
ibm.com/redbooks

Implementing NFSv4 in the
Enterprise:
Planning and Migration Strategies

Gene Curylo
Richard Joltes
Trishali Nayar
Bob Oesterlin

Aniket Patel

Planning and implementation examples
for AFS and DFS migrations

NFSv3 to NFSv4 migration
examples

NFSv4 updates in AIX 5L
Version 5.3 with 5300-03
Recommended Maintenance
Package

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Implementing NFSv4 in the Enterprise: Planning
and Migration Strategies

December 2005

International Technical Support Organization

SG24-6657-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (December 2005)

This edition applies to Version 5, Release 3, of IBM AIX 5L (product number 5765-G03).

Note: Before using this information and the product it supports, read the information in
“Notices” on page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
The team that wrote this redbook. xiv
Acknowledgments . xv
Become a published author . xvi
Comments welcome. xvii

Part 1. Introduction . 1

Chapter 1. Introduction . 3
1.1 Overview of enterprise file systems. 4
1.2 The migration landscape today . 5
1.3 Strategic and business context . 6
1.4 Why NFSv4? . 7
1.5 The rest of this book . 8

Chapter 2. Shared file system concepts and history 11
2.1 Characteristics of enterprise file systems . 12

2.1.1 Replication . 12
2.1.2 Migration . 12
2.1.3 Federated namespace . 13
2.1.4 Caching . 13

2.2 Enterprise file system technologies. 13
2.2.1 Sun Network File System (NFS) . 13
2.2.2 Andrew File System (AFS) . 14
2.2.3 Distributed Computing Environment/Distributed File System 15

2.3 General considerations when using enterprise file systems 16

Part 2. NFSv4 on AIX 5L V5.3 . 19

Chapter 3. NFSv4 implementation . 21
3.1 Implementation of the NFSv4 protocol in AIX 5L V5.3 22
3.2 NFSv4 features supported in the initial AIX 5L V5.3 release 22

3.2.1 External namespace (exname) support . 23
3.2.2 FSIDs and file handles . 25

3.3 Features introduced in AIX 5L V5.3 RML03 . 26
3.3.1 Delegation . 27

© Copyright IBM Corp. 2005. All rights reserved. iii

3.3.2 Referral . 30
3.3.3 Replication . 36

3.4 List of NFSv4 features supported in AIX 5L V5.3 50

Chapter 4. Using NFSv4 with JFS2 or GPFS . 53
4.1 AIX 5L enhanced journaled file system (JFS2) . 54

4.1.1 Comparing JFS2 with JFS . 56
4.1.2 JFS2 advanced features . 57
4.1.3 Using JFS2 with NFSv4 . 59
4.1.4 JFS2 ACLs versus NFSv4 ACLs. 59
4.1.5 How do we implement inheritance NFSv4 ACLs? 62

4.2 General Parallel File System (GPFS) . 63
4.2.1 Why GPFS? . 66
4.2.2 GPFS advantages. 67
4.2.3 When to consider GPFS . 70
4.2.4 Planning considerations for GPFS . 70
4.2.5 Using NFSv4 with GPFS. 70
4.2.6 NFSv4 export considerations for GPFS . 72
4.2.7 NFS usage of GPFS cache. 72
4.2.8 NFSv4 ACL administration . 72
4.2.9 NFS client with stale inode data . 79

4.3 Backup considerations . 79

Chapter 5. Using NFSv4 features. 81
5.1 Using the cache file system (CacheFS) . 82

5.1.1 CacheFS performance benefits . 82
5.1.2 CacheFS performance impacts. 83
5.1.3 Configuring CacheFS . 84

5.2 Managing LDAP automount maps . 85
5.3 Pseudo file system . 87
5.4 NFSv4 ACLs . 90

5.4.1 NFSv4 ACLs: ACL evaluation . 95
5.4.2 NFSv4 ACLs: Administration. 98
5.4.3 NFSv4 ACLs: ACL inheritance and umask 103
5.4.4 NFSv4 ACLs: Permissions scenarios . 110
5.4.5 NFSv4 ACLs: ACL evaluation flowchart for NFSv4 112
5.4.6 NFSv4 ACLs: NFSv3 clients . 114

Part 3. Preparing to use NFSv4 . 115

Chapter 6. Building an NFSv4 environment . 119
6.1 Environment used for demonstration scenarios 120
6.2 Infrastructure setup flow . 120
6.3 Network Time Protocol (NTP) configuration . 122

iv Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

6.4 IBM Tivoli Directory Server V5.2 . 122
6.4.1 Preparing the system for IBM Tivoli Directory Server installation . . 124
6.4.2 Installing IBM Tivoli Directory Server . 126
6.4.3 Configuring IBM Tivoli Directory Server . 127
6.4.4 Configuring Tivoli Directory Server to be a client of itself 133

6.5 IBM Network Authentication Services (Kerberos V5) server installation. 134
6.5.1 Setting up the environment . 134
6.5.2 Configuring the NAS server . 134

6.6 IBM Tivoli Directory Server client configuration. 140
6.7 IBM Network Authentication Services client install and configuration . . . 141

6.7.1 Integrated login (single sign-on) . 141
6.7.2 Standard login . 143
6.7.3 Adding NAS users. 144
6.7.4 Migrating existing users into NAS . 147
6.7.5 Installation details . 149

6.8 Installing GPFS . 150
6.8.1 Preparing the GPFS nodes for installation 151
6.8.2 Creating the GPFS directory . 151
6.8.3 Creating the GPFS installation table of contents file. 152
6.8.4 Installing GPFS through the network . 152
6.8.5 Verifying the GPFS installation . 153

6.9 Configuring GPFS . 153
6.9.1 Setting up the environment . 154
6.9.2 Creating the GPFS cluster and nodes . 155
6.9.3 Creating a GPFS file system. 156

Chapter 7. Migration considerations . 161
7.1 General migration considerations . 163
7.2 Types of migrations . 164

7.2.1 Switch-over migration . 164
7.2.2 Phased or rolling migration . 165
7.2.3 User-by-user or self-managed migration. 166

7.3 Hardware planning . 168
7.4 Individual component considerations . 169

7.4.1 Security . 169
7.4.2 RPCSEC_GSS security flavors. 170
7.4.3 RPCSEC_GSS protection levels. 170
7.4.4 User identity management options . 171
7.4.5 User and group identities and NFSv4 . 172
7.4.6 RPCSEC_GSS user authentication using Kerberos 172
7.4.7 User accounts and authentication resources 173

7.5 NFSv4 user authorization methods . 178
7.5.1 Choosing a user authorization method . 178

 Contents v

7.5.2 Other user authorization considerations . 179
7.5.3 NFSv4 host identification . 181
7.5.4 NFSv4 host authentication . 181
7.5.5 NFSv4 host authorization . 182

7.6 Choosing the appropriate file system types . 183
7.6.1 Backup systems . 183
7.6.2 Time services . 184
7.6.3 User data. 185

Chapter 8. Migration scenarios . 189

Part 4. Migrating to NFSv4 . 193

Chapter 9. NFSv3 to NFSv4 migration. 195
9.1 The test environment. 197
9.2 Using NFSv3 and NFSv4 side-by-side . 198
9.3 Migrating from NFSv3 to NFSv4 . 199
9.4 Using NFSv3 . 201
9.5 Using NFSv4 with NFSv3 . 202

9.5.1 Configuring the NFS domain. 202
9.5.2 Configuring the pseudo root file system . 203
9.5.3 Exporting file systems for access to NFSv3 and NFSv4 clients . . . 204
9.5.4 Mounting NFSv4 exports on the clients . 204
9.5.5 Mounting NFSv3 exports on the clients . 205
9.5.6 Differences between NFSv3 and NFSv4 mounts 206

9.6 Adding security . 206
9.6.1 Creating NFS service principals in Kerberos 207
9.6.2 Configuring the gssd daemon on the NFS server 208
9.6.3 Mapping Kerberos V5 realms to NFS domains. 208
9.6.4 Creating the NFS keytab file entry . 209
9.6.5 Configuring security on the clients. 210
9.6.6 Exporting NFS file systems with security . 213
9.6.7 Mounting an NFSv4 exported file system . 214

9.7 Namespace management . 214
9.7.1 How does the NFSv4 namespace help?. 216
9.7.2 Enhancing classic NFSv4 exports using the exname option 217

9.8 Setting a different pseudo root file system . 220

Chapter 10. Planning a migration from DFS . 223
10.1 An overview of DCE/DFS . 224

10.1.1 Servers and clients . 224
10.1.2 Cells . 225
10.1.3 Cross-cell communications . 226
10.1.4 Caching . 226

vi Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

10.1.5 Aggregates and filesets. 227
10.1.6 Replication . 227

10.2 Component-specific migration considerations. 228
10.2.1 Authentication services . 228
10.2.2 DCE/DFS principal and group considerations. 229
10.2.3 Migrating accounts from DCE to Kerberos V5 230
10.2.4 Authentication methods. 235
10.2.5 Additional considerations . 235

10.3 ACL migration considerations . 237
10.3.1 Understanding DFS ACL evaluations . 237
10.3.2 DFS to NFSv4 ACL translation . 240
10.3.3 DFS and NFSv4 ACL comparisons. 240
10.3.4 Example of DFS to NFSv4 ACL translation 240
10.3.5 Data migration. 243

Chapter 11. Illustrated DFS migration . 247
11.1 Test environment. 249
11.2 Migrating the DCE cell to LDAP/KRB5 . 249
11.3 Migrating user data . 256

11.3.1 Capturing existing ACLs in the DFS environment. 256
11.3.2 Copying data from DFS to the NFS namespace. 257
11.3.3 Restoring ACLs on the copied data . 258

Chapter 12. Planning a migration from AFS . 261
12.1 A broad overview of AFS. 262

12.1.1 A distributed file system . 262
12.1.2 Servers and clients . 262
12.1.3 Cells . 262
12.1.4 Transparent access and the uniform namespace 264
12.1.5 Security: Mutual authentication and access control lists 264
12.1.6 Volumes . 265
12.1.7 Efficiency boosters: Replication and caching 266

12.2 Security differences between AFS and NFSv4 266
12.2.1 Security and authorization in AFS. 266
12.2.2 Security in NFSv4 . 267
12.2.3 Migration considerations . 268

12.3 Migrating AFS users to NFSv4 . 269
12.4 Migrating AFS groups to NFSv4 . 270
12.5 Comparing an AFS “cell” and an NFS “domain” 272
12.6 File system semantics . 272

12.6.1 AFS implements save on close. 272
12.6.2 Difference between AFS and NFS . 273

12.7 Building a namespace . 273

 Contents vii

12.7.1 Pseudo file system . 273
12.7.2 External namespace (exname) . 273
12.7.3 Referrals and replication . 274

12.8 Migrating AFS data to NFSv4 servers. 276
12.8.1 Migration options. 276
12.8.2 NFS/AFS Translator . 278

12.9 Access control lists . 278
12.9.1 AFS ACL permissions . 279
12.9.2 NFS ACL permissions. 280
12.9.3 Detailed comparison of AFS and NFS ACLs 280
12.9.4 Example of an AFS to NFS ACL conversion. 282

Chapter 13. Illustrated AFS migration . 285
13.1 Introduction . 286
13.2 Existing AFS cell setup . 286
13.3 Setting the NFS domain to the AFS cell name 288
13.4 Setting up the KRB5/LDAP environment. 290
13.5 Migrating users to Kerberos and LDAP. 290
13.6 Migrating group information. 293
13.7 Migrating data . 298
13.8 Migrating ACLs . 300
13.9 Accessing the migrated data from NFSv4 clients 305

Part 5. Appendixes . 307

Appendix A. Test environment . 309

Appendix B. Case study: IBM Global Storage Architecture 313
Business problem. 314
Solution . 315

GPFS File system . 317
Security . 318
Load balancing . 319
Server hardware . 320
Storage . 321
Protocols and software . 322
Backups . 322
Time synchronization . 323
Kerberos and NFSv4. 323
Centralization . 324
Scalability . 324

Benefits of GSA File . 325
GSA File status . 326

viii Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix C. Configuring Network Time Service 329
Configuring the NTP server with a reference clock . 330
Configuring the NTP server without a reference clock 333
Configuring NTP clients . 336

Appendix D. AIX 5L V5.3 NFS quick reference . 339
NFS configuration files . 340
NFS daemons . 340
NFS commands . 341
Export options . 342
mount command options . 343
nfso command options and examples . 344
nfs4cl command options and examples . 347

Appendix E. Scripts and configuration files . 353
Sample LDAP LDIF file for the KDC realm. 354
Script to add users to the KDC. 354
DFS to AIXC ACL migration example . 356
DFS to NFSv4 migration example . 361
AFS to Kerberos/LDAP user migration. 368
AFS to Kerberos/LDAP group migration . 369
AFS to NFSv4 ACL migration. 370
Migrate DCE groups to LDAP . 376
Migrate DCE groups to LDAP . 378
Copy ACL . 382

Appendix F. Installing an AIX 5L maintenance level 385
Obtaining the latest fixes . 386

On the Web . 386
AIX 10/2005 Update CD . 386

Installation tips . 386
Installation . 386
Verifying the installation . 387

Appendix G. Sample migration planning worksheet 389

Appendix H. Additional material . 391
Locating the Web material . 392
Using the Web material . 392

Related publications . 393
IBM Redbooks . 393
Other publications . 393
Online resources . 394

 Contents ix

How to get IBM Redbooks . 395
Help from IBM . 395

Index . 397

x Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AFS®
AIX 5L™
AIX®
CICS®
DB2®
DFS™
DYNIX/ptx®
Encina®
Eserver®

FlashCopy®
HACMP™
ibm.com®
IBM®
Lotus®
Micro-Partitioning™
MQSeries®
OS/2®
POWER5™

pSeries®
Redbooks (logo) ™
Redbooks™
RS/6000®
Storage Tank™
Tivoli®
TotalStorage®
WebSphere®
xSeries®

The following terms are trademarks of other companies:

CacheFS, Solaris, Sun, Sun Enterprise, Sun Enterprise Authentication Mechanism, Sun Microsystems,
SunOS, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows NT, Windows, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

xii Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Preface

The most recent maintenance release of IBM® AIX® 5L™ Version 5.3 includes a
significant set of new features added to the Network File System version 4
Protocol (NFSv4) implementation. In 2004, the first IBM Redbook devoted to the
topic of NFSv4 implementation in AIX 5L was published: Securing NFS in AIX:
An Introduction to NFS V4 in AIX 5L, SG24-7204.

This IBM Redbook provides additional up-to-date information to help IBM clients
understand and take advantage of the new NFSv4 functions provided by AIX 5L
Version 5.3 with the 5300-03 Recommended Maintenance Package.

The NFSv4 implementation in AIX 5L has now expanded to provide core features
that make it capable of providing a much broader range of distributed file system
services than any prior version of NFS. The scope of this book includes methods
for implementing NFSv4 in the enterprise and extensive coverage of methods for
how it can potentially be used as a migration target for existing Andrew File
System (AFS®) and Distributed Computing Environment (DCE)/Distributed File
Service (DFS™)-based enterprise file systems.

The team that wrote this book. Front row L-R: Richard Joltes, Trishali Nayar, Bob Oesterlin
Back row L-R: Chris Almond, Aniket Patel, Gene Curylo

© Copyright IBM Corp. 2005. All rights reserved. xiii

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the IBM International Technical Support Organization, Austin Center.

Gene Curylo is an Advisory I/T Specialist and the Team Lead for IBM Shared
Filesystems, Austin Center. He has a total of 18 years of IT industry experience,
including the past nine with IBM. His areas of expertise include solution
implementations using Distributed Computing Environment (DCE), Distributed
File Systems (DFSs), Andrew File Systems (AFSs), NetDispatcher, Samba,
Apache, SQL, Linux®, and AIX 5L.

Richard Joltes is an Advisory Software Engineer in DCE/DFS Support and
SARPC Development at the IBM Pittsburgh Lab. A former instructor and
consultant at Harvard University, Richard has 20 years of industry experience,
with the last seven at IBM. He has been an active member of DECUS, Usenix,
and other professional organizations and has presented papers about electronic
publishing technologies and network management. His areas of expertise
include DCE/DFS, Kerberos, Encina®, TCP/IP, software development in C and
Perl, Ethernet networks, UNIX® system administration, system security, and
Linux.

Trishali Nayar is a Staff Software Engineer at the IBM India Software Labs,
Pune. She is currently the Technical Team Leader for the AFS L3 Support Team.
She graduated from the University of Pune with a Bachelor’s degree in Computer
Engineering. She has a total of eight years of IT industry experience, including
the past five with IBM. Her areas of expertise include Andrew File System (AFS),
Distributed File System (DFS), NFS, and software development in C/C++ on AIX
5L, Sun™ Solaris™, and Microsoft® Windows® platforms.

Bob Oesterlin is a Senior Technical Staff Member in IBM Global Services,
located in Rochester, Minnesota. Bob is currently assigned to the IBM Global
Account, responsible for the architecture of the IBM Global Account worldwide
storage and hosting offerings. He has worked at IBM for 27 years and has more
than 20 years of experience architecting and deploying distributed systems and
applications. His areas of expertise include DCE/DFS, AFS, NFS, TCP/IP,
Samba, and AIX 5L. He has presented at multiple AFS and DCE/DFS
conferences. Bob graduated from the University of Minnesota with a Bachelor of
Science degree in Electrical Engineering. He is also a member of IEEE, Usenix,
SAGE, and the OpenAFS board.

xiv Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Aniket Patel is the Technical Team Leader at the IBM U.K. UNIX Support
Centre. He has eight years of experience in UNIX and has worked at IBM for
seven years. Aniket graduated from Kingston University, U.K., with a Bachelor of
Science (Honours Degree) in Computer Science. His areas of expertise include
UNIX Support on AIX 5L, DYNIX/ptx®, and Linux, NFS, TCP/IP, SNA, X.25,
DCE, sendmail, IBM MQSeries®, and the Microsoft Windows operating systems.
Aniket leads a team of 15 UNIX specialists providing Level 1 and Level 2 UNIX
support to customers across the U.K., Ireland, the Middle East, Egypt, Pakistan,
and South Africa. Aniket is a coauthor of a previous IBM Redbook, Securing NFS
in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204.

Chris Almond is an ITSO Project Leader and IT Architect based in Austin,
Texas, where he specialized in managing development projects focused on Linux
and AIX 5L systems engineering. He has a total of 15 years of IT industry
experience, including the last six with IBM. His experience includes UNIX/Linux
systems engineering, network engineering, IBM Lotus® Domino-based content
management solutions, and IBM WebSphere® Portal-based solution design.

Acknowledgments
This is the second IBM Redbook from ITSO that focuses on NFSv4. The
Redbook team would like to acknowledge and thank the team of authors that
wrote the first book in this series, Securing NFS in AIX: An Introduction to
NFS V4 in AIX 5L Version 5.3, SG24-7204: Lutz Denefleh, Sridhar Murthy, Aniket
Patel, and John Trindle. Their book provided a key reference for us to build upon
and for validating our own content development efforts.

A complete and detailed IBM Redbook about a topic such as this would not be
possible without generous support and guidance from key staff members in the
AIX 5L development organization, as well as other IBMers. The Redbook team
would like to acknowledge the following people for their excellent contributions in
support of this project:

Carl Burnett, IBM AIX Kernel Architecture Team: For his thoughtful insight and
overall guidance in helping us develop a content strategy for this book.

Brian L. McCorkle, IBM AIX NFS Development Team: For his continued patience
and assistance while we attempted to better understand the implementation of
NFS version 4 on AIX 5L. Brian’s support enabled us to meet the content
objectives for the book.

Margaret Momberger, IBM Research Server and Storage Systems Architect: For
extensive draft review and editing feedback.

 Preface xv

Duen-wen Hsiao, IBM AIX NFS Development Team: For technical support during
the NFS version 4 scenarios testing and implementation testing.

Ufuk Celikkan, IBM AIX Security Development: For technical support during the
NFS version 4 scenarios testing.

Drew Walters, IBM AIX Security Development: For technical support during the
NFS version 4 scenarios testing.

Yantian (Tom) Lu, IBM AIX Security Development: For technical support during
the NFS version 4 scenarios testing.

Stanley Wood, IBM CIO Office: For his generous contribution of the material in
Appendix B, “Case study: IBM Global Storage Architecture” on page 313.

Brian Dixon, IBM GPFS Development Team: For technical support during the
NFS version 4 scenarios testing and implementation testing.

Todd DeSantis, IBM AFS Support Team: For reviewing the AFS migration
planning and sample scenarios.

Phil Hirsch, DCE/DFS Support: For providing DCE example source code and
reviewing draft copies during development of the book.

Dan Bauman, DCE/DFS Support Team Lead: For reviewing draft copies and
providing feedback throughout the project.

Laura Stentz, IBM SWG/AIM Distributed File Systems Strategy: For draft review
feedback.

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

xvi Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 905
11501 Burnet Road
Austin, Texas 78758-3493

 Preface xvii

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xviii Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Part 1 Introduction

In Part 1, we present an overview of shared file systems in the enterprise and the
evolution of NFS as a key specification for implementing powerful shared file
system services.

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 1

2 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 1. Introduction

The goal of this IBM Redbook is to provide a technical planning reference for IT
organizations considering an implementation of Network File System version 4
Protocol (NFSv4) on IBM AIX 5L, either as part of a new installation or as part of
a migration from Andrew File System (AFS) or Distributed File Service (DFS).

This book includes sample migrations that can be used as a road map for
existing installations of AFS and DFS.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Overview of enterprise file systems
Early computing environments consisted of large, centrally managed systems
requiring significant environmental controls. Data was accessed using
character-cell terminals directly connected to individual machines; no local
storage was available to the user except in the form of offline media such as
magnetic tape. This resulted in a simple, centrally administered management
environment, but also required users to share processor time and other
resources. It was also difficult to provide access to geographically remote
systems, and such connections might be extremely slow or otherwise unreliable.

This situation changed significantly in the 1980s, as minicomputers,
workstations, and personal computer systems began appearing in the
marketplace. Because all these machines contained local disks, data began
spreading across the enterprise in what was frequently a relatively unconstrained
fashion. This created a more complex management environment for the following
reasons:

� A given piece of data might be found on multiple systems. This wastes
precious and expensive disk space and also introduces the problem of
revision control. Users could no longer be certain which copy was the most
recent, because a file might be found on more than one system at a given
time. The problem becomes worse as files proliferate across the enterprise,
resulting in many copies that might all contain locally introduced changes.

� Each workstation or PC might contain critical data requiring proper backup
and archiving; this introduces requirements for additional user training in such
procedures along with hardware such as a local tape drive and proper
storage of media to prevent data loss or theft. Outages to individual
workstations holding important data might impact overall business activities,
and the probability of a user workstation or personal computer outage due to
hardware failure or user error is much higher than that of a highly available,
managed server system.

� Lacking a centralized infrastructure available to all client hardware, users
might find it difficult to locate resources such as applications, shared
hardware, and data files. Therefore, a great deal of time is wasted in attempts
to locate a particular file, printer, or other resources.

� Management of an increasing number of remote systems becomes
progressively difficult. Each machine requires hardware maintenance,
operating system and other software upgrades, and individual copies of
licensed software.

4 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� Distribution of corporate data might involve shipping tapes or other media to
remote offices, or copying files over a network link on a periodic basis. Again,
such files invariably will become out of sync with the master copies and might
even be outdated before arriving at their destination. This method also
introduces the possibility of data loss or theft during the period when the
physical media is in transit to its destination.

� Lacking a central authentication authority, users might require individual login
IDs for numerous systems, requiring additional management tasks in the form
of account maintenance. This also introduces additional complexity in the
area of access management, because a given user might require different
levels of authorization to data and other resources located on each system.

� The presence of many individual per-machine user accounts also might
create a fragmented environment in regard to electronic mail and other
enterprise-wide applications. For example, unless a central service is
installed, it is necessary for users to address mail messages to users at
specific machine addresses rather than using a global directory service.

These situations generated a great deal of research into distributed computing
technologies. The areas of namespace management, remote access to file
systems and other resources, replication and other high availability technologies,
centralized backup and data archiving, and authorization received particular
attention for the reasons noted here.

A network or distributed file system is a collection of servers and storage devices
that are dispersed across machines on a network. Activity to the storage devices
must be carried out across the network. Instead of a single centralized data
repository, the file system consists of multiple, independent storage devices. The
configuration of a distributed file system can vary. Servers can run on dedicated
machines, while other machines can be both a server and a client.

Early versions of these enterprise file systems did not operate well in wide area
network (WAN) environments. These file systems were designed for use on fast
local area networks (LANs), and the long latencies of WANs greatly impacted
their performance. The design point for these file systems was the small
workgroup, and their security was weak for this reason. Support for replication
and location independence was also limited.

1.2 The migration landscape today
As this book was being written, limited choices were available for users of older
enterprise file systems such as AFS and DFS. Many of the advanced capabilities
of AFS and DFS were not present in previous versions of NFS. This includes
replication, caching (referral), and a unified namespace.

 Chapter 1. Introduction 5

For an introduction to AFS and DFS, see 2.2, “Enterprise file system
technologies” on page 13.

Enhancements to NFSv4 that are implemented in AIX 5L Version 5.3
Recommended Maintenance Level 03 (RML03) provide current AFS and DFS
users with many of the capabilities required to begin a migration from these
technologies to a standards-based enterprise file system. Such a migration
better positions an organization to take advantage of changing technologies in
servers, storage, and networks.

Not all capabilities provided by AFS and DFS are present in NFSv4. An
organization considering a migration must review its requirements and
dependence on the features provided by both products in order to determine the
proper time for migration. The implementation of pilot migration programs will
assist in the assessment of the overall impact.

It is important to realize that there will never be a one-for-one replacement for file
systems such as AFS or DFS. It is necessary to change other parts of the
infrastructure, including applications, management processes, and end-user
expectations, in order to conduct a successful migration. These changes do not
need to lead to decreased performance or function, but they must be considered
as a necessary consequence of a transition to NFSv4.

NFS is not the only choice. If an existing infrastructure is composed primarily of
Microsoft Windows clients, other options are available that might be more
appropriate, such as IBM AIX FastConnect, Samba, or Microsoft Windows file
servers. Each of these alternatives require different approaches and pose unique
challenges. We do not address these alternatives in this book.

1.3 Strategic and business context
Although an enterprise file system is an important component of an information
technology infrastructure, it is only part of the solution. Customers are faced with
the problem of simplifying and optimizing existing infrastructures. This includes
servers, networks, clients, management processes, and applications. The overall
goal is to reduce cost and complexity while providing a foundation for growth.

The overall performance of an enterprise file system is directly affected by the
larger environment in which it operates. Servers, storage, and network all have
impacts. There is a wide range of middleware products, application packages,
and custom applications that might need modifications in order to effectively
exploit an enterprise file system.

6 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

This book focuses on enhancements to NFSv4 that enable it to replace AFS and
DFS in many customer environments and migration considerations for moving
from environments based on versions earlier than NFS version 4 It is safe to
assume that any migration to NFSv4 will likely be part of an overall strategic
change to an organization’s environment.

A well-designed enterprise file system can be the centerpiece of an
organization’s IT infrastructure. Before embarking on any migration or
introduction of NFSv4, an evaluation must be performed of the organizational
role of enterprise file systems and the potential impact on existing applications,
services, and network.

IBM faced many of these challenges when planning a migration from AFS and
DFS in their internal infrastructure. You might find the approach and solution
valuable. For details, see Appendix B, “Case study: IBM Global Storage
Architecture” on page 313.

1.4 Why NFSv4?
NFS has evolved into a powerful enterprise file system that enables it to take
advantage of today’s more powerful servers and storage. Earlier enterprise file
systems such as AFS and DFS have architectural limitations that limit their ability
to process large files and take advantage of the increased memory and
multiprocessor support available in modern servers.

AFS and DFS also require custom client code that must be modified to support
new releases of operating systems. This dependency limited the acceptance of
AFS and DFS, leading to their fall from mainstream use and ultimately to their
withdrawal from the market.

Standards-based with multiple vendor support, NFSv4 offers the ability to quickly
deploy an enterprise file system without imposing dependencies on custom
code. Because the NFS protocol is a standard, it can interoperate with other
clients and platforms offering NFS support.

NFS continues to receive wide vendor support and continued enhancement by
IBM and others. This means an investment in NFSv4 today can continue to reap
rewards in the future.

 Chapter 1. Introduction 7

1.5 The rest of this book
The rest of this book consists of:

� Part 1, “Introduction” on page 1

– Chapter 1, “Introduction” on page 3

– Chapter 2, “Shared file system concepts and history” on page 11

This chapter describes the evolution and high-level characteristics of
enterprise file systems.

� Part 2, “NFSv4 on AIX 5L V5.3” on page 19

– Chapter 3, “NFSv4 implementation” on page 21

This chapter reviews the NFSv4 implementation on AIX 5L.

– Chapter 4, “Using NFSv4 with JFS2 or GPFS” on page 53

This chapter provides best practices guidelines for using NFSv4 with JFS2
or GPFS.

– Chapter 5, “Using NFSv4 features” on page 81

This chapter provides best practices guidelines to use when implementing
NFSv4 in your environment.

� Part 3, “Preparing to use NFSv4” on page 115

– Chapter 6, “Building an NFSv4 environment” on page 119

This chapter describes the installation and configuration of a typical
NFSv4 environment.

– Chapter 7, “Migration considerations” on page 161

In this chapter, we discuss the general considerations you need to
examine when migrating to NFSv4.

– Chapter 8, “Migration scenarios” on page 189

This chapter describes the migration scenarios that we provide later in this
book.

� Part 4, “Migrating to NFSv4” on page 193

– Chapter 9, “NFSv3 to NFSv4 migration” on page 195

In this chapter, we cover the NFSv3 to NFSv4 migration.

– Chapter 10, “Planning a migration from DFS” on page 223

Here, we discuss planning for a migration from DFS to NFSv4.

– Chapter 11, “Illustrated DFS migration” on page 247

This chapter describes an example migration from DFS to NFSv4.

8 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

– Chapter 12, “Planning a migration from AFS” on page 261

In this chapter, we discuss planning for a migration from AFS to NFSv4.

– Chapter 13, “Illustrated AFS migration” on page 285

Here, we provide an example migration from AFS to NFSv4.

� Part 5, “Appendixes” on page 307

– Appendix A, “Test environment” on page 309

This appendix provides an overview of the test environment that we
constructed in support of writing this book.

– Appendix B, “Case study: IBM Global Storage Architecture” on page 313

This chapter describes the GSA File solution that IBM developed as part
of its internal strategy to replace AFS and DFS in its development
infrastructure.

– Appendix C, “Configuring Network Time Service” on page 329

In this appendix, we describe the steps required to configure the Network
Time Service on AIX 5l.

– Appendix D, “AIX 5L V5.3 NFS quick reference” on page 339

In this appendix, we provide a quick reference to NFSv4 commands on
AIX.

– Appendix E, “Scripts and configuration files” on page 353

This appendix provides example code to support the migration examples
described elsewhere in this book.

– Appendix F, “Installing an AIX 5L maintenance level” on page 385

This appendix contains the steps to install an AIX 5L maintenance level.

– Appendix G, “Sample migration planning worksheet” on page 389

In this appendix, we provide an example planning template for use in
preparing for a migration.

 Chapter 1. Introduction 9

10 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 2. Shared file system concepts
and history

The purpose of this chapter is to introduce the concepts of file systems and
discuss the characteristics of enterprise file systems. It is useful to understand
aspects of the history of distributed file systems before looking at current
scenarios and possible migration paths.

We discuss the following topics in this chapter:

� Characteristics of enterprise file systems

� Enterprise file system technologies

� General considerations when using enterprise file systems

2

© Copyright IBM Corp. 2005. All rights reserved. 11

2.1 Characteristics of enterprise file systems
This section describes some of the characteristics of modern enterprise file
systems. While enterprise file systems vary in the details of their implementation,
they do share some common characteristics that make them a powerful addition
to today’s business environment.

2.1.1 Replication
Replication provides for full copies of file system data on multiple servers. Clients
are aware of the replicas and can switch to another server when the currently
accessed server becomes unavailable. Clients can analyze available sites and
choose which one to access based on network properties or performance.
Replication has classically been provided with read-only or read-mostly data.
Ideally, the administrative model allows for a high degree of control over replica
content and release of updates. Replication provides the following major
benefits:

� Increased availability without single points of failure

� Controlled consistency through administrator-initiated updates

� Better performance through affinity (hosting replicas closer to clients)

� Better performance through distribution of load across multiple servers

� Reduced network (especially WAN) traffic

� Continued access to data when there is loss of connectivity to resources
across the WAN

� A convenient means for controlled geographic distribution of data

2.1.2 Migration
Migration enables the relocation of file system data from one server to another.
To be effective, it includes server mechanisms that keep data available (online)
during migration events with minimal access delays. Additionally, clients are
“migration aware.” They recognize migration events, follow the data to its new
location, and avoid disruptions or unexpected events when accessing
applications. Benefits of migration include:

� Managing load across servers by moving data away from overloaded systems
to less loaded systems

� Server-off load for replacement, retirement, combining, splitting, or
maintenance

� A means to maintain affinity by moving data when its point of access
(consumers) moves

12 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

2.1.3 Federated namespace
Providing a single federated rendered namespace that is seen from all users
greatly enhances collaboration and sharing of file system data. For maximum
value, the namespace can exist across many server systems that might be
geographically far apart or reside in different administrative domains and
organizations. The management model is centralized with minimal administrative
interaction with individual server or client systems. Other valuable namespace
features include:

� Significant administrative control over how the namespace is rendered,
including which parts of the namespace are visible

� Methods for self-defining namespace through standards-based centralized
authorities such as the Domain Name System (DNS)

� Redundancy to protect from single points of failure or loss of connectivity to
central resources

� Integration with data management features to allow physical location
transparency within a rendered namespace

2.1.4 Caching
Most network file system client implementations do caching of both data and
attributes to improve performance and reduce network traffic.This brings the
performance of networked file operations closer to those seen by accessing data
on storage local to the client.

2.2 Enterprise file system technologies
We describe some previous technologies that provide for some or all of these
characteristics in the following sections.

2.2.1 Sun Network File System (NFS)
Developed originally by Sun Microsystems™ in the early 1980s, Network File
System v1 (NFSv1) was used internally by Sun to access and move files over the
network between servers. NFS enables servers to mount remote file systems
from other servers over the network and allowed local access to the files on that
remote file system.

In 1985, NFSv2 was released with the SunOS™ (UNIX) operating system. NFS
was a useful tool that became very popular, and several variants were produced
by various vendors. The University of California created a free version of NFS in
the late 1980s, and a standard protocol was produced with RFC 1094 in 1987.

 Chapter 2. Shared file system concepts and history 13

By the early 1990s, efforts were underway to produce an enhanced version of
NFSv2: NFSv3 (RFC 1813). NFSv3 was released in 1995. Its focus was to
provide enhancements to performance while maintaining backward compatibility
with NFSv2. The basic design of NFS did not significantly change from version 2
to version 3, and it retained major design features such as stateless design,
security, and recovery.

In 1998, Sun initiated an effort to design NFSv4 (RFC 3530). This design
resulted in significant changes for NFS. The new features incorporated into
NFSv4 include:

� File system namespace

� Access control lists (ACLs)

� Improved client caching efficiency

� Stronger security

� Stateful design

� Improved ease of use in respect to the Internet

In that same year, Sun relinquished control over NFS development to the Internet
Engineering Task Force (IETF), which then assumed responsibility for further
development of the standard.

2.2.2 Andrew File System (AFS)
The Andrew File System (AFS) was developed at the Information Technology
Center at Carnegie-Mellon University. The Andrew research project (which
included AFS) began in the early 1980s and in 1985 was deployed across the
Carnegie-Mellon University campus. Between 1985 and 1989, Carnegie-Mellon
University provided the file system to several other research facilities. Transarc
Corporation, a startup company spun out of Carnegie-Mellon University and
partially funded by IBM in 1989, provided a commercially available version of
AFS. Transarc was fully integrated into IBM in 1999.

AFS provides many advantages over NFSv2 and NFSv3 in a large enterprise
environment. These include:

� Client-side caching that reduces network traffic.

� Global namespace that eliminates the need for user logins on multiple servers
and multiple mount points. A derivative of MIT Kerberos IV was used to
provide authentication and encryption services.

� Greatly improved security over public networks.

� Powerful administrator functions that enable data movement and backup
without shutting down user access to the data.

14 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� Replication capabilities using a single read/write copy backed by one or more
read-only duplicates. This paradigm also permits users to read data from a
duplicate copy, while reserving the read/write master for operations requiring
write access.

� Clients are provided with an automatic fail-over capability, allowing them to
detect the loss of a server and connect to another machine with no user
intervention required.

2.2.3 Distributed Computing Environment/Distributed File System
The Distributed Computing Environment (DCE) was designed in the late 1980s
by the Open Software Foundation (OSF), which then coordinated subsequent
development processes in conjunction with IBM, Digital Equipment Corporation,
Apollo Computer, Hewlett-Packard, and Transarc Corporation; the latter
additionally took responsibility for development of the Distributed File System
(DFS) component. The DCE product fundamentally offers a remote procedure
call (RPC) mechanism, which provides the basis for the product’s centralized
namespace management, encryption and authentication subsystem based on an
early release of the MIT Kerberos V5 protocol, Distributed Time Service (DTS),
and an application threading mechanism. Version 1.0 was released in 1990, and
version 1.2.2 of OSF DCE is still available from The Open Group, the successor
to the OSF. This version provides the basis for all current commercial releases of
the product, although each vendor’s versioning scheme differs from that used by
The Open Group.

Like AFS, DFS provides centralized file system creation, management,
optimization, replication, and backup services, along with local caching to
improve performance across the network. Large installations often involve
multiple replicas of critical file systems, distributed across geographically
disparate sites in order to serve nearby customers while providing improved
fail-over and availability characteristics. DFS extends AFS technology, providing
file-level access control, improved encryption and security, and other
enhancements including:

� Improvements to ACL management and granularity.

� Full POSIX file system semantics, including byte-range file locking.

� POSIX-based threading.

� Elimination of the AFS 2 GB file size limitation.

� Scheduled replication, in addition to the AFS release replication.

� Better performance with a kernel resident file server.

� Better security (AFS uses Kerberos IV, while DFS adopted Kerberos V5) and
directory services.

 Chapter 2. Shared file system concepts and history 15

� The more robust Episode file system.

� Log-based file system, which is more reliable and offers better recovery.

DFS is also an OSF/Open Group product, which is licensed to IBM and other
vendors that offer it commercially on a number of platforms.

AFS and DFS offer both automated and manual replication strategies, permitting
a great deal of flexibility in the scheduling of changed data to read-only servers.
This permits individual sites to configure replication schedules as desired in
order to streamline the use of network resources.

2.3 General considerations when using enterprise file
systems

Here are some general considerations to remember when using any enterprise
file system:

� Enterprise file systems are designed to provide access to data across
multiple platforms and workstations. They are not designed to operate as an
API for distributed processing systems. Using an enterprise file system to
provide interprocess communications between workstations is a bad idea and
will not scale very well. Eventually, the file system is unable to cope with the
activity generated by multiple machines reading and writing to the same
directory and file system slow downs or outages might occur.

� The designer of applications that will use an enterprise file system must be
aware of the activity that their application will cause in the file system and take
appropriate steps to ensure that the users of the tools will not inadvertently
cause performance problems. Examples of this include using a directory to
log usage of the tool, or allowing the tool to use the file system as temporary
space during processing.

� Avoid running commands that interact with the file system repetitively,
recursively, or in loops. Such instances have the potential to generate a lot of
traffic to the servers; especially when you consider that this application is
running on multiple machines simultaneously, the workload on the servers will
grow rapidly.

� Avoid using a single file or directory to log job activity that might run on
multiple systems. This can become a potentially expensive operation on the
servers. When multiple clients are reading a file that is receiving constant
updates, the file server must keep all the clients updated with the changes.
Multiplied over many clients, this can place a heavy burden on the servers,
consuming the server's resources.

16 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� Try to process data locally as much as possible. Ideally, use the file system as
a repository. Data should be copied locally, processed and only when
processing is completed, and copied back into the enterprise file system.

� Replicate data that is infrequently modified and widely used. Replication
allows for activity to be distributed among many machines, versus a single
machine. In addition, it uses less of the server resources, preserving them for
other operations. Tools and static data files are good candidates for
replication. Because the entire path to the data must be replicated, it is best to
plan for replication when the data structure is initially set up.

 Chapter 2. Shared file system concepts and history 17

18 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Part 2 NFSv4 on AIX 5L
V5.3

In this part of the book, we introduce you to the new NFSv4 features added to
IBM AIX 5L V5.3 in Recommended Maintenance Level 03. We briefly discuss the
features introduced in the initial AIX 5L V5.3 release and discuss the new
features in detail. We also show how you can use the new features. For detailed
descriptions and implementation considerations about the features introduced in
the initial release of AIX 5L V5.3, see the IBM Redbook Securing NFS in AIX: An
Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204. You can view or
download this book from the following location:

http://www.redbooks.ibm.com/abstracts/sg247204.html

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 19

http://www.redbooks.ibm.com/abstracts/sg247204.html

20 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 3. NFSv4 implementation

The main purpose of this chapter is to provide an update about the new features
added to IBM AIX 5L V5.3 Recommended Maintenance Level 03 (RML03). First,
we present a brief review of NFS version 4 (NFSv4) functionality introduced in
the initial release of AIX 5L V5.3. This is followed by a detailed description, with
examples, of the features added to AIX 5L V5.3 RML03. For a detailed
description of the NFSv4 features introduced in AIX 5L V5.3, see Chapter 2 of
Securing NFS in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3,
SG24-7204, available at:

http://www.redbooks.ibm.com/abstracts/sg247204.html

We discuss the following topics in this chapter:

� Implementation of the NFSv4 protocol in AIX 5L V5.3

� NFSv4 features supported in the initial AIX 5L V5.3 release

� Features introduced in AIX 5L V5.3 RML03

� List of NFSv4 features supported in AIX 5L V5.3

3

© Copyright IBM Corp. 2005. All rights reserved. 21

http://www.redbooks.ibm.com/abstracts/sg247204.html

3.1 Implementation of the NFSv4 protocol in AIX 5L V5.3
AIX 5L V5.3 was the first version of AIX to introduce support for NFSv4, while
continuing existing support for NFSv2 and NFSv3. The default NFS protocol
version used in server exports and client mounts under AIX 5L V5.3 is still
version 3. This decision was made to permit an easier migration to AIX 5L V5.3
from previous versions, because few sites were prepared to implement the
features provided by NFSv4. The vers option can be used with mounts and
exports to specify NFS version 4.

The initial AIX support for NFSv4 placed an emphasis on security, with support
for the optional NFSv4 ACL model when using the AIX enhanced journaled file
system (JFS2). Support for managing access from foreign NFSv4 domains was
also included. NFSv4 uses the RPCSEC_GSS RPC authentication flavor
supporting the Kerberos V5 security mechanism with AIX 5L V5.3.
RPCSEC_GSS can also be used with the NFSv3 protocol. For a detailed
description of the new features and security considerations, refer to the IBM
Redbook Securing NFS in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3,
SG24-7204.

3.2 NFSv4 features supported in the initial AIX 5L V5.3
release

This section provides a brief overview of the NFSv4 implementation present in
the initial release of AIX 5L V5.3, followed by new features introduced in AIX 5L
V5.3 RML03.

The mandatory features of the NFSv4 protocol as described in RFC 3530 are
supported with the following exceptions:

� The UTF8 requirements are not fully supported.

� The LIPKEY and SPKM-3 security mechanisms are not supported with
RPCSEC_GSS authentication.

Note: In AIX 5L V5.3, the default for exports is still NFSv3. The vers option
must be explicitly used to define an NFSv4 export.

Note: The AIX enhanced journaled file system is a JFS2 file system with the
extended attributes version 2 capability enabled in order to use NFSv4 ACLs.

22 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The initial implementation also included support for the following optional
features:

� NFSv4 ACLs are supported by both the client and server.

� Support is provided to map principals and file ownership attributes from one
NFSv4 domain into another.

� The AIX5L NFSv4 implementation supports two ACL types in underlying file
systems—NFSv4 and AIXC.

3.2.1 External namespace (exname) support
External namespace, or exname, is not part of the NFSv4 RFC; it is an AIX 5L
implementation-specific feature. The exname option extends the pseudo file
system concept. The external name in an /etc/exports file must begin with the
nfsroot name. But an exname export does not need to correspond to the server’s
root. Figure 3-1 on page 24 and the examples that follow show how the exname
option can be used.

The objective is to render the view in a manner so that the client sees what is
represented by the pseudo root part of Example 3-1 on page 24. On the server,
the following file systems are to be exported:

� /local/home/
� /local/dept/
� /local/trans/
� /usr/codeshare/ThirdPartyProgs/

It is also necessary to ensure that the server’s local file system is not exposed to
clients. How can this be achieved?

Restriction: Exporting individual files is not supported over NFSv4, thus the
lack of support for diskless clients and Network Installation Management
(NIM), which requires individual files to be exported.

Important: The pseudo root on the server should be set to /exports. When the
server renders the pseudo file system view for the client, any directory or file
under the /exports directory is hidden. So, if directories and files under
/exports are to be made available to the clients, they should either be moved
to another directory and exported, or a different directory should be chosen as
the anchor for the pseudo root.

 Chapter 3. NFSv4 implementation 23

Figure 3-1 Representation of how the server builds the exname pseudo file system view

Using the exname option, the /etc/exports file is created using the representations
shown in Example 3-1.

Example 3-1 The /etc/exports file for rendering the pseudo file system by using exname

/local/home -vers=4,rw,exname=/exports/home
/local/dept -vers=4,rw,exname=/exports/dept
/local/trans -vers=4,rw,exname=/exports/trans
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/ThirdPartyProgs

Example 3-1 shows that the exname option does not specify the full path to the
individual exports under /exports. Although the full path may be provided, by

24 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

following this example, the client is never shown the server’s directory tree. This
hides the actual server file system layout from the client.

As another example, suppose a site plans to export a large number of directories
under /local, but wants clients to view the exported file systems as part of the
/exports tree. The exname option can be used as shown in Example 3-2.

Example 3-2 exname exports in the /etc/exports file with full paths

/local/trans -vers=4,rw,exname=/exports/local/trans
/local/dept -vers=4,rw,exname=/exports/local/dept
/local/home -vers=4,rw,exname=/exports/local/home
/usr/codeshare/ThirdPartyProgs -vers=4,ro,exname=/exports/local/ThirdPartyProgs

3.2.2 FSIDs and file handles
NFSv4 adds the concept of a file system identifier (FSID). The FSID is a 64-bit
value that describes an exported container of file system objects (files,
directories, and so on) that share the same properties. For UNIX servers, this
might typically equate to an exported file system. However, it is server
implementation dependent. NFSv4 clients must recognize FSID boundaries and
track their properties accordingly. Optional features of the NFSv4 protocol that
facilitate replication, migration, and namespace referrals are associated with
FSIDs. The AIX 5L V5.3 NFSv4 client recognizes FSIDs and is also capable of
tracking and traversing them under a single client-side NFS mount. The nfs4cl
showfs command can be used on the AIX 5L client to examine individual FSIDs
and their basic properties.

NFSv4 also introduces volatile file handles, along with the persistent file handles
that have existed in previous NFS protocol versions. The server specifies when
volatile handles can expire. When they do expire, the client must refresh the file
handle using path name information it has recorded. Volatile file handles exist to
allow advanced NFSv4 concepts such as replication and migration. They also
can make it easier for some platforms to support NFSv4 when the platform's
local file system does not make it convenient to maintain persistent handles.

Important: We recommend using the chnfs command to set the nfsroot (nfs
root path) and psuedo-root (nfs public path). To set the root path, public path,
or enable and disable replication and referrals, use following forms of the
chnfs command:

chnfs -r <nfs-root-path>
chnfs -p <nfs-public-path>
chnfs -R <on|off>

 Chapter 3. NFSv4 implementation 25

Example 3-3 shows example output from the nfs4cl showfs command, run on
client system (frio) with four mounts. Notice that the FSID is unique to an
individual mount from a specific server, but is not necessarily unique between
servers. For example, /mnt2 and /mnt have the same FSID but are from different
servers (sabine and trinity, respectively). But /mnt2 cannot have the same FSID
as /mnt4, because they are two separate exports from the same server (sabine).

Example 3-3 nfs4cl output for NFSv4 client frio

nfs4cl showfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt4
angelina /gene 10:10 /mnt3
sabine / 10:4 /mnt2
trinity / 10:4 /mnt
#

In the nfs4cl command output, the FSID is represented as a major and minor
ID. Therefore, the /mnt4 mount’s FSID is major 2 and minor 150.

3.3 Features introduced in AIX 5L V5.3 RML03
AIX 5L V5.3 Recommended Maintenance Level 03 (RML03) further enhances
the IBM NFSv4 implementation. This version of AIX 5L adds the following key
features to the existing implementation:

� Delegation

� Referral

� Replication

You can download RML03 from the Quick links for AIX fixes Web page:

http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html

Any local IBM Support Center can provide the RML on CD-ROM media.

Execute the command shown in Example 3-4 on page 27 to determine if a
system is running AIX 5L V5.3 RML03.

Note: Both servers and clients must be running AIX 5L V5.3 RML03 in order
to make use of the new NFSv4 features.

26 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html

Example 3-4 Confirming the version and RML of AIX 5L installed on a system

oslevel -r
5300-03
#

Example 3-4 shows that the version of AIX installed on this system is AIX 5L
V5.3 RML03. If the output from the oslevel -r command shows an earlier
version of AIX 5L, the required level of AIX 5L or RML03 is not present or has not
been correctly installed. Contact your local IBM Support Center to receive
assistance in resolving this issue. Appendix F, “Installing an AIX 5L maintenance
level” on page 385 describes the procedure for updating a system to RML03 from
CD-ROM media or using an image downloaded from the Quick links for AIX fixes
Web page.

3.3.1 Delegation
Delegation allows for more efficient cache management by reducing the amount
of network traffic associated with cache validation. Client file open and locking
activities take place without server calls and are handled by the client using
locally cached files. Delegation does not completely eliminate network traffic,
because the first open call requires contact with the server. The server may grant
a delegation to the client for the file. Subsequent opens do not require another
call to the server; the delegation is a promise to the client that it can use the file
without periodically checking for changes on the server. Instead, the server
notifies the client of such activity by rescinding the delegation if another client
requests an event that conflicts with the promise, such as modifying the file's
data or metadata. The greatest benefit of delegation is for read-only data. The
server can grant delegations on read-only files to multiple clients. If the
delegation is rescinded, the client can flush its local data and does not need to
commit any changes to the server. In AIX 5L V5.3 RML03, delegations are only
granted for read-only open requests.

Most NFS client implementations perform caching of both data and attributes to
improve performance and reduce network traffic. Some vendors also support a
technology known as cacheFS that enables extended caching of file and
directory content data to persistent storage (disk) on the client system. This
further increases the amount of data a client can cache. With caching, some
amount of server interaction is still required to conform to required NFS protocol
semantics; the client periodically polls the server while files are in use.
Depending on the application environment, the network traffic associated with
client cache maintenance can be modest. In less reliable or slower networks, this
traffic can represent a performance restriction.

 Chapter 3. NFSv4 implementation 27

NFSv4 provides the optional protocol delegation mechanism, which can improve
the caching of NFS. Because the client reads data directly from a local cached
copy, the performance is almost as good as working directly from a local file
system (because that is the case when the cache is accessed). The reduction in
network traffic can help increase the performance and scalability of an NFS
environment.

NFSv4, like its predecessors, uses a weak cache consistency model. Clients are
not guaranteed to see the most recent changes to data at a server. Delegations
are optional and are granted at the NFS server's discretion. Without a delegation,
the NFSv4 client operates similar to previous versions of NFS:

� The client obtains delegation during initial access, for example, open.

� The client accesses and caches the data.

� The client can potentially open, lock, read, and close the file with no network
traffic.

Delegation is enabled by default for both the client and server, although server
delegation is only enabled on the 64-bit AIX kernel. Client-side delegation is
supported with both 32-bit and 64-bit kernels. The server only supports read
delegation, while the client supports both read and write delegation.

Two new tunable parameters have been added to the nfso command. These
options allow the control of delegation on the server and client, respectively. The
options are:

� server_delegation
� client_delegation

Controlling delegation on the client
Example 3-5 shows how delegation can be controlled on a client. 0 is off, and 1 is
on.

Example 3-5 Controlling delegation on the client

nfso -o client_delegation
client_delegation = 1
#
nfso -o client_delegation=0
Setting client_delegation to 0
#
nfso -o client_delegation
client_delegation = 0
#
nfso -o client_delegation=1
Setting client_delegation to 1
#

28 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

nfso -o client_delegation
client_delegation = 1
#

The nfs4cl command can be used to return delegations to the server.

Controlling delegation on the server
Delegation on the server can be controlled in one of the two following ways:

� Using the nfso command.

� Per export using the new deleg option.

Example 3-6 shows how delegation can be controlled using the nfso command.
0 is off, and 1 is on.

Example 3-6 Controlling delegation on the server

nfso -o server_delegation
server_delegation = 1
#
nfso -o server_delegation=0
Setting server_delegation to 0
#
nfso -o server_delegation=1
Setting server_delegation to 1
#

A more granular level of delegation control can be achieved by using the deleg
option. This enables delegation to be controlled on a per-export basis and
overrides the nfso setting for the export. The deleg option is part of the exportfs
command. The following commands illustrate the use of the deleg option within
the /etc/exports file:

� Turning delegation on for an export:

<dir_you_want_to_export> -vers=4,deleg=yes

� Turning delegation off for an export:

<dir_you_want_to_export> -vers=4,deleg=no

Delegation statistics can be monitored using the nfsstat -d command.
Example 3-7 on page 30 shows sample output from the command.

Important: These options will only take effect if set before an NFSv4 volume
is mounted. If a file system is already mounted on a client, it is necessary to
unmount and remount it before the nfso change can take effect.

 Chapter 3. NFSv4 implementation 29

Example 3-7 Using the nfsstat command to view delegation statistics

nfsstat -d
Server Delegations:
granted outstanding recalled bad recalls
0 0 0 0
returned long recalls admin_revoked resource_recalls
0 0 0 0

Client Delegations:
granted outstanding recalled returned
14 0 4 14
getattrs
0
#

3.3.2 Referral
The NFSv4 protocol provides functions that enable the distribution of data across
multiple servers in a way that is transparent to the users of that data. The first
one that we discuss is a global namespace feature called a referral. The second
feature is a means of specifying locations where copies of data, known as
replicas, can be found, as discussed 3.3.3, “Replication” on page 36.

A referral is a special NFSv4 object, created in the namespace of a server, to
which location information is attached. This server redirects, or refers, operations
to the server specified in the location information. In other words, the referral
server does not actually contain the file system, but automatically redirects the
client to another server that does. Although this might sound simple, it provides a
very powerful capability for the location and administration of data.

Figure 3-2 on page 31 shows how referral works. FilesysB does not exist on the
primary server. Instead, the primary server’s pseudo root directory contains a
reference to the fileset exported on the secondary server. The NFSv4 client is
informed of the referral when it receives the pseudo root information from the
server, and this enables a user to traverse from a file system on one server to the
next file system on the next server seamlessly. As the diagram shows, the user’s
view is a single directory structure that appears to be exported from the primary
NFSv4 server.

In order to have an NFSv4 server refer to other mounts, the server performing
the referral must be enabled for replication. This allows it to maintain location
information for the referral. For binary compatibility with previous releases, the
default mode is “server does not provide location information,” so referrals must
be explicitly enabled. Replication does not need to be enabled on servers that
are only referred to, that is, those that do not provide referrals. The location

30 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

information is a common requirement for both replication (discussed later) and
referrals.

Figure 3-2 NFSv4 referral concepts

Important: In replication, the client can have an open state on a replicated file
system. This means that it implements NFSv4 features, such as FSIDs, for file
descriptors. It will not fail over to a file system possessing different attributes
than the one it was using. In this case, enabling replication also (in addition to
sharing location information) causes the server to issue volatile file handles. If
a fail-over replica server is not replication-enabled, the client will not fail over to
a server that is not using volatile file handles. In the referral case, the client is
never allowed to see any file system information for the referral because there
is no file system there, only on the referred-to server. Therefore, there can be
no conflict in file system attributes for a referral.

 Chapter 3. NFSv4 implementation 31

An example scenario was created to help better describe the referral process. It
begins by first demonstrating how normal NFSv4 exports and mounts work
without referrals, and then how they work with them. The syntax for an NFSv4
export in the /etc/exports file is as follows:

<path_to_dir_to_export> -vers=4,<other_options>

The syntax for the NFSv4 mount on the client to mount the pseudo root directory
from the server is as follows:

mount -o vers=4,<other_options> <nfsv4_svr_name>:/ <local_mount_point>

Notice that this example mounts the psuedo root directory (/) from the server.

Let us see how this maps to our environment:

1. lavaca is the main NFS server, and the file system /work is to be exported. In
order to accomplish this, the following line is added to its /etc/exports file:

/work -vers=4,rw

2. The system lavaca must now be instructed to export the contents of its
/etc/exports file:

exportfs -va

3. On the client, the exported file system is mounted on /mnt:.

mount -o vers=4,rw lavaca:/ /mnt

Example 3-8 on page 33 shows the output from the df -k command, which
displays the mount from lavaca. Because the pseudo root directory on lavaca
was mounted, an ls command on /mnt shows the exported /work directory there.

Tip: The file system /work has been exported to all clients in this example.
Client access to the directory can be restricted using the access option
when exporting the file system.

Note: The /work export is not being directly mounted from lavaca in this
step (though there is no prohibition against doing so). The /work directory
becomes accessible by mounting the pseudo mount (/) exported by lavaca.
This can be seen in Example 3-8. Mounting this pseudo top-level directory
is an important step because it provides access to additional exports in the
upcoming referral example, without requiring additional steps on the client.

32 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 3-8 df -k output showing the NFSv4 mount and ls of the mount on the client

df -k
Filesystem
1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 65536 37500 43% 1651 6% /
/dev/hd2 2195456 1076928 51% 26564 5% /usr
/dev/hd9var 32768 23704 28% 351 5% /var
/dev/hd3 32768 30748 7% 41 1% /tmp
/dev/hd1 311296 301336 4% 21 1% /home
/proc - - - - - /proc
/dev/hd10opt 49152 20944 58% 668 6% /opt
lavaca:/ 131072 119916 9% 1560 6% /mnt
#
ls /mnt
work
#

When users on the client list the contents of the /mnt directory, they are seeing
the /work directory name exported from lavaca.

You can use the nfs4cl showstat command on the client to display information
about NFSv4 mounts, as shown in Example 3-9.

Example 3-9 nfs4cl showstat output on a client system

nfs4cl showstat
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
lavaca:/ 131072 119916 9% 1560 6% /mnt

To use a more concrete example, two servers, lavaca and nueces, have been
configured to export NFSv4 volumes. Lavaca is the referring NFSv4 server and is
the only server of which end users are aware. Nueces is the referenced server to
which lavaca redirects NFSv4 clients requesting access to filesysB.

File systems are laid out in the pseudo root directory on lavaca as follows:
filesysA is /work, and filesysB maps to /project.

In this scenario, the user wants to access both the /work directory on lavaca and
the /projects directory on nueces. To accomplish this in previous NFS releases,
directories must be exported from each server and mounted separately by each
client.

The referral feature can be used to simplify this process by:

� Exporting the directories on the referenced servers

 Chapter 3. NFSv4 implementation 33

� Creating referrals to those exported directories on the main NFS server

� Mounting a single pseudo root export from the main server onto the client

As noted earlier, servers that are to issue referrals must have the replicas option
enabled before the referrals can be created. Here, the referring server is lavaca,
where the replicas option has already been enabled. Nueces is only referenced
and does not itself reference any other servers. Example 3-10 demonstrates how
to enable referrals on lavaca using the NFSv4 replication option.

Example 3-10 Turning on referrals on an NFSv4 server

chnfs -R on
#
nfsd -getreplicas
replicas=on
#

On nueces, the /projects directory is exported by adding the following line to the
/etc/exports file:

/projects -vers=4,ro

Now, the file systems listed in the /etc/exports file are exported using the
exportfs -va command. This makes /projects available to all NFSv4 clients.
Notice that no special preparation is required to export /projects from nueces,
because nueces will not be referencing any other servers.

Lavaca can now use referrals to make the /projects export on nueces available to
clients. This is accomplished by adding the following line to its existing
/etc/exports file:

/projects -vers=4,ro,refer=/projects@nueces

Example 3-11 shows the full /etc/exports file on lavaca.

Example 3-11 /etc/exports file on lavaca

/work -vers=4,rw
/projects -vers=4,ro,refer=/projects@nueces

The file systems listed in the /etc/exports file on lavaca are now exported using
the same method that was used on nueces (exportfs -va).

From the first example, the NFSv4 client had already mounted the /work export
from lavaca to /mnt. Therefore, there is no need to unmount and remount. The
client’s view is dynamically updated to show /projects under the /mnt mount
point. The client does not need to perform any mounts to other servers; the

34 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

system is automatically made aware that the /projects export is being provided by
nueces. Further referrals to nueces or any other NFSv4 server can be added to
lavaca using the steps shown earlier.

Because a client user is unaware of the actual location of the data, the
administrator can redirect clients from one server to another simply by changing
the referral statement in the exports file on the server.

Although referrals are created using the exportfs command, they are different
from data exports. A referral can be created within exported namespaces or in
unexported namespaces. In the previous example, the /projects referral can be
created on lavaca even if /projects is not exported, although the contents would
not be visible to clients if they tried to access the unexported /projects tree. This
action places the referral within the NFSv4 pseudo namespace.

There is no restriction on the number of referrals that can be created within either
the server's NFSv4 pseudo space or within an exported file system. Because a
referral does not export any data and only has meaning to the NFSv4 protocol,
referrals are available only in NFSv4. Exporting a referral without the vers=4
option will fail.

A referral creates a special object at the location specified by the directory
parameter. Because access to the object is determined by the client's access to
the object's parent directory, most other export options have no meaning and are
allowed but ignored. The only exception is the exname option, which has the
expected behavior.

/special/users -vers=4,exname=/exported/users,refer=/users@secrethost

The clients that mount / from that server see the path /mnt/users, which redirects
the clients to the /users directory on secrethost (assuming the referring server’s
nfsroot is /exported.) On the referring server, the referral object is created in the
local namespace at /special/users, so no file or directory can exist there when the
export is performed. A special object is created on the server to hold the referral
location information. Any directories along the path to the referral will also be
created if they do not exist. If the referral is not exported, the referral information
will be removed from the object, but the object itself will not be removed. The
NFSv4 server will not allow clients to access the resulting stale or orphaned
referral object, instead returning an error to clients attempting to do so. The

Restriction: Although an NFSv4 server can be configured to refer to a server
exporting NFSv3 filesets, the resulting referral will not be accessible to clients
accessing it through the NFSv4 referral mount. However, if the NFSv3 filesets
were re-exported from the server with the vers=3:4 option, the referral would
work properly and the NFSv3 fileset would still be available to NFSv3 clients.

 Chapter 3. NFSv4 implementation 35

object can be removed using the rm command if desired. A referral can be
exported again with new referral information. We do not recommend this
because it can take time for clients that previously accessed the referral to realize
the location information has changed, though the server touches the referral's
parent directory to indicate that information in the directory has been changed.
This helps clients realize any information that the client has cached about the
directory (and the referral within the directory) has changed and must be
refetched, but there is no guarantee how long it will take for the clients to notice.

3.3.3 Replication
Replication is a means of specifying locations where copies of data can be found.
It allows copies of data to be placed on multiple NFSv4 servers and informs
NFSv4 clients where the replicas can be located. There are two primary reasons
for replicating data:

� Replicating data improves availability in the face of failure by enabling users
and applications to switch from a failed data server to a working one.

� Replication enables load balancing by having different clients refer to multiple
servers.

NFSv4 introduces the concept of file system IDs (FSIDs). Each export from an
NFSv4 server is given a unique FSID. The FSIDs are volatile in that they change
during failover to replica servers. On a failure, a replica server provides a client
with its own FSID for the replicated fileset. FSIDs are not file system dependent
in that they are provided with any individual export from the NFSv4 server,
regardless of whether the exported file system is a separate file system or just a
directory in a file system on the server. FSIDs are not provided by a server that
only maintains a reference to another server. It is expected that in the future it will
be possible to assign an FSID to a subset of a file system and server location
information. See 3.2.2, “FSIDs and file handles” on page 25 for additional details
about FSIDs.

Fail-over replication
A server can export a file system and specify where a replica of that file system is
located. In the event that the primary data server becomes inaccessible to the
clients, the clients can use one of the replica servers to continue operations on
the replicated file system. The export must be the root of a replicated file system,
and the replica locations must also be the roots of file systems. A replica location

Tip: Administrators should make sure that the referred-to server will not refer
the request back to the same data at the first server, creating a circular
referral. In the previous example, a circular referral results if the administrator
created a referral on nueces at /projects that referred to /projects on lavaca.

36 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

is a file system attribute, not a directory or file attribute; replica file systems are
assumed to be exact copies of the data on the primary server. The AIX 5L server
does not specify how the replica file systems are created from the primary file
system or how the data is synchronized. If replicas are specified as read/write,
some method of keeping the data on the replicas consistent with the primary file
system must be provided. We discuss methods of achieving this consistency in
“Synchronizing replicas” on page 44.

Important: In order to replicate a file system in a given environment, all
directories mounted above a replicated directory must themselves be
replicated. Because of this requirement, care needs to be taken when
planning a replication.

 Chapter 3. NFSv4 implementation 37

Replicas are one or more copies of a file system. Typically, replicas reside on a
server or servers separate from the system that provides the read/write master
copy. If the primary server becomes unavailable, the client can access the same
files from a replica location. Figure 3-3 provides a conceptual view of how
replication is achieved. Proper use of replication depends on many factors in
each environment, such as the number of clients, number of available servers,
level of redundancy required, and load balancing requirements.

Figure 3-3 NFSv4 replication concepts

Figure 3-4 on page 39 shows a method of configuring an environment to make
use of replication. In this case, the loss of SiteA causes clients to fail over to
SiteB. If SiteB is lost, clients fail over to SiteC. Additional sites can be added for
further resilience, depending on the level of redundancy required. The sites
shown in the diagram can exist in the same physical location or in distant
locations. The concept holds in either case.

38 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 3-4 Resilient replica environment with fail-over replicas at SiteB and SiteC

Preferred server fallback
After the client failover has occurred, an NFSv4 client running AIX 5L V5.3
RML03 or later will attempt to reconnect (or “fall back”) to the preferred server.
The client polling period for fallback to the preferred server is 30 minutes. If the
preferred server becomes available again, the client will fall back to that server as
soon as it sees it is available again.

 Chapter 3. NFSv4 implementation 39

Load balancing replication
In a large environment, it does not make sense to point all clients to one NFSv4
server, because this places a substantial strain on that server. The following
scenario describes one possible method of balancing load in an NFSv4
environment. See Figure 3-5.

Figure 3-5 Load balancing scenario for replication

Figure 3-5 shows two NFSv4 servers, A and B. Server A has a replica located on
server B and has exported file systems with replicas=/<file system>@ServerB.
Likewise, server B has exported its file system to reflect the fact that servera is a
replica server. Clients in client set A mount the file system on server A and fail
over to server B if server A becomes unavailable. Clients in client set B mount the
file system on server B and fail over to server A if server B becomes unavailable.
The data on the two servers are synchronized before they are exported as
read-only file systems. The net result is a reduced load on the NFSv4 servers.
This scenario can be further expanded by adding additional primary NFSv4

40 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

servers and replicas. The replica locations should either explicitly list the local file
system as the first replica location, or the administrator should understand that it
will be transparently added as the first replica location. In other words, to export
on server A:

/replicated/database -vers=4,replicas=/replicated/database@serverB

This is the same as:

/replicated/database \
-vers=4,replicas=/replicated/database@serverA:/replicated/database@serverB

The order of the replicas is important. If the second form is used, but server B is
listed first, clients attempting to access /replicated/database on server A are
immediately sent to server B.

Before this feature can be used, replication must be enabled on all servers taking
part. Example 3-12 shows how replication is enabled on the server.

Example 3-12 Enabling replication

chnfs -R on
#
nfsd -getreplicas
replicas=on
#

In the previous diagram, if files in the /data directory on server A were also
available in the directory /data on server B, NSFv4 clients can be made aware of
this by specifying replica locations during the export function. By adding a line
similar to the following line to the /etc/exports file for server A, the /data directory
is exported while simultaneously specifying the location of another replica:

/data -vers=4,ro,replicas=/data@serverA:/data@serverB

If server A becomes unavailable, users using files under the /data directory of
server A will begin using files in the /data directory on server B, without being
aware that the client has switched to a different server.

Likewise, the following line shows the entry in the /etc/exports file on server B:

/data -vers=4,ro,replicas=/data@serverB:/data@serverA

Tip: Read-only data is ideal for replication. Data can be exported as
read/write, but if a failover occurs during transmission, the write might not
succeed.

 Chapter 3. NFSv4 implementation 41

Client-side support for multiple locations
When the client is no longer able to access replicated data on its current server, it
then attempts to access the data from the next most favored server. The client
creates a preference list when it mounts a file system from the server, using the
order specified in the server’s /etc/exports entry for that file system. This order
can be overridden by the client through client-side mount options.

Controlling client replica preferencing
The AIX 5L command nfs4cl can be used to control which replica a client will
prefer when data is replicated on multiple servers.

Use the showfs option available with the nfs4cl command to check the client’s
server preference order, as shown in Example 3-13.

Example 3-13 Displaying current replica preferences

nfs4cl showfs /gpfs1

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
frio /gpfs1 2:150 /gpfs1
 Current Server: frio:/gpfs1
 Replica Server: sabine:/gpfs1
 Replica Server: angelina:/gpfs1
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p

In this case, the client is using the server frio as its default, with replicas sabine
and angelina. Use the nfs4cl setfsoptions command to change the client
preferences, as shown in Example 3-14.

Example 3-14 Changing the preferred client

nfs4cl setfsoptions /gpfs1 prefer=angelina

After making the change, the preferred status can again be checked using the
nfs4cl showfs command, as shown in Example 3-15 on page 43.

42 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 3-15 Using the nfs4cl command to view fs options

nfs4cl showfs /gpfs1
Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
frio /gpfs1 2:150 /gpfs1
 Current Server: frio:/gpfs1
 Replica Server: sabine:/gpfs1
 Replica Server: angelina:/gpfs1
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p,prefer=angelina.itsc.austin.ibm.com
#

After the client preference has been changed, all subsequent access attempts for
data located on a replica file system will be directed to its preferred replica.

Soft mounts and fail-over behavior
By default, NFS establishes hard mounts. This means that should a server
become unavailable, clients wait indefinitely for the server to come back online.
The result for the end user might be a command (such as ls against an
NFS-mounted directory) that hangs until the server returns to service. NFS
supports the soft option, which enables a timeout value when a server becomes
unresponsive. The result of a timeout in NFSv3 is failed command execution
when attempting to access the remote file system. In NFSv4, a failover will result
if replicas of the inaccessible file system are available.

The soft mount option in NFS has its own timeout value (timeo), and the replica
failover option has its own separate timeout value (nfs_v4_fail_over_timeout).
Furthermore, there is an additional retrans mount option for NFSv4 that
represents the number of times the client should retry the RPC request to an
unresponsive server. The retrans option only applies to the timeo option for an
NFS mount. In other words, the two values are passed to TCP when the client
makes an RPC request to the server. The client will initially attempt to contact the
server <retrans> number of times for <timeo> tenths of a second. On the first
attempt to contact the server, the nfs_v4_fail_over_timeout and timeo timers are
started simultaneously, but the nfs_v4_fail_over_timeout is not checked until after
the client has completed its <retrans> number of attempts to contact the server
for <timeo>. Furthermore, if, after the retrans attempts have failed, the
nfs_v4_fail_over_timeout value has not yet been reached, the access will report
a failure and the client will not fail over to a replica server. When using soft
mounts, take care when setting nfs_v4_fail_over_timeout to not use a value
larger than timeo x retrans.

 Chapter 3. NFSv4 implementation 43

Synchronizing replicas
Read/write and read-only exports in a replicated environment pose a major
challenge in respect to data synchronization. Using Figure 3-4 on page 39 as an
example, if SiteA is exporting NFSv4 file systems with the read/write option, then
as soon as a client makes an update, the data on SiteB and SiteC will no longer
be the same as that on SiteA.

A method of synchronizing data between sites and replicas is required. Several
methods are available for achieving this:

� Using the cpio command, in conjunction with the rsh or ssh commands

� Using the rdist command

� Building a clustered General Parallel File System (GPFS) environment

For small environments, building replicas with the cpio command in conjunction
with the rsh or ssh commands is probably the easiest method to implement. This
method also preserves the NFSv4 ACLs that might be present on directories or
files.

Use of the rdist command to build and synchronize replica sites is briefly
covered here, but this does not provide a complete solution. A clustered
environment using the IBM General Parallel File System (GPFS) provides the
most complete solution.

General considerations
You need to make the following decisions before implementing a solution:

� Which hosts must be kept synchronized?

� Is there a need to synchronize data, ACLs, or both?

� Which host is the primary data source?

� Which directories must be kept synchronized?

� Should any files or directories be excluded from synchronization?

� How often should the data be synchronized?

� What automated method will be used to synchronize the data?

Important: The NFSv4 replication protocol does not provide automatic data
synchronization among replica sites.

Restriction: The rdist command does not preserve NFSv4 ACLs between
replicas, so additional work is required to keep ACLs consistent between
replica sites.

44 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Decisions regarding synchronization methodology can be made after these
questions have been answered.

Using the cpio and rsh/ssh commands to synchronize replicas
The AIX 5L cpio command provides the ability to back up files and ACLs, and
thus can be used in small environments to synchronize data between NFSv4
replicas. In order to preserve extended attributes, the -U option must be specified
when using the cpio command.

In Example 3-16, the systems brazos and trinity both have JFS2 file systems
being exported through NFSv4. The system trinity is a read-only replica of
brazos.

We use the rsh and cpio commands to synchronize the /work directory on trinity
with the master copy on brazos.

Example 3-16 Using the cpio command to copy ACLs and files to a replica

cd /work
#
rsh brazos "find /work -print | cpio -oacvU " | cpio -icvUud
/work/test2
/work/test2/.sh_history
/work/test2/me
/work/test2/foobar
/work/test2/.profile
/work/test2/1.new
/work/test2/tempo
/work/test2/1
/work/test2/filename
/work/test2/mary
/work/test2/filet
/work/test2/level
/work/test2/level/myfile
/work/test2/another
/work/test2/1.new2
98 blocks
#

After the command completes, the /work file system on trinity is a copy of the
/work file system on brazos.

Important: In order for this command to work properly, the remote host name
must be present in the target host’s /.rhosts file.

 Chapter 3. NFSv4 implementation 45

Using the tar command to synchronize replicas
Example 3-17 shows an example of using the tar command to synchronize
replicas.

Example 3-17 Example using the tar command

rsh brazos "tar -cUpf - /work" | tar -xvUpf -
x /work/junk
x /work/junk/genec
x /work/junk/genec/.sh_history, 1100 bytes, 3 media blocks.
x /work/junk/genec/foobar, 0 bytes, 0 media blocks.
x /work/junk/genec/tempo, 0 bytes, 0 media blocks.
x /work/junk/genec/.profile, 52 bytes, 1 media blocks.
x /work/junk/genec/1, 264 bytes, 1 media blocks.
x /work/junk/genec/me, 8 bytes, 1 media blocks.
x /work/junk/genec/mary, 0 bytes, 0 media blocks.
x /work/junk/genec/filename, 0 bytes, 0 media blocks.
x /work/junk/genec/filet, 18 bytes, 1 media blocks.
x /work/junk/genec/another, 0 bytes, 0 media blocks.
x /work/junk/genec/level
x /work/junk/genec/level/myfile, 0 bytes, 0 media blocks.
#

Using the rdist command to synchronize replicas
The rdist (remote file distribution) command can be used to maintain identical
copies of files on multiple hosts. It preserves the owner, group, mode, and
modification times, if possible, and can update running programs. The rdist
command can receive direction from the following sources:

� The default distribution file, distfile, in the user’s $HOME directory

� A different distribution file, specified by the -f flag

� Command-line arguments that augment or override variable definitions in the
distribution file

� Command-line arguments that serve as a small distribution file

For further details about rdist usage, see the command’s man pages.

The rdist distribution file (distfile)
The distribution file specifies the files to copy, destination hosts for distribution,
and operations to perform when updating files to be distributed with the rdist
command.

46 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Each entry in the distribution file has one of the following formats:

VariableName = NameList
Defines variables used in other entries of the distribution
file (SourceList, DestinationList, or SubcommandList).

[Label:] SourceList -> DestinationList SubcommandList
Directs the rdist command to distribute files named in
the SourceList variable to hosts named in the
DestinationList variable. Distribution file commands
perform additional functions.

[Label:] SourceList :: TimeStampFile SubcommandList
Directs the rdist command to update files that have
changed since a given date. Distribution file
subcommands perform additional functions. Each file
specified with the SourceList variable is updated if the file
is newer than the time stamp file.

Again, for further details, see the rdist command’s man pages.

The objective of this example is to synchronize data between two systems. The
source system is trinity and the destination is brazos.

The /work directory on trinity will be replicated on brazos. Additionally, the file
BAD_FILE is to be excluded from replication. Example 3-18 shows the distfile
created on trinity.

Example 3-18 Distfile used to replicate /work on trinity with /work on brazos

HOSTS = (brazos)
FILES = (/work)
EXLIB = (BAD_FILE)

${FILES} -> ${HOSTS}
install -R /work;
except /work/${EXLIB};

The /.rhosts file on brazos must be updated to contain a reference to trinity
before the distfile in Example 3-18 can be used. If this is not done, the rdist
command fails with permission denied, as shown in Example 3-19.

Example 3-19 rdist failure because trinity has no access to brazos

rdist -f /tmp/distfile
rdist: Updating the host brazos.
rshd: 0826-813 Permission is denied

 Chapter 3. NFSv4 implementation 47

The rdist command can now be used with the -f <full_path_to_distfile>
option to replicate the contents of /work on trinity with /work on brazos.
Example 3-20 shows the output from the test environment.

Example 3-20 Running the rdist command using the customized distfile

rdist -f /tmp/distfile
rdist: Updating the host brazos.
rdist: installing: /work/1
rdist: installing: /work/2
rdist: installing: /work/3
rdist: installing: /work/4
rdist: installing: /work/5
rdist: installing: /work/6
rdist: installing: /work/7
rdist: installing: /work/8
rdist: installing: /work/9
rdist: installing: /work/a
rdist: installing: /work/a/1
rdist: installing: /work/a/2
rdist: installing: /work/a/3
rdist: installing: /work/a/4
rdist: installing: /work/a/5
rdist: installing: /work/a/6
rdist: installing: /work/a/7
rdist: installing: /work/a/8
rdist: installing: /work/a/9
rdist: installing: /work/b
rdist: installing: /work/c
rdist: installing: /work/d
rdist: installing: /work/e

Now, the rdist command must be modified to affect only those files that were
changed or updated since the initial rdist command was run. See Example
3-21, “Updating only changed and new files and directories” on page 48.

Example 3-21 Updating only changed and new files and directories

rdist -b -f /tmp/distfile
rdist: Updating the host brazos.
rdist: updated /work/1
rdist: updated /work/a/1
rdist: installing: /work/b/new_file
rdist: installing: /work/Z

Note: The BAD_FILE file was excluded from replication because it was
specified in the EXLIB variable.

48 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

As the example shows, only the files /work/1 and /work/a/1 were updated and
/work/b/new_file was created. The directory /work/Z was created. All other files
were left untouched, because the copies on both master and replica were
identical.

If files are found in /work that do not match /work on trinity, they are removed.
See Example 3-22.

Example 3-22 Output from rdist

cat sync_data.out
rdist: Updating the host brazos.
rdist: removed /work/passwd
rdist: removed /work/users.out
#

The -b option is used to perform a binary comparison; any files that have
changed are updated. The -b option can also be specified during the initial
synchronization.

Automating rdist
The best method of automating the rdist command involves the use of the cron
script. Two options are available:

� Create a script, called by cron, that runs the rdist command.

� Specify the rdist command in the crontab file.

The first option is a better choice, because it permits modifications to occur to the
script without updating the crontab file. For this example, the script
/usr/local/scripts/sync_data.sh was created. See Example 3-23.

Example 3-23 The rdist script to be called by cron

#!/bin/ksh
#
Script to synchronize data between the NFSv4 master and replicas.
This script is ONLY to be called by cron(1).
15 August 2005.
#
LOGFILE=/usr/local/scripts/sync_data.out
/usr/bin/rdist -b -f /usr/local/scripts/distfile >>$LOGFILE 2>&1

Use the crontab -e command to edit the root user’s crontab file, adding the line
shown in Example 3-24 on page 50.

 Chapter 3. NFSv4 implementation 49

Example 3-24 Entry added to crontab to synchronize data every hour

0 * * * * /usr/local/scripts/sync_data.sh 2>/usr/local/scripts/sync_data.errs

In this example, the sync_data.sh script is called every hour. The decision of
how often data should be synchronized depends on the frequency with which
files in the master copy are altered or created.

A discussion of replication scheduling reveals the major drawback involved when
using the rdist command. Use of this method is neither convenient nor efficient
if a large amount of highly volatile data is involved. The amount of network traffic
will undoubtedly increase and might lead to other performance-related issues.
Also, the rdist command cannot be used if the files to be synchronized are
larger than 2 gigabytes.

For small to medium environments, where data does not change regularly, the
rdist method is quick and can be implemented with relative ease.

3.4 List of NFSv4 features supported in AIX 5L V5.3
Table 3-1 provides the full list of NFSv4 features supported, including the newest
features supported by AIX 5L V5.3 RML03.

Table 3-1 NFSv4 features supported up to and including AIX 5L V5.3 RML03

Note: The amount of work performed when testing this method was limited by
time and the available test environment. Before implementing this method in a
production setting, it is advisable to test its consequences and performance to
ascertain the impact on the systems and the network.

Feature Description

Attribute classes Large set of file attributes available in three
different classes: Mandatory, Recommended, and
Named.

User name to UID mapping Represent users and groups as strings.

Better namespace handling Presence of pseudo root, exname, and refer
options.

Better security Use of RPCSEC_GSS using Kerberos.

Client caching and delegation Improves performance and reduces network
traffic.

50 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Referrals Enables multiple servers to present a single
unified namespace to client systems.

Replication Provides better availability if a system fails.

Compound RPC Uses the network resources efficiently by reducing
the total number of RPC transactions.

File locking Provides better detection and recovery of error
conditions.

File handles Volatile file handles provide better interoperability.

Concurrent I/O (CIO) Application reads and writes that are issued
concurrently can run concurrently without reads
blocking for the duration of writes, or the reverse.

Direct I/O (DIO) Enables applications to perform reads and writes
directly to the NFS server, bypassing the NFS
client caching layer.

Feature Description

 Chapter 3. NFSv4 implementation 51

52 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 4. Using NFSv4 with JFS2 or
GPFS

We discuss the following topics in this chapter:

� AIX 5L enhanced journaled file system (JFS2)

� General Parallel File System (GPFS)

� Backup considerations

4

© Copyright IBM Corp. 2005. All rights reserved. 53

4.1 AIX 5L enhanced journaled file system (JFS2)
AIX was the first UNIX operating system with a journaled file system (JFS), a
technology now ubiquitous in the industry. In AIX 5L, a new generation file
system, enhanced JFS, or JFS2, was introduced to extend scalability beyond the
design of the original product. Starting in AIX 5L V5.1.0, the default file system is
JFS for the 32-bit kernel and JFS2 for the 64-bit kernel (this setting can be
overridden at AIX 5L installation time in order to choose JFS as the root file
system).

Figure 4-1 illustrates NFSv4 with JFS2.

Figure 4-1 NFSv4 with JFS2

54 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

JFS2 uses extent-based addressing structures, along with aggressive block
allocation policies, to produce compact, efficient, and scalable structures for
mapping logical offsets within files to physical addresses on disk. An extent is a
sequence of contiguous blocks allocated to a file as a unit and is described by a
triple, consisting of logical offset, length, physical address. The addressing
structure is a B+ tree populated with extent descriptors (the triples), rooted in the
inode, and keyed by logical offset within the file.

JFS2 supports block sizes of 512, 1024, 2048, and 4096 bytes on a per file
system basis, enabling users to optimize space utilization based on their
application environment. Smaller block sizes reduce the amount of internal
fragmentation within files and directories and are more space efficient. However,
small blocks can increase path length, because block allocation activities will
occur more often than if using a larger block size. The default block size is 4096
bytes, because performance, rather than space utilization, is generally the
primary consideration for server systems.

JFS2 dynamically allocates space for disk inodes as required, freeing the space
when it is no longer required. This support avoids the traditional approach of
reserving a fixed amount of space for disk inodes at file system creation time,
thus eliminating the need for customers to estimate the maximum number of files
and directories that a file system will contain.

Two different directory organizations are provided. The first organization is used
for small directories and stores the directory contents within the directory's inode.
This eliminates the need for separate directory block I/O, as well as the need for
separate storage allocation. Up to eight entries can be stored inline within the
inode, excluding the self (.) and parent (..) directory entries, which are stored in a
separate area of the inode.

The second organization is used for larger directories and represents each
directory as a B+-tree keyed on name. The intent is to provide faster directory
lookup, insertion, and deletion capabilities when compared to traditional unsorted
directory organizations.

JFS2 supports the defragmentation of free space in a mounted and actively
accessed file system. After a file system's free space has become fragmented,
defragmenting the file system allows JFS2 to provide more I/O-efficient disk
allocations and to avoid some out of space conditions.

Defragmentation support is provided in two pieces. The first piece is a user
space JFS2 utility, which examines the file system's metadata to determine the
extent of free space fragmentation and to identify the file system reorganization
activities required to reduce or eliminate the fragmentation. The second piece is
integrated into the JFS2 kernel extension and is called by the user space utility.

 Chapter 4. Using NFSv4 with JFS2 or GPFS 55

This second piece performs the reorganization activities, under the protection of
journaling and with appropriate serialization to maintain file system consistency.

To enhance the performance on a JFS2 file system, a vnode cache has been
added and the inode generation numbers have changed.

The problem is that on each access of a file (vnode) by NFS, the vnode and its
accompanying inode must be reactivated. Use of a vnode cache keeps these
objects in an active state and it becomes much simpler to find and use them. The
vnode cache has been adapted from the existing JFS design and implemented in
JFS2.

To improve the hash key distribution, the inode generation number has changed.
In AIX 5L Version 5.0, the inode generation number started at zero when a file
system was mounted, and new inodes got ever-increasing values. In AIX 5L
Version 5.1, the inode generation number starts at a number derived from the
current time. This results in more non-zero bits and more variation.

JFS2 provides the capability to store much larger files than the existing JFS.
JFS2 supports up 4 petabyte (40000 gigabyte) file systems; however, only 16
terabytes have been tested. This applies to file sizes.

JFS2 was designed to give optimal performance with a 64-bit AIX kernel.

File system performance is critical for NFS serving. JFS2 provides major
performance gains for NFS. It provides:

� Very large inode, name, and vnode caches

� Directory organization

� Sequential I/O with extents

4.1.1 Comparing JFS2 with JFS
Table 4-1 shows a comparison of JFS2 and JFS.

Table 4-1 Comparison of JFS2 and JFS

Attribute JFS2 JFS

Architected maximum file system size 4 petabytes (PB) 1 terabyte (TB)

Supported maximum file system size 16 TB 1 TB

Architected maximum file size 4 PB 64 gigabytes (GB)

Supported maximum file size 16 TB 64 GB

56 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

4.1.2 JFS2 advanced features
JFS2 supports the following advanced features:

� Direct I/O (DIO)

� Concurrent I/O (CIO)

� Snapshots

Direct I/O
Direct I/O (DIO) bypasses file system caches and buffering, allowing for:

� Direct transfers between disk and application buffer

� Reduced data copies and CPU processing

� Performance similar to raw disk I/O

DIO brings benefits to applications that have low data reuse and large sequential
I/O.

Concurrent I/O
Concurrent I/O (CIO) alters file system inode level serialization. It is designed for
applications with internal serialization such as databases. The ability of CIO to
allow concurrent writers and readers to the same file provides for performance
increases.

For a detailed discussion, refer to the following white paper:

http://www.ibm.com/servers/aix/whitepapers/db_perf_aix.pdf

JFS2 snapshots
Snapshots are a point-in-time online copy of a file system. Their primary use is
for online backups or saving a version of a file system. A snapshot can be taken
while the file system is active and in use. Up to 15 snapshots are allowed per file
system and they remain persistent across system reboots.

During the creation of a snapshot, the snappedFS (the file system that was used
to create the snapshot) will be quiesced and all writes blocked. This ensures that

Max inodes Dynamic, limited by
available blocks

Configured at file
system creation time

Available file system block sizes 512 bytes (B), 1
kilobyte (KB), 2 KB,
4 KB

512 B, 1 KB, 2 KB, 4
KB, 128 KB

Attribute JFS2 JFS

 Chapter 4. Using NFSv4 with JFS2 or GPFS 57

http://www.ibm.com/servers/aix/whitepapers/db_perf_aix.pdf

the snapshot really is a consistent view of the file system at the time of the
snapshot. When a snapshot is initially created, only structure information is
included. When a write or delete occurs, the affected blocks are copied into the
snapshot file system.

Write operations on a snapshot have a performance impact caused by the
additional processing required to ensure consistency between the file systems
and moving prior versions of updated blocks.

Read operations on the snappedFS remain unaffected, although every read of
the snapshot will require a lookup to determine whether the block needed should
be read from the snapshot or from the snappedFS. For instance, the block will be
read from the snapshot file system if the block has been changed since the
snapshot took place. If the block is unchanged since the snapshot, it will be read
from the snapped file system. A snapshot, when completed, can be used to
make a backup of the file system and is able to guarantee the consistency of the
backup image.

This operation makes use of the snapshot map, whose location is stored in the
snapshot superblock. The snapshot map logically tracks the state of the blocks in
the snapped file system and contains the following details:

� Block address of blocks that were in use in the snappedFS at the time the
snapshot was taken

� Block address of blocks in the snappedFS that were in use and have
subsequently been modified or deleted after the snapshot was created

� Block address of newly allocated blocks in the snapshot that contain the
before image of block that have been deleted or written to

Typically, a snapshot will need 2 to 6% of the space needed for the snappedFS.
In the case of a highly active snappedFS, this estimate could rise to 15%,
although this is really file system dependent. This space is needed if a block in
the snappedFS is either written to or deleted. If this happens, the block is copied
to the snapshot. Therefore, in highly active file systems, the space in a snapshot
file system can be used quite rapidly. Any blocks associated with new files written
after the snapshot was taken will not be copied to the snapshot, because they
were not current at the time of the snapshot and therefore not relevant.

If the snapshot runs out of space, the snapshot will be discarded as would any
other snapshots associated with the snappedFS. Two possible entries can be
created in the AIX error log with either of the following labels: J2_SNAP_FULL or
J2_SNAP_EIO. If a snapshot file system fills up before a backup is taken, the
backup is not complete and will have to be rerun from a new snapshot, with
possibly a larger size, to allow for changes in the snappedFS.

58 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

JFS2 file systems from previous versions of AIX 5L are fully supported for
snapshot images. Snapshot information is stored in a region of the superblock. It
is not possible to mount snapshots on a system running AIX 5L at a version prior
to Version 5.2.

4.1.3 Using JFS2 with NFSv4
Starting with AIX 5L V5.3, JFS2 now supports access control lists (ACLs) for
NFSv4. This enables you to establish fine-grained access control for file system
objects and support inheritance features. In order to take advantage of ACL
support for NFSv4, you need to create the JFS2 file system with extended
attribute format version 2 (EAv2). If you have file systems that have already been
created with extended attribute format version 1(EAv1), you need to convert to
EAv2 first.

The JFS2 supports two ACL types from AIX 5L V5.3:

� AIXC

� NFS4

4.1.4 JFS2 ACLs versus NFSv4 ACLs
The AIX Classic (AIXC) ACL type provides for the ACL behavior as defined on
previous releases of AIX. This ACL type consists of the regular base mode bits
and extended permissions. With extended permissions, you can permit or deny
file access to specific individuals or groups without changing the base
permissions.

Example 4-1 shows the typical output of the acledit command before the
converting AIXC ACL to NFS4.

Example 4-1 Output of the acledit command before converting to NFS4

acledit /fs2
*
* ACL_type AIXC
*
attributes:
base permissions
 owner(root): rwx
 group(system): r-x
 others: r-x
extended permissions
 disabled
#

 Chapter 4. Using NFSv4 with JFS2 or GPFS 59

Now convert ACL with the aclconvert command. Example 4-2 shows the usage
of the aclconvert command and the output of the acledit command after
converting ACL to NFS4.

Example 4-2 Converting ACL to NFSv4

aclconvert -t NFS4 /fs2
#
acledit /fs2
*
* ACL_type NFS4
**
* Owner: root
* Group: system
*
s:(OWNER@): d wpDd
s:(OWNER@): a rRWxaAcCo
s:(GROUP@): a rx
s:(OWNER@): d rwpRWxDdos
s:(GROUP@): d rwpRWxDaAdcCos
s:(EVERYONE@): a rRxac
s:(EVERYONE@): d wpDd

Table 4-2 shows the different access control entry (ACE) types.

Table 4-2 Different ACE types

Table 4-3 shows all possible ACE masks.

Table 4-3 All possible ACE masks

Key Description

a ACE type allows the access described in the access mask.

d ACE type is denied the access described in the access mask.

l Audit type ACE.

u Alarm type ACE.

Key Description

r Permission to read the data for the file or permission to list the contents
for a directory

w Permission to modify the file's data or permission to add a new file to a
directory

p Permission to append data to a file or permission to create a
subdirectory to a directory

60 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

AIX Classic ACLs (AIXC) do not support inheritance. This feature is only
available with NFSv4 ACLs. When a new file or directory is created and the
parent directory has an NFSv4 ACL, an ACL will be established for the new file or
directory. If an ACL is established for a child file or directory explicitly, it is
decoupled from the parent's ACL. Any changes to the parent's ACL will not affect
the child's ACL. In an environment where users are not actively managing ACLs,
all the ACLs of a directory's children files will likely have the same ACL. It makes
sense to keep one copy of the ACL when the ACL data is common.

The following conditions need to be met for inheritance to be used:

� It is a JFS2 file system with AIX 5L Version 5.3 or later.

� Extended attribute version 2 (EAv2) is enabled with the JFS2 file system.

� NFS4 ACL is applied.

When ACLs are configured with the acledit command, fields are provided to
define different inheritance flags such as fi and di. Table 4-4 on page 62
describes the inheritance flags.

R Permission to read the named attributes of a file

W Permission to write the named attributes of a file

x Permission to execute a file

D Permission to delete a file or directory within a directory

a The ability to read basic attributes (non-ACLs) of a file (Read Base
Attributes)

A Permission to change basic attributes (non-ACLs) of a file

d Permission to delete the file

c Permission to read the ACL

C Permission to write the ACL

o Permission to change the owner

Key Description

 Chapter 4. Using NFSv4 with JFS2 or GPFS 61

Table 4-4 NFSv4 ACL inheritance flags description

4.1.5 How do we implement inheritance NFSv4 ACLs?
Consider a directory named /nfs4. Our objective is to configure its subdirectories
and files to inherit its ACLs. Example 4-3 provides a method for achieving this
objective.

Example 4-3 Configuring ACLs with inheritance

aclconvert -r NFS4 /nfs4
#
alcedit /nfs4
* ACL_type NFS4
*
*
* Owner: user10
* Group: staff
*
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rRxadcs fidi
s:(GROUP@): d wpWDACo fidi
s:(EVERYONE@): a rRxadcs fidi
s:(EVERYONE@): d wpWDACo
#
touch /nfs4/file1
#
aclget /nfs4/file1
*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*

Key Description

fi Can be placed on a directory and indicates that this ACE should be
added to each new non-directory file created.

di Can be placed on a directory and indicates that this ACE should be
added to each new directory file created.

oi Can be placed on a directory, but does not apply to the directory, only
to newly created files and directories as specified by the previous two
flags.

ni For child only, no inheritance for grandchild.

62 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rRxadcs fidi
s:(GROUP@): d wpWDACo fidi
s:(EVERYONE@): a rRxadcs fidi

The /nfs4 directory is first converted to an NFS4 ACL. Next, the ACL can be
edited using the acledit command. The ACLs are then modified, adding any
inheritance flags as required. A new file named file1 is created, and its ACL is
verified using the aclget command to ensure that its ACL is the same as that on
/nfs4.

4.2 General Parallel File System (GPFS)
IBM General Parallel File System (GPFS) for AIX 5L is a UNIX operating system
file system designed for clusters of IBM Eserver® pSeries® machines. It
enables applications on multiple nodes to share file data with performance and
fault tolerance characteristics that surpass those of traditional distributed file
systems. GPFS supports very large file systems and stripes data across multiple
storage devices or even multiple storage subsystems for higher performance.
GPFS is based on a shared disk model that exploits several methods of moving
disk data to the application. These methods either involve some form of storage
area network (SAN) or software simulation of a SAN using high-speed
networking capabilities. This use of disk sharing techniques, combined with a
distributed locking protocol to manage the shared disks, produces fewer
bottlenecks than other file system techniques. It achieves this by offering the
standard AIX file system interfaces, allowing most applications to execute without
modification or recompile in addition to providing enhanced parallel programming
capabilities in conjunction with the IBM implementation of the Message Passing
Interface-I/O (MPI-IO) industry standard. GPFS can be used successfully for a
wide range of applications that require high performance, high degrees of
scalability, and fault tolerance.

Most UNIX file systems are designed for a single-server environment. In such an
environment, adding additional file servers typically does not improve specific file
access performance. GPFS is designed to provide high performance by “striping”

Note: NFS4 ACL inheritance as implemented in AIX 5L V5.3 is only valid for
newly created files and directories under the parent directory. If existing files
and subdirectories need to inherit ACLs, use the following command to reset
the ACLs on these existing files:

aclget <parent_directory> | aclput -R directory

 Chapter 4. Using NFSv4 with JFS2 or GPFS 63

I/O across multiple disks, high availability through logging, replication, and high
scalability (by using multiple servers) through the IBM RS/6000® SP Switch and
the SP Switch2.

GPFS file systems support multiple terabytes of storage within a single file
system. As the hardware technology supporting storage attachment matures, it is
a logical extension of the GPFS environment to support disks that have a shared
direct attachment. GPFS V1.4 begins that process by introducing support for
clusters of IBM Eserver pSeries and IBM RS/6000 systems running HACMP™
and sharing access to disks through Serial Storage Architecture (SSA) links.

At its core, GPFS is a parallel disk file system. The parallel nature of GPFS
guarantees that the entire file system is available to all nodes within a defined
scope and the file system’s services can be safely applied to the same file
system on multiple nodes simultaneously. It also means that multiple records can
be safely written to the same file simultaneously by being striped across several
disks (thus improving performance). This GPFS parallel feature can improve the
performance of both parallel and sequential programs. In other words, you do not
have to write parallel I/O code to benefit from the GPFS parallelization. GPFS will
automatically parallelize the I/O in your sequential program.

In addition to its parallel features, GPFS supports high availability and fault
tolerance. The high availability nature of GPFS means that the file system will
remain accessible to nodes even when a node in the file system dies. The fault
tolerant nature of GPFS means that file data will not be lost even if some disk in
the file system fails. These features are provided through integration with other
software and hardware, for example, High Availability Cluster MultiProcessing
Enhanced Scalability (HACMP/ES) and RAID.

Figure 4-2 on page 65 shows a simplified view of the GPFS architecture with
applications.

64 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 4-2 GPFS architecture

The file system data and metadata resides on the storage devices assigned to it.
Note that this book uses the term disk to apply equally to a single disk, a RAID
array, or a LUN created by a storage subsystem from pieces of storage that it
controls. The installation might choose to allow data and metadata to reside on
all disks or to separate metadata to a subset of the disks. In practice, most GPFS
installations choose to mix data and metadata, because the density of today’s
storage media is unfavorable for dedicating large disks to collections of small
metadata objects that have potentially high access rates. Mixing the data and
metadata allows the entire access capability of all disks in the file system to be
brought to bear on a workload that is data intensive at times and metadata
intensive at other times. GPFS stripes files across all disks that are defined to the
file system, which can result in data blocks from a sufficiently large file being
spread across all available disks. Smaller files are striped across the required
number of disks; individual disks are selected in an attempt to balance the usage
of all disks. This results in high usage of available disk bandwidth to satisfy the
needs of applications using very large files and the aggregate needs of
numerous applications. GPFS file systems with sufficient storage configurations
have delivered multiple GB/sec of bandwidth within a nodeset. The use of
multiple disks also allows the creation of very large GPFS file systems. The
GPFS product formally supports 100 terabyte (TB) file systems. Larger file
systems have been created by special arrangements with IBM.

 Chapter 4. Using NFSv4 with JFS2 or GPFS 65

4.2.1 Why GPFS?
GPFS enables users to group applications based on a business need rather than
the location of the data. It is a solution to a requirement for a high-performance
cluster file system with fault tolerance characteristics. These characteristics have
proved valuable in many types of environments. GPFS has been used in parallel
processing environments, wide area file serving, non-database commercial
applications, digital media/library applications, and many others.

GPFS is the file system used by many of the world’s largest supercomputers.
These supercomputers are made up of a large number of powerful
multiprocessors linked by a high-performance network. GPFS enables these
systems to be used for large parallel jobs that share files across these computers
at high data rates. GPFS provides the capability for parallel write sharing of
single files with full data consistency. It also provides extremely high aggregate
bandwidth for applications or application sets that use independent files
concurrently and potentially require the ability to access data assigned to another
job instance. It provides these capabilities in an environment that allows
redundancy, isolating the application from many failures in the environment.
GPFS provides the ability to create large file systems of many terabytes,
simplifying the administrative burden of managing multiple file systems.

GPFS provides support for the IBM parallel programming environment and
provides extended data access capabilities to the IBM implementation of the
Message Passing Interface-I/O (MPI-IO) standard. These functions allow very
fine-grained sharing of data among the instances of a parallel application. GPFS
allows the MPI-IO facility to give hints that control data prefetching and locking to
optimize this parallel use of files. These hints are available for use by other
programs with similar requirements.

The same characteristics that make GPFS valuable for high-performance
technical applications make it valuable for other applications. Digital media, data
mining, engineering, manufacturing applications, and others possess the same
requirement for high-speed access to large volumes of data and the ability to
access the data from multiple members of a cluster. These applications also
benefit from the GPFS fault tolerance abilities, which enable it to keep serving
data in the event of a failure. The combination of GPFS and a facility such as
HACMP, which redirects application execution to available portion of a cluster
when a failure occurs elsewhere, provides excellent reliability.

GPFS clusters provide a capability of doing file serving from a collection of
nodes. The file service function can reside on all nodes of the GPFS cluster. This
allows the combined resources of multiple nodes in the cluster to be applied to
file serving, which results in greater aggregate capability. GPFS will not
necessarily produce better single stream response time than single node file
systems, but single node file systems are limited in the aggregate to the

66 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

capability of the single node. GPFS also provides additional fault tolerance
compared to single system solutions.

Figure 4-3 shows one potential implementation of GPFS, a geographically
dispersed GPFS environment.

Figure 4-3 A geographically dispersed GPFS environment

4.2.2 GPFS advantages
This section summarizes the key advantages of GPFS, as compared to the file
systems considered in the previous section.

Scalability
One of the major advantages offered by GPFS over other file system types is its
scalability. GPFS file systems can be striped across multiple disks on multiple
storage nodes. This makes it very easy to scale GPFS file systems in terms of
both capacity and performance by adding additional nodes as servers, and

 Chapter 4. Using NFSv4 with JFS2 or GPFS 67

additional disk adapters and disks on server nodes. In the GPFS model, each
participating system has direct access to the storage containing the striped data.
This allows high parallelism and very high I/O bandwidth. This is in contrast to
NFS and DFS, which can only serve a file system from the viewpoint of a single
server.

Virtual shared disk (VSD) servers do not have to be dedicated but can, in fact, be
a GPFS node themselves. This means that client applications can take
advantage of spare CPU time on VSD servers. The merits of doing this will, of
course, depend on the application and its predicted resource requirements.

Parallelism
In terms of individual GPFS node to server throughput, overall I/O performance
for one node will, of course, not be as great as would I/O to a local JFS. Bigger
block size will be better for GPFS performance. However, the first area where
GPFS really helps in terms of performance is that the total aggregate I/O
throughput for a multiple client application will normally be far in excess of other
solutions, such as NFS. This is because the I/O bandwidth can be scaled across
multiple servers in order to satisfy the aggregate performance that is required.

The second performance advantage of GPFS is that, because it is a parallel file
system, it allows multiple processes to access the same file simultaneously for
read, write, or read/write access from different nodes. PIOFS1 is the only other
file system considered in this section that allows parallelism of applications in this
way. Applications need to be specifically developed to take advantage of this
parallelism, for example, by using the MPI-I/O API.

However, note that while GPFS fully supports advisory byte range locking,
PIOFS does not.

Another important performance consideration is that the write I/O of new data
blocks is automatically balanced across all disks within the file system. This is
due to the GPFS striping algorithm that functions transparently with use of the file
system. Traditional local or distributed file systems are far more localized in terms
of data placement, which greatly increases the risks of loading imbalances or
performance bottlenecks.

Where it is efficient to do so, GPFS automatically invokes read prefetch and write
behind algorithms. The algorithms are automatically invoked when GPFS detects

Note: Although VSD servers are commonly used in conjunction with GPFS,
they are not required in order to run GPFS.

1 High performance parallel file system. First developed for the SP2 parallel architecture and now
superseded by GPFS.

68 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

that sequential I/O to a file is being performed. This greatly improves
performance for applications that do intensive sequential read and write
operations.

Availability
GPFS supports three methods of extended data availability. These methods
should be considered according to individual requirements and cost restraints.
They are:

� AIX 5L Logical Volume Manager (LVM) mirroring

� RAID-1 or RAID-5 disk arrays

� GPFS replication

The GPFS replication facility permits multiple copies of a file or file system to be
maintained automatically. The file system replication factor determines the
number of copies it is required to store and can be set for individual files or for the
entire file system. Replication is the simplest of the three options to configure but
has the greatest performance impact.

Like JFS2, GPFS is also a logging file system. Logs are maintained for each
GPFS node, which permit the fast recovery of data in the event of node failure.
GPFS uses a token mechanism as an internal mechanism for insuring that data
and metadata are consistent and correct.

GPFS supports an automount facility, which means that file systems can be
configured to be mounted automatically when the GPFS daemons are
successfully started. This increases the overall availability of the GPFS
environment.

Simplified administration
GPFS administration is distributed in that a single administration command can
be executed on one particular node so that it is also effective on all other GPFS
nodes.

With GPFS, a single mount command makes it possible to gain access to the
entire file system, no matter how many VSD servers it is configured over and
whatever its size is. This makes it very easy to move the execution of applications
to different nodes. This is in contrast to file systems, where a very large file
system might be partitioned across several different server nodes. If there are n
GPFS nodes in an application environment, it takes only n mounts to make the
GPFS file system available to all nodes, no matter how many VSD servers
support the file system.

 Chapter 4. Using NFSv4 with JFS2 or GPFS 69

4.2.3 When to consider GPFS
There are several situations where GPFS is an ideal file system for data on a
cluster of pSeries systems:

� You have large amounts of file data that must be accessed from any node and
where you want to more efficiently use your computing resources for either
parallel or serial applications.

� The data rates required for file transfer exceed what can be delivered with
other file systems.

� You require continued access to the data across a number of types of failures.

GPFS is not a wide area distributed file system replacing NFS for network data
sharing, although GPFS files can be exported using NFS.

4.2.4 Planning considerations for GPFS
It is not the purpose of this book to discuss GPFS planning in detail. However, we
believe the topic needs a mention and you should consider the following areas in
detail:

� Your I/O requirements

� Planning your hardware layout

� The GPFS prerequisites

� The GPFS parameters required to meet your needs

For more information, see the IBM Redpaper IBM’s General Parallel File System
(GPFS) 1.4 for AIX, REDP-0442.

4.2.5 Using NFSv4 with GPFS

Restriction: At the time of writing, it is not possible to use the exportfs
command to NFS export a GPFS file system. NFS development issued APAR
IY75298 to address this bug. If you need to use NFSv4 with GPFS, open a call
with your local IBM Support Center and request a fix for APAR IY75298. The
fix replaces the exportfs command and enables you to NFS export a GPFS
file system.

70 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 4-4 shows an example of an NFSv4 cluster with GPFS.

Figure 4-4 An example of an NFSv4 cluster with GPFS

 Chapter 4. Using NFSv4 with JFS2 or GPFS 71

4.2.6 NFSv4 export considerations for GPFS
To export a GPFS file system using NFSv4, there are two file system settings
that must be in effect. These attributes can be queried using the mmlsfs
command and set using the mmcrfs and mmchfs commands. Consider the
following items:

� The -D nfs4 flag is required. Conventional NFS access would not be blocked
by concurrent file system reads or writes (this is the POSIX semantic). NFSv4
however, not only allows for its requests to block if conflicting activity is
happening, it insists on it. Because this is an NFSv4-specific requirement, it
has to be set before exporting a file system.

� The -k nfs4 or -k all flag is required in order to enable NFSv4 ACLs. These
flags are not required to NFSv4 export a GPFS file system, but one of them is
required if the clients are to have access to the NFSv4 ACLs. See 4.2.8,
“NFSv4 ACL administration” on page 72 for more information.

4.2.7 NFS usage of GPFS cache
Exporting a GPFS file system from a node might result in significant additional
demands on the resources at that node. Depending on the number of NFS
clients, their demands, and specific mount options, you might want to increase
either one or both of the maxFilesToCache and pagepool configuration options.
See mmchconfig command usage in General Parallel File System (GPFS) for
Clusters: Administration and Programming Reference, SA22-7967.

4.2.8 NFSv4 ACL administration
AIX 5L does not allow a file system to be NFSv4 exported unless it supports
NFSv4 ACLs. The -k nfs4 or -k all flag is required in order to enable NFSv4
ACLS. Initially, a file system will have the –k posix setting, and only traditional
GPFS ACLs will be allowed (the default for the mmcrfs command is -k posix).

To export a file system using NFSv4 with support for NFSv4 ACLS, NFSv4 ACLs
must be enabled. Because NFSv4 ACLs are vastly different and affect several
characteristics of the file system objects (directories and individual files), they
must be explicitly enabled. This is done either exclusively by specifying -k nfs4,
or by allowing all ACL types to be stored (using the -k all flag).

After the file system is configured to allow NFSv4 ACLs, it can be exported and
NFSv4 clients can mount and use the file system (including setting ACLs that will
be in NFSv4 style if you have enabled NFSv4 ACLs).

Depending on the value (posix | nfs4 | all) of the -k parameter, one or both ACL
types can be allowed for a given file system. Because ACLs are assigned on a

72 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

per-file basis, this means that within the same file system one file might have an
NFSv4 ACL, while another has a POSIX ACL. The type of ACL can be changed
by using the mmputacl or mmeditacl command to assign a new ACL, or by the
mmdelacl command (causing the permissions to revert to the mode that is, in
effect, a POSIX ACL). At any point in time, only a single ACL can be associated
with a file. Access evaluation is done as required by the ACL type associated with
the file.

NFSv4 ACLs are represented in a completely different format than traditional
ACLs. For detailed information about NFSv4 and its ACLs, refer to The NFS
Version 4 Protocol paper and other information, available at:

http://www.nfsv4.org

In the case of NFSv4 ACLs, there is no concept of a default ACL. Instead, there
is a single ACL, and the individual ACL entries can be flagged as being inherited
(either by files, directories, both, or neither). Consequently, specifying the -d flag
on the mmputacl command for an NFSv4 ACL is an error.

NFSv4 ACL syntax
An NFSv4 ACL consists of a list of ACL entries. Where traditional ACLs can
display one entry per line, the GPFS representation of NFSv4 ACL entries are
three lines each, due to the increased number of available permissions beyond
the traditional rwxc.

The first line has several parts separated by colons (:):

� The first part identifies the user or group.

� The second part displays a rwxc translation of the permissions that appear on
the subsequent two lines.

� The third part is the ACL type. NFSv4 provides both an allow and deny type:

allow Allows (or permits) those permissions that have been
selected with an X.

deny Does not allow (or denies) those permissions that
have been selected with an X.

� The fourth and final part is a list of flags indicating inheritance.

Valid flag values are:

FileInherit Indicates that the ACL entry should be included in the
initial ACL for files created in this directory.

DirInherit Indicates that the ACL entry should be included in the
initial ACL for subdirectories created in this directory
(as well as the current directory).

 Chapter 4. Using NFSv4 with JFS2 or GPFS 73

http://www.nfsv4.org

InheritOnly Indicates that the current ACL entry should not apply
to the directory, but should be included in the initial
ACL for objects created in this directory.

As in traditional ACLs, users and groups are identified by specifying the type and
name. For example, group:staff or user:bin. NFSv4 provides for a set of special
names that are not associated with a specific local UID or GID. These special
names are identified with the keyword special followed by the NFSv4 name.
These names are recognized by the fact that they end in with the character @.
For example, special:owner@ refers to the owner of the file, special:group@ the
owning group, and special:everyone@ applies to all users.

The next two lines provide a list of the available access permissions that can be
allowed or denied, based on the ACL type specified on the first line. A permission
is selected using an X. Leave the Permissions that are not specified by the entry
marked with a minus sign (-).

These are examples of NFSv4 ACLs:

� An ACL entry that explicitly allows READ, EXECUTE, and READ_ATTR to the
staff group on a file is similar to the one shown in Example 4-4.

Example 4-4 Example NFSv4 ACL

group:staff:r-x-:allow

(X)READ/LIST (-)WRITE/CREATE (-)MKDIR (-)SYNCHRONIZE (-)READ_ACL (X)READ_ATTR (-)READ_NAMED
(-)DELETE (-)DELETE_CHILD (-)CHOWN (X)EXEC/SEARCH (-)WRITE_ACL (-)WRITE_ATTR (-)WRITE_NAMED

� A directory ACL is similar to the one shown in Example 4-5. It can include
inherit ACL entries that do not apply to the directory itself, but instead become
the initial ACL for any objects created within the directory.

Example 4-5 NFSv4 directory ACL example

special:group@:----:deny:DirInherit:InheritOnly

(X)READ/LIST (-)WRITE/CREATE (-)MKDIR (-)SYNCHRONIZE (-)READ_ACL (X)READ_ATTR (-)READ_NAMED
(-)DELETE (-)DELETE_CHILD (-)CHOWN (X)EXEC/SEARCH (-)WRITE_ACL (-)WRITE_ATTR (-)WRITE_NAMED

74 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� A complete NFSv4 ACL is similar to the one shown in Example 4-6.

Example 4-6 Complete NFSv4 ACL

#NFSv4 ACL

#owner:smithj

#group:staff

special:owner@:rwxc:allow:FileInherit
(X)READ/LIST (X)WRITE/CREATE (X)MKDIR (-)SYNCHRONIZE (X)READ_ACL (X)READ_ATTR (-)READ_NAMED
(X)DELETE (X)DELETE_CHILD (X)CHOWN (X)EXEC/SEARCH (X)WRITE_ACL (X)WRITE_ATTR (-)WRITE_NAMED

special:owner@:rwxc:allow:DirInherit:InheritOnly
(X)READ/LIST (X)WRITE/CREATE (X)MKDIR (-)SYNCHRONIZE (X)READ_ACL (X)READ_ATTR (-)READ_NAMED
(X)DELETE (X)DELETE_CHILD (X)CHOWN (X)EXEC/SEARCH (X)WRITE_ACL (-)WRITE_ATTR (-)WRITE_NAMED

user:smithj:rwxc:allow
(X)READ/LIST (X)WRITE/CREATE (X)MKDIR (-)SYNCHRONIZE (X)READ_ACL (X)READ_ATTR (-)READ_NAMED
(X)DELETE (X)DELETE_CHILD (X)CHOWN (X)EXEC/SEARCH (X)WRITE_ACL (-)WRITE_ATTR (-)WRITE_NAMED

NFSv4 ACL translation
NFSv4 access requires that an NFSv4 ACL be returned to clients whenever the
ACL is read. This means that if a traditional GPFS ACL is associated with the file,
a translation to NFSv4 ACL format must be performed when the ACL is read by
an NFSv4 client. Because this translation has to be done, an option (-k nfs4) is
provided on the mmgetacl and mmeditacl commands so that this translation can
be seen locally as well.

It can also be the case that NFSv4 ACLs have been set for some file system
objects (directories and individual files) prior to administrator action to revert back
to a POSIX-only configuration. Because the NFSv4 access evaluation will no
longer be performed, it is desirable for the mmgetacl command to return an ACL
representative of the evaluation that will now occur (translating NFSv4 ACLs into
traditional POSIX style). The -k posix option returns the result of this translation.

Users might need to see ACLs in their true form, as well as how they are
translated for access evaluations. There are four cases:

� By default, the mmgetacl command returns the ACL in a format consistent with
the file system setting:

– If posix only, it is shown as a traditional ACL.

– If nfs4 only, it is shown as an NFSv4 ACL.

– If all formats are supported, the ACL is returned in its true form.

 Chapter 4. Using NFSv4 with JFS2 or GPFS 75

� The command mmgetacl -k nfs4 always produces an NFSv4 ACL.

� The command mmgetacl -k posix always produces a traditional ACL.

� The command mmgetacl -k native always shows the ACL in its true form,
regardless of the file system setting.

In general, we recommend that you continue to use the mmgetacl and mmeditacl
commands without the -k flag, allowing the ACL to be presented in a form
appropriate for the file system setting. Because the NFSv4 ACLs are more
complicated and therefore harder to construct initially, users that want to assign
an NFSv4 ACL should use the command mmeditacl -k nfs4 to start with a
translation of the current ACL, and then make any necessary modifications to the
NFSv4 ACL that is returned.

Setting NFSv4 access control lists
There is no option on the mmputacl command to identify the type (traditional or
NFSv4) of ACL that is to be assigned to a file. Instead, the ACL is assumed to be
in the traditional format unless the first line of the ACL is:

#NFSv4 ACL

The lines that follow the first one are then processed according to the rules of the
expected ACL type.

An NFSv4 ACL is similar to the one shown in Example 4-7.

Example 4-7 Sample NFSv4 ACL

#NFSv4 ACL

#owner:root

#group:system

special:owner@:rwxc:allow
(X)READ/LIST (X)WRITE/CREATE (-)MKDIR (X)SYNCHRONIZE (X)READ_ACL (-)READ_ATTR
(-)READ_NAMED
(X)DELETE (-)DELETE_CHILD (-)CHOWN (X)EXEC/SEARCH (X)WRITE_ACL (X)WRITE_ATTR
(-)WRITE_NAMED

special:owner@:----:deny
(-)READ/LIST (-)WRITE/CREATE (-)MKDIR (-)SYNCHRONIZE (-)READ_ACL (-)READ_ATTR
(X)READ_NAMED
(-)DELETE (X)DELETE_CHILD (X)CHOWN (-)EXEC/SEARCH (-)WRITE_ACL (-)WRITE_ATTR
(X)WRITE_NAMED

user:guest:r-xc:allow

76 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

(X)READ/LIST (-)WRITE/CREATE (-)MKDIR (X)SYNCHRONIZE (X)READ_ACL (-)READ_ATTR
(-)READ_NAMED
(X)DELETE (-)DELETE_CHILD (-)CHOWN (X)EXEC/SEARCH (X)WRITE_ACL (-)WRITE_ATTR
(-)WRITE_NAMED

user:guest:----:deny
(-)READ/LIST (-)WRITE/CREATE (-)MKDIR (-)SYNCHRONIZE (-)READ_ACL (-)READ_ATTR
(X)READ_NAMED
(-)DELETE (X)DELETE_CHILD (X)CHOWN (-)EXEC/SEARCH (-)WRITE_ACL (X)WRITE_ATTR
(X)WRITE_NAMED

This ACL in Example 4-7 on page 76 shows four ACL entries (an allow and deny
entry for each of owner@ and guest).

In general, constructing NFSv4 ACLs is more complicated than traditional ACLs.
Users new to NFSv4 ACLs might find it useful to start with a traditional ACL and
allow either the mmgetacl or mmeditacl command to provide the NFSv4
translation, using the -k nfs4 flag as a starting point when creating an ACL for a
new file.

Displaying NFSv4 access control lists
The mmgetacl command displays an existing ACL regardless of its type
(traditional or NFSv4). The format of the ACL that is returned depends on the file
system setting (-k flag), as well as the format of the actual ACL associated with
the file. For details, see “NFSv4 ACL translation” on page 75.

Applying an existing NFSv4 access control lists
This function is identical whether you are using traditional or NFSv4 ACLs.

Changing NFSv4 access control lists
This function is identical whether you are using traditional or NFSv4 ACLs.

Deleting NFSv4 access control lists
Use the mmdelacl command to delete NFSv4 ACLs. After the ACL has been
deleted, permissions revert to the mode bits. If you then use the mmgetacl
command to display the ACL (mmgetacl -k native), it appears as a traditional
GPFS ACL.

When assigning an ACL to a file that already has an NFSv4 ACL, there are some
NFS rules that must be followed. Specifically, in the case of a directory, there will
not be two separate (access and default) ACLs, as there are with traditional
ACLs. NFSv4 requires a single ACL entity and allows individual ACL entries to be
flagged if they are to be inherited. Consequently, the mmputacl -d command is
not allowed if the existing ACL was the NFSv4 type, because this attempts to

 Chapter 4. Using NFSv4 with JFS2 or GPFS 77

change only the default ACL. Likewise the mmputacl command (without the -d
flag) is not allowed because it attempts to change only the access ACL, leaving
the default unchanged. To change such an ACL, use the mmeditacl command to
change the entire ACL as a unit. Alternatively, use the mmdelacl command to
remove an NFSv4 ACL, followed by the mmputacl command.

GPFS exceptions and limitations to NFSv4 ACLs
GPFS has the following exceptions and limitations to the NFSv4 ACLs:

� Alarm type ACL entries are not supported.

� Audit type ACL entries are not supported.

� Inherit entries (FileInherit and DirInherit) are always propagated to all child
subdirectories. The NFSv4 ACE4_NO_PROPAGATE_INHERIT_ACE flag is
not supported.

� Although the NFSv4 ACL specification provides separate controls for WRITE
and APPEND, GPFS will not differentiate between the two. Either both must
be specified, or neither can be.

� Similar to WRITE and APPEND, NFSv4 allows for separate ADD_FILE and
ADD_SUBDIRECTORY controls. In most cases, GPFS will allow these
controls to be specified independently. In the special case where the file
system object is a directory and one of its ACL entries specifies both
FileInherit and DirInherit flags, GPFS cannot support setting ADD_FILE
without ADD_SUBDIRECTORY (or the other way around). When this is
intended, we suggest creating separate FileInherit and DirInherit entries.

� Some types of access for which NFSv4 defines controls do not currently exist
in GPFS. For these, ACL entries will be accepted and saved, but because
there is no corresponding operation, they will have no effect. These include
READ_NAMED, WRITE_NAMED, and SYNCHRONIZE.

� AIX 5L requires that READ_ACL and WRITE_ACL always be granted to the
object owner. Although this contradicts NFSv4 protocol, it is viewed that this
is an area where users would otherwise erroneously leave an ACL that only
privileged users could change. Because ACLs are themselves file attributes,
READ_ATTR and WRITE_ATTR are similarly granted to the owner. Because
it does not make sense to then prevent the owner from accessing the ACL
from a non-AIX node, GPFS has implemented this exception everywhere.

� AIX does not support the use of special name values other than owner@,
group@, and everyone@. Therefore, these are the only valid special name
for use in GPFS NFSv4 ACLs as well.

78 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

4.2.9 NFS client with stale inode data
For performance reasons, some NFS implementations cache file information
about the client. Some of the information (for example, file state information such
as file size and time stamps) is not kept up-to-date in this cache. The client might
view stale inode data (on ls -l, for example) if exporting a GPFS file system with
NFS. If this is not acceptable for a given installation, caching can be turned off by
mounting the file system on the client using the appropriate mount command
option.

The clocks of all nodes in the GPFS cluster must be synchronized. If this is not
done, NFS access to the data, as well as other GPFS file system operations,
might be disrupted. NFS relies on metadata time stamps to validate the local
operating system cache.

4.3 Backup considerations

In order to backup the ACLs associated with your files and directories in JFS2,
you must employ additional processes. There are several potential solutions:

� Use the AIX 5L tar command.

Using the tar command, create one or more backup files for the data and
backup the resulting tar file using Tivoli Storage Manager. Make sure that you
use the -U option on tar to back up the extended attributes (ACLs) on the files
and directories.

Note: Turning NFS caching off will result in extra file systems operations to
GPFS and negatively affect its performance.

Important: If the same directory is either NFS-exported from more than one
node, or is accessed with both the NFS and GPFS mount point, it is critical
that clocks on all nodes that access the file system (GPFS nodes and NFS
clients) are constantly synchronized using appropriate software (for example,
NTP). Failure to do so might result in stale information seen on the NFS
clients.

Important: As of this writing, IBM Tivoli® Storage Manager Version 5.3 does
not support the backup of NFSv4 ACLs on files and directories in JFS2.
However, IBM Tivoli Storage Manager Version 5.3 does support the backup of
NFSv4 ACLs on files and directories in GPFS.

 Chapter 4. Using NFSv4 with JFS2 or GPFS 79

� Use the AIX 5L cpio command.

This is similar to using the tar command. Create one or more backup files
and then back up resulting file using Tivoli Storage Manager. Make sure that
you use the -U option with the cpio command to back up the extended
attributes (ACLs) on the files and directories.

� Back up data normally using Tivoli Storage Manager and then employ a script
to back up the ACLs.

You can continue to use Tivoli Storage Manager to back up your data, but in
order to back up the NFSv4 ACLs on files and directories, write a script to
capture these ACLs to a file and then back up this file with your data. We do
not describe methods for scripting this process in this book.

� If data resides on a compatible SAN storage device, the FlashCopy® feature
can be used to create a data backup.

� If GPFS is in use, data can be mirrored in order to provide increased
reliability.

80 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 5. Using NFSv4 features

We discuss the following topics in this chapter:

� Using the cache file system (CacheFS)

� Managing LDAP automount maps

� Pseudo file system

� NFSv4 ACLs

5

© Copyright IBM Corp. 2005. All rights reserved. 81

5.1 Using the cache file system (CacheFS)

The cache file system (CacheFS) is a general-purpose file system caching
mechanism that improves NFS server performance and scalability by reducing
server and network load. Designed as a layered file system, CacheFS provides
the ability to cache one file system on another. In an NFS environment, CacheFS
increases the client-per-server ratio, reduces server and network loads, and
improves performance for clients on slow links, such as Point-to-Point Protocol
(PPP).

A cache is created on the client machine, also known as the front file system,
allowing file systems specified as mounted in the cache to be accessed locally
rather than across the network. Files are placed in the cache when a user
requests access to them; therefore, initial file requests will not benefit from the
cache, while subsequent requests will be faster. Typical NFS speeds will be
noted for the initial read request; subsequent reads to data present in the cache
occur at performance levels comparable to locally mounted JFS/JFS2 file
systems.

5.1.1 CacheFS performance benefits

Because NFS data is cached on the local disk after it is read from the server (or
back file system), read requests to the NFS file system can be satisfied much
more quickly than if the data were repeatedly retrieved through the network.

Important: The bos.net.nfs.cachefs licensed program product (LPP) must be
installed in order to use Sun CacheFS™. This package is located on CD 1 of
the AIX 5L V5.3 software. The system must be rebooted following the
installation.

Notes:

� The / (root) and /usr file systems cannot be cached.

� Only shared file systems can be mounted using this method.

� No performance gain is achieved by caching a local journaled file system
(JFS) disk.

Note: We abstracted the following information from AIX 5L Version 5.2
Performance Management Guide, SC23-4876, available at:

http://www.boulder.ibm.com/pseries/en_US/infocenter/base/aix52.htm

82 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.boulder.ibm.com/pseries/en_US/infocenter/base/aix52.htm

Depending on available memory and the usage pattern of the client, a small
amount of data might be retained and retrieved from memory, while the benefit of
disk-level caching applies to larger amounts of data that cannot be kept in
memory. An additional benefit is that data present in the disk cache is retained at
system shutdown, while data cached in volatile memory must be retrieved from
the server after a reboot.

Other potential NFS bottlenecks include a slow or busy network and a badly
performing or overloaded NFS file server. Therefore, access from the client
system to the server is likely to be slow. CacheFS will not prevent the first read
from occurring over the network from a particular server, but disk caching helps
eliminate or minimize the need for subsequent reads against the same data over
the network.

The number of read requests continues to decrease as more cached data
become available in the client’s local disk cache. This end result is that more
clients can be served by a given server, thus the ratio of clients per server is
increased. Fewer read requests over the network also permits more effective use
of existing bandwidth.

Large CAD applications certainly benefit from CacheFS, because of the often
very large models that must be loaded in order to perform calculations.

5.1.2 CacheFS performance impacts
CacheFS does not increase the write performance to NFS file systems. However,
you can choose certain write options as parameters to the -o option of the mount
command when mounting a CacheFS. These options influence subsequent read
performance to the data. They are as follows:

� write around

The write around mode is the default. It handles writes using the same
method used by NFS. Writes are made to the back file system, and the
affected file is purged from the cache. This means that write around voids the
cache and new data must be retrieved from the server after the write.

Important: Not every application benefits from CacheFS. Because CacheFS
only speeds up read performance, applications that mainly require large or
repeated read requests for the same data benefit from CacheFS.

 Chapter 5. Using NFSv4 features 83

� non-shared

The non-shared mode can be used when it is certain no one else will be
writing to the cached file system. In this mode, all writes are made to both the
front and the back file system, and the file remains in the cache. This means
that future read accesses can continue to make use of cached data, rather
than accessing the server.

Small reads might be kept in memory, again depending on memory usage, so no
benefit is derived from also caching such data on disk. Caching of random reads
to different data blocks does not help unless the same data will be accessed
repeatedly.

5.1.3 Configuring CacheFS
Use the cfsadmin command to create the cache, as shown in Example 5-1.

Example 5-1 Creating the cache with cfsadmin

cfsadmin -c /nfscache
ls /nfscache
.cfs_label .cfs_lock .cfs_resource
.cfs_label.dup .cfs_mnt_points .nsr
#

This creates a cache file system with the default options. For further information
about adjusting the cache size an location, consult the man page for the
cfsadmin command.

After creating the cache, the cache file system must be mounted and associated
with a remote NFS file system. This is done with the mkcfsmnt command, as
shown in Example 5-2.

Example 5-2 Mounting the CacheFS and associating it with a remote NFS

mkcfsmnt -d /mnt -t nfs -h sabine -p /gpfs1 -c /nfscache -o vers=4,rw
#
df
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 131072 101072 23% 1630 13% /

Important: The consistency of the cached data is only checked at specified
intervals. Therefore, it is dangerous to cache frequently changed data. Only
use CacheFS for read-only or read-mostly data.

Important: The directory where the cache is to be created must not exist.

84 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

/dev/hd2 2228224 98216 96% 25053 66% /usr
/dev/hd9var 131072 66560 50% 368 5% /var
/dev/hd3 917504 437392 53% 283 1% /tmp
/dev/hd1 131072 130304 1% 9 1% /home
/proc - - - - - /proc
/dev/hd10opt 131072 75448 43% 655 8% /opt
sabine:/gpfs1 2293323776 2292447232 1% 64 1%
/nfscache/.cfs_mnt_points/_gpfs1
sabine:/gpfs1 2293323776 2292447232 1% 64 1% /mnt
#

This output indicates that the remote file system has been mounted. It also
shows the special mount that was created for the cache file system.

To display information about the cache file system, use the cfsadmin -l
command, as shown in Example 5-3.

Example 5-3 Using the cfsadmin command to display information about CacheFS

cfsadmin -l /nfscache
cfsadmin: list cache FS information
 maxblocks 90%
 minblocks 0%
 threshblocks 85%
 maxfiles 90%
 minfiles 0%
 threshfiles 85%
 maxfilesize 3MB
 _gpfs1:_mnt
#

For further information about configuring CacheFS, consult the AIX 5L Version
5.3 Commands Reference, available at:

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.a
ix.doc/cmds/aixcmds1/aixcmds1.htm

5.2 Managing LDAP automount maps
We cover the migration of users from AFS and DFS in other sections of this
book. When migration is complete, the administrator must ensure that these
users have the ability to log in to any NFSv4 client and gain access to their home
directory. A mechanism must be in place to make the users’ home directories
available on demand. The automount subsystem can be configured to provide
this functionality.

 Chapter 5. Using NFSv4 features 85

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.doc/cmds/aixcmds1/aixcmds1.htm
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp?topic=/com.ibm.aix.doc/cmds/aixcmds1/aixcmds1.htm

If an LDAP environment is already in place, the automount subsystem can be
configured to retrieve its maps from an LDAP server by adding the following line
into the /etc/irs.conf file:

automount nis_ldap

In order to administer automount maps in LDAP, the appropriate LDIF files must
be created. Local automount map files can be converted to LDIF format using the
nistoldif command. For example, if the LDAP server is named ldapserver with
its base suffix being dc=suffix, the /etc/auto_home map file would look like the
output shown in Example 5-4.

Example 5-4 The /etc/auto_home map file

user1 server1:/home/user1
user2 server1:/home/user2
user3 server1:/home/user3
.
.
.

Use the following commands to create the LDIF file for /etc/auto_home and add it
to the LDAP server:

nistoldif -d dc=suffix -sa -f /etc/auto_home > /tmp/auto_home.ldif
ldapadd -D cn=admin -w passwd -h ldapserver -f /tmp/auto_home.ldif

In order to edit or remove existing automount entries from an LDAP server, the
LDIF files must be created manually. For example, create the LDIF shown in
Example 5-5 if user2’s home directory is on server2.

Example 5-5 LDIF file to change user information

cat /tmp/ch_user2.ldif
dn: automountKey=user2,automountMapName=auto_home,dc=suffix
changetype: modify
replace: automountInformation
automountInformation: server2:/home/user2
#

After creating the LDIF shown in Example 5-5, run the following command:

ldapmodify -D cn=admin -w passwd -h ldapserver -f /tmp/ch_user2.ldif

An LDIF file to remove a user can also be created. For example, create the LDIF
shown in Example 5-6 on page 87 in order to remove user3.

86 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 5-6 LDIF file to remove user information

cat /tmp/rm_user3.ldif
dn: automountKey=user3,automountMapName=auto_home,dc=suffix
changetype: delete

After creating the previous LDIF, you can run the following ldapmodify command
to delete user3’s automount information from LDAP:

ldapmodify -D cn=admin -w passwd -h ldapserver -f /tmp/rm_user3.ldif

5.3 Pseudo file system
NFSv2 and NFSv3 servers export a set of independent parts of their overall
namespace and do not permit NFS clients to cross mount points on the server.
This is because NFS expects all lookups to be restricted to a single file system.
In NFSv4, the server provides a single root file handle through which clients can
obtain file handles for any accessible export.

NFSv4 no longer has a separate per export mount protocol. Instead of mounting
a number of distinct exports, an NFSv4 client, using a single mount, can access
the NFSv4 server’s exports within a single file tree, called the NFSv4 pseudo file
system. The pseudo file system tree, constructed by the server, provides a
single, logical view of all the different exported file systems, as shown in
Figure 5-1 on page 88.

 Chapter 5. Using NFSv4 features 87

Figure 5-1 Pseudo file system: Server view

For example, a requirement exists to export the following directories:

� /nfs/itsc.austin.ibm.com/usr/sally

� /nfs/itsc.austin.ibm.com/usr/bob

� /nfs/itsc.austin.ibm.com/usr/joe

� /nfs/itsc.austin.ibm.com/proj/A

� /nfs/itsc.austin.ibm.com/proj/B

� /nfs/itsc.austin.ibm.com/proj/C

This requires the following steps on the server:

1. Set the pseudo root node. In this case, it is set to /nfs.

2. Add the directories to be exported to the /etc/exports file, as shown in
Example 5-7 on page 89.

88 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 5-7 Exporting file systems on the NFS server

/nfs/itsc.austin.ibm.com/usr/sally -vers=4,ro
/nfs/itsc.austin.ibm.com/usr/bob -vers=4,ro
/nfs/itsc.austin.ibm.com/usr/joe -vers=4,ro
/nfs/itsc.austin.ibm.com/proj/A -vers=4,ro
/nfs/itsc.austin.ibm.com/proj/B -vers=4,ro
/nfs/itsc.austin.ibm.com/proj/C -vers=4,ro

3. Next, execute:

exportfs -va

4. Mount the root export on the client:

mount -o vers=4 <nfsv4_svr_name>:/ /<local_mount_point>

Example 5-8 shows a view of the newly mounted file system from the NFSv4
client. Figure 5-2 on page 90 shows a client view of the pseudo file system.

Example 5-8 Client view of the pseudo file system

ls -al /nfs/*
/nfs/itsc.austin.ibm.com/usr:
total 26
drwxr-xr-x 4 root system 5 Jul 28 11:26 .
drwxr-xr-x 3 root system 4 Jul 28 11:26 ..
drwxr-xr-x 2 root system 512 Jul 28 11:24 bob
drwxr-xr-x 2 root system 512 Jul 28 11:25 joe
drwxr-xr-x 2 root system 512 Jul 28 11:24 sally
/nfs/itsc.austin.ibm.com/proj:
total 18
drwxr-xr-x 3 root system 4 Jul 28 11:26 .
drwxr-xr-x 3 root system 4 Jul 28 11:26 ..
drwxr-xr-x 2 root system 512 Jul 28 10:40 A
drwxr-xr-x 2 root system 512 Jul 28 10:40 B
drwxr-xr-x 2 root system 512 Jul 28 10:40 C

 Chapter 5. Using NFSv4 features 89

Figure 5-2 Pseudo file system: Client view

As the previous example shows, NFS creates an extension of the local file
system. The same hierarchical structure is visible to the user.

5.4 NFSv4 ACLs
NFSv4 ACLs are similar to Microsoft Windows NTFS ACLs, but they are not
identical. The developers of the NFSv4 standard chose the Windows ACLs
model over the POSIX standard because the Windows ACL model is both richer
and more widely deployed. Although many UNIX vendors implemented ACLs
based on the POSIX Draft ACL specification, those implementations tended to
be proprietary, and the POSIX specification was never standardized.1

1 From the paper The NFS Version 4 Protocol, Pawlowski, B. et al., available at:
http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

90 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

NFSv4 ACL format
According to the NFSv4 protocol specification, an NFSv4 ACL is an array of
access control entries (ACEs) composed of four elements: a type, a set of flags,
an access bit mask, and an identity. As implemented in the AIX 5L JFS2 EAv2
file system, each ACL can be a maximum of 64 KB.

The textual representation of an NFSv4 ACL consists of a list of access control
entries (ACEs), one ACE per line. Each ACE has four elements in the following
format:

IDENTITY ACE_TYPE ACE_MASK ACE_FLAGS

IDENTITY has the format:

IDENTITY_type:(IDENTITY_name or IDENTITY_ID or IDENTITY_who):

Table 5-1 lists possible values for IDENTITY_type.

Table 5-1 ACE IDENTITY_type values

IDENTITY_name is the user or group name.

IDENTITY_ID is the user or group numeric ID.

IDENTITY_who is a special who string that needs to be understood universally
rather than in the context of a particular NFS domain. Table 5-2 on page 92
shows possible IDENTITY_who strings.

Note: In order to use NFSv4 ACLs, the server file system must support them.
As of this writing, AIX 5L Version 5.3 only supports NFSv4 ACLs in two file
system types: enhanced journaled file system (JFS2) with the extended
attribute format set to version 2 (EAv2), and General Parallel File System
(GPFS). You can migrate from EAv1 to EAv2 using the chfs -a ea=v2
command. For more information about NFSv4 ACL support, see AIX 5L
Version 5.3 Security Guide, SC23-4907, and AIX 5L Differences Guide
Version 5.3 Edition, SG24-7463.

IDENTITY_type Description

u User (IDENTITY_name or IDENTITY_ID)

g Group (IDENTITY_name or IDENTITY_ID)

s Special who string (IDENTITY_who)

 Chapter 5. Using NFSv4 features 91

Table 5-2 ACE special who strings supported by AIX 5L

The additional special who strings, shown in Table 5-3, specified in RFC 3530
are not currently supported in AIX 5L.

Table 5-3 ACE special who strings not supported by AIX 5L

ACE_TYPE is a single character. Table 5-4 shows possible values.

Table 5-4 ACE_TYPE values

ACE_MASK is a set of permission flags (that is, permission bits) that can be
combined together without any separator. Table 5-5 on page 93 shows the
possible flags. Note that the flag values are case-sensitive.

IDENTITY_who Description

OWNER@ The owner of the file

GROUP@ The group associated with the file

EVERYONE@ The world

IDENTITY_who Description

ANONYMOUS@ Accessed without any authentication

AUTHENTICATED@ Any authenticated user (opposite of ANONYMOUS)

INTERACTIVE@ Accessed from an interactive session

NETWORK@ Accessed through the network

DIALUP@ Accessed through a dialup connection

BATCH@ Accessed from a batch job

SERVICE@ Accessed from a system service

ACE_TYPE Description

a Allow access

d Deny access

l Generate a system alarm when an access is attempted
(currently not supported in AIX 5L)

u Generate an audit log entry when an access is attempted
(currently not supported in AIX 5L)

92 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Table 5-5 ACE_MASK values

ACE_FLAGS (optional) is a combination of one or more of two-letter flags
without any separator, as shown in Table 5-6 on page 94. Four of the currently
defined flags have to do with ACL inheritance, and the other two have to do with
auditing. The inheritance flags only have meaning when applied to a directory.
The auditing flags only have meaning when used with the audit or alarm ACE
types.

ACE_MASK RFC 3530 name Description

r READ_DATA or
LIST_DIRECTORY

Permission to read the data of the file or list the
contents of the directory

w WRITE_DATA or
ADD_FILE

Permission to modify the file’s data or add a new file
to the directory

p APPEND_DATA or
ADD_SUBDIRECTORY

Permission to append data to the file or add a new
subdirectory to the directory

R READ_NAMED_ATTRS Permission to read the named attributes of the file or
directory

W WRITE_NAMED_ATTRS Permission to write the named attributes of the file or
directory

x EXECUTE Permission to execute the file or traverse the
directory

D DELETE_CHILD Permission to delete files or subdirectories from
within the directory

a READ_ATTRIBUTES Permission to read basic attributes (non-ACLs) of the
file or directory

A WRITE_ATTRIBUTES Permission to change basic attributes (non-ACLs) of
the file or directory

d DELETE Permission to delete the file or directory

c READ_ACL Permission to read the ACL of the file or directory

C WRITE_ACL Permission to change the ACL of the file or directory

o WRITE_OWNER Permission to change the owner of the file or
directory

s SYNCHRONIZE Permission to access file locally at the server with
synchronous reads and writes

 Chapter 5. Using NFSv4 features 93

Table 5-6 ACE_FLAG inheritance-related values

Table 5-7 ACE_FLAG auditing-related values

NFSv4 ACL permission restrictions
Some permission bits are interrelated and must be used together under the
following circumstances. The WRITE_DATA (w) and APPEND_DATA (p) bits
must be specified together in a file’s ACE, or in a directory’s ACE that has the
FILE_INHERIT flag set.

Special user permissions
In NFSv4, there are two classes of users that have special access to files:

� The UNIX super user (UID=0) is allowed all access permissions, regardless
of the ACE permission bit settings. (The only exception to this is execute
permission.) This special access applies to processes running on the NFS
server, and processes running on NFS clients that have been given root
access with the exportfs command.

� The owner of a file always has the permissions READ_ACL, WRITE_ACL,
READ_ATTRIBUTES, and WRITE_ATTRIBUTES, regardless of the actual
settings in the ACL.

ACE_FLAG RFC 3530 name Description

fi FILE_INHERIT Indicates that this ACE should be added to
each newly created non-directory file.

di DIRECTORY_INHERIT Indicates that this ACE should be added to
each newly created subdirectory.

oi INHERIT_ONLY Indicates that this ACE does not apply to the
current directory; it is only to be added to
newly created files/subdirectories as
specified by the previous two flags.

ni NO_PROPAGATE_INHERIT Indicates that this ACE should be added to
newly created files/subdirectories
immediately under the directory, but
subdirectories should not pass it on to their
children.

ACE_FLAG RFC 3530 name Description

sf SUCCESSFUL_ACCESS_ACE_FLAG Generate audit or alarm when an access
attempt succeeds

ff FAILED_ACCESS_ACE_FLAG Generate audit or alarm when an access
attempt fails

94 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

5.4.1 NFSv4 ACLs: ACL evaluation
In order to properly use NFSv4 ACLs, it is important to understand how they are
evaluated when determining whether an access request will be granted or
denied.

Per the RFC 3530 NFSv4 standard and the AIX 5L Version 5.3 Security Guide,
SC23-4907, an AIX 5L NFSv4 server evaluates the ACL list from the top down,
applying the following rules:

� Only ACEs that have a who that matches the requester are considered. The
credentials of the requester are not checked while processing the ACE with
special who EVERYONE@.

� Each ACE is processed until all of the bits of the requester’s access have
been allowed, or at least one of the requested bits not previously allowed has
been denied.

� After a permission bit has been allowed, it is no longer considered in the
processing of later ACEs.

� If a deny ACE_TYPE is encountered where the ACE_MASK has bits in
common with not yet allowed bits in the request, access is denied, and the
remaining ACEs are not processed.

� If the entire ACL has been processed and some of the requested access bits
still have not been allowed, access is denied.

NFSv4 ACL evaluation examples
The following examples help illustrate ACL evaluation. For more examples, see
AIX 5L Version 5.3 Security Guide, SC23-4907. See Example 5-9.

Example 5-9 ACL on a file for user Sally

*
* ACL_type NFS4
*
*
* Owner: sally
* Group: staff
*
g:sales: d wp
s:(OWNER@): a rRWDaAdcCs
s:(OWNER@): d wpo
s:(GROUP@): a rwpRxadcs
s:(GROUP@): d WDACo
s:(EVERYONE@): a rwpRxadcs
s:(EVERYONE@): d WDACo

 Chapter 5. Using NFSv4 features 95

Given the ACL shown in Example 5-9 on page 95 on a file, if the user Sally
requests READ_DATA (r) and WRITE_DATA (w) access, the ACL evaluation
proceeds as follows:

1. The “s:(OWNER@):a...” ACE is processed because Sally owns the file.

– READ_DATA is allowed because that bit is set in the ACE_MASK.

– WRITE_DATA is not yet allowed because it is not set in the ACE_MASK.

2. The “s:(OWNER@):d...” ACE is processed because Sally owns the file.

– WRITE_DATA is denied because that bit is set in the ACE_MASK and
WRITE_DATA has not yet been allowed by a previous ACE.

3. No further ACEs are processed, and the requested access is denied.

If the user Sally, who is a member of the group staff, requests READ_DATA (r)
and EXECUTE (x) access, the ACL evaluation proceeds as follows:

1. The “s:(OWNER@):a...” ACE is processed because Sally owns the file.

– READ_DATA is allowed because that bit is set in the ACE_MASK.

– EXECUTE is not yet allowed because it is not set in the ACE_MASK.

2. The “s:(OWNER@):d...” ACE is processed because Sally owns the file.

– EXECUTE is not yet denied because it is not set in the ACE_MASK.

3. The “s:(GROUP@):a...” ACE is processed because Sally is a member of the
group staff, which owns the file.

– EXECUTE is allowed because that bit is set in the ACE_MASK.

4. All requested permission bits have now been allowed. No further ACLs are
processed, and the requested access is granted.

If the user Joe, who is a member of the group sales, requests READ_DATA (r)
and WRITE_DATA (w) access, the ACL evaluation proceeds as follows:

1. The “g:sales:d...” ACE is processed because Joe is a member of the group
sales.

– READ_DATA is not denied because it is not set in the ACE_MASK.

Notes:

� In the previous example, even though the GROUP@ and EVERYONE@
ACEs allow WRITE_DATA access, Sally is denied WRITE_DATA access
because it is specifically denied by the owner ACE.

� The ACE order is important. If the group allow ACE had appeared in the list
before the owner deny ACE, Sally would be allowed write access to the
file.

96 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

– WRITE_DATA is denied because that bit is set in the ACE_MASK and
WRITE_DATA has not yet been allowed by a previous ACE.

2. No further ACEs are processed, and the requested access is denied.

If Joe requests just READ_DATA (r) access, the ACL evaluation proceeds as
follows:

1. The “g:sales:d...” ACE is processed because Joe is a member of the group
sales.

– READ_DATA is not denied because it is not set in the ACE_MASK.

2. The “s:(EVERYONE@):a...” ACE is processed.

– READ_DATA is allowed because it is set in the ACE_MASK.

3. All requested permission bits have now been allowed. No further ACLs are
processed, and the requested access is granted.

Relationship between NFSv4 ACLs and UNIX permissions
Familiarity with standard UNIX read (r), write (w), and execute (x) permission bits
often does not directly correlate with the myriad of bits found in the ACE_MASK.
However, as can be seen from the previous ACE_MASK definitions, the r, w, and
x permission bits basically provide the same access as the standard UNIX
permission bits.

For example, as with UNIX permissions, the w permission bit in a directory’s ACL
affects the user’s ability to create, delete, and rename files and subdirectories
within that directory, rather than changing the contents of those files and
subdirectories.

The difference comes into play when mapping the rwx bits to user (owner),
group, and other. This mapping is unspecified in RFC 3530. Example 5-10 shows
the mapping observed in AIX 5L.

Example 5-10 Mapping rwx bits to user, group, and other

*
* ACL_type NFS4
*
*
* Owner: sally
* Group: staff
*
s:(OWNER@): a cCs
s:(OWNER@): d o
s:(GROUP@): a rRxadcs
s:(GROUP@): d wpWDACo
s:(EVERYONE@): a rwpRxadcs
s:(EVERYONE@): d WDACo

 Chapter 5. Using NFSv4 features 97

Given a file with the following ACL, running the ls -l command on the file shows:

-rwxr-xrwx 1 sally staff 0 Jul 30 11:20 testfile

One might conclude that the bits will map directly from OWNER@ to user,
GROUP@ to group, and EVERYONE@ to other. As can be seen in the previous
example, this is not the case. It becomes evident that the user permissions show
as rwx, while the s:OWNER@:a ACE has none of those bits set. Furthermore,
even though the ls -l output makes it look like the user Sally has write access to
the file, she actually does not. Evaluating the ACEs from top down, write access
is denied by the s:GROUP@:d entry.

Based on this, the conclusion must be drawn that the standard UNIX permissions
bits cannot be used to reliably predict access when using NFSv4 ACLs.

5.4.2 NFSv4 ACLs: Administration
In AIX 5L, NFSv4 ACLs (and AIXC ACLs) can be administered from either the
NFS server or an NFSv4 client though the command line or though the AIX 5L
Web-based System Manager.

Manipulating ACLs through the command line
ACLs can be administered using the following commands:

aclget Writes the textual representation of an ACL to standard
output or to a named file.

aclput Replaces the contents of an ACL from a textual
representation provided either from standard input or from
a named file.

acledit Retrieves the ACL’s textual representation into a text
editor (specified by the EDITOR environment variable)
and then replaces the ACL from the modified text.

aclconvert Converts an ACL’s format from either AIXC to NFS4 or
from NFS4 to AIXC. The translation is not necessarily
straightforward. Use this with caution, and make sure that
the end result is what you intended.

aclgettypes Returns a list of the ACL types supported by the file
system that contains a given file or directory.

Note: The aclconvert and aclgettypes commands are new in AIX 5L Version
5.3.

98 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Manipulating ACLs through the Web-based System Manager
The AIX 5L Web-based System Manager can also be used to manipulate ACLs.
This might be easier for novice users to grasp because it is GUI-based.
However, Web-based System Manager might only be useful for only the most
basic operations, and experienced administrators are likely to rely on the
command line utilities.

Here is an example of how to use Web-based System Manager to change an
ACL:

1. Start the Web-based System Manager console and double-click the File
Systems icon. Then, double-click the Overview and Tasks icon. A window
similar to that shown in Figure 5-3 opens.

2. Select Access Control List either from the main window or from the
Filesystems menu, as shown in Figure 5-3.

Figure 5-3 Web-based System Manager File Systems: Overview and Tasks window

 Chapter 5. Using NFSv4 features 99

3. Either type in the full path name of the file or directory of the ACL that requires
modification or click Browse to choose the file or directory from the GUI. After
entering the name, either type Enter or click Next. See Figure 5-4.

Figure 5-4 Web-based System Manager ACL File or directory name prompt

4. Make sure that Edit ACL is selected and click Next, as shown in Figure 5-5.

Figure 5-5 Web-based System Manager ACL operation selection

100 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

5. Select the ACE you want to change and click Edit, as shown in Figure 5-6.
The ensuing window has two tabs: General and Access Mask. Under the
General tab, the user type and identity, the ACE type, and the ACE flags
(inheritance, audit and alarm) can be set. If the Access Mask tab is selected,
a window similar to the one shown in Figure 5-7 on page 102 opens.

Figure 5-6 Web-based System Manager ACL edit window

 Chapter 5. Using NFSv4 features 101

6. Ensure that the selected access mask entries are correct and click OK to
return to the ACL edit window (Figure 5-7).

Figure 5-7 Web-based System Manager ACE mask window

7. Repeat steps 5 and 6 for other ACEs that require modification. When the
process is complete, click OK on the ACL edit window to display a pop-up
window indicating the status of the operation. Click Close on that pop-up
window after reviewing the results for accuracy.

This concludes the Web-based System Manager example.

Using the chmod command
When working with files and directories that use NFSv4 ACLs, the chmod
command can only be used to set UNIX permission bits other than those stored
in the ACL. These bits are the setuid/setgid and sticky bit. Table 5-8 on page 103
shows chmod command operations that are compatible with NFSv4 ACLs.

102 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Table 5-8 chmod operations compatible with NFSv4 ACLs

5.4.3 NFSv4 ACLs: ACL inheritance and umask
Does the UNIX umask have any impact on inherited ACL settings when creating
a new file or directory? The answer is no. The umask has no effect on inherited
ACL settings when using NFSv4 ACLs.

For example, if a directory has the ACL shown in Example 5-11, a file created in
that directory will have the same ACL, even if the umask is set to 777.

Example 5-11 Example ACL

*
* ACL_type NFS4
*
*
* Owner: root

chmod command Description

chmod u+s
chmod u-s

Set or unset the setuid bit

chmod g+s
chmod g-s

Set or unset the setgid bit

chmod +t
chmod -t

Set or unset the sticky bit

Important: Using the chmod command to manipulate the rwx permission bits,
either in octal form (for example, 755) or in symbolic form (for example, u+x)
will replace the NFSv4 ACL with an AIXC ACL, wiping out the original
permissions that were on the file/directory.

Never use the octal form of the chmod command if NFSv4 ACLs are in use.
Even if the rwx bits are not specified in the chmod command, use of the octal
form will replace the NFSv4 ACL with an AIXC ACL.

Note: If the chmod command is used to manipulate rwx permission bits on an
NFS client and, again on the client, aclget is subsequently executed against
the file, the ACL will still appear to be an NFSv4 ACL. It will, however, be an
AIXC ACL on the NFSv4 server. The NFSv4 protocol translates AIXC ACLs
that have extended permissions disabled to look like NFSv4 ACLs at the
client.

 Chapter 5. Using NFSv4 features 103

* Group: system
*
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rwpRxadcs fidi
s:(GROUP@): d WDACo fidi
s:(EVERYONE@): a rwpRxadcs fidi
s:(EVERYONE@): d WDACo fidi

ACL inheritance and move versus copy
Table 5-9 describes the impact that the UNIX mv, cp, and cp -p commands have
on a file’s ACL (provided the destination file system also supports NFSv4 ACLs).

Table 5-9 UNIX commands and impact on ACLs

Directory structure and ACLs
Numerous options are available when organizing data into a directory structure
and implementing ACLs to control access to that data. For example, a site might
choose either of two methods to control read access to data:

� Method 1: Controlling access at the directory, or container level, by
maintaining uniform access permissions on files and subdirectories within a
directory.

� Method 2: Leaving access wide open at the directory level and setting unique
access restrictions at each individual file.

Depending on the site’s requirements, the first or second method might make
more sense. Each method has its own characteristics. We describe some of
these characteristics.

Characteristics of method 1:

� It is easier for most users to keep track of permissions when files with like
permissions are grouped together.

� Permissions can be easily changed though a bulk replacement of the ACLs.
(See “Maintaining an existing directory structure” on page 107.)

Command Resulting file ACL

mv The file retains the same ACL it had in the original location if the
source and target file systems are the same. If not, ACL assignment
occurs as per the cp command.

cp The file inherits its ACL from the directory where it is being placed, just
as though it were a newly created file.

cp -p The file retains the same ACL it had in the original location.

104 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� If a subset of files in a directory needs to have their permissions changed, the
files must be moved to a different directory. Directory location changes can be
disruptive to operations. (For example, symbolic links and other path name
references might need to be updated.)

� A file could inadvertently inherit incorrect permissions if it is placed in the
wrong directory.

� If a directory has less restrictive access permissions than a parent directory,
an NFS client might possibly mount that directory on a path that has more
open access. A user whose access would normally be blocked by the parent
directory might then be able to access the directory through the mounted
path.

Characteristics of method 2:

� Every file’s permissions can be tailored to its unique access requirements.

� A file does not need to be moved when its permissions need to be different
from the files around it.

� It is more difficult to keep track of the different file permissions.

� It is easy to mistakenly overwrite a file’s permissions through a bulk update,
and it is relatively complicated, first to detect a mistake, and then to restore
the correct permissions after a mistake has happened. (You need to know
through some external source what the original permissions were.)

� To prevent inadvertent access, create each file with the most restrictive set of
permissions (through inheritance), requiring manual intervention by the user
to share that file with others.

Maximizing the benefits of ACL inheritance
If you choose method 1 for implementation, organize the directory structure to
maximize the use of ACL inheritance. To do this, carefully plan the directory
structure so that files and subdirectories with the same access requirements are
collocated under a single parent directory.

The following example helps illustrate this concept.

An organization is composed of three departments: engineering (eng), sales, and
human resources (hr). Users from each of the departments are working on two
different projects: projA and projB. For business reasons, the two projects must
be entirely separate, and users working on one project must not be able to
access data belonging to the other project.

Each department has its own directory for data, and each creates separate
project directories under its directory. Figure 5-8 on page 106 depicts the
resulting structure.

 Chapter 5. Using NFSv4 features 105

Figure 5-8 Directory structure that makes poor use of ACL inheritance

This structure has the project directories replicated under each department. If a
permissions change is required for one of the projects, the same changes must
be made in three different places.

Figure 5-9 depicts a directory structure that better lends itself to managing the
project permissions.

Figure 5-9 Directory structure that makes better use of ACL inheritance

This structure has a separate projects directory where the permissions for each
special project can be managed in one place. The departments still maintain
non-project-related data under the dept directory.

106 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Maintaining an existing directory structure
Inheritance manages the setting of permissions on newly created files and
directories, but it does not affect permissions for existing files. No amount of
forward planning will eliminate the need to eventually change permissions on an
existing directory structure and all the files it contains.

There are two possible ways to make a large-scale permissions change:

� Method 1: Make the change to one file or directory and then propagate the
change to other files or directories by copying the whole ACL from the file or
directory that was previously changed.

� Method 2: Incrementally change the ACL for every file or directory.

The first method is simpler to implement, but all files or directories being changed
will acquire exactly the same permissions, eradicating any variations that might
have existed. This might be a good thing or a bad thing, depending on how the
directory structure has been arranged. The second method is much more
complex to implement, but it allows for other differences to exist in the ACLs.
This is another example where carefully planning the initial directory structure
around permissions requirements can make administration easier.

The rest of this section illustrates possible ways to implement the ACL
propagation method 1.

It is possible to propagate an ACL to an entire directory structure using a
combination of the aclget and aclput commands as follows:

aclget dirname | aclput -R dirname

Different source and directory names can be specified, or the same directory
name for both source and destination can be used to copy a directory’s ACL to
all its descendants (including itself).

Using the aclget | aclput command combination is convenient, but some
drawbacks exist:

� If the name of the source directory is mistyped, existing permissions in the
destination directory are completely destroyed. This can be quickly remedied
by reissuing the command with the correct source name, but in the meantime,
access will be blocked to any user or application attempting to access the
data.

Important: Only use the aclput -R command on a directory structure that has
a uniform permissions structure. The command applies a wholesale
replacement of all existing ACLs at and below the specified directory. Any
variations in ACLs that previously existed will be lost.

 Chapter 5. Using NFSv4 features 107

� The aclput -R command stops at the first error encountered, leaving the
remaining files untouched.

The sample script shown in Example 5-12 addresses both these issues. It does
not attempt to run aclput if either the source or destination does not exist, and it
runs aclput on each individual file or directory so that all possible ACL changes
are made.

Example 5-12 Sample script for copying an ACL (with recursive option)

#!/usr/bin/ksh
#
copy_acl.sh
#
Copy the ACL for the given source file/directory to other files/directories
#

Name of this script
scrname=${0##*/}

#
Functions
#

function usage {
 echo "Usage: $scrname [-R] <source> <dest>"
 echo " where"
 echo " -R indicates a recursive copy"
 echo " (copy ACL to all files and directories below and including"
 echo " the destination.)"
 echo " <source> = the name of the file or directory to copy the ACL from"
 echo " <dest> = the name of the file or directory to copy the ACL to"

 exit 1
}

if [[$# -eq 0]]
then
 usage
fi

#
Process input parameters
#

if [["$1" = "-R"]]; then
 SETSUBTREE="true"
 shift
else
 SETSUBTREE="false"
fi

108 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

if [[-n "$1"]]; then
 SRC_NAME="$1"
else
 usage
fi

if [[-n "$2"]]; then
 DEST_NAME="$2"
else
 usage
fi

#
Initialize other variables
#

NBERR=0
TMP_ACLFILE="/tmp/.AIXACL_$$"

if [[-e "${SRC_NAME}"]]; then
 aclget -o "${TMP_ACLFILE}" "${SRC_NAME}"
 NBERR=$?
else
 echo "Source \"${SRC_NAME}\" does not exist"
 NBERR=1
fi

if [["${NBERR}" -eq 0]]; then
 if [[-e "${DEST_NAME}"]]; then
 if [[-d "${DEST_NAME}" && "${SETSUBTREE}" = "true"]]; then
 find "${DEST_NAME}" -print | while read NAME
 do
 aclput -i "${TMP_ACLFILE}" "${NAME}"
 ((NBERR += $?))
 ls -dl "${NAME}"
 done
 else
 aclput -i "${TMP_ACLFILE}" "${DEST_NAME}"
 ((NBERR += $?))
 ls -dl "${DEST_NAME}"
 fi
 else
 echo "Destination \"${DEST_NAME}\" does not exist"
 NBERR=1
 fi
fi

rm -f "${TMP_ACLFILE}"
exit ${NBERR}

 Chapter 5. Using NFSv4 features 109

5.4.4 NFSv4 ACLs: Permissions scenarios
The following scenarios help illustrate how NFSv4 ACLs can be applied:

� Scenario 1: Restricting home directory access to just the associated user,
and not allowing users to change permissions and open up their home
directories to others.

� Scenario 2: Ensuring that a particular group is denied access to a set of data.

ACL scenario 1: Home directories
Users’ home directories can be collectors for all types of data. Users often place
data in their home directory while working with it. The data might have originated
in a different directory with strict access controls, and the home directory’s
permissions should not permit wider access to that data. One way to manage
this is by locking each home directory so that only its associated user can access
it.

This is difficult to do with standard UNIX permissions. There are two basic
options:

� Make the user the owner of the directory and allow only owner access.

Because the user owns the directory, the user can change its permissions,
which is not the desired behavior.

� Create a group for each user, where the user is the only member, make the
home directory owned by root and the user’s group, and allow only owner and
group access.

The user cannot change the directory permissions, but this option requires
maintaining a whole set of groups, one for each user.

This is easier to do with NFSv4 ACLs. Make root the owner of the directory and
add a user ACE to allow the user access to the directory. Example 5-13 on
page 111 shows how that ACL would look.

110 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 5-13 ACL to make root the owner and add a use ACE to allow the user access

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
u:sally(sally@nfsdom1): a rwpRWxDaAdcs
u:sally(sally@nfsdom1): d Co
s:(GROUP@): d rwpRWxDaAdcCos fidi
s:(EVERYONE@): d rwpRWxDaAdcCos fidi

The user can open permissions for files or subdirectories that the user creates in
the directory because the user owns them, but the home directory itself will still
block access to those files.

ACL scenario 2: Block a group’s access
If you have two subcontractors working on a project, and you want to make sure
that the subcontractors are not able to access each other’s data, you use the
scenario discussed in this section.

Create a group for each subcontractor, put each subcontractor’s data in a
separate directory structure, and put an ACE at the top of the ACL that denies
access to the other subcontractor. (It is important that the ACE be at the top of
the list to prevent other ACEs from allowing access before the subcontractor’s
access is blocked.)

Given that the groups are company1 and company2, the ACL on company1’s
data would look like that shown in Example 5-14 on page 112.

Tip: The user ACEs do not need to be inherited because files created below
the directory will be owned by the user.

Note: It might be possible to NFS mount a lower level directory that has more
open permissions and gain access to those files, but normally, the mount
operation is under system administrator control. If mounts are managed
correctly, users will not be able to get directly at lower directories under the
home directory.

 Chapter 5. Using NFSv4 features 111

Example 5-14 ACL to deny company2 access to company1’s data

*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
g:company2(company2@nfsdom1): d rwpRWxDaAdcCos fidi
s:(OWNER@): a rwpRWxDaAdcCs fidi
s:(OWNER@): d o fidi
s:(GROUP@): a rRxadcs fidi
s:(GROUP@): d wpWDACo fidi
s:(EVERYONE@): a rRxadcs fidi
s:(EVERYONE@): d wpWDACo fidi

No matter what the rest of the ACEs are, company2 will be denied access to
company1’s data.

5.4.5 NFSv4 ACLs: ACL evaluation flowchart for NFSv4
The chart in Figure 5-10 on page 113 illustrates the decision making flow of the
NFSv4 ACLs.

The chart begins with the user’s requested permissions and continues until
either:

� All requested permissions have been found on processed ACL entries.

� A requested permission is explicitly denied by an ACL entry for this user.

Users that have never worked with Microsoft Windows NT® style ACLs may find
this “looping” concept confusing until they have worked with a few examples and
seen how the ACLs are processed. Comparing this chart with the DFS flowchart
shown in Figure 10-3 on page 239 can illustrate the contrast as well.

Note: This chart does not include ACE special who strings that are not
supported by AIX 5L, but the decision making process is the same.

Note: After all of the permissions requested are met by an ACL entry or
entries, or after a requested permission is explicitly denied by an ACL entry or
entries, the processing halts. No further ACL checking is performed. This
means that subsequent ACLs in the list, which might have explicitly provided
the user with requested permissions, would never be processed and the user
would be denied access to the file or directory.

112 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 5-10 NFSv4 ACL decision flow

 Chapter 5. Using NFSv4 features 113

5.4.6 NFSv4 ACLs: NFSv3 clients
It is possible to make an NFSv3 mount of a file system that contains NFSv4
ACLs. This combination exhibits the following behavior:

� The NFS server will still grant or deny data access based on the NFSv4
ACLs.

� The NFS client will not be able to view or manipulate the ACLs directly. For
example, an aclget command on the client returns the error:

aclget: The system call does not exist on this system.

� If the mount is made with the acl option (noacl is the default), the NFS client
will be able to manipulate AIXC ACLs, but not NFSv4 ACLs.

Unfortunately, there is no good way to block a user on the NFSv3 client from
running chmod or aclput on file or directories that the user owns. You have to
publish policy and rely on well-behaved users. (You can completely disable the
chmod and aclput commands on the client, but that also disables them for other
client file systems where using those commands is perfectly valid.)

In addition, keep in mind when using NFSv3 clients that the UIDs and GIDs need
to match between the server and client.

Important: It is OK to have NFSv3 clients mount file systems that use NFSv4
ACLs. ACL inheritance and evaluation will work normally on the server. Do
not, however, attempt to manipulate access permissions directly from the
NFSv3 client. Any permissions change at the NFSv3 client will overwrite the
NFSv4 ACL with an AIXC ACL.

114 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Part 3 Preparing to use
NFSv4

In this part, we introduce the planning, migration, and implementation
methodologies that we employed in the environment created for this book.

For detailed descriptions and implementation considerations of the features
introduced in the initial release of AIX 5L V5.3, see the IBM Redbook Securing
NFS in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204. You
can view this book online or download it from the following location:

http://www.redbooks.ibm.com/abstracts/sg247204.html

We include the following decision support flowcharts and planning information
table to demonstrate the type of information that needs to be gathered and to
illustrate the design decision process.

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 115

http://www.redbooks.ibm.com/abstracts/sg247204.html

Figure P3-1: Migration decision flowchart

116 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure P3-2: New NFSv4 implementation decision flowchart

 117

Table P3-1: Planning worksheet for a new implementation

1. Name resolution type

2. NFS domain name

3. Identification method (files, NIS, or LDAP)

3a. LDAP server name

3b. LDAP server IP address

4. Authentication method
(AUTH_SYS or Kerberos V5)

4a. Kerberos realm name

4b. Kerberos back-end type (established DB, LDAP, Active
Directory)

4c. Kerberos security flavor

4d. Kerberos server name

4e. Kerberos server IP address

5. Authorization method

6. Underlying file system type (JFS2 or GPFS)

7. Namespace strategy

7a. Pseudo root/namespace name

7b. Classic or alias tree model

118 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 6. Building an NFSv4
environment

We discuss the following topics in this chapter:

� Environment used for demonstration scenarios

� Network Time Protocol (NTP) configuration

� IBM Tivoli Directory Server V5.2

� IBM Network Authentication Services (Kerberos V5) server installation

� IBM Tivoli Directory Server client configuration

� IBM Network Authentication Services client install and configuration

We also include the following optional steps:

� Installing GPFS

� Configuring GPFS

6

© Copyright IBM Corp. 2005. All rights reserved. 119

6.1 Environment used for demonstration scenarios
We refer to the following system names and environment during the discussion
of the migration and configuration scenarios. All systems use the domain name:

itsc.austin.ibm.com

Therefore, the fully qualified name for guadalupe is:

guadalupe.itsc.austin.ibm.com

Table 6-1 shows the systems and functions in the test environment.

Table 6-1 Systems and functions in the test environment

See Appendix A, “Test environment” on page 309 for a complete diagram of the
test systems.

6.2 Infrastructure setup flow
Figure 6-1 on page 121 shows the LDAP and Kerberos V5 server and client
configuration flow. Each step must be followed in the order shown in the diagram.
The server or servers must be configured prior to the configuration of the client

System name OS version Function Additional function

pecos AIX 5L V5.3 RML01 Kerberos V5
(KRB5)/LDAP server

KRB5: IBM Network
Authentication Services
LDAP: IBM Tivoli Directory
Server

guadalupe AIX 5L V5.3 RML03 KRB5 client

sabine AIX 5L V5.3 RML03 KRB5 client GPFS node

frio AIX 5L V5.3 RML03 KRB5 client GPFS node

angelina AIX 5L V5.3 TML03 KRB5 client GPFS node

brazos AIX 5L V5.3 RML03 KRB5 client

trinity AIX 5L V5.3 RML03 KRB5 client

madrid AIX 5L V5.3 RML03 NIM server

istanbul AIX 5L V5.2 RML04 AFS sever Source for the AFS migration
scenario

milan AIX 5L V5.2 RML04 DFS server Source for the DFS migration
scenario

120 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

systems. The test environment created for this book involved both LDAP and
Kerberos servers running on the same system; however, this is not mandatory. If
LDAP replicas are to be created, perform replica creation immediately after the
LDAP server has been configured and before Kerberos configuration is
undertaken.

Figure 6-1 Configuration flow for LDAP and Kerberos V5 environments

 Chapter 6. Building an NFSv4 environment 121

6.3 Network Time Protocol (NTP) configuration
When using AIX 5L Network Authentication Services (NAS), client and server
clocks must be synchronized. This can be accomplished manually or by using
locally written scripts. However, a more efficient method involves the use of a
Network Time Protocol (NTP) service on AIX 5L. For details about setting up
NTP on an AIX 5L system, see Appendix C, “Configuring Network Time Service”
on page 329.

6.4 IBM Tivoli Directory Server V5.2
This section describes the steps required to configure an AIX 5L V5.3 system in
preparation for deployment of Kerberos V5 with the IBM Tivoli Directory Server
LDAP back end.

Figure 6-2 on page 123 shows the test environment.

Important: At the time of writing, a requirement exists for the LDAP server to
operate in 64-bit AIX kernel mode. This is required for the db2_08_01.ldap
fileset, which provides the LDAP IBM DB2® back end. This might change in
future releases of the fileset.

122 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 6-2 Test environment with a key distribution center (KDC) and LDAP back end

Before you install IBM Tivoli Directory Server V5.2, you must prepare the system
for the installation.

The following prerequisites are necessary for IBM Tivoli Directory Server:

� The system must be running in 64-bit AIX kernel mode.

� Asynchronous I/O must be switched on.

 Chapter 6. Building an NFSv4 environment 123

� At least 500 MB disk space is needed for the Tivoli Directory Server
installation directory.

� You need 200 MB disk space to mount /home/ldapdb2, the ldapdb2 user’s
home directory.

� A group called dbsysadm must be created, and the root user must be added
to this group.

� A user called ldapdb2 must be created.

6.4.1 Preparing the system for IBM Tivoli Directory Server installation
Verify the following details before beginning the installation of IBM Tivoli Directory
Server in order to ensure that the system is correctly configured:

1. Verify that the system is capable of running in 64-bit AIX kernel mode, as
shown in Example 6-2.

Example 6-1 Testing for support of 64-bit kernel mode

bootinfo -y
64

If the result is 32, the system is a 32-bit machine and cannot be used as a
Tivoli Directory Server server. If the result is as shown in Example 6-1,
continue with the rest of the steps.

2. Check the mode in which the system is currently running, as shown in
Example 6-3.

Example 6-2 Testing for the current kernel mode

bootinfo -K
32
#

From this output, you can see that the system is currently running in 32-bit
mode. Before continuing the installation, it must be configured to run in 64-bit
mode. Skip to step 4 if the previous command reports that the system is
already in 64-bit mode.

3. Change the system to run in 64-bit kernel mode, as shown in Example 6-3.

Example 6-3 Changing the system to run in 64-bit kernel mode

cd /
#
ln -sf /usr/lib/boot/unix_64 /unix

124 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

ls -al /unix
lrwxrwxrwx 1 root system 21 Aug 04 15:30 /unix -> /usr/lib/boot/unix_64

bosboot -ad /dev/ipldevice

bosboot: Boot image is 22469 512 byte blocks.
#

Normally, the next step involves rebooting the system. However, to save time
we reboot after step 4 has been completed.

4. Check if asynchronous I/O (AIO) is enabled, as shown in Example 6-4.

Example 6-4 testing the status of the AIO option

lsattr -El aio0
autoconfig defined STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

Example 6-4 shows that the autoconfig flag is in a defined state. Therefore,
AIO is not available. Enabling it across reboots requires setting the autoconfig
flag. You can use either the smitty chgaio or chdev command to make these
changes. Example 6-5 shows the chdev command syntax. It is followed by the
lsattr command to confirm the change.

Example 6-5 Using the chdev command to change aio to available

chdev -l aio0 -P -a autoconfig=available
aio0 changed
#
lsattr -El aio0
autoconfig available STATE to be configured at system restart True
fastpath enable State of fast path True
kprocprio 39 Server PRIORITY True
maxreqs 4096 Maximum number of REQUESTS True
maxservers 10 MAXIMUM number of servers per cpu True
minservers 1 MINIMUM number of servers True

5. The system is now rebooted to allow the 64-bit kernel mode to take effect.

6. After the system has rebooted, confirm that it is now running a 64-bit kernel
and aio is in an available state (steps 2 and 4).

7. Next, create a 500 MB file system so that the DB2 binaries can be installed.
Create the new file system to mount on to /usr/opt/db2_08_01. Change the
owner and group to bin.

 Chapter 6. Building an NFSv4 environment 125

8. Create a second file system, 200 MB in size, to mount to /home/ldapdb2.

9. Create a group called dbsysadm and add the root user to this group.

10.Create a user called ldapdb2. This user must have the following
characteristics:

– Primary group is dbsysadm.

– Password REGISTRY is files.

– HOME directory is /home/ldapdb2.

– Change the owner and group of /home/ldapdb2 to ldapdb2:dbsysadm (use
the chown command).

6.4.2 Installing IBM Tivoli Directory Server
You can now install Tivoli Directory Server. The Tivoli Directory Server filesets
are on the fourth CD of the AIX Base Installation media.

Use the following command to install the required filesets:

installp -aXYgd /dev/cd0 ldap.server

Example 6-6 shows expected results when the installation has completed.

Example 6-6 Final results of the LDAP filesets install

+---+
 Summaries:
+---+

Installation Summary

Name Level Part Event Result

db2_08_01.pext 8.1.1.16 USR APPLY SUCCESS
db2_08_01.msg.en_US.iso88591 8.1.1.16 USR APPLY SUCCESS
db2_08_01.jhlp.en_US.iso885591 8.1.1.16 USR APPLY SUCCESS

Note: For these tests, a separate volume group was used for the ldapdb2
user’s home directory and Tivoli Directory Server installation. This step is
not necessary, but the root volume group will be very large if everything is
installed in it. This might have an affect on the backup strategy, because
many sites normally do not back up the root volume group.

Important: Make sure the user ldapdb2 has a valid password and can log in
without any challenges before proceeding further.

126 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

db2_08_01.icut 8.1.1.16 USR APPLY SUCCESS
db2_08_01.icuc 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.samples 8.1.1.16 USR APPLY SUCCESS
db2_08_01.client 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cj 8.1.1.16 USR APPLY SUCCESS
ldap.client.rte 5.2.0.0 USR APPLY SUCCESS
ldap.client.adt 5.2.0.0 USR APPLY SUCCESS
ldap.client.rte 5.2.0.0 ROOT APPLY SUCCESS
db2_08_01.sqlproc 8.1.1.16 USR APPLY SUCCESS
db2_08_01.repl 8.1.1.16 USR APPLY SUCCESS
db2_08_01.ldap 8.1.1.16 USR APPLY SUCCESS
db2_08_01.jdbc 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.rte 8.1.1.16 USR APPLY SUCCESS
db2_08_01.db2.engn 8.1.1.16 USR APPLY SUCCESS
db2_08_01.das 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cs.rte 8.1.1.16 USR APPLY SUCCESS
db2_08_01.conv 8.1.1.16 USR APPLY SUCCESS
db2_08_01.conn 8.1.1.16 USR APPLY SUCCESS
db2_08_01.cnvucs 8.1.1.16 USR APPLY SUCCESS
ldap.server.java 5.2.0.0 USR APPLY SUCCESS
ldap.server.rte 5.2.0.0 USR APPLY SUCCESS
ldap.server.com 5.2.0.0 USR APPLY SUCCESS
ldap.server.cfg 5.2.0.0 USR APPLY SUCCESS
ldap.server.com 5.2.0.0 ROOT APPLY SUCCESS
ldap.server.cfg 5.2.0.0 ROOT APPLY SUCCESS
db2_08_01.essg 8.1.1.16 USR APPLY SUCCESS
#

6.4.3 Configuring IBM Tivoli Directory Server
With Tivoli Directory Server installation complete, we now perform the initial
configuration.

First, verify that ibmslapd is not running; otherwise, the command in step 1 will
fail.

Perform the following steps:

1. Configure the directory and the database using the mksecldap command.
Example 6-7 on page 128 shows the syntax used in the test environment and
the expected output.

Note: If SSL capabilities are required, the AIX Certificate and SSL base
filesets (gskta for 64-bit kernel, gsksa for 32-bit kernel) and the crypto filesets
from the AIX 5L V5.3 Expansion Pack will also be required. Both the previous
filesets are required. Gsksa is used by LDAP client applications such as
ldapsearch.

 Chapter 6. Building an NFSv4 environment 127

Example 6-7 Creating the LDAP server using the mksecldap command

mksecldap -s -a cn=admin -p its0g00d -S rfc2307aix
Filesystem size changed to 229376
Changing password for "ldapdb2"
ldapdb2's New password:
Enter the new password again:
3004-600 The password entry does not match, please try again.
ldapdb2's New password:
Enter the new password again:

 You have chosen the following actions:

 Administrator DN 'cn=admin' and password will be set.

 Setting administrator DN 'cn=admin' and password.
 Set administrator DN 'cn=admin' and password.

IBM Tivoli Directory Server Configuration complete.
Enter password for user ldapdb2:
its0g00d

 You have chosen the following actions:

 Database 'ldapdb2' will be configured in instance 'ldapdb2'.

 Configuring IBM Tivoli Directory Server Database.
 Creating instance: 'ldapdb2'.
 Created instance: 'ldapdb2'.
 Cataloging instance node: 'ldapdb2'.
 Cataloged instance node: 'ldapdb2'.
 Starting database manager for instance: 'ldapdb2'.
 Started database manager for instance: 'ldapdb2'.
 Creating database: 'ldapdb2'.
 Created database: 'ldapdb2'.
 Updating the database: 'ldapdb2'
 Updated the database: 'ldapdb2'
 Updating the database manager: 'ldapdb2'
 Updated the database manager: 'ldapdb2'
 Enabling multi-page file allocation: 'ldapdb2'
 Enabled multi-page file allocation: 'ldapdb2'
 Configuring database: 'ldapdb2'
 Configured database: 'ldapdb2'
 Adding local loop back to database: 'ldapdb2'.
 Added local loop back to database: 'ldapdb2'.
 Stopping database manager for instance: 'ldapdb2'.
 Stopped database manager for instance: 'ldapdb2'.
 Starting database manager for instance: 'ldapdb2'.
 Started database manager for instance: 'ldapdb2'.

128 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 Configured IBM Tivoli Directory Server Database.

IBM Tivoli Directory Server Configuration complete.

 You have chosen the following actions:

 Suffix 'cn=aixdata' will be added to the configuration file.

 Adding suffix: 'cn=aixdata'.
 Added suffix: 'cn=aixdata'.

IBM Tivoli Directory Server Configuration complete.
Server starting in configuration only mode.
Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type PREOPERATION is successfully loaded from libDSP.a.
Plugin of type PREOPERATION is successfully loaded from libDigest.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type DATABASE is successfully loaded from /lib/libback-config.a.
Plugin of type EXTENDEDOP is successfully loaded from libloga.a.
Non-SSL port initialized to 389.
Stopping the LDAP server.
Server starting.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type EXTENDEDOP is successfully loaded from libldaprepl.a.
Plugin of type PREOPERATION is successfully loaded from libDSP.a.
Plugin of type PREOPERATION is successfully loaded from libDigest.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type AUDIT is successfully loaded from /lib/libldapaudit.a.
Plugin of type AUDIT is successfully loaded from
/usr/ccs/lib/libsecldapaudit64.a(shr.o).
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type EXTENDEDOP is successfully loaded from libtranext.a.
Plugin of type DATABASE is successfully loaded from /lib/libback-rdbm.a.
Plugin of type REPLICATION is successfully loaded from /lib/libldaprepl.a.
Plugin of type EXTENDEDOP is successfully loaded from /lib/libback-rdbm.a.
Plugin of type EXTENDEDOP is successfully loaded from libevent.a.
Plugin of type DATABASE is successfully loaded from /lib/libback-config.a.
Plugin of type EXTENDEDOP is successfully loaded from libloga.a.
Non-SSL port initialized to 389.
Migrating users and groups to LDAP server.
#

 Chapter 6. Building an NFSv4 environment 129

2. Although the DB2 database is now configured and running, the database
must be set to autostart across future system reboots. There are different
ways to manage the startup of DB2. One way uses the fault tolerant monitor.
In the following steps, we show a different way, using inittab and a simple
startup script.

a. Create a startup script and store it in /etc/rc.db2:

#!/bin/sh
/usr/bin/su - ldapdb2 -c /home/ldapdb2/sqllib/adm/db2start

b. Make the script executable:

cmod 755 /etc/rc.db2

c. Create the inittab entry:

mkitab -i ids0 “db2:2:wait:/etc/rc.db2 >/dev/null 2>&1”

3. The next step is to tune the DB2 database. Example 6-8 shows the
commands used when completing this step.

Example 6-8 Tuning the DB2 database

su - ldapdb2
$
$ db2 update db cfg for ldapdb2 using DBHEAP 20000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ db2 update db cfg for ldapdb2 using SORTHEAP 5000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ db2 update db cfg for ldapdb2 using APPLHEAPSZ 10000
DB20000I The UPDATE DATABASE CONFIGURATION command completed successfully.
$
$ exit

4. Now, stop the Tivoli Directory Server instance to facilitate the addition of the
container object for Kerberos using the ibmdirctl command. Example 6-9
shows the expected output.

Example 6-9 Stopping the Tivoli Directory Server instance with the ibmdirctl command

ibmdirctl -D cn=admin -w its0g00d stop
Stop operation succeeded

5. The next step involves the addition of an LDAP back end to the KDC. Use the
ldapcfg command:

ldapcfg -q -s "o=IBM,c=US"

This removes the need to use an established or files-based Kerberos
back-end database. For a detailed description of the differences between the

130 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

two options, refer to the IBM Network Authentication Service Version 1.4
documentation provided by the krb5.doc.en_US fileset.

6. Restart the Tivoli Directory Server instance in order to add the Kerberos
schema to the database. Example 6-10 shows the expected output.

Example 6-10 Starting the Tivoli Directory Server instance with the ibmdirctl command

ibmdirctl -D cn=admin -w its0g00d start
Start operation succeeded

7. Add the KRB5 schema, using the ldapmodify command:

ldapmodify -h pecos.itsc.austin.ibm.com -D cn=admin -w its0g00d -f\
/usr/krb5/ldif/IBM.KRB.schema.ldif -v -c

8. Create a schema for the KDC realm. For this example, we create the file
/usr/ldap/etc/realm_add_ibm.ldif using the IBM Network Authentication
Service Version 1.4 documentation as a reference. Example 6-11 shows the
lines added to the new file.

Example 6-11 Sample LDIF file for the KDC realm

cat /usr/ldap/etc/realm_add_ibm.ldif
The suffix "ou=Austin, o=IBM, c=US" should be defined before attempting to
load this data. Or change the suffix to be an already defined object.
Change all references of YOURHOSTNAME.AUSTIN.IBM.COM to be your realm name
#
version: 1

dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
objectclass: KrbRealm-V2
objectclass: KrbRealmExt
krbrealmName-V2: NFSV4REALM.IBM.COM
krbprincSubtree: krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
krbDeleteType: 3

dn: cn=principal, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US

Note: Messages might be generated during this step informing the user
that updates failed because certain database entries already exist. These
messages can be safely ignored.

 Chapter 6. Building an NFSv4 environment 131

objectclass: container
cn: principal

dn: cn=policy, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
objectclass: container
cn: policy

The sample file in Example 6-11 on page 131 is available in “Sample LDAP
LDIF file for the KDC realm” on page 354.

9. Next, modify the dn: o=IBM, c=US container by adding the schema created in
step 8, as shown in Example 6-12.

Example 6-12 Adding the modified realm schema to LDAP

ldapadd -a -h pecos.itsc.austin.ibm.com -D cn=admin -w its0g00d -f\
/usr/ldap/etc/realm_add_ibm.ldif -v -c
ldap_init(pecos.itsc.austin.ibm.com, 389)
add objectclass:
 BINARY (3 bytes) top
 BINARY (12 bytes) organization
add o:
 BINARY (3 bytes) IBM
adding new entry o=IBM, c=US

add objectclass:
 BINARY (11 bytes) KrbRealm-V2
 BINARY (11 bytes) KrbRealmExt
add krbrealmName-V2:
 BINARY (18 bytes) NFSV4REALM.IBM.COM
add krbprincSubtree:
 BINARY (47 bytes) krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
add krbDeleteType:
 BINARY (1 bytes) 3
adding new entry krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US

add objectclass:
 BINARY (9 bytes) container
add cn:
 BINARY (9 bytes) principal
adding new entry cn=principal, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US

add objectclass:
 BINARY (9 bytes) container
add cn:
 BINARY (6 bytes) policy
adding new entry cn=policy, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US

132 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

10.At this point, you can verify the IBM Directory Server using a simple ldap
query that displays all available container names in the newly created LDAP
directory, as shown in Example 6-13.

Example 6-13 Verification of the LDAP namingcontexts

ldapsearch -b "" -s base "objectclass=*" namingcontexts

namingcontexts=CN=SCHEMA
namingcontexts=CN=LOCALHOST
namingcontexts=CN=PWDPOLICY
namingcontexts=CN=IBMPOLICIES
namingcontexts=CN=AIXDATA
namingcontexts=O=IBM,C=US

6.4.4 Configuring Tivoli Directory Server to be a client of itself
Next, we configure the LDAP security client daemon to run on the same system
as the LDAP server. To do this, use the following command:

mksecldap -c -h pecos.itsc.austin.ibm.com -a cn=admin -p its0g00d

You can use the ls-secldapclntd command to verify that the client daemon is
configured correctly. Example 6-14 shows the expected output.

Example 6-14 Verifying the LDAP client daemon

/usr/sbin/ls-secldapclntd
ldapservers=pecos.itsc.austin.ibm.com
ldapport=389
ldapversion=3
userbasedn=ou=People,cn=aixdata
groupbasedn=ou=Groups,cn=aixdata
idbasedn=ou=System,cn=aixdata
usercachesize=1000
usercacheused=2
groupcachesize=100
groupcacheused=1
cachetimeout=300
heartbeatT=300
numberofthread=10
connectionsperserver=10
alwaysmaster=no
authtype=UNIX_AUTH
searchmode=ALL
defaultentrylocation=LDAP
ldaptimeout=60
userobjectclass=account,posixaccount,shadowaccount,aixauxaccount
groupobjectclass=posixgroup,aixauxgroup
#

 Chapter 6. Building an NFSv4 environment 133

With the LDAP configuration complete, next we configure the Kerberos server.

6.5 IBM Network Authentication Services (Kerberos V5)
server installation

The IBM NAS Version1.4 server filesets are delivered with the AIX 5L V5.3
Expansion Pack CD. You can install these using the smit or the installp
command:

installp -aqXgd . krb5.server modcrypt.base

Next, we install the NAS client packages:

installp -aqXgYd . krb5.lic krb5.client modcrypt.base

6.5.1 Setting up the environment
Before proceeding with the NAS configuration, the PATH variable must be
updated to include the location of the new Kerberos commands. The Kerberos
binaries are in the /usr/krb5/bin and /usr/krb5/sbin directories; update the
/etc/environment file to include these locations. Example 6-15 shows the updated
PATH variable.

Example 6-15 Updated PATH variable in /etc/environment

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/krb5/bin:/usr/krb
5/sbin:/usr/java14/jre/bin:/usr/java14/bin

It is imperative that you perform this step, because KRB5 commands such as
kinit are also installed under the Java14.sdk. Therefore, setting the PATH
variable as shown in Example 6-15 ensures that the correct commands are
called.

In a large environment, a copy of the /etc/environment file can be distributed to
all systems using a locally written shell script in order to eliminate the need to edit
each file manually.

6.5.2 Configuring the NAS server
Use the following required steps to configure the NAS server:

1. Set up the environment.

Update the PATH variable in the /etc/environment file.

2. Configure the NAS server to use Tivoli Directory Server as its back-end
database.

134 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Configure the Kerberos server with an LDAP back end
Use the mkkrb5srv or config.krb5 command to configure NAS to use Tivoli
Directory Server as its database back end.

During the execution of this command, the system asks for a Master Database
password and a password for the administrative principal admin. Record and
store both the name and chosen password in a secure place because they are
essential for management of the NAS environment. Example 6-16 shows the
output of the mkkrb5srv command on the KDC server.

Example 6-16 Output of the mkkrb5srv command on the KDC server

mkkrb5srv -r NFSV4REALM.IBM.COM -s pecos.itsc.austin.ibm.com -d \
itsc.austin.ibm.com -a admin/admin -l pecos.itsc.austin.ibm.com -u "cn=admin" \
-p its0g00d
Fileset Level State Description
 --
Path: /usr/lib/objrepos
 krb5.server.rte 1.4.0.1 COMMITTED Network Authentication Service
 Server

Path: /etc/objrepos
 krb5.server.rte 1.4.0.1 COMMITTED Network Authentication Service
 Server
The -s option is not supported.
The administration server will be the local host.
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
Creating /var/krb5/krb5kdc/kdc.conf...
Creating database files...
Initializing database 'LDAP' for realm 'NFSV4REALM.IBM.COM'
master key name 'K/M@NFSV4REALM.IBM.COM'
Attempting to bind to one or more LDAP servers. This may take a while...
You are prompted for the database Master Password.
It is important that you DO NOT FORGET this password.
Enter database Master Password:
Re-enter database Master Password to verify:
Attempting to bind to one or more LDAP servers. This may take a while...
WARNING: no policy specified for admin/admin@NFSV4REALM.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.

Note: The environment created for this test might not suit all needs. Consult
the relevant NFSv4 and Network Authentication Services (NAS) material and,
if needed, engage IBM Global Services to seek advice about the best way to
implement NAS based on your local requirements.

 Chapter 6. Building an NFSv4 environment 135

Enter password for principal "admin/admin@NFSV4REALM.IBM.COM":
Re-enter password for principal "admin/admin@NFSV4REALM.IBM.COM":
Principal "admin/admin@NFSV4REALM.IBM.COM" created.
Creating keytable...
Attempting to bind to one or more LDAP servers. This may take a while...
Creating /var/krb5/krb5kdc/kadm5.acl...
Starting krb5kdc...
Attempting to bind to one or more LDAP servers. This may take a while...
krb5kdc was started successfully.
Starting kadmind...
Attempting to bind to one or more LDAP servers. This may take a while...
kadmind was started successfully.
The command completed successfully.
Restarting kadmind and krb5kdc
Attempting to bind to one or more LDAP servers. This may take a while...
Attempting to bind to one or more LDAP servers. This may take a while...
#

The mkkrb5srv command also updates the /etc/inittab file with the entries shown
in Example 6-17. These permit NAS to start automatically at system boot time.

Example 6-17 /etc/inittab entries for the KDC

krb5kdc:2:once:/usr/krb5/sbin/krb5kdc
kadm:2:once:/usr/krb5/sbin/kadmind

Before configuring the NAS clients, test the Kerberos setup using the following
command sequence (see Example 6-18):

1. Verify that all required processes for the Kerberos server have started:

ps -ef | grep krb | grep -v grep

2. Verify that the admin principal can log in:

kinit admin/admin@nfsv4realm.ibm.com

3. Verify that the admin principal can obtain a ticket after it has logged in:

klist

Example 6-18 Basic verification of the Kerberos server

ps -ef | grep krb | grep -v grep
 root 397562 1 0 11:03:26 - 0:00 /usr/krb5/sbin/krb5kdc
 root 585806 1 0 11:03:26 - 0:00 /usr/krb5/sbin/kadmind

kinit admin/admin@NFSV4REALM.IBM.COM
Password for admin/admin@NFSV4REALM.IBM.COM:

klist

136 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@NFSV4REALM.IBM.COM

Valid starting Expires Service principal
08/19/05 11:07:31 08/20/05 11:07:28
krbtgt/NFSV4REALM.IBM.COM@NFSV4REALM.IBM.COM

Configure the Kerberos server as a client of itself
You must now create the host principals for the Kerberos server. This provides
the authority to add, modify, and delete users from the server. Therefore, the
server must be configured as a client of itself. Configuring the server as a client
of itself also updates the /usr/lib/security/methods.cfg file with the stanzas shown
in Example 6-19.

Example 6-19 Authentication grammar added to the /usr/lib/security/methods.cfg file

LDAP:
 program = /usr/lib/security/LDAP
 program_64 =/usr/lib/security/LDAP64

KRB5:
 program = /usr/lib/security/KRB5

KRB5LDAP:
 options = db=LDAP,auth=KRB5

Next, we configure integrated login on the server. Use the mkkrb5clnt command,
as shown in Example 6-20.

Example 6-20 Configuring the Kerberos server as a client of itself

mkkrb5clnt -c pecos.itsc.austin.ibm.com -s pecos.itsc.austin.ibm.com -r\
NFSV4REALM.IBM.COM -d itsc.austin.ibm.com -i LDAP -A -K -T
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
Password for admin/admin@nfsv4realm.ibm.com:
Configuring fully integrated login
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
host/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "host/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com" created.

 Chapter 6. Building an NFSv4 environment 137

Administration credentials NOT DESTROYED.
Making root a Kerberos administrator
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
root/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal
"root/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com":
Re-enter password for principal
"root/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com":
Principal "root/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com" created.

Administration credentials NOT DESTROYED.
Authenticating as principal admin/admin with existing credentials.
Principal "host/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com" deleted.
Make sure that you have removed this principal from all ACLs before reusing.

Administration credentials NOT DESTROYED.
Authenticating as principal admin/admin with existing credentials.
Principal "root/pecos.itsc.austin.ibm.com@nfsv4realm.ibm.com" deleted.
Make sure that you have removed this principal from all ACLs before reusing.

Administration credentials NOT DESTROYED.
Authenticating as principal admin/admin with existing credentials.
Principal "kadmin/admin@nfsv4realm.ibm.com" modified.

Administration credentials NOT DESTROYED.
Cleaning administrator credentials and exiting.

Verify the previous steps by testing whether it is possible to create and modify
users and groups. Example 6-21 shows the full command sequence.

Example 6-21 Testing the Kerberos environment

mkuser -R KRB5LDAP testuser
#
passwd -R KRB5LDAP testuser
Changing password for "testuser"
testuser's Old password:
testuser's New password:
Enter the new password again:

lsuser -R KRB5LDAP testuser
testuser id=212 pgrp=staff groups=staff home=/home/testuser shell=/usr/bin/ksh
login=true su=true rlogin=true telnet=true daemon=true admin=false sugroups=ALL
admgroups= tpath=nosak ttys=ALL expires=0 auth1=SYSTEM auth2=NONE umask=22
registry=KRB5LDAP SYSTEM=KRB5LDAP OR compat logintimes= loginretries=0
pwdwarntime=0 account_locked=false minage=0 maxage=0 maxexpired=-1 minalpha=0

138 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

minother=0 mindiff=0 maxrepeats=8 minlen=0 histexpire=0 histsize=0 pwdchecks=
dictionlist= fsize=2097151 cpu=-1 data=262144 stack=65536 core=2097151
rss=65536 nofiles=2000 time_last_login=0 time_last_unsuccessful_login=0
unsuccessful_login_count=0 roles= krb5_principal=testuser@NFSV4REALM.IBM.COM
krb5_principal_name=testuser@NFSV4REALM.IBM.COM krb5_realm=NFSV4REALM.IBM.COM
maxage=0 expires=0 krb5_last_pwd_change=1124755477 admchk=false
krb5_attributes=requires_preauth
krb5_mod_name=root/pecos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
krb5_mod_date=1124755477 krb5_kvno=3 krb5_mkvno=0
krb5_max_renewable_life=604800 time_last_login=0 time_last_unsuccessful_login=0
unsuccessful_login_count=0 krb5_names=testuser:pecos.itsc.austin.ibm.com
#
mkgroup -R KRB5LDAP testgp
#
lsgroup -R KRB5LDAP testgp
testgp id=204 admin=false users= registry=KRB5LDAP
#
chuser -R KRB5LDAP pgrp=testgp testuser
#
lsuser -R KRB5LDAP testuser
testuser id=212 pgrp=testgp groups=testgp,staff home=/home/testuser
shell=/usr/bin/ksh login=true su=true rlogin=true telnet=true daemon=true
admin=false sugroups=ALL admgroups= tpath=nosak ttys=ALL expires=0 auth1=SYSTEM
auth2=NONE umask=22 registry=KRB5LDAP SYSTEM=KRB5LDAP OR compat logintimes=
loginretries=0 pwdwarntime=0 account_locked=false minage=0 maxage=0
maxexpired=-1 minalpha=0 minother=0 mindiff=0 maxrepeats=8 minlen=0
histexpire=0 histsize=0 pwdchecks= dictionlist= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000 time_last_login=0
time_last_unsuccessful_login=0 unsuccessful_login_count=0 roles=
krb5_principal=testuser@NFSV4REALM.IBM.COM
krb5_principal_name=testuser@NFSV4REALM.IBM.COM krb5_realm=NFSV4REALM.IBM.COM
maxage=0 expires=0 krb5_last_pwd_change=1124755477 admchk=false
krb5_attributes=requires_preauth
krb5_mod_name=root/pecos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
krb5_mod_date=1124755477 krb5_kvno=3 krb5_mkvno=0
krb5_max_renewable_life=604800 time_last_login=0 time_last_unsuccessful_login=0
unsuccessful_login_count=0 krb5_names=testuser:pecos.itsc.austin.ibm.com
#
rmuser -R KRB5LDAP testuser
#
lsuser -R KRB5LDAP testuser | grep pgrp
3004-687 User "testuser" does not exist.
#
rmgroup -R KRB5LDAP testgp
#
lsgroup -R KRB5LDAP testgp
3004-686 Group "testgp" does not exist.
#

 Chapter 6. Building an NFSv4 environment 139

The previous examples verified the following operations:

1. Creating a principal named testuser
2. Setting a password for the same user

3. Creating a group called testgp
4. Modifying testuser to make testgp the user’s primary group

5. Deleting the user

6. Deleting the group

6.6 IBM Tivoli Directory Server client configuration
All clients must be able to communicate with the LDAP server. The syntax for the
mksecldap command required to accomplish this task is as follows:

mksecldap -c -h <fully_qualified_name_of_LDAP_server> -a <admin_cn> -p\ <password>

Example 6-22 shows the use of the mksecldap command to create the client,
followed by the ls-secldapclntd command to verify the configuration.

Example 6-22 Configuring the LDAP client

mksecldap -c -h pecos.itsc.austin.ibm.com -a cn=admin -p its0g00d
#
ls-secldapclntd
ldapservers=pecos.itsc.austin.ibm.com
ldapport=389
ldapversion=3
userbasedn=ou=People,cn=aixdata
groupbasedn=ou=Groups,cn=aixdata
idbasedn=cn=aixid,ou=System,cn=aixdata
usercachesize=1000
usercacheused=2
groupcachesize=100
groupcacheused=1
cachetimeout=300
heartbeatT=300
numberofthread=10
connectionsperserver=10
alwaysmaster=no
authtype=UNIX_AUTH
searchmode=ALL
defaultentrylocation=LDAP
ldaptimeout=60
userobjectclass=account,posixaccount,shadowaccount,aixauxaccount,ibm-securityId
entities
groupobjectclass=posixgroup,aixauxgroup
#

140 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

6.7 IBM Network Authentication Services client install
and configuration

Now, we configure the IBM NAS client environment. The following tasks must be
performed:

� Set up the environment.

Update the PATH variable in the /etc/environment file. If you have not done
this yet, refer to 6.5.1, “Setting up the environment” on page 134.

� Configure the NAS client or clients. Two methods are available:

– Integrated login (single sign-on)

– Standard login

Clients can only be configured to use one of these methods.

6.7.1 Integrated login (single sign-on)
Integrated login can be configured to attempt user authentication through one or
more methods, such as the /etc/passwd file, DCE, AFS, or Kerberos, at login
time. Enabling integrated login based on the distributed Kerberos client/server
architecture, which uses a centrally stored user database, eases the
administrative burden by removing the requirement that each user be managed
at a per system level (that is, the /etc/passwd file). Instead, login attempts will
first attempt to authenticate the user against the Kerberos subsystem. Use of this
method provides the added benefit that users no longer are required to
remember multiple user IDs and passwords; their Kerberos ID can be used when
logging in to any machine located in the realm.

Example 6-23 uses the mkkrb5clnt command to configure a client to use
integrated login.

Example 6-23 Configuring the NAS client to use integrated login

mkkrb5clnt -c pecos.itsc.austin.ibm.com -s pecos.itsc.austin.ibm.com -r\
NFSV4REALM.IBM.COM -d itsc.austin.ibm.com -i LDAP -A -K -T
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.
Password for admin/admin@NFSV4REALM.IBM.COM:
Configuring fully integrated login
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
host/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by

 Chapter 6. Building an NFSv4 environment 141

 ACL restrictions.
Principal "host/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM" created.

Administration credentials NOT DESTROYED.
Making root a Kerberos administrator
Authenticating as principal admin/admin with existing credentials.
WARNING: no policy specified for
root/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal
"root/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM":
Re-enter password for principal
"root/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM":
Principal "root/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM" created.

Administration credentials NOT DESTROYED.
Configuring Kerberos as the default authentication scheme
Cleaning administrator credentials and exiting.
#

The final step is to change the authentication grammar on the client. This must
be done for all users, except the root user. For the test environment, the
Password Registry entry for the root user was changed to files and the
authentication grammar to compat. Example 6-24 shows how this was
accomplished.

Example 6-24 Setting the root user’s authentication grammar

chuser registry=files root
#
chuser SYSTEM="compat" root
#
grep -p root /etc/security/user
root:
 admin = true
 SYSTEM = "compat"
 registry = files
 loginretries = 0
 account_locked = false
 admgroups =

For all other users, set the registry entry to KRB5LDAP and SYSTEM to "KRB5LDAP
OR compat", as shown in Example 6-25 on page 143. It might also be useful to
perform the previous operation on other AIX 5L system users, such as bin, lp, or
etc.

142 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-25 Setting the authentication grammar for other users

chsec -f /etc/security/user -s default -a registry=KRB5LDAP
#
chsec -f /etc/security/user -s default -a "SYSTEM=\"KRB5LDAP OR compat\""
#
grep -p default /etc/security/user
default:
 admin = false
 login = true
 su = true
 daemon = true
 rlogin = true
 sugroups = ALL
 admgroups =
 ttys = ALL
 auth1 = SYSTEM
 auth2 = NONE
 tpath = nosak
 umask = 022
 expires = 0
 SYSTEM = "KRB5LDAP OR compat"
 logintimes =
 pwdwarntime = 0
 account_locked = false
 loginretries = 0
 histexpire = 0
 histsize = 0
 minage = 0
 maxage = 0
 maxexpired = -1
 minalpha = 0
 minother = 0
 minlen = 0
 mindiff = 0
 maxrepeats = 8
 dictionlist =
 pwdchecks =
 registry = KRB5LDAP
#

Our client is now configured to use integrated login.

6.7.2 Standard login
This method might be useful in cases where not all users participate in a
Kerberized environment. The initial login uses the standard AIX authentication
method, that is, the /etc/passwd and /etc/security/passwd files. When a user

 Chapter 6. Building an NFSv4 environment 143

requires access to a file system or other resource requiring Kerberos
authentication, they must obtain a ticket using the kinit command. This method
introduces a major disadvantage, because it means that each user must have a
local entry (and therefore, potentially, a different password) on each system.

Example 6-26 uses the mkkrb5clnt command to configure the client for NAS, but
continues to use standard AIX login methods.

Example 6-26 Configuring the client for NAS but using standard AIX login

mkkrb5clnt -c pecos.itsc.austin.ibm.com -s pecos.itsc.austin.ibm.com -r\
nfsv4realm.ibm.com -d itsc.austin.ibm.com
Initializing configuration...
Creating /etc/krb5/krb5_cfg_type...
Creating /etc/krb5/krb5.conf...
The command completed successfully.

After the client is configured, the kinit and klist commands are used to verify
that it can authenticate to the server, as shown in Example 6-27.

Example 6-27 Verifying kerberos client operation

kinit admin/admin@NFSV4REALM.IBM.COM
Password for admin/admin@nfsv4realm.ibm.com:
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@nfsv4realm.ibm.com

Valid starting Expires Service principal
08/16/05 09:22:11 08/17/05 09:22:07
krbtgt/nfsv4realm.ibm.com@nfsv4realm.ibm.com

6.7.3 Adding NAS users
This section discusses the methods available for adding users to an NAS
environment. Several options are available. For example, the mkuser command
is a simplified front end that enables administrators to create accounts located in
the /etc/passwd file, Kerberos, or another authentication database. The database
used for the account is determined by the value of the -R switch; if this switch is
unspecified, the default authentication method is used.

Example 6-28 on page 145 uses the mkuser and passwd commands with the -R
KRB5LDAP option to create NAS users.

144 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-28 Creating NAS users

kinit admin/admin
Password for admin/admin@nfsv4realm.ibm.com:
#
mkuser -R KRB5LDAP <user_name>

passwd -R KRB5LDAP <user_name>

It is also possible to create Kerberos user principals matching existing UNIX user
names. The principal name is mapped to the user name by NFS to determine the
UNIX credential associated with the principal. You can add principals the KDC
server using the command sequence:

kadmin.local -> add_principal (or addprinc) <principal_name>.

In Example 6-29, the principal named jen is added to the KDC database from the
command line. Because the kadmin.local command suite is privileged, this
operation requires prior authentication to Kerberos using an administrative
principal, for example, admin/admin.

Example 6-29 Adding the principal named jen to the KDC

kadmin.local
kadmin.local: addprinc -e des-cbc-crc:normal jen
WARNING: no policy specified for jen@nfsv4realm.ibm.com;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Enter password for principal "jen@nfsv4realm.ibm.com":
Re-enter password for principal "jen@nfsv4realm.ibm.com":
Principal "jen@nfsv4realm.ibm.com" created.
kadmin.local:

The newly created principal must now be verified. Principals can be listed on
KDC using the following command sequence:

kadmin.local -> list_principals

The kadmin.local interface also provides the options get_principal and
getprinc to generate account details for a specific user. Example 6-30 on
page 146 shows the results of a getprinc command for the principal jen.

Note: The kadmin.local command can only be run on the master KDC, while
kadmin can be run on any machine that is part of the Kerberos realm.

 Chapter 6. Building an NFSv4 environment 145

Example 6-30 Listing details for principal jen

kadmin.local: getprinc jen
Principal: jen@nfsv4realm.ibm.com
Expiration date: [never]
Last password change: Tue Aug 16 16:35:09 CDT 2005
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Tue Aug 16 16:35:09 CDT 2005 (admin/admin@nfsv4realm.ibm.com)
Last successful authentication: [never]
Last failed authentication: [never]
Failed password attempts: 0
Number of keys: 1
Key: vno 1, DES cbc mode with CRC-32,
no salt

Attributes:
 REQUIRES_PRE_AUTH
Policy: [none]
kadmin.local:

Finally, verify the newly created Kerberos principal using the klist command.

Example 6-31 Verify the principal jen with using the klist command

kinit jen@nfsv4realm.ibm.com
Password for jen@nfsv4realm.ibm.com:
#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: jen@nfsv4realm.ibm.com

Valid starting Expires Service principal
08/16/05 16:52:05 08/17/05 16:52:03
krbtgt/nfsv4realm.ibm.com@nfsv4realm.ibm.com

Use of the previous procedure in environments involving a large number of users
can be cumbersome and time-consuming. The script shown in Example 6-32 on
page 147 might assist this. It assumes that a file containing a list of users to be
added to the KDC has already been created; this example uses the file users.out
as the source for user names. You can use the kadmin.local command if the
script is executed on the NAS server; kadmin is required when a client machine is
used.

146 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-32 Creating user principals using a shell script

#/bin/ksh
NPASSWD=”new01new”
for i in `cat users.out`
do
/usr/krb5/sbin/kadmin.local <<EOF
add_principal -e des-cbc-crc:normal -pw ${NPASSWD} $i
EOF

6.7.4 Migrating existing users into NAS
Many sites conducting a migration to an NAS environment require the ability to
migrate existing UNIX user names, user IDs, and any additional information
resident in the /etc/passwd file. Migration of passwords is not possible. However,
a temporary password can be set for migrated user account, and a flag set on
the account to force the user to change this password during their initial login
session.

The script in Example 6-33 uses the mkuser, kadmin.local, and chuser
commands to automate this task. It takes a copy of a host system’s
/etc/security/passwd file as input, and uses an inline awk statement to create an
output file, users_passwds.out. The script also assumes that a copy of the host
system’s /etc/security/passwd file has been amended to remove standard AIX
users such as root, lp, and bin. The example script is by no means complete or
fault tolerant, but provides a starting point for sites requiring this capability.

The following steps were performed:

1. A copy of the host system’s /etc/security/passwd file was transferred to one of
the test realm’s NAS clients.

2. The script in Example 6-33 was executed.

3. The kadmin.local -> listprincs commands were used to verify that the
users were correctly migrated.

4. Several of the migrated accounts were tested using telnet and other
commands to ensure that it was possible to log in to them successfully.

The format of the users_passwds.out file is as follows:

userid:encrypted_passwd

Example 6-33 Migrating or adding users to the KDC and LDAP

#!/bin/ksh
#
Script to migrate user information
The script does the following:

 Chapter 6. Building an NFSv4 environment 147

#
i. adds the user
ii. displays user information in LDAP
iii. sets the user's temporary password
iv. expires the user's password, forcing a change at first log on
#
export AUTH=KRB5LDAP
export PASSWD=tempONEtemp

if the admusr user does not exist, create it.
lsuser -R $AUTH admusr || /usr/bin/mkuser -R $AUTH -a account_locked=true
admin=true admusr

extract the username, UID and gecos information from the input file
cat /mnt/user_data.out | awk -F":" '

add user routine with UID & gecos info
adduser=sprintf("/usr/bin/mkuser -R $AUTH -a id=%s gecos=\"%s\" %s", $2, $3,
$1)

display user information from LDAP routine
lsuser=sprintf("/usr/sbin/lsuser -R $AUTH %s", $1)

set the the temporary password routine
passwd=sprintf("/usr/krb5/sbin/kadmin.local -q \"change_password -pw $PASSWD
%s\"", $1)

expire the temporary password routine
chuser=sprintf("/usr/bin/chuser -R $AUTH krb5_attributes=+needchange %s", $1)

run the routines
system(adduser)
system(lsuser)
system(passwd)
system(chuser)
'

Example 6-34 on page 149 shows the output when a user logs in for the first time
after the migration. System integrity and security are preserved, because users
must use their existing password to gain access to the system. They are then
required to change this password. It also means that the systems administrator is
not required to painstakingly assign a temporary password to each migrated user
account.

Note: Users will be asked to change their password the first time they log in
after the migration. No other method exists to migrate the users’ passwords
without writing custom programs to manipulate the KDC directly.

148 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-34 First time login for a migrated user

AIX Version 5
(C) Copyrights by IBM and by others 1982, 2005.
login: max
max's Password:
[compat]: 3004-610 You are required to change your password.
 Please choose a new one.

max's New password:
Enter the new password again:

6.7.5 Installation details
After the Kerberos installation and configuration is complete, the files shown in
Table 6-2 are installed in the /etc/krb5 directory.

Table 6-2 Kerberos config files

Example 6-35 and Example 6-36 on page 150 show the contents of the
5/krb5.conf and /etc/krb5/krb5_cfg_type files.

Example 6-35 Contents of the /etc/krb5.conf file

[libdefaults]
 default_realm = NFSV4REALM.IBM.COM
 default_keytab_name = FILE:/etc/krb5/krb5.keytab
 default_tkt_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 default_tgs_enctypes = des3-cbc-sha1 arcfour-hmac aes256-cts
des-cbc-md5 des-cbc-crc
 use_ldap_lookup = 1
 ldap_server = pecos.itsc.austin.ibm.com

[realms]
 NFSV4REALM.IBM.COM = {
 kdc = pecos.itsc.austin.ibm.com:88

File Description

krb5.conf The krb5.conf file contains general information for clients and
servers. It must reside on each system containing the
administration server, a KDC, or client. If two or more Network
Authentication Service servers or clients reside on the same
system, they must share the same krb5.conf file.

krb5_cfg_type The krb5_cfg_type file determines the configuration type of the
machine (master, slave, or client). This file must reside on the
system that contains the administration server.

 Chapter 6. Building an NFSv4 environment 149

 admin_server = pecos.itsc.austin.ibm.com:749
 default_domain = itsc.austin.ibm.com
 }

[domain_realm]
 .itsc.austin.ibm.com = NFSV4REALM.IBM.COM
 pecos.itsc.austin.ibm.com = NFSV4REALM.IBM.COM

[logging]
 kdc = FILE:/var/krb5/log/krb5kdc.log
 admin_server = FILE:/var/krb5/log/kadmin.log
 default = FILE:/var/krb5/log/krb5lib.log

Example 6-36 Contents of the /etc.krb5_cfg_type file

cat /etc/krb5_cfg_type
master

6.8 Installing GPFS
GPFS is not mandatory for a successful deployment of NFSv4. However, we
discuss it in this chapter in order to assist sites that need to take advantage of the
resiliency features it provides. GPFS can be used to great advantage if a highly
resilient NFSv4 environment is required; it is especially helpful when used in
conjunction with the read/write replication facility provided by NFSv4.

The installation procedures are generalized for all levels of GPFS. Ensure that
the correct numeric value is provided for the modification (m) and fix (f) levels,
where applicable. The modification and fix level are dependent on the level of
PTF support.

Three GPFS nodes are used for this example:

� sabine.itsc.austin.ibm.com

� frio.itsc.austin.ibm.com

� angelina.itsc.austin.ibm.com

One installation system is also present:

� madrid.itsc.austin.ibm.com

Note: The default_tkt_enctypes and default_tgs_enctypes can be reduced to
show only des-cbc-crc and des-cbc-md5, but this might only be correct with
NFSv4.

150 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Follow the steps in this section to install the GPFS software using the installp
command.

6.8.1 Preparing the GPFS nodes for installation
These examples use GPFS V2.3. Before GPFS can be installed on each node,
the /.rhosts file must contain an entry for madrid because it is the source of the
installation media. The following line was added to the /.rhosts file on sabine, frio,
and angelina:

madrid.itsc.austin.ibm.com

The file permissions on the /.rhosts file must be 644, as shown in Example 6-37.

Example 6-37 Setting the permissions on the /.rhosts file

chmod 644 /.rhosts
#
ls -la /.rhosts
-rw-r--r-- 1 root system 91 Aug 09 18:14 /.rhost

To ease the installation process, a file named /tmp/gpfs.allnodes was created on
madrid containing the full names of all GPFS nodes. Example 6-38 shows the
contents of the /tmp/gpfs.allnodes file. We use this file when installing GPFS on
frio and sabine.

Example 6-38 Contents of the /tmp/gpfs.allnodes file

frio.itsc.austin.ibm.com
sabine.itsc.austin.ibm.com

It is now possible to proceed with the GPFS installation.

6.8.2 Creating the GPFS directory
Perform the following steps to create the GPFS directory:

1. On madrid, create a temporary subdirectory where the GPFS installation
images can be extracted:

mkdir /tmp/gpfslpp

Important: The examples are based on a new installation. If upgrading from
an earlier version of GPFS, consult the necessary documentation to assist
with reconciling the differences with the new version.

 Chapter 6. Building an NFSv4 environment 151

2. Copy the installation images from the CD-ROM to the new directory using the
bffcreate command. The following example shows this process on madrid:

bffcreate -qvX -t /tmp/gpfslpp -d /dev/cd0 all

3. Step 2 places the following images in /tmp/gpfslpp:

– gpfs.base
– gpfs.docs
– gpfs.msg.en_US

6.8.3 Creating the GPFS installation table of contents file
The next step is to create the installation table of contents (.toc), as shown in
Example 6-39.

Example 6-39 Create the .toc file

cd /tmp/gpfslpp
#
inutoc .
#
ls -la .toc
-rw-r--r-- 1 root system 3153 Aug 09 18:49 .toc
#

6.8.4 Installing GPFS through the network
If you use a network installation, first ensure that the directory where the GPFS
images are (for example, /gpfs_tools/gpfs.allnodes) is NFS exported to all nodes
designated for the GPFS cluster.

Ensure that an acceptable directory or mount point is available on each target
node, such as /tmp/gpfslpp. If it does not exist, create it:

WCOLL=/gpfs_tools/gpfs.allnodes dsh "mkdir /tmp/gpfslpp"

If installing on a shared file system, place the GPFS images on each node in the
network by running:

WCOLL=/gpfs_tools/gpfs.allnodes dsh "mount madrid:/tmp/gpfslpp /tmp/gpfslpp"

Tip: The gpfs.docs image must be installed in order to use the GPFS man
pages. The GPFS manual pages are in the /usr/share/man/ directory. The
gpfs.docs image is not necessary on all nodes if the man pages are not
required or file system space on the node is limited.

152 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Otherwise, run:

WCOLL=/gpfs_tools/gpfs.allnodes dsh "rcp madrid:/tmp/gpfslpp/gpfs*
/tmp/gpfslpp"
#
WCOLL=/gpfs_tols/gpfs.allnodes dsh "rcp madrid:/tmp/gpfslpp/.toc
/tmp/gpfslpp"

We can now install GPFS on each node by running:

WCOLL=/gpfs_tools/gpfs.allnodes dsh "installp -agXYd /tmp/gpfslpp gpfs"

6.8.5 Verifying the GPFS installation
Verify the installation after it is complete using the lslpp -l gpfs* command on
all nodes. Example 6-40 shows the expected output from a newly installed GPFS
node.

Example 6-40 Sample output from the lslpp command

lslpp -l gpfs*

Fileset Level State Description
--
Path: /usr/lib/objrepos
 gpfs.base 2.3.0.0 COMMITTED GPFS File Manager
 gpfs.msg.en_US 2.3.0.0 COMMITTED GPFS Server Messages - U.S.
 English
Path: /etc/objrepos
 gpfs.base 2.3.0.0 COMMITTED GPFS File Manager

Path: /usr/share/lib/objrepos
 gpfs.docs.data 2.3.0.0 COMMITTED GPFS Server Manpages and
 Documentation

6.9 Configuring GPFS
The GPFS environment must now be configured. We perform the following steps:

1. Set up the environment:

a. Update the PATH variable in /etc/environment.

b. Update the /.rhosts file on all GPFS nodes.

Important: The use of GPFS to export NFSv4 volumes requires the presence
of GPFS V2.3.0.7 or later.

 Chapter 6. Building an NFSv4 environment 153

c. Create an NFS export for all nodes. The export holds generic configuration
information.

d. Create the all_nodes file.

2. Create the GPFS cluster.

3. Create the GPFS file system.

6.9.1 Setting up the environment
Perform the following steps to set up the environment:

1. All GPFS binaries are in /usr/lpp/mmfs/bin, which should be added to the
PATH environment variable using either the local .kshrc file or to the
/etc/environment file. Example 6-41 shows the results of the latter option.

Example 6-41 Adding the GPFS binaries location to the PATH variable

PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/krb5/bin:/usr/jav
a14/jre/bin:/usr/java14/bin:/usr/lpp/mmfs/bin

2. All nodes that are to participate in the GPFS cluster must be added to the
/.rhosts file on all nodes. Example 6-42 shows the contents of the /.rhosts file
on both GPFS nodes in the test environment.

Example 6-42 Contents of the /.rhosts file on all nodes that will be part of GPFS

sabine.itsc.austin.ibm.com
frio.itsc.austin.ibm.com
angelina.itsc.austin.ibm.com

3. To simplify the management of files common to all nodes in the cluster, an
NFS export was created on one node and mounted on all other nodes. For
this example, we use the /gpfs_tools directory. The choice of NFS protocol is
left to the user.

4. It is necessary to create a file containing the names of all GPFS nodes and
the roles they fulfill in the cluster. For this purpose, a file called gpfs_nodefile
was generated in the shared /gpfs_tools directory. Example 6-43 on page 155
shows the contents of the gpfs_nodefile.

Note: The environment created for this test scenario might not suit all needs.
Consult the relevant GPFS material and, if needed, engage IBM Global
Services to seek advice about the best way to implement GPFS in your local
environment.

154 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-43 Contents of the /gpfs_tools/gpfs_nodefile

frio.itsc.austin.ibm.com:quorum
sabine.itsc.austin.ibm.com:quorum
angelina.austin.ibm.com:quorum

6.9.2 Creating the GPFS cluster and nodes
We can now create the GPFS cluster using the mmcrcluster command, after
which each node will be defined. The following steps show the procedure used to
create the test GPFS cluster, consisting of systems sabine and frio:

1. Create the cluster, as shown in Example 6-44.

Example 6-44 Creating the GPFS cluster

mmcrcluster -n /gpfs_tools/gpfs.allnodes -p angelina -C NFSv4_GPFS
Fri Aug 12 15:36:08 CDT 2005: 6027-1664 mmcrcluster: Processing node
frio.itsc.austin.ibm.com
Fri Aug 12 15:36:09 CDT 2005: 6027-1664 mmcrcluster: Processing node
sabine.itsc.austin.ibm.com
Fri Aug 12 15:36:09 CDT 2005: 6027-1664 mmcrcluster: Processing node
angelina.itsc.austin.ibm.com
mmcrcluster: Command successfully completed
mmcrcluster: 6027-1371 Propagating the changes to all affected nodes.
This is an asynchronous process.

2. Verify the newly created cluster by executing the mmlsconfig command on all
nodes, as shown in Example 6-45.

Example 6-45 Verifying the created GPFS cluster

mmlsconfig
Configuration data for cluster NFSv4_GPFS.itsc.austin.ibm.com:
--
clusterName NFSv4_GPFS.itsc.austin.ibm.com
clusterId 649369025867640738
clusterType lc
multinode yes
autoload no
useDiskLease yes
maxFeatureLevelAllowed 809

File systems in cluster NFSv4_GPFS.itsc.austin.ibm.com:

none

3. Start GPFS on all nodes in the cluster using the mmstartup command, as
shown in Example 6-46 on page 156.

 Chapter 6. Building an NFSv4 environment 155

Example 6-46 Starting GPFS

mmstartup -a

Thu Aug 11 10:43:24 CDT 2005: 6027-1642 mmstartup: Starting GPFS ...
#
ps -ef | grep mm
 root 77828 344256 3 15:37:57 - 0:00
/usr/lpp/mmfs/bin/aix64/mmfsd64
 root 131190 323746 0 15:37:59 pts/0 0:00 grep mm
 root 151650 225512 0 10:20:04 - 0:00 /usr/sbin/rsct/bin/rmcd -a
IBM.LPCommands -r
 root 245842 1 0 15:36:12 pts/0 0:00 /usr/bin/perl -w
/usr/lpp/mmfs/bin/mmgetobjd 6669 0:2:
 root 344256 1 2 15:37:57 - 0:00 /bin/ksh
/usr/lpp/mmfs/bin/runmmfs

6.9.3 Creating a GPFS file system
With the GPFS cluster successfully created, next we create a GPFS file system.
Perform the following steps:

1. Create a file called /gpfs_tools/disk.desc. This file contains a list of disks to be
used when creating GPFS file systems. See Example 6-47.

Example 6-47 The disk.desc file

hdisk1::::1
hdisk2::::1

2. Create cluster-wide names for Network Shared Discs (NSDs) used by GPFS,
as shown in Example 6-48. Use the mmcrnsd command.

Example 6-48 Create the NSDs

mmcrnsd -F /gpfs_tools/disk.desc

mmcrnsd: Processing disk hdisk1
mmcrnsd: Processing disk hdisk2
mmcrnsd: 6027-1371 Propagating the changes to all affected nodes.
This is an asynchronous process.

The mmcrnsd command modifies the /gpfs_tool/disk.desc file. Example 6-49
on page 157 shows the modified disk.desc file.

Tip: If the disks were previously used for GPFS file systems, use the -v no
option with the mmcrnsd command.

156 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 6-49 Modified disk.desc file

hdisk1::::1
gpfs3nsd:::dataAndMetadata:1
hdisk2::::1
gpfs4nsd:::dataAndMetadata:1

3. Now, create a GPFS file system using the mmcrfs command. Example 6-50
shows the output from the GPFS created in the test environment.

Example 6-50 Creating the GPFS

mmcrfs /gpfs1 gpfs1 -F /gpfs_tools/disk.desc -D nfs4 -k all

GPFS: 6027-531 The following disks of gpfs1 will be formatted on node
sabine.itsc.austin.ibm.com:
 gpfs3nsd: size 573330948 KB
 gpfs4nsd: size 573330948 KB
GPFS: 6027-540 Formatting file system ...
Creating Inode File
 58 % complete on Thu Aug 11 13:55:55 2005
 100 % complete on Thu Aug 11 13:55:58 2005
Creating Allocation Maps
Clearing Inode Allocation Map
Clearing Block Allocation Map
Flushing Allocation Maps
GPFS: 6027-535 Disks up to size 1.2 TB can be added to this file system.
GPFS: 6027-572 Completed creation of file system /dev/gpfs1.
mmcrfs: 6027-1371 Propagating the changes to all affected nodes.
This is an asynchronous process.

The mmcrfs command has the following options:

/gpfs Mount point for the GPFS.

gpfs1 The name of the device to be used.

-F /gpfs_tools/disk.desc
The full path to the disk description file.

Note: It is important to choose the correct options when creating the
GPFS.

 Chapter 6. Building an NFSv4 environment 157

-D nfs4 Specifies whether a “deny-write open lock” will block
writes, which is expected and required by NFSv4. File
systems supporting NFSv4 must have -D nfs4 set. The
option -D posix allows NFS writes even in the presence of
a deny-write open lock. If we intend to export the file
system using NFSv4, we must use -D nfs4. For NFSv3 (or
if the file system is not NFS exported at all), use -D posix.

-k

all Specifies the type of authorization supported by the file
system.

posix Traditional GPFS ACLs only (NFSv4 ACLs are not
allowed). Authorization controls are unchanged from
earlier releases. The default is -k posix.

nfs4 Support for NFSv4 ACLs only. Users are not allowed
to assign traditional GPFS ACLs to any file system
objects (directories and individual files).

all Any supported ACL type is permitted. This includes
traditional GPFS (posix) and NFSv4 ACLs (nfs4). The
administrator is allowing a mixture of ACL types. For
example, fileA might have a posix ACL, while fileB in
the same file system might have an NFSv4 ACL,
implying different access characteristics for each file
depending on the ACL type that is currently assigned.

4. The newly created GPFS is now ready to be mounted and its characteristics
examined. Use the mount and df -k commands to perform these operations.
See Example 6-51.

Example 6-51 df -k output after the GPFS file system is mounted on the nodes

mount /gpfs1
#
df -k
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 65536 52644 20% 1559 12% /
/dev/hd2 1114112 71964 94% 24625 58% /usr
/dev/hd9var 65536 58576 11% 347 3% /var
/dev/hd3 131072 79564 40% 32 1% /tmp

Note: Neither nfs4 nor all should be specified unless the file system is
to be exported to NFSv4 clients. NFSv4 ACLs affect file attributes file
attributes (mode) and have access and authorization characteristics
that are different from traditional GPFS ACLs.

158 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

/dev/hd1 65536 65180 1% 5 1% /home
/proc - - - - - /proc
/dev/hd10opt 65536 37724 43% 655 8% /opt
/dev/fslv00 1048576 1048048 1% 27 1% /work
/dev/gpfs1 1146661888 1146238208 1% 39 1% /gpfs1

5. Mount the GPFS on all nodes using the commands in step 4.

Figure 6-3 shows the layout of test environment created to demonstrate NFSv4
over GPFS.

Figure 6-3 GPFS test setup used for this book

 Chapter 6. Building an NFSv4 environment 159

160 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 7. Migration considerations

In this chapter, we discuss in general terms the expected planning steps required
for migration from an existing production environment based on AFS, DCE/DFS,
earlier versions of NFS, or other existing architectures. This material is not meant
to act as an exhaustive, all-encompassing guide because every production
environment contains customizations and locally developed tools that cannot be
addressed within the scope of this book.

The planning phase is the most crucial part of any new software and hardware
implementation project. A concise, detailed plan is necessary to ensure that the
migration and implementation phases of the project proceed smoothly. This
chapter provides detailed information to assist in planning for a reliable
infrastructure for NFSv4 deployment. The underlying concepts are complex;
however, after they are understood, it will be a simple matter to design and
implement the solution.

Take into account the following considerations when beginning the planning
phase:

� Currently available and deployed hardware, software, and applications.
Consider the following questions:

– Is a current inventory of assets and their usage available?
– Is a logical overview of the infrastructure available?

� The organization’s planned IT strategy for future expansion:

– Is centralized user management planned?

7

© Copyright IBM Corp. 2005. All rights reserved. 161

� Business-driven design and implementation issues:

– Does a need exist to exchange data with other customers or departments?

– Do currently deployed applications, whether third party or locally
developed, need to be taken into account?

We discuss the following topics in this chapter:

� General migration considerations

� Types of migrations

� Hardware planning

� Individual component considerations

� NFSv4 user authorization methods

� Choosing the appropriate file system types

162 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

7.1 General migration considerations
A great deal of preparatory work must be accomplished before the migration of
data and user accounts from an existing stand-alone, distributed, or enterprise
environment can commence. Well-planned migrations are more likely to enjoy
success and avoid downtime or a negative effect on user activities. Occasionally,
even the most thoroughly planned migration will partially fail due to the
unexpected discovery of an existing component that was not accounted for
during the planning phase; therefore, it is wise to build a fall-back position into
any planning document in order to restore working production systems when
necessary.

It is not necessarily the case that old and new architectures are mutually
exclusive, or that only one can be active at a given time. You can use numerous
phased migration options, based on the site’s expectations and requirements.
We discuss these in greater detail later in this chapter.

It might also be useful to review Appendix B, “Case study: IBM Global Storage
Architecture” on page 313.

Project sizing
The most basic requirement for a successful migration is an in-depth
understanding of the existing environment. Detailed information is essential to
proper project planning and time scheduling activities. The basic planning steps,
as well as the time required for the migration of a small, 100-user NFSv3 system
with a few hundred gigabytes of locally stored data to NFSv4, are clearly different
than an AFS or DCE/DFS cell containing terabytes of distributed data and 30,000
active users; the amount of testing and execution time required obviously are
much greater in the latter example.

In addition, it is important to assess the relative importance of the environment to
be migrated in the context of the organization’s daily operations. The migration
will be simplified if the resources in question are not in constant use or can be
bypassed for a period of time without incurring a significant business impact.
Environments that cannot be made unavailable during the transition represent
the greatest challenge, because it might be very difficult to maintain data
consistency if users are making changes to files in the old system while the new
is being brought online.

 Chapter 7. Migration considerations 163

7.2 Types of migrations
This section discusses several common strategies that can be used when
switching to a new architecture. These basic methodologies can be adapted and
mixed, based on the specific organizational requirements involved.

7.2.1 Switch-over migration
A switch-over or all-at-once movement of user and application services to a new
architecture is the most difficult and time-consuming option, but it might be the
only viable option in cases where shared data that must be accessible to all
users simultaneously is involved.

In general terms, the switch-over migration strategy involves the following steps:

1. Size the migration, based on a detailed analysis of each subsystem (for
example, security, data, namespace, and time) that is involved. We present
detailed information about each subsystem later.

2. Develop and test migration procedures. Perform this work in an isolated
testing environment, using data that closely approximates the data that will be
migrated in the live systems. The size of the security registry or files, quantity
of data, directory services, and ancillary utilities such as time providers should
provide the migration team with a realistic estimate of the time required to
move the production environment.

3. Create a fall-back plan. The team must decide what course of action to take if
one or more aspects of the actual migration fail. Choices are necessarily
limited if the consequences of a partial migration involve significant outages
or inconvenience for the user base and customers; options include
completing the migration of those components that succeed while rolling back
those that fail, or rolling back the entire migration and starting over at a later
date. Each situation will be different, based on the level of integration involved
and whether the use of a hybrid environment is appropriate or even possible.

4. Create a migration time line. This is especially important because the
schedule should be optimized to accommodate other projects whose own
deliverables might be affected by the migration. Scheduling a major
migration, for instance, during a period when manufacturing is expecting the
arrival of a large order request might be inadvisable. Difficult scheduling can
make a phased migration more appealing, because that strategy might make
the overall work simpler to manage.

5. Immediately before commencing the migration, take backups of all running
systems that will be affected.

164 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

6. Perform the migration. When complete, run tests where needed to determine
whether the work was fully successful. Any older systems not transitioned to
the new environment should be shut down and left intact if possible for a fixed
period after work is complete; this might simplify recovery from latent
problems or missed data.

7.2.2 Phased or rolling migration
A phased migration is one in which subsets of users or applications are migrated
to the new environment. It is often less stressful and simpler to schedule than a
single, all at once operation and might also offer the advantage of permitting
easier reuse of existing system hardware. It is sometimes referred to as a rolling
migration, because many scenarios involve transitioning existing services on a
rolling schedule.

This strategy requires administrators, with the cooperation of groups or
departments, to identify logical sets of users, file systems, or both that can be
migrated to the new environment on a rolling schedule. If user account data is
involved, the migration requires the simultaneous movement of account
management information, any associated namespace entries (such as a file
system skeleton), and physical data owned by those accounts in order to be
successful. Relationships among groups must be clearly identified so that those
who share data are migrated during the same phase.

A rolling migration requires the same basic steps as those described for the
switch-over strategy, but the timeline will be different because multiple dates are
involved. It may also permit the reuse of additional hardware, because proper
planning can result in systems and storage being made available after each
migration phase; this hardware can then be upgraded and reconfigured to serve
as the basis for the phase.

We provide an example here. The existing environment in this case is a
DCE/DFS cell with two fileset servers (A and B), with other functions located on a
third server. A new server is added on the network, and appropriate storage, in
this case, a SAN, is configured to provide space for the initial group of users to
be migrated. Again as an example, these users’ files are located on filesets
residing on both server A and server B’s disks.

First, the phase 1 users are moved using an appropriate method to the NFSv4
namespace. This frees disk space on the existing DFS servers. Next, the
administrator uses the DFS command set to relocate those users slated for
migration phase 2 to server B’s disks, leaving the space on server A unused.

The administrators can then decommission server A from the DCE/DFS cell and,
optionally, add it to the growing NFSv4 environment. The process is then

 Chapter 7. Migration considerations 165

repeated for subsequent groups of users, applications, or both, until all files have
been removed from the existing DFS space. Figure 7-1 illustrates this example.

Figure 7-1 Example hardware addition preparation for a phased upgrade

7.2.3 User-by-user or self-managed migration
In this scenario, system administrators prepare a new enterprise environment
and provide command line or Web-based migration tools and assistance to the
organization’s users. Users then migrate their own accounts and data to the new

166 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

systems. This strategy has the advantage of giving individual groups and
personnel increased flexibility when moving to the new environment and requires
only a loose schedule because no fixed transition dates are required.

This scenario involves the following steps:

1. Create the new enterprise file system environment and prepare it for the user
community by generating any skeleton directory structures that might be
necessary.

2. Develop tools that provide users with the ability to migrate their account and
data to the new enterprise environment. Pre-test these tools to ensure their
reliability and provide documentation or training as needed.

3. Open the environment to the user community, monitoring their progress on a
daily basis while assisting with any difficult situations (for example, application
access, and group or user permissions).

4. Establish, again in consultation with the user community, an end date by
which all accounts and data must be migrated to the new enterprise
environment.

5. Identify and schedule the migration of any data not directly located in users’
personal directory structures to the new namespace.

From an overall standpoint, a user-accessible migration script might perform the
following tasks:

1. Query the user for their login ID and current password. Note that the latter
represents a security vulnerability; therefore, we suggest that encryption
techniques be used where available.

2. Using the information captured in step 1, perform an authentication function
(for example, authenticate or klog, dce_login) using the existing
environment’s security subsystem. This ensures that the users have entered
their account details correctly and that we have their unencrypted password
for later use.

3. Provide the user with a “please wait” message, and then either lock the
keyboard or otherwise prevent further data entry until the process has
completed.

4. Extract the user’s existing account details from the existing environment’s
security subsystem, and then use these to create an account in the new
enterprise environment. Use of the password captured in step 1 eliminates
the need to set a random, one-use initial password and simplifies the
migration from a user perspective.

5. Recursively copy the user’s files and directory structure to the appropriate
home directory in the new enterprise architecture’s file system, ensuring that
they are properly owned by the newly created account.

 Chapter 7. Migration considerations 167

6. Emit a success or failure message based on the results.

7. Optionally, lock the user’s account in the existing environment’s security
subsystem to prevent the user from modifying data in both the existing and
new environments.

Manual intervention by system administrators or other personnel might be
necessary when failures occur or special cases (for example, existing accounts
with large quotas, symbolic links, or other unusual circumstances) are
encountered. Ideally, the migration application should log its activities to a known
location in order to simplify troubleshooting activities.

7.3 Hardware planning
A fundamental decision must be made whether to reuse existing hardware or
purchase one or more new systems for use as a test bed, and later as servers for
the new environment. Consider the following basic strategies:

� An in-place upgrade using only existing hardware, during which the old
environment is completely decommissioned and replaced. Unless additional
disk hardware is acquired, this option might require the reformatting of
volumes currently used for certain file systems (for example, DFS or AFS) in
order to establish the basic NFSv4 namespace. This option is only useful in
the context of the switch-over or “all at once” migration strategy, because the
existing architecture is made completely unavailable during the upgrade
process.
Recovery time in the case of a failed migration attempt frequently will involve
restoration of the most recent backups; this should be factored into both the
hardware decision making and project scheduling processes.

� Similarly, it might be possible to run both existing and new services
concurrently on existing hardware, producing a hybrid environment suitable
for a rolling or user-by-user migration strategy. This option might require
additional disk space if, for example, concurrent access to both NFSv4 and
DFS or AFS data is required.

� The purchase of one or more systems for use in creation of the new NFSv4
namespace, with subsequent reuse of existing hardware after the basic
services have been established. This option might work well with the rolling
upgrade, but is also viable for other situations.

168 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� The creation of a completely new server environment. This option supports
multiple migration strategies and provides increased flexibility, because it
eliminates the need to reallocate hardware supporting existing file systems.
Additionally, existing systems will still be available if a migration attempt fails,
resulting in a shorter recovery time.

Address the following general concepts during the hardware decision process:

� Is the existing hardware capable of supporting sufficient disk space and other
resources to support the new environment?

� Is it possible to maintain the production environment on available hardware
while services are added to accommodate NFSv4 or another enterprise file
system? Will such activities cause a performance degradation or other
problems for the user base, and can the old and new services coexist
successfully?

� Is it more or less cost effective to perform a migration in place using existing
hardware, and is it more efficient to perform both hardware and software
upgrades simultaneously?

7.4 Individual component considerations
This section provides additional details regarding the steps necessary to migrate
each major component from an existing environment to a newly installed
enterprise architecture.

7.4.1 Security
NFSv4 introduces many substantial changes to the protocol. For example, the
design of NFS predates the widespread adoption of the World Wide Web; the
NFS protocol was originally designed for use in local area networks. With the
advent of internetworking, a greater need has arisen for the use of distributed file
systems such as NFS in wide area networks. When NFS is used for distributed
file systems across wide area networks, the security limitations in pre-Version 4

Tip: In the test environment used to illustrate examples in this book, we found
it beneficial to exploit the abilities of the IBM POWER5™ architecture with AIX
5L. By using logical partitions on the POWER5 platform, we created NFS
servers and clients to test various migration strategies. Although the test
environment was relatively simple compared to a production migration, the
concept of using LPAR and Micro-Partitioning™ server technology might
significantly reduce migration costs from both a test environment and
production environment standpoint. This technology allowed for a much larger
test environment than the physical number of machines that were used.

 Chapter 7. Migration considerations 169

implementations become apparent. Addressing existing security limitations in
NFS is the most significant area of change introduced by Version 4.

The topic of security can be very broad and far-reaching. A discussion about
security measures includes items in the following categories:

Physical security Measures taken to control physical access to a facility
or resource. Padlocks, fences, guards, and dogs are
examples of physical security measures.

Personnel security Measures taken to help ensure that the people who
are granted access to secured resources are reliable
and are not likely to compromise the security of those
resources. Security clearances and photo ID badges
are examples of personnel security measures.

Information security Measures taken to protect important information from
unauthorized disclosure, tampering, or destruction.
Passwords, encryption, and file access permissions
are examples of information security measures.

This material concentrates on the area of information security, because NFSv4 is
designed to enhance the process of data sharing. Although it is impossible to
properly protect information resources without also implementing physical and
personnel security measures, a discussion of these topics is beyond the scope of
this book.

7.4.2 RPCSEC_GSS security flavors
NFSv4 uses the Sun remote procedure call (RPC) protocol to communicate over
the network between the client and the server. The IBM implementation enables
you to use three different RPC security flavors:

� Basic UNIX security (AUTH_SYS, also known as AUTH_UNIX)

� Diffie-Hellman security (AUTH_DH, also known as AUTH_DES)

� RPCSEC_GSS security as defined in RFC 2203

7.4.3 RPCSEC_GSS protection levels
When using RPCSEC_GSS security, three levels of protection are available that
can be applied to RPCs as they are transmitted over the network between server
and client:

Authentication Validates the identity of RPC sender.

Integrity Validates that the contents of the RPC were not changed
during transmission (also includes authentication).

170 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Privacy Prevents unauthorized viewing of data while it is in transit
between client and server (also includes authentication
and integrity).

Keep in mind that each increasing level of protection entails a performance
penalty. We recommend that organizations start with the minimum level that
meets data protection requirements, increasing levels as needed while assessing
the impact of each change on performance and usability.

The NFSv4 standard (RFC 3530) requires that NFS implementations support
three different RPCSEC_GSS mechanisms:

� Kerberos V5 (RFC 1964)

� SPKM-3/LIPKEY (RFC 2847)

� SPKM-3 on its own (RFC 2847/RFC 2025), for situations where the initiator
(the client) is anonymous or has its own certificate

The NFSv4 implementation on AIX 5L V5.3 uses Kerberos V5 security. There is
no support for SPKM/LIPKEY at this point in time.

The IBM implementation of Kerberos V5 offers several forms of encryption,
among which are single Data Encryption Standard (DES) and triple DES. Triple
DES encryption provides the best protection, but single DES results in improved
performance and interoperability.

7.4.4 User identity management options
UNIX implementations typically use a 32-bit integer to identify users and groups.
These integers are referred to as UIDs for users and GIDs for groups. User and
group ownership for system processes and file system objects are maintained in
UID/GID form. NFSv2 and NFSv3 also use these UIDs and GIDs to identify
users and groups. Users typically do not work directly with numeric IDs; instead,
they work with text user and group names that are easier to associate with an
actual individual or group. When presenting information about process and file
ownership, the system translates a numeric ID into its associated name. The
relationship between the names and the IDs is maintained in a user registry,
which can be standard UNIX or LDAP.

Standard UNIX user registry
In standard UNIX, user name-to-ID mappings are contained in the /etc/passwd
file, and group name-to-ID mappings are stored in the /etc/group file. All but the
smallest organizations use a shared user registry rather than maintain separate
/etc/passwd and /etc/group files on all hosts; otherwise, it is impossible to ensure
that ID-to-name mappings are consistent across all machines. Clients using data

 Chapter 7. Migration considerations 171

stored on an NFS server must use the same identifier to represent the same user
or group in order to maintain consistent file ownership.

For example, if UID 100 is Joe on one NFS client and Mary on another client,
NFS files created by Joe from the first client will show as being owned by Mary
on the second client, and vice versa. To avoid this, individual /etc/passwd and
/etc/group files must be kept in sync across all clients that access data on a
common NFS server. This can be a very expensive and error-prone task.

LDAP user registry
Directory services based on the Lightweight Directory Access Protocol (LDAP)
can also be used to maintain user and group identities. LDAP-based directories
are typically more scalable and secure than /etc/passwd or Network Information
Service (NIS). RFC 2307 describes an LDAP schema that provides NIS-like
functionality. IBM Tivoli Directory Server is the IBM implementation of
LDAP-based directory services. As of Version 5.1, Tivoli Directory Server
supports RFC 2307 user and group identification. More information is available
about the Tivoli Directory Server on the IBM Web site at:

http://www.ibm.com/software/tivoli/products/directory-server

7.4.5 User and group identities and NFSv4
NFSv4 handles user and group identities in a different manner than previous
versions. NFSv2 and NFSv3 pass UIDs and GIDs between the client and server,
while NFSv4 passes string names in the form user@nfs_domain or
group@nfs_domain. For purposes of this book, entity mapping is described
under three conditions:

� Single NFS domain using AUTH_SYS security

� Single NFS domain using Kerberos security

� Multiple NFS domains

Two sample operations represent each case:

� Creating a file

� Requesting file ownership

7.4.6 RPCSEC_GSS user authentication using Kerberos
How does NFS use Kerberos? When an NFS client and server use Kerberos V5
authentication, the client and server establish a security context for NFS
requests. The security context is a data structure that indicates that the client and
server have completed a mutual authentication procedure. The context also
contains encryption keys used for protecting exchanged data, if such protection

172 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.ibm.com/software/tivoli/products/directory-server

has been requested. The security context has a lifetime and might need to be
refreshed by the client from time to time. The client and server each maintain a
cache of security contexts, one context per user/host combination.

7.4.7 User accounts and authentication resources
User account data often represents a difficult decision when migrating an active
environment to a new architecture, because tools for automating this step might
or might not be available, or might require extensive customization for successful
use in a particular environment.

Managing authentication data
Basic information such as a login ID, password, UID, and group data are the
foundation of an authentication/authorization subsystem. As noted earlier, these
can be found in a flat ASCII file such as a UNIX /etc/passwd file or in a structured
database such as LDAP. Along with the basic authentication data, existing
accounts might or might not include components such as:

� Access control lists (ACLs) that provide per-user or per-group authorization
for resources such as files, directories, or devices

� Group membership lists

� Account expiration and creation dates, or last-access records, or both

� A type of “validity” bit, such as the acctvalid entry in a DCE registry or the
shell value in an /etc/passwd file, which is often set to /bin/false to disable a
given user’s ability to log in

� Time-based login or connection limitations (for example, users who are
permitted to log in only between the hours of 8 a.m. and 6 p.m.)

� Personally identifying user information, such as office location, given name
and surname, telephone, or pager numbers

For example, an entry in a UNIX /etc/passwd file might include the data shown in
Example 7-1.

Example 7-1 Typical UNIX user account information

> grep gelaotis /etc/passwd
gelaotis:!:8512:11:Vasilios Gelaotis:/users/g/gelaotis:/bin/csh

However, an AFS or DCE/DFS user account includes a great deal more data,
reflecting the increasing flexibility and complexity of the environment. Typical
user accounts might look similar to those shown in Example 7-2 on page 174
and Example 7-3 on page 174.

 Chapter 7. Migration considerations 173

Example 7-2 Typical AFS user account and group information

/usr/afs/bin/kas examine user2
Password for user2:
User data for user2
 key (0) cksum is 4088618827, last cpw: Tue Aug 16 11:05:15 2005
 password will expire: Sat Feb 18 10:05:15 2006
 10 consecutive unsuccessful authentications are permitted.
 The lock time for this user is not limited.
 User is not locked.
 entry expires on Sun Jan 1 06:50:02 2006. Max ticket lifetime 25.00
 last mod on Thu Aug 18 12:53:14 2005 by admin
 don't permit password reuse
#
/usr/afs/bin/pts examine user2
Name: user2, id: 215, owner: system:administrators, creator: admin, membership:
2, flags: S----, group quota:
20.

Example 7-3 Typical DCE user account data

%unix1> dcecp -c user show gelaotis
{fullname {Gelaotis, Vasilios E.}}
{uid 95556}
{uuid 00017544-48f5-21d3-8500-02608c2f5013}
{alias no}
{quota unlimited}
{groups subsys/dce/foo-admin foo-ibm foo-all build change-team}
{acctvalid yes}
{client yes}
{created /.../test.austin.ibm.com/cell_admin
1999-08-02-12:12:43.000-04:00I-----
}
{description {Gelaotis, Vasilios E.}}
{dupkey no}
{expdate 2006-04-29-20:00:00.000-04:00I-----}
{forwardabletkt yes}
{goodsince 1999-08-02-12:12:43.000-04:00I-----}
{group dce-all}
{home /.../test.austin.ibm.com/fs/u/gelaotis}
{lastchange /.../test.austin.ibm.com/gelaotis
2005-06-27-15:49:01.000-04:00I----
-}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}

174 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

{shell /:/u/gelaotis/bin/tcsh}
{stdtgtauth yes}
{usertouser no}
nopolicy
>

As these examples show, the quantity and nature of user account data stored in
the original environment varies greatly across the various authentication
schemes. This example also shows that information may have a single source,
such as the AFS databases and DCE registry, or multiple providers, as is the
case when separate UNIX password and group files are involved.

A general, though not exhaustive, list of possible account locations include:

� /etc/passwd and /etc/group.

� The /etc/shadow file (if shadow passwords are in use).

� One or more Network Information Service (NIS) databases.

� An AFS kaserver database.

� A DCE/DFS security registry.

� An LDAP database.

� An IBM Network Authentication Services, Sun Microsystems Sun
Enterprise™ Authentication Mechanism™ (SEAM), or MIT Kerberos V5 key
distribution center (KDC) database.

� A Microsoft Windows Active Directory database (note that this example
involves a mixture of LDAP and Kerberos data).

The situation can be further complicated if the existing infrastructure makes use
of multiple authentication methods. For example, some accounts might use the
standard /etc/passwd access method while others reside in an AFS
authentication database or DCE registry.

For example, the only commercially available tool known to exist that automates
the operation of importing general /etc/passwd user information into an IBM
Network Authentication Service or Kerberos V5 database is the AIX mkseckrb5
utility. A similar situation exists in respect to migrating AFS users into a DCE/DFS
or generic MIT Kerberos database. DCE, however, includes the passwd_import
tool. This tool enables a DCE registry to import accounts from standard UNIX
/etc/passwd and /etc/group files. Other tools might be available, but often require
extensive customization on a site-by-site basis.

Any tools written to manage these operations must be designed to accommodate
the often ambiguous or incomplete nature of existing account structures. For
example, depending on the site’s existing policy, an AFS/DCE user’s account or

 Chapter 7. Migration considerations 175

/etc/passwd entry might or might not contain personally identifying data. In other
cases, sites have customized the appearance of passwd file to include
departmental or other data through the General Electric Common Operating
System (GECOS) field. The account data in Example 7-4, for example, shows a
user with a GECOS field containing the user’s name, group, and telephone
number.

Example 7-4 Use of expanded data in the GECOS field

gelaotis:!:8512:11:Vasilios Gelaotis, ABC Group, 555-1212:/users/g/gelaotis:/bi
/csh

The same caveat applies to other authentication methods. Additional care is
required, for instance, if a DCE/DFS site has used the security registry’s fullname
field to store the user’s name, telephone number, or other data in a manner
similar to that shown in the previous passwd file entry.

In this case, extra code should be included in the site’s migration scripts to parse
the passwd file’s “User, Group, Phone” format, which is hopefully consistent
across all accounts, into discrete entities in order to insert it into the proper fields
in an LDAP or other database schema.

Migrating existing user passwords is often impossible due to the encrypted
nature of password storage. Therefore, migrated users might be faced with new
or one-time-only passwords in the new authentication environment, necessitating
further development of an initial login utility that does not require the user to know
their current password, or a secure method of disseminating new passwords to
the user base.

Note that multiple export/import tools might be required, depending on the
heterogeneity of the site’s existing environment. One tool will be required for
Microsoft Windows-based accounts, another for passwd-file based UNIX users,
another for AFS, and so on.

Access control lists
Some sites make extensive use of access control lists (ACLs) to manage access
to files, directories, and other resources. Others rely simply on group
membership and the standard UNIX chmod command, or on basic Windows file
permissions. ACLs are not part of the standard UNIX passwd/group
environment, which uses a basic user, group, others file permissions model to
control access. Sites considering a migration from a traditional files-based UNIX
environment will have less work to do to migrate their environment, but will still
need to prepare the NFSv4 environment appropriately.

176 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The problem of ACL migration is complicated by differences in implementation
across platforms and file systems. It is not always a simple task to create a
one-to-one mapping between ACLs on the existing environment and those found
in, for example, NFSv4.

These differences among ACL implementations across various file systems can
make it simpler to abandon existing schemes and start fresh within the new
enterprise architecture. If this is not desirable, administrators will have to acquire
or develop procedures to extract existing ACL information from their current
environment for use in establishing an NFSv4-compliant ACL environment on the
new environment. We demonstrate simple examples of how this can be
accomplished in our example migration chapters.

Sizing the security migration
Next, we describe the fundamental steps in sizing the migration of security
services to a new architecture. The basic idea is to determine the amount of time
required to migrate the entire security architecture to its new home in a
worst-case scenario. Perform the following steps:

1. Determine the number of accounts to be migrated.

2. Establish the account sources (for example, passwd file, DCE, NIS, AFS, or
Windows).

3. Configure a test environment for the new architecture, such as NFSv4.
Ideally, this should be accomplished using an isolated network to avoid the
possibility of disrupting running production systems.

4. Perform initial migration testing using, if possible, a copy of the live data
because this can produce a more accurate representation of the time
involved.

During this phase, establish the expected time necessary to develop scripts
and other tools to be used for automated account migration.

5. Test the scripts, along with any tools or procedures developed in the other
steps outlined earlier, in the isolated test environment.

In the case of a switch-over migration, the time required to migrate the live
security data from the existing environment to the new systems is a subset of the
total time necessary to accomplish the full migration. The migration team should
estimate the time requirement based on earlier testing, because this number
must be added to the time required to transfer all user and application data,
along with directory, time, backup, or other services to the new infrastructure.

 Chapter 7. Migration considerations 177

7.5 NFSv4 user authorization methods
Authorization is used to control access to either client hosts or client users.

Three choices are available for controlling client user access to files and
directories:

� Standard UNIX permissions

� AIXC ACLs

� NFSv4 ACLs

7.5.1 Choosing a user authorization method
An accurate assessment of a site’s requirements for controlling access to data
prior to deciding which user authorization method to implement is needed. Are
the data access requirements simple or complex?

Standard UNIX permissions allow access control for only three identities:

� The owning user

� The owning group

� Everyone else

If that level of granularity is not sufficient to meet the organizations’s access
control requirements, select an enhanced access control list (ACL) option. For
example, the use of standard UNIX permissions is insufficient if one group
requires write access to a portion of data, while one or more other groups require
read-only access, and remaining users have no access at all.

AIXC ACLs or NFSv4 ACLs can be used if standard UNIX permissions do not
meet current requirements. An appropriate file system structure (for example,
JFS2 or GPFS) must be selected if NFSv4 ACLs are selected.

Do not use AIXC ACLs if the requirements include one of the following items:

� Non-AIX NFS clients that need the ability to manipulate ACLs for data on an
NFS server. AIXC ACLs are only supported on AIX 5L.

� A finer granularity level of access control than AIXC ACLs support is required.
For example, AIXC ACLs do not provide a way to create a directory where
users can create files but not delete them after they are created.

178 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

7.5.2 Other user authorization considerations
In this section, we discuss other user authorization considerations.

Maintaining access control lists
Maintaining access control lists is more complicated than maintaining standard
UNIX permissions. A clear understanding of ACL evaluation is required before
an ACL can be correctly constructed. (See 5.4.4, “NFSv4 ACLs: Permissions
scenarios” on page 110 and Figure 5-10 on page 113 for more information about
how NFSv4 ACLs are evaluated.)

Depending on the level of sophistication of the user community, it might be
necessary either to educate them on the proper maintenance of ACLs or set up
ACL inheritance to eliminate any need for user-managed ACLs. (See 5.4.3,
“NFSv4 ACLs: ACL inheritance and umask” on page 103 for more details about
how to set up ACL inheritance.)

What if a security policy is implemented to prohibit end users from changing
permissions, thus keeping that task under the control of designated system or
data administrators? The system does not accommodate this by default. Files
created by a user are owned by that user, and a file’s owner can always change
its permissions. In this case, it is necessary to devise some way to make sure all
files are owned by an administrator account. One way to do this is to run a
periodic cron job that changes ownership of all files to that account. This leaves a
window of time when a user can change permissions on a newly created file, but
this can be remedied by the job that changes ownership. It can also ensure that
file permissions are set appropriately after the ownership has been changed.

From this discussion, you can see that it might be necessary to implement
additional administrative controls in addition to those that are provided by default
directory services.

Existing directory services
The term directory service is often used in an ambiguous or confusing manner,
reflecting its varying usage in certain contexts. In DCE terms, the Cell Directory
Service (CDS) provides both the structure of the DFS namespace and a locator

Note: The choice of AIXC ACLs over NFSv4 ACLs should make sense in
environments that already have experience with the AIX ACL model and
are running predominantly AIX 5L platforms. Otherwise, we recommend
the use of NFSv4 ACLs as the default choice due to its compliance with
open standards and to minimize potential interoperability issues with
non-AIX platforms.

 Chapter 7. Migration considerations 179

service for applications that are seeking the current IP address and endpoint for
a given server process. CDS also provides ACL storage for DCE/DFS objects,
and therefore might be relevant if a site wants to migrate an existing ACL
structure to an NFSv4 or other enterprise storage architecture. The Domain
Name System (DNS) is a directory service that maps host names, such as
www.ibm.com, to one or more Internet Protocol (IP) addresses.

In other contexts, a directory service might refer to a name-to-electronic mail
address mapping system or one that provides end-user access to an employee
database. The X.500 and Lightweight Directory Access Protocol (LDAP)
architectures are often used to provide these and other services. IBM Network
Authentication Service, for example, can be used in conjunction with the
traditional Kerberos V5 use of flat file databases to provide extended storage of
user account data similar to that found in the DCE CDS directory service.

When planning a migration from a DCE/DFS environment, it must be determined
whether CDS is being used for purposes other than those required by DFS.
These can include locally written client/server applications, products such as the
Encina or Distributed CICS® transaction processing systems, certain Object
Request Broker (ORB) systems, IBM InfoPrint system, and others. If other
applications make use of CDS, it will be necessary to maintain basic DCE
services even after the DFS components have been decommissioned, unless the
applications in question can be redesigned to use another directory service.
Further discussion of the topic of application migration is outside the scope of
this document, but for additional details, see DCE Replacement Strategies,
SG24-6935.

Note that CDS is dependent on the DCE remote procedure call (RPC)
mechanism, and a minimal DCE cell also requires an active security daemon in
order to function. This situation might require certain users to maintain accounts,
for example, in both the DCE registry and Kerberos V5 system used for access to
NFSv4.

AFS does not offer directory services outside its role as a provider of file system
access and authentication, so the previous paragraphs are inapplicable with
respect to a migration from AFS to NFSv4 or another architecture.

Other directory providers
Two options are available for those sites currently running X.500 directory
services:

� Maintain both the existing service and LDAP. This might be applicable in
cases where it would be too labor intensive to move the X.500-resident data
into an LDAP environment, or there is no conflict between data stored in the
two locations.

180 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� Make use of an automated tool to migrate the existing X.500 data into the
LDAP space. In this case, great care should be taken to ensure data
consistency; if both directory services contain, for example, personnel data, it
will be necessary to ensure that no records are accidentally overwritten.

7.5.3 NFSv4 host identification
This section discusses two forms of host identification: basic identification
through IP addresses and host names, and Kerberos identification through a
machine principal.

Basic host identification
An NFSv4 server identifies client hosts by the IP address given in the RPC
packets. The NFS server turns this IP address into a host name through the host
resolver, which can either get its information from the Domain Name System
(DNS), Network Information Service (NIS), or the local /etc/hosts file.

Kerberos host identification
Kerberos authentication uses a unique identifier called a machine principal to
identify hosts. The machine principal is established when configuring a host into
a Kerberos realm. The machine principal name is the fully qualified host name
prefixed with host/ (for example, host/nfs402.itsc.austin.ibm.com).

Another way that Kerberos indirectly identifies a host is through the NFS service
principal. (It is the identification of the NFS service running on the host.) The
service principal name is the fully qualified host name prefixed with nfs/ (for
example, nfs/nfs402.itsc.austin.ibm.com). NFS clients using Kerberos
authentication identify NFS servers through this service principal.

7.5.4 NFSv4 host authentication
NFS servers always identify client hosts through IP addresses and host names,
regardless of the authentication method used. The value added with NFSv4 is
that when Kerberos authentication is the only allowed security method for an
exported directory (see the following host authorization section), the NFS client
session must be properly authenticated before gaining access to any of the data
in that directory.

Think of NFSv4 authentication of clients being mostly at the user level rather
than at the host level.

Kerberos does authenticate NFS server identities to the clients via the NFS
service principal. (See the Kerberos host identification discussion in the previous
section.)

 Chapter 7. Migration considerations 181

7.5.5 NFSv4 host authorization
Host authorization in an NFS context means controlling which NFS client hosts
can mount exported directories from the NFS server. This is accomplished in AIX
5L through a combination of the /etc/exports file and the exportfs command.

Exporting directories from an NFS server is still fundamentally the same in
NFSv4 as it was in NFSv3. The main difference is that NFSv4 has added the
new security-related options shown in Table 7-1.

Table 7-1 New /etc/exports security options for NFSv4

The sec option is unique in that it can appear more than once in the exports
definition for a directory. This allows different ro, rw, root, and access options to
be specified for the different security options. For example, hosts using the sys
security method might only be allowed read access, while hosts using the krb5
security method might be allowed read and write access.

A sample /etc/exports line with the new NFSv4 security options is:

/exports -vers=3:4,sec=krb5:krb5i:krb5p,rw,sec=sys:none,ro

For more details about exporting directories, see AIX 5L Version 5.3 System
Management Guide: Communications and Networks, SC23-4909, the exportfs

Option Description

vers Controls which version of NFS mounts are allowed. Possible values are 2, 3,
and 4. Versions 2 and 3 cannot be enforced separately. Specifying version 2
or 3 allows access by clients using either NFS protocol versions 2 or 3.
Version 4 can be specified independently and must be specified to allow
access by clients using version 4 protocol. The default is 2 and 3.

sec Controls which security methods are allowed.
Possible values are:
� sys: UNIX authentication.
� dh: DES authentication.
� krb5: Kerberos, authentication only.
� krb5i: Kerberos, authentication and integrity.
� krb5p: Kerberos, authentication, integrity, and privacy.
� none: Allow mount requests to proceed with anonymous credentials if

the mount request uses an authentication flavor not specified in the
export. Otherwise, a weak auth error is returned. By default, all flavors
are allowed.

In the absence of any sec option, sys (UNIX authentication) is assumed.

Note: The same security option cannot be specified in more than one sec=
stanza in a single exports definition.

182 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

command in AIX 5L Version 5.3 Commands Reference
(http://publib.boulder.ibm.com/infocenter/pseries/index.jsp), and the
/etc/exports file in AIX 5L Version 5.3 Files Reference, SC23-4895.

7.6 Choosing the appropriate file system types
AIX 5L supports several different file system types, including:

� Journaled file system (JFS)

� Enhanced journaled file system (JFS2)

� JFS2 with extended attribute format version 2 (EAv2)

� General Parallel File System (GPFS)

The file system chosen will be dictated by the authorization method selected
earlier. If NFSv4 ACLs are required, the choice is limited to JFS2 EAv2 or GPFS.
This does not mean systems cannot use the other file system types; the
restriction only applies to the file systems where NFSv4 ACLs are in use.

7.6.1 Backup systems
Many existing file system products use proprietary backup systems. These
services might produce backup media that is unreadable by other means. Any
migration to a new enterprise architecture must take the subject of archival data
management into consideration.

AFS includes backup and restore commands that dump data into volume sets.
Additionally, it makes use of one or more Backup Tape Coordinator (butc)
processes and an internal database to maintain a list of backups, volume sets,
and other data used for restoration purposes. DCE/DFS provides a similar
backup system based on the AFS model. If these utilities have been used for the
creation and management of regular backup media, it might be necessary to
maintain some level of support for existing file system, because it is not possible
to restore AFS or DFS dump sets using other software. The organization’s
backup retention policy can be used to determine the amount of time that the
existing environment must be maintained.

This does not apply if a file system-independent product, such as IBM Tivoli
Storage Manager, is in use, because it will be able to restore data archived on
the existing file systems architecture. The same applies in cases where sites use
common tools such as cpio, dump, or tar for daily backup activities.

 Chapter 7. Migration considerations 183

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp

7.6.2 Time services
Time coordination is critical to the success of distributed file access, because
access and revision time stamps must be accurately recorded in order to
maintain data consistency. Incorrect file time stamps can mislead users or
application programs that rely on accurate recording to maintain checkpoint files,
backups, or other time-sensitive data. Some existing file system products include
a time coordination subsystem or utility in order to address this problem.
Alternately, most, if not all, of these products support the use of the Network
Time Protocol (NTP).

Additionally, both IBM Network Authentication Service and MIT Kerberos V5
require time synchronization between server and client in order to maintain user
credentials and prevent “replay attacks” mounted by malicious users. By default,
times must be accurate to within 5 minutes or client requests will be rejected by
the server. DFS requires even tighter control, with all clocks synchronized to
within 30 seconds of each other.

Example time services
AFS makes use of the Cache Manager to coordinate clocks with server systems
within the cell. Sites that make use of NTP disable this feature by running the
afsd daemon with the -nosettime switch, which disables the built-in
synchronization.

DCE provides the Distributed Time Service, or DTS, for the same purpose. Many
sites use DTS as a global time provider, while others standardized on NTP as a
freely available alternative.

Current releases of Microsoft Windows support the use of the Windows Time
Service, which is based on an implementation of the Simple Network Time
Protocol (SNTP) as detailed in RFC 1769.

Implementation considerations
Before establishing a new enterprise file systems architecture, an appropriate
time coordination service should be identified and implemented across all
installed systems, both client and server. Only one time service should be in use
in a given environment in order to avoid conflicts between providers.

System times should never be altered manually if either AFS or DCE/DFS are in
use because both rely on the Kerberos protocol, which is very sensitive to such
alterations. Time provider services are designed to make slow, gradual changes
to system times when drift occurs to avoid disrupting file time stamps and other
activities.

184 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

7.6.3 User data
Migration of an existing directory structure to a new namespace can represent an
opportunity to replace an outdated hierarchy, or to establish rules for the overall
appearance of the file system. Should the existing structure be maintained, or
does the migration represent an opportunity to restructure it to improve
manageability, performance, or other characteristics? Many organizations use a
relatively flat directory structure. However, in large environments, this can
degrade performance due to large directory sizes. In order to eliminate this
problem, a hashed directory structure can be used. This involves creation of a
deeper hierarchy, minimizing the size of each directory and thereby decreasing
traversal time. Hashes of various depths can be used, but most sites use no
more than two levels.

Example 7-5 shows an example of a two-level hashed directory structure.

Example 7-5 Example of a hashed directory structure

unix%> ls -RAC /home | more
/home:
a
/home/a:
a b c d e f g h i j k l m n o p q r s t u w x y z

/home/a/a:
aardvark aaron

/home/a/a/aardvark:

/home/a/a/aaron:

/home/a/b:
abner

/home/a/b/abner:

/home/a/c:

The hashed tree can also be organized by department or group, perhaps using a
hierarchy such as that shown in Example 7-6 on page 186. Note that the use of
long directory names such as “administration” is discouraged for performance
reasons; shorter names improve directory lookup times.

 Chapter 7. Migration considerations 185

Example 7-6 Another hashed directory structure

unix%> ls -RAC /home | more
/home:
a

/home/a:
accounting administration

/home/a/accounting/:
aardvark aaron

/home/a/accounting/aardvark:

/home/a/accounting/aaron:

/home/a/administration:
abner

/home/a/administration/abner:

The same question should be asked regarding file permissions and ACLs. Is the
existing scheme adequate, or does it require review? This might also be an area
of concern because NFSv4 ACLs, as noted earlier, do not map directly to those
used in NFSv3 or other file systems. It might be difficult to write scripts that will
correctly copy an existing ACL structure from the existing environment,
especially if complex ACLs were in common use.

Symbolic links
The presence and extent of use of symbolic links in an existing directory
structure will significantly affect data migration sizing and complexity. If AFS is in
use, the existing namespace begins at the /afs/<cell_name> root. DFS
directories will appear using either /:/ or /.../<cell_name>, depending on which
convention is in use at the site. Therefore, a symbolic link based on a fully
qualified directory name might appear as shown in Example 7-7; both links point
to the same file.

Example 7-7 Symbolic link based on a full qualified directory name

pwd
/:/home/joe
#
ls -l
total 0
-rw-r--r-- 1 mary sales 0 Aug 22 10:01 file
lrwxrwxrwx 1 joe sales 25 Aug 25 14:15 file_symlink.txt ->
/:/home/anthony/file1.txt

186 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

lrwxrwxrwx 1 joe sales 50 Aug 25 14:37 file_symlink2.txt ->
/.../itsc.austin.ibm.com/fs/home/anthony/file1.txt
#

Migration of this directory tree to a new namespace beginning with /nfs obviously
causes breakage, because neither /:/ nor /.../itsc.austin.ibm.com/fs map to a
legitimate location in the new file system. You can achieve a resolution of this
problem either by changing existing symbolic links as they are encountered, or by
creating a link in the NFS space mapping to the old root, for example:

ln -s /nfs /:/ or ln -s /nfs /afs/<cell_name>

The latter solution can be left in place until users and administrators convert
existing links to use the /nfs root, or it can remain active indefinitely. Any
symbolic links created after migration is complete should refer to the /nfs root in
order to avoid exacerbating the problem.

Data migration sizing
Time and planning requirements for movement of physical data to the new
environment is necessarily based on the amount of data, the migration method
(for example, switch-over, rolling, or user-by-user), and the method by which it is
to be moved. Consider the following information:

� If the source file systems will be NFS-mounted on the destination server, the
copy speed depends on network bandwidth and load. Prior to migrating data,
test copies from source to destination might help to establish average rates
that can then be used to predict the total amount of time required.

� If tapes are to be used, the total data copying time will be the amount of time
required to create the media on the source servers, transport it to the
destination, and restore it on the destination servers. Again, advance testing
will be useful in generating predictive data regarding total time requirements
for this step.

� If replication is required, additional time must be scheduled in order to create
and synchronize the replicas.

It is important to generate time estimates well before the final migration date is
decided on (except in the case of a user-by-user scenario, which generally
should require no system outage). The decision whether to migrate on a given
date can be predicated on the total amount of time estimated for the overall
migration to occur. If estimates indicate that only a few hours are necessary,
scheduling a single planned outage outside peak business hours might be an
option. Longer time estimates need to be evaluated against business
commitments and the overall impact on the user base. After the total time has
been estimated, all options should be re-examined to determine if the correct
migration strategy has been selected.

 Chapter 7. Migration considerations 187

Switch-over migration
If the intention is to migrate all data and user accounts simultaneously, it will be
necessary to create a full backup of all data immediately prior to commencement
of migration activities. All users must be barred from logging in during this
process, and all files slated for movement must be closed in order to eliminate
the possibility of inconsistency. It is then a matter of moving the data to newly
created NFSv4 file systems.

Phased
This option can be ideal in situations where immense amounts of data are
involved because it offers the option of planning multiple, short, off-peak outages
for specific groups. Here again, a full data backup of all affected user accounts is
mandatory prior to moving any user or other files, and the designated user
groups must be prohibited from accessing the systems throughout the migration
period.

The phased migration can introduce additional complexity if users have data or
other files that are shared among groups or departments. If group A shares
group B’s files, both groups must be moved during the same phase in order to
maintain consistency regarding the shared data. Likewise, movement of shared
databases or other resources must be carefully coordinated to ensure such
shared information remains accessible throughout the migration period.

User-by-user
This is by far the most flexible option available and additionally has the
advantage of producing the smallest impact on running production systems
because no downtime is required. Because there might be no way to predict the
exact time a given user performs the migration (and when their last backup
occurred), the method used for migrating data from the existing namespace to its
new location must ensure that the process completes successfully and should
include measures to either lock copies of files located in the old namespace or
move them to an archive location to prevent modification.

Again, data not located in user directories must be scheduled for migration in
cooperation with those users requiring access to it in order to ensure the
appropriate levels of availability. Data consistency issues might arise if a group of
10 accounts require access to a shared file, but 5 are moved while the others
continue to use the existing copy. Scheduling, user education, and a detailed
understanding of shared file use and access requirements will assist the
migration team in planning for situations such as those described here.

188 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 8. Migration scenarios

This chapter introduces the scenarios that we demonstrate in this book.
Numerous implementation and migration permutations exist, and it is impossible
to discuss every one of them. Therefore, for demonstration purposes, we
selected the scenarios that seem most likely to be encountered by migrating
customers.

We demonstrate the following migrations:

� Migration from AFS to an NFSv4 environment with RPCSEC_GSS
authentication and LDAP identification

� Migration from DFS to an NFSv4 environment with RPCSEC_GSS
authentication and LDAP identification

� Migration from a flat-file based authentication environment to an NFSv3/v4
environment with RPCSEC_GSS authentication and LDAP identification

The AFS and DFS scenarios demonstrate the following actions:

� Migration of user information into Kerberos and LDAP

� Migration of group information into Kerberos and LDAP

� Conversion of AFS/DFS ACLs to NFSv4 ACLs

� Migration of AFS volumes and DFS filesets to an AIX 5L file system

8

© Copyright IBM Corp. 2005. All rights reserved. 189

The flat-file based (/etc/passwd and /etc/group) authentication environment
scenario demonstrates the following actions:

� Migration of user information into Kerberos and LDAP

� Migration of group information into Kerberos and LDAP

� Migration from JFS/JFS2v1 file systems to JFSv2 file system

� Implementation of NFSv4 ACLs

After the migration of user and data information is complete, we present a
demonstration showing how NFSv4 can be used to share data throughout your
organization.

Figure 8-1 on page 191 shows the migration and implementation scenarios
chosen for demonstration. The darkest arrows show the path followed by the first
scenario. Scenario two takes the next path. Scenario three uses a direct
approach. The dotted arrow shows an alternative path that can be used for the
third scenario, but which is not demonstrated in this book.

190 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 8-1 Migration scenarios covered in this book

 Chapter 8. Migration scenarios 191

The move from AFS and DFS to NFSv4 will be a rolling migration. We
demonstrate this at a user-by-user level. The idea is to demonstrate how the two
environments can coexist (it will do so during the migrations phase) with the
intention of finally moving over to a homogeneous NFSv4 environment.

The third scenario demonstrates a move from a flat-file-based environment,
possibly, but not necessarily, running NFSv3, to one running NFS versions 3 and
4 with LDAP identification and RPCSEC_GSS authentication. The objective is to
extend on work already done in the previous IBM Redbook Securing NFS in AIX:
An Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204, and demonstrate
new features in AIX 5L V5.3 RL03 and coexistence of NFS versions 3 and 4.

The ultimate goal for anyone who wants to make full use of the capabilities
provided by NFSv4 is the following environment:

� Pure NFSv4:

– Allows a customized pseudo file system.

– Makes all NFSv4 features accessible to all NFSv4 clients and therefore
the entire environment.

� Kerberos V5 authentication

� LDAP identification

192 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Part 4 Migrating to NFSv4

In this part, we describe the steps needed to migrate from AFS/DFS to NFSv4
and AIX 5L V5.3 RML03.

Throughout this section, we refer back to on page 194 the following figure. We
attempted to develop a logical approach to the AFS/DFS migration planning
process. We recommend that you use this chart as a template when carrying out
your infrastructure and migration planning. We attempted to cover all possible
permutations. However, it is possible that additional decision flows might be
necessary, depending on the properties of specific migration environments.

For detailed descriptions and implementation considerations about the features
introduced in the initial release of AIX 5L V5.3, see the IBM Redbook Securing
NFS in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204. You
can view or download this book at:

http://www.redbooks.ibm.com/abstracts/sg247204.html

Part 4

© Copyright IBM Corp. 2005. All rights reserved. 193

http://www.redbooks.ibm.com/abstracts/sg247204.html

Figure P4-1: AFS/DFS migration considerations decision flowchart

194 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 9. NFSv3 to NFSv4 migration

This chapter provides practical information regarding the installation,
deployment, and administration of NFSv4 on IBM AIX 5L V5.3. The objective is
to provide several step-by-step scenarios depicting the deployment of NFSv4
across an organization. The chapter is primarily aimed at users of NFSv3;
however, users new to NFS can also leverage the information to their advantage.

We discuss and demonstrate the following actions:

� General set-up

� Deploying NFSv4 in a classic NFSv3 manner, that is, without additional
security

� Configuration and deployment of a pseudo root file system and global
namespace and the advantages of using this mechanism

� Implementation of NFSv4 with security, using the LDAP and Kerberos
environment, as described in Chapter 6, “Building an NFSv4 environment” on
page 119

We discuss the following topics in this chapter:

� The test environment

� Using NFSv3 and NFSv4 side-by-side

� Migrating from NFSv3 to NFSv4

� Using NFSv3

9

© Copyright IBM Corp. 2005. All rights reserved. 195

� Using NFSv4 with NFSv3

� Adding security

� Namespace management

� Setting a different pseudo root file system

196 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

9.1 The test environment
This section describes the test environment in use when the following examples
were created.

The NFSv3/v4 server is frio.itsc.austin.ibm.com.

The NFSv3/v4 (AIX 5L V5.3 RML03) client is brazos.itsc.austin.ibm.com.

The NFSv3 (AIX 5L V5.2 RML04) client is milan.itsc.austin.ibm.com.

syslogd settings
NFSv4 sends all its debug-related output to syslog. However, on AIX 5L, the
syslog daemon is not enabled by default. Therefore, the following steps describe
how to quickly configure syslogd:

1. Create and mount a local file system to the /var/nfs4log directory. It is
generally advisable to use a separate file system for log daemons, because
this ensures that the root file system is protected from filling up.

2. Add the following line to the /etc/syslog.conf file:

*.debug /var/nfs4log/syslog.out rotate time 1d archive \
/var/nfs4log/archive/

3. Restart the syslogd daemon in order to activate the changes on the running
system, using the following command:

refresh -s syslogd

This method might log more information than necessary. If less detailed logging
is required, debug can be changed to error in the /etc/syslog.conf file. This limits
the amount of data written to the log file. The line now looks like:

*.error /var/nfs4log/syslog.out rotate time 1d archive \ /var/nfs4log/archive/

Again, the syslogd daemon must be restarted or refreshed after making these
changes.

Tip: We recommend the use of syslogd logging during the initial
implementation stage. This makes it easier to isolate problems that might
occur during each step. All NFS and related daemons write to the syslog
output file.

 Chapter 9. NFSv3 to NFSv4 migration 197

9.2 Using NFSv3 and NFSv4 side-by-side
Despite the addition of new NFSv4 functionality in AIX 5L V5.3 RML03, many
customer sites require the ability to provide both NFSv3 and NFSv4 services
concurrently. This can be necessary in order to support existing systems or other
operating systems that presently do not offer NFSv4 implementations.
Coexistence of both versions is not difficult to achieve, and a hybrid environment
can be maintained indefinitely if necessary.

NFSv3 and NFSv4 co-existence
Four clients have been shaded in Figure 9-1 to provide a visual representation of
version coexistence in a mixed NFS version 3 and 4 environment.

Figure 9-1 Migrating from an NFSv3 to an NFSv3/v4 environment

198 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Two options are available when introducing NFSv4 into an existing NFSv3
environment:

� Use both protocols concurrently.

� Discard version 3 altogether in favor of version 4.

9.3 Migrating from NFSv3 to NFSv4
Figure 9-2 shows a phased migration scenario involving three stages:

� Current implementation (Stage 1)

� Intermediate implementation (Stage 2)

� Final implementation (Stage 3)

Figure 9-2 Migrating from an NFSv3 to an NFSv4 environment

 Chapter 9. NFSv3 to NFSv4 migration 199

Stage 2 can be bypassed if the site plans to migrate fully and immediately to
NFSv4 (for example, a switch-over migration). However, this requires that all
clients and servers be capable of supporting NFSv4. Therefore, the following
prerequisites must be satisfied before performing the migration:

� New authentication and identification methods are ready.

� NFS servers are upgraded to AIX 5L V5.3. If another operating system is in
use, it must be able to serve NFSv4 exports.

� NFS clients are upgraded to AIX 5L V5.3. If another operating system is in
use, it also must be able to mount NFSv4 exports.

The scenario depicted in Figure 9-2 on page 199 is very flexible and can be used
in many different combinations. This section describes each stage.

Stage 1
Because this represents the existing environment, it presumes the site is using
NFSv3 in conjunction with traditional UNIX, NIS, or perhaps Kerberos V5-based
authentication.

Stage 2
This can represent an intermediate or final stage, based on the desired end
result. It is the final stage if the goal is to implement NFSv4 concurrently with
existing version 3 services.

By this point, some clients have been migrated to NFSv4. At least one NFS
server has been upgraded or replaced and is now providing NFSv3 and NFSv4
exports. This permits client access to data no matter which NFS version a
specific system is using. Optionally, the exports file on the NFS server can offer
the sec=krb5 option for one or more file systems if the site’s NFSv3 clients are
running AIX 5L V5.3 or another version of NFS that supports the security feature.

Stage 3
When this point is reached, the migration has been completed. For example
purposes, and presuming the site has decided to implement the NFSv4 security
features, the following changes have been made:

� Authentication and authorization environments are fully functional.

� All users are integrated into the new authentication and identification
environment.

� All NFS servers are using AIX 5L V5.3 or another operating system that
supports NFSv4.

Note: NFSv3 on AIX 5L V5.3 inherits the security features of NFSv4.

200 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� All NFS clients have been upgraded to AIX 5L V5.3 or an operating system
that supports NFSv4.

� All data has been migrated from existing NFSv3 to NFSv4 style exports.

9.4 Using NFSv3
NFSv4 continues to support the existing version 3 style file system export and
mount model. No changes are required to existing /etc/exports files to client
/etc/filesystems files or to the automount map unless the migration plan also
includes implementation of the security, replication, or referral features available
with NFSv4.

Example 9-1 shows the server’s view of the NFSv3 exported file systems.

Example 9-1 Exporting file systems as NFSv3

cat /etc/exports
/export -rw
/export/home -rw
/export/tools -ro
/export/data -rw
#
exportfs -va
Exported /export
Exported /export/home
Exported /export/tools
Exported /export/data

Example 9-2 shows the client’s view of the NFSv3 exported file systems.

Example 9-2 Client view of the NFSv3 mounted file systems

showmount -e frio
export list for frio:
/export (everyone)
/export/home (everyone)
/export/tools (everyone)
/export/data (everyone)
#
mount frio:/export /nfs
mount frio:/export/home /nfs/home
mount frio:/export/tools /nfs/tools
mount frio:/export/data /nfs/data
#
df -k
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

 Chapter 9. NFSv3 to NFSv4 migration 201

/dev/hd4 16384 4912 71% 1572 54% /
/dev/hd2 1261568 185356 86% 27027 39% /usr
/dev/hd9var 16384 8568 48% 372 16% /var
/dev/hd3 32768 32348 2% 20 1% /tmp
/dev/hd1 16384 15820 4% 85 3% /home
/proc - - - - - /proc
/dev/hd10opt 49152 21324 57% 655 12% /opt
/dev/fslv00 1048576 1047828 1% 109 1% /work
/dev/fslv01 16384 16004 3% 34 1% /home/foo
frio:/export 65536 52308 21% 1597 12% /nfs
frio:/export/home 131072 130724 1% 4 1% /nfs/home
frio:/export/tools 131072 130724 1% 4 1% /nfs/tools
frio:/export/data 131072 130724 1% 4 1% /nfs/data
#

9.5 Using NFSv4 with NFSv3
As stated earlier, it is possible to use NFSv3 concurrently with NFSv4, and
numerous reasons exist for sites to do so. For example:

� Existing NFSv3 exports must be made available to systems not yet migrated
to an operating system that supports NFSv4.

� A phased migration from NFSv3 to NFSv4 is being carried out. Maintenance
of existing services during the migration requires that both v3 and v4 clients
be supported.

Whatever the reason, NFSv3 and NFSv4 can easily coexist. The following
sections describe the steps necessary to enable AIX 5L V5.3 systems to host
and mount NFSv4 exports concurrently with NFSv3 exports.

9.5.1 Configuring the NFS domain
As described in Chapter 6, “Building an NFSv4 environment” on page 119, the
NFS domain name must be set before NFSv4 can be used. The current setting
can be checked using the chnfsdom or smitty chnfsdom command.

If the NFS domain is not set, the output will look like the output in Example 9-3.

Example 9-3 Checking the current NFS domain

chnfsdom
Current local domain: N/A
#

202 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The NFS domain can be set using the chnfsdom command, as shown in
Example 9-4.

Example 9-4 Changing the NFS domain

chnfsdom itsc.austin.ibm.com
#
chnfsdom
Current local domain: itsc.austin.ibm.com
#

After the NFS domain has been set, the NFS registry daemon (nfsrgyd) must be
started. Example 9-5 shows how this is done.

Example 9-5 Starting the NFS registry daemon (nfsrgyd)

startsrc -s nfsrgyd
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 315416.
#
lssrc -s nfsrgyd
Subsystem Group PID Status
 nfsrgyd nfs 315416 active
#

9.5.2 Configuring the pseudo root file system
Configuration of the pseudo root file system on an NFSv4 server is very
straightforward. It first requires that the pseudo root directory be available and
that all exported file systems are locally mounted within this directory.

By default, the root directory / is defined and exported as the pseudo root file
system. You can check this using the nfsd -getnodes command. Example 9-6 on
page 204 shows sample output from this command on an unconfigured system.

Note: The pseudo root can be changed on the server either by specifying a
new value in the /etc/exports file or from the command line using the chnfs
command. We recommend the latter method, using the chnfs command.
However, changing the pseudo root will not affect file systems that have
already been exported. If changes are made, they must be re-exported using
the exportfs -va command.

 Chapter 9. NFSv3 to NFSv4 migration 203

Example 9-6 Checking the current setting of pseudo root

nfsd -getnodes
#root:public
/:/
#

The output in Example 9-6 indicates that the root (first /) directory is defined as /.
The second / after the colon represents the public root directory. The next section
describes the steps required to change the root file system to support NFSv4
pseudo root exports.

9.5.3 Exporting file systems for access to NFSv3 and NFSv4 clients
As previously discussed, NFSv3 and NFSv4 can be implemented concurrently.
Example 9-7 shows file systems exported for concurrent access by both version
3 and 4 clients.

Example 9-7 Exporting file systems as both NFSv3 and v4

nfsd -getnodes
#root:public
/:/
#
exportfs -ua
#
exportfs
exportfs: 1831-182 nothing exported
#
cat /etc/exports/
/home -vers=3:4,rw,
/tools -vers=3:4,ro
/data -vers=3:4,rw
#
exportfs -va
Exported /home
Exported /tools
Exported /data
#

9.5.4 Mounting NFSv4 exports on the clients
Client systems must be running AIX 5L V5.3 in order to mount NFSv4 exports.
The mount command with the -vers=4 option is used to mount an NFSv4 file
system. Example 9-8 on page 205 shows the command required to mount an
NFSv4 export on a client system.

204 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 9-8 Mounting NFSv4 exports on the NFSv4 clients

mount -o vers=4 frio:/ /nfs
#
df -k
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 16384 4912 71% 1574 54% /
/dev/hd2 1261568 184140 86% 27032 39% /usr
/dev/hd9var 16384 8556 48% 372 16% /var
/dev/hd3 32768 30248 8% 24 1% /tmp
/dev/hd1 16384 15820 4% 85 3% /home
/proc - - - - - /proc
/dev/hd10opt 49152 21324 57% 655 12% /opt
/dev/fslv00 1048576 1047828 1% 109 1% /work
/dev/fslv01 16384 16004 3% 34 1% /home/foo
frio:/ 65536 52292 21% 1597 12% /nfs
#
nfs4cl showfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
frio.itsc.austin.ibm.com / 10:4 /nfs
#
cd /nfs
#
ls -la
total 9
dr-xr-xr-x 4 root system 5 Aug 25 09:52 .
drwxr-xr-x 23 root system 4096 Aug 24 16:14 ..
drwxr-xr-x 3 root system 256 Aug 25 09:41 data
drwxr-xr-x 2 bin bin 256 Aug 25 09:37 home
drwxr-xr-x 3 root system 256 Aug 25 09:41 tools
#

9.5.5 Mounting NFSv3 exports on the clients
In the next example, file systems have been exported with the -vers=3:4 option.
Therefore, the exports can be mounted by both NFSv3 and version 4 clients.
Example 9-9 illustrates this process.

Example 9-9 Mounting NFSv3 exports

mount frio:/home /mnt
#
mount frio:/tools /mnt2
#
mount frio:/data /mnt3
#

 Chapter 9. NFSv3 to NFSv4 migration 205

df -k
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 540672 430084 21% 1753 1% /
/dev/hd2 2080768 925892 56% 35801 7% /usr
/dev/hd9var 16384 7408 55% 350 9% /var
/dev/hd3 3276800 3153836 4% 48 1% /tmp
/dev/hd1 114688 101288 12% 190 1% /home
/proc - - - - - /proc
/dev/hd10opt 49152 21760 56% 654 6% /opt
/dev/lv00 540672 438436 19% 342 1% /patch12
/dev/lv01 5013504 4820240 4% 8678 1% /vicepa
AFS 72000000 72000000 0% 0 0% /afs
frio:/home 65536 65164 1% 3 1% /mnt
frio:/tools 131072 130724 1% 4 1% /mnt2
frio:/data 131072 130724 1% 4 1% /mnt3

9.5.6 Differences between NFSv3 and NFSv4 mounts
The benefit provided by NFSv4 under AIX 5L V5.3 becomes immediately
apparent as soon as the difference in mount strategies is understood. On NFSv3
clients, each exported file system must be mounted individually, while only a
single mount command is required when NFSv4 is in use. The NFSv4 server
creates a pseudo view for the NFSv4 clients, so all the exported file systems are
visible when a user changes directory to /nfs.

9.6 Adding security
Configuration of the authentication and authorization environment has already
been described. This configuration can now be used to fully exploit the
functionality added by NFSv4. NFSv3 has inherited this functionality on AIX 5L
V5.3. The following tasks must be carried out in order to make use of the added
security:

1. Configure time services.

2. Configure the LDAP/Kerberos V5 (KRB5) server.

3. Configure the LDAP/KRB5 clients.

4. Add the NFS service principal to Kerberos for all NFS servers.

5. Configure the gssd daemon on the NFS server.

6. Create the Kerberos V5 realm to NFS domain mapping.

206 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

For purposes of these examples, it is presumed that steps 1, 2, and 3 are already
complete. See 6.1, “Environment used for demonstration scenarios” on
page 120.

9.6.1 Creating NFS service principals in Kerberos
An NFS host principal must be defined for each NFS server in the environment if
the security functionality is to be used. The principal definition must be in the
following format:

nfs/<fully_qualified_name_of_NFS_server>@<Kerberos_5_realm>

The machine frio.itsc.austin.ibm.com will be used as the NFS server for this
example. Therefore, the NFS host principal for frio is defined as follows:

nfs/frio.itsc.austin.ibm.com@NFS4REALM.IBM.COM

The steps required during creation of the NFS host principal are slightly different
from those followed for the user principal; a random password is used rather than
a user-defined one. Example 9-10 shows one method for creating the NFS host
principal. The commands are executed on the Kerberos server, designated
pecos.itsc.austin.ibm.com.

Example 9-10 Configuring an NFS host principal on a Kerberos V5 server

kinit admin/admin
Password for admin/admin@NFSV4REALM.IBM.COM:

kadmin.local
Attempting to bind to one or more LDAP servers. This may take a while...
kadmin.local:
kadmin.local: add_principal -e des-cbc-crc:normal -randkey
nfs/frio.itsc.austin.ibm.com
WARNING: no policy specified for
nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM" created.
kadmin.local:
kadmin.local: get_principal nfs/frio.itsc.austin.ibm.com
Principal: nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
Expiration date: [never]
Last password change: Thu Aug 25 11:13:46 CDT 2005
Password expiration date: [none]
Maximum ticket life: 1 day 00:00:00
Maximum renewable life: 7 days 00:00:00
Last modified: Thu Aug 25 11:13:47 CDT 2005 (admin/admin@NFSV4REALM.IBM.COM)
Last successful authentication: [never]
Last failed authentication: [never]

 Chapter 9. NFSv3 to NFSv4 migration 207

Failed password attempts: 0
Number of keys: 1
Key: vno 2, DES cbc mode with CRC-32,
no salt

Attributes:

Policy: [none]
kadmin.local: quit
#

9.6.2 Configuring the gssd daemon on the NFS server
To use RPCSEC_GSS, a file must be created to map between the server’s
keytab file and the NFS server principal. This is accomplished using the
nfshostkey command, as shown in Example 9-11.

Example 9-11 Creating the server’s hostkey map file

nfshostkey -p nfs/frio.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab

nfshostkey -l
nfs/frio.itsc.austin.ibm.com
/etc/krb5/krb5.keytab

The chnfs -S -B command is executed to permit the gssd daemon to start
automatically at boot time. Alternately, the smitty addsecurity command can be
used. This step must be repeated on all AIX 5L NFSv4-capable servers in the
environment.

Example 9-12 Starting the gssd daemon and configuring it for automatic restart

chnfs -S -B
0513-059 The gssd Subsystem has been started. Subsystem PID is 295038.
#

9.6.3 Mapping Kerberos V5 realms to NFS domains
The /etc/nfs/realm.map file maps the relationship between Kerberos realms and
NFS domains. It can be created using the chnfsrtd command. In the example
environment, the Kerberos V5 realm is NFS4REALM.IBM.COM and the NFS
domain is itsc.austin.ibm.com. Example 9-13 on page 209 shows the results of
the chnfsrtd command.

208 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 9-13 Creating the KRB5 realm to NFS domain mapping

chnfsrtd -a NFS4REALM.IBM.COM itsc.austin.ibm.com

cat /etc/nfs/realm.map
nfs4realm.ibm.com itsc.austin.ibm.com

chnfsrtd
nfs4realm.ibm.com itsc.austin.ibm.com

9.6.4 Creating the NFS keytab file entry
The next step is to create a keytab entry on the NFS servers. The kadmin
command is used, as shown in Example 9-14, on the NFS server frio.

Example 9-14 Creating a keytab file entry on an NFS server

/usr/krb5/sbin/kadmin
Authenticating as principal admin/admin@NFSV4REALM.IBM.COM with password.
Password for admin/admin@NFSV4REALM.IBM.COM:
kadmin:
kadmin: ktadd nfs/frio.itsc.austin.ibm.com
Entry for principal nfs/frio.itsc.austin.ibm.com with kvno 3, encryption type
Triple DES cbc mode with HMAC/sha1 added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/frio.itsc.austin.ibm.com with kvno 3, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/frio.itsc.austin.ibm.com with kvno 3, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/frio.itsc.austin.ibm.com with kvno 3, encryption type
DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin: quit
#

The ktadd command shown in Example 9-14 creates a file called
/etc/krb5/krb5.keytab.

At this point in the process, it is advisable to test the state of the configuration by
attempting to access the NFS file system from a client system.

Note: The realm entry in the /etc/nfs/realm.map file is not case-sensitive.

 Chapter 9. NFSv3 to NFSv4 migration 209

Answer the following questions before proceeding with the remainder of the
configuration process:

� Are the keytab entries valid? Use the kutil command, as shown in
Example 9-15, to validate the keytab files.

Example 9-15 Checking for a valid keytab on an NFS server

/usr/krb5/sbin/ktutil
ktutil:
ktutil: read_kt /etc/krb5/krb5.keytab
ktutil:
ktutil: l
slot KVNO Principal
------ ------ --
 1 3 nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
 2 3 nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
 3 3 nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
 4 3 nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM
ktutil: quit
#

� Can the server principal obtain valid tickets? For this, use the kinit
command, as shown in Example 9-16.

Example 9-16 Verifying the NFS host principal’s ability to get a valid ticket

kinit -kt /etc/krb5/krb5.keytab nfs/frio.itsc.austin.ibm.com

klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/frio.itsc.austin.ibm.com@NFSV4REALM.IBM.COM

Valid starting Expires Service principal
08/25/05 13:13:03 08/26/05 13:13:02
krbtgt/NFSV4REALM.IBM.COM@NFSV4REALM.IBM.COM
#

9.6.5 Configuring security on the clients.
You must follow these steps on all clients that are to mount file systems exported
from the NFS server:

1. Configure time services.

2. Configure LDAP.

3. Configure Kerberos and integrated login.

4. Add the client service principal.

210 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

5. Create the client keytab file.

6. Create a map between the client keytab file and the NFS service principal.

Example 9-17 shows the execution sequence for these commands, preparing the
client for the NFS environment. The commands are shown in bold print.
Superscript numbering refers to explanations following the example.

Example 9-17 Configuring the NFS client for security

kinit admin/admin(1)

Password for admin/admin@NFSV4REALM.IBM.COM:

klist(2)

Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: admin/admin@NFSV4REALM.IBM.COM

Valid starting Expires Service principal
08/25/05 14:19:00 08/26/05 14:18:57
krbtgt/NFSV4REALM.IBM.COM@NFSV4REALM.IBM.COM

/usr/krb5/sbin/kadmin(3)

Authenticating as principal admin/admin@NFSV4REALM.IBM.COM with password.
Password for admin/admin@NFSV4REALM.IBM.COM:
kadmin:
kadmin: add_principal -e des-cbc-crc:normal -randkey
nfs/brazos.itsc.austin.ibm.com(4)

WARNING: no policy specified for
nfs/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM;
 defaulting to no policy. Note that policy may be overridden by
 ACL restrictions.
Principal "nfs/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM" created.
kadmin:
kadmin: ktadd nfs/brazos.itsc.austin.ibm.com(5)

Entry for principal nfs/brazos.itsc.austin.ibm.com with kvno 3, encryption type
Triple DES cbc mode with HMAC/sha1 added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/brazos.itsc.austin.ibm.com with kvno 3, encryption type
ArcFour with HMAC/md5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/brazos.itsc.austin.ibm.com with kvno 3, encryption type
AES-256 CTS mode with 96-bit SHA-1 HMAC added to keytab
WRFILE:/etc/krb5/krb5.keytab.
Entry for principal nfs/brazos.itsc.austin.ibm.com with kvno 3, encryption type
DES cbc mode with RSA-MD5 added to keytab WRFILE:/etc/krb5/krb5.keytab.
kadmin:
kadmin: quit
kinit -kt /etc/krb5/krb5.keytab nfs/brazos.itsc.austin.ibm.com(6)

#
klist(7)

Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0

 Chapter 9. NFSv3 to NFSv4 migration 211

Default principal: nfs/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM

Valid starting Expires Service principal
08/25/05 14:22:26 08/26/05 14:22:26
krbtgt/NFSV4REALM.IBM.COM@NFSV4REALM.IBM.COM
#
nfshostkey -p nfs/brazos.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab(8)

nfshostkey -l(9)

nfs/brazos.itsc.austin.ibm.com
/etc/krb5/krb5.keytab
#
kdestroy(10)

#
kinit -kt `tail -n 1 /etc/nfs/hostkey` `head -n 1 /etc/nfs/hostkey`(10)

#
klist
Ticket cache: FILE:/var/krb5/security/creds/krb5cc_0
Default principal: nfs/brazos.itsc.austin.ibm.com@NFSV4REALM.IBM.COM

Valid starting Expires Service principal
08/25/05 14:38:00 08/26/05 14:37:59
krbtgt/NFSV4REALM.IBM.COM@NFSV4REALM.IBM.COM
#
chnfs -S -B(11)

0513-059 The gssd Subsystem has been started. Subsystem PID is 352346.
#

The following list explains the example commands in Example 9-17 on page 211:

1. The following command obtains a Kerberos ticket-granting ticket (TGT) for the
admin principal:

kinit admin/admin

2. The following command verifies the ticket obtained in step 1:

klist

3. The following command starts the Kerberos administrative interface,
permitting the authenticated admin/admin principal to execute account
management tasks:

/usr/krb5/sbin/kadmin

4. The following command adds the nfs principal for host brazos to the Kerberos
realm’s database:

add_principal -e des-cbc-crc:normal -randkey \
nfs/brazos.itsc.austin.ibm.com

212 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

5. The following command adds an entry for the nfs principal to the
/etc/krb5/krb5.keytab file:

ktadd nfs/brazos.itsc.austin.ibm.com

6. The following command obtains the key for the nfs principal from the keytab
file /etc/krb5/krb5.keytab:

kinit -kt /etc/krb5/krb5.keytab nfs/brazos.itsc.austin.ibm.com

7. Same as step 2.

8. The following command configures the nfs host key for brazos:

nfshostkey -p nfs/brazos.itsc.austin.ibm.com -f /etc/krb5/krb5.keytab

9. The following command verifies the host key:

nfshostkey -l

10.The following commands destroy the session’s existing ticket information, and
then obtain a new ticket using the key located in the /etc/nfs/hostkey file. This
is done to verify the correctness of the preceding steps.

kdestroy
kinit -kt `tail -n 1 /etc/nfs/hostkey` `head -n 1 /etc/nfs/hostkey`

11.The following command starts the gssd daemon and sets it to start
automatically during future reboots:

chnfs -S -B

The client configuration is now complete.

9.6.6 Exporting NFS file systems with security
Next, we must modify entries in the /etc/exports file on the NFS server.
Example 9-18 shows the addition of the -sec=krb5 option to the existing entries,
and subsequent re-exporting of these file systems to enable the new option.

Example 9-18 Adding Kerberos V5 to the exports on the NFS server

cat /etc/exports
/home -vers=3:4,sec=krb5,rw
/tools -vers=3:4,sec=krb5,ro
/data -vers=3:4,sec=krb5,rw
#
exportfs -va
exportfs: 1831-187 re-exported /home
exportfs: 1831-187 re-exported /tools
exportfs: 1831-187 re-exported /data
#

 Chapter 9. NFSv3 to NFSv4 migration 213

The file systems are now ready to be mounted by the client systems.

9.6.7 Mounting an NFSv4 exported file system
Example 9-19 demonstrates the procedure for mounting an NFSv4 export on an
AIX 5L V5.3 client.

Example 9-19 Mounting NFSv4 exports on AIX 5L V5.3 client with Kerberos V5 enabled

mount -o vers=4,sec=krb5 frio:/ /nfs
#
nfs4cl showfs /nfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
frio.itsc.austin.ibm.com / 10:4 /nfs
 Current Server: frio.itsc.austin.ibm.com:nfs
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p
#
mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------
 /dev/hd4 / jfs2 Aug 10 10:19 rw,log=/dev/hd8
 /dev/hd2 /usr jfs2 Aug 10 10:19 rw,log=/dev/hd8
 /dev/hd9var /var jfs2 Aug 10 10:19 rw,log=/dev/hd8
 /dev/hd3 /tmp jfs2 Aug 10 10:19 rw,log=/dev/hd8
 /dev/hd1 /home jfs2 Aug 10 10:20 rw,log=/dev/hd8
 /proc /proc procfs Aug 10 10:20 rw
 /dev/hd10opt /opt jfs2 Aug 10 10:20 rw,log=/dev/hd8
 /dev/fslv00 /work jfs2 Aug 15 11:34 rw,log=/dev/hd8
frio / /nfs nfs4 Aug 25 19:13 vers=4,sec=krb5
#

As shown in Example 9-19, the client has successfully mounted the NFSv4 file
systems exported by the NFSv4 server frio.

9.7 Namespace management
The single namespace, introduced in NFSv4, is a new concept for AIX 5L. The
ramifications of this change, as well as the benefits it provides, must be
understood clearly before implementing it in a production environment.

214 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

From an administrative point of view, a single namespace reduces the number of
mounts a client makes per server to one. With previous versions of NFS, each
client was required to mount individual NFS exports provided by a given server.
A single, or unified, namespace enables the server to render a single pseudo file
system view to the client; therefore, only one mount command is required for a
client to obtain access to the namespace. Each site must consider its current
pattern of NFS exports and per-client access requirements in order to gain the
optimal benefits afforded by this feature.

An example of the difference between a single-mount NFSv4 strategy and the
method available with version 3 can best be expressed by comparing the
processing required for each. Example 9-20 shows the /etc/exports file required
to export five file systems from an NFS server.

Example 9-20 The /etc/exports file with NFSv3

/home -rw
/usr/local -ro
/var/db2/v81/DB -rw
/temp/scratch -rw
/www -ro

The NFSv3 client must then mount each exported file system individually, as
shown in Example 9-21.

Example 9-21 NFSv3 client mounting five file systems one at a time

mount -v nfs -o rw serverY:/home /mount1
#
mount -v nfs -o ro serverY:/usr/local /mount2
#
mount -v nfs -o rw serverY:/var/db2/v81/DB /mount3
#
mount -v nfs -o rw serverY:/exports/scratch /mount4
#
mount -v nfs -o ro serverY:/www /mount5
#

The NFSv3 server is exporting five file systems. This requires the client to
perform individual mount commands, producing five different mount points. The
processing increases significantly if you have 30 clients performing the individual
mount. If the decision is then made to move /temp/scratch to /scratch, all 30
clients must first unmount this file system, and then it must be unexported on the
NFS server. After the file system has been modified, the server’s /etc/exports file
must be altered to reflect the change and then re-exported. The altered file
system must next be mounted again on the client systems. If the client systems

 Chapter 9. NFSv3 to NFSv4 migration 215

are configured to mount NFS file systems at boot time, each machine’s
/etc/filesystems file must be edited to reflect the changed mount point.

It quickly becomes apparent that NFSv3 is not easily scalable and might be
difficult to manage in a complex environment.

9.7.1 How does the NFSv4 namespace help?
Using the same directory structure discussed in Example 9-20 on page 215, we
now discuss the differences inherent in the NFSv4 implementation.

As previously discussed, NFSv3 remains the default version in AIX 5L V5.3. If no
version is specified when exporting or mounting a file system, AIX 5L assumes
the use of version 3. To make use of NFSv4, file systems must be exported and
mounted using the vers=4 option, as shown in Example 9-22.

Example 9-22 Making use of NFSv4

/home -vers=4,rw
/usr/local -vers=4,ro
/var/db2/v81/DB -vers=4
/temp/scratch -vers=4,rw
/www -vers=4,ro

The client then issues the following command to mount the NFSv4 exports:

mount -o vers=4 serverY:/ /nfs

This mount command tells serverY that the client is requesting a view of its
unified namespace. After the server grants access to the view, the client mounts
it locally to the /nfs mount point.

Example 9-23 shows the ls -la /nfs output on the client after the NFSv4
exports have been mounted.

Example 9-23 Client view of the NFSv4 mount

ls -la
total 12
dr-xr-xr-x 6 root system 7 Aug 30 11:05 .
drwxr-xr-x 22 root system 4096 Aug 30 09:58 ..
drwxr-xr-x 4 bin bin 256 Aug 19 13:49 home
dr-xr-xr-x 2 root system 3 Aug 30 11:05 temp
dr-xr-xr-x 2 root system 3 Aug 30 11:05 usr
dr-xr-xr-x 2 root system 3 Aug 30 11:05 var
drwxr-xr-x 2 root system 256 Aug 30 09:54 www
#

216 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The implementation and management differences become significant when the
NFSv4 and NFSv3 procedures are compared.

Under NFSv3, the following steps are required:

1. The /etc/exports file on the server is created.

2. The clients explicitly mount each file system exported by the server.

Changes to existing NFSv3 exports require the following task list:

1. Unmount the file system on all clients.

2. Unexport the file system on the server.

3. Make the necessary changes to the file system.

4. Export the changed file system.

5. Remount the changed file system on all clients.

If NFSv4 is used, the following steps are required:

1. The /etc/exports file on the server is created.

2. The clients perform one mount per NFSv4 server, thus obtaining access to all
the server’s exported file systems under a single, unified tree.

Changes to NFSv4 exports only require actions on the server side. The client’s
view is dynamically updated to reflect the changes on the server. For example,
the following steps are required to remove /home from a server’s existing exports:

1. Run:

exportfs -u /home

2. Edit the /etc/exports file and remove the appropriate entry.

This description showcases the ease of client and server management provided
by NFSv4 and its unified namespace.

9.7.2 Enhancing classic NFSv4 exports using the exname option
The examples described earlier can be further enhanced by incorporating the
AIX-specific alias tree model known as exname. In previous sections, we
discussed the use of standard NFSv3 exports and the pseudo root feature to
simplify client management. The alias tree model adds even more flexibility to
NFSv4 exports. For example, consider a requirement to export the
/var/db2/v81/DB file system. If this is exported using the classic model, the full
path is visible under the NFS root directory. The exname feature is extremely
useful if, for example, users require access only to the DB subdirectory or a
requirement exists to conceal the /var and /var/db2 directories when this file

 Chapter 9. NFSv3 to NFSv4 migration 217

system is exported to clients. The exname feature allows file systems to be
exported as individual subdirectories of the nfsroot. Therefore, the above
directory can be exported as /nfs/DB.

Example 9-24 shows a namespace built using the exname option.

Example 9-24 Using the exname option to further enhance the namespace

/exports -nfsroot
/home -vers=4,rw,exname=/exports/home
/usr/local -vers=4,ro,exname=/exports/local
/var/db2/v81/DB -vers=4,rw,exname=/exports/DB
/temp/scratch -vers=4,rw,exname=/exports/scratch
/www -vers=4,ro,exname=/exports/www

The contents of this file are as follows:

1. The pseudo root of the NFSv4 server is set using the /exports -nfsroot line.

2. File systems are exported in the same manner as the classic NFSv4 model,
but with the addition of the exname option. For this example, all file systems
exported by the NFS server are visible under the /exports mount point on the
client side.

Note that exname option does not display the full path of the exported directories.
This hides the actual location of the file system, while simultaneously minimizing
the number of directories that must be traversed by client systems.

The mount command on the client remains the same as that used under the
classic NFSv4 export model.

Example 9-25 shows the results of an ls -la /nfs command executed on a
client machine.

Example 9-25 Client view of the exname exported file systems

ls -al /nfs
total 10
dr-xr-xr-x 6 root system 7 Aug 30 09:56 .
drwxr-xr-x 22 root system 4096 Aug 30 09:58 ..
dr-xr-xr-x 2 root system 3 Aug 30 09:56 DB
drwxr-xr-x 4 bin bin 256 Aug 19 13:49 home
drwxr-xr-x 3 root system 256 Aug 15 17:03 local
drwxr-xr-x 2 root system 256 Aug 30 09:55 scratch
drwxr-xr-x 2 root system 256 Aug 30 09:54 www
#

Extending a previous example, moving an exported /temp/scratch to /scratch in
an NFSv4 setting involves only the following steps on the server side. No

218 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

changes are required from the client’s perspective, because the server will
propagate the change automatically.

1. Unexport the /temp/scratch directory:

exportfs -u /temp/scratch

2. Move /temp/scratch to /scratch.

3. Update /etc/exports with the new location of /scratch.

4. Run the following exportfs command:

exportfs -va

The amount of downtime can further be reduced on the /temp/scratch file system
by keeping it exported and copying it to /scratch rather than using the mv
command. After the copy is complete, the /etc/exports file is updated and the
following command sequence is executed:

exportfs -u /temp/scratch
exportfs -va

Example 9-26 shows the clients’ view when /temp/scratch is unexported.

Example 9-26 Client view when /temp/scratch is unexported on the server

ls -al /nfs
total 10
dr-xr-xr-x 5 root system 7 Aug 30 10:07 .
drwxr-xr-x 22 root system 4096 Aug 30 09:58 ..
dr-xr-xr-x 2 root system 3 Aug 30 09:56 DB
drwxr-xr-x 4 bin bin 256 Aug 19 13:49 home
drwxr-xr-x 3 root system 256 Aug 15 17:03 local
drwxr-xr-x 2 root system 256 Aug 30 09:54 www
#

Example 9-27 shows the client view after the new /scratch file system has been
exported.

Example 9-27 Client view when /scratch is exported on the server

ls -la
total 10
dr-xr-xr-x 6 root system 7 Aug 30 10:08 .
drwxr-xr-x 22 root system 4096 Aug 30 09:58 ..
dr-xr-xr-x 2 root system 3 Aug 30 09:56 DB
drwxr-xr-x 4 bin bin 256 Aug 19 13:49 home

Note: No modifications are required on the client systems. The client view is
updated dynamically when /temp/scratch is unexported.

 Chapter 9. NFSv3 to NFSv4 migration 219

drwxr-xr-x 3 root system 256 Aug 15 17:03 local
drwxr-xr-x 2 root system 256 Aug 30 10:07 scratch
drwxr-xr-x 2 root system 256 Aug 30 09:54 www
#

Figure 9-3 depicts the view the NFSv4 server builds for the clients.

Figure 9-3 The virtual NFSv4 exported file system view

9.8 Setting a different pseudo root file system
You can use the nfsd command to change the pseudo root file system.

Perform the following steps on the server to set the pseudo root to /exports and
export it to the clients:

1. Check the current settings for pseudo root by running the nfsd -getnodes
command.

2. Check that no NFS file systems are exported by using the exportfs
command.

3. If there are exported file systems, run the exportfs -ua command to unexport
them.

4. Stop all NFS server processes by running /etc/nfs.clean.

220 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

5. Change the pseudo root with chnfs -r /exports or smitty chrootfh.

The chnfs command:

a. Changes the entries within the AIX Subsystem Resource for nfsd. This
can be verified using the lssrc -Ss nfsd command.

b. Starts the nfsd in command line mode outside the control of the
Subsystem Resource Controller.

Two options are available to complete the transition:

– Reboot the system so that all changes take effect.

– Stop all NFS processes using the /etc/nfs.clean command and restart
NFS using the /etc/rc.nfs command.

 Chapter 9. NFSv3 to NFSv4 migration 221

222 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 10. Planning a migration from
DFS

This chapter discusses special issues that must be considered when migrating
from a DCE/DFS environment to NFSv4. We discuss the following topics in this
chapter:

� An overview of DCE/DFS services and architecture

� Security (authentication)

� File ACLs

� Component-specific migration considerations

� ACL migration considerations

� Existing namespace and data migration

10

© Copyright IBM Corp. 2005. All rights reserved. 223

10.1 An overview of DCE/DFS
DCE and DFS are discrete products. Distributed Computing Environment (DCE)
is considered a middleware product and is an architecture on which other
applications can be built. Distributed File Service (DFS) is a DCE-based
application; it cannot be installed or used in the absence of underlying DCE
services. DCE can stand alone, without DFS.

As noted earlier, DCE provides security and authentication services to the DFS
application. It also provides the base remote procedure call (RPC) environment,
time synchronization, directory services, auditing, and other utilities that can be
used to build applications such as transaction processing monitors, Object
Request Broker (ORB) services, backup and restore services, and printing
systems.

10.1.1 Servers and clients
In DCE, a server provides a service, while a client consumes or uses a service.
Given TCP/IP, a service is offered through an endpoint, which is a combination of
an IP address and port number where such a service listens for inbound
connections. Example 10-1 shows an example of an endpoint (IP addresses
have been replaced with “x”).

Example 10-1 Example of an endpoint

dcecp> rpcentry show /.:/milan.itsc.austin.ibm.com_ch
{257df1c9-c6d3-11ca-8554-08002b1c8f1f 1.0
 {ncadg_ip_udp 9.x.x.xx}
 {ncacn_ip_tcp 9.x.x.xx}}
{b238d29a-0ab2-11da-91dd-000629b91ea4}
dcecp>
dcecp> endpoint show -interface {257df1c9-c6d3-11ca-8554-08002b1c8f1f 1.0}
{{object b238d29a-0ab2-11da-91dd-000629b91ea4}
 {interface {257df1c9-c6d3-11ca-8554-08002b1c8f1f 1.0}}
 {binding {ncacn_ip_tcp 9.x.x.xx 35230}}
 {annotation {CDS Server clerkserver:
/.../itsc.austin.ibm.com/milan.itsc.aus}}}

{{object b238d29a-0ab2-11da-91dd-000629b91ea4}
 {interface {257df1c9-c6d3-11ca-8554-08002b1c8f1f 1.0}}
 {binding {ncadg_ip_udp 9.x.x.xx 36660}}
 {annotation {CDS Server clerkserver: /.../itsc.austin.ibm.com/milan.itsc.aus}}

In Example 10-1, the CDS clearinghouse on milan.itsc.austin.ibm.com is
listening on TCP (ncacn_ip_tcp) port 35230, while a UDP (ncadg_ip_udp)
interface is active on port 36660.

224 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

When a client requires a connection to a server, it queries CDS to learn from
which IP address the machine has registered and then contacts the dced
process running at that IP address to request the endpoint on which a requested
server interface is listening. It then attempts to contact that endpoint. Note that a
server machine is also a client; a CDS server also runs a cdsclerk client process
that makes requests to the server process. Other machines that offer no services
of their own are considered clients.

DCE provides for replication of all its core services. A site can choose to run one
or more security, CDS, or time servers for example. In all cases, one acts as the
master, while all others in the same environment are referred to as slaves or
replica servers. Replicas provide read-only copies of the security registry,
namespace, or other services, and sites can opt to configure certain groups of
clients to prefer a specific server based on load, capacity, geographic location, or
other criteria as desired. If a server fails to respond within a given time frame, the
client fails over automatically to the next server on its preference list. If no such
list exists, the client can query the CDS server to determine whether another
server is registered under the same interface and version. Exhausting all
available servers registered in CDS under a specific interface causes the client to
return an error.

10.1.2 Cells
The DCE environment involves the creation of a management domain known as
a cell, which is composed of all the client and server systems sharing a given set
of directory, time, and security services. A cell’s name usually reflects the DNS
domain under which it operates (for example, ibm.com®), but this is not
mandatory. The getcellname command, or the special variable _c, can be used
in a dcecp command to view the name of an existing cell, as shown in
Example 10-2.

Example 10-2 Using dcecp to view the cell name

dcecp> echo $_c
/.../dce_test.itsc.austin.ibm.com
dcep>
dcecp> getcellname
/.../dce_test.itsc.austin.ibm.com
dcecp>

Note: The client/server distinction also applies to non-DCE services. A
transaction processing server process can run on a machine where only DCE
client services are offered, for example, or on a machine offering CDS or
security services.

 Chapter 10. Planning a migration from DFS 225

Another dcecp command can be used to view all the machines in a cell, as shown
in Example 10-3.

Example 10-3 Using dcecp to view server names

> dcecp -c cell show
{secservers
 /.../dce_test.itsc.austin.ibm.com/subsys/dce/sec/server1
 /.../dce_test.itsc.austin.ibm.com/subsys/dce/sec/server2}
{cdsservers
 /.../dce_test.itsc.austin.ibm.com/hosts/server1
 /.../dce_test.itsc.austin.ibm.com/hosts/server2}
{dtsservers
/.../dce_test.itsc.austin.ibm.com/hosts/server1.itsc.austin.ibm.com/dts-entity}
{hosts
 /.../dce_test.itsc.austin.ibm.com/hosts/corsair.itsc.austin.ibm.com
 /.../dce_test.itsc.austin.ibm.com/hosts/server1
 /.../dce_test.itsc.austin.ibm.com/hosts/server2
 /.../dce_test.itsc.austin.ibm.com/hosts/server2.itsc.austin.ibm.com
 /.../dce_test.itsc.austin.ibm.com/hosts/test0.itsc.austin.ibm.com
 /.../dce_test.itsc.austin.ibm.com/hosts/test1.itsc.austin.ibm.com}

A large production environment might involve thousands of client machines and
dozens of servers, depending on the extent of the services offered and the load
placed on services such as CDS and security.

10.1.3 Cross-cell communications
A relationship known as an inter-cell trust can be implemented in order to
exchange information among multiple DCE cells where such a requirement
exists. This involves creating an account, usually named something like
krbtgt/othercell.cell.com, and the execution of the dcecp registry connect
command on security servers located in both cells.

The presence of such trust relationships must be addressed during a migration to
a new enterprise file system architecture such as NFSv4, because users might
need to retain access to resources located in a foreign cell.

10.1.4 Caching
As with AFS, DFS makes use of client-side caching to improve performance and
decrease the load on servers. The characteristics of the cache on a given system

Important: Assessing the impact of changes to existing cross-cell
relationships is an essential component of the migration planning process.

226 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

are tunable using the cm family of commands. Example 10-4, shows the cache
usage on a client machine. Other commands permit operations such as
modification of the cache size, timeout values before the cache is flushed, and
the manual flushing of the cache.

Example 10-4 Checking the cache usage on a client machine

> cm getcachesize
DFS is using 64236 of the cache's available 69632 1K byte (disk) blocks.
>

10.1.5 Aggregates and filesets
An aggregate is a DFS name for a UNIX logical volume or disk partition that has
been allocated for use by DFS. Two types of aggregates can be used by DFS:
raw and standard UNIX (for example, UNIX File System, UFS, or JFS).

Raw aggregates are created using the LFS or Episode file system. They are able
to make use of the DFS replication abilities (as described in the following
section). Multiple filesets can be created within a single raw aggregate, resized
as needed using the fts suite of commands, and moved from one server to
another as load and disk space dictate.

UNIX aggregates cannot make use of the DFS replication or fileset manipulation
capabilities. They are visible within the federated namespace offered by DFS, but
are managed in the same manner as traditional file systems. Only one fileset can
be created on a UNIX aggregate, unlike the one-to-many mapping of aggregates
and filesets under the Episode model.

10.1.6 Replication
DFS filesets, if based on the Episode file system, can be configured for either
release or scheduled replication. The former requires manual user intervention
using the fts release command in order to replicate a read/write fileset to one or
more read-only copies. Scheduled replication establishes a fixed interval when
automatic replication will occur from a read/write copy to its read-only copies.

Read-only replicas can be located on the same or different aggregates and on
the same or a different server. The former strategy produces basic data security
through the presence of multiple copies, while the latter adds resilience based on
the geographic distance between copies.

 Chapter 10. Planning a migration from DFS 227

10.2 Component-specific migration considerations
In this section, we discuss component-specific migration considerations.

10.2.1 Authentication services
The migration of existing authentication services from a DCE/DFS environment
requires a great deal of planning, because the existing architecture might make
use of more than one security data source. Many sites use the AIX 5L integrated
login or the Sun Solaris Pluggable Authentication Model (PAM) to manage
concurrent access to accounts located within a DCE security registry, Microsoft
Active Directory server, MIT Kerberos V5, or IBM Network Authentication
Services along with traditional flat files. Migrating to an NFSv4 environment might
require that DCE/DFS and other accounts be loaded into an MIT Kerberos or
IBM Network Authentication Services database in order to make use of, for
example, the enhanced ACL services and improved security of NFSv4.
Figure 10-1 shows an example of concurrent authentication services.

Figure 10-1 An example of concurrent authentication services

228 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

10.2.2 DCE/DFS principal and group considerations
The DCE/DFS environment places few practical limitations on the length of
principal or group names, or on the number of groups to which a principal can be
a member. The AIX 5L environment, however, maintains a strict 8-character limit
on user ID and group names. This can make it difficult, if not impossible, to
migrate certain DCE user accounts into a new environment involving traditional
passwd files. Migration to a Kerberos, Active Directory, or IBM Network
Authentication Services environment should not present this problem because
none of these products observe the 8-character limitation.

Another issue involves the case-sensitivity of user principal names. While DCE,
MIT Kerberos, IBM Network Authentication Services, and Active Directory are
case-sensitive, LDAP is not. The login ID JSMITH is identical to jsmith in an
LDAP context; if both accounts exist in the DCE registry, only one will be
migrated to a new LDAP environment. Sites planning a migration from DCE to an
LDAP-based authentication system should closely examine current principal
listings in order to determine whether existing account naming practices will
cause migration failures for some accounts. The dcecp command principal
catalog -simplename will generate a list of existing users in order to facilitate the
review process. For ease of use, the following dcecp command creates a text file
containing a list of all users:

dcecp -c principal catalog -simplename > users.txt

Similarly, while DCE does not limit group membership on a per-user basis, AIX
5L and other operating systems frequently limit the number of groups to which a
given user can belong. The AIX 5L group limit as of Version 5.3 is 128 groups per
user; therefore, it might be necessary to evaluate current group membership
practices within DCE/DFS and possibly restructure them to accommodate an
NFSv4 environment. To test the group membership for a given DCE user, simply
run the dcecp command and issue the command user show <user_id>. You will
see a line similar to the following line in the result:

{groups subsys/dce/dfs-admin dce-ibm dce-all build testteam change-team
system-admin}

In this example, the user is a member of seven groups.

Note: The 8-character restriction has been lifted starting in AIX 5L Version 5.3
through use of the max_logname system variable, which must be changed
using the chdev command. AIX 5L Differences Guide Version 5.3 Edition,
SG24-7463, fully documents this change.

 Chapter 10. Planning a migration from DFS 229

In addition, you can use the dcecp command in the following way to see the
complete list of an existing group’s members:

dcecp -c group list <group_name> -simplename

10.2.3 Migrating accounts from DCE to Kerberos V5
The preferred method for migrating an existing DCE security environment to an
IBM Network Authentication Services realm involves use of the tools
documented in the IBM Distributed Computing Environment Version 3.2 for AIX
and Solaris: DCE Security Registry and LDAP Integration Guide. The exact steps
are beyond the scope of this document, but are presented in greater detail in the
IBM Redbook DCE Replacement Strategies, SG24-6935. Specific
considerations include:

� All existing security servers must be running DCE V3.2.

� A partial migration, that is, one involving only a subset of existing DCE
principals, is not supported. Only the full security registry can be migrated
using this process.

� After a migration slave has been created, updates made to its LDAP
database are not propagated back to existing security servers. Therefore, it is
possible for the existing and LDAP services to provide inconsistent data. The
preferred method involves:

– Creating a migration slave; this initially populates the LDAP environment
with data from the existing environment.

– Migrating the remaining existing security replicas to LDAP security slave
status.

– Unconfiguring the existing master after the stability of the new
environment has been satisfactorily demonstrated.

The mkseckrb5 utility
The mkseckrb5 utility is delivered as part of AIX 5L and can be used to migrate
existing local user accounts from /etc/passwd into a Kerberos V5 realm.
However, it cannot be used when migrating DCE users because it is not aware of
accounts stored in the DCE registry. This command can be of some use during a
DCE migration if a subset of users maintain accounts outside the DCE
environment, but the caveat described earlier regarding duplicate accounts must
be observed. If user jsmith has both a DCE and an AIX 5L account, only one can
be migrated to an MIT Kerberos-based or LDAP-based account management
subsystem. Merging the user’s data into a single, unified namespace might
provide a solution to this type of problem.

230 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Custom account migration solutions
The method used to migrate existing user accounts from a DCE registry to LDAP
or Kerberos V5 might be limited by the type of migration, such as user-by-user,
chosen for a given environment. Therefore, it might be necessary to create local
scripts to retrieve fields, such as principal name, home directory, GID, and UID,
from the registry. There are several methods to accomplish this:

� The unsupported sec_salvage_db utility can be used to create a flat ASCII
copy of the DCE registry, after which a parser can be written to read in this
data using a language such as Perl, TCL, or the UNIX shell.

� The output from individual dcecp -c user show commands can be read in a
similar fashion and parsed by another script.

� A program can be written in C that calls DCE functions to retrieve user
account information from the registry. The resulting data can then be inserted
into a Kerberos V5 realm’s database using that product’s family of account
management functions.

The code fragment in Example 10-5 provides details of the functions required
to extract user data from the DCE registry.

Example 10-5 Code sample to extract user data from the DCE registry

sec_id_parse_name (rgy_site, input_name, cell_name, NULL, prin_name, NULL,
 &status);
ERR_CHECK ("sec_id_parse_name", status, error_status_ok, TRUE);

printf (" Principal name: '%s'\n", (char *)prin_name);
printf (" Cell name: '%s'\n", (char *)cell_name);

printf ("\nGetting principal info...\n");

sec_rgy_cursor_reset(&cursor_p);
ERR_CHECK ("sec_rgy_cursor_reset (p)", status, error_status_ok, TRUE);

sec_rgy_pgo_get_by_name (rgy_site, sec_rgy_domain_person, prin_name,
 &cursor_p, &prin_data, &status);
ERR_CHECK ("sec_rgy_pgo_get_by_name", status, error_status_ok, TRUE);

uuid_to_string (&prin_data.id, &string, &status);
ERR_CHECK ("uuid_to_string", status, uuid_s_ok, TRUE);
printf (" UUID: %s\n", (char *)string);
printf (" UNIX ID: %ld\n", (long)prin_data.unix_num);
printf (" Full name: '%s'\n", (char *)prin_data.fullname);

printf ("\nGetting group membership list...\n");

sec_rgy_cursor_reset(&cursor_g);
ERR_CHECK ("sec_rgy_cursor_reset (g)", status, error_status_ok, TRUE);

 Chapter 10. Planning a migration from DFS 231

count = 0;
while (1) {

 sec_rgy_pgo_get_members(rgy_site, sec_rgy_domain_person, prin_name,
 &cursor_g, max_groups, group_list, &num_groups, &total_num_groups,
 &status);
 if (status == sec_rgy_no_more_entries) break;
 ERR_CHECK ("sec_rgy_pgo_get_members", status, error_status_ok, TRUE);

 if (count >= total_num_groups) {
printf ("bailing, hmm-ha\n");
 break;
 }
 if (!count) {
 printf ("%s is a member of %d groups:\n",
 (char *)input_name, (int)total_num_groups);
 }

 for (i = 0; i < num_groups; i++) {
 printf (" Group %d: '%s'\n", ++count, group_list[i]);
 }
}

Retrieval of the user’s existing password might be the most difficult aspect
because it is stored in the DCE registry using a one-way encryption algorithm.
This requires that accounts be created in the NFSv4 environment using new,
possibly randomly generated passwords based on the site’s existing security
policy. Another option is to write a user-accessible utility that queries (without
echoing it to the terminal) the user for their existing password, uses a DCE
function, such as dce_login -noexec (for a script) or the sec_() family of
functions (for a C program), to test the correctness of the password, and then
uses the clear text version of the password to set the user’s new Kerberos
password. Users should be required to change this password upon initial login;
most Kerberos V5 implementations set a password change flag on new user
accounts by default to ensure that users comply with this requirement.

Writing a script involves the following steps:

1. Retrieve the user data from the results of a sec_salvage_db or dcecp -c user
show command.

2. Parse the results for fields such as UID, group, or shell that are required in the
NFSv4 environment. Note that group information is irrelevant in the context of
a files-based (non-LDAP) Kerberos V5 subsystem, so the required input fields
might vary by implementation.

232 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 10-6 shows an example Perl script to retrieve account data from the
dcecp -c user show command.

Example 10-6 Sample Perl script to retrieve account data

use Cwd; # module for finding the current working directory
use Getopt::Long qw(GetOptions);

my $user_principal = "";
my ($item, $uid, $group, $home, $shell) = "";

main logic

GetOptions ('user=s' => \$user_principal);

if (open (USER_DATA, "dcecp -c user show $user_principal 2>&1 |")) {
while (my $input_line = <USER_DATA>) {
$input_line =~ s/^{|}$//g;
 ($item, $uid) = split " ", $input_line if ($input_line =~ "^uid");
 ($item, $group) = split " ", $input_line if ($input_line =~ "^group");
 ($item, $home) = split " ", $input_line if ($input_line =~ "^home");
 ($item, $shell) = split " ", $input_line if ($input_line =~ "^shell");
 }

}

print "User: $user_principal\n";
print "UID: $uid\n";
print "shell: $shell\n";
print "group: $group\n";

exit(0);

3. Using the data obtained in step 2, create accounts in the destination
authentication system (for example, Kerberos V5). This step involves two
possible scenarios:

– If the system on which the script is running has been configured for
concurrent access to both DCE and the destination authentication
subsystem, the same script can simply generate appropriate commands
(for example, kadmin -q addprinc [...]) and execute them.

– Otherwise, the script can use the data to write a shell script containing the
same set of kadmin commands. This file must then be copied to a system
where the new authentication system is configured, after which it can be
executed to create the new accounts.

 Chapter 10. Planning a migration from DFS 233

Accounts can also be migrated to an Active Directory server, which also uses
Kerberos V5 with LDAP. Example 10-7 provides a fragment from a script
showing the basic steps required to create an account in Active Directory
using Perl. This requires the Win32::OLE module, which can be obtained for
free from repositories such as the Comprehensive Perl Archive Network
(CPAN) at:

http://www.cpan.org

Example 10-7 Script fragment: Steps needed to create accounts in Active Directory

if (Win32::OLE->GetObject("LDAP://CN=$princ_name, CN=Users, $ldap") == "") {

 my $objParent = Win32::OLE->GetObject("LDAP://CN=Users, $ldap");
 my $objUser = $objParent->Create("User", "cn=$princ_name");
 $objUser->Put("sAMAccountName", "$princ_name");
 $objUser->SetInfo;
 ## only populate name information if we managed to parse
 ## the user's given and surname data earlier.
 if (($first_name) && ($last_name)) {
 $objUser->Put("givenName", "$first_name");
 $objUser->Put("sn", "$last_name");
 }
 $objUser->SetPassword("$passwd");
 $objUser->SetInfo;
 $objUser->Put("userPrincipalName", "$princ_name\@$ldap");
 $objUser->Put("userAccountControl", 512);
 $objUser->{AccountDisabled} = 0;
 $objUser->SetInfo;

} else { print "User $princ_name already exists...skipping\n"; }

4. Optionally, the script can then disable the user’s DCE account using a
command such as dcecp -c account modify <user_id> -acctvalid no.

Important: Execution of account-creation commands such as kadmin on
the command line requires use of either the -p <administrative
password> or -C <keytab file> parameters. The first requires that the user
executing the script have knowledge of this password, while the second
involves storing the key in a user-accessible file. Use both with extreme
caution due to the security ramifications of exposing this password to
non-administrative personnel.

Important: The use of this example requires administrative access to the
Windows Active Directory database; earlier caveats regarding security
apply in this case as well.

234 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.cpan.org

Again, this requires administrative or cell_admin-like access to the DCE
registry, so its use might be limited by security concerns.

10.2.4 Authentication methods
Existing authentication practices should be used to provide a basis for the
configuration of the new environment. For example, if DCE/DFS users commonly
log in using traditional UNIX-style authentication methods, such as an entry in
the /etc/passwd file, and only authenticate to DCE with dce_login when it
becomes necessary to gain access to data located in DFS filesets, there might
be no reason to enable integrated login in the NFSv4 environment. Conversely,
sites that already make use of a single sign-on (SSO) methodology are unlikely
to replace it with one requiring an initial UNIX login and a subsequent call to
kinit or another post-login application to grant access to NFS-resident data
requiring authentication. This is especially true if users require simultaneous
authenticated access to data stored in multiple repositories (NFSv4 and
Windows Server volumes, for example). Take into account the ease of use of an
SSO solution, as well as a simpler management environment, when planning the
migration.

The status of the current authentication method can be determined by
examining, for example, the /etc/security/user file on an AIX 5L system for stanza
entries such as:

SYSTEM = "DCE OR (DCE[FAILURE] AND AFS[SUCCESS])"

This entry denotes an initial attempt to validate a login using DCE; if failure
occurs (due to an invalid password or the account not being present in the DCE
cell, for example), the system will attempt a login through AFS. Failure of both
methods results in a login failure. The same information can be found in the
/etc/pam.conf file on a system using the Pluggable Authentication Model (PAM).

10.2.5 Additional considerations
As noted in Chapter 6, “Building an NFSv4 environment” on page 119, when
eliminating existing services, you must take into consideration all resources or
applications that rely on that architecture. For example, DFS is only one of
potentially many DCE-based applications: Transaction processing monitors,
printing subsystems, or location-brokering services might make use of the DCE
RPC, security, or directory service. If such applications are in use, it might be
necessary to retain the base DCE environment even after the DFS namespace
has been fully decommissioned. This might require certain users to maintain
accounts in both the DCE registry and Kerberos V5, for example. Concurrent
operation of both services on the same machine requires special configuration

 Chapter 10. Planning a migration from DFS 235

techniques, because the DCE security server also acts as a Kerberos V5 KDC
and makes use of the standard port (88) when listening for requests.

If it becomes necessary to offer both the DCE security service and, for example,
a Kerberos V5 client environment on one or more systems, the latter will need to
be configured to operate using another port not currently allocated by other
applications. The krb5kdc command is used to start a standard Kerberos V5
KDC, for example:

krb5kdc [-d dbname] [-k keytype] [-M mkeyname] [-p portnum] [-m] [-r
realm] [-4 v4mode]

The -p parameter specifies which port will be used by the server. The kdc line in
the krb5.conf file will also require modification; usually, it is displayed in the form
kdc = madrid.itsc.austin.ibm.com:88, but the port number must match that used
when starting the krb5kdc process. See the MIT Kerberos documentation or the
IBM Network Authentication Services Administrator’s and User’s Guide (provided
by the krb5.doc.en_US fileset) for additional information about the use of
alternate ports when creating a new realm.

Using a DCE security server as a Kerberos V5 KDC
The DCE authentication service is based on an early release of Kerberos V5,
and existing DCE security servers can act as master or slave KDCs for non-DCE
users (for example, MIT Kerberos, IBM Network Authentication Services, or
Active Directory). It is, therefore, possible to use an existing DCE environment to
provide Kerberos services to clients and applications. However, the following
caveats apply:

� It is not possible to create a standard slave KDC and migrate DCE security
data to it. The DCE propagation model causes slave servers to request
updates, pulling them from the master on a regular schedule. This differs from
the “push” methodology used by Kerberos V5; in this case, the master KDC
regularly copies the entire security database to its slave servers. The two are
not compatible, and the slave KDC will never receive updates from the master
DCE security server.

� A Kerberos V5 KDC master cannot be used to provide authentication services
to DCE users. DCE accounts contain data such as group membership lists,
home directories, and access limitations not found in a standard Kerberos V5
principal, so authentication attempts will fail.

� DCE creates the krb5.conf file in the /etc directory, while MIT Kerberos V5
and other implementations place it in /etc/krb5. DCE makes very little use of
this file, but it might need to be edited in order to provide additional stanzas or
other information required by non-DCE clients.

Figure 10-2 on page 237 shows an example DCE krb5.conf file.

236 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 10-2 Example DCE krb5.conf file

10.3 ACL migration considerations
Special consideration must be given to the file system ACLs when planning a
migration from DFS to NFSv4. DFS ACLs are POSIX based, while the NFSv4
protocol specification uses the Microsoft Windows ACL model. This means that a
simple 1:1 translation from DFS to NFSv4 is not possible. This section presents a
guide about how to migrate ACLs from DFS to NFSv4 while retaining as much
functionality from the original DFS environment as possible. It might be valuable
to review 7.5, “NFSv4 user authorization methods” on page 178 to ensure that
the requirements of the NFSv4 ACL setup are understood before proceeding
with this section. First, we review DFS ACLs and how they are evaluated. Then,
we describe a mechanism for translating ACLs from DFS to NFSv4. Finally, we
present examples showing how these translations can be automated using
simple scripts.

10.3.1 Understanding DFS ACL evaluations
DFS ACLs are evaluated in the following sequence:

1. user entries

2. group entries

3. other_obj

4. foreign_other

5. any_other

Note: For more information about NFSv4 ACL support, see AIX 5L Version
5.3 Security Guide, SC23-4907, and AIX 5L Differences Guide Version 5.3
Edition, SG24-7463.

 Chapter 10. Planning a migration from DFS 237

The ACL manager checks from the most specific ACLs to the least specific ACLs
and stops at the first match that it finds for the requested permissions. So, if a
user has both a user-level ACL entry and a group-level ACL entry, only the
user-level entry will be evaluated. Figure 10-3 on page 239 shows the ACL
checking process in flowchart format.

238 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 10-3 DFS ACL decision flow

 Chapter 10. Planning a migration from DFS 239

10.3.2 DFS to NFSv4 ACL translation
One of the key differences between DFS and NFSv4 ACLs is the flow of ACL
evaluation. DFS has a hierarchical method of evaluation for ACLs in which
user_obj, then user+mask_obj, then group+mask_obj, then other_obj, and so on
are evaluated to determine what permissions will be granted. This order of
evaluation will be used regardless of the ACL order displayed in the ACL listing.

NFSv4 ACLs, however, depend on the order in which the ACLs appear in the
listing to determine what ACL entry will be used to grant or deny requested
permissions to the user. This key difference must be remembered when
re-creating existing DFS ACL structures in NFSv4.

10.3.3 DFS and NFSv4 ACL comparisons
Table 10-1 lists ACL entries that can be used in NFSv4 to provide ACL
permissions equivalent to those found in DFS.

Table 10-1 Equivalent ACL Entries in NFSv4s

10.3.4 Example of DFS to NFSv4 ACL translation
We provide the following example of a DFS to NFSv4 ACL translation to illustrate
a situation in which a user wants to preserve existing DFS home directory ACLs,
allowing specific users and groups access to their files, after moving them to
NFSv4.

Permission description DFS ACL NFSv4 ACL

Permission to read the data of the file r ra

Permission to list the contents of the directory rx rax

Permission to append to a file w wp

Permission to modify the file’s data rw rwpa

Permission to add a new file to the directory wix wx

Permission to execute the file or traverse the
directory

x x

Permission to change the ACL of the file or directory c cC

Permission to delete files or subdirectories from
within the directory

d d

240 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Scenario: Home directory ACL migration
In this example, user “Joe” has migrated his DFS files to a new NFSv4 exported
GPFS fileset. Joe had several ACLs in DFS that he wants to retain in his NFS
environment. Example 10-8 shows original DFS home directory ACL structure.

Example 10-8 The original DFS home directory ACL structure for user Joe

ls -ld joe
drwxrwxr-x 2 joe sales 256 Aug 19 10:18 joe
#
dcecp -c acl show joe
{mask_obj rwxcid}
{user_obj rwxcid}
{user alice r-x---}
{user keith rwx-id}
{group_obj rwxcid}
{group admins rwxcid}
{other_obj r-x---}
{any_other ------}

The following list provides an ACL-by-ACL breakdown of Example 10-8:

{mask_obj rwxcid} This will not have any impact on the NFSv4
translated ACLs because it has no restrictions and
does not impact the DFS ACL list.

{user_obj rwxcid} Being the owner of this file, Joe wants to have full
access to his NFSv4 ACL list. Remember that, by
default, the owner of an NFSv4 file will always have
permission to modify the ACLs of the file. The
equivalent permissions in NFSv4 for full access for
the owner will be:

s:(OWNER@): a rwpRWxDaAdcCs

{user alice r-x---} Joe wants Alice to retain her read access on the files
in his directory. To grant this access, use the
following ACE on Joe’s home dir:

u:alice: a rxa

{user keith rwx-id} Joe wants to retain Keith’s ability to
modify/add/delete the files in Joe’s home directory.
This can be accomplished with:

u:keith: a rwpRWxDaAds

This ACL allows all but control access on the
directory. Note that the individual files and
directories in Joe’s home directory can still maintain

 Chapter 10. Planning a migration from DFS 241

their own ACL entries that still restrict Keith’s access
to them.

{group_obj rwxcid} The group_obj ACL will apply to both the sales group
that is displayed in the ls -l command and to any
other groups that occur in the DFS ACL. In this case,
admins. To give the sales group access to Joe’s new
home directory, we can change the group using
chgrp sales joe.

With the directory group ownership updated, the s:(GROUP@): ACL in the
NFSv4 ACL list can be modified as follows:

s:(GROUP@): a rwpRWxDaAds

This ACL grants all but control access to the directory. Because there is an admin
group that is also in the DFS ACL list, we add a second group entry to the ACLs:

g:admins: a rwpRWxDaAdcCs

This gives full access on this directory to the admins group:

{other_obj r-x---} The other_obj ACL applies to any authenticated DFS
users that are not explicitly in any of the ACL entries
in the list. In this case, read and pass-through should
be granted to these users. There is no equivalent to
this ACL in NFSv4 because AUTHENTICATED@ is
not yet supported.

{any_other ------} The any_other ACL applies to any users that do not
fall into any users or groups that are in the ACL list.
Because this is always processed last in DFS, the
ACL should appear at the end of the ACL list to have
the same affect in NFSv4:

s:(EVERYONE@): d rwpRWxDaAdcCso

Example 10-9 on page 243 shows the resulting ACL list in NFSv4.

Important: When changing the UNIX group of a file that has NFSv4 ACLs,
you must be root and be a member of the group to which you are you are
chgrping. Therefore, in the previous example, you must be root and a member
of sales to chgrp Joe’s directory to sales. If you are not a member of sales,
and you attempt to chgrp sales joe, you receive the message, chgrp: joe:
Operation not permitted.

242 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 10-9 The resulting ACL list in NFSv4

aclget joe
*
* ACL_type NFS4
*
*
* Owner: joe
* Group: sales
*
g:admins: a rwpRWxDaAdcCs
u:mary: a rxa
u:keith: a rwpRWxDaAds
s:(OWNER@): a rwpRWxDaAdcCs
s:(OWNER@): d o
s:(GROUP@): a rwpRWxDaAds
s:(GROUP@): d wpWDACo
s:(EVERYONE@): d rwpRWxDaAdcCso
#

Chapter 11, “Illustrated DFS migration” on page 247 presents additional
information and hints about the methods by which existing DFS ACLs can be
migrated to a new NFSv4 environment using Perl scripts. The appendixes also
include the complete source code for these example scripts.

10.3.5 Data migration
Numerous options exist for accomplishing the actual migration of user and other
data from DFS to the NFSv4 environment, but limitations might be encountered
based on the type of migration and the hardware acquisition plans arrived at
during the initial planning phase.

For example, if the site has opted for an all-at-once migration involving no new
hardware, the only option for data migration involves creating offline backups on
tape or other media, with subsequent restoration after the systems are
reconfigured for an NFSv4 environment. If, however, the existing systems are

Note: The order is important when creating these ACL entries. It is a good
idea to keep admin groups that need extra or full access to the directories at
the top of the list because they will then be evaluated first. In this case, the
admins group is intentionally placed at the top of the list to ensure that all
admins will have the appropriate access. Likewise, if the EVERYONE group in
the previous ACL list appears before any other ACL entry, those trailing ACLs
would never be processed under any circumstances. For more information
about ACL processing see 7.5, “NFSv4 user authorization methods” on
page 178.

 Chapter 10. Planning a migration from DFS 243

supplemented with additional hardware and storage space, user and other data
can be copied across the network or even from disk to disk on an existing
system.

Consider the following brief list of options:

� Tape backup, with restoration after the disks have been reformatted for JFS2
or GPFS and the NFSv4 environment has been established. Because this
type of migration involves removing existing accounts, file ownership will be
incorrect after the restoration has been accomplished unless UID and GID
data is preserved across the migration. If accounts are created in the new
environment using different UID/GID mapping, users might either be
incapable of accessing their own files or might have inappropriate
permissions on those owned by other users.

For example, user Bob’s account was created under UID 95556 in the existing
DCE security subsystem. His files are restored in the new environment, but
this UID no longer maps to any account because UIDs were not preserved
across the migration. An ls -l command on Bob’s directory causes raw UID
numbers to be displayed in the owner field rather than Bob’s login name, and
he is unable to access any of his data.

In another scenario, Bob’s files are restored, but his UID of 95556 is assigned
to user Jane instead. The result is that Jane effectively owns Bob’s files; an ls
-l command on Bob’s directory shows Jane as the owner.

Obviously, the same rules apply regarding GID preservation.

� Networked (system-to-system) data migration using FTP or other tools.
Again, file ownership at the destination must be closely monitored to ensure
that it is correct for the new user account.

In both of these cases, problems can be avoided if new accounts are created
using data extracted from the existing DCE security environment (for
example, using the DCE LDAP migration tools or by extracting appropriate
information from a dcecp -c user show command).

Alternately, if it is desirable to create a completely new set of accounts without
preserving an existing UID/GID scheme, a clear mapping between old and
new information will allow administrators to modify ownership of files after
they have been copied to their destination directories. Using the previous
example, the migration team simply creates a new account for Bob and uses
the chown command to modify ownership after Bob’s files have been moved to
their new location. Automating this process using scripts can save a
significant amount of time and effort.

244 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� If some or all systems are configured to maintain both the existing DCE/DFS
environment and NFSv4 mounts, you can use volume-to-volume local
copying. File ownership is simpler to preserve in this case, as long as users
can authenticate simultaneously in both environments.

This option also requires that administrators create the necessary file system
skeleton, including the user’s new home directory, before data migration can
take place. This directory must have proper ownership and permissions so
the user has the ability to copy data into it from the existing DFS directory
tree.

A login session for a migrating user using the previous scenario involves the
following steps:

a. Log in to the new environment using the newly created account (for
example, Kerberos, Network Authentication Services, or Active Directory).

b. Use the dce_login command to gain credentials in the existing DCE cell.

c. Use the cp -R command to recursively copy files from the DFS space to
the newly created NFSv4 file system skeleton.

d. Verify the proper ownership of files in the NFSv4 space.

e. Optionally, use a script or the aclput command to alter any ACLs that
need to be maintained. See the example ACL migration scripts provided in
Appendix E, “Scripts and configuration files” on page 353 for tips about
how such a utility can be implemented.

 Chapter 10. Planning a migration from DFS 245

246 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 11. Illustrated DFS migration

This chapter presents an example of the steps required when migrating a DCE
cell to a Kerberos V5/LDAP environment. We selected a user-by-user example
for this scenario. The migration method presented here differs from that
presented in the IBM Distributed Computing Environment Version 3.2 for AIX and
Solaris: DCE Security Registry and LDAP Integration Guide and also provides
additional details regarding data migration and ACL preservation. Sites are
encouraged to use solutions appropriate for their particular circumstances.

We use the following migration sequence:

1. Configure the DCE cell. It is populated with 1500 users and 100 groups. Each
user was added to 50 of the groups.

2. Configure the Kerberos V5 (KRB5)/LDAP environment.

3. A script is used to migrate DCE groups. User accounts are then migrated on a
user-by-user basis using other scripts. GID and UID information is preserved.

4. A script is executed to capture existing ACLs on files in the DFS namespace.

5. User space directories and files are copied to the NFS namespace.

6. ACLs on these files are changed to NFSv4 style using the AIX 5L aclconvert
command.

7. Last, ACLs are re-mapped to rough equivalents of their DFS values using the
script and .acl files created in step 4.

11

© Copyright IBM Corp. 2005. All rights reserved. 247

We discuss the following topics in this chapter:

� Test environment

� Migrating the DCE cell to LDAP/KRB5

� Migrating user data

248 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

11.1 Test environment
The hardware and architecture used for these tests consists of a two-machine
DCE 3.2 cell, with the name dce_test.itsc.austin.ibm.com. We use the following
machines:

� milan.itsc.austin.ibm.com (DCE security and CDS master, DFS fileset server)
running AIX 5L V5.2

� angelina.itsc.austin.ibm.com (DCE security replica), running AIX 5L 5.3
RML03

The target Kerberos V5/LDAP server is pecos.itsc.austin.ibm.com with AIX 5L
V5.3 RML01. Its Kerberos realm name is NFSV4REALM.IBM.COM.

For the purposes of this scenario, a generic IBM Tivoli Directory Server
environment was prepared. The IBM.KRB.schema.ldif file was loaded using the
ldapadd utility so that integrated login can be enabled using the KRB5LDAP
method.

We tested this configuration using the mkuser utility to ensure that it was possible
to create users whose accounts properly resided in the LDAP repository.

11.2 Migrating the DCE cell to LDAP/KRB5
As discussed more fully in the IBM Distributed Computing Environment Version
3.2 for AIX and Solaris: DCE Security Registry and LDAP Integration Guide, the
supported migration path uses a utility developed exclusively for IBM DCE V3.2.
It permits an existing DCE security cell’s data to be copied to an LDAP repository,
after which a decision can be made to maintain a hybrid DCE/LDAP security and
group environment or to decommission the existing DCE servers. This process
must be conducted in a fixed order; otherwise, failures are likely to occur.

Presuming that the DCE cell has been fully upgraded to Version 3.2 at the most
recent PTF level, perform the following steps:

1. Choose machines on which to run the LDAP master and slaves. Install and
configure this product using its standard installation procedure. Note that
LDAP slave servers must be configured on DCE security replicas that are to
be migrated to LDAP.

Important: A migration server must be configured in order to accomplish
the registry migrate procedure. This requires that both an existing security
replica and an LDAP slave server be running concurrently on the same
system.

 Chapter 11. Illustrated DFS migration 249

2. In the case of IBM Tivoli Directory Server, use the ldapadd command to
import the IBM.KRB.schema.ldif and IBM.DCE.schema.ldif files into LDAP.
Other LDAP products might use different commands to achieve the same
results.

3. Run the dcecp registry migrate command on the security replica to create a
migration slave.

4. For testing purposes, unconfigure the security replica in order to sever the
migrated LDAP environment from the original DCE cell. Test the ability to log
in as a Kerberos user using the former DCE data now stored in LDAP.

Migrating DCE groups and users
As noted earlier, the DCE registry migrate option was not used for this
example scenario, because it was decided that a user-by-user migration was
more appropriate for demonstration purposes. The built-in DCE option does not
permit discrete users or groups to be migrated, so an alternative was developed
using Perl scripts.

Groups
The first script, migrate_dce_groups_to_ldap.pl, makes use of the dcecp
commands group catalog -simplename and group show -simplename. The Perl
source code for this script is provided in Appendix E, “Scripts and configuration
files” on page 353, Example E-8 on page 376. The first dcecp command is used
to generate a list of all groups in the DCE registry, and the second dcecp
command to read the GID of each group. From this, it constructs a shell script
called dce_exported_groups.sh containing mkgroup statements using the format
shown in Example 11-1 on page 251.

Important: Although it might be possible to achieve the DCE to LDAP
migration with IBM Network Authentication Services (NAS) configured into
the LDAP environment, we do not recommend this due to possible conflicts
with the NAS version of the IBM.KRB.schema.ldif file imported during
configuration of NAS. As of this writing, the Kerberos schema files shipped
with DCE and NAS are incompatible.

Tip: It is necessary to migrate groups before migrating user accounts if the
registry migrate command is not used. AIX 5L mkuser commands fail if a
non-existent group is specified. Therefore the following command will fail if, for
example, the test group does not already exist in the KRB5LDAP registry:

mkuser -R KRB5LDAP pgrp=development groups=development,test myuser

250 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 11-1 Format of mkgroup command output from migration script

#!/bin/sh

mkuser -R KRB5LDAP grpadm
mkgroup -RKRB5LDAP id=125 adms=grpadm Grp1
mkgroup -RKRB5LDAP id=126 adms=grpadm Grp2
mkgroup -RKRB5LDAP id=127 adms=grpadm Grp3
mkgroup -RKRB5LDAP id=128 adms=grpadm Grp4
mkgroup -RKRB5LDAP id=129 adms=grpadm Grp5
mkgroup -RKRB5LDAP id=130 adms=grpadm Grp6
mkgroup -RKRB5LDAP id=131 adms=grpadm Grp7
mkgroup -RKRB5LDAP id=132 adms=grpadm Grp8
mkgroup -RKRB5LDAP id=133 adms=grpadm Grp9
mkgroup -RKRB5LDAP id=134 adms=grpadm Grp10

Note that a user called grpadm is created and given administrative control over
each group. This user ID is embedded in the script by the admin_user variable
and can be changed before the script is executed if desired.

As used, the DCE group migration Perl script also records built-in groups such as
those shown in Example 11-2.

Example 11-2 Built-in DCE/AIX 5L groups captured by the migration script

mkgroup -R KRB5LDAP id=-2 adms=grpadm nogroup
mkgroup -R KRB5LDAP id=0 adms=grpadm system
mkgroup -R KRB5LDAP id=1 adms=grpadm daemon
mkgroup -R KRB5LDAP id=2 adms=grpadm uucp
mkgroup -R KRB5LDAP id=3 adms=grpadm bin
mkgroup -R KRB5LDAP id=4 adms=grpadm kmem
mkgroup -R KRB5LDAP id=6 adms=grpadm mail
mkgroup -R KRB5LDAP id=7 adms=grpadm tty
mkgroup -R KRB5LDAP id=12 adms=grpadm none
mkgroup -R KRB5LDAP id=18 adms=grpadm tcb

These groups should not be migrated because most will exist by default in the
AIX 5L files-based registry (for example, the /etc/passwd file). Either they can be
manually removed from the generated shell script prior to execution, or the
migrate_dce_groups_to_ldap.pl script can be altered to bypass a specific list of
such groups.

Tip: The root user cannot be given administrative control over groups listed in
the KRB5LDAP registry, because root exists only in the files-based standard
AIX 5L user registry.

 Chapter 11. Illustrated DFS migration 251

If certain groups already exist, the mkgroup command will report an error and
continue. Example 11-3 shows these error messages.

Example 11-3 Possible error messages during group creation

3004-692 Error changing "id" to "7" : Account exists.
3004-692 Error changing "id" to "12" : Account exists.
3004-694 Error adding "acct-admin" : Name is too long.
3004-692 Error changing "id" to "200" : Account exists.

Additional development is required if an existing DCE site makes use of locally
designated accounts with direct control over membership of discrete groups. In
this case, output from the dcecp acl show /.:/sec/group/group_name command
can be parsed in order to augment the previous commands with additional adms
attributes. See Example 11-4.

Example 11-4 Example of an ACL on a group entry in DCE

dcecp -c acl show /.:/sec/group/none
{unauthenticated r-t-----}
{user cell_admin rctDnfmM}
{user acct_mgmt rctDnfmM}
{group_obj r-t-----}
{group acct-admin rctDnfmM}
{other_obj r-t-----}
{any_other r-t-----}
#

Such additional command parsing is necessary if, for example, the site needs to
give the acct-mgmt user an entry in the adms attribute. This step is left as an
exercise for the reader.

User accounts
Next, a Perl script called migrate_dce_users_to_ldap.pl is executed to read user
account data from the DCE registry (the source code is included in Appendix E,
“Scripts and configuration files” on page 353, Example E-9 on page 378). Again,
this generates a standard shell script called dce_exported_users.sh, containing
appropriate mkuser commands for use on a system configured with the
LDAP/Kerberos authentication subsystem. Example 11-5 on page 253 shows
sample output; it was executed as:

perl migrate_dce_users_to_ldap.pl --prefix /nfs/dce

Tip: Remember that, by default, AIX 5L user and group names cannot exceed
eight characters in length.

252 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 11-5 Sample output from user migration script

#!/bin/sh
mkgroup -R KRB5LDAP migusr
mkuser -R KRB5LDAP uid=1138 pgrp=migusr groups=Grp20,Grp19,Grp18,Grp17,
Grp16,Grp15,Grp14,Grp13,Grp12,Grp11,Grp10,Grp9,Grp8,Grp7,Grp6,Grp5,Grp4,Grp3,Gr
p2,Grp1 home=/nfs/dce/home/home/testu30 testu30
mkuser -R KRB5LDAP uid=1137 gecos="Test User 29" pgrp=migusr groups=Grp20,
Grp19,Grp18,Grp17,Grp16,Grp15,Grp14,Grp13,Grp12,Grp11,Grp10,Grp9,Grp8,Grp7,Grp6
,Grp5,Grp4,Grp3,Grp2,Grp1 home=/nfs/dce/home/testu29 testu29
mkuser -R KRB5LDAP uid=1136 gecos="Test User 28" pgrp=migusr groups=Grp20,
Grp19,Grp18,Grp17,Grp16,Grp15,Grp14,Grp13,Grp12,Grp11,Grp10,Grp9,Grp8,Grp7,Grp6
,Grp5,Grp4,Grp3,Grp2,Grp1 home=/nfs/dce/home/testu28 testu28
mkuser -R KRB5LDAP uid=1135 gecos="Test User 27" pgrp=migusr groups=Grp20,
Grp19,Grp18,Grp17,Grp16,Grp15,Grp14,Grp13,Grp12,Grp11,Grp10,Grp9,Grp8,Grp7,Grp6
,Grp5,Grp4,Grp3,Grp2,Grp1 home=/nfs/dce/home/testu27 testu27

The script uses the first entry found in the DCE account’s group list as the pgrp
(primary group) attribute. However, if this value is “none,” it is replaced with
“migusr,” which is created specifically to replace the DCE “none” group.

If users are to be migrated one at a time, the script can accept a DCE login ID as
a parameter through the use of the --user flag. The latter option causes a single
command, for example, dcecp -c user show testu30, to be executed and
parsed. If the --user flag is not specified, the entire registry is read; in this case,
the script uses the dcecp -c account catalog -simplename command to
generate a list of user accounts, after which each returned account name is
processed using the same dcecp -c user show command. The script also parses
the home directory entry in the user’s account, stripping off the DCE cell name
and DFS /fs string if present.

Example 11-6 shows a complete example of a translation from a DCE account to
a mkuser command. In this case, the Perl script is executed with the --user flag.
The full command syntax is:

perl migrate_dce_user_to_ldap.pl --user testu30 --prefix /nfs/dce

Example 11-6 DCE registry entry for account testu30

dcecp -c user show testu30
{fullname {Test User 30}}
{uid 1138}
{uuid 00000472-1671-21da-be00-000629b91ea4}
{alias no}
{quota unlimited}
{groups none Grp1 Grp2 Grp3 Grp4 Grp5 Grp6 Grp7 Grp8 Grp9 Grp10 Grp11 Grp12
Grp13 Grp14 Grp15 Grp16 Grp17 Grp18 Grp19 Grp20}
{acctvalid yes}
{client yes}

 Chapter 11. Illustrated DFS migration 253

{created /.../dce_test.itsc.austin.ibm.com/cell_admin
2005-08-26-15:41:39.000-05:00I-----}
{description {}}
{dupkey no}
{expdate none}
{forwardabletkt yes}
{goodsince 2005-08-26-15:41:39.000-05:00I-----}
{group none}
{home /.../dce_test.itsc.austin.ibm.com/fs/home/testu30}
{lastchange /.../dce_test.itsc.austin.ibm.com/cell_admin
2005-08-30-09:58:48.000-05:00I-----}
{organization none}
{postdatedtkt no}
{proxiabletkt no}
{pwdvalid yes}
{renewabletkt yes}
{server yes}
{shell /bin/csh}
{stdtgtauth yes}
{usertouser no}
nopolicy
#

By default, the previous entry’s home directory is translated to /home/testu30.
However, because the --prefix flag is in use, the mkuser command produced by
the Perl script uses the directory tree /nfs/dce/home/testu30. Additionally, the
script detects the DCE group none and changes it to a new default (migusr)
because the none group is unlikely to be necessary in the LDAP environment.
The name of the default group can be altered by editing the script.

Example 11-7 shows the results obtained by running the script against the above
account.

Example 11-7 Command produced during migration of user testu30

mkuser -R KRB5LDAP uid=1138 gecos="Test User 30" pgrp=migusr
groups=Grp20,Grp19,Grp18,Grp17,Grp16,Grp15,Grp14,Grp13,Grp12,Grp11,Grp10,Grp9,G
rp8,Grp7,Grp6,Grp5,Grp4,Grp3,Grp2,Grp1 home=nfs/dce/home/testu30 testu30

The script can be expanded to capture additional data, such as the DCE
account’s expiration or creation time, if it is thought necessary to copy these
fields intact to the LDAP database.

Review the resulting shell script for duplicate user IDs if the entire DCE registry is
migrated (that is, the --user switch is not used), and, as with the group example
shown earlier in the chapter, the presence of system-created or DCE-specific

254 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

accounts such as cell_admin, uucp, and daemon. Remove these prior to the
execution of the shell script in the LDAP environment.

Example 11-8 shows example error messages that might occur during execution
of the shell script in the KRB5LDAP realm.

Example 11-8 Errors encountered while creating users

3004-694 Error adding "testu28" : Account exists.
3004-694 Error adding "testuser25" : Name is too long.
3004-694 Error adding "testu23" : Account exists.

The mkuser command creates home directories only when the base directory
path exists. In the previous example, the base path /nfs/dce/home must be
present before executing the account-creation shell script; otherwise, errors will
occur. Following execution, an ls -l of the newly created namespace shows the
home directories and ownership information, as shown in Example 11-9.

Example 11-9 Directory listing following execution of the dce_exported_users.sh script

ls -l /nfs/dce/home
total 0
drwxr-xr-x 2 testu1 migusr 256 Aug 30 11:21 testu1
drwxr-xr-x 2 testu10 migusr 256 Aug 30 11:21 testu10
drwxr-xr-x 2 testu12 migusr 256 Aug 30 11:21 testu12
drwxr-xr-x 2 testu13 migusr 256 Aug 30 11:21 testu13
drwxr-xr-x 2 testu14 migusr 256 Aug 30 11:21 testu14
drwxr-xr-x 2 testu15 migusr 256 Aug 30 11:21 testu15
[...]
drwxr-xr-x 2 testu15 migusr 256 Aug 30 11:21 testu30
#

You can test the new LDAP-based user account for testu30 using the lsuser -R
KRB5LDAP testu30 command, as shown in Example 11-10.

Example 11-10 Fragment of user account listing for testu30

testu30 id=1138 pgrp=migusr groups=migusr,Grp1,Grp2,Grp3,Grp4,Grp5,Grp6,Grp7,
Grp8,Grp9,Grp10,Grp11,Grp12,Grp13,Grp14,Grp15,Grp16,Grp17,Grp18,Grp19,Grp20
home=/nfs/dce/home/testu30 shell=/usr/bin/ksh login=true su=true rlogin=true
telnet=true [...]

Note: The account creation script, dce_exported_users.sh, must be executed
under the root ID because mkuser is a privileged command. Otherwise, errors
will be reported and the accounts will not be created.

 Chapter 11. Illustrated DFS migration 255

During testing, all elements present in the migration shell script were created
properly. The only remaining issue is the password, which cannot be migrated
through Perl scripts, and which must be changed in order to allow the user to log
in to their migrated account. You can do this by using the script in Example E-2
on page 354, which uses the kadmin command to reset each password after new
accounts have been created.

11.3 Migrating user data
In this section, we describe migrating user data.

11.3.1 Capturing existing ACLs in the DFS environment
Migrating ACLs from one environment to another is extremely difficult due to
differences in mapping and handling between DFS and NFSv4. The DFS ACL
set provides the “mask_obj” type that does not translate into a valid NFS-style
ACL, so no attempt has been made to migrate this entry for purposes of this
example. We used a Perl script called migrate_dfs_acls_to_nfsv4.pl; this script is
in Example E-4 on page 361. It should by no means be considered a complete
solution, but can be used as a basis for a more fully featured tool and customized
for a location’s particular needs.

Moving ACLs involves the following steps:

1. A user (for example, testu30) whose files are to be copied logs in to the
existing DFS environment using integrated login. The ACL migration script
requires this, because it uses the $HOME environment variable to determine
the base path with which it will start in the NFS environment. This requires the
removal of the DFS /.../cell_name/fs prefix from subsequent aclput
commands.

2. The migrate_dfs_acls_to_nfsv4.pl script is run while the current working
directory is the user’s $HOME:

perl migrate_dfs_acls_to_nfsv4.pl --prefix /nfs/dce

Example E-4 on page 361 provides the source code for this script. This script
creates an acl_data subdirectory containing NFSv4-style .acl input files for
each file and directory contained in the tree. It also creates a shell script,
named acl_testu30.sh in the case of the testu30 user, containing a series of
AIX 5L aclput commands referencing each file in the acl_data directory and
its corresponding file. Example 11-11 on page 257 shows the example
output.

256 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 11-11 Commands in the acl_testu30.sh script

#!/bin/sh
aclput -i /nfs/dce/home/testu30/acl_data/.sh_history.acl
/nfs/dce/home/testu30/.sh_history
aclput -i /nfs/dce/home/testu30/acl_data/History.doc.acl
/nfs/dce/home/testu30/History.doc
aclput -i /nfs/dce/home/testu30/acl_data/afs_server.acl
/nfs/dce/home/testu30/afs_server
aclput -i /nfs/dce/home/testu30/acl_data/awk_example.acl
/nfs/dce/home/testu30/awk_example

An ACL input file constructed using the Perl script, as found in the acl_data
directory, might look similar to the one shown in Example 11-12. This is a
rough approximation of the ACL found on the matching file located in the DFS
namespace. This shows the .acl input file generated by the Perl script for a
file called History.doc, as well as the original DFS ACLs found in the DCE cell.

Example 11-12 Comparison of the ACL input file and original DCE/DFS ACL

$ cat acl_data/History.doc.acl
*
* ACL_type NFS4
*
*
* Owner: testu30
* Group: Grp1
*
s:(OWNER@): a RAraWwpxcC
s:(GROUP@): a RArax
s:(EVERYONE@): a RArax

dcecp -c acl show ./History.doc
{user_obj rwxc--}
{group_obj r-x---}
{other_obj r-x---}
#

11.3.2 Copying data from DFS to the NFS namespace
Next, the user’s DFS-resident files, including the acl_<username>.sh file and the
contents of the acl_data directory, are copied to NFS space using a standard AIX
5L cp -R command This can also be accomplished using tar and FTP if desired.
The result is that data formerly located in DFS under its /:/home/<user_id>
directory tree is now in /nfs/dce/home/<user_id> and ready for ACL conversion.

The next step is to ensure that ACLs on the files in the /nfs/dce space are in
NFS4 format, because they are likely to be in AIXC format by default. To check,

 Chapter 11. Illustrated DFS migration 257

use the aclget command on a file in the user’s new home directory, for example,
aclget .profile. If it returns an AIXC-style ACL, simply use the aclconvert
command recursively on the whole directory tree to convert all files to NFS4
ACLs. Example 11-13 shows an example.

Example 11-13 Using aclconvert to change user ACLs to NFS4 format

$ pwd
/nfs/dce/home/
$
$ aclconvert -R -t NFS4 testu30
$

After this step is successfully completed, the last step is to restore the ACLs
saved in the acl_data directory.

11.3.3 Restoring ACLs on the copied data
The final step in ACL conversion involves the execution of the
acl_<username>.sh script generated earlier in the process. For the example user
testu30, the ./acl_testu30.sh command is executed after the user has logged
in to the LDAP/NFSv4 namespace. This traverses the entire directory and
executes the aclput command on all files, using individual
acl_data/<filename>.acl files as input.

Example 11-14 shows an example of an ACL on a file in user testu30’s home
directory before and after the ACL conversion.

Example 11-14 NFSv4 ACLs on file awkt before and after script execution

$ aclget awkt
*
* ACL_type NFS4
*
*
* Owner: testu30
* Group: migusr
*
s:(OWNER@): a rwpRWxaAdcCs

Restriction: The supplied Perl scripts are not exhaustive in their conversion of
existing DFS ACLs to NFS4 format. NFS4-style ACLs are very complex and
behavior will be different from that found under DCE/DFS. The scripts are
intended as a starting point for migration assistance only. Experimentation in a
test setting will assist migrating sites in determining the appropriate ACL
settings for their particular needs.

258 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

s:(OWNER@): d o
s:(GROUP@): a rRxadcs
s:(GROUP@): d wpWACo
s:(EVERYONE@): a rRxadcs
s:(EVERYONE@): d wpWACo
$
$./acl_testu30.sh
$ aclget awkt
*
* ACL_type NFS4
*
*
* Owner: testu30
* Group: migusr
*
s:(OWNER@): a rwpRWxaAcC
s:(GROUP@): a rRxaA
s:(EVERYONE@): a rRxaA
$

Users can opt to delete the acl_data directory and the acl_<username>.sh file
itself, because they will no longer be needed after the DFS to NFSv4 ACL
conversion process has been completed.

 Chapter 11. Illustrated DFS migration 259

260 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 12. Planning a migration from
AFS

In this chapter, we discuss issues that must be considered when migrating from
an AFS environment to an NFSv4 environment.

We discuss the following topics in this chapter:

� A broad overview of AFS

� Security differences between AFS and NFSv4

� Migrating AFS users to NFSv4

� Migrating AFS groups to NFSv4

� Comparing an AFS “cell” and an NFS “domain”

� File system semantics

� Building a namespace

� Migrating AFS data to NFSv4 servers

� Access control lists

12

© Copyright IBM Corp. 2005. All rights reserved. 261

12.1 A broad overview of AFS
A brief discussion of key Andrew File System (AFS) terms and concepts is useful
before proceeding with details describing an AFS migration to NFSv4.

12.1.1 A distributed file system
AFS is a distributed file system that enables users to share and access files
stored in a network of computers as easily as they access files stored on their
local machines. The file system is called distributed for this reason; files can
reside on many different machines, but are available to users on every machine.

12.1.2 Servers and clients
AFS stores files on a subset of the machines in a network, called File Server
machines. File Server machines provide a file storage and delivery service, along
with other specialized services, to another subset of machines in the network
known as client machines. In a standard AFS configuration, clients provide
computational power, access to files stored in AFS, and other general purpose
tools to users seated at their consoles. There are generally many more client
workstations than File Server machines. AFS File Server machines use a
number of server processes, so called because each provides a distinct
specialized service: one handles file requests, another tracks file location, a third
manages security, and so on.

12.1.3 Cells
A cell is an administratively independent site running AFS. The cell's system
administrators make many decisions about configuring and maintaining their cell
in the way that best serves its users, without having to consult the administrators
in other cells, for example, determining how many clients and servers to have,
where to put files, and how to allocate client machines to users.

Figure 12-1 on page 263 shows an AFS cell.

262 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 12-1 An AFS cell with servers and clients

Example 12-1 and Example 12-2 show the commands needed to determine the
name of the cell to which a machine belongs and the database server names in
each cell.

Example 12-1 Returns the name of the cell to which a machine belongs

/usr/afs/bin/fs wscell
This workstation belongs to cell 'itsc.austin.ibm.com'

Example 12-2 Displays the database server machines in each cell

/usr/afs/bin/fs listcell
Cell itsc.austin.ibm.com on hosts istanbul.itsc.austin.ibm.com
Cell test36.transarc.com on hosts cube.pittsburgh.ibm.com
afstest59.pittsburgh.ibm.com

 Chapter 12. Planning a migration from AFS 263

12.1.4 Transparent access and the uniform namespace
Although an AFS cell is administratively independent, its local collection of files is
organized in a manner that permits users from other cells to access its
information. AFS enables cells to combine local file spaces into a global file
space in a transparent manner. Users do not need to know anything about a file's
location in order to access it. They must only know the path to the file, which
looks the same in every cell. Therefore, every user at every machine sees the
collection of files in the same way, meaning AFS provides a uniform namespace
to its users.

Cross-cell sharing
Participating in the AFS global namespace makes a cell’s local file tree visible to
AFS users in foreign cells and makes other cells’ file trees visible to local users. It
makes file sharing across cells as easy as sharing within a cell. Making a file tree
visible does not mean making it vulnerable. Participation in a global namespace
is not mandatory. Some cells use AFS primarily to facilitate file sharing within the
cell and are not interested in providing their users with access to foreign cells.

12.1.5 Security: Mutual authentication and access control lists
Even in a cell where file sharing is especially frequent and widespread, it is not
desirable that every user have equal access to every file. One way AFS provides
adequate security is by requiring that servers and clients prove their identities to
one another before exchanging information. This procedure, known as mutual
authentication, requires that both server and client demonstrate knowledge of a
shared secret (such as a password) known only to the two of them. Mutual
authentication guarantees that servers provide information only to authorized
clients and that clients receive information only from legitimate servers.

Users themselves control another aspect of AFS security. They determine who
has access to the directories they own. For any directory a user owns, that user
can build an access control list (ACL) that grants or denies access to the
contents of the directory. An access control list pairs specific users with specific
types of access privileges. There are seven separate permissions (rlidwka), and
different IDs or groups can appear on an access control list.

Figure 12-2 on page 265 shows some AFS features.

Tip: Assessing the impact of changes to existing cross-cell relationships is an
essential component of the migration planning process.

264 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 12-2 AFS features

12.1.6 Volumes
AFS groups files into volumes, making it possible to distribute files across many
machines and yet maintain a uniform namespace. A volume is a unit of disk
space that functions like a container for a set of related files, keeping them all
together on one partition. Volumes can vary in size, but are smaller than a
partition.

Volumes are important to system administrators and users for several reasons.
Their small size makes them easy to move from one partition to another, or even
between machines. The system administrator can maintain maximum efficiency
by moving volumes to keep the load balanced evenly. In addition, volumes
correspond to directories in the file space; most cells store the contents of each
user home directory in a separate volume. Therefore, the contents of a directory
move together when its containing volume moves, making it easy for AFS to keep
track of a file’s location at a given time. Volume moves are recorded
automatically, so users do not have to keep track of file locations. Example 12-3
shows the output from the command to list volumes on an AFS server.

Example 12-3 List the volumes on an AFS server

/usr/afs/bin/vos listvol istanbul.itsc.austin.ibm.com
Total number of volumes on server istanbul partition /vicepa: 28
eng 536870987 RW 420 K On-line
hr 536870981 RW 420 K On-line
proj 536870969 RW 69 K On-line
projA 536870972 RW 426 K On-line
projB 536870975 RW 420 K On-line
root.afs 536870912 RW 5 K On-line

 Chapter 12. Planning a migration from AFS 265

root.afs.readonly 536870913 RO 5 K On-line
root.cell 536870915 RW 14 K On-line
root.cell.readonly 536870916 RO 9 K On-line

12.1.7 Efficiency boosters: Replication and caching
AFS incorporates special features on server and client machines that help make
it efficient and reliable. On server machines, AFS enables administrators to
replicate commonly-used volumes, such as those containing binaries for popular
programs.

Replication is a means of putting an identical, read-only copy (sometimes called
a clone) of a volume on more than one File Server machine. The failure of one
File Server machine housing the volume does not interrupt a user’s work,
because the volume's contents are still available from other machines.
Replication also helps assure that one machine does not become overburdened
with requests for files from a popular volume.

On client machines, AFS uses caching to improve efficiency. When a user on a
client workstation requests a file, the Cache Manager on the client sends a
request for the data to the File Server process running on the appropriate File
Server machine. The user does not need to know which machine this is; the
Cache Manager determines file locations automatically. The Cache Manager
receives the file from the File Server process and adds it to the cache, an area of
the client machine's local disk or memory dedicated to temporary file storage.
Caching improves efficiency, because the client does not need to send a request
across the network every time the user wants the same file. Network traffic is
minimized, and subsequent access to the file is especially fast because the file is
stored locally. AFS has a way of ensuring that the cached file stays up-to-date, a
method known as callback.

12.2 Security differences between AFS and NFSv4
Both AFS and NFS incorporate several features to ensure that only authorized
users gain access to data.

12.2.1 Security and authorization in AFS
AFS uses simple mutual authentication to verify user identities during the first
part of the login procedure. In that case, the key is based on the user’s password.
Verification of the user’s identity is accomplished when they provide their
password during login. The Authentication Server grants the user a token as
proof to AFS server processes that the user has authenticated.

266 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

All secure AFS transactions (except the first part of the login process) employ
complex mutual authentication. When AFS client and server processes
communicate, each requires the other to prove its identity during mutual
authentication, which involves the exchange of encrypted information that only
valid parties can decrypt and respond to. This helps create a secure environment
in which to send cross-network messages.

In fulfilling these duties, the Authentication Server uses algorithms and other
procedures based on Kerberos IV. The server also maintains the authentication
database (kaserver.DB0), which records server encryption keys and an
encrypted form of all user passwords. AFS sites can also use standard Kerberos
authentication rather than the AFS Authentication Server.

AFS distinguishes between authentication and authorization checking.
Authentication refers to the process of proving one’s identity, while authorization
checking involves the process of verifying that an authenticated identity is
allowed to perform a certain action.

12.2.2 Security in NFSv4
NFSv4 uses the Sun remote procedure call (RPC) protocol to communicate over
the network between the client and the server. The basic NFS security
mechanisms are extended in NFSv4 through the mandated support of the
RPCSEC_GSS RPC security flavor. RPCSEC_GSS is implemented at the RPC
layer and is capable of supporting different security mechanisms. Examples
include Kerberos V5 and public key-based mechanisms such as SPKM. NFSv4
requires that RPCSEC_GSS be provided as an available RPC security flavor. It
mandates that the Kerberos V5, SPKM, and LIPKEY security mechanisms be
supported for full protocol compliance. It still allows the support and use of other
RPC security flavors such as AUTH_SYS. A key weakness of the AUTH_SYS
flavor has always been the ability of a malicious hacker to forge and impersonate
credentials quite easily.

Three levels of protection can be applied when using RPCSEC_GSS security
with RPCs as they are transmitted over the network between server and client:

Authentication Validates the identity of RPC sender.

Integrity Validates that the contents of the RPC were not changed
during transmission (includes authentication also).

Privacy Prevents unauthorized viewing of data while it is in transit
between client and server (includes authentication and
integrity also).

 Chapter 12. Planning a migration from AFS 267

Keep in mind that each increasing level of protection incurs a performance
penalty. Each site must choose the minimum level that meets its data protection
requirements.

12.2.3 Migration considerations

Migrating existing authentication services from an AFS environment requires a
great deal of planning, because the existing architecture might make use of more
than one security data source. AFS cells might be using different authentication
methods such as the AIX 5L integrated login or Solaris PAM to manage
concurrent access to accounts located within the AFS kaserver, along with
traditional flat files. If the AFS client machines use integrated login, users gain
access to local file systems and AFS tokens in a single step. If an AFS-modified
login utility is not in use, a standard UNIX password must be placed in the local
password file of every client machine the user will use. The user logs in to the
local file system only, and then must issue the klog or pagsh commands to
authenticate with AFS. It is simplest if the passwords in the local password file
and the Authentication Database are the same, but this is not required.

Migrating to an NFSv4 environment might require that AFS and other accounts
be loaded into an MIT Kerberos or IBM Network Authentication Services
database in order to make use of, for example, the enhanced services and
improved security of NFSv4. We provide an illustration of the various steps
involved to set up and configure such an environment in 6.4, “IBM Tivoli Directory
Server V5.2” on page 122.

Some AFS sites have already migrated to Kerberos V5 and no longer use the
AFS kaserver. For them, it will be easier to migrate to NFS.

Note: The migration considerations mentioned in this book are for IBM AFS,
but most of the discussion also holds true for OpenAFS.

Note: Check the default stanza in the /etc/security/user file. If the SYSTEM
line is similar to the following line, this means that AFS integrated login is
enabled:

SYSTEM = "AFS OR AFS[NOTFOUND]AND compat"

268 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

12.3 Migrating AFS users to NFSv4
Migration requires the creation of users and groups within an NFS environment
that match those already present in the AFS cell. The list of AFS users can be
obtained in many ways:

� The standard password files (/etc/passwd or equivalent) provide the list of
users, names, login shell, and home directories. While adding AFS accounts,
most AFS sites create an entry for the new user in the common shared
pasword file. This file is then distributed to each machine that the user can log
in to. This is a general practice for cells with large number of users because
this centralized repository is easy to maintain. Example 12-4 shows a sample
/etc/passwd file.

Example 12-4 Sample /etc/passwd file

root:!:0:0::/:/usr/bin/ksh
daemon:!:1:1::/etc:
bin:!:2:2::/bin:
sys:!:3:3::/usr/sys:
adm:!:4:4::/var/adm:
uucp:!:5:5::/usr/lib/uucp:
guest:!:100:100::/home/guest:
user1:!:214:1:User One:/afs/itsc.austin.ibm.com/home/user1:/usr/bin/ksh
user2:!:215:1:User Two:/afs/itsc.austin.ibm.com/home/user2:/usr/bin/ksh
user3:!:216:1:User Three:/afs/itsc.austin.ibm.com/home/user3:/usr/bin/ksh
user4:!:217:1:User Four:/afs/itsc.austin.ibm.com/home/user4:/usr/bin/ksh
user5:!:218:1:User Five:/afs/itsc.austin.ibm.com/home/user5:/usr/bin/ksh

� You can also obtain a list of users using the kas command, as shown in
Example 12-5.

Example 12-5 Obtaining the list of users using the kas command

/usr/afs/bin/kas list admin
afs
admin
user1
user2
user3
user4
user5

� You can obtain a list of all accounts along with the matching user ID by using
the pts listentries -users command, as shown in Example 12-6 on
page 270.

 Chapter 12. Planning a migration from AFS 269

Example 12-6 Obtaining the list of users using the pts command

/usr/afs/bin/pts listentries -users
Name ID Owner Creator
anonymous 32766 -204 -204
admin 1 -204 32766
user2 215 -204 1
user3 216 -204 1
user4 217 -204 1
user5 218 -204 1

After obtaining the list of users, the next step is to create the same users as
principals in the Kerberos V5 subsystem. We illustrate the steps to do this in
13.5, “Migrating users to Kerberos and LDAP” on page 290.

The AFS Authentication Database stores user passwords converted with an
encryption key, so retrieving the user’s existing password can be difficult. This
requires that accounts be created in the NFSv4 environment using new, possibly
randomly generated passwords based on the site’s existing security policy. Users
should be required to change this password upon initial login; most Kerberos V5
implementations set a password change flag on new user accounts by default to
ensure that users comply with this requirement. Therefore, at the time of first
login, the users can reset their passwords back to the old AFS passwords, if they
desired.

12.4 Migrating AFS groups to NFSv4
You can obtain the list of groups and their members using the pts command
suite.

Example 12-7 shows how a list of groups can be obtained using the pts
command.

Example 12-7 Obtaining the list of groups using the pts command

/usr/afs/bin/pts listentries -groups
Name ID Owner Creator
system:administrators -204 -204 -204
system:anyuser -101 -204 -204
system:authuser -102 -204 -204
staff -206 1 1
contract -207 1 1
user11:proja -208 224 1
friends -209 229 1

270 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

As the previous example shows, a group can be a system group
(system:anyuser), a regular group (user11:proja), or a prefix-less group (friends)

You can obtain a list of members for each of these groups, as shown in
Example 12-8.

Example 12-8 Obtaining the list of members using the pts command

pts membership friends
Members of friends (id: -209) are:
 user2
 user17
 user20
 user21

To display the groups a user or group owns, use the command shown in
Example 12-9.

Example 12-9 Retrieving the owners for each group

/usr/afs/bin/pts listowned user11
Groups owned by user11 (id: 224) are:
 user11:proja

/usr/afs/bin/pts listowned user16
Groups owned by user16 (id: 229) are:
 friends

These groups must be created within the IBM Tivoli Directory Server LDAP back
end. In Chapter 13, “Illustrated AFS migration” on page 285 (see Example 13-13
on page 295), we provide an example of this using the mkgroup command.

Other utilities in AFS, such as prdb_check, can provide more detailed
information. This utility emits extended information about the AFS users and
groups, as shown in Example 12-10.

Example 12-10 Sample output from the prdb_check utility

/usr/afsws/etc/prdb_check -entries /usr/afs/db/prdb.DB0
Entry at 66752: flags 0x80, id 1i, next 0.
c:08/10 15:03:28 a:08/10 15:03:49 r:time-not-set n:time-not-set
ids -204
hash (id 0 name 0). Owner -204i, creator 32766i
quota groups 20, foreign users 20. Mem: 1, inst: 0
Owned chain 78464, next owned 0, inst ptrs(0 0 0).
Name is 'admin'
.
.

 Chapter 12. Planning a migration from AFS 271

Entry at 71936: flags 0xc0, id 215i, next 0.
c:08/16 11:05:15 a:08/17 11:29:14 r:time-not-set n:time-not-set
ids -206 -209
hash (id 0 name 0). Owner -204i, creator 1i
quota groups 20, foreign users 20. Mem: 2, inst: 0
Owned chain 0, next owned 0, inst ptrs(0 0 0).
Name is 'user2'

12.5 Comparing an AFS “cell” and an NFS “domain”
An AFS cell is used as an administrative domain for configuring servers and
clients. NFSv4 uses a similar concept known as a domain. For migration
purposes, the AFS cell can effectively be transformed into an NFS domain. All
clients and servers in that domain can then be configured.

We provide the steps to configure an NFS domain in 13.3, “Setting the NFS
domain to the AFS cell name” on page 288.

12.6 File system semantics
In this section, we discuss file system semantics.

12.6.1 AFS implements save on close
When an application issues the UNIX close system call on a file, the Cache
Manager performs a synchronous write of the data to the File Server that
maintains the central copy of the file. It does not return control to the application
until the File Server has acknowledged receipt of the data. When an application
issues the UNIX write system call, the Cache Manager writes modifications to
the local AFS client cache only. If the local machine crashes or an application
program exits without issuing a close, it is possible that the modifications will not
be recorded in the central copy of the file maintained by the File Server.

The implication is that if an application’s Save option invokes the write system
call rather than close or fsync, the changes are not necessarily stored
permanently on the File Server machine. Most application programs issue a save
during close operations, as well as when they finish handling a file and on
application exit.

Important: Some existing AFS cells have already migrated to Kerberos V5
and will not need to perform the steps described in this section.

272 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

12.6.2 Difference between AFS and NFS
An AFS file system provides an open-close (session) semantics and NFS follows
the UNIX single-site (read/write) semantics.The UNIX semantics imply that in a
centralized UNIX system, if a process modifies a file, other processes see the
new data on the next read system call. Another way of saying this is that
single-site semantics guarantee cache consistency at the read and write system
call granularity, and session semantics do so at open and close system call level.
This difference is important for any applications using AFS to store their data.

12.7 Building a namespace
NFSv4 offers a large variety of features when building the namespace. These
features are as follows:

� pseudo root

� exname

� referrals

� replication

12.7.1 Pseudo file system
We discuss this feature in detail in 5.3, “Pseudo file system” on page 87.

Use of this NFSv4 feature allows the creation of an exported namespace similar
to that provided by AFS. All AFS clients perform a single mount of the shared /afs
directory tree. This provides the same namespace on all AFS clients. Similarly,
all NFS clients perform a single mount of the NFS server’s root export using the
same directory (for example, /nfs) in order to access the same hierarchical
namespace. This provides a simple, one-to-one mapping easily understandable
to existing AFS users.

12.7.2 External namespace (exname)
This feature is not part of the NFSv4 RFC, but rather is an AIX 5L
implementation-specific option. The exname option extends the pseudo file
system concept. The external name in the /etc/exports file must begin with the
nfs root name. But, an exname export does not need to correspond to the server’s
root.

The exname option is useful when we do not want to expose a server’s file system
tree to the client.

 Chapter 12. Planning a migration from AFS 273

For more details about this option, see the IBM Redbook Securing NFS in AIX:
An Introduction to NFS V4 in AIX 5L Version 5.3, SG24-7204. You can view or
download this book from the following location:

http://www.redbooks.ibm.com/abstracts/sg247204.html

12.7.3 Referrals and replication
Both AFS and the NFSv4 protocol permit the distribution of data across multiple
servers in a manner that makes its actual location transparent to users of that
data. Several features assist with this process. The first is a global namespace
feature called a referral. The second is a means of specifying locations where
copies of data can be found, which is called a replica.

Figure 12-3 shows that the proj directory actually is located on another server. A
referral is created in the namespace of a server and location information is
attached to it. The primary server redirects operations to the server specified in
the location information. Although this sounds simple, it provides very powerful
capabilities for the location and administration of data.There is no restriction on
the number of referrals that can be created within either the server's NFSv4
pseudo space or within an exported file system.

Figure 12-3 Example of a namespace using referral

The concept of referral helps provide location transparency, which is also a key
feature of AFS. One of the features that makes AFS easy to use is that it provides
transparent access to files in a cell’s file space. Users do not need to know which
File Server machine stores a file in order to access it; they simply provide the
file’s path, which AFS invisibly translates into a machine location. In addition to
transparent access, AFS also creates a uniform namespace—a file’s path is

274 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.redbooks.ibm.com/abstracts/sg247204.html

identical regardless of which client machine on which the user is working. The
cell’s file tree looks the same when viewed from any client, because the File
Server machines store all files centrally and present them in an identical manner
to all clients.

Similarly, NFSv4 users need do not need to know where the data actually
resides. A single mount of the NFS primary sever provides access to the entire
namespace.

Figure 12-4 shows that the users directory is replicated. If the primary server fails
or becomes inaccessible, clients will still be able to access directories by failing
over to the replicated server.

Figure 12-4 Example of a namespace with replication

This is similar to AFS replication. In AFS, a read-only volume is a copy of the
read/write source volume and can exist at multiple sites (a site is a particular
partition on a particular File Server machine). As the name suggests, a read-only
volume’s contents do not change automatically as the read/write source
changes, but only when an administrator issues the vos release command. For
users to have a consistent view of the AFS file space, all copies of the read-only
volume must match one another as well as their read/write source.

We provide a detailed discussion about replication in NFSv4 in 3.3.3,
“Replication” on page 36. We address examples of both the read-only (ro) and
read/write (rw) replication, alongside the challenges of keeping the data
synchronized on multiple sites. The administrator needs to decide which
replication type is appropriate for their site. For example, replicating database
files located within the NFS namespace might be advisable, but maintaining
consistency across multiple copies might be challenging.

 Chapter 12. Planning a migration from AFS 275

12.8 Migrating AFS data to NFSv4 servers
Each site must decide on an appropriate strategy for migration and ensure
hardware availability before commencing data migration. The data in an AFS cell
can be broadly classified into two types:

� User data

This consists of home directories, owned by individual users, which are used
for holding individual personal data. Typically, the owner has full control over
their own directory tree. When required, access to this data can be given to
others. The concept of groups and ACLs helps effectively share this data.
One method for migrating this data involves the use of commands such as tar
and cpio. Depending on the type of migration selected, administrators might
move this data or allow each user to be responsible for migrating their own
files.

� Common/shared data

As the name suggests, this material is often accessed by multiple users or
groups. Group owners are responsible for setting access controls on this
data. Often, it is logically divided into directories based on project names,
departments, or useful tools, binaries, or source code. Many sites run
complex applications for creating and managing such data over AFS.

12.8.1 Migration options
Numerous options exist for accomplishing the migration of user and other data
from AFS to the NFSv4 environment, but limitations might be encountered based
on the type of migration and hardware acquisition plans arrived at during the
initial planning phase.

For example, if the site has opted for an all-at-once migration involving no new
hardware, the only option for data migration involves creating offline backups on
tape or other media, with subsequent restoration after the systems are
reconfigured for an NFSv4 environment. If, however, the existing systems are
supplemented with additional hardware and storage space, user and other data
can be copied across the network or even from disk to disk on an existing
system.

276 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Consider the following brief list of options:

� Tape backup, with restoration after disks have been reformatted for JFS2 or
GPFS and the NFSv4 environment has been established. Because this type
of migration involves removing existing accounts, file ownership will be
incorrect after restoration has been accomplished unless UID and GID data is
preserved across the migration. If accounts are created in the new
environment using different UID/GID mapping, users might either be
incapable of accessing their own files or might have inappropriate
permissions on those owned by other users.

For example, user John’s account was created under UID 1001 in the existing
AFS security subsystem. His files are restored in the new environment, but
this UID no longer maps to any account because UIDs were not preserved
across the migration. An ls -l on John’s directory causes raw UID numbers
to be displayed in the owner field rather than John’s login name, and he is
unable to access any of his data.

In another scenario, John’s files are restored, but his UID of 1001 is assigned
to user Jane instead. The result is that Jane effectively owns John’s files; an
ls -l of John’s directory shows Jane as the owner.

The same rules apply regarding GID preservation.

� Network (system-to-system) data migration using FTP or other tools. Again,
file ownership at the destination must be closely monitored to ensure that it is
correct for the new user account.

In both the previous cases, problems can be avoided if new accounts are
created using data extracted from the existing AFS environment. Alternately, if
it is desirable to create a completely new set of accounts without preserving
an existing UID/GID scheme, a clear mapping between old and new
information will allow administrators to modify ownership of files after they
have been copied to their destination directories. Using the previous example,
the migration team simply creates a new account for John and uses the chown
command to modify ownership after John’s files have been moved to their
new location. Automating this process using scripts can save a significant
amount of time and effort.

� The AFS file tree can be checked to see how the various volumes are
organized. That way, we get a better idea about how we want to structure this
data into NFS. For example, we might have to move data in certain AFS
volumes/directories to multiple NFS servers due to disk space limitations.
Better load balancing will be done if we use multiple NFS servers, and then
create different attach points to get a combined namespace.

 Chapter 12. Planning a migration from AFS 277

12.8.2 NFS/AFS Translator
Because the complete migration process might require significant time, data
might reside partially in AFS and partially in NFS. You can use he NFS/AFS
Translator to provide access to AFS-resident data by NFS-only clients.

The NFS/AFS Translator enables users on NFS client machines to access the
AFS file space as though they are working on an AFS client machine. An
NFS/AFS translator machine (or simply translator machine) is a machine
configured as both an AFS client and an NFS server.

The AFS client functionality enables such a system to access AFS file space.
The Cache Manager requests and caches files from AFS File Server machines,
and can even maintain tokens for NFS users if configuration changes have been
made to enable NFS users to authenticate to AFS.

Its NFS server functionality makes it possible for the translator machine to export
the AFS file space to NFS client machines. When a user on an NFS client
machine mounts the translator machine’s /afs directory (or one of its
subdirectories if that feature is enabled), access to AFS is immediate and
transparent. The NFS client machine does not require AFS software.

The NFS/AFS Translator is available on a limited number of platforms and
supports only NFSv3. But because NFSv3 and NFSv4 can coexist, this can be a
useful tool while migrating data.

12.9 Access control lists
Special consideration must be given to file system ACLs when planning a
migration from AFS to NFSv4. The NFSv4 ACLs are similar to Windows NTFS
ACLs, but they are not identical. The developers of the NFSv4 standard chose
the Windows ACL model over POSIX ACLs because the Windows ACL model is
richer and more widely deployed.

This section discusses AFS ACLs and attempts to compare them with NFS
ACLs. A simple 1:1 translation from AFS to NFSv4 ACLs is not possible. In
addition, we provide an example showing how an AFS ACL can translate to an
NFS ACL. These translations can be automated using simple scripts, an example
of which is illustrated in 13.8, “Migrating ACLs” on page 300.

278 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

12.9.1 AFS ACL permissions
Functionally, the seven standard ACL permissions fall into two groups: one that
applies to the directory itself and one that applies to the files it contains:

� The four directory permissions

The permissions in this group are meaningful with respect to the directory
itself:

– The l (lookup) permission: This permission functions as something of a
gate keeper for access to the directory and its files, because a user must
possess it in order to exercise any other permissions. In particular, a user
must have this permission to access anything in the directory’s
subdirectories, even if the ACL on a subdirectory grants extensive
permissions. This permission enables a user to issue the following
commands:

• The ls command to list the names of the files and subdirectories in the
directory

• The ls -ld command to obtain complete status information for the
directory element itself

• The fs listacl command to examine the directory’s ACL

– The i (insert) permission: This enables a user to add new files to the
directory, either by creating or copying, and to create new subdirectories. It
does not extend into any subdirectories, which are protected by their own
ACLs. Because these are directory-level permissions, the i (insert)
permission does not control adding data to a file, but rather creating a new
file or subdirectory.

– The d (delete) permission: This enables a user to remove files and
subdirectories from the directory or move them into other directories
(assuming that the user has the i permission on the ACL of the destination
directory).

– The a (administer) permission: This enables a user to change the
directory’s ACL. Members of the system:administrators group implicitly
have this permission on every directory (that is, even if that group does not
appear on the ACL). Similarly, the owner of a directory implicitly has this
permission on its ACL and those of all directories below it that he or she
owns.

� The three file permissions

The three permissions in this group are meaningful with respect to files in a
directory, rather than the directory itself or its subdirectories:

– The r (read) permission: This enables a user to read the contents of files in
the directory and to issue the ls -l command to start the file elements.

 Chapter 12. Planning a migration from AFS 279

– The w (write) permission: This enables a user to modify the contents of
files in the directory and to issue the chmod command to change their UNIX
mode bits.

– The k (lock) permission: This enables the user to run programs that issue
system calls to lock files in the directory.

AFS also uses the UNIX mode bits as follows:

� The initial bit is used to determine the element’s type, for example, a - (dash)
for a file or the letter d for a directory.

� It does not use any of the mode bits on a directory. For a file, only the first
(owner) set of bits interacts with the ACL entries.

� If the first r mode bit is not set, no one (including the owner) can read the file,
no matter what permissions they have on the ACL. If the bit is set, users also
need the r (read) and l permissions on the ACL of the file’s directory to read
the file.

� If the first w mode bit is not set, no one (including the owner) can modify the
file. If the w bit is set, users also need the w and l permissions on the ACL of
the file’s directory to modify the file.

� There is no ACL permission directly corresponding to the x mode bit, but to
execute a file stored in AFS, the user must also have the r and l permissions
on the ACL of the file’s directory.

12.9.2 NFS ACL permissions
For a detailed listing of the NFSv4 ACLs, see 5.4, “NFSv4 ACLs” on page 90.

12.9.3 Detailed comparison of AFS and NFS ACLs
The NFS ACLs are set at the file level. Therefore, access to each file in a
directory can be controlled with a different ACL. An AFS ACL instead protects all
files in a directory in the same way. If a certain file is more sensitive than others,
we need to store it in a directory with a more restrictive ACL.

There is no exact match between the NFS and AFS ACLs. You can use the
information in Table 12-1 on page 281 as a reference for replacing existing ACLs.

280 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Table 12-1 Comparing AFS and NFSv4 ACLs

No direct correlation exists between NFSv4 ACL bits and the AFS ACL k. The
NFS ACL w is a reasonably close approximation.

Table 12-2 lists some typical operations for which specific permissions are
required for files and directories. The table provides entries that can be used in
NFSv4 to provide ACL permissions equivalent to those found in AFS.

Table 12-2 Equivalent ACL entries in NFSv4s

AFS NFSv4

r r

l racx

i wp

d dD

w w

k w

a C

Permission description AFS ACL NFSv4 ACL

Permission to read the
data of the file

rl and the UNIX mode r
bit set for the owner

ra

Permission to list the
contents of the directory

l rax

Permission to append to a
file

wl and the UNIX mode w
bit set for the owner

wp

Permission to modify the
file’s data

wl and the UNIX mode w
bit set for the owner

rwpa

Permission to add a new
file to the directory

i wx

Permission to execute the
file or traverse the directory

rl x

Permission to change the
ACL of the directory

a cC

Permission to delete files
or subdirectories from
within the directory

d dD

 Chapter 12. Planning a migration from AFS 281

12.9.4 Example of an AFS to NFS ACL conversion
Example 12-11 shows what a sample AFS ACL typically looks like.

Example 12-11 Sample AFS ACL

/usr/afs/bin/fs la .
Access list for . is
Normal rights:
 friends rlidw
 staff rlidwka
 system:administrators rlidwka
 system:authuser rl
 user1 rlidwka

When converted to an NFS ACL, it looks similar to the sample shown in
Example 12-12.

Example 12-12 Sample AFS ACL converted to an NFS ACL

aclget filea
*
* ACL_type NFS4
*
*
* Owner: root
* Group: system
*
u:user1: a rwpxDadcC
g:staff: a rwpxDadcC
g:friends: a rwpxDadc
s:(OWNER@): a rwpxDadcC

Some observations about this conversion:

� As the example shows, the AFS groups friends and staff are now being
referenced with an NFS ACE IDENTITY_type value of g (g:staff and
g:friends). Usually, AFS ACLs have multiple group entries on each ACL.
These must be translated into multiple g group entries. The original AFS
rlidwka permissions were converted using the Table 12-1 on page 281.

� The user who owns this file is user1. The NFS ACE IDENTITY_type value of
u (user) is used to represent this.

282 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

� Note that no attempt was made to convert the system:administrators and
system:authuser directly to NFS. These AFS system groups have special
meanings that do not translate directly to NFSv4 ACLs; migrating these ACLs
to NFS requires extra care and planning. One possibility is creating a special
NFS group to receive the AFS “system” groups. For example, create a group
called admgrp and transfer all AFS system:administrators group ACLs to it.

� Setting negative permissions in AFS ACLs is generally unnecessary and not
recommended. But if such entries exist, the NFS ACE_TYPE value of d (deny
access) can be used.

� The order is important when creating these ACL entries. It is a good idea to
keep admin groups that need extra or full access to the directories at the top
of the list because they will then be evaluated first.

For more information about NFS ACL processing, see 5.4.1, “NFSv4 ACLs: ACL
evaluation” on page 95. Chapter 13, “Illustrated AFS migration” on page 285
presents additional information and hints about methods by which existing AFS
ACLs can be migrated to a new NFSv4 environment using Perl scripts.
Appendix E, “Scripts and configuration files” on page 353 provides the source
code for these example scripts.

 Chapter 12. Planning a migration from AFS 283

284 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Chapter 13. Illustrated AFS migration

This chapter describes the migration of a sample AFS cell to an NFS
environment.

We discuss the following topics in this chapter:

� Introduction

� Existing AFS cell setup

� Setting the NFS domain to the AFS cell name

� Setting up the KRB5/LDAP environment

� Migrating users to Kerberos and LDAP

� Migrating group information

� Migrating data

� Migrating ACLs

� Accessing the migrated data from NFSv4 clients

13

© Copyright IBM Corp. 2005. All rights reserved. 285

13.1 Introduction
This chapter presents the sequence of events used while migrating a test AFS
cell to an NFS environment. The test environment consists of an AFS cell with
the cell name itsc.austin.ibm.com. It is composed of a single AIX 5L V5.2
machine, istanbul.itsc.austin.ibm.com, running AFS V3.6. The target
KRB5/LDAP server is pecos.itsc.austin.ibm.com with AIX 5L V5.3. Its Kerberos
realm name is NFSV4REALM.IBM.COM. The same machine was also used as
an NFS server, and the data from AFS was moved onto it. The machine
sabine.itsc.austin.ibm.com was used as an NFS client to access the migrated
data.

We use the following migration sequence:

1. Configure the AFS cell. It is populated with multiple users and groups. Users
were added to different regular and prefix-less groups.

2. Configure the KRB5/LDAP environment so that NFSv4 can use
RPCSEC_GSS for authentication.

3. Various scripts and commands are used to migrate users and groups from
AFS to the KRB5/LDAP server.

4. A script is executed to capture existing ACLs on files in the AFS namespace.
This generates .acl files containing the ACLs for each file.

5. User space directories and files are copied to the NFS namespace.

6. ACLs on these files are changed to NFSv4 style, using the AIX 5L aclconvert
and aclput commands.

7. Lastly, the AFS ACLs are mapped to rough equivalents of their NFS values
using the script and .acl files created in step 4.

13.2 Existing AFS cell setup
The AFS cell used for migration is called itsc.austin.ibm.com.

Figure 13-1 on page 287 shows a snapshot of the AFS file tree to be migrated.

286 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure 13-1 Existing AFS Cell namespace

This cell contains users with integrated login enabled on the AFS client machine.
Authenticating with AFS is easiest for users if an AFS-modified login utility is
installed and configured, because this logs a user into the local file system and
obtains an AFS token in one step. A standard UNIX encrypted password was
recorded by issuing the standard UNIX passwd command. This enables a user to
log in to the local file system even after providing an incorrect AFS password.
The entries in /etc/passwd were later used for getting user data for the migration.

The users are added to various groups. We created volumes and then mounted
them at different directories for home areas, projects, departments, and so on.
Following a convention of dira...dirz and filea...filez, the tree was populated with

 Chapter 13. Illustrated AFS migration 287

data. Random ACLs were then set on these directories to simulate an AFS cell
environment.

This approach used for the migration can be called one with shared responsibility
between users and administrators. The user and group creation, as well as data
movement from AFS to NFS, is done by the administrator. The users then set the
relevant ACLs for their directories and files.

We provide the exact steps we followed to migrate all this to NFS in the following
sections.

13.3 Setting the NFS domain to the AFS cell name
The NFS domain must be set on the target NFS server and client machines. In
the sample environment, the NFS domain was set to the AFS cell name. The
users who used to see their data at /afs/itsc.austin.ibm.com/home/user/* now
used the path /nfs/itsc/home/user/* on the NFS client machines.

It is mandatory to set the NFS domain name before NFSv4 can be used. NFSv4
requires that the NFS domain be set on all servers and clients. This is because
NFSv4 changes the way users and groups are evaluated. Previous versions of
NFS used UIDs and GIDs; NFSv4 changed this to user@domain and
group@domain.

The NFS domain name is:

� By the standard defined by the RFC, bound to the DNS domain name.

� Case-insensitive; uppercase characters are treated as lowercase during
runtime.

� Uppercase characters are converted automatically to lowercase when using
the preferred method to change or set the NFS domain: the chnfsdom <NFS
Domain Name> command.

If the NFS domain is not set, the output looks as shown in Example 13-1.

Example 13-1 Checking the NFS domain setting with the chnfsdom command

chnfsdom
Current local domain:N/A
#

You can check the current setting using the chnfsdom or smitty chnfsdom
command.

288 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

In the sample environment, the NFS domain is set to achieve the output shown in
Example 13-2.

Example 13-2 Setting the NFS domain on the server

chnfsdom itsc.austin.ibm.com
Current local domain:
itsc.austin.ibm.com

For simplified management, it is better to logically link the NFS domain name to
the DNS domain. In the sample environment, the DNS domain is:

itsc.austin.ibm.com

Therefore, the NFS domain became:

itsc.austin.ibm.com

The nfsrgyd daemon is started using the startsrc command.

Example 13-3 shows the full syntax used with the startsrc command.

Example 13-3 Starting the nfsrgyd daemon

startsrc -s nfsrgyd
0513-059 The nfsrgyd Subsystem has been started. Subsystem PID is 14496
#

Important: We recommend that you do not edit the /etc/nfs/local_domain file
manually. If this is done and uppercase characters are used, the chnfsdom
command will display the output exactly as is found in the
/etc/nfs/local_domain file. This can become confusing because NFSv4 will
convert the domain name to lowercase internally. Therefore, great care needs
to be taken when editing the file manually.

Note: Changing the NFS domain does not recycle or start the nfsrgyd
daemon. Therefore, the daemon must be manually started or recycled
following any changes to the configuration.

Important: The AIX 5L implementation does not require the NFS domain to
match your DNS domain. Many styles of NFS domain name can be used, but
maintaining a relationship to your DNS domain simplifies managing the
environment. It also helps ensure that the name is unique.

 Chapter 13. Illustrated AFS migration 289

13.4 Setting up the KRB5/LDAP environment
We illustrate the various steps to do this in the 6.4, “IBM Tivoli Directory Server
V5.2” on page 122.

13.5 Migrating users to Kerberos and LDAP

Perform the following steps:

1. Obtain admin tokens on the AFS cell and create a directory where all the
migration data will reside, as shown in Example 13-4.

Example 13-4 Performing klog on the AFS system

/usr/afs/bin/klog admin
Password:
#
/usr/afs/bin/tokens

Tokens held by the Cache Manager (UID Based Tokens):

User's (AFS ID 1) tokens for afs@itsc.austin.ibm.com [Expires Aug 23 15:27]
 --End of list--
#
mkdir /migration_data

2. Create an NFS export on your AFS machine for this migration directory. The
LDAP/KRB5 server can then mount this directory and access this data easily.

Note: Check the default stanza in the /etc/security/user file and ensure that
the SYSTEM line looks like the following line:

SYSTEM = "KRB5LDAP OR compat"

If it is not set to this, modify it before proceeding any further.

Important: Some of the following steps must be performed on the AFS
machine, while others are executed on the KRB5/LDAP server. The title for
each example states where the step needs to be performed.

290 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 13-5 Performing mount on the LDAP/KRB5 server

showmount -e istanbul.itsc.austin.ibm.com
export list for istanbul.itsc.austin.ibm.com:
/migration_data (everyone)
#
mount istanbul:/migration_data /mnt
#
df -k | grep istanbul
istanbul:/migration_data 540672 429928 21% 1784 1% /mnt

3. The next step is to extract user information from the source AFS cell. In 12.3,
“Migrating AFS users to NFSv4” on page 269, we discuss different ways of
doing this. If it is not necessary to extract the full user information, such as the
full names and login shell, you can use the kas list admin command.
However, this command also lists special AFS users such as afs and admin.
These users should be omitted from the NFS user list, because they are
special user accounts that are meaningful only within AFS. We extracted the
information from the /etc/passwd file. Example 13-6 shows the username,
userid, and user description fields being extracted from fields 1, 3, and 5 in
this file. This information was written to a file called user_data.out. You can
also extract the login shell if desired. Home directory settings for existing
users can also be extracted, but they are unlikely to map directly to the new
environment. This is because most AFS accounts have the home directory
set to something in AFS space such as /afs/itsc.austin.ibm.com/home/user.

Example 13-6 Performing account extraction on the AFS system

cat /etc/passwd | cut -d: -f1,3,5 > /migration_data/user_data.out
#
head /migration_data/user_data.out
root:0:
daemon:1:
bin:2:
adm:4:
user1:214:User One
user2:215:User Two
user3:216:User Three
user4:217:User Four
user5:218:User Five

4. Next, the /migration_data/user_data.out file must be transferred to the
LDAP/Kerberos V5 server. But before proceeding any further, it is necessary
to ensure that the system accounts (root, daemon, adm) and any user
accounts that should not be migrated are removed from the user_data.out file.

 Chapter 13. Illustrated AFS migration 291

5. We used the script migusr to populate the KDC and LDAP. Example E-5 on
page 368 provides this script. This script creates a special user called
admusr. This is similar to the AFS admin user. It also sets the passwords for
all users to a temporary password. Whenever any user logs in to the
KRB5/LDAP for the first time, they will have to change their passwords. The
user can set it to their AFS password if the user wants to retain the same
password. Example 13-7 shows the output of the script.

Example 13-7 Execute migusr script on the KRB5/LDAP server

/mnt/migusr
3004-687 User "admusr" does not exist.
user1:214:User One
user1:214:User One
user1:214:User One
user1:214:User One
Attempting to bind to one or more LDAP servers. This may take a while...
Password for "user1@NFSV4REALM.IBM.COM" changed.
user2:215:User Two
user2:215:User Two
user2:215:User Two
user2:215:User Two
Attempting to bind to one or more LDAP servers. This may take a while...
Password for "user2@NFSV4REALM.IBM.COM" changed.
user3:216:User Three
user3:216:User Three
user3:216:User Three
user3:216:User Three
Attempting to bind to one or more LDAP servers. This may take a while...
Password for "user3@NFSV4REALM.IBM.COM" changed.

6. Confirm if the users have been added to KRB5/LDAP. Use the lsuser
command to list the details about one of the migrated users, as shown in
Example 13-8 on page 293.

Note: Note that user IDs and user names are retained from AFS. This will
help us later when we add groups and populate the groups with these
users. Because we had a fresh KRB5/LDAP installation, we could do this
easily. But if you are migrating to a server where there are some existing
principals, you need to be careful when adding user and group names to
avoid duplication.

292 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 13-8 Check if user is created on the KRB5/LDAP server

lsuser -R KRB5LDAP user1
user1 id=214 pgrp=system groups=system home=/home/user1 shell=/usr/bin/ksh
gecos=User One login=true su=true rlogin=true telnet=true daemon=true
admin=true sugroups=ALL admgroups= tpath=nosak ttys=ALL expires=0 auth1=SYSTEM
auth2=NONE umask=22 registry=KRB5LDAP SYSTEM=KRB5LDAP OR compat logintimes=
loginretries=0 pwdwarntime=0 account_locked=false minage=0 maxage=0
maxexpired=-1 minalpha=0 minother=0 mindiff=0 maxrepeats=8 minlen=0
histexpire=0 histsize=0 pwdchecks= dictionlist= fsize=2097151 cpu=-1
data=262144 stack=65536 core=2097151 rss=65536 nofiles=2000 time_last_login=0
time_last_unsuccessful_login=0 unsuccessful_login_count=0 roles=
krb5_principal=user1@NFSV4REALM.IBM.COM
krb5_principal_name=user1@NFSV4REALM.IBM.COM krb5_realm=NFSV4REALM.IBM.COM
maxage=0 expires=0 krb5_last_pwd_change=1125351170 admchk=true
krb5_attributes=requires_preauth,requires_pwchange
krb5_mod_name=admin/admin@NFSV4REALM.IBM.COM krb5_mod_date=1125351170
krb5_kvno=3 krb5_mkvno=0 krb5_max_renewable_life=604800 time_last_login=0
time_last_unsuccessful_login=0 unsuccessful_login_count=0
krb5_names=user1:pecos.itsc.austin.ibm.com

13.6 Migrating group information
We now migrate the group information.

Perform the following steps:

1. First, we have to extract the group information from AFS Protection Database.
Use the pts command to obtain the pts groups, as shown in Example 13-9.
We use the same migration directory created earlier.

Example 13-9 Obtain the group information about the AFS machine

/usr/afs/bin/pts listentries -groups > /migration_data/groups.out
#
head /migration_data/groups.out
Name ID Owner Creator
system:administrators -204 -204 -204
system:anyuser -101 -204 -204
system:authuser -102 -204 -204
staff -206 1 1
contract -207 1 1
user11:proja -208 224 1
friends -209 229 1

Important: Some of the following steps are performed on the AFS machine
and some on the KRB5/LDAP server. The title for each example states where
the step needs to be performed.

 Chapter 13. Illustrated AFS migration 293

2. AFS user IDs (UIDs) and AFS group IDs (GIDs) have the same function as
their counterparts in the UNIX file system, but are used by the AFS servers
and the Cache Manager only. Normally, the Protection Server assigns an
AFS UID or AFS GID. But we can also assign these values at the time of
creation. The AFS UID is a positive integer, and the AFS GID is a negative
integer. If we try to retain same GIDs by simply formatting the output from
step 1 so that the negative (-) GIDs are converted to positive ones and use
those numbers for creating the LDAP groups, there can be a potential
problem. The GID that is now a positive number can clash with a UID, and
that group will not be created. Therefore, it is best to let the group IDs be
generated by the KRB5/LDAP server.

3. Next, we format the output from the command in step 1. We need to replace
the owner IDs in text. They will be either user names or other group names. If
they are prefixed group names, we need to separate the group name with the
owner name and use only the owner name string. We again use /etc/passwd
to get the user name relevant to the user ID mentioned. Also, special care
needs to be taken for the owner with the UID of 1. This is the AFS admin
account. A lot of groups will be owned by this account. Earlier, we created a
special user account called admusr to map the AFS admin account. Because
we used /etc/passwd to get the user names, UID 1 was replaced with a
system account name. Therefore, we need to address this. To accomplish all
these steps, we used a script called makereplace. Running this script creates
a replace.sed file, as shown in Example 13-10.

Example 13-10 Execute makereplace on the AFS machine

cat /migration_data/makereplace
awk -F":" '{print "s/", $3"$/", $1"/g"}{print "s/", $3, "/", $1, "/g"}
' /etc/passwd > replace.sed
awk -F" " '{print "s/", $3, "/", $1, "/g"}' groups.out | grep -v "Owner /
Name">> replace.sed
echo "s/daemon/admusr/g" >> replace.sed
#
/migration_data/makereplace

4. Using the grpconvert script, we create another file called new_groups.out.
This file has all the data required to migrate groups to the new environment.
See Example 13-11 on page 295.

Note: We used AFS commands from the /usr/afs/bin directory. On your
system, these commands might be inside the /usr/afsws/bin or
/usr/afsws/etc directory.

294 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example 13-11 Execute grpconvert on the AFS machine

cat /migration_data/grpconvert
#!/bin/ksh
cat groups.out | sed -f replace.sed > ./new_groups.out
#
/migration_data/grpconvert
#

5. Check the new groups file to confirm that we are ready to create the groups,
as shown in Example 13-12.

Example 13-12 Check the file on the AFS machine

head /migration_data/new_groups.out
Name ID Owner Creator
system:administrators -204 system:administrators system:administrators
system:anyuser -101 system:administrators
system:administrators
system:authuser -102 system:administrators
system:administrators
staff -206 admusr admusr
contract -207 admusr admusr
user11:proja -208 user11 admusr
friends -209 user16 admusr
#

6. Run the migrate_afs_groups.pl script to create the groups, as shown in
Example 13-13. Example E-6 on page 369 provides this script. The script
takes care of both regular and prefixed groups. If it finds a group with the
format “owner name:group name,” it extracts the owner and group name. It
uses the group name to create the group and sets the owner of that group to
the extracted owner name, too. In addition, it makes admusr the owner for all
groups.

Example 13-13 Execute the Perl script on the KRB5/LDAP machine

perl /mnt/migrate_afs_groups.pl --file /mnt/new_groups.out

7. List the groups created inside the KRB5/LDAP environment, as shown in
Example 13-14 on page 296.

Note: Ignore the system groups. These are specific to AFS and should not
be migrated as is. The NFS administrator will need to carefully give special
permissions to users in these groups, because they cannot be mapped
directly. At this point, ignore system:administrators, system:authuser, and
system:anyuser.

 Chapter 13. Illustrated AFS migration 295

Example 13-14 Check the groups on the KRB5/LDAP machine

lsgroup -R KRB5LDAP ALL
system id=0 admin=true adm id=4 admin=true users=bin,adm registry=KRB5LDAP
uucp id=5 admin=true users=uucp,nuucp registry=KRB5LDAP
.
.
.
contract id=14 admin=true users= registry=KRB5LDAP
proja id=209 admin=false users= adms=admusr,user11 registry=KRB5LDAP
friends id=210 admin=false users= adms=admusr,user16 registry=KRB5LDAP
#

8. We now add members to these groups. First, we need to obtain the list of
members for each group using pts commands, as shown in Example 13-15.

Example 13-15 Use the pts command on the AFS machine

cat /migration_data/migrp
for grpnam in `cat groups.out| grep -v ^system | grep -v ^Name | cut -d" " -f1
| cut -d":" -f1`
do
echo \# Exporting group $grpnam
for usrnam in `/usr/afs/bin/pts mem $grpnam | grep -v "Members of " | grep -v
"is a member of"`
do
echo chuser -R KRB5LDAP groups=$grpnam $usrnam
done
done
#

9. Run the migrp script to get a file called add_members, as shown in
Example 13-16.

Example 13-16 Execute the script on the AFS machine

/migration_data/migrp > add_members
#
head /migration_data/add_members
Exporting group staff
chuser -R KRB5LDAP groups=staff user2
chuser -R KRB5LDAP groups=staff user3
chuser -R KRB5LDAP groups=staff user4
chuser -R KRB5LDAP groups=staff user5
Exporting group contract
chuser -R KRB5LDAP groups=contract user6
chuser -R KRB5LDAP groups=contract user7
chuser -R KRB5LDAP groups=contract user8
chuser -R KRB5LDAP groups=contract user9
chuser -R KRB5LDAP groups=contract user10

296 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Exporting group user11
Exporting group friends
chuser -R KRB5LDAP groups=friends user2
chuser -R KRB5LDAP groups=friends user17
chuser -R KRB5LDAP groups=friends user20
chuser -R KRB5LDAP groups=friends user21
#

10.Run the add_members script on the KRB5/LDAP machine to add the members
to each group, as shown in Example 13-17.

Example 13-17 Execute on the KRB5/LDAP machine

/mnt/add_members

11.Confirm that the users were added to respective groups in the new
environment, as shown in Example 13-18.

Example 13-18 Perform on KRB5/LDAP machine

lsgroup -R KRB5LDAP friends
friends id=211 admin=false users=user2,user17,user20,user21 adms=admusr,user16
registry=KRB5LDAP
#
lsgroup -R KRB5LDAP staff
staff id=1 admin=false
users=ipsec,ldapdb2,ldap,user40,user50,user60,user80,user90,user3,user4,user5,d
aemon registry=KRB5LDAP
#
lsgroup -R KRB5LDAP contract
contract id=14 admin=true users=user6,user7,user8,user9,user10
registry=KRB5LDAP
#
lsgroup -R KRB5LDAP proja
proja id=203 admin=false users= adms=admusr,user11 registry=KRB5LDAP

We found it easier to do this in separate scripts so that each step can be easily
explained. You can combine some of the previous scripts to have common
scripts.

 Chapter 13. Illustrated AFS migration 297

13.7 Migrating data
We chose to migrate a portion of our AFS file tree to NFS. Figure 13-1 on
page 287 gives a snapshot of the data that we wanted to migrate. We performed
the following steps:

1. We need to create a tar for the AFS data that we want to move to NFS. The
directory structure on the NFS server has been directly mapped to the
existing AFS structure.The home directories of users along with two other
directories (proj and dept) were migrated for our sample environment. See
Example 13-19.

Example 13-19 Tar the data on the AFS machine

pwd
/afs/itsc.austin.ibm.com
#
tar -cvf /migration_data/afsbackup.tar ./home ./proj ./dept
a ./home
a ./home/user1
a ./home/user1/filea 1 blocks.
a ./home/user1/fileb 1 blocks.
a ./home/user1/filec 1 blocks.
a ./home/user1/filed 1 blocks.
a ./home/user1/dira
.
.
.
a ./dept/eng/fileq 1 blocks.
a ./dept/eng/filer 1 blocks.
a ./dept/eng/files 1 blocks.
a ./dept/eng/filet 1 blocks.
a ./dept/eng/fileu 1 blocks.
a ./dept/eng/filev 1 blocks.
a ./dept/eng/filew 1 blocks.
a ./dept/eng/filex 1 blocks.
a ./dept/eng/filey 1 blocks.
a ./dept/eng/filez 1 blocks.
#

Tip: If the existing directory structure needs to be changed or hidden by
any AFS sites, this is the right place to do this.You might also want to
explore the exname option.

We use a single NFS server for migrating data. However, in a real-life
scenario, you might want to migrate the home, proj, and dept directories on
different NFS servers, and then create a namespace using these multiple
file systems.

298 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

2. On the NFS server machine, create a file system to where the AFS data will
be moved, as shown in Example 13-20.

Example 13-20 File system that will be used to hold the migrated AFS data

/dev/fslv03 131072 130392 1% 4 1% /nfs/itsc

3. Mount the AFS machine so that the /migration_data directory can be
accessed by the NFS server machine, as shown in Example 13-21.

Example 13-21 NFS mount from the AFS machine to access the tar files

mount istanbul:/migration_data /mnt
#

4. Untar the data onto the NFS server machine, as shown in Example 13-22.
The path we used was /nfs/itsc so that the namespaces match.

Example 13-22 Untar the data on the NFS server

cd /nfs/itsc
#
tar -xvf /mnt/afsbackup.tar
x ./home
x ./home/user1
x ./home/user1/filea, 46 bytes, 1 media blocks.
x ./home/user1/fileb, 46 bytes, 1 media blocks.
x ./home/user1/filec, 46 bytes, 1 media blocks.
x ./home/user1/filed, 46 bytes, 1 media blocks.
.
.
.
x ./dept/eng/filet, 46 bytes, 1 media blocks.
x ./dept/eng/fileu, 46 bytes, 1 media blocks.
x ./dept/eng/filev, 46 bytes, 1 media blocks.
x ./dept/eng/filew, 46 bytes, 1 media blocks.
x ./dept/eng/filex, 46 bytes, 1 media blocks.
x ./dept/eng/filey, 46 bytes, 1 media blocks.
x ./dept/eng/filez, 46 bytes, 1 media blocks.
#

Important: The following steps need to be performed on the NFS server
machine.

Note: If you want to use NFSv4 ACLs, it is important to select the right type
of file system at this time. GPFS and JFS2 with EAV2 are the only ones
that support NFSv4 ACLs.

 Chapter 13. Illustrated AFS migration 299

5. Check the file tree on the NFS server, as shown in Example 13-23.

Example 13-23 Check if the migrated data exists on the NFS server

cd nfs/itsc
#
ls
dept home proj

13.8 Migrating ACLs
The ACL migration is one of the most critical steps because data security and
privacy is at stake. The AFS and NFS ACLs are very different in the way of
evaluations. We discussed some of these issues earlier in 12.9.3, “Detailed
comparison of AFS and NFS ACLs” on page 280. However, we cannot stress this
issues enough.

The example that we illustrate is for a single directory.

Perform the following steps:

1. If we want to use NFSv4 ACLs, we need to convert the ACL format from AIXC
to NFSv4, using the aclconvert command, as shown in Example 13-24. The
recursive option enables the user to convert ACL types for all the file system
objects under a directory structure to the desired ACL type.

Example 13-24 Convert to NFS ACLs on the NFS server

aclconvert -R -t NFS4 /nfs/itsc

2. The sample directory used to demonstrate ACL migration is
/afs/itsc.austin.ibm.com/home/user5/dira, as shown in Example 13-25.

Example 13-25 List the ACLs on the AFS machine

$ pwd
/afs/itsc.austin.ibm.com/home/user5/dira
$
$ /usr/afs/bin/fs la .
Access list for . is
Normal rights:
 user11:proja rl
 contract rlidw

Note: It is advised that administrators perform the ACL conversion process
with caution.

300 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 staff rl
 user5 rlidwka

3. We use the migacl.pl Perl script to read out the AFS ACLs and convert them
to NFS ACLs. Example E-7 on page 370 provides this script. It should by no
means be considered a complete solution, but can be used as a basis for a
more fully featured tool and customized for a location’s particular needs. The
prefix path specified in the command line will be used to prefix the path for the
destination files on the NFS server. Because we moved our data to /nfs/itsc
directory, we used that path. Run this on the AFS machine for a user (for
example, user5). Log in to the AFS machine as user5 or set the $HOME to
the home area of user5. The ACL migration script requires this, because it
uses the $HOME environment variable to determine the base path with which
it will start. This requires that you remove the AFS /afs/cell_name/ prefix from
subsequent aclput commands. Also, do not use the short name for the cell.
See Example 13-26.

Example 13-26 Run the migacl script on the AFS machine

$ perl /migration_data/migacl --prefix /nfs/itsc
Starting at base directory: /afs/itsc.austin.ibm.com/home/user5.
Destination directory: /nfs/itsc/home/user5
Scanning /afs/itsc.austin.ibm.com/home/user5/dira/filea
Scanning /afs/itsc.austin.ibm.com/home/user5/dira/fileb
Scanning /afs/itsc.austin.ibm.com/home/user5/dira/filec
Scanning /afs/itsc.austin.ibm.com/home/user5/dira/filed
Scanning /afs/itsc.austin.ibm.com/home/user5/dira/filee
.
.
$

4. The output for this script generates a shell script named acl_<user_name>.sh
file. In case of user5, this is acl_user5.sh. This contains a series of AIX aclput
commands referencing each file in the acl_data directory and its
corresponding file. We run this script in step 8. See Example 13-27 on
page 302.

Important: The system:administrators, system:authuser, and
system:anyuser groups have been ignored because they hold a special
meaning only for AFS. We can create similar groups, such as admgrp, in
KRB5/LDAP, but converting ACLs using scripts for groups that hold special
meaning can be potentially problematic. The group system:anyuser can
potentially be migrated to NFS ACE string - s:(EVERYONE@).

 Chapter 13. Illustrated AFS migration 301

Example 13-27 Perform on the AFS machine

$ pwd
/afs/itsc.austin.ibm.com/home/user5/dira
$
$ ls
acl_user5.sh filee filej fileo filet filey
filea filef filek filep fileu filez
fileb fileg filel fileq filev
filec fileh filem filer filew
filed filei filen files filex
$
$ cat acl_user5.sh
#!/bin/sh
aclput -i /nfs/itsc/home/user5/acl_data/filea.acl
/nfs/itsc/home/user5/dira/filea
aclput -i /nfs/itsc/home/user5/acl_data/fileb.acl
/nfs/itsc/home/user5/dira/fileb
aclput -i /nfs/itsc/home/user5/acl_data/filec.acl
/nfs/itsc/home/user5/dira/filec
aclput -i /nfs/itsc/home/user5/acl_data/filed.acl
/nfs/itsc/home/user5/dira/filed
aclput -i /nfs/itsc/home/user5/acl_data/filee.acl
/nfs/itsc/home/user5/dira/filee

5. If you go one level up, we see an acl_data directory, as shown in
Example 13-28. This contains NFSv4-style .acl input files for each file.

Example 13-28 Perform on the AFS machine to see the files generated from script

$ cd ..
$
$ ls
acl_data dire dirj filea filef filek filep fileu
filez
dira dirf dirk fileb fileg filel fileq filev
dirb dirg dirl filec fileh filem filer filew
dirc dirh dirm filed filei filen files filex
dird diri dirn filee filej fileo filet filey
$
$ cd acl_data
$
$ ls

Important: The AFS ACLs are at a directory level, and NFS ACLs are at a
file level. Therefore, when migrating ACLs, we need to set the NFS ACL on
each and every file inside a directory.

302 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

acl_user5.sh.acl filef.acl filel.acl filer.acl
filex.acl
filea.acl fileg.acl filem.acl files.acl
filey.acl
fileb.acl fileh.acl filen.acl filet.acl
filez.acl
filec.acl filei.acl fileo.acl fileu.acl
filed.acl filej.acl filep.acl filev.acl
filee.acl filek.acl fileq.acl filew.acl

6. An ACL input file constructed using this Perl script, as found in the acl_data
directory, might look similar to the sample in Example 13-29. This is a rough
approximation of the ACL found on the matching file located in the AFS
namespace. The <filename>.acl input file are generated by the Perl script for
a file called filea. You can compare it to the AFS ACL in step 2.

Example 13-29 Sample of a converted ACL

$ cat filea.acl
*
* ACL_type NFS4
*
*
* Owner: user5
* Group: staff
*
u:user5: a racxwpdDwC
g:staff: a racx
g:contract: a racxwpdDw
g:proja: a racx
s:(OWNER@): a racxwpdDwC
$

7. This ACL data needs to be moved to the NFS server where the script to set
these ACLs will be executed, as shown in Example 13-30.

Example 13-30 Move this data to the NFS server

$ pwd
/afs/itsc.austin.ibm.com/home/user5/dira
$
$ mkdir /migration_data/user5
$
$ mv /afs/itsc.austin.ibm.com/home/user5/acl_data /migration_data/user5
$
$ cd /afs/itsc.austin.ibm.com/home/user5/dira

$ cp acl_user5.sh /migration_data/user5
$

 Chapter 13. Illustrated AFS migration 303

8. The acl_user5.sh script needs to be executed on the NFS server
machine.Login to pecos.itsc.asutin.ibm.com as user5. Because this user is
logging in to KRB5/LDAP for the first time, the temporary password set while
creating users needs to be used. We used it in our migusr script. A password
reset will be enforced, and the user can reset the password to the old AFS
password if desired. After the user logs in, the script for setting ACLs on the
NFS server needs to be run. Remember to check that user5 owns these files.
See Example 13-31.

Example 13-31 Perform on the NFS server

$ cd /mnt/user5
$
$ cp -r /mnt/user5/acl_data /nfs/itsc/home/user5/
$
$./acl_user5.sh
$

9. Check the ACLs on the NFS server, as shown in Example 13-32.

Example 13-32 Check the ACLs on the NFS server

$ pwd
/nfs/itsc/home/user5/dira
$
$ aclget filea
*
* ACL_type NFS4
*
*
* Owner: user5
* Group: system
*
u:user5: a rwpxDadcC
g:staff: a rxac
g:contract: a rwpxDadc
g:proja: a rxac
s:(OWNER@): a rwpxDadcC
$

Similarly, other ACLs can also be converted. Users might opt to delete the
acl_data directory and the acl_<username>.sh file itself, because they will no
longer be needed after the AFS to NFSv4 ACL conversion process has been
completed.

304 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

13.9 Accessing the migrated data from NFSv4 clients
Now, we use the NFS RPCSEC_GSS protection mechanism to access the
migrated data from NFS. We use the Kerberos V5, KRB5, security option.

1. Check if the NFS client is added to the NFS domain, as shown in
Example 13-33.

Example 13-33 Perform on the NFS client

chnfsdom
Current local domain: itsc.austin.ibm.com
#

2. Because we are going to use the KRB5 security feature, we need to check the
status of the gssd daemon on both the server and client machines, as shown
in Example 13-34. But first, we need to configure a secure NFS environment.
In 9.6, “Adding security” on page 206, we provide the steps you must
complete before using these NFS features.

Example 13-34 Check if the gssd daemon is started

lssrc -s gssd
Subsystem Group PID Status
 gssd nfs 520438 active
#

3. Export the data on the NFS server pecos.itsc.austin.ibm.com, as shown in
Example 13-35.

Example 13-35 Export the data on the pecos server

cat /etc/exports
/nfs/itsc -vers=4,sec=krb5,rw
#
exportfs -va
Exported /nfs/itsc
#

4. Mount this exported data from the NFS client, sabine.itsc.austin.ibm.com, as
shown in Example 13-36.

Example 13-36 Mount this on the sabine client

mount -o vers=4,sec=krb5 pecos.itsc.austin.ibm.com:/ /mnt

 Chapter 13. Illustrated AFS migration 305

5. Try accessing the migrated AFS data from this NFS client. Log in as a user
and create some new files in your home directory to test whether you have
the necessary permissions. If the ACLs have been migrated properly, you will
be able to do so. See Example 13-37.

Example 13-37 Creating a file with correct ACLs set

$ cd /mnt/nfs/itsc/home/user1
$
$ ls
dira dire diri dirm filec fileg filek fileo files filew
dirb dirf dirj dirn filed fileh filel filep filet filex
dirc dirg dirk filea filee filei filem fileq fileu filey
dird dirh dirl fileb filef filej filen filer filev filez
$
$ touch test_file
$

6. Now, try to create files in a directory where you did not have permissions
while they were in AFS, as shown in Example 13-38. You should continue to
fail here, too. This is the way that we can test the ACL migration.

Example 13-38 Attempt to create a file when the ACLs do now allow the operation

$ cd /mnt/nfs/itsc/dept/hr/dira
$
$ touch test_file
touch: 0652-046 Cannot create test_file.
$
$ aclget .
*
* ACL_type NFS4
*
*
* Owner: daemon
* Group: system
*
s:(OWNER@): a rwpRWxDaAdcCs
s:(OWNER@): d o
s:(GROUP@): a rRxadcs
s:(GROUP@): d wpWDACo
s:(EVERYONE@): a rRxadcs
s:(EVERYONE@): d wpWDACo
$

Notice that NFS ACL s:(EVERYONE@) does not have w permissions in this
directory.

306 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Part 5 Appendixes

This part contains the appendixes, providing information about our test system, a
case study, and how to configure the Network Time Service. We also provide a
quick reference, scripts and configuration files, information about how to install
an AIX maintenance level, a planning worksheet, and information about the
additional material provided with this book.

Part 5

© Copyright IBM Corp. 2005. All rights reserved. 307

308 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix A. Test environment

This appendix diagrams the environment that was used to model the examples
provided in this book.

Table A-1 on page 310 lists the systems and Figure A-1 on page 311 shows the
layout and names of the systems used to create the environments used in this
book.

In the test environment used to illustrate examples in this book, we found it useful
to exploit the abilities of the POWER5 architecture with AIX 5L. By using logical
partitions on the POWER5 platform, we created NFS servers and clients to test
various migration strategies. Although the test environment was relatively simple
compared to a production migration, the concept of using LPAR and
Micro-Partitioning server technology can significantly reduce migration costs
from both a test environment and production environment standpoint. This
technology allowed for a much larger test environment than the physical number
of machines that were used.

A

© Copyright IBM Corp. 2005. All rights reserved. 309

Table A-1 Systems used to create the test environment for this book

System name OS version Function Additional functions

pecos AIX 5L V5.3 RML01 KRB5/LDAP server KRB5: IBM Network
Authentication Services
LDAP: IBM Tivoli Directory
Server

guadalupe AIX 5L V5.3 RML03 KRB5 client

sabine AIX 5L V5.3 RML03 KRB5 client GPFS node

frio AIX 5L V5.3 RML03 KRB5 client GPFS node

angelina AIX 5L V5.3 RML03 KRB5 client GPFS node

brazos AIX 5L V5.3 RML03 KRB5 client

trinity AIX 5L V5.3 RML03 KRB5 client

madrid AIX 5L V5.3 RML03 NIM server

istanbul AIX 5L V5.2 RML04 AFS sever Source for AFS migration
scenario

milan AIX 5L V5.2 RML04 DFS server Source for the DFS migration
scenario

310 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure A-1 Environment used to create the examples in this book

 Appendix A. Test environment 311

312 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix B. Case study: IBM Global
Storage Architecture

This appendix provides an overview of a solution that was architected for IBM
internal use by the IBM CIO, IBM Global Services, and IBM internal customers.
The Global Storage Architecture (GSA) File service was developed to replace
AFS and DFS as part of the new development infrastructure of IBM.

We discuss some of the business problems addressed, project approaches, and
details of the solution architecture.

B

© Copyright IBM Corp. 2005. All rights reserved. 313

Business problem
During the 1990s, the majority of the IBM hardware and software development
labs deployed two versions of enterprise file systems: AFS and DFS. By the end
of 2000, more than 100 TB of data was stored in these file systems worldwide.

At that time, it became clear neither AFS nor DFS was a good long-term solution
due to an approaching end of life status for each product. The IBM CIO wanted to
deploy a replacement for these file systems, as well as a mix of IBM OS/2® and
Microsoft Windows based offerings, into a single, worldwide offering that would
offer improved service at a reduced cost to the IBM account. This new system
would be called the Global Storage Architecture, or GSA.

The GSA File project was intended to replace all current enterprise file systems
deployments within IBM, including AFS, DFS, NFS, and Common Internet File
System (CIFS). This meant that the design had a wide range of customers to
satisfy, from the high performance demands of the current AFS/DFS users, to the
low-end casual users that need a simple file repository.

A challenge was faced in integrating the various architecture components that
were selected, not only from a design aspect, but also in consideration of the
existing IBM infrastructure. It was impossible and undesirable to attempt an
overnight migration from the existing systems to GSA File. The new system
would have to interoperate with the existing systems for a period of years during
the migration.

The technology was changing rapidly during the design process. Certain IBM
products (such as the IBM RS/6000 Scalable Parallel system) were selected that,
in some cases, did not have a clear future growth path. Some offerings in
development within IBM (such as Storage Tank™, later announced as the IBM
SAN File System) looked promising, but these products were not yet sufficiently
stable to consider deployment in a production environment at the time. This
forced decisions regarding the design, allowing for the integration of such
in-development technologies at some future time, without affecting the end users
of the service.

In some cases, considerable customer resistance to change was encountered.
Many customers had integrated the existing file systems into their various
development environments and did not want or see a need to migrate to another
solution. This led to some requirements that would have simply been impossible
to meet.

It was necessary to examine all the requirements in order to match each one
against the technology that was available. This had to be done in a manner that
permitted the integration of future technology without major disruption and
without requiring another migration to a future file system.

314 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Solution
The first task was to identify the requirements for the new file systems offering.
Through a series of meetings with key internal customers, the team identified
these key requirements:

� Longevity

� Ability to handle many large and small files

� Caching

� Excellent reliability, availability, and serviceability

� “Usable” ACLs

� Large numbers of groups

� Location transparency

� Quotas, allocation method, and control of growth

� Common authentication

� Billing by usage

� Reduced cost of administration

� Scalability

� Consistency and a common toolset

� Ability to archive data to safe site

� 24x7 availability

� Perform better than the existing file systems

� Backups performed daily

� Ability of users to restore their own data from backups or snapshots

Using those basic requirements, a study determined what pieces of technology
could be used to satisfy each request. A number of different systems were
evaluated that were structured similarly to AFS. While several of them had
interesting feature sets, none were sufficiently stable for production use. NAS
type solutions were also evaluated, but it was necessary to avoid a situation
where we had a fragmented namespace and thousands of NFS mount points.

Some cluster file systems looked interesting, but loading proprietary clients on
every workstation represented an undesirable solution. This would be especially
difficult because of the wide variety of systems in use within IBM, each with
different management structures and varying levels of currency. The environment
targeted for support included everything from software development shops with

 Appendix B. Case study: IBM Global Storage Architecture 315

multiple and varying levels of operating systems, to hardware design shops with
thousands of machines that are identically configured and centrally managed.

In the end, a hybrid design was selected. A clustered file system was chosen that
provided a large tree with a consistent namespace, but which exported it using
standard protocols such as CIFS and NFS. It was felt that this provided the best
of both worlds: a large, easily managed pool of space with support for
industry-standard clients.

Each GSA File cell has at its heart a GPFS cluster. Initially, each site was
referred to as a GSA File cluster, but the cell terminology from AFS and DFS kept
returning. Early on it was determined that the “cell” terminology was too ingrained
into both the development team and its customers, so the terminology was
changed, and they were redesignated as GSA File cells.

Figure B-1 on page 317 shows the GSA File components.

316 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure B-1 GSA File components

GPFS File system
A scalable, robust back-end file system was required to support GSA File. The
General Parallel File System (GPFS) was determined to meet all established
requirements. GPFS file systems had been widely used on the IBM RS/6000
Scalable Parallel (SP) system platform for several years, so they had a proven
track record. GPFS met many of the solution’s requirements, allowing storage
and nodes to be added and removed dynamically. It also supported read/write
replication, a highly desirable feature found in both AFS and DFS.

TSM = Tivoli Storage Manager

 Appendix B. Case study: IBM Global Storage Architecture 317

GPFS is a shared device file system in that every node in a GPFS cluster has full
read/write access to the disks in a file system. GPFS coordinates this access
using a distributed locking mechanism in order to maintain consistency on disk.
The GPFS locking mechanism relies on having a quorum of servers available.
The full GSA File cell uses a minimum of three servers in the GPFS cluster, so
quorum is maintained if one server fails.

This shared device design allows the file system to grow very large, and a large
number of nodes can participate in a GPFS cluster with very large aggregate
disk bandwidth. The shared device aspect of GPFS also entails unique security
concerns. Because every node can read and write every disk, client systems
could not be permitted to participate directly in GPFS. Only server nodes
controlled by GSA File administrators are allowed to participate in GPFS. All
client systems access the file system through network protocols such as CIFS
and NFS.

When GPFS first became available, it operated only over the SP high-speed
switch, on a subsystem called VSD for Virtual Shared Device. GPFS was a SAN
file system, but in the days before SAN technology became common, it effectively
ran on a virtual SAN. As the GSA File project began, GPFS began supporting
SAN-attached Fibre Channel disks, and also began running on AIX systems that
were not part of a SP cluster.

GPFS supports a wide variety of block sizes, approaching the megabyte range. It
was found that smaller block sizes provided better performance for CIFS and
NFS clients because they matched more closely the read and write sizes used by
the clients. All GSA File cells are configured with a 6 4K block size in GPFS.
GPFS divides each block into 32 subblocks for allocating space. With 64 K
blocks, the sub blocks are 2 K. This is the minimum amount of quota that can be
allocated for small files, and it has worked well because it matches the
expectations of users moving from the existing systems.

Security
During development, different systems were evaluated for providing a user and
group security infrastructure. Based on both internal and industry trends, LDAP
was the obvious choice. We based the GSA File schema on the
industry-standard schema defined in RFC 2307, adding a few object classes and
attributes as needed to manage individual requirements for the users and
infrastructure.

Availability and performance are critical for a security system deployed in support
of a large enterprise file system. The decision was made to deploy replicas of the
LDAP directory at every GSA File site; the large number of replicas dictated a
tiered replication strategy. One master LDAP server and a hot spare were

318 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

deployed in Poughkeepsie NY, with a submaster at each GSA File site. Two
geographically dispersed submasters were located in Europe and Asia. The
master accepts all changes to the directory and pushes them to the geography
submasters as well as the North American site submasters. The site submitters
then push changes to the end-user replicas at each site.

The master server is a single point of failure for the system, but only for changes
to the LDAP directory. If a user at a specific cell cannot reach the master on the
network, or the master is down, that user can continue to use the file system with
data located on their local replicas but cannot change their password, manage
groups, or make other changes to the directory. This was considered a good
compromise between creating locally managed users and groups at each site
and having a central user ID and group database.

Load balancing
Both hardware-based load balancers and the software-based IBM Network
Dispatcher were considered for this role. The Network Dispatcher platform is part
of IBM WebSphere Edge Server, and it runs on a variety of platforms.

The flexibility of running a load balancer in software on a server was a
tremendous benefit, especially because the load balancer products were focused
on Web protocols, and GSA required balancing of file system protocols that were
not typically load balanced.

Network Dispatcher is designed so that only inbound packets to the servers must
flow through the load balancer. Outbound packets from the servers to the client
go directly across the network. This permits the use of fewer load balancers than
might otherwise have been required in an environment such as GSA, where
reads typically outnumber writes.

Each GSA File cell starts with a single Network Dispatcher cluster, which is a
publicly advertised IP address. All client traffic comes to the cell over that IP
address. Over time, as the workload grows, additional clusters are put into
service. This allows more network dispatchers to be added and provides more
throughput. The additional clusters are added to a round-robin DNS entry so that
clients are randomly assigned to a cluster. The load is actively balanced across
the back-end systems within each dispatcher cluster.

The dispatcher systems themselves are arranged in pairs using the dispatcher
high availability function. This way, if a dispatcher fails, another will take over its
cluster and service its clients with degraded performance. By keeping all of the
clusters available at all times, there is no need to change DNS records or rely on
DNS timeouts to maintain availability for the cell.

 Appendix B. Case study: IBM Global Storage Architecture 319

Figure B-2 illustrates the high-level architecture of the GSA File.

Figure B-2 GSA File high-level architecture

Server hardware
There are three main classes of servers in the GSA File environment: file
servers, directory servers, and dispatchers.

The initial selection for file server hardware platform was effectively determined
by the available hardware. When GPFS deployment began, it only ran on AIX in
the SP environment, which determined hardware deployed in the first GSA File
cells. Quickly thereafter, GPFS was supported on IBM Eserver pSeries
systems, and clustered pSeries servers began to be deployed instead. As noted
earlier, each full GSA File cell starts with three file server nodes so that GPFS
can maintain a quorum if one fails.

320 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Since that time, GPFS has been ported to Linux on IBM Eserver xSeries®, but
current plans involve it also remaining in use on AIX 5L and the pSeries platform
in GSA File. Experience has shown that the NFS server on AIX 5L is more robust
than the NFS server on Linux.

IBM was searching for opportunities to deploy Linux infrastructure at the time the
GSA File project began, and it was felt the directory service in GSA File would be
a perfect fit. Each GSA File cell starts with three Linux directory servers, one
submaster and two replicas.

Storage
The use of a shared device file system such as GPFS led to Fibre
Channel-attached storage. But at the same time, this was not a typical SAN
deployment. There was no need to segment the SAN or the storage servers to
provide different sets of disks to different servers. Every node on the SAN would
be able to read and write every disk. As a result, the management tools in many
of the high-end disk subsystems were not required.

It was understood GPFS could provide a high level of reliability. Because GPFS
would be replicating all data onto two different storage servers, slightly lower
reliability from each of the storage servers was an acceptable compromise.

These considerations led to the decision to reduce costs by deploying the IBM
midrange disk offering, then called FAStT and now called the IBM TotalStorage®
DS4000 series. The midrange storage systems provided performance and
availability that was good enough, at a lower cost than the high-end systems.
They also permitted growth to the system in smaller increments, which was very
important during the initial rollout phase.

RAID 5 arrays are created on each midrange storage server, and each array is
exported as a single LUN. The LUNs are grouped by GPFS into failure groups,
which are groups of LUNs that share common failure modes. Typically, only two
failure groups are configured per GSA File cell, and all of the LUNs from a given
storage server are configured into one of the failure groups. GPFS creates two
copies of every data and metadata block, with one in each failure group. This
allows the file system to be kept online even if an entire storage server is lost.

Two mostly independent switch fabrics are also maintained between the file
servers and the storage servers. This allows the file system to remain online
even if a switch or link is lost.

 Appendix B. Case study: IBM Global Storage Architecture 321

Protocols and software
The CIFS and NFS protocols are the primary means of accessing GSA File.
Certain “lightweight” protocols are also provided for access to the system; these
include HTTP, FTP, SCP SFTP, and rsync over SSH. Finally, support is offered for
auxiliary protocols that provide file system access: NetBIOS Name Service
(NBNS), also known as WINS, and NTP. All these tasks are accomplished using
a mixture of IBM products and open source software:

� The CIFS protocol is supported in GSA File by Samba running on AIX 5L
systems. Several different CIFS solutions were evaluated, and it was found
that Samba was both robust and flexible. The same protocol is used to
provide an NBNS or WINS service that is proxied to DNS.

� An AIX 5L built-in NFS server subsystem is used to provide NFS service to
clients. It has proven to be very robust in the GSA environment.

� Apache provides HTTP access, both to the file system and to the GSA
management tool suite.

� After evaluating a number of different FTP servers, ProFTPD was selected for
GSA File. ProFTPD supports modules, one of which integrates well with an
RFC 2307 LDAP service. It also handles chroot FTP service well, because it
does not require any external programs such as ls to provide this service.
Although authenticated FTP service is available, users are encouraged to use
sftp instead because it encrypts their passwords on the wire.

� Finally, several secure means are available for accessing the file system
through OpenSSH and the rsh restricted shell. The rsh shell enables users to
be restricted to file transfer and rsync operations and can chroot them into
the GSA File file systems so that they cannot access local file systems, such
as /tmp, on the servers.

All these file access protocols are served from every file server in GSA File. This
helps keep management simple by keeping the file servers alike. It also helps to
keep the workload evenly distributed and improves availability over a system
where individual protocols had dedicated servers.

Backups
All customer data in GSA File is backed up using IBM Tivoli Storage Manager.
The Tivoli Storage Manager server and client services are available on a file
server node in each GSA File cell. The dispatchers are configured not to send
end users to this node under normal circumstances, but it provides the full
complement of end-user services in case it is needed.

The IBM Linear Tape-Open (LTO) family tape libraries used by Tivoli Storage
Manager are attached to the GSA File SAN. This enables LAN free backups,

322 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

because the node running Tivoli Storage Manager reads the data from the
SAN-attached disks and writes it back to tape on the SAN.

Two copy pools of the data are kept on site to protect against tape failures. An
additional copy is sent off site to safe storage.

Time synchronization
Time synchronization is extremely important within any enterprise file system.
The time stamps on files and directories are updated by file servers in certain
instances, and directly by clients in others. This can lead to problems if the clocks
are not synchronized across the system. Systems that use Kerberos must also
have clocks synchronized within a certain window.

Technically speaking, it is not important whether the clocks in the system are
accurate, so long as they are synchronized with each other. Within GSA File, the
decision was made to synchronize with an accurate and stable time source,
resulting in selection of a global positioning system (GPS) as a time provider.

Three Stratum One time servers with GPS receivers were deployed at three
different sites in North America. All directory servers in the GSA File
infrastructure synchronize their clocks with these servers using Network Time
Protocol (NTP). All remaining servers in GSA File synchronize their clocks with
the three (or more) directory servers at their site.

GSA File clients synchronize their clocks using NTP with the cluster address for
their local cell. The NTP packets that arrive at the network dispatchers are
forwarded to a file server, which services NTP requests from clients.

Kerberos and NFSv4
The GSA File project began using NFS version 3, but NFS version 4 was
planned for long before it became commercially available. NFSv4 provides the
strong security that was partially lost during the migration away from AFS and
DFS. Kerberos V5 is now being rolled out on all GSA File directory servers.
Deployment of NFSv4 in production will commence after the Kerberos
deployment is complete. The Kerberos support in NFSv4 is probably the single
most compelling feature for GSA File.

Another key feature of NFSv4 for GSA File is file delegation. A strong need exists
for improving the ability of NFS clients to cache data locally.

Some other NFSv4 features related to namespace, such as referrals and
replication, are interesting for use with GSA, but are not as critical in the

 Appendix B. Case study: IBM Global Storage Architecture 323

clustered environment. These will be examined over the long term to see how
they can be used to benefit GSA File clients.

Centralization
The AFS and DFS file systems inside IBM grew over a period of time in a grass
roots fashion. This meant that every site had its own implementation, tools, and
policies around AFS and DFS. While this provided tremendous flexibility, it also
contributed to increased cost and often led to problems being rediscovered and
solved independently at multiple sites. It also led to customer frustration as more
projects became cross-site projects, resulting in administrators being forced to
deal with multiple systems that were managed differently.

In contrast, GSA File is a centrally managed, lights-out system. This leads to
lower cost and greater consistency than the existing systems. It also means that
when a problem has been found and solved in one cell, the solution is
immediately available at all other cells. The management structure in GSA File is
based around a control center team located in Poughkeepsie, NY. They manage
the master directory server and all GSA File cells in North America. They are
supported by a subsidiary control center teams in Europe and one in Asia.

Outside the three control center sites, each cell requires only occasional on-site
support by personnel, who perform such duties on an as-needed basis. Most
issues and management functions are resolved over the network by the control
center team. In the event that a disk or other hardware component fails, the
control center team pages a local support contact to resolve the issue.

The net result is that GSA File service is consistent worldwide, in terms of
service levels, tools, and policies. The cost for space is also significantly lower
than that incurred by the existing environments.

Scalability
The GSA File cells described to this point have been rather large. They include at
least three file servers, two storage servers, two SAN switches, three directory
servers, and two dispatchers. They are fully redundant and thus can tolerate the
failure of any piece of hardware. They can scale to be extremely large and serve
tens of thousands or more client systems.

These cells are not such a good fit for small, remote sites. This type of site
generally requires a small amount of storage and would benefit from the same
tool set as the large sites, but has no requirement for access to terabytes of
storage. Such sites’ network capacity is also frequently insufficient or incapable
of providing low enough latency to use a remote cell. A fully redundant cell would
not be cost effective for storage volumes below one terabyte.

324 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

For such small sites, the option exists to deploy what is called a GSA File Lite
cell. This type of cell includes a single file server and a single directory server
with no separate dispatcher. Mirrored storage is included, but no redundancy of
server hardware. This configuration allows remote development teams to use the
same type of storage with the same tools that larger teams use in a cost-effective
way on a small scale.

GSA File Lite cells trade cost efficiency at small volumes for reduced availability.
It has proven to be a compromise that works well for GSA File cells in places
such as Israel and South Africa.

Benefits of GSA File
GSA File provides a number of benefits over the AFS and DFS environments it
replaces.

The primary benefit is that the file servers in GSA File are virtualized. Every file
server has access to all the customer data within a GSA File cell. Client systems
are directed to the file server with the lightest load, rather than to the server that
houses the requested data. This means that the system can continue to function
even if a file server fails. It also allows file servers to be added and removed to
handle changing loads without interrupting the service.

In AFS and DFS environments, file server load balancing is accomplished by
moving data from server to server. Moving volumes and filesets takes time and
resources, especially for busy data. And while the process can be automated, it
is always reactive. The clustered GPFS file system and the dynamic load
balancing of the network dispatchers in GSA File means that the file servers
remain balanced without administrator intervention.

The virtualization and dynamic load balancing also offer a tremendous
performance benefit over traditional file systems under heavy load. In a
traditional file system, where every file server owns a particular part of the tree of
read/write data, hot spots in the data translate directly to hot spots on the servers
and disks. In GSA File, all servers can access all the data, so if thousands of
clients attempt to read a file, the load will be spread across all of the file servers.
GPFS also stripes the data itself across all of the disks. Where a traditional file
system must have enough surplus capacity on every file server to handle peak
loads and spikes, the GSA File system spreads such loads across multiple
servers and can keep a smaller total amount of surplus capacity online. Simply
put, GSA File cells can handle larger peaks with less hardware than traditional
file systems.

 Appendix B. Case study: IBM Global Storage Architecture 325

The use of industry-standard protocols such as CIFS and NFS provide
tremendous benefits to GSA File because GSA File uses commodity clients. The
AFS and DFS file system clients limited the number of supported operating
systems. They also often added a six-month delay after an operating system
release before it could be used with the file system. A wider variety of clients can
be supported on GSA File, with fewer problems, because the file system client
software comes with the operating system. This is particularly beneficial for
groups that develop software because they can use prerelease and early-release
operating system versions with GSA File.

The clustered design of GSA File provides many of the benefits of the proprietary
AFS and DFS clients using commodity clients. In a sense, many of the functions
of the AFS and DFS clients, such as namespace management, have been pulled
back into the data center with GSA File. In AFS and DFS, the clients require
enough intelligence to locate the server holding the data for which they are
looking. In GSA File, the clients access what looks like a single server per cell,
and the servers in the data center locate the data they need.

GSA File status
The GSA File project is progressing well and exceeding expectations. There are
21 GSA File cells in production today on five continents. There are more than 75
thousand GSA File users with more than 70 terabytes of data. The monthly
growth rate as migration progresses away from AFS and DFS has remained at
approximately 5%.

Figure B-3 on page 327 shows the GSA File cell locations.

326 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Figure B-3 GSA File cell locations

The GSA File cells have demonstrated significantly higher availability than the
AFS and DFS systems. GSA File availability is measured 24x7 on a system
basis, with outages recorded whenever any GSA File protocol is down in a cell.
Even with this strict standard, GSA File cells are exceeding the availability of the
AFS and DFS cells inside IBM, which are often measured on a 5x10 basis using
the average server availability as a metric. This means that in AFS and DFS
cells, if one server out of 60 is down for an hour, only one minute of outage is
recorded for the cell.

The cost of GSA File space has also remained lower, and is dropping more
quickly than the cost of AFS and DFS inside IBM. In file service, as in almost any
IT service, the largest cost component is labor, and the GSA File project has
focused strongly on reducing costs in this area. Two major factors contribute to
the cost difference. The first is centralization to reduce duplicate functions. The
second is that space in GSA File is managed in larger pools than in AFS and
DFS. A large GSA File cell might have four file systems instead of hundreds of
aggregates and tens of thousands of filesets or volumes. With fewer places to
run out of space, less administrator time is required to manage it.

 Appendix B. Case study: IBM Global Storage Architecture 327

GSA File is an evolving system. Changes are constantly being made in order to
keep up with technology, reduce costs, and improve service. The biggest change
so far is the deployment of NFS version 4. It is expected that the rate of migration
from AFS and DFS will quicken dramatically due to the improved security and
caching available in the most recent NFSv4 release.

328 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix C. Configuring Network Time
Service

This appendix describes some example configurations for the Network Time
Service (NTP) on AIX 5L.

In order to use NTP, at least one system in your environment must be configured
as an NTP server. This system can either act as an independent time source (no
reference clock) or can be configured to reference a precision time source (that
receives time from the U.S. global positioning system or another source). We do
not provide the details about how to install and configure this reference time
server in this appendix.

C

© Copyright IBM Corp. 2005. All rights reserved. 329

Configuring the NTP server with a reference clock
Figure C-1 shows a sample environment with clients getting their time from a
local time server on your network. The local time server, in turn, gets its time from
an external reference clock.

Figure C-1 Configuring XNTP with an external reference clock

Perform the following steps to configure the NTP server with a reference clock:

1. Make sure that the xntp subsystem is not running. If it is, stop it. Example C-1
on page 331 shows the full sequence of commands.

330 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Example: C-1 Stopping the xntp subsystem on the server

lssrc -s xntpd
Subsystem Group PID Status
 xntpd tcpip 479410 active
#
stopsrc -s xntpd
0513-044 The /usr/sbin/xntpd Subsystem was requested to stop.

If the subsystem was not running, the first command in Example C-2 would
show the status of the daemon as inoperative.

2. Edit the /etc/ntp.conf file, as shown in Example C-2.

Example: C-2 Sample /etc/ntp.conf file for server with reference clock

server 1.2.3.4 prefer #primary server
server 127.127.1.0 #secondary server
driftfile /etc/ntp.drift
tracefile /etc/ntp.trace

In this example, 1.2.3.4 is the IP address of the reference clock system.

3. Start the xntp subsystem using the chrctcp command, as shown in
Example C-3.

Example: C-3 Starting xntpd on the server

/usr/sbin/chrctcp -S -a xntpd
0513-059 The xntpd Subsystem has been started. Subsystem PID is 307392.
#

4. Check the status of the client to make sure that it is in contact with the server.

Example C-4 shows the output before xntp has contacted the server.

Example: C-4 xntpd status before synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 11 (Leap indicator is insane.)
 Sys peer: no peer, system is insane
 Sys stratum: 16
 Sys precision: -17
 Debug/Tracing: DISABLED
 Root distance: 0.000000

Note: This process can take up to 10 minutes.

 Appendix C. Configuring Network Time Service 331

 Root dispersion: 0.000000
 Reference ID: no refid, system is insane
 Reference time: no reftime, system is insane
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 10 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)
 stratum: 2, version: 3
 our mode: client, his mode: server
 Peer: rchntp.rchland.ibm.com
 flags: (configured)(preferred)
 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

Example C-5 shows the output after xntpd has successfully contacted the
server.

Example: C-5 xntpd status after synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 00 (No leap second today.)
 Sys peer: rchntp.rchland.ibm.com
 Sys stratum: 2
 Sys precision: -17
 Debug/Tracing: DISABLED
 Root distance: 0.045898
 Root dispersion: 0.879242
 Reference ID: 9.10.225.159
 Reference time: c6ab8523.6be8c000 Mon, Aug 15 2005 16:18:27.421
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 279 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)(sys peer)
 stratum: 2, version: 3
 our mode: client, his mode: server
 Peer: rchntp.rchland.ibm.com
 flags: (configured)(sys peer)(preferred)

332 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

Configuring the NTP server without a reference clock
Figure C-2 illustrates configuring the NTP server with an external reference
clock.

Figure C-2 Configuring NTP without an external reference clock

To set-up an NTP server without an external reference clock, you need to decide
which one of your servers will act as the time source for all your systems in your

 Appendix C. Configuring Network Time Service 333

environment. After making this decision, proceed with the following configuration
steps:

1. Make sure that the xntp subsystem is not running, as shown in Example C-6.

Example: C-6 Stopping the xntp subsystem on the server

lssrc -s xntpd
Subsystem Group PID Status
 xntpd tcpip 479410 active
#
stopsrc -s xntpd
0513-044 The /usr/sbin/xntpd Subsystem was requested to stop.

If the subsystem was not running, the first command in Example C-6 would
show the status of the daemon as inoperative.

2. Edit the /etc/ntp.conf file, as shown in Example C-7.

Example: C-7 Sample /etc/ntp.conf file for server without reference clock

server 127.127.1.0 prefer #local server
driftfile /etc/ntp.drift
tracefile /etc/ntp.trace

3. Start the xntp subsystem using smit or the chrctcp command, as shown in
Example C-8.

Example: C-8 Starting xntpd on the server

/usr/sbin/chrctcp -S -a xntpd
0513-059 The xntpd Subsystem has been started. Subsystem PID is 307392.
#

4. Check the status of the client to make sure that it is in contact with the server.

Example C-9 shows the output before xntp has contacted the server.

Example: C-9 xntpd status before synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 11 (Leap indicator is insane.)
 Sys peer: no peer, system is insane
 Sys stratum: 16
 Sys precision: -17

Note: This process can take up to 10 minutes.

334 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 Debug/Tracing: DISABLED
 Root distance: 0.000000
 Root dispersion: 0.000000
 Reference ID: no refid, system is insane
 Reference time: no reftime, system is insane
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 10 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)
 stratum: 2, version: 3
 our mode: client, his mode: server
 Peer: rchntp.rchland.ibm.com
 flags: (configured)(preferred)
 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

Example C-10 shows the output after xntp has successfully contacted the
server.

Example: C-10 xntpd status after synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 00 (No leap second today.)
 Sys peer: rchntp.rchland.ibm.com
 Sys stratum: 2
 Sys precision: -17
 Debug/Tracing: DISABLED
 Root distance: 0.045898
 Root dispersion: 0.879242
 Reference ID: 9.10.225.159
 Reference time: c6ab8523.6be8c000 Mon, Aug 15 2005 16:18:27.421
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 279 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)(sys peer)
 stratum: 2, version: 3
 our mode: client, his mode: server

 Appendix C. Configuring Network Time Service 335

 Peer: rchntp.rchland.ibm.com
 flags: (configured)(sys peer)(preferred)
 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

Configuring NTP clients
Perform the following steps to configure the NTP clients:

1. Make sure that the xntp subsystem is not running, as shown in
Example C-11.

Example: C-11 Stopping the xntp subsystem

lssrc -s xntpd
Subsystem Group PID Status
 xntpd tcpip 479410 active
#
stopsrc -s xntpd
0513-044 The /usr/sbin/xntpd Subsystem was requested to stop.
#

If the subsystem was not running, the first command in Example C-11 would
show the status of the daemon as inoperative.

2. Edit the /etc/ntp.conf file, as shown in Example C-12.

Example: C-12 Sample /etc/ntp.conf file

server 11.22.33.44 prefer #local server
driftfile /etc/ntp.drift
tracefile /etc/ntp.trace

In this example, 11.22.33.44 is the IP address of the local server that has
been set up.

3. Use the ntpdate command to synchronize the client clock with the server, as
shown in Example C-13.

Example: C-13 Setting the system time using ntpdate

ntpdate 11.22.33.44
15 Aug 16:12:35 ntpdate[381076]: adjust time server 11.22.33.44offset -0.001624

336 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

4. Start the xntp subsystem using the chrctcp command, as shown in
Example C-14.

Example: C-14 Starting xntpd

/usr/sbin/chrctcp -S -a xntpd
0513-059 The xntpd Subsystem has been started. Subsystem PID is 307392.
#

5. Check the status of the client to make sure that it is in contact with the server.

Example C-15 shows the output before xntp has contacted the server.

Example: C-15 xntp status before synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 11 (Leap indicator is insane.)
 Sys peer: no peer, system is insane
 Sys stratum: 16
 Sys precision: -17
 Debug/Tracing: DISABLED
 Root distance: 0.000000
 Root dispersion: 0.000000
 Reference ID: no refid, system is insane
 Reference time: no reftime, system is insane
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 10 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)
 stratum: 2, version: 3
 our mode: client, his mode: server
 Peer: rchntp.rchland.ibm.com
 flags: (configured)(preferred)
 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

Note: This process can take up to 10 minutes.

 Appendix C. Configuring Network Time Service 337

Example C-16 shows the output after xntp has successfully contacted the
server.

Example: C-16 xntp status after synchronization

lssrc -ls xntpd
 Program name: /usr/sbin/xntpd
 Version: 3
 Leap indicator: 00 (No leap second today.)
 Sys peer: rchntp.rchland.ibm.com
 Sys stratum: 2
 Sys precision: -17
 Debug/Tracing: DISABLED
 Root distance: 0.045898
 Root dispersion: 0.879242
 Reference ID: 9.10.225.159
 Reference time: c6ab8523.6be8c000 Mon, Aug 15 2005 16:18:27.421
 Broadcast delay: 0.003906 (sec)
 Auth delay: 0.000122 (sec)
 System flags: bclient pll monitor filegen
 System uptime: 279 (sec)
 Clock stability: 0.000000 (sec)
 Clock frequency: 0.000000 (sec)
 Peer: madrid.itsc.austin.ibm.com
 flags: (configured)(sys peer)
 stratum: 2, version: 3
 our mode: client, his mode: server
 Peer: rchntp.rchland.ibm.com
 flags: (configured)(sys peer)(preferred)
 stratum: 1, version: 3
 our mode: client, his mode: server
Subsystem Group PID Status
 xntpd tcpip 376860 active

338 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix D. AIX 5L V5.3 NFS quick
reference

The purpose of this appendix is to provide you with a quick reference sheet for
NFSv4 on AIX 5L V5.3 topics up to and including those introduced in RML03.

We discuss the following topics in this appendix:

� NFS configuration files

� NFS daemons

� NFS commands

� Export options

� mount command options

� nfso command options and examples

� nfs4cl command options and examples

D

© Copyright IBM Corp. 2005. All rights reserved. 339

NFS configuration files
The following list describes the NFS configuration files:

/etc/rc.nfs Starts NFS on boot.

/etc/filesystems Contains file systems to be mounted.

/etc/exports Contains NFS export definitions.

/etc/xtab Contains names of file systems currently
exported.

/etc/rmtab Contains names of machines and the file
systems they have mounted.

/etc/sm Directory used by rpc.statd.

/etc/sm.bak Directory used by rpc.statd.

/etc/state Directory used by rpc.statd.

/etc/nfs/local_domain Contains the NFS domain information.

/etc/nfs/hostkey Specifies the Kerberos host principal and the
location of the keytab file.

/etc/nfs/princmap Maps host names to Kerberos principals when
the principal is not the fully qualified domain
name of the server.

/etc/nfs/realm.map Used by the NFS registry daemon to map
incoming Kerberos principals.

NFS daemons
The following list describes the NFS daemons:

/usr/sbin/rpc.lockd Processes lock requests through the RPC
package.

/usr/sbin/rpc.statd Provides crash-and-recovery functions for the
NFS locking services.

/usr/sbin/biod Sends the client’s read and write requests to the
server; only runs on the client.

/usr/sbin/rpc.mountd Answers the requests from clients for file system
mounts; only runs on the server.

/usr/sbin/nfsd Starts the daemons that handle a client’s
request for file system operations; only runs on
the server.

340 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

/usr/sbin/portmap Maps RPC program numbers to Internet port
numbers.

/usr/sbin/pcnfsd Handles service requests from PC-NFS clients.

/usr/sbin/gssd New daemon for NFSv4; services kernel
requests for GSS operations.

/usr/sbin/nfsrgyd New daemon for NFSv4; provides a name
translation service for NFS servers and clients.

NFS commands
The following list describes the NFS commands:

/usr/sbin/mount Shows what file systems are mounted on
the machine on which the command is run,
including name of the server and mount
options.

/usr/sbin/showmount -e [host] Shows contents of /etc/xtab file on the
[host].

/usr/sbin/showmount -a [host] Shows the contents of the /etc/rmtab file on
the [host].

/usr/sbin/exportfs -va Exports all file systems defined in
/etc/exports and prints the name of each
directory as it is exported.

/usr/sbin/exportfs -ua Unexports all exported directories and prints
the name of each directory as it is
unexported.

/usr/sbin/mknfs Configures a system to run NFS and starts
NFS daemons.

/usr/sbin/nfso Configures and lists NFS network options.

/usr/sbin/automount Mounts an NFS automatically.

/usr/sbin/chnfsexp Changes the attributes of an NFS exported
directory.

/usr/sbin/chnfsmnt Changes the attributes of an NFS mounted
directory.

/usr/sbin/lsnfsexp Displays the characteristics of directories
that are exported with NFS.

/usr/sbin/lsnfsmnt Displays the characteristics of mounted
NFS.

 Appendix D. AIX 5L V5.3 NFS quick reference 341

/usr/sbin/mknfsexp Exports a directory.

/usr/sbin/mknfsmnt Mounts a directory using NFS.

/usr/sbin/rmnfs Changes the configuration to stop NFS
daemons.

/usr/sbin/rmnfsexp Removes NFS exported directories from a
server’s list of exports.

/usr/sbin/chnfsdom Changes the local NFS domain.

/usr/sbin/nfs4cl Displays or modifies current NFSv4
statistics and properties.

/usr/sbin/nfshostkey Configures the host key for an NFS server.

/usr/sbin/chnfsim Changes the NFS foreign identity mappings.

/usr/sbin/chnfs Changes the configuration of the system to
invoke a specified number of nfsd daemons
or to change NFS global configuration
values.

/usr/sbin/chnfssec Changes the default security flavor used by
the NFS client.

Export options
The following list describes the exportfs options:

-rw All clients have read/write permission (default).

-ro All clients have read-only permission.

-rw=Client[:Client] Exports the directory with read/write permission
to the specified clients. Exports the directory
read-only to clients not in the list.

-access=Client[:Client] Gives mount access to each client listed. A client
can either be a host name or a net group name.

-root=Client[:Client] Allows root access from the specified clients.

-vers=version_number[:version_number]
Specifies which versions of NFS are allowed to
access the exported directory. Valid versions are
2, 3, and 4.

-exname=external_name Exports the directory by the specified external
name. The external_name must begin with the
nfsroot name.

342 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

-sec=flavor[:flavor] Specifies a list of security methods that might be
used to access files under the exported
directory. Allowable flavor values are sys, dh,
none, krb5, krb5i, and krb5p.

-nfsroot Sets the nfsroot to a specific directory, for
example, /exports -nfsroot.

(Note that the chnfs utility is the recommended
method for setting the nfsroot value.)

-refer=rootpath@host[+host][:rootpath@host[+host]]
A namespace referral will be created at the
specified path. The referral directs clients to the
specified alternate locations where they can
continue operations.

-replicas=rootpath@host[+host][:rootpath@host[+host]]
Replica location information will be associated
with the export path. The replica information can
be used by NFS version 4 clients to redirect
operations to the specified alternate locations if
the current server becomes unavailable. The
administrator should ensure that appropriate
data is available at the replica servers.

mount command options
The following list describes the -o options:

ro Specifies that the mounted file is read-only.

rw Specifies that the mounted file is read/write
accessible (default).

fg Attempts mount in foreground if first attempt is
unsuccessful (default).

bg Attempts mount in background if first attempt is
unsuccessful.

hard Retries a request until server responds (default).

soft Returns an error if the server does not respond.

intr Allows keyboard interrupts on hard mounts.

nointr Specifies no keyboard interrupts allowed on
hard mounts.

 Appendix D. AIX 5L V5.3 NFS quick reference 343

acl Requests using the access control list RPC
program for this NFS mount.

sec=[flavor1:...:flavorn] Specifies a list of security methods that can be
used to access files under the mount point.
Allowable security flavors are sys, dh, krb5,
krb5i, and krb5p.

vers=NFS_version Specifies the NFS version. Options are 2, 3, and
4. vers=4 is only applicable to AIX 5L V5.3.

cio Specifies the file system to be mounted for
concurrent readers and writers. I/O on files in
this file system will behave as though they had
been opened with O_CIO specified in the open()
system call.

dio Specifies that I/O on the file system will behave
as though all the files had been opened with
O_DIRECT specified in the open() system call.

nfso command options and examples
Use the nfso command to configure Network File System (NFS) tuning
parameters. The nfso command sets or displays current or next boot values for
NFS tuning parameters. This command can also make permanent changes or
defer changes until the next reboot. Whether the command sets or displays a
parameter is determined by the accompanying flag. The -o flag performs both
actions. It can either display the value of a parameter or set a new value for a
parameter.

NFSv4 introduces the following new tunable parameters:

utf8 This option allows NFSv4 to perform UTF-8
checking.

A value of 1 turns on UTF-8 checking of file
names. A value of 0 turns it off.

utf8_validation Enables checking of file names for the NFSv4
client and server to ensure that they conform to
the UTF-8 specification.

Attention: Use extreme care before changing values using the nsfo
command. An incorrect change can render the system unusable.

344 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

A value of 1 turns on UTF-8 checking of file
names. A value of 0 turns it off.

nfs_v4_pdts Sets the number of tables for memory pools
used by the biods for NFSv4 mounts.

Use the vmstat -v command to look for
non-zero values in the client file system I/Os
blocked with no fsbuf field.

Increase the number until the blocked I/O count
is no longer incremented during workload. The
number might need to be increased in
conjunction with the nfs_v4_vm_bufs option.

nfsv4_vm_bufs Sets the number of initial free memory buffers
used for each NFSv4 paging device table (PDT)
created after the first table. The very first PDT
has a set value of 256, 512, 640, or 1000,
depending on system memory. This initial value
is also the default value of each newly created
PDT.

Use the vmstat -v command to look for
non-zero values in the client file system I/Os
blocked with no fsbuf field.

The nfs_v4_vm_bufs option must be set prior to
the nfs_v4_pdts option.

The following options are available on AIX 5L V5.3 RML03:

nfs_v4_fail_over_timeout Specifies how long the NFS client will wait
(in seconds) before switching to another
server when data is replicated and the
current associated server is not accessible.
If the default value of 0 is set, the client
dynamically determines the timeout as twice
the RPC call timeout that was established at
mount time or with nfs4cl. The
nfs_v4_fail_over_timeout option is
client-wide; if set, the
nfs_v4_fail_over_timeout option overrides
the default behavior on all replicated data.

A value of 0 allows the client to internally
determine the timeout value. A positive
value overrides the default and specifies the
replication fail-over timeout in seconds for all
data accessed by the client.

 Appendix D. AIX 5L V5.3 NFS quick reference 345

server_delegation Enables or disables NFS version 4 server
delegation support.

A value of 1 enables server delegation
support. A value of 0 disables server
delegation support. Server delegation can
also be controlled by using the /etc/exports
file and the exportfs command.

client_delegation Enables or disables NFS version 4 client
delegation support.

A value of 1 enables client delegation
support. A value of 0 disables client
delegation support.

The following list provides useful examples about how you can use the nfso
command:

� To print, in colon-delimited format, a list of all tunable parameters and their
current values, run:

nfso -a -c

� To list the current and reboot value, range, unit, type, and dependencies of all
tunable parameters managed by the nfso command, run:

nfso -L

� To list the reboot values for all NFS tuning parameters, run:

nfso -r -a

� To set a tunable parameter, for example, utf8, to a value of 1, run:

nfso -o utf8=1

� To set a tunable parameter, for example, nfs_v4_pdts, to its default value of 1
at the next reboot, run:

nfso -r -d nfs_v4_pdts

The following references are also useful:

� The “Network File System (NFS) Overview for System Management” section
in AIX 5L Version 5.3 System Management Guide: Communications and
Networks, SC23-4909

� The “TCP/IP Overview for System Management” section in AIX 5L Version
5.3 System User's Guide: Communications and Networks, SC23-4912

� The “Monitoring and Tuning NFS Use” section in AIX 5L Version 5.3
Performance Management Guide, SC23-4876

346 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

nfs4cl command options and examples
The nfs4cl command is used to display all the file system ID (fsid) information
about the client or modify file system options of an fsid.

The syntax of the nfs4cl command is as follows:

/usr/sbin/nfs4cl [subcommand] [path] [argument]

The following list describes the subcommands and arguments of the nfs4cl
command:

resetfsoptions subcommand
This subcommand resets all the options for the FSID back
to the default options. Note that the cio and dio options
can be reset with the resetfsoptions subcommand, but
the cio and dio behavior is not turned off until the NFS file
system is unmounted and then remounted.

setfsoptions subcommand
This subcommand takes a path and an argument. The
path specifies the target fsid structure, and the argument
is the file system options. It sets the internal fsid to use
the options specified by the argument. Here is the list of
possible arguments:

rw Specifies that the files or directories that bind to this
path (fsid) are readable and writable.

ro Specifies that the files or directories that bind to this
path (fsid) are read-only.

acdirmax Specifies the upper limit for the directory attribute
cache timeout value.

acdirmin Specifies the lower limit for the directory attribute
cache timeout value.

acregmax Specifies the upper limit for the file attribute cache
timeout value.

acregmin Specifies the lower limit for the file attribute cache
timeout value.

Note: The nfs4cl command updates affect newly accessed files in the file
system. An unmount and remount is required to affect all previously accessed
files.

 Appendix D. AIX 5L V5.3 NFS quick reference 347

cio Specifies the file system to be mounted for concurrent
readers and writers. I/O on files in this file system
behave as though the file was opened with O_CIO
specified in the open() system call.

dio Specifies that I/O on the file system behaves as
though all of the files were opened with O_DIRECT
specified in the open() system call.

hard Specifies that this fsid will use hard mount semantics.

intr Specifies that the fsid operations are interruptible.

maxpout=value Specifies the pageout level for files on this file system
at which threads should be slept. If maxpout is
specified, minpout must also be specified. This value
must be non-negative and greater than minpout. The
default is the kernel maxpout level.

minpout=value Specifies the pageout level for files on this file system
at which threads should be readied. If minpout is
specified, maxpout must also be specified. This value
must be non-negative. The default is the kernel
minpout level.

noac Does not use attribute cache.

nocto Specifies no close-to-open consistency.

nointr Specifies that the fsid is non-interruptible.

prefer Administratively sets the preferred server to use when
data exists at multiple server locations.

rbr Uses the release-behind-when-reading capability.
When sequential reading of a file in this file system is
detected, the real memory pages used by the file will
be released after the pages are copied to internal
buffers.

rsize Specifies the read size for the RPC calls to the server.

retrans Specifies the number of RPC retransmits to attempt
with soft semantics.

soft Specifies the fsid operation that will use soft mount
semantics.

timeo Specifies the time out value for the RPC calls to the
server.

wsize Specifies the write size for the RPC calls to the server.

nodircache Does not use directory cache.

348 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

showfs subcommand
This subcommand displays file system-specific
information about the server that is currently accessed by
the client. The information includes server address,
remote path, fsid, and local path. If path is provided,
additional information, such as fs_locations and fsid
options, are displayed.

showstats subcommand
This subcommand shows information similar to what the
df command prints out for each fsid that exists on the
client. The information includes fields such as File
system, 512- blocks, Free, %Used, Iused, %Iused, and
Mounted on.

Examples of nfs4cl usage
The following list provides examples of the nfs4cl command:

� To display all the fsid structure on the client, run:

nfs4cl showfs

Example D-1 shows the sample output from the nfs4cl showfs command.

Example: D-1 Sample output from the nfs4cl showfs command

nfs4cl showfs

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1

� To set the file system options of /mnt/usr/sbin to include only retrans=3, run:

nfs4cl setfsoptions /mnt/gpfs1 retrans=3

See Example D-2.

Example: D-2 nfs4cl command used to change the retrans option on a client

nfs4cl showfs /mnt/gpfs1
Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1
 Current Server: sabine:/mnt/gpfs1
 Replica Server: frio:/mnt/gpfs1
 Replica Server: angelina:/mnt/gpfs1
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p

 Appendix D. AIX 5L V5.3 NFS quick reference 349

#
nfs4cl setfsoptions /mnt/gpfs1 retrans=3
#
nfs4cl showfs /mnt/gpfs1

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1
 Current Server: sabine:/mnt/gpfs1
 Replica Server: frio:/mnt/gpfs1
 Replica Server: angelina:/mnt/gpfs1
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=3,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p

� To reset the file system options for /mnt/gpfs1, run:

nfs4cl resetfsoptions /mnt/gpfs1

See Example D-3.

Example: D-3 nfs4cl command used to reset file system options

nfs4cl showfs /mnt/gpfs1

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1
 Current Server: sabine:/mnt/gpfs1
 Replica Server: frio:/mnt/gpfs1
 Replica Server: angelina:/mnt/gpfs1
options :
rw,intr,rsize=32768,wsize=32768,timeo=100,retrans=3,maxgroups=0,acregmin=3,acre
gmax=60,acdirmin=30,acdirmax=60,minpout=1250,maxpout=2500,sec=sys:krb5:krb5i:kr
b5p
#
nfs4cl resetfsoptions /mnt/gpfs1
#
nfs4cl showfs /mnt/gpfs1

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1
 Current Server: sabine:/mnt/gpfs1
 Replica Server: frio:/mnt/gpfs1
 Replica Server: angelina:/mnt/gpfs1
options :
rw,nointr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,ac

350 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

regmax=60,acdirmin=30,acdirmax=60,minpout=2500,maxpout=1250,sec=sys:krb5:krb5i:
krb5p

� To show df command output for /mnt/gpfs1, run:

nfs4cl showstat /mnt/gpfs1

See Example D-4.

Example: D-4 nfs4cl command used to display df command output

nfs4cl showstat /mnt/gpfs1

Filesystem 512-blocks Free %Used Iused %Iused Mounted on
sabine:/gpfs1 2293323776 2292447232 1% 64 1% /mnt/gpfs1
#

� To change the preferred NFSv4 server on a client, run:

nfs4cl setfsoptions /mnt/gpfs1 prefer=angelina:/gpfs1

See Example D-5.

Example: D-5 nfs4cl command used to change the preferred NFSv4 server on a client

nfs4cl setfsoptions /mnt/gpfs1 prefer=angelina
#
nfs4cl showfs /mnt/gpfs1

Server Remote Path fsid Local Path
-------- --------------- --------------- ---------------
sabine /gpfs1 2:150 /mnt/gpfs1
 Current Server: sabine:/mnt/gpfs1
 Replica Server: frio:/mnt/gpfs1
 Replica Server: angelina:/mnt/gpfs1
options :
rw,nointr,rsize=32768,wsize=32768,timeo=100,retrans=5,maxgroups=0,acregmin=3,ac
regmax=60,acdirmin=30,acdirmax=60,minpout=2500,maxpout=1250,sec=sys:krb5:krb5i:
krb5p,prefer=angelina.itsc.austin.ibm.com

 Appendix D. AIX 5L V5.3 NFS quick reference 351

352 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix E. Scripts and configuration
files

This appendix provides listings of various scripts and configuration files used
during the test scenarios developed for this book.

This appendix contains the following scripts and configuration files:

� LDAP schema for the KDC realm

� Script to add users to the KDC

� Script to migrate DFS to AIXC ACLs

� Script to migrate DFS to NFSv4 ACLs

� Script migusr to migrate users from AFS to Kerberos/LDAP

� Script migrate_afs_groups.pl to migrate groups: AFS to Kerberos/LDAP

� Script to migrate AFS ACLs to NFSv4

� Script to generate mkgroup commands using DCE group data

� Script to generate mkuser commands using DCE user account data

� Script to copy an ACL (with recursive option)

E

© Copyright IBM Corp. 2005. All rights reserved. 353

Sample LDAP LDIF file for the KDC realm
Example E-1 provides a sample LDAP LDIF file for the KDC realm.

Example: E-1 LDAP schema for the KDC realm

##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
version: 1
dn: o=IBM, c=US
objectclass: top
objectclass: organization
o: IBM

dn: krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
objectclass: KrbRealm-V2
objectclass: KrbRealmExt
krbrealmName-V2: NFSV4REALM.IBM.COM
krbprincSubtree: krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
krbDeleteType: 3

dn: cn=principal, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
objectclass: container
cn: principal

dn: cn=policy, krbrealmName-V2=NFSV4REALM.IBM.COM, o=IBM, c=US
objectclass: container
cn: policy

Script to add users to the KDC
Example E-2 provides a script to add users to the KDC.

Example: E-2 Script to add users to the KDC

#!/bin/ksh
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
Script to migrate user information. Script name migusr

354 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The script does the following:
#
i. adds the user
ii. displays user information in LDAP
iii. sets the user's temporary password
iv. expires the user's password, forcing a change at first log on
#
export AUTH=KRB5LDAP
export PASSWD=tempONEtemp

if the admusr user does not exist, create it.
lsuser -R $AUTH admusr || /usr/bin/mkuser -R $AUTH -a account_locked=true
admin=true admusr

extract the username, UID and gecos information from the input file
cat /mnt/user_data.out | awk -F":" '

add user routine with UID & gecos info
adduser=sprintf("/usr/bin/mkuser -R $AUTH -a id=%s gecos=\"%s\" %s", $2, $3,
$1)

display user information from LDAP routine
lsuser=sprintf("/usr/sbin/lsuser -R $AUTH %s", $1)

set the the temporary password routine
passwd=sprintf("/usr/krb5/sbin/kadmin.local -q \"change_password -pw $PASSWD
%s\"", $1)

expire the temporary password routine
chuser=sprintf("/usr/bin/chuser -R $AUTH krb5_attributes=+needchange %s", $1)

run the routines
system(adduser)
system(lsuser)
system(passwd)
system(chuser)
single quote that follows ends the awk statement...
'

 Appendix E. Scripts and configuration files 355

DFS to AIXC ACL migration example
Example E-3 provides a script to migrate DFS to AIXC ACLs.

Example: E-3 Script to migrate DFS to AIXC ACLs

#!/usr/bin/perl

migrate_dfs_acls_to_aixc.pl -- Example ACL migration script
showing the steps required to copy existing DFS ACL information
into a format usable by AIXC 'aclput' commands.
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
Theory of Operation.
The script uses standard methods to recursively read a user's
entire directory tree, executing "dcecp -c acl show" commands on
each file and sub-directory and using the results to generate AIX-
style ACL input files in the directory $acl_directory. At the
same time it generates a shell script, <cwd>/acl_<user_id>.sh,
containing a series of aclput -i commands referencing the files
found in $acl_directory and the fully qualified file path, e.g.
"aclput -i <cwd>/$acl_directory/filename.txt.acl <cwd>/filename.txt"
##
Assumptions.
##
The base cell name (obtained using dcecp -c getcellname) is
trimmed from the CWD in order to restructure the name space;
if the current cell is /.../test.itsc.austin.ibm.com, then
this string, along with the "/fs" DFS root, will be removed
from all path names. The --prefix switch can be used to alter
the new root directory to /nfs/ or any other value (the default
is / if the --prefix switch is no specified).
##
We assume the directory structure has been copied intact from
the DFS cell to the new AIX environment; deviations from this
basic methodology can be handled by manually editing the output
shell script or altering the base Perl code.

Notes & caveats
##
1) It must be run from a user's home directory while that user
is logged in under their own id. The script makes use of
the $HOME and other variables when formatting ACLs and
directory paths.
##
2) No handling is provided for situations where duplicate file

356 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

names exist in a directory tree (e.g. $HOME/dir1/file.txt
and $HOME/dir2/file.txt). In this case, the last file
in the tree with the duplicate name will be used to build
the ACL.
##

use Cwd; # module for finding the current working directory
use Getopt::Long qw(GetOptions);

my $user = $ENV{"LOGIN"};
my $home = $ENV{"HOME"};
my $parsed_home = "";
my $acl_directory = "";
my $acl_base = "acl_data";
my $output_file = "";
my ($login,$pass,$uid,$gid) = getpwnam($user);
my $group = getgrgid($gid);
my $do_symlinks = ''; ## by default we'll ignore symlinks
my $prefix = ""; ## default
my $cell_name = "/...";

$|=1; # turn off I/O buffering

sub ScanDirectory {
 my ($workdir, $output_file, $prefix, $cell_name) = @_;

 ## we should ignore both the "acl_base" directory and OldFiles
 return if ($workdir eq $acl_base);
 return if ($workdir eq "OldFiles");

 my($startdir) = &cwd; # keep track of where we began

 chdir($workdir) or die "Unable to enter dir $workdir:$!\n";

 opendir(DIR, ".") or die "Unable to open $workdir:$!\n";
 my @names = readdir(DIR);
 closedir(DIR);

 foreach my $name (@names){
 next if ($name eq ".");
 next if ($name eq "..");

 if (-d $name){ # is this a directory?
 &ScanDirectory($name, $output_file, $prefix, $cell_name);
 next;
 }
 unless (&CheckFile($name, $output_file, $prefix, $cell_name)){
print &cwd."/".$name."\n"; # print the bad filename
 }

 Appendix E. Scripts and configuration files 357

 }
 chdir($startdir) or die "Unable to change to dir $startdir:$!\n";
}

sub CheckFile{
 my($name, $output_file, $prefix, $cell_name) = @_;

 ## use the FQ path when checking the existing file
 my $file_to_check = &cwd."/".$name;
 ## now generate a new path to this subdirectory once it's been
 ## migrated to AIX.
 my $current_dir = &cwd;
 $current_dir =~ s/$cell_name//;
 my $destination_file = $prefix."/".$current_dir."/".$name;
 $destination_file =~ s/\/\//\//g; ## remove doubled "/"

 ## If this file is a symbolic link and we we turned off processing
 ## of these files, then we'll just return from this function.

 return if ((-l $file_to_check) && ($do_symlinks eq ''));
 print "Traversing symlink: $file_to_check\n" if (-l $file_to_check);

 ## attempt to read the directory entry for this file
 print STDERR "Scanning $file_to_check\n";

 ## Try to open the file. If we fail, we'll just drop out of the
 ## loop and try the next one. Sites should decide if this is
 ## what they want to do, or if they prefer other processing to
 ## occur in such a case.
 if (open (ACL_DATA, "dcecp -c acl show $file_to_check 2>&1 |")) {

 ## First we'll open a file in which to write AIX ACL commands,
 ## then we'll read data a line at a time from the return
 open (ACL_FILE, ">$acl_directory/$name.acl") ||
 die "failed to open output $acl_directory/$name.acl: $!\n";
 print ACL_FILE "attributes:\nbase permissions\n"; ## file preamble

 ## Next we write our aclput command to our master script.
 print OUTFILE "aclput -i $new_acl_dir/$name.acl $destination_file\n";

 ## now we loop through returned data to parse the DCE ACLs into
 ## a form usable by the AIX 'aclput' utility. There are two
 ## possible results: {user|group|other|mask}_obj + permissions, or
 ## {user|group} + user/group name + permissions. The former will
 ## convert into the usual rwx format, while all others need to
 ## be translated to an AIX equivalent (if it exists).

my $extended_acls = "disabled"; ## false by default
 my @base_perms = @ext_perms = ();

358 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 while (my $data = <ACL_DATA>) {
 if ($data =~ /_obj/) {
 my ($user_id, $perm_mask) = split " ", $data;
 my ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6) = split "", $perm_mask;

 push @base_perms, " owner($user): $bit1$bit2$bit3\n"
 if ($data =~ /user_obj/);

 push @base_perms, " group($group): $bit1$bit2$bit3\n"
 if ($data =~ /group_obj/);

 push @base_perms, " others: $bit1$bit2$bit3\n"
 if ($data =~ /other_obj/);
 } else {

 ## the first time we encounter an extended acl on any given
 ## file, we'll need to change $extended_acls to "enabled" and
 ## write it, along with the "extended permissions" line, as
 ## the next line in the file. Otherwise it'll remain set as
 ## "disabled."

 $extended_acls = "enabled" if ($extended_acls eq "disabled");

 my ($type, $user_id, $perm_mask) = split " ", $data;
 $type =~ s/{//; ## remove leading "{"
 $type = "g" if ($type eq "group");
 $type = "u" if ($type eq "user");
 my ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6) = split "", $perm_mask;

 push @ext_perms, " permit $bit1$bit2$bit3 $type:$user_id\n";

 } ## end of if-else
 } ## end of while loop

 my $line = "";
 ## now, write all the data to the output file...

 print ACL_FILE $line while ($line = pop(@base_perms));
 $line = "";
 print ACL_FILE "extended permissions\n $extended_acls\n";

 if ($extended_acls eq "enabled") {
 print ACL_FILE $line while ($line = pop(@ext_perms));
 }
 close ACL_FILE;
 close ACL_DATA || warn "dcecp error: $! $?";
$extended_acls = "disabled"; ## paranoia
 }

 Appendix E. Scripts and configuration files 359

return 1;
}

sub print_help
{

 print "Usage: perl migrate_dfs_acls_to_aixc.pl [--help] [--symlinks]\n
[--prefix=<new_namespace_prefix>]\n";
 print " --symlinks: the script will traverse symlinks (default: off)\n";
 print " --prefix: specifies the top-level directory prefix in use in\n";
 print " the AIX namespace. This will replace the existing DFS \n";
 print " \"/.../existing.cell.name/fs\" prefix (default: /) \n";
 print " --help: prints this help text\n";
 exit(0);

}

main logic

GetOptions ('symlinks' => \$do_symlinks,
 'help' => \$print_help,
 'prefix=s' => \$prefix);

&print_help() if ($print_help);

Get the current DCE cell name
if (open (CELL_DATA, "dcecp -c getcellname 2>&1 |")) {
 my $data = <CELL_DATA>; ## read only 1 line
 $cell_name = $data;
} else {
 print "Error retrieving cell name: $!\n";
 exit(1);
}
close CELL_DATA;

$cell_name =~ s/\n/\/fs/; ## strip carriage return and add DFS /fs suffix
$parsed_home = $home; ## need both
$parsed_home =~ s/$cell_name//;

Only prepend a prefix if it's non-null.
$parsed_home = "$prefix/$parsed_home" if ($prefix ne "");

New base directory
$parsed_home =~ s/\/\//\//g; ## remove any doubled "/"
location of .sh file in current cell
$output_file = "./acl_$user.sh"; ## start at CWD in existing cell

Set up "destination" directories
$acl_directory = $home."/".$acl_base;

360 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

$new_acl_dir = $parsed_home."/".$acl_base;

Emit our expected parameters
print "Starting at base directory: $home.\nDestination directory:
$parsed_home\n";

location for acl output files in current cell
system("mkdir $acl_directory") if (!-e "$acl_directory");

open (OUTFILE, ">$output_file");
print OUTFILE "#!/bin/sh\n";

&ScanDirectory(".", $output_file, $prefix, $cell_name);

close OUTFILE;
exit(0);

DFS to NFSv4 migration example
Example E-4 provides a script to migrate DFS to NFSv4 ACLs.

Example: E-4 Script to migrate DFS to NFSv4 ACLs

#!/usr/bin/perl

migrate_dfs_acls_to_nfsv4.pl -- Example ACL migration script designed
to show the steps required to copy existing DFS ACL information
into a format usable by NFSv4 'aclput' commands.
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
Theory of Operation.
The script uses standard methods to recursively read a user's
directory tree, executing "dcecp -c acl show" commands on each
file and sub-directory and using the results to generate NFSv4-
style ACL input files in the directory $acl_directory. At the
same time it generates a shell script, <cwd>/acl_<user_id>.sh,
containing a series of aclput -i commands referencing the files
found in $acl_directory and the fully qualified file path, e.g.
"aclput -i <cwd>/$acl_directory/filename.txt.acl <cwd>/filename.txt"
##
Assumptions.
##
The base cell name (obtained using dcecp -c getcellname) is
trimmed from the CWD in order to restructure the namespace;

 Appendix E. Scripts and configuration files 361

if the current cell is /.../test.itsc.austin.ibm.com, then
this string, along with the "/fs" DFS root, will be removed
from all path names. The --prefix switch can be used to alter
the new root directory to /nfs/ or any other value (the default
is / if the --prefix switch is no specified).
##
We assume the directory structure has been copied intact from
the DFS cell to the new NFSv4 environment; deviations from this
basic methodology can be handled by manually editing the output
shell script or altering the base Perl code.

Notes & caveats
##
1) It must be run from a user's home directory while that user
is logged in under their own id. The script makes use of
the $HOME and other variables when formatting ACLs and
directory paths.
##
2) No handling is provided for situations where duplicate file
names exist in a directory tree (e.g. $HOME/dir1/file.txt
and $HOME/dir2/file.txt). In this case, the last file
in the tree with the duplicate name will be used to build
the ACL.
##

use Cwd; # module for finding the current working directory
use Getopt::Long qw(GetOptions);

my $user = $ENV{"LOGIN"};
my $home = $ENV{"HOME"};
my $main_group = $ENV{"GROUP"};
my $parsed_home = "";
my $acl_directory = "";
my $acl_base = "acl_data";
my $output_file = "";
my ($login,$pass,$uid,$gid) = getpwnam($user);
my $group = getgrgid($gid);
my $do_symlinks = ''; ## by default we'll ignore symlinks
my $prefix = ""; ## default
my $cell_name = "/...";

$|=1; # turn off I/O buffering

sub ScanDirectory {
 my ($workdir, $output_file, $prefix, $cell_name) = @_;

we should ignore both the "acl_base" directory and OldFiles
 return if ($workdir eq $acl_base);
return if ($workdir eq "OldFiles");

362 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 my($startdir) = &cwd; # keep track of where we began

 chdir($workdir) or die "Unable to enter dir $workdir:$!\n";

 opendir(DIR, ".") or die "Unable to open $workdir:$!\n";
 my @names = readdir(DIR);
 closedir(DIR);

 foreach my $name (@names){
 next if ($name eq ".");
 next if ($name eq "..");

 if (-d $name){ # is this a directory?
 &ScanDirectory($name, $output_file, $prefix, $cell_name);
 next;
 }
 unless (&CheckFile($name, $output_file, $prefix, $cell_name)){
 print &cwd."/".$name."\n"; # print the bad filename
 }
 }
 chdir($startdir) or die "Unable to change to dir $startdir:$!\n";
}

sub CheckFile{
 my($name, $output_file, $prefix, $cell_name) = @_;

use the FQ path when checking the existing file
 my $file_to_check = &cwd."/".$name;

now generate a new path to this subdirectory once it's been
migrated to NFSv4.
 my $current_dir = &cwd;
 $current_dir =~ s/$cell_name//;
 my $destination_file = $prefix."/".$current_dir."/".$name;
 $destination_file =~ s/\/\//\//g; ## remove doubled "/"

If this file is a symbolic link and we turned off processing
of these files, then we'll just return from this function.
 return if ((-l $file_to_check) && ($do_symlinks eq ''));
 print "Traversing symlink: $file_to_check\n" if (-l $file_to_check);

attempt to read the directory entry for this file
 print STDERR "Scanning $file_to_check\n";

Try to open the file. If we fail, we'll just drop out of the
loop and try the next one. Sites should decide if this is
what they want to do, or if they prefer other processing to
occur in such a case.

 Appendix E. Scripts and configuration files 363

 if (open (ACL_DATA, "dcecp -c acl show $file_to_check 2>&1 |")) {

 ## First we'll open a file in which to write NFSv4 ACL commands,
 ## then we'll read data a line at a time from the return
 open (ACL_FILE, ">$acl_directory/$name.acl") ||
 die "failed to open output $acl_directory/$name.acl: $!\n";

 print ACL_FILE "*\n* ACL_type NFS4\n*\n*\n* Owner: $user\n* Group:
$group\n*\n";
 ## Next we write our aclput command to our master script.
 print OUTFILE "aclput -i $new_acl_dir/$name.acl $destination_file\n";

 ## now we loop through returned data to parse the DCE ACLs into
 ## a form usable by the NFSv4 'aclput' utility. There are two
 ## possible results: {user|group|other|mask}_obj + permissions, or
 ## {user|group} + user/group name + permissions. The former will
 ## be written to the file using a type::acl format, while the rest
 ## need to appear as type:id:acl, where "id" is either user or
 ## group.

 my @base_perms = @ext_perms = ();
 while (my $data = <ACL_DATA>) {
 $data =~ s/[{|}]//g; ## remove leading & trailing braces
 if ($data =~ /_obj/) {
 my ($user_id, $perm_mask) = split " ", $data;

 ## we need the ability to work on discrete permission bits;
 ## to do this, we'll transform the permissions list into
 ## an array.

 my ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6) = split "", $perm_mask;
 my @perms = ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6);

 ## next step is the actual conversion of a DCE ACL to an
 ## NFSv4 equivalent. In some cases, a single bit may need
 ## to become a 2- or even 3-bit equivalents in NFSv4 (e.g.
 ## a DFS "r" becomes "ra", and we will also give the user
 ## the proper access to named attributes such as RAW).

 ## Important: this example script will not handle all the
 ## possible ACl permutations and only creates "allow" (a)
 ## ACL entries. Further development is left as an exercise
 ## for individual sites requiring a customized solution.

 my $acl_string = "";

 for (my $i=0; $i<=5;$i++) {
my $temp = "";
 $temp = "RAra" if ($perms[$i] eq "r");

364 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 $temp = "Wwp" if ($perms[$i] eq "w");
 $temp = "x" if ($perms[$i] eq "x");
 $temp = "Dd" if ($perms[$i] eq "d");
 $temp = "cC" if ($perms[$i] eq "c");
 $acl_string = "$acl_string$temp";
 }
 ## Next, we start populating arrays that will later be used
 ## to add the data to our ACL input file.

 push @base_perms, "s:(OWNER@): a $acl_string\n"
 if ($data =~ /user_obj/);

 push @base_perms, "s:(GROUP@): a $acl_string\n"
 if ($data =~ /group_obj/);

 push @base_perms, "s:(EVERYONE@): a $acl_string\n"
 if ($data =~ /other_obj/);

 } else {

 ## We use a different split when we encounter a non-generic
 ## acl on a given file.

 my ($type, $user_id, $perm_mask) = split " ", $data;
 my ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6) = split "", $perm_mask;
 my @perms = ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6);

 $type = "g" if ($type eq "group");
 $type = "u" if ($type eq "user");

 ## Again, we'll transform the ACLs. This work is better handled
 ## in a subroutine, but for this example we'll leave it in-line
 ## for clarity. Here we do not give controlling (RAW) access
 ## since it's not clear this would be desirable.

 my $acl_string = "";

 for (my $i=0; $i<=5;$i++) {
 my $temp = "";
 $temp = "ra" if ($perms[$i] eq "r");
 $temp = "wp" if ($perms[$i] eq "w");
 $temp = "x" if ($perms[$i] eq "x");
 $temp = "d" if ($perms[$i] eq "d");
 $temp = "cC" if ($perms[$i] eq "c");
 $acl_string = "$acl_string$temp";
 }

 push @ext_perms, "$type:$user_id: a $acl_string\n";

 Appendix E. Scripts and configuration files 365

 } ## end of if-else
 } ## end of while loop

 my $line = "";
 ## now, write all the data to the output file...they're likely to
 ## be stored in reverse order so we'll loop through the array
 ## rather than use pop to pull them off in reverse order.

 for(my $counter=0 ; $counter < scalar(@ext_perms) ; $counter++) {
 my $line = $ext_perms[$counter];
 print ACL_FILE $line;
 }
 for(my $counter=0 ; $counter < scalar(@base_perms) ; $counter++) {
 my $line = $base_perms[$counter];
 print ACL_FILE $line;
 }
 $line = "";

 close ACL_FILE;
 close ACL_DATA || warn "dcecp error: $! $?";
 }

 return 1;
}

sub print_help
{

 print "Usage: perl migrate_dfs_acls_to_aixc.pl [--help] [--symlinks]\n
[--prefix=<new_namespace_prefix>]\n";
 print " --symlinks: the script will traverse symlinks (default: off)\n";
 print " --prefix: specifies the top-level directory prefix in use in\n";
 print " the NFSv4 namespace. This will replace the existing DFS \n";
 print " \"/.../existing.cell.name/fs\" prefix (default: /) \n";
 print " --help: prints this help text\n";
 exit(0);

}

main logic

GetOptions ('symlinks' => \$do_symlinks,
 'help' => \$print_help,
 'prefix=s' => \$prefix);

&print_help() if ($print_help);

366 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Get the current DCE cell name
if (open (CELL_DATA, "dcecp -c getcellname 2>&1 |")) {
 my $data = <CELL_DATA>; ## read only 1 line
 $cell_name = $data;
} else {
 print "Error retrieving cell name: $!\n";
 exit(1);
}
close CELL_DATA;

$cell_name =~ s/\n/\/fs/; ## strip carriage return and add DFS /fs suffix
$parsed_home = $home; ## need both
$parsed_home =~ s/$cell_name//;

Only prepend a prefix if it's non-null.
$parsed_home = "$prefix/$parsed_home" if ($prefix ne "");

New base directory
$parsed_home =~ s/\/\//\//g; ## remove any doubled "/"

location of .sh file in current cell
$output_file = "./acl_$user.sh"; ## start at CWD in existing cell

Set up "destination" directories
$acl_directory = $home."/".$acl_base;
$new_acl_dir = $parsed_home."/".$acl_base;

Emit our expected parameters
print "Starting at base directory: $home.\nDestination directory:
$parsed_home\n";

location for acl output files in current cell
system("mkdir $acl_directory") if (!-e "$acl_directory");

open (OUTFILE, ">$output_file");
print OUTFILE "#!/bin/sh\n";

&ScanDirectory(".", $output_file, $prefix, $cell_name);

close OUTFILE;
exit(0);

 Appendix E. Scripts and configuration files 367

AFS to Kerberos/LDAP user migration
Example E-5 provides a script to migrate users from AFS to Kerberos/LDAP.

Example: E-5 Script migusr to migrate users from AFS to Kerberos/LDAP

#!/bin/ksh
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
Script to migrate user information
The script does the following:
#
i. adds the user
ii. displays user information in LDAP
iii. sets the user's temporary password
iv. expires the user's password, forcing a change at first log on
#
export AUTH=KRB5LDAP
export PASSWD=tempONEtemp

if the admusr user does not exist, create it.
lsuser -R $AUTH admusr || /usr/bin/mkuser -R $AUTH -a account_locked=true
admin=true admusr

extract the username, UID and gecos information from the input file
cat /mnt/user_data.out | awk -F":" '
add user routine with UID & gecos info
adduser=sprintf("/usr/bin/mkuser -R $AUTH -a id=%s gecos=\"%s\" %s", $2, $3,
$1)
display user information from LDAP routine
lsuser=sprintf("/usr/sbin/lsuser -R $AUTH %s", $1)

set the the temporary password routine
passwd=sprintf("/usr/krb5/sbin/kadmin.local -q \"change_password -pw $PASSWD
%s\
"", $1)

expire the temporary password routine
chuser=sprintf("/usr/bin/chuser -R $AUTH krb5_attributes=+needchange %s", $1)
run the routines
system(adduser)
system(lsuser)
system(passwd)
system(chuser)
single quote that follows ends the awk statement...
‘

368 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

AFS to Kerberos/LDAP group migration
Example E-6 provides a script to migrate groups from AFS to Kerberos/LDAP.

Example: E-6 Script migrate_afs_groups.pl to migrate groups: AFS to Kerberos/LDAP

#!/usr/bin/perl
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
##
Usage: perl migrate_afs_groups.pl --file <file-name>
##

use Getopt::Long qw(GetOptions);

my $fileName = "";
my $admin_user = "admusr";

GetOptions ('file=s' => \$fileName);

die "Usage: migrate_afs_groups.pl --file <pts_file_name>\n" if (!$fileName);

open (GROUP_IN, "$fileName") ||
 die "failed to open input file $fileName: $!\n";

while (my $data = <GROUP_IN>) {

 next if ($data =~ /^Name /); ## skip first line of file (header)
 next if ($data =~ /^system:/); ## skip all AFS "system:" groups

 $data =~ s/\s+/ /g; ## remove multiple spaces

 my ($item1, $item2, $item3, $item4) = split / /, $data;

 next if ($item3 =~ /^system/);

 $item2 =~ s/-//; ## remove "-" from GID

 my ($owner, $user) = "";

 if ($item1 =~ /:/) {
 ($owner, $user) = split /:/, $item1;
 $item1 = $user;
 }

 if ($item3 =~ /:/) {

 Appendix E. Scripts and configuration files 369

 ($owner, $user) = split /:/, $item1;
 $item3 = $owner;
 }

 ## special case: $item3 is the admin user

 if ($item3 ne "$admin_user") {
 print "creating group $item1, owner $item3. $admin_user is also an
admin\n";
 system("mkgroup -R KRB5LDAP adms=$admin_user,$item3 $item1");
 } else {
 print "creating group: $item1\n";
 system("mkgroup -R KRB5LDAP -a $item1");
 }

}

exit(0);

AFS to NFSv4 ACL migration
Example E-7 provides a script to migrate AFS ACLs to NFSv4.

Example: E-7 Script to migrate AFS ACLs to NFSv4

#!/usr/bin/perl

migacl.pl -- Example ACL migration script
to show the steps required to copy existing AFS ACL information
into a format usable by NFSv4 'aclput' commands.
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
Theory of Operation.
The script uses standard methods to recursively read a user's
directory tree, executing "fs listacl" commands on each
file and sub-directory and using the results to generate NFSv4-
style ACL input files in the directory $acl_directory. At the
same time it generates a shell script, <cwd>/acl_<user_id>.sh,
containing a series of aclput -i commands referencing the files
found in $acl_directory and the fully qualified file path, e.g.
"aclput -i <cwd>/$acl_directory/filename.txt.acl <cwd>/filename.txt"
##
Assumptions.
##

370 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

The base cell name (obtained using the file /usr/vice/etc/ThisCell) is
trimmed from the CWD in order to restructure the namespace;
if the current cell is /.../test.itsc.austin.ibm.com, then
this string, along with the "/fs" AFS root, will be removed
from all path names. The --prefix switch can be used to alter
the new root directory to /nfs/ or any other value (the default
is / if the --prefix switch is no specified).
##
We assume the directory structure has been copied intact from
the AFS cell to the new NFSv4 environment; deviations from this
basic methodology can be handled by manually editing the output
shell script or altering the base Perl code.
##

use Cwd; # module for finding the current working directory
use Getopt::Long qw(GetOptions);

my $user = $ENV{"LOGIN"};
my $home = $ENV{"HOME"};
my $main_group = $ENV{"GROUP"};
my $parsed_home = "";
my $acl_directory = "";
my $acl_base = "acl_data";
my $output_file = "";
my ($login,$pass,$uid,$gid) = getpwnam($user);
my $group = getgrgid($gid);
my $do_symlinks = ''; ## by default we'll ignore symlinks
my $prefix = ""; ## default
my $cell_name = "/...";

$|=1; # turn off I/O buffering

sub ScanDirectory {
 my ($workdir, $output_file, $prefix, $cell_name) = @_;

 ## we should ignore both the "acl_base" directory and OldFiles
 return if ($workdir eq $acl_base);
 return if ($workdir eq "OldFiles");

 my($startdir) = &cwd; # keep track of where we began

 chdir($workdir) or die "Unable to enter dir $workdir:$!\n";

 opendir(DIR, ".") or die "Unable to open $workdir:$!\n";
 my @names = readdir(DIR);
 closedir(DIR);

 foreach my $name (@names){
 next if ($name eq ".");

 Appendix E. Scripts and configuration files 371

 next if ($name eq "..");

 if (-d $name){ # is this a directory?
 &ScanDirectory($name, $output_file, $prefix, $cell_name);
 next;
 }
 unless (&CheckFile($name, $output_file, $prefix, $cell_name)){
 print &cwd."/".$name."\n"; # print the bad filename
 }
 }
 chdir($startdir) or die "Unable to change to dir $startdir:$!\n";
}

sub CheckFile{
 my($name, $output_file, $prefix, $cell_name) = @_;

 ## use the FQ path when checking the existing file
 my $file_to_check = &cwd."/".$name;

 ## now generate a new path to this subdirectory once it's been
 ## migrated to NFSv4.
 my $current_dir = &cwd;
 $current_dir =~ s/$cell_name//;
 my $destination_file = $prefix."/".$current_dir."/".$name;
 $destination_file =~ s/\/\//\//g; ## remove doubled "/"

 ## If this file is a symbolic link and we we turned off processing
 ## of these files, then we'll just return from this function.
 return if ((-l $file_to_check) && ($do_symlinks eq ''));
 print "Traversing symlink: $file_to_check\n" if (-l $file_to_check);

 ## attempt to read the directory entry for this file
 print STDERR "Scanning $file_to_check\n";

 ## Try to open the file. If we fail, we'll just drop out of the
 ## loop and try the next one. Sites should decide if this is
 ## what they want to do, or if they prefer other processing to
 ## occur in such a case.
 if (open (ACL_DATA, "/usr/afs/bin/fs listacl $file_to_check 2>&1 |")) {

 ## First we'll open a file in which to write NFSv4 ACL commands,
 ## then we'll read data a line at a time from the return
 open (ACL_FILE, ">$acl_directory/$name.acl") ||
 die "failed to open output $acl_directory/$name.acl: $!\n";

 print ACL_FILE "*\n* ACL_type NFS4\n*\n*\n* Owner: $user\n* Group:
$group\n*\n";
 ## Next we write our aclput command to our master script.
 print OUTFILE "aclput -i $new_acl_dir/$name.acl $destination_file\n";

372 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 ## now we loop through returned data to parse the DCE ACLs into
 ## a form usable by the NFSv4 'aclput' utility. There are two
 ## possible results: {user|group|other|mask}_obj + permissions, or
 ## {user|group} + user/group name + permissions. The former will
 ## be written to the file using a type::acl format, while the rest
 ## need to appear as type:id:acl, where "id" is either user or
 ## group.

 my @base_perms = @ext_perms = ();
 while (my $data = <ACL_DATA>) {

 ## ignore lines starting with "Access" or "Normal"
 next if ($data =~ /^Access list/) || ($data =~ /^Normal/);

 my ($user_id, $perm_mask) = split " ", $data;

 ## If this is an "owned" group, we need to re-parse the
 ## real group and remove the owner.
 if ($user_id =~ /:/)

{
 my ($owner, $group) = split /:/, $user_id;
 $user_id = $group;
 }

 next if ($user_id eq "authuser"); ## discard this group

 ## we need the ability to work on discrete permission bits;
 ## to do this, we'll transform the permissions list into
 ## an array.

 my ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6, $bit7) =
 split "", $perm_mask;
 my @perms = ($bit1, $bit2, $bit3, $bit4, $bit5, $bit6, $bit7);

 ## next step is the actual conversion of an AFS ACL to an
 ## NFSv4 equivalent. In some cases, a single bit may need
 ## to become a 2- or even 3-bit equivalents in NFSv4.

 ## Important: this example script will not handle all the
 ## possible ACL permutations and only creates "allow" (a)
 ## ACL entries. Further development is left as an exercise
 ## for individual sites requiring a customized solution.

 my $acl_string = "";

 for (my $i=0; $i<=6;$i++) {
 my $temp = "";
 $temp = "r" if ($perms[$i] eq "r" && $acl_string !~ /r/);

 Appendix E. Scripts and configuration files 373

 $temp = "w" if ($perms[$i] eq "w");
 $temp = "w" if ($perms[$i] eq "k" && $acl_string !~ /w/);
 $temp = "C" if ($perms[$i] eq "a");
 $temp = "dD" if ($perms[$i] eq "d");
 if ($perms[$i] eq "l") {
 if ($acl_string !~ /r/) {
 $temp = "racx"
 } else { $temp = "acx"; }
 }
 if ($perms[$i] eq "i") {
 if ($acl_string !~ /w/) {
 $temp = "wp"
 } else { $temp = "p"; }
 }

 $acl_string = "$acl_string$temp";
 }
 ## Next, we start populating arrays that will later be used
 ## to add the data to our ACL input file. This is extremely
 ## cumbersome since ACL output from the AFS fs listacl
 ## command does not distinguish a group from a user ID; thus
 ## we'll verify each identity using getpwnam. If we get a
 ## match, the user_id is in the passwd file (therefore a
 ## user, not a group). Else, it's a group.

 push @base_perms, "s:(OWNER@): a $acl_string\n"
 if ($user_id eq $user);

 push @base_perms, "s:(GROUP@): a $acl_string\n"
 if ($user_id eq $main_group);

 push @base_perms, "s:(EVERYONE@): a $acl_string\n"
 if ($user_id eq "anyuser");

 ## Start group processing here
 if ((!getpwnam($user_id)) || ($data =~ /:/)) {
 push @ext_perms, "g:$user_id: a $acl_string\n";
 } else {
 push @ext_perms, "u:$user_id: a $acl_string\n";
 }

 } ## end of while loop

 my $line = "";
 ## now, write all the data to the output file...we need to write
 ## the ext_perms (containing those acls that aren't in the
 ## "special who" category) first to ensure they're evaluated
 ## first in the file.

374 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

 print ACL_FILE $line while ($line = pop(@ext_perms));
 print ACL_FILE $line while ($line = pop(@base_perms));

 close ACL_FILE;
 close ACL_DATA || warn "error: $! $?";
 }

 return 1;
}

sub print_help
{

 print "Usage: perl migacl.pl [--help] [--symlinks]\n
[--prefix=<new_namespace_prefix>]\n";
 print " --symlinks: the script will traverse symlinks (default: off)\n";
 print " --prefix: specifies the top-level directory prefix in use in\n";
 print " the NFSv4 namespace. This will replace the existing AFS \n";
 print " \"/.../existing.cell.name/fs\" prefix (default: /) \n";
 print " --help: prints this help text\n";
 exit(0);

}

main logic

GetOptions ('symlinks' => \$do_symlinks,
 'help' => \$print_help,
 'prefix=s' => \$prefix);

&print_help() if ($print_help);

Get the current AFS cell name
if (open (CELL_DATA, "/usr/vice/etc/ThisCell")) {
 my $data = <CELL_DATA>; ## read only 1 line
 $cell_name = $data;
} else {
 print "Error retrieving cell name: $!\n";
 exit(1);
}
close CELL_DATA;

$cell_name = "/afs/$cell_name"; ## prepend /afs prefix

$parsed_home = $home; ## need both
$parsed_home =~ s/$cell_name//;

Only prepend a prefix if it's non-null.

 Appendix E. Scripts and configuration files 375

$parsed_home = "$prefix/$parsed_home" if ($prefix ne "");

New base directory
$parsed_home =~ s/\/\//\//g; ## remove any doubled "/"

location of .sh file in current cell
$output_file = "./acl_$user.sh"; ## start at CWD in existing cell

Set up "destination" directories
$acl_directory = $home."/".$acl_base;
$new_acl_dir = $parsed_home."/".$acl_base;

Emit our expected parameters
print "Starting at base directory: $home.\nDestination directory:
$parsed_home\n";

location for acl output files in current cell
system("mkdir $acl_directory") if (!-e "$acl_directory");

open (OUTFILE, ">$output_file");
print OUTFILE "#!/bin/sh\n";

&ScanDirectory(".", $output_file, $prefix, $cell_name);

close OUTFILE;
exit(0);

Migrate DCE groups to LDAP
Example E-8 provides a script to generate mkgroup commands using DCE group
data.

Example: E-8 Script to generate mkgroup commands using DCE group data

#!/usr/bin/perl

migrate_dce_groups_to_ldap.pl -- extracts group data from the DCE
registry using dcecp commands, then uses it to write a shell
script containing appropriate mkgroup syntax to re-create the
same groups and GIDs in LDAP.
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.

Theory of operation: the script creates an output file into
which it writes individual mkgroup commands containing data

376 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

extracted from the registry using 1) dcecp -c group cat and 2)
dcecp -c group show <group_id>. The former command is used
to obtain the actual group name, while the latter provides
the GID mapping. For ease of use, each new group in the
KRB5LDAP registry is owned by the user running the script; thus
it is recommended that the script be run by an administrative
user such as root.
##
Additional "group administrator" data is not extracted from
the DCE registry, thus only the user running the script will
have administrative control in the new environment (additional
work capturing ACLs from the DCE registry would increase the
options in this area.)
##

use warnings;
use strict;

my $output_file = "./dce_exported_groups.sh";
my $user_id = $ENV{"USER"};
my ($grp, $grp_id, $grp_name) = "";
my $adm_user = "grpadm";

main logic

GetOptions ('user=s' => \$user_principal);

First, make sure we can write our output somewhere
if (open (OUTPUT_FILE, ">$output_file")) {
 print OUTPUT_FILE "#!/bin/sh\n\n";

 print OUTPUT_FILE "mkuser -R KRB5LDAP $adm_user\n"; ## group admin

 if (open (GROUP_CAT, "dcecp -c group cat -simple 2>&1 |")) {

 while ($grp_name = <GROUP_CAT>) {
 ## skip foreign groups or internal "subsys/dce" entries
 next if ($grp_name =~ /^\/.../ || $grp_name =~ /^subsys/ ||
 $grp_name =~ /\//);
 chomp $grp_name;

 ## Now we do a "group show" of the returned group
 if (open (GROUP_SHOW, "dcecp -c group show $grp_name 2>&1 |")){

 while (my $grp_info = <GROUP_SHOW>) {
 $grp_info =~ s/^{|}$//g;
 ($grp, $grp_id) = split / /,$grp_info if ($grp_info =~ /gid/);
 chomp $grp_id if ($grp_id);

 Appendix E. Scripts and configuration files 377

 }
 } else {

 ## here we throw an error but continue nonetheless

 print "Error retrieving data for group $grp_name: $!\n";
 }
 close GROUP_SHOW;

 ## here we write the command to generate a new group in the NFS
 ## space. We preserve the GID but do not retrieve any administrative
 ## information (e.g. dcecp -c acl show /.:/sec/group/<group_name>)
 ## as part of this example. This work is left as an exercise for
 ## the reader should preservation of administrative group access
 ## on a per-user basis be necessary.

 print OUTPUT_FILE "mkgroup -RKRB5LDAP id=$grp_id adms=$user_id
$grp_name\n";
 ($grp_id, $grp_name) = "";
 }
 close GROUP_CAT;
 }

} else {
 print "Error opening output file $output_file: $!n";
 exit(1);
}

close OUTPUT_FILE;
exit(0);

Migrate DCE groups to LDAP
Example E-9 provides a script to generate mkuser commands using DCE user
account data.

Example: E-9 Script to generate mkuser commands using DCE user account data

#!/usr/bin/perl

migrate_dce_users_to_ldap.pl -- extracts user accounts from a DCE
registry using dcecp commands, then uses it to write a shell
script containing appropriate mkuser syntax to re-create the
users in the KRB5LDAP database.

Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;

378 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

no warranty, expressed or implied, is provided for this utility.

Theory of operation: the script creates an output file into
which it writes individual mkuser commands containing data
extracted from the registry using 1) dcecp -c account catalog
and 2) dcecp -c user show <user_id>. The former command is used
to generate a list of users, while the second retrieves discrete
account settings for each user. The script can also be run
with the --user <user_id> option in order to retrieve data for
one account.
##
Assumptions:

The script uses the dcecp -c getcellname command to return the
DCE cell name; it does this in order to strip off this string
from, for instance, the {home <home directory>} line in the
output from the user show command. We presume a site will
wish to remove this prefix and, optionally, replace it with
another (e.g. /nfs/home). Thus if a user's home directory
in DFS is /.../cell_name.ibm.com/fs/u/j/jones, and the script
is run with --prefix /nfs/home, the resulting home directory
syntax will be /nfs/home/u/j/jones. Without the prefix
flag, it would be /u/j/jones.
##
It is also presumed the DCE "none" group will be abandoned
in the new environment. The script replaces this with a new
default, which is "migusr" unless $default_group is changed
prior to execution. Specify --nodefault on the command line
to prevent a "mkgroup $default_group" from being written to
the output shell script.
##
Note that passwords cannot be migrated using this method, as
it is not possible to decrypt the string stored in the DCE
registry.
##

use strict;
use warnings;

use Getopt::Long qw(GetOptions);

my $output_file = "./dce_exported_users.sh";
my ($user_principal, $insert_string, $default_yes) = "";
my $prefix = "/";
my $default_group = "migusr"; ## replacement for DCE's "none"
my ($item, $uid, $group, $home, $shell, $fullname, $cell_name) = "";
my @user_list = ();
my @group_list = ();

 Appendix E. Scripts and configuration files 379

main logic

GetOptions ('user=s' => \$user_principal,
 'prefix=s' => \$prefix,
 'nodefault' => \$default_yes);

Get the current DCE cell name
if (open (CELL_DATA, "dcecp -c getcellname 2>&1 |")) {
 my $data = <CELL_DATA>; ## read only 1 line
 $cell_name = $data;
} else {
 print "Error retrieving cell name: $!\n";
 exit(1);
}
close CELL_DATA;

$cell_name =~ s/\n/\/fs/; ## strip carriage return and add DFS /fs suffix

open (OUTPUT_FILE, ">$output_file") || die "unable to open output file: $!\n";

print OUTPUT_FILE "#!/bin/sh\n\n";

create the default group. If this is not desirable, or if
a preferred default group was created when the group-
migration script was run, simply specify --nodefault on
the command line.

print OUTPUT_FILE "mkgroup -R KRB5LDAP $default_group\n" if (!$default_yes);

One user only
if ($user_principal) {
 push @user_list, $user_principal;
 print "Processing user $user_principal\n";
all users
} else {
 if (open (USER_DATA, "dcecp -c account cat -simple 2>&1 |")) {
 while (my $user_id = <USER_DATA>) {
 next if ($user_id =~ /\//); ## bypass all accts with "/" in name
 chomp $user_id;
 push @user_list, $user_id;
 }
 } else {
 print "Error generating account list: $!\n";
 exit(1);
 }
}

close USER_DATA;

380 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

while (my $user_principal = pop(@user_list)) {

 print "Generating command for $user_principal\n";
 if (open (USER_DATA, "dcecp -c user show $user_principal 2>&1 |")) {

 while (my $input_line = <USER_DATA>) {

 chomp $input_line;
 $input_line =~ s/^{|}$//g;
 ($item, $uid) = split " ", $input_line if ($input_line =~ "^uid");

 if ($input_line =~ "^groups") {
 $input_line =~ s/^groups /^group:/;
 ($item, $group) = split ":", $input_line;
 }
 ($item, $home) = split " ", $input_line if ($input_line =~ "^home");
 ($item, $shell) = split " ", $input_line if ($input_line =~ "^shell");
 ($item, $fullname) = split "{", $input_line
 if ($input_line =~ "^fullname");
 }

 ## post-process certain entries

 $insert_string = "uid=$uid";

 $fullname =~ s/}//; ## remove remaining }

 $insert_string = "$insert_string gecos=\"$fullname\"" if ($fullname);

 ## special handling for groups. If the first listed group
 ## is "none" then we'll replace it with the value of the
 ## $default_user variable.

 @group_list = split / /, $group ;
 if ($group_list[0] eq "none") {
 $insert_string = "$insert_string pgrp=$default_group";
 } else {
 $insert_string = "$insert_string pgrp=$group_list[0]";
 }

 $group="";
 while (my $grp = pop @group_list) {
 next if ($grp =~ /\//); ## remove groups with "/" chars
 $group = "$group,$grp" if ($grp ne "none"); ## ignore DCE "none"
 }
 $group =~ s/^,//; ## we can end up with a leading comma

 $insert_string = "$insert_string groups=$group" if ($group);

 Appendix E. Scripts and configuration files 381

 ## clean up the $HOME, removing the old DCE prefix
 $home =~ s/$cell_name/$prefix/;
 $home =~ s/\/\//\//g;

 ## print "Name: $fullname\nUID: $uid\nGroup: $group\nHome: $home\nShell:
$shell\n";
 $insert_string="$insert_string home=$home" if ($home ne "/");

 } else {
 print "Error parsing command for $user_principal\n";
 next;
 }
 close USER_DATA;

 print OUTPUT_FILE "mkuser -R KRB5LDAP $insert_string $user_principal\n";

}

close OUTPUT_FILE;

exit(0);

Copy ACL
Example E-10 provides a script to copy an ACL (with recursive option).

Example: E-10 Script to copy an ACL (with recursive option)

#!/usr/bin/ksh
##
Copyright 2005 IBM Corporation. All rights reserved. This script
is provided solely as an example for migration planning purposes;
no warranty, expressed or implied, is provided for this utility.
##
copy_acl.sh
#
Copy the ACL for the given source file/directory to other files/directories
#

Name of this script
scrname=${0##*/}

#
Functions
#

382 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

function usage {
 echo "Usage: $scrname [-R] <source> <dest>"
 echo " where"
 echo " -R indicates a recursive copy"
 echo " (copy ACL to all files and directories below and including"
 echo " the destination.)"
 echo " <source> = the name of the file or directory to copy the ACL from"
 echo " <dest> = the name of the file or directory to copy the ACL to"

 exit 1
}

if [[$# -eq 0]]
then
 usage
fi

#
Process input parameters
#

if [["$1" = "-R"]]; then
 SETSUBTREE="true"
 shift
else
 SETSUBTREE="false"
fi

if [[-n "$1"]]; then
 SRC_NAME="$1"
else
 usage
fi

if [[-n "$2"]]; then
 DEST_NAME="$2"
else
 usage
fi

#
Initialize other variables
#

NBERR=0
TMP_ACLFILE="/tmp/.AIXACL_$$"

if [[-e "${SRC_NAME}"]]; then
 aclget -o "${TMP_ACLFILE}" "${SRC_NAME}"

 Appendix E. Scripts and configuration files 383

 NBERR=$?
else
 echo "Source \"${SRC_NAME}\" does not exist"
 NBERR=1
fi

if [["${NBERR}" -eq 0]]; then
 if [[-e "${DEST_NAME}"]]; then
 if [[-d "${DEST_NAME}" && "${SETSUBTREE}" = "true"]]; then
 find "${DEST_NAME}" -print | while read NAME
 do
 aclput -i "${TMP_ACLFILE}" "${NAME}"
 ((NBERR += $?))
 ls -dl "${NAME}"
 done
 else
 aclput -i "${TMP_ACLFILE}" "${DEST_NAME}"
 ((NBERR += $?))
 ls -dl "${DEST_NAME}"
 fi
 else
 echo "Destination \"${DEST_NAME}\" does not exist"
 NBERR=1
 fi
fi

rm -f "${TMP_ACLFILE}"
exit ${NBERR}

384 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix F. Installing an AIX 5L
maintenance level

The appendix describes the basic steps required to install a new maintenance
level on AIX 5L V5.3.

F

© Copyright IBM Corp. 2005. All rights reserved. 385

Obtaining the latest fixes
In this section, we describe different ways in which to obtain the latest fixes.

On the Web
You can obtain the AIX 5L 5300-03 Recommended Maintenance package from
the Maintenance packages section of Quick links for AIX fixes:

http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html

This site also has instructions about how to install the recommended
maintenance package.

AIX 10/2005 Update CD
An Update CD is shipped with all new orders of AIX 5L V5.3. The 5300-03
Recommended Maintenance package is included on the 10/2005 and later
Update CDs. Existing pSeries customers who are licensees of AIX 5L V5.3 can
obtain the Update CD at no charge, except for media charges as they apply in
their geography, by contacting their point of sale and requesting APAR number
IY71011 or Feature Code 0970.

Installation tips
When installing the maintenance package, consider the following tips:

� You need to be logged in as root to perform the installation of this package.

� We recommend that you create a system backup before starting the
installation procedure. Refer to the mksysb command in the AIX 5L V5.3
Commands Reference for additional information.

� The latest AIX 5L V5.3 installation hints and tips are available from the
Subscription service for UNIX servers Web page at:

https://techsupport.services.ibm.com/server/pseries.subscriptionSvcs

These tips contain important information that should be reviewed before
installing this update.

Installation
To install selected updates from this package, use the following command:

smitty update_by_fix

386 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html
https://techsupport.services.ibm.com/server/pseries.subscriptionSvcs

To install all updates from this package that apply to installed filesets on your
system, use the following command:

smitty update_all

We highly recommend that you install all the updates from this package.

After a successful installation, a system reboot is required for this update to take
effect.

Example F-1 shows a sample menu screen from the smitty update_all
command.

Example: F-1 Sample menu screen from the smitty update_all command

Update Installed Software to Latest Level (Update All)

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

 [Entry Fields]
* INPUT device / directory for software /dev/cd0
* SOFTWARE to update _update_all
 PREVIEW only? (update operation will NOT occur) no +
 COMMIT software updates? no +
 SAVE replaced files? no +
 AUTOMATICALLY install requisite software? yes+
 EXTEND file systems if space needed? yes+
 VERIFY install and check file sizes? no +
 DETAILED output? no +
 Process multiple volumes? yes+
 ACCEPT new license agreements? yes+
 Preview new LICENSE agreements? no +

We recommend that you do not COMMIT filesets. If you COMMIT the filesets,
you will not be able to uninstall the Recommended Maintenance Level (RML) if
problems are encountered. The RML installation can always be COMMITted
after you are satisfied that your system is functioning as you expected. You can
run the following SMIT command to COMMIT any APPLIED filesets:

smitty commit

Verifying the installation
To determine if your system is running AIX 5L V5.3 RML03, run the commands
shown in Example F-2 on page 388 on your system or systems.

 Appendix F. Installing an AIX 5L maintenance level 387

Example: F-2 Confirming the version and RML of AIX 5L installed on a system

lppchk -v
#
oslevel -r
5300-03
#

Example F-2 shows that the version of AIX 5L installed on our system is AIX 5L
V5.3 RML03. If the output from the oslevel -r command shows an earlier
version of AIX 5L, you are either not running the required level of AIX 5L or
RML03 has not been correctly installed. Use the lppchk -v command to check
what fileset had problems installing.

If the lppchk -v command returns no output and the oslevel -r command
shows a RML version earlier than what you just installed, run the command
shown in Example F-3.

Example: F-3 Using the oslevel command to determine down-level filesets

oslevel -rl 5300-03
Fileset Actual Level Recommended ML

devices.pci.14109f00.rte 5.3.0.0 5.3.0.30
#

The output in Example F-3 indicates that the devices.pci.14109f00.rte fileset
installed on the system is at Version 5.3.0.0 and the system is expecting it to be
at Version 5.3.0.30. You will need to install the expected version of the fileset to
bring the system to RML03.

388 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix G. Sample migration planning
worksheet

When performing any major migration to a new environment, thorough planning
is the key to success. We provide the form in Figure G-1 on page 390 as an
example of the considerations that might be required for any basic NFSv4
migration. Production environments will, of course, have additional
considerations for customized solutions and applications that should be added to
any migration plan.

G

© Copyright IBM Corp. 2005. All rights reserved. 389

Figure G-1 Sample migration worksheet

390 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Appendix H. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described in this appendix.

H

© Copyright IBM Corp. 2005. All rights reserved. 391

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246657

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG246657.

Using the Web material
The additional Web material that accompanies this redbook includes the
following file:

File name Description
SG246657_Migrate.ZIP Migration example Perl scripts from Appendix E,

“Scripts and configuration files” on page 353

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material ZIP file into this folder.

392 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

ftp://www.redbooks.ibm.com/redbooks/SG246657
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 395. Note that some of the documents referenced here may
be available in softcopy only.

� Securing NFS in AIX: An Introduction to NFS V4 in AIX 5L Version 5.3,
SG24-7204

� AIX - Migrating NIS Maps into LDAP, TIPS-0123

� AIX 5L Differences Guide Version 5.3 Edition, SG24-7463

� AIX and Linux Interoperability, SG24-6622

� Understanding LDAP- Design and Implementation, SG24-4986

� DCE Replacement Strategies, SG24-6935

� IBM’s General Parallel File System (GPFS) 1.4 for AIX, REDP-0442

Other publications
These publications are also relevant as further information sources:

� General Parallel File System (GPFS) for Clusters: Administration and
Programming Reference, SA22-7967

� AIX 5L Version 5.3 Security Guide, SC23-4907

� AIX 5L Version 5.2 Performance Management Guide, SC23-4876

� AIX 5L Version 5.3 System Management Guide: Communications and
Networks, SC23-4909

� AIX 5L Version 5.3 Files Reference, SC23-4895

� AIX 5L Version 5.3 System User's Guide: Communications and Networks,
SC23-4912

© Copyright IBM Corp. 2005. All rights reserved. 393

Online resources
These Web sites and URLs are also relevant as further information sources:

� AIX 5L V5.3 online documentation

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp

� AIX 5L V5.2 online documentation

http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix52.htm

� IBM Eserver pSeries and AIX information center

http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/index.htm

� Quick links for AIX fixes

http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html

� AIX 5L Version 5.3 Commands Reference

http://publib.boulder.ibm.com/infocenter/pseries/index.jsp

� IBM Eserver Cluster information center

http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp

� IBM AFS Support

http://www.ibm.com/software/stormgmt/afs/library/

� IBM Eserver Fix Central

http://www.ibm.com/eserver/support/fixes/

� IBM Tivoli Directory Server

http://www.ibm.com/software/tivoli/products/directory-server

� Subscription service for UNIX servers

https://techsupport.services.ibm.com/server/pseries.subscriptionSvcs

� IBM Distributed Computing Environment Version 3.2 for AIX and Solaris: DCE
Security Registry and LDAP Integration Guide

http://www.ibm.com/software/network/dce/library/publications/ldaprgy/html/L
DAPRG02.HTM

� Improving Database Performance With AIX Concurrent I/O: A case study with
Oracle9i Database on AIX 5L version 5.2 white paper

http://www.ibm.com/servers/aix/whitepapers/db_perf_aix.pdf

� NFSv4: General Information and References for the NFSv4 protocol

http://www.nfsv4.org

� Pawlowski, B. et al., The NFS Version 4 Protocol

http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

394 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

http://www.ibm.com/software/network/dce/library/publications/ldaprgy/html/LDAPRG02.HTM
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp
http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix52.htm
http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/index.htm
http://www.ibm.com/servers/eserver/support/unixservers/aixfixes.html
http://publib.boulder.ibm.com/infocenter/clresctr/index.jsp
http://www.ibm.com/software/stormgmt/afs/library/
http://www.ibm.com/eserver/support/fixes/
http://www.ibm.com/software/tivoli/products/directory-server
https://techsupport.services.ibm.com/server/pseries.subscriptionSvcs
http://www.ibm.com/servers/aix/whitepapers/db_perf_aix.pdf
http://www.nfsv4.org
http://publib.boulder.ibm.com/infocenter/pseries/index.jsp
http://www.nluug.nl/events/sane2000/papers/pawlowski.pdf

� Comprehensive Perl Archive Network (CPAN)

http://www.cpan.org

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 395

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/
http://www.cpan.org

396 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

Index

Symbols
/etc/exports 25, 32, 41, 182, 340
/etc/filesystems 340
/etc/irs.conf file 86
/etc/nfs/hostkey 340
/etc/nfs/local_domain 340
/etc/nfs/princmap 340
/etc/nfs/realm.map 340
/etc/rmtab 340
/etc/sm 340
/etc/sm.bak 340
/etc/state 340
/etc/syslog.conf 197
/etc/xtab 340

A
aclconvert command 60, 98, 258
acledit command 59–60, 63, 98
aclget command 63, 98, 107
aclgettypes command 98
aclput command 98, 107
ACLs

commands 98
evaluation 112
evaluation flowchart 113
flowchart 113
inheritance 62
JFS2 59
migrating 176
types

NFSv4 ACL 90
AFS

ACL 279
caching 266
cell 262
file system semantics 272
location transparency 264
NFS/AFS Translator 278
replication 266
security 266
volumes 265

AFS to NFS migration
ACLs 280

© Copyright IBM Corp. 2005. All rights reserved.
example 300
cell to domain 288
data migration 276

example 290
groups 270

example 293
namespace 273
security 268

example 290
users 269

example 290
AFS versus NFS

ACLs 280
cell and domain 272
namespace 273
semantics 273

aio 125
AIX 5L

RML03 26
AIX 5L V5.3 26

RML03
installation 386

authentication 170, 173
host 181
methods 178

authorization
exports 182
host 182

automating replication
(using rdist) 49

automount command 341

B
biod daemon 340

C
cache

consistency 28
cache file system

configuring 84
performance 83

cache file system (see CacheFS) 82
CacheFS 27, 82

 397

benefits 82
configuring 84
performance 82–83

caching 13
CDS 179
Cell Directory Services 179
cfsadmin command 84–85
chmod command 176
chnfs command 41, 208, 342
chnfsdom command 342
chnfsexp command 341
chnfsim command 342
chnfsmnt command 341
chnfsrtd command 209
chnfssec command 342
CIO (see concurrent I/O) 57
commands

aclconvert 60, 98, 258
acledit 59–60, 63, 98
aclget 63, 98, 107
aclgettypes 98
aclput 98, 107
automount 341
cfsadmin 84–85
chmod 102, 176
chnfs 41, 208, 342
chnfsdom 342
chnfsexp 341
chnfsim 342
chnfsmnt 341
chnfsrtd 209
chnfssec 342
cpio 44–45, 80
crontab 49
df 32
exportfs 32, 34, 182, 341–342
kinit 210
klist 210
ktutil 210
ldapadd 132
ldapmodify 87
lppchk 388
lsnfsexp 341
lsnfsmnt 341
lsuser 255
mkcfsmnt 84
mkgroup 251
mknfs 341
mknfsexp 342

mknfsmnt 342
mksysb 386
mkuser 250
mount 32, 214, 341, 343
nfs.clean 221
nfs4cl 42–43, 342, 347

options
showstat 33

nfsd 41
nfshostkey 208, 342
nfso 28, 341, 344

options
client_delegation 28
deleg 29
server_delegation 29

nfsstat 29
nistoldif 86
oslevel 27, 388
rc.nfs 340
rdist 44, 46, 48
refresh 197
rmnfs 342
rmnfsexp 342
showmount 341
tar 46, 79

commands mkuser 254
concurrent I/O 57
cpio command 44–45, 80
crontab command 49

D
DCE/DFS

ACLs 237
aggregates and filesets 227
CDS

Cell Directory Services 179
cells 225

DCE/DFS principal and group considerations
users and groups 229

DCE/DFS to NFS migration
ACL 237
data migration 243

delegation
caching 27
controlling on the client 28
controlling on the server 29
performance 30
statistics 30

398 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

df command 32
DIO (see direct I/O) 57
direct I/O 57
directory services 179

E
enterprise file systems 5

characteristics 12
concepts 4
operational considerations 16
technologies 13

AFS 14
DFS 15
NFS 13

exname 23–24
exportfs command 32, 34, 182, 341

options 342
access 342
exname 342
nfsroot 343
refer 343
replicas 343
ro 342
root 342
rw 342
sec 182, 343
vers 182, 342

exporting replicas 40
exports file 32, 35, 182, 340
exports options

sec= 182
vers= 182

external namespace 23

F
failover 36, 43
features of NFSv4 50
file handles 25, 36
files

/etc/exports 182, 340
/etc/filesystems 340
/etc/nfs/hostkey 340
/etc/nfs/local_domain 340
/etc/nfs/princmap 340
/etc/nfs/realm.map 340
/etc/sm 340
/etc/sm.bak 340
/etc/state 340

/etc/syslog.conf 197
/etc/xtab 340

filesystems file 340
flowchart

NFSv4 ACL evaluation 113
FSID 25
fsid 25–26, 36

G
General Parallel File System (See GPFS) 63
Global Storage Architecture (See GSA) 314
GPFS 63

advantages 67
architecture 65
cache usage with NFS 72
exporting with NFSv4 72
NFSv4 access controls lists

changing 77
deleting 77
displaying 77
limitations 78

NFSv4 ACL translation 75
planning 70
usage with GSA 317
using with NFSv4 70

GSA 314
backups 322
benefits 325
hardware 319
Kerberos 323
software 322
status 326
time synchronization 323

gssd daemon 341

I
IBM Tivoli Directory Server 122

configuration 127
installation 126

IBM Tivoli Directory Server (see also LDAP) 122
identification

host 181
integrity 170

J
JFS2

ACL types 60

 Index 399

comparing with JFS 56
converting acls to NFSv4 60
features 57
snapshots 57

K
kadmin command

options
ktadd 209

kadmin.local
options

add_principal 207
get_principal 207

Kerberos
host identification 181
machine principal 181
service principal 181

kinit command 210
klist command 210
ktutil command 210

options
read_kt 210

L
LDAP 85

automount maps 85
client configuration 133
commands

ldapmodify 87
nistoldif 86

configuration 127
installation 126
usage with GSA 318
user registry 172

ldapadd command 132
ldapmodify command 87
local_domain file 340
lppchk command 388
lsnfsexp command 341
lsnfsmnt command 341
lsuser command 255

M
migration 12

components 169
considerations 163
hardware planning 168

security
sizing 177

types of 164
migration choices 5
mkcfsmnt command 84
mkgroup command 251
mknfs command 341
mknfsexp command 342
mknfsmnt command 342
mksecldap command

syntax 133
mksysb command 386
mkuser command 250, 254
mount command 32, 214, 341, 343

options
acl 344
bg 343
cio 344
dio 344
fg 343
hard 343
intr 343
nointr 343
ro 343
rw 343
sec 344
soft 343
vers 344

syntax 216

N
namespace

federated 13
Network Dispatcher

usage with GSA 319
Network Time Protocol 122
Network Time Protocol (See NTP) 329
NFS commands 342

automount 341
chnfsdom 342
chnfsexp 341
chnfsim 342
chnfsmnt 341
chnfssec 342
exportfs 341–342
lsnfsexp 341
lsnfsmnt 341
mknfs 341

400 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

mknfsexp 342
mknfsmnt 342
mount 341, 343
nfs4cl 342, 347
nfshostkey 342
nfso 341, 344
rc.nfs 340
rmnfs 342
rmnfsexp 342
showmount 341

NFS daemons
/usr/sbin/biod 340
/usr/sbin/gssd 341
/usr/sbin/nfsd 340
/usr/sbin/nfsrgyd 341
/usr/sbin/pcnfsd 341
/usr/sbin/portmap 341
/usr/sbin/rpc.lockd 340
/usr/sbin/rpc.mountd 340
/usr/sbin/rpc.statd 340

NFS registry daemon 341
nfs.clean command 221
nfs4cl 26
nfs4cl command 26, 42–43, 342, 347

example
resetfsoptions

example 350
options

resetfsoptions 347
setfsoptions 347

example 350
showfs 349

example 349
showstat 33

example 351
showstats 349

nfsd command 41
options

getnodes 204
nfsd daemon 340
nfshostkey command 208, 342
nfshostkey file 340
nfso command 28, 341, 344

examples 346
NFSv4-specific options

client_delegation 346
nfs_v4_fail_over_timeout 345
nfs_v4_pdts 345
nfsv4_vm_bufs 345

server_delegation 346
utf8 344
utf8_validation 344

nfsrgyd daemon 341
nfsstat command 29
NFSv4

accounts 171, 173
ACLs (see also ACLs - NFSv4 ACLs) 90
exports options 182
feature list 50
host authentication 181
host authorization 182
host identification 181
host principal 207
referrals 31
replication

load balancing 40
security 169–170
user accounts 171, 173

NFSv4 ACLs
access evaluation 95
acledit 98
administration 98
chmod command 102
directory structure 104
file system support 91
format 91
inheritance 94
inheritance and move versus copy 104
inheritance and umask 103
inheritance, maximizing benefits of 105
permission bits 92
permission restrictions 94
permissions scenarios 110
special user permissions 94
UNIX permissions 97
using with JFS2

JFS2 ACLs 59
with NFSv3 clients 114

NFSv4 commands
nfs4cl 26

nistoldif command 86
NTP 122, 329

configuration 330

O
oslevel command 27, 388

 Index 401

P
pcnfsd daemon 341
performance 27
persistent storage 27
portmap daemon 341
preferred clients 42
princmap file 340
privacy 171
pseudo root 23, 30, 32

R
rc.nfs command 340
rdist command 44, 46, 48

automating 49
realm.map file 340
Redbooks Web site 395

Contact us xvii
referral 30–31
referrals 31
refresh command 197
replication 12, 31, 36

automating 49
enabling 34
failover 36
sychronizing 44

rmnfs command 342
rmnfsexp command 342
rpc.lockd daemon 340
rpc.mountd daemon 340
rpc.statd daemon 340

S
SAN 63
scripts

add users to the KDC 354
AFS to Kerberos/LDAP group migration 369
AFS to Kerberos/LDAP user migration 368
AFS to NFSv4 ACL migration 370
DFS to AIXC ACL migration example 256, 356
DFS to NFSv4 migration example 361
group migration 251
mkuser commands 252, 378
replica synchronization 49
sync replicas 49
sync_data.sh 49

security 169
information security 170
kerberos 171

personnel security 170
physical security 170
RPCSEC_GSS 170, 172

showmount command 341
sizing

security migration 177
sm file 340
sm.bak file 340
snapshots 57
soft mounts 43
state file 340
storage area network 63
synchronizing replicas 44
syslog.conf file 197
syslogd daemon 197

configuration 197

T
tar command 46, 79
test environment 310–311
timeout

setting timeout values 43
Tivoli Storage Manager 79

U
user accounts 171, 173
user authentication 173

W
Web-based System Manager 99

ACL administration 99

X
X.500 180
xtab file 340

402 Implementing NFSv4 in the Enterprise: Planning and Migration Strategies

(0.5” spine)
0.475”<

->
0.875”

250 <
->

 459 pages

Im
plem

enting NFSv4 in the Enterprise: Planning and M
igration Strategies

®

SG24-6657-00 ISBN 0738494232

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Implementing NFSv4 in
the Enterprise:
Planning and Migration
Strategies
Planning and
implementation
examples for AFS
and DFS migrations

NFSv3 to NFSv4
migration examples

NFSv4 updates in AIX
5L Version 5.3 with
5300-03
Recommended
Maintenance
Package

The most recent maintenance release of IBM AIX 5L Version
5.3 includes a significant set of new features added to the
NFSv4 implementation. In 2004, the first IBM Redbook
devoted to the topic of NFSv4 implementation in AIX 5L was
published: Securing NFS in AIX: An Introduction to NFS V4 in
AIX 5L, SG24-7204.

This IBM Redbook provides additional up-to-date information
to help IBM clients understand and take advantage of the new
NFSv4 functions provided by AIX 5L Version 5.3 with the
5300-03 Recommended Maintenance Package.

The NFSv4 implementation in AIX 5L has now expanded to
provide core features that make it capable of providing a
much broader range of distributed file system services than
any prior version of NFS. The scope of this book includes
methods for implementing NFSv4 in the enterprise and
extensive coverage of methods for how it can potentially be
used as a migration target for existing AFS-based and
DCE/DFS-based enterprise file systems.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Acknowledgments
	Become a published author
	Comments welcome

	Part 1 Introduction
	Chapter 1. Introduction
	1.1 Overview of enterprise file systems
	1.2 The migration landscape today
	1.3 Strategic and business context
	1.4 Why NFSv4?
	1.5 The rest of this book

	Chapter 2. Shared file system concepts and history
	2.1 Characteristics of enterprise file systems
	2.1.1 Replication
	2.1.2 Migration
	2.1.3 Federated namespace
	2.1.4 Caching

	2.2 Enterprise file system technologies
	2.2.1 Sun Network File System (NFS)
	2.2.2 Andrew File System (AFS)
	2.2.3 Distributed Computing Environment/Distributed File System

	2.3 General considerations when using enterprise file systems

	Part 2 NFSv4 on AIX 5L V5.3
	Chapter 3. NFSv4 implementation
	3.1 Implementation of the NFSv4 protocol in AIX 5L V5.3
	3.2 NFSv4 features supported in the initial AIX 5L V5.3 release
	3.2.1 External namespace (exname) support
	3.2.2 FSIDs and file handles

	3.3 Features introduced in AIX 5L V5.3 RML03
	3.3.1 Delegation
	3.3.2 Referral
	3.3.3 Replication

	3.4 List of NFSv4 features supported in AIX 5L V5.3

	Chapter 4. Using NFSv4 with JFS2 or GPFS
	4.1 AIX 5L enhanced journaled file system (JFS2)
	4.1.1 Comparing JFS2 with JFS
	4.1.2 JFS2 advanced features
	4.1.3 Using JFS2 with NFSv4
	4.1.4 JFS2 ACLs versus NFSv4 ACLs
	4.1.5 How do we implement inheritance NFSv4 ACLs?

	4.2 General Parallel File System (GPFS)
	4.2.1 Why GPFS?
	4.2.2 GPFS advantages
	4.2.3 When to consider GPFS
	4.2.4 Planning considerations for GPFS
	4.2.5 Using NFSv4 with GPFS
	4.2.6 NFSv4 export considerations for GPFS
	4.2.7 NFS usage of GPFS cache
	4.2.8 NFSv4 ACL administration
	4.2.9 NFS client with stale inode data

	4.3 Backup considerations

	Chapter 5. Using NFSv4 features
	5.1 Using the cache file system (CacheFS)
	5.1.1 CacheFS performance benefits
	5.1.2 CacheFS performance impacts
	5.1.3 Configuring CacheFS

	5.2 Managing LDAP automount maps
	5.3 Pseudo file system
	5.4 NFSv4 ACLs
	5.4.1 NFSv4 ACLs: ACL evaluation
	5.4.2 NFSv4 ACLs: Administration
	5.4.3 NFSv4 ACLs: ACL inheritance and umask
	5.4.4 NFSv4 ACLs: Permissions scenarios
	5.4.5 NFSv4 ACLs: ACL evaluation flowchart for NFSv4
	5.4.6 NFSv4 ACLs: NFSv3 clients

	Part 3 Preparing to use NFSv4
	Chapter 6. Building an NFSv4 environment
	6.1 Environment used for demonstration scenarios
	6.2 Infrastructure setup flow
	6.3 Network Time Protocol (NTP) configuration
	6.4 IBM Tivoli Directory Server V5.2
	6.4.1 Preparing the system for IBM Tivoli Directory Server installation
	6.4.2 Installing IBM Tivoli Directory Server
	6.4.3 Configuring IBM Tivoli Directory Server
	6.4.4 Configuring Tivoli Directory Server to be a client of itself

	6.5 IBM Network Authentication Services (Kerberos V5) server installation
	6.5.1 Setting up the environment
	6.5.2 Configuring the NAS server

	6.6 IBM Tivoli Directory Server client configuration
	6.7 IBM Network Authentication Services client install and configuration
	6.7.1 Integrated login (single sign-on)
	6.7.2 Standard login
	6.7.3 Adding NAS users
	6.7.4 Migrating existing users into NAS
	6.7.5 Installation details

	6.8 Installing GPFS
	6.8.1 Preparing the GPFS nodes for installation
	6.8.2 Creating the GPFS directory
	6.8.3 Creating the GPFS installation table of contents file
	6.8.4 Installing GPFS through the network
	6.8.5 Verifying the GPFS installation

	6.9 Configuring GPFS
	6.9.1 Setting up the environment
	6.9.2 Creating the GPFS cluster and nodes
	6.9.3 Creating a GPFS file system

	Chapter 7. Migration considerations
	7.1 General migration considerations
	7.2 Types of migrations
	7.2.1 Switch-over migration
	7.2.2 Phased or rolling migration
	7.2.3 User-by-user or self-managed migration

	7.3 Hardware planning
	7.4 Individual component considerations
	7.4.1 Security
	7.4.2 RPCSEC_GSS security flavors
	7.4.3 RPCSEC_GSS protection levels
	7.4.4 User identity management options
	7.4.5 User and group identities and NFSv4
	7.4.6 RPCSEC_GSS user authentication using Kerberos
	7.4.7 User accounts and authentication resources

	7.5 NFSv4 user authorization methods
	7.5.1 Choosing a user authorization method
	7.5.2 Other user authorization considerations
	7.5.3 NFSv4 host identification
	7.5.4 NFSv4 host authentication
	7.5.5 NFSv4 host authorization

	7.6 Choosing the appropriate file system types
	7.6.1 Backup systems
	7.6.2 Time services
	7.6.3 User data

	Chapter 8. Migration scenarios
	Part 4 Migrating to NFSv4
	Chapter 9. NFSv3 to NFSv4 migration
	9.1 The test environment
	9.2 Using NFSv3 and NFSv4 side-by-side
	9.3 Migrating from NFSv3 to NFSv4
	9.4 Using NFSv3
	9.5 Using NFSv4 with NFSv3
	9.5.1 Configuring the NFS domain
	9.5.2 Configuring the pseudo root file system
	9.5.3 Exporting file systems for access to NFSv3 and NFSv4 clients
	9.5.4 Mounting NFSv4 exports on the clients
	9.5.5 Mounting NFSv3 exports on the clients
	9.5.6 Differences between NFSv3 and NFSv4 mounts

	9.6 Adding security
	9.6.1 Creating NFS service principals in Kerberos
	9.6.2 Configuring the gssd daemon on the NFS server
	9.6.3 Mapping Kerberos V5 realms to NFS domains
	9.6.4 Creating the NFS keytab file entry
	9.6.5 Configuring security on the clients.
	9.6.6 Exporting NFS file systems with security
	9.6.7 Mounting an NFSv4 exported file system

	9.7 Namespace management
	9.7.1 How does the NFSv4 namespace help?
	9.7.2 Enhancing classic NFSv4 exports using the exname option

	9.8 Setting a different pseudo root file system

	Chapter 10. Planning a migration from DFS
	10.1 An overview of DCE/DFS
	10.1.1 Servers and clients
	10.1.2 Cells
	10.1.3 Cross-cell communications
	10.1.4 Caching
	10.1.5 Aggregates and filesets
	10.1.6 Replication

	10.2 Component-specific migration considerations
	10.2.1 Authentication services
	10.2.2 DCE/DFS principal and group considerations
	10.2.3 Migrating accounts from DCE to Kerberos V5
	10.2.4 Authentication methods
	10.2.5 Additional considerations

	10.3 ACL migration considerations
	10.3.1 Understanding DFS ACL evaluations
	10.3.2 DFS to NFSv4 ACL translation
	10.3.3 DFS and NFSv4 ACL comparisons
	10.3.4 Example of DFS to NFSv4 ACL translation
	10.3.5 Data migration

	Chapter 11. Illustrated DFS migration
	11.1 Test environment
	11.2 Migrating the DCE cell to LDAP/KRB5
	11.3 Migrating user data
	11.3.1 Capturing existing ACLs in the DFS environment
	11.3.2 Copying data from DFS to the NFS namespace
	11.3.3 Restoring ACLs on the copied data

	Chapter 12. Planning a migration from AFS
	12.1 A broad overview of AFS
	12.1.1 A distributed file system
	12.1.2 Servers and clients
	12.1.3 Cells
	12.1.4 Transparent access and the uniform namespace
	12.1.5 Security: Mutual authentication and access control lists
	12.1.6 Volumes
	12.1.7 Efficiency boosters: Replication and caching

	12.2 Security differences between AFS and NFSv4
	12.2.1 Security and authorization in AFS
	12.2.2 Security in NFSv4
	12.2.3 Migration considerations

	12.3 Migrating AFS users to NFSv4
	12.4 Migrating AFS groups to NFSv4
	12.5 Comparing an AFS “cell” and an NFS “domain”
	12.6 File system semantics
	12.6.1 AFS implements save on close
	12.6.2 Difference between AFS and NFS

	12.7 Building a namespace
	12.7.1 Pseudo file system
	12.7.2 External namespace (exname)
	12.7.3 Referrals and replication

	12.8 Migrating AFS data to NFSv4 servers
	12.8.1 Migration options
	12.8.2 NFS/AFS Translator

	12.9 Access control lists
	12.9.1 AFS ACL permissions
	12.9.2 NFS ACL permissions
	12.9.3 Detailed comparison of AFS and NFS ACLs
	12.9.4 Example of an AFS to NFS ACL conversion

	Chapter 13. Illustrated AFS migration
	13.1 Introduction
	13.2 Existing AFS cell setup
	13.3 Setting the NFS domain to the AFS cell name
	13.4 Setting up the KRB5/LDAP environment
	13.5 Migrating users to Kerberos and LDAP
	13.6 Migrating group information
	13.7 Migrating data
	13.8 Migrating ACLs
	13.9 Accessing the migrated data from NFSv4 clients

	Part 5 Appendixes
	Appendix A. Test environment
	Appendix B. Case study: IBM Global Storage Architecture
	Business problem
	Solution
	GPFS File system
	Security
	Load balancing
	Server hardware
	Storage
	Protocols and software
	Backups
	Time synchronization
	Kerberos and NFSv4
	Centralization
	Scalability

	Benefits of GSA File
	GSA File status

	Appendix C. Configuring Network Time Service
	Configuring the NTP server with a reference clock
	Configuring the NTP server without a reference clock
	Configuring NTP clients

	Appendix D. AIX 5L V5.3 NFS quick reference
	NFS configuration files
	NFS daemons
	NFS commands
	Export options
	mount command options
	nfso command options and examples
	nfs4cl command options and examples

	Appendix E. Scripts and configuration files
	Sample LDAP LDIF file for the KDC realm
	Script to add users to the KDC
	DFS to AIXC ACL migration example
	DFS to NFSv4 migration example
	AFS to Kerberos/LDAP user migration
	AFS to Kerberos/LDAP group migration
	AFS to NFSv4 ACL migration
	Migrate DCE groups to LDAP
	Migrate DCE groups to LDAP
	Copy ACL

	Appendix F. Installing an AIX 5L maintenance level
	Obtaining the latest fixes
	On the Web
	AIX 10/2005 Update CD

	Installation tips
	Installation
	Verifying the installation

	Appendix G. Sample migration planning worksheet
	Appendix H. Additional material
	Locating the Web material
	Using the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

