authentication and access control should be performed in accordance
with instructions provided in the deployment descriptors, and managed by the
systems administrator. This ensures that the application is decoupled from
the underlying security implementation.

� Extensibility

The J2EE specification provides security application programmer interfaces.
Provided that the application restricts itself to using these APIs for
implementing security in its components, it will retain independence from the
underlying platform, and thus retain portability.

 Chapter 2. Introduction to J2EE and WebSphere platform 49

� Flexibility

The application should not impose a specific security policy; rather, it should
facilitate the implementation of security policies.

� Abstraction

The mapping of security roles and access requirements to environment
specific security roles, users, and policies should be specified in the
applications deployment descriptors. The deployment descriptors should also
document which security properties can be modified by the deployer.

� Independence

Required security behaviors and deployment contracts should be
implementable using a variety of popular security technologies.

� Compatibility testing

The J2EE security model should be described in such a way that an
implementation can readily be certified as compatible or not.

� Secure interoperability

Application components executing in a J2EE product must be able to invoke
services provided in a different J2EE product, irrespective of whether the
same security policy is used.

Figure 2-8 on page 51 illustrates how WebSphere Application Server
leverages the security provided by the operating system and other Java and
J2EE components.

50 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-8 WebSphere environment security layers

Due to the layered nature of the WebSphere Application Server security model,
the security considerations described earlier in this section are automatically
addressed by services provided in the operating system and the J2EE security
model.

When developing a J2EE application for WebSphere Application Server, it is
important that decisions relating to security be made early in the application
development life cycle, preferably during the design phase.

In J2EE applications, security is configured through the deployment descriptors,
and it is the responsibility of the container to enforce the security policy.

WebSphere Application resources

WebSphere security

Java security

Platform security

WebSphere security

J2EE security API

CORBA security / C Slv2

Java 2 Security

JVM 1.3

Operating system security

Access Control

• Naming
• User registry
• JMX MBeans

• HTML
• Servlet/JSP
• EJBs
• Web Services

 Chapter 2. Introduction to J2EE and WebSphere platform 51

WebSphere Application Server provides implementations of user authentication
and authorization mechanisms, providing support for various user registries:

� Local operating system User registry
� LDAP User registry
� Custom User registry

Authentication mechanisms supported by WebSphere are:

� Simple WebSphere Authentication Mechanism (SWAM)
� Lightweight Third Party Authentication (LTPA)

2.1.6 Technologies supporting J2EE architecture
The J2EE specification include technologies that were designed to support
system level services and simplify application development.

Component technologies
Components share the need for runtime functions, such as life cycle
management, security, and threading. In the J2EE platform, containers provide
the support and management of these and other runtime services. The services
a component require are declared at installment time when the component is
deployed in the container. The component developer need only specify the
abstract names of resources and at deployment time, and the deployer
customizes the component to the environment, mapping the abstract names to
concrete resources. The assembly process requires that you specify container
settings for each component you are deploying. The component container
settings customize the support to be provided by the J2EE server platform.

Service technologies
These technologies enable uniform access to databases, transactions, naming
and directory services, and enterprise information systems.

� Java Database Connectivity (JDBC)

Provide uniform connectivity and access to a wide variety of tabular data
sources.

� Java Transaction API (JTA)

Allow implementation independent access to transactions. JTA specifies
standard Java interfaces for distributed transaction systems between the
transactional application, J2EE server, and the transaction manager, which
controls access to the shared resources.

52 IBM WebSphere and Microsoft .NET Interoperability

� Java Naming and Directory Interface™ (JNDI)

Provide methods for performing standard directory and naming operations. It
provides APIs for storing and retrieving any type of named Java object,
associating attributes with the objects, and searching using associated
attributes.

� J2EE Connector Architecture (JCA)

Provides the Java technology solution for connecting application servers to
enterprise information systems (EIS). By providing a standard J2EE
Connector architecture resource adapter that plugs into your J2EE application
server, an EIS vendor enables connectivity between the application server,
the EIS product, and your J2EE application.

Communication technologies
Provides the mechanisms for communication between clients and servers, and
between collaborating objects hosted by different servers. The J2EE
specification requires support for the following types of communication
technologies:

� Internet protocols

Includes Transport Control Protocol over Internet Protocol (TCP/IP),
Hypertext Transfer Protocol (HTTP), and Secure Socket Layer (SSL)

� Remote Method Invocation (RMI) protocols

Remote Method Invocation uses a common mechanism for invoking methods
on a remote object, stubs, and skeletons. The stub is located on the client or
local system and acts as a proxy to the remote object. The client makes a
method call on the stub, which then handles the complexities of the remote
method call. This mechanism makes the underlying communications
transparent to the client. As far as the client is concerned, the method call
appears local.

When a method on the stub is invoked, the following actions occur:

a. The stub establishes a connection to the Java Virtual Machine where the
remote object resides.

b. Method parameters are written and transmitted to the remote Java Virtual
Machine. This process is more frequently known as marshalling.

c. The stub then waits for the return value from the method invocation.

d. When received, the return value is read or unmarshalled.

 Chapter 2. Introduction to J2EE and WebSphere platform 53

� Object Management Group (OMG) protocols

Includes the Common Object Request Broker Architecture (CORBA)
technologies, Java Interface Definition Language (IDL), and RMI over Internet
Inter-ORB Protocol (IIOP).

IIOP is the underlying communication protocol for Remote Method Invocation.
The use of the IIOP protocol in J2EE facilitates existing application and
platform integration by allowing objects written in other CORBA-enabled
languages to communicate with Java-based applications.

� Messaging technologies

Includes Java Message Service (JMS), JavaMail™, and JavaBeans
Activation Framework (JAF).

� Data formats

Includes HTML, image files in two formats, GIF and JPEG, JAR files, class
files (compiled Java files), and XML.

2.2 The WebSphere platform
IBM software brands provide you with an integrated platform for designing,
building, running, and managing innovative e-business solutions. The five IBM
software brands are as follows:

� Rational®

This is the Rational software brand. It includes products for all aspects of
software design and construction such as requirements and analysis,
software configuration management, and software quality. The Rational brand
includes the Rational Application Developer for WebSphere Software—the
comprehensive Integrated Development Environment (IDE) for designing,
developing, analyzing, testing, profiling, and deploying applications using
Java, J2EE, Web, Web Services, Service-Oriented Architecture, and portal
technologies.

� WebSphere

This is a family of products that provides the robust application and
transaction infrastructure that is the foundation for the IBM software platform.
The real-time, distributed infrastructure enables the development and
deployment of integrated solutions that range from simple Web applications to
enterprise scale business-to-business, e-commerce, and transactional
applications.

54 IBM WebSphere and Microsoft .NET Interoperability

� DB2®

This is the family of database servers that supports information management.
Integration is at the center of the IBM software solution platform. This is
evident in the way IBM uses DB2 for building information integration
middleware and information management software that includes
warehousing, data mining, content management, and media asset
management.

� Tivoli®

The efficient, secure, and healthy functioning of your IBM infrastructure is
supported by Tivoli branded products. Your IT infrastructure is equally
important, as the applications that support your business processes are
critical to meeting the IT services needs that business increasingly demands.
Tivoli products provide a range of infrastructure management services that
include availability, configuration, service level, application, workload, and
security management.

� Lotus®

Lotus offers solutions that focus on collaboration and human productivity.
Lotus products are geared towards effective communication, working more
productively, teaming, leveraging of collective knowledge, and learning. Lotus
Workplace™ and WebSphere portal products give you the flexibility to meet
the information needs of your workers, business partners, suppliers, and
clients by delivering the appropriate information when and how it is needed.

 Chapter 2. Introduction to J2EE and WebSphere platform 55

Figure 2-9 shows the IBM software platform.

Figure 2-9 IBM software platform

2.2.1 The WebSphere family
IBM WebSphere is a family of products that form the foundation for a
comprehensive e-business platform that deliver runtime and integration
capabilities for building and deploying applications ranging from simple Web
publishing application to enterprise scale transactional application.

The WebSphere family consists of three categories of tools.

Foundation and tools
The foundation of the WebSphere platform is the WebSphere application server
and the set of tools for building applications that run in the environment.

BUILDBUILD RUNRUN MANAGEMANAGE

LOTUSLOTUS

RATIONALRATIONAL WEBSPHEREWEBSPHERE DB2DB2 TIVOLITIVOLI

Software Software
Development Development
PlatformPlatform
•• Requirements & Requirements &
analysisanalysis
•• Design & constructionDesign & construction
•• Software qualitySoftware quality
•• Process & portfolio Process & portfolio
managementmanagement
•• Software configuration Software configuration
managementmanagement

Transaction Transaction
ManagementManagement
•• FoundationFoundation
•• Business portalsBusiness portals
•• Business integrationBusiness integration Data Data

ManagementManagement
•• Database serversDatabase servers
•• Content and Content and
information managementinformation management
•• Business intelligenceBusiness intelligence

Systems Systems
ManagementManagement

CollaborationCollaboration
•• MessagingMessaging
•• ee--learninglearning
•• PortalsPortals
•• Knowledge Knowledge
managementmanagement

56 IBM WebSphere and Microsoft .NET Interoperability

� Application servers

The WebSphere Application Servers are Java-based J2EE runtime
environments that feature high performance and extremely scalable
transactional engines capable of handling high-volume secure transactions
and Web Services. WebSphere Application Server include:

– WebSphere Application Server

Provides an integrated foundation platform for messaging flows, Web
Services, and J2EE applications.

– WebSphere Application Server Network Deployment

This configuration builds on the base WebSphere application server to
provide services that include clustering, high availability, Web, and
edge-of-network services.

– WebSphere Extended Deployment

Delivers add-on features that provide a dynamic high-performance
environment for WebSphere applications.

� Edge servers are tightly integrated with the WebSphere family

They distribute processing to the edge of the network, providing caching,
content distribution, and load balancing functionality.

� WebSphere Host Integration server

Leverages and extends existing assets for new e-business solutions without
making changes to the existing applications. Solutions include an emulation
client that can be accessed over the Web, and a communications server that
offers secure and reliable connections to host applications over a variety of
networks and protocols.

Business integration
The WebSphere business integration is a set of products that include tools and
process templates that will enable you to connect applications and share
information within your company and externally with business partners and
suppliers. The WebSphere business integration products include:

� Application connectivity, which includes:

– WebSphere Business Integration Message Broker

Transforms and enriches in-flight data.

– WebSphere Business Integration Adapters

Allows for the creation of processes that exchange data between systems.

– WebSphere Data Interchange

Provides data translation and transaction management.

 Chapter 2. Introduction to J2EE and WebSphere platform 57

– WebSphere MQ

Enables connectivity between applications running on different systems.

– WebSphere MQ Everywhere

Extends the reach of applications to the mobile environment.

� Process integration, which includes:

– WebSphere Business integration Connect

Enables the connection of a large number of trading partners.

– WebSphere Business Integration Event Broker

Enables handling of high message volumes and large numbers of
endpoints.

– WebSphere Business Integration Express for Item Synchronization

Provides item synchronization for suppliers through registries.

– WebSphere Business Integration Monitor

Displays real-time data from events created by IBM WebSphere MQ
Workflow.

– WebSphere Business Integration Server

Enables small and medium businesses to quickly and easily integrate their
applications.

– WebSphere Business Integration Workbench

Provides a process modeling tool enabling testing and validation of
business processes.

– WebSphere Business Integration Workbench Server

Provides repository management and Web publishing capabilities in a
centralized data warehouse.

– WebSphere InterChange Server

Offers mission-critical reliability, availability, and centralized system and
configuration management.

– WebSphere MQ Workflow

Aligns and integrates organizational resources and capabilities with
business strategies.

� Other business integration, which includes:

– WebSphere Global Data Synchronization for WebSphere Product Center

Provides electronic global data synchronization solution between trading
partners.

58 IBM WebSphere and Microsoft .NET Interoperability

– WebSphere Business Integration Modeler

Provides tools to design, test, and communicate complex business
processes.

– WebSphere Business Integration Server Express Plus

Enables small and medium businesses to quickly and easily integrate their
applications.

– WebSphere Business Integration Server Foundation

Delivers an integration platform to build and deploy composite
applications.

– WebSphere Product Center

This is a product information management solution that helps assemble an
accurate, consistent central repository, linking products, location, trading
partners, organizations, and terms of trade information, which is typically
scattered throughout the enterprise.

– WebSphere Studio Application Developer Integration Edition

Provides the integrated development environment for building and
deploying composite J2EE applications that deploy to the IBM WebSphere
Business Integration Server Foundation.

Business portals
These are the Web equivalent of your desktop. They deliver applications
specifically tailored to each employee’s role on all kinds of devices. Portals also
provide multiple access channels to your clients, partners, and suppliers,
allowing them to interact with your applications, content, and processes. They
personalize and optimize the user experience and make it easier to do business
with you. At the center of the portal component architecture are portlets. Portlets
are complete applications that conform to the portlet API and follow the
model-view-controller design pattern. They provide access to all types of
resources, including applications, Web-based content, Web pages, Web
Services, and syndicated content feeds. You can create your own portlets or
select from a catalog of portlets created by IBM and by IBM Business Partners.
Personalized Web pages are created by arranging portlets on portal pages
tailored to individuals, teams, divisions, and organizations.

WebSphere Portal is available in a number of packages:

� WebSphere Portal for multiplatforms

This provides powerful collaboration capabilities, such as instant messaging,
team workplaces, people finder, and e-meetings.

 Chapter 2. Introduction to J2EE and WebSphere platform 59

WebSphere Portal for Multiplatforms includes two offerings:

– Portal Enable

This is the base offering and provides personalization, content, and
document management, search, and workflow functions along with the
scalable portal framework.

– Portal Extend

This adds powerful collaborative, extended search, and Web analysis
features to enhance portal effectiveness.

� WebSphere Portal Express for multiplatform

This combines the features of the WebSphere Portal family with simplified
installation and the option for user or processor-based licensing. This
combination enables small businesses as well as departments within larger
companies to more easily deploy sophisticated employee, business partner,
and client portals. WebSphere Portal Express for Multiplatforms includes two
offerings:

– WebSphere Portal - Express

This is the base offering and contains the portal framework, a document
manager, a selection of portlets, the portal toolkit, and WebSphere
Application Server.

– WebSphere Portal - Express Plus

This adds in features for team collaboration, including instant messaging
and virtual teamrooms.

� WebSphere Commerce

This is a set of integrated software components for building, maintaining, and
managing stores on the Web. WebSphere Commerce automates and
integrates cross-channel marketing and sales processes to enable
companies to conduct business with their clients when they want, how they
want, and where they want. WebSphere Commerce delivers the following:

– Rich, contextual client and user experience across channels.

– Hundreds of seamless, cross-channel processes. It also accelerates the
implementation of new ones.

– Multiple business models in a single solution.

WebSphere Commerce includes three offerings:

– WebSphere Commerce Business Edition

This provides a powerful, flexible infrastructure based on a unified platform
for running large, high-volume B2B and advanced B2C e-commerce Web
sites for global e-businesses.

60 IBM WebSphere and Microsoft .NET Interoperability

– WebSphere Commerce Professional Edition

This increases site functionality for B2B businesses and B2C retailers by
enhancing client buying experiences, improving operational efficiencies,
and accommodating high transaction volumes.

– WebSphere Commerce - Express

This provides the core capabilities growing firms need to get started or
expand their e-commerce site at a minimum investment—all on a rock
solid platform that can support more advanced functionality as their needs
grow.

� WebSphere Everyplace® mobile portal

This extends the capabilities of the IBM WebSphere portal to mobile devices.
It offers capabilities for mobile portal navigation that delivers compelling and
differentiating user experience and flexible navigation across wireless
devices.

2.2.2 The WebSphere Application Server family
The IBM WebSphere application server is a family of server products. Each
member of the family has essentially the same architectural structure.

� The WebSphere Application Server and WebSphere Application Server
Express: You are limited to stand-alone application servers. Each stand-alone
application server provides a fully functional J2EE 1.4 environment.

� The WebSphere Application Server Network Deployment (WAS ND): Offers
advance configurations and central management of multiple application
servers to support high availability, scalability, and performance to suit the
complex needs of enterprise systems.

� The WebSphere Extended Deployment: Includes features and functions that
extend the capabilities of WebSphere Application Server Network
Deployment (WAS ND) to deliver on demand responsiveness, simplified
administration, and high performance enhancements, such as resource
virtualization and pooling using node groups and dynamic clusters.

 Chapter 2. Introduction to J2EE and WebSphere platform 61

Table 2-1 shows the WebSphere Application Server family.

Table 2-1 WebSphere Application Server family feature summary

2.2.3 Stand-alone server configuration
Express, Base, and Network Deployment all support a single stand-alone server
environment. With a stand-alone configuration, each application server acts as a
unique entity. An application server runs one or more J2EE applications and
provides the services required to run those applications. Multiple stand-alone
application servers can exist on a machine, either through independent
installations of the WebSphere Application Server code or through multiple
configuration profiles within one installation. However, WebSphere Application
Server does not provide for common management or administration for multiple
application servers. Stand-alone application servers do not provide workload
management or failover capabilities.

Figure 2-10 on page 63 shows an architectural overview of a stand-alone
application server.

Express and Base Network/Extended
Deployment

Application server Yes Yes

Application server
clustering

No Yes

External Web server Yes Yes

External generic server No Yes

WebSphere JMS servers No Yes

62 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-10 Architectural overview of stand-alone WebSphere Application Server

2.2.4 Distributed server configuration
With WebSphere Application Server Network Deployment and Extended
Deployment, you can build a distributed server configuration, which enables
central administration, workload, and failover management. In this environment,
you integrate one or more application servers into a cell that is managed by a
deployment manager. The application servers can reside on the same machine
as the deployment manager or on multiple separate machines. Administration
and management is handled centrally from the administration interfaces via the
deployment manager.

 Chapter 2. Introduction to J2EE and WebSphere platform 63

With this configuration, you can create multiple application servers to run unique
sets of applications and then manage those applications from a central location.
However, more importantly, you can cluster application servers to allow for
workload management and failover capabilities. Applications that you install in
the cluster are replicated across the application servers. When one server fails,
another server in the cluster continues processing. Workload is distributed
among Web containers and Enterprise JavaBeans containers in a cluster using a
weighted round-robin scheme.

Figure 2-11 illustrates the basic components of an application server in a
distributed server environment.

Figure 2-11 WebSphere Application Server distributed server environment

64 IBM WebSphere and Microsoft .NET Interoperability

Application servers, nodes, and cells
Regardless of the configuration, the WebSphere Application Server is organized
based on the concept of cells, nodes, and servers. While all of these elements
are present in each configuration, cells and nodes do not play an important role
until you take advantage of the features provided with Network Deployment.

Application servers
The application server is the primary runtime component in all configurations and
is where an application actually executes. All WebSphere Application Server
configurations can have one or more application servers. In the Express and
Base configurations, each application server functions as a separate entity.
There is no workload distribution or common administration among application
servers. With WebSphere Application Server Network Deployment, you can build
a distributed server environment consisting of multiple application servers
maintained from a central administration point. In a distributed server
environment, you can cluster application servers for workload distribution.

Nodes, node groups, and node agents
A node is a logical grouping of server processes that are managed by
WebSphere and that share common configuration and operational control. A
node is associated with one physical installation of WebSphere Application
Server. In a stand-alone application server configuration, there is only one node.

With WebSphere Application Server Network Deployment, you can configure
multiple nodes that you can manage from one common administration server. In
these centralized management configurations, each node has a node agent that
works with a deployment manager to manage administration processes.

A node group is a new concept introduced with WebSphere Application Server
V6. A node group is a grouping of nodes within a cell that have similar
capabilities. A node group validates that the node is capable of performing
certain functions before allowing those functions. For example, a cluster cannot
contain both Windows nodes and nodes that are not Windows based. In this
case, you can define multiple node groups, one for the Windows nodes and one
for nodes other than Windows. A DefaultNodeGroup is automatically created
based on the deployment manager platform. This node group contains the
deployment manager and any new nodes with the same platform type.

The Node Agent communicates directly with the Deployment Manager, and is
used for configuration synchronization and administrative tasks, such as
stopping/starting of individual application servers and performance monitoring on
the application server node.

 Chapter 2. Introduction to J2EE and WebSphere platform 65

Cells
A cell is a grouping of nodes into a single administrative domain. In the Base and
Express configurations, a cell contains one node. That node may have multiple
servers, but the configuration files for each server are stored and maintained
individually.

In a distributed server configuration, a cell can consist of multiple nodes, which
are all administered from a single point. The configuration and application files for
all nodes in the cell are centralized into a cell master configuration repository.
This centralized repository is managed by the deployment manager process and
synchronized with local copies that are held on each of the nodes.

2.3 IBM Rational Software Development Platform
The IBM Rational Software Development Platform is a combination of a
comprehensive set of tools, proven best practices, and professional services
designed to enable business driven development and support the four
imperatives for software development. It provides a development platform with
the right tools for rapid, flexible, and incremental application development across
disparate systems and heterogeneous environments. It is built on an open and
modular framework that enables plug-ins that support a variety of application
types and user development paradigms. These paradigms include
service-oriented, component-based, and pervasive and embedded architectures.
The IBM Rational Software Development Platform is:

� Proven

It consists of tools and best practices that are the choice of thousands of
high-performance teams.

� Complete

It drives business value throughout the software life cycle by supporting every
member of the development team, as well as business and operations
stakeholders.

� Open

You can leverage existing assets and choose from a wide array of
development languages, development platforms, and partner technologies,
including Microsoft .NET, BEA, and Oracle solutions.

� Modular

You can choose the exact tools and adoption path that best fit your needs.
You can use existing tools with components of the IBM Rational Software
Development Platform.

66 IBM WebSphere and Microsoft .NET Interoperability

The modular design of SDP is based on Eclipse, which provides different
perspectives for different kinds of application development and development
roles, thereby enabling development teams to:

� Build

Build new applications and software-based products that create value.

� Extend

Extend the value of existing, commercial-off-the-shelf (COTS) and packaged
applications by customizing them to suit specific business needs.

� Integrate

Integrate new, existing, and pre-packaged applications through software
development.

� Modernize

Modernize existing business applications by transforming valuable existing
resources through a modern programming paradigm.

� Deploy

Deploy new applications and upgrades securely and rapidly with the flexibility
of controlled distribution, configuration, and management.

Figure 2-12 shows the software development with the IBM Rational Software
Development Platform.

Figure 2-12 Software development with the IBM Rational Software Development Platform

Deploy

Integrated

Int
eg

ra
ted

BuildBuild
New systemsNew systems

ExtendExtend
Packaged AppsPackaged Apps

ModernizeModernize
Existing systemsExisting systems

Integrated

 Chapter 2. Introduction to J2EE and WebSphere platform 67

2.3.1 IBM Rational Software Development Platform technologies
The technical underpinnings of the IBM Rational Software Development
Platform's open, customizable, extensible, and integrated framework are a set of
technologies infrastructure that consists of the following elements.

Eclipse
This is the open source development project that includes a generic framework
for tool integration, and a Java development environment built using the
framework. Its open and extensible plug-in architecture enables the core
framework to be extended by tools that support various kinds of application
development approaches, resulting in the Eclipse Integrated Development
Environment (IDE), a workbench with broad industry support.

Eclipse technology is at the center of the IBM Rational Software Development
Platform strategy. It provides a powerful and yet flexible tool integration
infrastructure on which IBM has created its next-generation software tooling
platform. The Eclipse platform performs three primary functions in the IBM
Rational Software Development Platform:

� It provides the UI framework for a visually consistent rich client experience as
you move between activities within the IBM Rational Software Development
Platform.

� It supports the sharing of information across different activities through use of
a common set of models expressed in the Eclipse Modeling Framework
(EMF) technology.

� Its integration infrastructure enabled the creation of teaming capabilities
available throughout the IBM Rational Software Development Platform.

The Eclipse Modeling Framework (EMF)
This is the Eclipse project framework that aids in the creation of software models
and generation of code based on the class models. It brings together UML, XML,
and Java, whereby you can create an EMF model starting from either UML, XML,
or using annotated Java. The integrated nature of EMF makes it possible to
output UML diagrams, XML schema, or Java interfaces from an EMF model, or to
interchange the model between tools and applications. EMF incorporates Java
Emitter Templates (JET), the Eclipse tool for code generation. JET can generate
Java, SQL, or JSP code. Whenever the model changes, EMF regenerates the
code. Similarly, changes to the code update the model.

68 IBM WebSphere and Microsoft .NET Interoperability

The open Model-Driven Development platform (MDD)
Model-Driven Development is all about software development that is centered
around the meta-data definition of systems, in other words, using models to
design, construct, deploy, and modify systems. The foundation for MDD is based
on the Object Management Group's concept of Model Driven Architecture
(MDA). MDA prescribes separation of the specification of a system from how the
system is realized on a given platform. MDA calls for the following:

� Specifying a system independently of the platform that will support it

� Specifying platforms

� Choosing a particular platform and transforming the system specification into
one for that particular platform

IBM leveraged the Eclipse framework in creating the SDP model driven
development infrastructure (see Figure 2-13 on page 70). Three primary
components are at the center of this infrastructure:

� Open source technologies provided by the Eclipse project, including UML2
metamodel—realization of UML2.0 specifications in EMF, and Haydes testing
framework.

� IBM value-add capabilities built on top of the set of open source technologies.

� Core IBM technologies for data sharing, artifact management, team
interaction, and information aggregation.

 Chapter 2. Introduction to J2EE and WebSphere platform 69

Figure 2-13 IBM MDD platform

The WebSphere programming model
The Service-Oriented Architecture (SOA) strategy and implementation on the
IBM WebSphere platform and the entire IBM middleware stack (DB2, Tivoli, and
Lotus) strongly influenced the IBM Rational Software Development Platform
programming model. Key elements of the programming model include:

� Service Data Objects (SDOs)

SDOs provide a simplified data access programming model for various
resources (data as well as EIS) and complement the core Web Services
standards XML, Web Services Definition Language (WSDL), and Simple
Object Access Protocol (SOAP).

� BPEL4WS

The service orchestration and component scripting standard that supports
workflow and business process integration.

Language tooling Language tooling
(J2EE, Web (J2EE, Web

Services, Services,
deployment)deployment)

DiagramDiagram
AndAnd

visualizationvisualization

MDD coreMDD core
(Code (Code

generation, generation,
pattern engine)pattern engine)

HyadesHyades

Common Service (reporting and so on)Common Service (reporting and so on)

Mode services (UML2 Ext., other meta models, Code Gen APIs…)Mode services (UML2 Ext., other meta models, Code Gen APIs…)

ContentContent
(pattern engine)(pattern engine)

J2EE, Web Services, UML2 ModelsJ2EE, Web Services, UML2 Models

CM, merge, traceability, …CM, merge, traceability, … GEFGEF EMFEMF JDT/CDTJDT/CDT TeamTeam

Eclipse coreEclipse core

Team platform (Team platform (WebSphereWebSphere Portal, Portal, WebSphereWebSphere Application Server, DB2, Lotus Collaboration)Application Server, DB2, Lotus Collaboration)

O
pe

n
So

ur
ce

O
pe

n
So

ur
ce

70 IBM WebSphere and Microsoft .NET Interoperability

� JavaServer Faces

The Java technology that simplifies building user interfaces for Java server
based applications. It enables developers who are not J2EE experts to easily
build Web applications by assembling user interface components.

Role-based solutions portfolio
The IBM Rational Software Development Platform leveraged the flexibility of the
Eclipse framework to provide user interfaces that enable users to work in an
environment that is tailored to their specific roles and the development tasks
being performed. The use of a common set of models in the infrastructure makes
it easy for the different roles to share artifacts across different activities.

Figure 2-14 shows roles that exist in the IBM Rational Software Development
Platform.

Figure 2-14 Roles in the IBM Rational Software Development Platform

ArchitectArchitect DeveloperDeveloper TesterTester

Requirements and analysisRequirements and analysis

Design and constructionDesign and construction

Software qualitySoftware quality

EclipseEclipse

•• RoleRole--based UIsbased UIs
•• Common models for integration across the life cycleCommon models for integration across the life cycle
•• Artifact sharing via interface to Team Unifying PlatformArtifact sharing via interface to Team Unifying Platform

C
us

to
m

er
C

us
to

m
er

E
xt

en
si

on
s

E
xt

en
si

on
s Third

Third -- party
party

IS
V

 tools
IS

V tools

AnalystAnalyst

ProjectProject
ManagerManager

Software configuration managementSoftware configuration management

Process and project managementProcess and project management

Team Unifying PlatformTeam Unifying Platform

 Chapter 2. Introduction to J2EE and WebSphere platform 71

2.3.2 The IBM Rational Software Development Platform products
The IBM Rational Software Development Platform (SDP) includes an expansive
portfolio of IBM products covering all aspects of software product development.
The tools map to the following major areas of the software development life cycle:

� Requirements and analysis

Integrated tools for requirements management, use case development,
business modeling, and data modeling.

� Design and construction

Tools for architecture and design modeling, model-driven development,
component testing, and runtime analysis activities.

� Software quality

Tools that address the three dimensions of software quality: functionality,
reliability, and performance.

� Software configuration management

Solutions for simplifying and managing change, including version control,
software asset management, and defect and change tracking.

� Process and portfolio management

Integrated solutions that help teams manage change and requirements,
model and test systems, implement a proven development process, and
assess and report progress.

Requirements and analysis
Integrated within the IBM Rational Software Development Platform are
requirement and change management features that allow each role in the
development team to have a direct window into user needs.

� Project managers

Project managers can view and create project requirements and track
requirements back to their original sources as enhancement requests.

� Developers

Developers can review requirements and use cases (directly from within
products like IBM Rational Software Architect and Rational Application
Developer) while they are developing the software.

� Testers

Testers can get a jump-start on testing activities by viewing project
requirements directly from their test management environment.

72 IBM WebSphere and Microsoft .NET Interoperability

� Administrators

Administrators can include requirements when creating project baselines.

Key products
IBM offers a number of products for requirements and analysis. The following are
the key IBM products:

� Rational RequisitePro®

Promotes better communication and enhances teamwork by integrating
requirements across IBM Rational Software Development Platform tools,
ensuring that all team members are informed of the most current
requirements information. It provides detailed traceability views that display
parent/child relationships and show requirements that may be affected by
upstream or downstream changes. Rational RequisitePro enables detailed
attribute customization and filtering to maximize the informative value of each
requirement within a project.

� IBM Rational Rose® Data Modeler

Provides the data analyst with a UML-based visual modeling tool that
integrates data modeling with application modeling and system development.

� IBM Rational Software Modeler

A UML-based visual modeling and design tool that supports model-driven
development. It enables architects and designers to produce
platform-independent models. Developers use the architecture models and
patterns as the basis for implementation, thereby accelerating the
development process.

Other IBM requirements and analysis products include the following:

� WebSphere Business Integration Modeler

This product is used to define, model, analyze, simulate, and report business
processes. It also extends IBM WebSphere MQ Workflow with business tools
to visualize process impact.

� WebSphere Business Integration Monitor

Monitors business processes in real time, using visual dashboards for
improved business decision-making.

 Chapter 2. Introduction to J2EE and WebSphere platform 73

Table 2-2 shows the requirements and analysis key products.

Table 2-2 Requirements and analysis key products

Design and construction
IBM design and construction tools are an integral part of the IBM Rational
Software Development Platform. Built on the Eclipse open framework, these
products help developers maximize their productivity. They not only simplify
software development, but also transform software construction by introducing
model driven development. These products support design and construction
activities including architecture, design and modeling, construction, rapid
application development (RAD), component testing, and runtime analysis
activities.

Figure 2-15 on page 75 shows the IBM Rational developer products.

Products Business
Analyst

Systems
Analyst

Data
Analyst

IBM Rational RequisitePro x x

IBM Rational Rose Data Modeler x x

IBM Rational Software Modeler x

WebSphere Business Integration
Modeler

x

WebSphere Business Integration
Monitor

x

74 IBM WebSphere and Microsoft .NET Interoperability

Figure 2-15 IBM Rational developer products

Key products
The products for design and construction range from those used to build
enterprise-wide applications to tools for building embedded systems and
software products for mobile devices. These products offer capabilities that
include choice of development styles, modeling, round-trip engineering, model
execution, and existing integration. The following are the key IBM products for
software design and construction:

� IBM Rational Web Developer for WebSphere Software

This provides the integrated development environment and tools you need to
develop Web applications. The range of Web applications can vary from a
simple application (consisting of only static Web pages) to an advanced
e-commerce application that includes JavaServer Pages (JSP) files and Java
servlets.

•• IBM commercially supported Eclipse 3.0IBM commercially supported Eclipse 3.0
•• IBM Software Development Platform toolingIBM Software Development Platform tooling

IBM Eclipse 3.0 SDKIBM Eclipse 3.0 SDK

Application Server Tool (AST)Application Server Tool (AST)

•• Tooling for assembly, deployment (EJB, Tooling for assembly, deployment (EJB,
Web Services) and debugging J2EE Web Services) and debugging J2EE
applicationsapplications
•• No development supportNo development support
•• WebSphereWebSphere Rapid DeploymentRapid Deployment
•• Support for Enhanced EARSupport for Enhanced EAR
•• Server Tools Server Tools –– support for remote serversupport for remote server

IBM Rational Web DeveloperIBM Rational Web Developer

•• Full development supportFull development support
•• Support for J2EE 1.2, 1.3, 1.4 Web Support for J2EE 1.2, 1.3, 1.4 Web
based applications (JSF, Struts, SDO based applications (JSF, Struts, SDO
tools)tools)
•• No EJB, J2C development supportNo EJB, J2C development support

•• Server Test Environments Server Test Environments
((WebSphereWebSphere Application Server Application Server
V5.0, 5.1, 6.0, Tomcat 5.0 and V5.0, 5.1, 6.0, Tomcat 5.0 and
WebLogicWebLogic 6.1, 7.1, 8.1 6.1, 7.1, 8.1 abailableabailable
separately)separately)
•• Visual Java GUI BuilderVisual Java GUI Builder
•• Web Diagram EditorWeb Diagram Editor
•• Site DesignerSite Designer
•• Page TemplatesPage Templates
•• XML ToolsXML Tools
•• Web Services toolsWeb Services tools
•• Database toolsDatabase tools
•• Portal and Portal and portletportlet development development
•• Enterprise Generation Language Enterprise Generation Language
(EGL) tools(EGL) tools
•• DebuggerDebugger

IBM Rational Application DeveloperIBM Rational Application Developer
•• Full J2EE 1.4 supportFull J2EE 1.4 support
•• Portal Test Environment Portal Test Environment
5.0.2.25.0.2.2
•• UML Visual editorsUML Visual editors
•• Static and runtime analysisStatic and runtime analysis
•• Extended debugging and Extended debugging and
profilingprofiling
•• Component test automationComponent test automation
•• ClearCaseClearCase LT for team LT for team
integrationintegration
•• Rational Unified Process Rational Unified Process
(RUP) integration(RUP) integration

 Chapter 2. Introduction to J2EE and WebSphere platform 75

Web applications in the Rational Web Developer are maintained in projects.
Two types of Web projects are supported:

– Dynamic Web projects

These can contain dynamic J2EE resources, such as servlets, JSP files,
filters, and associated metadata, in addition to static resources, such as
images and HTML files.

– Static Web projects

These only contain static resources.

IBM Rational Web Developer supports all activities involved in planning,
creating, and deploying Web sites, including the design, construction, testing,
publishing, and maintenance.

� IBM Rational Application Developer for WebSphere Software

This is a comprehensive environment for constructing a variety of classes
applications by individuals or advanced distributed development teams.

IBM Rational Application Developer for WebSphere Software supports all the
features of Web application development in IBM Rational Web Developer for
WebSphere Software. Additionally, it provides support for developing the
following types of applications:

– Portal projects

These projects are used for creating applications that customize both the
structural and stylistic framework of portals.

– Portlet projects

These projects help you develop portlet applications that conform to the
support for the IBM portlet API and the JSR 168 portlet API for the IBM
WebSphere Portal.

– Java projects

These projects contain files necessary for building Java applications.
Associated with each project is a Java builder that can incrementally
compile Java source files as they are changed. Here are some of the
things you can do with Java projects:

• Develop J2EE applications.

• Use the visual editor for Java to create your application’s graphical
user interface (GUI).

• Visually develop Java applications using UML diagrams. You can use
UML to develop artifacts for Java applications or for round-trip
engineering.

76 IBM WebSphere and Microsoft .NET Interoperability

• You can make system-wide changes by refactoring your code without
affecting the behavior of the program.

– Data access

This includes tools that allow you to use wizards and views to define and
work with databases. Data access projects allow you to create and work
with the following:

• Tables, views, and filters

• SQL statements

• DB2 UDB routines (such as DB2 UDB stored procedures and
user-defined functions)

• SQLJ, SQL DDL, DADX, and XML files

You can also visually develop database applications using Unified
Modeling Language (UML) class, Information Engineering (IE) notation, or
Integration Definition for Information Modeling (IDEF1X) notation. You can
use these diagrams to do the following:

• Automatically abstract your application’s structural information from the
code so you can gain understanding of database applications.

• Develop and redesign database applications for better maintainability.

• Explore and navigate data elements and relationships in your
applications.

– EJB project

This is the environment that you use to develop and test enterprise beans
and to organize and manage the resources contained in an EJB module.
You must first create an EJB project, after which you can create session,
entity, or message-driven beans. You can add enterprise beans to the
EJB project in one of the following ways:

• Create new enterprise beans.

• Define new beans from existing Java classes.

• Import enterprise beans from EJB JAR files.

• Generate beans by bottom-up mapping from relational database
tables.

You can visually develop EJB applications using Unified Modeling
Language (UML) diagrams. UML diagrams depict components and
elements in your application. Working with UML models, you are able to:

• Analyze and understand your application to identify and understand
the relationships to enterprise beans.

• Create representations of your application in another form.

 Chapter 2. Introduction to J2EE and WebSphere platform 77

• Automatically abstract your application's structural information from
code to a higher level of abstraction.

• Redesign your application for maintainability.

• Produce your application’s structural information without access to the
design from which it was originally developed.

• Modify the target system or develop and generate new systems.

• Understand and develop behaviors and interactions of enterprise
beans.

– Web Services projects

These support the following aspects of Web Services development:

• Discover

Browse the UDDI Business Registries or WSIL documents to locate
existing Web Services for integration.

• Create or transform

Create bottom-up Web Services from existing artifacts, such as
JavaBeans, enterprise beans, URLs that take and return data, DB2
XML Extender calls, DB2 Stored Procedures, and SQL queries. Create
top-down Web Services from WSDL discovered from others or created
using the WSDL Editor.

• Build

Build by wrapping existing artifacts as SOAP accessible services and
describing them in WSDL. The Web Services wizards assist in
generating Java client proxy to Web Services described in WSDL and
in generating JavaBean skeletons from WSDL.

• Deploy

Deploy Web Services into the WebSphere Application Server or
Tomcat test environments.

• Secure

Secure Web Services running on WebSphere Application Server.

• Test

Test Web Services running locally or remotely in order to get instant
feedback.

• Develop

Develop by generating sample applications to assist you in creating
your own Web service client application.

78 IBM WebSphere and Microsoft .NET Interoperability

• Publish

Publish Web Services to UDDI V2 or V3 Business Registry, advertising
your Web Services so that other businesses and clients can access
them.

– EGL

Enterprise Generation Language (EGL) is the development environment
and programming language that lets you write fully functioning Web
applications, where the details of Java and J2EE are hidden. You can
generate Java source code from your EGL application. EGL outputs are
executable objects that can be deployed on different platforms.

– XML

Provides a comprehensive visual Extensible Markup Language (XML)
development environment with the following editors:

• XML editor

This is used for creating and viewing Extensible Markup Language
(XML) files. You can use it to create new XML files from scratch,
existing DTDs, or existing XML schemas. You can also use it to edit
XML files, associate them with DTDs or schemas, and for validation.

• DTD editor

This is used for creating and viewing Document Type Definitions
(DTDs). Using the DTD editor, you can create DTDs and generate XML
schema files.

• XML schema editor

This is used for creating, viewing, and validating XML schemas. You
can use the XML schema editor to perform tasks such as creating XML
schema components, importing and viewing XML schemas, generating
relational table definitions from XML schemas, and generating
JavaBeans for creating XML instances of an XML schema.

• XSL editor

This can be used to create new Extensible Stylesheet Language (XSL)
files or to edit existing ones. You can use content assist and various
wizards to help you create or edit the XSL file. Once you have finished
editing your file, you can also validate it. Also, you can associate an
XML instance file with the XSL source file you are editing and use that
to provide guided editing when defining constructions such as an
XPath expression.

 Chapter 2. Introduction to J2EE and WebSphere platform 79

• XPath expression wizard

This can be used to create XML Path Language (XPath) expressions.
XPath expressions can be used to search through XML documents,
extracting information from the nodes (such as an element or attribute).

• XML to XML mapping editor

This is used to map one or more source XML files to a single target
XML file. You can add XPath expressions, groupings, Java methods,
or conversion functions to your mapping. Mappings can also be edited,
deleted, or persisted for later use. After defining the mappings, you can
generate an XSLT script. The generated script can then be used to
combine and transform any XML files that conform to the source DTDs.

• RDB to XML mapping editor

This is used for defining the mapping between one or more relational
tables and an XML file. After you have created the mapping, you can
generate a document access definition (DAD) script, which can be run
by the DB2 XML Extender to either compose XML files from existing
DB2 data, or decompose XML files into DB2 data.

� IBM Rational Software Architect

This builds on the capabilities of the IBM Rational Application Developer for
WebSphere Software to provide an integrated design and development tool
that leverages model-driven development. IBM Rational Software Architect
enables architects and designers to produce language-independent Unified
Modeling Language (UML) models of software architecture and reusable
assets. It offers architects and developers a rich set of model-driven
development and runtime analysis capabilities that include:

– Design

Design application software by building modeling projects. You model the
design of applications by capturing application requirements and modeling
application behavior in use case models, model the user workflow using
activity diagrams, capture the application domain in an analysis model,
and capture the architecture in a design model.

– Transformation

Transformation of the source file to generate a target form of output such
as the transition from model to code. You can generate Enterprise
JavaBeans (EJB) and Java classes from annotated UML model elements
by running the EJB transformations, or generate Java classes from UML
models.

80 IBM WebSphere and Microsoft .NET Interoperability

– Discovery

Detects patterns in application code automatically. By reviewing the topic
diagrams, you are able to gain an understanding of how an application is
designed.

– Authoring

You are able to integrate software design solutions into Unified Modeling
Language 2.0 (UML 2.0) models. By capturing frequently used or complex
structures and processes as design patterns, you eliminate redesign and
instead promote reuse and consistency.

Other IBM design and construction products include the following:

� IBM Rational Rose Technical Developer

This supports the most advanced modeling constructs, such as model
execution and fully executable code generation, resulting in the highest levels
of productivity.

� IBM WebSphere Studio Enterprise Developer

This simplifies the skills needed to develop component-based Web
applications; helps developers rapidly create well structured business
systems that integrate WebSphere software and traditional transactional
environments, and promotes the reuse and transformation of existing
applications to help reduce costs and shorten the development cycle.

� IBM WebSphere Studio Asset Analyzer

This maintains and extends existing assets through impact analysis and
enhanced application understanding.

 Chapter 2. Introduction to J2EE and WebSphere platform 81

Table 2-3 shows the design and construction key products.

Table 2-3 Design and construction key products

Software quality
The IBM Rational Software Development Platform include products for ensuring
quality in the development and validation of software products.

Key products
The key products for software quality include the following:

� IBM Rational TestManager

The central console for test activity management, execution, and reporting. It
is an extensible platform that supports various test approaches from pure
manual test approaches to various automated paradigms, including unit
testing, functional regression testing, and performance testing. Rational
TestManager is accessible to all members of a project team, ensuring the
high visibility of test coverage information, defect trends, and application
readiness.

Products Software
Architect

App
Developer

Web
Developer

Traditional
Developer

IBM Rational Web
Developer for WebSphere
Software

x

IBM Rational Application
Developer for WebSphere
Software

x x

IBM Rational Software
Architect

x x x

IBM WebSphere Studio
Enterprise Developer

x

IBM WebSphere Studio
Asset Analyzer

x x

IBM Rational Rose
Technical Developer

x x

82 IBM WebSphere and Microsoft .NET Interoperability

� IBM Rational Manual Tester

This is an authoring and execution tool. Working with IBM Rational Manual
Tester, you can create scripts that contain testing instructions to be
performed step-by-step by a tester. IBM Rational Manual Tester also
supports the following:

– It promotes test step reuse to reduce the impact of software change on
testers.

– Imports preexisting Microsoft Word and Excel-based manual tests.

– Exports test results to CSV-based files for analysis in preferred third-party
tools.

– Content sharing across distributed test sites.

– Data entry and verification during test execution to reduce human error.

� IBM Rational Functional Tester

Automated functional and regression testing tool. It supports testing of the
functionality and Graphical User Interface (GUI) of Java, Microsoft Visual
Studio® .NET, and Web-based applications. Its features include:

– Automated capabilities for data-driven testing

– Choice of scripting language and editors for test authoring and
customization:

• Java in Eclipse
• Microsoft Visual Basic .NET in Visual Studio .NET

Included in the packaging for IBM Rational Functional Tester are two other
products:

– IBM Rational ClearCase® LT

This provides version control, automated workspace configuration, and
parallel development support of development assets.

– ScriptAssure™

This uses pattern-matching capabilities to enable Functional Tester to
attain test script resiliency in the face of frequent application user interface
changes.

� IBM Rational Performance Tester

This is a performance test creation, execution, and analysis tool used for
validating the scalability and reliability of complex multi-tier applications
before deployment. Here are some of IBM Rational Performance Tester
capabilities:

– It detects variable data and prepares tests for data-driven load test
generation using built-in data correlation filters.

 Chapter 2. Introduction to J2EE and WebSphere platform 83

– It supports creation of advanced analysis algorithms through script
customization and an extensive library of test functions.

– Its customizable test workload scheduler permits highly accurate models
of true user profiles.

– You can generate real-time reports showing up-to-the second response
times across users and user groups, exposing system bottlenecks.

– You can correlate detailed server resource data with response times to
expose hardware-related performance limitations.

Other IBM software quality products include the following:

� IBM Rational Robot

This has long been the industry leader for automated functional testing,
including regression and smoke testing. It is the only tool to provide full native
support for functional testing of .NET applications. Rational Robot ships with
IBM Rational TestManager for automated management of all testing
activities, including manual testing.

� IBM Rational Team Unifying Platform™

This integrates all the testing activities for one application with centralized test
management, defect tracking, and version control. It provides an integrated
suite of infrastructure tools and processes, including IBM Rational
RequisitePro, IBM Rational ProjectConsole™, IBM Rational ClearCase LT,
IBM Rational ClearQuest®, IBM Rational TestManager, IBM Rational SoDA®,
and IBM Rational Unified Process®.

Table 2-4 shows software quality key products.

Table 2-4 Software quality key products

Products Business
Analyst

Tester Developer

IBM Rational Manual Tester x x x

IBM Rational Functional Tester x x

IBM Rational Performance Tester x x

IBM Rational Robot x

IBM Rational TestManager x x x

84 IBM WebSphere and Microsoft .NET Interoperability

Software configuration management
Software configuration management (SCM) solutions are a core foundation of
the IBM Rational enterprise change management portfolio. SCM enables
development teams to capture, control, and securely manage software changes
and assets.

IBM Rational SCM products provide process-centric change management
across the application development life cycle. Integrated with leading IDEs,
including Rational Application Developer and Microsoft Visual Studio .NET, IBM
SCM products automatic and streamlined control of software assets across
geographically distributed development teams and help increase productivity.

Key products
The IBM Rational Software Development Platform software configuration
management key products include:

� IBM Rational ClearCase Change Management Solution

An integrated software asset management, workflow management, and
defect and change tracking system that enforces development process for
improved responsiveness and efficiency.

� IBM Rational ClearCase Change Management Solution Enterprise Edition

This provides integrated software configuration management for medium to
large development projects and geographically distributed teams.

� IBM Rational ClearCase

This provides software asset management for medium to large projects.

� IBM Rational ClearCase LT

This provides entry-level version control for small, local projects.

� IBM Rational ClearQuest

This provides flexible defect and change tracking across the project life cycle.

� IBM Rational ClearQuest MultiSite

This is an option to Rational ClearQuest to support defect and change
tracking across geographically distributed projects.

� IBM Rational ClearCase MultiSite®

This is an option to Rational ClearCase to support geographically distributed
software asset management for medium to large projects.

� IBM Rational ClearCase and MultiSite

This provides a software asset management solution for geographically
distributed projects.

 Chapter 2. Introduction to J2EE and WebSphere platform 85

� IBM Rational ClearQuest and MultiSite

This is a defect and change tracking solution for geographically distributed
projects.

� IBM Rational ClearCase Change Management Solution

An integrated software asset management, workflow management, and
defect and change tracking system that enforces development process for
improved responsiveness and efficiency.

� IBM Rational Team Unifying Platform

This integrates all the testing activities for one application with centralized test
management, defect tracking, and version control.

Table 2-5 shows software configuration and management key products.

Table 2-5 Software configuration and management key products

Process and portfolio management
In organizations that recognize software development as a business process or
have adopted business driven development, senior IT leaders and project
managers need to drive consistency, predictability, and performance to meet
business needs. To achieve this, there must be clear definition of responsibilities
and a shared understanding of the processes and goals among members of the
development teams. IBM Rational Software Development Platform provides
integrated tools that enable development teams to work together more
effectively, gain visibility across project portfolios, and make faster and better
decisions. The tools range from a software development process platform based
on proven best practices, to tools for prioritizing, planning, managing, and
measuring progress of IT projects.

Products Project
Manager

 Developer Tester Analyst

IBM Rational ClearCase x x x

IBM Rational ClearQuest x x x x

IBM Rational Team
Unifying Platform

x x x x

86 IBM WebSphere and Microsoft .NET Interoperability

Key products
The IBM Rational Software Development Platform process and portfolio
management key products include:

� IBM Rational Portfolio Manager

This provides comprehensive IT governance and executive level visibility into
IT projects.

� The IBM Rational Team Unifying Platform

This provides the infrastructure tools, processes, and integrations
development teams need to work together more effectively. It unifies teams
by providing common access to development assets, communication alerts,
and processes to maintain project momentum and focus. The IBM Rational
Team Unifying Platform is an integrated suite of infrastructure tools and
processes that include:

– IBM Rational RequisitePro

This is a requirements management solution.

– IBM Rational ProjectConsole

This provides managers and team members with access to complete
project information through a single Web site.

– IBM Rational ClearCase LT

This provides version control for small, local projects.

– IBM Rational ClearQuest

This enables flexible defect and change tracking across the project life
cycle.

– IBM Rational TestManager

This enables management of all testing activities for an application,
including manual, regression, functional, performance, and runtime
analysis.

– IBM Rational SoDA

This automates the creation and maintenance of comprehensive project
documentation and reports.

– IBM Rational Unified Process (RUP®)

This unifies the team by providing common access to development assets,
communication alerts, and workflow processes.

 Chapter 2. Introduction to J2EE and WebSphere platform 87

� IBM Rational Unified Process (RUP)

This is a flexible software development process platform that helps deliver
customized yet consistent process guidance to the project team. The RUP
platform includes tools for configuring RUP for specific project needs,
developing internal knowledge into process components, and Web-based
deployment, as well as an online community for exchanging best practices
with peers and industry leaders.

� The IBM Rational Suite®

This provides a full life cycle solution of analyst, developer, and tester
products to unify cross-functional teams and support enterprise software
projects from requirements to release. Specifically, Rational Suite unifies
cross-functional teams in a Windows environment through key product
integrations and workflow; accelerates development through visual modeling,
code-generation, and reverse engineering capabilities; finds and eliminates
runtime errors, memory leaks, and performance issues; includes best
practices, market leading tools, and configurable process; provides all the
tools needed in one box; and offers access to product-specific discussion
forums, white papers, and re-usable assets as a member of the IBM Rational
online development community.

Products included with Rational Suite are:

– IBM Rational Rose XDE™ Developer Plus

This provides a rich set of model-driven development and runtime analysis
capabilities for building software applications that address the needs of
both J2EE-based and .NET-based systems.

– IBM Rational PurifyPlus™ for Windows

This provides a complete set of runtime analysis tools designed for
improving application reliability and performance in a Windows
environment.

– IBM Rational Functional Tester for Java and Web

This virtually eliminates script maintenance by creating resilient, reusable
test scripts in Java with ScriptAssure.

– IBM Rational Robot

This automates functional, regression, and configuration testing for a wide
range of application types, including .NET.

– IBM Rational Team Unifying Platform

This manages development across the life cycle.

88 IBM WebSphere and Microsoft .NET Interoperability

– IBM Rational Developer Network®

This provides Rational users with targeted articles, Web-based training,
reusable assets, and discussions to help them be successful with software
application development projects.

Table 2-6 shows process and portfolio management key products.

Table 2-6 Process and portfolio management key products

The WebSphere platform is the IBM implementation of the Java 2 platform
Enterprise Edition (J2EE) specifications. It implements the complete set of J2EE
architecture elements, including application components, containers, resource
adapters, databases accessibility, and the set of standard services. J2EE is the
Java-based platform created by Sun™ Microsystems™ (together with its industry
partners, which include IBM).

In this section, we introduced the IBM WebSphere platform for developing and
deploying enterprise scale multi-tiered distributed Web applications.

Products Project
Manager

 Analyst Tester Developer

IBM Rational Portfolio
Manager

x x x x

IBM Rational Team
Unifying Platform

x x x

IBM Rational Unified
Process

x x x x

IBM Rational Suite x x x x

 Chapter 2. Introduction to J2EE and WebSphere platform 89

90 IBM WebSphere and Microsoft .NET Interoperability

Chapter 3. Introduction to .NET
platform

The intent of this chapter is to enable readers with knowledge of J2EE and
WebSphere to gain an understanding of the .NET platform. It provides an
overview of the .NET framework, its capabilities, and technologies.

This chapter contains the following sections:

� The .NET initiative
� The .NET suite
� Developing .NET applications
� Deploying and managing .NET applications

3

© Copyright IBM Corp. 2006. All rights reserved. 91

3.1 The .NET initiative
Mention .NET and most people will immediately conclude that you are referring
to programming with .NET framework. While this may be true most of the time,
.NET is also a brand, development tools, and technologies. More strategically,
.NET is Microsoft’s push for use of Web Services to develop software systems to
connect information, people, systems, and devices.

The introduction of .NET framework marked a new beginning for Windows’
applications runtime environment. It was also a major evolutionary step in the
advancement of Windows development technologies and tools. You can trace
this evolutionary advancement to the introduction of Microsoft Windows
Distributed interNet Applications (DNA) and beyond. DNA introduced the
framework for developing multi-tier, scalable, and distributed applications over
the Internet.

3.1.1 Windows DNA
Microsoft introduced DNA architecture in 1999, a framework for building what
was then a new class of distributed computing solutions integrating the Internet,
client/server, and PC computing. At the center of the framework is the COM+
integrated component programming model. COM+ is the latest evolution of the
Microsoft Component Object Model (COM). It incorporates COM, Microsoft
Transaction Server (MTS), Microsoft Message Queuing (MSMQ), and new
component services to create a runtime environment for scalable and distributed
applications.

N-tier architectures with DNA
One of the most important new features introduced by Windows DNA was the
strong separation of solutions into three tiers. It solved a number of problems that
were inherent with 2-tier architectures and enabled clear separation of the user
interface from the application logic and resource management. The three-tier
architecture model had the advantage of enabling modular software solutions
with well defined interfaces that allow independent upgrade, replacement, or
technology change of any of the three tiers.

� Presentation tier

The presentation tier or user access layer is the user access point to DNA
applications. This layer presents data to the user and accepts user inputs for
validation before sending it to the middle tier where the business logic
resides. The presentation tier in DNA supports both the traditional
stand-alone application client and Web based thin clients.

92 IBM WebSphere and Microsoft .NET Interoperability

� Business logic tier

The middle tier or the business layer receives user inputs from the
presentation tier, interacts with the data tier to process the user request, and
sends back responses to the presentation tier. This tier is where COM+
services and business logic components are deployed. The middle-tier
components are not tied to specific clients; rather, they run on server
machines that can be clustered to provide load balancing and scalability.

� Data resource tier

In the 3-tier Windows DNA architecture model, the data services layer that
can be accessed from the middle tier and, on occasion, from the presentation
tier, provides a level of abstraction from persistent data. It manages all
interaction with data stored in databases and in file systems.

Technologies supporting the DNA architecture
The first implementation of Windows DNA was made up of a set of products that
included:

� Component Object Model (COM)

� Windows NT®

� Microsoft Message Queue (MSMQ), Microsoft Transaction Server (MTS), and
Internet Information Server (IIS)

� Site Server 3.0 Commerce Edition

� SNA Server

� SQL Server 6.5

� Exchange Server 6.5

� Visual Studio 6.0

And development technologies that included:

� Access Data Object (ADO)

ADO offered the developer an easy way to make use of several data sources,
including databases through standardized API.

� Active Server Pages (ASP)

Active Server Pages are a server side scripting derivative of the Visual Basic
language targeted on Web servers. ASP is comparable to JSP in J2EE.

 Chapter 3. Introduction to .NET platform 93

To get a full picture of the Windows DNA technologies, you will have to consider
the Windows DNA 2000 platform starting with the release of the Windows 2000
operating system. With the Windows 2000 release, Microsoft delivered an
encompassing technology infrastructure for building and deploying Windows
DNA solutions. The Windows DNA 2000 platform delivered three sets of services
and technologies designed to make programming DNA solutions easier and
scalable. These technologies and services included COM+ and a set of
component services, built-in core services from Windows 2000 operating
systems, and the Windows DNA 2000 suite of servers.

COM+ services
COM+ incorporates Component Object Model (COM), Distributed COM
(DCOM), and the Microsoft Transaction Server (MTS). It also incorporates a
number of component services to create a managed services environment
making it easier for developers to develop and use components. COM+ manages
tasks such as thread allocation, security, and distributed transactions previously
handled by developers. Microsoft has since added to the number of available
COM+ services; the initial set of COM+ services included the following:

� COM+ Events service

This is a loosely coupled publish/subscribe event system. Publishers store
event information in a COM+ catalog and subscribers query the catalog for
events of interest. The COM+ Events service simplify programming for both
publishers and subscribers by maintaining subscription data in the catalog
and handling all event semantics.

� COM Just-in-time Activation service

This service enable your components to hold active references to objects
while COM+ deactivates the object so it will not tie up valuable server
resources. COM+ reactivates the object just in time when your component
calls a method on the object.

� Object pooling service

This service enables the developer to configure your component to be kept
active in a pool, ready to be used by clients of the component. You achieve
significant performance improvement by configuring your components in this
manner.

� COM+ Queued Components service

The queued component service enables your components to invoke and
execute other components asynchronously. You make calls to target
components without regard as to their availability or accessibility. Queued
component service takes care of delivering messages to the target
component when it is ready to receive messages.

94 IBM WebSphere and Microsoft .NET Interoperability

� COM+ Security services

These services provide security features such as declarative role-based
security and authentication that you can use to protect your COM+
applications. It includes services you configure administratively and APIs you
can call from within your code.

� COM+ Transactions service

This service provides automated transactions processing framework you can
use and rely on when you design your COM+ components.

Windows 2000 native services
Windows 2000 integrated previously separate applications into a core set of
services for building distributed Web applications into the operating system. The
set of services included COM+, the significance of which we have already
pointed out and how crucial the component object model is to the Windows
environment. The initial set of services that were part of the Windows DNA 2000
platform included:

� Internet Information Server (IIS)

This Windows 2000 Web Server application is implemented as a set of
system services. It supports the common Internet protocols such as HTTP,
FTP, Simple Mail Transfer Protocol (SMTP), and Network News Transfer
Protocol (NNTP). IIS can serve up static as well as dynamic Web pages. IIS
also includes an extension API (the Internet Server API - ISAPI) through
which applications running on the Web server could extend its functionality
(Active Server Pages (ASP) is an example of an extension built using ISAPI).

� Active Server Pages (ASP)

ASP is a system service that makes use of ISAPI to provide a server side
scripting environment. It allows for the embedding of script commands, and
COM components into HTML pages to create dynamic and interactive Web
applications.

� Message Queuing

Message Queuing is a messaging service infrastructure for creating
distributed, loosely-coupled applications. Applications can use the Message
Queuing service to communicate across heterogeneous networks and with
applications that may be offline. Message Queuing provides security,
transaction support, and guaranteed delivery of messages.

 Chapter 3. Introduction to .NET platform 95

� ActiveX® Data Object (ADO)

This service provides an easy-to-use API used for communicating with data
sources. It interfaces to OLE DB, which provides access to the underlying
data repositories. ADO is one of the three technologies in the Microsoft Data
Access Components (MDAC) (the other two being OLE DB and ODBC),
which implements the Universal Data Access a key element of Windows
DNA.

3.1.2 Evolution of .NET
While Microsoft was promoting DNA as the Internet Application Architecture of
the future, changes were occurring in the computing industry. Significant among
these were emergence of Web Services and Java 2 Enterprise Edition. So, in
order to unify the different programming models and evolve Microsoft Windows
for the future platform, Microsoft took steps and evolved the DNA platform and
the underlying technologies to .NET. The .NET platform is built on the underlying
technologies and products that make up DNA, including the Windows Operating
System and COM+ technology.

The key values that .NET provides are as follows:

� It encapsulates the Windows operating system and its Quality of Service
mechanisms within industry standard protocols, such as those involved in
Web Services and Web applications.

� It provides a runtime environment for application software with services like
garbage collection, exception management, and namespace support.

� It provides enhanced programming language independence and a new
programming language: C#.

� It provides a Framework of pre-built classes that perform functions many
applications need.

As shown in Figure 3-1 on page 97, .NET provides these values through the
implementation of a Common Language Runtime and a Framework on top of
COM+ and the operating system. The purpose of the Common Language
Runtime is to provide language independence and code execution management.
The Framework provides access to the underlying Quality of Service
mechanisms, such as COM+, and simplifies many tasks, such as building and
consuming Web Services.

96 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-1 Overview of the Microsoft .NET architecture

Various underlying products in Figure 3-1 were rebranded for .NET. They
however continue to perform the same functions as in Windows DNA but have
been enhanced to provide additional features. For example:

� A new version of the OS has been released called Windows Server® 2003.

� COM+ was upgraded from V1.0 to V1.5 and has been rebranded as
Enterprise Services under .NET.

� ADO has been enhanced and rebranded ADO.NET.

� Internet Information Services was also enhanced to Version 6.0.

N-tier application architecture
Microsoft describes how to architect applications for .NET using published
patterns. These patterns are described in a highly consistent manner and are
available online at:

http://www.microsoft.com/resources/practices/default.asp

ActiveActive
DirectoryDirectory COM+COM+

InternetInternet
InformationInformation

ServerServer
ADOADO

ApplicationsApplications

.NET Framework.NET Framework

.NET Common Language Runtime.NET Common Language Runtime

WIN32WIN32

 Chapter 3. Introduction to .NET platform 97

http://www.microsoft.com/resources/practices/default.asp
http://www.microsoft.com/resources/practices/default.asp
http://www.microsoft.com/resources/practices/default.asp

See Figure 3-2.

Figure 3-2 Layered Services Architecture advocated by Microsoft Patterns

The design patterns describe an n-tier model that is not specific about what the
tiers contain, but rather extolls the benefits of layered design. They provide a
simplified three-tier version of the n-tier model as a starting point for designing
your own solutions. This three-tier model is similar to that advocated for Microsoft
DNA. In Figure 3-2, we see that the Presentation tier of Microsoft’s basic pattern
encompasses both the client and Presentation tiers.

We will discuss each tier of Microsoft’s model in more detail and place the
components that make up each tier for clarity.

Client tierClient tier

Presentation tierPresentation tier

Business logic tierBusiness logic tier

Data/Resource tierData/Resource tier

PresentationPresentation

Business logicBusiness logic

Data & Data &
Data storageData storage

FormsForms JScriptJScript VB ScriptVB Script

ASP.NETASP.NET

COM+ ObjectsCOM+ Objects .NET Classes.NET Classes

Data componentsData components

Data storageData storage

ConnectorsConnectors

98 IBM WebSphere and Microsoft .NET Interoperability

Presentation tier
The Presentation tier provides the user experience. For thin clients, it consists of
ASP.NET (Active Server Page.NET) components that execute under Internet
Information Services (IIS). Although the .NET Presentation tier may contain
client-side scripting via VBScript or JScript®, for thin clients the ASP.NET
components do the vast majority of the presentation work (see Figure 3-3).

Figure 3-3 Presentation tier

ASP.NET can include other objects, and the interactions often follow the
well-known model-view-controller pattern.

Business tier
The business tier provides reusable objects that perform discrete business
functions. The business tier contains objects running under the .NET Common
Language Runtime, known as “managed code”, and COM+ components, which
do not run under the CLR, known as “unmanaged code” (see Figure 3-4).

Figure 3-4 Business tier

Client tierClient tier

Presentation tierPresentation tier

FormsForms JScriptJScript VB ScriptVB Script

ASP.NETASP.NET

PresentationPresentation

Business logic tierBusiness logic tier
COM+ ObjectsCOM+ Objects

Business logicBusiness logic
.NET Classes.NET Classes

 Chapter 3. Introduction to .NET platform 99

The existence of these components in the business tier does not imply location.
They may or may not run on the same machine as the Web server, application
server, or the rich client application. They may run on dedicated application
servers or even on the same machines as the resources they utilize.

When objects do not live on the same machine, .NET facilitates remote
invocation between these objects using the so called “.NET Remoting”, which is
analogous to RMI under J2EE and provides for remote invocation of .NET
components via SOAP or a proprietary binary over TCP protocol.

Data/Resource tier
The Microsoft design patterns refer to this tier as the data tier; however, it can
include services that provide access into any resource required by the
application business components (see Figure 3-5).

Figure 3-5 Data / Resource tier

The Microsoft patterns advocate abstraction of data and other resources with
.NET Classes designed to provide access to Business tier objects. These
components isolate the access code into a single location and abstract the data
representation and access patterns from the business objects to minimize the
impact to business objects of changes in data structure or providers.

3.2 The .NET suite
The Microsoft broad vision for Web Services encompasses a complete suite that
includes the .NET Framework, a component of the Microsoft Windows operating
system used for building and running Windows-based applications, Visual Studio
.NET, which provides the application development environment for creating Web
Services and applications, and .NET enterprise servers, which support
application deployment, maintenance, management, and security.

Data/Resource tierData/Resource tier

Data componentsData components

Data & Data &
Data storageData storage

Data storageData storage

ConnectorsConnectors

100 IBM WebSphere and Microsoft .NET Interoperability

3.2.1 The .NET Framework
The .NET Framework is the platform for creating and running .NET Web Services
and Windows applications. It consists of three key components: the Common
Language Runtime (CLR), the .NET Framework Class Library (FCL), and
ASP.NET.

The .NET Framework is built on top of the Microsoft Windows operating system.
Running any .NET application requires .NET Framework Version 1.1
Redistributable Package, which is similar to the Java Runtime Environment in a
WebSphere environment. The .NET Framework Version 1.1 Redistributable
Package is freely available from the Microsoft site. The following is a list of the
various Windows operating system client and server platforms:

� Client
– Microsoft Windows 98 and editions
– Microsoft Windows Millennium Edition
– Microsoft Windows NT 4.0 Workstation with Service Pack 6.0a or later
– Microsoft Windows NT 4.0 Server with Service Pack 6.0a or later
– Microsoft Windows 2000 Professional
– Microsoft Windows 2000 Server family
– Microsoft Windows XP Home Edition
– Microsoft Windows XP Professional
– Microsoft Windows Server 2003 family

� Server
– Microsoft Windows 2000 Professional with Service Pack 2.0
– Microsoft Windows 2000 Server family with Service Pack 2.0
– Microsoft Windows XP Professional
– Microsoft Windows Server 2003 family

Programming languages
While in J2EE the primary language is Java and applications run on many
platforms, Microsoft .NET supports multiple languages that primarily run on the
Microsoft Windows operating system platform. The .NET languages follow
Common Language Specification (CLS), which is the minimum set of features
that compilers must support on the target runtime. Currently, the .NET supports
more than 20 languages, including vendor supported languages.

The Visual Studio .NET is shipped with following languages developed and
supported by Microsoft:

� Visual Basic.NET
� Microsoft C#
� Microsoft J#
� Visual C++®

 Chapter 3. Introduction to .NET platform 101

Visual Studio .NET also supports scripting languages, such as JScript.NET and
VBScript.

The .NET Framework supports a number of languages. The compiler for each
language translates the source code into the Microsoft intermediate language,
which is a CPU-independent set of instructions that can be efficiently converted
to native code (see Figure 3-6).

Figure 3-6 .NET Framework languages and tools

Common Language Runtime
The Common Language Runtime (CLR) is the key component of the .NET
runtime environment. CLR is Microsoft’s implementation of the Common
Language Infrastructure (CLI) specification. CLI was initially created by Microsoft
for .NET; it is now an ECMA standard (ECMA-335). It defines the structure of
executable code and the virtual environment where it runs. The specification
consists of parts that include the following four areas:

� The Common Type System (CTS)

Defines a rich set of types and operations that are supported by a wide range
of programming languages. In .NET, CTS defines the common set of data
types for all .NET languages, such as Visual Basic .NET and C#.

� Metadata

The CLI metadata defines the language and platform independent structure
for describing types so that it can be referenced and persisted between
languages, tools, and execution environments.

ASP.NETASP.NET

Common Language Runtime (CLR)Common Language Runtime (CLR)

Windows Operation SystemWindows Operation System

VBVB

Base Class LibraryBase Class Library

Data and XMLData and XML

Common Language SpecificationCommon Language Specification

Windows FormsWindows Forms

C++C++ C#C# J#J# ……....

V
isual S

tudio .N
ET

V
isual S

tudio .N
ET

102 IBM WebSphere and Microsoft .NET Interoperability

� The Common Language Specification (CLS)

CLS is the set of common language features that is a subset of the CTS. It is
large enough to include the commonly needed developer constructs, yet
small enough that it is supported by most languages. CLS defines features
such as class overloading and inheritance, which language, tools, and
framework designers agree on and developers rely on.

� The Virtual Execution System (VES)

Defines the software layer between CLI-compatible programs and the
underlying operating system. It makes use of the metadata to bind the
different modules at runtime, loads, and manages the execution.

The CLR acts as the virtual machine for the programs that execute in .NET. It
provides the base on which the other .NET framework components are built. It is
comparable to the Java Runtime Environment (JRE™) in J2EE.

CLR includes a number of components, as shown in Figure 3-7. Now let us look
at what function each component provides.

Figure 3-7 Components of the Common Language Runtime (CLR)

Common Type System (CTS)Common Type System (CTS)

LoaderLoader

Garbage collectorGarbage collector

ExecutionExecution
supportsupport

IntermediateIntermediate
Language (IL)Language (IL)

compilercompiler
SecuritySecurity

 Chapter 3. Introduction to .NET platform 103

The Common Language Runtime loader
The CLR loader is responsible for loading each assembly (the basic unit of
deployment in .NET; for more details, see “Assemblies” on page 107) into the
appropriate application domain and controlling the memory layout of the type
hierarchy within each assembly. The CLR loader component is similar to the
class loader in Java.

Garbage collector
The garbage collector performs automatic memory management. Just as in
Java, the developer is relived from tracking and knowing when to free memory.
The garbage collector reclaims memory for unreferenced and releases objects.

The garbage collector is able to identify and release objects that have circular
references. This occurs when a parent object creates and references a child
object which then creates and references another child object. If the second child
references the first one, and the parent is being garbage collected, normally both
children would be left alive since they still have open references. Fortunately, the
.NET garbage collector is able to identify constructs like these and release them
correctly.

The garbage collector determines when to run, yet it is also possible to manually
initiate garbage collection. Just as in Java, with finalizers, you can influence the
steps that are taken when releasing an object from the heap managed by the
CLR. The garbage collector will call an object’s finalizer method, giving you the
opportunity to clean up, for example, to release database connections before the
memory for the object is garbage collected.

You should also watch out for pitfalls when working with finalizers:

� Finalizers have a performance impact on the application.

� Finalizers are not called in a predictable sequence.

� Finalizers are not called when an application is being shut down, since all
resources will be released anyway.

Note: The CLR relieves the developer from the responsibility of allocating
and de-allocating memory. If your application tries to bypass the CLR and
handle allocation and de-allocation of memory, it is considered unsafe, and
the compiler would not compile your code. Using the key words unsafe and
fixed, you can bypass CLR memory management; the resulting code is
considered unmanaged code, as opposed to managed code, where CLR
performs all allocation and de-allocation.

104 IBM WebSphere and Microsoft .NET Interoperability

Intermediate language
Every .NET compliant compiler compiles the programming language specific
code into a generic code, the Microsoft intermediate language (MSIL). The
compilation process adds metadata to the IL-code produced. The metadata
contains information about the types, references, and members of the code. It is
used by the CLR during the execution to decide on the security features and the
order to load classes to ensure the application runs correctly (see Figure 3-8).

Figure 3-8 Steps in application program compilation

Since the IL-code produced during the compilation process is not machine
specific, another core component of the CLR is needed to execute .NET
applications. This part is the Just-In-Time (JIT) compiler.

The JIT takes common MSIL (Microsoft Intermediate Language) code and
dynamically generates native code (x86 instructions for Intel® processors). The
code generated takes advantage of a multiprocessor architecture, such as
NetBurst architecture and Hyper-Threading technology. JIT also utilizes runtime
information to provide further performance enhancements and sophisticated
optimizations.

NativeNative

Operation SystemOperation System

CompilerCompiler

Common Language SpecificationCommon Language Specification

Common Language RuntimeCommon Language Runtime

MSILMSIL

JIT CompilerJIT Compiler

Managed Managed
CodeCode

CompilerCompiler

Unmanaged Unmanaged
CodeCode

 Chapter 3. Introduction to .NET platform 105

Execution support
The CLR provides execution support that exploits the architectural structure of
processors for better performance. For example, with Intel's introduction of
Hyper-Threading technology, a single physical Xeon® processor can appear as
two logical processors. CLR takes advantage of Hyper-Threading and
multi-processor systems through a thread pool, which optimizies runtime CPU
utilization by spawning and blocking threads accordingly. CLR exploits this
parallelism without the need for the developer to write additional code.

Security
The CLR execution environment enforces a security model and policy that is
independent of the host operating system security system. The CLR
component-centric security model known as code access security is based on
the origins of the code. It grants privileges to the code and not the user executing
the code.

The CLR security system uses a security policy to determine what privileges to
grant to the code in an assembly when it is loaded. The security policy accepts
as input evidence and the in-memory representation of the assembly and
produces permissions, which represent the rights to access protected resources,
such as files and the rights to perform trusted operations as output.

The idea behind that is that an assembly, loaded from the application directory,
has a higher probability of being harmless than code directly accessed over the
Internet. This gives the application a different level of control over security, for
example, with the user based approach, the code is classified by the user's
permissions to access the application, but with the code access security model,
the same user has different levels of security contexts, depending on the code
location. This means that, for example, a privileged user could execute code from
an unsafe source without automatically giving the code the access to all
resources the user possibly could access.

The decision on the handling of the implemented permissions is then done on
the so called evidences. These evidences are attributes the runtime evaluates
that give the application information about the following:

� The URL (site and application directory where the piece of code is located)

� The hash value that identifies the piece of code

Note: The CLR server-optimized version (MSCorSvr.dll) is designated for
deployment on multi-processor machines, such as those using the Intel Xeon
MP processors. It has a garbage collector per CPU, with its own thread, and is
participating simultaneously in the collection cycle.

106 IBM WebSphere and Microsoft .NET Interoperability

� The so called zone, that is, on Windows operating systems, filled according to
the zones defined in the Internet Explorer® zone settings

� A unique signature of the assembly called the strong name

� The publisher’s certificate, if appropriate

Common Type System
The support for multiple programming languages for development in .NET
framework is provided by the Common Type System (CTS). The CTS provides a
base set of data types to the upper layers of the .NET framework. This ensures
interoperability within CLR, since all .NET compliant languages are based on the
same set of data types. This feature of defining data types within the runtime
itself independent of programming languages is important when it comes to code
security. Also, since all types are unique across different languages, conversions
and translations are therefore obsolete.

All data types that are exposed by the CTS are represented internally as objects.
CTS supports two categories of data type objects:

� Value types, which directly contain a value
� Reference types, which contain only references to other objects

Value types and reference types are handled differently within .NET Framework.
The differences between the two are as follows:

� Value types are created on the stack, while reference types are created using
heap memory.

� Value types contain data, while reference types only hold references to other
objects.

� Value types cannot be Null, while reference types can be set to Null.

� Value types mainly define the primitive types of the .NET Framework, while
reference types provide complex types like classes and strings.

Assemblies
Assemblies are deployment units and are basic building blocks in the .NET
Framework. When an application is compiled in .NET, the output of the
compilation produces an assembly that contains Microsoft intermediate language
code in a portable executable (PE) file that the CLR executes. There are two
types of assemblies: process assemblies (EXE) and library assemblies (DLL). An
assembly forms a single complete deployable unit to which security permissions
can be requested and granted, type can be scoped to, and versioned in the CLR.

 Chapter 3. Introduction to .NET platform 107

Associated with each assembly is a manifest that contains the assembly’s
metadata, which is a file table containing all files that make up the assembly and
the assembly reference list for all external dependencies. In general, an
assembly consists of four elements:

� Assembly metadata

The assembly metadata that includes the assembly’s identity and version
information (see Figure 3-9).

� Type metadata

The type metadata is used for resolving types and specifying the types that
are exposed outside the assembly.

� IL code

The Microsoft intermediate language (MSIL) code.

� Resources

The resources in an assembly consist of image files like .bmp or .jpg and
other files required by the application.

Figure 3-9 Assembly and metadata

.exe or ..exe or .dlldll

MetadataMetadata

Type MetadataType Metadata

Assembly MetadataAssembly Metadata

IL CodeIL Code

Resources (.gif, .bmp)Resources (.gif, .bmp)

AssemblyAssembly

MetadataMetadata

Type DescriptionsType Descriptions

Base ClassesBase Classes
ClassesClasses

InterfacesInterfaces
Data MembersData Members

Assembly ManifestAssembly Manifest

NameName
VersionVersion
CultureCulture

Security PermissionSecurity Permission
Exported TypesExported Types

Other AssembliesOther Assemblies

108 IBM WebSphere and Microsoft .NET Interoperability

The assembly can be either private or shared, depending on the visibility:

� Private assembly

A private assembly is an assembly that is visible to only one application and
deployed within the directory structure of the application. The CLR finds these
assemblies through a process called probing. The version information is not
enforced for private assemblies, because the developer has complete control
over the assemblies.

� Shared assembly

A shared assembly is used by multiple applications on the machine and
stored in Global Assembly Cache. Assemblies deployed in the Global
Assembly Cache supports side-by-side execution and must have a strong
name to avoid any confliction. Side-by-side execution in the .NET Framework
allow multiple versions of an assembly to be installed and running on the
machine simultaneously, and allows each application to request a specific
version of that assembly.

Configuration files in .NET
The common language runtime locates and binds to assemblies using a
configuration file. The configuration file contains information related to
application, machine, and security settings, which is stored in XML format. By
updating the configuration file, the developer or administrator can change the
way in which the application works. The .NET has three basic types of
configuration files:

� Application configuration file

The application configuration file consists of information about the application.
The Common Language Runtime uses the application configuration to get the
information about assembly binding policy, the location of remote objects, and
the ASP.NET runtime settings.

The settings for applications, such as Windows Forms and Console
applications, are stored in the [applicationName].exe.config file. And the
settings for Web applications, such as ASP.NET and Web Service, are stored
in the Web.config file.

� Machine configuration file

The machine configuration file contains information about the machine that
can be applied to the ASP.NET runtime, built-in remoting channels, and
assembly binding. This file is located in the CONFIG directory of the runtime
install path of the .NET Framework at <Windows install
drive>\WINNT\Microsoft.NET\Framework\v1.1.4322\CONFIG.

 Chapter 3. Introduction to .NET platform 109

� Security configuration file

Security configuration files contain information about the code group
hierarchy and permission sets associated with a policy level.

The location of the security configuration files depend on policy levels. For
example, the enterprise policy file enterprisesec.config is stored in the same
folder as the machine.config file. And the user policy configuration file named
security.config is stored in the user profile sub tree folder.

Versioning
The .NET Framework provides a robust scheme for versioning assemblies. By
versioning assemblies, multiple versions of a same named object, in the same
namespace, may be loaded into memory at the same time. This capability
provides backward compatibility in cases where an application was built with one
version of an assembly and does not work with follow-on versions of that
assembly. This also virtually eliminates the possibility of back-leveling an
assembly, a common problem with traditional Windows applications.

Figure 3-10 on page 111 gives an overview of object versioning within the .NET
Global Assembly Cache.

Note: This file is stored in a different folder for each version of .NET. In the
above example, V1.1.4322 refers to Version 1.1 of the .NET Framework.

110 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-10 Object versioning within the .NET Global Assembly Cache

Assembly versioning is most transparent and effective when an assembly is
strongly named and installed into the Global Assembly Cache (GAC). The .NET
Global Assembly Cache is a repository for commonly used assemblies. Unless
specified by configuration and policy files, the .NET assembly loader loads
generically specified assemblies from the Global Assembly Cache before
searching for and loading the same named assemblies from other locations. The
Global Assembly Cache requires assemblies to be strong named and may
contain multiple versions of the same assembly or same versioned assemblies
with different culture information. See Figure 3-10 for an example of assembly
versioning.

Note: There are other versions of .NET Framework, for example, it is possible
to execute .NET applications using Microsoft’s reference implementation for
UNIX, called Rotor. There is as well a stripped down version of the .NET
framework called the Microsoft .NET Compact Framework, which enables the
developer to run .NET applications on smartphones and handhelds.

MyApp.exeMyApp.exeMyApp.exe

Global Assembly CacheGlobal Assembly Cache

MyNewApp.exeMyNewApp.exeMyNewApp.exe

MyAssembly.dllMyAssembly.dll
Version 1.0.0.0Version 1.0.0.0

MyAssembly.dllMyAssembly.dll
Version 1.1.0.0Version 1.1.0.0

MyAssembly2.dllMyAssembly2.dll
Version 1.0.0.0Version 1.0.0.0

MyAssembly3.dllMyAssembly3.dll
Version 1.0.0.0Version 1.0.0.0

MyAssembly4.dllMyAssembly4.dll
Version 1.0.0.0Version 1.0.0.0

 Chapter 3. Introduction to .NET platform 111

Framework class libraries
A common problem when programming with different languages in the Windows
DNA world is the lack of a single widely accepted repository for dealing with
common programming tasks. In the effort to unify development and put all
languages on a single and solid base, Microsoft introduced a set of classes with
ready-to-use functions. These classes are not only bundled with the .NET
Framework, but are an integrated part of the framework itself. In fact, the
framework uses the functions to accomplish basic tasks.

The .NET Framework Class Libraries (FCL) is a collection of interoperable,
object oriented, and extensible types (classes, interfaces, structures, and
enumerated types) that provide the foundation on which .NET Framework
applications and components are built. You can use the classes as is or extend
them by deriving new classes from the base classes. The FCL types are
CLS-compliant and hence has the benefit that it can be used from any
programming language with a compiler that conforms to CLS; this enables
interoperability between the different programming languages.

The FCL is the .NET equivalent of the Java class libraries and just like the Java
classes, it provides the following for the .NET platform:

� Defines base types and exceptions
� Defines well-known functions to perform common functions
� Defines abstract interfaces to hardware and operating system tasks

To handle this vast number of classes and give the developer a better
orientation, Microsoft introduced the concept of namespaces to the framework.
The commonly used value and reference data types, events and event handlers,
interfaces, attributes, and processing exceptions are defined in the System
namespace.

Figure 3-11 on page 113 gives an overview of a sample namespace.

112 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-11 Sample namespace: System.Web namespace showing types

FCL uses a dot syntax naming scheme to group related types into a hierarchical
structure. The naming scheme consist of two parts. The first part is the
namespace name, which extends from the start of the name up to the right-most
dot in the namespace's full name. The second part is the type name, which is the
part beyond the right-most dot. For example, System.Web.Services.Decsription
represents the Description type that consist of classes for describing XML Web
service and belongs to the System.Web.Services namespace.

The following are examples of FCL namespaces and types:

� System.Xml

Provides standards-based support for processing XML.

� System.Xml.Schema

Contains the XML classes that provide standards-based support for XML
Schemas definition language (XSD) schemas.

� System.Xml.Serialization

Contains classes that are used to serialize objects into XML format
documents or streams.

� System.Net.Sockets

Provides a managed implementation of the Windows Sockets (Winsock).

� System.Reflection

Contains classes and interfaces that provide a managed view of loaded types,
methods, and fields, with the ability to dynamically create and invoke types.

System.WebSystem.Web

CachingCaching

MobileMobile

Services.DescriptionServices.Description

UIUI

ConfigurationConfiguration

SecuritySecurity

Services.DiscoveryServices.Discovery

HostingHosting

ServicesServices

Services.ProtocolsServices.Protocols

MailMail

SessionStateSessionState

Services.ConfigurationServices.Configuration

 Chapter 3. Introduction to .NET platform 113

A description and complete list of the .NET namespaces are available online at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/
html/cpref_start.asp

Example 3-1 shows some sample code that uses System namespaces.

Example 3-1 Sample code showing use of System namespaces

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace ItsoClaim
{

[WebService(Namespace="http://dotnet.claim.examples.itso",
Name="ItsoClaim")]

public class ItsoClaim: System.Web.Services.WebService
{

public ItsoClaim()
{

InitializeComponent();
}

#region Component Designer generated code

private IContainer components = null;

private void InitializeComponent()
{
}

protected override void Dispose(bool disposing)
{

if(disposing && components != null)
{

components.Dispose();
}
base.Dispose(disposing);

}

#endregion

[WebMethod]
public Boolean findCustomer(String customerID,String policyID)

114 IBM WebSphere and Microsoft .NET Interoperability

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/cpref_start.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/cpref_start.asp

{
CustomerDataAccess customerObj = new CustomerDataAccess();
try
{

return customerObj.getCustomer(customerID, policyID);
}
catch (DataException de)
{

throw new ClaimException(de.Message);
}

}

[WebMethod]
public string registerClaim(String customerID,String policyID, DateTime

accidentDate,
String accidentDescription, String [] involvedCars)

{
ClaimDataAccess claimObj = new ClaimDataAccess(customerID, policyID,

accidentDate,accidentDescription, involvedCars);
try
{

return claimObj.getClaimCode();
}
catch (DataException de1)
{

throw new ClaimException(de1.Message);
}

}
}

}

3.2.2 ASP.NET
The ASP.NET technology is the central technology when it comes to Web
development under .NET. It provides a scalable infrastructure and programming
model for creating dynamic Web applications. ASP.NET is one of the .NET
Framework components and hence enables the use of most .NET compatible
languages, including Visual Basic, C#, and J#, for developing Web applications.

With ASP, you were limited to using HTML and VBScript (or Jscript) to process
and render pages; however, with ASP.NET, you are able to separate code from
display, and by the introduction of controls, you are able to do a whole lot more
than just display information. The ASP.NET programming model extends to
communicating and sharing data over the Internet using Web Services and to
mobile devices, such as cell phones and PDAs.

 Chapter 3. Introduction to .NET platform 115

The main new feature of the ASP.NET technology is the use of Web controls.
Web controls offer an implementation of the presentation tier that can be used
just like Windows Forms classes and objects. It is therefore possible to assemble
dialogs and Web pages by using preconfigured building blocks, for example, a
calendar control, that is already fully functional. When using Web controls, the
user of the control will fire events on the client side that are transferred over the
net, causing the server to react. Web controls are therefore essential for rapidly
developing Web applications. Note that the use of Web controls causes events
and messages to be exchanged with the server.

Another difference between ASP and ASP.NET is in the configuration of Web and
Internet Information Server (IIS). With ASP.NET, all important configuration
information is in human readable XML files. This enables the modification of
configuration information without having to modify the code. The settings for
culture and multi-language support can be modified on the fly through the
configuration without having to deploy server side applications.

The technologies embraced by the ASP.NET framework include the following:

� Scripting for Web pages
� Management of sessions and states
� Security
� Server side controls
� Web forms
� Caching mechanisms
� Binding to data sources
� Configuration framework
� Multi language capabilities

Model-View-Controller design pattern using ASP.NET
To demonstrate the design of a simple ASP.NET application and to illustrate the
Model-View-Controller roles in the ASP.NET environment, we present an
example that involves creating an ASP.NET application to access a database.

In our example, we use three files: SimpleForm.aspx, SimpleForm.aspx.cs, and
SimpleDataGateway.cs.

SimpleForm.aspx contains the description of our user interface and is defined in
HTML with the following ASP.NET declaration, as Example 3-2 shows.

Example 3-2 ASP.NET declaration

<%@ Page language="c#" Codebehind="SimpleForm.aspx.cs" AutoEventWireup="false"
Inherits="CodeBehindExample.SimpleForm" %>

116 IBM WebSphere and Microsoft .NET Interoperability

The Inherits attribute tells the ASP.NET system which class the .aspx file inherits
from at runtime. The Codebehind attribute is used by Visual Studio .NET but it is
not used at runtime. Note that using the same file name for the .aspx file and the
.cs file is a convention used in the Visual Studio .NET Application wizard. To
make the user interface SimpleForm.aspx use a different code-behind class, just
change the Inherits attribute (and the Codebehind attribute if you are using
Visual Studio). For a description of ASP.NET page directives, see:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenr
ef/html/cpconpage.asp

SimpleForm.aspx.cs contains the event handling code for user interface defined
by SimpleForm.aspx and ties it to SimpleDataGateway. Because SimpleForm is
named as the code-behind class for SimpleForm.aspx, the object must inherit
from the .NET class System.Web.UI.Page or a subclass of Page (see
Example 3-3).

Example 3-3 Inheritance for SimpleForm

/// <summary>
/// The description for SimpleForm
/// </summary>
public class SimpleForm : System.Web.UI.Page {

 Chapter 3. Introduction to .NET platform 117

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconpage.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconpage.asp

SimpleDataGateway contains all of the code needed to use the database (see
Figure 3-12).

Figure 3-12 Model-View-Controller roles in ASP.NET

When a browser requests SimpleForm.aspx, the ASP.NET runtime looks at the
@Page information and loads the precompiled assembly with the class specified
in the Inherits attribute. The UI is then displayed and the events denoted by the
code-behind object that the page inherits from are handled as they occur.

A common design flaw in ASP.NET applications is embedding the Model code in
the Code-behind object filling the role of MVC role of Controller. Combining the
Controller and Model makes it difficult to reuse the code filling the role of the
Model. In our example, combining the Controller and Model could force us to
refactor if we create another page that wants access to the database (see
Example 3-4 on page 119).

SimpleForm.aspxSimpleForm.aspx

ViewView

SimpleForm.aspx.csSimpleForm.aspx.cs

ControllerController

SimpleDataGateway.csSimpleDataGateway.cs

ModelModel

Web FormWeb Form

DatabaseDatabase

118 IBM WebSphere and Microsoft .NET Interoperability

Example 3-4 Model implementation

private void InitializeComponent() {
this.TestButton.Click += new System.EventHandler(this.TestButton_Click);
this.Load += new System.EventHandler(this.Page_Load);

}
private void TestButton_Click(object sender, System.EventArgs e) {

// Don't put the database driving code in your codebehind object!!!
// This violates the MVC design pattern.
SqlConnection AConnection =
new SqlConnection("server=(local);database=adb;Trusted_Connection=yes");

}

ASP.NET added a significant amount of features and functionality offered by ASP.
If you are developing an application using Web and .NET technologies, you
should count on using ASP.NET as a central technology for the Microsoft
Windows platform.

3.2.3 .NET enterprise servers
Included in the .NET suite are a set of products and servers that include the
Windows operating system and Enterprise servers that support the .NET
initiative. The suite of Enterprise servers provide the reliable, manageable, and
scalable platform for .NET enterprise solutions.

� Windows 2003 Server

Windows 2003 Server provides the base infrastructure that powers
applications, networks, and Web Services for communication, collaboration
and connected solutions in workgroups and the data center. For more
information, visit:

http://www.microsoft.com/windows2000/server/evaluation/business/over
view/default.asp

� BizTalk® Server 2002

One of the promises of Web Services is the integration of business processes
across the extended enterprise. Making use of Web Services and Web
technologies, BizTalk Server 2002 enables organizations to build, execute,
and manage business processes across the extended enterprise. For more
information, visit:

http://www.microsoft.com/biztalkserver/

 Chapter 3. Introduction to .NET platform 119

http://www.microsoft.com/windows2000/server/evaluation/business/overview/default.asp
http://www.microsoft.com/biztalkserver/

� Commerce Server 2002

Commerce Server 2002 is Microsoft's highly customizable platform for
e-commerce Web sites. Its features include deployment of personalized
portals, content targeting, user profiling, and analytics. Commerce Server
2002 extensibility capabilities enable transaction-based sites with capabilities
for catalog management, order processing, and merchandising. For more
information, visit:

http://www.microsoft.com/commerceserver/

� Content Management Server

The Microsoft Content Management Server supports the .NET Framework
and provides the environment for creation and publishing of Web content and
ASP.NET applications using Microsoft Visual Studio .NET. It also enables
users to manage Web content through an Internet browser or the Microsoft
Word application. For more information, visit:

http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?c
ontentid=28001368

� Exchange Server 2003

Exchange Server 2003 provides the infrastructure for managing messaging
and collaboration. It offers built-in functions, such as e-mail, calendering,
contact and task management, scheduling, and online forms. Exchange
Server 2003 is also a development platform for custom collaboration and
messaging-service applications accessible on desktops, and mobile devices.
For more information, visit:

http://msdn.microsoft.com/exchange/

� SQL Server

The Microsoft SQL Server is a relational database management system
(RDBMS) that provides advanced data management and functionality, which
includes high performance and high availability features to support
e-commerce, line-of-business, and data warehousing solutions. SQL Server
2000 supports processing of XML data and capabilities to import and export
XML-formatted. For more information, visit:

http://msdn.microsoft.com/sqlserver/

� Application Center 2000

Application Center 2000 is the key component for the deployment of scalable
and highly available .NET platform. It ensures that software and hardware
failures do not disrupt application services. Application Center 2000 actively
monitors performance and health of cluster of servers, and automates
responses to adverse events and conditions. Built on Windows 2000,

120 IBM WebSphere and Microsoft .NET Interoperability

http://www.microsoft.com/commerceserver/
http://msdn.microsoft.com/library/default.asp?url=/nhp/Default.asp?contentid=28001368
http://msdn.microsoft.com/exchange/
http://msdn.microsoft.com/sqlserver/

Application Center 2000 collects and presents performance and event-log
data for one server or the entire cluster. For more information, visit:

http://www.microsoft.com/applicationcenter/

� Mobile Information 2002 Server

Mobile Information 2002 Server functions as a gateway enabling mobile users
access to enterprise applications, data, and intranet content. Mobile users
can securely access e-mail messages, contacts, calendars, tasks, or intranet
line-of-business applications while on the go. For more information, visit:

http://www.microsoft.com/miserver/evaluation/overview/default.asp

� Host Integration Server 2000

Host Integration Server 2000 enables connection to host systems by
providing integration components and transactions to host data sources,
messaging, and security systems from .NET applications. For more
information, visit:

http://www.microsoft.com/hiserver/default.asp

3.3 Developing .NET applications
In the Microsoft .NET environment, the development can be done using either a
text editor like Notepad or the Visual Studio .NET Integrated Development
Environment (IDE). This section covers how to write, compile, and run an
application in your development environment.

3.3.1 Writing a C# application using text editor
This is same as writing Java code in a text editor and then compiling using the
command prompt. Let us take an example of writing a C# application in Notepad.

The steps are:

1. Write the code in the text editor of your preference:

a. Save the code with a .cs extension.

b. Compile and run the application.

 Chapter 3. Introduction to .NET platform 121

http://www.microsoft.com/applicationcenter/
http://www.microsoft.com/miserver/evaluation/overview/default.asp
http://www.microsoft.com/hiserver/default.asp

Figure 3-13 is a very simple C# code written in Notepad.

Figure 3-13 C# code in Notepad

2. Compiling the code using a command prompt.

The C# compiler has different options to compile the source file; some of
them are listed in Table 3-1.

Table 3-1 C# Compiler options

To learn more about compiler options, run the csc /? command.

Figure 3-14 on page 123 gives an overview of the available compiler options.

Compiler Option Result

csc HelloWorld.cs Creates HelloWorld.exe file.

csc /target:library HelloWorld.cs Creates a HelloWorld.dll file.

csc /out:OtherName.exe HelloWorld.cs Creates an OtherName.exe.

122 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-14 Available compiler options

3. Running the application from the command prompt.

To run an executable in Java environment, you have to pass the file name with
a Java command. In .NET environment, to run an executable, you simply type
the name of the .exe file and press Enter. In the following snippet,
HelloWorld.cs is first compiled using the csc command and then run by just
typing the executable file’s name (see Figure 3-15).

Figure 3-15 Compiling and running the C# program

 Chapter 3. Introduction to .NET platform 123

3.3.2 Developing applications using Microsoft Visual Studio .NET
Developing applications in the Visual Studio .NET Integrated Development
Environment is quite simple, fast, and allows for Rapid Action Development
(RAD). The Environment is integrated with the Visual Source Safe (VSS) version
control software for easy management of code. The editor in Integrated
Development Environment has some common features with the IBM Rational
Application Developer for WebSphere Software, such as IntelliSense®
(type-ahead) and drag-drop design.

The Visual Studio .NET has different editions, which include the Professional,
Enterprise Developer, and Enterprise Architect editions. In addition to these
editions, special language specific editions are available, such as Visual
Basic.NET Standard Edition and Visual C#® Standard Edition, primarily for
hobbyist, students, and beginners.

When you open the Microsoft Visual Studio, you get the Start Page with three
panes; the Projects pane has details about the history of the projects, the Online
Resources pane to get the online samples, and the My Profile pane, to set the
personalized settings (see Figure 3-16).

Figure 3-16 Start Page in Visual Studio .NET

124 IBM WebSphere and Microsoft .NET Interoperability

The Integrated Development Environment has different windows, such as the
Tool window, Code window, Properties window, and Solution Explorer window.

Except for the Code window, the windows can be hidden using the Auto Hide
feature. For example, in Figure 3-17, the Server Explorer and the Toolbar
windows were hidden using the Auto Hide feature.

Figure 3-17 The Visual Studio Integrated Development Environment

To start a new project in Visual Studio, select File → New → Project from the
main menu.

Code
window

Solution
Explorer

Properties
window

Dynamic Help
window

Toolbox
window

Server
Explorer
window window

 Chapter 3. Introduction to .NET platform 125

The New Project window appears, as shown in Figure 3-18.

Figure 3-18 The New Project window in Visual Studio .NET

You can create different types of projects in the IDE by simply selecting the
appropriate template. You can work with more than one project at a time. This
feature make debugging Class Libraries with another application possible.

Table 3-2 describes various templates available for projects.

Table 3-2 Project templates

Template Description

Windows Application Creates a new Windows or Desktop project that refers to traditional
rich client applications.

Class Library Creates a new DLL Project or creates components that typically
encapsulate some business logic.

Windows Control Library Creates a new control project that can be used on a Windows
application as a traditional ActiveX control.

Smart Device Application Creates a new smart device project, for example, PDAs.

ASP.NET Web Application Creates a new ASP.NET Web application project (dynamic and data
driven browser based applications).

ASP.NET Web Service Creates a new Web Service project.

126 IBM WebSphere and Microsoft .NET Interoperability

To create an application, select the language for coding from Project Types and
then select the application type from Templates.

To build the project, various options are available in the Build menu; to run the
project, click the Run button on the tool bar.

Source code management
Source code management in the Visual Studio .NET environment can be
realized by using The Microsoft Visual Source Safe (VSS). The Microsoft Visual
Source Safe is a repository for managing project files. The VSS is tightly
integrated with Visual Studio and therefore has some advantages over other third
party source code management products.

A user can see the latest version of any file, make changes to the file, and save a
new version in the VSS source code management database. Users can lock files
for modification or save and release the lock on the files by performing check-out
or check-in operations respectively on the files.

3.3.3 Testing
Application testing and debugging involves various activities on individual
deployment units, as well as across deployment units (applications). The goal is
to ensure that deployment units work, individually and collectively, as designed.

Debugging and unit testing
Functional testing that occurs during the development and initial debugging
process primarily involves the IDE and it is often an integral part of developing
the classes and methods that make up the deployment unit.

ASP.NET Mobile Web Application Creates a mobile application project.

Web Control Library Creates a Web control project that can be used on a Web form,
allowing code reuse and modularization.

Console Application Creates a console application project to run on a DOS command
prompt.

Windows Service Creates a Windows service project that runs in the background.

Empty Project Creates an empty project or solution. You can avoid creation of
default files and can insert your own files.

Empty Web Project Creates an empty Web project.

Template Description

 Chapter 3. Introduction to .NET platform 127

Visual Studio.NET provides the essential tools for the software developer.
Applications are developed under Visual Studio.NET as Projects within a
Solution file. Each Project results in a separate assembly. Debugging options and
features are, therefore, set at the project level. This allows the developer to
control which debug features are enabled for each assembly being tested.

Debug settings
Several features of the Visual Studio.NET debugger is customizable, allowing the
user to control such things as warning levels, setting of breakpoints, and how
data members and variables are displayed, resulting in a personalized
environment for each developer.

Building a project for debugging: debug builds
The build configuration for each project is selectable, allowing the developer to
build release versions of some components while continuing to debug others.
Generic Debug and Release configurations are provided by default. Additional
custom configurations can also be created for each project.

Any assembly built from a .NET project built with the Debug configuration set can
be fully debugged via Visual Studio.NET.

Figure 3-19 shows the configuration manager.

Figure 3-19 Configuration manager

128 IBM WebSphere and Microsoft .NET Interoperability

Code animation
Visual Studio.NET IDE provides debugging animation support for a large majority
of the code that is developed within the environment. This includes the following
types of animation:

� Multi-language animation: ASP.NET, VB.NET, C#, C++, and C

� Support for managed (CLR) and unmanaged (binary) code and their
interoperation via .NET Interop

� Services, Server-side COM+ objects, DLLs, and other unmanaged objects

� The ability to animate multi-threaded code

� Animation of Class libraries

� Animation of .NET assemblies that take advantage of Remoting, both from
the client and server perspectives

� Animation of Web Services as they are invoked

� Remote debugging of code running on other physical nodes

� Animation of SQL Stored Procedures for SQLServer

Visual Studio.NET IDE allow you to step through all execution regardless of
threading or language concerns as long as the project was built with debug
options. Features available during animation include stopping execution,
stepping through, over, and into code, running to cursor, and resetting the
current line. In addition, you can view and modify variables, view registers, and
the memory space in which your process is operating. You can debug one or
multiple processes simultaneously.

With symbols provided by Microsoft as part of the Platform and Framework
SDKs, you can also step through framework and operating system code
executed by your application.

The debugger allows you to decide how to handle exceptions during debugging
and provides an edit and continue feature that allows you to edit your code in
place during a debugging session and continue without rebuilding and starting
over.

Just-in-time debugging
The bugs that escape unit testing are usually the ones that occur in special
circumstances. These are often difficult to duplicate in a debugging environment.
A unique feature of Visual Studio.NET is the ability to turn on Just-In-Time
Debugging for a given assembly.

 Chapter 3. Introduction to .NET platform 129

With just-in-time debugging enabled, an exception within an assembly that was
started and is running outside the IDE will cause a dialog box to appear,
providing an opportunity to enter the debug mode with any debugging tool you
specify. This enables a developer to easily identify the location of the problem
and the current execution state.

Tracing and debugging instrumentation
The Microsoft .NET provides a set of classes that allow the developers to monitor
the execution of the application while it is running. This process of enabling
tracing and debugging is called instrumenting.

Once the code is instrumented, you decide whether the tracing and debugging
statements will actually be included in the assembly by setting the Trace and
Debug conditional attributes in your project build settings. This prevents release
versions of the application from writing to debug listeners. Further control of trace
output is also available by including a Trace Switch object in your source code to
set severity levels and control which trace statements will produce output.

Instrumented applications can make information available about a wide variety of
execution and behavior parameters that can be used to better understand the
executable.

Other debugging tools
Microsoft also provides some other utilities that are useful for debugging various
parts of a .NET application. Many of these utilities have been enhanced for the
.NET environment. Here is a brief list of other debugging tools:

� ISAPI Web Debug Tool

Allows debugging of ISAPI filters commonly used in Web applications.

� Spy++

Tracks controls, windows, threads, and processes during execution to aid in
debugging.

� Visual Studio command prompt

Most things that can be done in Visual Studio.NET can also be done from the
command line. This simply opens a command-line session with all of the
proper environment variables set for Visual Studio.NET command-line
operations.

Note: In Visual Studio.NET, just-in-time debugging across systems (remote
debugging) was disabled due to security issues.

130 IBM WebSphere and Microsoft .NET Interoperability

Performance and load testing
An application is only as useful as its ability to perform in terms of speed and
number of users it supports. This section discusses the performance tools,
techniques and practices commonly used for .NET applications.

Performance Monitor and counters
The Performance Monitor is a tool provided by the Microsoft operating system for
selectively measuring or recording the performance of any application, process,
or thread running on a local or remote system. Performance Monitor works by
listening to “performance counters” that are installed with the Common Language
Runtime and .NET Framework Software Developer’s Kit.

A performance counter is an object that reports performance information. The
Windows operating system and .NET applications automatically inherit a default
set of performance counters. These performance counters provide a large array
of performance information, such as memory, handles, threads, locking, loading
of code, and networking. Performance Monitor can be used to get a detailed view
of the internal performance of any .NET application regardless of where it is
running.

Figure 3-20 shows the Performance Monitor.

Figure 3-20 Performance Monitor

 Chapter 3. Introduction to .NET platform 131

Classes provided in the System.Diagnostics namespace within .NET Framework
can be used to instrument your application with custom performance counters or
to consume performance counter information programmatically in the same way
Performance Monitor does.

By instrumenting your application using these classes, you can implement useful
counters in specific areas of your application where performance might be an
issue and the existing counters do not supply this information, for example, when
counting the number of people who use a specific feature of your application on
an ongoing basis.

Once implemented, these counters can then be viewed by anything that can
consume these counters, such as Performance Monitor or a custom listener you
create within your application.

The Microsoft Application Center Test
Included with Microsoft Visual Studio.NET for Enterprise Architects is a tool for
simulating several users simultaneously accessing various parts of your Web
application from browsers. This tool is called Application Center Test (ACT) (see
Figure 3-21 on page 133).

132 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-21 Application Center Test multi-browser-type sample

ACT allows you to observe various parts of the application while it is running with
a simulated load. There are various methods for creating tests, including
recording real-time browser sessions. You can simulate multiple groups of users
simultaneously accessing a Web site using different types of Web browsers and
different versions of Web browsers. Test sessions are scripted using either
VBScript or JScript and the tool comes with several sophisticated examples. A
large variety of third-party testing facilities are available.

3.4 Deploying and managing .NET applications
A key aspect of .NET applications is the distributed architecture and dependency
on network infrastructure. Effective management and administration in .NET
environment requires net aware tools. The Windows operating system, .NET
Framework, and Visual Studio .NET provide the support and tools for deploying,
running, and administering applications in the .NET distributed networked
environments.

 Chapter 3. Introduction to .NET platform 133

3.4.1 Deployment
Deployment in .NET is quite easy and different from the traditional model. It does
not require registration and hence does not have the DLL and COM registration
and versioning issues. Deployment in .NET consists of packaging and
distribution, which can be performed in any one of a number of ways.

By copying files
This is the simplest way of moving a .NET application from one location to
another location. This can be done by using either the Copy Project command
available on the Project menu or by using the XCOPY DOS command.

By using Setup and Deployment programs
A Setup and Deployment program is the automated installation approach of
deploying the applications in a work environment. The advantages of using Setup
and Deployment projects are as follows:

� You can avoid overwriting of files that could cause other applications to break.

� Registering and deploying of COM components or assemblies can be
implemented.

� The program shortcut can be added in to Windows’ Startup menu or onto the
Windows desktop.

� Interaction with the user, for example, storing user information, licensing, and
so on.

The Visual Studio .NET has several ways of creating a Setup and Deployment
project. Moreover, third party Setup and Deployment programs can be used for
deploying the .NET applications.

Figure 3-22 on page 135 shows various Setup and Deployment projects
available in Visual Studio .NET.

Note: This method has limitations. Copying files does not register or verify the
location of assemblies, and for Web projects, it does not automatically
configure IIS directory settings.

134 IBM WebSphere and Microsoft .NET Interoperability

Figure 3-22 Setup and Deployment Projects in Visual Studio .NET

Table 3-3 describes various project types available in Visual Studio .NET.

Table 3-3 Project types available in Visual Studio .NET

Project type Purpose

Merge Module Project The Merge Module Project allows you to share setup code between
Windows Installers and avoids versioning problems. This creates a
merge module (.msm file), a single package that contains all files,
resources, registry entries, and the setup logic necessary to install a
component.

Setup Project The Setup Project builds an installer for a Windows-based application
in order to distribute an application. The resulting Windows Installer
(.msi) file contains the application, any dependent files, information
about the application such as registry entries, and instructions for
installation. The Setup project installs the files into the file system of
a target computer.

Web Setup Project The Web Setup Project builds an installer for a Web application. The
setup installs files into a virtual directory of a Web server.

Cab Project The Cab project builds a cabinet file for downloading to a Web
browser.

 Chapter 3. Introduction to .NET platform 135

3.4.2 Runtime
The .NET Framework includes the Common Language Runtime, which provides
the runtime for Windows-based applications, and a set of class libraries, which
.NET applications use for common services, including access to operating
system features such as the Windows.Forms namespace.

At the time of this writing, the current version of the .NET Framework is V1.1. The
.NET Framework Version 1.1 package provides all the necessary support
needed for developing and running applications using the .NET Framework. It
was first included as part of the Windows operating system with the release of
Windows Server 2003. It is also integrated with Visual Studio .NET 2003. You
can also obtain it by itself as the .NET Framework Version 1.1 redistributable
package.

For more information about the .NET Framework Version 1.1, please see the
following Web location:

http://msdn.microsoft.com/netframework/downloads/framework1_1/

3.4.3 Administration
The various products that provide the features underlying .NET, such as the
operating system, Enterprise Services, COM, Internet Information Services, SQL
Server, and other products, all have their individual management capabilities and
tools. These tools are available remotely in nearly every case and are
conveniently collected together within the Control Panel under Administrative
Tools, as shown in Figure 3-23 on page 137.

136 IBM WebSphere and Microsoft .NET Interoperability

http://msdn.microsoft.com/netframework/downloads/framework1_1/

Figure 3-23 Windows administrative tools

It is beyond the scope of this redbook to address each of these tools. However,
we will briefly discuss a few key Windows management components.

Microsoft Operations Manager
The Microsoft Operations Manager provides event-driven management for the
Windows platform and applications that implement Windows Management
Instrumentation (WMI). It allows consumption and utilization of information
provided through WMI and provides a platform on which to generate alerts or
take action based on specific events. For more information about Microsoft
Operations Manager, see the following Web site:

http://www.microsoft.com/mom/default.mspx

Internet Services Manager
The Internet Service Manager is the main administrative console for Internet
Information Services (IIS). It is used to administer and manage IIS nodes and
Web sites, and works for both local and remote nodes.

 Chapter 3. Introduction to .NET platform 137

http://www.microsoft.com/mom/default.mspx
http://www.microsoft.com/mom/default.mspx

The .NET Framework Configuration Tool
The .NET Framework 1.1 Configuration tool is a Microsoft Management Console
(MMC) snap-in used for the following:

� Manage and configure assemblies in the Global Assembly Cache
� Adjust code access security policy
� Adjust remoting services

Active Directory
The Active Directory® provides a number of critical functions for the Windows
operating system, including providing a common directory for distributed
components, acting as a central authentication provider, managing users, groups
and individual machines. Active Directory provides a Group Policy feature that
enables administrators to define a host of policies for groups of users or nodes. A
technology known as IntelliMirror® uses Group Policy to enable software
distribution and configuration management capability for groups of machines and
people.

For more information about the use of Active Directory in the administration role,
please refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/h
tml/vstchdeployingvsusingactivedirectory.asp

3.4.4 Windows Services
Windows Services were formerly known as NT Services. They have been around
a long time. Windows Services are applications that run in the background. They
can be started and stopped by an administrator locally and remotely whether a
user is logged on the system or not.

Windows Services often provide background “daemon-like” functions in the
Windows operating systems and typically do not interact with the screen. .NET
applications may function as NT Services.

The execution life cycle of Windows Services is managed by the Service Control
Manager, which uses methods implemented by the application developer to
manage the execution life cycle.

As before, Windows Services differ significantly from other types of applications
written for .NET. For a more complete description of both the life cycle
management process and the differences between Windows Services and other
applications, please see the Microsoft Web site at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbc
onintroductiontontserviceapplications.asp

138 IBM WebSphere and Microsoft .NET Interoperability

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp

3.4.5 Object pooling
Object pooling can be used to improve application performance in cases where
object instantiation is a relatively time consuming operation. When a poolable
object is instantiated (typically by an object factory), it is placed into a pool. When
an object is needed, an unused object may be retrieved from the object pool. Not
only does connection pooling help to reduce instantiation costs, it also helps to
reduce the cost of garbage collecting additional objects at runtime. In general,
object pooling is most beneficial when objects can be and are frequently reused.

There are two primary types of object pooling provided by the .NET Framework.
The most common type is pooling of ADO.NET database connection objects.
This type of pooling is very similar to JDBC connection pooling. In ADO.NET,
pooling occurs on a per-provider basis. For example, SQL Server and DB2
providers each provide their own connection pooling facility. ADO.NET
connection pooling is typically controlled by an option on the connection string.

The second type of object pooling is provided though interfaces and classes
provided by the System.EnterpriseServices namespace. This namespace
provides .NET components access to COM+ enterprise services, including
object pooling. Objects pooled in this manner must inherit from the
ServicedComponent class. By applying the ObjectPooling attribute to a serviced
component, values such as the maximum and minimum pool size may be
specified to tune performance.

3.4.6 Remote invocation
Similar to Java Remote Method Invocation, .NET provides a mechanism called
Remoting. Remoting provides an object framework allowing .NET objects to run
and communicate in a distributed environment. Remoting in .NET does not use
Microsoft’s DCOM or COM+ facility. Instead, it is exposed through a set of .NET
classes. It offers greater flexibility than DCOM, including the ability to
communicate over multiple types of channels. By default, the .NET Framework
provides two types of channels: TCP and HTTP. These channels have both
advantages and disadvantages that make them better or less suited for specific
types of applications.

The .NET TCP channel uses a binary socket connection, similar to DCOM. The
TCP channel is used in conjunction with a binary object formatter. The main
advantage of using TCP is that it is typically faster, since data is transmitted in
binary format. There is little to no additional parsing involved in packaging and
unpackaging data to be sent over the network. The main disadvantage of using a
TCP channel is that it requires additional TCP ports to be accessible and is
typically only suited for an intranet environment.

 Chapter 3. Introduction to .NET platform 139

The .NET Framework provides an additional channel, the HTTP channel, for
providing remoting capabilities. The HTTP channel uses the XML SOAP format
for remote method invocation. The advantage of using the HTTP channel is that it
uses the standard HTTP protocol so it can be used over the Internet without
opening additional TCP/IP ports in a firewall. The disadvantage of using a HTTP
channel is that it is typically slower due to the added processing required when
formatting requests and replies to and from XML and .NET objects.

3.4.7 Web Services
The Microsoft .NET Web Services Framework is similar to IBM WebSphere in
that it uses standard protocols and services to provide and locate Web Services.

In addition, the .NET Framework provides components for building Web Services
with these standard protocols and services:

� Simple Object Access Protocol (SOAP)

The .NET Framework supports both RPC and Document style SOAP.

� Web Services Discovery Language (WSDL)

� Universal Description, Discovery, and Integration (UDDI)

In addition to using automated features of Visual Studio .NET to facilitate creating
Web Services, Web Services can also be created in a less convenient, but more
flexible manner. The .NET Software Development Kit (SDK) contains several
tools for working with Web Services:

� soapsuds.exe

The soapsuds tool generates runtime assemblies capable of accessing a
remoting service provider given a XSD definition.

� wsdl.exe

The wsdl tool generates Web Services and Web Service client proxies based
on a WSDL definition.

� disco.exe

The disco tool searches a specified Web server for Web Services discovery
documents and saves them locally. Typically, disco.exe is used to discover
Web Services and then wsdl.exe is used to generate client code to access the
service.

All these tools are built based on classes provided by the .NET Framework.
Therefore, the same functionality is available at runtime and may be used within
an application for dynamic Web Services discovery and consumption.

140 IBM WebSphere and Microsoft .NET Interoperability

3.4.8 Transaction management
Transactions are a key aspect of building remote and distributed applications. By
using transactions, remote and distributed applications can run multi-step
operations and roll back any or all of these operations if there is a failure. The
.NET Framework provides support for the following transactional components:

� Microsoft Message Queuing (MSMQ)

Microsoft Message Queuing support is provided directly through objects in
the .NET System.Messaging namespace. This namespace contains the
object MessageQueueTransaction, which provides MSMQ level transactional
support. This is typically called a one-phase or level one transaction, since it
encapsulates one level of processing.

� ADO.NET data transactions

ADO.NET data providers typically include database level transaction support.
The larger ADO.NET database providers, including IBM DB2 UDB, Microsoft
SQL Server, and Oracle, also provide the ability to allow database
connections to automatically participate in distributed transactions. Like
Microsoft Message Queueing, non-distributed ADO.NET transactions are a
one-phase transaction.

� Serviced components

The .NET System.EnterpriseServices namespace, as introduced in 3.4.5,
“Object pooling” on page 139, also includes the ability to provide distributed
transaction support. .NET Serviced components are built on top of COM+ and
must be registered as a COM+ component. A registered component may
participate in distributed transactions involving other transactional
components. Wrapping a Microsoft Message Queuing or ADO.NET
transaction in a distributed transaction is generally referred to as multi-phase
commitment.

The level of transactional support required varies greatly from application to
application and must be determined on a per-application basis. Generally,
transactions involve a considerable amount of overhead and should only be used
where they are required. Non-distributed transactions typically have less
overhead but are limited to their respective component, while distributed
components require COM+ services and must coordinate transactions through a
third entity. On Microsoft platforms, this entity is the Distributed Transaction
Coordinator (DTC). A complete discussion of the Distributed Transaction
Coordinator is beyond the scope of this redbook.

 Chapter 3. Introduction to .NET platform 141

3.4.9 Security
Security is a critical component of enterprise applications. The ability to
effectively provide authentication, access control, data integrity, privacy,
non-repudiation, and auditing within an enterprise application are some of the
requirements of building a secure system.

The .NET Framework contains a multi-layered security approach to meet these
requirements. Each layer provides various services that may be used to secure
applications at different levels. At the most general level, .NET provides the
following security services:

� Operating system level security

At the lowest level, the operating system controls access to the file system
and other system level resources.

� Runtime code level security

The .NET Common Language Runtime performs runtime type verification and
code validation. These two features help to eliminate code execution
problems caused by type mismatches, bad function pointers, memory bounds
overruns, and many other runtime problems.

� Tamper-proof assemblies

Assemblies can be strong named by signing them with a public/private key
pair. When the assembly is signed, a hash is generated based on the
contents of the assembly. This hash is then encrypted with the private key. If
the contents of the assembly are changed and the assembly is not re-signed,
the hash will no longer match, thus the assembly will be marked as corrupt.
Signing assemblies can be extremely important in keeping them from being
injected with malicious code.

� Role-based security

The role-based security allows for application-level security within the .NET
Framework. Role-based security can be configured at the enterprise,
machine, and user levels. This is accomplished by creating permission sets
based on attributes, such as site, URL, and publisher, and then applying them
to code groups. Policies can be configured directly with XML configuration
files or by using the .NET configuration snap-in, available from the Windows
control panel.

Note: Role-based security is configured using XML files located on the file
system. Without access restrictions on these files, they can be easily
modified to allow unauthorized access to resources.

142 IBM WebSphere and Microsoft .NET Interoperability

� Secure Sockets Layer (SSL)

Secure Sockets Layer is the industry standard for network data encryption. It
may be used transparently by various .NET components to provide secure
network communications.

� Data encryption components

The System.Security.Cryptography namespace of .NET Framework includes
classes for cryptography, hashing, and authentication. Many standard
symmetric and asymmetric cryptography providers are supported, including
RC2, RSA, and TripleDES.

� Authentication services

Several methods of authentication are available for use by .NET applications
and services. Authentication comes into play when connections are initiated
with a remote service. The most common users of authentication services
are:

– ASP.NET

Supported authentication methods include Integrated Windows, Forms,
and Microsoft Passport. However, authentication can also occur at the IIS
Web server level. IIS allows anonymous, basic, digest, certificate, and
integrated authentication.

– ADO.NET

Authentication methods vary from provider to provider. For example, the
Microsoft SQL Server provider supports both integrated and SQL Server
authentication.

– Remoting

When hosted by IIS, remote objects can use IIS and ASP.NET Windows
authentication. If a TCP channel is used, there is no built-in authentication
service available.

– Messaging

Built-in authentication, authorization, and encryption services are available
when using messaging services.

– Web Services

IIS and ASP.NET services are also available to Web Services. Other
custom approaches, such as passing them as part of the SOAP header,
are also available.

 Chapter 3. Introduction to .NET platform 143

3.4.10 Load balancing and failover
Load balancing and failover capabilities under .NET come from the underlying
and supporting technologies upon which it is built.

Server clustering
Server clustering has been around since the days of Windows NT and has been
enhanced to provide additional features. With clustering, a multi-server Web
application can provide service despite hardware failures on individual services.

Although clustering is very powerful, it is a non-trivial implementation that must
be properly planned in advance. Shared disk storage is ideally used between the
clustered servers to hold common configuration and state information. The
application is written to react to lost connectivity and services by re-establishing
connections to database and other resources when they suddenly become
unavailable.

For more information about Microsoft Server Clustering, see the Microsoft Web
site at:

http://www.microsoft.com/windows2000/technologies/clustering/default.asp

Network Load Balancing
The Windows Server provides a feature known as Network Load Balancing,
which is designed to evenly distribute Web-based traffic between servers and,
should a server become unavailable, reroute traffic to another server.

In practice, Network Load Balancing is also a function of the network itself. Any
considerations of this should involve careful selection of the technology to be
used based on the application requirements (HTTP, FTP, SMTP, ports, and
others).

3.4.11 Application logging
Application logging includes the ability to track and monitor performance, provide
auditing capabilities, and debug problems. The .NET Framework provides
several technologies that can be used to provide standard logging features.

These technologies are:

� Performance counters

The .NET Framework provides components for creating, updating,
monitoring, and grouping performance counters.

144 IBM WebSphere and Microsoft .NET Interoperability

http://www.microsoft.com/windows2000/technologies/clustering/default.asp

� Trace class

The .NET Framework includes a standard class named Trace for tracing
program execution. Trace may be enabled using online precompiler directives,
compiler options, or at runtime using the configurable TraceSwitch class.

� Windows Management Interface (WMI)

A .NET application can monitor and record system status using the Windows
Management Interface. This resource may be accessed through classes in
the System.Management namespace.

� Windows event log

Complete access to the Windows event log is available through the EventLog
component in the System.Diagnostics namespace. Using this component,
applications can create new events, read existing events, and respond to
events requiring input. See Figure 3-24 for an example of entries created in
the Windows event log using .NET.

Figure 3-24 Creating entries in the Windows event log using .NET

In addition to these facilities, additional logging for Web applications is provided
by Internet Information Services (IIS) and ASP.NET. Internet Information
Services and ASP.NET provide the following additional features:

� ASP.NET component trace

This type of logging can be enabled on a per-application or per-page basis.
ASP.NET trace allows trace data to be displayed on the current page or in an
external document.

� Internet Information Services Web site and application-level configurability

The majority of logging configuration capability resides as site level
configuration options. At the site level, options such as a client IP Address,
user name, and host port may be chosen. At the application level, the option
whether to log visits may be changed.

 Chapter 3. Introduction to .NET platform 145

146 IBM WebSphere and Microsoft .NET Interoperability

Part 2 Component
interoperability

Part 2

© Copyright IBM Corp. 2006. All rights reserved. 147

148 IBM WebSphere and Microsoft .NET Interoperability

Chapter 4. Introduction to component
interoperability

This chapter introduces interoperability between WebSphere/J2EE and .NET
applications at the component or class level.

This chapter contains the following sections:

� Components overview
� Introduction to component interoperability
� Why choose component interoperability?

4

© Copyright IBM Corp. 2006. All rights reserved. 149

4.1 Components overview
The term component has been loosely used to refer to the different objects that
are present in any object oriented application. Both J2EE and .NET architectures
build on the object oriented paradigm. They both have different classes of
components, each one of them having a different behavior and functionality.
Some of these component classes are inherently designed to be server side
component classes, as they need services provided by the server side
containers. On the other hand, some of the component classes are essentially
client classes, while some others can be used both on the server side as well as
the client side. The following sub-sections describe these different component
classes.

4.1.1 Client side components
Client side components are incorporated into Graphical User Interface (GUI)
programs that execute on the desktop or in the Web browser running on a user’s
machine. This means that the client components usually run on a client machine
separate from the application server.

Both J2EE and .NET clients can be classified as Web browser based (thin
clients), smart, or rich clients. Web browser based clients are usually thin clients,
as they communicate to a server where most of the business logic is
implemented. Web clients access the server side components over HTTP, while
stand-alone clients may make use of many protocol, such as SOAP over HTTP,
SOAP over JMS, HTTP, or any custom protocol over TCP to access the server
side components.

J2EE
In the Java/J2EE world, Web clients typically consist of Web pages containing
various markup languages (HTML, XML, and so on) generated by Web
components running in the Web container on the server and embedded scripts,
such as Javascript, DHTML, and Java Applets. Rich and smart clients include
plain old Java objects or J2EE client applications, which run in the application
container on the client machine.

Java applets
A Java Applet is a component (Java class) that typically executes in a Web
browser but can also run in a variety of other applications or devices. An applet
must be loaded, initialized, and run by its container, for example, the Web
browser. It is used to process presentation logic, and it provides a powerful user
interface for J2EE applications. Applets embedded in an HTML page are
deployed and managed on a J2EE server, although they run in a client machine.
Applets execute inside a sandbox and the browser enforces constraints on what

150 IBM WebSphere and Microsoft .NET Interoperability

applets can do. Typically, applets are not allowed to access the local file system
or make network connections. They can consist of all kinds of plain old Java
objects, including Java Beans. Even though Java applets typically access the
server side components over HTTP, they are not restricted to HTTP alone and
can access the server side components over any protocol.

Stand-alone client components
Stand-alone client components could either be a part of a J2EE application client
or a plain old Java client. A stand-alone application client is a program that can
be launched from the command line or desktop and runs on a client machine. For
example, it can access business logic implemented in EJBs running on the J2EE
application server. Although a stand-alone application component is a Java
class, it differs from a Web client in that it runs in the client application container.
This means that it has access to all the facilities on the client machine. The
container provides the runtime support for the stand-alone application.
Furthermore, it runs in its own Java Virtual Machine (JVM). The stand-alone
client components provide a way for users to handle tasks that require a richer
user interface than can be provided by a markup language. They typically have a
graphical user interface (GUI) created from Swing or Abstract Window Toolkit
(AWT) APIs, but a command line interface is certainly possible. They can also
make use of Java Beans.

Figure 4-1 gives an overview of J2EE client components.

Figure 4-1 J2EE client components

.NET
Web clients in the .NET world consist of Web pages that can have embedded
controls, components, and scripts (usually written in VBScript or JScript).
Stand-alone clients include the .NET console clients and the graphical user
interface clients based on Windows forms.

Client tierClient tier

Applet

Applet containerApplet container

Application
Client

R
M

I-IIO
P

JD
B

C

JN
D

I

JM
S

Application client Application client
containercontainer

 Chapter 4. Introduction to component interoperability 151

Web client components
There are two Web client components:

� Web client controls

Web client components include the Web pages written in markup languages
like HTML and XML and the embedded scripts and objects. Scripting
languages like VBScript and JScript typically provide enhanced access to
objects within the browser interface and HTML document, as well as many
generic language features. VBScript is based on the Visual Basic
programming language, but it is simpler, and JScript is Microsoft’s
implementation of JavaScript. Both scripting languages enable you to
manipulate controls, such as buttons and scrollbars on Web pages.

� An ActiveX control

An ActiveX control is similar to a Java applet. It can be downloaded and
executed by a Web browser. Another similarity with Java applets is that
ActiveX controls also run in containers; the Microsoft Internet Explorer, for
example, is a container for ActiveX controls. However, unlike Java applets,
ActiveX controls can be developed in a variety of languages, including C,
C++, C#, Visual Basic, and Java. ActiveX controls also have more access to
the Windows operating system, where Java applets are sandboxed. Be
aware that users may disable support for ActiveX controls.

Stand-alone client components
.NET offers a console-based client that can run from any Windows command line
and take advantage of the full range of Windows APIs and .NET libraries.
Console clients can be either rich or thin depending on the use of technologies
such as Web References (to call Web Services), .NET Remoting (to call .NET
code on a remote server), classic COM, and so on.

Note: ActiveX controls and other COM components are not .NET
assemblies; however, wrapped appropriately, interoperability between
COM and .NET is possible.

For ActiveX components, the Windows Forms ActiveX Control Importer
(Aximp.exe) converts type definitions in a COM type library for an ActiveX
control into a Windows Forms control.

The .NET SDK provides Runtime Callable Wrapper (RCW), which wraps
the COM components and exposes them for interaction from .NET. The
.NET SDK also provides COM Callable Wrapper (CCW), which wraps
.NET components so COM clients can identify and interact with them.

152 IBM WebSphere and Microsoft .NET Interoperability

.NET also offers a new GUI technology library in Windows Forms. Windows
Forms are very similar to the look, feel, and coding style of previous versions of
Visual Basic. GUI clients are able to take advantage of the same technology
choices as console applications.

4.1.2 Server side components
The server side components in J2EE and .NET include the presentation layer
components that execute on the server side and produce the client side HTML
pages, as well as the business layer components that represent the core
business functionality. Typically, the business layer components communicate
with each other over distributed object protocols, such as RMI/IIOP (in case of
J2EE) and .NET Remoting (in case of .NET).

J2EE components
In J2EE, the presentation layer components include Java Server Pages (JSPs)
and Java Servlets that support invocations from a Web browser over HTTP.
These run inside a Java enabled server or application server known as the Web
Container according to the J2EE specification. The business layer components
include Enterprise Java Beans (EJBs), which run inside an EJB container. Both
the presentation layer and business layer components can make use of any plain
old Java Objects (POJOs).

Presentation layer components (Web Container Components)
The presentation layer components are:

� Servlets

Servlets are server-side software components written in Java, and because of
that, they inherit all the benefits of the Java language, including a strong
typing system, object-orientation, modularity, portability, and platform
independence. They run inside a Java enabled server or application server,
such as WebSphere Application Server. Servlets are loaded and executed
within the Java Virtual Machine (JVM) of the Web server or application server,
in the same way that Applets are loaded and executed within the JVM of the
Web client.

The Java Servlet API is a set of Java classes that define the link between a
hosting server and servlets and a Web Servlet. Client requests are made to
the hosting server, which them invokes the Servlet to service the request. A
client of a Servlet-based application does not usually communicate directly
with the Servlet, requests for the Servlet's services are sent through the
hosting server that invokes the Servlet through the Java Servlet API.

 Chapter 4. Introduction to component interoperability 153

� JavaServer Pages (JSP)

JSP technology enables you to easily create Web content that has both static
and dynamic components.

A JSP is mostly a XML or HTML document with special embedded tags. It
runs in a Web container, and at runtime, the JSP is parsed and compiled into
a Java Servlet and may call JavaBeans or Enterprise JavaBeans to perform
processing on the server.

The JSP tags enable the developer to insert the properties of a JavaBean
object and script elements into a JSP file, providing the ability to display
dynamic content within Web pages.

In order for the JSP container to understand and execute a custom JSP tag,
the code implementing the tag and information about how to translate the tag
and find and invoke the code must be available to the container. Tags for a
particular function are normally aggregated into a tag library. In effect, a tag
library is a collection of custom tags. Tag libraries, or taglibs, are normally
packaged as JAR files.

JSP technology supports the use of JSTL (Java Server Pages Standard Tag
Library), which defines a standard set of tags and is used to optimize
implementation.

Business layer components (the EJB container components)
The business layer components are:

� Enterprise Java Beans (EJB)

EJBs are server-side components that encapsulate the business logic of an
application. EJBs simplify the development of large, distributed applications
by providing automatic support for system-level services, such as
transactions, security, and database connectivity, allowing the developers to
concentrate on developing the business logic.

According to the EJB specification:

“Enterprise JavaBeans is an architecture for component-based distributed
computing. Enterprise beans are components of distributed
transaction-oriented enterprise applications”.

More details about the specification can be found at:

http://java.sun.com/products/ejb/

Basically, the EJB environment can be described as follows: The EJB
components run inside the EJB container of an J2EE-compliant application
server. An EJB client can access the EJBs from the same Java Virtual
Machine (JVM) or from another JVM over remote interfaces.

154 IBM WebSphere and Microsoft .NET Interoperability

http://java.sun.com/products/ejb/
http://java.sun.com/products/ejb/

RMI over IIOP (Internet Inter ORB Protocol) is the protocol used when
invoking remote EJBs. More information about RMI over IIOP can be found at
the following location:

http://java.sun.com/products/jdk/rmi/

More information about the Inter-ORB Protocol (IIOP) may be found at:

http://www.omg.org

More information can be found in the IBM Redbook EJB 2.0 Development
with WebSphere Studio Application Developer, SG24-6819.

There are three types of EJBs:

– Entity beans

Entity beans are modeled to represent business or domain objects. They
usually represent data (entities) stored in a database or in any persistent
data. Entity beans may employ either container managed persistence
(CMP) or bean managed persistence (BMP). BMP provides additional
flexibility by allowing the developer to fully manage the persistence of the
bean. Any additional complexity involves manually writing the necessary
SQL code. The persistence code is generated automatically in the case of
CMP. The advantage of using container managed persistence is that the
entity bean can be logically independent of the data source in which the
data is stored.

– Session beans

A session bean is the simplest form of EJB you can create. Session beans
are not persisted to a datastore, but rather, are transient objects that may
or may not hold state during a series of client invocations in the context of
a single user session. A session bean may, in fact, choose to save or
retrieve data directly from a database or some other persistence
mechanism (although the state of the bean itself is not saved). There are
two types of session beans: stateful and stateless. The first type is
dedicated to a single client and maintains conversational state across all
the methods of the bean. The latter type can be shared across multiple
clients, so any information kept in instance variables should not be visible
to a client.

– Message-driven beans

These are similar to session beans. Message-driven beans (MDBs) may
also be modeled to represent tasks. However, a message-driven bean is
invoked by the container on the arrival of a JMS message (asynchronous
message). They typically represent integration points for other
applications that need to work with the EJB. Since they act as the gateway
for client applications (and probably do not implement any business logic),

 Chapter 4. Introduction to component interoperability 155

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html
http://www.omg.org
http://www.omg.org

they can also be thought of as belonging to the presentation layer, even
though they execute inside the EJB container.

Figure 4-2 shows the J2EE server components.

Figure 4-2 J2EE server components

.NET components
The basic component in the .NET framework, which can be reused, is the
assembly. An assembly is a collection of files, typically .dll files and any other
files that are related to the assembly, such as resource files. The assembly
manifest contains metadata relating to version information, security attributes,
and external code references. It also contains information about how the pieces
in the assembly relate to each other. The assembly manifest, therefore,
constructs a logical DLL around the assembly elements.

In .NET, the presentation layer components include ASP.NET running inside
Microsoft’s Internet Information Services (IIS), and the business layer includes
serviced components that are remotely accessible over .NET Remoting.

Presentation layer components
ASP.NET is the main presentation layer component in .NET. Beyond a means of
dynamically building Web pages, ASP.NET is a programming framework for
building highly scalable Web applications. Normally, ASP.NET applications run
on Internet Information Services (IIS), but they can also run on other servers
such as the Apache 2.0-based Covalent Enterprise Ready Server. ASP.NET
provides enhanced functionality, such as code-behind and event driven Web

Presentation tierPresentation tier

Business logic tierBusiness logic tier

WebWeb
containercontainer

JSP Servlet

JTA

JN
D

I

JM
S

JAF

Java
Mail

JD
B

C

R
M

I-IIO
P

EJBEJB
containercontainer

JTA

JN
D

I

JM
S

JAF

Java
Mail

JD
B

C

R
M

I-IIO
P

EJB EJB

EJB

156 IBM WebSphere and Microsoft .NET Interoperability

controls. One can create ASP.NET Web applications in any language that the
.NET Framework CLR supports.

Business layer components
.NET does not have the exact equivalent of server side J2EE components like
EJBs that are managed by the container or the server itself. All the services that
are provided by a server (such security, messaging, transactions, and logging)
are provided by the Windows operating system itself and can be used by any
class in the .NET framework. All these services are distributed across various
parts of the Windows operating system and each one has its own interface.

.NET Remoting
In the .NET Framework, Microsoft developed a new, .NET specific technology for
remote method invocation called .NET Remoting. Simply put, Remoting allows
remote access to objects designed to run on the .NET Framework.

Remote objects may be hosted by Internet Information Services, a Windows
.NET-based service, or by a stand-alone application. Flexibility comes from the
layered component based approach of the Remoting architecture. Figure 4-3 on
page 158 shows a high-level overview of .NET remoting. The components in
.NET Remoting include:

� Formatter

The formatter takes a remote request and formats it into something that can
be sent over the network. The .NET Framework contains a binary formatter
and a SOAP formatter. Custom formatters may be added.

� Channel

A remoting channel creates the physical channel between the remoting client
and server. The .NET Framework provides two channels: a TCP channel and
an HTTP channel. The TCP channel provides a straight socket connection,
while the HTTP channel uses the HTTP protocol to send and receive
messages. These channels build the appropriate headers and package the
data to be sent. The channel interface is extendable. Therefore, custom
channels may be created to allow remoting over protocols, such as IIOP or
FTP.

� Transport

The transport performs the actual sending and receiving of data. Transports
are tied directly to channels and currently cannot be interchanged.

 Chapter 4. Introduction to component interoperability 157

Figure 4-3 gives a high-level view of .NET Remoting.

Figure 4-3 High-level view of .NET Remoting

Remoting activation
Activation is making an object available for use by instantiating the object. There
are two distinct types of activation for .NET Remote objects. The type of
activation scheme you choose will depend on the type of application you are
building. The two types of activation are:

� Client activation

In client activation, the remote object is instantiated immediately when the
proxy is created on the client. Client activation is used in situations where the
life of the object needs to be controlled by the client.

� Server activation

Server activation means that remote object instantiation is controlled by the
server. There are two types of server activation: singleton and single call.
When a remote object is created as a singleton, a single instance of the
object is created for all clients of the object. If the server object is created as a
single call object, each time the object is accessed remotely results in a new

RemotingRemoting ClientClient RemotingRemoting ServerServer

Client Client
ObjectObject

ClientClient
ProxyProxy

.NET.NET
RemotingRemoting

.NET.NET
RemotingRemoting

Server Server
ObjectObject

HTTP or TCPHTTP or TCP

158 IBM WebSphere and Microsoft .NET Interoperability

server object servicing the call. A singleton object is effective in maintaining
state across multiple clients at the expense of requiring the object to be
thread safe. In contrast, a single call object need not be thread safe but
cannot maintain state. For more information, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconnetremotingoverview.asp

4.2 Introduction to component interoperability
The different components in the Java and .NET environments conform to
different component object models. However, they all share basic traits, such as
the encapsulation of functionality with clearly defined interfaces for accessing the
functionality. The runtime environments support common features that include
the object life cycle management from the object creation (both local and remote)
to automatic garbage collection of objects when all references are freed, and the
passing of parameters either by reference or by value (see Figure 4-4).

Figure 4-4 Component

Container/Runtime environmentContainer/Runtime environment

InterfaceInterface

Component/ClassComponent/Class

statestate

MethodsMethods

 Chapter 4. Introduction to component interoperability 159

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp

Our definition of component interoperability between J2EE and .NET
components is essentially about being able to have J2EE components in the
Common Language Runtime as though they were a .NET assembly, be able to
invoke methods in the interface, and pass parameters and return appropriately
typed data from .NET classes. Similarly, you will have .NET assemblies running
in J2EE component containers and Java Runtime Environment, with Java
classes invoking methods and passing data seamlessly with the .NET classes
(see Figure 4-5).

Figure 4-5 Java components interoperating in .NET

For .NET interoperability with Java classes, you in effect need to create and
manage the life cycle of proxies to the Java objects in the .NET Common
Language Runtime, including garbage collection on the proxies when the Java
objects are garbage collected. The .NET side will create the appropriate data
types, including collection types that are passed as parameters and return values
to the Java classes. Similarly, for Java interoperability with .NET classes, proxies
are created and managed in the Java Runtime Environment. The .NET and Java
runtime environments can run in the same runtime environment or different
environments on the same machine, or on different machines across the
network.

The different approaches to component level interoperability include porting,
cross compilation, remote procedure call, bridging, and messaging. The three

Microsoft Microsoft
.NET CLR.NET CLR

.NET side .NET side
interoperability interoperability

controlcontrol

.NET side Java .NET side Java
classes controlclasses control

C#, VB, C++, …C#, VB, C++, …

IBM IBM WebSphereWebSphere
Java Runtime Java Runtime
EnvironmentEnvironment

Java side Java side
interoperability interoperability

controlcontrol

Java classesJava classes

Shared memory, TCP, HTTP, …Shared memory, TCP, HTTP, …

160 IBM WebSphere and Microsoft .NET Interoperability

most practical and widely used approaches are remote procedure call, bridging,
and messaging. Although the approaches are different, each provides support
that map to the application interoperability stack. A Windows Forms, console
client or an Active X component in a .NET client can access a Servlet or a JSP
deployed in WebSphere.. Similarly, a Java Applet could access a .NET serviced
component or ASP.NET. The application interface will provide support for
synchronous and asynchronous interactions depending on the application
design. Data is mapped to the appropriate type and passed between the
components using standard communication protocol and transport (see
Figure 4-6).

Figure 4-6 Component interoperability overview

A
pp

lic
at

io
n

La
ye

r
D

at
a

La
ye

r
C

on
tr

ol
La

ye
r

Tr
an

sp
or

t
La

ye
r

C#, VB, C++, …C#, VB, C++, …

Microsoft Microsoft
.NET component.NET component

Java proxy classesJava proxy classes

.NET side .NET side
interoperability interoperability

controlcontrol

IBM IBM WebSphereWebSphere
Java componentJava component

Java side Java side
interoperability interoperability

controlcontrol

Java classesJava classes

Shared memory, Shared memory,
TCP, HTTP, …TCP, HTTP, …

Shared memory, Shared memory,
TCP, HTTP, …TCP, HTTP, …

•• Lifecycle managementLifecycle management
•• InteractionInteraction
•• State managementState management
•• ……

•• Data type mappingData type mapping
•• SerializationSerialization
•• MarshallingMarshalling
•• Data aggregationData aggregation
•• ……

•• Remote procedure callRemote procedure call
•• BridgingBridging
•• Message & queuingMessage & queuing

 Chapter 4. Introduction to component interoperability 161

4.3 Why choose component interoperability?
Interoperability is one of the main motivations behind the evolution of Web
Services. Web Services provide a nice loosely coupled message oriented
interoperability. It provides the required set of technologies and standards that
are needed to make any two components interact with each other using standard
transport protocols and message formats that both components can understand.

However, Web Services is not always the ideal option for interoperability. There
are circumstances where component level interoperability is the most viable
option.

4.3.1 Interface
Web Services use of text based XML protocol for its service interface results in
intrinsic execution overhead. The processing overhead make use of Web
Services appropriate for “chunky” interfaces. On the other hand, the entire
interface of components are exposed across Java and .NET, resulting in much
finer-grained or “chatty” integration. In general, Web Services interoperability are
better suited for extending functionality beyond the organizational boundary and
for exchange of data across the Internet. The tight integration of component
interoperability from activation to garbage collection make it appropriate for
intranet solutions.

4.3.2 Transaction
Applications requiring a high transaction rate or high throughput typically avoid
Web Services because of the time consuming SOAP/XML message parsing
involved. These applications can tolerate tight coupling in return for the high
performance they need. For such applications, it makes more sense to
interoperate with other components at a level lower than what Web Services
provide. By making use of runtime bridges that work at the protocol level and
provide conversion between RMI/IIOP and .NET Remoting to support optimized
distributed object invocations, component interoperability is able to provide a
much higher level of performance than existing Web Services technologies.

4.3.3 Interaction
Web Services are a good candidate for synchronous and asynchronous
stateless interactions. Support for stateful (synchronous or asynchronous)
interactions is still in its nascent state and not all vendors support out of the box
solutions for stateful interactions.

162 IBM WebSphere and Microsoft .NET Interoperability

4.3.4 Events
The publish-subscribe and asynchronous notifications support for Web Services
is almost non-existent and the various standards are still being defined.
Applications that require using publish-subscribe mechanisms cannot use Web
Services. Examples of these kind of applications include stock portfolio
applications that can subscribe to a set of stock symbols and get notifications
when the price for a particular stock symbol changes. Usually, these applications
rely on a reliable messaging transport like WebSphere MQ to get these
notifications. Component interoperability can make use of different messaging
APIs for .NET and J2EE and provide elegant solutions for such applications
where publishers and subscribers reside on different platforms.

 Chapter 4. Introduction to component interoperability 163

164 IBM WebSphere and Microsoft .NET Interoperability

Chapter 5. Designing component
interoperability

This chapter provides an overview of the different aspects of component
interoperability that you need to consider as you design an interoperability
solution. We make use of the application interoperability stack as a guide for
identifying the considerations.

This chapter contains the following:

� Application considerations
� Data considerations
� Control considerations
� Transport considerations

5

© Copyright IBM Corp. 2006. All rights reserved. 165

5.1 Application considerations
One of the major decisions you have to make with regard to component
interoperability between WebSphere and .NET is the control technology for
realizing interoperability. We identified five different approaches for component
interoperability in 1.3, “Approaches for interoperability” on page 25. However,
only three of these approaches are widely adopted. The choice of any one of
these approaches does impact not only your design but also the considerations.
Enumerating all considerations for the different application interoperability layers
is beyond the scope of this redbook. We will identify considerations that you can
apply to your selected interoperability approach to help you design your
WebSphere and .NET component interoperability solution.

The application considerations are concerned with such functions as application
interaction, state management, and life cycle management, which are part of the
application layer of the application interoperability stack (see 1.4.1, “Application
interoperability stack” on page 27). The programming language and actual
method calls to implement these functions vary based on the approach and the
product used for realizing the approach.

5.1.1 Interaction and state management
The potential interaction dynamics between WebSphere’s Java and J2EE
components and Microsoft’s components (.NET assemblies, COM, and ActiveX)
include the following:

� Stateful synchronous interaction
� Stateful asynchronous interaction
� Stateless synchronous interaction
� Stateless asynchronous interaction

Stateful synchronous interaction
Stateful interaction: The called code (the service) holds information
(conversational state) on behalf of the calling code (the client) across multiple
method or function invocations.

Synchronous interaction: The calling code (the client) waits for (blocks) the called
code (the service) to complete its operation before continuing with any further
processing itself.

Stateful synchronous interaction: The interaction between the calling code (the
client) and the called code (the service) is both stateful and synchronous.

166 IBM WebSphere and Microsoft .NET Interoperability

Example 5-1 illustrates a pseudo interface definition that implies a stateful
interaction semantic between the client code that drives the interface and the
service code that implements the interface.

Example 5-1 Pseudo interface definition with a stateful semantic

interface iCalculator1
{

void setArg1([in]float arg1);
void setArg2([in]float arg2);
[retval]float add();
...

}

Example 5-2 illustrates pseudo client code implementation driving the
iCalculator1 interface from Example 5-1.

Example 5-2 Pseudo client code to invoke the interface from Example 5-1

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator1 objCalculator = new calculator();
objCalculator.setArg1(arg1);
objCalculator.setArg2(arg2);
result = objCalculator.add();
delete objCalculator;
assert(3 == result);
...

The client code makes three method invocations of the service implementation
(setArg1(...), setArg2(...) and add()). In order for the service
implementation to correctly service the client’s request, it must maintain state on
behalf of the client across all three invocations. This implies that the service
implementation must be associated with a single client (or must be able to
distinguish between clients) until the client no longer requires its services (the
implication is that the service implementation is stateful).

Stateless synchronous interaction
Stateless interaction: The called code (the service) does not hold information
(conversational state) on behalf of the calling code (the client) across multiple
method or function invocations.

 Chapter 5. Designing component interoperability 167

Stateless synchronous interaction: The interaction between the calling code (the
client) and the called code (the service) is both Stateless and Synchronous.

Example 5-3 illustrates a pseudo interface definition that implies a stateless
interaction semantic between the client code that drives the interface and the
service code that implements the interface. This interface differs from the
interface in Example 5-1 on page 167, because all the arguments to the add()
method are passed as input parameters to the add() method itself. As a
consequence, the service implementation can service the client’s request in a
single method invocation. Consequently, the service implementation has no
requirement to maintain any client specific state beyond the scope of a single
service request. Example 5-4 illustrates the pseudo client code implementation
driving the iCalculator2 interface from Example 5-3.

Example 5-3 Pseudo interface definition with a stateless semantic

interface iCalculator2
{

[retval]float add([in]float arg1, [in]float arg2);
...

}

Example 5-4 shows the pseudo client code to invoke the interface in
Example 5-3.

Example 5-4 Pseudo client code to invoke the interface from Example 5-3

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator2 objCalculator = new calculator();
result = objCalculator.add(arg1, arg2);
delete objCalculator;
assert(3 == result);
...

Example 5-5 on page 169 illustrates an alternative pseudo interface definition.
This definition also implies a stateless interaction semantic between the client
code that drives the interface and the service code that implements the interface.
This differs from Example 5-3 in that it passes a state object instance (of type
iCalculator3Args) as the single input parameter to the add() method.
Example 5-6 on page 169 illustrates pseudo client code implementation driving
the iCalculator3 interface from Example 5-5 on page 169.

168 IBM WebSphere and Microsoft .NET Interoperability

Example 5-5 An alternative pseudo interface definition with a stateless semantic

interface iCalculator3Args
{

void setArg([in]float arg);
}

interface iCalculator3
{

[retval]float add([in]iCalculator3Args args);
...

}

Example 5-6 shows the pseudo client code to invoke the interface in
Example 5-5.

Example 5-6 Pseudo client code to invoke the interface from Example 5-5

...
float arg1 = 1;
float arg2 = 2;
float result = 0;
iCalculator3Args objCalculatorArgs = new calculator3Args
objCalculatorArgs.setArg(arg1);
objCalculatorArgs.setArg(arg2);
iCalculator3 objCalculator = new calculator();
result = objCalculator.add(objCalculatorArgs);
delete objCalculator;
assert(3 == result);
...

We have assumed that the implementation of interface iCalculator3Args in
Example 5-7 on page 170 is local to the client; do not assume this in real
scenarios.

These interfaces imply a stateless interaction, and note that stateless is really a
classification of an implementation, not a classification of an interface. Do not
assume an implementation is stateless just because its interface implies that it is.

Stateless asynchronous interaction
Asynchronous interaction: The calling code (the client) does not wait for (block)
the called code (the service) to complete its operation before continuing with any
further processing.

 Chapter 5. Designing component interoperability 169

Stateless asynchronous interaction: The interaction between the calling code (the
client) and the called code (the service) is both Stateless and Asynchronous.

Stateful interactions are generally synchronous (this is not always the case, but
frequently so). That is, if client code needs to make several invocations of a
service, and state needs to be maintained by the service implementation on
behalf of the calling client between these invocations, and the order (sequence)
of these invocations is important, then the client is generally synchronized with
the service. This normally means that the client invokes the service, then waits
(blocks) until the service responds and returns logical flow back to the client
before the client invokes the service again.

Because stateless interaction (generally) communicates all the states for a given
task in one invocation, stateless service implementations (generally) have more
potential to be implemented as asynchronous (non-blocking) implementations
than stateful service implementations.

Example 5-7 illustrates a pseudo interface definition, which implies a stateless
asynchronous interaction semantic between the client code that drives the
interface and the service code that implements the interface. The implication is
that the delegateTask() method takes some abstracted state (a message or
document), acknowledges receipt of the message (returns logical flow to the
client), and then processes the message in its own time.

Example 5-7 Pseudo interface definition(s) with a stateless asynchronous semantic

interface iBusinessProcess
{

void delegateTask([in]iMessage arg1);
...

}

Example 5-8 shows the pseudo client code to invoke the interface in
Example 5-7.

Example 5-8 Pseudo client code to invoke the interface in Example 5-7

...
iMessage objMessage = new Trade(‘sell Microsoft stock, buy IBM stock’);
iBusinessProcess objTrader = TradeProcessor();
objTrader.delegateTask(objMessage);
...

A stateless asynchronous interaction does not necessarily imply messaging
middleware (such as WebSphere MQ). For example, a service proxy or a service
façade could deliver an asynchronous solution using threads.

170 IBM WebSphere and Microsoft .NET Interoperability

Asynchronous processing is useful when a consumer requires independent
services from more than one service provider, especially when the elapsed time
for processing for any particular service provider is unpredictable or simply takes
too long. Since information provided back to the consumer at the time of service
initiation is scant, asynchronous operations typically are not used for real-time
queries, but are often used to initiate a request or action on the part of a service
provider.

Because stateless interaction communicates all the states for a given task in one
invocation, stateless service implementations have a greater potential to be
implemented asynchronously than do stateful interactions. Figure 5-1 illustrates
an asynchronous request between a consumer and service provider.

Figure 5-1 Asynchronous interaction between consumer and service provider

The service provider is designed to consume incoming requests and provide
responses. The consumer makes requests and continues processing until the
requests are satisfied and then retrieves the responses. Although we show this
entire activity taking place within a single consumer execution, this is not a
requirement. The only requirement to be considered asynchronous is that the
consumer not block execution between the request and the response.

Although we represent the information being passed between the artifacts here
as messages, a stateless asynchronous interaction does not necessarily imply
messaging middleware. A service proxy or a service façade can also deliver an
asynchronous solution using threads. In the same way, the use of messaging
middleware does not automatically imply asynchronous invocation either. Many
applications that use messaging middleware are written using a synchronous
request/response paradigm.

ConsumerConsumer Service providerService provider

Request Request

Get Get
responseresponse

GetGet
Request Request

Put Put
responseresponse

MessageMessage
RequestRequest

MessageMessage
ResponseResponse

ContinueContinue
processing processing

Process Process

 Chapter 5. Designing component interoperability 171

Stateful asynchronous interaction
Stateful asynchronous interaction: Interaction between the calling code (the
client) and the called code (the service) is both stateless and asynchronous.

Stateful interactions are usually synchronous. That is, if a consumer needs to
make several invocations of the service, and the state needs to be maintained by
the service implementation between these invocations, and the order (sequence)
of these invocations is important, then the consumer must be synchronized with
the service. This normally means that the consumer invokes the service, then
waits (blocks) until the service responds before invoking the service again.

Consider, then, how the management of state is simply the storing of state
information. Under the asynchronous paradigm, the state can be stored by the
service provider in the same way, but this often makes little sense because
asynchronous service providers are usually engineered so that they do not have
to remain running. A better way to store state information for asynchronous
interaction is within the messages passed between the consumer and provider.

Although there are limitations to the type and amount of state information it is
possible to store, this makes for some interesting and useful new paradigms
regarding state where asynchronous operations occur, as represented in
Figure 5-2 on page 173 and Figure 5-3 on page 174.

172 IBM WebSphere and Microsoft .NET Interoperability

Figure 5-2 Stateful interaction using multiple service providers

In Figure 5-2, we see that the messages contain a mutually agreed-upon
iStateInfo object containing state information. Because the message maintains
state, the service providers are capable of performing state-dependent
operations while the interaction remains asynchronous in nature.

ConsumerConsumer Service providerService provider

Request Request

Get Get
responseresponse

GetGet
Request Request

Put Put
responseresponse

Service providerService provider

GetGet
Request Request

Put Put
responseresponse

Request Request

Get Get
responseresponse

MessageMessage
{ { iStateInfoiStateInfo..
Response } Response }

MessageMessage
{ { iStateInfoiStateInfo..
Request } Request }

MessageMessage
{ { iStateInfoiStateInfo..
Response } Response }

MessageMessage
{ { iStateInfoiStateInfo..
Request } Request }

 Chapter 5. Designing component interoperability 173

In Figure 5-3, we see that we can easily aggregate services as well using the
asynchronous paradigm while maintaining state information. Properly
engineered messages between the artifacts can help maintain the
loosely-coupled nature of these interactions.

Figure 5-3 Stateful asynchronous service aggregation

Finally, asynchronous processing allows the introduction of other powerful
middleware tools such as WebSphere Integrator. Integrator provides
sophisticated message transformation and routing capability, allowing the
creation of highly-sophisticated message flows between consumers and
providers.

ConsumerConsumer Service providerService provider

Request Request GetGet
Request Request

Put Put
responseresponse

Service providerService provider

GetGet
Request Request

Put Put
responseresponse

Get Get
responseresponse

MessageMessage
{ { iStateInfoiStateInfo..
Response } Response }

MessageMessage
{ { iStateInfoiStateInfo..
Request } Request }

MessageMessage
{ { iStateInfoiStateInfo..
Request } Request }

174 IBM WebSphere and Microsoft .NET Interoperability

5.1.2 Message format
The request message can be formatted following a simple format that both the
sender and the receiver can easily encode and decode. This could simply mean
sending the ASCII data delimited by some special characters. The text data is
then parsed by the receiver to retrieve the meaningful data. For example, to add
two integer numbers (for example 12 and 25), the data can be sent as:

“12$25$Add”

where $ is a delimiter.

The above format has severe restrictions. It requires detailed understanding of
the order and meaning of the data arguments by both the sender and the
receiver. However, it is also a very compact format that requires very little extra
characters. For simple applications with only one or two external communication
interfaces, this is a usable format.

The above format can be enhanced to remove the restriction on explicit ordering
of data values. Thus, the data can be sent as:

“Input1=12$Input2=25$Command=Add”

where $ is a delimiter.

Here the data values need not be in any given order, as each data value has a
name associated with it. However, it still requires both the sender and the
receiver to know the names of the arguments to expect in the message.

Any large scale, enterprise application cannot work with the above formats
because of their obvious limitations. Extended Markup Language (XML) is the
industry standard text format for exchange of information between
communicating parties. The structure, the content, and to some extent,
semantics of XML documents are defined using XML schemas, which can either
be exchanged or made available via a repository for all communicating parties.
Using XML, the above data values can be represented as:

<?xml version="1.0" encoding="utf-8"?>
<CalculatorInputElement xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://tempuri.org/XMLSchema.xsd">
 <Input1>28</Input1>
 <Input2>3</Input2>
 <Command>ADD</Command>
</CalculatorInputElement>

 Chapter 5. Designing component interoperability 175

Note that the parsing overhead for the above text is much more than with the
previous simpler formats. Fortunately, there are a number of XML parsers
available that can be applied here. For example, the Java Architecture for XML
Binding (JAXB) provide an API and tools that automate the mapping between
XML documents and Java objects. For more information about JAXB, refer to the
following URL:

http://java.sun.com/webservices/jaxb/

5.1.3 Life cycle management
Usually, you do not need to concern yourself with when an object is created. You
are simply interested in making calls to methods on the object. When dealing
with interoperability, you not only need to know when the new object is created,
but you also need to know how your interoperability control product creates and
initializes the new object. You also need to know where it is activated; here you
need to consider if the WebSphere and .NET components are running in the
same runtime environment, same machine, or different machines across the
network.

When an object is no longer accessible, the object is automatically garbage
collected. In an interoperability scenario, the proxy object is usually automatically
garbage collected as well. However, there are situations where manual control is
necessary. Take, for example, a Java object with a .NET proxy; the triggering of
garbage collection on the Java side and the .NET side does not happen
simultaneously. Making a call through the .NET proxy object that has yet to be
garbage collected whose Java object is already garbage collected will result in an
exception condition. So finer control is necessary to ensure control of the
garbage collection on both the interoperating object and its proxy.

5.2 Data considerations
Perhaps the most important aspect of interoperability is the exchange of data
between the interoperating components. Data is constantly exchanged between
interoperating components. The exchange must match, syntactically and
semantically, the method interfaces.

One of the functions that is handled in the data layer of the application
interoperability stack is the mapping of types between the interoperating
components. There are differences in the Java and .NET types. These

Note: Consult the product documentation for the interoperability approach for
details for configurations and activation of objects, and the garbage collection
of objects and their proxies.

176 IBM WebSphere and Microsoft .NET Interoperability

http://java.sun.com/webservices/jaxb/

differences are some of the data considerations that you need to take into
account for your solution design. The other functions include serialization and
deserialization, marshalling and unmarshalling, and data performance functions,
such as aggregation.

5.2.1 Type mapping
Not all types in Java map directly to .NET types. For example, .NET has unsigned
integral (byte, ushort, uint, and ulong) and decimal types that do not exist in Java
(see Table 5-1).

Table 5-1 Java and .NET direct primitive type mapping

Both Java and .NET support a rich library of collection types, although the
collections appear to be similar and even when the names are practically the
same (java.util.Hashtable in Java and System.Collections.Hashtable in .NET),
the implementations are different and they are sources of interoperability issues.
In Java, for example, you have java.util.Hashtable, Vectors, Hashmap, Set, and
ArrayList, and in .NET there are System.Collections.Hashtable, SortedLists,
Queue, Stack, and ArrayList.

Java .NET

int int (System.Int32)

short short (System.Int16)

long long (System.Int64)

float float (System.Single)

double double (System.Double)

char char (System.Char)

boolean bool (System.Boolean)

Note: The mapping and translation of Java collection classes to .NET and
vice versa and the details of how they are handled when passed as
parameters is beyond the scope of this redbook. It is dependent on the
approach and product you use for your solution. Please consult the product
documentation for more information.

 Chapter 5. Designing component interoperability 177

5.2.2 Pass by value or reference
When a parameter is passed by value, the called code (the service) receives a
copy of the argument. Any changes made to the value of a pass by value
argument by the called code do not affect the value of the caller’s original copy,
and are not visible to the calling code.

When a parameter is passed by reference, the called code (the service) receives
a reference to the caller’s instance of the argument. Any changes made to the
value of a pass by reference argument by the called code do affect the value of
shared argument instance, and are visible to the calling code (the client).

In-only arguments: Pass by value arguments are often referred to as in-only
arguments. For example:

method([in]arg1); is equal to... method([byValue]arg1);

In/out arguments: Pass by reference arguments are often referred to as in/out
arguments. For example:

foo([in,out]arg1); is equal to... foo([byReference]arg1);

The Java language has two categories of types: primitive types and reference
types. The .NET type system includes value, reference, and pointer types.
Arrays, classes, and interfaces are reference types in Java language, hence
java.util.Date and java.util.Calendar classes are reference types. In .NET, any
type that is derived from System.ValueType either directly or indirectly is
considered value type and types that do not derive from System.ValueType are
considered reference types.

In .NET, all types (even primitive types) are fundamentally objects. For example,
an int is actually an alias to the CTS System.Int32 type. System.Int32 derives
from System.ValueType, so it has pass by value behavior.

Boxing is a .NET technique that allows a pass by value type to be treated as a
pass by reference type (see Example 5-9).

Example 5-9 Boxing

//--- i is by default a ‘pass by value’ object ---
int i = 99;
//--- boxed_i is a ‘pass by reference’ copy of i ---
object boxed_i = i;
//--- unboxed_i is a ‘pass by value’ copy of boxed_i ---
int unboxed_i = (int)boxed_i;

Java and all .NET programming languages support the argument by value
paradigm in a distributed environment. So, in a proxy pattern class level

178 IBM WebSphere and Microsoft .NET Interoperability

interoperability, a call by reference in Java that passes a reference data type such
as an array becomes a pass by value in the .NET proxy, creating a corresponding
type in the .NET proxy.

While this has performance benefit because pass by reference results in a chatty
interface requiring a round trip to the Java side for each access to the array
element, it could result in unexpected behaviors. You should be fully aware when
you are assigning values to the proxy array, and when passing the proxy array by
reference.

5.2.3 Callbacks
.NET supports callbacks through the use of delegates and events. Delegates are
commonly defined as Type Safe Pointers. A delegate hold references to functions
that can be defined and used at runtime. Java classes can participate in .NET
callback functionality. The implementation and registration of Java classes as
delegates and event handlers in Java to .NET interoperability will depend on the
approach and product you choose for class level interoperability.

5.3 Control considerations
To a large extent, the choice of control approach and the product of choice for
implementing your solution depends on a number of factors. In this section, we
will discuss these factors. We will also like to note that this section is not intended
to be prescriptive, but it is intended to be indicative of considerations leading to
solutions for different WebSphere and .NET component interoperability
scenarios.

Note: The details of how call by value or reference is handled and what the
solution implementer must do depends to a large extent on the approach and
product you choose for class level interoperability. Consult the product
documentation for more detail.

Note: A full discussion on delegates and events and the implementation in
Java to .NET interoperability is beyond the scope of this redbook. Please refer
to Microsoft .NET documentation for discussion on delegation and events and
to the product documentation you are using for your solution to the
implementation of delegates and events implementation in Java to .NET
interoperability.

 Chapter 5. Designing component interoperability 179

5.3.1 Factors
The following are some of the factors that influence the choice of solution for a
given WebSphere and .NET component interoperability scenario.

Solution environment
The solution environment:

� What is the existing infrastructure for the targeted deployment environment?
What middleware is already deployed?

� What is the strategic and long term technical direction of the solution
environment? What weight does the direction constraints have on the choice
of control approach and product?

� What are the qualities of service requirements? How do the different solution
approaches compare to the stated performance, security, scalability (and so
on) requirements?

Project plan
The project plan:

� What is the available time for the project? Are there time constraints that will
require a quick solution?

� What is the skills and resource availability? Are there design and
development resources with skills for any of the approaches?

Financial resources
The financial resources:

� Is there available budget for the initial implementation?

� How does the deployment and maintenance costs for the different
approaches fit into a projected budget?

Technical solution
The technical solution:

� What is the optimal solution for the environment? Is it the case that more than
one approach is applicable in the scenario?

� Technical solution maturity

Your ideal (strategic) technical solution may still be maturing. It may be
deficient in a required characteristic, but on the cusp of delivering all your
requirements. In this scenario, if the interoperability integration layer is well
designed, it will normally be possible to totally abstract the integration
technology from both the client implementation code and the service
implementation code. This implies that, if it is appropriate, you should be able

180 IBM WebSphere and Microsoft .NET Interoperability

to choose a tactical short term solution, then, with a minimum of disruption,
substitute it for the ideal (strategic) solution at a later date.

The intent of these factors is to help in the solution rationalization. The goal is to
arrive at a set of characteristics for mapping to the different component
interoperability approaches and products for a given scenario.

5.3.2 Approaches
We identified five different approaches for accomplishing class level
interoperability between WebSphere and .NET (1.3, “Approaches for
interoperability” on page 25). These approaches include:

� Porting

You port the entire .NET frame work to Java or vice versa. The effort required
for the initial port and for keeping the port up-to-date is quite involved and the
task is very tedious. This is reflected in the lack of available products pursuing
this approach.

� Cross compilation

This approach cross compiles Java classes into Microsoft Intermediate
Language (MSIL) for execution in the Common Language Runtime (CLR) or
.NET languages (C#, Visual Basic, C++, and so on) to Java bytecodes for
execution in the Java Runtime Environment. While in theory it is technically
feasible to cross compile for MSIL and Java bytecode, the practice is,
however, not forth coming.

� Remote procedure calls

You take advantage of the remote procedure call mechanism supported by
both Java and .NET.

� Bridging

Implementation of proxy pattern where Java proxy runs in .NET CLR, invoking
and is invoked by .NET classes and vice versa with .NET proxy in Java.

� Messaging and queuing

Interoperating using messaging and queuing with client support classes for
Java and .NET.

 Chapter 5. Designing component interoperability 181

5.3.3 Products
In this section, we identify products that use three of the five approaches we have
identified. The three approaches are remote procedure call, bridging, and
messaging and queuing. The identified products are simply that and not an
endorsement or recommendation, nor is the set of products an exhaustive list of
products for realizing component interoperability control.

IBM Interface Tool for Java
The IBM Interface Tool for Java is a tool that allows Java programs to
communicate with ActiveX objects. It leverages .NET COM interop features to
provide stateful Java proxies to .NET assemblies. It allows integration of ActiveX
objects into a Java Environment. Using the Java Native Interface and COM
technology, the IBM Interface Tool for Java allows an ActiveX object to be treated
just like a Java object (see Figure 5-4).

Figure 5-4 IBM Interface Tool for Java overview

Using the IBM Interface Tool for Java requires simply running a proxy generating
tool that will create a Java proxy from the Active X control's typelib. These proxies

Type Library(s)

.Net
Assembly(s)Java Client(s)

IBM Interface
Tool for Java

Runtime

This could be any Java code.
i.e. An EJB, a Java Bean, a
Servlet or JSP, or an AWT or
Swing client etc.

The IBM Interface Tool for
Java runtime provides as
statefull binding between the
Java proxies and their
associated COM IDispatch
interface.

A COM IDispatch interface
can be exported form .Net
Assemblies. IBM Interface
Tool for Java binds to COM
IDispatch interface.

IDispatch

IBM Interface
Tool for Java

Buildtime

Java proxy(s)
to .Net

Assembly(s)

ge
ne

ra
te

s Generated Java proxy classes
abstracts connection and
communication with the .Net
Assembly classes from the Java
client.

.Net runtime

import

export

The .Net runtime can
automatically provide an
IDispatch facade for .Net
assemblies at runtime.

Type libraries (can be
made to) contain an IDL
definitions of the IDispatch
interfaces for its associated
.Net assembly.

The IBM Interface Tool
for Java buildtime
generates Java proxy
classes for COM
IDispatch interfaces.

182 IBM WebSphere and Microsoft .NET Interoperability

can then be used to allow a Java program to communicate with the ActiveX
object.

The IBM Interface Tool for Java provides in-process binding to .NET assemblies.

As Figure 5-5 shows, the simplest solution candidate loads the IBM Interface
Tool for Java runtime, and the assembly (and its CLR instance) into the Java
clients JVM process.

Figure 5-5 IBM Interface Tool for Java: in-process solution scenario

Other configurations are possible with the IBM Interface Tool for Java. The .NET
assembly can run on the same machine outside of the JVM process and also on
a separate machine. Some sort of transport is required when the .NET assembly
is not local to the JVM. We discuss the different configuration and communication
mechanisms for component interoperability in 5.4, “Transport considerations” on
page 187.

Note: The IBM Interface Tool for Java is the technology formerly know as
Bridge2Java. See:

http://www.alphaworks.ibm.com/tech/bridge2java

JavaJava

ServiceService
ProxyProxy

ClientClient

.NET.NET

ServiceService
AssemblyAssemblyIBM Interface Tool IBM Interface Tool

for Java Runtimefor Java Runtime

MACHINEMACHINE

JVM PROCESSJVM PROCESS

 Chapter 5. Designing component interoperability 183

http://www.alphaworks.ibm.com/tech/bridge2java
http://www.alphaworks.ibm.com/tech/bridge2java

IBM WebSphere ActiveX Bridge
IBM WebSphere ActiveX Bridge provides a COM interface to the WebSphere
Client Container. We can leverage .NET COM interop features to provide stateful
.NET proxies to WebSphere Services and applications (see Figure 5-6).

Figure 5-6 IBM WebSphere ActiveX Bridge overview

Figure 5-7 on page 185 illustrates a candidate solution model using IBM
WebSphere ActiveX Bridge as the integration solution between .NET client code
and an application deployed in WebSphere. This solution model uses a COM
service proxy to abstract IBM WebSphere ActiveX Bridge from the .NET client
code. The .NET client code binds to the COM service proxy using .NET COM
interop. As you can see, with this solution, both a CLR instance and a JVM
instance live inside the client process

.NET.NET
Client(sClient(s))

ClientClient

WebSphereWebSphere
applicationapplication

ServiceService

COMCOM
proxyproxy

ActiveXActiveX
BridgeBridge
DLLDLL

WebSphereWebSphere
clientclient

containercontainer

WebSphereWebSphere ActiveX BridgeActiveX Bridge

Interop
Interop

C
O

M
C

O
M

JN
I

JN
I

R
M

I/IIO
P

R
M

I/IIO
P

184 IBM WebSphere and Microsoft .NET Interoperability

Figure 5-7 IBM WebSphere ActiveX Bridge as the integration solution between .NET
client code and an application deployed in WebSphere

.NET CLR.NET CLR

Java classesJava classes
proxyproxy

ClientClient

Java JREJava JRE

Java classesJava classes
WebSphereWebSphere ActiveX ActiveX

BridgeBridge
RMI/IIOPRMI/IIOP

 Chapter 5. Designing component interoperability 185

Figure 5-8 illustrates an alternative candidate solution model that put the .NET
CLR and COM into separate processes. As usual, separating these technologies
into different processes can potentially have both benefits and disadvantages.
Once again, you may need to trade one feature for another to arrive at a
satisfactory solution.

Figure 5-8 Alternative candidate solution model, separating the .NET CLR and COM
processes

IIOP.NET
IIOP.NET is a SourceForge.net open source project that provides bidirectional
interoperation between .NET, CORBA, and J2EE distributed objects. IIOP.NET
implements a CORBA/IIOP remoting channel for the .NET Framework.

For more information about IIOP.NET, visit:

http://iiop-net.sourceforge.net/

IIOP.NET is released under the LGPL license:

http://www.gnu.org/copyleft/lesser.html

.NET CLR.NET CLR

ClientClient

RMI/IIOPRMI/IIOP

Java classesJava classes

Java JREJava JRE

Java classesJava classes
proxyproxy

WebSphereWebSphere ActiveX ActiveX
BridgeBridge R

M
I/IIO

P
R

M
I/IIO

P

D
C

O
M

D

C
O

M
 Interop
Interop

COM service proxy COM service proxy
processprocess

186 IBM WebSphere and Microsoft .NET Interoperability

http://iiop-net.sourceforge.net/
http://www.gnu.org/copyleft/lesser.html

J-Integra
J-Integra is a commercial product from Intrinsic. J-Integra includes a .NET
remoting implementation for .NET clients to bridge to J2EE and CORBA
implementations over IIOP. For more information about Ja.NET, visit:

http://j-integra.intrinsyc.com/

JNBridge
JNBridge is a commercial product from JNBridge. JNBridge includes a .NET
remoting implementation for .NET clients to bridge to J2EE and CORBA
implementations over IIOP. For more information about JNBridge, visit:

http://www.jnbridge.com

Janeva
Janeva is a commercial product from Borland. Janeva includes a .NET remoting
implementation for .NET clients to bridge to J2EE and CORBA implementations
over IIOP. For more information about Janeva, visit:

http://www.borland.com/janeva/

5.4 Transport considerations
Flexibility in the products configuration make various deployment options
possible. This ranges from having the two sides running on the same machine in
the same process to having the Java and .NET sides running across the network.
The transport considerations include the different options for communication
between the Java and .NET sides.

5.4.1 Run on the same machine
You have two options when you configure the Java and .NET components to run
on the same machine.

 Chapter 5. Designing component interoperability 187

http://j-integra.intrinsyc.com/
http://www.jnbridge.com
http://www.borland.com/janeva/
http://j-integra.intrinsyc.com/
http://www.jnbridge.com

Same process
The transport option is the use of shared memory for communication between
the Java and .NET sides (see Figure 5-9).

Figure 5-9 Shared memory communication on same machine and process

Different processes
Additional options include socket communication between the two processes and
messaging and queuing (see Figure 5-10 on page 189).

Microsoft Microsoft
.NET CLR.NET CLR

.NET side .NET side
interoperability interoperability

controlcontrol

Java classes proxyJava classes proxy

C#, VB, C++, …C#, VB, C++, …

Java Runtime Java Runtime
EnvironmentEnvironment

Java side Java side
interoperability interoperability

controlcontrol

Java classesJava classes

Shared memoryShared memory

MACHINEMACHINE

PROCESSPROCESS

188 IBM WebSphere and Microsoft .NET Interoperability

Figure 5-10 Same machine different processes

Microsoft Microsoft
.NET CLR.NET CLR

.NET side .NET side
interoperability interoperability

controlcontrol

Java classes proxyJava classes proxy

C#, VB, C++, …C#, VB, C++, …

Java Runtime Java Runtime
EnvironmentEnvironment

Java side Java side
interoperability interoperability

controlcontrol

Java classesJava classes

Socket based Socket based
TCP communicationTCP communication

Messaging & Messaging &
QueuingQueuing

MACHINEMACHINE

PROCESSPROCESS PROCESSPROCESS

 Chapter 5. Designing component interoperability 189

5.4.2 Different machines
When you configure the Java and .NET side on different machines, you have
options ranging from TCP within your intranet to HTTP/SOAP across the
Internet. You can also use messaging and queuing for reliable and guaranteed
delivery communication when running on different machines (see Figure 5-11).

Figure 5-11 Separate machines over the intranet

Microsoft Microsoft
.NET CLR.NET CLR

.NET side .NET side
interoperability interoperability

controlcontrol

Java classes proxyJava classes proxy

C#, VB, C++, …C#, VB, C++, …

Java Runtime Java Runtime
EnvironmentEnvironment

Java side Java side
interoperability interoperability

controlcontrol

Java classesJava classes

MACHINEMACHINE

PROCESSPROCESS PROCESSPROCESS

MACHINEMACHINE

HTTP, Socket HTTP, Socket
based based

TCP communicationTCP communication
Messaging & Messaging &

QueuingQueuing

Intranet / Intranet /
InternetInternet

190 IBM WebSphere and Microsoft .NET Interoperability

Chapter 6. Component interoperability
scenario

This chapter describes a component interoperability scenario. The scenario
implements a simple calculator where the interoperating components consist of a
.NET Windows Form client application component and a WebSphere calculator
service component. The scenario makes use of WebSphere MQ messaging to
provide component level interoperability.

This chapter discusses the following:

� Scenario description
� Queues installation and configuration
� Create messaging resources, schemas, and classes
� Developing the .NET Windows Form client application
� Developing the WebSphere calculator component
� Testing the sample application

6

© Copyright IBM Corp. 2006. All rights reserved. 191

6.1 Scenario description
The scenario essentially illustrates asynchronous component level interaction
between a .NET Windows Form client and a WebSphere EJB calculator
component using WebSphere MQ. The scenario makes use of messaging for the
component interoperability control and transport.

6.1.1 Basic interaction outline
The scenario illustrates component interoperability between a .NET Windows
Form based rich client application and a WebSphere Calculator service that is
exposed through a J2EE message-driven bean (MDB). The .NET client
application acts as a consumer and invokes various methods on the calculator
component.

The client component
The basic functions of the client component, the .NET Windows Form application
can be summarized, as follows:

� Accepts input data from the user using a graphical user interface.
� Creates a formatted request message using the input data.
� Sends the request message.
� Receives the response message.
� Interprets the response message and format the data for display.
� Displays meaningful data to the user.

The calculator component
The basic functions of the calculator component, the J2EE message-driven bean
(MDB), can be summarized as follows:

� Receives message from the client application component using the message
queue.

� Extracts the requested function and parameters from the message.

� Executes the calculation function.

� Formats the response message properly.

� Sends the response message.

Note: Use of messaging and WebSphere MQ is just one of the many possible
interoperability technologies for this scenario; a component bridging
technology could easily be substituted for this component interoperability
scenario.

192 IBM WebSphere and Microsoft .NET Interoperability

6.1.2 Message format
The request message can be formatted following a simple format that both the
sender and the receiver can easily encode and decode. This could simply mean
sending the ASCII data delimited by some special characters. The text data is
then parsed by the receiver to retrieve the meaningful data. For example, to add
two integer numbers (for example 12 and 25), the data can be sent as:

“12$25$Add”

where $ is a delimiter.

The above format has severe restrictions. It requires a detailed understanding of
the number, order, and meaning of the data arguments by both the sender and
the receiver. However, it is also a very compact format that requires very little
extra characters. For simple applications with only one or two external
communication interfaces, this is a usable format.

The above format can be enhanced to remove the restriction on explicit ordering
of data values. Thus, the data can be sent as:

“Input1=12$Input2=25$Command=Add”

where $ is a delimiter.

Here the data values need not be in any given order, as each data value has
been associated with a name. However, it still requires both the sender and the
receiver to know the names of the arguments to expect in the message.

Any large scale, enterprise application cannot work with the above formats
because of their obvious limitations. Extended Markup Language (XML) has
been an industry standard text format for exchange of information between
communicating parties. The structure, the content, and to some extent,
semantics of XML documents are defined using XML schemas, which can either
be exchanged or made available via a repository for all communicating parties.
Using XML, the above data values can be represented, as shown in
Example 6-1.

Example 6-1 Data representation using XML

<?xml version="1.0" encoding="utf-8"?>
<CalculatorInputElement xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://tempuri.org/XMLSchema.xsd">
 <Input1>28</Input1>
 <Input2>3</Input2>
 <Command>ADD</Command>
</CalculatorInputElement>

 Chapter 6. Component interoperability scenario 193

In this sample scenario, we use XML formatted data and JAXB for automatic
mapping between XML and Java objects. For more information about JAXB, refer
to the following URL:

http://java.sun.com/webservices/jaxb/

6.1.3 The calculator service
In this sample component interoperability scenario, the business function
provided by the WebSphere service is a simple calculator that is contained in a
JAR file (Calculator.jar).

Calculator.jar contains a class called CalculatorService.java with the methods
shown in Example 6-2.

Example 6-2 CalculatorService methods

...
public void setCurrentTotal(float arg)
public float getCurrentTotal()
public float add(float arg1)
public float add(float arg1, float arg2)
public float subtract(float arg1, float arg2)
public float add(ICalculator3Args args)
...

The only methods that we use in this scenario are:

public float add(float arg1, float arg2)
public float subtract(float arg1, float arg2)

Figure 6-1 on page 195 shows the class hierarchy of the Calculator component
implementation.

Note: The parsing overhead for the above text is much more than with the
previous simpler formats. Fortunately, there are a lot of third-party XML
parsers available. Some, like the Java Architecture for XML Binding (JAXB),
provide an API and tools that automate the mapping between XML documents
and Java objects.

194 IBM WebSphere and Microsoft .NET Interoperability

http://java.sun.com/webservices/jaxb/

Figure 6-1 Calculator component class diagram

Calculator.jar

<<interface>>

ICalculator3Args

void
Iterator
int

setArg (float)
getIterator()
getNumArgs()

Calculator3Args

private Vector arguments

Calculator3Args()

<<data>> <<business>>

Calculator Service

private float calc1CurrentTotal

void
float
float

setCurrentTotal (float)
getCurrentTotal()
add (float)

<<interface>>

ICalculator1 ICalculator2

<<interface>>

float add (float, float)

ICalculator3

<<interface>>

add (ICalculator3Args)float

<<uses>>

 Chapter 6. Component interoperability scenario 195

To view the actual implementation of the code within Calculator.jar, simply create
a new Java project in IBM Rational Application Developer for WebSphere
Software, and import the Calculator.jar file (select File → Import → Zip file,
and select Calculator.jar), as shown in Figure 6-2.

Figure 6-2 Importing the calculator service code into the current project for browsing

6.1.4 Messaging using WebSphere MQ
Message-oriented middleware has been used to provide the mechanism for
multi-platform integration. WebSphere MQ messaging middleware platform has
been used to realize numerous business-critical integrations.

A typical integration involving interaction between a service provider and a client
service consumer using messaging is shown in Figure 6-3 on page 197.

196 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-3 Interaction between a service provider and a consumer using messaging

WebSphere MQ implements highly reliable message queuing and ensures that
messages sent from one program to another arrive at the destination exactly
once without loss or corruption of the message data.

.NET client application.NET client application WebSphereWebSphere calculatorcalculator

Reliable Reliable
Message QueueMessage Queue

Request Request
serviceservice

Continue Continue
processingprocessing

Get Get
responseresponse

GetGet
Request Request

ProcessProcess

Put Put
responseresponse

Reliable Reliable
Message QueueMessage Queue

 Chapter 6. Component interoperability scenario 197

The service and client applications normally reside on different machines, linked
by a network, and are connected by WebSphere MQ servers installed on each
machine. Alternatively, you can install the WebSphere MQ server on one
machine and a WebSphere MQ client on the other machine, as shown in
Figure 6-4.

Figure 6-4 .NET client invoking WebSphere service

In the case where WebSphere MQ Servers are installed on each machine,
different Queue Managers can be configured on each machine and messages
can be sent between the different queue managers by defining remote queues,
as shown in Figure 6-5 on page 199.

Microsoft Microsoft
.NET CLR.NET CLR

ClientClient
ApplicationApplication

WebSphereWebSphere
Application ServerApplication Server

CalculatorCalculator
ServiceServiceWebSphereWebSphere

MQMQ
WebSphereWebSphere

MQMQ

requestrequest

responseresponse

198 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-5 Accessing remote queue managers

Microsoft Microsoft
.NET CLR.NET CLR

ClientClient
ApplicationApplication

WebSphereWebSphere
ApplicationApplication
Server v6Server v6

ListenerListener
PortPort

MDBMDB

InQInQ InQInQ

ReplyReply
QueueQueue

QM1QM1 QM2QM2

 Chapter 6. Component interoperability scenario 199

Alternatively, you can install a WebSphere MQ Server on the server machine and
WebSphere MQ client installation on the client. In this case, only one Queue
Manager is created on the server machine. All the queues are created inside this
Queue Manager. The client machine accesses the queues via WebSphere MQ
client using TCP/IP. This is a more typical configuration and this is the
configuration we used in this sample interoperability scenario. This configuration
is depicted in Figure 6-6.

Figure 6-6 WebSphere MQ setup used by the scenario

Using the WebSphere MQ Client’s “MQ Classes for .NET”, the .NET Windows
Form client application communicates with the server by putting messages onto
the queue redbookQ, which was created by the queue manager redbookQM on
the server machine. The queue listener on the server receives the messages that
are forwarded to the Message-Driven Bean (MDB). The MBD invokes the
methods in the Calculator and the result message is placed on the replyQ queue.
The .NET Windows Form client application retrieves the result message from the
replyQ message queue using a client connection.

Microsoft Microsoft
.NET CLR.NET CLR

Windows Windows
Form clientForm client

WebSphereWebSphere
ApplicationApplication
Server v6Server v6

ListenerListener
PortPort

MDBMDB

redbookQredbookQ

WebSphereWebSphere
MQ ServerMQ Server

replyQreplyQ

W
ebSphere

W
ebSphere

M
Q

 C
lient

M
Q

 C
lient

TCP/IPTCP/IP

redbookQMredbookQM

200 IBM WebSphere and Microsoft .NET Interoperability

6.1.5 System prerequisites
In order to build and execute the examples provided here, the following software
packages are required. You can use the same set of products to configure
scenarios where the .NET Windows Form client application component and the
WebSphere calculator service component run on the same machine or different
machines:

� .NET client
– Microsoft .NET Framework V1.1
– Microsoft Visual Studio.NET 2003
– IBM WebSphere MQ Client V6.0

� WebSphere server
– IBM Rational Application Developer for WebSphere Software
– IBM WebSphere MQ V6.0

6.2 Solution overview
In this section, we present the overview of our solution for achieving
interoperability between a .NET client component and a WebSphere service
component using messaging. The solution involves the development of the
WebSphere Calculator service component exposed through a J2EE
message-driven bean (MDB) and the .NET rich client Windows Form application
component.

The solution consists mainly of the following components:

� The client component
– .NET Windows Form
– WebSphere MQ client

� The service component
– WebSphere Application Server Version 6
– WebSphere MQ server
– JAXB

We used a simple XML message format and JAXB for serialization and
deserialization (marshalling/unmarshalling) of Java Object to XML and from XML
to Java objects, respectively.

Note: Version information corresponds to the versions we used in our
example, and not necessarily the minimum configuration required. For
minimum configuration requirements for these components, please refer to the
product documentation.

 Chapter 6. Component interoperability scenario 201

Another design point is the use of Interoperability Adapter. This isolates the client
application implemented as presentation logic using the .NET Windows Form
from the actual interoperability technology (the interoperability stack). The
Interoperability Adapter provides a level of abstraction, making it possible to
change the interoperability control or transport without requiring any changes to
the .NET Windows Form application. For example, to use component bridging
technology for this scenario will require the use of a different Interoperability
Adapter without changes to the .NET Windows Form code.

The steps for creating the solution are summarized as follows:

� Install and configure the queues.

– Installing and configuring (creation of queue manager, queues, and server
connection channels) of WebSphere MQ server on the WebSphere
Application Server V6 machine

– Installing and configuring of WebSphere MQ client on the .NET machine

� Create messaging resources, schema and classes.

– Creating JMS resources in a WebSphere Application Server V6 machine

– Creating XML schema using the XML schema definition tool

– Generating .NET classes for the XML schema using schema definition tool

– Generating Java classes for the XML schema using the JAXB compiler

� Develop the .NET Windows Form client application.

– Developing the Interoperability Adapter and associated classes

– Developing the .NET Windows Form

� Develop the WebSphere service.

– Developing the WebSphere Message Driven Bean (MDB)

– Exporting and deploying the WebSphere service and testing the solution

Now we will describe each of the above steps in detail in the following
subsections.

The overall architecture of our solution is shown in Figure 6-7 on page 203.

202 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-7 Solution architecture overview

6.3 Queues installation and configuration
In this section, we describe how to install and configure the WebSphere MQ
server, client, and queues that provide the transport for our solution.

6.3.1 Install and configure the WebSphere MQ Server on the server
The calculator component in our sample interoperability scenario is a set of Java
classes that are deployed in a WebSphere Application Server runtime
environment running on a server machine. The WebSphere MQ Server is
installed in this environment. The following steps assume that WebSphere MQ
has been installed in a directory called <WebSphere_MQ_Root>:

1. In order to use WebSphere MQ in a test setting without any authentication
mechanism being used, we created a system environment variable called
MQSNOAUT and set its value to yes, as shown in Figure 6-8 on page 204.

Microsoft Microsoft
.NET CLR.NET CLR

Windows Windows
Form clientForm client

WebSphereWebSphere
ApplicationApplication
Server v6Server v6

ListenerListener
PortPort

MDBMDB

redbookQredbookQ

WebSphereWebSphere
MQ ServerMQ Server

replyQreplyQ

TCP/IPTCP/IP

redbookQMredbookQM

CalculatorCalculator

JAXBJAXB
WebSphereWebSphere
MQ ClientMQ Client

InteroperabilityInteroperability
AdapterAdapter

MQTransportMQTransport

 Chapter 6. Component interoperability scenario 203

Figure 6-8 Creating the environment variable MQSNOAUT to turn off authentication

2. Start the WebSphere MQ Explorer by double-clicking
<WebSphere_MQ_Root>\bin\strmqcfg.

3. A queue manager, redbookQM, is created by right-clicking QueueManagers
and clicking New → QueueManager. Enter redbookQM as the name of the
queue manager.

4. Create two local queues redbookQ and replyQ by right-clicking Queues
under redbookQM and selecting New → Local Queue. Accept all the default
settings. The queues are shown in Figure 6-9 on page 205. The redbookQ
will be used by the .NET Windows Form client application to send its request
messages and it provides replyQ as replyTo queue, where the WebSphere

Important: If the MQSNOAUT variable is not created and its value is not
set to yes before creation of the queue manager, it can lead to
authentication failures (with WebSphere MQ reason code 2035) when you
run the application. If you want to use proper authentication for your queue
manager and queues, you can use the setmqaut command. For more
information about setmqaut, refer to:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.
ibm.mq.amqzag.doc/zsetaut.htm

204 IBM WebSphere and Microsoft .NET Interoperability

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=/com.ibm.mq.amqzag.doc/zsetaut.htm

calculator will place its response message so it can be picked up by the .NET
client application (see Figure 6-9).

Figure 6-9 Queue Manager and Queues in WebSphere MQ

5. WebSphere MQ provides two types of connections to connect to a Queue
Manager: BINDINGS and CLIENT. BINDINGS connections gives you better
performance, but it can be used only if the queue manager is on the same
physical machine. CLIENT connections use TCP/IP to connect and can be
used to connect to a queue manager on the same or a different machine.

Since the WebSphere Application Server and the WebSphere MQ queue
manager redbookQM were installed on the same machine, we used
BINDINGS transport to connect the WebSphere calculator component to the
queue manager for retrieval of messages from the redbookQ and for placing
response messages into replyQ. The .NET Windows Form client application
was installed on a different machine and therefore it used the WebSphere MQ
CLIENT connections to connect to the queue manager redbookQ M on the
server. To accept these connections, the queue manager needed to be
accessed remotely over TCP/IP over a server connection channel. We
created a server connection with the name redbookQMChnl, as shown in
Figure 6-10 on page 206, using the following steps:

a. To create a server connection channel, make sure that you start the
redbookQM queue manager by right-clicking it and clicking Start in
WebSphere MQ Explorer.

b. Click Advanced → Channels → New → Server-connection channel.

 Chapter 6. Component interoperability scenario 205

c. Specify the name of the server connection channel as redbookQMChnl
and accept all the other default properties, as shown in Figure 6-10.

Figure 6-10 Server connection on WebSphere MQ to receive client connections

6. You also need to create a TCP listener (if one has not been already created
during queue manager creation) to listen for incoming TCP connection
requests. We created a listener with the name redbookLsr on port 1414 using
the following steps:

a. To create a server connection channel, make sure that you start the
redbookQM queue manager by right-clicking it and clicking Start in
WebSphere MQ Explorer.

b. Click Advanced → Listeners → New → TCP Listener, as shown in
Figure 6-11 on page 207.

206 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-11 Creating a new TCP Listener

 Chapter 6. Component interoperability scenario 207

c. Specify redbookLsr as the name of the listener, 1414 as the port number,
and choose Queue Manager Start as the control method so that it starts
off automatically whenever the queue manager redbookQM is started.
The settings for the TCP listener are shown in Figure 6-12.

Figure 6-12 Settings for the TCP Listener

d. Start the redbookLsr TCP listener by right-clicking redbookLsr and
clicking Start, as shown in Figure 6-13 on page 209.

208 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-13 Starting the TCP Listener

 Chapter 6. Component interoperability scenario 209

6.3.2 Install and configure WebSphere MQ Client on the client
The WebSphere MQ client is installed on the client machine where the .NET
Windows Form client application is deployed. The WebSphere MQ client
configuration is minimal and consists of the following two steps:

1. Setting the MQServer environment variable

Create an environment variable with the name MQServer that points to the
machine that hosts the queue manager. The value of this variable is of the
form: <Server connection name>/<type of transport>/<hostname of the
machine that hosts the queue manager>. In our sample application, the value
of MQServer environment variable is
redbookQMChnl/TCP/washost.itso.ral.ibm.com, as shown in Figure 6-14.

Figure 6-14 Setting up the MQServer Environment Variable on the .NET machine

2. WebSphere MQ classes for .NET

WebSphere MQ classes for .NET are available as DLLs with the names
amqmdnet.dll and amqmdxcs.dll, which can be found under
<WebSphere_MQ_Root>\bin.

For information about how to use WebSphere MQ classes for .NET, refer to
the following programming guide:

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individ
ual/csqzav01.pdf

210 IBM WebSphere and Microsoft .NET Interoperability

ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/csqzav01.pdf
ftp://ftp.software.ibm.com/software/integration/support/supportpacs/individual/csqzav01.pdf

This documentation is also available at:

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzav
.doc/csq870x.htm

6.4 Create messaging resources, schemas, and classes
In this section, we describe how to create the message resources, schemas, and
classes you need on the client and server sides.

6.4.1 Create JMS resources in WebSphere Application Server
JMS resources for WebSphere MQ needs to be created in the WebSphere
Application Server.

Creating WebSphere MQ Queue Connection Factories
In WebSphere Application Server, we created two WebSphere MQ Queue
Connection Factories, redbookQCF and redbookClientQCF, as shown in
Figure 6-15. To create the WebSphere MQ queue connection factories, click
Resources → JMS Providers → WebSphere MQ → WebSphere MQ queue
connection factories → New and specify the settings described in Figure 6-15,
and shown in Figure 6-16 on page 213 and in Figure 6-17 on page 214.

Figure 6-15 WebSphere MQ Queue Connection Factories in WAS

 Chapter 6. Component interoperability scenario 211

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzav.doc/csq870x.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzav.doc/csq870x.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzav.doc/csq870x.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/topic/com.ibm.mq.csqzav.doc/csq870x.htm

The connection factory settings are used by the Messaging Service in
WebSphere Application Server to connect to the Queue Manager specified for a
particular Queue Connection Factory. JMS applications make use of Connection
Factories to connect to Queue Managers and do not have knowledge of Queue
Managers that they connect to. The two connection factories that we created,
redbookQCF and redbookClientQCF, both connect to the same queue manager
redbookQM. In this case, one could use just one queue connection factory.
However, we decided to use two, so we use different connection factories
(redbookQCF for connecting to the redbookQ and redbookClientQCF for
connecting to the replyQ) so that if one needed to move to a different
configuration where both queues did not exist on the same machine, then all one
needed to do was to change the connection factory settings for the queue to
specify a different queue manager (on the remote machine) and no code
changes would be needed. Both connection factories use the BINDINGS
transport, as the queue manager redbookQM resides on the same machine as
WebSphere Application Server. These settings are shown in Figure 6-16 on
page 213 and in Figure 6-17 on page 214. JNDI names for these two connection
factories are specified as jms/redbookQCF and jms/redbookClientQCF
respectively. All the other settings are the default settings.

212 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-16 WebSphere MQ Queue Connection Factory Settings for redbookQCF

 Chapter 6. Component interoperability scenario 213

Figure 6-17 WebSphere MQ Queue Connection Factory Settings for redbookClientQCF

Creating WebSphere MQ Queue Destinations
We created two WebSphere MQ Queue destinations in WebSphere Application
Server, redbookQ and replyQ, corresponding to the queues that were created in
WebSphere MQ. To create the WebSphere MQ queue destinations click
Resources → JMS Providers → WebSphere MQ → WebSphere MQ queue
destinations → New.

214 IBM WebSphere and Microsoft .NET Interoperability

These destinations are shown in Figure 6-18.

Figure 6-18 WebSphere MQ Queue Destinations in WebSphere Application Server

 Chapter 6. Component interoperability scenario 215

The settings for these two queue destinations are shown in Figure 6-19 and in
Figure 6-20 on page 217. Both queue destinations use the same queue manager
name redbookQM. All the other settings are the default settings, except the
Target client setting for the replyQ. The Target client setting for a queue
destination specifies whether the receiving application is JMS-compliant or is a
traditional WebSphere MQ application that does not support JMS. This is a new
feature in WebSphere Application Server Version 6.0 and is used by the
application server to decide whether to put a JMS header in the message or not.
In our solution, since the receiving application for replyQ is a .NET application
that does not understand JMS, we set the Target Client for replyQ as WebSphere
MQ (see Figure 6-19).

Figure 6-19 WebSphere MQ Queue Destination Settings for redbookQ in WebSphere
Application Server

Figure 6-20 on page 217 shows the WebSphere MQ Queue Destination Settings
for replyQ in WebSphere Application Server.

216 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-20 WebSphere MQ Queue Destination Settings for replyQ in WebSphere
Application Server

Attention: The ability to specify whether the target client (consumer) for a
queue is JMS compliant or not is an important one. This is a new feature in
WebSphere Application Server Version 6 and is very useful. You can specify
the target client as MQ whenever the consumer of that message is a non-JMS
application (like the .NET client in our solution). When you specify this feature,
WebSphere Application Server removes the JMS header from the message
that goes into the queue. In the absence of such a feature, WebSphere
Application Server will continue to put messages with a JMS header into the
queue and the consumer application will have to take care of removing the
JMS header while processing the message. The value of the target client can
also be set programmatically in Java as follows:

javax.jms.Queue queue = (javax.jms.Queue)msg.getJMSReplyTo();
com.ibm.mq.jms.MQQueue q = (com.ibm.mq.jms.MQQueue) queue;
q.setTargetClient(1);

A value of 1 specifies MQ as the target client, while a value of 0 specifies JMS
as the target client. We set target client as MQ in both ways, via the admin
console settings for the replyQ, as well as programmatically in the
onMessage() method call of TestMDBBean, as shown in Example 6-14 on
page 240.

 Chapter 6. Component interoperability scenario 217

Creating a listener port
A listener port defines the association between a connection factory, a
destination, and a deployed message-driven bean. Listener ports are used to
simplify the administration of the associations between these resources. When a
deployed message-driven bean (MDB) is installed, it is associated with a listener
port and the listener for a destination. When a message arrives at the
destination, the listener passes the message to a new instance of a
message-driven bean for processing. In our sample application, the .NET client
application sends a request message, and it is picked up by an MDB deployed
on WebSphere Application Server. Therefore, we have to create a listener port
that associates the connection factory and the WebSphere MQ queue
destination.

We created a listener port with the name TestLP and associated it with the
connection factory jms/redbookQCF and destination queue jms/redbookQ
(redbookQ). The destination queue specified is jms/redbookQ and not
jms/replyQ (replyQ), as jms/redbookQ is the destination queue used by the .NET
client application to send its message, and therefore the listener port should pick
the message from this queue. To create a listener port, click Servers →
Application servers → server1 → Messaging → Message Listener Service →
Listener Ports → New and specify the settings as described above and also
shown in Figure 6-21.

Figure 6-21 Listener Port in WebSphere Application Server

218 IBM WebSphere and Microsoft .NET Interoperability

6.4.2 Create the XML schema for messages
This sample scenario uses XML for sending and receiving messages. This
means that we had to create an XML schema for all our messages. We designed
the XML schema using Microsoft Visual Studio .NET 2003’s XML Schema
Definition Tool. To do this, use the following steps:

1. Create a new XML schema by clicking File → New → File → General → XML
Schema. Press the Open button. The XML Schema Definition Tool will open
up.

This step is shown in Figure 6-22.

Figure 6-22 Creating the XML schema using the XML schema definition tool in Microsoft Visual Studio .Net
2003

2. Use the toolbox on the left to drag and drop widgets to create a complex type,
CalculatorInput with three elements, Input1 of type float, Input2 of type float,
and Result of type float. Create two elements: CalculatorInput of type
CalculatorInput and Result of type float.

 Chapter 6. Component interoperability scenario 219

The final XML scheme definition tool window should look something like the
one shown in Figure 6-23.

Figure 6-23 CalculatorSchema developed in the XML schema definition tool

3. Save the schema with the name CalculatorSchema.xsd. The schema will look
like what is shown in Example 6-3.

Example 6-3 Text form of CalculatorSchema

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema targetNamespace="http://tempuri.org/XMLSchema.xsd"
elementFormDefault="qualified"

xmlns="http://tempuri.org/XMLSchema.xsd"
xmlns:mstns="http://tempuri.org/XMLSchema.xsd"

xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:complexType name="CalculatorInput">

<xs:sequence>
<xs:element name="Input1" type="xs:float" />
<xs:element name="Input2" type="xs:float" />
<xs:element name="Command" type="xs:string" />

</xs:sequence>
</xs:complexType>
<xs:element name="CalculatorInputElement"

type="CalculatorInput"></xs:element>
<xs:element name="Result" type="xs:float"></xs:element>

</xs:schema>

220 IBM WebSphere and Microsoft .NET Interoperability

6.4.3 Generate the .NET classes corresponding to the XML schema
To generate the .NET classes, corresponding to the CalculatorSchema, we used
the xsd.exe utility, which comes with Microsoft Visual Studio .NET 2003. The
following steps are used:

1. Start the Visual Studio .NET command prompt.

2. Go to the directory where the CalculatorSchema.xsd file resides. At the
command prompt, type:

xsd CalculatorSchema.xsd /c

3. It should generate a class file with the name CalculatorSchema.cs in the
current directory. This class should be added to the .NET project.

6.4.4 Generate the Java classes corresponding to the XML schema
We used Java Architecture for XML Binding (JAXB) for generating the Java
classes corresponding to the schema and also for automatic serialization and
deserialization of Java classes into XML (and vice versa). JAXB now comes as
part of the Java Web Services Developer Pack (JWSDP) 2.0 and can be
downloaded from:

http://java.sun.com/webservices/downloads/webservicespack.html

To generate the Java classes, we used the JAXB compiler (xjc.bat).

Invoke it as follows:

<JWSDP_INSTALL_ROOT>\jaxb\bin\xjc.bat -extension
<FULL_PATH_OF_THE_SCHEMA_FILE>\CalculatorSchema.xsd

This should generate Java files in three packages:

� redbook.coex.async.stateless
� redbook.coex.async.stateless.impl
� redbook.coex.async.stateless.impl.runtime

Note: At the time of the writing of this redbook, the latest version of JAXB
is v1.0. For more information, refer to:

https://jaxb.dev.java.net/

 Chapter 6. Component interoperability scenario 221

http://java.sun.com/webservices/downloads/webservicespack.html
https://jaxb.dev.java.net/
https://jaxb.dev.java.net/

6.5 Developing the .NET Windows Form client
application

The .NET Windows Form client application provides the graphical user interface
for accepting the user data and for displaying the result of the interoperability by
calling the WebSphere calculator service component. The .NET client application
is one of the two elements that make up the presentation tier for this sample
scenario. The other element is the interoperability adapter, which interfaces with
the server side through the WebSphere MQ messaging queues. The
interoperability adapter performs a number of functions. It provides a level of
abstraction that hides the interoperability control technology, and provides the
implementation for the application and data layers in the application
interoperability stack. In this section, we describe the steps for developing the
interoperability adapter and then the Windows Form client application.

6.5.1 Developing the interoperability adapter
Though we have a very simple example application in the calculator service, we
demonstrate how you can implement an interoperability adapter to create an
interoperability layer to provide the application interface, data serialization, and
deserialization. It also hides the interoperability control and transport from the
client application.

The interoperability adapter consists of the elements described in the following
sections.

An adapter factory - InteropAdaptorFactory
The adapter factory performs two key functions: first, it enables the client
application to obtain the appropriate adapter by merely specifying the settings for
the type of adapter. Second, it enables flexibility in making changing to the
features and capabilities of adapters.

The presentation layer gets a reference to a valid interoperability adapter by
making the following static method call:

static IInteropAdaptor createInteropAdaptor(InteropAdaptorType adaptorType,
SerializationType serType)

The InteropAdaptor types currently specified in the InteropAdaptorFactory are
Messaging and Bridge. The Serialization types currently specified in the
InteropAdaptorFactory are XML and Binary. Our sample component
interoperability scenario illustrates only the messaging type interoperability
adaptor that uses XML serialization. The InteropAdaptorFactory also specifies
three Call types: Request, Response, and RequestResponse.

222 IBM WebSphere and Microsoft .NET Interoperability

Interface for the adapter - IInteropAdaptor
The IInteropAdaptor interface has the following methods, as shown in
Example 6-4.

Example 6-4 IInteropAdaptor interface

...
// specifies the transport type
void setTransport(ITransport transport);

//returns the transport object
ITransport getTransport();

// specifies the data type of response object for deserialization
void setResponseAttributes(Object returnType, Object attributes);

// make the actual method call passing the arguments and call type
Object execute(Object[] args, InteropAdaptorFactory.CallType callType);

...

Interface for the transport - ITransport
The ITransport interface has the following methods, as shown in Example 6-5.

Example 6-5 ITransport methods

...
String connectionSetup();
String connect();
void disconnect();
bool sendOneWayMessage(Object[] args);
Object getMessage(bool blocking);
Object sendRequestResponseMessage(Object[] args);
void printConnectionProperties();

...

 Chapter 6. Component interoperability scenario 223

Implementation of ITransport for MQ - MQTransport
This is the class where the actual implementation for communicating with
WebSphere MQ using the .NET classes for MQ resides. In this class, the first
thing to note is the using IBM.WMQ statement at the top of the C# code. This is
done to make sure that we get access to all the WebSphere MQ for .NET classes
in the amqmdnet.dll. At the top of this file, the details about the queue manager
name and the queue names was hardcoded for our sample application, as
shown in Example 6-6.

Example 6-6 Queue manager and queue names

private MQQueueManager mqQMgr;
private MQQueueManager replyTomqQMgr;
private MQQueue mqSendQueue; // MQQueue for sending Messages
private MQQueue mqReceiveQueue; //MQQueue for receiving Messages
private String queueManagerName="redbookQM";
private String queueName="redbookQ"; // Name of queue to use
private String replyToQueueManagerName = "redbookQM";// send replies to

this QM
private String replyToQueueName = "replyQ";

The following steps need to be performed:

1. The first step is connect to the queue manager in the connectionSetup call.
This is shown in Example 6-7. The creation of this object is slightly different,
depending on whether you are using the default Queue Manager, or whether
the application is running on an MQSeries® Client or an MQSeries Server.
See the WebSphere MQ documentation for more details.

Example 6-7 Connecting to the queue manager

public String connectionSetup()
{

String str;
try
{

// MQQueueManager instance

mqQMgr = new MQQueueManager(queueManagerName);
replyTomqQMgr = new MQQueueManager(replyToQueueManagerName);

}
catch (MQException mqe)
{

// stop if failed
str ="The following MQ error occurred: " + mqe.Message+"

"+mqe.ToString();
return str;

}

224 IBM WebSphere and Microsoft .NET Interoperability

str ="Connection Setup Successful.";
return str;

}

2. Once a new instance of the MQQueueManager object has been created, we
can open the queue of our choice. WebSphere MQ requires you to specify
the actions you intend to take upon a queue when opening it and defines the
constants to do so. These constants are exposed via the MQ Classes for
.NET through the MQ.MQC public interface. For more information, see the
WebSphere MQ documentation. The code we used to open the output queue
(for writing messages) and the input queue (for receiving/reading messages)
is given in Example 6-8.

Example 6-8 Opening the output and input queues

public String connect()
{

String str;
try
{

mqSendQueue = mqQMgr.AccessQueue(queueName, // the name of the queue
MQC.MQOO_OUTPUT // open queue for output
+ MQC.MQOO_FAIL_IF_QUIESCING); // don’t if MQM stopping

mqReceiveQueue = replyTomqQMgr.AccessQueue(replyToQueueName,
MQC.MQOO_INPUT_AS_Q_DEF // open queue for input
+ MQC.MQOO_FAIL_IF_QUIESCING);

}
catch (MQException mqe)
{

// stop if failed
str= "The following MQ error occurred: " + mqe.Message+"

"+mqe.ToString();
return str;

}
str ="Connection established.";
return str;

}

3. Once we have opened the queue, we are ready to send our message. This is
done in the sendOneWayMessage(Object[] args) method for MQTransport.
The Object is passed to sendOneMessage is already in the form of a valid
XML string. The MQ Classes for .NET abstracts the message into an object
as well as the MQ Put Message Options. For more information about the Put
Message Options, see the WebSphere MQ documentation.

 Chapter 6. Component interoperability scenario 225

The steps involved here are to create a string message, declare its length,
create an instance of the message object, load the string message into that
object, create Put Message Options, and set them as desired. Once the
message is created, you simply call the Put method on our Queue object,
passing the Message object and the Put Options object into it.

The code to send a message is shown in Example 6-9.

Example 6-9 Sending a message using MQ classes for .NET

public bool sendOneWayMessage(Object[] args)
{

MQMessage mqMsg; // MQMessage instance
MQPutMessageOptions mqPutMsgOpts; // MQPutMessageOptions instance

int msgLen; // Message length
String message; // Message buffer
// create message
message = (String)args[0];
msgLen = message.Length;// set message length
mqMsg = new MQMessage();// new message instance
mqMsg.WriteString(message);// load message w/payload
mqMsg.Format = MQC.MQFMT_STRING;// declare format

mqPutMsgOpts = new MQPutMessageOptions();// declare options
mqMsg.ReplyToQueueManagerName = replyToQueueManagerName;// send replies

to this QM
mqMsg.ReplyToQueueName = replyToQueueName;// send replies to this queue
// put message on queue
try
{

mqSendQueue.Put(mqMsg, mqPutMsgOpts);
}
catch (MQException mqe)
{

// stop if failed

Console.WriteLine("The following MQ error occurred: " + mqe.Message+"
"+mqe.ToString());

return false;
}

return true;
}

4. Once a message has been sent to a queue, the next step is to retrieve any
messages from the replyTo queue specified in the input message. This is
done in the method getMessage(bool blocking), as shown in Example 6-10 on
page 227. The Boolean argument specifies whether the method should block

226 IBM WebSphere and Microsoft .NET Interoperability

or not. The first step is to create a message object to hold the message we
are about to get off of the queue. The message object is of type MQMessage.
We define an object of this type and then create a new instance of it. We then
create a MQGetMessageOptions object to define how we are going to get
these messages. The MQGetMessageOptions object abstracts the MQ Get
Message Options. For a full description of the capabilities, see the
WebSphere MQ documentation.

Here, we use the Get Message Options to set a WaitInterval for our Get. This
tells WebSphere MQ how long we would like to wait for a new message
assuming one is not immediately available. If blocking is set to true, we wait
for a really long time to simulate a blocking call; otherwise, we wait for three
seconds. Now we are ready to get our message. We do so by invoking the
Get() method on the queue object we created, passing both the newly created
message object and the newly created Get Message Options. Whatever
message object is read from the queue is returned to the user (of this class).
MQException errors are thrown and caught via a try/catch block. With this
method, errors can actually be normal. One normal error is No Message
Available, which simply means that no messages were on the queue to be
read. So, we surround the above code in a try { ... } and implement a catch { ...
} to evaluate what happened in the event of an error (see Example 6-10).

Example 6-10 Getting a message from a queue using MQ classes for .NET

// implements a blocking/non-blocking get
public Object getMessage(bool blocking)
{

MQMessage mqMsg; // MQMessage instance
MQGetMessageOptions mqGetMsgOpts; // MQGetMessageOptions
String strMessage="";
mqMsg = new MQMessage();// create new message object
mqMsg.Format=MQC.MQFMT_STRING;

// mqMsg.Format=MQC.MQFMT_RF_HEADER_2; //
// mqMsg.Encoding = 273; //
// mqMsg.CharacterSet = 819; //

// Get Message Options & set them
mqGetMsgOpts = new MQGetMessageOptions();
if(blocking)
{

Console.WriteLine("setting up blocking i/o");
mqGetMsgOpts.WaitInterval = 3600 *100; // 1 hour limit

}
else
{

Console.WriteLine("setting up non blocking i/o");
mqGetMsgOpts.WaitInterval = 3000; // 3 second limit for waiting

}

 Chapter 6. Component interoperability scenario 227

// get the message
try
{

//strMessage = " "+mqReceiveQueue.Name;
mqReceiveQueue.Get(mqMsg, mqGetMsgOpts);

}
catch (MQException mqe)
{

// report reason, if any
if (mqe.Reason == MQC.MQRC_NO_MSG_AVAILABLE)
{

// special report for normal end
strMessage = "No message to read.";
return strMessage;

}
else
{

// general report for other reasons
strMessage = "MQ returned error: " + mqe.Message;
return strMessage;

}
}
strMessage = mqMsg.ReadString(mqMsg.MessageLength);
return (Object) strMessage;

}

The MQTransport class also has a sendRequestResponse() method that just
simulates a synchronous call by making use of a combination of the
sendOneWayMessage method and getMessage() method with blocking set to
true.

Note: The MQ Transport class provides support for both asynchronous
and a simulated synchronous mode of communication. This illustrates how
one can achieve synchronous communication even with a messaging
technology like WebSphere MQ.

228 IBM WebSphere and Microsoft .NET Interoperability

Interoperability adaptor implementation:
GenericComponentInteropAdaptor
This is the actual implementation of the interoperability adaptor. Its main purpose
is to use the underlying transport for communication and provide the required
XML serialization (conversion from normal string arguments from the Windows
Form to valid XML) and deserialization (conversion from XML to valid string
arguments that can be displayed in the Windows Form). The following using
statements are required at the top of this class:

using System.Xml.Serialization; //For the XML Serializer Class
using System.IO;
using System.Text;
using System.Xml;

Most of its functionality lies in the execute method shown in Example 6-11.

Example 6-11 XML serialization and deserialization and use of the transport object

public Object execute(Object [] args, InteropAdaptorFactory.CallType callType)
{

Object response = new Object();
XmlSerializer deserializer=null;
StringBuilder sbuilder = new StringBuilder();
StringWriter swriter = new StringWriter(sbuilder);
if(callType==InteropAdaptorFactory.CallType.Response ||

callType==InteropAdaptorFactory.CallType.RequestResponse)
{

if(responseType==null)
return null;

else
deserializer = new XmlSerializer(responseType.GetType(),

(XmlRootAttribute) responseAttributes);
}

Note: Two important points can be noted here. First, to deserialize the XML
message from WebSphere into a valid .NET Object, the response attributes in
terms of the type of the expected Object and the element name and
namespace of the expected XML have to be specified. The
GenericComponentInteropAdaptor checks this before making any method
calls that expect a response. Second, as the default encoding used by JAXB
is UTF-8, while the default encoding of strings in .NET is UTF-16, .NET strings
have to undergo a transformation from UTF-16 to UTF-8. On the other side,
the MDB on WebSphere Application Server, ensures (through a method call)
that JAXB uses UTF-16 encoding for marshalling any Java object into XML
before sending it across.

 Chapter 6. Component interoperability scenario 229

for(int i=0; i<args.Length;i++)
{

XmlSerializer serializer = new XmlSerializer(args[i].GetType());
serializer.Serialize(swriter, args[i]);

}
swriter.Close();
/* JAXB’s default encoding is UTF-8 whereas strings in .NET use UTF-16
 * encoding. Therefore a transformation is required
 */
sbuilder.Replace("utf-16","utf-8");
Console.WriteLine(sbuilder.ToString());
switch(callType)
{

case InteropAdaptorFactory.CallType.Request:
transport.sendOneWayMessage(new Object[]{sbuilder.ToString()});
return null;

case InteropAdaptorFactory.CallType.RequestResponse:
response = transport.sendRequestResponseMessage(new

Object[]{sbuilder.ToString()});
break;

case InteropAdaptorFactory.CallType.Response:
response = transport.getMessage(false);
break;

}
Console.WriteLine("Received response type is

"+response.GetType().ToString());
StringReader sreader = new StringReader((String)response);
String resp = (String)response;
if(resp.StartsWith(“<?xml”)) //deserialize only XML strings

response = deserializer.Deserialize(sreader);
sreader.Close();
return response;

}

6.5.2 Developing the Windows Form .NET client
The .NET client component in our sample scenario is a rich client application that
is implemented using Windows Form. The .NET assembly is written in C# and
uses the MQ Classes for .NET to create properly formatted request messages
and put them to the queue. Code also support retrieval of response messages
from the queue:

� To create a new Windows Form based .NET application, open Microsoft
Visual Studio .NET 2003 and create a New Project by selecting File → New
→ Project → Visual C# Projects → Windows Application.

230 IBM WebSphere and Microsoft .NET Interoperability

You will need to select a name and location; we chose
FatClientConsumerAsynch. Once you click OK, your Windows.Forms
project will be created with a blank dialog.

� As depicted in Figure 6-24, we added a few text boxes to contain input values
(called tbArg1 and tbArg2) and the result (called tbResult), and a few buttons
(button1, button2 and GetResult). The buttons button1 and button2 implement
the Add and Subtract commands and use largely the same code that creates
the XML message and sends it to the redbookQ queue. The GetResult button
implements the code that retrieves the message from the replyQ and displays
the result in the tbResult textbox.

Figure 6-24 shows the Windows Form for the .NET client.

Figure 6-24 Windows Form for the .NET client

Follow these steps:

a. The first step in implementing the code is to create a reference to the MQ
Classes for .NET so that we can use them. There are two steps to this
process. First, add a project reference within Solution Explorer by
right-clicking References under the project we just created and selecting
Add Reference.

b. In the resulting dialog under the .NET tab, choose to browse for a DLL and
select amqmdnet.dll and amqmdxcs.dll, which can be found under
<WebSphere_MQ_Root>\bin.

 Chapter 6. Component interoperability scenario 231

c. Once the button is placed on the form, double-clicking it will bring up the
code that will be executed when the button is clicked. The name of this file
is Form1.cs. We can either keep our example very simple, and implement
all our code here, or we can implement an interoperability adapter, as
described in the previous section. By implementing the interoperability
adapter, we can easily switch between various interoperability control
technologies (for example, from WebSphere MQ to a component bridge).

After executing these steps, your project should look something like Figure 6-25.
Note the amqmdnet and amqmdxcs references in the Solution Explorer.

Figure 6-25 References required for the use of MQ classes for .NET

232 IBM WebSphere and Microsoft .NET Interoperability

Modify the Windows Form client to use the interoperability
adapter
The code that resides in the class Form1.cs is invoked when the user clicks any
of the three buttons: button1, button2, and GetResult. As mentioned above at the
beginning of this section, the code for button1 and button2 is very similar, except
that the command is sent as part of the message (Add and Subtract
respectively). This class has a member variable with the name adaptor of type
IInteropAdaptor that is initialized with the actual adaptor reference when the
Windows Form loads:

adaptor =
InteropAdaptorFactory.createInteropAdaptor(InteropAdaptorFactory.InteropAdaptor
Type.Messaging, InteropAdaptorFactory.SerializationType.XML);

The code for button1 is given in Example 6-12.

Example 6-12 Sending a message by calling the interoperability adaptor

private void button1_Click(object sender, System.EventArgs e)
{

CalculatorInput input = new CalculatorInput();
input.Input1 = Convert.ToSingle(tbArg1.Text);
input.Input2 = Convert.ToSingle(tbArg2.Text);
input.Command = "ADD";
adaptor.execute(new Object[]{input},

InteropAdaptorFactory.CallType.Request);
}

The code for GetResult is given in Example 6-13. Note that to deserialize the
XML message from WebSphere into a valid Java Object, response attributes (in
the form of element name and type) have to be specified. For more details on this
topic, refer to the .NET documentation on XML serialization/deserialization.

Example 6-13 Getting a message by calling the interoperability adaptor

private void GetResult_Click(object sender, System.EventArgs e)
{

// Specify the response attributes in XML based on Schema
XmlRootAttribute xRoot= new XmlRootAttribute();
xRoot.ElementName = "Result";
xRoot.Namespace="http://tempuri.org/XMLSchema.xsd";
adaptor.setResponseAttributes(new Single(), xRoot);
Object response = adaptor.execute(new

Object[]{},InteropAdaptorFactory.CallType.Response);
tbResult.Text=""+response+"\r\n";

}

 Chapter 6. Component interoperability scenario 233

6.6 Developing the WebSphere calculator component
We assume that the business logic for the Calculator application is pre-existing
code and is contained in the Calculator.jar file. So, in order to enable the
Calculator code as an asynchronous service, we need to create a message
driven bean front end to the application.

Develop WebSphere Service Interface using MDB
We need the Calculator component to be activated upon receipt of a request
message. This is achieved using Message Driven Beans (MDBs). Message
Driven Beans are stateless, server-side, transaction-aware components for
processing asynchronous JMS messages.

Our MDB will listen on a queue for receipt of a message. Upon receipt, the
onMessage() method of the bean is automatically executed. While the MDB is
responsible for the actual processing of the message, quality of service items,
such as transactions, security, resources, concurrency, and message
acknowledgement are all handled automatically by the bean’s container, enabling
us to focus on implementing the actual business logic.

We shall assume for simplicity of discussion that the only methods of the
Calculator class we are interested in will be the add(float,float) method and the
subtract(float, float) method, and the message format being sent by the
consumer will conform to the CalculatorInput schema described in 6.4.2, “Create
the XML schema for messages” on page 219.

Creating the Message Driven Bean is achieved by using wizards in the IBM
Rational Application Developer for WebSphere Software. The following are the
steps for creating the MDB:

1. Create a new EJB project (J2EE V1.4) by selecting File → New → EJB
Project (Figure 6-26 on page 235). Enter the name ComponentInteropEJB,
as shown in Figure 6-27 on page 236.

234 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-26 Creating a new EJB project in Rational Software Architect

 Chapter 6. Component interoperability scenario 235

Figure 6-27 Creating a new EJB project - entering the project name

2. Right-click the EJB project, and from the context menu, select New → Other
→ EJB → Enterprise Bean. This is shown in Figure 6-28 on page 237.
Ensure the correct EJB project is selected, and on the subsequent window,
you should select Message-driven bean. Enter the appropriate values for the
Bean name and Default package, for example, TestMDBBean and
redbook.wasdnet.compinterop and click Next. This is shown in Figure 6-29 on
page 237. Accept all default settings on the next few windows. Click Finish.

You will see that a new message driven bean has been created, and within
the bean there is a method onMessage(javax.jms.Message msg). It is this
method that will be executed automatically when a message is detected on
the queue.

236 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-28 Creating a new EJB

Figure 6-29 Specifying the EJB type, the bean name, and default package name

 Chapter 6. Component interoperability scenario 237

3. We want the business logic to call the add(float, float) and subtract(float, float)
methods of the CalculatorService class in the Calculator.jar file. The EJB
project needs to reference the Calculator.jar file, so to open up the properties
page for the project, select Java build path → Add External JARs and add
Calculator.jar to the build path.

4. Add the two jars under <WebSphere Application Server Install>
Root\lib\WMQ\java\lib to the build path for setting the target client as MQ for
replyQ.

5. Also, add the following JAXB libraries (for automated
deserialization/serialization of XML into Java objects and vice versa) to the
build path:

– jaxb-api.jar
– jaxb-impl.jar
– jaxb-libs.jar
– namespace.jar
– relaxngDatatype.jar
– xsdlib.jar

The Java build path should look like as shown in Figure 6-30 on page 239.

238 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-30 Adding Calculator.jar, WMQ jars and JAXB libraries to the build path for the project

6. Import the Java files that were generated from the XML schema
(CalculatorSchema.xsd) using the JAXB compiler in 6.4.4, “Generate the
Java classes corresponding to the XML schema” on page 221. To do this,
make sure that ComponentInteropEJB project is selected and then select File
→ Import → File system and browse to the correct folder
(<JAXB_CLASSES_DESTINATION_DIR> in 6.4.4, “Generate the Java

 Chapter 6. Component interoperability scenario 239

classes corresponding to the XML schema” on page 221), as shown in
Figure 6-31. Click Finish.

Figure 6-31 Importing the files that were generated from the XML schema using JAXB

7. Back in the onMessage() method, enter the code shown in Example 6-14.

Example 6-14 Implementation of the onMessage method

public void onMessage(javax.jms.Message msg) {
CalculatorService s = new CalculatorService();
try {

JAXBContext jc = JAXBContext.newInstance("redbook.wasdnet.compinterop");
Unmarshaller unmarshaller = jc.createUnmarshaller();
TextMessage m = (TextMessage)msg;
System.out.println("[TestMDBBean::onMessage] Got new message

:"+m.getText());
CalculatorInputElement ci =

(CalculatorInputElement)unmarshaller.unmarshal(new
StringBufferInputStream(m.getText()));

float a1 = ci.getInput1();
float a2 = ci.getInput2();

240 IBM WebSphere and Microsoft .NET Interoperability

float output=0;

String command = ci.getCommand();
System.out.println(" [TestMDBBean::onMessage]Args: a1="+a1+" a2="+a2+"

command= "+command);
Result result = new ResultImpl();

if(command.equals("ADD"))
{

output = s.add(a1,a2);
}

if(command.equals("SUBTRACT"))
{

output = s.subtract(a1,a2);
}

....

....
}

The javax.jms.Message received from the queue is cast into a
javax.jms.TextMessage, as the data format being sent is an XML String
consisting of CalculatorInput complex type, which in turn comprises two float
values and a command. The getText() method retrieves the actual XML text of
the message, and JAXB library calls are used to unmarshall the expected
Java class (CalculatorInput). The unmarshaller class in JAXB uses UTF-8
encoding by default. Therefore, the sender should ensure that any data
intended for JAXB unmarshalling should use UTF-8 encoding (as shown in
Example 6-11 on page 229). For more information about using JAXB, refer to
the JAXB documentation:

http://java.sun.com/webservices/jaxb/

Another good article that explains the use of JAXB:

http://java.sun.com/webservices/jaxb/users-guide/jaxb-works.html

Once the float values have been read in from the message, the Calculator
back-end code can be invoked by calling the add(float, float) or the
substract(float, float) method on the CalculatorService class.

The code example above simply prints out the result of the
addition/subtraction, but for a full asynchronous solution, the result would
need to be placed onto a reply queue. The reply queue expected by the
consumer will be specified in the original message, and can be determined
with the following line of code:

Queue replyTo = (Queue) msg.getJMSReplyTo();

 Chapter 6. Component interoperability scenario 241

http://java.sun.com/webservices/jaxb/
http://java.sun.com/webservices/jaxb/users-guide/jaxb-works.html
http://java.sun.com/webservices/jaxb/
http://java.sun.com/webservices/jaxb/users-guide/jaxb-works.html

This replyTo queue can now be used by the service, and the result can be put
(as a new TextMessage) onto this queue. The consumer can then retrieve the
message from the reply queue at a later time.

The code to put the result on a reply queue is shown below in Example 6-15;
insert the code after the two if blocks in the onMessage() method.

Example 6-15 How to put the result onto the reply queue

//put the reply onto the reply queue

InitialContext ctx = new InitialContext();

QueueConnectionFactory qcf =
(QueueConnectionFactory)ctx.lookup("jms/redbookClientQCF");

QueueConnection qConn = qcf.createQueueConnection();
System.out.println("[TestMDBBean::onMessage] created QueueConnection");
QueueSession session = qConn.createQueueSession(false,

Session.AUTO_ACKNOWLEDGE);
System.out.println("[TestMDBBean::onMessage] created QueueSession");
Queue queue = (Queue)msg.getJMSReplyTo();
com.ibm.mq.jms.MQQueue q = (com.ibm.mq.jms.MQQueue) queue;
System.out.println("[TestMDBBean::onMessage]

replyToQueue="+queue.getQueueName()+" targetClient="+q.getTargetClient());
q.setTargetClient(1);

QueueSender sender = session.createSender(queue);
System.out.println("[TestMDBBean::onMessage] created QueueSender");
//send the result
qConn.start();
TextMessage mReply = session.createTextMessage();
mReply.setJMSMessageID(m.getJMSMessageID());
//call the add method of the calculator service
Marshaller marshaller = jc.createMarshaller();
/* JAXB’s default encoding is UTF-8 whereas strings in .NET use UTF-16
 * encoding. Therefore a transformation is required.
 * /
marshaller.setProperty(Marshaller.JAXB_ENCODING,"UTF-16");

Note: Two things to note here are:

� We programmatically set the target client for replyQ to be MQ (using
the value 1 for setTarget call) in addition to specifying it in the
administrative settings for replyQ.

� JAXB marshaller is set to use UTF-16 encoding so that any consumer
that uses UTF-16 encoding (like the .NET client in our solution) will be
able to process the data directly.

242 IBM WebSphere and Microsoft .NET Interoperability

StringWriter sw = new StringWriter();

result.setValue(output);
System.out.println(output);

marshaller.marshal(result,sw);
mReply.setText(sw.toString());
sender.send(mReply);
System.out.println("[TestMDBBean::onMessage] sent the result

"+sw.toString());
qConn.close();
sender.close();
session.close();

} catch (JMSException e) {
e.printStackTrace();

} catch (NamingException e) {
e.printStackTrace();

}catch (JAXBException e){
System.err.println("Got an exception while marshalling/unmarshalling

XML: "+e);
} catch (JMSException e) {

e.printStackTrace();
} catch (NamingException e) {

e.printStackTrace();
}catch (JAXBException e){

System.err.println("Got an exception while marshalling/unmarshalling
XML: "+e);

}

The reply message, mReply, will sit in the reply message queue until it is
retrieved by the consumer.

The consumer in this case is running in a .NET environment using the
WebSphere MQ Classes for .NET.

 Chapter 6. Component interoperability scenario 243

Make sure you add the following import statements shown in Example 6-16 to
the class.

Example 6-16 Import statements to be added

import java.io.StringBufferInputStream;
import java.io.StringWriter;
import javax.jms.JMSException;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import redbook.wasdnet.compinterop.impl.*;
import redbook.coex.sall.business.CalculatorService;

Export the application EAR by right-clicking the EAR project
ComponentInteropEJBEar and selecting Export → EAR. Enter the name and
location of the desired EAR file and click Finish.

6.7 Testing the sample application
To test the sample application, do the following:

1. Copy the JAXB libraries (jaxb-api.jar, jaxb-impl.jar, jaxb-libs.jar,
namespace.jar, relaxngDatatype.jar, xsdlib.jar) and Calculator.jar to
<WebSphere Application Server Install Root>\classes.

2. Start the WebSphere Application Server and deploy the enterprise application
archive (EAR) on WebSphere Application Server by selecting Applications
→ Install New Application and selecting the EAR file for deployment.
Accept the default settings for the next couple of screens and keep clicking
Next. On the “Provide listener bindings for message-driven beans” screen,
specify the name of the Listener port as TestLP (as shown in Figure 6-32 on
page 245). Click Next and finally click Finish. Save your changes and then
start the application.

244 IBM WebSphere and Microsoft .NET Interoperability

Figure 6-32 Specifying the name of the listener port while deploying the EAR

3. Start the queue manager on WebSphere MQ using the following command:

<WebSphereMQ_INSTALL_ROOT>\bin\strmqm redbookQM

4. If the MQ listener has not already started, start the MQ listener by using the
following command:

<WebSphereMQ_INSTALL_ROOT>\bin\runmqlsr.exe -m redbookQM -t TCP

Attention: WebSphere Application Server Version 6 comes with
WebSphere MQ libraries (com.ibm.mq.jar and com.ibm.mqjms.jar) that can
be found in <WebSphere Application Server Install Root>\lib\WMQ\java\lib.
Depending on the WebSphere Application Server version you have, the
version of WebSphere MQ libraries that come with WebSphere Application
Server might change. If you face problems starting your application, it
could be due to a version mismatch, and you might have to copy the
WebSphere MQ libraries from <WebSphere MQ Install Root>\Java\lib into
<WebSphere Application Server Install Root>\lib\WMQ\java\lib.

 Chapter 6. Component interoperability scenario 245

5. Run the .NET Windows application you have just developed. Enter a value
into the two arguments textbox, then click Add, as shown in Figure 6-33.
Then click Get result and you should see the results in the textbox.

Figure 6-33 Running the .NET application

6.7.1 Troubleshooting
The following are some points concerning troubleshooting:

� If you observe that clicking Get result shows RFH in the response text box, it
means that the message received from the WebSphere service includes the
JMS header. To overcome this, ensure that the TargetClient setting for replyQ
is set to MQ.

� If you see an error message on the .NET side that has the reason code 2059,
it means that the MQ client on .NET was not able to contact the MQ server, as
there is no listener process running there. It can happen either because the
MQ listener on the WebSphere Application Server node is not running or it is
not running on the default port (1414) or the MQServer environment variable
on .NET node does not have the correct machine name and channel name.
Ensure that none of these is the case.

� If you see an error message on the .NET side that has the reason code 2035,
it means that the .NET user's user ID is not authorized to access the queue
on the remote (or local) queue manager. Ensure that the environment variable
MQSNOAUT=yes has been defined before the creation of queue manager on
the WebSphere Application Server node. You can also consider using the
setmqaut command to grant access to a user ID to a queue.

246 IBM WebSphere and Microsoft .NET Interoperability

Part 3 Web Services
interoperability

Part 3

© Copyright IBM Corp. 2006. All rights reserved. 247

248 IBM WebSphere and Microsoft .NET Interoperability

Chapter 7. Introduction to Web
Services Interoperability

In this chapter we provide an overview of Web Services and Services Oriented
Architecture (SOA). We also introduce Web Services Interoperability, the
organization that defines profiles that ensures the best interoperability for Web
Services. And finally, we introduce architecture for Web Services Interoperability
solutions.

This chapter contains the following sections:

� Introduction to Web Services
� Overview of Web Services Interoperability

7

© Copyright IBM Corp. 2006. All rights reserved. 249

7.1 Introduction to Web Services
Web Services is emerging as the next evolution of the use of Web technology to
drive operational efficiencies and interoperability within the enterprise and across
the extended enterprise. The World Wide Web ushered in a new era in
conducting electronic business. Initially, it provided the means to establish a Web
presence where an enterprise used the World Wide Web to market its products
and services and to reach its customers. With the emergence of e-commerce,
the use of Web technologies created a whole new sales channel, enabling
business-to-consumer and business-to-business buying and selling. E-business
extended the use of Web technologies to drive business processes, enabling
collaboration with business partners and suppliers. With e-business, companies
attained new operational efficiencies and integrated across operational
boundaries. E-business operations were driven mainly through program-to-user
interaction. Web Services is driving further operational efficiencies and
integration through program-to-program interaction.

7.1.1 Web Services background
The W3C Web Services Architecture Working Group defined a Web Service as:

“A software application identified by a URI, whose interfaces and binding are
capable of being defined, described and discovered by XML artifacts and
supports direct interactions with other software applications using XML based
messages via internet-based protocols.”1

This precise definition provides the foundation for a language-neutral and
environment-neutral programming model.

The programming model consists of three key components:

� A service model for integrating loosely coupled network accessible resources

� A set of specifications that define protocols and standardized application
programming interfaces (APIs)

� Distributed architecture model for creating distributed, scalable, and
integrated applications using loosely coupled components and messaging

1 http://www.w3.org/TR/2002/WD-wsa-reqs-20020429

250 IBM WebSphere and Microsoft .NET Interoperability

http://www.w3.org/TR/2002/WD-wsa-reqs-20020429

7.1.2 Web Services model
The Web Services model provides one of the three key components of the
language-neutral and environment-neutral Web Services programming model.
From a systems perspective, the Web Services model is based on three key
roles and a set of operations executed by and between the three roles.

The roles in a Web Services model are as follows:

� Service provider

The service provider hosts (usually is also the creator of) network-accessible
software components that implement the Web Services. The service provider
publishes the description (using Web Services Description Language) of the
Web Services to service registries.

� Service requestor

Service requestors consume Web Services. Requestors must first find and
retrieve the service description for the desired Web Service from the service
registry (can also be passed locally), and then bind to the Web Service before
invoking operations on the Web Service. Service requestors include users
running Web browsers, program without a user interface, and other Web
Services. The commonly used protocol for the exchange of information
including lookup, retrieval, and binding is the Simple Object Access Protocol
(SOAP).

� Service registry

The service registry is the repository of service descriptions published by
service providers. Service requestors search the repository for services and
binding information. At development time, service requestors have the option
to statically bind to services; however, at runtime, the binding is dynamic.
Universal Description, Discovery, and Integration (UDDI) is the Internet based
service registry developed by industry wide initiative.

 Chapter 7. Introduction to Web Services Interoperability 251

Figure 7-1 shows an overview of the Web Services model.

Figure 7-1 Web Services model

Three operations drive the flow and behavior in the Web Services model. The
operations are:

� Publish

The provider of a Web Service creates the Web Services Description
Language (WSDL), which describes the interface to the service. The WSDL
definition include data type definitions, input and output messages, the
operations, and communication endpoints. The publish operation is the
process of making the WSDL available so service requestors can find and
bind to the Web Service through the WSDL. The publication could be to a
central location, such as UDDI, or distributed to practically any existing Web
infrastructure using Web Services Inspection Language (WSIL) documents.

� Find

The service requestor must perform a find operation in order to discover and
retrieve the WSDL for published services. The find operation can be
performed either directly or through queries to the service registry, such as
UDDI. The discovery can be performed at design time where the service
description is statically incorporated to the program development or it can be
dynamically discovered at runtime.

ServiceService
RegistryRegistry

ServiceService
RequesterRequester

ServiceService
ProviderProvider

ServiceService
descriptiondescription

ServiceService

ServiceService
descriptiondescription

FindFind
WSDL + UDDIWSDL + UDDI PublishPublish

WSDL + UDDIWSDL + UDDI

BindBind

252 IBM WebSphere and Microsoft .NET Interoperability

� Bind

Before invoking or initiating a request with a Web Service, the service
requestor makes use of the binding information from the retrieved WSDL to
bind to the Web Service.

7.1.3 Web Services specifications
The second component of the language and environment-neutral Web Services
programming model is the collection of Extensible Markup Language (XML)
based specifications that define protocols for describing, delivering, and
interacting with Web Services. Figure 7-2 is just one of the possible
visualizations showing different categories that fit in a Web Services
programming stack.

Figure 7-2 Web Services categories

Note: At any point in time, versions of Web Services specifications are in
various stages of development and approval.

TransportsTransports

MessagingMessaging

Description and DiscoveryDescription and Discovery

ReliabilityReliability TransactionsTransactions SecuritySecurity

Business ProcessBusiness Process ManagementManagement

 Chapter 7. Introduction to Web Services Interoperability 253

Transports
The transports is the foundation of the Web Services programming stack.
Included in this category are protocols that support the network accessibility of
Web Services. Transport protocols include HTTP, FTP, e-mail, IIOP, messaging
middleware, and so on.

Messaging
The messaging specifications define the standards for exchanging information in
the Web Services distributed environment.

SOAP
Simple Object Access Protocol (SOAP) provides the definition of the structured
and typed XML-based information that is exchanged between parties in a
distributed environment. SOAP messages are self-contained and describe the
structure and type of the information they carry within the message.

Each SOAP message consists of an envelope that contains an arbitrary number
of headers and one body that carries the payload. SOAP messages might
contain exceptions to report failures or unexpected conditions.

Even though SOAP implements a stateless, one-way paradigm, it can be used to
implement more complex paradigms, such as request/response and
solicit/response. Example 7-1 shows the structure of SOAP messages.

Example 7-1 Structure of SOAP messages

<?xml version='1.0' ?>
<env:Envelope xmlns:env="http://www.w3.org/2003/05/soap-envelope">
 <env:Header>
 ...

 </env:Header>
 <env:Body>
 ...

 </env:Body>
</env:Envelope>

Figure 7-3 on page 255 shows the SOAP message structure.

254 IBM WebSphere and Microsoft .NET Interoperability

Figure 7-3 SOAP message structure

Web Services Addressing
Web Services Addressing (WS-Addressing) provides transport-neutral
mechanisms to address Web Services and messages. Specifically, this
specification defines XML elements to identify Web Services endpoints and to
secure end-to-end endpoint identification in messages.

Web Services Notification
The Web Services Notification (WS-Notification) is a family of specifications that
include "Publish-Subscribe Notification for Web Services" and the following
normative specifications:

� WS-BaseNotification

Defines the Web Services interfaces for NotificationProducers and
NotificationConsumers. It includes standard message exchanges to be
implemented by service providers that wish to act in these roles, along with
the operational requirements expected of them. This is the base specification
on which the other WS-Notification specification documents depend.

Header blockHeader block

SOAP HeaderSOAP Header

SOAP BodySOAP Body

Header blockHeader block

Body subBody sub--elementelement

Body subBody sub--elementelement

Body subBody sub--elementelement

 Chapter 7. Introduction to Web Services Interoperability 255

� WS-BrokeredNotification

Defines the Web Services interface for the NotificationBroker. A
NotificationBroker is an intermediary which, among other things, allows
publication of messages from entities that are not themselves service
providers.

� WS-Topics

Defines a mechanism to organize and categorize items of interest for
subscription known as "topics." These are used in conjunction with the
notification mechanisms defined in WS-BaseNotification.

Web Services attachments profile
These are a set of specifications, with respective clarifications and amplifications,
that promote interoperable SOAP Messages with Attachments.

Description and discovery
These specifications standardize the description of Web Services, the creators
and providers, and the technical interfaces that enable the Web Services to be
discovered:

� UDDI

The Universal Description, Discovery, and Integration (UDDI) standard
defines the means to publish and to discover Web Services. Of the three Web
Services standards, this is the least important one, because one can also
implement and deploy Web Services without UDDI. However, in certain
situations, UDDI is a must.

� WSDL

The Web Service Definition Language (WSDL) describe Web Services as
abstract service endpoints that operate on messages. Both the operations
and the messages are defined in an abstract manner, while the actual
protocol used to carry the message and the endpoint’s address are concrete.

WSDL is not bound to any particular protocol or network service. It can be
extended to support many different message formats and network protocols.
However, because Web Services are mainly implemented using SOAP and
HTTP, the corresponding bindings are part of this standard.

� Web Services Semantics (WSDL-S)

A specification submission that defines how to add semantic information to
WSDL documents. Semantic annotations define the meaning of the inputs,
outputs, preconditions, and effects of the operations described in a service
interface.

256 IBM WebSphere and Microsoft .NET Interoperability

� Web Services Metadata Exchange

This specification enables efficient, incremental retrieval of a Web service’s
metadata. It defines three request-response message pairs to bootstrap
communication with a Web Service:

– Retrieve the WS-Policy associated with the receiving endpoint or with a
given target namespace

– Retrieve either the WSDL associated with the receiving endpoint or with a
given target namespace

– Retrieve the XML Schema with a given target namespace

� Web Services Policy Assertions Language

WS-PolicyAssertions is a building block that is used in conjunction with other
Web Services and application-specific protocols to accommodate a wide
variety of policy exchange models.

� Web Services Policy Attachment

This specification defines general-purpose mechanisms for associating
policies with the subjects to which they apply. Specifically, it defines the
following:

– How to reference policies from WSDL definitions
– How to associate policies with deployed Web service endpoints
– How to associate policies with UDDI entities

� Web Services Policy Framework

Provides a general purpose model and syntax to describe and communicate
the policies of a Web Service that enable Web Services providers and
consumers to discover the capabilities and constraints to facilitate
interoperability of these services.

� Web Services Resource Framework

The Web Services Resource Framework defines a family of specifications for
accessing stateful resources using Web Services. It includes the
WS-ResourceProperties, WS-ResourceLifetime, WS-BaseFaults, and
WS-ServiceGroup specifications.

 Chapter 7. Introduction to Web Services Interoperability 257

Reliability
Reliability specifications ensure that messages are delivered reliably in the
presence of software component, system, or network failures.

Web Services Reliable Messaging
Web Services Reliable Messaging (WS-ReliableMessaging) defines a protocol
and a set of mechanisms that ensure messages are delivered reliably between
two endpoints and support a broad spectrum of delivery assurance and robust
services. The protocol, as defined, is independent of the network transport
technologies; however, it specifies SOAP binding for Web Services
interoperability.

Transactions
The Web Services Transactions specifications define mechanisms for
transactional interoperability. It describes an extensible coordination framework
(WS-Coordination) and specific coordination types for short duration transactions
(WS-AtomicTransaction) and long running business transactions
(WS-BusinessActivity):

� WS-Coordination

Describes an extensible framework for providing protocols that coordinate
distributed activities.

� WS-AtomicTransaction

Defines three specific agreement coordination protocols for the atomic
transaction coordination: completion, volatile two-phase commit, and durable
two-phase commit.

� WS-BusinessActivity

Defines two specific agreement coordination protocols for the business
activity coordinations BusinessAgreementWithParticipantCompletion and
BusinessAgreementWithCoordinatorCompletion.

Security
Using these security specifications, applications can engage in secure
communication designed to work with the general Web Services framework. The
specifications define mechanisms for a wide variety of security models and
encryption technologies:

� XML Signature

The XML Signature specification defines the XML syntax and processing
rules to sign and verify digital signatures for digital content.

258 IBM WebSphere and Microsoft .NET Interoperability

� XML Encryption

This standard specifies a process for encrypting data and representing the
result in XML. The data can be arbitrary data (including an XML document),
an XML element, or an XML element content. The result of encrypting data is
an XML encryption element that contains or references the cipher data.

� XML Key Management (XKMS)

The XML Key Management Specification (XKMS) specifies protocols for
distributing and registering public keys. The specification is comprised of two
parts:

– XML Key Information Service Specification (X-KISS)

X-KISS defines the protocol for delegating resolution of Key Information
associated with an XML signature.

– XML Key Registration Service Specification (X-KRSS)

XML Key Registration Service Specification (X-KRSS) defines the protocol
for delegating registration of public key information. X-KRSS supports the
public key life cycle, registration, renewal, revocation, recovery, and
roaming.

� WS-Security

The WS-Security specification describes extensions to SOAP that allow for
quality of protection of SOAP messages. This includes, but is not limited to,
message authentication, message integrity, and message confidentiality. The
specified mechanisms can be used to accommodate a wide variety of
security models and encryption technologies. It also provides a
general-purpose mechanism for associating security tokens with message
content.

� WS-Trust

The WS-Trust specification defines primitives and extensions for the
issuance, exchange, and validation of security tokens. It also enables the
issuance and dissemination of credentials within different trust domains.
WS-Trust relies on the secure messaging mechanisms of WS-Security.

� WS-SecureConversation

The WS-SecureConversation specification defines extensions for the
establishment and sharing of security contexts, and session key derivation to
enable a secure conversation. The security context is established when
multiple communicating parties wish to exchange multiple messages. It exists
for the duration of the communications session. WS-SecureConversation
relies on the mechanisms defined by WS-Security and WS-Trust.

 Chapter 7. Introduction to Web Services Interoperability 259

� WS-Federation

The WS-Federation specification defines mechanisms that enable different
security realms to federate by allowing and brokering trust of identities,
attributes, and authentication between participating Web Services. The
mechanisms support both passive and active requestors.

– Active Requester Profile

The WS-Federation Active Requester Profile specification defines how the
cross trust realm identity, authentication, and authorization federation
mechanisms defined in WS-Federation, are used by active requestors,
such as SOAP-enabled applications.

– Passive Requester Profile

The WS-Federation Passive Requester Profile specification defines how
the WS-Federation model of cross trust realm identity, authentication, and
authorization federation mechanisms is applied to passive requestors,
such as Web browsers that support the HTTP protocol.

� WS-Security Kerberos Binding

WS-SecurityKerberos describes basic usage patterns that leverages existing
Kerberos security infrastructure and integrates Kerberos security
environments with the Web service security architecture.

� WS-Policy

WS-Policy defines the framework for associating constraints and
requirements expressed as policy assertions with Web Services. It also
defines a base set of assertions that describe how messages are to be
secured.

Business processes
Business process specifications define how operations from a collection of Web
Services from multiple services and organizations participate in the execution of
business processes. The specification include the data shared between the Web
Services, how participants are involved, and the joint exception handling.

� Business Process Execution Language for Web Services (BPEL4WS)

BPEL4WS provides a language for the formal specification of business
processes and business interaction protocols. It extends the Web Services
interaction model to enable support for business transactions.

� Web Services Choreography Description Language (WS-CDL)

The WS-CDL specification is not an "executable business process description
language" or an implementation language like BPEL4WS; it describes
collaboration between participants, regardless of the platform or programming
model.

260 IBM WebSphere and Microsoft .NET Interoperability

Management
Web Services manageability specifies the set of capabilities for discovering the
existence, availability, health, performance, and usage, as well as the control
and configuration of Web Services.

WS-Manageability
WS-Manageability consists of concept, normative specification, and
representations.

� WS-Manageability concept

Provides an overview of Web Services architecture and implications for
manageability and the role of the manager in the Web Services architecture,
manageability implementation patterns, and discovery considerations.

� WS-Manageability specification

Defines manageability model in terms of manageability topics, (identification,
configuration, state, metrics, and relationships) and the aspects (properties,
operations, and events).

� WS-Manageability representations

Defines WSDL interfaces for accessing the manageability model for Web
Services.

7.1.4 Web Services architecture model
The Web Services model and the Web Services specifications provide the
functional building blocks and define the characteristics that form the basis for
the Web Services architecture model:

� Loose coupling

Web Services are modular applications that can be published, located, and
invoked across the Web.

� Self-contained and self-describing

It encapsulates functionality that is exposed through interfaces accessible via
standard Internet communication protocols.

� Language-independent and interoperable

The XML-based interfaces, service description, and protocols enable platform
and language independence and interoperability between services realized
on different underlying infrastructures.

 Chapter 7. Introduction to Web Services Interoperability 261

� Dynamic discovery and binding

Dynamic service discovery and invocation (publish, find, and bind) provide the
just-in-time service discovery framework for distributed scalable system
architecture.

The Web Services architecture model is a realization of Service-Oriented
Architecture (SOA) software design principles. SOA is comprised of interface
definitions loosely coupled to software modules, which represent complete
functions accessible by name via an interface, and the relationship between the
services and the service consumers.

7.2 Overview of Web Services Interoperability
The language and environment-neutral features of Web Services coupled with
the Web Services specifications were designed to enable improved application
interoperability. In practice, however, simply adhering to Web Services
specifications does not ensure seamless interoperability.

The Web Services Interoperability (WS-I) organization, an open industry group
composed of global leading solution providers, was established with the mission
of promoting Web Services interoperability. It delivers resources that enable
consistent Web Services implementation, promotion of Web Services adoption,
and acceleration of Web Services deployment. WS-I deliverable includes
profiles, sample applications, and testing tools that improved interoperability
between Web Services. Figure 7-4 on page 263 gives an overview of the WS-I
deliverables.

262 IBM WebSphere and Microsoft .NET Interoperability

Figure 7-4 WS-I deliverables

7.2.1 Profiles
WS-I profiles are a set named Web Services specifications, that, together with
interoperability implementation guidelines, recommend how the specifications
can be used to attain interoperability across the independently developed Web
Service standards.

Basic Profile
WS-I Basic Profile provides constraints and clarifications to a set of core Web
Services specifications and implementation guidelines recommending how they
should be used together to develop interoperable Web Services.

Scenario andScenario and
SampleSample
applicationsapplications

ProfilesProfiles

Testing toolsTesting tools
And materialsAnd materials

Use casesUse cases
UsageUsage

scenariosscenarios
Sample Sample

applicationsapplications

ProfilesProfiles

TestingTesting
toolstools

Other testOther test
materialsmaterials

 Chapter 7. Introduction to Web Services Interoperability 263

The set of core Web Service specifications include the following:

� SOAP 1.1

� WSDL 1.1

� UDDI 2.0

� XML 1.0 (Second Edition)

� XML Schema Part 1: Structures

� XML Schema Part 2: Data types

� RFC2246: The Transport Layer Security Protocol Version 1.0

� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL Profile

� RFC2616: HyperText Transfer Protocol 1.1

� RFC2818: HTTP over TLS Transport Layer Security

� RFC2965: HTTP State Management Mechanism

� The Secure Sockets Layer Protocol Version 3.0

The following are used in WS-I Basic Profile:

� Messaging: The exchange of protocol elements, usually over a network, to
affect a Web service.

� Description: The enumeration of the messages associated with a Web
service, along with implementation details.

� Discovery: Metadata that enables the advertisement of a Web service's
capabilities.

� Security: Mechanisms that provide integrity and privacy.

Attachments Profile
The WS-I Attachments Profile complements the WS-I Basic Profile by adding
support for interoperable SOAP messages with attachments. Attachments are
typically used to send binary data. SOAP Messages with Attachments (SwA)
define a MIME multipart/related structure for packaging attachments with SOAP
messages.

The WS-I Attachments Profile incorporates the following specifications:

� SOAP Messages with Attachments

� Extensible Markup Language (XML) 1.0

� Namespaces in XML 1.0

� RFC2557: MIME Encapsulation of Aggregate Documents, such as HTML

264 IBM WebSphere and Microsoft .NET Interoperability

� RFC2045: Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies

� RFC2046: Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types

� RFC2392: Content-ID and Message-ID Uniform Resource Locators

The following are used in WS-I Attachments Profile:

� Message: Protocol elements that transport the envelope.

� Envelope: The serialization of the soap:Envelope element and its content.

� Description: Descriptions of types, messages, interfaces, and their concrete
protocol and data format bindings, and the network access points associated
with Web Services.

� Instance: Software that implements a wsdl:port or a uddi:bindingTemplate.

� Consumer: Software that invokes an instance.

� Sender: Software that generates a message according to the protocol(s)
associated with it.

� Receiver: Software that consumes a message according to the protocol(s)
associated with it.

Simple SOAP Binding Profile
The WS-I Simple SOAP Binding Profile provides clarifications to and
amplifications of Web Services specifications that promote interoperability.

This Profile incorporates the following specifications:

� Simple Object Access Protocol (SOAP) 1.1
� Extensible Markup Language (XML) 1.0 (Second Edition)
� Namespaces in XML 1.0
� RFC2616: Hypertext Transfer Protocol -- HTTP/1.1

The following are used in a WS-I Simple SOAP Binding Profile:

� Envelope: The serialization of the soap:Envelope element and its content.

� Message: Protocol elements that transport the envelope.

� Description: Descriptions of types, messages, interfaces, and their concrete
protocol and data format bindings, and the network access points associated
with Web Services.

� Instance: Software that implements a wsdl:port or a uddi:bindingTemplate.

� Receiver: Software that consumes a message according to the protocol(s)
associated with it.

 Chapter 7. Introduction to Web Services Interoperability 265

7.2.2 Sample applications
WS-I delivers Web Services sample applications that implement WS-I profiles
compliant applications. The sample applications that are developed using
multiple platforms, languages, and programming tools demonstrate
interoperability and are usable resources for developers looking for reusable
working examples that follow the WS-I guidelines.

A high level definition of the applications are modeled using WS-I Use Cases.
The use cases in turn employ WS-I Scenarios to define Web Services structured
interactions. In designing the sample applications, WS-I defined scenarios with
three basic Web Services interaction patterns that conform to the Basic Profiles:

� One-way

The Web Service Consumer sends a request message to the Provider. The
Provider processes the message, but does not return a response message
and the Consumer does not expect a response.

� Synchronous request/response

The Consumer sends a request message to the Provider. The Provider
receives the message, processes it, and sends back a response message
back to the Consumer.

� Basic Callback

The Basic Callback scenario is a form of asynchronous message exchange
for Web Services. It consists of a pair of synchronous request/response
interactions. The description of the callback service is defined and published
by the Provider. The Consumer implements the callback service and provides
the endpoint information to the Provider.

The callback scenario is initiated by the Consumer at runtime through a
request in the first of two request/response sequences. The Provider receives
the request and sends back an acknowledgement immediately. Subsequently,
the Provider initiates the callback request/response to the Consumer with the
response data for the initial request sent by the Consumer.

Note: A number of the WS-I profiles have yet to attain a finalized version.
The following are currently released as draft versions:

� Basic Security Profile
� Kerberos Token Profile
� REL Token Profile
� SAML Token Profile

266 IBM WebSphere and Microsoft .NET Interoperability

7.2.3 Testing tools
The testing tools are resources made available to developers to ensure that the
messages exchanged by their Web Services implementations conform to WS-I
guidelines. Messages flowing between Web Services are monitored and
analyzed with the goal of uncovering unconventional usage or errors in
specification implementations. The output is a log identifying known
interoperability issues.

Note: WS-I has delivered tests to verify conformance with the Basic Profile
1.0; tests for the other WS-I profiles are expected to follow.

 Chapter 7. Introduction to Web Services Interoperability 267

268 IBM WebSphere and Microsoft .NET Interoperability

Chapter 8. Designing Web Services
interoperability

In this chapter, we introduce the key elements for realizing Web Services
interoperability. We identify the activities for defining and invoking Web Services,
and the constraints that are designed to make Web Services more interoperable.

This chapter contains the following:

� Elements of Web Services interoperability
� Web Services description
� Web Services invocation
� Web Services constraints
� WS-Security support

8

© Copyright IBM Corp. 2006. All rights reserved. 269

8.1 Elements of Web Services interoperability
We introduced the key elements for realizing application interoperability in 1.4,
“Elements of interoperability” on page 27. Designing Web Services
interoperability has associated activities and constraints that correspond to the
key elements. In this section, we identify the Web Services activities and
introduce WS-I Profiles as constraints that ensure interoperability.

8.1.1 Web Services activities
There are two basic types of Web Services activities: description activities, which
are activities you undertake to define Web Services, and invocation activities,
which are activities associated with the flow in the invocation of a Web Service
from the calling endpoint to the called endpoint.

Description activities
Web Services definitions make use of Web Services Definition Language
(WSDL) to define Web Service endpoints, which includes abstract definitions
(operations and messages) and concrete definition (network protocol and
message formats). The description stack consist of the following:

� Types

XML Schema language definition of the base data types.

� Message

Definition of the data being transmitted or received. Each message is a
named collection of message parts, where each part consists of a name and
a type.

� Port type

Port types are a named collection of related operations, where operations are
defined as the signature, inputs, outputs, and fault messages.

� Binding

This is the association of the protocol for message communication with the
port type, its operations, and its messages.

� Port

Port definitions associate network address to port types.

� Service

Service is the process by which related ports are given names that relate to
the functions that they provide.

270 IBM WebSphere and Microsoft .NET Interoperability

Figure 8-1 on page 271 gives an overview of the Web Services description
stack.

Figure 8-1 Web Services description stack

You do not have to worry about creating these descriptions by hand, both
WebSphere and .NET IDEs eliminate a large amount of coding and make use of
wizards to automate these tasks, including the generation of Java and C# stubs.

Invocation activities
Associated with the four layers of the application interoperability stack are Web
Services invocation activities. The activities identify specific Web Services
interoperability functions in the flow from the calling endpoint to the called
endpoint:

� Application layer

The application layer is where your application interfaces with the Web
Service. Your Java or C# code invokes the Web Service passing data, as
defined in operations signature.

� Data layer

The writing and processing of XML data messages that are exchanged are
defined in the data layer.

OperationOperation

OperationOperation Port typePort type
Port & Port &

Network Network
AddressAddress

BindingBinding

DefinitionsDefinitions OperationsOperations Service bindingsService bindings

Data type definitionData type definition

Message definitionMessage definition

Data type definitionData type definition

Message definitionMessage definition

Data type definitionData type definition

Message definitionMessage definition

OperationOperation

 Chapter 8. Designing Web Services interoperability 271

� Control layer

The binding to SOAP protocol and the definition of the syntactic and semantic
processing of outgoing and incoming SOAP messages.

� Transport layer

Definition of the underlying protocol for sending and receiving messages.

Figure 8-2 gives an overview of Web Services invocation activities.

Figure 8-2 Web Services invocation activities

8.1.2 Web Services constraints
The WS-I Basic Profile provides constraints for each of the description and
invocation activities. Compliance to these constraints goes a long way in
ensuring that your Web Services solutions attains the best interoperability.

Send HTTP

A
pp

lic
at

io
n

La
ye

r • Send request
D

at
a

La
ye

r • Create XML
payload

• Write XML

• Write
- SOAP envelope
- SOAP body

C
on

tr
ol

La
ye

r
Tr

an
sp

or
t

La
ye

r Receive HTTP

• Process request
• Send response

• Process XML data
• Dispatch to

application

Sending endpoint Receiving endpoint

Message

SOAP

XML

Operation

HTTP

• Process
- SOAP envelope
- SOAP body

272 IBM WebSphere and Microsoft .NET Interoperability

8.2 Web Services description
A Web Services description is basically how you define the interoperable
interface of any new application you are developing (or have developed, for that
matter). You have two approaches for creating the description. One, you start
with an existing application, an EJB or a COM+ object, for example, and using
Rational Application Developer for WebSphere Software or Visual Studio .NET,
you generate the WSDL file that matches the interfaces in your Java or C#
application. The second approach is where you start with the WSDL definition
and have the development tool (Rational Application Developer for WebSphere
Software or Visual Studio .NET) generate the Java or C# application that
corresponds to the definitions in the WSDL file.

From a programming perspective, the application to WSDL generation approach
is obviously easier, since you do not have to deal with WSDL details. However,
the generated WSDL file may include platform specific constructs and behaviors
that are counter to interoperability. With the WSDL to application approach, by
defining the data and behavior interface first, you stand to achieve better
interoperability, since the generated applications conform to a common interface.

As the starting point for all interactions with the Web Services, the WSDL
interface has a number of responsibilities that call for careful considerations.
They include the following:

� State management

With the expectation of many clients concurrently accessing the Web
Services, you have to consider how to manage state information and support
multithreaded access and transaction processing.

� Granularity of Service

You have to consider the functionality of the methods and strive to achieve a
balance between flexibility from fine-grained method interfaces and the
efficiency of coarse-grained interfaces. Fine-grained interfaces are quite
flexible, but can be chatty, resulting in network overhead and reduced
performance. Coarse-grained interfaces, while more efficient, require careful
consideration to ensure that logical operations are grouped together.

Note: The WS-I Security Profiles provides the security constraints; however, it
is still in the draft stage.

Tip: Design the XSD and WSDL for your Web Service first and then create the
interoperable applications against the schema and interface.

 Chapter 8. Designing Web Services interoperability 273

� Parameter types

Data types are a major source of interoperability issues. Careful consideration
should therefore be given to data types for the parameters of the methods
exposed in the Web Services.

� Interactions

You should consider the type of processing associated with each exposed
method. If a request can be processed in a short period of time, you should
consider making the interface synchronous where the requester blocks until
the request is serviced. If, on the other hand, the processing will take a
considerable amount of time, it may be best not to block the requester, but
rather to process the request asynchronously.

Type definition
Types are one the key elements of Web Services. They contain data type
definitions that describe the messages exchanged in Web Services. Types are
specified using the XML Schema definition (XSD), which is the WSDL preferred
canonical type system for maximum interoperability and platform neutrality.

A lot of Web Services interoperability issues are centered around what data
types are exposed and passed as parameters. The sample type definition in
Example 8-1 shows definitions for two types: “registerClaimResponse”, which
defined a data type “registerClaimReturn”, and “findCustomer”, with two data
types, “customerID” and “policyID”. Types like the ones in Example 8-1 do not
pose problems when it comes to interoperability. They map easily to XSD types
and to the native data types in WebSphere and .NET.

Example 8-1 Sample type definition

...
<element name="registerClaimResponse">
 <complexType>
 <sequence>
 <element name="registerClaimReturn" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

 <element name="findCustomer">
 <complexType>
 <sequence>
 <element name="customerID" nillable="true" type="xsd:string"/>
 <element name="policyID" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 </element>

274 IBM WebSphere and Microsoft .NET Interoperability

...

Other type related issued, such as the native interpretation of certain data types,
do impact interoperability. One of the key problems with data types is a result of
underlaying implementation differences in WebSphere and .NET. These
differences manifest in mappings between XSD and native types, hence data
sent from one platform is not accurately interpreted on the receiving side. For
example, in Java, all arrays, classes, and interfaces are reference type, hence,
java.util.Date and java.util.Calendar classes are reference types. However, in
.NET, System.DateTime is considered a value type.

There are a number of known aspects of type definition that do impact
interoperability. In this section, we identify them and present practical guidelines
and best practices that improve interoperability.

Type mismatch
There are some type mismatches in Java and .NET. These mismatches are often
sources of interoperability issues when exposed across Web Services. Here are
a few that you should pay close attention to:

� Collections

Both Java and .NET support a rich library of collection types. In Java, for
example, there are:

– java.util.Hashtable

– Vectors

– Hashmap

– Set

– ArrayList

And in .NET there are:

– System.Collections.Hashtable

– SortedLists

– Queue

– Stack

– ArrayList

Although these collections appear to be similar between Java and .NET, when
exposed across Web Services, however, they are sources of interoperability
issues. The problem lies in the interpretation of the XML schema at the
receiving end. Weak typing of collections objects leads to inaccuracies in the
interpretation and mapping of the types to native data types. You can make

 Chapter 8. Designing Web Services interoperability 275

collections more interoperable by wrapping any weakly types collection
objects with simple arrays of concrete types.

� Unavailable types

XSD offers a wide range of types for mapping to and from native types as you
construct WSDL definitions. One-to-one mapping is not always possible
between native types and XSD types, and between native types. .NET, for
example, has unsigned integral (byte, ushort, uint, and ulong) and decimal
types that do not exist in Java.

Although XSD provides support for unsigned types, such as xsd:unsignedInt,
xsd:unsignedLong, xsd:unsignedShort, and xsd:unsignedByte, for the state of
interoperability, it is advisable not to expose these numerical data types in the
Web Service methods.

You should consider wrapping any methods that expose these numerical
types and use xsd:string (using System.Convert.ToString in C#) to transmit
the values.

� Precision

Higher precision beyond the result type is possible on each platform, so loss
of precision might occur between platforms. You should test xsd:decimal,
xsd:double, and xsd:float types in your interoperable solution for loss of
precision.

� Value/reference type

The Java language has two kinds of types: primitive types and reference
types. The .NET type system includes value, reference, and pointer types.
The corresponding value types can be assigned to variables, passed as
parameters, and returned by methods. Interoperability failure can occur if a
value type for one language is mapped to a reference type in the other
language. For example, the xsd:dateTime is mapped to System.DateTime,
which is a value type in .NET, while java.util.Date and java.util.Calendar are
reference types. You can assign a null value to reference types when it is not
referencing any object. .NET Web Services will throw a
System.FormatException if it receives a null value for a value type. The way
to avoid this problem is to define a complex type that wraps the value type.
You can then set the complex type to be null to indicate a null reference.

Note: For more information on designing for type mismatch interoperability,
see Web Services programming tips and tricks: Improve the interoperability
between J2EE and .NET, Part 2 at:

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-j2eenet2
.html

276 IBM WebSphere and Microsoft .NET Interoperability

http://www-128.ibm.com/developerworks/webservices/library/ws-tip-j2eenet2.html
http://www-128.ibm.com/developerworks/webservices/library/ws-tip-j2eenet2.html

Note: WSDL files that are created or imported into Rational Application
Developer for WebSphere Software, can be validated against the W3C Web
Services Description Language (WSDL) V1.1 specifications and against the
WS-I profiles. WSDLs generated by Rational Application Developer for
WebSphere Software are valid but are not necessarily WS-I compliant.
Compliance to WS-I profiles depend on your selections, for example, selecting
RPC/encoded or SOAP over JMS bindings will generate a non-compliant
WSDL.

Attention: When you have a WebSphere client calling Web Services in .NET,
there are namespace related issues that you should be aware of.

� ASMX namespace

IBM Rational Application Developer for WebSphere Software maps the
domain portion of the ASMX Web Services namespace into its package
name. To avoid duplication, make sure that the domain portion of the
namespace is unique. For example, with two Web Services with the same
name but created in the namespaces
http://itso.ral.ibm.com/services/claims and
http://itso.ral.ibm.com/services/registration, proxy files in the package
com.ibm.ral.itso will be generated. The duplication will result in the loss of
the second file. Using http://claims.itso.ral.ibm.com/services and
http://registration.itso.ral.ibm.com/services instead will create packages
named com.ibm.ral.itso.claims and com.ibm.ral.itso.registration.

Alternatively, giving unique names to all ASMX files will create uniquely
named service proxy files, but a single shared package named
com.ibm.ral.itso.

� Array types

If two .NET Web Services, such as Registration and Claims above, share
Customer schema, and if an array of Customers is passed as a parameter,
IBM Rational Application Developer for WebSphere Software puts a
generated client proxy into the shared package, but binds the class to the
first namespace of the Web Service as a result, so the proxy class
generated for the second Web Service is incorrect.

For more information, refer to:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/
WSInteropRecsIBM-final.asp

 Chapter 8. Designing Web Services interoperability 277

8.3 Web Services invocation
WSDL supports SOAP, HTTP, and MIME transport bindings. Other bindings,
such as EJB, JMS, and plain Java, are available as well. However, the use of
SOAP/HTTP binding is a WS-I Basic Profile key constraint.

WSDL binding for SOAP 1.1 endpoints supports the specification of the following
protocol-specific information:

� An indication that a binding is bound to the SOAP 1.1 protocol

� A way of specifying an address for a SOAP endpoint

� The URI for the SOAPAction HTTP header for the HTTP binding of SOAP

� A list of definitions for headers that are transmitted as part of the SOAP
envelope

Table 8-1 lists the corresponding elements.

Table 8-1 SOAP elements in WSDL

Extension and attributes Explanation

<soap:binding ...> Binding level; specifies defaults for all operations.

 transport="uri"
(0 or 1)

Binding level; transport is the runtime transport
protocol used by SOAP (HTTP, SMTP, and so on).

style="rpc|document"
(0 or 1)

The style is one of the two SOAP communication
styles, rpc or document.

<soap:operation ... > Extends operation definition.

soapAction="uri"
(0 or 1)

URN.

style="rpc|document"
(0 or 1)

See binding level.

<soap:body ... > Extends operation definition; specifies how
message parts appear inside the SOAP body.

278 IBM WebSphere and Microsoft .NET Interoperability

SOAP encoding
Encodings define how data values can be translated to and from a protocol
format. We refer to these translation steps as serialization and deserialization,
or, synonymously, marshalling and unmarshalling.

SOAP encodings tell you how to translate from data structures constructed in a
specific programming language into SOAP XML and vice versa.

The following encodings are defined:

� SOAP encoding

SOAP encoding enables marshalling/unmarshalling of values of data types
from the SOAP data model. This encoding is defined in the SOAP 1.1
standard.

� Literal

The literal encoding is a simple XML message that does not carry encoding
information. Usually, an XML Schema describes the format and data types of
the XML message.

parts="nmtokens" Optional; allows externalizing message parts.

use="encoded|literal" encoded: Messages reference abstract WSDL type
elements; encodingStyle extension used.
literal: Messages reference concrete XSD (no
WSDL type); usage of encodingStyle is optional.

encodingStyle=
"uri-list"(0 or 1)

List of supported message encoding styles.

namespace="uri"
(0 or 1)

URN of the service.

<soap:fault ... > Extends operation definition; contents of fault
details element.

name="nmtoken" Relates soap:fault to wsdl:fault for operation.

use, encodingStyle,
namespace

See soap:body.

<soap:address ... > Extends port definition.

location="uri" Network address of RPC router.

<soap:header ... > Operation level; shaped after <soap:body ...>.

<soap:headerfault ... > Operation level; shaped after <soap:body ...>.

Extension and attributes Explanation

 Chapter 8. Designing Web Services interoperability 279

� Literal XML

The literal XML encoding enables direct conversion of existing XML DOM
tree elements into SOAP message content and vice versa. This encoding
style is not defined by the SOAP standard, but is in the Apache SOAP 2.3
implementation. This encoding is not used in newer SOAP engines.

� XMI

XML metadata interchange (XMI) is defined by the Apache SOAP
implementation. We do not use this encoding in this redbook.

Messaging modes
The two styles (RPC, document) and two most common encodings (encoded,
literal) can be freely intermixed for the so called SOAP messaging mode.
Although SOAP supports four modes, only three of the four modes are generally
used, and further, only two are recommended by the WS-I Basic Profile.

� Document/literal

Provides the best interoperability between Java and non-Java
implementations, and is also recommended for Java-to-Java applications.

� RPC/literal

Possible choice between Java implementations. Although RPC/literal is WS-I
compliant, it is not frequently used in practice. There are a number of usability
issues associated with RPC/literal, including, but not limited to, the mapping
of Java arrays to RPC/literal WSDL.

� RPC/encoded

Early Java implementations (WebSphere Application Server Versions 4 and
5.0) supported this combination, but it does not provide interoperability with
non-Java implementations.

� Document/encoded

Not used in practice.

Although the WS-I Basic Profile V1.0 requirement allows for both
document/literal and RPC/literal bindings, .NET does not provide explicit support
for consuming a Web service that uses an RPC/literal binding.

Note: Because the WS-I Basic Profile recommends use of literal binding, only
document/literal or RPC/literal should be used for WS-I conformance. The
SOAP encoding is not recommended by the WS-I Basic Profile, mainly
because of complexity and interoperability problems.

280 IBM WebSphere and Microsoft .NET Interoperability

You can convert WSDLs from RPC/literal to document/literal. For more
information, see the Microsoft article "RPC/Literal and Freedom of Choice" at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/
rpc_literal.asp

Tools are also available for converting RPC/literal WSDL files to wrapped
document/literal at:

http://www.gotdotnet.com/team/tools/web_svc/default.aspx

8.4 Web Services constraints
WS-I created Profiles to solve a number of interoperability problems starting with
the numerous interrelated Web Services specifications. It identifies the list of
applicable Web Services standards (including the version numbers) that are
used to specify rules for interoperability implementation guidelines. The rules
define both strong (such as MUST, and MUST NOT) and conditional (such as
SHOULD, and SHOULD NOT) interoperability requirements.

8.4.1 WS-I Basic Profile V1.1
The WS-I Basic Profile has been split into two separate profiles as of V1.1:
conformance to WS-I Basic Profile V1.1 plus conformance to the Simple SOAP
Binding Profile V1.0. The two profiles are roughly equivalent to a combined
conformance claim of WS-I Basic Profile V1.0 plus the published errata.

Some of the key constraints include:

� Precludes the use of SOAP encoding (document/literal or RPC/literal must be
used)

� Requires the use of SOAP/HTTP binding

� Requires the use of HTTP 500 status response for SOAP fault messages

� Requires the use of HTTP POST method

� Requires the use of WSDL V1.1 to describe the interface

� Precludes the use of solicit-response and notification-style operations

Important: There are restrictions when converting RPC/literal WSDL to
wrapped document/literal—it is not possible to support operation overloading.
Wrapped document/literal requires the element name to be the same as the
operation name. Because the type information of the arguments is not
available in a SOAP document/literal message, the Web service provider must
use a unique element name to map the message to an implementation.

 Chapter 8. Designing Web Services interoperability 281

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnwebsrv/html/rpc_literal.asp
http://www.gotdotnet.com/team/tools/web_svc/default.aspx

� Requires the use of WSDL V1.1 descriptions for UDDI tModel elements
representing a Web service

8.4.2 WS-I Attachments Profile V1.0
The WS-I Attachments Profile V1.0 specifies guidelines for interoperability of
Web service messages that contain attachments. Specifically, the Attachments
Profile guides the use of SOAP messages that contain attachments using the
SOAP Messages with Attachments (SwA) specification. The SOAP Messages
with Attachments specification is a W3C Note.

In general, the Java industry has adopted the SOAP Messages with Attachments
(SwA) specification. The SOAP with Attachments API for Java (SAAJ) API
models the MIME message format for SOAP, as specified by SwA.

SwA is not without its problems, however. The SwA solution breaks the Web
Services model to a certain extent. Among other issues, SwA does not work with
WS-Security at this time. Because of this fundamental problem with SwA, W3C is
moving in the direction of Message Transmission Optimization Mechanism
(MTOM).

Note: The WS-I Basic Profile V1.1 incorporates the following specifications:

� Simple Object Access Protocol (SOAP) 1.1

� RFC2616: Hypertext Transfer Protocol -- HTTP/1.1

� RFC2965: HTTP State Management Mechanism

� Extensible Markup Language (XML) 1.0 (Second Edition)

� Namespaces in XML 1.0

� XML Schema Part 1: Structures

� XML Schema Part 2: Datatypes

� Web Services Description Language (WSDL) 1.1

� UDDI Version 2.04 API Specification, Dated 19 July 2002

� UDDI Version 2.03 Data Structure Reference, Dated 19 July 2002

� UDDI Version 2 XML Schema

� RFC2818: HTTP Over TLS

� RFC2246: The TLS Protocol Version 1.0

� The SSL Protocol Version 3.0

� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL
Profile

282 IBM WebSphere and Microsoft .NET Interoperability

Another fundamental problem for interoperability with .NET is that Microsoft
icurrently has not announced a plan to support SwA (and therefore the WS-I
Attachments Profile V1.0). For a detailed discussion of possible implementations
for passing attachments to or from Microsoft platforms, refer to the article Web
Services, Opaque Data, and the Attachments Problem, available at:

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnwebsrv
/html/opaquedata.asp

8.4.3 WS-I Support
Table 8-2 provides a quick reference to the Web service runtimes and features
relevant to Web Services for each of the major WebSphere Application Server
releases.

Table 8-2 WebSphere Application Server Web service support

WebSphere
Application
Server

Web Services runtime Web Services features

Version 4.0
Version 5.0

IBM SOAP
(based on Apache SOAP)

Not WS-I compliant

Version 5.0.2
Version 5.1

IBM WebSphere
Apache Axis V1.0
IBM SOAP

WS-I Basic Profile V1.0
JAX-RPC V1.0
JSR109 V1.0
SAAJ V1.1
UDDI V2.0
WS-Security (OASIS Draft 13)
SOAP/JMS support
Web Services caching
Web Services performance
monitoring

Version 6.0 IBM WebSphere
Apache Axis V1.0
IBM SOAP (deprecated)

WS-I Basic Profile V1.1
JAX-RPC V1.1
JSR109 V1.1
SAAJ V1.2
UDDI V3.0
WS-Security V1.0
WS-AtomicTransactions
WS-Coordination
JAXR support
Multiple protocol/encodings

(SOAP/JMS, EJB)
Web Services caching
Web Services performance
monitoring

 Chapter 8. Designing Web Services interoperability 283

http://msdn.microsoft.com/webservices/default.aspx?pull=/library/en-us/dnwebsrv/html/opaquedata.asp

In general, Web Services implemented in WebSphere Application Server are
interoperable with each other, with the following exceptions: Web Services
implemented using the IBM SOAP engine are not WS-I compliant and, therefore,
are unlikely to interoperate.

Web Services that implement WS-Security will not interoperate between
WebSphere Application Server Versions 5.0.2/5.1 and Version 6, because the
former implements a draft version of the specification that is not message-level
compatible with WS-Security V1.0. Refer to 8.5, “WS-Security support” on
page 291 for more information.

IBM Rational Application Developer for WebSphere Software can be configured
to require, suggest (or warn about non-compliance), or ignore compliance to the
WS-I Basic Profile V1.1, Simple Soap Binding Profile (SSBP) V1.0, and WS-I
Attachments Profile (AP) V1.0. Figure 8-3 shows the preference at the
workspace level.

Figure 8-3 WS-I compliance levels preferences

These preferences determine the behavior of the WS-I validation tools built into
Rational Application Developer for WebSphere Software:

� Require: The tool does not allow generating a non-compliant Web service.

� Suggest: The tool warns when generating a non-compliant Web service, but
allows the user to progress.

� Ignore: The tool does not warn when generating a non-compliant Web
service.

284 IBM WebSphere and Microsoft .NET Interoperability

These settings can also be specified at the individual project level by
right-clicking a project and selecting Properties. The project settings override the
workspace settings. The default for project settings is Follow Preference (that is,
follow the workspace settings).

When you use the Add New Project wizard of the Visual Studio.NET to generate
a new ASP.NET Web service project, the ASMX page that is created is the
starting point for creating a Web service that complies with the Basic Profile.
Details of .NET compliance to WS-I Basic Profile is available from Building
Interoperable Web Services: WS-I Basic Profile 1.0, found at:

http://www.microsoft.com/products/info/product.aspx?view=22&pcid=e95ee5d8-fb4a-
4cee-8d2e-c71746c939f1&crumb=catpage&catid=7dd90809-6d4d-47f4-9d13-e3df27ac09ba

8.4.4 Web Services description constraints
In this section, we identify the Basic Profile rules that apply to Web Services
description activities. The full text for each of the rules can be found at the
following URL:

http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html#references

� General WSDL constraints (Table 8-3)

These constraints are general in nature and apply to all WSDLs.

Table 8-3 General WSDL constraints

General WSDL constraints

Description of an Instance R0001

Importing documents into WSDL R2001, R2002, R2003, R2004, R2005,
R2007, R2008, R2009, R2010, and
R2011

Constraints on the overall structure of
WSDL

R2020, R2021, R2022, R2023, R2024,
R2025, R2026, R2027, R2028, R4002,
R4003, and R4004

WSDL Extensions R2747 and R2748

 Chapter 8. Designing Web Services interoperability 285

http://www.microsoft.com/products/info/product.aspx?view=22&pcid=e95ee5d8-fb4a-4cee-8d2e-c71746c939f1&crumb=catpage&catid=7dd90809-6d4d-47f4-9d13-e3df27ac09ba

� Constraints on WSDL types (Table 8-4)

The WSDL type constraints apply to XML schema usage and type definitions.

Table 8-4 Constraints on WSDL types

� Constraints on WSDL messages (Table 8-5)

Provide the constraints on parts and messages.

Table 8-5 Constraints on WSDL messages

� Constraints on WSDL portTypes (Table 8-6)

These constraints apply to operations and on the wire messages.

Table 8-6 Constraints on WSDL portTypes

Constraints on WSDL types

Constraint on use of QNames R2101 and R2102

Constraint on declaration of array types R2110, R2111, R2112, and R2113

Usage of XML Schema R2105, R2114, R2800, and R2801

Constraints on WSDL messages

Constraints relating to bindings and parts R2201, R2202, R2203, R2204, R2206,
R2207, R2208, and R2210

Constraints on portType R2209

Constraints on WSDL portTypes

Wire representation of the message R2301, R2302, R2305, R2306, R2710,
and R2712

Constraints on operations R2303 and R2304

286 IBM WebSphere and Microsoft .NET Interoperability

� Constraints on WSDL Bindings (Table 8-7)

The bindings constraints range from the structure and transport constraints to
SOAP use, and namespace constraints.

Table 8-7 Constraints on WSDL Bindings

� Constraints on WSDL Port (Table 8-8)

Provide the constraints on allowed bindings.

Table 8-8 Constraints on WSDL Port

Web Services invocation constraints
This section provides the mapping of the Basic Profile rules as constraints for the
designated Web Services invocation activities.

Constraints on WSDL Bindings

Structure R2029

Allowed bindings R2401 and R2700

Transport constraints R2701 and R2702

Constraints on soap:style R2705

Constraints on soap:use R2706 and R2707

Relationship to portTypes R2709, and R2718

Using SOAPAction R2713

Using soap:namespace attribute R2716, R2717, and R2726

Faults and header constraints R2719, R2720, R2721, R2722, R2723,
R2740, R2741, and R2749

Constraints on WSDL Port

Allowed bindings R2711

 Chapter 8. Designing Web Services interoperability 287

� Write XML (Table 8-9)

These constraints apply to the XML representation of SOAP messages that
are exchanged in Web Services interaction.

Table 8-9 Write XML

� Process XML (Table 8-10)

These constraints apply to the processing of the types and formats in
application level messages that are exchanged in Web Services interactions.

Table 8-10 Process XML

� Write SOAP Envelope (Table 8-11)

The following constraints apply to the structure of the SOAP envelope.

Table 8-11 Write SOAP Envelope

� Process SOAP Envelope (Table 8-12)

The process SOAP envelope constraints cover requirements for action and
the result of that action.

Table 8-12 Process SOAP Envelope

Write XML

XML Representation of SOAP Messages R4001, R1008, R1009, R1010, R1012,
and R1013

Process XML

XML Representation of SOAP Messages R4001, R1008, R1009, R1010, R1012,
R1013, R1015, and R1017

Write SOAP Envelope

Envelope structure R1011 and R2714

Process SOAP Envelope

Envelope requirements R1011, R1015, R1028, and R2714

288 IBM WebSphere and Microsoft .NET Interoperability

� Write SOAP Body (Table 8-13)

The following constraints apply to the creation of SOAP messages.

Table 8-13 Write SOAP Body

� Process SOAP Body (Table 8-14)

These constraints cover requirements for action and the result of that action.

Table 8-14 Process SOAP Body

� Write SOAP Header (Table 8-15)

The constraints on writing SOAP header include the structure of the header
blocks, the XML representation of SOAP messages, and the processing
model and use of HTTP.

Table 8-15 Write SOAP Header

Write SOAP Body

XML Representation of SOAP Messages R1005, R1006, R1007, R1011, R1014,
R2735, and R2737

The SOAP Processing Model R1025, R1029, and R1030

RPC messages R2729

Process SOAP Body

XML Representation of SOAP Messages R1005, R1006, R1007, R1014, R1017,
R1028, R1029, and R1030

Write SOAP Header

XML Representation of SOAP Messages R4001, R1005, R1008, R1009, R1010,
R1012, and R1013

The SOAP Processing Model R1027

Using SOAP in HTTP R1109

Header blocks R2738, R2739, R2751, R2752, and
R2753

 Chapter 8. Designing Web Services interoperability 289

� Process SOAP Header (Table 8-16)

Table 8-16 Process SOAP Header

� Send HTTP (Table 8-17)

Table 8-17 Send HTTP

� Receive HTTP (Table 8-18)

Table 8-18 Receive HTTP

Process SOAP Header

XML Representation of SOAP Messages R1012, R1005, R1008, R1009, R1010,
R1012, R1013, R1015, and R1017

The SOAP Processing Model R1025, R1026, R1027, R1028, R1029,
and R1030

Send HTTP

General R1108, R1140, R1141, and R1132

Status code R1106, R1107, R1111, R1112, R1113,
R1114, R1115, R1116, R1124, R1125,
R1126, and R1130

SOAPAction Header R1109, R2713, R2744, and R2745

Cookies R1120, R1121, R1122, and R1123

Receive HTTP

General R1110, R1140, R2746

Status code R1107, R1111, R1112, R1113, R1114,
R1115, R1116, R1124, R1125, R1126,
R1130, R1131

SOAPAction Header R1119

Cookies R1120, R1121, R1122, R1123

290 IBM WebSphere and Microsoft .NET Interoperability

8.5 WS-Security support
Both IBM WebSphere Application Server V6.0 and Microsoft Web Service
Extensions (WSE) V2.0 implement the finalized OASIS WS-Security V1.0
standard and will interoperate.

The WS-Security V1.0 wire format has changed over time and is not compatible
with previous WS-Security drafts. Also, interoperability between implementations
based on previous drafts and V1.0 is not possible.

WebSphere Application Server V5.0.2 and V5.1 are based on the April 2002
draft specification of WS-Security. Microsoft WSE V1.0 is also based on a draft
specification. Patches are available for WebSphere Application Server V5.x to
interoperate between the two.

WebSphere Application Server V6.0 and Microsoft WSE V2.0 both support the
approved WS-Security V1.0 standard and can interoperate. Due to the wire
format difference, WS-Security V1.0 implementations will not interoperate with
draft WS-Security implementations.

Information about the IBM WebSphere Application Server V6.0 support of
WS-Security V1.0 is available in the redbook WebSphere Version 6 Web
Services Handbook Development and Deployment, SG24-6461, found at:

http://www.redbooks.ibm.com/abstracts/sg246461.html?Open

 Chapter 8. Designing Web Services interoperability 291

http://www.redbooks.ibm.com/abstracts/sg246461.html?Open

292 IBM WebSphere and Microsoft .NET Interoperability

Chapter 9. Web Services
interoperability scenario

In this chapter, we introduce a Web Services interoperability scenario. It
demonstrates a typical usage requirement for interoperability between IBM
WebSphere and Microsoft .NET platforms.

The scenario implements Web Services interoperability between WebSphere
and .NET using a common client application. It also demonstrates techniques
and best practices for securing Web Services interoperability.

This chapter contains the following sections:

� Introduction to the claims processing scenario
� Building the WebSphere Claims Web Service
� Building the .NET Claims Web Service
� The client application

9

© Copyright IBM Corp. 2006. All rights reserved. 293

9.1 Introduction to the claims processing scenario
Consider the scenario where Lord General Insurance (LGI), a full service
insurance company, acquired DirectCarInsure.com (DCI), a modern digital
enterprise, which offers automobile insurance service exclusively through Web
based e-commerce transactions. To provide a single system view to its
customers, LGI is implementing a front-end application that makes use of
existing business logic and processes from both companies to provide a
seamless user experience.

LGI markets insurance products that it supports through its insurance agents and
a call center. Its information system runs on the IBM WebSphere platform. DCI
developed a Microsoft .NET solution to provide Web-based, direct automobile
insurance services to its customers. The merger of the two companies will
increase revenues and provide multiple channels and product offerings to the
combined customer base.

This scenario is loosely based on materials originally published on
developerWorks® as “Merging disparate IT systems. Build a single integrated
view for users quickly and with minimal disruption”, which is available at:

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html

Some of the materials used are derived from materials included with WebSphere
and .Net Interoperability Using Web Services, SG24-6395. This redbook is
available at:

http://www.redbooks.ibm.com/abstracts/sg246395.html?Open

A major consideration in architecting the solution is the goal of showing rapid
return on the investment by integrating the two systems as quickly as possible
and keeping changes to existing systems and development environments to a
minimum. The insurance applications developed and hosted in each company
need to be integrated to support the Web based and the full service agent
channels using a common service bus.

The integrated application relies on two Web Services: CustomerLookup, and
ClaimRegistration. It makes use of a Servlet based user interface, a .NET
implementation of ClaimRegistration, and a WebSphere implementation of
CustomerLookup.

In addition to integrating the two systems, LGI’s requirements include exposing a
stable development and runtime service interface to business partners for
integrating with their automated claims assessor process.

294 IBM WebSphere and Microsoft .NET Interoperability

http://www-106.ibm.com/developerworks/ibm/library/i-merge.html
http://www.redbooks.ibm.com/abstracts/sg246395.html?Open

Use of Web Services
In this sample scenario, we show how to use Web Services technologies to meet
the interoperability requirements by building Web Service interfaces using
Rational Application Developer and Microsoft Studio .NET.

9.2 Building the WebSphere Claims Web Service
In order to create the CustomerLookup Web Service that wraps LGI’s existing
business logic and make it available to the front-end application, we have to
perform the following:

� Create the Web Services for LGI’s Register Claim application from existing
Enterprise JavaBeans, which implement the business logic.

� Test the Web Services using the IBM Rational Application Developer Web
Services Explorer.

� Deploy the Web Services in the WebSphere Application Server.

9.2.1 Configure the Development Environment
We make use of Rational Application Developer for the code development. In
order to see the menus described in this section, you must enable the Web
Services developer capability in the workbench:

1. Launch Rational Application Developer. If this is the first use of a new
workspace, close the Welcome window to show the workbench.

2. Select Window → Preferences.

3. Expand Workbench and select Capabilities.

4. On the right, expand Web Service Developer and check the box by Web
Service Development. Click OK.

Note: Web Services is not the only method for achieving interoperability. As
discussed in Part 2, “Component interoperability” on page 147, component
level interoperability can also be used. Our objective with this scenario is to
show in detail how you can use Web Services to implement an interoperability
solution.

 Chapter 9. Web Services interoperability scenario 295

Figure 9-1 gives an overview of the Enable Web Services development
capabilities.

Figure 9-1 Enable Web Services development capabilities

The sample application is provided as a project interchange file. This must be
imported into the workspace.

Perform the following steps:

1. Select File → Import.

2. Select Project Interchange and click Next.

3. For the From zip file, browse to the LGI server application ItsoClaim.zip.

Note: For information about how to obtain the sample application, see
Appendix A, “Additional material” on page 377

296 IBM WebSphere and Microsoft .NET Interoperability

4. Click the Select All Button to select the three projects and click Finish.

Figure 9-2 gives an overview of the process.

Figure 9-2 Importing the LGI service projects

5. Watch the Building Workspace message in the lower right corner of the
workbench. When the build completes, there should be no items in the
Problems view.

9.2.2 Create Web Service from Session EJB
In this section, we are going to create a Web Service using the bottom-up
development method starting with the ItsoClaimEJB. We will use SOAP over
HTTP as the transport mechanism.

We will add a Web router project with a Servlet to route the client requests to the
Session EJB. However, before we can commence development, we have to
configure our environment, start the appropriate servers that we need, and then
add the ItsoClaim application to the environment.

Here are the tasks we need to perform before we can create the Web Service:

1. Configure a WebSphere Application Server in the Servers view.

 Chapter 9. Web Services interoperability scenario 297

2. Start the WebSphere server .

3. Add ItsoClaim application to the server.

4. Generate a Web Service from the EJB:

a. In the J2EE Perspective, expand EJB Projects → ItsoClaimEJB →
Deployment Descriptor → Session Beans in the Project Explorer view.

b. Right-click LGIClaimRegistration and select Web Services → Create
Web Service.

Figure 9-3 on page 299 gives an overview of the process.

Note: The steps to configure a server will vary depending on how your
Rational Application Developer is installed. See the Rational Application
Developer help for detailed instructions.

Note: If you cannot find Web Services on the context menu, it may be
because you have not enabled the Web Services capability. 9.2.1,
“Configure the Development Environment” on page 295 shows how to
configure the Web Services capability.

298 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-3 Web Service wizard: Launching the Wizard

 Chapter 9. Web Services interoperability scenario 299

c. On the Web Services page, leave all default settings and click Next (see
Figure 9-4).

Figure 9-4 Web Service wizard: Web Services

d. On the Object Selection Page, select the LGIClaimRegistration EJB and
click Next (see Figure 9-5 on page 301).

300 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-5 Web Service wizard: Object Selection Page

e. On the Service Deployment Configuration page, leave all default settings
and click Next (see Figure 9-6).

Figure 9-6 Web Service wizard: Service Deployment Configuration

 Chapter 9. Web Services interoperability scenario 301

f. On the Web Service EJB Configuration page, type ItsoClaimRouter for the
Router Project name and click Next (see Figure 9-7).

Figure 9-7 Web Service EJB configuration

g. On the Web Service Java Bean Identity page, make sure both methods
are checked and click Next (see Figure 9-8 on page 303).

302 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-8 Web Service wizard: Web Service Java Bean Identity

 Chapter 9. Web Services interoperability scenario 303

h. On the Web Service Publication page, leave all the default settings and
click Finish (see Figure 9-9).

Figure 9-9 Web Service wizard: Web Service Publication

Generated files
The execution of the wizard results in the creation of the following files in the
ItsoClaimEJB project.

Serialization helpers for ClaimException:

� itso.examples.claim.ejb.ClaimException_Deser.java
� itso.examples.claim.ejb.ClaimException_DeserProxy.java
� itso.examples.claim.ejb.ClaimException_Helper.java
� itso.examples.claim.ejb.ClaimException_Ser.java

Remote Interface (RI) and Service endpoint interface (SEI):

� itso.examples.claim.ejb.LGIClaimRegistration_RI.java
� itso.examples.claim.ejb.LGIClaimRegistration_SEI.java

A WSDL file that describes the Web service:

/META-INF/wsdl/LGIClaimRegistration.wsdl

There are deployment descriptor files that describe the Web service according to
the Web Services for J2EE style (JSR 109):

� /META-INF/webservices.xml
� /META-INF/ibm-webservices-ext.xml
� /META-INF/ibm-Webservices-bnd.xml

The JAX-RPC mapping file is the LGIClaimRegisration_mapping.xml file.

304 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-10 shows the generated files.

Figure 9-10 Files generated from Web Service Wizard

 Chapter 9. Web Services interoperability scenario 305

9.2.3 Testing with the Web Services Explorer
Once the Web service is installed and running in a server, it can be tested using
the Web Services Explorer.

To start the Web Services Explorer:

1. Select the LGIClaimRegistration.wsdl file in
ITSOClaimEJB/ejbModule/META-INF/wsdl.

2. Right click and select Web Services →Test with Web Services Explorer.

A Web Browser view opens with the WSDL file selected. It shows the
operations (methods) that can be invoked and the endpoint (see Figure 9-11).

Figure 9-11 Web Services Explorer: Operations

Note: In the Project Explorer, you also find a separate Web Services section
with Services and Clients.

306 IBM WebSphere and Microsoft .NET Interoperability

3. Click findCustomer in the right panel.

4. Type the customerID ABC123 and policyID P00245, and click Go.

The Status pane shown in Figure 9-12 appears.

Figure 9-12 Web Services Explorer: Result status populated with Web Service Result

5. in the left panel, click RegisterClaim operation.

6. For customerID, type ABC123.

7. For policyID, type P00245.

8. For accidentDate, click Browse and select any date in the calendar. A textual
representation of the date will be added to the form.

9. For accidentDescription, type in a short description.

10.For involvedCars, click Add twice. Type in short descriptions of the cars.

11.Click Go.

 Chapter 9. Web Services interoperability scenario 307

Figure 9-13 shows the testing of registerClaim.

Figure 9-13 Testing registerClaim on WebSphere

The status box should display a response with a claim number, as shown in
Figure 9-14 on page 309.

308 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-14 Response with claim number

9.2.4 Deploying the Web Service
In order to deploy the Web Service on the application server, we will first export
the application to an EAR file and then install the EAR file on WebSphere
Application Server.

Exporting the application to an EAR file
Follow these steps:

1. Select the ITSOClaim Enterprise Application project.

2. Select File → Export.

3. Select EAR file as the destination, and click Next.

4. Click Browse to locate the Destination. By default, the output file name that is
populated is ItsoClaim. Change the file name to ITSOClaimWS and click
Save.

5. Click Finish to perform the export. ITSOClaimWS.ear will be generated in the
target directory.

Install the EAR file on WebSphere Application Server
This section assumes that WebSphere Application Server V6.0 is installed and a
stand-alone profile is running on the default ports. Then:

1. Open the WebSphere administrative console using a Web browser with the
URL, where the <server-hostname> is that of your WebSphere Application
Server V6 machine:

http://<washostname>:9060/ibm/console/

2. Log in with a user ID.

3. Expand Applications and click Install New Application.

4. Specify the full path name of the enterprise application file (EAR file) on the
local file system. Click Next.

 Chapter 9. Web Services interoperability scenario 309

http://<washostname>:9060/ibm/console/

Figure 9-15 gives an overview of these steps.

Figure 9-15 Preparing for the application installation

5. On the Preparing for the application installation page, leave all default values
and click Next.

6. All remaining default values should be correct. Either step through the wizard
to review all values, or click Step 6 (Summary) to go directly to installation.

310 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-16 shows the installation summary.

Figure 9-16 Installation summary

7. On the Summary page, click Finish.

8. When the installation completes, the message Application ItsoClaim
installed successfully will be displayed. Click Save to Master
Configuration.

9. Click the Save button to commit the changes.

Start the application
To start the application:

1. Expand Applications and click Enterprise Applications.
2. Check ItsoClaim.
3. Click the Start button.

 Chapter 9. Web Services interoperability scenario 311

Test the deployed Web Service using Web Service Explorer
The deployed Web Service can be tested using the Web Service Explorer in the
development environment:

1. In Rational Application Developer, select Run → Launch the Web Services
Explorer.

2. If not already on the WSDL page, click the icon to switch to it. The window
in Figure 9-17 should appear.

3. Click WSDL Main and enter the WSDL URL:

http://<washostname>:9080/ItsoClaimRouter/services/LGIClaimRegistration?wsd
l

4. Click Go.

Figure 9-17 Using Web Services Explorer with WebSphere Application Server

5. Test, as in 9.2.3, “Testing with the Web Services Explorer” on page 306.

312 IBM WebSphere and Microsoft .NET Interoperability

9.3 Building the .NET Claims Web Service
The next stage in the scenario is to create the Microsoft .NET Web Service for
the DirectCarInsure (DCI) register claim application.

As with the LGI scenario, the register claim application is already implemented
and in use with DCI’s own Web site. The task is to wrap the existing application
classes in a Web Service and deploy it onto the Windows 2003 server.

9.3.1 Create Web service project
Before we can create the Web service, we need to create an ASP.NET Web
service project In Microsoft Visual Studio .NET 2003:

1. Start Microsoft Visual Studio .NET 2003.

2. Select File → New → Project.

3. Select Visual C# Project on the left-hand side. The window shown in
Figure 9-18 on page 314 should appear.

4. Select ASP.NET Web Service on the right-hand side.

5. Rename the Web Service project name in Location from:

http://localhost/WebService1

to

http://localhost/ItsoClaim

6. Click OK.

 Chapter 9. Web Services interoperability scenario 313

Figure 9-18 Create New Project for ItsoClaim ASP.NET Web service using C#

7. The Web service page opens up and has the extension .asmx.cs[Design].
The screen does not show any code, so we need to click the line Click here
to switch to code view. See Figure 9-19.

Figure 9-19 ItsoClaim.asmx.cs [Design] with default Service1 class name

8. Rename the file from Service1.asmx to ItsoClaim.asmx, as shown in
Figure 9-20 on page 315.

314 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-20 Rename Service1.asmx

9.3.2 Import existing classes
The existing DCI application consists of four classes:

� CustomerDataAccess: Encapsulates the access to customer data repository
� ClaimDataAccess: Encapsulates the access to claims data repository

� DataException: Simulates data access errors
� ClaimException: Simulates exception generated by the Web Service

Note: Customer and Claim data access classes simply return hardcoded
values. These classes could be changed to use a database without the
need to modify anything else in this example

Note: The Exception classes were extended and constructor calls to the
parent classes were simplified.

 Chapter 9. Web Services interoperability scenario 315

To import existing classes into the project, do the following:

1. Select File → Add Existing Item.

2. Navigate to the directory containing the DCI application.

3. Hold the Ctrl key and select ClaimDataAccess.cs, Claim,Exception.cs,
CustomerDataAccess.cs, and DataException.cs, as shown in Figure 9-21.

4. Click Open.

Figure 9-21 Import existing classes to the project

The application implementation files will now appear in the Solution Explorer
as a part of the ItsoClaim project, as shown in Figure 9-22 on page 317.

316 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-22 The ItsoClaim Project with files imported

9.3.3 Update the Web Service code
The Web Service implementation must be updated to call the existing
implementation classes:

1. Select all the generated code in ItsoClaim.asmx (actually ItsoClaim.asmx.cs;
see Example 9-1) and replace it with the code in Itsoclaimpaste.txt. This
defines a Web service, which includes two Web Methods to call the existing
application functionality.

Example 9-1 ItsoClaim.asmx.cs

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace ItsoClaim {
WebService(Namespace="http://dotnet.claim.examples.itso",

Name="ItsoClaim")]
public class ItsoClaim: System.Web.Services.WebService {

public ItsoClaim() {
InitializeComponent();

}
#region Component Designer generated code

 Chapter 9. Web Services interoperability scenario 317

private IContainer components = null;
private void InitializeComponent() {}
protected override void Dispose(bool disposing) {

if(disposing && components != null) {
components.Dispose();

}
base.Dispose(disposing);

}
#endregion
[WebMethod]
public Boolean findCustomer(String customerID,String policyID) {

CustomerDataAccess customerObj = new CustomerDataAccess();
try {

return customerObj.getCustomer(customerID, policyID);
} catch (DataException de) {

throw new ClaimException(de.Message);
}

}
[WebMethod]
public string registerClaim(String customerID,String policyID,

DateTime accidentDate, String accidentDescription,
String [] involvedCars) {
ClaimDataAccess claimObj = new ClaimDataAccess(customerID, policyID,

accidentDate,accidentDescription, involvedCars);
try {

return claimObj.getClaimCode();
} catch (DataException de1) {

throw new ClaimException(de1.Message);
}

}
}

}

9.3.4 Building and deploying the Web Service on IIS6
The build process generates proxy classes and the WSDL file that describes the
Web service.

To build the project:

1. Select Build → Build Solution from the top menu.

2. The Output window should display:

Build: 1 succeeded, 0 failed, 0 skipped

318 IBM WebSphere and Microsoft .NET Interoperability

Microsoft .NET only uses SOAP Document/Literal binding in the WSDL
description, though WS-I profile 1.1 allows RPC/Literal binding. Rational
Application Developer, by default, generates Document/Literal binding in the
WSDL description.

When Microsoft Visual Studio .NET 2003 rebuilds the Web service, it also
publishes the Web service to the Internet Information Server, which resides in the
c:\inetpub\wwwroot directory. There are default Web sites and virtual directories
that are created when Internet Information Services are installed. You can also
use the Internet Information Services Manager to create a new Web site or
virtual directory.

To start Internet Information Services Manager:

1. Click the Start menu in the bottom left corner of the desktop.
2. Select All Programs.
3. Select Administrative Tools.
4. Select Internet Service (IIS) Manager.

Alternatively, to start the Internet Information Services Manager:

1. Click the Start menu.
2. Select Run.
3. Type INETMGR.
4. Click OK

Note: Internet Information Services V6.0 with Windows 2003 Server were
used for this scenario. You can install Internet Information Services separately
by adding the Application Server Windows components in Windows 2003.

 Chapter 9. Web Services interoperability scenario 319

The tree in Figure 9-23 should now appear.

Figure 9-23 IIS Manager shows ItsoClaim on the DefaultAppPool and DefaultWebSite

9.3.5 Test the Microsoft .NET Web Service
Follow these steps:

1. Once the ItsoClaim Web Service is built and IIS is running, the application
can be tested by running a browser on the .NET development system and
then opening:

http://localhost/ItsoClaim/ItsoClaim.asmx?op=findCustomer

The window in Figure 9-24 on page 321 should appear.

2. Type ABC1234 for the customerID.

3. Type 1234567890 for the policyID.

4. Click Invoke.

Note: If the IIS Manager does not show ItsoClaim on the DefaultAppPool
and Default Web Site, right-click DefaultAppPoll to select Refresh.
Similarly, right-click Default Web Site to select Refresh.

320 IBM WebSphere and Microsoft .NET Interoperability

http://localhost/ItsoClaim/ItsoClaim.asmx?op=findCustomer

Figure 9-24 Testing findCustomer

This will result in a return value of true, as shown in Figure 9-25.

Figure 9-25 Result of findCustomer test

Testing the registerClaim method is a bit more complex. The default Microsoft
Visual Studio .NET 2003 Test Client does not allow testing of operations with
DateTime fields. One approach to testing this operation would be to write a .NET
client to test it. Another possibility is to use the Rational Application Developer
Web Services Explorer to test the operation:

1. Start Rational Application Developer. This can be on the system where the
.NET Web Service is running, or on a different system.

1. In Rational Application Developer, select Run → Launch the Web Services
Explorer.

 Chapter 9. Web Services interoperability scenario 321

2. If not already on the WSDL page, click the icon to switch to it. The
window in Figure 9-26 should appear.

3. Click WSDL Main and enter the WSDL URL:

http://<dotnethost>/ItsoClaim/ItsoClaim.asmx?WSDL

4. Click Go.

Figure 9-26 Using Web Services Explorer to test .Net Web Service

5. Click the RegisterClaim operation.

6. For customerID, click Add and type ABC1234.

7. For policyID, click Add and type 1234567890.

8. For accidentDate, click Browse and select any date in the calendar. A textual
representation of the date will be added to the form.

9. For accidentDescription, click Add and type in a short description.

10.For involvedCars, click Add (to add the content) and then click the nested
Add twice for the values. Type in short descriptions of the cars.

11.Click Go.

Figure 9-27 on page 323 gives an overview of the process.

322 IBM WebSphere and Microsoft .NET Interoperability

http://<dotnethost>/ItsoClaim/ItsoClaim.asmx?WSDL

Figure 9-27 Testing registerClaim on .Net

 Chapter 9. Web Services interoperability scenario 323

The status box should display a response with a claim number, as shown in
Figure 9-28.

Figure 9-28 Response and claim number

9.4 The client application
Now that we have built wrappers for the insurance claims application in IBM
WebSphere and Microsoft .NET, we can update the existing Web application to
make use of the Web Services.

A Java 2 Enterprise Edition Web Service client, also known as a service
consumer or service requestor, is an application component that acts as the
client to Web Services. As in all classical interoperability implementations, the
Web Service client component is implemented to wrap the remote invocation to
the business logic.

Both WebSphere and Microsoft .NET platforms provide automatic tools for
generating the proxy class for wrapping Web Services. To create a proxy class
and all other related classes, the same steps are required for both IBM
WebSphere and Microsoft .NET Web Services. After building the proxy, each
client application that accesses the Web Service need only instantiate the proxy
class and invoke the required operations.

As already described, the sample scenario Web Service client communicates
with Web Services using SOAP messages. Both the SOAP request and SOAP
response messages must follow the format specified in the WSDL file associated
with each Web Service. The WSDL file is the specification about the information
to be sent in SOAP request and response messages, including all information
regarding operations exposed by the Web Service, input and output variables,
variable types, document encoding type, and, last but not least, the location of
the Web Service. Therefore, the WSDL file is both necessary and sufficient
information to develop a client for the corresponding Web Service.

324 IBM WebSphere and Microsoft .NET Interoperability

When you build wrappers for an existing Web application to create Web Services,
as is the case in this scenario, the WSDL files are different. If the WebSphere
and .NET services were being developed from scratch, the preferred approach
would be a top-down development method starting with the WSDL definition and
creating a single proxy that could be used to access both implementations.

9.4.1 Import the existing client
We need to import the existing EJB based client application into Rational
Application Developer:

1. Launch Rational Application Developer and select File → Import.

2. Select Project Interchange and click Next.

3. Browse to ItsoClaimClient.zip for the From zip file.

4. Click Select All to import both projects.

5. Click Finish.

Note: More information about how to use Rational Application Developer to
build and test Web Services client or proxy can be found in the redbook
WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461.

 Chapter 9. Web Services interoperability scenario 325

Figure 9-29 gives an overview of the process.

Figure 9-29 Importing the client application

6. Watch the Building Workspace message in the lower right corner of the
workbench. When the build completes, there should be no items in the
Problems view.

9.4.2 Update the client to use the .NET Web Service
This section illustrates implementation of a client application accessing a Web
Service. We update the client application creating a Servlet that will run in the
WebSphere Application Server to access the .NET Web Service we implement
(business logic tier to business logic tier interoperability). We make use of a
browser for interacting with the Servlet (see Figure 9-30 on page 327).

326 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-30 First step integrating the applications

Remove EJB based service access
The existing client is EJB based. We must remove the EJB specific code and
JARs and replace them with Web Service based access:

1. In the Project Explorer view, expand Dynamic Web Projects →
ItsoClaimClientWeb → WebContent → WEB-INF → lib.

2. Click ItsoClaimEJB.jar and press Delete. When asked to confirm the
deletion, click Yes (twice).

End user
Web Browser

HTML/HTTP

WebSphere Application Server
Application running in

Web Container.
Web Services Client

SOAP/HTTP

.Net/IIS Server
Service implementation
findCustomer()
registerClaim()

 Chapter 9. Web Services interoperability scenario 327

Figure 9-31 shows the removal of the EJB jar.

Figure 9-31 Removing the EJB jar

3. Expand ItsoClaimClientWeb → Java Resources → JavaSource →
itso.examples.claim.ejb and double-click RegisterClaim.java.

4. Delete the import statements with errors, the home field, and the
getClaimRegistration() method.

5. Delete the statements in the doGet() method that are shown in Example 9-2.

Example 9-2 Statements to delete in the doGet() method

LGIClaimRegistration ejb = getClaimRegistration();
try {

String s = ejb.registerClaim(custId, policyId, d,
accidentDescription, cars);

result = "Claim " + s + " registered.";
} catch (ClaimException ce) {

result = "Registration failed: " + ce.getMessage();
}

6. Save the file. All errors in the Problems view should be resolved, but there
may still be warnings.

328 IBM WebSphere and Microsoft .NET Interoperability

Generate the .NET Web Service proxy
Consider the following:

� Before performing these tasks, a WebSphere Application Server must be
configured in the Servers view. The steps to configure a server will vary
depending on how Rational Application Developer is installed. See the
Rational Application Developer help for detailed instructions.

� Before generating the Client Proxy, the server should be started and the
ItsoClaimClient application should be added to the server.

Perform the following steps:

1. Select File → New → Other. The window in Figure 9-32 should appear.

2. Under Wizards, expand Web Services and select Web Service Client. Click
Next.

Figure 9-32 Web Services client Wizard

 Chapter 9. Web Services interoperability scenario 329

3. On the Web Services page, check Overwrite files without warning, and
click Next (see Figure 9-33).

Figure 9-33 Generating a Java Proxy

4. On the Web Service Selection Page, type in the URL
http://<dotnethost>/ItsoClaim/ItsoClaim.asmx?WSDL.

5. Click Next.

Figure 9-34 on page 331 gives an overview of the Web Service Client.

330 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-34 Web Service client

 Chapter 9. Web Services interoperability scenario 331

6. On the Client Environment Configuration page, leave all the default values
and click Next (Figure 9-35).

Figure 9-35 Client Environment Configuration

7. On the Web Service Proxy Page, leave all default values and click Finish, as
shown in Figure 9-36 on page 333.

332 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-36 Web Service Proxy Page

Generated files
The execution of the wizard results in the creation of the following files in the
ItsoClaimClientWeb project:

� Proxy implementation files:

– itso.examples.claim.dotnet.ItsoClaim.java

– itso.examples.claim.dotnet.ItsoClaimInformation.java

– itso.examples.claim.dotnet.ItsoClaimLocator.java

– itso.examples.claim.dotnet.ItsoClaimSoap.java

– itso.examples.claim.dotnet.ItsoClaimSoapProxy.java

– itso.examples.claim.dotnet.ItsoClaimSoapStub.java

� A WSDL file that describes the Web service:

WebContent/WEB-INF/wsdl/ItsoClaim.asmx.wsdl

 Chapter 9. Web Services interoperability scenario 333

� Deployment descriptor files that describe the Web service according to the
Web Services for J2EE style (JSR 109):

– WebContent/WEB-INF/ibm-webservicesclient-ext.xml

– WebContent/WEB-INF/ibm-Webservicesclient-bnd.xml

� The JAX-RPC mapping file:

WebContent/WEB-INF/ItosClaim.asmx_mapping.xml

Figure 9-37 on page 335 shows the generated client files

334 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-37 Client files generated

 Chapter 9. Web Services interoperability scenario 335

Update the Servlet code to use the proxy
To update the Servlet code to use the proxy, perform the following steps:

1. Open itso.examples.claim.client.RegisterClaim.java.

2. Add the following import statement:

import itso.examples.claim.dotnet.ItsoClaimSoapProxy;

3. Add the shown in Example 9-3 to the end of the doGet() method.

Example 9-3 Statements to add in the doGet() method

String result = null;
ItsoClaimSoapProxy proxy = new ItsoClaimSoapProxy();
try {

String s = proxy.registerClaim(custId, policyId, cal,
accidentDescription, cars);

result = "Claim " + s + " registered.";
} catch (RemoteException re) {

result = "Registration failed: " +re.toString();
}
req.setAttribute("message", result);
req.getRequestDispatcher("LGIRegisterClaim.jsp").forward(req, resp);

4. To resolve the remaining warnings, right-click in the Java Editor and select
Source → Organize Imports.

5. Close and save RegisterClaim.java. There should be no errors or warnings
associated with this file when this completes.

9.4.3 Test the updated client
Because the ItsoClaimClient was added to a WebSphere test server and that
server started before generating the client proxy, it is deployed and running and
ready to be tested.

1. In a browser on the development system, open:

http://localhost:9080/ItsoClaimClientWeb/LGIRegisterClaim.jsp

The window in Figure 9-38 on page 337 should appear.

2. For customerId, type ABC123.

3. For policyId, type 1234567890.

4. For accidentDate, type any correctly formatted date.

5. Type in accidentDescription, and descriptions for car1 and car2.

6. Click Register Claim.

336 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-38 Testing .NET service from WebSphere client

A successful request will result in a Claim registered message being added to
the form, as shown in Figure 9-39.

Figure 9-39 Successful claim registration

 Chapter 9. Web Services interoperability scenario 337

9.4.4 Update the .NET Service to call WebSphere findCustomer
This section illustrates using a client running as a Servlet in WebSphere
Application Server accessing the .NET Web Service implementation. The .NET
Web Service implementation will in turn call a Web service running in
WebSphere (business logic tier to business logic tier interoperability). There is no
direct interaction between the servlet application and the WebSphere Web
Service implementation. A browser will be used to interact with the servlet.

Figure 9-40 shows the complete integrated application.

Figure 9-40 The complete integrated application

Add a Web Reference to the ItsoClaim project
Adding a Web Reference is similar to generating a proxy. It imports and builds all
the artifacts needed to access the remote service.

1. Launch Visual Studio .NET and open the ItsoClaim project.

2. In the Solution Explorer, right-click References and select Add Web
Reference, as shown in Figure 9-41 on page 339.

End user
Web Browser

HTML/HTTP

WebSphere Application Server
Application running in

Web Container.
Web Services Client

SOAP/HTTP

.Net/IIS Server
Service implementation
registerClaim()
Also, Web Services Client

WebSphere Application Server
Service implementation
findCustomer()

SOAP/HTTP

338 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-41 Adding WebSphere Service to .Net project

3. Type in the URL:

http://<washost>:9080/ItsoClaimRouter/services/LGIClaimRegistration/wsdl/LG
IClaimRegistration.wsdl

Where <washost> is the host on which the ItsoClaim service is running (see
Figure 9-42).

4. Click Go.

Figure 9-42 Importing the WebSphere Service definition

5. Click the Add Reference button to add the reference to the current project.

 Chapter 9. Web Services interoperability scenario 339

6. In the Solution Explorer, expand Web References and double click the new
reference. The Object Browser opens and shows the object associated with
the newly imported Web Service reference, as shown in Figure 9-43.

Figure 9-43 The LGIClaimRegistrationService Object

Update the service implementation to call findCustomer
To update the service implementation to call findCustomer:

1. Open the ItsoClaim.asmx file and switch to the code view.

2. In order to check the customer with the WebSphere services, add the
statements shown in Example 9-4 to the beginning of the registerClaim
method.

Example 9-4 Statements to add to registerClaim method

washost.LGIClaimRegistrationService service =
new washost.LGIClaimRegistrationService();

if (!service.findCustomer(customerID, policyID)) {
throw new ClaimException("Invalid Customer/Policy");

}

3. Select Build → Build Solution. This will compile the project and publish the
new version to IIS.

340 IBM WebSphere and Microsoft .NET Interoperability

9.4.5 Test the complete solution
The complete solution can be testing by repeating the steps in 9.2.3, “Testing
with the Web Services Explorer” on page 306.

Figure 9-44 Registration request data error message

This is because the .NET Web Service implementation now calls the WebSphere
Web Service to perform customer lookup before completing the registration. To
complete the registration successfully, you must use valid customerId and
policyId values for the WebSphere Web Service implementation.

We have so far successfully updated an existing Servlet to use Web Services to
access service implementation running on .NET. Similarly, we updated code
running in .NET to call the Web Service running in WebSphere. And, we tested
the interoperability using a Web browser client application.

Note: Using prior test data that was acceptable for the .NET Web Service
registration request (customerId=ABC123, policyId=1234567890), will cause
a failure and produce the message shown in Figure 9-44.

 Chapter 9. Web Services interoperability scenario 341

9.5 Web Services security
With the WebSphere and .NET Web Service implementations interoperating, the
next task is to enable Web Services security. There is a vast array of possible
configurations for WS-Security. The particular configurations you apply depends
on your security requirements.

We encrypted the service request from the Servlet running in WebSphere to the
.NET Web Service and signed the request from the .NET Web Service to the
WebSphere Web Service. The responses were neither encrypted or unsigned.

Your Web Services security implementation will almost certainly be more
complex and may involve both the digital signing and encryption of all Web
Services requests and responses. In this section, we illustrate the methods,
considerations, and complexity for implementing both integrity (signing) and
confidentiality (encryption) in Web Services security.

9.5.1 Encrypting messages to .NET Web Service
Encryption can be used to protect the confidentiality of a request (or a part of a
request).

Import the SOAP client certificate on the .NET system
In .NET, X.509 certificates are loaded out of a system store. Before the
application can access a certificate, it has to be loaded into the store and the
access control list of its private key must be set.

1. Click Start → Run.

2. Type mmc for the name of the file to run and click OK.

3. Click File → Add/Remove Snap In.

4. Click Add.

5. Select Certificates and click Add, as shown in Figure 9-45 on page 343.

Note: In order to perform the tasks in this section, you need to install Web
Services Enhancements 2.0 in your .NET development system. For more
information about Web Services Enhancements, see:

http://msdn.microsoft.com/webservices/building/wse/default.aspx

342 IBM WebSphere and Microsoft .NET Interoperability

http://msdn.microsoft.com/webservices/building/wse/default.aspx

.

Figure 9-45 Adding the Certificate Snap-in

6. Select Computer Account and click Next.

7. Select Local Computer and click Finish.

8. Click Close in the Add Standalone Snap-in window.

9. Click OK in the Add/Remove Snap-in window.

 Chapter 9. Web Services interoperability scenario 343

10.Expand Certificates, right click Personal, and select All Tasks → Import,
as shown in Figure 9-46.

Figure 9-46 Importing the certificates

11.On the Welcome page, click Next.

12.On the File to import page, click Browse.

13.Change Files of type to Personal Information Exchange and browse to
enc-receiver.p12. Click Open.

14.Back on the File to import page, click Next.

15.On the Password page, type in the password keypass and click Next.

16.On the Certificate Store page, leave the default value and click Next.

17.Click Finish to import the certificate.

18.A message will be displayed that the import was successful.

Allow IIS to access the private key
When you load a certificate, you have access to the certificate’s private key. The
IIS must also have access to the keys:

1. Start the program by running:

C:\Program Files\Microsoft WSE\v2.0\Tools\Certificates\WseCertificate2.exe

2. Change the Certificate Location to Local Computer and the Store Name to
Personal. Click Open Certificate, as shown in Figure 9-47 on page 345.

344 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-47 Opening the certificate

3. Select the certificate issued to Bob and click OK.

4. Click View Private Key File Properties.

5. Click the Security tab and click Add.

6. Add the ASPNet user on the local machine and click OK.

7. Click OK and close the Certificate Tool.

Enable Web Service Extensions on the .NET Web Service
Visual Studio .NET projects do not, by default, have access to the libraries
needed to perform WS-security operations. This must be explicitly enabled.

1. Launch Visual Studio .NET and open the ItsoClaim project.

 Chapter 9. Web Services interoperability scenario 345

2. In the Solution Explorer, right click the ItsoClaim project and select WSE
Settings 2.0, as shown in Figure 9-48.

Figure 9-48 Enabling Web Services Enhancements

3. On the General tab, check both the check boxes. Click OK, as shown in
Figure 9-49 on page 347.

Note: If this menu item does not appear, verify that the Web Services
Enhancements 2.0 are correctly installed on the system.

346 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-49 Web Service Enhancements General tab

4. Click the Security tab.

5. Check Allow test roots and UseRFC3280. Uncheck Verify trust.

6. Click OK.

 Chapter 9. Web Services interoperability scenario 347

Figure 9-50 shows the Web Service Enhancements Security tab.

Figure 9-50 Web Service Enhancements Security tab

The .NET ItsoClaim service is now configured to accept encrypted requests.

Enable the WebSphere client to make encrypted requests
To enable the WebSphere client to make encrypted requests:

1. Launch Rational Application Developer and open the workspace containing
the ItsoClaimClient application.

2. Expand Web Services → Clients and double click ItsoClaimClientWeb.

348 IBM WebSphere and Microsoft .NET Interoperability

3. Select the WS Extension tab and expand the Request Generator
Configuration section.

4. Expand the Confidentiality section and click Add to bring up the dialog (see
Figure 9-51). If the Add button is disabled, be sure that ItsoClaimSoap is
selected in the Port QName Binding.

Figure 9-51 Web Service Client Security Extensions

5. In the Confidentiality Name textbox, enter Client_Confidentiality.

6. In the Order textbox, enter 2.

7. Under the Message Parts, click the Add button. Leave the default value:

– Message parts dialect:

http://www.ibm.com/WebSphere/webservices/wssecurity/dialect-was

 Chapter 9. Web Services interoperability scenario 349

– Message parts keyword: bodycontent

8. Click OK.

Figure 9-52 gives an overview of the dialog.

Figure 9-52 Client Confidentiality Dialog

9. Select the WS Binding tab on the bottom of the editor and expand the
Security Request Generator Binding Configuration section.

10.Expand the Key Locators section and click Add to bring up the dialog.

11.For the Key locator name, type ClientEncryptKey.

350 IBM WebSphere and Microsoft .NET Interoperability

12.For the Key locator class, select:

com.ibm.wsspi.wssecurity.keyinfo.KeyStoreKeyLocator

13.Check the Use key store check box.

14.For Key store storepass, type storepass.

15.For Key store path, type:

${USER_INSTALL_ROOT}/etc/ws-security/samples/enc-sender.jceks

16.For Key store type, select JCEKS.

17.In the Key matrix, click Add.

18.For the Alias, type bob.

19.for the Key pass, type keypass.

20.For the Key name, type CN=Bob, O=IBM, C=US.

21.Click OK.

 Chapter 9. Web Services interoperability scenario 351

Figure 9-53 gives an overview of the data entered.

Figure 9-53 Client Key locator

22.Expand the Key Information section and click Add.

23.For the Key information name, type Encrypt_KeyInfo.

24.For the Key information type, select KEYID.

25.For the Key information class, leave the value that gets automatically
populated:

Com.ibm.ws.webservices.wssecurity.keyinfo.KeyIdContentGenerator

26.Check the Use key locator check box.

27.For the Key locator, select ClientEncryptKey.

28.For the Key name, select CN=Bob, O=IBM, C=US.

29.Click OK.

352 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-54 gives an overview of the date entered.

Figure 9-54 Client Key information

30.Expand the Encryption Information section and click Add.

31.For the Encryption name, type Client_EncryptInfo.

32.For the Data encryption method algorithm, select:

http://www.w3.org/2001/04/xmlenc#aes128-cbc

33.For the Key encryption method algorithm, select:

http://www.w3.org/2001/04/xmlenc#rsa-1_5

34.For the Key information element, select Encrypt_KeyInfo.

35.For the Confidentiality part, select Client_Confidentiality.

36.Click OK.

 Chapter 9. Web Services interoperability scenario 353

Figure 9-55 gives an overview of the data entered.

Figure 9-55 Client Encryption Information

37.The client is now configured to encrypt the message body. Close and save the
Web Deployment Descriptor editor.

The client application can now be deployed into WebSphere Application Server
and tested, as shown in 9.2.3, “Testing with the Web Services Explorer” on
page 306.

9.5.2 Signing requests from .NET to WebSphere Web Services
Signing can be used to ensure that a service request (or a part of the request)
has not been modified between the sender and receiver, and to prove the identity
of the sender. Signing is often used in conjunction with encryption.

Update the WebSphere Web Service to use signed messages
The WebSphere Web Service implementation must be updated to require and
accept signed requests:

1. Launch Rational Application Developer and open the workspace containing
the ItsoClaim application.

354 IBM WebSphere and Microsoft .NET Interoperability

2. Expand Web Services → Services and double click
LGIClaimRegistrationService, as shown in Figure 9-56.

Figure 9-56 Opening the Web Services editor

3. Select the Extension tab.

4. In the Web Service Description Extension and Port Component Binding
sections, you should already see LGIClaimRegistrationService.

5. Expand the Request Consumer Service Configuration Details section.

 Chapter 9. Web Services interoperability scenario 355

6. Expand the Required Integrity section and click Add to bring up the dialog,
as shown in Figure 9-57. If the Add button is disabled, be sure that
LGIClaimRegistrationService is selected in the Port Component Binding
section.

Figure 9-57 Adding Required Integrity

7. In the Required Integrity Name text field, enter ReqCons_RequiredIntegrity.

8. Select Required from the Usage type drop-down list.

356 IBM WebSphere and Microsoft .NET Interoperability

9. In the Message Parts matrix, click Add to enter or select the following:

Message parts dialect:

http://www.ibm.com/WebSphere/webservices/wssecurity/dialect-was

Message parts keyword: body

10.Click OK.

Figure 9-58 gives an overview of the settings.

Figure 9-58 Request required integrity

 Chapter 9. Web Services interoperability scenario 357

11.Select the Binding Configurations tab on the bottom of the editor. The
service should already appear in the Port Component Binding section.

12.Expand the Request Consumer Binding Configuration Details section.

13.Expand the Trust Anchor section and click Add. Enter or select the following
statements into the fields shown in Figure 9-59:

– Trust anchor name: TrustAnchor

– Key store storepass: server

– Key store path:
${USER_INSTALL_ROOT}/etc/ws-security/samples/dsig-receiver.ks

– Key store type: JKS

Figure 9-59 Trust anchor dialog

14.Click OK.

15.Under Request Consumer Binding Configuration Details, expand Certificate
Store List → Collection Certificate Store and click Add. The window in
Figure 9-60 on page 359 should appear.

16.For the Name, type CertStore.

17.For the Provider, type IBMCertPath.

18.In the X509 Certificate matrix, click Add and enter
${USER_INSTALL_ROOT}/etc/ws-security/samples/intca2.cer for the path.

19.Click OK.

358 IBM WebSphere and Microsoft .NET Interoperability

Figure 9-60 Collection certificate store dialog

20.Under Request Consumer Binding Configuration Details, expand the Token
Consumer section and click Add.

21.For the Token consumer name, type Signature_TokenConsumer.

22.For the Token consumer class, select
com.ibm.wsspi.wssecurity.token.X509TokenConsumer.

23.Check the Use value type check box

24.For the Value type, select X509 certificate token v3.

25.For the Local name, the following should be automatically filled in:

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-
1.0#X509v3.

26.Check the Use jaas.config check box.

27.For the jaas.config name, type system.wssecurity.X509BST.

28.Check the Use certificate path settings check box.

29.Check the Certificate path reference radio button.

30.For the Trust anchor reference, select TrustAnchor.

 Chapter 9. Web Services interoperability scenario 359

31.For the Certificate store reference, select CertStore.

32.Click OK.

Figure 9-61 gives an overview of the data entered.

Figure 9-61 Token Consumer Dialog

33.Under Request Consumer Binding Configuration Details, expand the Key
Locator section and click Add.

34.In the Key locator name text field, enter Signature_KeyLocator.

360 IBM WebSphere and Microsoft .NET Interoperability

35.In the Key locator class text field, select
com.ibm.wsspi.wssecurity.keyinfo.X509TokenKeyLocator.

36.Click OK.

Figure 9-62 shows the Key Locator dialog.

Figure 9-62 Key Locator

37.Under Request Consumer Binding Configuration Details, expand the Key
Information section and click Add.

38.For the Key information name, type Signature_KeyInfo.

39.For the Key information type, select STRREF.

40.The Key information class should be automatically filled in with
com.ibm.ws.webservices.wssecurity.keyinfo.STRReferenceContent
Consumer.

 Chapter 9. Web Services interoperability scenario 361

41.Check Use key locator check box.

42.For Key locator, select Signature_KeyLocator.

43.Check Use token check box.

44.For Token, select Signature_TokenConsumer.

45.Click OK.

Figure 9-63 shows the Key Information dialog.

Figure 9-63 Key information

46.Under Request Consumer Binding Configuration Details, expand the Signing
Information section and click Add.

47.For the Signing information name, type ReqCons_SigningInfo.

48.For the Canonicalization method algorithm, select the following:

http://www.w3.org/2001/10/xml-exc-c14n#

This is the first option in the drop-down box.

362 IBM WebSphere and Microsoft .NET Interoperability

49.For the Signature method algorithm, select:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

50.In the Signing key information matrix, click Add.

51.For the Key information name, type sign_key_info.

52.For the Key information element, select Signature_KeyInfo.

53.Click OK.

 Chapter 9. Web Services interoperability scenario 363

Figure 9-64 shows the Signing Information dialog.

Figure 9-64 Signing information

54.With the newly created signing information highlighted, expand the Part
Reference section and click Add.

55.For the Part reference name, select ReqCons_PartRef.

56.For the RequiredIntegrity part, select ReqCons_RequiredIntegrity.

57.For the Digest method algorithm, select:

http://www.w3.org/2000/09/xmldsig#sha1

364 IBM WebSphere and Microsoft .NET Interoperability

58.Click OK

Figure 9-65 shows the Part Reference dialog.

Figure 9-65 Part Reference

59.With the newly created part reference highlighted, expand the Transform
section and click Add.

60.For the Name, type ReqCons_Transform.

61.For the Algorithm, select:

http://www.w3.org/2001/10/xml-exc-c14n#

62.Click OK.

Figure 9-66 shows the Transform dialog.

Figure 9-66 Transform

 Chapter 9. Web Services interoperability scenario 365

63.Save and close the Web Services editor. The service can now be deployed to
WebSphere, as in 9.2.3, “Testing with the Web Services Explorer” on
page 306.

Enable the .NET Web Service client to sign requests
Now that the WebSphere service requires request signing, the .NET Web
Service that calls it must be updated to sign its requests.

Import the signing certificate
To import the signing certificate:

1. Open the Certificates (Local Computer) MMC snap-in, as in 9.5.1,
“Encrypting messages to .NET Web Service” on page 342.

2. Expand Certificates, right-click Personal, and select All Tasks → Import.

3. On the Welcome page, click Next.

4. On the File to import page, click Browse.

5. Change Files of type to Personal Information Exchange and browse to
soaprequester.p12. Click Open.

6. Back on the File to import page, click Next.

7. On the Password page, type in the password client and click Next.

8. On the Certificate Store page, leave the default value and click Next.

9. Click Finish to import the certificate.

10.A message will be displayed that the import was successful.

Allow IIS to access the private key
To allow IIS to access the private key:

1. Start the program:

C:\Program Files\Microsoft WSE\v2.0\Tools\Certificates\WseCertificate2.exe

2. Change the Certificate Location to Local Computer and the Store Name to
Personal. Click Open Certificate.

3. Select the certificate issued to SOAPRequester and click OK.

4. Click View Private Key File Properties.

5. Click the Security tab and click Add.

6. Add the ASPNet user on the local machine and click OK.

7. Click OK and close the Certificate Tool.

366 IBM WebSphere and Microsoft .NET Interoperability

Update the ItsoClaim application
The code that calls the WebSphere service must be updated to send a signed
request.

1. Add the code shown in Example 9-5 to the top of ItsoClaim.asmx.cs.

Example 9-5 Statements to add to ItsoClaim.asmx.cs

using System;

using Microsoft.Web.Services2.Security;
using Microsoft.Web.Services2.Security.X509;
using Microsoft.Web.Services2.Security.Tokens;

using System.Collections;

2. Modify the registerClaim method. Change the line from first section to the
second section, as shown in Example 9-6.

Example 9-6 Change line to second section

washost.LGIClaimRegistrationService service =
new washost.LGIClaimRegistrationService();

to:

washost.LGIClaimRegistrationServiceWse service =
new washost.LGIClaimRegistrationServiceWse();

3. Immediately after the modified line, add the code shown in Example 9-7.

Example 9-7 Add code

X509Certificate signCert = null;
X509CertificateStore signCertStore = null;
signCertStore = X509CertificateStore.LocalMachineStore

(X509CertificateStore.MyStore);
signCertStore.OpenRead();
signCert =

signCertStore.FindCertificateBySubjectString("SOAPRequester")[0];
X509SecurityToken secSignatureToken = new X509SecurityToken(signCert);
// sign message body
MessageSignature sig = new MessageSignature(secSignatureToken);
service.RequestSoapContext.Security.Elements.Add(sig);
service.RequestSoapContext.Security.Tokens.Add(secSignatureToken);

4. Rebuild the project. This will cause the updated project to be published to IIS.

The complete system with security can now be tested, as in 9.2.3, “Testing
with the Web Services Explorer” on page 306.

 Chapter 9. Web Services interoperability scenario 367

9.6 Difference between the two Web Services
The method signatures in WebSphere and .NET that were used to generate Web
Services are virtually identical. However, the Web Services that are generated by
the two platforms have some significant differences. The main differences
between the Microsoft .NET generated service definition file and the WebSphere
one are:

� Exception handling
� Object array management
� Parameter multiplicity specification

For each difference, we provide a specific description in the following sections.

9.6.1 Exception handling
Business logic component methods belonging to both development
environments throw a ClaimException to report some errors that could occur
during the method execution.

No SOAP fault information is included in the Microsoft .NET WSDL file. The lack
of detail is probably related to the fact that WSDL files generated in Microsoft
.NET start from a C# class; since C# does not have an analog of the Java throws
clause in method signatures, the method signature does not contain any
information about exceptions thrown during the method execution.

In the WebSphere Studio generated WSDL file, a complex type is defined to map
the ClaimException and the SOAP fault is associated with this type. Example 9-8
shows the exception handling in the WebSphere Studio generated WSDL file.

Example 9-8 Exception handling in the WebSphere Studio generated WSDL file

<wsdl:types>
.....

<schema elementFormDefault="qualified"........>
<complexType name="ClaimException">

<sequence>
<element name="message" nillable="true" type="xsd:string" />
</sequence>

</complexType>
<element name="ClaimException" nillable="true" type="tns2:ClaimException"
/>

 </schema>
</wsdl:types>
....
<wsdl:message name="ClaimException">

<wsdl:part element="tns2:ClaimException" name="fault" />

368 IBM WebSphere and Microsoft .NET Interoperability

</wsdl:message>
.....
<wsdl:portType name="LGIClaimRegistration">

<wsdl:operation name="findCustomer">
<wsdl:input message="intf:findCustomerRequest"
name="findCustomerRequest" />
<wsdl:output message="intf:findCustomerResponse"
name="findCustomerResponse" />
<wsdl:fault message="intf:ClaimException" name="ClaimException" />

</wsdl:operation>
<wsdl:operation name="registerClaim">

<wsdl:input message="intf:registerClaimRequest"
name="registerClaimRequest" />
<wsdl:output message="intf:registerClaimResponse"
name="registerClaimResponse" />
<wsdl:fault message="intf:ClaimException" name="ClaimException" />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="LGIClaimRegistrationSoapBinding"
type="intf:LGIClaimRegistration">

<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http" />
<wsdl:operation name="findCustomer">

<wsdlsoap:operation SOAPACTION="" />
<wsdl:input name="findCustomerRequest">

<wsdlsoap:body use="literal" />
</wsdl:input>
<wsdl:output name="findCustomerResponse">

<wsdlsoap:body use="literal" />
</wsdl:output>
<wsdl:fault name="ClaimException">

<wsdlsoap:fault name="ClaimException" use="literal" />
</wsdl:fault>

</wsdl:operation>
<wsdl:operation name="registerClaim">

<wsdlsoap:operation SOAPACTION="" />
<wsdl:input name="registerClaimRequest">

<wsdlsoap:body use="literal" />
</wsdl:input>
<wsdl:output name="registerClaimResponse">

<wsdlsoap:body use="literal" />
</wsdl:output>
<wsdl:fault name="ClaimException">

<wsdlsoap:fault name="ClaimException" use="literal" />
</wsdl:fault>

</wsdl:operation>
</wsdl:binding>
.......

 Chapter 9. Web Services interoperability scenario 369

Starting with the WSDL file, the Web Service proxy wizard generates an
itso.examples.claim.exception package, a ClaimException class and all other
related classes needed for the SOAP serialization and deserialization of the
ClaimException itself.

The SoapBindingStub class, which wraps the methods exposed by the Web
Service, throws both a java.rmi.RemoteException and a
itso.examples.claim.exception.ClaimException.

Part of the code implementing the generated method is shown in Example 9-9.

Example 9-9 Exception handling in the stub generated from a WebSphere WSDL file

try {
......

} catch (com.ibm.ws.webservices.engine.WebServicesFault wsf) {
Exception e = wsf.getUserException();
if (e != null) {

if (e instanceof itso.examples.claim.exception.ClaimException) {
throw (itso.examples.claim.exception.ClaimException) e;

}
}
throw wsf;

}

If we compare the code listed in Example 9-9 with the corresponding code in
Example 9-10 generated from the Microsoft .NET WSDL file, we can observe
that in the second case, the only handled exception is the standard
WebServicesFault. Both the findCustomer and registerClaim methods throw only
a java.rmi.RemoteException.

Example 9-10 Exception handling in the stub generated from a Microsoft .NET WSDL file

try {
.....

} catch (com.ibm.ws.webservices.engine.WebServicesFault wsf) {
throw wsf;

}

The conclusion is that for bottom up development of a Microsoft .NET Web
Service, application specific SOAP exceptions cannot be generated. Microsoft
.NET Studio does not add any SOAP fault message in the WSDL files and all
exceptions thrown by the Web Service are managed as simple SOAP server fault
code. This different implementation of the exception management in the SOAP
message, however, does not impact the interoperability between the two
platforms.

370 IBM WebSphere and Microsoft .NET Interoperability

To produce a detailed SOAP fault report from a Microsoft Web Service requires
some coding. Some good advice is given in the MSDN® article Using SOAP
Faults, found at:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html
/service09172002.asp

9.6.2 Object array management
In the registerClaim method, an array of strings is required as an input
parameter. In both cases, the Web Services source code is developed using the
basic String[] type, but if we compare the two generated WSDL files, we can find
a different parameter declaration approach.

The WebSphere Studio generated WSDL file uses the basic type xsd:string with
the maxOccurs property set to unbounded; the related part of the WSDL file is
shown in Example 9-11.

Example 9-11 Object array type specification in WebSphere Studio generated WSDL file

...
<element maxOccurs="unbounded" name="involvedCars" type="xsd:string"/>

....

The Microsoft Visual Studio .NET 2003 generated WSDL file instead uses the
complex type ArrayOfString, as shown in Example 9-12.

Example 9-12 Object array type specification in Microsoft Visual Studio .NET 2003
generated WSDL file

...
<s:element name="registerClaim">

<s:complexType>
<s:sequence>

<s:element minOccurs="0" maxOccurs="1" name="customerID"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="policyID"
type="s:string" />
<s:element minOccurs="1" maxOccurs="1" name="accidentDate"
type="s:dateTime" />
<s:element minOccurs="0" maxOccurs="1" name="accidentDescription"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" name="involvedCars"
type="s0:ArrayOfString" />

</s:sequence>
</s:complexType>

</s:element>
<s:complexType name="ArrayOfString">

 Chapter 9. Web Services interoperability scenario 371

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservice/html/service09172002.asp

<s:sequence>
<s:element minOccurs="0" maxOccurs="unbounded" name="string"
nillable="true" type="s:string" />

</s:sequence>
</s:complexType>
...

Starting from the Microsoft Visual Studio .NET 2003 generated WSDL file, the
WebSphere Studio wizard generates an ArrayOfString class and all other related
classes used to manage SOAP serialization and deserialization; this means that
ArrayOfString is managed as a nonstandard object.

The difference in the SOAP request is shown in the following two examples,
where Example 9-13 refers to the SOAP request to the WebSphere Web
Service, while Example 9-14 refers to the SOAP request to the Microsoft .NET
Web Service.

Example 9-13 SOAP request to the WebSphere Web Service

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Body>
<registerClaim xmlns="http://ejb.claim.examples.itso">

<customerID>ABC123</customerID>
<policyID>P00245</policyID>
<accidentDate>2004-09-26T04:00:00.000Z</accidentDate>
<accidentDescription>Car crash</accidentDescription>
<involvedCars>NC-SH1</involvedCars>
<involvedCars>SA-NUM2-00</involvedCars>
<involvedCars>DH-CICS3</involvedCars>

</registerClaim>
</soapenv:Body>

</soapenv:Envelope>

Example 9-14 SOAP request to the Microsoft .NET Web Service

<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body>

<registerClaim mlns="http://tempuri.org/">
<customerID>AAAA</customerID>
<policyID>BBBBB</policyID>

372 IBM WebSphere and Microsoft .NET Interoperability

<accidentDate>2004-09-26T04:00:00.000Z</accidentDate>
<accidentDescription>CCCCC</accidentDescription>
<involvedCars>

<string>SH1</string>
<string>NUM2</string>
<string>CICS3</string>

</involvedCars>
</registerClaim>

</soapenv:Body>
</soapenv:Envelope>

According to 8.4.4, “Web Services description constraints” on page 285, we
found the following recommendation (see R2112).

� In a description, elements should not be named using the convention
ArrayOfXXX.

� The correct way to define arrays is to define a basic type with
maxoccurs=unbounded.

There is no specific unrespected MUST in the Microsoft .NET WSDL file, and the
WebSphere Studio wizard is able to generate the correct client; the
interoperability is then guaranteed between the two platforms.

9.6.3 Parameter multiplicity specification
In both platform generated WSDL files, the methods’ input parameters are
considered optional: minoccurs is set to 0 in the Microsoft .NET WSDL file, while
nillable is set to true for the WebSphere WSDL file.

The difference in type declaration does not influence the proxy generation wizard
in WebSphere Studio and Microsoft Visual Studio .NET 2003, and neither tool
shows any problem in generating the Web Service proxy starting from a WSDL
file generated with a different platform.

We also tried a manual update of the WSDL file, forcing the value of minoccurs to
1 and the nillable to false. The aim was for a client to be able to raise an
exception before invoking a service if null values were set for mandatory inputs.
However, even if we regenerated the proxy, we were not able to obtain such a
behavior; the proxy generation is not influenced by these new values and we
were able to invoke the service even passing null values for mandatory inputs
and receiving an exception raised from the service. The lesson is that WSDL
definitions should not be taken as a guaranteed precondition of how a service
behaves. The author of a Web Service must check input arguments, even invalid
values that are not allowed in the WSDL file.

 Chapter 9. Web Services interoperability scenario 373

374 IBM WebSphere and Microsoft .NET Interoperability

Part 4 Appendices

Part 4

© Copyright IBM Corp. 2006. All rights reserved. 375

376 IBM WebSphere and Microsoft .NET Interoperability

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246799

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG246799.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
SG247027.zip Sample application in a zipped archive

A

© Copyright IBM Corp. 2006. All rights reserved. 377

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 40 GB Disk
Operating System: Windows XP Professional, Windows 2003 server
Processor: Minimum 1 GHz Intel Pentium® or equivalent
Memory: Minimum 1 GB RAM
� IBM Rational Application Developer for WebSphere Software v6.0
� WebSphere Application Server V6.0
� Windows XP Professional with upgrades or better, capable of running:

– Microsoft Visual Studio .Net 2003
– Microsoft .Net Framework 1.1
– IIS 6.0
– Web Services Enhancements 2.0

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

Component interoperability
The source material consist of the following:

� Binaries

– This folder contains the .NET client executable (DotNetClient.exe) and the
ear file to be deployed in WebSphere Application Server
(ComponentInterop.ear).

� Sources

– This folder contains all the sources:

• DotNetClient: Contains the .NET sources and the required project files
for Visual Studio

• ComponentInteropEJB: Contains the Java sources and the required
project files for RSA

� requiredLibsAndSchema

– This folder contains the following JARs, DLLs, and schema files.

• The Calculator.jar.

• The required JAXB jar files.

• The MQ jars required by the EJB.

• The MQ dlls requires by .NET code to communicate with MQ and the
XML schema file.

378 IBM WebSphere and Microsoft .NET Interoperability

• The CalculatorSchema.xsd schema file.

Instructions for installation and the details for the scenario can be found in
Chapter 6, “Component interoperability scenario” on page 191.

Web Services interoperability
In addition to the source materials and .ear files needed for the samples, there
are also sources and binaries for .NET, and certificates for WS-Security.
Instructions for installation and the details for the scenario can be found in
Chapter 9, “Web Services interoperability scenario” on page 293.

 Appendix A. Additional material 379

380 IBM WebSphere and Microsoft .NET Interoperability

acronyms
.NET “dot NET” Microsoft Windows
Web Services platform

ACL Access Control List

ADO Active Data Objects

ASP Active Server Page

BPEL Business Process Execution
Language

BPEL4WS Business Process Execution
Language for Web Service

BSF Bean Scripting Framework

CCW COM Callable Wrapper

CLR Common Language Runtime

CLS Common Language
Specification

CMP Container Managed
Persistence

COM Component Object Model

COM+ Current version of the
Microsoft Component Object
Model

CORBA Common Object Request
Broker Architecture

CTS Common Type System

DCOM Distributed COM

DD Deployment Descriptor

DHTML Dynamic HTML

DLL Dynamic Link Library

DNA Distributed Internet
Applications

DTC Distributed Transaction
Coordinator

EAR Enterprise Archive

EIS Enterprise Information
System

EJB Enterprise JavaBean

Abbreviations and

© Copyright IBM Corp. 2006. All rights reserved.
GAC Global Assembly Cache

GRE Generic Routing
Encapsulation

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP HyperText Transfer Protocol

HTTPS Secure HTTP

IBM International Business
Machines Corporation

IDE Integrated Development
Environment

IDL Interface Definition Language

IETF Internet Engineering
Taskforce

IIOP Internet Inter-OBR Protocol

IIS Internet Information Server

IIS Internet Information Services

IL Intermediate Language

IP Internet Protocol

ISO International Standards
Organization

ITSO International Technical
Support Organization

J# J-Sharp (Java on Windows)

J2EE Java 2 Enterprise Edition

J2SE Java 2 Standard Edition

JAAS Java Authentication and
Authorization Service

JAR Java Archive

JAXB Java Architecture for XML
Binding

JAXP Java for XML Parsing

JAX-RPC Java for XML Remote
Procedure Call

 381

JCA Java Connector Architecture

JCP Java Community Process

JDBC Java Database Connectivity

JIT Just-In-Time (compiler)

JMS Java Message Service

JMX™ Java Management
Extensions

JNDI Java Naming and Directory
Interface

JNI Java Native Interface

JRE Java Runtime Environment

JScript Java Script

JSP JavaServer Pages

JSR Java Specification Request

JTA Java Transaction Architecture

JVM Java Virtual Machine

LTPA Lightweight Third Party
Authentication

MDB Message Driven Bean

MIME Multipurpose Internet Mail
Extensions

MMC Microsoft Management
Console

MOM Message-oriented
Middleware

MOM Microsoft Operations
Manager

MSDN Microsoft Developer Network

MSIL Microsoft Intermediate
Language

MTS Microsoft Transaction
Services

ODBC Open Database Connectivity

ORB Object Request Broker

OS Operating System

PMI Performance Monitoring
Infrastructure

RAR Resource Adapter Archive

RCW Runtime-Callable Wrapper

RFC Request for Comment

RMI Remote Method Invocation

RMI/IIOP Remote Method Invocation
over InterOperable Object
Protocol

RPC Remote Procedure Call

SCM Service Control Manager

SOA Service-Oriented Architecture

SOAP Simple Object Access
Protocol (now simply SOAP)

SPML Service Provisioning Markup
Language

SQL Structured Query Language

SSL Secure Sockets Layer

SwA SOAP with Attachments

SWAM Simple WebSphere
Authentication Mechanism

TCP/IP Transport Control
Protocol/Internet Protocol

TLS Transport Layer Security

UDDI Universal Description.
Discovery and Integration

UDP User Datagram Protocol

UML Unified Modelling Language

URI Universal Resource Identifier

URL Universal Resource Locator

UTP-16 A universal 2 byte character
encoding scheme

UTP-8 A universal mixed one and
two byte character encoding
scheme

VBScript Visual Basic Script

W3C World Wide Web Consortium

WAR Web Archive

WLM Workload Manager

WMI Windows Management
Instrumentation

382 IBM WebSphere and Microsoft .NET Interoperability

WS- Web Service

WS-CAF Web Service Composite
Application Framework

WSDL Web Services Definition
Language

WSDL Web Services Description
Language

wsdl2java Web Services to Java
(converts WSDL to Java
object)

WS-I Web Services Interoperability
organization

WSIF Web Services Invocation
Framework

WSIL Web Services Inspection
Language

WS-RM Web Services Reliable
Messaging

WSRP Web Services for Remote
Portals

WS-TXM Web Services transaction
Management

X.509 Standard for Public-Key
Infrastructure

XACML Extensible Access Control
Markup Language

XDE Extended Development
Environment (IBM)

XMI XML metadata interchange

XML Extensible Markup Language

XOP XML Binary Optimized
Package

XSD XML Schema Definition

 Abbreviations and acronyms 383

384 IBM WebSphere and Microsoft .NET Interoperability

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 390. Note that some of the documents referenced here may
be available in softcopy only.

� EJB 2.0 Development with WebSphere Studio Application Developer,
SG24-6819

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere and .NET Coexistence, SG24-7027

� WebSphere and .Net Interoperability Using Web Services, SG24-6395

� WebSphere Application Server Network Deployment V6: High Availability
Solutions, SG24-6688

� WebSphere Application Server V6 Planning and Design WebSphere
Handbook Series, SG24-6446

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6 Security Handbook, SG24-6316

� WebSphere MQ Security in an Enterprise Environment, SG24-6814

� WebSphere MQ Solutions in a Microsoft .NET Environment, SG24-7012

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

IBM Redpapers
� WebSphere Application Server V6: System Management Problem

Determination, REDP-4067

� WebSphere Application Server V6 Technical Overview, REDP-3918

© Copyright IBM Corp. 2006. All rights reserved. 385

Other publications
These publications are also relevant as further information sources:

� WebSphere MQ Using Java, SC34-6066

� Richter, Applied Microsoft .NET Framework Programming, Microsoft Press,
2002, ISBN 0735614229

Online resources
These Web sites and URLs are also relevant as further information sources:

� .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/
html/gnconwebservicedirectivesyntax.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconregisteringassemblieswithcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp

� .NET remoting information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/
html/cpconnetremotingoverview.asp

� .NET runtime

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp

� .NET security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/
html/THCMCh06.asp

� Apache Ant project

http://ant.apache.org/

� Apache Jakarta project

http://jakarta.apache.org/log4j

� Apache WSIF project

http://ws.apache.org/wsif/

� ASP.NET Web applications

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

386 IBM WebSphere and Microsoft .NET Interoperability

http://ant.apache.org/
http://jakarta.apache.org/log4j
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp
http://ws.apache.org/wsif/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetremotingoverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconregisteringassemblieswithcom.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh19.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/gnconwebservicedirectivesyntax.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh06.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfwebservicesdescriptionlanguagetoolwsdlexe.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q325056

� Asynchronous Web Services Web site

http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html

� Enterprise Patterns

http://www.enterpriseintegrationpatterns.com/

� GNU Licence information

http://www.gnu.org/copyleft/lesser.html

� IBM Redbooks Web site

http://www.redbooks.ibm.com

� IBM WebSphere Application Server Web site

http://www-3.ibm.com/software/webservers/appserv/

� IBM WebSphere Integrator Web site

http://www-306.ibm.com/software/integration/wmq/

� IBM WebSphere Performance and Scalability best practices

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

� IIOP.NET Web site

http://iiop-net.sourceforge.net/

� Interface Tool for Java (formerly known as IBM Bridge2Java) Web site

http://www.alphaworks.ibm.com/tech/bridge2java

� J2EE RequestDispatcher information

http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html

� Ja.NET Web site

http://ja.net.intrinsyc.com/ja.net/info/

� Janeva Web site

http://www.borland.com/janeva/

� Java Community Process

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

� Java RMI Web site

http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html

� JNBridge Web site

http://www.jnbridge.com

 Related publications 387

http://www-3.ibm.com/software/webservers/appserv/
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://www.enterpriseintegrationpatterns.com/
http://www.alphaworks.ibm.com/tech/bridge2java
http://www-306.ibm.com/software/integration/wmq/
http://www.redbooks.ibm.com
http://www-106.ibm.com/developerworks/webservices/library/ws-asynch1.html
http://iiop-net.sourceforge.net/
http://www.gnu.org/copyleft/lesser.html
http://ja.net.intrinsyc.com/ja.net/info/
http://www.jnbridge.com
http://www.borland.com/janeva/
http://java.sun.com/products/jdk/rmi/
http://java.sun.com/marketing/collateral/javarmi.html
http://java.sun.com/j2ee/1.4/docs/api/javax/servlet/RequestDispatcher.html
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

� Microsoft ASP.NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/
html/cpconpage.asp

� Microsoft .NET information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/ht
ml/cpconcontrolexecutionlifecycle.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html
/vbconintroductiontontserviceapplications.asp

� Microsoft Active Directory

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstecha
rt/html/vstchdeployingvsusingactivedirectory.asp

� Microsoft clustering

http://www.microsoft.com/windows2000/technologies/clustering/

� Microsoft IIS information

http://www.microsoft.com/windows2000/en/server/iis/default.asp

� Microsoft Patterns

http://www.microsoft.com/resources/practices/default.asp

� Microsoft Server clustering

http://www.microsoft.com/windows2000/technologies/clustering/default.asp

� Microsoft SPNEGO details

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/
html/http-sso-1.asp

� Microsoft Systems Management Server

http://www.microsoft.com/smsmgmt/default.asp

� Microsoft Tlbimp tool information

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/
html/cpgrfTypeLibraryImporterTlbimpexe.asp

� Microsoft Web site

http://www.microsoft.com

388 IBM WebSphere and Microsoft .NET Interoperability

http://www.microsoft.com
http://www.microsoft.com/resources/practices/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconcontrolexecutionlifecycle.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vbconintroductiontontserviceapplications.asp
http://www.microsoft.com/windows2000/technologies/clustering/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/vstchdeployingvsusingactivedirectory.asp
http://www.microsoft.com/windows2000/en/server/iis/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnsecure/html/http-sso-1.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconpage.asp
http://www.microsoft.com/windows2000/technologies/clustering/
http://www.microsoft.com/smsmgmt/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cptools/html/cpgrfTypeLibraryImporterTlbimpexe.asp

� Microsoft WMI information

http://msdn.microsoft.com/library/techart/mngwmi.htm

� OMG Web site

http://www.omg.org

� Patterns for e-business

http://www.ibm.com/developerworks/patterns/

� SOAP encoding performance

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

� Sun EJB information

http://java.sun.com/products/ejb/

� Sun JAAS information

http://java.sun.com/products/jaas

� Sun J2EE information

http://java.sun.com/j2ee/

� Sun JSP information

http://java.sun.com/products/jsp/

� UDDI Web site

http://www.uddi.org

� W3C DOM specification

http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202

� W3C SOAP specification

http://www.w3.org/TR/SOAP/

� Web Services Quality of Service

http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/

� Web Services security roadmap

http://www.ibm.com/developerworks/webservices/library/ws-secmap/

� WebSphere Application Server prerequisites

http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� WebSphere InfoCenter

http://www-3.ibm.com/software/webservers/appserv/infocenter.html

� WebSphere MQ MA7P Support pack

http://www-3.ibm.com/software/integration/support/supportpacs/individual/
ma7p.html

 Related publications 389

http://www-3.ibm.com/software/webservers/appserv/infocenter.html
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www.ibm.com/developerworks/patterns/
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://www-3.ibm.com/software/integration/support/supportpacs/individual/ma7p.html
http://www.omg.org
http://www.w3.org/TR/SOAP/
http://www.uddi.org
http://java.sun.com/products/jsp/
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/
http://www-3.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://java.sun.com/products/jaas
http://msdn.microsoft.com/library/techart/mngwmi.htm
http://www-106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www.ibm.com/developerworks/webservices/library/ws-secmap/
http://www.w3.org/TR/DOM-Level-3-Core/core.html#ID-1590626202

� WebSphere prerequisites Web site

http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/prereq502.
html

� WS-Addressing

http://www.ibm.com/developerworks/webservices/library/ws-add/

� WS-Coordination

http://www.ibm.com/developerworks/webservices/library/ws-coor/

� WS-I

http://www.ws-i.org/

� WS-Security

http://www.ibm.com/developerworks/library/ws-secure/

� WS-Transaction

http://www.ibm.com/developerworks/webservices/library/ws-transpec/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

390 IBM WebSphere and Microsoft .NET Interoperability

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www-3.ibm.com/software/webservers/appserv/doc/v50/prereqs/prereq502.html
http://www.ibm.com/developerworks/webservices/library/ws-add/
http://www.ws-i.org/
http://www.ibm.com/developerworks/library/ws-secure/
http://www.ibm.com/developerworks/webservices/library/ws-coor/
http://www.ibm.com/developerworks/webservices/library/ws-transpec/

Index

Symbols
(SOAP) Simple Object Access Protocol 70
.aspx file 117
.NET COM interop 184
.NET components 156
.NET configuration 138
.NET configuration files 109
.NET debug configuration 128
.NET enterprise servers 119
.NET enterprise services 97
.NET environment 96
.NET evolution 96
.NET framework 101
.NET initiative 92
.NET key values 96
.NET languages 101
.NET platform 91
.NET redistributable 101
.NET Remoting 100
.NET Service

WebSphere findCustomer 338
.NET Software Development Kit 140
.NET suite 100
.NET Web Service 326

client
sign requests 366

encrypting messages 342
Web Service Extensions 345

.NET Web Service proxy 329

.NET Windows Form client application 222

A
Abstract Window Toolkit (AWT) 151
access control 48
Access Data Object (ADO) 93
ACT (Application Center Test) 132
Active Directory 138
Active Server Page.NET (ASP.NET) 99
Active Server Pages (ASP) 93
ActiveX

control 152
ActiveX Data Object (ADO) 96
Additional material 377

© Copyright IBM Corp. 2006. All rights reserved.
administrative tools 136
ADO (Access Data Object) 93
ADO (ActiveX Data Object) 96
ADO.NET 139
AJAX (Asynchronous JavaScript and XML) 13
Appendices 375
application

assembler 34
behavior 80
cells 65
client module 44
code 81
component provider 34
configuration file 109
connectivity 57
developer 54
development 76
logging 144
nodes 65
packaging 43
servers 65

application architecture model 6
business logic tier 9
client tier 7
data tier 9
presentation tier 8

Application Center Test (ACT) 132
Application considerations 166
application interoperability 3

drivers 4
models 6
stack 27

application layer 28
control layer 29
data layer 29
transport layer 29

Application interoperability models 6
Application interoperability stack 27
approaches

bridging 181
cross compilation 181
messaging and queing 181
porting 181
remote procedure calls 181

 391

Approaches for interoperability 25
architecture

model 73
client server n-tier 6

Architectureal overview of stand-alone WebSphere
application server 63
ASP (Active Server Pages) 95
ASP.NET

authentication 143
component trace 145

ASP.NET (Active Server Page.NET) 99
Assemblies 107
assembly 107

metadata 108
resources 108
versioning 110

asynchronous
interaction 169
message queuing 197
processing 174
service 234

Asynchronous JavaScript and XML (AJAX) 13
authentication

mechanisms 52
services 143

AWT (Abstract Window Toolkit) 151

B
B2B (business-to-business) 37
basic interaction outline

calculator component 192
client component 192

bean managed persistence (BMP) 155
Best of Breed (BoB) 5
binding

SOAP 278
BMP (bean managed persistence) 155
BoB (Best of Breed) 5
BPEL4WS (Business Process Execution Language
for Web Services) 260
Building the claims .NET Web Service 313
Building the claims Websphere Web Service 295
business

integration 57
layer 99
layer components 157
logic 154
logic tier 39

objects 100
portals 59

Business Process Execution Language for Web
Services (BPEL4WS) 260
business-to-business (B2B) 37

C
calculator service 194
Calculator service class diagram 195
callbacks 179
CLI (Common Language Infrastructure) 102
client

activation 158
application 324
applications 32
components 41
console 152
container 46
side components 150

client server application
business logic 6
data tiers 6
the presentation 6

client tier
interoperability

client to business 12
client to client 10
client to data 16
client to presentation 11

rich application clients 7
smart clients 7
thin application clients 7

Client tier to presentation tier interoperability 11
Client to client tier interoperability 10
CLR (Common Language Runtime) 96
CLS (Common Language Specification) 101
CMP (container managed persistence) 155
code animation 129
COM (Component Object Model) 93
COM service proxy 184
COM+ Services 94
Common Language Infrastructure (CLI) 102
Common Language Runtime (CLR) 101
Common Language Specification (CLS) 103
Common Object Request Broker Architecture
(CORBA) 54
Common Type System (CTS) 107
communication technologies 53

392 IBM WebSphere and Microsoft .NET Interoperability

compatibility testing 50
Component interoperability 147, 247
component interoperability 147, 149

designing 165
Component interoperability scenario 191
Component Object Model (COM) 93
component technologies 52
Components overview 150
Configure the Development Environment 295
container managed persistence (CMP) 155
Control considerations 179
CORBA (Common Object Request Broker Architec-
ture) 54
Creating messaging resources, schema and class-
es 211
CTS (Common Type System) 107

D
data

considerations 176
encryption 143
formats 54
layer 100
modeler 74

Data considerations 176
database connection pooling 139
DB2 70

stored procedures 78
UDB 77
XML extender 78

DCI (DirectCarInsure.com) 294
debug

builds 128
settings 128

debugging instrumentation 130
deployer 34
deployment 134

copying files 134
failover 144
project types 135
setup 134

deserialization 279
design patterns 81
Develop the interoperability adapter 222
Developing .NET applications 121
Developing the .NET Windows Form client 222
Developing the WebSphere service 234
development

platforms 66
DirectCarInsure.com (DCI) 294
distributed server configuration 63
Distributed Transaction Coordinator (DTC) 141
Document Type Definitions (DTD) 79
document/encoded 280
document/literal 280

wrapped 281
Drivers for interoperability 4
DTC (Distributed Transaction Coordinator) 141
DTD (Document Type Definitions) 79
DTD editor 79

E
EAR (Enterprise Archive) 43
e-business 57
Eclipse Modeling Framework (EMF) 68
edge servers 57
EGL (Enterprise Generation Language) 79
EIS (Enterprise Information Systems) 24, 53
EJB

container 40
module 44

EJB (Enterprise JavaBeans) 9
Elements of interoperability 27
Elements of Web Services interoperability 270
EMF 68
EMF (Eclipse Modeling Framework) 68
encoding

SOAP 279
Encrypting messages to .NET Web Service 342
Enterprise Archive (EAR) 43
Enterprise Generation Language (EGL) 79
Enterprise Information Systems (EIS) 24
Enterprise JavaBeans (EJB) 9, 32
entity beans 155
exception handling 368
Exception handling in the stub generated from a Mi-
crosoft .NET WSDL file 370
execution support 106
extensibility 49
Extensible Markup Language (XML) 79

F
FCL (Framework Class Library) 112
Framework Class Library (FCL) 101

 Index 393

G
GAC (Global Assembly Cache) 109
garbage collection 48
garbage collector 104
Generate the .NET classes corresponding to the
XML schema 221
Generate the Java classes corresponding to the
XML schema 221
Global Assembly Cache (GAC) 111
graphical user interface (GUI) 83
GUI (graphical user interface) 76

H
HTTP (Hypertext Transfer Protocol) 53
Hypertext Transfer Protocol (HTTP) 53

I
IBM

MultiSite 85
Rational

developer network 89
functional tester 88
manual tester 83
performance tester 83
portfolio manager 87
ProjectConsole 87
PurifyPlus 88
RequisitePro 73
robot 88
SoDA 87
software architect 80
software modeler 73
suite 88
TestManager 82

Rational Application Developer
WebSphere Software 76

Rational ClearCase 85
Change Management Solution 85

Enterprise Edition 85
LT 85
MultiSite 85

Rational Rose
data modeler 73
technical developer 81
XDE Developer Plus 88

Rational Team
unifying platform 87

Rational Unified Process (RUP) 88

Rational Web Developer
WebSphere Software 75

RUP (Rational Unified Process) 88
SDP (Software Development Platform) 72
Software Development Platform 68

construction 72
design 72
Design and construction 74
portfolio management 72
process 86
Requirements and analysis 72
requirements and analysis 72
Software configuration management 85
software configuration management 72
Software quality 82
software quality 72

Software Development Platform (SDP)
products 72

WebSphere 61
Business Integration Server Foundation 59
MQ Workflow 58
Studio Asset Analyzer 81
Studio Enterprise Developer 81

IBM MDD platform 70
IBM Software Development Platform 66
IDE (Integrated Development Environment) 68
IDL (Java Interface Definition Language) 54
IIOP (Internet Inter-ORB Protocol) 54
IIOP.NET 186
IIS (Internet Information Server) 93
IIS 6.0 378
information technology (IT) 4
Installing and configuring the queues 203
Integrated Development Environment (IDE) 68
interaction dynamics 166
interaction management 166
intermediate language 105
Internet Information Server (IIS) 95
Internet Inter-ORB Protocol (IIOP) 54
Internet Protocol (IP) 53
Internet Services Manager 137
interoperability

approaches 25
class level 25
service-oriented 25

best of breed integration 5
client tier

client to client 10
elements 27

394 IBM WebSphere and Microsoft .NET Interoperability

activities 29
constraints 29

extended enterprise 5
scenarios 9

business tier 21
client tier 9
data tier 24
presentation tier 17

technology transition
emerging technologies 4
mergers/acquisitions 4
platform migration 4

Interoperability architecture elements 27
Introduction 1
Introduction to component interoperability 159
Introduction to the claims scenario 294
Introduction to Web Services 250
Introduction to Web Services Interoperability 249
IP (Internet Protocol) 53
IT (information technology) 4
ItsoClaim Project

add Web reference 338

J
J2EE

application environment 42
architecture

technology support 52
component model 38
data resources tier 37
n-tier architecture 35
presentation tier 36
security 48

auditing 49
authentication 50
data integrity 49
data privacy 49
flexibility 50

specification 32
J2EE (Java 2 Enterprise Edition) 31
J2EE Connector Architecture (JCA) 24
J2SE (Java 2 Standard Edition platform) 39
JAF (JavaBeans Activation Framework) 54
Janeva 187
Java

classes 80
programming language 43
runtime environment 42

Servlet API 153
Java 2 Enterprise Edition (J2EE) 324
Java 2 Standard Edition platform (J2SE) 39
Java Connector Architecture (JCA) 45
Java Database Connectivity (JDBC) 52
Java Emitter Templates (JET) 68
Java Interface Definition Language (IDL) 54
Java Message Service (JMS) 54
Java Naming and Directory Interface (JNDI) 53
Java Server Pages (JSP) 154
Java Server Pages Standard Tag Library (JSTL)
154
Java Transaction API (JTA) 52
Java Virtual Machine (JVM) 42
Java Web Services Developer Pack (JWSDP) 221
JavaBeans 78
JavaBeans Activation Framework (JAF) 54
JavaMail 54
JavaServer

faces 71
pages 75

JCA (J2EE Connector Architecture) 24
JCA (Java Connector Architecture) 45
JDBC (Java Database Connectivity) 52
JET (Java Emitter Templates) 68
J-Integra 187
JIT (Just-In-Time) 129
JMS

TextMessage 241
JMS (Java Message Service) 54
JNBridge 187
JNDI (Java Naming and Directory Interface) 53
JSP (Java Server Pages) 154
JSTL (Java Server Pages Standard Tag Library)
154
JTA (Java Transaction API) 52
Just-In-Time (JIT) 105
JVM (Java Virtual Machine) 42
JWSDP (Java Web Services Developer Pack) 221

L
LGI (Lord General Insurance) 294
life cycle management 47
Lightweight Third Party Authentication (LTPA) 52
listener port 218
literal

encoding 279
XML 280

 Index 395

load
balancing 144
testing 131

Lord General Insurance (LGI) 294
LTPA (Lightweight Third Party Authentication) 52

M
machine configuration file 109
managed code 99
marshalling 279
MDAC (Microsoft Data Access Components) 96
MDD (Model-Driven Development) 69
mergers and acquisitions scenario

ClaimException 369
findCustomer 369
registerClaim 369

message
format 193
queuing 95
routing 174
transformation 174

message driven bean 234
Message Transmission Optimization Mechanism
282
messaging

authentication 143
classes 211
middleware 170
resources 211
schema 211
technologies 54

Microsoft
operations manager 137
patterns 97
Visual Studio .Net 2003 321, 378

Microsoft Data Access Components (MDAC) 96
Microsoft intermediate language (MSIL) 108
Microsoft Message Queue (MSMQ) 93
Microsoft Transaction Server (MTS) 93
Model View Controller (MVC) 35
Model-Driven Development (MDD) 70
Model-View-Controller 40
MSIL (Microsoft intermediate language) 108
MSMQ (Microsoft Message Queuing) 141
MTOM 282
MTS (Microsoft Transaction Server) 93
MVC (Model View Controller) 35

N
Network Load Balancing 144
Network News Transfer Protocol (NNTP) 95
n-layer model 98
NNTP (Network News Transfer Protocol) 95
non-distributed transactions 141
non-repudiation 49

O
object

array management 371
pooling 48

Object Management Group (OMG) 54
OMG (Object Management Group) 54
onMessage() method 234
operation

overloading 281
Overview 1
Overview of the Microsoft architecture 97
Overview of Web Services Interoperability 262

P
parameter multiplicity specification 373
performance 139

counter 131
monitor 131

portable executable (PE) 107
presentation layer 99

components 156
private assembly 109
process integration 58
product

provider 34

Q
queues

configuration 203
installation 203

R
RAD (Rapid Action Development) 124
Rapid Action Development (RAD) 124
RAR (Resource Adapter Archive) 45
Registration request data error message 341
Remote Method Invocation (RMI) 53
remoting 139

activation 158

396 IBM WebSphere and Microsoft .NET Interoperability

authentication 143
channel 157
formatter 157
transport 157

resource
adapter module 45

Resource Adapter Archive (RAR) 45
resource layer 100
RMI (Remote Method Invocation) 53
role-based

security 142
solutions portfolio 71

RPC
style 278

RPC/encoded 280
RPC/literal 280
Running .NET applications 133
Running the .NET application 246

S
SAAJ 282
Sample type definition 274
Scenario Description 192
SCM (software configuration management) 85
SDO (Service Data Object) 70
Secure Socket Layer (SSL) 53
security 142

configuration file 110
serialization 279
server

activation 158
clustering 144

service
façade 170
technologies 52

Service Data Object (SDO) 70
serviced components 141
session

beans 155
EJB 40

Setting up the MQServer Environment Variable on
the .NET machine 210
Shared assembly 109
Simple Mail Transfer Protocol (SMTP) 95
Simple Object Access Protocol (SOAP) 70
Simple WebSphere Authentication Mechanism
(SWAM) 52
SimpleDataGateway 117

SMTP (Simple Mail Transfer Protocol) 95
SOAP

binding 278
body 369
encoding 279
fault 368

SOAP Encoding 279
SOAP Messages with Attachments 282
SOAP with Attachments API for Java 282
software configuration management (SCM) 85
source code management 127
Spy++ 130
SSL (Secure Socket Layer) 53
stand-alone server configuration 62
state

limitations 172
management 172
object 168

state management 166
state-dependent operations 173
stateful

asynchronous interaction 172
interaction 166
messages 173
synchronous interaction 166

stateless
asynchronous interaction 170
interaction 167
synchronous interaction 168

Stateless synchronous interaction 167
Structure of Common Language Runtime (CLR)
103
stub 53
style 280
SWAM (Simple WebSphere Authentication Mecha-
nism) 52
swing 151
system

administrator 34
prerequisites 201

T
tamper-proof assemblies 142
TCP (Transport Control Protocol) 53
Testing the sample application 244
Testing with the Web Services Explorer 306
Text form of CalculatorSchema 220
The .NET initiative 92

 Index 397

The .NET suite 100
The client application 324
The WebSphere platform 54
tracing instrumentation 130
transaction management 141
transparency 49
Transport considerations 187
Transport Control Protocol (TCP) 53
TroubleShooting 246
type

definition 274
mapping 177
metadata 108
mismatch 275

U
unit testing 127
unmanaged code 99
unmarshalling 279
user registry 52
utility

JAR 45

V
VES (Virtual Execution System) 103
Virtual Execution System (VES) 103
Visual Source Safe (VSS) 127
Visual Studio .NET 124

debugger 128
VSS (Visual Source Safe) 127

W
WAR (Web archive) 44
WAS ND (WebSphere Application Server Network
Deployment) 61
Web

applications 32
components 39
container 46
module 44
references 152

Web archive (WAR) 44
Web components

filters 39
Web Services

architecture model 261
authentication 143

background 250
differences 368
interoperability 247

designing 269
model 251
runtime 283
security 342

Web Services activities
description activities 270
invocation activities 271

Web Services categories 253
Web Services Choreography Description Language
(WS-CDL) 260
Web Services constraints 281
Web Services description 273
Web Services Description Language (WSDL) 14
Web Services Enhancements 2.0 378
Web Services Interoperability 249
Web Services interoperability 247, 375
Web Services interoperability scenario 293
Web Services invocation 278
WebSphere 54

application server 57, 309
JMS resources 211
network deployment 57

business integration
adapters 57
connect 58
event broker 58
express 58
message broker 57
modeler 59, 73
monitor 58, 73
server 58
Server Express Plus 59
server foundation 59
workbench server 58

calculator component 234
client

encrypted requests 348
commerce 60

business edition 60
professional edition 61

data interchange 57
extended deployment 57
host Integration server 57
integrator 174
InterChange Server 58
platform 31

398 IBM WebSphere and Microsoft .NET Interoperability

product center 59
programming model 70
Web service support 283

WebSphere and .NET platforms 147
WebSphere application server distributed server en-
vironment. 64
WebSphere Application Server Network Deploy-
ment (WAS ND) 61
WebSphere MQ 58

messaging 196
queue destinations 214
server

configure 203
install 203

workflow 58
WebSphere Studio Application Developer 378
WebSphere Web Service

signed messages 354
WebSphere/J2EE for .NET developers 32
Why choose component interoperability 162
Windows

applications 126
DNA 92
event log 145
Form .NET client 230
project types 126

Windows 2000
native services 95

Windows Management Interface (WMI) 145
WMI (Windows Management Interface) 145
Writing C# 121
WS-CDL (Web Services Choreography Description
Language) 260
WSDL

conversion 281
WSDL (Web Services Definition Language) 70
WSDL (Web Services Description Language) 14
WS-I

validation tools 284
WS-manageability 261
WS-Security

interoperability 291

X
XKMS (XML Key Management Specification) 259
XMI 280
XML

editor 79

metadata interchange
see XMI

schema
.NET classes 221
editor 79
Java classes 221
messages 219

XML (Extensible Markup Language) 79
XML Key Management Specification (XKMS) 259
XSD 368
XSL editor 79

 Index 399

400 IBM WebSphere and Microsoft .NET Interoperability

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

IBM
 W

ebSphere and M
icrosoft .NET Interoperability

IBM
 W

ebSphere and M
icrosoft

.NET Interoperability

IBM
 W

ebSphere and
M

icrosoft .NET
Interoperability

IBM
 W

ebSphere and M
icrosoft .NET Interoperability

IBM
 W

ebSphere and
M

icrosoft .NET
Interoperability

IBM
 W

ebSphere and
M

icrosoft .NET
Interoperability

®

SG24-6799-00 ISBN 0738495573

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

IBM WebSphere and
Microsoft .NET
Interoperability

Application
interoperability
overview

Component and Web
Services
interoperability

Inteoperability
scenarios

This IBM Redbook explores interoperability design between
applications running on IBM WebSphere and Microsoft’s .NET
platforms at the component level and using Web Services
technologies. It is a good source of information for IT architects, IT
specialists, application integrators and developers who have to
design and develop interoperability solutions.

Part 1, "Introduction", provides an overview of application
interoperability starting with the business and technology drivers and
introduces the concept of the Application Interoperability Stack,
which defines a structured approach for application interoperability
considerations and design.

Part 2, "Component interoperability", provides an overview for
component level interoperability and considerations to help with
component interoperability solution design. A sample scenario
shows interoperability between the WebSphere Java service
component and .NET Windows Forms application.

Part 3, “Web Services interoperability”, introduces application
interoperability implementation using Web Services technologies. It
includes considerations to aid solution design and a sample scenario
implementation showing WebSphere to .NET interoperability using
Web Services technologies.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	What this redbook is about
	What this redbook is not about
	The target audience
	Structure of this book
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Application interoperability overview
	1.1 Drivers for application interoperability
	1.1.1 Technology transition
	1.1.2 Best of breed integration
	1.1.3 The extended enterprise

	1.2 Application interoperability models
	1.2.1 Application architecture model
	1.2.2 Interoperability scenarios

	1.3 Approaches for interoperability
	1.3.1 Service-oriented approach
	1.3.2 Class level approach

	1.4 Elements of interoperability
	1.4.1 Application interoperability stack
	1.4.2 Activities
	1.4.3 Constraints

	Chapter 2. Introduction to J2EE and WebSphere platform
	2.1 Introduction to J2EE
	2.1.1 Roles in J2EE environment
	2.1.2 J2EE n-tier architecture
	2.1.3 J2EE component model
	2.1.4 J2EE application environment
	2.1.5 Security in J2EE
	2.1.6 Technologies supporting J2EE architecture

	2.2 The WebSphere platform
	2.2.1 The WebSphere family
	2.2.2 The WebSphere Application Server family
	2.2.3 Stand-alone server configuration
	2.2.4 Distributed server configuration

	2.3 IBM Rational Software Development Platform
	2.3.1 IBM Rational Software Development Platform technologies
	2.3.2 The IBM Rational Software Development Platform products

	Chapter 3. Introduction to .NET platform
	3.1 The .NET initiative
	3.1.1 Windows DNA
	3.1.2 Evolution of .NET

	3.2 The .NET suite
	3.2.1 The .NET Framework
	3.2.2 ASP.NET
	3.2.3 .NET enterprise servers

	3.3 Developing .NET applications
	3.3.1 Writing a C# application using text editor
	3.3.2 Developing applications using Microsoft Visual Studio .NET
	3.3.3 Testing

	3.4 Deploying and managing .NET applications
	3.4.1 Deployment
	3.4.2 Runtime
	3.4.3 Administration
	3.4.4 Windows Services
	3.4.5 Object pooling
	3.4.6 Remote invocation
	3.4.7 Web Services
	3.4.8 Transaction management
	3.4.9 Security
	3.4.10 Load balancing and failover
	3.4.11 Application logging

	Part 2 Component interoperability
	Chapter 4. Introduction to component interoperability
	4.1 Components overview
	4.1.1 Client side components
	4.1.2 Server side components

	4.2 Introduction to component interoperability
	4.3 Why choose component interoperability?
	4.3.1 Interface
	4.3.2 Transaction
	4.3.3 Interaction
	4.3.4 Events

	Chapter 5. Designing component interoperability
	5.1 Application considerations
	5.1.1 Interaction and state management
	5.1.2 Message format
	5.1.3 Life cycle management

	5.2 Data considerations
	5.2.1 Type mapping
	5.2.2 Pass by value or reference
	5.2.3 Callbacks

	5.3 Control considerations
	5.3.1 Factors
	5.3.2 Approaches
	5.3.3 Products

	5.4 Transport considerations
	5.4.1 Run on the same machine
	5.4.2 Different machines

	Chapter 6. Component interoperability scenario
	6.1 Scenario description
	6.1.1 Basic interaction outline
	6.1.2 Message format
	6.1.3 The calculator service
	6.1.4 Messaging using WebSphere MQ
	6.1.5 System prerequisites

	6.2 Solution overview
	6.3 Queues installation and configuration
	6.3.1 Install and configure the WebSphere MQ Server on the server
	6.3.2 Install and configure WebSphere MQ Client on the client

	6.4 Create messaging resources, schemas, and classes
	6.4.1 Create JMS resources in WebSphere Application Server
	6.4.2 Create the XML schema for messages
	6.4.3 Generate the .NET classes corresponding to the XML schema
	6.4.4 Generate the Java classes corresponding to the XML schema

	6.5 Developing the .NET Windows Form client application
	6.5.1 Developing the interoperability adapter
	6.5.2 Developing the Windows Form .NET client

	6.6 Developing the WebSphere calculator component
	6.7 Testing the sample application
	6.7.1 Troubleshooting

	Part 3 Web Services interoperability
	Chapter 7. Introduction to Web Services Interoperability
	7.1 Introduction to Web Services
	7.1.1 Web Services background
	7.1.2 Web Services model
	7.1.3 Web Services specifications
	7.1.4 Web Services architecture model

	7.2 Overview of Web Services Interoperability
	7.2.1 Profiles
	7.2.2 Sample applications
	7.2.3 Testing tools

	Chapter 8. Designing Web Services interoperability
	8.1 Elements of Web Services interoperability
	8.1.1 Web Services activities
	8.1.2 Web Services constraints

	8.2 Web Services description
	8.3 Web Services invocation
	8.4 Web Services constraints
	8.4.1 WS-I Basic Profile V1.1
	8.4.2 WS-I Attachments Profile V1.0
	8.4.3 WS-I Support
	8.4.4 Web Services description constraints

	8.5 WS-Security support

	Chapter 9. Web Services interoperability scenario
	9.1 Introduction to the claims processing scenario
	9.2 Building the WebSphere Claims Web Service
	9.2.1 Configure the Development Environment
	9.2.2 Create Web Service from Session EJB
	9.2.3 Testing with the Web Services Explorer
	9.2.4 Deploying the Web Service

	9.3 Building the .NET Claims Web Service
	9.3.1 Create Web service project
	9.3.2 Import existing classes
	9.3.3 Update the Web Service code
	9.3.4 Building and deploying the Web Service on IIS6
	9.3.5 Test the Microsoft .NET Web Service

	9.4 The client application
	9.4.1 Import the existing client
	9.4.2 Update the client to use the .NET Web Service
	9.4.3 Test the updated client
	9.4.4 Update the .NET Service to call WebSphere findCustomer
	9.4.5 Test the complete solution

	9.5 Web Services security
	9.5.1 Encrypting messages to .NET Web Service
	9.5.2 Signing requests from .NET to WebSphere Web Services

	9.6 Difference between the two Web Services
	9.6.1 Exception handling
	9.6.2 Object array management
	9.6.3 Parameter multiplicity specification

	Part 4 Appendices
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	IBM Redpapers
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

