

ibm.com/redbooks

WebSphere Application Server V6
System Management and
Configuration Handbook

Carla Sadtler
Lars Bek Laursen

Martin Phillips
Henrik Sjostrand
Martin Smithson
Kwan-Ming Wan

Read this book and others in the
WebSphere Handbook Series

Learn to design and administer
your own system

Customize profiles,
scripts and applications

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V6: System
Management and Configuration Handbook

February 2005

International Technical Support Organization

SG24-6451-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (February 2005)

This edition applies to Version 6 of IBM WebSphere Application Server.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxiii.

Contents

Preface . xix
The team that wrote this redbook. xix
Become a published author . xxi
Comments welcome. xxi

Notices . xxiii
Trademarks . xxiv

Part 1. The basics . 1

Chapter 1. WebSphere Application Server V6 for distributed platforms . . 3
1.1 WebSphere overview . 4
1.2 WebSphere family . 5
1.3 WebSphere Application Servers . 6
1.4 WebSphere Application Server for distributed platforms. 8

1.4.1 Packaging . 8
1.4.2 System requirements and support for distributed platforms 11
1.4.3 New for V6 . 12

Chapter 2. WebSphere Application Server V6 architecture 19
2.1 Application server configurations . 20

2.1.1 Stand-alone server configuration . 20
2.1.2 Distributed server configuration . 21

2.2 Application servers, nodes, and cells . 22
2.2.1 Application servers . 23
2.2.2 Nodes, node groups, and node agents . 23
2.2.3 Cells . 23

2.3 Servers . 24
2.3.1 Application servers . 24
2.3.2 Clusters . 24
2.3.3 JMS servers (V5) . 25
2.3.4 External servers . 25

2.4 Containers . 26
2.4.1 Web container . 26
2.4.2 Enterprise JavaBeans container . 28
2.4.3 Application client container . 28

2.5 Application server services . 28
2.5.1 J2EE Connector Architecture services . 30
2.5.2 Transaction service . 30

© Copyright IBM Corp. 2005. All rights reserved. v

2.5.3 Dynamic cache service . 31
2.5.4 Message listener service. 32
2.5.5 Object Request Broker service . 32
2.5.6 Administrative service . 33
2.5.7 Name service . 33
2.5.8 Performance Monitoring Infrastructure service 35
2.5.9 Security service. 36

2.6 Data Replication Service . 36
2.7 Virtual hosts. 37
2.8 Session management . 38

2.8.1 HTTP Session persistence . 39
2.8.2 Stateful session EJB persistence . 40

2.9 Web services. 40
2.9.1 Enterprise services (JCA Web services). 42
2.9.2 Web service client . 43
2.9.3 Web service provider . 43
2.9.4 Enterprise Web Services. 43
2.9.5 IBM WebSphere UDDI Registry . 44
2.9.6 Web Services Gateway. 44

2.10 Service integration bus . 46
2.10.1 Application support . 48
2.10.2 Service integration bus and messaging . 48
2.10.3 Web services and the service integration bus. 50

2.11 Security . 51
2.11.1 User registry . 53
2.11.2 Authentication . 54
2.11.3 Authorization . 55
2.11.4 Security components. 56
2.11.5 Security flows . 57

2.12 Resource providers . 58
2.12.1 JDBC resources . 59
2.12.2 Mail providers . 60
2.12.3 JCA resource adapters . 61
2.12.4 URL providers . 62
2.12.5 JMS providers . 62
2.12.6 Resource environment providers . 63

2.13 Workload management . 64
2.14 High availability . 66
2.15 Administration . 67

2.15.1 Administration tools . 68
2.15.2 Configuration repository . 69
2.15.3 Centralized administration. 69

2.16 The flow of an application . 71

vi WebSphere Application Server V6: System Management and Configuration Handbook

2.17 Developing and deploying applications . 72
2.17.1 Application design . 73
2.17.2 Application development . 73
2.17.3 Application packaging . 74
2.17.4 Application deployment . 74
2.17.5 WebSphere Rapid Deployment. 75

2.18 Technology support summary . 76

Chapter 3. System management: A technical overview 81
3.1 System management overview . 82

3.1.1 System management tools . 82
3.1.2 System management in a standalone server environment 83
3.1.3 System management in a distributed server environment 84
3.1.4 Role-based administration . 85

3.2 Java Management Extensions (JMX) . 85
3.2.1 JMX architecture . 86
3.2.2 JMX distributed administration . 88
3.2.3 JMX MBeans. 90
3.2.4 JMX usage scenarios . 90
3.2.5 J2EE management . 91

3.3 Distributed administration . 92
3.3.1 Distributed process discovery . 94
3.3.2 Centralized changes to configuration and application data. 97
3.3.3 File synchronization . 98

3.4 Configuration and application data repository . 104
3.4.1 Repository directory structure . 104
3.4.2 Variable scoped files . 107
3.4.3 Application data files . 107

Chapter 4. Getting started with profiles . 113
4.1 Understanding profiles . 114

4.1.1 Types of profiles . 116
4.1.2 Directory structure and default profiles . 117

4.2 Building a system using profiles . 119
4.2.1 Standalone server environment . 119
4.2.2 Distributed server environment . 119

4.3 Creating profiles . 121
4.3.1 Creating a deployment manager profile . 123
4.3.2 Creating an application server profile . 130
4.3.3 Creating a custom profile . 138
4.3.4 Federating a custom node to a cell . 145
4.3.5 Creating a new application server on an existing node. 146
4.3.6 Federating an application server profile to a cell. 149

 Contents vii

4.4 Creating profiles manually . 151
4.4.1 Using the wasprofile command . 151
4.4.2 Creating a profile. 153

4.5 Managing the processes . 154
4.5.1 Starting a distributed server environment . 154
4.5.2 Stopping the distributed server environment. 156
4.5.3 Enabling process restart on failure . 157

Chapter 5. Administration basics . 161
5.1 Introducing the WebSphere administrative console 162

5.1.1 Starting the administrative console . 162
5.1.2 Logging in to the administrative console . 164
5.1.3 Changing the administrative console session timeout 165
5.1.4 The graphical interface . 166
5.1.5 Finding an item in the console . 169
5.1.6 Updating existing items . 174
5.1.7 Adding new items . 176
5.1.8 Removing items . 177
5.1.9 Starting and stopping items. 177
5.1.10 Using variables . 179
5.1.11 Saving work. 180
5.1.12 Getting help. 181

5.2 Securing the administrative console . 182
5.3 Working with the deployment manager . 183

5.3.1 Deployment manager configuration settings. 183
5.3.2 Starting and stopping the deployment manager 187

5.4 Working with application servers. 190
5.4.1 Creating an application server . 191
5.4.2 Viewing the status of an application server. 194
5.4.3 Starting an application server . 197
5.4.4 Stopping an application server . 200
5.4.5 Viewing runtime attributes of an application server. 203
5.4.6 Customizing application servers . 206

5.5 Working with nodes . 217
5.5.1 Adding a node . 217
5.5.2 Removing a node . 224
5.5.3 Node agent synchronization . 227
5.5.4 Starting and stopping nodes . 230
5.5.5 Node groups . 233

5.6 Working with clusters . 235
5.6.1 Creating clusters . 236
5.6.2 Viewing cluster topology . 238
5.6.3 Managing clusters . 239

viii WebSphere Application Server V6: System Management and Configuration Handbook

5.7 Working with virtual hosts . 239
5.7.1 Creating a virtual host . 240

5.8 Managing applications. 242
5.8.1 Using the administrative console to manage applications 242
5.8.2 Installing an enterprise application . 244
5.8.3 Uninstalling an enterprise application . 246
5.8.4 Exporting an enterprise application. 246
5.8.5 Starting an enterprise application . 247
5.8.6 Stopping an enterprise application . 247
5.8.7 Preventing an enterprise application from starting on a server. . . . 247
5.8.8 Viewing installed applications . 248
5.8.9 Viewing EJB modules . 250
5.8.10 Viewing Web modules. 252
5.8.11 Finding a URL for a servlet or JSP . 253

5.9 Managing your configuration files . 258
5.9.1 Backing up a profile configuration . 259
5.9.2 Restoring a node configuration . 260
5.9.3 Exporting and importing profiles . 262
5.9.4 Deleting profiles . 263

Chapter 6. Administration with scripting . 267
6.1 Overview of WebSphere scripting . 268
6.2 Using wsadmin . 268

6.2.1 Launching wsadmin . 268
6.2.2 Configuring wsadmin. 270
6.2.3 Commands and scripts invocation . 271
6.2.4 Overview of wsadmin objects . 274
6.2.5 Management using wsadmin objects . 276

6.3 Common operational administrative tasks using wsadmin 292
6.3.1 General approach for operational tasks . 292
6.3.2 Examples of common administrative tasks 293
6.3.3 Managing the deployment manager . 293
6.3.4 Managing nodes . 294
6.3.5 Managing application servers . 295
6.3.6 Managing enterprise applications . 297
6.3.7 Managing clusters . 299
6.3.8 Generating the Web server plug-in configuration 300
6.3.9 Enabling tracing for WebSphere components. 300

6.4 Common configuration tasks. 302
6.4.1 General approach for configuration tasks . 302
6.4.2 Specific examples of WebSphere configuration tasks 302

6.5 Differences from WebSphere V5. 315
6.6 End-to-end examples . 316

 Contents ix

6.7 Using Java for administration . 316
Online resources . 317

Chapter 7. Configuring WebSphere resources. 319
7.1 WebSphere resources. 320
7.2 JDBC resources . 321

7.2.1 What are JDBC providers and data sources?. 321
7.2.2 WebSphere support for data sources . 322
7.2.3 Creating a data source . 326
7.2.4 Creating a JDBC provider . 326
7.2.5 Creating JDBC data source . 331

7.3 JCA resources. 341
7.3.1 WebSphere Application Server JCA support 344
7.3.2 Installing and configuring resource adapters 345
7.3.3 Configuring J2C connection factories . 349
7.3.4 Using resource adapters from an application 353

7.4 JavaMail resources . 354
7.4.1 JavaMail sessions . 356
7.4.2 Configuring the mail provider . 356
7.4.3 Configuring JavaMail sessions . 360
7.4.4 Example code . 363

7.5 URL providers . 364
7.5.1 Configuring URL providers . 364
7.5.2 Configuring URLs . 366
7.5.3 URL provider sample . 368

7.6 Resource environment providers . 369
7.6.1 Resource environment references . 370
7.6.2 Configuring the resource environment provider 371

7.7 Resource authentication . 374
7.8 More information . 376

Chapter 8. Managing Web servers. 377
8.1 Web server support overview . 378

8.1.1 Request routing using the plug-in . 379
8.1.2 Web server and plug-in management . 380

8.2 Web server installation examples . 383
8.2.1 Standalone server environment . 384
8.2.2 Distributed server environment . 386

8.3 Working with Web servers. 389
8.3.1 Defining nodes and Web servers . 389
8.3.2 Viewing the status of a Web server. 394
8.3.3 Starting and stopping a Web server . 395
8.3.4 IBM HTTP Server remote administration . 397

x WebSphere Application Server V6: System Management and Configuration Handbook

8.3.5 Mapping modules to servers . 402
8.4 Working with the plug-in configuration file. 404

8.4.1 Regenerating the plug-in configuration file 406
8.4.2 Propagating the plug-in configuration file . 411
8.4.3 Modifying the plug-in request routing options 412

Chapter 9. Problem determination. 417
9.1 Resources for identifying problems . 418
9.2 Administrative console messages . 419
9.3 Log files . 420

9.3.1 JVM (standard) logs . 421
9.3.2 Process (native) logs. 428
9.3.3 IBM service (activity) log . 428

9.4 Traces . 430
9.4.1 Diagnostic trace service . 431
9.4.2 Web server logs and traces . 439

9.5 Log Analyzer . 443
9.5.1 Using Log Analyzer . 444
9.5.2 Merging logs on multiple application servers 449
9.5.3 Updating the symptom database . 450

9.6 Collector tool . 451
9.7 First Failure Data Capture logs . 452
9.8 Dumping the contents of the name space. 453
9.9 HTTP session monitoring . 454
9.10 Application debugging and tracing . 455

9.10.1 Application Server Toolkit . 456
9.10.2 Java logging interface . 456

9.11 Product installation information . 456
9.11.1 Using the administrative console to find product information 457
9.11.2 Locating WebSphere Application Server version information 457
9.11.3 Finding the JDK version . 459
9.11.4 Finding the IBM HTTP Server version . 459

9.12 Resources for problem determination . 459

Part 2. Messaging with WebSphere. 461

Chapter 10. Asynchronous messaging . 463
10.1 Messaging concepts . 464

10.1.1 Loose coupling . 464
10.1.2 Messaging types . 465
10.1.3 Destinations . 465
10.1.4 Messaging models . 466
10.1.5 Messaging patterns. 467

10.2 Java Message Service . 470

 Contents xi

10.2.1 JMS API history. 470
10.2.2 JMS providers . 471
10.2.3 JMS domains . 471
10.2.4 JMS administered objects . 472
10.2.5 JMS and JNDI . 473
10.2.6 JMS connections. 475
10.2.7 JMS sessions . 476
10.2.8 JMS messages . 476
10.2.9 JMS message producers . 478
10.2.10 JMS message consumers. 479
10.2.11 JMS exception handling . 482
10.2.12 Application Server Facilities . 484
10.2.13 JMS and J2EE . 485

10.3 Messaging in the J2EE Connector Architecture 485
10.3.1 Message endpoints . 488
10.3.2 MessageEndpointFactory . 488
10.3.3 Resource adapters . 488
10.3.4 JMS ActivationSpec JavaBean . 491
10.3.5 Message endpoint deployment . 494
10.3.6 Message endpoint activation. 495
10.3.7 Message delivery . 496
10.3.8 Administered objects. 497

10.4 Message-driven beans . 497
10.4.1 Message-driven bean types . 498
10.4.2 Client view of a message-driven bean . 498
10.4.3 Message-driven bean implementation . 499
10.4.4 Message-driven bean life cycle. 501
10.4.5 Message-driven beans and transactions 502
10.4.6 Message-driven bean activation configuration properties 507
10.4.7 Associating a message-driven bean with a destination 509
10.4.8 Message-driven bean best practices . 511

10.5 Managing WebSphere JMS providers. 514
10.5.1 Managing the default messaging JMS provider 514
10.5.2 Managing the WebSphere MQ JMS provider 519
10.5.3 Managing a generic JMS provider . 522

10.6 Configuring WebSphere JMS administered objects 526
10.6.1 Common administration properties . 526
10.6.2 Configuring the default messaging JMS provider 527
10.6.3 Configuring the WebSphere MQ JMS provider. 552
10.6.4 Configuring listener ports . 568
10.6.5 Configuring the generic JMS provider. 572

10.7 Connecting to a service integration bus . 576
10.7.1 JMS client runtime environment . 576

xii WebSphere Application Server V6: System Management and Configuration Handbook

10.7.2 Controlling messaging engine selection . 579
10.7.3 Load balancing bootstrapped clients. 588

10.8 References and resources . 590

Chapter 11. Default messaging provider. 593
11.1 Concepts and architecture . 594

11.1.1 Buses . 594
11.1.2 Bus members . 595
11.1.3 Messaging engines . 595
11.1.4 Data stores . 601
11.1.5 Destinations . 602
11.1.6 Mediations. 606
11.1.7 Foreign buses . 606

11.2 Runtime components . 612
11.2.1 SIB service . 612
11.2.2 Service integration bus transport chains . 614
11.2.3 Data stores . 620
11.2.4 Exception destinations . 625
11.2.5 Service integration bus links . 627
11.2.6 WebSphere MQ links . 629

11.3 High availability and workload management . 638
11.3.1 Cluster bus members for high availability 638
11.3.2 Cluster bus members for workload management 638
11.3.3 Partitioned queues . 639
11.3.4 JMS clients connecting into a cluster of messaging engines 640
11.3.5 Preferred servers and core group policies 641
11.3.6 Best practices . 644

11.4 Service integration bus topologies . 645
11.4.1 One server in the cell is a member of one bus 645
11.4.2 Every server in the cell is a member of the same bus 646
11.4.3 A single cluster bus member and one messaging engine. 646
11.4.4 A cluster bus member with multiple messaging engines 647
11.4.5 Mixture of cluster and server bus members 647
11.4.6 Multiple buses in a cell . 648

11.5 Service integration bus and message-driven beans 649
11.5.1 Message-driven beans connecting to the bus. 649
11.5.2 MDBs and clusters . 651

11.6 Service integration bus security . 652
11.7 Problem determination . 653
11.8 Configuration and management . 655

11.8.1 SIB service configuration . 655
11.8.2 Creating a bus. 658
11.8.3 Adding a bus member using a default data store 660

 Contents xiii

11.8.4 Adding a bus member with a different data store 661
11.8.5 Creating a queue destination . 666
11.8.6 Creating a topic space destination . 668
11.8.7 Creating an alias destination. 668
11.8.8 Adding messaging engines to a cluster . 670
11.8.9 Setting up preferred servers . 672
11.8.10 Setting up a foreign bus link to a service integration bus 678
11.8.11 Setting up a foreign bus link to an MQ queue manager 683
11.8.12 Creating a foreign destination . 692

Part 3. Working with applications . 695

Chapter 12. Session management . 697
12.1 What is new?. 698
12.2 HTTP session management . 698
12.3 Session manager configuration. 699

12.3.1 Session management properties . 699
12.3.2 Accessing session management properties 700

12.4 Session scope . 700
12.5 Session identifiers . 702

12.5.1 Choosing a session tracking mechanism 703
12.5.2 SSL ID tracking . 704
12.5.3 Cookies . 705
12.5.4 URL rewriting . 709

12.6 Local sessions. 710
12.7 General properties for session management . 711
12.8 Session affinity . 715

12.8.1 Session affinity and failover . 717
12.9 Persistent session management . 719

12.9.1 Enabling database persistence . 721
12.9.2 Memory-to-memory replication . 723
12.9.3 Session management tuning. 734
12.9.4 Persistent sessions and non-serializable J2EE objects 741
12.9.5 Larger DB2 page sizes and database persistence 742
12.9.6 Single and multi-row schemas (database persistence). 743
12.9.7 Contents written to the persistent store using a database 745

12.10 Invalidating sessions . 749
12.10.1 Session listeners . 749

12.11 Session security . 751
12.12 Session performance considerations . 752

12.12.1 Session size . 753
12.12.2 Reducing persistent store I/O . 756
12.12.3 Multirow persistent sessions: Database persistence 757

xiv WebSphere Application Server V6: System Management and Configuration Handbook

12.12.4 Managing your session database connection pool 758
12.12.5 Session database tuning. 759

12.13 Stateful session bean failover . 760
12.13.1 Enabling stateful session bean failover. 760
12.13.2 Stateful session bean failover considerations 764

Chapter 13. WebSphere naming implementation 769
13.1 Features . 770
13.2 WebSphere naming architecture. 771

13.2.1 Components . 771
13.2.2 JNDI support . 772
13.2.3 JNDI bindings . 773
13.2.4 Federated name space . 774
13.2.5 Local name space structure . 777

13.3 Interoperable Naming Service (INS) . 785
13.3.1 Bootstrap ports . 785
13.3.2 CORBA URLs . 785

13.4 Distributed CosNaming . 787
13.5 Configured bindings . 788

13.5.1 Types of objects . 789
13.5.2 Types of binding references . 789

13.6 Initial contexts . 791
13.6.1 Setting initial root context . 793

13.7 Federation of name spaces. 797
13.8 Interoperability. 798

13.8.1 WebSphere V4.0 EJB clients . 798
13.8.2 WebSphere V4.0 server . 800
13.8.3 EJB clients hosted by non-WebSphere environment 800

13.9 Examples. 801
13.9.1 Single server . 801
13.9.2 Two single servers on the same box. 803
13.9.3 Network Deployment application servers on the same box 804
13.9.4 WebSphere Application Server V4 client 807

13.10 Naming tools . 808
13.10.1 dumpNameSpace . 808

13.11 Configuration . 811
13.11.1 Name space bindings . 811
13.11.2 CORBA naming service users and groups 815

Chapter 14. Understanding class loaders . 821
14.1 A brief introduction to Java class loaders . 822
14.2 WebSphere class loaders overview . 825

14.2.1 WebSphere extensions class loader. 826

 Contents xv

14.2.2 Application and Web module class loaders 827
14.2.3 Handling JNI code. 828

14.3 Configuring WebSphere for class loaders. 828
14.3.1 Class loader policies . 828
14.3.2 Class loader/delegation mode. 831
14.3.3 Class preloading . 833
14.3.4 Shared libraries . 834

14.4 Learning class loaders by example . 835
14.4.1 Step 1: Simple WAR packaging . 837
14.4.2 Step 2: Sharing the utility JAR among multiple modules 838
14.4.3 Step 3: Changing the WAR class loader delegation mode 839
14.4.4 Step 4: Sharing utility JARs among multiple applications 840

Chapter 15. Packaging applications . 847
15.1 WebSphere Bank sample application . 848

15.1.1 WebSphere Bank resources used . 849
15.2 Packaging using the Application Server Toolkit 850

15.2.1 Preparing the sample code . 851
15.2.2 Importing an EAR file . 851
15.2.3 Working with deployment descriptors . 857

15.3 Setting application bindings. 860
15.3.1 Defining EJB JNDI names. 861
15.3.2 Binding EJB and resource references. 862
15.3.3 Binding the message-driven bean to an ActivationSpec. 864
15.3.4 Defining data sources for entity beans . 865

15.4 IBM EJB extensions: EJB caching options . 870
15.4.1 EJB container caching option for entity beans 870
15.4.2 EJB container caching option for stateful session beans 873
15.4.3 Stateful EJB timeout option. 874

15.5 IBM EJB extensions: EJB access intents . 875
15.5.1 Transaction isolation levels overview . 876
15.5.2 Concurrency control . 877
15.5.3 Using EJB 2.x access intents . 878
15.5.4 Using read-ahead hints . 883
15.5.5 Tracing access intents behavior . 885

15.6 IBM EJB extensions: Inheritance relationships 885
15.7 IBM Web module extensions. 886

15.7.1 File serving servlet . 886
15.7.2 Web application auto reload . 887
15.7.3 Serve servlets by class name . 887
15.7.4 Default error page . 888
15.7.5 Directory browsing . 888
15.7.6 JSP attributes . 888

xvi WebSphere Application Server V6: System Management and Configuration Handbook

15.7.7 Automatic HTTP request and response encoding 888
15.8 IBM EAR extensions: Sharing session context 889
15.9 Exporting WebSphere Bank EAR file . 891
15.10 WebSphere Enhanced EAR . 891

15.10.1 Configuring a WebSphere Enhanced EAR 892
15.11 Packaging recommendations . 904

Chapter 16. Deploying applications. 907
16.1 Preparing the environment . 908

16.1.1 Creating the WebSphere Bank DB2 database 908
16.1.2 Creating a WEBSPHEREBANK_ROOT environment variable . . . 909
16.1.3 Creating the WebSphere Bank application server 910
16.1.4 Defining the WebSphere Bank virtual host 914
16.1.5 Creating the virtual host for IBM HTTP Server and Apache 915
16.1.6 Creating a DB2 JDBC provider and data source 917
16.1.7 Configuring the messaging resources. 925

16.2 Generating deployment code . 928
16.2.1 Using EJBDeploy command line tool . 928

16.3 Deploying the application . 930
16.3.1 Using a bindings file . 936

16.4 Deploying application clients . 937
16.4.1 Defining application client bindings . 940
16.4.2 Launching the J2EE client. 941

16.5 Updating applications . 944
16.5.1 Replacing an entire application EAR file . 945
16.5.2 Replacing or adding an application module 945
16.5.3 Replacing or adding single files in an application or module 946
16.5.4 Removing application content . 947
16.5.5 Performing multiple updates to an application or module 948
16.5.6 Rolling out application updates to a cluster. 951
16.5.7 Hot deployment and dynamic reloading . 954

Chapter 17. WebSphere Rapid Deployment . 957
17.1 Annotation-based programming . 958
17.2 Rapid deployment tools. 960
17.3 Using rapid deployment commands . 962

17.3.1 wrd-config command. 962
17.3.2 wrd command . 966

17.4 Free-form projects . 967
17.5 Free-form development example . 970

17.5.1 Setting up the environment for free-form development 971
17.5.2 Adding application source code . 974
17.5.3 Terminating the WebSphere Rapid Deployment session 981

 Contents xvii

17.5.4 Verifying results. 981
17.6 Automatic application installation projects. 983
17.7 Automatic application installation example . 983

17.7.1 Setting up an automatic application installation session 984
17.7.2 Managing applications . 986

Related publications . 989
IBM Redbooks . 989
Other publications . 989
Online resources . 990
How to get IBM Redbooks . 991
Help from IBM . 992

Index . 993

xviii WebSphere Application Server V6: System Management and Configuration Handbook

Preface

This IBM Redbook provides system administrators, developers, and architects
with the knowledge to configure a WebSphere Application Server V6 runtime
environment, to package and deploy Web applications, and to perform ongoing
management of the WebSphere® environment.

One in a series of handbooks, the entire series is designed to give you in-depth
information about the entire range of WebSphere Application Server products. In
this book, we provide a detailed exploration of the WebSphere Application Server
V6 runtime environments and administration process.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization (ITSO), Raleigh
Center.

Carla Sadtler is a certified IT Specialist at the ITSO, Raleigh Center. She
writes extensively about the WebSphere and Patterns for e-business areas.
Before joining the ITSO in 1985, Carla worked in the Raleigh branch office as
a Program Support Representative. She holds a degree in mathematics from
the University of North Carolina at Greensboro.

Lars Bek Laursen is an Advisory IT Specialist at the Integrated Technology
Services division of IBM Global Services in Lyngby, Denmark. He has eight years
of Java™ experience, from developing Java-based systems management
solutions to designing and implementing enterprise application server
environments. For the last five years, Lars has worked extensively as a
WebSphere Application Server consultant, advising on problem solving, tuning,
and implementation of fail-safe runtime environments. Lars holds a Master of
Science in Engineering degree from the Technical University of Denmark.

Martin Phillips is a tester for the WebSphere Messaging and Transaction
Technology team in the Hursley Laboratories in the UK. He has worked for IBM
UK for five years as a tester for WebSphere Application Server. His areas of
expertise include the service integration bus, about which he writes extensively
in this book. Martin holds a Master of Science in Information Technology
specializing in Software and Systems from the University of Glasgow.

© Copyright IBM Corp. 2005. All rights reserved. xix

Henrik Sjostrand is a Senior IT Specialist and has worked for IBM Sweden for
ten years. He has 12 years of experience in the IT field. During his time with IBM
he has had a number of different positions, from consulting and education to
pre-sales activities. He is currently working as a technical consultant for the
Nordic IBM Software Services for WebSphere team. The last four years, he has
focused on e-business application development, and WebSphere Application
Server architecture and deployment. He is certified in WebSphere Application
Server v4 and v5 and WebSphere Studio v5. Henrik holds a Master of Science in
Electrical Engineering from Chalmers University of Technology in Gothenburg,
Sweden, where he lives.

Martin Smithson is a Senior IT Specialist working for IBM Software Group in
Hursley, England. He has nine years of experience working in the IT Industry and
has spent the last four years working as a technical consultant for the EMEA IBM
Software Services for WebSphere team. He is certified in WebSphere
Application Server v3.5, v4 and v5 and WebSphere Studio Application Developer
v4.0.3 and v5. His areas of expertise include the architecture, design and
development of J2EE applications. He is also an expert on IBM WebSphere
Application Server. He has written extensively on asynchronous messaging and
the service integration bus. He holds a degree in Software Engineering from City
University in London, UK.

Kwan-Ming Wan is a Consulting IT Specialist working for the IBM Software
Group in London, England. He has over fifteen years of experience in the IT
industry and has been working as a consulting professional throughout his
career. For the past five years, he has been working as a WebSphere consultant
with focus on performance tuning, problem determination and architecture
design. He holds a Master of Science degree in Information Technology from the
University of Nottingham, England.

Thanks to the following people for their contributions to this project:

The following members of the WebSphere Messaging and Transaction
Technologies Team, IBM Hursley:

David Currie
Graham Hopkins
Matthew Vaughton
Adrian Preston
Anne Redwood
Sarah Hemmings
Geraint Jones
Malcolm Ayres
Graham Wallis

xx WebSphere Application Server V6: System Management and Configuration Handbook

Sam Cleveland
WebSphere Application Server Samples Development

The authors of IBM WebSphere Application Server V5.1 System Management
and Configuration, SG24-6195:

Lee Clifford
Jeff Heyward
Arihiro Iwamoto
Noelle Jakusz
Lars Bek Laursen
WonYoung Lee
Isabelle Mauny
Shafkat Rabbi
Ascension Sanchez
Authors of the V5 book

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

 Preface xxi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

xxii WebSphere Application Server V6: System Management and Configuration Handbook

http://www.redbooks.ibm.com/contacts.html

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xxiii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
alphaWorks®
Balance®
CICS®
ClearCase®
Cloudscape™
DB2 Universal Database™
DB2®
developerWorks®
Domino®
e-business on demand™
Eserver®
Eserver®

eServer™
ETE™
ibm.com®
IBM®
IMS™
Informix®
iSeries™
Lotus®
Notes®
OS/400®
Perform™
pSeries®
Rational Rose®

Rational®
Redbooks (logo)™
Redbooks (logo) ™
Redbooks™
S/390®
SAA®
SLC™
SupportPac™
Tivoli®
WebSphere®
XDE™
z/OS®
zSeries®

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

xxiv WebSphere Application Server V6: System Management and Configuration Handbook

Part 1 The basics

This part introduces you to WebSphere Application Server V6. It includes
information about the runtime architecture, administration tools, and the basics of
configuring and managing the runtime environment.

This part includes the following:

� Chapter 1, “WebSphere Application Server V6 for distributed platforms” on
page 3

� Chapter 2, “WebSphere Application Server V6 architecture” on page 19

� Chapter 3, “System management: A technical overview” on page 81

� Chapter 4, “Getting started with profiles” on page 113

� Chapter 5, “Administration basics” on page 161

� Chapter 6, “Administration with scripting” on page 267

� Chapter 7, “Configuring WebSphere resources” on page 319

� Chapter 8, “Managing Web servers” on page 377

� Chapter 9, “Problem determination” on page 417

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 1

2 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 1. WebSphere Application
Server V6 for distributed
platforms

IBM WebSphere is the leading software platform for e-business on demand™.
Providing comprehensive e-business leadership, WebSphere is evolving to meet
the demands of companies faced with challenging business requirements, such
as the need for increasing operational efficiencies, strengthening client loyalty,
and integrating disparate systems. WebSphere provides answers in today’s
challenging business environments.

IBM WebSphere is architected to enable you to build business-critical
applications for the Web. WebSphere includes a wide range of products that help
you develop and serve Web applications. They are designed to make it easier for
clients to build, deploy, and manage dynamic Web sites more productively.

In this chapter we take a look at the new WebSphere Application Server V6 for
distributed platforms.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 WebSphere overview
WebSphere is the IBM brand of software products designed to work together to
help deliver dynamic e-business quickly. It provides solutions for connecting
people, systems, and applications with internal and external resources.
WebSphere is based on infrastructure software, or middleware, designed for
dynamic e-business. It delivers a proven, secure, and reliable software portfolio
that can provide an excellent return on investment.

The technology that powers WebSphere products is Java. Over the past several
years, many software vendors have collaborated on a set of server-side
application programming technologies that help build Web accessible,
distributed, platform-neutral applications. These technologies are collectively
branded as the Java 2 Platform, Enterprise Edition (J2EE) platform. This
contrasts with the Java 2 Standard Edition (J2SE) platform, with which most
clients are familiar. J2SE supports the development of client-side applications
with rich graphical user interfaces (GUIs). The J2EE platform is built on top of the
J2SE platform. J2EE consists of application technologies for defining business
logic and accessing enterprise resources such as databases, Enterprise
Resource Planning (ERP) systems, messaging systems, e-mail servers, and so
forth.

The potential value of J2EE to clients is tremendous. Among the benefits of
J2EE are:

� An architecture-driven approach to application development helps reduce
maintenance costs and allows for construction of an information technology
(IT) infrastructure that can grow to accommodate new services.

� Application development is focused on unique business requirements and
rules, such as security and transaction support. This improves productivity
and shortens development cycles.

� Industry standard technologies allow clients to choose among platforms,
development tools, and middleware to power their applications.

� Embedded support for Internet and Web technologies allows for a new breed
of applications that can bring services and content to a wider range of
customers, suppliers, and others, without creating the need for proprietary
integration.

Another exciting opportunity for IT is Web services. Web services allow for the
definition of functions or services within an enterprise that can be accessed using
industry standard protocols that most businesses already use today, such as
HTTP and XML. This allows for easy integration of both intra- and inter-business
applications that can lead to increased productivity, expense reduction, and
quicker time to market.

4 WebSphere Application Server V6: System Management and Configuration Handbook

1.2 WebSphere family
The WebSphere platform forms the foundation of a comprehensive business
solutions framework. Its extensive offerings are designed to solve the problems
of companies of all different sizes. For example, the technologies and tools at the
heart of the WebSphere platform can be used to build and deploy the core of an
international financial trading application. Yet, it also fits very nicely as the Web
site solution for a neighborhood restaurant that simply wants to publish an online
menu, hours of operation, and perhaps provide a Web-based table reservation or
food delivery system. WebSphere’s complete and versatile nature can
sometimes be the source of confusion for people who are trying to make
important decisions about platforms and developer toolkits for their business or
departmental projects. So, the goal of this paper is to help you get started with
understanding the technologies, tools, and offerings of the WebSphere platform.

Figure 1-1 on page 6 shows a high-level overview of the WebSphere platform.

 Chapter 1. WebSphere Application Server V6 for distributed platforms 5

Figure 1-1 WebSphere Product family

1.3 WebSphere Application Servers
WebSphere Application Servers are a suite of servers that implement the J2EE
specification. This simply means that any Web applications that are written to the
J2EE specification can be installed and deployed on any of the servers in the
WebSphere Application Server family.

The primary component of the WebSphere Application Server products is the
application server, which provides the environment to run your Web-enabled

Key Products Supporting Integration Capabilities

Model Model business functions and processesbusiness functions and processes

Transform Transform applications, processes and dataapplications, processes and data

Integrate Integrate islands of applications, processesislands of applications, processes
and informationand information

Interact Interact with resources anytime, anywherewith resources anytime, anywhere
with any devicewith any device

Manage Manage performance against businessperformance against business

Accelerate Accelerate the implementation ofthe implementation of
intelligent processesintelligent processes

Service Oriented InfrastructureService Oriented Infrastructure
leveraging a common runtime environmentleveraging a common runtime environment

WebSphere Business Integration Server
DB2 Information Integrator

WebSphere Business Integration Modeler

WebSphere Studio
WebSphere Enterprise Modernization
WebSphere Business Integration Tools

WebSphere Portal
WebSphere Voice

WebSphere Business Integration Monitor
Tivoli Business Services Management
DB2 UDB and Content Manager

Pre-Built Portlets
Process Templates

Adapters
WebSphere Commerce

WebSphere Application Server
WebSphere MQ
WebSphere Studio

WebSphere Everyplace
Lotus Workplace

ModelModel

ManageManage TransformTransform

InteractInteract IntegrateIntegrate

AccelerateAccelerate

IBMIBM
Business

Integration

ProvenProven
ExperienceExperience

SimpleSimple
IntegratedIntegrated

DevelopmentDevelopment

StandardsStandards
LeadershipLeadership

Secure &Secure &
ScaleableScaleable

IBMIBM
Business

Integration

6 WebSphere Application Server V6: System Management and Configuration Handbook

e-business applications. You can think of an application server as Web
middleware, the middle tier in a three-tier e-business environment. The first tier is
the Web server that handles requests from the browser client. The third tier is the
business database, for example DB2® UDB, and the business logic, for
example, traditional business applications such as order processing. The middle
tier is IBM WebSphere Application Server, which provides a framework for
consistent, architected linkage between the HTTP requests and the business
data and logic.

Figure 1-2 WebSphere Application Server product overview

WebSphere Application Servers are available in multiple packages to meet
specific business needs. They also serve as the base for other WebSphere
products, such as WebSphere Commerce, by providing the application server
required for running these specialized applications.

WebSphere Application Servers are available on a wide range of platforms,
including UNIX®-based platforms, Microsoft® operating systems, IBM z/OS®,
and IBM Eserver® iSeries™.

Web
server

WebSphere
Application

Server

Application
Server

Application
Server

Clients

Web browser

Java

Msg
Queue

Msg
Queue

Legacy
systems

CICS
IMS
DB2
SAP
etc.

Application
Server

J2EE applications

Messaging

Web
services
provider

Enterprise
application
developer

Rational
Application
Developer

Rational Web
Developer

Web
application
developer

Secure
access

Tivoli
Access

Manager

Web services Web
Services
Gateway

Web
Services
Gateway

Application
Server

 Chapter 1. WebSphere Application Server V6 for distributed platforms 7

1.4 WebSphere Application Server for distributed
platforms

The latest product in the WebSphere Application Server family is IBM
WebSphere Application Server V6. It features:

� Full J2EE 1.4 support

� High-performance connectors to many common back-end systems

These connectors reduce the coding effort required to link dynamic Web
pages to real line-of-business data.

� Application services for session and state management

� Web services

Web services enable businesses to connect applications to other business
applications, deliver business functions to a broader set of clients and
partners, interact with marketplaces more efficiently, and create new business
models dynamically.

� A fully integrated JMS 1.1 messaging provider

This messaging provider complements and extends WebSphere MQ and
application server. It is suitable for messaging among application servers and
for providing messaging capability between WebSphere Application Server
and an existing WebSphere MQ backbone.

� Many of the programming model extensions (PMEs) available in WebSphere
Business Integration Server Foundation

1.4.1 Packaging
Because varying e-business application scenarios require different levels of
application server capabilities, WebSphere Application Server is available in
multiple packaging options. Although they share a common foundation, each
provides unique benefits to meet the needs of applications and the infrastructure
that supports them. At least one WebSphere Application Server product fulfills
the requirements of any particular project and its supporting infrastructure. As
your business grows, the WebSphere Application Server family provides a
migration path to more complex configurations.

WebSphere Application Server - Express V6
The Express package is geared to those who need to get started quickly with
e-business. It is specifically targeted at medium-sized businesses or

8 WebSphere Application Server V6: System Management and Configuration Handbook

departments of a large corporation, and is focused on providing ease of use and
ease of application development. It contains full J2EE 1.4 support but is limited to
a single-server environment.

WebSphere Application Server - Express is unique from the other packages in
that it is bundled with an application development tool. Although there are
WebSphere Studio and Rational® Developer products designed to support each
WebSphere Application Server package, normally they are ordered independent
of the server. WebSphere Application Server - Express includes the Rational
Web Developer application development tool. It provides a development
environment geared toward Web developers and includes support for most J2EE
1.4 features with the exception of Enterprise JavaBeans (EJB) and J2EE
Connector Architecture (JCA) development environments. However, keep in
mind that WebSphere Application Server - Express V6 does contain full support
for EJB and JCA, so you can deploy applications that use these technologies.

WebSphere Application Server V6
The WebSphere Application Server package is the next level of server
infrastructure in the WebSphere Application Server family. Though the
WebSphere Application Server is functionally equivalent to that shipped with
Express, this package differs slightly in packaging and licensing. The
development tool included is a trial version of Rational Application Developer, full
J2EE 1.4 compliant development tool.

To avoid confusion with the Express package in this document, we refer to this
as the Base package.

WebSphere Application Server Network Deployment V6
WebSphere Application Server Network Deployment is an even higher level of
server infrastructure in the WebSphere Application Server family. It extends the
WebSphere Application Server base package to include clustering capabilities,
Edge components, and high availability for distributed configurations. These
features become more important at larger enterprises, where applications tend to
service a larger customer base, and more elaborate performance and availability
requirements are in place.

Application servers in a cluster can reside on the same or multiple machines. A
Web server plug-in installed in the Web server can distribute work among
clustered application servers. In turn, Web containers running servlets and Java
ServerPages (JSPs) can distribute requests for EJBs among EJB containers in a
cluster.

The addition of Edge components provides high performance and high
availability features. For example:

 Chapter 1. WebSphere Application Server V6 for distributed platforms 9

� The Caching Proxy intercepts data requests from a client, retrieves the
requested information from the application servers, and delivers that content
back to the client. It stores cachable content in a local cache before delivering
it to the client. Subsequent requests for the same content are served from the
local cache, which is much faster and reduces the network and application
server load.

� The Load Balancer provides horizontal scalability by dispatching HTTP
requests among several, identically configured Web server or application
server nodes.

Packaging summary
Table 1-1 shows the features included with each WebSphere Application Server
packaging option.

Table 1-1 WebSphere Application Server packaging

Platform Express V61 Base V6 ND V6

WebSphere Application
Server

Yes Yes Yes

Deployment manager No No Yes

IBM HTTP Server V6
Web server plug-ins

Yes Yes Yes

IBM HTTP Server Yes Yes Yes

Application Client (not
on zLinux)

Yes Yes Yes

Application Server
Toolkit

Yes Yes Yes

DataDirect
Technologies JDBC
Drivers for WebSphere
Application Server

Yes Yes Yes

Development tools Rational Web
Developer (single use
license)

Rational Application
Developer Trial

Rational Application
Developer Trial

Database IBM DB2 Universal
Database™ Express
V8.2

IBM DB2 Universal
Database Express V8.2
(development use only)

IBM DB2 UDB
Enterprise Server
Edition V8.2 for
WebSphere Application
Server Network
Deployment

10 WebSphere Application Server V6: System Management and Configuration Handbook

1.4.2 System requirements and support for distributed platforms

WebSphere Application Server V6 is supported on the distributed platforms
shown in Table 1-2.

Table 1-2 WebSphere Application Server features

Production ready
applications

IBM Business Solutions No No

Tivoli® Directory Server
for WebSphere
Application Server
(LDAP server)

No No Yes

Tivoli Access Manager
Servers for WebSphere
Application Server

No No Yes

Edge Components No No Yes

1. Express is limited to a maximum of two CPUs.

Platform Express V61 Base V6 ND V6

Note: Not all features are available on all platforms. See the System
Requirements Web page for each WebSphere Application Server package for
more information.

Note: The information in this section was current at the time this IBM
Redbooks was published. For a current list of supported operating system
levels and requirements, see the WebSphere Application Server Web site:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Operating system Express V6 Base V6 ND V6

AIX® Yes Yes Yes

H-UX Yes Yes Yes

Linux® (Intel®) Yes Yes Yes

Linux on iSeries Yes Yes Yes

Linux on pSeries® Yes Yes Yes

Linux on zSeries® No Yes Yes

 Chapter 1. WebSphere Application Server V6 for distributed platforms 11

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

WebSphere Application Server V6 supports the following database servers:

� Cloudscape™
� IBM DB2
� Informix® Dynamic Server
� Oracle
� Microsoft SQL Server
� Sybase Adaptive Server Enterprise

WebSphere Application Server currently supports the following Web servers:

� Apache Server
� IBM HTTP Server
� Microsoft Internet Information Services
� Lotus® Domino® Enterprise Server
� Sun Java System Web Server
� Covalent Enterprise Ready Server

1.4.3 New for V6
WebSphere Application Server V6 continues with the tradition of providing
support for the current J2EE specifications. In addition, it focuses on features
that provide ease-of-use, simplification of application development and
deployment, high availability, and flexibility. The following sections give you the
highlights of the new features and functionality provided with WebSphere
Application Server V6.

Programming support
The following are highlights of the new application programming features for
WebSphere Application Server V6:

J2EE 1.4 support
WebSphere Application Server V6 provides full support for J2EE 1.4. The J2EE
specification requires a certain set of specifications to be supported. Among
these are EJB 2.1, JMS 1.1, JCA 1.5, Servlet 2.4, and JSP 2.0.

WebSphere Application Server V6 also provides support for J2EE 1.2 and 1.3 to
ease migration.

Solaris Yes Yes Yes

Windows® Yes Yes Yes

Operating system Express V6 Base V6 ND V6

12 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere Application Server V6 is shipped with JDK 1.4.2, which includes the
new Java Web Start feature. Java Web Start is an application-deployment
technology that includes the portability of applets, the maintainability of servlets
and JavaServer Pages (JSP) file technology, and the simplicity of mark-up
languages such as XML and HTML. It is a Java application that allows
full-featured Java 2 client applications to be launched, deployed and updated
from a standard Web server.

Web services
Web services support has been updated to include the latest in technology
options, including:

� Java API for XML-based RPC (JAX-RPC) 1.1 enables you to develop
SOAP-based interoperable and portable Web services and Web service
clients. The JAX-RPC programming model is defined by the Web services
standard JSR 101.

� Web services for Java 2 Platform, Enterprise Edition defines the
programming model and run-time architecture for implementing Web services
based on the Java language.JSR 109 - WSEE.

� SOAP with Attachments API for Java (SAAJ) 1.2 is used for SOAP
messaging that works behind the scenes in the JAX-RPC implementation.

� Web Services Security (WS-Security) proposes a standard set of SOAP
extensions that you can use to build secure Web services.

� Web Services-Interoperability (WS-I) Basic Profile 1.1 is a set of
non-proprietary Web services specifications that promote interoperability. The
Web Services-Interoperability (WS-I) Attachments Profile compliments the
WS-I Basic Profile 1.1 to add support for interoperable SOAP messages with
attachments-based Web services.

� Java API for XML Registries (JAXR) 1.0 defines a Java client API for
accessing both UDDI (Version 2 only) and ebXML registries.

� Universal Description, Discovery and Integration (UDDI) V3 defines a way
to publish and discover information about Web services.

In addition, WebSphere Application Server V6 adds value to the standards in
these ways:

� Custom bindings to supplement JAX-RPC features, allowing you to create
your own custom bindings to map Java to XML and XML to Java conversions.

� Support for generic SOAP elements

� Multi-protocol support for a stateless session Enterprise JavaBean (EJB) as
the Web service provider for enhanced performance without changes to
JAX-RPC clients

 Chapter 1. WebSphere Application Server V6 for distributed platforms 13

� Caching for Web services clients running in the application server, including
the Web Services Gateway, in addition to the server-side Web service
caching for Web services

The private UDDI Registry previously shipped with the V5 Network Deployment
package, is now available in all packages and implements V3.0 of the UDDI
specification.

And finally, the Web Services Gateway, in the Network Deployment package
only, has been fully integrated into the application server. The function of the
Web Services Gateway is provided by the service integration features new to V6.
Installation is automatic when you install WebSphere Application Server.
Administration is fully integrated within the administration tools.

Service Data Objects (SDO)
SDO, formerly WebSphere Data Objects, provide unified data access and
representation across heterogeneous data stores. With SDO, data mediators
perform the real work of accessing the data stores. Clients query a data mediator
service and get a data graph in response. The data graph consists of structured
data objects representing the data store. Clients update the data graph and send
it back to the mediator service to have the updates applied.

SDO is not intended to replace other data access technologies, but rather to
provide an alternate choice. It has the advantage of simplifying the application
programming tasks required to access data stores.

SDO support is included in WebSphere Studio Application Developer 5.1.1 and
in Rational Application Developer 6.0. This support includes:

� Wizards and views for working with data objects
� Relational data lists
� Relational data objects

WebSphere Application Server 6.0 support for SDO includes:

� Support for SDO naming and packaging
� Externalization of the following APIs
� SDO Core APIs
� EJB Mediator for entity EJBs
� JDBC Data Mediator for relational databases supported by WebSphere

Application Server

SDO is defined by JSR 235. For more information, see:

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/
Commonj-SDO-Specification-v1.0.doc

14 WebSphere Application Server V6: System Management and Configuration Handbook

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc
ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc

JavaServer Faces (JSF) v1.0
JavaServer Faces (JSF) is a user interface framework or API that eases the
development of Java based Web applications. JSF makes J2EE more
approachable to non-Java application developers with HTML, scripting, and
page layout skills.

WebSphere Application Server version 6.0 supports JavaServer Faces 1.0 at a
runtime level.

Programming Model Extensions (PMEs)
PMEs formerly part of more advanced WebSphere Application Server packaging
options are now available in the Express, Base, and Network Deployment
packages:

� Last Participant Support
� Internationalization Service
� WorkArea Service
� ActivitySession Service
� Extended JTA Support
� Startup Beans
� Asynchronous Beans
� Scheduler Service (Timer Service)
� Object Pools
� Dynamic Query
� Application Profiling

System management
WebSphere Application Server V6 has enhanced the usability of the WebSphere
administration tools and has introduced features for managing multiple instances
of WebSphere. There is also a focus on enhanced application deployment
features.

The following sections highlight of the new system management features for
WebSphere Application Server V6.

Improved system management model
Several improvements have been made to the basic system management
features of WebSphere Application Server V6:

� Mixed cell support enables you to migrate an existing WebSphere Application
Server V5 Network Deployment environment to V6. By migrating the
Deployment Manager to V6 as a first step, you can continue to run V5
application servers until you can migrate each of them.

 Chapter 1. WebSphere Application Server V6 for distributed platforms 15

� Configuration archiving allows you to create a complete or partial archive of
an existing WebSphere Application Server configuration. This archive is
portable and can be used to create new configurations based on the archive.

� Defining a WebSphere Application Server V6 instance by a profile allows you
to easily configure multiple runtimes with one set of install libraries.. After
installing the product, you create the runtime environment by building profiles.

� Defining a generic server as an application server instance in the
administration tools allows you to associate it with a non-WebSphere server
or process that is needed to support the application server environment.

� By defining external Web servers as managed servers, you can start and stop
the Web server and automatically push the plug-in configuration to it. This
requires a node agent to be installed on the machine and is typically used
when the Web server is behind a firewall.

You can also define a Web server as an unmanaged server for placement
outside the firewall. This allows you to create custom plug-ins for the Web
server, but you must manually move the plug-in configuration to the Web
server machine.

As a special case, you can define the IBM HTTP server as an unmanaged
server, but treat it as a managed server. This does not require a node agent
because the commands are sent directly to the IBM HTTP server
administration process.

� You can use node groups to define a boundary for server cluster formation.
With WebSphere Application Server V6, you can now have nodes in cells with
different capabilities, for example, a cell can contain both WebSphere
Application Server on distributed systems and on z/OS. Node groups are
created to group nodes of similar capability together to allow validation during
system administration processes.

Administrative console updates
The administrative console has been updated with ease of use in mind. New
panels have been added to facilitate the new V6 features such as service
integration, the integrated UDDI Registry and Web Services Gateway, and the
new Web server options. The navigation has been reworked to reduce the
number of clicks required to reach most configuration settings.

The Tivoli Performance View monitor has also been integrated into the
administrative console.

Application management
Improvements in application management techniques have been added to
facilitate rapid application deployment and efficient update procedures.These
improvements include the following items:

16 WebSphere Application Server V6: System Management and Configuration Handbook

� Enhanced Enterprise Archive (EAR) files can now be built using Rational
Application Developer or the Application Server Toolkit. The Enhanced EAR
contains bindings and server configuration settings previously done at
deployment time. This allows developers to predefine known runtime settings
and can speed up deployment.

� Fine grain application update capabilities allow you to make small delta
changes to applications without doing a full application update and restart.

� WebSphere Rapid Deployment provides the ability for developers to use
annotation based programming. This is step forward in the automation of
application development and deployment.

Service integration
The service integration functionality within WebSphere Application Server V6
supports supports both message-oriented and service-oriented applications. The
primary component of this functionality is the service integration bus, which
provides the support for messaging and Web services applications. One or more
application servers or clusters join a bus to become bus members. The service
integration bus becomes a component of the Enterprise Service Bus (ESB).

The service integration functionality provides:

� A fully compliant J2EE 1.4 JMS messaging provider, integrated within the
application server. This messaging provider is the default messaging provider
for the application server. It can support multi-server configurations and can
be linked to WebSphere MQ, appearing as a queue manager. This new JMS
provider replaces the embedded JMS provider available in WebSphere
Application Server V5.

� An integrated Web services infrastructure and support for the Web Services
Gateway, which provides you with a single point of control, access and
validation of Web service requests, and allows you to control which Web
services are available to different groups of Web service users.

The service integration bus is fully integrated with the administration tools,
WebSphere security, installation processes, and provides support for clustering
enablement.

Clustering enhancements
New enhancements in the area of clustering, failover and workload management
include:

� Failover of stateful session EJBs is now possible. Each EJB container
provides a method for stateful session beans to fail over to other servers. This
feature uses the same memory-to-memory replication provided by the data
replication services component used for HTTP session persistence.

 Chapter 1. WebSphere Application Server V6 for distributed platforms 17

� A new High Availability Manager has been added with the intent of eliminating
single points of failure. It is responsible for running key services on available
application servers, rather than on a dedicated one such as the deployment
manager. The High Availability Manager takes advantage of fault tolerant
storage technologies such as Network Attached Storage (NAS), significantly
lowering the cost and complexity of high availability configurations. It also
offers hot standby and peer failover for critical services.

� To simplify use, we made improvements to the administration of clusters.

Security enhancements
Updates to security features in WebSphere Application Server V6 include:

� Java Authorization Contract with Containers (JACC) 1.0 support details the
contract requirements for J2EE containers and authorization providers. With
this detail, authorization providers can perform the access decisions for
resources in J2EE 1.4 application servers such as WebSphere Application
Server. This support facilitates the plug-in of third-party authorization servers.

� WebSphere Application Server V6 provides an embedded IBM Tivoli Access
Manager (TAM) client that is JACC compliant. The TAM can be used to
access a Tivoli Access Manager server for authentication and authorization.

� Tivoli Access Manager (TAM) server is bundled in the Network Deployment
package.

18 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 2. WebSphere Application
Server V6 architecture

WebSphere Application Server is the implementation by IBM of the Java 2
Enterprise Edition (J2EE) platform. It conforms to the J2EE 1.4 specification.
WebSphere Application Server is available in three unique packages that are
designed to meet a wide range of client requirements. At the heart of each
package is a WebSphere Application Server that provides the runtime
environment for enterprise applications.

This discussion centers on the runtime server component of the following
packaging options of WebSphere Application Server for distributed platforms:

� IBM WebSphere Application Server - Express V6, referred to as Express
� IBM WebSphere Application Server V6, referred to as Base
� IBM WebSphere Application Server Network Deployment V6, referred to as

Network Deployment

2

© Copyright IBM Corp. 2005. All rights reserved. 19

2.1 Application server configurations
At the heart of each member of the WebSphere Application Server family is an
application server. Each family has essentially the same architectural structure.
Although the application server structure for Base and Express is identical, there
are differences in licensing terms, the provided development tool, and platform
support. With Base and Express, you are limited to stand-alone application
servers. Each stand-alone application server provides a fully functional J2EE 1.4
environment.

Network Deployment has additional elements that allow for more advanced
topologies such as workload management, scalability, high availability, and
central management of multiple application servers.

2.1.1 Stand-alone server configuration
Express, Base, and Network Deployment all support a single stand-alone server
environment. With a stand-alone configuration, each application server acts as a
unique entity. An application server runs one or more J2EE applications and
provides the services required to run those applications.

Multiple stand-alone application servers can exist on a machine, either through
independent installations of the WebSphere Application Server code or through
multiple configuration profiles within one installation. However, WebSphere
Application Server does not provide for common management or administration
for multiple application servers. Stand-alone application servers do not provide
workload management or failover capabilities.

Figure 2-1 on page 21 shows an architectural overview of a stand-alone
application server.

20 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 2-1 Architectural overview for a stand-alone server

2.1.2 Distributed server configuration
With Network Deployment, you can build a distributed server configuration,
which enables central administration, workload management, and failover. In this
environment, you integrate one or more application servers into a cell that is
managed by a deployment manager. The application servers can reside on the
same machine as the deployment manager or on multiple separate machines.
Administration and management are handled centrally from the administration
interfaces through the deployment manager.

With this configuration, you can create multiple application servers to run unique
sets of applications and then manage those applications from a central location.
More importantly, you can cluster application servers to allow for workload
management and failover capabilities. Applications that you install in the cluster

Web container

Application Server

Messaging engines

Node

Ad
m

in
ap

pl
ic

at
io

n

Application
Database

Webcontainer
Inbound chain(

EJB container

JCA services

Config
repository
(XML files)

Name Server (JNDI)

Security server

ap
pl

ic
at

io
n

(E
AR

)

Msg
Queue

Msg
Queue

manages

managed by external
provider

(WebSphere MQ)
Web Services engine

Ad
m

in
 s

er
vi

ce

JMS, MQ

Web Service
Provider or
Gateway

SOAP/HTTP

Web
browser

client

Java client
Client container

HTTP server

WebSphere
plug-in

HTTP(s)

Scripting
client

Admin
UI

RMI/IIOP

SOAP or
RMI/IIOP

HTTP(s)

U
D

D
I r

eg
is

try

 Chapter 2. WebSphere Application Server V6 architecture 21

are replicated across the application servers. When one server fails, another
server in the cluster continues processing. Workload is distributed among Web
containers and EJB containers in a cluster using a weighted round-robin
scheme.

Figure 2-2 illustrates the basic components of an application server in a
distributed server environment.

Figure 2-2 Distributed server environment

2.2 Application servers, nodes, and cells
Regardless of the configuration, the WebSphere Application Server is organized
based on the concept of cells, nodes, and servers. While all of these elements
are present in each configuration, cells and nodes do not play an important role
until you take advantage of the features provided with Network Deployment.

EJB container

Web container

Application Server

Node Agent

Node

Application
Database

U
D

D
I r

eg
is

try

Ad
m

in
 s

er
vi

ce

Config
repository

(file)

ap
pl

ic
at

io
n

(E
AR

)

W ebcontainer
Inbound
chain(s)

JCA services

SOAP
(W eb

Services)
engine

Name server (JNDI)

Security server

Cell

Master
repository

(file)

Deployment Manager
Admin

application
Name Server (NDI)

Admin Service

Admin Service

W
eb

 S
er

vi
ce

s
G

at
ew

ay

Session
Database

Msg
Queue

managed by external
provider

(W ebSphere MQ)

W eb
browser

client HTTP server

W ebSphere
plug-in

HTTP(s)

Scripting
client

Admin
UI

Java client

Client container RMI/IIOP

SOAP or
RMI/IIOP

HTTP(s)

Msg
Queue

manages

JMS, MQ

 Messaging engine

22 WebSphere Application Server V6: System Management and Configuration Handbook

2.2.1 Application servers
The application server is the primary runtime component in all configurations. It is
where an application executes. All WebSphere Application Server configurations
can have one or more application servers. In the Express and Base
configurations, each application server functions as a separate entity. There is no
workload distribution or common administration among application servers. With
Network Deployment, you can build a distributed server environment consisting
of multiple application servers maintained from a central administration point. In
a distributed server environment, you can cluster application servers for
workload distribution.

2.2.2 Nodes, node groups, and node agents
A node is a logical grouping of server processes managed by WebSphere and
that share common configuration and operation control. A node is associated
with one physical installation of WebSphere Application Server. In a stand-alone
application server configuration, there is only one node.

With Network Deployment, you can configure multiple nodes to manage from
one common administration server. In these centralized management
configurations, each node has a node agent that works with a deployment
manager to manage administration processes.

A node group is a new concept introduced with WebSphere Application Server
V6. A node group is a grouping of nodes within a cell that have similar
capabilities. A node group validates that the node is capable of performing
certain functions before allowing those functions. For example, a cluster cannot
contain both z/OS nodes and non-z/OS nodes. In this case, you can define two
node groups, one for the z/OS nodes and one for nodes other than z/OS. A
DefaultNodeGroup is automatically created based on the deployment manager
platform. This node group contains the deployment manager and any new nodes
with the same platform type.

2.2.3 Cells
A cell is a grouping of nodes into a single administrative domain. In the Base and
Express configurations, a cell contains one node. That node might have multiple
servers, but the configuration files for each server are stored and maintained
individually.

In a distributed server configuration, a cell can consist of multiple nodes which
are all administered from a single point. The configuration and application files
for all nodes in the cell are centralized into a cell master configuration repository.

 Chapter 2. WebSphere Application Server V6 architecture 23

The deployment manager process manages the central repository and
synchronizes with local copies that are held on each of the nodes.

2.3 Servers
WebSphere Application Server supplies application servers. They provide the
functions required to host applications. WebSphere Application Server also
provides the ability to define external servers to the administration process.
Table 2-1 shows which types of servers you can define to the WebSphere
Application Server administration tools.

Table 2-1 WebSphere Application Server server support

2.3.1 Application servers
Application servers provide the runtime environment for application code. They
provide containers and services that specialize in enabling the execution of
specific Java application components. Each application server runs in its own
Java Virtual Machine (JVM).

2.3.2 Clusters
With Network Deployment, you can use application server clustering to enhance
workload distribution. A cluster is a logical collection of application server
processes that provides workload balancing and high availability.

Application servers in a cluster are members of that cluster and must all have
identical application components on them. Other than the applications on them,
cluster members do not have to share any other configuration data.

For example, one cluster member might run on a large multi-processor server
while another member of that same cluster might run on a small mobile
computer. The server configuration settings for each of these two cluster

Server type Express and Base Network Deployment

Application server Yes Yes

Application server clustering No Yes

External Web server Yes Yes

External generic server No Yes

WebSphere V5 JMS servers No Yes

24 WebSphere Application Server V6: System Management and Configuration Handbook

members is very different, except the application components that are assigned
to them. In that area of configuration, they are identical.

The members of a cluster can be located on a single node (vertical cluster),
across multiple nodes (horizontal cluster), or on a combination of the two.

When you install, update, or delete an application, the updates are automatically
distributed to all members in the cluster. In WebSphere Application Server V5, if
you updated an application on a cluster, you had to stop the application on every
server in the cluster, install the update, and then restart the server. With
WebSphere Application Server V6, the Rollout Update option allows you to
update and restart the application servers on each node, one node at a time.
This provides continuous availability of the application.

2.3.3 JMS servers (V5)
In WebSphere Application Server V5, JMS servers provide the default
messaging support for WebSphere Application Server. For migration purposes,
Network Deployment in V6 supports cells that contain both V5 and V6 nodes (the
deployment manager must be at V6), and by extension, Network Deployment
supports existing JMS servers in V5 application servers in the cell.

2.3.4 External servers
You can define servers other than WebSphere application servers to the
administrative process. You can define:

� Generic servers

A generic server is a server that is managed in the WebSphere administrative
domain, but is not a server that is supplied by WebSphere Application Server.
The generic server can be any server or process that is necessary to support
the application server environment, including a Java server, a C or C++
server or process, a CORBA server or a Remote Method Invocation server.

� Web servers

Web servers can be defined to the administration process as Web server
nodes, allowing applications to be associated with one or more defined Web
servers.

Web server nodes can be managed or unmanaged. Managed nodes have a
node agent on the Web server machine that allows the deployment manager
to administer the Web server. You can start or stop the Web server from the
deployment manager, generate the Web server plug-in for the node, and
automatically push it to the Web server. Managed Web server nodes are
usually behind the firewall with WebSphere Application Server installations.

 Chapter 2. WebSphere Application Server V6 architecture 25

Unmanaged Web server nodes, as the name implies, are not managed by
WebSphere. You normally find these outside the firewall, or in the
demilitarized zone. You must manually copy or FTP Web server plug-in files
to the Web server. However, if you define the Web server as a node, you can
generate custom plug-in files for it.

2.4 Containers
The J2EE 1.4 specification defines the concept of containers to provide runtime
support for applications. There are two types of containers in the application
server implementation:

� A Web container, which processes HTTP requests, servlets, and JavaServer
Pages (JSPs)

� An EJB container, which processes Enterprise JavaBeans (EJBs)

In addition, there is an application client container that can run on the client
machine. Table 2-2 shows the containers that each packaging option supports.

Table 2-2 WebSphere Application Server container support

2.4.1 Web container
The Web container processes servlets, JSP files, and other types of server-side
includes. Each application server runtime has one logical Web container, which
can be modified, but not created or removed. Each Web container provides the
following:

� Web container transport chains

Note: As a special case, if the unmanaged Web server is an IBM HTTP
Server, you can administer the Web server from the WebSphere
administrative console. Then, you can automatically push the plug-in
configuration file to the Web server with the deployment manager using
HTTP commands to the IBM HTTP Server administration process. This
configuration does not require a node agent.

Container type Express and Base Network Deployment

Web container Yes Yes

EJB container Yes Yes

Application client container Yes Yes

26 WebSphere Application Server V6: System Management and Configuration Handbook

Requests are directed to the Web container using the Web container inbound
transport chain. The chain consists of a TCP inbound channel that provides
the connection to the network, an HTTP inbound channel that serves HTTP
1.0 and 1.1 requests, and a Web container channel over which requests for
servlets and JSPs are sent to the Web container for processing.

� Servlet processing

When handling servlets, the Web container creates a request object and a
response object, then invokes the servlet service method. The Web container
invokes the servlet’s destroy method when appropriate and unloads the
servlet, after which the JVM performs garbage collection.

� HTML and other static content processing

Requests for HTML and other static content that are directed to the Web
container are served by the Web container inbound chain. However, in most
cases, using an external Web server and Web server plug-in as a front-end to
a Web container is more appropriate for a production environment.

� Session management

Support is provided for the javax.servlet.http.HttpSession interface as
described in the Servlet application program interface (API) specification.

� Web services engine

Web services are provided as a set of APIs in cooperation with the J2EE
applications. Web services engines are provided to support Simple Object
Access Protocol (SOAP).

Web server plug-ins
Although the Web container can serve static content, a more likely scenario is
that you will use an external Web server to receive client requests. The Web
server can serve requests that do not require any dynamic content, for example,
HTML pages. However, when a request requires dynamic content, such as JSP
or servlet processing, it must be forwarded to WebSphere Application Server for
handling.

To forward a request, you use a Web server plug-in that is included with the
WebSphere Application Server packages for installation on a Web server. You
copy an Extensible Markup Language (XML) configuration file, located on the
WebSphere Application Server, to the Web server plug-in directory. The plug-in
uses the configuration file to determine whether a request should be handled by
the Web server or an application server. When WebSphere Application Server
receives a request for an application server, it forwards the request to the
appropriate Web container in the application server. The plug-in can use HTTP
or HTTPs to transmit the request.

 Chapter 2. WebSphere Application Server V6 architecture 27

2.4.2 Enterprise JavaBeans container
The Enterprise JavaBeans (EJB) container provides all the runtime services that
are needed to deploy and manage enterprise beans. It is a server process that
handles requests for both session and entity beans.

The enterprise beans, packaged in EJB modules, installed in an application
server do not communicate directly with the server. Instead, the EJB container
provides an interface between the enterprise beans and the server. Together,
the container and the server provide the enterprise bean runtime environment.

The container provides many low-level services, including threading and
transaction support. From an administrative viewpoint, the container manages
data storage and retrieval for the contained enterprise beans. A single container
can host more than one EJB Java archive (JAR) file.

2.4.3 Application client container
The application client container is a separately installed component on the
client's machine. It allows the client to run applications in a J2EE environment
that is compatible with EJB.

To launch the application client along with its client container runtime, execute
the following command: launchClient.

2.5 Application server services
The application server provides services in addition to the containers, as shown
in Table 2-3 on page 29.

28 WebSphere Application Server V6: System Management and Configuration Handbook

Table 2-3 WebSphere Application Server services

For further information, see the sections starting with 2.5.1, “J2EE Connector
Architecture services” on page 30.

Table 2-4 shows the services that are provided to support the programming
model extensions (PMEs).

Table 2-4 services that support programming model extensions

Service Express and
Base

Network
Deployment

J2EE Connector Architecture services Yes Yes

Transaction service Yes Yes

Dynamic cache service Yes Yes

Message listener service Yes Yes

Object Request Broker service Yes Yes

Administrative service (Java Management
Extensions)

Yes Yes

Diagnostic trace service Yes Yes

Debugging service Yes Yes

Name service (Java Naming Directory Interface) Yes Yes

Performance Monitoring Interface service Yes Yes

Security service (JAAS and Java 2 security) Yes Yes

Service Integration Bus service Yes Yes

PME support service Express and Base Network Deployment

Application profiling service Yes Yes

Compensation service Yes Yes

Internationalization service Yes Yes

Object pool service Yes Yes

Startup beans service Yes Yes

Activity session service Yes Yes

Work area partition service Yes Yes

 Chapter 2. WebSphere Application Server V6 architecture 29

The sections that follow discuss the WebSphere Application Server services that
are listed in Table 2-3 on page 29.

2.5.1 J2EE Connector Architecture services
Connection management for access to enterprise information systems (EIS) in
WebSphere Application Server is based on the J2EE Connector Architecture
(JCA) specification, also sometimes referred to as J2C. The connection between
the enterprise application and the EIS is done through the use of EIS-provided
resource adapters, which are plugged into the application server. The
architecture specifies the connection management, transaction management,
and security contracts that exist between the application server and the EIS.

Within the application server, the Connection Manager pools and manages
connections. The Connection Manager administers connections that are
obtained through both resource adapters defined by the JCA specification and
data sources defined by the JDBC 2.0 Extensions, and later, specification.

2.5.2 Transaction service
WebSphere applications use transactions to coordinate multiple updates to
resources as one unit of work such that all or none of the updates are made
permanent. Transactions are started and ended by applications or the container
in which the applications are deployed.

WebSphere Application Server is a transaction manager that supports the
coordination of resource managers through the XAResource interface and
participates in distributed global transactions with transaction managers that
support the CORBA Object Transaction Service protocol (for example,
application servers) or the Web Service Atomic Transaction protocol.

WebSphere Application Server also participates in transactions imported through
J2EE Connector 1.5 resource adapters. You can also configure WebSphere
applications to interact with, or direct the WebSphere transaction service to
interact with, databases, Java Message Service (JMS) queues, and JCA
connectors through their local transaction support when distributed transaction
coordination is not required.

How applications use transactions depends on the type of application
component, for example:

Work area service Yes Yes

PME support service Express and Base Network Deployment

30 WebSphere Application Server V6: System Management and Configuration Handbook

� A session bean can either use container-managed transactions where the
bean delegates management of transactions to the container, or
bean-managed transactions where the bean manages transactions itself.

� Entity beans use container-managed transactions.

� Web components, or servlets, use bean-managed transactions.

WebSphere Application Server handles transactions with three main
components:

� A transaction manager supports the enlistment of recoverable XAResources
and ensures that each such resource is driven to a consistent outcome, either
at the end of a transaction, or after a failure and restart of the application
server.

� A container in which the J2EE application runs manages the enlistment of
XAResources on behalf of the application when it performs updates to
transactional resource managers such as databases. Optionally, the
container can control the demarcation of transactions for enterprise beans
that are configured for container-managed transactions.

� A UserTransaction API handles bean-managed enterprise beans and
servlets. UserTransaction allows such application components to control the
demarcation of their own transactions.

2.5.3 Dynamic cache service
The dynamic cache service improves performance by caching the output of
servlets, commands, Web services, and JSP files. The dynamic cache works
within an application server, intercepting calls to objects that can be cached, for
example, through a servlet's service() method or a command's execute()
method. The dynamic cache either stores the object's output to or serves the
object's content from the dynamic cache.

Because J2EE applications have high read-write ratios and can tolerate small
degrees of latency in the currency of their data, the dynamic cache can create
significant gains in server response time, throughput, and scalability.

The following caching features are available in WebSphere Application Server:

� Cache replication

Cache replication among cluster members takes place using the WebSphere
data replication service. Data is generated one time and then copied or
replicated to other servers in the cluster, saving execution time and
resources.

 Chapter 2. WebSphere Application Server V6 architecture 31

� Cache disk offload

By default, when the number of cache entries reaches the configured limit for
a given WebSphere server, eviction of cache entries occurs, allowing new
entries to enter the cache service. The dynamic cache includes a disk offload
feature that copies the evicted cache entries to disk for potential future
access.

� Edge Side Include caching

The Web server plug-in contains a built-in Edge Side Include (ESI) processor.
The ESI processor caches whole pages, as well as fragments, providing a
higher cache hit ratio. The cache implemented by the ESI processor is an
in-memory cache, not a disk cache. Therefore, the cache entries are not
saved when the Web server is restarted.

� External caching

The dynamic cache controls caches outside of the application server, such as
that provided by the Edge components, an IBM HTTP Server's FRCA cache
that is not z/OS, and a WebSphere HTTP Server plug-in ESI Fragment
Processor that is not z/OS. When external cache groups are defined, the
dynamic cache matches external cache entries with those groups and pushes
out cache entries and invalidations to those groups. This external caching
allows WebSphere to manage dynamic content beyond the application
server. The content can then be served from the external cache, instead of
the application server, improving performance.

2.5.4 Message listener service
With EJB 2.1, an ActivitionSpec is used to connect message-driven beans to
destinations. However, you can deploy existing EJB 2.0 message-driven beans
against a listener port as in WebSphere Application Server V5. For those
message-driven beans, the message listener service provides a listener
manager that controls and monitors one or more JMS listeners. Each listener
monitors a JMS destination on behalf of a deployed message-driven bean.

2.5.5 Object Request Broker service
An Object Request Broker (ORB) manages the interaction between clients and
servers, using Internet Inter-ORB Protocol (IIOP). The ORB service enables
clients to make requests and receive responses from servers in a
network-distributed environment.

The ORB service provides a framework for clients to locate objects in the
network and call operations on those objects as though the remote objects were
located in the same running process as the client. The ORB service provides

32 WebSphere Application Server V6: System Management and Configuration Handbook

location transparency. The client calls an operation on a local object, known as a
stub. Then the stub forwards the request to the desired remote object, where the
operation is run, and the results are returned to the client.

The client-side ORB is responsible for creating an IIOP request that contains the
operation and any required parameters, and for sending the request in the
network. The server-side ORB receives the IIOP request, locates the target
object, invokes the requested operation, and returns the results to the client. The
client-side ORB demarshals the returned results and passes the result to the
stub, which returns the result to the client application, as though the operation
had been run locally.

WebSphere Application Server uses an ORB to manage communication
between client applications and server applications as well as communication
among product components.

2.5.6 Administrative service
The administrative service runs within each server JVM. In Base and Express,
the administrative service runs in the application server. In Network Deployment,
each of the following hosts an administrative service:

� Deployment manager
� Node agent
� Application server

The administrative service provides the necessary functions to manipulate
configuration data for the server and its components. The configuration is stored
in a repository in the server's file system.

The administrative service has a security control and filtering functionality that
provides different levels of administration to certain users or groups using the
following administrative roles:

� Administrator
� Monitor
� Configurator
� Operator

2.5.7 Name service
Each application server hosts a name service that provides a Java Naming and
Directory Interface (JNDI) name space. The service is used to register resources
hosted by the application server. The JNDI implementation in WebSphere
Application Server is built on top of a Common Object Request Broker
Architecture (CORBA) naming service (CosNaming).

 Chapter 2. WebSphere Application Server V6 architecture 33

JNDI provides the client-side access to naming and presents the programming
model that application developers use. CosNaming provides the server-side
implementation and is where the name space is stored. JNDI essentially
provides a client-side wrapper of the name space stored in CosNaming and
interacts with the CosNaming server on behalf of the client.

The naming architecture is used by clients of WebSphere applications to obtain
references to objects related to those applications. These objects are bound into
a mostly hierarchical structure, referred to as a name space. The name space
structure consists of a set of name bindings, each containing a name relative to a
specific context and the object bound with that name. The name space can be
accessed and manipulated through a name server.

The following are features of a WebSphere Application Server name space:

� Distributed name space

For additional scalability, the name space for a cell is distributed among the
various servers. The deployment manager, node agent, and application
server processes all host a name server.

The default initial context for a server is its server root. System artifacts, such
as EJB homes and resources, are bound to the server root of the server with
which they are associated.

� Transient and persistent partitions

The name space is partitioned into transient areas and persistent areas.
Server roots are transient. System-bound artifacts such as EJB homes and
resources are bound under server roots. There is a cell-persistent root that is
used for cell-scoped persistent bindings and a node-persistent root that is
used to bind objects with a node scope.

� Federated name space structure

A name space is a collection of all names bound to a particular name server. A
name space can contain naming context bindings to contexts located in other
servers. If this is the case, the name space is said to be a federated name
space, because it is a collection of name spaces from multiple servers. The
name spaces link together to cooperatively form a single logical name space.

In a federated name space, the real location of each context is transparent to
client applications. Clients have no knowledge that multiple name servers are
handling resolution requests for a particular requested object.

In a Network Deployment distributed server configuration, the name space for
the cell is federated among the deployment manager, node agents, and
application servers of the cell. Each such server hosts a name server. All
name servers provide the same logical view of the cell name space, with the

34 WebSphere Application Server V6: System Management and Configuration Handbook

various server roots and persistent partitions of the name space being
interconnected by means of the single logical name space.

� Configured bindings

You can use the configuration graphical interface and script interfaces to
configure bindings in various root contexts within the name space. These
bindings are read-only and are bound by the system at server startup.

� Support for CORBA Interoperable Naming Service (INS) object Uniform
Resource Locator (URL)

WebSphere Application Server contains support for CORBA object URLs
(corbaloc and corbaname) as JNDI provider URLs and lookup names.

Figure 2-3 summarizes the naming architecture and its components.

Figure 2-3 Naming topology

2.5.8 Performance Monitoring Infrastructure service
WebSphere Application Server collects data on runtime and applications through
the Performance Monitoring Infrastructure (PMI). This infrastructure is
compatible with and extends the JSR-077 specification.

Machine A

lookupJNDI
Client

Deployment Manager

9809
namespace

Machine C

Node Agent 2

2809

Application Server 3

9810

Machine B

Node Agent 1

2809

Application Server 1

9810

Application Server 2

9811

lookuplookup

JNDI lookup

namespace

namespacenamespace

namespace

namespace

Link between name spaces

 Chapter 2. WebSphere Application Server V6 architecture 35

PMI uses a client-server architecture. The server collects performance data from
various WebSphere Application Server components and stores it in memory.
This data consists of counters such as servlet response time and data
connection pool usage. The data can then be retrieved using a Web client, Java
client, or Java Management Extensions (JMX) client. WebSphere Application
Server contains Tivoli Performance Viewer, which is integrated into the
WebSphere administrative console and displays and monitors performance data.

WebSphere Application Server also collects data by timing requests as they
travel through the product components. PMI request metrics log the time spent in
major components, such as Web containers, EJB containers, and databases.
These data points are recorded in logs and can be written to Application
Response Time agents that Tivoli monitoring tools use.

2.5.9 Security service
Each application server JVM hosts a security service. The security service uses
the security settings held in the configuration repository to provide authentication
and authorization functionality.

2.6 Data Replication Service
The Data Replication Service (DRS) is responsible for replicating in-memory
data among WebSphere processes. You can use DRS for:

� Stateful session EJB persistence and failover (new in V6.0)
� HTTP session persistence and failover
� Dynamic cache replication

Replication domains, consisting of server or cluster members that have a need to
share internal data, perform the replication. Multiple domains can be used, each
for a specific task among a set of servers or clusters. While HTTP session
replication and EJB state replication can (and should) share a domain, you need
a separate domain for dynamic cache replication.

You can define a domain so that each domain member has a single replicator
that sends data to another domain member. You can also define a domain so
that each member has multiple replicators that send data to multiple domain
members.

WebSphere Application Server offers two topologies when setting up data
replication among servers:

36 WebSphere Application Server V6: System Management and Configuration Handbook

� Peer-to-peer topology

Each application server stores sessions in its own memory and retrieves
sessions from other application servers. In other words, each application
server acts as a client by retrieving sessions from other application servers.
Each application server also acts as a server by providing sessions to other
application servers. This mode, working in conjunction with the workload
manager, provides hot failover capabilities.

� Client/server topology

Client application servers send session information to the replication servers
and retrieve sessions from the servers. They respond to user requests and
store only the sessions of the users with whom they interact. Application
servers act as either a replication client or a server. Those that act as
replication servers store sessions in their own memory and provide session
information to clients. They are dedicated replication servers that store
sessions but do not respond to user requests.

2.7 Virtual hosts
A virtual host is a configuration that enables a single host machine to resemble
multiple host machines. This configuration allows a single physical machine to
support several independently configured and administered applications. A
virtual host is not associated with a particular node. It is a configuration, rather
than a live object, which is why you can create it but you cannot start or stop
it.

Each virtual host has a logical name and a list of one or more Domain Name
Server (DNS) aliases by which it is known. A DNS alias is the TCP/IP host name
and port number that is used to request the servlet, for example,
yourHostName:80. When a servlet request is made, the server name and port
number entered into the browser are compared to a list of all known aliases in an
effort to locate the correct virtual host and serve the servlet. If no match is found,
an HTTP 404 error is returned to the browser.

WebSphere Application Server provides two default virtual hosts:

� default_host

This virtual host is used for accessing most applications. The default settings
for default_host map to all requests for any alias on ports 80, 9443, and 9080.
For example:

http://localhost:80/snoop
http://localhost:9080/snoop

 Chapter 2. WebSphere Application Server V6 architecture 37

� admin_host

This virtual host is configured specifically for accessing the WebSphere
Application Server administrative console. Other applications are not
accessible through this virtual host. The default settings for admin_host map
to requests on ports 9060 and 9043, as in http://localhost:9060/admin.

2.8 Session management
In many Web applications, users dynamically collect data as they move through
the site based on a series of selections on the pages that they visit. Where the
user goes and what the application displays can depend on what the user has
chosen previously from the site. To maintain this data, the application stores it in
a session.

WebSphere supports three approaches to track sessions:

� Secure Sockets Layer (SSL) session identifiers, where SSL session
information is used to track the HTTP session ID.

� Cookies, where the application server session support generates a unique
session ID for each user and returns this ID to the user’s browser using a
cookie. The default name for the session management cookie is
JSESSIONID. Using cookies is the most common method of session
management.

� URL rewriting

Session data can be kept in local memory cache, stored externally on a
database, or kept in memory and replicated among application servers. Table 2-5
on page 38 shows the session support for each WebSphere Application Server
configuration.

Table 2-5 WebSphere Application Server session management support

Session type Express and Base Network Deployment

Cookies Yes Yes

URL rewriting Yes Yes

SSL session identifiers Yes Yes

In memory cache Yes Yes

Session persistence using a
database

Yes Yes

38 WebSphere Application Server V6: System Management and Configuration Handbook

The Servlet 2.4 specification defines the session scope at the Web application
level, meaning that session information can only be accessed by a single Web
application. However, there can be times when there is a logical reason for
multiple Web applications to share information, sharing a user name, for
example. WebSphere Application Server provides an IBM extension to the
specification that allows session information to be shared among Web
applications within an enterprise application. This option is offered as an
extension to the application deployment descriptor. No code change is necessary
to enable this option. You specify this option during application assembling.

2.8.1 HTTP Session persistence
Many Web applications use the simplest form of session management, the
in-memory local session cache. The local session cache keeps session
information in memory, which is local to the machine and WebSphere Application
Server where the session information was first created. Local session
management does not share user session information with other clustered
machines. Users only obtain their session information if they return to the
machine and WebSphere Application Server holds their session information
about subsequent accesses to the Web site.

Most importantly, local session management lacks a persistent store for the
sessions it manages. A server failure takes down not only the WebSphere
instances running on the server but also destroys any sessions managed by
those instances.

By default, WebSphere Application Server places session objects in memory.
However, the administrator has the option of enabling persistent session
management. This option instructs WebSphere to place session objects in a
persistent store. Using a persistent store allows an application server to recover
the user session data on restart or another cluster member after a cluster
member in a cluster fails or is shut down. Two options for HTTP session
persistence are available:

� Database

Session information is stored in a central session database for session
persistence.

In a single-server environment, the session can be persisted when the user's
session data must be maintained across a server restart or when the user's
session data is too valuable to lose through an unexpected server failure.

Memory-to-memory session
persistence

No Yes

Session type Express and Base Network Deployment

 Chapter 2. WebSphere Application Server V6 architecture 39

In a multi-server environment, the multiple application servers hosting a
particular application need to share this database information to maintain
session states for the stateful components.

� Memory-to-memory using data replication services

In a Network Deployment distributed server environment, WebSphere internal
replication enables sessions to be shared among application servers without
using a database. Using this method, sessions are stored in the memory of
an application server, providing the same functionality as a database for
session persistence.

2.8.2 Stateful session EJB persistence
With WebSphere Application Server V6, you now have failover capability of
stateful session EJBs. This function uses data replication services and interacts
with the workload manager component during a failover situation.

2.9 Web services
Web services are self-contained, modular applications that can be described,
published, located, and invoked over a network. WebSphere Application Server
can act as both a Web service provider and as a requester. As a provider, it hosts
Web services that are published for use by clients. As a requester, it hosts
applications that invoke Web services from other locations.

WebSphere Application Server supports SOAP-based Web service hosting and
invocation.

Table 2-6 WebSphere Application Server server support

Web services support includes the following:

� Web Services Description Language (WSDL), an XML-based description
language, provides a way to catalog and describe services. WSDL describes

Service Express and Base Network Deployment

Web services support Yes Yes

Private UDDI v3 Registry Yes Yes

Web Services Gateway No Yes

Enterprise Web services Yes Yes

40 WebSphere Application Server V6: System Management and Configuration Handbook

the interface of Web services (parameters and result), the binding (SOAP,
EJB), and the implementation location.

� Universal Discovery Description and Integration (UDDI), a global
platform-independent, open framework, enables businesses to discover each
other, define their interaction, and share information in a global registry.

UDDI support in WebSphere Application Server V6 includes UDDI V3 APIs,
some UDDI V1 and V2 APIs, UDDI V3 client for Java, and UDDI4J for
compatibility with UDDI V2 registries. It also provides a UDDI V3 Registry that
is integrated in WebSphere Application Server.

� SOAP is a lightweight protocol for exchange of information in a decentralized,
distributed environment.

� XML is a common language for exchanging information.

� JAX-RPC (JSR 101) is the core programming model and bindings for
developing and deploying Web services on the Java platform. It is a Java API
for XML-based RPC and supports JavaBeans and enterprise beans as Web
service providers.

� Enterprise Web services (JSR 109) adds EJBs and XML deployment
descriptors to JSR 101.

� WS-Security is the specification that covers a standard set of SOAP
extensions and can be used when building secure Web services to provide
integrity and confidentiality. It is designed to be open to other security models
including PKI, Kerberos, and SSL. WS-Security provides support for multiple
security tokens, multiple signature formats, multiple trust domains, and
multiple encryption technologies. It includes security token propagation,
message integrity, and message confidentiality. The specification is proposed
by IBM, Microsoft, and VeriSign for review and evaluation. In the future,
WS-Security will replace existing Web services security specifications from
IBM and Microsoft, including SOAP Security Extensions (SOAP-SEC),
WS-Security and WS-License from Microsoft, as well as security token and
encryption documents from IBM.

� JAXR is an API that standardizes access to Web services registries from
within Java. JAXR 1.0 defines access to ebXML and UDDI V2 registries.
WebSphere Application Server provides JAXR level 0 support, meaning that
it supports UDDI registries.

JAXR does not map precisely to UDDI. For a precise API mapping to UDDI
V2, IBM provides UDDI4J and IBM Java Client for UDDI V3.

� The SOAP with Attachments API for Java (SAAJ) is a standard for sending
XML documents over the Internet from the Java platform.

 Chapter 2. WebSphere Application Server V6 architecture 41

2.9.1 Enterprise services (JCA Web services)
Enterprise services offer access over the Internet to applications in a
platform-neutral and language-neutral fashion. They offer access to enterprise
information systems (EIS) and message queues and can be used in a
client/server configuration without the Internet. Enterprise services can access
applications and data on a variety of platforms and in a variety of formats.

An enterprise service wraps a software component in a common services
interface. The software component is typically a Java class, EJB, or JCA
resource adapter for an EIS. In services terminology, this software component is
known as the implementation. Enterprise services primarily use WSDL and Web
Services Invocation Framework (WSIF) to expose an implementation as a
service.

Using the Integrated Edition of WebSphere Studio, you can turn Customer
Information Control System (CICS®) and Information Management System
(IMS™) transactions into Web services using JCA.

IBM adds value: In addition to the requirements of the specifications, IBM has
added the following features to its Web services support:

� Custom bindings

JAX-RPC does not support all XML schema types. Custom bindings allow
developers to map Java to XML and XML to Java conversions.

� Support for generic SOAP elements

In cases where you want generic mapping, this support allows you to
eliminate binding and use the generic SOAPElement type.

� Multi-protocol support

This features allows a stateless session EJB as the Web service provider,
which provides enhanced performance without changes to the JAX-RPC
client.

� Client caching

In WebSphere Application Server V5, there was support for server side
Web service caching for Web services providers running within the
application server. In addition to this server side caching, WebSphere
Application Server V6 introduces caching for Web services clients running
within a V6 application server, including the Web Services Gateway.

42 WebSphere Application Server V6: System Management and Configuration Handbook

2.9.2 Web service client
Applications that invoke Web services are known as Web service clients or Web
service requestors. An application that acts as a Web service client is deployed to
WebSphere Application Server like any other enterprise application. No
additional configuration or software is needed for the Web services client to
function. Web services clients can also be stand-alone applications.

A Web service client binds to a Web service server to invoke the Web service.
The binding is done using a service proxy, or stub, which is generated based on
the WSDL document for the Web service. This service proxy contains all the
information that is needed to invoke the Web service and is used locally by the
clients to access the business service. The binding can also be done dynamically
using WSIF.

2.9.3 Web service provider
An application that acts as a Web service is deployed to WebSphere Application
Server like any other enterprise application. The Web services are contained in
Web modules or EJB modules.

Publishing the Web service to a UDDI registry makes it available to anyone
searching for it. Web services can be published to a UDDI registry using the Web
Services Explorer provided with Rational Application Developer.

When using Rational Application Developer to package the application for
deployment, no additional configuration or software is needed for the Web
services client to function. The SOAP servlets are automatically added, and a
SOAP administrative tool is included in a Web module.

If not, you can use the endptEnabler tool found in the WebSphere bin directory to
enable the SOAP services within the Enterprise Application Archive (EAR) file
and to add the SOAP administrative tool.

2.9.4 Enterprise Web Services
The Enterprise Web Services, based on the JSR 109 specification request, uses
JAX-RPC in a J2EE environment that defines the runtime architecture as well as
implements and deploys Web services in a generic J2EE server. The
specification defines the programming model and architecture for implementing
Web services in Java based on JSRs 67, 93, 101, and future JSRs related to
Web services standards. You can find the list of JSRs at:

http://www.jcp.org/en/jsr/all

 Chapter 2. WebSphere Application Server V6 architecture 43

http://www.jcp.org/en/jsr/all

2.9.5 IBM WebSphere UDDI Registry
WebSphere Application Server V6 provides a private UDDI registry that
implements V3.0 of the UDDI specification. This registry enables the enterprise
to run its own Web services broker within the company or to provide brokering
services to the outside world. The UDDI registry installation and management is
now integrated in with WebSphere Application Server.

You can access the registry for inquiry and publish through the UDDI:

� SOAP API
� EJB client interface
� User console

You can use this Web-based graphical user interface to publish and inquire
about UDDI entities. However, it provides only a subset of the UDDI API
functions.

Security for the UDDI registry is handled using WebSphere security. To support
the use of secure access with the IBM WebSphere UDDI Registry, you need to
configure WebSphere to use HTTPS and SSL.

A relational database is used to store registry data.

2.9.6 Web Services Gateway
The Web Services Gateway bridges the gap between Internet and intranet
environments during Web service invocations. The gateway builds upon the
WSDL and the WSIF for deployment and invocation.

With WebSphere Application Server V6, the Web Services Gateway is fully
integrated into the integration service technologies, which provides the runtime.
The administration is done directly from the WebSphere administrative console.

The primary function of the Web Services Gateway is to map an existing
WSDL-defined Web service, the target service, to a new service, the gateway
service, that is offered by the gateway to others. The gateway thus acts as a
proxy. Each target service, whether internal or external, is available at a service
integration bus destination.

The role formerly played by filters in the V5 Web Services Gateway is now
provided through JAX-RPC handlers. Using JAX-RPC handlers provides a
standard approach for intercepting and filtering service messages. JAX-RPC
handlers interact with messages as they pass in and out of the service
integration bus. Handlers monitor messages at ports and take appropriate action,
depending upon the sender and content of each message.

44 WebSphere Application Server V6: System Management and Configuration Handbook

Exposing internal Web services to the outside world
A Web service hosted internally and made available through the service
integration bus is called an inbound service. Inbound services are associated
with a service destination. Service requests and responses are passed to the
service through an endpoint listener and associated inbound port.

From the gateway’s point of view, the inbound service is the target service. To
expose the target service for outside consumption, the gateway takes the WSDL
file for the inbound service and generates a new WSDL file that can be shared
with outside requestors. The interface described in the WSDL is exactly the
same. However, the service endpoint is changed to the gateway, which is now
the official endpoint for the service client. Figure 2-4 diagrams the configuration
for exposing Web services through a gateway.

Figure 2-4 Exposing Web services through a gateway

Externally-hosted Web services
A Web service that is hosted externally and made available through the service
integration bus is called an outbound service. To configure an externally-hosted
service for a bus, do the following:

1. Associate it with a service destination.

2. Configure one or more port destinations, one for each type of binding (for
example, SOAP over HTTP or SOAP over JMS) through which service
requests and responses are passed to the external service.

Gateway
Service

http://theGateWay.com/... http://myInternalServer/...

Mediation

Service integration bus

Web
Service

Implementation

Port destination

Outbound port

service
destination

service
destination

Target
serviceGateway

service

Client

Inbound port

Endpoint
Listener

 Chapter 2. WebSphere Application Server V6 architecture 45

From the gateway’s point of view, the outbound service is the target service.
Mapping a gateway service to the target service allows internal service
requestors to invoke the service as though it were running on the gateway.
Again, a new WSDL is generated by the gateway that shows the same interface
but that names the gateway as service provider rather than the real internal
server. All requests to the gateway service are rerouted to the implementation
specified in the original WSDL.

Of course, every client could access external Web services by traditional means,
but if you add the gateway as an additional layer in between, clients do not have
to change anything if the service implementor changes. This scenario is very
similar to that shown in Figure 2-4 on page 45. The difference is the Web service
implementation is located at a site on the Internet.

UDDI publication and lookup
The gateway facilitates working with UDDI registries. As you map a service for
external consumption using the gateway, you can publish the exported WSDL in
the UDDI registry. When the services in the gateway are modified, the UDDI
registry is updated with the latest changes.

2.10 Service integration bus
The service integration bus provides the communication infrastructure for
messaging and service-oriented applications, thus unifying this support into a
common component. The service integration bus is a JMS provider that is JMS
1.1 compliant for reliable message transport and that has the capability of
intermediary logic to adapt message flow intelligently in the network. It also
supports the attachment of Web services requestors and providers. Service
integration bus capabilities have been fully integrated within WebSphere
Application Server, enabling it to take advantage of WebSphere security,
administration, performance monitoring, trace capabilities, and problem
determination tools.

The service integration bus is often referred to as just a bus. When used to host
JMS applications, it is also often referred to as a messaging bus.

Figure 2-5 on page 47 illustrates the service integration bus and how it fits into
the larger picture of an Enterprise Service Bus.

46 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 2-5 The Enterprise Service Bus

A service integration bus consists of the following:

� Bus members

Application servers or clusters that have been added to the bus.

� Messaging engine

The application server or cluster component that manages bus resources.
When a bus member is defined, a messaging engine is automatically created
on the application server or cluster. The messaging engine provides a
connection point for clients to produce or from where to consume messages.

An application server has one messaging engine per bus of which it is a
member. A cluster has at least one messaging engine per bus and can have
more. In this case, the cluster owns the messaging engine and determines on
which application server the messaging engine will run.You can have multiple
messaging engines and application servers.

Message
Broker

WebSphere MQ Backbone

Enterprise Service Bus

Mediation

Web
Service
Provider

JCA
Adapter Web

Service
Requester

JMS
Application

Service Integration Bus

Web
Service
Provider

JCA
Adapter Web

Service
Requester

JMS
Application

Mediation

Service Integration Bus

Web
Services

MQe
SCADA

Event
Broker

MQI
Application

JMS
Application

WBI
Adapter

 Chapter 2. WebSphere Application Server V6 architecture 47

� Destinations

The place within the bus to which applications attach to exchange messages.
Destinations can represent Web service endpoints, messaging point-to-point
queues, or messaging publish/subscribe topics. Destinations are created on a
bus and hosted on a messaging engine.

� Message store

Each messaging engine uses a set of tables in a data store, such as a JDBC
database, to hold information such as messages, subscription information,
and transaction states. Messaging engines can share a database, each using
its own set of tables. The message store can be backed by any JDBC
database supported by WebSphere Application Server.

2.10.1 Application support
The service integration bus supports the following application attachments:

� Web services

– Requestors using the JAX-RPC API

– Providers running in WebSphere Application Server as stateless session
beans and servlets (JSR-109)

– Requestors or providers attaching via SOAP/HTTP or SOAP/JMS

� Messaging applications

– Inbound messaging using JFAP-TCP/IP (or wrapped in SSL for secure
messaging)

JFAP is a proprietary format and protocol used for service integration bus
messaging providers.

– MQ application in an MQ network using MQ channel protocol

– JMS applications in WebSphere Application Server V5 using WebSphere
MQ client protocol

– JMS applications in WebSphere Application Server V6

2.10.2 Service integration bus and messaging
With Express or Base, you typically have one stand-alone server with one
messaging engine on one service integration bus. With Network Deployment,
however, you have more flexibility by using service integration bus and
messaging.

48 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 2-6 illustrates two application servers, each with a messaging engine on a
service integration bus.

Figure 2-6 Service Integration Bus

The following are valid topologies:

� One bus and one messaging engine (application server or cluster)

� One bus with multiple messaging engines

� Multiple buses within a cell, which might or might not be connected to each
other

� Buses connected between cells

� One application server that is a member of multiple buses and that has one
messaging engine per bus.

� A connection between a bus and a WebSphere message queue manager

When using this type of topology, consider the following:

– WebSphere message queue can coexist on the same machine as the
WebSphere default messaging provider. In V5, the embedded JMS server
and WebSphere MQ cannot coexist on the same machine.

– A messaging engine cannot participate in a WebSphere MQ cluster.

– You can configure the messaging engine to look like another queue
manager to WebSphere MQ.

– WebSphere applications can send messages directly to WebSphere MQ
or through the service integration bus.

– You can have multiple connections to WebSphere MQ, but each
connection must be to a different queue manager.

– WebSphere Application Server V5 JMS client can connect to V6
destinations. Also, a V6 JMS application can connect to an embedded

Bus
Destination Destination

Messaging
Engine

Application
Server

bus member

Message
data store

Messaging
Engine

Application
Server

bus member

 Chapter 2. WebSphere Application Server V6 architecture 49

messaging provider in a V5 server if configured. However, you cannot
connect a V5 embedded JMS server to a V6 bus.

Mediation
Mediation manipulates a message as it traverses the messaging bus
(destination). For example, mediation:

� Transforms the message
� Reroutes the message
� Copies and routes the message to additional destinations
� Interacts with non-messaging resource managers (for example, databases)

You control mediation using a mediation handler list. The list is a collection of
Java programs that perform the function of a mediation that are invoked in
sequence.

Clustering
In a distributed server environment, you can use clustering for high availability
and scalability. You can add a cluster as a bus member and achieve the
following:

� High availability

One messaging engine is active in the cluster. In the event that the
messaging engine or server fails, the messaging engine on a standby server
is activated.

� Scalability

A single messaging destination can be partitioned across multiple active
messaging engines in the cluster. Messaging order is not preserved.

Quality of service
You can define quality of service on a destination basis to determine how
messages are (or are not) persisted. You can also specify quality of service
within the application.

Message-driven beans
With EJB 2.1, message-driven beans (MDB) in the application server listen to
queues. Topics are linked to the appropriate destinations on the service
integration bus using JCA connectors (ActivationSpec objects). Support is also
included for EJB 2.0 MDBs to be deployed against a listener port.

2.10.3 Web services and the service integration bus
Through the service integration bus Web services enablement, you can:

50 WebSphere Application Server V6: System Management and Configuration Handbook

� Make an internal service that is already available at a service destination
available as a Web service.

� Make an external Web service available at a service destination.

� Use the Web Services Gateway to map an existing service, either an internal
service or an external Web service, to a new Web service that appears to be
provided by the gateway.

2.11 Security
Table 2-7 shows the security features that the WebSphere Application Server
configurations support.

Table 2-7 WebSphere Application Server security support

Figure 2-7 on page 52 presents a general view of the logical layered security
architecture model of WebSphere Application Server. The flexibility of that
architecture model lies in pluggable modules that you can configure according to
your requirements and existing IT resources.

Security feature Express and Base Network Deployment

Java 2 security Yes Yes

J2EE security (role mapping) Yes Yes

JAAS Yes Yes

CSIv2 Yes Yes

JACC Yes Yes

Security authentication LTPA, SWAM LTPA

User registry Local OS, LDAP,
custom registry

Local OS, LDAP,
custom registry

 Chapter 2. WebSphere Application Server V6 architecture 51

Figure 2-7 WebSphere Application Server security architecture

WebSphere Application Server security sits on top of the operating system
security and security features of other components, including the Java language.
This architecture provides the following layers of security:

� Operating system security protects sensitive WebSphere configuration files
and authenticates users when the operating system user registry is used for
authentication.

� Standard Java security is provided through the JVM that WebSphere and the
Java security classes use.

� The Java 2 Security API provides a means to enforce access control, based
on the location of the code and who signed it. Java 2 security guards access
to system resources such as file I/O, sockets, and properties. WebSphere
global security settings allow you to enable or disable Java 2 security and
provide a default set of policies. You can activate or inactivate Java 2 security
independently from WebSphere global security.

The current principal of the thread of execution is not considered in the Java 2
security authorization. There are instances where it is useful for the
authorization to be based on the principal, rather the code base and the
signer.

� The Java Authentication and Authorization Services (JAAS) is a standard
Java API that allows the Java 2 security authorization to be extended to the
code base on the principal as well as the code base and signers. The JAAS
programming model allows the developer to design application authentication

IBM

CSIv2

WebSphere Application Server

Pluggable User
Registry

Pluggable
Authentication

Pluggable
Authorization

NT/Unix
user

registry

LDAP
user

registry

Custom
user

registry
SWAM LTPA JAAS

Tivoli
Access

Manager

CSIv2

IBM

other
vendor's

ORB
z/OS

52 WebSphere Application Server V6: System Management and Configuration Handbook

in a pluggable fashion, which makes the application independent from the
underlying authentication technology. JAAS does not require Java 2 security
to be enabled.

� The Common Secure Interoperability protocol adds additional security
features that enable interoperable authentication, delegation and privileges in
a CORBA environment. It supports interoperability with the EJB 2.1
specification and can be used with SSL.

� J2EE security uses the security collaborator to enforce security policies
based on J2EE and to support J2EE security APIs. WebSphere applications
use security APIs to access the security mechanisms and implement security
policies. J2EE security guards access to Web resources such as
servlets/JSPs and EJB methods based on roles that the application developer
defines. Users and groups are assigned to these roles during application
deployment.

� Java Contract for Containers (JACC) support allows the use of third-party
authorization providers for access decisions. The default JACC provider for
WebSphere Application Server is the Tivoli Access Manager that is bundled
with Network Deployment. The Tivoli Access Manager client functions are
integrated in WebSphere Application Server.

� IBM Java Secure Socket Extension is the SSL implementation that
WebSphere Application Server uses. It is a set of Java packages that enable
secure Internet communications. It implements a Java version of SSLand
Transport Layer Security protocols and includes functionality for data
encryption, server authentication, message integrity, and client
authentication.

WebSphere Application Server security relies on and enhances all the above
mentioned layers. It implements security policies in a unified manner for both
Web and EJB resources. WebSphere global security options are defined at the
cell level. However, individual servers can override a subset of the security
configuration. When using mixed z/OS and distributed nodes, the security
domain features are merged.

2.11.1 User registry
The pluggable user registry allows you to configure different databases to store
user IDs and passwords that are used for authentication and authorization. Only
one single registry can be active at a time. There are three options for user
registries:

� Local operating system user registry

When configured, WebSphere uses the operating system’s users and groups
for authentication.

 Chapter 2. WebSphere Application Server V6 architecture 53

� LDAP user registry

An LDAP user registry is often the best solution for large scale Web
implementations. Most LDAP servers on the market are well equipped with
security mechanisms that you can use to securely communicate with
WebSphere Application Server. The flexibility of search parameters that an
administrator can set to adapt WebSphere to different LDAP schemas is
considerable.

� Custom user registry

A custom user registry leaves an open door for any custom implementation of
a user registry database. You should use the UserRegistry Java interface that
the WebSphere API provides to write a custom registry. You can use this
interface to access virtually any relational database, flat files, and so on.

2.11.2 Authentication
Authentication is the process of establishing whether a client is valid in a
particular context. A client can be either a user, a machine, or an application. The
pluggable authentication module allows you to choose whether WebSphere
authenticates the user or accepts the credentials from external authentication
mechanisms.

An authentication mechanism in WebSphere typically collaborates closely with a
user registry when performing authentication. The authentication mechanism is
responsible for creating a credential, which is a WebSphere internal
representation of a successfully authenticated client user. Not all credentials are
created equal. The abilities of the credential are determined by the configured
authentication mechanism.

Although WebSphere provides several authentication mechanisms, only a single
active authentication mechanism can be configured at once. The active
authentication mechanism is selected when configuring WebSphere global
security.

WebSphere provides two authentication mechanisms that differ primarily in the
distributed security features each supports:

� Simple WebSphere Authentication Mechanism (SWAM) is intended for
simple, non-distributed, single application server type runtime environments.
The single application server restriction is because this mechanism does not
support forwardable credentials. So, if a servlet or EJB in application server
process 1 invokes a remote method on an EJB living in another application
server process 2, the identity of the caller identity in process 1 is not
transmitted to server process 2. What is transmitted is an unauthenticated

54 WebSphere Application Server V6: System Management and Configuration Handbook

credential, which depending on the security permissions configured on the
EJB methods, might cause authorization failures.

Because the Simple WebSphere Authentication Mechanism is intended for a
single application server process, single sign-on is not supported.

This type of authentication is suitable for simple environments, software
development environments, or other environments that do not require a
distributed security solution.

SWAM relies on the session ID and is not as secure as LTPA. For this reason,
we strongly recommend using SSL with this type of authentication.

� Light Weight Third Party Authentication (LTPA)

LTPA is intended for distributed, multiple application servers and machine
environments. It supports forwardable credentials and single sign-on.
Lightweight Third Party Authentication is able to support security in a
distributed environment through the use of cryptography. This allows it to
encrypt, digitally sign, and securely transmit authentication related data and
later decrypt and verify the signature.

This type of authentication requires that the configured user registry be a
central, shared repository such as LDAP or a Windows domain type registry.

2.11.3 Authorization
WebSphere Application Server standard authorization features are as follows:

� Java 2 security architecture, which uses a security policy to specify who is
allowed to execute code in the application. Code characteristics, such as a
code signature, signer ID, or source server, determine whether the code is
granted access to be executed.

� JAAS, which extends the Java 2 approach with role-based access control.
Permission to execute a code is granted based on the code characteristics
and also on the user running it. JAAS programming models allow the
developer to design application authentication in a pluggable fashion, which
makes the application independent from the underlying authentication
technology.

For each authenticated user, a Subject class is created and a set of Principals is
included in the subject to identify that user. Security policies are granted based
on possessed principals.

WebSphere Application Server provides an internal authorization mechanism
that is used by default. As an alternative, you can define external JACC providers
to handle authorization decisions. During application installation, security policy
information is stored in the JACC provider server using standard interfaces

 Chapter 2. WebSphere Application Server V6 architecture 55

defined by JACC. Subsequent authorization decisions are made using this policy
information. An exception is that the WebSphere Application Server default
authorization engine makes all administrative security authorization decisions.

2.11.4 Security components
Figure 2-8 shows an overview of the security components that come into play in
WebSphere Application Security.

Figure 2-8 WebSphere Application Security components

Security server
The security server is a component of WebSphere Application Server that runs in
each application server process. If multiple application server instances are
executed on a single node, then multiple security servers exist on that node.

The security server component is responsible for managing authentication and
for collaborating with the authorization engine and the user registry.

JAAS Subject

AppServer1
authenticate()

mapCredential()
Requests

Protection Domain

Permissions

Java 2 Platform

Security Token or
Identity Assertion

User
Registry

AppServer2

EJB Container

validate()

CSlv2

User ID
Password/

Client
Certificate

WebServer
Security
Plugin

JAAS
Client

HTTP(S)

Security Server

SecurityManager
AccessController

CSlv2 Security Server

EJB Container

Node Agent

Security Server

Web Container

Policy

Security Collaborator

Security Collaborator

Security Collaborator

56 WebSphere Application Server V6: System Management and Configuration Handbook

Security collaborators
Security collaborators are application server processes that enforce security
constraints specified by the deployment descriptors. These processes
communicate with the security server every time authentication and authorization
actions are required. The following security collaborators are identified:

� The Web security collaborator resides in the Web container and provides the
following services to the application:

– Checks authentication

– Performs authorization according to the constraint specified in the
deployment descriptor

– Logs security tracing information

� The EJB security collaborator resides in the EJB container. The EJB security
collaborator uses Common Secure Interoperability Version 2 (CSIv2) and
Secure Authentication Service (SAS) to authenticate Java client requests to
enterprise beans. The EJB security collaborator works with the security
server to perform the following functions:

– Checks authorizations according to the specified security constraint
– Supports communication with local user registry
– Logs security tracing information
– Communicates with external ORBs using CSIv2 when a request for a

remote bean is issued

2.11.5 Security flows
The following sections outline the general security flow.

Web browser communication
When a Web browser sends a request to a WebSphere application, the following
security interactions occur:

1. The Web user requests a Web resource that is protected by WebSphere
Application Server.

2. The Web server receives the request and recognizes that the requested
resource is on the application server.

3. Using the Web server plug-in, the Web server redirects the request to the
Web security collaborator, which performs user authentication.

4. After successful authentication, the Web request reaches the Web container.
The Web security collaborator passes the user’s credentials and the security
information contained in the deployment descriptor to the security server for
authorization.

 Chapter 2. WebSphere Application Server V6 architecture 57

5. Upon subsequent requests, authorization checks are performed either by the
Web collaborator or the EJB collaborator, depending on what the user is
requesting. User credentials are extracted from the established security
context.

Administrative tasks
Administrative tasks are issued using either the Web-based administrative
console or the wsadmin scripting tool. The following tasks are executed:

1. The administration client generates a request that reaches the server side
ORB and JMX MBeans. The JMX MBeans represent managed resources.

2. The JMX MBeans contact the security server for authentication purposes.
JMX beans have dedicated roles assigned and do not use user registry for
authentication and authorization.

Java client communication
When a Java client interacts with a WebSphere application, the following occurs:

1. A Java client generates a request that reaches the server side ORB.

2. The CSIv2 or IBM SAS interceptor performs authentication on the server side
on behalf of the ORB, and sets the security context.

3. The server side ORB passes the request to the EJB container.

4. After submitting a request to the access-protected EJB method, the EJB
container passes the request to the EJB collaborator.

5. The EJB collaborator reads the deployment descriptor from the EAR file and
reads the user credentials from the security context.

6. Credentials and security information are passed to the security server, which
validates user access rights and passes this information back to the
collaborator.

7. After receiving a response from the security server, the EJB collaborator
authorizes or denies access to the user to the requested resource.

2.12 Resource providers
Resource providers define resources that running J2EE applications need.
Table 2-8 on page 59 shows the resource provider support of the WebSphere
Application Server configuration.

58 WebSphere Application Server V6: System Management and Configuration Handbook

Table 2-8 WebSphere Application Server resource provider support

2.12.1 JDBC resources
A data source represents a real-world data source, such as a relational
database. When a data source object has been registered with a JNDI naming
service, an application can retrieve it from the naming service and use it to make
a connection to the data source it represents.

Information about the data source and how to locate it, such as its name, the
server on which it resides, its port number, and so on, is stored in the form of
properties on the DataSource object. This technique makes an application more
portable, because the application does not need to hard code a driver name,
which often includes the name of a particular vendor. The technique also makes
maintaining the code easier. If, for example, you move the data source to a
different server, all you need to do is update the relevant property in the data
source. You do not need to touch the code using that data source.

Once a data source has been registered with an application server’s JNDI name
space, application programmers can use it to make a connection to the data
source it represents.

The connection is usually a pooled connection. That is, once the application
closes the connection, the connection is returned to a connection pool, rather
than being destroyed.

Data source classes and JDBC drivers are implemented by the data source
vendor. By configuring a JDBC provider, you are providing information about the
set of classes that are used to implement the data source and the database
driver. That is, the JDBC provider holds the environment settings for the
DataSource object.

Resource Express and Base Network Deployment

JDBC provider Yes Yes

Mail providers (JavaMail) Yes Yes

JMS providers Yes Yes

Resource environment providers Yes Yes

URL providers Yes Yes

Resource adapters Yes Yes

 Chapter 2. WebSphere Application Server V6 architecture 59

Data sources
In WebSphere Application Server, connection pooling is provided by two parts, a
JCA Connection Manager and a relational resource adapter, as shown in
Figure 2-9.

Figure 2-9 Resource adapter in J2EE connector architecture

The JCA Connection Manager provides the connection pooling, local
transaction, and security supports. The relational resource adapter provides the
JDBC wrappers and JCA CCI implementation that allow applications using
bean-managed persistence, JDBC calls, and container-managed persistence
beans to access the database JDBC Driver.

2.12.2 Mail providers
The JavaMail APIs provide a platform and protocol-independent framework for
building Java-based mail client applications. The JavaMail APIs require service

Important: WebSphere Version 4.0 provided its own JDBC connection
manager to handle connection pooling and JDBC access. This support is
included with WebSphere Application Server V5 and V6 to provide support for
J2EE 1.2 applications. If an application chooses to use a Version 4 data
source, the application will have the same connection behavior as in
WebSphere Version 4.0.

Application Server

JD
BC

 D
riv

er

C
on

ne
ct

io
ns

Resource
Adapter

Ap
pl

ic
at

io
n DB Server

Datasource

Connection
Factory

Delegate

JCA
Connection

Manager

DB Connection
Pool

60 WebSphere Application Server V6: System Management and Configuration Handbook

providers, known in WebSphere as protocol providers, to interact with mail
servers that run the appropriate protocols.

A mail provider encapsulates a collection of protocol providers. WebSphere
Application Server has a Built-in Mail Provider that encompasses the following
protocol providers:

� Simple Mail Transfer Protocol (SMTP) is a popular transport protocol for
sending mail. JavaMail applications can connect to an SMTP server and send
mail through it by using this SMTP protocol provider.

� Post Office Protocol (POP3) is the standard protocol for receiving mail.

� Internet Message Access Protocol (IMAP) is an alternative protocol to POP3
for receiving mail.

These protocol providers are installed as the default and should be sufficient for
most applications. To use other protocols, you must install the appropriate
service provider for those protocols.

In addition to service providers, JavaMail requires the JavaBeans Activation
Framework (JAF) as the underlying framework to deal with complex data types
that are not plain text, such as Multipurpose Internet Mail Extensions (MIME),
URL pages, and file attachments.

The JavaMail APIs, the JAF, the service providers, and the protocols are shipped
as part of WebSphere Application Server using the following Sun licensed
packages:

� mail.jar, containing the JavaMail APIs as well as the SMTP, IMAP, and POP3
service providers

� activation.jar, containing the JAF

2.12.3 JCA resource adapters
The JCA defines a standard architecture for connecting the J2EE platform to
heterogeneous EIS. Imagine an ERP, mainframe transaction processing,
database systems, and legacy applications not written in the Java programming
language.

The JCA resource adapter is a system-level software driver supplied by EIS
vendors or other third-party vendors. It provides the connectivity between J2EE
components (an application server or an application client) and an EIS.

To use a resource adapter, install the resource adapter code and create
connection factories that use the adapter.

 Chapter 2. WebSphere Application Server V6 architecture 61

One resource adapter, the WebSphere Relational Resource Adapter, is
predefined for handling data access to relational databases. This resource
adapter provides data access through JDBC calls to access databases
dynamically. It provides connection pooling, local transaction, and security
support. The WebSphere persistence manager uses this adapter to access data
for container-managed persistence beans.

2.12.4 URL providers
URL providers implement the functionality for a particular URL protocol, such as
HTTP, by extending the java.net.URLStreamHandler and
java.net.URLConnection classes. It enables communication between the
application and a URL resource that is served by that particular protocol.

A URL provider named Default URL Provider is included in the initial WebSphere
configuration. This provider uses the URL support that the IBM JDK provides.
Any URL resource with protocols based on the Java 2 Standard Edition 1.3.1,
such as HTTP, FTP or File, can use the default URL provider.

You can also plug in your own URL providers that implement other protocols that
the JDK does not support.

2.12.5 JMS providers
The JMS functionality that WebSphere provides includes support for three types
of JMS providers:

� Default messaging provider (service integration bus)
� WebSphere MQ provider
� Generic JMS providers
� V5 default messaging provider (for migration)

There can be more than one JMS provider per node. That is, you can configure a
node to use any combination or all of the providers, including the default
messaging provider, WebSphere MQ JMS provider, and a generic JMS provider
concurrently. In addition, WebSphere MQ and the default messaging provider
can coexist on the same machine.

The support provided by WebSphere administration tools for configuration of
JMS providers differs depending upon the provider. Table 2-9 on page 63
provides a summary of the support.

62 WebSphere Application Server V6: System Management and Configuration Handbook

Table 2-9 WebSphere administration support for JMS provider configuration

Default messaging provider
The default messaging provider for WebSphere Application Server uses the
service integration bus for transport. The default message provider provides
point-to-point as well as publish and subscribe functions. Within this provider,
you define JMS connection factories and JMS destinations that correspond to
service integration bus destinations.

WebSphere MQ messaging provider
WebSphere Application Server supports the use of full WebSphere MQ as the
JMS provider. The product is tightly integrated with the WebSphere installation.
WebSphere provides the JMS client classes and administration interface, while
WebSphere MQ provides the queue-based messaging system.

Generic messaging providers
WebSphere Application Server supports the use of generic messaging providers,
as long as they implement the ASF component of the JMS 1.0.2 specification.
JMS resources for generic messaging providers are not configurable using
WebSphere administration.

V5 default messaging provider
For backwards compatibility with earlier releases, WebSphere Application Server
V6 also includes support for the V5 default messaging provider, which enables
you to configure resources for use with V5 embedded messaging. You can also
use the V5 default messaging provider with a service integration bus.

2.12.6 Resource environment providers
The java:comp/env environment provides a single mechanism by which both
JNDI name space objects and local application environment objects can be
looked up. WebSphere Application Server provides a number of local
environment entries by default.

Configurable objects Default
messaging
provider

WebSphere
MQ JMS
provider

Generic
JMS
provider

V5 default
messaging,
WebSphere
JMS provider

Messaging system objects (queues/topics) Yes No No Yes

JMS administered objects (JMS
connection factory and JMS destination)

Yes Yes No Yes

 Chapter 2. WebSphere Application Server V6 architecture 63

The J2EE specification also provides a mechanism for defining custom
(non-default) environment entries using <resource-env-ref> entries that are
defined in an application's standard deployment descriptors. The J2EE
specification separates the definition of the resource environment entry from the
application by:

� Requiring the application server to provide a mechanism for defining separate
administrative objects that encapsulate a resource environment entry

The administrative objects are to be accessible via JNDI in the application
server’s local name space (java:comp/env).

� Specifying the administrative object's JNDI lookup name and the expected
returned object type in <resource-env-ref>

WebSphere Application Server supports the <resource-env-ref> mechanism by
providing administration objects for the following:

� Resource environment provider defines an administrative object that groups
together the referenceable, resource environment entry administrative
objects and any required custom properties.

� Referenceable defines the class name of the factory class that returns object
instances implementing a Java interface.

� Resource environment entry defines the binding target (JNDI name), factory
class, and return object type (via the link to the referenceable) of the resource
environment entry.

2.13 Workload management
Clustering application servers that host Web containers automatically enables
plug-in workload management for the application servers and the servlets they
host. Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS, as shown in Figure 2-10 on
page 65.

64 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 2-10 Plug-in (Web container) workload management

This routing is based on weights associated with the cluster members. If all
cluster members have identical weights, the plug-in sends equal requests to all
members of the cluster, assuming no strong affinity configurations. If the weights
are scaled in the range from zero to twenty, the plug-in routes requests to those
cluster members with the higher weight value more often.

A rule of thumb formula for determining routing preference is:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

In this statement, n is the number of cluster members in the cluster.

The Web server plug-in temporarily routes around unavailable cluster members.

Workload management for EJB containers can be performed by configuring the
Web container and EJB containers on separate application servers. Multiple
application servers with the EJB containers can be clustered, enabling the
distribution of EJB requests between the EJB containers as shown in
Figure 2-11.

Figure 2-11 EJB workload management

App Server

Web
Container

App Server

Web
Container

Servlet
Requests

HTTP
Server

Plug-in

EJB
Requests

App Server

EJB
Container

App Server

EJB
Container

App Server

Web
Container

EJB
Requests

Java
Client

 Chapter 2. WebSphere Application Server V6 architecture 65

In this configuration, EJB client requests are routed to available EJB containers
in a round robin fashion based on assigned server weights. The EJB clients can
be servlets operating within a Web container, stand-alone Java programs using
RMI/IIOP, or other EJBs.

The server weighted round robin routing policy ensures a distribution based on
the set of server weights that have been assigned to the members of a cluster.
For example, if all servers in the cluster have the same weight, the expected
distribution for the cluster is that all servers receive the same number of
requests. If the weights for the servers are not equal, the distribution mechanism
sends more requests to the higher weight value servers than the lower weight
value servers. The policy ensures the desired distribution, based on the weights
assigned to the cluster members. In WebSphere Application Server V6, the
balancing mechanism for weighted round robin is enhanced to ensure more
balanced routing distribution among servers.

You can also choose to have requests sent to the node on which the client
resides as the preferred routing. In this case, only cluster members on that node
are chosen using the round robin weight method. Cluster members on remote
nodes are chosen only if a local server is not available.

2.14 High availability
With Network Deployment V6, the high availability features are significantly
improved. The following is a quick overview of the failover capabilities:

� HTTP server failover

The use of multiple HTTP servers, along with a load balancing product such
as provided with the Edge components can be used to provide HTTP Server
failover.

� Web container failover

The HTTP server plug-in in the Web server is aware of the configuration of all
Web containers and can route around a failed Web container in a cluster.
Sessions can be persisted to a database or in-memory using data replication
services.

� EJB container failover

Client code and the ORB plug-in can route to the next EJB container in the
cluster.

� Deployment manager and node agent

The need for failover in these two components has been reduced. Thus, no
built-in failover capability is provided. The loss of the deployment manager

66 WebSphere Application Server V6: System Management and Configuration Handbook

only affects configuration. We recommend that you use a process nanny to
restart the Node Agent if it fails.

� Critical services failover

Hot standby and peer failover for critical services such as workload
management routing, PMI aggregation, JMS messaging, transaction
manager, and so on, is provided through the use of high availability domains.

A high availability domain defines a set of WebSphere processes, a core
group, that provides high availability function to each other. Processes in the
core group can be the deployment manager, node agents, application servers
or cluster members.

One or more members of the core group can act as a high availability
coordinator, managing the high availability activities within the core group
processes. If a high availability coordinator server fails, another server in the
core group takes over. High availability policies define how the failover
occurs.

Workload management information is shared between core members and
failover of critical services is done among them in a peer-to-peer fashion.
Little configuration is necessary, and in many cases, this function works with
the defaults that are created automatically as you create the processes.

� Transaction log hot standby

With V6, transaction logs can be maintained on Network Attached Storage.
When a cluster member fails, another cluster member recovers the
transaction log, thus enabling the failover 2PC transactions.

� JMS messaging failover

The messaging engine keeps messages in a remote database. When a
server in a cluster fails, WebSphere selects an online server to run the
Messaging Engine and the workload manager routes JMS connections to that
server.

2.15 Administration
WebSphere Application Server’s administration model is based on the Java
Management Extensions (JMX) framework. JMX allows you to wrap hardware
and software resources in Java and expose them in a distributed environment.
JMX also provides a mapping framework for integrating existing management
protocols, such as SNMP, into JMX’s own management structures.

Each application server has an administration service that provides the
necessary functions to manipulate configuration data for the server and its

 Chapter 2. WebSphere Application Server V6 architecture 67

components. The configuration is stored in a repository. The repository is a set of
XML files that are stored in the server's file system.

2.15.1 Administration tools
Table 2-10 shows the administration tools that WebSphere Application Server
supports by configuration.

Table 2-10 WebSphere Application Server administration tool support

Administrative console
The administrative console is a Web-based interface that provides configuration
and operation capability. The administrator connects to the application using a
Web browser client. Users assigned to different administration roles can manage
the application server and certain components and services using this interface.

The administrative console is a system application, crucial to the operation of
WebSphere and, as such, is not exposed as an enterprise application on the
console. In stand-alone application servers, the administrative console runs in
the application server. In the Network Deployment distributed server
environment, the administrative console application runs on the deployment
manager. When a node is added to a cell, the administrative console application
is deleted from the node and the configuration files are integrated into the master
cell repository that the deployment manager maintains.

Commands
WebSphere Application Server provides a set of commands in the
<server_install>/bin directory that allows you to perform a subset of
administrative functions. For example, use the startServer command to start an
application server.

Scripting client
The wsadmin scripting client provides extra flexibility over the Web-based
administration application, allowing administration to use the command-line
interface. Using the scripting client not only makes administration quicker, but it
automates the administration of multiple application servers and nodes using
scripts.

Tool Express and Base Network Deployment

Administrative console Yes Yes

Commands Yes Yes

Scripting client, wsadmin Yes Yes

68 WebSphere Application Server V6: System Management and Configuration Handbook

The scripting client uses the Bean Scripting Framework, which allows you to use
a variety of scripting languages for configuration and control. WebSphere
Application Server V6 supports two languages: jacl and jython (or jpython).

The wsadmin scripting interface is included in all WebSphere Application Server
configurations but is targeted toward advanced users. The use of wsadmin
requires in-depth familiarity with application server architecture and a scripting
language.

2.15.2 Configuration repository
The configuration repository holds copies of the individual component
configuration documents stored in XML files. The application server's
administrative service takes care of the configuration and makes sure it is
consistent during the runtime.

You can archive the configuration of unfederated nodes for export and import,
making them portable among different WebSphere Application Server instances.

2.15.3 Centralized administration
The Network Deployment package allows multiple servers and nodes to be
administered from a central location. This centralized administration uses a
central deployment manager that handles the administration process and
distributes the updated configuration to the node agent for each node. The node
agent, in turn, maintains the configuration for the servers in the node. Table 2-11
on page 70 shows the distributed administration that WebSphere Application
Server supports by configuration.

All operating system processes that are components of the WebSphere product
are called managed servers or managed processes. JMX support is embedded
in all managed processes. These processes are available to receive
administration commands and to output administration information about the
state of the managed resources within the processes.

WebSphere provides the following managed servers and processes:

� Deployment manager provides a single point to access configuration
information and control for a cell. The deployment manager aggregates and
communicates with the node agent processes on each node in the system.

� Node agent aggregates and controls the WebSphere managed processes on
its node. There is one node agent per node.

� Application server is a managed server that hosts J2EE applications.

 Chapter 2. WebSphere Application Server V6 architecture 69

Table 2-11 shows the managed processes supported by each packaging option.

Table 2-11 WebSphere Application Server distributed administration support

Deployment manager
The deployment manager process provides a single, central point of
administrative control for all elements in the cell. It hosts the Web-based
administrative console application. Administrative tools that need to access any
managed resource in a cell usually connect to the deployment manager as the
central point of control. Using the deployment manager, horizontal scaling,
vertical scaling, and distributed applications are all easy to administer and
manage. Application servers are managed by nodes, and one or more nodes is
managed by a cell.

In a distributed server environment, the deployment manager maintains a master
configuration repository that contains all of the cell’s configuration data. The
configuration repository at each node is a synchronized subset of the master
repository. The node repositories are read-only for application server access.
Only the deployment manager can initiate their update and push out
configuration changes from the cell master configuration repository. It manages
through communication with the node agent process resident on each node of
the cell.

Node agent
The node agent is an administrative process and is not involved in application
serving functions. It hosts important administrative functions such as:

� File transfer services
� Configuration synchronization
� Performance monitoring

The node agent aggregates and controls all the managed processes on its node
by communicating with:

� The deployment manager to coordinate configuration synchronization and to
perform management operations on behalf of the deployment manager.

� Application servers and managed Web servers to manage (start or stop) each
server and to update its configuration and application binaries as required.

Process Express and Base Network Deployment

Deployment manager No Yes

Node agent No Yes

Application servers Stand-alone Stand-alone or distributed
server clustering

70 WebSphere Application Server V6: System Management and Configuration Handbook

Only one node agent is defined and run on each node. In a stand-alone server
environment, there is no node agent.

2.16 The flow of an application
Figure 2-12 shows the typical application flow for Web browser clients using
either JDBC from a servlet or EJB to access application databases.

Figure 2-12 Application flow

The typical application flow is as follows:

1. A Web client requests a URL in the browser input page.

2. The request is routed to the Web server over the Internet.

3. The Web server immediately passes the request to the Web server plug-in.
All requests go to the WebSphere plug-in first.

4. The Web server plug-in examines the URL, verifies the list of host name
aliases from which it will accept traffic based on the virtual host information,
and chooses a server to handle the request.

5. A stream is created. A stream is a connection to the Web container. It is
possible to maintain a stream over a number of requests. The Web container
receives the request and, based on the URL, dispatches it to the proper
servlet.

WebSphere Application Server

Application Server

Embedded
HTTP Server

Web Container

Enterprise
BeanEnterprise

Bean

EJB

Enterprise
BeanEnterprise

Bean

EJBEJB

Data
Sources

Application
Database

DB2

Browser
Client

Input
Page

HTML

Input
Page

HTML

EJB Container

Connection
Pool

14

10a

10b

1

2

3
7

12

11

8b

8a

9Web Server

JSPJSPJSP

ServletServletServlet5
6

13

Plug-in 4

Enterprise
Bean

JNDI

 Chapter 2. WebSphere Application Server V6 architecture 71

6. If the servlet class is not loaded, the dynamic class loader loads the servlet
(servlet init(), then doGet() or doPost()).

7. JNDI is used for lookup of either datasources or EJBs required by the servlet.

8. Depending upon whether a datasource is specified or an EJB is requested,
the JNDI directs the servlet:

– To the corresponding database and gets a connection from its connection
pool in the case of a data source.

– To the corresponding EJB container, which then instantiates the EJB when
an EJB is requested.

9. If the EJB requested involves an SQL transaction, it goes back to the JNDI to
look up the datasource.

10.The SQL statement is executed and the data retrieved is sent back either to
the servlet or to the EJB.

11.Data beans are created and handed off to JSPs in the case of EJBs.

12.The servlet sends data to JSPs.

13.The JSP generates the HTML that is sent back through the WebSphere
plug-in to the Web server.

14.The Web server sends the output HTML page to the browser.

2.17 Developing and deploying applications
Figure 2-13 on page 73 shows a high-level view of the stages of application
development and deployment.

72 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 2-13 Develop and deploy

2.17.1 Application design
Design tools like Rational Rose® or Rational XDE™ can be used to model the
application using the Unified Modeling Language. The output of the modeling
generally consists of use-case scenarios, class diagrams, and starter code
generated based on the model.

2.17.2 Application development
Application development is done using Rational Application Developer or a
comparable IDE to create the enterprise application. You can start by importing
pre-generated code from modeling tools, a sample application, an existing
production application, or you can start from scratch.

Rational Application Developer provides many tools and aids to get you started
quickly. It also supports team development using CVS or Rational ClearCase®,
which allows multiple developers to share a single master source copy of the
code.

During the development phase, you can do component testing using the built-in
WebSphere Application Server test environment. Rational Application Developer
provides server tools capable of creating and managing servers both in the test

Rational Application Developer

Integrated Development Environment
(IDE)

Application

workspace

WebSphere Application
Server

Runtime Environment

Application

Application Server

Rational Tools

Application

Business/IT
needs

WebSphere Server Test
Environment

Application

Applicationdeploy

test &
debug

remote
debug

develop

configure

design

Concept

planning

 Chapter 2. WebSphere Application Server V6 architecture 73

environment and on remote server installations. The application is automatically
packaged into an EAR file for deployment when you run the application on a
server using Rational Application Developer.

2.17.3 Application packaging
J2EE applications are packaged into EAR files to be deployed to one or more
application servers. A J2EE application contains any or all of the modules as
shown in Table 2-12.

Table 2-12 J2EE 1.3 application modules

This packaging is done automatically in Rational Application Developer when
you export an application for deployment. If you are using another IDE,
WebSphere Application Server (with the exception of Express) provides the
Application Server Toolkit for packaging applications.

WebSphere Enhanced EAR files
The WebSphere Enhanced EAR, introduced in WebSphere Application Server
V6, is a regular J2EE EAR file with additional configuration information for
resources usually required by J2EE applications. While adding this extra
configuration information at packaging time is not mandatory, it can simplify
deployment of J2EE applications to WebSphere.

When you deploy an enhanced EAR to a WebSphere Application Server V6
server, WebSphere can configure the resources specified in the enhanced EAR
automatically. This automatic configuration reduces the number of steps that are
required to set up the WebSphere environment to host the application.

2.17.4 Application deployment
Applications are installed on application servers using the administrative console
or the wsadmin scripting interface. You can deploy an application to a single

Module Filename Contents

Web module <module>.war Servlets, JSP files, and related code artifacts

EJB module <module>.jar Enterprise beans and related code artifacts

Application client
module

<module>.jar Application client code

Resource adapter
module

<module>.rar Library implementation code that your
application uses to connect to enterprise
information systems (EIS)

74 WebSphere Application Server V6: System Management and Configuration Handbook

server or a cluster. In a cluster, the application is installed on each application
server in the cluster.

Installing an application involves the following tasks:

� Binding resource references, created during packaging, to real resources

For example, a data source would need to be bound to a real database.

� Defining JNDI names for EJB home objects

� Specifying data source entries for entity beans

� Binding EJB references to the real EJB JNDI names

� Mapping Web modules to virtual hosts

� Specifying listener ports for message-driven beans

� Mapping application modules to application servers

� Mapping security roles to users or groups

The use of an enhanced EAR file simplifies this installation process.

After a new application is deployed, the Web server plug-in configuration file
needs to be regenerated and copied to the Web server.

Application update
In previous releases, deploying an update to an application required a complete
EAR file to be deployed and the application to be restarted. WebSphere
Application Server V6 allows partial updates to applications and makes it
possible to restart only parts of an application.

Updates to an application can consist of individual application files, application
modules, zipped files that contain application artifacts, or the complete
application. All module types can be started (though only Web modules can be
stopped).

In V6, you have a rollout start option for installing applications on a cluster that
will stop, update, and start each cluster member in turn, ensuring availability.

2.17.5 WebSphere Rapid Deployment
WebSphere Rapid Deployment is designed to simplify the development and
deployment of WebSphere applications. It is a collection of Eclipse plug-ins that
can be integrated within development tools or run in a headless mode, without
headers, from a user file system. WebSphere Rapid Deployment is currently
integrated in Rational Web Developer, Rational Application Developer, and the

 Chapter 2. WebSphere Application Server V6 architecture 75

Application Server Toolkit. Initially, there are features that are only supported in
headless mode.

During development, annotation-based programming is used. The developer
adds metadata tags into the application source code that are used to generate
artifacts needed by the code, thus reducing the number of artifacts the developer
needs to create.

These applications are packaged into an enhanced EAR file that contains the
J2EE EAR file along with deployment information, application resources, and
properties (environment variables, JAAS authentication entries, shared libraries,
classloader settings, and JDBC resources). During installation, this information is
used to create the necessary resources. Moving an application from one server
to another also moves the resources.

WebSphere Rapid Deployment automates installation of applications and
modules onto a running application server by monitoring the workspace for
changes and then driving the deployment process.

2.18 Technology support summary
Table 2-13 highlights the support that each WebSphere Application Server
packaging option provides.

Table 2-13 WebSphere Application Server features and technology support

Feature Base and
Express V6

Network
Deployment V6

Client and server support for the Software
Development Kit for Java Technology Edition 1.4
(SDK 1.4.2)

Yes Yes

J2EE 1.2, 1.3 programming support Yes Yes

76 WebSphere Application Server V6: System Management and Configuration Handbook

J2EE 14. programming support1

� EJB 2.1
� Servlet 2.4
� JSP 2.0
� JMS 1.1
� JTA 1.0
� JavaMail 1.3
� JAF 1.0
� JAXP 1.2
� Connector 1.5
� Web Services 1.1
� JAX-RPC 1.1
� SAAJ 1.2
� JAXR 1.0
� J2EE Management 1.0
� JMX 1.2
� JACC 1.0
� JDBC 3.0

Yes Yes

WebSphere Rapid Deployment Yes Yes

Service Data Object (SDO) Yes Yes

Messaging support
� Integrated JMS 1.1 messaging provider
� Support for WebSphere MQ and generic

messaging providers
� Message-driven beans

Yes Yes

Web services runtime support Yes Yes

Security support
� Java 2
� J2EE
� JACC 1.0
� JAAS 1.0
� CSIv2 and SAS authentication protocols
� LDAP or local operating system user registry
� LTPA authentication mechanism
� Kerberos, Technology Preview

Yes Yes

� Simple WebSphere Authentication Mechanism
(SWAM)

Yes stand-alone
server
environment
only

Feature Base and
Express V6

Network
Deployment V6

 Chapter 2. WebSphere Application Server V6 architecture 77

Multi-node management and Edge components

Workload management and failover No Yes

Deployment manager No Yes

Central administration of multiple nodes No Yes

Load Balancer No Yes

Caching Proxy No Yes

Dynamic caching Yes Yes

Performance and analysis tools

Performance Monitoring Instrumentation (PMI) Yes Yes

Log Analyzer Yes Yes

Tivoli Performance Viewer (integrated in the
administration console)

Yes Yes

Administration and tools

Administration and tools
� Web-based administration console
� Integrated IBM HTTP Server and Application

Server Administration Console
� Administrative scripting
� Java Management Extension (JMX) 1.2
� J2EE Management (JSR-077)
� J2EE Deployment (JSR-088)
� Application Server Toolkit

Yes Yes

Feature Base and
Express V6

Network
Deployment V6

78 WebSphere Application Server V6: System Management and Configuration Handbook

Web services
� JAX-RPC v1.0 for J2EE 1.3, v1.1 for J2EE 1.4
� JSR 109 (Web services for J2EE)
� WS-I Basic Profile 1.1.2 support
� WS-I Simple SOAP Binding Profile 1.0.3
� WS-I Attachments Profile 1.0
� SAAJ 1.2
� UDDI V2 and V3
� JAXR
� WS-TX (transactions)
� SOAP 1.1
� WSDL 1.1 for Web services
� WSIL 1.0 for Web services
� OASIS Web Services Security: SOAP Message

Security 1.0 (WS-Security 2004)
� OASIS Web Services Security: UsernameToken

Profile 1.0
� OASIS Web Services Security X.509 Certificate

Token Profile

Yes Yes

Web Services Gateway No Yes

Private UDDI v3 Registry Yes Yes

Programming model extensions2

� Activity sessions
� Application Profiling
� Asynchronous Beans (now called

WorkManager)
� Dynamic caching
� Dynamic query
� Internationalization Service
� Object Pools
� Scheduler Service (now called Timer Service)
� Startup Beans
� WorkArea Service
� Extended JTA Support
� Last Participant Support

Yes Yes

� Back-up Cluster Support No Yes

1. You can see the APIs required for J2EE 1.4 in the Application Programming
Interface section of the J2EE 1.4 specifications at:

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

2. Business process choreography and business rule beans remain in WebSphere
Business Integration Server Foundation.

Feature Base and
Express V6

Network
Deployment V6

 Chapter 2. WebSphere Application Server V6 architecture 79

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

80 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 3. System management: A
technical overview

This chapter describes in detail the system management functionality of
WebSphere Application Server. This information will help you understand how
system administration occurs. It is particularly useful in a multi-server
environment to understand the distributed administration and synchronization
topics.

This chapter includes the following topics:

� System management overview
� Java Management Extensions (JMX)
� Distributed administration
� Configuration and application data repository

3

© Copyright IBM Corp. 2005. All rights reserved. 81

3.1 System management overview
At first glance, system management concepts in WebSphere Application Server
might seem complex. However, the fact that the system management
architecture is based on JMX, and the fact that WebSphere Application Server
provides easy-to-use administration tools makes it fairly simple to use and
understand.

3.1.1 System management tools
The IBM WebSphere Application Server administration tools include the
following:

� WebSphere administrative console

The administrative console provides an HTML interface that allows you to
configure and manage a WebSphere Application Server environment. The
location and configuration of the console differs depending upon whether you
have a standalone server or a distributed server environment.

� Command-line operational tools

A set of command line tools are available in the bin directory to perform
specific actions on a targeted process. For example, you can use command
line tools to start or stop a node, add (or remove) a node to a cell, to start or
stop servers, or to view the status of a server.

� WebSphere scripting using wsadmin

The wsadmin scripting interface can be used to configure and manage
WebSphere processes. The administrator can invoke wsadmin interactively,
or create scripts to be run. Creating scripts can save time when you are

Terminology: There are differences in how WebSphere Application Server
handles administration depending on the environment you have set up. You
will see us refer to the following when explaining these differences:

� Standalone server environment refers to a single standalone server that is
not managed as part of a cell. With the Base and Express packages, this is
your only option. You can also create a standalone server with the Network
Deployment package.

� Distributed server environment refers to the situation where you have
multiple servers managed from a single deployment manager in the cell.
We also refer to these as managed servers. This is only valid with the
Network Deployment package.

� Managed processes refer to the deployment manager, nodes (node
agents), and application servers.

82 WebSphere Application Server V6: System Management and Configuration Handbook

repeatedly performing the same set of actions on one or more WebSphere
Application Server installations.

� Java-based JMX APIs that can be accessed directly by custom Java
applications.

This book focuses primarily on using the administrative console, but will also
provide information about using commands and wsadmin scripts.

3.1.2 System management in a standalone server environment
Each managed process has an administrative service that interacts with
administration clients. In a standalone server environment, both the
administrative console application and the administrative service runs on the
application server. The configuration repository consists of one set of
configuration files managed by the administrative service. System management
is simplified in the sense that the changes made by the administrator are applied
directly to the configuration files used by the server.

Figure 3-1 Managing a single-server installation

The administrative console will contain a subset of options that you see in the
administrative console for a distributed server environment. The options you will
not see are related to the workload management and high availability features.

Application Server

Admin
console

Application

User
Enterprise
Application

Configuration
(XML files)

EAR files

Stand-alone Single Server

W eb
browser

HTML

wsadmin

Custom Java
adm in client

SOAP/HTTP or
RMI-IIOP

Admin services

Load, Save,
Edit

W eb
container

 Chapter 3. System management: A technical overview 83

3.1.3 System management in a distributed server environment
In a distributed server environment, administration tasks and configuration files
are distributed among the nodes, reducing the reliance on a central repository or
administration server for basic functions and bring-up. The administrative
services and the administrative console are hosted on the deployment manager.

Managed application servers are installed on nodes. Each node has a node
agent that interacts with the deployment manager to maintain and manage the
processes on that node.

Multiple sets of the configuration files exist The master configuration is
maintained on the deployment manager node and pushed out, synchronized, to
the nodes. Each managed process starts with its own configuration file.

Figure 3-2 Managing a multi-server installation

Configuration should always be done at the deployment manager and
synchronized out to the nodes. Although theoretically, it is possible to configure
nodes locally using wsadmin, it is not recommended and any changes made will
be overwritten at the next synchronization.

Commands
Configuration

Node Agent

Server D cfg

Server C cfg

Node B cfg

Cell cfg

Node B

Server C Server
D EAR files

Deployment Mgr

Process B cfg

Process A cfg

Node A cfg

Cell cfg

EAR files

MASTER

Process D cfg

Process C cfg

Node B cfg

Publish/Activate

Admin
console

Application

Node A

Server
B

Node Agent

Cell cfg

Server B cfg

Server A cfg

Node B cfg

EAR files
Server

A

admin services

admin services

Web browser

HTML

wsadmin

Custom Java
admin client

SOAP/HTTP or
RMI-IIOP

Web container

admin services

84 WebSphere Application Server V6: System Management and Configuration Handbook

However, operational commands can be directed at the deployment manager,
node agent, or server.

3.1.4 Role-based administration
WebSphere Application Server provides a granularity of access control through
the provision of four administrative security roles:

� Monitor can view the system state and configuration data, but cannot make
any changes.

� Operator has all the functions of Monitor as well as ability to make operational
changes, for example start/stop servers.

� Configurator has all the functions of Monitor as well as ability to make
configurational changes.

� Administrator has all the functions of Operator and Configurator.

Using these roles requires that WebSphere global security be enabled. Users
and groups can be assigned these roles through the administrative console.

3.2 Java Management Extensions (JMX)
The system management functionality of WebSphere Application Server is
based on the use of Java Management Extensions (JMX). JMX is a framework
that provides a standard way of exposing Java resources, for example
application servers, to a system management infrastructure. The JMX framework
allows a provider to implement functions, such as listing the configuration
settings, and allows users to edit the settings. It also includes a notification layer
that can be used by management applications to monitor events such as the
startup of an application server.

The use of JMX opens the door to third-party management tool providers. Users
of WebSphere are no longer restricted to IBM-supplied management tools.

JMX is a Java specification (JSR-003) that is part of J2SE 1.4. A separate
specification defines the J2EE management API (JSR-77) for managing a J2EE
conforming application server. The J2EE 1.4 specification requires that all J2EE
products support the Enterprise Edition management API. WebSphere
Application Server provides managed objects (MOs) as defined in the JSR-77
specification and hence is managable from third party management products that
delivers J2EE management capabilities.

 Chapter 3. System management: A technical overview 85

3.2.1 JMX architecture
The JMX architecture is structured into three layers:

� Instrumentation layer

The instrumentation layer dictates how resources can be wrapped within
special Java beans, called Management Beans (MBeans).

� Agent layer

The agent layer consists of the MBean server and agents, which provide a
management infrastructure. Services implemented include:

– Monitoring
– Event notification
– Timers

� Management layer

The management layer defines how external management applications can
interact with the underlying layers in terms of protocols, APIs, etc.

The layered architecture of JMX is summarized in Figure 3-3.

Figure 3-3 JMX architecture

MBean Server

Connector Adapter

Managed Resources

Agent Services
(as MBeans)

Agent
Services

Agent
Services

Resource 1
MBean

Resource 1

Manages

Resource 2
MBean

Resource 2

Manages

JVM

Management Application

Instrumentation Layer

Agent Layer

86 WebSphere Application Server V6: System Management and Configuration Handbook

How does JMX work?
Resources are managed by JMX MBeans. These are not EJBs, but simple
JavaBeans that need to conform to certain design patterns outlined in the JMX
specification.

Providers that want to instrument their systems with JMX need to provide a
series of MBeans. Each MBean is meant to wrap, or represent, a certain runtime
resource. For instance, in order to expose an application server as a
manageable resource, WebSphere needs to provide an application server
MBean.

External applications can interact with the MBeans through the use of JMX
connectors and protocol adapters. Connectors are used to connect an agent with
a remote JMX-enabled management application. This form of communication
involves a connector in the JMX agent and a connector client in the management
application.

The key features of JMX connectors are:

� Connectors are oriented to the transport mechanism. For example, a provider
can provide an RMI connector that allows Java applications to interact
remotely with the MBeans.

� The connector translates JavaBeans calls to a protocol stream.

� There is a 1:1 mapping between client method invocations and MBean
operations.

� This is the low-level API for accessing MBeans.

Protocol adapters
Protocol adapters provide a management view of the JMX agent through a given
protocol. Management applications that connect to a protocol adapter are usually
specific to the given protocol.

The key features of JMX protocol adapters are:

� Protocol adapters adapt operations of MBeans and the MBean server into a
representation in the given protocol, and possibly into a different information
model, for example SNMP or HTTP.

� There is not a 1:1 mapping between client method invocations and MBean
operations.

� This is the high-level API for accessing MBeans.

 Chapter 3. System management: A technical overview 87

MBean server
Each JMX enabled JVM contains an MBean server that registers all the MBeans
in the system. It is the MBean server that provides access to all of its registered
MBeans. There is only one MBean server per JVM.

Both connectors and protocol adapters use the services of the MBean server in
order to apply the management operation they receive to the MBeans, and in
order to forward notifications to the management system. Connector and
protocol adapter communication is summarized in Figure 3-4.

Figure 3-4 JMX connectors and adapters

3.2.2 JMX distributed administration
Figure 3-5 on page 89 shows how the JMX architecture fits into the overall
distributed administration topology of a Network Deployment distributed server
environment.

Connector Adapter

MBean Server

Managed Resources

Agent Services
(as MBeans)

Agent
Services

Agent
Services

Resource 1
MBean

Resource 1

Manages

Resource 2
MBean

Manages

JVM

ConnectorClient

 Management
Application with a

view of the JMX
agent

JMX-enabled
Management
Application

JVM

Management Applications

Resource 2

88 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 3-5 JMX distributed administration

The key points of this distributed administration architecture are:

� Internal MBeans which are local to the JVM register with the local MBean
server.

� External MBeans have a local proxy to their MBean server. The proxy
registers with the local MBean server. The MBean proxy allows the local
MBean server to pass the message to an external MBean server located on:

– Another server
– Node agent
– Deployment manager

� A node agent has an MBean proxy for all servers within its node. However,
MBean proxies for other nodes are not used.

� The deployment manager has MBean proxies for all node agents in the cell.

The configuration of MBean proxies is shown in Figure 3-6 on page 90.

Node Agent

MBean
Server

Clients, Multi-cell
mgmt, & other EMS

(Tivoli, BMC)

MBean
Proxy

Application Server

MBean
Server

MBean
Proxy

MBeans
MBeans

JMX
Connector

EAR files

 config
files

MBeans
MBeans

JMX
Connector

MBean
Server

MBean
Proxy

MBean
Proxy

JMX
Connector

MBeans
MBeans

Deployment Manager

Config Distribution
Service

Config Repository
Service

To Other
App Servers

To Other
Nodes

Master
files

Master
files

Master
files

 Chapter 3. System management: A technical overview 89

Figure 3-6 JMX architecture

3.2.3 JMX MBeans
WebSphere Application Server provides a number of MBeans, each of which can
have different functions and operations available. For example:

� An application server MBean might expose operations such as start and stop.
� An application MBean might expose operations such as install and uninstall.

3.2.4 JMX usage scenarios
Some of the more common JMX usage scenarios you will encounter are:

� Internal product usage:

All WebSphere Application Server administration clients use JMX:

– WebSphere administrative console
– wsadmin scripting client
– Admin client Java API

WebSphere Application
Server Process

MBean
Server

MBean
Proxy

MBean
Proxy

HTTP
JMX

Adapter

MBeans

MBeans

SNMP
JMX

Adapter RMI/IIOP
JMX

ConnectorSOAP
JMX

Connector

internal
runtime
objects

External MBeanServer

External tools and programs

Internal MBeans register with local
MBeanServer.
External MBeans have local proxy to their
MBeanServer. Proxy registers with local
MBeanServer.

Illustrates possibilities or future plans

90 WebSphere Application Server V6: System Management and Configuration Handbook

� External programmatic administration

In general, most external users will not be exposed to the use of JMX.
Instead, they will access administration functions through the standard
WebSphere Application Server administration clients.

However, external users would need to access JMX in the following
scenarios:

– External programs written to control the WebSphere Application Server
runtime and its resources by programmatically accessing the JMX API.

– Third-party applications that include custom JMX MBeans as part of their
deployed code, allowing the applications components and resources to be
managed through the JMX API.

3.2.5 J2EE management
The J2EE management specification dictates the existence of certain Managed
Objects (MOs) that can be used to manage the available application server
resources. The specification does not require that managed objects be
implemented by means of JMX MBeans but the required interface makes
MBeans a natural choice for MOs.

In WebSphere the management standard MOs are essentially provided by
mappings to existing WebSphere JMX MBeans. For instance, the specification
require a J2EEServer managed object which is equivalent to the Server MBean
in WebSphere. The management standard introduces a set of required key
properties, part of a new ObjectName method, a number of attributes and three
optional interfaces: EventProvider, StateManageable and StatisticsProvider.
These required and optional parts have all been added to the relevant
WebSphere MBeans (see the Information Center section Developing
administrative programs for multiple Java 2 Platform, Server Foundation
application servers for a detailed description of the available objects and
attributes).

A major requirement by the standard that does not easily map in to the existing
WebSphere architecture is the ability to interoperate with management objects
representing resources that have not been started in the WebSphere runtime
environment. Consequently, a proxy mechanism has been introduced that runs
in every application server in a standalone server environment, or as part of the
deployment manager in a distributed server environment. With this proxy
implementation all the required managed objects, methods and attributes can be
interfaced regardless of whether the WebSphere JMX MBean is running or not.

 Chapter 3. System management: A technical overview 91

Be aware that the J2EE management standard defines a common set of objects
and operations for J2EE application servers and hence does not provide
management capabilities for specific WebSphere Application Server features.

It is recommended that WebSphere only management clients operate directly on
the WebSphere JMX MBeans to avoid the overhead of the proxy object and to
take advantage of the full management capabilities of the WebSphere product.

3.3 Distributed administration
Administration in a distributed server environment is by necessity more complex
than administration in a standalone server environment. In a distributed server
environment, multiple WebSphere Application Server nodes are managed from a
single central location. This distributed administration of components is brought
about by three tiers, or layers, of administration services, as shown in Figure 3-7.

Figure 3-7 Layers of distributed administration services

Between these tiers, communication is used to distribute configuration and
application data updates from the deployment manager to the node agent, and in
turn to the server instances.

The routing of administration messages between components makes use of the
JMX ObjectName that identifies the target managed resource within the

Process Discovery and
Enrollment Functions

Message Routing and File
Transfer

Node and Cell Level
Administration

Includes support for WebSphere
processes to discover each other and
establish communication links
Open one or more JMX Connector
channels between processes to be used
by other services to accomplish their
functions

Publishing configuration data
Synchronize configuration data
Launch managed processes
Support other services such as naming,
security, RAS

Inter-process message routing
Inter-node file transfer using its own
communication channel for file stream
transfer between nodes

92 WebSphere Application Server V6: System Management and Configuration Handbook

administrative cell. The ObjectName contains all of the information necessary to
route a request targeted at the resource, to the appropriate node where the
resource is executing.

An example is shown in Figure 3-8, where an operation on Node Y invokes a
management method on a management bean (MBean) located on another node,
Node X.

Figure 3-8 Distributed administration message routing

1. An object running on server A of Node Y sends an operation request to the
deployment manager AdminService located on the same machine.

2. The deployment manager AdminService determines which node hosts the
requested service (Node X) and passes the request to the MBean acting as
the proxy of the node’s node agent.

3. The proxy MBean forwards the request to the AdminService of the Node X
node agent.

4. On Node X, the node agent AdminService receives the request and
determines which managed server (process) the requested service is hosted
on (process A).

Forward

Node X
AppServer
Process

Forward

Node = X
Process = A
type = EJB
Name=TestBean

MBean

AdminService

MBeanServer

AdminService

Node = X
Process = A
type = Process
Name=ProcBAdmin

MBean
matchProcess

Proxy to
Process A

Node = x
Process = B
type = Process
Name=ProcBAdmin

MBean

NodeAgent
Process

ObjectName
Node = X
Process = A
type = EJB
Name = testbean

AdminService

Node = Y
Process = 21
type = EJB
Name=Accountbean

MBeanDeployment
Mgr

Node = X
Process = C
type = NodeAgent
Name=NodeXAdmin

MBean

Node Y

Invoke

matchNode

Proxy to
NodeX

 Chapter 3. System management: A technical overview 93

5. The AdminService passes the request to the MBean acting as the proxy of
the managed server.

6. The proxy MBean forwards the request to the AdminService of the managed
server.

7. The managed server AdminService invokes the requested service via the
local MBeanServer, which is responsible for all direct communication with
MBeans hosted in that JVM.

3.3.1 Distributed process discovery
When a managed server begins its startup, it sends a discovery request
message that allows other processes to discover its existence and establish
communication channels with the process.

Figure 3-9 shows an example of the distributed discovery process for a topology
containing two nodes that are located on different machines. Note that both node
agents in the figure use ports 7272 and 5000. This assumes they reside on
separate physical machines. If nodes are located on the same machine, they
must be configured to use non-conflicting IP ports.

Figure 3-9 Distributed discovery process

Deployment Manager

serverindex.xml
serverType="Deployment_Manager"
 ... CELL_DISCOVERY_ADDRESS .. port:7277

serverType="Node_Agent"
 NODE_DISCOVERY_ADDRESS.. port 7272
 NODE_MULTICAST_DISCOVERY_ADDRESS .. port 5000

Node Agent

Managed
Process

Managed
Process

7272

5000

7277

Node Agent

Managed
Process

Managed
Process

7272

5000

94 WebSphere Application Server V6: System Management and Configuration Handbook

Each node agent and deployment manager maintains status and configuration
information by using discovery addresses, or ports. On startup, processes
discover other running components, and create communication channels
between them, through the discovery addresses:

� The master repository located on the deployment manager installation
contains the serverindex.xml file for each node. The deployment manager
reads this file on startup to determine the host name and IP port of each node
agent’s NODE_DISCOVERY_ADDRESS.

The default port for the NODE_DISCOVERY_ADDRESS is 7272. You can
verify this by looking at the NODE_AGENT stanza in the serverindex.xml file
of each node located at:

<dmgr_profile_home>/config/cells/<cell>/nodes/<node>/serverindex.xml

You can also display this port from the administrative console by selecting
System Administration →Node agents. Select each node agent and
expand Ports under the Additional Properties section.

� The copy of the configuration repository located on each node contains the
serverindex.xml file for the deployment manager. The node agent reads this
file on startup to determine the host name and IP port of the deployment
manager’s CELL_DISCOVERY_ADDRESS.

The default port for the CELL_DISCOVERY_ADDRESS is port 7277. You can
verify this by looking at the DEPLOYMENT_MANAGER stanza in the
serverindex.xml file for the deployment manager node located at:

<profile_home>/config/cells/<cell>/nodes/<DM_node>/serverindex.xml

You can also display this port from the administrative console by selecting
System Administration →Deployment manager. Expand Ports under the
Additional Properties section.

� The copy of the coNnfiguration repository located on each node also contains
the serverindex.xml file for the node. Each managed server reads this file on
startup to determine the host name and IP port of the node agent’s
NODE_MULTICAST_DISCOVERY_ADDRESS.

A multicast address is used to prevent the usage of a large number of IP ports
for managed server to node agent discovery requests. Using multicast, a
node agent can listen on a single IP port for any number of local servers.

The default port for the NODE_MULTICAST_DISCOVERY_ADDRESS is
5000. You can verify this by looking at the NODE_AGENT stanza in the
serverindex.xml file of the node located at:

<profile_home>/config/cells/<cell>/nodes/<node>/serverindex.xml

 Chapter 3. System management: A technical overview 95

You can also display this port from the administrative console by selecting
System Administration →Node agents. Select the node agent and expand
Ports under the Additional Properties section.

Each server has its own copy of the configuration and application data necessary
for startup of the runtime and the installed applications.

Rules for process startup
The order of process startup needs to adhere to the following rules:

� A node agent can be running while the deployment manager is not, and vice
versa. When the stopped process is started, discovery will occur
automatically.

� The deployment manager can be running while a managed server is not, and
vice versa. The execution of a managed server is not dependent on the
presence of a running deployment manager. The deployment manager is only
required for permanent configuration changes written to the master
repository.

� The node agent should be started before any application servers on that
node. The node agent contains the Location Service Daemon (LSD) in which
each application server registers on startup.

� The node agent is purely an administrative agent and is not involved in
application serving functions. Each managed server has the data necessary
to start itself.

Example discovery scenarios
Situation: The node agent is not running and the deployment manager starts:

Important: Keep the following in mind when using the discovery service.

� The discovery service uses the InetAddress.getLocalHost() call to
retrieve the IP address for the local machine's host name. The network
configuration of each machine must be configured so that
getLocalHost() does not return the loopback address (127.0.0.1). It
must return the real IP address of the correctly chosen NIC.

� A multicast address is a logical address. Therefore it is not bound to a
real, physical network interface, and will not be the same as the host
name (or IP address) of the host on which the node agent is executed.

� Multicast host addresses must be within a special range (224.0.0.0 to
239.255.255.255) defined by the IP standards and must never be a
host name value. The default for WebSphere node agents is
232.133.104.73.

96 WebSphere Application Server V6: System Management and Configuration Handbook

1. The deployment manager tries to determine if the node agent is running. The
process fails.

2. When the node agent is started, it contacts the deployment manager, creates
a communication channel, and synchronizes data.

Situation: The node agent starts but no managed servers are started:

1. The node agent knows all about its managed servers and checks whether
they are started. If so, it creates communication channels to these processes.

2. When a managed server starts, it checks whether the node agent is started
and then creates a communication channel to it.

3.3.2 Centralized changes to configuration and application data
In a distributed server environment you have a master repository of configuration
and application data for the cell. Administrative clients are used to provide
centralized functionality for:

� Modification of configuration settings in the master repository

� Installation, update, and uninstallation of applications on application server(s)
in the cell

In the process, the Enterprise Application Archive (EAR) files and deployment
descriptors are also stored in the master repository.

Each node contains a separate copy of the repository containing only the files
required for that node, including:

� Cell and node-level configuration files necessary for node and managed
server operation, for example the serverindex.xml file for each node in the cell

� Application server configuration files for the application servers on that node

� EAR files for the applications hosted by servers on that node

� Application deployment descriptors for the applications hosted by servers on
that node

These deployment descriptors contain the settings specified when the
application was deployed.

When an administrator makes changes to the configuration using an
administration tool and saves these changes to the master repository, they are
available for use. The next step is to synchronize the changes out to the nodes of
the cell.

 Chapter 3. System management: A technical overview 97

3.3.3 File synchronization
The file synchronization service is the administrative service responsible for
keeping up to date the configuration and application data files that are distributed
across the cell. The service runs in the deployment manager and node agents,
and ensures that changes made to the master repository will be propagated out
to the nodes, as necessary. The file transfer system application is used for the
synchronization process. File synchronization can be forced from an
administration client, or can be scheduled to happen automatically.

During the synchronization operation, the node agent checks with the
deployment manager to see if any files that apply to the node have been updated
in the master repository. New or updated files are sent to the node, while any
deleted files are also deleted from the node.

Synchronization is one-way. The changes are sent from the deployment
manager to the node agent. No changes are sent from the node agent back to
the deployment manager.

How files are identified for synchronization
When synchronization occurs, WebSphere must be able to identify the files that
have changed and therefore, need to be synchronized. To do this, WebSphere
uses the following scheme:

� A calculated digest is kept by both the node agent and the deployment
manager for each file in the configuration they manage. These digest values
are stored in memory. If the digest for a file is recalculated and it does not
match the digest stored in memory, this indicates the file has changed.

� An epoch for each folder in the repository and one for the overall repository is
also stored in memory. These epochs are used to determine whether any files
in the directory have changed. When a configuration file is altered through
one of the WebSphere administration interfaces then the overall repository
epoch and the epoch for the folder in which that file resides is modified.

Note that manually updating a configuration file does not cause the digest to
change. Only files updated with administration clients will be marked as
changed. Manually updating the files is not recommended, but if you do, a
forced synchronization will include manually updated files.

� During configuration synchronization operations, if the repository epoch has
changed since the previous synchronize operation then individual folder
epochs are compared. If the epochs for corresponding node and cell
directories do not match, then the digests for all files in the directory are
recalculated, including that changed file.

98 WebSphere Application Server V6: System Management and Configuration Handbook

Synchronization scheduling
The scheduling of file synchronization is configured using an admin client. The
available options are:

� Automatic synchronization

Synchronization can be made to operate automatically by configuring the file
synchronization service of the node agent. These settings allow you to:

– Enable periodic synchronization to occur at a specified time interval

By default this option is enabled with a time interval of one minute.

– Enable synchronization at server startup

The synchronization will occur before the node agent starts a server. Note
that if you start a server using the startServer command, this setting has
no effect.

� Explicit/forced synchronization

Synchronization can be explicitly forced at anytime via use of an admin client.

Tip: In a production environment, the automatic synchronization interval
should be increased from the one minute default so that processing and
network overhead is reduced.

 Chapter 3. System management: A technical overview 99

Ensuring manual changes are synchronized

If a change to a configuration file is made by editing the file then the digest for the
file is not recalculated because the epochs for the directories continue to match
and the synchronization process will not recognize that the files have changed.

However, manual edits of configuration files in the master cell repository can be
picked up if the repository is reset so that it re-reads all the files and recalculates
all of the digests. You can reset either the master cell repository epoch or the
node repository epoch.

� Resetting the master cell repository causes any manual changes made in the
master configuration repository to be replicated to the nodes where the file is
applicable.

� Resetting the node repository causes any manual changes to the local node
files to be overwritten by whatever is in the master cell repository, regardless
of whether the cell repository was changed or not. Any manual changes in the
master repository will be picked up and brought down to the node.

The main difference between cell reset and node reset is that cell reset is likely to
impact the entire cell, not just one node.

Important: Although it is technically possible to edit configuration files
manually, it should not be done unless absolutely necessary. Manual editing
has several drawbacks including:

� When using wsadmin and the administrative console, you have the benefit
of a validation process before the changes are applied. With manual
editing you have no such failsafe.

� Updates made manually are not marked for synchronization and will be
lost at the next synchronization process unless you make them in the
master repository and manually force synchronization.

Manual editing might be appropriate in problem determination scenarios. For
example, if you enable WebSphere security but have not set it up properly,
you might not be able to start WebSphere and, thus, have no access to admin
clients). In this instance, being able to turn off security manually so you can
start WebSphere and review your configuration is very helpful.

The Configuration Document Descriptions topic in the Information Center lists
several configuration files that have settings not exposed in the administration
clients. In the event you find it necessary to edit a file manually this topic will
help make sure you don’t lose your changes.

100 WebSphere Application Server V6: System Management and Configuration Handbook

This holds true for changes to installed applications as well. They are treated the
same as other configuration files in the repository. For each installed application,
there is an EAR file in the repository and also some configuration files associated
with the deployment of the application.

If you manually change the EAR file and reset the master cell repository, the
changed EAR file will be replicated out to the nodes where it is configured to be
served and will be expanded in the appropriate location on that node for the
application server to find it. The application on that node will be stopped and
restarted automatically so that whatever is changed is picked up and made
available in the application server.

If you manually edit one of the deployment configuration files for the application
and reset the repository, that change will be replicated to the applicable nodes
and will be picked up the next time the application on that node is restarted.

Resetting the master cell repository

To perform a reset of the master cell repository, do the following:

1. Open a command prompt and change to the <dmgr_profile_home>/bin
directory and start a wsadmin session. Note that the deployment manager
must be running. Use the following command:

cd c:\WebSphere\Application Server\profiles\Dmgr01\bin
wsadmin

2. Enter the following:

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=dmgr]

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch

You will see a number returned by the refreshRepositoryEpoch operation,
1047961605195, for example.

Important: Manually changing the EAR file is best performed by advanced
users. Otherwise, unpredictable results can occur.

Note: The use of wsadmin is covered in Chapter 6, “Administration with
scripting” on page 267. The only thing you might need to know about wsadmin
to complete these tasks is to start wsadmin to the SOAP connector port of the
process you want to run the commands against. The default is to start to port
8879. If the process you are connecting to has a different port number
specified, start the wsadmin with the -port argument.

 Chapter 3. System management: A technical overview 101

Example 3-1 Reseting the master cell repository

C:\WebSphere\AppServer\profiles\Dmgr01\bin>wsadmin
WASX7209I: Connected to process "dmgr" on node DmgrNode using SOAP connector;
The type of process is: DeploymentManager
WASX7029I: For help, enter: "$Help help"

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=dmgr]

WebSphere:platform=common,cell=DmgrCell,version=6.0.0.0,name=repository,mbeanId
entifier=repository,type=ConfigRepository,node=DmgrNode,process=dmgr

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch
1098317369266
wsadmin>

This resets the entire cell repository digest set. On the next synchronize
operation, all files in the master cell repository will have their digests
recalculated. Any manual changes will be replicated to the applicable nodes.

Resetting the node repository
There are multiple ways to reset a node repository for synchronization.

� In a wsadmin session connected to the deployment manager or node agent,
enter the following:

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=nodeagent]

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch

This resets the node digest set. Any file that does not match what is in the
repository is overwritten.

Example 3-2 Resetting the node repository

C:\WebSphere\AppServer\profiles\AppSrv01\bin>wsadmin -port 8883

WASX7209I: Connected to process "nodeagent" on node AppSrvrNode using SOAP
connector; The type of process is: NodeAgent
WASX7029I: For help, enter: "$Help help"

wsadmin>set config [$AdminControl queryNames
:,type=ConfigRepository,process=nodeagent]

102 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere:platform=common,cell=DmgrCell,version=6.0.0.0,name=repository,mbeanId
entifier=repository,type=ConfigRepository,node=AppSrvrNode,process=nodeagent

wsadmin>$AdminControl invoke $config refreshRepositoryEpoch
1098397549240

� From the deployment manager administrative console, select System
Administration →Nodes to see a list of the nodes in the cell. Notice
Synchronize and Full Resynchronize buttons on the page. The Synchronize
button causes a normal synchronize operation with no re-reading of the files.
The Full Resynchronize button is the reset and recalculate function. Select
the node or nodes to be updated with manual changes, then click the Full
Resynchronize button.

� Use the syncNode command. This command is a standalone program which
runs separately from the node agent. It has no cache of epoch values which
could be used for an optimized synchronize, therefore performing a complete
synchronize. For this same reason, if you restart a node agent, the very first
synchronize it performs will always be a complete synchronize. Note that this
requires the node agent to be stopped.

The syncNode command resides in the bin directory of the base install. To
use the syncNode command, type the following from the command line:

cd <profile_home>\bin
syncNode <cell_host>

Example 3-3 Using the syncNode command

C:\WebSphere\AppServer\profiles\AppSrv01\bin>stopnode
ADMU0116I: Tool information is being logged in file

C:\WebSphere\AppServer\profiles\AppSrv01\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop completed.

C:\WebSphere\AppServer\profiles\AppSrv01\bin>syncnode carlavm2
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\AppSrv01\logs\syncNode.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU0401I: Begin syncNode operation for node AppSrvrNode with Deployment
 Manager carlavm2: 8879
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0402I: The configuration for node AppSrvrNode has been synchronized with
 Deployment Manager carlavm2: 8879

 Chapter 3. System management: A technical overview 103

As a way to use this tip, under normal circumstances, all application files are
packaged in the EAR file for the application. However, consider a configuration
file specific to an application. Any changes to that file would require that you
update the EAR file and synchronize the entire application.

One possibility is to put a properties file in the application deployment directory in
the master configuration repository, so that it is replicated to all nodes where the
application is installed automatically but the entire EAR is not replicated. Then
you could have an ExtensionMBean update the properties file in the master
repository and normal synchronization would replicate just those changes out to
the nodes without the need to synchronize the whole EAR and restart the
application.

3.4 Configuration and application data repository
The configuration and application data repository is a collection of files
containing all the information necessary to configure and execute servers and
their applications. Configuration files are stored in XML format, while application
data is stored as EAR files and deployment descriptors.

3.4.1 Repository directory structure
With V6, the directory structure of a WebSphere Application Server installation is
slightly different than in previous releases. We will discuss this in detail in
Chapter 4, “Getting started with profiles” on page 113, but for now, it is important
to know configuration files defining a runtime environment are stored in profile
directories. Each node, deployment manager, and standalone application server
has its own profile directory under the <was_home>/profiles directory.

In the rest of this book, when we talk about a specific profile directory, located at,
<was_home>/profiles/<profile_name>, we will refer to it as the <profile_home>
directory. When we are speaking specifically of the profile directory for the
deployment manager, we will refer to it as <dmgr_profile_home>.

Tip: The repository is flexible in that there is no predefined list of document
types that it permits. You can add any file you want. Perhaps you have some
unique configuration data that needs to be used on all nodes. You could put it
in the config/cells/<cell name> folder and it would be synchronized to all
nodes. If it applies to just one node, you could put it in the folder
corresponding to that node and it would be synchronized only to that node.
The same applies for any additional documents in a server level folder.

104 WebSphere Application Server V6: System Management and Configuration Handbook

The repository files are arranged in a set of cascading directories under each
profile directory structure, with each directory containing a number of files
relating to different components of the WebSphere cell. You can see this in
Figure 3-10. The repository structure follows the same format, regardless of
whether you have a standalone server environment or distributed server
environment.

Figure 3-10 Repository directory structure

The <profile_home>/config directory is the root of the repository for each profile.
It contains the following directory structure:

� cells/<cell>/

This is the root level of configuration for the cell. The directory contains a
number of cell-level configuration settings files. Depending on the types of
resources have been configured, you might see the following subdirectories:

Config:
plugin_cfg_service.xml

Cell:
admin_autz.xml
cell.xml
namestore.xml
naming_autz.xml
security.xml
variables.xml
virtualhosts.xml

Node:
node.xml
resources.xml
namestore.xml
variables.xml
serverindex.xml

Server:
node.xml
resources.xml
namestore.xml
variables.xml
serverindex.xml

<dmgr_profile_home>

<profile_home>

 Chapter 3. System management: A technical overview 105

– cells/<cell>/applications/ contains one subdirectory for every application
that has been deployed within the cell.

– cells/<cell>/buses/ contains one directory for each service integration bus
(bus) defined.

– cells/<cell>/coregroups/ contains one directory for each core group
defined.

– cells/<cell>/nodegroups/ contains one directory for each node group
defined.

– cells/<cell>/nodes/ contains the configuration settings for all nodes and
servers managed as part of this cell. The directory contains one directory
per node. Each cells/<cell>/nodes/<node> directory will contain
node-specific configuration files and a server directory which in turn will
contain one directory per server and node agent on that node.

– cells/<cell>/clusters/ contains one directory for each of the clusters
managed as part of this cell. Each cluster directory contains a single file,
cluster.xml, which defines the application servers of one or more nodes
that are members of the cluster.

The overall structure of the master repository is the same for both a standalone
server environment and a distributed server environment. The differences are
summarized in the following sections.

In a standalone server environment, the structure has the following:

� The master repository is held on a single machine. There are no copies of this
specific repository on any other node.

� The repository contains a single cell and node.

� There is no node agent because each application server is stand-alone so
there is no directory for the node agent (nodeagent).

� Clusters are not supported, and therefore will not contain the clusters
directory or subdirectories.

In a distributed server environment, the structure has the following:

� The master repository is held on the node containing the deployment
manager. It contains the master copies of the configuration and application
data files for all nodes and servers in the cell.

� Each node also has a local copy of the configuration and application data files
from the master repository that are relevant to the node.

� Changes can be made to the configuration files on a node, but the changes
will be temporary. Such changes will be overwritten by the next file

106 WebSphere Application Server V6: System Management and Configuration Handbook

synchronization from the deployment manager. Permanent changes to the
configuration require changes to the file or files in the master repository.

Configuration changes made to node repositories are not propagated up to
the cell.

� The applications directory of the master repository contains the application
data (binaries and deployment descriptors) for all applications deployed in the
cell. The local copy of the applications directory on each node will only
contain the directories and files for the applications deployed on application
servers within that node.

Information on the individual files found in each of these directories can be found
in the Configuration Document Descriptions topic in the Information Center.

3.4.2 Variable scoped files
Identically named files that exist at differing levels of the configuration hierarchy
are termed variable scoped files. There are two uses for variable scoped files:

� Configuration data contained in a document at one level is logically combined
with data from documents at other levels of the configuration hierarchy. In the
case of conflicting definitions, the “most specific” value takes precedence. For
example:

If an identical entry exists in the files at the cell and node level (as with a
variable defined in both the cell and node’s variables.xml), the entry at the
node level takes precedence.

� Documents representing data that is not merged but is rather scoped to a
specific level of the topology. For example:

The namestore.xml document at the cell level contains the cell persistent
portion of the name space, while the namestore.xml at the node level
contains the node persistent root of the name space.

3.4.3 Application data files
The master repository is also used to store the application binaries (EAR files)
and deployment descriptors. This allows modified deployment descriptors to be
kept in the repository, and allows system administrators to make application
updates more automatic.

 Chapter 3. System management: A technical overview 107

The <profile_home>/config directory of the master repository contains the
following directory structure used to hold application binaries and deployment
settings:

� cells/<cell>/applications/

This directory contains a subdirectory for each application deployed in the
cell. The names of the directories match the names of the deployed
applications.

� cells/<cell>/applications/<appname>.ear

Each application’s directory in the master repository contains the following:

– A copy of the original EAR, called <appname>.ear, which does not contain
any of the bindings specified during installation of the application

– A deployments directory, which contains a single <appname> directory
used to contain the deployed application configuration

� cells/<cell>/applications/<appname>.ear/deployments/<appname>

The deployment directory of each application contains the following:

– deployment.xml

This file contains configuration data for the application deployment,
including the allocation of application modules to application servers, and
the module startup order.

– META-INF/

This directory contains the following:

• application.xml

J2EE standard application deployment descriptor

• ibm-application-bnd.xmi

IBM WebSphere-specific application bindings

• ibm-application-ext.xmi

IBM WebSphere-specific application extensions

• was.policy

Application-specific Java 2 security configuration

Note: The name of the deployed application does not have to match the
name of the original EAR file used to install it. Any name can be chosen
when deploying a new application, as long as the name is unique across all
applications in the cell.

108 WebSphere Application Server V6: System Management and Configuration Handbook

This file is optional. If not present, then the policy files defined at the
node level will apply for the application.

Subdirectories for all application modules (WARs and EJB JARs) are
contained in the was.policy along with each module’s deployment
descriptors.

Repository files used for application execution
The installation of an application onto a WebSphere Application Server
application server results in:

� The storage of the application binaries (EAR) and deployment descriptors
within the master repository

� The publishing of the application binaries and deployment descriptors to each
node that will be hosting the application

These files are stored in the local copy of the repository on each node.

However, each node then installs applications ready for execution by exploding
the EARs under the <profile_home>/installedApps/<cell>/ as follows:

� <profile_home>/installedApps/<cell>/

This directory contains a subdirectory for each application deployed to the
local node.

� <profile_home>/installedApps/<cell>/<appname>.ear/

Each application-specific directory contains the contents of the original EAR
used to install the application.

– The deployment descriptors from the original EAR

Note: The deployment descriptors stored in the repository contain
the bindings chosen during application installation.

Note: The subdirectories for each module do not contain application
binaries (JARs, classes, JSPs), only deployment descriptors and
other configuration files.

Note: The name of each application’s directory reflects the name under
which the application is installed, not the name of the original EAR. For
example, if an application is called myapp, then the installedApps/<cell>
directory will contain a myapp.ear subdirectory.

 Chapter 3. System management: A technical overview 109

These descriptors do not contain any of the bindings specified during
application deployment.

– All application binaries (JARs, classes, JSPs)

Figure 3-11 summarizes how the node’s local copy of the repository contains the
application’s installed deployment descriptors, while the directory under
installedApps contains the application binaries.

Figure 3-11 Location of application data files

110 WebSphere Application Server V6: System Management and Configuration Handbook

By default, a WebSphere Application Server application server executes an
application by performing the following tasks:

1. Loading the application binaries stored under:

<profile_home>/installedApps/<cell>/<appname>.ear/

You can change this location by altering the Application binaries setting for
the enterprise application or by altering the $(APP_INSTALL_ROOT) variable
setting.

2. Configuring the application using the deployment descriptors stored under:

<profile_home>/config/cells/<cell>/applications/<appname>.ear/deployments
/<appname>

You can change this for applications deployed to V6.x application servers by
modifying the Use metadata from binaries setting for the enterprise
application. This is the Use Binary Configuration field on the application
installation and update wizards.

By default, the setting is not enabled. Enabling it specifies that you want the
application server to use.the binding, extensions, and deployment descriptors
located in the application EAR file rather than those stored in the deployments
directory.

 Chapter 3. System management: A technical overview 111

112 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 4. Getting started with profiles

Installing a WebSphere Application Server environment requires careful
planning. A major decision point is the topology for the system. These decisions
include, for example, whether you will have a standalone server, a distributed
managed server environment, clustering, and so forth.

These topics are covered in detail in Planning and Designing for WebSphere
Application Server V6, SG24-6446. That IBM Redbook is designed to help you
select a topology and develop a clear idea of what steps are needed to set up
your chosen environment. Your options will depend on your chosen WebSphere
Application Server package. The installation process is well-documented in the
installation guide packaged with the product.

The purpose of this chapter is to help you build your initial WebSphere
Application Server environment after you have installed the product. It includes
the following topics:

� 4.1, “Understanding profiles” on page 114
� 4.2, “Building a system using profiles” on page 119
� 4.3, “Creating profiles” on page 121
� 4.4, “Creating profiles manually” on page 151
� 4.5, “Managing the processes” on page 154

4

Important: This chapter assumes you are performing a new installation. For
migration issues, see WebSphere Application Server V6 Migration Guide,
SG24-6369.

© Copyright IBM Corp. 2005. All rights reserved. 113

4.1 Understanding profiles
New with WebSphere Application Server V6 is the concept of profiles. The
WebSphere Application Server installation process simply lays down a set of
core product files required for the runtime processes. After installation, you need
to create one or more profiles that define the runtime to have a functional
system. The core product files are shared among the runtime components
defined by these profiles.

With Base and Express you can only have standalone application servers as
shown in Figure 4-1. Each application server is defined within a single cell and
node. The administration console is hosted within the application server and can
only connect to that application server. No central management of multiple
application servers is possible. An application server profile defines this
environment.

Figure 4-1 System management topology: Standalone server (Base and Express)

You can also create standalone application servers with the Network Deployment
package, though you would most likely do so with the intent of federating that
server into a cell for central management.

With the Network Deployment package, you have the option of defining multiple
application servers with central management capabilities as summarized in
Figure 4-2 on page 115. The administration domain is the cell, consisting of one
or more nodes. Each node contains one or more application servers and a node
agent that provides an administration point management by the deployment
manager.

Note: In V5, the wsinstance command is used to create multiple runtime
configurations using the same installation. With V6, you do this with profiles.

Cell

Application
Server

"server1"

Node A

Admin
console

Application
Server profile

114 WebSphere Application Server V6: System Management and Configuration Handbook

The deployment manager can be located on the same machine as one or more
of the application servers. This would be a common topology for single machine
development and testing environments. In most production topologies it is
recommended that the deployment manager be placed on a separate dedicated
machine.

The basis for this runtime environment starts with the deployment manager that
provides the administration interface for the cell. As you would expect, the
deployment manager is defined by a deployment manager profile.

Figure 4-2 System management topology: Network Deployment

Nodes can be added to the cell in one of two ways:

� You can define a custom profile to create an empty node for federation to the
cell. After federation, you can further configurate the node. For example,
create application servers and clusters from the deployment manager
administrative console.

� You can create an application server profile, then federate it to the cell. When
a node is added to a cell, a node agent is created on the node and
configuration files for the node are added to the master configuration

Cell

Node A

Application
Server

A

Node
Agent

Node B

Node
Agent

Deployment
Manager

Application
Server

D
Cluster

Application
Server

C

Application
Server

B

Admin
console

Deployment
Manager profile

Created via
administrative

console

Node CCustom profile
(federated to cell)

Custom profile
(federated to cell)

Created via
administrative

console

Created via
administrative

console

 Chapter 4. Getting started with profiles 115

repository for the cell. The deployment manager then assumes responsibility
for the configuration of all servers on the node.

4.1.1 Types of profiles
We mentioned the types of profiles available for defining the runtime. In the
following sections, we take a closer look at these profiles.

Application server profile
The application server profile defines a single standalone application server.
Using this profile gives you an application server that can run standalone, or
unmanaged, with the following characteristics:

� The profile consists of one cell, one node, and one server. The cell and node
are not relevant in terms of administration, but you see them when you
administer the server through the administrative console scopes.

� The name of the application server is server1.

� The application samples are automatically installed on the server.

� The server has a dedicated administrative console.

The primary use for this type of profile is:

� To build a server in a Base or Express installation.

� To build a standalone server in a Network Deployment installation that is not
managed by the deployment manager, a test machine, for example.

� To build a server in a distributed server environment to be federated and
managed by the deployment manager. If you are new to WebSphere
Application Server and want a quick way of getting an application server
complete with samples, this is a good option. When you federate this node,
the default cell becomes obsolete and the node is added to the deployment
manager cell. The server name remains as server1 and the administrative
console is removed from the application server.

Deployment manager profile
The deployment manager profile defines a deployment manager in a Network
Deployment installation. Although you could conceivably have the Network
Deployment package and run only standalone servers, this would bypass the
primary advantages of Network Deployment, which is workload management,
failover, and central administration.

In a Network Deployment environment, you should create one deployment
manager profile. This gives you:

116 WebSphere Application Server V6: System Management and Configuration Handbook

� A cell for the administrative domain
� A node for the deployment manager
� A deployment manager with an administrative console
� No application servers

Once you have the deployment manager, you can:

� Federate nodes built either from existing application server profiles or custom
profiles.

� Create new application servers and clusters on the nodes from the
administrative console.

Custom profile
A custom profile is an empty node, intended for federation to a deployment
manager. This type of profile is used when you are building a distributed server
environment. Use a custom profile in the following way:

1. Create a deployment manager profile.

2. Create one custom profile on each node on which you will run application
servers.

3. Federate each custom profile to the deployment manager, either during the
custom profile creation process or later by using the addNode command.

4. Create new application servers and clusters on the nodes from the
administrative console.

4.1.2 Directory structure and default profiles
If you have worked with WebSphere Application Server before, you will notice a
difference in the directory structure. First, all packages (Base, Express, and
Network Deployment) specify the same default root directory during installation.
For example, in Windows installations, this is commonly
c:\WebSphere\AppServer. In this book, we refer to it as the <was_home>
directory.

In addition to the traditional directories under the <was_home> directory (bin,
config, installedapps, and so on), you now have a profiles directory containing a
subdirectory for each profile you create. The directory structure for each profile
resembles the primary structure. In other words, there is a bin, config,
installedApps, and other directories required for a unique runtime under each
profile.

For example, if you installed on a Windows system, and created a profile named
AppSrvr01, you would see a directory structure like that shown in Figure 4-3 on
page 118.

 Chapter 4. Getting started with profiles 117

Figure 4-3 Directory structure

We refer to the root of each profile directory
(WebSphere/AppServer/profiles/profile_name) as <profile_home>.

Why do we emphasize this point? If you enter commands while in the
<was_home>/bin directory, they are executed against the runtime defined by the
default profile. The default profile is determined by the following:

� The profile was defined as the default profile when you created it. The last
profile specified as the default takes precedence. You can also use the
wasprofile command to specify the default profile.

� If you have not specified the default profile, it will be the first profile you
create.

To make sure command line operations are executed for the correct runtime, you
need to do one of two things:

118 WebSphere Application Server V6: System Management and Configuration Handbook

� Specify the -profileName option when using a command and execute the
command from the <was_home>/bin directory.

� Execute the command from its <profile_home> directory.

4.2 Building a system using profiles
During the planning cycle, a topology was selected for the WebSphere
Application Server environment. There are many topologies to choose from,
each with its own unique features.

However, when we discuss using profiles to build a WebSphere Application
Server environment, we are focusing on the WebSphere Application Server
processes. Regardless of the topology you select, there are really only two
primary situations to consider when deciding which profiles you need to create:

� You plan to create a standalone server environment with one or more
standalone application servers. We will refer to this as a standalone server
environment.

� You plan to create a distributed server environment consisting of a
deployment manager and one or more nodes with application servers. We
refer to the application servers in this environment as managed servers.
These nodes can coexist or reside on different machines. We refer to this as a
distributed server environment.

The following topics will give the basic steps for each. You can extend this to suit
your own environment.

4.2.1 Standalone server environment
If you are creating a standalone application server, do the following:

1. Install your choice of Base, Express, or Network Deployment on the system.
2. Create an application server profile on that system.

4.2.2 Distributed server environment
There are two options for building this environment. The option you select
depends on your circumstance. If you are building a new production
environment from scratch, we would recommend method 1. Either method is fine
for a development or test environment.

 Chapter 4. Getting started with profiles 119

Method 1
This method assumes that you do not have a standalone application server to
federate, but instead will create application servers from the deployment
manager. This gives you a little more control over the characteristics of the
application server during creation. You can select a name for each server
because all application servers created with the application server profile are
named server1. You can also create an application server, customize it, and then
use it as a template for future application servers you create. If you are using
clustering, you can create the cluster and its application servers as one
administrative process.

When you create an application server this way, you do not automatically get the
sample applications, but can install them later if you want.

1. Install WebSphere Application Server Network Deployment on server. If this
is a multiple-machine install with deployment manager on one and
application servers on one or more separate machines, install the product on
each machine.

2. Create a deployment manager profile on the deployment manager machine
and start the deployment manager.

3. Create and federate a custom profile on the application server machine and
start the node. You can federate the node to the cell as part of the custom
profile wizard, or you can elect to do it manually as a second step.

4. Verify that the node agent is started. It should be started automatically as part
of the federation process.

5. Open the deployment manager’s administrative console, then create
application servers or clusters on the custom profile node from the
administrative console.

Method 2
This method assumes you will federate an application server profile to to the cell.
With the application server profile, you have an existing application server
(server1) and might have applications installed, including the sample
applications and any user applications you have installed.

Note: When defining multiple deployment managers or application servers on
a single machine, you need to ensure that the ports you select for each are
unique. For more information about ports, see Planning and Designing for
WebSphere Application Server V6, SG24-6446.

120 WebSphere Application Server V6: System Management and Configuration Handbook

1. Install WebSphere Application Server Network Deployment on the server. If
this is a multiple machine install (deployment manager on one and application
servers on one or more separate machines), install the product on each
machine.

2. Create a deployment manager profile on the deployment manager machine
and start the deployment manager.

3. Create an application server profile on the application server machine and
start the application server.

4. Open the deployment manager’s administrative console and add the node
defined by the application server profile to the cell.

This deletes the application server cell, and federates the node to the
deployment manager cell. If you want to keep applications that have been
installed on the server, be sure to specify this when you federate the node.

5. The new node agent is started automatically by the federation process, but
you need to start the application server manually.

4.3 Creating profiles
This section shows to create profiles using the Profile creation wizard.

The first steps are common, regardless of the type of profile you will create. You
can start the Profile creation wizard in one of the following ways:

1. From the Start menu in Windows only, select:

Start →Programs → IBM WebSphere → Application Server Network
Deployment v6 →Profile creation wizard

2. Use the platform-specific command in the <was_home>/bin/ProfileCreator
directory:

– Windows: pctWindows.exe
– AIX: pctAIX.bin

3. Check the box directly after installation from the install wizard to launch the
Profile creation wizard.

4. When you start the wizard, the first screen you see is the Welcome screen.
Click Next to select the type of profile you will create, as in Figure 4-4 on
page 122.

Silent install: You can also create profiles in silent mode using the wasprofile
command (see , “Creating a profile in silent mode” on page 153).

 Chapter 4. Getting started with profiles 121

Figure 4-4 Creating a profile: Profile type selection

The rest of the wizard varies, depending on the type of profile you are creating.
The steps to create each type of profile are discussed more in the following
sections.

Default profiles: As you create profiles, you will have the option of specifying
a default profile. This is the profile that commands are executed against if you
execute them from the <was_home>/bin directory and you do not specify the
-profileName argument. The default profile is the first profile that you create,
unless you subsequently specify another profile as the default.

122 WebSphere Application Server V6: System Management and Configuration Handbook

4.3.1 Creating a deployment manager profile
The following steps outline the process of creating a deployment manager.

1. Start the Profile creation wizard and click Next on the Welcome page.

2. Select the Create a deployment manager profile option. Click Next.

3. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files. See Figure 4-5. Click the box
if you want this to be the default profile for receiving commands. Click Next.

Figure 4-5 Creating a deployment manager profile: Enter a name

 First Steps: At the end of the Profile creation wizard you have the opportunity
to start the First Steps interface. This interface helps you start the deployment
manager or application server and has other useful links such as opening the
administrative console, migration help, starting the Profile creation wizard, and
installation verification.

Each profile you create has its own First Steps program located here:

<was_install>\profiles\<profile_name>\firststeps\firststeps.bat (.sh)

If you choose not to start the First Steps program at the completion of the
wizard, you can start it later from this location.

 Chapter 4. Getting started with profiles 123

4. In the next screen, enter a directory in which to store the profile or accept the
default. See Figure 4-6. Click Next.

Figure 4-6 Creating a deployment manager profile: Enter a profile directory

5. Enter the node, host, and cell names. These default based on the hostname
of your system. The wizard recognizes if there are existing cells and nodes in
the installation and takes this into account when creating the default names.
See Figure 4-7 on page 125.

124 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-7 Creating a deployment manager profile: Enter cell, host, and node names

Click Next.

6. The wizard presents a list of TCP/IP ports for use by the deployment
manager. If you already have existing profiles on the system, this is taken into
account when the wizard selects the port assignments. However, you should
verify that these ports will be unique on the system. See Figure 4-8 on
page 126.

 Chapter 4. Getting started with profiles 125

Figure 4-8 Creating a deployment manager profile: Select ports

7. On Windows systems, you have the option of running the deployment
manager as a service. This provides you a simple way of automatically
starting the deployment manager when the system starts. If you would like to
run the process as a Windows service, check the box and enter the values for
the logon and startup type. See Figure 4-9 on page 127,

Note two ports: You might want to note the following ports for later use:

� SOAP connector port: If you use the addNode command to federate a
node to this deployment manager, you need to know this port number. This
is also the port you connect to when using the wsadmin administration
scripting interface.

� Administrative console port: You need to know this port in order to access
the administrative console. When you turn on security, you need to know
the Administrative console secure port.

126 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-9 Creating a deployment manager profile: Run as a Windows service

Note that the panel lists the user rights the user ID you select needs to have.
If the user ID doesn’t have these rights, the wizard will automatically add
them.

Click Next.

8. Review the options you have chosen and click Next to create the profile. After
the wizard has finished, you will be presented with the screen in Figure 4-10
on page 128.

 Chapter 4. Getting started with profiles 127

Figure 4-10 Creating a deployment manager profile: Finish

This final screen indicates the success or failure of the profile creation. If you
have errors during the Profile creation wizard, check the log at:

<was_home>/logs/wasprofile/wasprofile_create_<profile_name>.log

You will also find logs for individual actions stored in:

<profile_home>/logs

9. Click Finish to close the wizard and start the First Steps application as in
Figure 4-11.

Figure 4-11 Deployment manager First Steps menu

128 WebSphere Application Server V6: System Management and Configuration Handbook

Check your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the directory structure and find the new profile. You will find it at
<was_home>/profiles/<profile_name>. In this book, we refer to it as
<profile_home>. This is where you find, among other things, the config
directory containing the deployment manager configuration files, the bin
directory for entering commands, and the logs directory where information is
recorded.

2. Verify the installation. You can do this directly from the First Steps menu. This
process starts the deployment manager and checks the log file for warnings
or errors on start. Messages are displayed on the First Steps window and
logged in the following places:

– <profile_home>/logs/dmgr/startServer.log
– <profile_home>/logs/dmgr/SystemOut.log

3. Open the administrative console, either by selecting the option in the First
Steps window, or by accessing its URL from a Web browser:

http://<dmgr_host>:<admin_console_port>/ibm/console

Here is a sample URL in the address bar:

http://localhost:9060/ibm/console/

The administrative console port of 9060 was selected during the Profile
creation wizard. See Figure 4-8 on page 126.

Click the Log in button. Because security is not active at this time, you do not
have to enter a user name. If you choose to enter a name, it can be any
name. It is used to track changes you make from the console.

4. Display the configuration from the console. You should be able to see the
following items from the administrative console:

a. Cell information, select System administration →Cell.

b. Deployment manager, select System administration →Deployment
manager

c. Deployment manager node, select System administration →Nodes

d. The default node group, select System administration →Node groups

Note that at the completion of this process you will not have:

a. A node agent

Node agents reside on nodes with managed application servers. You
won’t see node agents appear until you federate a node to the cell.

b. Application servers

 Chapter 4. Getting started with profiles 129

5. Stop the deployment manager. You can do this from the First Steps menu, or
better yet, use the stopManager command:

cd <profile_home>\bin
stopManager

On a Unix system, use the following command:

cd <profile_home>/bin
stopManager.sh

4.3.2 Creating an application server profile
An application server profile defines a new standalone application server. This
server can be run standalone or can be later federated to a deployment manager
cell for central management. This section takes you through the steps of creating
the application server profile.

1. Start the Profile creation wizard. Click Next on the Welcome page.

2. Select the Create an Application server profile option. Click Next.

3. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files. See Figure 4-12.

Click the box if you want this directory to be the default profile for receiving
commands. Click Next.

Figure 4-12 Creating an application server profile: Enter a name

Tip: In the same manner, you can use the startManager command to start
the deployment manager.

130 WebSphere Application Server V6: System Management and Configuration Handbook

4. In the next screen, enter a directory to store the profile in or accept the default
and click Next. See Figure 4-13.

Figure 4-13 Creating an application server profile: Enter a profile directory

5. Enter the new node name and the system host name. See Figure 4-14. The
node name will default based on the hostname of your system. The wizard
recognizes if there are existing nodes in the installation and takes this into
account when creating the default node name. Click Next.

Figure 4-14 Creating an application server profile: Enter host and node names

 Chapter 4. Getting started with profiles 131

6. The wizard will present a list of TCP/IP ports for use by the application server,
as in Figure 4-15. If you already have existing profiles on the system, this will
be taken into account when the wizard selects the port assignments, but you
should verify that these ports will be unique on the system.

Figure 4-15 Creating an application server profile: Select ports

Note: If you are planning to create multiple standalone application servers
for federation later to the same cell, make sure you select a unique node
name for each application server.

132 WebSphere Application Server V6: System Management and Configuration Handbook

7. On Windows systems, you have the option of running the application server
as a service. This provides you a simple way of automatically starting the
application server when the system starts. If you would like to run the process
as a Windows service, check the box and enter the values for the logon and
startup type, as in Figure 4-16.

Figure 4-16 Creating an application server profile: Run as a service

Note that the panel lists the user rights the user ID you select needs to have.
If the user ID does not have these rights, the wizard will automatically add
them.

Note two ports: You might want to note the following ports for later use.

� SOAP connector port: If you plan to federate this node to a deployment
manager later using the deployment manager administrator console, you
will need to know this port number. This is also the port you will connect to
when using the wsadmin administration scripting interface.

� Administrative console port: You will need to know this port in order to
access the administrative console. When you turn on security, you will
need to know the Administrative console secure port.

 Chapter 4. Getting started with profiles 133

Click Next.

8. Review the options you have chosen. and click Next to create the profile.
See Figure 4-17.

Figure 4-17 Creating a deployment manager profile: Finish

This final screen indicates the success or failure of the profile creation.

If you have errors during the Profile creation wizard, check the log at:

<was_home>/logs/wasprofile/wasprofile_create_<profile_name>.log

Note that you will have to click Finish on the screen to unlock the log.

You will also find logs for individual actions stored in:

<profile_home>/logs

9. Click Finish to close the wizard and start the First Steps application. See
Figure 4-18 on page 135.

134 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-18 Application server First Steps menu

Check your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the directory structure and find the new profile. You will find it at
<was_home>/profiles/<profile_name> . In this book, we refer to this directory
as <profile_home>). This is where you will find, among other things, the
config directory containing the application server configuration files, the bin
directory for entering commands, and the logs directory where information is
recorded.

2. Verify the installation. You can do this directly from the First Steps menu. This
process will start the application server and verify the proper operation of the
Web and EJB containers. Messages are displayed on the First Steps window
and logged in the following places:

– <profile_home>/logs/server1/startServer.log
– <profile_home>/logs/server1/SystemOut.log

3. Start the server. If you ran the installation verification, the server should
already be started. You can check using the following commands:

cd <profile_home>\bin
serverStatus -all

If the server status is not started, then start it from the First Steps menu or
with the following commands:

 Chapter 4. Getting started with profiles 135

cd <profile_home>\bin
startServer server1

4. Open the administrative console, either by selecting the option in the First
Steps window, or by accessing its URL from a Web browser:

http://<appserver_host>:<admin_console_port>/ibm/console

Here is a sample URL:

http://localhost:9061/ibm/console/

The administrative console port of 9061 was selected during the Profile
creation wizard (see Figure 4-15 on page 132).

Click the Log in button. Because security is not active at this time, you do not
have to enter a user name. If you choose to enter a name, it can be any
name. If you enter a name, it will be used to track changes you made to the
configuration.

5. Display the configuration from the console. See Figure 4-19. You should be
able to see the following items from the administrative console:

a. Application servers

Select Servers →Application servers. You should see server1. To see
the configuration of this server, click the name in the list.

Figure 4-19 Application server defined by the application server profile

b. Enterprise applications

136 WebSphere Application Server V6: System Management and Configuration Handbook

Select Applications →Enterprise Applications. See Figure 4-20. You
should see a list of applications. These are the WebSphere sample
applications.

Figure 4-20 Applications installed on server1

6. Stop the application server. You can do this from the First Steps menu, or
better yet, use the stopServer command:

cd <profile_home>\bin
stopServer server1

On a Unix system, use the following command:

cd <profile_home>/bin
stopServer.sh server1

Note: Although you cannot display the cell and node from the administrative
console, they do exist. You will see this later as you begin to configure
resources and choose a scope. You can also see them in the
<profile_home> /config directory structure.

 Chapter 4. Getting started with profiles 137

4.3.3 Creating a custom profile
A custom profile defines an empty node on a system. The purpose of this profile
is to define a node on a system to be federated to a cell for central management.

As you create the profile, you will have the option to federate the node to a cell
during the wizard, or to simply create the profile for later federation. Before you
can federate the custom profile to a cell, you will need to have a working a
deployment manager.

Note: With other profiles, you have the option of registering the processes as
Windows services. This doesn’t appear as an option when you create a custom
profile. If you want to register the node agent as a Windows service later, see
4.5.3, “Enabling process restart on failure” on page 157.

This section takes you through the steps of creating a custom profile.

1. Start the Profile creation wizard. Click Next on the Welcome page.

2. Select the Create a custom profile option. Click Next.

3. If you would like to federate, or add, the new node defined by the profile to a
cell as part of the wizard process, leave the Federate this node later box
unchecked and enter the host name and SOAP connector port (Figure 4-8 on
page 126) for the deployment manager. See Figure 4-21.

Figure 4-21 Creating a custom profile: Federate now or later

Note: If you choose to federate now, make sure the deployment manager
is started.

138 WebSphere Application Server V6: System Management and Configuration Handbook

4. Enter a unique name for the profile or accept the default. The profile name will
become the directory name for the profile files. See Figure 4-22.

Click the box if you want this to be the default profile for receiving commands.
Click Next.

Figure 4-22 Creating a custom profile: Enter a name

5. In the next screen, Figure 4-23, enter a directory in which to store the profile
or accept the default and click Next.

Figure 4-23 Creating a custom profile: Enter a profile directory

 Chapter 4. Getting started with profiles 139

6. Enter the new node name and the system host name. See Figure 4-24. The
node name defaults based on the hostname of your system. The wizard
recognizes if there are existing nodes in the installation and takes this into
account when creating the default node name. Click Next.

Figure 4-24 Creating a custom profile: Enter host, and node names

7. The wizard presents a list of TCP/IP ports for use by the node agent for this
node. If you already have existing profiles on the system, this is taken into
account when the wizard selects the port assignments. However, you should
verify that these ports are unique on the system. See Figure 4-25 on
page 141.

140 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-25 Creating a custom profile: Select ports

8. Review the options you have chosen. See Figure 4-26.

Figure 4-26 Creating a custom profile: Summary

Note: If you did not choose to federate the new node as part of this wizard,
you will not see this panel.

 Chapter 4. Getting started with profiles 141

Click Next to create the profile.

9. After the wizard has finished, you will be presented with a screen containing
messages indicating the success or failure of the process. See Figure 4-27.

Figure 4-27 Creating a custom profile: Finish and launch First Steps

If you have errors during the Profile creation wizard, check the log at:

<was_home>/logs/wasprofile/wasprofile_create_<profile_name>.log

Note that you will have to click Finish on the screen to unlock the log.

You will also find logs for individual actions stored in:

<profile_home>/logs

10.Click Finish to close the wizard and start the First Steps application. See
Figure 4-28 on page 143.

142 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-28 Custom profile First Steps window

Checking your results
If the creation was successful, do the following to familiarize yourself with the
profile and how to use it:

1. View the directory structure and find the new profile. You will find it at
<was_home>/profiles/<profile_name>. In this book we refer to it as
<profile_home>. This is where you will find, among other things, the config
directory containing the node configuration files.

2. If you federated the custom profile, open the deployment manager
administrative console and view the node and node agent:

– Select System Administration →Nodes. You should see the new node.

– Select System Administration →Node agents. You should see the new
node agent.

– Select System Administration →Cells. Click the Topology tab and
expand the view. From here, you can see a tree diagram of the cell, as in
Figure 4-29 on page 144.

 Chapter 4. Getting started with profiles 143

Figure 4-29 Topology view of the cell

3. The federation process creates a node agent for the new node, federate it to
the cell, and start the node agent.

You can stop the new node agent from the console or with the following
commands on the node system:

cd <profile_home>\bin
stopNode

While you can restart a node agent from the administrative console, you
cannot start a node that has been stopped. To start the new node agent, use
the following commands on the node system.

cd <profile_home>\bin
startNode

If you have not federated the node, you will not be able to start it yet. Proceed
to the next section, 4.3.4, “Federating a custom node to a cell” on page 145.
Otherwise, you can continue by defining an application server on the new
node. To do this, see 4.3.5, “Creating a new application server on an existing
node” on page 146.

144 WebSphere Application Server V6: System Management and Configuration Handbook

4.3.4 Federating a custom node to a cell

An unfederated custom profile defines a node that can be added to a cell. To
federate a custom node to the cell do the following:

1. Start the deployment manager.

2. Open a command window on the system where you created the custom
profile for the new node. Switch to the <profile_home>/bin directory by typing
the following:

cd websphere\appserver\profiles\customprof1\bin

3. Run the addNode command. Here you need the host name of the deployment
manager and the SOAP connector address (see Figure 4-7 on page 125 and
Figure 4-8 on page 126).

addNode <dmgrhost> <dmgr_soap_port>

See Example 4-1 for sample output.

Example 4-1 Federating a custom profile to a cell

C:\WebSphere\AppServer\profiles\CustomFedLater\bin>addnode carlavm2 8879
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\CustomFedLater\logs\addNode.log
ADMU0128I: Starting tool with the CustomFedLater profile
ADMU0001I: Begin federation of node CustomFedLaterNode with Deployment Manager
at carlavm2:8879.
ADMU0009I: Successfully connected to Deployment Manager Server: carlavm2:8879
ADMU0507I: No servers found in configuration under:

C:\WebSphere\AppServer/profiles/CustomFedLater\config/cells/CARLAVM2C
ell/nodes/CustomFedLaterNode/servers
ADMU2010I: Stopping all server processes for node CustomFedLaterNode
ADMU0507I: No servers found in configuration under:

C:\WebSphere\AppServer/profiles/CustomFedLater\config/cells/CARLAVM2C
ell/nodes/CustomFedLaterNode/servers
ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: CustomFedLaterNode
ADMU0014I: Adding node CustomFedLaterNode configuration to cell: DmgrCell
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: CustomFedLaterNode
ADMU0020I: Reading configuration for Node Agent process: nodeagent

Note: You only have to do this if you created a custom profile and chose not to
federate it at the time. This requires that you have a deployment manager
profile and that the deployment manager is up and running.

 Chapter 4. Getting started with profiles 145

ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 1880
ADMU9990I: ADMU0300I: Congratulations! Your node CustomFedLaterNode has been
successfully incorporated into the DmgrCell cell.
ADMU9990I: ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone CARLAVM2Cell
 configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the DmgrCell Deployment Manager with
 values from the old cell-level documents.
ADMU9990I: ADMU0306I: Be aware:
ADMU0304I: Because -includeapps was not specified, applications installed on
 the standalone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the DmgrCell cell using wsadmin $AdminApp
or the Administrative Console.
ADMU9990I:

4. Open the deployment manager administrative console and view the node
and node agent:

– Select System Administration →Nodes. You should see the new node.

– Select System Administration →Node agents. You should see the new
node agent and its status. It should be started. If not, check the status from
a command window on the custom node system:

cd <profile_home>\bin
serverStatus -all

If you find that it is not started, start it with this command:

cd <profile_home>\bin
startNode

4.3.5 Creating a new application server on an existing node
The custom profile does not automatically give you an application server. You
can follow these steps to create a new server once the custom profile has been
federated to a cell.

Note: This topic outlines the procedure to create and start an application
server. For detailed information about creating and customizing application
servers, see 5.4, “Working with application servers” on page 190.

If you plan to use clustering, you can create application servers when you
create the cluster. For information about working with clusters, see 5.6,
“Working with clusters” on page 235.

146 WebSphere Application Server V6: System Management and Configuration Handbook

1. Ensure the custom profile node agent is started.
2. Open the deployment manager administrative console.
3. Select Servers →Application Servers
4. Click New. See Figure 4-30.
5. Select the custom profile node and enter a server name. Click Next.

Figure 4-30 Creating a new server: Enter a node and name

6. Select a template to use as a basis for the new application server
configuration. If you haven’t previously set up a template based on an existing
application server, select the default template. Click Next. See Figure 4-31.

Figure 4-31 Creating a new server: Select a template

7. Each application server on a node must have unique ports assigned. The
next screen gives you the option of having unique ports generated for this
application server, as opposed to the default set. Click Next. See Figure 4-32
on page 148.

 Chapter 4. Getting started with profiles 147

Figure 4-32 Creating a new server: Generate unique ports

8. The last screen summarizes your choices. See Figure 4-33. Click Finish to
create the profile.

Figure 4-33 Creating a new server: Summary and finish

9. In the messages box, click save to save the changes to the master
configuration.

10.Start the application server from the administrative console.

– Select Servers →Application Servers.

– Check the box to the left of the server and click Start.

148 WebSphere Application Server V6: System Management and Configuration Handbook

4.3.6 Federating an application server profile to a cell
If you created an application server profile and now want to add the node and
server to the cell, do the following:

1. Start the application server.

2. Start the deployment manager.

3. Open the deployment manager administrative console.

4. Select System Administration →Nodes

5. Click Add Node.

6. Select Managed node and click Next. See Figure 4-35 on page 150.

7. Enter the host name and SOAP connector port specified when you created
the application server profile. See Figure 4-14 on page 131 and Figure 4-15
on page 132.

If you want to keep the sample applications and any other applications you
have installed, check the Include applications box. If this is a newly created
application server profile, it will contain the sample applications so be sure to
check this box if you want to keep the samples.

If you have created a service integration bus on the server, you can opt to
have it included in the managed server as well. By default, you do not have a
service integration bus in a newly created application profile. If you have
created a bus, and choose to include it, the name must be unique in the cell.

Note: WebSphere Application Server provides sample applications that you
can use to familiarize yourself with WebSphere applications. These samples
are installed automatically when you create an application server profile. If you
create an application server from the administrative tools, you will not get the
samples installed automatically. For information about the samples available
and how to install them, see the Accessing the Samples topic under Learn
about WebSphere Applications in the Information Center.

 Chapter 4. Getting started with profiles 149

Figure 4-34 Adding a standalone application profile to a cell

Click OK.

8. If the node is a Windows node, in Figure 4-35 you have the opportunity to
register the new node agent as a Windows service. Make your selection and
click OK.

Figure 4-35 Run a node agent as a Windows service

The federation process stops the application server. It creates a new node
agent for the node, adds the node to the cell. The application server
becomes a managed server in the cell. It then starts the node agent, but not
the server.

150 WebSphere Application Server V6: System Management and Configuration Handbook

9. You can now display the new node, node agent and application server from
the console. You can also start the server from the console.

At the completion of the process:

� The profile directory for the application server still exists and is used for the
application server.

� The old cell name for the application server has been replaced with a profile
directory with the cell name of the deployment manager.

<profile_home>/config/cells/<dmgr_cellname>/

� A new entry in the deployment manager profile directory has been added for
the new node.

<dmgr_profile_home>/config/cells/<dmgr_cellname>/nodes/<federated node>

� An entry for each node in the cell is added to the application server profile
configuration. Each node entry contains the serverindex.xml file for the node.

<profile_home>/config/cells/<dmgr_cellname>/nodes/<federated node>

In turn, an entry for the new node is added to the nodes directory for each
node in the cell with a serverindex.xml entry for the new node.

4.4 Creating profiles manually
Each profile you create is registered in a profile registry:

<was_home>/properties/profileRegistry.xml

You have already seen how profiles are created with the Profile creation wizard.
At the heart of this wizard is the wasprofile command, also known as the profile
creation tool. This command provides you the means to do normal maintenance
activities for profiles. For example, you can call this command to create profiles
natively or silently, list profiles, delete profiles, validate the profile registry, and
other functions.

4.4.1 Using the wasprofile command
The wasprofile command can be found in the <was_home>/bin directory.

Syntax
Use the following syntax for the wasprofile command:

� For Windows use wasprofile -mode -arguments
� For Unix use wasprofile.sh -mode -arguments

 Chapter 4. Getting started with profiles 151

The following modes in Table 4-1 are available:

Table 4-1 wasprofile modes

The following two examples show the results of wasprofile -<mode> - help and
wasprofile -listProfiles modes:

� Enter wasprofile -<mode> -help for detailed help on each mode. See
Example 4-2, for an example of the wasprofile -create -help command.

Example 4-2 Getting help for the wasprofile command

C:\WebSphere\AppServer\bin>wasprofile -create -help
The following command line arguments are required for this mode.
Command line arguments are case sensitive.
-create: Creates a new profile.
-profileName: The name of the profile.
-profilePath: The intended location of the profile in the file system.
-templatePath: The location of the profile template in the file system.
-nodeName: The node name of the profile. The name must be unique within its
cell.

Mode Use

-create: Create a new profile

-augment Augments the given profile using the given profile template.

-delete Delete a profile

-unaugment: Unaugments the profile

-deleteAll Deletes all registered profiles

-listProfile List the profiles in the profile registry.

-register Registers the profile in the registry

-unregister Removes the profile from the registry

-getName Returns the name of the profile at the path specified.

-getPath Returns the path of the profile name specified.

-validateRegistry Validates the profile registry and returns a list of profiles
that are not valid.

-validateAndUpdateRegistry Validates the profile registry and lists the non-valid profiles that it purges.

-help Lists the valid modes for the wasprofile command.

152 WebSphere Application Server V6: System Management and Configuration Handbook

-cellName: The cell name of the profile. The cell name must be unique for each
profile.
-hostName: The host name of the profile.

C:\WebSphere\AppServer\bin>

� Enter wasprofile -listProfiles to see a list of the profiles in the registry.
The following is a sample output of -listProfiles:

C:\WebSphere\AppServer\bin>wasprofile -listProfiles
[Dmgr01, AppSrv01, Custom01, Custom02, Dmgr02]

4.4.2 Creating a profile
You can use the wasprofile command to create profiles instead of using the
Profile creation wizard.

For example, Example 4-3 shows the commands used to create an application
server named saserver1 on node sanodel in cell sacell1 on host
carlavm2.itso.ibm.com® from the command line.

Example 4-3 Creating a profile with the wasprofile command

cd websphere\appserver\bin

wasprofile -create -profileName saserver1 -profilePath
c:\websphere\appserver\profiles\saserver1 -templatePath
c:\websphere\appserver\profileTemplates\default -nodeName sanode1 -cellName
sacell1 -hostName carlavm2.itso.ibm.com

Creating a profile in silent mode
Profiles can also be created in silent mode using a response file. The command
to use is:

Profile templates: The profiles are created based on templates supplied with
the product. These templates are located in <was_home>/profileTemplates.
Each template consists of a set of files that provide the initial settings for the
profile and a list of actions to perform after the profile is created. Currently,
there is no provision for modifying these templates for your use, or for creating
new templates. When you create a profile using wasprofile, you will need to
specify one of the following templates:

� default (for application server profiles)
� dmgr (for deployment manager profiles)
� managed (for custom nodes)

 Chapter 4. Getting started with profiles 153

<profile_creation_tool> -options <response_file> -silent

In this example, <profile_creation_tool> is the command required to start the
Profile creation wizard. The command to start the wizard is platform-specific and
is located in <was_home>/bin/ProfileCreator. Choose your platform command
from Table 4-2.

Table 4-2 Platform-specific creation wizard

Sample response files are stored in the <was_home>/bin/profileCreator
directory.

4.5 Managing the processes
In a standalone server environment, you only have one process, the application
server, so it is clear how to stop and start the environment. But, when starting or
stopping a distributed server environment, it helps to do this in an orderly
manner. In some cases that we point out, the order is necessary. In others, it
simply makes good administrative sense.

4.5.1 Starting a distributed server environment
An orderly procedure for starting a distributed server environment involves the
following steps:

1. On the deployment manager machine:

Platform Profile creation wizard command

AIX pctAIX.bin

HP UX pctHPUX.bin

HP UX 64-bit pctHPUXIA64.bin

Linux pctLinux.bin

Linux 64-bit pct.bin

Linux Power pctLinuxPPC.bin

S/390® pctLinux390.bin

Solaris pctSolaris.bin

Windows pctWindows.exe

Windows 64-bit platforms: pctWindowsIA64.exe

154 WebSphere Application Server V6: System Management and Configuration Handbook

a. Change the directory to the <profile_home>/bin directory of the Network
Deployment installation.

b. Use the startManager command to start the deployment manager.

If you are successful, you will see the process ID for the deployment
manager process displayed on the window. See Example 4-4.

Example 4-4 Starting the deployment manager from the command line

C:\WebSphere\AppServer\profiles\Dmgr01\bin>startmanager
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Dmgr01\logs\dmgr\startServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server dmgr open for e-business; process id is 1120

If there are any errors, check the log file for the dmgr process:

<profile_home>/logs/dmgr/SystemOut.log

2. On each node, do the following:

a. Change directory to the <profile_home>/bin directory for the application
server on that node.

b. Run the startNode command.

If successful, the node agent server process ID will be displayed on the
window, as shown in Figure 4-36. If there are any errors, check the log file for
the node agent process by typing this command:

<profile_home>/logs/nodeagent/SystemOut.log

Figure 4-36 Starting and stopping the node agent from the command line

 Chapter 4. Getting started with profiles 155

c. Use the startServer command to start each of the application server
processes on the node.

d. Check the node status by running the serverStatus -all command.

3. Repeat step 2 on page 155, for each and every node associated with this
deployment manager.

4.5.2 Stopping the distributed server environment
The following is a logical sequence of steps to follow to stop a distributed server
environment:

1. On each node agent machine:

a. Use the stopServer command to stop each of the application server
processes on the node.

b. Use the stopNode command to stop the node agent process.

i. Change directory to the <profile_home>/bin directory for the
application server on that node.

ii. Run the stopNode command.

If successful, the message Server <node_agent> stop completed is
displayed on the console, as shown in Figure 4-36 on page 155.

If there are any errors check the log file for the node agent process:

<profile_home>/logs/dmgr/SystemOut.log

c. Check the node status by running the serverStatus -all command.

2. Repeat step 2 on page 155 for each and every node associated with this
deployment manager.

3. On the deployment manager machine:

a. Change directory to the <profile_home>/bin directory of the deployment
manager.

b. Use the stopManager command to stop the deployment manager (dmgr)
process.

If the procedure is successful, you will see Server dmgr stop completed, as
shown in Figure 4-36 on page 155.

If there are any errors, check the log file for the dmgr process:

<profile_home>/logs/dmgr/SystemOut.log

Note: Stopping the deployment manager does not stop any node agents.

156 WebSphere Application Server V6: System Management and Configuration Handbook

4.5.3 Enabling process restart on failure
WebSphere Application Server does not have either:

� A nanny process to monitor whether the AdminServer process is running, and
restart it if the process has failed

� An AdminServer process to monitor whether each application server process
is running, and restart it if the process has failed

Instead, WebSphere Application Server uses the native operating system
functionality to restart a failed process. Refer to the section which discusses
your operating system, Windows or “UNIX and Linux” on page 160.

Windows
The administrator can choose to register one or more of the WebSphere
Application Server processes on a machine as a Windows service using the
WASService command. With this command, Windows then automatically
attempt to restart the service if it fails.

Syntax
Enter WASService.exe with no arguments to get a list the valid formats:

Example 4-5 WASService command format

Usage: WASService.exe (with no arguments starts the service)
 || -add <service name>
 -serverName <Server>
 -profilePath <Server's Profile Directory>
 [-wasHome <Websphere Install Directory>]
 [-configRoot <Config Repository Directory>]
 [-startArgs <additional start arguments>]
 [-stopArgs <additional stop arguments>]
 [-userid <execution id> -password <password>]
 [-logFile <service log file>]
 [-logRoot <server's log directory>]
 [-encodeParams]
 [-restart <true | false>]
 [-startType <automatic | manual | disabled>]
 || -remove <service name>
 || -start <service name> [optional startServer.bat parameters]
 || -stop <service name> [optional stopServer.bat parameters]
 || -status <service name>
 || -encodeParams <service name>

 Chapter 4. Getting started with profiles 157

Be aware of the following when using the WASService command:

� When adding a new service, the -serverName argument is mandatory. The
serverName is the process name. If in doubt, use the serverstatus -all
command to display the processes. For a deployment manager, the
serverName is dmgr, for a node agent it is nodeagent, and for a server, it is the
server name.

� The -profilePath argument is mandatory. It specifies the home directory for
the profile.

� Use unique service names. The services are listed in the Windows Services
control panel as:

IBM WebSphere Application Server V6 - <service name>

The convention used by the Profile creation wizard is to use the node name
as the service name for a node agent. For a deployment manager, it uses the
node name of the deployment manager node concatenated with dmgr as the
service name.

Examples
Example 4-6 shows using the WASService command to add the deployment
manager as a Windows service and sample successful output.

Example 4-6 Registering a deployment manager as a Windows service

C:\WebSphere\AppServer\bin>WASService -add "Deployment Mgr" -serverName dmgr
-profilePath "C:\WebSphere\AppServer\profiles\DMGR01 -restart true

Adding Service: Deployment Mgr
 Config Root: C:\WebSphere\AppServer\profiles\DMGR01 -restart true\config
 Server Name: dmgr
 Profile Path: C:\WebSphere\AppServer\profiles\DMGR01 -restart true
 Was Home: C:\WebSphere\AppServer\
 Start Args:
 Restart: 1
IBM WebSphere Application Server V6 - Deployment Mgr service successfully
added.

Note that the service name added in Figure 4-37 on page 159 will be IBM
WebSphere Application Server V6 - concatenated with the name you specified
for the service name.

158 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 4-37 New service

If you remove the service using the WASService -remove command, specify only
the latter portion of the name, as in Example 4-7.

Example 4-7 Removing a service

C:\WebSphere\AppServer\bin>WASService -remove "Deployment Mgr"

Remove Service: Deployment Mgr
Successfully removed service

The commands shown in Example 4-8 are used on a WebSphere Application
Server node to add the node agent and a server as Windows services.

Example 4-8 Registering WebSphere processes as Windows services

C:\WebSphere\AppServer\bin>WASService -add CustomNode -serverName nodeagent
-profilePath "C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true

Adding Service: CustomNode
 Config Root: C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true\config
 Server Name: nodeagent
 Profile Path: C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true
 Was Home: C:\WebSphere\AppServer\
 Start Args:
 Restart: 1
IBM WebSphere Application Server V6 - CustomNode service successfully added.

C:\WebSphere\AppServer\bin>WASService -add "Cserver1" -serverName Cserver1
-proflePath "C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true

 Chapter 4. Getting started with profiles 159

dding Service: Cserver1
 Config Root: C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true\config
 Server Name: Cserver1
 Profile Path: C:\WebSphere\AppServer\profiles\CUSTOM01 -restart true
 Was Home: C:\WebSphere\AppServer\
 Start Args:
 Restart: 1
BM WebSphere Application Server V6 - Cserver1 service successfully
added.

UNIX and Linux
The administrator can choose to include entries in inittab for one or more of the
WebSphere Application Server V6 processes on a machine, as shown in
Example 4-9. Each such process will then be automatically restarted if it has
failed.

Example 4-9 Inittab contents for process restart

On deployment manager machine:
ws1:23:respawn:/usr/WebSphere/DeploymentManager/bin/startManager.sh

On node machine:
ws1:23:respawn:/usr/WebSphere/AppServer/bin/startNode.sh
ws2:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server1
ws3:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server2
ws4:23:respawn:/usr/WebSphere/AppServer/bin/startServer.sh nodename_server2

Note: When setting the action for startServer.sh to respawn in /etc/inittab, be
aware that init will always restart the process, even if you intended for it to
remain stopped. As an alternative, you can use the rc.was script located in
${WAS_HOME}/bin, which allows you to limit the number of retries.

The best solution, is to use a monitoring product that implements notification
of outages and logic for automatic restart.

160 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 5. Administration basics

In this chapter, we introduce the WebSphere administrative console, command
line administration, and some basic administration tasks.

The topics we cover include:

� 5.1, “Introducing the WebSphere administrative console” on page 162
� 5.2, “Securing the administrative console” on page 182
� 5.3, “Working with the deployment manager” on page 183
� 5.4, “Working with application servers” on page 190
� 5.5, “Working with nodes” on page 217
� 5.6, “Working with clusters” on page 235
� 5.7, “Working with virtual hosts” on page 239
� 5.8, “Managing applications” on page 242
� 5.9, “Managing your configuration files” on page 258

This IBM Redbook does not cover high availability, performance, scalability, or
the settings related to these topics. This includes dynamic caching, performance
monitoring, failover settings, and others. As you go through this chapter, keep in
mind that more information about these topics and settings can be found in the
following publications:

� WebSphere Application Server V6: High Availability Solutions, REDP-3971

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

5

© Copyright IBM Corp. 2005. All rights reserved. 161

5.1 Introducing the WebSphere administrative console
The WebSphere administrative console is the graphical, Web-based tool that you
use to configure and manage an entire WebSphere cell. It supports the full range
of product administrative activities, such as creating and managing resources,
applications, viewing product messages, and so on. The configuration data is
stored as a set of XML documents arranged in a set of cascading directories
under <profile_home>/config directory for each profile.

In a single server installation, the administrative console is located on the
application server and can be used to configure and manage the resources of
that server only.

In a multi-server environment with Network Deployment, the administrative
console is located in the deployment manager server, dmgr. In this case, the
administrative console provides centralized administration of multiple nodes, and
nodes on multiple machines. Configuration changes are made to the master
repository XML configuration files and pushed to the local XML repositories on
the nodes by the deployment manager. In order for the administrative console to
run, the dmgr server must be running. In order for the changes to the master
repository to be pushed to the nodes, the node agents must also be running in
the nodes where the WebSphere Application Server instances are installed.

In WebSphere Application Server V6, the administrative console groups
administrative tasks into the following categories:

� Servers
� Applications
� Resources
� Security
� Environment
� System administration
� Monitoring and tuning
� Troubleshooting
� Service integration
� UDDI

5.1.1 Starting the administrative console
The way you access the administrative console is the same whether you have a
standalone server environment or a distributed server environment. However,
the location and how you start the necessary processes will vary.

162 WebSphere Application Server V6: System Management and Configuration Handbook

Standalone server environment
In a single application server installation, the console is hosted on the application
server so you must start it in order to reach the console.

To access the administrative console, do the following:

1. Make sure that application server, server1, is running by using this command:

– Windows: <profile_home>\bin\serverStatus -all
– UNIX: <profile_home>/bin/serverStatus.sh -all

2. If the status of server1 is not STARTED, start it with the following command:

– On Windows: <profile_home>\bin\startServer server1
– On UNIX: <profile_home>/bin/startServer.sh server1

3. Open a Web browser to the URL of the administrative console. The default
port is 9060 for HTTP and 9043 for HTTPS. This port can vary, depending on
the ports you specified when you created the application server profile.

– http://<hostname>:9060/admin
– https://<hostname>:9043/admin

<hostname> is your host name for the machine running the application server.

4. The administrative console loads and you are asked to log in.

Distributed server environment
If you are working with a deployment manager and its managed nodes, the
console is hosted on the deployment manager. You must start it in order to use
the console. To access the administrative console, do the following:

1. Make sure that deployment manager, dmgr, is running by using this
command:

– Windows: <dmgr_profile_home>\bin\serverStatus -all
– UNIX: <dmgr_profile_home>/bin/serverStatus.sh -all

2. If the dmgr status is not STARTED, start it with the following command:

– On Windows: <dmgr_profile_home>\bin\startManager
– On UNIX: <dmgr_profile_home>/bin/startManager.sh

3. Open a Web browser to the URL of the administrative console. The default
port is 9060 for HTTP and 9043 for HTTPS.

– http://<hostname>:9060/admin
– https://<hostname>:9043/admin

<hostname> is your host name for the machine running the deployment
manager process, dmgr.

4. The administrative console loads and you are prompted for your user ID and
password.

 Chapter 5. Administration basics 163

5.1.2 Logging in to the administrative console
The user ID specified during login is used to track configuration changes made
by the user. This allows you to recover from unsaved session changes made
under the same user ID, for example when a session times out or the user closes
the Web browser without saving. The user ID for login depends on whether
WebSphere global security is enabled.

� WebSphere global security is not enabled.

If global security is not enabled, you can enter any user ID, valid or not to log
in to the administrative console. The user ID is used to track changes to the
configuration, but is not authenticated. You can also simply leave the User ID
field blank and click the Log In button.

� WebSphere global security is enabled.

If global security is enabled, you must enter a valid user ID and password.

A user ID must be unique to the deployment manager. If you enter an ID that is
already in use and in session, you will receive the message Another user is
currently logged with the same User ID and you will be prompted to do one
of the following:

� Force the existing user ID out of session. You will be allowed to recover
changes that were made in the other user’s session.

� Wait for the existing user ID to log out or time out of the session.

� Specify a different user ID.

Recovering from an interrupted session
Until you save the configuration changes you make during a session, the
changes do not become effective. If a session is closed without saving the
configuration changes made during the session, these changes are remembered
and you are given the chance to pick up where you left off.

When unsaved changes for the user ID exist during login, you are prompted to
do one of the following:

Note: Logging in without an ID is not a good idea if you have multiple
administrators.

Note: The message Another user is currently logged with the same User
ID appears if a previous session ended without a logout. If the user closed a
Web browser during a session and did not logout first or if the session timed
out, for example.

164 WebSphere Application Server V6: System Management and Configuration Handbook

� Work with the master configuration

Selecting this option specifies that you want to use the last saved
administrative configuration. Changes made to the user's session since the
last saving of the administrative configuration will be lost.

� Recover changes made in a prior session

Selecting this option specifies that you want to use the same administrative
configuration last used for the user's session. Recovers all changes made by
the user since the last saving of the administrative configuration for the user's
session.

As you work with the configuration, the original configuration file and the new
configuration file are stored in a folder at:

<profile_home>/wstemp

Once you save the changes, these files are removed from the wstemp folder.

Each user who logs in has a folder created in wstemp. Even when there are no
unsaved changes, the folder will contain a preferences.xml file with the user
preference settings.

For information about how to change the default location refer to the Changing
the location of temporary workspace files topic in the Information Center.

5.1.3 Changing the administrative console session timeout
You might want to change the session timeout for the administrative console
application. This is the time it takes for the console session to time out after a
period of idleness. The default is 30 minutes. To change the session timeout
value, do the following:

1. Edit the <was_home>/systemApps/adminconsole.ear/deployment.xml file in a
text editor.

a. Locate the xml statement, as shown in Example 5-1:

Example 5-1 InvalidationTimeout statement

<tuningParams xmi:id="TuningParams_1088453565469"
maxInMemorySessionCount="1000" allowOverflow="true"
writeFrequency="TIME_BASED_WRITE" writeInterval="10"
writeContents="ONLY_UPDATED_ATTRIBUTES" invalidationTimeout="30">

b. Change the invalidationTimeout value to the desired session timeout and
save the file

2. Restart the console.

 Chapter 5. Administration basics 165

5.1.4 The graphical interface
The WebSphere administrative console has the following main areas:

� Taskbar
� Navigation tree
� Workspace, including the messages and help display areas.

Each area can be resized as desired.See Figure 5-1.

Figure 5-1 The administrative console graphical interface

Taskbar
The taskbar is the horizontal bar near the top of the console. The task bar
provides the following actions:

� Welcome displays the administrative console home page. It contains links to
information sources.

� Logout logs you out of the administrative console session and displays the
Login page. If you have changed the administrative configuration since last

Task Bar

Messages

Workspace

Navigation Tree

Help area

166 WebSphere Application Server V6: System Management and Configuration Handbook

saving the configuration to the master repository, the Save page displays
before returning you to the Login page. Click Save to save the changes,
Discard to return to the administrative console, or Logout to exit the session
without saving changes.

� Support takes you to a page with links to support sites. It also contains a link
to download the IBM Support Assistant.

� Help opens a new Web browser with detailed online help for the
administrative console. This is not part of the Information Center.

The task bar display is controlled with the Show banner setting in the console
preferences. See “Setting console preferences” on page 168.

Navigation tree
The navigation tree on the left side of the console offers links for you to view,
select, and manage components.

Clicking a + beside a tree folder or item expands the tree for the folder or item.
Clicking a - collapses the tree for the folder or item. Double-clicking an item
toggles its state between expanded and collapsed.

The content displayed on the right side of the console, the workspace, depends
on the folder or item selected in the tree view.

The following folders are provided for selection:

Table 5-1 Navigation tree options

Navigation
tree option

Description Standalone Deployment
Manager

Servers Enables configuration of application servers, clusters,
and external servers

Limited Yes

Applications Enables installation and management of applications Yes Yes

Resources Enables configuration of resources including JMS
providers, asynchronous beans, caching, mail
providers, URL providers, and others

Yes Yes

Security Enables configuration and management of
WebSphere security, SSL, and Web services security.

Limited Yes

Environment Enables configuration of hosts, replication domains,
environment variables, naming, and others.

Yes Yes

System
Administration

Enables configuration and management of
nodes, cells, console settings. This is also where
you save configuration changes.

Limited Yes

 Chapter 5. Administration basics 167

Workspace
The workspace, on the right side of the console in Figure 5-1 on page 166,
allows you to work with your administrative configuration after selecting an item
from the console navigation tree.

When you click a folder in the tree view, the workspace lists information about
instances of that folder type, the collection page. For example, selecting Servers
→Application Servers shows all the application servers configured in this cell.
Selecting an item, an application server in this example, displays the detail page
for that item. The detail page can contain multiple tabs. For example, you might
have a Runtime tab for displaying the runtime status of the item, and a
Configuration tab for viewing and changing the configuration of the displayed
item.

Messages are displayed at the top of the workspace, while help information is
displayed to the right.

The display of help information can be controlled with the Show Descriptions
console preference setting.

Setting console preferences
The look of the administrative console can be altered by setting console
preferences. See Figure 5-2 on page 178.

Monitoring and
Tuning

Enables you to work with the Performance Monitor
Infrastructure (PMI), request metrics, and the Tivoli
Performance Viewer.

Yes Yes

Troubleshootin
g

Enables you to check for and track configuration
errors and problems. This section contains messages
resulting from configuration changes and the runtime
messages.

Yes Yes

Service
Integration

Enables you to work with the service integration bus. Yes Yes

UDDI Allows you to work with the private UDDI registry
functions.

Yes Yes

Navigation
tree option

Description Standalone Deployment
Manager

168 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-2 Administrative console preferences

To set console preferences, select System Administration →Console
settings →Preferences in the navigation tree. You have the following options:

� Turn on WorkSpace Auto-Refresh specifies that the view automatically
refreshes after a configuration change. If it is not selected, you must reaccess
the page to see the changes.

� No Confirmation on Workspace Discard specifies that a confirmation
window be displayed if you elect to discard the workspace. For example, if
you have unsaved changes and logout of the console, you will be asked
whether you want to save or discard the changes. If this option is not selected
and you elect to discard your changes, you will be asked to confirm the
discard action.

� Use default scope (Admin console node) sets the default scope to the
node of the administration console.

� Show banner displays the task bar at the top of the console.

� Show descriptions displays help information in the right-hand portion of the
workspace.

Click the boxes to select which preferences you want to enable and click Apply.

5.1.5 Finding an item in the console
To locate and display items within a cell, do the following:

1. Select the associated task from the navigation tree. For example to locate an
application server, select Servers →Application Servers.

2. Set the scope to define which processes have access to the resource.

 Chapter 5. Administration basics 169

3. Set the preferences to specify how you would like information to be displayed
on the page.

Select task
The navigation tree on the left side of the console contains links to console pages
that you use to create and manage components in a WebSphere administrative
cell. To create a JDBC provider, for example, expand Resources and then select
the JDBC Providers action. See Figure 5-3.

Figure 5-3 Working with the administrative console

170 WebSphere Application Server V6: System Management and Configuration Handbook

Select a scope
After selecting an action, use the scope settings to define what information is
displayed. Not all actions will require a scope setting. See Figure 5-4.

Figure 5-4 Setting scope

Configuration information is defined at the following levels: cell, cluster, node,
server, and application. The scope determines which applications or application
servers will see and use that configuration.

Configuration information is stored in the repository directory that corresponds to
the scope. For example, if you scope a resource at the node level, the
configuration information for that resource is in
<profile_home>/config/cells/<cell>/nodes/<node>/resources.xml. If you scoped
that same resource at the cell level, the configuration information for that
resource is in <profile_home>/config/cells/<cell>/resources.xml.

The following lists the scopes in overriding sequence. Because you see
application scope first, anything defined at this scope overrides any conflicting
configuration you might find in the higher level scopes.

1. Resources and variables scoped at the application level apply only to that
application. The application scope is not an option on the administration
console. Resources and variables are scoped at the application level by
defining them in an enhanced EAR.

2. Resources scoped at the server level apply only to that server. If a server is
specified, the scope is set to that server. Shared libraries configured in an
enhance EAR are automatically scoped at the server level.

3. Resources scoped at the node level apply to all servers on the node. If a node
is specified but the server field is empty, the scope is set to that node.

 Chapter 5. Administration basics 171

4. Resources scoped at the cluster level apply to all application servers in the
cluster. New cluster members automatically have access to resources scoped
at this level. If you don’t have any clusters defined, you will not see this
option.

5. Resources scoped at the cell level apply to all nodes and servers in the cell. If
the node and server fields are blank, the scope is set to the cell level.

Click Apply to set the scope.

The scope setting is available for all resource types, WebSphere variables,
shared libraries, and name space bindings.

Set preferences for viewing the console page
After selecting a task and a scope, the administrative console page shows a
collection table with all the objects created at that particular scope.

You can change the list of items you see in this table by using the filter and
preference settings. The filter options can be displayed or set by clicking the
Show Filter Function icon at the top of the table. See Figure 5-5 on
page 173.

Standalone application servers: Although the concept of cells and nodes is
more relevant in a managed server environment, scope is also set when
working with stand-alone application servers. Because there is only one cell,
node, and application server, and no clusters, simply let the scope default to
the node level. You will not have the option to fill in a name for the cell, server,
or node. And you will not see the cluster scope as an option.

172 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-5 Setting filters and preferences

When you click the icon, a new area will appear at the top of the table allowing
you to enter filter criteria. To filter entries, do the following:

1. Select the column to filter on. For example, in Figure 5-5, the display table has
three columns to choose from. Your options vary depending on the type of
item you are filtering.

2. Enter the filter criteria. The filter criteria is case sensitive and wild cards can
be used. In our example, when we activate the filter, we will only see servers
with names which start with Cs.

3. Click Go.

4. Once you have set the filter, click the Show Filter Icon again to remove the
filter criteria from view. You still have a visual indication the filter is set at the
top of the table.

Setting the filter is temporary and only lasts for as long as you are in that
collection. To keep the filter active for that collection, check the Retain filter
criteria box in the Preferences section and click Apply. To clear the filter criteria
click the icon.

clear the filter

set a filter

 Chapter 5. Administration basics 173

The Preferences settings also allow you to specify the maximum number of rows
to display per page.

5.1.6 Updating existing items
To edit the properties of an existing item, complete these tasks:

1. Select the category and type in the navigation tree. For example, select
Servers →Application Servers.

2. A list of the items of that type in the scope specified will be listed in a
collection table in the workspace area. Click an item in the table. This opens a
detail page for the item.

3. In some cases, you see a Configuration tab and a Runtime tab on this page.
In others, you only see a Configuration tab. Updates are done under the
Configuration tab. Specify new properties or edit the properties already
configured for that item. The configurable properties will depend on the type
of item selected.

For example, if we click an application server, this opens a page resembling
Figure 5-6 on page 175.

Tip: For help on filtering, see:

� The Administrative console buttons topic in the Information Center

� Click the Help item in the Task bar and select the Administrative Console
Buttons topic under the Core Console heading.

174 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-6 Editing application server properties

The detail page provides fields for configuring or viewing the more common
settings and links to configuration pages for additional settings.

4. Click OK to save your changes to the workspace and exit the page. Click
Apply to save the changes without exiting. The changes are still temporary.
They are only saved to the workspace, not to the master configuration. This
still needs to be done.

5. As soon as you save changes to your workspace, you will see a message in
the Messages area reminding you that you have unsaved changes. See
Figure 5-7.

Figure 5-7 Save changes to the master repository

 Chapter 5. Administration basics 175

At intervals during your configuration work and at the end you should save the
changes to the master configuration. You can do this by clicking Save in the
message, or by selecting System administration →Save Changes to
Master Repository in the navigation tree.

To discard changes, use the same options. These options simply display the
changes you have made and give you the opportunity to save or discard.

5.1.7 Adding new items
To create new instances of most item types, complete these tasks:

1. Select the category and type in the navigation tree. See Figure 5-8.

2. Select Scope and click Apply to set it, if applicable.

3. Click the New button above the collection table in the workspace.

Figure 5-8 Create a new item

You might be presented with one or more configuration pages in which you
have to specify the item properties. If so, fill in the information and click
Apply. This can in turn, generate additional links for advanced configuration
properties. Proceed until all the required properties are entered.

176 WebSphere Application Server V6: System Management and Configuration Handbook

Alternatively, a wizard might start, prompting you to enter information and
taking you through the process.

4. Click Save in the task bar or in the Messages area when you are finished.

5.1.8 Removing items
To remove an item, complete these tasks:

1. Find the item.
2. Select the item in the collection table by checking the box next to it.
3. Click Delete.
4. If asked whether you want to delete it, click OK.
5. Click Save in the task bar or in the Messages area when you are finished.

For example, to delete an existing JDBC provider, select Resources →JDBC
Providers. Check the provider you want to remove and click Delete.

5.1.9 Starting and stopping items
To start or stop an item using the console:

1. Select the item type in the navigation tree.
2. Select the item in the collection table by checking the box next to it.
3. Click Start or Stop. The collection table shows the status of the item. See

Figure 5-9 on page 178.

For example, to start an application server in a distributed server environment,
select Servers → Application Servers. Place a check mark in the check box
beside the application server you want and click Start.

Note: In the configuration pages, you can click Apply or OK to store your
changes in the workspace. If you click OK you will exit the configuration
page. If you click Apply you will remain in the configuration page. As you
are becoming familiar with the configuration pages, we suggest that you
always click Apply first. If there are additional properties to configure, you
will not see them if you click OK and leave the page.

 Chapter 5. Administration basics 177

Figure 5-9 Starting and stopping items

Table 5-2 shows how to start and stop various items from the administrative
console.

Table 5-2 How to stop and start items

Items Admin
console

Menu selections

Applications Standalone &
distributed
server
environment

Applications →Enterprise Applications

Application
servers

Distributed
server
environment

Servers →Application Servers

Clusters1 Distributed
server
environment

Servers →Clusters

Web servers Standalone &
distributed
server
environment

Servers →Web servers

Generic
servers

Distributed
server
environment

Servers →Generic servers

Nodes3 Distributed
server
environment

System administration →Nodes

178 WebSphere Application Server V6: System Management and Configuration Handbook

5.1.10 Using variables
WebSphere variables are name and value pairs used to represent variables in
the configuration files. This makes it easier to manage a large configuration.

To set a WebSphere variable:

1. Click Environment →WebSphere Variables. See Figure 5-10.

Figure 5-10 WebSphere variables

Node agents4 Distributed
server
environment

System administration →Node agents

Deployment
manager2,3

Distributed
server
environment

System administration →Deployment Manager

1 Starting or stopping a cluster starts or stops the application servers in the cluster.

2 Stopping the deployment manager also stops your administrative console session. It
does not stop any of the node agents or the application servers running under those
node agents.

3 This item can only be stopped from the administrative console, not started.

4 This item can be stopped and recycled, but cannot be started if it is stopped from the
administrative console.

Items Admin
console

Menu selections

 Chapter 5. Administration basics 179

2. To add a new variable, click New. Or click a variable name to update its
properties.

3. Enter a name and value and click Apply. See Figure 5-11.

Figure 5-11 New WebSphere variable

5.1.11 Saving work
As you work with the configuration, your changes are saved to temporary
workspace storage. For the configuration changes to take effect, they must be
saved to the master configuration. If you have a distributed server environment, a
second step is required to synchronize, or send, the configuration to the nodes.
Consider the following:

1. If you work on a page, and click Apply or OK, the changes are saved in the
workspace under your user ID. This allows you to recover changes under the
same user ID if you exit the session without saving.

2. You need to save changes to the master repository to make them permanent.
This can be done from the Navigation tree by selecting System
administration →Save Changes to Master Repository, from the Messages
area, or when you log in if you logged out without saving the changes.

3. The Save window presents you with the following options:

– Save
– Discard

Discard reverses any changes made during the working session and
reverts to the master configuration.

180 WebSphere Application Server V6: System Management and Configuration Handbook

– Cancel

Cancel does not reverse changes made during the working session. It just
cancels the action of saving to the master repository for now.

– Synchronize changes with nodes

This distributes the new configuration to the nodes in a distributed server
environment.

Before deciding whether you want to save or discard changes, you can see
the changes by expanding View items with changes in the Save window.

4. When you are finished, log out of the console using the Logout option on the
taskbar.

5.1.12 Getting help
To access help, do the following:

1. Use the Help menu in the taskbar. This opens a new Web browser with online
help for the administrative console. It is structured by administrative tasks.
See Figure 5-12 on page 182.

Important: All the changes made during a session are cumulative.
Therefore, when you decide to save changes to the master repository,
either at logon or after clicking Save on the taskbar, all changes are
committed. There is no way to be selective about what changes are saved
to the master repository.

 Chapter 5. Administration basics 181

Figure 5-12 Online help

2. Enable the Show Descriptions option in the console preferences. If this
option is enabled, you can minimize the Help window in the workspace, if you
like.

3. The Information Center can be viewed online or downloaded from:

http://www.ibm.com/software/webservers/appserv/infocenter.html

5.2 Securing the administrative console
WebSphere Application Server provides the ability to secure the administrative
console so only authenticated users can use it. In order to take advantage of this
feature, you need to first activate WebSphere global security. Enabling security is
an important step in ensuring a safe WebSphere environment. However, the
considerations and decisions involved in achieving a secure environment are
outside the scope of this book. To understand your security options and for help
designing a secure system, refer to the WebSphere Application Security V6
Security Handbook, SG24-6316.

This section assumes that you have enabled WebSphere global security and
therefore concentrates on the steps needed to secure the console.

Console security is based on identifying users or groups that are defined in the
active user registry and assigning roles to each of those users. When you log in

182 WebSphere Application Server V6: System Management and Configuration Handbook

http://www.ibm.com/software/webservers/appserv/infocenter.html

to the administrative console, you must use a valid administrator user ID and
password. The roles determine the administrative actions the user can perform.

Users and groups are added and roles assigned to them by selecting System
Administration →Console Users or System Administration →Console
Groups.

You can choose the following roles for each user. The roles are listed from most
restrictive to most privileges:

� Monitor allows a user to view the WebSphere configuration and current state.

� Configurator has Monitor privilege plus the ability to change the WebSphere
configuration.

� Operator incorporates Monitor privilege plus the ability to change the runtime
state, such as starting and stopping services.

� Administrator incorporates Operator plus Configurator properties.

Be sure to save your work. See 5.1.11, “Saving work” on page 180. After saving
the configuration, you must restart the application server in a standalone server
environment or the deployment manager in a distributed server environment.

The next time you log in to the administrative console, you must authenticate
with one of the users that were identified as having an administrative role.

5.3 Working with the deployment manager
This section will provide information about how to manage the deployment
manager and will introduce you to the configuration settings associated with it.

5.3.1 Deployment manager configuration settings
A deployment manager is created by creating a deployment manager profile.
Once created, there usually is not much that you need to do. However, it is good
to note that there are settings that you can modify from the administration tools.
This section gives you a brief look at these settings.

To view the deployment manager from the administrative console, select System
Administration →Deployment manager. You have two pages available, the
Runtime page and the Configuration page. Figure 5-13 on page 184 shows the
Configuration page.

 Chapter 5. Administration basics 183

Figure 5-13 Deployment manager configuration

Configuration tab
Because it is unlikely that you will need to change most of these settings we only
give you a brief description here of the settings you can configure.

Java and Process Management
The Java and process management settings allow you to define how the
deployment manager process is initialized. The only category of settings under
this group is the process definition settings. These include:

� JVM settings including heap size, class path and boot class path, and
verbose settings for garbage collection, class loading, and JNI

� Environment entries consisting of name/value pairs that define custom
properties

� Process execution properties (not used on Windows) that allow you to define
process priority, run as settings, file permission mode mask, and process
group assignment (for processor partitioning)

� Process log settings for stdout and stderr logs

184 WebSphere Application Server V6: System Management and Configuration Handbook

Core group service
A core group is a set of processes that participate in providing high availability
function to each other. In a distributed server environment, there is one default
core group automatically defined called DefaultCoreGroup. The deployment
manager is automatically added to this core group. New core groups can be
defined and the servers can be moved from one core group to another.

The core group settings allow you to modify core group settings related to the
deployment manager.

For more information about high availability and using core groups, see
WebSphere Application Server V6: High Availability Solutions, REDP-3971.

Ports
The port settings allow you to modify the TCP/IP port settings used for the
deployment manager process. These settings were first defined when the
deployment manager profile was created.

Administration Services
These settings allow you to configure properties related to the administrative
services. These include:

� Repository service settings are used to enable auditing.

� Existing JMX connectors include RMI and SOAP. This allows you to update,
add HTTP and JMS connectors, or remove connectors.

� Mbean extensions you can add in order to manage new types of resources.

� Custom properties consist of name/value pairs.

� Web server plug-in is automated.

Custom Services
Custom services settings provide an extension point for configuration data for
plug-in services. This allows you to add in custom code which will be executed
during process initialization.

ORB Service
These settings allow you to specify settings for the Object Request Broker
service.

Diagnostic Trace Service
These settings allow you to configure the diagnostic trace service. You can
change these from two places :

� On the configuration panel, requiring a server restart to activate

 Chapter 5. Administration basics 185

� On the runtime panel to activate them immediately

The settings include whether to put the trace information in memory to file, and
the trace output format. For more information about the diagnostic trace service
settings, see 9.4.1, “Diagnostic trace service” on page 431.

Logging and Tracing
Log settings are available for the following logs:

� Diagnostic trace
� JVM logs
� Process logs
� IBM Service logs
� Change log detail levels

Web container transport chains
Transport chains represent network protocol stacks operating within a client or
server. These settings give you access to transport chain definitions. For
information about transport chains, see “Web container transport chains” on
page 213.

Deployment manager Runtime tab
In addition to the Configuration page, the administrative console contains a
Runtime page for the deployment manager. To view the Runtime page, select
System Administration →Deployment manager and click the Runtime tab at
the top of the page. Figure 5-14 on page 187 shows the Runtime tab.

186 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-14 Deployment manager runtime page

Perhaps the most useful item on this page is the process ID. If you have multiple
deployment managers running, you could use this page to determine the
administrative console to which you are connected. The fact that the State is
Started does not mean much, because you would not be able to access the
administrative console otherwise.

5.3.2 Starting and stopping the deployment manager
The deployment manager must be started and stopped with commands. The
administrative console is not available unless it is running.

On a Windows system you have the option of registering the deployment
manager as a Windows service. In order to have it registered, you must select
this option when you create the deployment manager profile or register it later
using the WASService command (see 4.5.3, “Enabling process restart on
failure” on page 157.

On Windows you also have the option of starting and stopping the deployment
manager using the Start menu. Select the following:

� Start →Programs →IBM WebSphere →Application Server Network
Deployment V6 →Profiles →<profile_name> →Start the deployment
manager

 Chapter 5. Administration basics 187

� Start →Programs →IBM WebSphere →Application Server Network
Deployment V6 →Profiles →<profile_name> →Stop the deployment
manager

Starting the deployment manager with startManager
Using the startManager command is the most common way to start the
deployment manager, shown in Example 5-2.

Example 5-2 startManager command

c:\>cd websphere\appserver\profiles\dmgr01\bin
C:\WebSphere\AppServer\profiles\Dmgr01\bin>startManager

ADMU7701I: Because dmgr is registered to run as a Windows Service, the request
 to start this server will be completed by starting the associated
 Windows Service.
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Dmgr01\logs\dmgr\startServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server dmgr open for e-business; process id is 1536

Run this command from the deployment manager <profile_home>/bin directory.
If you run it from the <was_home>/bin directory, use the -profileName parameter
to ensure the command is run against the deployment manager profile.

Syntax of startManager
The syntax of the startManager command is:

startManager.bat(sh) [options]

All arguments are optional. See Table 5-3.

Table 5-3 Options for startManager

Option Description

-nowait Do not wait for successful initialization of the deployment
manager process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify a log file location to which information gets
written. The default is
<profile_home>/logs/dmgr/startServer.log

188 WebSphere Application Server V6: System Management and Configuration Handbook

Stopping the deployment manager
The deployment manager is stopped with the stopManager command, as shown
in Example 5-3.

Example 5-3 stopManager command

c:\>cd websphere\appserver\profiles\dmgr01\bin
C:\WebSphere\AppServer\profiles\Dmgr01\bin>stopmanager

ADMU7702I: Because dmgr is registered to run as a Windows Service, the request
 to stop this server will be completed by stopping the associated
 Windows Service.
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Dmgr01\logs\dmgr\stopServer.log
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU3100I: Reading configuration for server: dmgr
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server dmgr stop completed.

-profileName <profile> Specifiy a profile to run the command against. If the
command is run from <was_home>/bin and -profileName
is not specified, the default profile is used. If it is run from
<profile_home>/bin, that profile is used.

-trace Generates trace information into a file for debugging
purposes. The output goes to startServer.log.

-script [<script filename>] -background Generate a launch script instead of starting the server.
The script file name is optional. If the file name is not
provided, the default script file name is start_dmgr.bat(sh)
The script is saved to the <dmgr_profile_home>/bin
directory.

The -background parameter specifies that the generated
script runs in the background.

-timeout <seconds> Specifies the waiting time before server initialization
times out and returns an error.

-statusport <portnumber> Set the port number for server status callback.

-replacelog Replace the log file instead of appending to the current
log.

-J-<java option> Options are to be passed through to the Java interpreter.
Options are specified in the form: -D<name>=<value>

-help or -? Prints the command syntax to the console.

Option Description

 Chapter 5. Administration basics 189

Syntax of stopManager
The syntax of the stopManager command is:

stopManager.bat(sh) [options]

All arguments are optional. See Table 5-4.

Table 5-4 Options for stopManager

5.4 Working with application servers
This section discusses the following topics:

� 5.4.1, “Creating an application server” on page 191
� 5.4.2, “Viewing the status of an application server” on page 194
� 5.4.3, “Starting an application server” on page 197

Option Description

-nowait Do not wait for successful shutdown of the deployment manager process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information is written. The default
is <profile_home>/logs/dmgr/startServer.log

-profileName <profile> Specify the profile against which to run the command. If the command is run
from <was_home>/bin and -profileName is not specified, the default profile
is used. If run from <profile_home>/bin, that profile is used.

-trace Generate trace information into a file for debugging purposes. The output
goes to stopServer.log.

-timeout <seconds> Specify the waiting time before server shutdown times out and returns an
error.

-statusport <portnumber> Set the port number for server status callback.

-replacelog Replace the log file instead of appending to the current log.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specifiy the password for authentication if security is enabled.

-conntype <type> Specify the JMX connector type to use for connecting to the deployment
manager. Valid types are SOAP or RMI.

-port <portNumber> Specify the deployment manager JMX port to use explicitly, so that you can
avoid reading the configuration files to obtain information.

-help or -? Print the command syntax to the console.

190 WebSphere Application Server V6: System Management and Configuration Handbook

� 5.4.4, “Stopping an application server” on page 200
� 5.4.5, “Viewing runtime attributes of an application server” on page 203
� 5.4.6, “Customizing application servers” on page 206

5.4.1 Creating an application server
The process to create an application server depends on your WebSphere
Application Server package.

Standalone application servers
Standalone application servers are created by creating an application server
profile. This results in a profile that defines one standalone application server
called server1. This application server hosts the sample applications and the
administrative console application. During the Profile creation wizard, you have
the option of registering the new application server as a Windows service.

For information about creating an application server profile, see 4.3.2, “Creating
an application server profile” on page 130.

Managed application servers
In a Network Deployment distributed server environment, you can create an
application server from the deployment manager administrative console. The
following directions assume that you have created a deployment manager profile
and have started the deployment manager.

Server types: This section uses the following terms.

� A standalone application server is an application server created through
the use of an application server profile and is not federated to a cell. This is
the only option in the Base and Express environments. You can also create
a standalone application server in the Network Deployment package.
However, the expectation is that you will federate the application server to
a cell for centralized management in the future.

� A managed application server is one that is managed from a deployment
manager. This is only possible with the Network Deployment package. A
managed server can either be an application server that was created using
an application server profile and subsequently federated to the cell, or it
can be created directly from the deployment manager’s administrative
console.

Note: If you are creating an application server with the intention of adding it to
a cluster, using the Servers →Cluster menu options is more efficient. See
5.6, “Working with clusters” on page 235.

 Chapter 5. Administration basics 191

To create an application server from the administrative console:

1. Open the deployment manager administrative console.

2. Select Servers →Application Servers.

3. Click New. See Figure 5-15.

4. Select the node for the new server and enter a name for the new server.

Figure 5-15 Create an application server: Step 1

Click Next.

5. Select a template to use by clicking the appropriate radio button. See
Figure 5-16. You automatically have a default template to select. Later, you
can create templates based on existing application servers. (see “Creating a
template” on page 194).

Figure 5-16 Create an application server: Step 2

Click Next.

192 WebSphere Application Server V6: System Management and Configuration Handbook

6. See Figure 5-17. Select the core group from the list and check the Generate
Unique Http Ports box to have unique ports generated for this server.

Figure 5-17 Create an application server: Step 3

Click Next.

7. See Figure 5-18. A summary panel is presented with the options you chose.

Figure 5-18 Create an application server: Step 4

Click Finish to create the server.

8. In the messages box, click save to save the changes to the master repository.

 Chapter 5. Administration basics 193

Creating a template
To create an application server template based on an existing server:

1. Select Servers →Application Servers.
2. Click Templates... at the top of the server list.
3. Click New.
4. Select a server from the list to build the template from and click OK.
5. Enter a name and description for the template and click OK.
6. Save your configuration.

The new template will be in the list of templates and available to select the next
time you create an application server.

5.4.2 Viewing the status of an application server
Table 5-5 shows a summary of ways to view the status of an application server.

Table 5-5 Methods to view the status of an application server

Note: If you are creating an application server on a Windows operating
system, this process does not give you the option of registering the new server
as a Windows service. You can do this later with the WASService command
(see 4.5.3, “Enabling process restart on failure” on page 157).

Method Server types Summary

Windows service Managed and
standalone

If an application server is registered as a Windows service,
then check the Windows services panel for its status.

Command line Managed and
standalone

To view the status of a standalone application server, type:

cd <profile_home>/bin
serverStatus(.sh) server1

To view the status of a managed application server, type:

cd <profile_home>/bin
serverStatus(.sh) <server_name>

To check the status of all servers on the node, type:

cd <profile_home>/bin
serverStatus(.sh) -all

Administrative console Managed Select Servers →Application Servers

194 WebSphere Application Server V6: System Management and Configuration Handbook

Using the administrative console
To check the status of a managed server using the deployment manager’s
administrative console, the node agent must be started. To use the
administrative console, do the following:

1. Select Servers →Application Servers.

2. The servers are listed. The last column to the right contains an icon to
indicate the status of each server. Figure 5-19 shows the icons and the
corresponding status.

Figure 5-19 Status icons

Using the serverStatus command
The syntax of the ServerStatus command is as follows:

serverStatus.bat(sh) <server>|-all [options]

The first argument is mandatory. The argument is either the name of the server
for which status is desired, or the -all keyword, which requests status for all
servers defined on the node. See Table 5-6 on page 196 for a list of available
options.

Note: If the server status is Unavailable, the node agent on the node in which
the application server is installed is not active. The server cannot be managed
from the administrative console unless its node agent is active.

 Chapter 5. Administration basics 195

Table 5-6 Options for serverStatus

Example 5-4 shows an example of using the serverStatus command.

Example 5-4 serverStatus example

C:\WebSphere\AppServer\profiles\Node01\bin>serverstatus -all
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\serverStatus.log
ADMU0128I: Starting tool with the Node01 profile
ADMU0503I: Retrieving server status for all servers
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: Cserver1
ADMU0506I: Server name: Cserver2
ADMU0506I: Server name: nodeagent

Option Description

-logfile <log file path> Specify alternative location for command’s log output,
instead of serverStatus.log. The path can be specified
in the following forms: absolute, relative, or file name.

If the server name is specified, the default location is
<profile_home>/logs/<servername>/serverStatus.log

If -all is specified, the default location is
<profile_home>/logs/serverStatus.log

-replacelog Start a new log, replacing any previous log of the
same name. If this argument is not specified, the
default behavior is to append output to the existing
file.

-profileName <profile> Us this profile to run the command against. If the
command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is
used.

-trace Generate trace information into a file for debugging
purposes. The output goes to serverStatus.log.

-username <username> Specify the user name for authentication if
WebSphere security is enabled. it is ignored if
WebSphere security is disabled.

-password <password> The password for authentication if WebSphere
security is enabled. It is ignored if WebSphere
security is disabled.

-help or -? Prints a usage statement.

196 WebSphere Application Server V6: System Management and Configuration Handbook

ADMU0506I: Server name: ServerN11
ADMU0506I: Server name: ServerN12
ADMU0509I: The Application Server "Cserver1" cannot be reached. It appears to
 be stopped.
ADMU0509I: The Application Server "Cserver2" cannot be reached. It appears to
 be stopped.
ADMU0508I: The Node Agent "nodeagent" is STARTED
ADMU0509I: The Application Server "ServerN11" cannot be reached. It appears to
 be stopped.
ADMU0509I: The Application Server "ServerN12" cannot be reached. It appears to
 be stopped.

5.4.3 Starting an application server
How you start an application server depends largely on personal preference and
on whether the application server is standalone or managed. Keep in mind that
the application server created by an application server profile is always called
server1. Multiple servers federated in this way are all named server1, but reside
on different nodes.

Table 5-7 shows the various methods you can use to start an application server.

Table 5-7 Methods to start an application server

Method Server types: Summary

Windows service Managed and
standalone

Application servers can be registered as a Windows service.
You can start the server by starting the service.

First steps menu Managed and
standalone

The First Steps menu is located at
<profile_home>/firststeps/firststeps.bat (.sh)

Windows Start menu Managed and
standalone

Start →Programs →IBM WebSphere →Application
Server V6 →Profiles →<profile_name> →Start the Server

Command line Managed and
standalone

cd <profile_home>/bin
startServer(.sh) server1

Administrative console Managed Servers →Application Servers

To start a managed server from the administrative console,
the node agent must be started.

Administrative console Clusters Servers →Clusters

Starting a cluster starts each application server in the cluster.

 Chapter 5. Administration basics 197

Using the administrative console to start a managed server

From the administrative console, do the following:

1. Select Servers →Application Servers.
2. Check the box to the left of each server you want to start.
3. Click Start.

If there are any errors, check the log file for the application server process:

<profile_home>/logs/<server_name>/SystemOut.log

Using the startServer command
The syntax of the StartServer command is as follows:

startServer.bat(sh) <server> [options]

<server> is the name of the server to be started. The first argument is mandatory
and case sensitive. The options are listed in Table 5-8.

Table 5-8 Options for startServer

Note: Before managing a server in a Network Deployment environment using
the administrative console, you must make sure that the node agent for the
server’s node is running. To do this:

1. Select System Administration → Node Agents.

2. The status of the node agent is in the far right column. If it is not started,
you must start it from the command line of the node using the following
command:

<profile_home>/bin/startNode (.sh)

Note: By default, all the applications on a server start when the application
server starts. To prevent an application from starting, see 5.8.7, “Preventing an
enterprise application from starting on a server” on page 247.

Option Description

-nowait Tell the command not to wait for successful startup of
the server.

-quiet Suppress progress information printed to console in
normal mode. This option does not affect information
written to a file.

-trace Generate trace information into a file for debugging
purposes. The output goes to startServer.log.

198 WebSphere Application Server V6: System Management and Configuration Handbook

-logfile <log file path> Specify alternative location for the command’s log
output, instead of startServer.log. The path can be
specified in absolute, relative, or file name form. The
default location is
<profile_home>/logs/startServer.log

-profileName <profile> Specify the profile against which to run the command.
If the command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile
is used.

-replacelog Start a new log, replacing any previous log of the
same name. If this argument is not specified, the
default behavior is to append output to the existing
file.

-script [<script filename>] Generate a launch script instead of starting the server.
The script file name is optional. If the file name is not
provided, the default script file name is
start_<server>.

The script needs to be saved to the bin directory of the
node installation.

-username <username> User name for authentication if WebSphere security is
enabled. Ignored if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere
security is enabled. The password is ignored if
WebSphere security is disabled.

-timeout <seconds> Specify the waiting time before server initialization
times out and returns an error.

-statusport <portnumber> Set the port number for server status callback.

-J-<java option> Specify options to be passed through to the Java
interpreter. Options are specified in the form:
-D<name>=<value>.

-help or -? Print a usage statement.

Option Description

 Chapter 5. Administration basics 199

StartServer example
Example 5-5 on page 200 shows an example of using the startServer command.

Example 5-5 startServer example

C:\WebSphere\AppServer\profiles\AppSrv02\bin>startserver server1
ADMU0116I: Tool information is being logged in file

C:\WebSphere\AppServer\profiles\AppSrv02\logs\server1\startServer.log

ADMU0128I: Starting tool with the AppSrv02 profile
ADMU3100I: Reading configuration for server: server1
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server server1 open for e-business; process id is
2548

5.4.4 Stopping an application server
How you stop an application server depends largely on personal preference and
on whether the application server is standalone or managed. Keep in mind that
the application server created by a application server profile is always called
server1.

Table 5-9 Methods to stop an application server

Method Server types: Summary

Windows service Managed and
standalone

Application servers can be registered as a Windows service.
You can stop the server by stopping the service.

First steps menu Managed and
standalone

The First Steps menu is located at
<profile_home>/firststeps/firststeps.bat (.sh)

Windows Start menu Managed and
standalone

For a standalone application server, do the following:

Start →Programs →IBM WebSphere →Application
Server V6 →Profiles →<profile_name> →Stop the Server

For a standalone or managed application server on a Network
Deployment system, do the following:

Start →Programs →IBM WebSphere →Application
Server Network Deployment
V6 →Profiles →<profile_name> →Stop the Server

200 WebSphere Application Server V6: System Management and Configuration Handbook

Using the administrative console to stop a managed server

From the administrative console, you have the following options to stop an
application server:

� Stop quiesces the application server and stops it.

� Immediate Stop stops the server, but bypasses the normal server quiesce
process that supports in-flight requests to complete before shutting down the
entire server process. This shutdown mode is faster than the normal server
stop processing, but some application clients can receive exceptions.

� Terminate deletes the application server process. Use this if immediate stop
fails to stop the server.

From the administrative console, do the following to stop an application server:

1. Select Servers →Application Servers.
2. Check the box to the left of each server you want to stop.
3. Click the appropriate stop option.

If there are any errors, check the log file for the application server process:

<profile_home>/logs/<server_name>/SystemOut.log

Command line Managed and
standalone

For a standalone application server:

cd <profile_home>/bin
stopServer(.sh) server1

For a managed application server :

cd <profile_home>/bin
stopServer(.sh) <server_name>

Administrative console Managed Servers →Application Servers.

To stop a managed server from the administrative console,
the node agent must be started.

Administrative console Managed System Administration →Node Agents → Restart all
Servers on the Node.
This restarts all the servers on the node.

Method Server types: Summary

Note: These directions assume the node agent for the application server is
running.

 Chapter 5. Administration basics 201

Restarting all servers on a node
If you want to stop, then restart all the application servers on a node, you can do
the following from the administrative console:

1. Select System Administration →Node Agents.
2. Check the box to the left of the node agent.
3. Click Restart all Servers on the Node.

Restarting all servers in a cluster
If you want to stop, then restart all the servers in a cluster, you can do the
following from the administrative console:

1. Select Servers →Clusters.
2. Check the box to the left of the cluster.
3. Click Ripplestart.

Using the stopServer command
The syntax of the stopServer command is:

stopServer.bat(sh) <server> [options]

<server> is the name of the server to be started. The first argument is mandatory
and is case sensitive. The options are listed in Table 5-10.

Table 5-10 stopServer command options

Option Description

-nowait Tells the command not to wait for successful stop of the server.

-quiet Suppress progress information printed to console in normal
mode. This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes.
Output is to stopServer.log.

-logfile <log file path> Specify alternative location for command’s log output, instead of
stopServer.log. The path can be specified in the following forms:
absolute, relative, or file name.

-profileName <profile> Specify the profile to run the command against. If the command
is run from <was_home>/bin and -profileName is not specified,
the default profile is used. If run from <profile_home>/bin, that
profile is used.

-replacelog Start a new log, replacing any previous log of the same name. If
this argument is not specified, the default behavior is to append
output to the existing file.

202 WebSphere Application Server V6: System Management and Configuration Handbook

Table 5-6 shows an example of the stopServer command

Example 5-6 stopServer command example

C:\WebSphere\AppServer\profiles\Node01\bin>stopServer ServerN11

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\ServerN11\stopServer.log
ADMU0128I: Starting tool with the Node01 profile
ADMU3100I: Reading configuration for server: ServerN11
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server ServerN11 stop
completed.

5.4.5 Viewing runtime attributes of an application server
To view runtime attributes, do the following:

1. Select Servers →Application Servers to display the list of servers.

2. Click the server name to access the detail page.

3. If the server is running, you will see both a Configuration tab and Runtime tab.
If it is not running, you will see only a Configuration tab. Click the Runtime
tab. Figure 5-20 on page 204 shows the Runtime tab and the information it
provides.

-timeout <seconds> Specify the waiting time before server initialization times out and
returns an error.

-conntype <connector type> Specify the type of JMX connector to use for connection to the
deployment manager. Valid values are SOAP or RMI. If not
specified, SOAP is assumed.

-port <portnumber> The server JMX port to use explicitly, so that configuration files do
not have to be read to obtain the information.

-statusport <portnumber> Set the port number for server status callback.

-username <username> Specify the user name for authentication if WebSphere security is
enabled. Ignore the user name if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. Ignore the password if WebSphere security is disabled.

-help or -? Print a usage statement.

Option Description

 Chapter 5. Administration basics 203

Figure 5-20 Application server Runtime tab

4. From the Runtime tab, you have access to the following:

204 WebSphere Application Server V6: System Management and Configuration Handbook

– Transaction Service properties allow you to specify settings for the
transaction service. You can change the timeout settings while the server
is running, but not the transaction log directory setting.

Figure 5-21 Transaction service options and settings

You can also view or act on transactions in the following states by clicking
Review to the right of the state. This action is not normally necessary, but
in an exceptional situation it might be useful.

• Manual transactions

These transactions await administrative completion. For each
transaction, the local or global ID is displayed. You can display each
transaction resource and its associated resource manager. You can
choose also to commit or rollback transactions in this state.

• Retry transactions

These are transactions with some resources being retried. For each
transaction, the local or global ID is displayed, and whether the
transaction is committing or rolling back. You can display each
transaction resource and its associated resource manager. You can
choose also to finish, or abandon retrying, transactions in this state.

 Chapter 5. Administration basics 205

• Heuristic transactions

These are transactions that have completed heuristically. For each
transaction, the local or global ID and the heuristic outcome is
displayed. You can display each transaction resource and its
associated resource manager. You can also choose to clear the
transaction from the list.

• Imported prepared transactions

Transactions that have been imported and prepared but not yet
committed. For each transaction, the local or global ID is displayed.
You can display each transaction resource and its associated resource
manager. You can also choose to commit or rollback transactions in
this state.

– Performance Monitoring Service settings allow you to change the
instrumentation levels while the server is running.

– Product Informationgives you access to extensive information about the
product installation and Fix Pack information.

5.4.6 Customizing application servers
When you create a new application server, it inherits most of its configuration
settings from the specified template server.

To view or modify these settings, select Servers →Application Servers. A list of
application servers defined in the cell appears in the workspace. Click the name
of the application server to make a modification.

This section gives you a quick overview of the types of settings you can
customize. SeeFigure 5-22 on page 207.

206 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-22 Application server configuration

General properties
The general properties consist of a few items which you can see immediately.

� Run in development mode: Enable this option to streamline the startup time
of an application server. Do not enable this setting on production servers.

� Parallel start: Select this field to start the server components, services, and
applications on multiple threads. This might shorten the startup time.

The order in which the applications start depends on the weights you
assigned to each of them. Applications that have the same weight are started
in parallel.

� Application classloader policy and class loading mode: These settings
allow you to define an application server-specific classloader policy and class
loading mode. Class loaders are discussed in Chapter 14, “Understanding
class loaders” on page 821.

Web container settings
The Web container serves application requests for servlets and JSPs. The Web
container settings allow you to specify the default virtual host, enable servlet

 Chapter 5. Administration basics 207

caching, specify session manager settings such as persistence and tuning
parameters, and HTTP transport properties. See Figure 5-23.

Figure 5-23 Web container settings

� Default virtual host: This is the default virtual host to use for applications on
the server.

� Enable servlet caching: You can use dynamic cache to improve application
performance by caching the output of servlets, commands, and JSPs. This
setting allows you to enable dynamic caching for servlets. You must first
enable dynamic caching and create the appropriate cache policies in order to
use servlet caching.

� Session Management: You can determine how the Web container will
manage HTTP session data. This includes settings for the session tracking
mechanism (for example, cookies), session timeout, and for the session
persistence method. Session management settings are discussed in
Chapter 12, “Session management” on page 697.

� Web container transport chains: You can add to or configure the
communication channels used for accessing applications in the Web
container. By default, you have four transport chains predefined. These are
for secure and nonsecure administration console access, and for default
access to the Web container.

The transport chains are related to port definitions seen communications
section. Port numbers must be unique for each application server instance on
a given machine. For more information about transport chains, see “Web
container transport chains” on page 213.

� Custom Properties: You can specify name/value pairs for configuring
internal system properties. Some components can make use of custom
configuration properties, which can be defined here. It is not common to pass

208 WebSphere Application Server V6: System Management and Configuration Handbook

information to the Web container this way, but the J2EE specification
indicates this as a requirement. Most configuration information can be
handled programmatically, or through the deployment descriptor.

EJB container properties
These properties allow you configure the services provided by the EJB container.

Figure 5-24 EJB container settings

� Passivation Directory: This attribute provides the directory that you can use
to store the persistent state of passivated, stateful session EJBs. If you are
using the EJB container to manage session data, you should give
WebSphere the ability to swap data to disk when necessary. This directory
tells WebSphere where to hold EJB session data when it passivates and
activates beans from the pool.

� Inactive pool cleanup interval: Because WebSphere builds a pool of EJBs
to satisfy incoming requests, you need to tell it when to remove beans from
this pool to preserve resources. This attribute allows you to define the interval
at which the container examines the pools of available bean instances to
determine if some instances can be deleted to reduce memory usage.

� Default data source JNDI name: Here you can set a default data source to
use for EJBs that have no individual data source defined. This setting is not
applicable for EJB 2.x-compliant CMP beans.

� Initial state: This attribute allows you to identify the state of the container
when WebSphere is started. If you have to recycle the application server, this

 Chapter 5. Administration basics 209

attribute is used to determine whether to start the EJB container at server
startup. You would only set this to stopped if you planned on never using the
EJB container or EJBs within that specific application server instance.

� EJB Cache settings: You can set up two types of cache settings in
WebSphere:

– Cleanup interval: This attribute allows you to set the interval at which the
container attempts to remove unused items from the cache in order to
reduce the total number of items in cache to the value we set in the cache
size attribute.

– Cache size: This attribute specifies the number of buckets in the active
instance list within the EJB container. This attribute is used by WebSphere
to determine how large the cache will be and when to remove components
from the cache to reduce its size.

Container services
The following settings are available under the container services section:

� Application profiling service: WebSphere Application Server V6 includes a
new feature as part of the programming model extensions that provides an
extension to access intents. This feature, Application Profiles, lets you identify
tasks and access intent to use for a specific task. For information about
Application Profiles, refer to the WebSphere Information Center.

Application profiles let you specify externally a set of tasks (a flow of calls in
your code), and specify which access intent should be used for a specific
task. For information about Application Profiles, refer to the WebSphere
Information Center.

� Transaction service: The transaction service properties allow you to specify
settings for the transaction service, as well as manage active transaction
locks. The settings include the directory location for the transaction service on
the application server to store log files for recovery, the total transaction
lifetime timeout, and client inactivity timeout.

When the application server is running, a Runtime tab is available in the
Transaction Service properties workspace. From here, you can manage
running transactions and modify timeout settings at runtime.

� Dynamic cache service: This page allows you to specify settings for the
dynamic cache service of this server.

� Programming model extensions (PME): These settings are for:

– Compensation service
– Internationalization service
– Object pool service
– Startup beans service

210 WebSphere Application Server V6: System Management and Configuration Handbook

� ORB service settings: These settings allow you to specify settings for the
Object Request Broker service.

Business process services
The business process settings allow you to manage the following PME features:

� Activity session service
� Work area partition service
� Work area service

Server messaging
The server messaging settings provide configuration settings and information for
the messaging services. For information about messaging, see Chapter 10,
“Asynchronous messaging” on page 463 and Chapter 11, “Default messaging
provider” on page 593.

Server infrastructure
The server infrastructure settings include settings for Java and process
management and administration services.

� Class loader: You can define new class loaders. Class loaders are discussed
in Chapter 14, “Understanding class loaders” on page 821.

� Process definition: You can enhance the operation of an application server,
you can define command-line information for starting or initializing an
application server process. These settings define run-time properties such as
the program to run, arguments to run the program, and the working directory.

Within the process definitions you will find the Java virtual machine
definitions, such as the initial and maximum heap sizes, debug options, the
process classpath, or different runtime options such as profiler support and
heap size.

� Environment entries: These entries are a set of name/value pairs for use in
the application server. For example, to set DB2 required environment
variables.

� Process execution settings: These include settings such as the process
priority, or the user and group that should be used to run the process. These
settings are not applicable on the Windows platform.

 Chapter 5. Administration basics 211

� Monitoring policy: These properties determine how the node agent will
monitor the application server. It includes ping intervals, timeouts, and an
initial state setting. These can be used to ensure that the server is started
when the node starts and will be restarted in the event of a failure.

� Administration services: This group of settings allows you to specify
various settings for administration facility for this server, such as
administrative communication protocol settings and timeouts. These settings
are not something you would normally be concerned with.

If you plan to extend the administration services by adding custom MBeans,
see the “Extending WebSphere Application Server Administrative System
with custom MBeans“ topic in the Information Center.

Performance
These settings allow you to specify settings for the Performance Monitoring
Infrastructure (PMI) and the Runtime Performance Advisor.

Communications
The communications settings include:

� Ports

These settings contain the basic port definitions for the server.

You might not ever need to manually change these ports. It is likely, however,
that you will want to view these. For example, if you use the
dumpNameSpace command, you can specify the bootstrap port of the
process to dump the name space from. When you federate a node, you will
need to know the SOAP connector port of the node or deployment manager.
And the inbound communications ports are essential for accessing
applications and the administrative console.

Some port settings will be defined to use the channel framework. These will
have an associated transport chain. The ports that use the channel
framework include the Web container ports (see “Web container transport
chains” on page 213), the service integration bus ports (see 11.2.2, “Service
integration bus transport chains” on page 614), and the port for Distribution
and Consistency Services (DCS) messages.

� Message listener service

The message listener service provides support for WebSphere Application
Server V5 message-driven beans applications.

212 WebSphere Application Server V6: System Management and Configuration Handbook

Security
Security settings for the application server allow you to set specific settings at the
server level. Security settings are covered in WebSphere Application Security V6
Security Handbook, SG24-6316.

Troubleshooting
These settings include those for logging and tracing. For information
troubleshooting and using these settings, see Chapter 9, “Problem
determination” on page 417.

Additional properties
The following settings are defined under the additional properties section:

� Core group service and core group bridge service

These settings are related to high availability.

� Debugging service

On this page, you can specify settings for the debugging service, to be used
in conjunction with a workspace debugging client application, for example, the
Application Server Toolkit.

� Thread pool

The thread pool specifies the possible maximum number of concurrently
running threads in the Web container. As one thread is needed for every client
request, this directly relates to the number of active clients that can possibly
access the Web container on this application server at any given time. A
timeout value can be specified for the application server to remove threads
from the pool based on a timed period of inactivity.

Finally, an option for creating threads beyond the maximum pool size is
available. Be careful when using this option. It can have the unexpected effect
of allowing the Web container to create more threads than the JVM might be
able to process, creating a resource shortage and bringing the application
server to a halt.

Web container transport chains
Communication to the Web container is handled through the channel framework,
which provides a common networking service for WebSphere Application Server
components. The channel framework uses a set of configuration settings that
describe in layers, how a component communicates to networking ports.

 Chapter 5. Administration basics 213

� Port

A port is the component’s view of the transport mechanism. A port that uses
the channel framework serves as a link between the component and the
transport chain.

� Transport chain

A transport chain consists of one or more transport channel types that support
a specific I/O protocol.

� Transport channel

A transport channel is specific to an I/O protocol. It contains settings that
affect the communication, such as buffer size, timeout settings, TCP/IP port
numbers for TCP channels, and other settings required for the
communication protocol.

By default you have four ports, their associated transport chains and channels
defined for a Web container. These are shown in Table 5-11.

Table 5-11 Web container transports

Port Transport chain Transport channels

WC_adminhost WCInboundAdmin
� Enabled
� Host = *
� Port = 9061
� SSL disabled

TCP Inbound Channel (TCP 1)
� Host = *
� Port = 9061
� Thread pool=Web container
� Max open connections = 100
� Inactivity timeout = 60 sec

HTTP Inbound Channel (HTTP 1)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 1)
� Discrimination weight = 1
� Write buffer size = 32768

214 WebSphere Application Server V6: System Management and Configuration Handbook

WC_adminhost_secure WCInboundAdminSecure
� Enabled
� Host = *
� Port = 9044
� SSL enabled

TCP Inbound Channel (TCP 1)
� Host = *
� Port = 9044
� Thread pool=Web container
� Max open connections = 100
� Inactivity timeout = 60 sec

SSL Inbound Channel (SSL 1)
� SSL repertoire DMGRNode/

DefaultSSLSettings

HTTP Inbound Channel (HTTP 3)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 1)
� Discrimination weight = 1
� Write buffer size = 32768

WC_defaulthost WCInboundAdminSecure
� Enabled
� Host = *
� Port = 9080
� SSL disabled

TCP Inbound Channel (TCP 2)
� Host = *
� Port = 9080
� Thread pool=Web container
� Max open connections = 20000
� Inactivity timeout = 60 sec

HTTP Inbound Channel (HTTP 2)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 2)
� Discrimination weight = 1
� Write buffer size = 32768

Port Transport chain Transport channels

 Chapter 5. Administration basics 215

TCP channels provide client applications with persistent connections within a
Local Area Network (LAN). When configuring a TCP channel, you can specify a
list of IP addresses that are allowed to make inbound connections and a list of IP
addresses that are not allowed to make inbound connections. You can also
specify the thread pool that this channel uses, which allows you to segregate
work by the port on which the application server is listening.

HTTP channels are used to enable communication with remote servers. It
implements the HTTP 1.0 and 1.1 standards and is used by other channels, such
as the Web container channel, to server HTTP requests and to send HTTP
specific information to servlets expecting this type of information.

Web container channels are used to create a bridge in the transport chain
between an HTTP inbound channel and a servlet and JavaServer Pages (JSP)
engine.

SSL channels are used to associate an SSL configuration repertoire with the
transport chain. This channel is only available when Secure Sockets Layer (SSL)
support is enabled for the transport chain. An SSL configuration repertoire is
defined in the security settings in the administrative console.

WC_defaulthost_secure WCInboundDefaultSecure
� Enabled
� Host = *
� Port = 9443
� SSL enabled

TCP Inbound Channel (TCP 4)
� Host = *
� Port = 9443
� Thread pool=Web container
� Max open connections = 20000
� Inactivity timeout = 60 sec

SSL Inbound Channel (SSL 2)
� SSL repertoire DMGRNode/

DefaultSSLSettings

HTTP Inbound Channel (HTTP 4)
� Keepalive enabled
� Max persistent requests = 100
� Read timeout = 60 sec
� Write timeout = 60 sec
� Persistent timeout = 30 sec

Web Container Inbound Channel (WCC 4)
� Discrimination weight = 1
� Write buffer size = 32768

Port Transport chain Transport channels

216 WebSphere Application Server V6: System Management and Configuration Handbook

5.5 Working with nodes
Managing nodes is a concept specific to a Network Deployment environment.
Nodes are managed by the deployment manager through a process known as a
node agent that resides on each node. In order to manage a node in a Network
Deployment environment, the node must be defined and the node agent on each
WebSphere Application Server node must be started.

5.5.1 Adding a node
When you add a node to a cell, the node can be an existing stand-alone
application server, or it can be a custom node that you have not federated yet. If
you are adding a stand-alone application server installation to a cell, you can do
this from the deployment manager administrative console, or you can use the
addNode command from the node installation. If you are adding a custom profile
to the cell, you will need to use the addNode command.

Method 1: Using the administrative console

From the administrative console, do the following to add a node:

1. Select System Administration → Nodes → Add Node.

2. Select Managed node and click Next. The unmanaged node option is for
defining a Web server to the deployment manager, covered later in Chapter 8,
“Managing Web servers” on page 377. See Figure 5-25 on page 218.

3. Specify the host name of the node to be added to the cell.

4. Fill in the following fields, as applicable:

Before you begin: Be certain these tasks are completed.

� Make sure the application server is started on the node to be added.

� Open the administrative console for the application server and note the
port for the SOAP_CONNECTOR_ADDRESS. You can find this port
number by looking in the Communications section in the detail page for the
application server.

 Chapter 5. Administration basics 217

Figure 5-25 Working with nodes

– JMX connector type and port

Select the JMX connector type. You can select between SOAP and RMI. If
you select SOAP, enter the SOAP_CONNECTOR_PORT number for the
application server. If you select RMI, enter the
ORB_LISTENER_ADDRESS number for the application server. These
port numbers can be found in serverindex.xml.

– Include applications

Check this box if you want the applications currently installed on the
application server in the node to be included. If you do not check this box,
any existing applications on the server will be uninstalled during the
process.

– Include buses

If the node you are adding includes a service integration bus and you want
to include it in the federation, check this box. The bus name has to be
unique within the cell. If there is already a bus by the same name, the
node will not be added.

218 WebSphere Application Server V6: System Management and Configuration Handbook

– Starting port

If you want to specify the ports for the node rather than taking the default,
you can specify a starting port. The numbers will be incremented from this
number. For example, if you specify 3333, the BOOTSTRAP_ADDRESS
port will be 3333, CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRESS
will be 3334, etc.

– CoreGroupName

If you have defined core groups other than the default core group, you can
specify the group of which this node will be a member.

– NodeGroupName

If you have defined node groups other than the default node group, you
can specify the group of which this node will be a member.

Click OK. The messages will be displayed on the administrative console. See
Example 5-7.

Example 5-7 Adding a node from the administrative console - output messages

ADMU0505I: Servers found in configuration:

ADMU0506I: Server name: server1

ADMU2010I: Stopping all server processes for node AppSrv02Node

ADMU0510I: Server server1 is now STOPPED

ADMU0024I: Deleting the old backup directory.

ADMU0015I: Backing up the original cell repository.

ADMU0012I: Creating Node Agent configuration for node: AppSrv02Node

ADMU0014I: Adding node AppSrv02Node configuration to cell: Cell01

ADMU0016I: Synchronizing configuration between node and cell.

ADMU0018I: Launching Node Agent process for node: AppSrv02Node

ADMU0020I: Reading configuration for Node Agent process: nodeagent

ADMU0022I: Node Agent launched. Waiting for initialization status.

ADMU0030I: Node Agent initialization completed successfully. Process id is:
1196

ADMU9990I:

 Chapter 5. Administration basics 219

ADMU0300I: Congratulations! Your node AppSrv02Node has been successfully
incorporated into the Cell01 cell.

ADMU9990I:

ADMU0306I: Be aware:

ADMU0302I: Any cell-level documents from the standalone CARLAVM2Node03Cell
configuration have not been migrated to the new cell.

ADMU0307I: You might want to:

ADMU0303I: Update the configuration on the Cell01 Deployment Manager with
values from the old cell-level documents.

ADMU9990I:

ADMU0003I: Node AppSrv02Node has been successfully federated.

The new node will not be available in the console until you log in again

Logout from the WebSphere Administrative Console

Method 2: Using the addNode command

To use the addNode command, do the following:

1. Open a command line window on the system that has the running standalone
application server.

2. Change the directory to the <profile_home>/bin directory of the standalone
application server installation.

3. Run the addNode command.

The addNode command adds a new node to an existing administrative cell.

Before you begin: Be certain these tasks are completed.

� Make sure the application server is started on the node to be added.

� Open the deployment manager administrative console and note the port
specified as the SOAP_CONNECTOR_ADDRESS port for the deployment
manager. You will can find this port number by looking in the Additional
Properties section in the detail page for the deployment manager.

220 WebSphere Application Server V6: System Management and Configuration Handbook

The actions the command performs are:

1. Connects to the deployment manager process. This is necessary for the file
transfers performed to and from the deployment manager in order to add the
node to the cell.

2. Attempts to stop all running application servers on the node.

3. Backs up the current stand-alone node configuration to the
<profile_home>/config/backup/base/ directory.

4. Copies the stand-alone node configuration to a new cell structure that
matches the deployment manager structure at the cell level.

5. Creates a new local config directory and definition (server.xml) for the node
agent.

6. Creates entries (directories and files) in the master repository for the new
node’s managed servers, node agent and application servers.

7. Uses the FileTransfer service to copy files from the new node to the master
repository.

8. Uploads applications to the cell only if the -includeapps option is specified.

9. Performs the first file synchronization for the new node. This pulls everything
down from the cell to the new node.

10.Fixes the node’s setupCmdLine and wsadmin scripts to reflect the new cell
environment settings.

11.Launches the node agent.

Addnode command syntax
The syntax of the addNode command is as follows:

addNode.bat(sh) <dmgr_host> <dmgr_port> [options]

Important: Keep in mind the following points when adding a node to a cell.

� The cell must already exist.

� The cell’s deployment manager must be running before addNode can be
executed.

� The new node must have a unique name. If an existing node in the cell
already has the same name, addNode will fail.

� By default, addNode does not carry over the applications or service
integration buses when added to the cell. The -includeApps and
-includebuses options must be used for this purpose.

 Chapter 5. Administration basics 221

The command must be run from the node’s <profile_home>/bin . It cannot be run
from the deployment manager. The <dmgr_host> and <dmgr_port> parameters
give the location of the deployment manager. The <dmgr_host> parameter is
required.

The default JMX connector type to use is SOAP and the default port number for
SOAP is 8879. If this is how you want to connect, and the
SOAP_CONNECTOR_ADDRESS is 8879 for the deployment manager you do
not need to specify the <dmgr_port> parameter.

For options, see Table 5-12.

Table 5-12 Options for addNode

Option Description

-nowait Tell the command not to wait for successful completion of the node
addition.

-quiet Suppress progress information printed to console in normal mode.
This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes. The
output goes to addNode.log.

-logfile <log file path> Specify an alternative location for command’s log output, instead of
addNode.log. The path can be specified in the following forms:
absolute, relative, or file name. The default is
<profile_home>/logs/addNode.log.

-replacelog Start a new log, replacing any previous log of the same name. If this
argument is not specified, the default behavior is to append output to
the existing file.

-conntype <type> Specify the JMX connector to use for connection. Valid values are
SOAP or RMI. If not specified, SOAP is assumed.
If RMI is specified, then the deployment manager’s correct RMI/IIOP
JMX connector port must be specified by the <dmgr_port> argument.

-profileName <profile> Specify the profile to run the command against. If the command is run
from <was_home>/bin and -profileName is not specified, the default
profile is used. If it is run from <profile_home>/bin, that profile is used.

-username <username> Specify a user name for authentication if WebSphere security is
enabled. The user name is ignored if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. The password is ignored if WebSphere security is disabled.

-includeapps Attempt to include the applications in the incorporation of the base
node into a cell. Default is not to include the applications.

222 WebSphere Application Server V6: System Management and Configuration Handbook

Example 5-8 shows an example of using the addNode command to add a
custom node to a cell.

Example 5-8 addNode usage examples

C:\WebSphere\AppServer\profiles\Node02\bin>addnode carlavm2 8879
-startingport 3333

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node02\logs\addNode.log
ADMU0128I: Starting tool with the Node02 profile
ADMU0001I: Begin federation of node Node02 with Deployment Manager at
 carlavm2:8879.
ADMU0009I: Successfully connected to Deployment Manager Server:
carlavm2:8879
ADMU0507I: No servers found in configuration under:

C:\WebSphere\AppServer/profiles/Node02\config/cells/CARLAVM2Node02Cel
l/nodes/Node02/servers
ADMU2010I: Stopping all server processes for node Node02

-includebuses If the node contains one or more service integration buses, carry these
into the new configuration.

-startingport <port> Used as the starting/base IP port number for the node agent created
for this new node.

-portprops
<qualified-filename>

Passes the name of the file that contains key-value pairs of explicit
ports that you want the new node agent to use.

-nodeagentshortname <name> Specify the shortname to use for the new node agent.

-nodegroupname <name> Specify node group in which to add this node. If you do not specify, the
node is added to the DefaultNodeGroup.

-registerservice
-serviceusername <name>
-servicepassword <password>

In Windows only), this option registers the node agent as a Windows
service with the specified user ID and password.

-coregroupname <name> Specify the core group in which to add this node. If you do not specify
this option, the node will be added to the DefaultCoreGroup.

-statusport <port> Set the port number for server status callback.

-noagent Indicates that the new node agent (generated as part of adding the
node to a cell) is not to be started at the end. The default setting is to
start the node agent.

-help or -? Print a usage statement.

Option Description

 Chapter 5. Administration basics 223

ADMU0024I: Deleting the old backup directory.
ADMU0015I: Backing up the original cell repository.
ADMU0012I: Creating Node Agent configuration for node: Node02
ADMU0014I: Adding node Node02 configuration to cell: Cell01
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0018I: Launching Node Agent process for node: Node02
ADMU0020I: Reading configuration for Node Agent process: nodeagent
ADMU0022I: Node Agent launched. Waiting for initialization status.
ADMU0030I: Node Agent initialization completed successfully. Process id is:
 1072
ADMU9990I:
ADMU0300I: Congratulations! Your node Node02 has been successfully
incorporated
 into the Cell01 cell.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0302I: Any cell-level documents from the standalone CARLAVM2Node02Cell
 configuration have not been migrated to the new cell.
ADMU0307I: You might want to:
ADMU0303I: Update the configuration on the Cell01 Deployment Manager with
 values from the old cell-level documents.
ADMU9990I:
ADMU0306I: Be aware:
ADMU0304I: Because -includeapps was not specified, applications installed
on
 the standalone node were not installed on the new cell.
ADMU0307I: You might want to:
ADMU0305I: Install applications onto the Cell01 cell using wsadmin
$AdminApp or
 the Administrative Console.
ADMU9990I:
ADMU0003I: Node Node02 has been successfully federated.

C:\WebSphere\AppServer\profiles\Node02\bin>

5.5.2 Removing a node
There are two ways of removing a node from a network distributed administration
cell.

Note: When a node is removed, it is restored to its original configuration,
saved when it was added to the cell.

224 WebSphere Application Server V6: System Management and Configuration Handbook

Method 1: Using the administrative console
From the administrative console, do the following:

1. Select System Administration →Nodes.

2. Place a check mark in the check box beside the node you want to remove
and click Remove Node.

This method runs the removeNode command in the background.

Method 2: Using the removeNode command
removeNode detaches a node from a cell and returns it to a standalone
configuration.

To use the command, do the following:

1. Change directory to the <profile_home>/bin directory of the application
server installation for that node.

2. Run removeNode. All parameters are optional for this command.

The command performs the following operations:

1. Connects to the deployment manager process to read the configuration data.

2. Stops all of the running server processes of the node, including the node
agent process.

3. Removes servers in the node from clusters.

4. Restores the original stand-alone node configuration. This original
configuration was backed up when the node was originally added to the cell.

5. Removes the node’s configuration from the master repository of the cell. The
local copy of the repository held on each node will get updated at the next
synchronization point for each node agent. Although the complete set of
configuration files are not pushed out to other nodes, some directories and
files are pushed out to all nodes.

6. Removes installed applications from application servers in the cell that are
part of the node being removed.

7. Copies the original application server cell configuration into the active
configuration.

Unlike the addNode command, removeNode always uses the SOAP JMX
connector of the deployment manager. There is no option provided for specifying
the RMI JMX connector.

The command provides the -force option to force the local node’s configuration to
be decoupled from the cell even if the deployment manager cannot be contacted.

 Chapter 5. Administration basics 225

However, if this situation occurs the cell’s master repository will then have to be
separately updated to reflect the node’s removal, for example through manual
editing of the master repository configuration files.

removeNode command
The command syntax is as follows:

removeNode [options]

Table 5-13 shows the removeNode parameters.

Table 5-13 removeNode parameters

 Example
Table 5-9 shows an example of using the removeNode command.

Example 5-9 removeNode example

C:\WebSphere\AppServer\bin>removeNode -profileName Custom01
ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Custom01\logs\removeNode.log
ADMU0128I: Starting tool with the Custom01 profile

Parameter Description

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information is written. The default
is <profile_home>/logs/removeNode.log

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-statusport
<portNumber>

Set the port number for node agent status callback.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.

-force Clean up the local node configuration, regardless of whether you can reach
the deployment manager for cell repository cleanup.

Note: After using the -force parameter, you might need to use the
cleanupNode command on the deployment manager.

-help Print command syntax information.

226 WebSphere Application Server V6: System Management and Configuration Handbook

ADMU2001I: Begin removal of node: CustomNode
ADMU0009I: Successfully connected to Deployment Manager Server:
 CARLAVM2.itso.ral.ibm.com:8879
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: Cserver1
ADMU0506I: Server name: Cserver2
ADMU0506I: Server name: nodeagent
ADMU2010I: Stopping all server processes for node CustomNode
ADMU0512I: Server Cserver1 cannot be reached. It appears to be stopped.
ADMU0512I: Server Cserver2 cannot be reached. It appears to be stopped.
ADMU0512I: Server nodeagent cannot be reached. It appears to be stopped.
ADMU2021I: Removing all servers on this node from all clusters in the cell.
ADMU2014I: Restoring original configuration.
ADMU2017I: The local original configuration has been restored.
ADMU9990I:
ADMU0306I: Be aware:
ADMU2031I: Any applications that were uploaded to the DMCell cell configuration
 during addNode using the -includeapps option are not uninstalled by
 removeNode.
ADMU0307I: You might want to:
ADMU2032I: Use wsadmin or the Administrative Console to uninstall any such
 applications from the Deployment Manager.
ADMU9990I:
ADMU2024I: Removal of node CustomNode is
complete.

5.5.3 Node agent synchronization
Configuration synchronization between the node and the deployment manager is
enabled by default. During a synchronization operation, a node agent checks
with the deployment manager to see if any configuration documents that apply to
the node have been updated. New or updated documents are copied to the node
repository, and deleted documents are removed from the node repository.
Configure the interval between synchronizations in the administrative console by
doing the following:

1. Expand System Administration →Node Agents in the administrative
console.

2. Select the node agent process on the appropriate server to open the
properties page.

3. In the Additional Properties section, click File Synchronization Service.

4. Configure the synchronization interval. By default the synchronization interval
is set to one minute.

 Chapter 5. Administration basics 227

Explicit synchronization can be forced by selecting System Administration →
Nodes. Select a node and click Synchronize or Full Synchronization.

Synchronize performs an immediate synchronization on the selected node.

The Full Synchronization option disregards any synchronization optimization
settings and ensures that the node and cell configuration are identical.

Using the syncNode command
The syncNode command can be used to force the synchronization of a node’s
local configuration repository with the master repository on the deployment
manager node.

The syntax of the syncNode command is as follows:

syncNode.bat(sh) <dmgr_host> [dmgr_port] [options]

The first argument is mandatory. The options are listed in Table 5-14.

Table 5-14 Options for syncNode

Tip: Increase the synchronization interval in a production environment to
reduce the overhead.

Note: To use the syncNode command. the node agent must be stopped. You
can use the -stopservers and -restart options on the syncNode command to
stop the node agent and application servers, and then restart the node agent.

Option Description

-nowait Tell the command not to wait for successful synchronization of the
node.

-quiet Suppress progress information printed to console in normal mode.
This option does not affect information written to file.

-trace Generate trace information into a file for debugging purposes. The
output goes to syncNode.log.

-profileName <profile> Specify the profile to run the command against. If the command is run
from <was_home>/bin and -profileName is not specified, the default
profile is used. If it is run from <profile_home>/bin, that profile is used.

-conntype <type> Specify the JMX connector type to use for connection to the
deployment manager. Valid values are SOAP or RMI. If not specified,
SOAP is assumed.

228 WebSphere Application Server V6: System Management and Configuration Handbook

Example
Example 5-10 shows and example of using the syncNode command. This
example was run on a Windows system.

Example 5-10 syncNode usage examples

C:\WebSphere\AppServer\profiles\Node01\bin>stopnode

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the Node01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop completed.

C:\WebSphere\AppServer\profiles\Node01\bin>syncnode carlavm2

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\Node01\logs\syncNode.log
ADMU0128I: Starting tool with the Node01 profile
ADMU0401I: Begin syncNode operation for node Node01 with Deployment Manager
 carlavm2: 8879
ADMU0016I: Synchronizing configuration between node and cell.
ADMU0402I: The configuration for node Node01 has been synchronized with
 Deployment Manager carlavm2: 8879

-stopservers Indicate that the node agent and all managed servers of the node
should be stopped prior to synchronizing the node’s configuration with
the cell.

-restart Indicate that the node agent is to be restarted after synchronizing the
node’s configuration with the cell.

-logfile <log file path> Specify an alternative location for the command’s log output, instead
of syncNode.log. The path can be specified in the following forms:
absolute, relative, or file name. The default location is
<profile_home>/logs/syncNode.log

-replacelog Start a new log, replacing any previous log of the same name. If this
argument is not specified, the default behavior is to append output to
the existing file.

-username <username> Specify a user name for authentication if WebSphere security is
enabled. Ignore it if WebSphere security is disabled.

-password <password> Specify a password for authentication if WebSphere security is
enabled. Ignore it if WebSphere security is disabled.

-help or -? Print a usage statement.

Option Description

 Chapter 5. Administration basics 229

5.5.4 Starting and stopping nodes
A node consists of the node agent and the servers. There are several ways to
start and stop a node and node agent, or stop them individually. Before using any
of these methods, be sure to note whether it affects the entire node, including
servers, or just the node agent.

Starting a node agent
When a node agent is stopped, the deployment manager has no way to
communicate with it. Therefore, the node agent has to be started with the
startNode command run from on the node system.

startNode command
The command syntax is as follows:

startNode [options]

The parameters are shown in Table 5-15.

Table 5-15 startNode parameters

Parameter Description

-nowait Do not wait for successful initialization of the node agent process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information gets written. The
default is <profile_home>/logs/nodeagent/startServer.log.

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-timeout <seconds> Specify the wait time before node agent initialization times out and returns
an error.

-statusport
<portNumber>

Set the port number for node agent status callback.

230 WebSphere Application Server V6: System Management and Configuration Handbook

See Example 5-11, for a sample of the startNode command.

Example 5-11 startNode command

C:\WebSphere\AppServer\profiles\Custom01\bin>startnode
ADMU0116I: Tool information is being logged in file

C:\WebSphere\AppServer\profiles\Custom01\logs\nodeagent\startServer.log
ADMU0128I: Starting tool with the Custom01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3200I: Server launched. Waiting for initialization status.
ADMU3000I: Server nodeagent open for e-business; process id is 1816

Stopping a node agent
To stop the node agent and leave the servers running, do the following,
depending on your preferred method.

From the administrative console, do the following:

1. From the administrative console, select System Administration →Node
Agents.

2. Check the box beside the node agent for the server and click Stop.

From a command prompt, type the following command:

� Windows: <profile_home>\bin\stopNode
� UNIX: <profile_home>/bin/stopNode.sh

-script [<script
fileName>] -background

Generate a launch script with the startNode command instead of launching
the node agent process directly. The launch script name is an optional
argument. If you do not provide the launch script name, the default script file
name is start_<nodeName>, based on the name of the node. The
-background parameter is an optional parameter that specifies that the
generated script will run in the background when you execute it.

-J-<java_option> Specify options to pass through to the Java interpreter.

-help Prints command syntax information

Parameter Description

Note: Once you stop the node agent, the deployment manager has no way to
communicate with the servers on that node. The servers might be up and
running, but the administrative console is not able to determine their status.

 Chapter 5. Administration basics 231

stopNode command
The command syntax is as follows:

stopNode [options]

The parameters are shown in Table 5-16 on page 232.

Table 5-16 stopNode parameters

See Example 5-12, for an example and sample output of the stopNode
command.

Example 5-12 stopNode command

C:\WebSphere\AppServer\profiles\Custom01\bin>stopNode
ADMU0116I: Tool information is being logged in file

Parameter Description

-nowait Do not wait for successful initialization of the node agent process.

-quiet Suppress the printing of progress information.

-logfile <fileName> Specify the location of the log file to which information gets written. The
default is <profile_home>/logs/nodeagent/stopServer.log.

-profileName <profile> Specify the profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replace the log file instead of appending to the current log.

-trace Generate trace information into the log file for debugging purposes.

-timeout <seconds> The wait time before node agent shutdown times out and returns an error.

-statusport
<portNumber>

Set the port number for node agent status callback.

-username <name> Specify the user name for authentication if security is enabled in the server.

-password <password> Specify the password for authentication if security is enabled.

-stopservers Stop all application servers on the node before stopping the node agent.

-conntype <type> Specify the JMX connector type to use for connecting to the deployment
manager. Valid types are SOAP or RMI.

-port <portNumber> Specify the node agent JMX port to use explicitly, so that you can avoid
reading configuration files to obtain the information.

-help Print command syntax information

232 WebSphere Application Server V6: System Management and Configuration Handbook

C:\WebSphere\AppServer\profiles\Custom01\logs\nodeagent\stopServer.log
ADMU0128I: Starting tool with the Custom01 profile
ADMU3100I: Reading configuration for server: nodeagent
ADMU3201I: Server stop request issued. Waiting for stop status.
ADMU4000I: Server nodeagent stop
completed.

Stopping a node (the node agent and servers)
You can use the administrative console to stop a node and its servers with one
action:

1. From the administrative console, select System Administration →Nodes.
2. Check the box beside the node and click Stop.

Restarting a node agent
You can restart a running node agent from the administrative console by doing
the following from the administrative console:

1. Select System Administration →Node Agents.
2. Check the box beside the node agent for the server and click Restart.

5.5.5 Node groups
With WebSphere Application Server V6, you can now have nodes in cells with
different capabilities. Currently, this means having a cell with both nodes on
distributed platforms and WebSphere for z/OS nodes. In the future, there might
be other situations that fit this criteria. However, there are still restrictions on how
the nodes can coexist. For example, you cannot have mixed nodes in a cluster.
Node groups are created to group nodes of similar capability together to allow
validation during system administration processes.

A default node group called DefaultNodeGroup is automatically created for you
when the deployment manager is created, based on the deployment manager
platform. New nodes on similar platforms are automatically added to the default
group. A node must belong to at least one node group, but can belong to more
than one.

As long as you have nodes in a cell with similar platforms, you do not need to do
anything with node groups. New nodes are automatically added to the node
group. However, before adding a node on a platform that does not have the
same capabilities as the deployment manager platform, you will need to create
the new node group.

 Chapter 5. Administration basics 233

Working with node groups
You can display the default node group and its members by selecting System
Administration →Node Groups.

� To create a new node group, click New. The only thing you need to enter is
the name of the new node group. Click OK.

� To delete a node group, check the box to the left of the node group name and
select Delete.

� To display a node group, click the node group name. For example, in
Figure 5-26, we have displayed the DefaultNodeGroup.

� To add a node to a node group, display the node group and click Node group
members in the Additional Properties section. When the list appears, select
Add. You will be able to select from a list of nodes.

234 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-26 Displaying node groups

5.6 Working with clusters
This section discusses creating, configuring, and managing clusters using the
administrative console. Clustering is an option in a Network Deployment
installation only.

 Chapter 5. Administration basics 235

5.6.1 Creating clusters
Clusters consist of one or more application servers. When you create a cluster,
you can choose one existing application server to add to the cluster. The rest of
the servers must be new and can be created when you create the cluster or later.

When creating a cluster, it is possible to select the template of an existing
application server for the cluster without adding that application server into the
new cluster. For this reason, consider creating an application server with the
server properties that you want as a standard in the cluster first, then use that
server as a template or as the first server in the cluster.

To create a new cluster:

1. Select Servers →Clusters.

2. Click New. See Figure 5-27 on page 236.

Figure 5-27 Creating a new cluster

3. Enter the information for the new cluster:

– Cluster name: Enter a cluster name of your choice.

236 WebSphere Application Server V6: System Management and Configuration Handbook

– Prefer local: This setting indicates that a request to an EJB should be
routed to an EJB on the local node if available.

– Internal replication domain: Use this setting to indicate you want to use
memory-to-memory replication for persistent session management and
that a replication domain should be created. Replication domains are
discussed in Chapter 12, “Session management” on page 697.

– Existing server: One application server must be added to the cluster. You
can choose an existing application server from the list and create new
application servers for the cluster.

If you want to use an existing server, select Select an existing server to
add to this cluster and click Next. The server you select is added to the
cluster and you are given the opportunity to add new servers also.

If you are not using an existing server, select Do not include an existing
server in this cluster and click Next.

4. The next window, Figure 5-29, allows you to add servers to the cluster. For
each server, enter a name, select the appropriate parameters, and click
Apply. The servers in the cluster will be listed at the bottom of the window.

Figure 5-28 Add servers to the new cluster

– Member Name: Type a new name for the new server.

– Server weight: The value for this field determines how workload is
distributed. For example, If all cluster members have identical weights,

 Chapter 5. Administration basics 237

work is distributed among the cluster members equally. Servers with
higher weight values are given more work. A rule of thumb formula for
determining routing preference would be:

% routed to Server1 = weight1 /(weight1+weight2+...+weight n)

In the formula, n represents the number of cluster members in the cluster.

– Replication entry: For information about replication domains and
replication entries, see Chapter 12, “Session management” on page 697.

5. When all the servers have been entered, click Next.

6. A summary page shows you what will be created.

7. Click Finish to create the cluster and new servers.

8. Save the configuration.

5.6.2 Viewing cluster topology
The administrative console provides a graphical view of the existing clusters and
their members. To see the view, do the following:

1. Select Servers →Cluster Topology.

2. Expand each category. See Figure 5-29.

Figure 5-29 Cluster topology view

3. Selecting a server displays the attributes of the server as related to the
cluster. See Figure 5-30.

238 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-30 Viewing the cluster characteristics of a server

5.6.3 Managing clusters
Application servers within a cluster can be managed as independent servers. A
second option is to manage all the servers in the cluster using a single button:

1. Select Servers →Clusters.

2. Check each cluster you want to work with and select one of the following
options:

– Start: Use this option to start all servers in the cluster.

– Stop: Use this option to stops all servers in the cluster. This allows the
server to finish existing requests and allows failover to another member of
the cluster.

– Ripplestart: Use this option to Stop, then start all servers in the cluster.

– ImmediateStop: Stop all servers immediately.

5.7 Working with virtual hosts

A virtual host is a configuration enabling a single host machine to resemble
multiple host machines. It consists of a host alias or aliases, which consist of a

Note: For an example of defining and using a new virtual host, see 16.1.4,
“Defining the WebSphere Bank virtual host” on page 914.

 Chapter 5. Administration basics 239

host name and a port number. If you specify an asterisk (*) as a host name, all
host names and IP addresses that the Web server can receive will be mapped to
that virtual host.

There are two virtual hosts defined during installation, default_host and
admin_host.

� The default_host virtual host is intended for access to user applications, either
through the HTTP transport or through a Web server. At installation time, it is
configured as the default virtual host for the server1 application server. It is
configured to match requests to ports 80, 9080, and 9443 for any host name.

� The admin_host virtual host is used for access to the WebSphere
administrative console. It is configured to match requests to the secure ports
9090 (HTTP transport) and 9043 (Web server) for any host name.

When you install an application, you associate a virtual host with each Web
module in the application. By associating a virtual host with a Web module,
requests that match the host aliases for the virtual host should be processed by
servlets/JSPs in this Web module. The Web server plug-in also checks the URI
of the request against the URIs for the Web module to determine whether the
Web module can handle them or not.

A single virtual host can be associated with multiple Web modules unless each
application has unique URIs. If there are same URIs among applications,
different virtual hosts must be created and associated with each of the
applications.

5.7.1 Creating a virtual host
By default, default_host is associated with all user application requests. There
are some cases in which multiple virtual hosts should be created, for example:

� Applications having conflicting URIs
� Support for extra ports such as port 443 for SSL
� Keep clear independence of each virtual host for applications and servers

The configuration of a virtual host is applied to an entire cell. To create a new
virtual host, do the following:

1. Select Environment → Virtual Hosts and then click New.

2. Enter a name for the virtual host and click Apply.

3. Click Host Aliases in the Additional Properties pane.

4. Click New.

240 WebSphere Application Server V6: System Management and Configuration Handbook

5. Enter values for the Host Name and Port fields and click OK.

The host aliases are not necessarily the same as the host name and port
number of the WebSphere Application Servers. They are the host names and
port numbers that the Web server plug-in is expecting to receive from the
browser. The Web server plug-in will send the request to the application
server using the host name and port number in the transport setting for that
server. If the Web server is running on a separate machine from WebSphere,
then the host aliases are for Web server machines.

Mapping HTTP requests to host aliases is case sensitive and the match must
be alphabetically exact. Also, different port numbers are treated as different
aliases.

For example, the request http://www.myhost.com/myservlet does not map to
any of the following:

– http://myhost/myservlet
– http://www.myhost.com/MyServlet
– http://www.myhost.com:9876/myservlet

If the Web server plug-in receives a request that does not match one of the
virtual hosts, then an HTTP error will be returned to the user.

Simple wild cards can be used in the host aliases. A * can be used for the
host name, the port or both. It means that any request will match this rule.

6. Multi-Purpose Internet Mail Extensions (MIME) mappings associate a file
name extension with a type of data file such as text, audio or image. A set of
MIME types is automatically defined for you when you create a virtual host. To
see or alter the MIME types associated with this new virtual host, click MIME
Types in the Additional Properties section of the virtual host.

7. Click New to add a MIME type.

8. Enter the MIME type and extension. Click Apply to continue adding new
types or click OK if you are finished.

9. Click Save on the taskbar and save your changes.

Note: If the virtual host is used in a cluster environment, all host aliases
used by servers in the cluster should be registered in the virtual host. For
information about how to do this, see 8.4.1, “Regenerating the plug-in
configuration file” on page 406.

Important: If you create, delete, or update virtual hosts, you need to
regenerate the Web server plug-in.

 Chapter 5. Administration basics 241

5.8 Managing applications
Applications can be managed using the following methods:

� Using wsadmin script

Using scripts to manage applications is more complicated than using the
other methods. It requires skill in at least one of the supported scripting
languages and a complete understanding of the WebSphere Application
Server configuration. However, scripting can offer a greater degree of control
and can be quite useful in situations where you are performing the same
administrative tasks multiple times, or when the tasks are to be done by
multiple administrators.

Information on using wsadmin scripts is found in Chapter 6, “Administration
with scripting” on page 267.

� Using WebSphere Rapid Deployment

The rapid deployment tools in WebSphere Rapid Deployment provides a
shortcut to installing, uninstalling, and updating applications. You can place
full J2EE applications (EAR files), application modules (WAR files, EJB JAR
files), or application artifacts (Java source files, Java class files, images, JSPs
etc.) into a configurable location on your file system, referred to as the
monitored, or project, directory. The rapid deployment tools then
automatically detect added or changed parts of these J2EE artifacts and
performs the steps necessary to produce a running application on an
application server.

This is covered in Chapter 17, “WebSphere Rapid Deployment” on page 957

� Using the administrative console

Using the administrative console is an easy way to install or update an
application. Wizards take you through the process and provide help
information at each step.

This is the method discussed in this section at a high level. A detailed
example of it can be found in Chapter 16, “Deploying applications” on
page 907.

5.8.1 Using the administrative console to manage applications
To view and manage applications using the administrative console, select
Applications → Enterprise Applications.

In the window, you see the list of installed applications and options for performing
application management tasks. Select one or more applications by checking the
box to the left of the application name, and then click an action to perform. The

242 WebSphere Application Server V6: System Management and Configuration Handbook

exception to this is the Install option, which installs a new application, and
requires no existing application to be selected.

See Figure 5-31 on page 243. The following list describes the actions you can
choose on this screen.

Figure 5-31 Working with enterprise applications

� Start

Applications normally start when the server to which they are mapped starts.
Exceptions to this include when the application has just been installed, and
when the application has been stopped manually.

� Stop

You can stop an application manually without affecting the rest of the
application server processes. This is common when you are updating an
application or want to make it unavailable to users.

� Install

The install option takes you through the process of installing a new enterprise
application EAR file.

 Chapter 5. Administration basics 243

� Uninstall

Use this to uninstall an application. This removes it from the application
servers and from the configuration repository.

� Update or Rollout Update

Applications can be updated in several ways. The update options include full
application, single module, single file and partial application.

� Remove file

With this option, you can remove a single file from an application.

� Export

Use this option to export an EAR file of the application.

� Export DDL

Use this option to export DDL files found in the application.

5.8.2 Installing an enterprise application

To install an enterprise application into a WebSphere configuration, you must
install its modules onto one or more application servers. Follow these steps for
this task:

1. Select Applications → Enterprise Applications → Install, or Applications
→ Install New Application.

2. Specify the location of the EAR file to install, as shown in Figure 5-32 on
page 245.

The EAR file that you are installing can be either on the client machine
running the Web browser, or on any of the nodes in the cell.

Click Next.

Adding a new cluster member: When an application server is added as a
member to a server cluster, the modules installed on other members are also
installed on the new member. You do not need to re-install or upgrade the
application.

244 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-32 Installing an enterprise application

3. The first window has settings used during the installation. These settings
primarily determine whether default settings will be used or if you will override
them during the installation. For example, you can elect to override existing
bindings, specify values to use as a default for EJB 1.1 CMP bindings and
connection factory bindings, and the default virtual host to use.

Click Next.

4. The rest of the installation process is done in steps. The steps can vary,
depending on the contents of the EAR file. The following steps are a typical
sequence:

a. Provide options to perform the installation. This includes an option to use
embedded configuration values in an Enhanced EAR and the option to
pre-compile JSPs.

b. Map modules to application servers and Web servers.

c. Select the backend ID to use for database access.

d. Provide listener bindings for message-driven beans.

e. Provide JNDI names for beans.

f. Bind message destination references to administered objects.

 Chapter 5. Administration basics 245

g. Map JCA resource references to resources.

h. Provide default data source mapping for modules containing EJB 2.x
entity beans.

i. Map data sources for all CMP 2.x data beans.

j. Map EJB references to beans.

k. Map resource references to resources.

l. Map virtual hosts for Web modules.

m. Map security roles to users/groups.

n. Ensure all unprotected 2.x methods have the correct level of protection.

o. Summary.

5. Click Finish to install the application.

6. Save the configuration.

For information about where the application files are stored, see 3.4.3,
“Application data files” on page 107.

5.8.3 Uninstalling an enterprise application
To uninstall a no longer needed enterprise application, do the following:

1. Select Applications → Enterprise Applications.
2. Check the application you want uninstall and click Uninstall.

5.8.4 Exporting an enterprise application
If you have modified the binding information of an enterprise application, you
might want to export the changed bindings to a new EAR file. To export an
enterprise application to an EAR file:

1. Select Applications →Enterprise Applications.
2. Check the application you want to export and click Export.
3. Click the link for the file you want to export.
4. Click Save.
5. Specify the directory on the local machine and click Save.

246 WebSphere Application Server V6: System Management and Configuration Handbook

5.8.5 Starting an enterprise application
An application starts automatically when the application server to which it is
mapped starts. You only need to start an application immediately after installing
it, or if you have manually stopped it.

An application can be started by following these steps from the administrative
console:

1. Select Applications →Enterprise Applications.
2. Check the application you want and click Start.

5.8.6 Stopping an enterprise application
An application can be stopped using the administrative console.

1. From the administrative console, do the following.

a. Select Applications → Enterprise Applications
b. Check the application you want to stop and click Stop.

5.8.7 Preventing an enterprise application from starting on a server
By default, an application will start when the server starts. The only way to
prevent this is to disable the application from running on the server.

1. From the administrative console:

a. Select Applications → Enterprise Applications
b. Click the application to open the configuration.
c. Select Target Mappings in the Additional Properties table.

Application startup: Starting an application server starts the applications
mapped to that server. The order in which the applications start depends on
the weights you assigned to each them. The application with the lowest
starting weight is started first. Applications that have the same weight are
started in no particular order. Enabling the parallel start option for the
application server means start applications with the same weight in parallel.

To view or change the application starting weight, select
Applications →Enterprise Applications. To find the Starting weight field,
open the configuration page for the application by clicking on the application
name.

Note: In order to start an application, the application server that contains the
application has to be started. If not, the application displays in the
administrative console as unavailable and you are not able to start it.

 Chapter 5. Administration basics 247

d. Select the server for which you want to disable the application.
e. Deselect the Enable option and click OK.
f. Save the configuration.

5.8.8 Viewing installed applications
The administrative console does not display the deployed servlets, JSPs or EJBs
directly on the console. However you can use the console to display XML
deployment descriptors for the enterprise application, Web modules and EJB
modules.

To see the WAR files and JAR files associated with an enterprise application, do
the following:

1. From the console navigation tree, select Applications →Enterprise
Applications.

2. Click the application that you are interested in.

3. Under the Configuration tab, select View Deployment Descriptor under
Additional Properties.

Figure 5-33 shows the deployment descriptor window for the
PlantsByWebSphere enterprise application. The Configuration tab shows you
the structure defined by the deployment descriptor:

� The name and description of the enterprise application
� The Web modules or WAR files and their context roots
� The EJB modules and their associated JAR files
� The security roles associated with the enterprise application

248 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-33 Enterprise application deployment descriptor

4. Click the application name in the navigation bar at the top to return to the
enterprise application page. In addition to the Configuration tab, you have
access to the Local Topology tab. This provides a view of the elements
defined by the deployment descriptor. Each is a link to the configuration
properties page for that element.

 Chapter 5. Administration basics 249

Figure 5-34 Topology view of the application

5.8.9 Viewing EJB modules
To see the EJBs that are part of an enterprise application:

1. Select Applications →Enterprise Applications.

2. Click the application that you are interested in.

3. Select EJB Modules under Related Items.

4. Click the EJB module you want to view.

250 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-35 Viewing an EJB module configuration

5. Click View Deployment Descriptor under Additional Properties to see the
EJB deployment descriptor.

 Chapter 5. Administration basics 251

Figure 5-36 EJB module deployment descriptor

5.8.10 Viewing Web modules
To see the servlets and JSPs that are part of an enterprise application:

1. Select Applications →Enterprise Applications.

2. Click the application that you are interested in.

3. Select Web Modules under Related Items.

4. Click the Web module you want to view.

5. Click View Deployment Descriptor.

252 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-37 Web module deployment descriptor

5.8.11 Finding a URL for a servlet or JSP
The URL for a servlet or JSP is the path used to access it from a browser. The
URL is partly defined in the deployment descriptor provided in the EAR file and
partly defined in the deployment descriptor for the Web module containing the
servlet or JSP.

To find the URL for a servlet or JSP:

1. Find the context root of the Web module containing the servlet.

2. Find the URL for the servlet.

3. Find the virtual host where the Web module is installed.

 Chapter 5. Administration basics 253

4. Find the aliases by which the virtual host is known.

5. Combine the virtual host alias, context root, and URL pattern to form the URL
request of the servlet/JSP.

For example, to look up the URL for the snoop servlet:

1. Find the context root of the Web module DefaultWebApplication of the
DefaultApplication enterprise application. This Web module contains the
snoop servlet.

a. From the console navigation tree, select Applications →Enterprise
Applications.

b. Click the application that you are interested in, in our case
DefaultApplication.

c. On the Configuration tab, select View Deployment Descriptor under
Additional Properties.

Figure 5-38 shows the deployment descriptor window for the
DefaultApplication enterprise application. You can see:

i. There is only one Web module in this application,
DefaultWebApplication.

ii. The context root for the DefaultWebApplication Web module is “/”.We
will use this later.

254 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-38 Deployment descriptor for DefaultApplication

d. Click Back to return to the DefaultApplication configuration.

2. Find the URL for the snoop servlet:

a. In the DefaultApplication configuration page, select Web Modules under
Related Items.

b. Click the DefaultWebApplication Web module to see the general
properties.

c. Click View Deployment Descriptor under Additional Properties.

This displays the Web module properties window, as shown in
Figure 5-39. Note that the URL pattern for the snoop servlet starting from
the Web module context root is “/snoop/*”. The Web module context root
was “/”.

 Chapter 5. Administration basics 255

Figure 5-39 DefaultWebApplication Web module deployment descriptor

d. Note that as you navigate through the windows, a navigation path is
displayed below the Messages area. Click DefaultApplication to return to
the application configuration page.

3. Find the virtual host where the DefaultWebApplication Web module is
installed:

a. In the DefaultApplication configuration page, select Map virtual hosts for
web modules under Additional Properties.

This will display all of the Web modules contained in the enterprise
application, and the virtual hosts in which they have been installed. Note
that the DefaultWebApplication Web module has been installed on the
default_host virtual host.

256 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 5-40 List of virtual hosts

4. Find the host aliases for the default_host virtual host.

a. From the console navigation tree, select Environment →Virtual Hosts.

b. Click default_host.

c. Select Host Aliases under Additional Properties.

This shows the list of aliases by which the default_host virtual host is
known.

 Chapter 5. Administration basics 257

Figure 5-41 Default_host virtual host aliases

Note that the aliases are composed of a DNS host name and a port
number. The host aliases for the default_host virtual host are *:80, *:9080
and *:9443, “*” meaning any host name.

5. Combine the virtual host alias, context root and URL pattern to form the URL
request of the snoop servlet. Requests for the servlet with any of the following
URLs will map to the default_host virtual host:

http://<hostname>:80/snoop
http://<hostname>:9080/snoop
https://<hostname>:9443/snoop

5.9 Managing your configuration files
This section summarizes some of the most common system management tasks:

� Backing up a node configuration
� Restoring a node configuration
� Backing up the cell configuration
� Restoring the cell configuration

258 WebSphere Application Server V6: System Management and Configuration Handbook

5.9.1 Backing up a profile configuration
Use the backupConfig command to back up a profile. The command will zip the
configuration file and store it in the current directory or a specified file name. The
zip file can be restored using the restoreConfig command. By default,
backupConfig will stop all servers in the configuration before performing the
backup.

� Executing backupConfig from the <was_home>/bin directory without the
-profileName parameter will backup the default directory.

� Executing backupConfig from the <profile_home>/bin directory without the
-profileName parameter will backup that profile.

� To back up a node configuration, specify the node profile in the -profileName
parameter.

� To back up a cell configuration, specify the deployment manager profile in the
-profileName parameter.

� To back up a standalone application server, specify the application server
profile in the -profileName parameter.

Syntax:
backupConfig <backup_file> [options]

The backup_file parameter specifies the file where the backup is to be written. If
you do not specify a backup file name, a unique name is generated and the file is
stored in the current directory. If you specify a backup file name in a directory
other than the current directory, the specified directory must exist.

The parameters are shown in Table 5-17.

Table 5-17 backupConfig parameters

Parameter Description

-nostop Servers are not to be stopped before backing up the configuration.

-quiet Suppresses the printing of progress information.

-logfile <fileName> Name of the log file to which information gets written. Default is
<profile_home>/logs/backupConfig.log

-profileName <profile> Profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.

 Chapter 5. Administration basics 259

Example
Example 5-13 shows an example of backing up a deployment manager.

Example 5-13 backupConfig example

C:\WebSphere\AppServer\bin>backupConfig
d:\WASbackups\DeploymentManagerNov022004 -profileName Dmgr01 -logfile
d:\WASbackups\logs\DeploymentManagerNov022004

DMU0116I: Tool information is being logged in file
 d:\WASbackups\logs\DeploymentManagerNov022004
ADMU0128I: Starting tool with the Dmgr01 profile
ADMU5001I: Backing up config directory
 C:\WebSphere\AppServer/profiles/Dmgr01\config to file
 D:\WASbackups\DeploymentManagerNov022004
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: dmgr
ADMU2010I: Stopping all server processes for node DMNode
ADMU0512I: Server dmgr cannot be reached. It appears to be stopped.
..
ADMU5002I: 152 files successfully backed up

5.9.2 Restoring a node configuration
Use the restoreConfig command to restore a profile configuration using an
archive previously generated using backupConfig. If the configuration to be
restored exists, the config directory is renamed to config.old (then config.old_1,
etc.) before the restore begins. The command then restores the entire contents
of the <profile_home>/config directory. By default, all servers on the node stop
before the configuration restores so that a node synchronization does not occur
during the restoration.

� Executing restoreConfig from the <was_home>/bin directory without the
-profileName parameter will restore the default directory.

� Executing restoreConfig from the <profile_home>/bin directory without the
-profileName parameter will restore that profile.

-username <name> User name for authentication if security is enabled in the server.

-password <password> Specifies the password for authentication if security is enabled.

-help Prints command syntax information

Parameter Description

260 WebSphere Application Server V6: System Management and Configuration Handbook

Syntax:
restoreConfig <backup_file> [options]

where backup_file specifies the file to be restored. If you do not specify one, the
command will not run.

The parameters are shown in Table 5-18.

Table 5-18 restoreConfig parameters

Example
Example 5-14 shows an example of restoring an application server profile.

Example 5-14 restoreConfig example

C:\WebSphere\AppServer\bin>restoreconfig d:\wasbackups\appsrv01Nov022004
-profileName AppSrv01

ADMU0116I: Tool information is being logged in file
 C:\WebSphere\AppServer\profiles\AppSrv01\logs\restoreConfig.log
ADMU0128I: Starting tool with the AppSrv01 profile
ADMU0505I: Servers found in configuration:
ADMU0506I: Server name: server1
ADMU2010I: Stopping all server processes for node AppSrvNode01
ADMU0512I: Server server1 cannot be reached. It appears to be stopped.
ADMU5502I: The directory C:\WebSphere\AppServer\profiles\AppSrv01\config

Parameter Description

-nowait Don’t wait for servers to be stopped before backing up the configuration.

-quiet Suppresses the printing of progress information.

-location
<directory_name>

Location of the backup file.

-logfile <fileName> Location of the log file to which information gets written. Default is
<profile_home>/logs/backupConfig.log

-profileName <profile> Profile to run the command against. If the command is run from
<was_home>/bin and -profileName is not specified, the default profile is
used. If run from <profile_home>/bin, that profile is used.

-replacelog Replaces the log file instead of appending to the current log.

-trace Generates trace information into the log file for debugging purposes.

-username <name> User name for authentication if security is enabled in the server.

-password <password> Specifies the password for authentication if security is enabled.

-help Prints command syntax information

 Chapter 5. Administration basics 261

 already exists; renaming to
 C:\WebSphere\AppServer\profiles\AppSrv01\config.old
ADMU5504I: Restore location successfully renamed
ADMU5505I: Restoring file d:\wasbackups\appsrv01Nov022004 to location
 C:\WebSphere\AppServer\profiles\AppSrv01\config
...
ADMU5506I: 187 files successfully restored
ADMU6001I: Begin App Preparation -
ADMU6009I: Processing complete.

5.9.3 Exporting and importing profiles
WebSphere Application Server V6 provides a mechanism that allows you to
export certain profiles, or server objects from a profile, to an archive. The archive
can be distributed and imported to other installations.

An exported archive is a zip file of the config directory with host-specific
information removed. The recommended extension of the zip file is .car. The
exported archive can be the complete configuration or a subset. Importing the
archive creates the configurations defined in the archive.

The target configuration of an archive export / import can be a specific server or
an entire profile.

To use an archive you would:

1. Export a WebSphere configuration. This creates a zip file with the
configuration.

2. Unzip the files for browsing or update for use on other systems. For example,
you might need to update resource references.

3. Send the configuration to the new system. An import can work with the zip file
or with the expanded format.

4. Import the archive. The import process requires that you identify the object in
the configuration you want to import and the target object in the existing
configuration. The target can be the same object type as the archive or its
parent:

– If you import a server archive to a server configuration the configurations
are merged.

– If you import a server archive to a node, the server is added to the node.

A tutorial on creating and using archives can be found in the Information Center.
See

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/
WASv6_SM_Configuration_Archives/playershell.swf

262 WebSphere Application Server V6: System Management and Configuration Handbook

ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf
ftp://ftp.software.ibm.com/software/eod/WAS_6-0/SystemManagement/Presentations/WASv6_SM_Configuration_Archives/playershell.swf

Server archives
The following command can be used to create an archive of a server:

$AdminTask exportServer {-archive <archive_location> -nodeName <node>
-serverName <server>}

This process removes applications from the server that you specify, breaks the
relationship between the server that you specify and the core group of the server,
cluster, or SIBus membership. If you export a single server of a cluster, the
relation to the cluster is eliminated.

To import a server archive use the following command:

$AdminTask importServer {-archive <archive_location> [-nodeInArchive <node>]
[-serverInArchive <server>][-nodeName <node>] [-serverName <server>]}

When you use the importServer command, you select a configuration object in
the archive as the source and select a configuration object on the system as the
target. The target object can match the source object or be its parent. If the
source and target are the same, the configurations are merged.

Profile archives
The following command can be used to create an archive of a profile:

$AdminTask exportWasprofile {-archive <archive_location>}

You can only create an archive of an unfederated profile (standalone application
server).

$AdminTask importWasprofile {-archive <archive_location>}

5.9.4 Deleting profiles
To delete a profile you should do the following:

� If you are removing a custom profile or application server profile that has
been federated to a cell:

– Stop the application servers on the node.

– Stop the node agent.

– Remove any nodes federated to the cell using the administrative console
or the removeNode command. Removing a node doesn’t delete it, but
restores it to it’s pre-federated configuration that was saved as part of the
federation process.

– Delete the profile using wasprofile -delete.

– Delete the <profile_home> directory.

 Chapter 5. Administration basics 263

– Verify that the registry entry for the profile is gone.

� If you are removing an application server profile that has not been federated
to a cell:

– Stop the application server.

– Delete the profile using wasprofile -delete.

– Delete the <profile_home> directory.

– Verify that the registry entry for the profile is gone.

� If you are removing a deployment manager profile:

– Remove any nodes federated to the cell using the administrative console
or the removeNode command. Removing a node doesn’t delete it, but
restores it to it’s pre-federated configuration that was saved as part of the
federation process.

– Stop the deployment manager.

– Delete the profile using wasadmin -delete.

– Delete the <profile_home> directory.

– Verify that the registry entry for the profile is gone.

Deleting a profile with wasprofile
To delete a profile, use the wasprofile -delete command. The format is:

wasprofile -delete
 -profileName <profile> | -profilePath <profile_path>
 [-debug]

At the completion of the command, the profile will be removed from the profile
registry, and the runtime components will be removed from the <profile_home>
directory with the exception of the log files.

If you have errors while deleting the profile, check the following log:

� <was_home>/logs/wasprofile/wasprofile_delete_<profile_name>.log

For example, in Example 5-15, you can see the use of the wasprofile command
to delete the profile named Custom02.

Example 5-15 Deleting a profile using wasprofile

C:\WebSphere\AppServer\bin>wasprofile -delete -profileName Custom02

detectCurrentOSFamily:
setOSFileSeparator:
resolveNodeUninstScriptForTheCurrentPlatform:
runNodeUninstScript:

264 WebSphere Application Server V6: System Management and Configuration Handbook

nodeUninstConfig:
BUILD SUCCESSFUL
Total time: 10 seconds

detectCurrentOSFamily:
setOSFileSeparator:
defineOSSpecificConfigFlag:
processJScriptForDeletion:
 [copy] Copying 1 file to C:\WebSphere\AppServer\temp
replaceAllInstancesOfGivenTokenWithGivenValueForTheGivenFile:
deleteStartMenuShortCut:
 [exec] Microsoft (R) Windows Script Host Version 5.6
 [exec] Copyright (C) Microsoft Corporation 1996-2001. All rights reserved.
deleteProfileShortCutFromStartMenu:
BUILD SUCCESSFUL
Total time: 1 second

deleteProfile:
 [delete] Deleting 183 files from C:\WebSphere\AppServer\profiles\Custom02
 [delete] Deleted 53 directories from
C:\WebSphere\AppServer\profiles\Custom02

BUILD SUCCESSFUL
Total time: 1 second
INSTCONFSUCCESS: Success: The profile no longer exists.

As you can see in Example 5-15, all seems to have gone well. But, as an
additional step to ensure the registry was properly updated, you can list the
profiles to ensure the profile is gone from the registry and validate the registry.
See Example 5-16.

Example 5-16 Verifying the delete profile results

C:\WebSphere\AppServer\bin>wasprofile -listProfiles
[Dmgr01, AppSrv01, Custom01, Dmgr02]

C:\WebSphere\AppServer\bin>wasprofile -validateRegistry
[]

Note: If there are problems during the delete, you can manually delete the
profile. For information about this, see the Deleting a profile topic in the
Information Center.

 Chapter 5. Administration basics 265

266 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 6. Administration with
scripting

In this chapter, we introduce the WebSphere scripting solution called wsadmin
and describe how some of the basic tasks that are performed by WebSphere
administrators can be done using the scripting solution. There are two types of
tasks: the operational task and the configurational task. The operational tasks
deal with currently running objects in WebSphere installation and the
configurational tasks deal with the configuration of WebSphere installations.

This chapter contains the following:

� Overview of scripting concept
� Overview of wsadmin basics
� Common operational administration tasks using wsadmin
� Common configurational administration tasks using wsadmin
� Differences to WebSphere Application Server V5 scripts
� Overview of alternatives to scripting

In WebSphere Application Server V6.0 both the Jacl and Jython scripting
languages are supported by the wsadmin tool. This chapter shows scripting
using Jacl. Jython scripting looks similar; there are many examples in the
Information Center that you can use to get started with Jython.

6

© Copyright IBM Corp. 2005. All rights reserved. 267

6.1 Overview of WebSphere scripting
WebSphere Application Server V6 provides a scripting interface based on the
Bean Scripting Framework (BSF) called wsadmin. BSF is an open source
project to implement an architecture for incorporating scripting into Java
applications and applets. The BSF architecture works as an interface between
Java applications and scripting languages. Using BSF allows scripting languages
to do the following:

� Look up a pre-registered bean and access a pre-declared bean
� Register a newly created bean
� Perform all bean operations
� Bind events to scripts in the scripting language

Figure 6-1 shows the major components involved in the wsadmin scripting
solution.

Figure 6-1 wsadmin scripting

Because wsadmin uses BSF, it can make various Java objects available through
language-specific interfaces to scripts.

6.2 Using wsadmin
In this section, we describe how to start wsadmin, configurations you need to
perform to launch wsadmin and how to get online information.

6.2.1 Launching wsadmin
The wsadmin.bat (Windows) or .sh (UNIX) command file resides in the bin
directory of every profile for an application server, deployment manager, and
managed node instance. Start the wsadmin from a command prompt with the
command:

<was_home>\profiles\<profile_name>\bin\wsadmin.bat (.sh)

Resources

MBeans

MBeansMBean
Server

JVM

External tools
and programs Connector

268 WebSphere Application Server V6: System Management and Configuration Handbook

Note that the wsadmin command file also exists in the bin directory of every
<profile_home> directory. Starting wsadmin from this location is not
recommended because you have to be very careful to specify the right profile to
work with. The default profile will be chosen.

To get syntax-related help, type wsadmin.bat -? and press Enter. Example 6-1
shows the output. Some of these options have an equivalent in the properties
file. Any options specified on the command line will override those set in the
properties file.

Example 6-1 wsadmin command-line options

C:\WebSphere\AppServer\profiles\HerkulesBase\bin>wsadmin -?

WASX7001I: wsadmin is the executable for WebSphere scripting.
Syntax:

wsadmin
 [-h(elp)]
 [-?]
 [-c <command>]
 [-p <properties_file_name>]
 [-profile <profile_script_name>]
 [-f <script_file_name>]
 [-javaoption java_option]
 [-lang language]
 [-wsadmin_classpath classpath]
 [-profileName profile]
 [-conntype
 SOAP
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 RMI
 [-host host_name]
 [-port port_number]
 [-user userid]
 [-password password] |
 JMS <jms parms> |
 NONE
]
 [script parameters]

 Chapter 6. Administration with scripting 269

6.2.2 Configuring wsadmin
The properties that determine the scripting environment for wsadmin can be set
using either the command line or a properties file. Properties can be set in the
following three ways:

� Use the profile or system default properties file:

<profile_home>/properties/wsadmin.properties
or
<was_home>/properties/wsadmin.properties

� Use a customized properties file placed in the location pointed to by the
WSADMIN_PROPERTIES environment variable. You can copy the default
properties file to this location and modify it.

� Specify the -p argument to the wsadmin command.

The properties to note are listed in Table 6-1.

Table 6-1 wsadmin properties

Some of the listed properties in the wsadmin.properties file are commented out
by default. An example is com.ibm.ws.scripting.traceString. If you want to
trace wsadmin execution, remove the comment sign # from the properties file.

Similarly, some of the properties contain values. For example,
com.ibm.ws.scripting.connectionType has a default value of SOAP. This means
that when a scripting process is invoked, a SOAP connector is used to
communicate with the server.

The wsadmin command can operate in either connected or local mode. In
connected mode, all operations are performed by method invocations on running
JMX MBeans. In local mode, the application server (MBeans server) is not
started and the wsadmin objects are limited to configuring the server by means
of directly manipulating XML configuration documents. When operating in local
mode it is very important to specify the correct profile for performing the

property value

com.ibm.ws.scripting.connectionType SOAP, RMI or NONE

com.ibm.scripting.host host name of target system

com.ibm.scripting.port TCP port of target system

com.ibm.ws.scripting.defaultLang jacl or Jython

com.ibm.ws.scripting.traceFile File for trace information

com.ibm.ws.scripting.traceString =com.ibm.*=all=enabled

270 WebSphere Application Server V6: System Management and Configuration Handbook

administration tasks or starting the tool from the correct profile directory.
Remember that each application server instance is configured from a set of XML
documents that is stored in separate directories for every server instance (the
application server profile).

When performing configuration changes in local mode in a distributed server
environment, care should be take to make configuration changes at the
deployment manager level. Changes made directly to the node configuration will
be lost at server startup or at configuration replication. In a standalone server
environment this is not a concern.

In addition to the properties file and configuration profile, you should also take
note of the script profile file. This is not to be confused with the server
configuration profile. A script profile is a script that is invoked before the main
script or before invoking wsadmin in interactive mode. The purpose of the script
profile is to customize the environment in which scripts run. For example, a script
profile can be set for Java Command Language (Jacl) scripting language that
makes Jacl-specific variables or procedures available to the interactive session
or main script.

6.2.3 Commands and scripts invocation
The wsadmin commands can be invoked in three different ways. This section
details the different ways in which command invocation is performed.

Invoking a single command (-c)
The -c option is used to execute a single command using wsadmin, in
Example 6-2. In the example, we use the AdminControl object to query the node
name of the WebSphere server process.

Example 6-2 Running a single command in wsadmin

c:\was\app\profiles\HerkulesBase\bin>wsadmin -c "$AdminControl getNode"
WASX7209I: Connected to process "server1" on node HerkulesNode using SOAP
connector;
The type of process is: UnManagedProcess
HerkulesNode

Invoking commands interactively
The wsadmin command execution environment can be run in interactive mode,
for invoking multiple commands without having the overhead of starting and
stopping the wsadmin environment for every single command. Run wsadmin
without the command (-c) and script file (-f) options to start the interactive
command execution environment, as shown in Example 6-3.

 Chapter 6. Administration with scripting 271

Example 6-3 Starting the wsadmin interactive command execution environment

c:\was\app\profiles\HerkulesBase\bin>wsadmin
WASX7209I: Connected to process "server1" on node HerkulesNode using SOAP
connector;
The type of process is: UnManagedProcess
wsadmin>

From the wsadmin> prompt, the WebSphere administrative objects and built-in
language objects can be invoked, as shown in Example 6-4. Type the commands
as shown in bold..

Example 6-4 Interactive command invocation

wsadmin>puts "Running in interactive mode"
Running in interactive mode

wsadmin>$AdminControl getNode
HerkulesNode
wsadmin>

End the interactive execution environment by typing quit and pressing the Enter
key.

Running script files (-f)
The -f option is used to execute a script file. Example 6-5 shows a two-line Jacl
script named myScript.jacl. The script has a .jacl extension, to reflect the Jacl
language syntax of the script. The extension plays no significance to wsadmin,
the com.ibm.ws.scripting.defaultLang property and -lang command line option is
used to determine the language used. If the property setting is not correct, use
the -lang option to identify the scripting language, because the default is Jacl.

Example 6-5 Jacl script

puts "This is an example JACL script"
puts "[$AdminControl getNode]"

Example 6-6 shows how to execute the script.

Example 6-6 Running a Jacl script in wsadmin

c:\was\app\profiles\HerkulesBase\bin>wsadmin -f myScript.jacl
WASX7209I: Connected to process "server1" on node HerkulesNode using SOAP
connector; The type of process is: UnManagedProcess
This is an example JACL script
HerkulesNode

272 WebSphere Application Server V6: System Management and Configuration Handbook

As WebSphere also supports Jython, Example 6-7 shows the equivalent script in
Jython. Note that the Jython script has a .py extension, to indicate the Python
syntax of this script. Again, wsadmin does not use the extension, so the -lang
option has to be specified in order to identify the correct language. Alternatively,
you can specify the default language by setting the
com.ibm.ws.scripting.defaultLang property in the wsadmin.properties file.

Example 6-7 Jython script

print "This is an example Jython script"
print AdminControl.getNode()

Example 6-8 shows the execution of the Jython script.

Example 6-8 Running a Jython script in wsadmin

c:\was\app\profiles\HerkulesBase\bin>wsadmin -lang jython -f myScript.py
WASX7209I: Connected to process "server1" on node HerkulesNode using SOAP
connector; The type of process is: UnManagedProcess
This is an example Jython script
HerkulesNode

Note the difference in syntax between Jacl and Jython, but the equivalence of the
use of the AdminControl object.

Choosing between Jacl and Jython is simply a question of programming style
and preference. One is not better suited over the other. In fact they both offer the
same interfaces to managing the WebSphere environment.

The WebSphere Application Server V6 Information Center has detailed
descriptions of syntax and semantics for both the Jacl and Jython languages.
Also generic programming guides exist for both (see “Online resources” on
page 990). As the Jython language is simply an alternative implementation of
Python V. 2.1 written entirely in Java, a general Python language guide is well
suited for learning the Jython language. Jacl is a pure Java implementation of
TCL and a standards TCL programming guide can be used for getting started
with Jacl.

The purpose of this chapter is to provide details on wsadmin and examples of
performing administrative tasks with scripting commands. The Jacl scripting
language is he basis for this task in this book. However, you could use the Jython
language as well.

Using a profile (-profile)
The -profile command line option can be used to specify a profile script. The
profile can be used to perform whatever standard initialization is required.

 Chapter 6. Administration with scripting 273

Several -profile options can be used on the command line and those are
invoked in the order given.

Specifying a properties file (-p)
Use the -p option to specify a properties file other than wsadmin.properties
either located in the <profile_home>/properties directory,
<was_home>/properties directory or in the $user_home directory.

Figure 6-9 shows an example of invoking wsadmin to execute a script file using a
specific properties file.

Example 6-9 Specifying properties file on the command line

c:\was\app\profiles\HerkulesBase\bin>wsadmin -f c:\scriptexamples\myScript.jacl
-p c:\temp\custom.properties

WWASX7209I: Connected to process "server1" on node HerkulesNode using SOAP
connector; The type of process is: UnManagedProcess

This is an example JACL script
MyServ

6.2.4 Overview of wsadmin objects
The wsadmin command exposes four objects used for managing the WebSphere
environment, as well as a help object:

� AdminControl
� AdminConfig
� AdminApp
� AdminTask
� Help

AdminControl
The AdminControl scripting object is used for operational control. It
communicates with MBeans that represent live objects running a WebSphere
server process. It includes commands to query existing running objects and their
attributes and invoke operations on the objects. In addition to the operational
commands, the AdminControl object supports commands to query information
about the connected server, convenient commands for client tracing,
reconnecting to a server, and starting and stopping a server.

AdminConfig
The AdminConfig object is used to manage the configuration information that is
stored in the repository. This object communicates with the WebSphere
Application Server configuration service component to make configuration

274 WebSphere Application Server V6: System Management and Configuration Handbook

inquires and changes. You can use it to query existing configuration objects,
create configuration objects, modify existing objects and remove configuration
objects. In a distributed server environment, the AdminConfig commands are
available only if a scripting client is connected to the deployment manager. When
connected to a node agent or a managed application server, the AdminConfig
commands will not be available because the configuration for these server
processes are copies of the master configuration that resides in the deployment
manager. This is not of concern in standalone server environments.

AdminApp
The AdminApp object can update application metadata, map virtual hosts to Web
modules, and map servers to modules for applications already installed.
Changes to an application, such as specifying a library for the application to use
or setting session management configuration properties are performed using the
AdminConfig object.

AdminTask
The AdminTask object is used to access a set of administrative commands that
provide an alternative way to access the configuration commands and the
running object management commands. The administrative commands run
simple and complex commands. They provide easier to use and task-oriented
commands. The administrative commands are discovered dynamically when the
scripting client is started. The set of available administrative commands depends
on the edition of WebSphere Application Server you install. You can use the
AdminTask object commands to access these commands.

Two run modes are always available for each administrative command, namely
the batch and interactive mode. When you use an administrative command in
interactive mode, you go through a series of steps to collect your input
interactively. This process provides users a text-based wizard and a similar user
experience to the wizard in the administrative console. You can also use the help
command to obtain help for any of the administrative commands and the
AdminTask object.

Help
The Help object provides information about the available methods for the four
management objects as well as information about operations and attributes of
running MBeans. For example, to get a list of the public methods available for the
AdminControl object, enter the command as shown:

wsadmin>$Help AdminControl

 Chapter 6. Administration with scripting 275

To get a detailed description of a specific object method and the parameters it
requires, invoke the help method of the target object with the method name as
the option to the help method, as shown in Example 6-10.

Example 6-10 Getting method-specific help

wsadmin>$AdminControl help completeObjectName
WASX7049I: Method: completeObjectName

 Arguments: object name, template

 Description: Returns a String version of an object name that matches
 the "template." For example, the template might be "type=Server,*"
 If there are several MBeans that match the template, the first match
 is returned.

Similarly, you can get a brief description, as well as a detailed methods help for
the AdminConfig, AdminApp, and AdminTask objects.

Obtaining operations and attributes information from the Help object are
discussed in “Finding attributes and operations for running MBeans” on
page 279.

Execution environment
The AdminConfig, the AdminTask, and the AdminApp objects all handle
configuration functionality. You can invoke configuration functions with or without
being connected to a server. Only the AdminControl object requires the server to
be started because its commands can only be invoked on running JMX MBeans.

If a server is running, it is not recommended that the scripting client be started in
local mode because configuration changes made in local mode are not reflected
in the running server configuration. The reverse is also true. In connected mode,
the availability of the AdminConfig commands depend on the type of server to
which the scripting client is attached to. Performing configuration changes to a
node agent or managed application server is not advised.

6.2.5 Management using wsadmin objects
Administration can be performed from wsadmin on JMX MBean objects from the
AdminControl object. Configuration management is done with the AdminConfig
object. For performing common types of administrative and configurative tasks

Note: For the purposes of this discussion, we will refer to the methods of the
AdminControl, AdminConfig, AdminApp, AdminTask, and Help objects as
commands.

276 WebSphere Application Server V6: System Management and Configuration Handbook

without in-depth knowledge of the JMX framework and the WebSphere XML
configuration structure, the AdminTask has been introduced with WebSphere
Application Server V6. The following sections explain these wsadmin objects in
more detail.

Administration using AdminControl
In order to invoke administrative methods on running JMX MBeans (as is the
case for most AdminControl commands), a reference to the target MBean object
is required, by means of an Object Name. As explained previously, MBeans
represent running components in the WebSphere runtime environment and can
be used to query and alter state and configuration. Each WebSphere server
instance contains an MBean server that registers and provides the runtime
environment for all MBeans in that server.

Us the queryNames command to list the object names of all MBeans registered
and running in the MBean server. The simplest form of this command in Jacl is:

$AdminControl queryNames *

The list contains all object names of all MBeans currently running in the MBean
server. Depending on the server your scripting client is attached to, this list might
contain MBeans that are running in remote servers. This is because every
MBean server provides management capabilities of all the node agents and
managed application servers that is manageable from this level in the
WebSphere cell hierarchy. The MBeans running on the remote MBean server are
manageable by means of a proxy MBean, transparent to the scripting client.

� If the client is attached to a stand-alone WebSphere Application Server, the
list contains only MBeans running on that server.

� If the client is attached to a node agent, the list contains MBeans running in
the node agent as well as MBeans running on all application servers on that
node.

� If the client is attached to a deployment manager, the list contains MBeans
running in the deployment manager, in all node agents communicating with
that deployment manager, and all application servers on all the nodes served
by those node agents.

Example 6-11 on page 278 shows a Jacl script that collects information about
running MBeans into a file named mbean.txt. The list returned by the
queryNames command is a single Jacl string object that separates every object
name with two new line control characters for clear readability. The new line
character is used for creating a Jacl list structure that is written to the mbean.txt
file with an ObjectName: prefix. Note that because the list is created based on
new line (line.separator) information, every other entry from the mbList object is
empty.

 Chapter 6. Administration with scripting 277

Example 6-11 Finding information for running MBeans

set file "mbean.txt"
set logFile [open $file a+]
set mbStr [$AdminControl queryNames "*:*"]
set mbList [split $mbStr $env(line.separator)]
foreach item $mbList {
 if {$item != ""} { puts $logFile "ObjectName: $item" }
}
close $logFile

An object name item returned by the queryNames command, could look like
Example 6-12:

Example 6-12 Returned object name item

WebSphere:name=dmgr,process=dmgr,platform=common,node=PlatoCellManager,j2eeType
=J2EEServer,version=6.0.0.0,type=Server,mbeanIdentifier=cells/PlatoCell/nodes/P
latoCellManager/servers/dmgr/server.xml#Server_1,cell=PlatoCell,processType=Dep
loymentManager

This represents a deployment manager (dmgr) running in cell PlatoCell on node
PlatoCellManager. WebSphere includes the following key properties on its object
names:

� Name
� Type
� Cell
� Node
� Process
� mbeanIdentifier

You can use any of these key properties to narrow the scope of the list returned
by queryNames. For example you can list all MBeans that represent Server
objects on the node platoCellManager, as follows:

$AdminControl queryNames WebSphere:type=Server,node=PlatoCellManager,*

An alternative way to obtain the object name is by using the
completeObjectName command. This command only returns the first object
name matching the pattern specified. For patterns specifying the exact object

Note: Be aware of the following when using AdminControl queryNames.

� You will get an empty list back if you do not use the * wildcard at the end of
the ObjectName.

� WebSphere: represents the domain and is assumed if you do not include it.

278 WebSphere Application Server V6: System Management and Configuration Handbook

needed or the top level MBean, for instance, the deployment manager, the
completeObjectName command could be a better choice. For example, this
command would obtain the deployment manager object name:

$AdminControl completeObjectName
type=DeploymentManager,node=PlatoCellManager,*

Finding attributes and operations for running MBeans
The Help object can be used to list attributes and operations available for any
running MBean. The object name of the running MBean is needed in order to
complete the query. The object name can be obtained by use of AdminControl
completeObjectName command as explained previously.

Example 6-13 shows how to find attributes information for a server MBean. The
first command initializes the variable serv to the object name of a running server
on the SocratesNode, as found by the completeObjectName command. Note that
the object name returned is the first found by completeObjectName. The
attributes command of the Help object lists all the available attributes for the
particular server MBean found.

Example 6-13 Finding attributes for a running MBean

wsadmin>set serv [$AdminControl completeObjectName
type=Server,node=SocratesNode,*]

WASX7026W: String "type=Server,node=SocratesNode,*" corresponds to 2 different
MBeans; returning first one.
WebSphere:name=nodeagent,process=nodeagent,platform=common,node=SocratesNode,j2
eeType=J2EEServer,version=6.0.0.0,type=Server,mbeanIdentifier=cells/PlatoCell/n
odes/SocratesNode/servers/nodeagent/server.xml#Server_1097068263653,cell=PlatoC
ell,processType=NodeAgent

wsadmin>$Help attributes $serv
Attribute Type Access
name java.lang.String RO
shortName java.lang.String RO
threadMonitorInterval int RW
threadMonitorThreshold int RW
threadMonitorAdjustmentThreshold int RW
pid java.lang.String RO
cellName java.lang.String RO
cellShortName java.lang.String RO

Javadoc: All MBean types are documented in Javadoc format in the
web\mbeanDocs directory from within the WebSphere target installation
directory. The starting point is the index.html file. For a default installation the
location of the index.html file is in this directory in a Windows environment:

C:\Program Files\WebSphere\AppServer\web\mbeanDocs\index.html

 Chapter 6. Administration with scripting 279

deployedObjects [Ljava.lang.String; RO
javaVMs [Ljava.lang.String; RO
nodeName java.lang.String RO
nodeShortName java.lang.String RO
processType java.lang.String RO
resources [Ljava.lang.String; RO
serverVersion java.lang.String RO
serverVendor java.lang.String RO
state java.lang.String RO
platformName java.lang.String RO
platformVersion java.lang.String RO
objectName java.lang.String RO
stateManageable boolean RO
statisticsProvider boolean RO
eventProvider boolean RO
eventTypes [Ljava.lang.String; RO

Attribute values for any specific MBean can be read with the getAttribute
command of the AdminControl object. Depending on access policy for the
individual attribute (Read only (RO) or Read and Write (RW), as listed with the
attributes Help command), attribute values can be modified with the
setAttribute command. For example, the process id (pid) from the server
MBean can be retrieved by:

$AdminControl getAttribute $serv pid

Similar to the attributes command, the operations command can be used to
list the operations supported by a particular MBean. Example 6-14 shows the
usage of the operation command and its output.

Example 6-14 Finding operations for a running MBean (partial list of operations)

wsadmin>$Help operations $serv
Operation
java.lang.String getProductVersion(java.lang.String)
java.lang.String getComponentVersion(java.lang.String)
java.lang.String getEFixVersion(java.lang.String)
java.lang.String getPTFVersion(java.lang.String)
java.lang.String getExtensionVersion(java.lang.String)
[Ljava.lang.String; getVersionsForAllProducts()
[Ljava.lang.String; getVersionsForAllComponents()
[Ljava.lang.String; getVersionsForAllEFixes()
[Ljava.lang.String; getVersionsForAllPTFs()
[Ljava.lang.String; getVersionsForAllExtensions()
void stop()
void stopImmediate()
void stop(java.lang.Boolean, java.lang.Integer)
void restart()

280 WebSphere Application Server V6: System Management and Configuration Handbook

MBean operations are invoked by use of the invoke command of the
AdminControl object. For example, this is the syntax for invoking the
getVersionsForAllProducts operation:

$AdminControl invoke $serv getVersionsForAllProducts

For viewing and invoking MBean attributes and operations visually, the graphical
tool MBeanInspector (MBI) is recommended. With MBeanInspector all JMX
MBeans are listed in a parent-child tree structure and with wsadmin invocation
syntax displayed for most operations. For more information, search for
MBeanInspector on AlphaWorks.

Configuring using AdminConfig
The AdminConfig and AdminTask objects are used to manage configuration
information for the WebSphere environment. This section discusses the use of
the AdminConfig object.

The AdminConfig object communicates with the configuration service of the
WebSphere process to query and update the configuration. All modifications
done with the AdminConfig commands are stored to a temporary workspace until
you invoke the save command.

The AdminConfig object performs a series of of tasks for configuration changes:

1. Identify the configuration type and the corresponding attributes.

2. Query an existing configuration object to obtain the configuration ID of the
object to modify.

3. Modify the existing configuration object or overwrite with a new object.

4. Save the configuration.

The next sections discuss these steps in more detail. Be warned that configuring
WebSphere by use of the AdminConfig object requires a good understanding of
the WebSphere XML configuration documents and the config directory content.
A starting point would be to look through a default WebSphere configuration
profile and understand the defined elements, attributes and namespaces listed in
the Javadoc configuration documentation.

Note: Even though MBI was not available for WebSphere version 6 at the time
of this writing, the current version for version 5 works fine with version 6.
However MBI is not profile-aware. With security enabled, it uses the generic
sas.properties file from the root of the WebSphere install tree instead of the
sas.properties file from the current profile.

 Chapter 6. Administration with scripting 281

types
The WebSphere configuration consists of element types and attribute names
structured in a set of XML documents. The WebSphere configuration is managed
from the AdminConfig object by obtaining a reference to an existing element type
or by instantiating or removing element types from the configuration. In wsadmin
every element type is managed as a configuration object with a unique
configuration ID. All available configuration objects can be listed by using the
types command. Example 6-15 shows the partial output of the types command.

Example 6-15 Partial output of types command

wsadmin> $AdminConfig types

AccessPointGroup
ActivationSpec
ActivationSpecTemplateProps
ActivitySessionService
AdminObject
AdminObjectTemplateProps
AdminServerAuthentication
AdminService
Agent
AllActivePolicy
AllAuthenticatedUsersExt
Application
ApplicationClientFile
ApplicationConfig
ApplicationContainer
ApplicationDeployment
ApplicationManagementService
ApplicationProfileService
ApplicationServer

Every configuration object is used for configuring a specific part of the overall
WebSphere cell. For example, the ApplicationServer object is used for defining
application servers in the environment. As the application server provides
configurable features, attributes defined from within the object are used to
configure the application server features. The available attributes for the
ApplicationServer object can be listed by use of the AdminConfig attributes
command, this will be discussed in detail in the section “Input and output of
configuration object attributes” on page 285.

An object can contain other objects. Therefore a parent to child relationship
exists in the configuration. For example, a node type object contains server type
objects, making the node object a parent to the server objects. To identify
possible objects in where a given configuration object can reside, use the parent

282 WebSphere Application Server V6: System Management and Configuration Handbook

command. Locate the parent configuration objects for the ApplicationServer
object by issuing:

$AdminConfig parent ApplicationServer

getid
The getid command returns the configuration name for a configuration object.
Configuration objects are named with a combination of the display name for the
object and its configuration ID. The ID uniquely identifies the object and can be
used in any configuration command that requires a configuration object name.

Example 6-16 shows how to obtain the configuration name for SocratesServer1.
The string argument passed to the command identifies the node and server to
get the name for. The / is used to separate one set of object type and value from
another. The : is used to separate the value from the object type in an object
type and value pair.

Example 6-16 Finding configuration name of an object

sadmin>$AdminConfig getid "/Node:SocratesNode/Server:SocratesServer1/"

SocratesServer1(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#Server_1097069277091)

Example 6-16 illustrates how the parent to child relationship of configuration
objects comes into play. As the configuration object name for the
SocratesServer1 residing on the SocratesNode is needed, the specification of
both child and parent objects are required.

Note: Configuration objects are named using a combination of the display
name and its configuration ID. The display name comes first, followed by the
configuration ID in parentheses. An example of such an object name is:

server1(cells/MyCell/nodes/MyNode/servers/server1|server.xml#Server_1)

For those pieces of configuration data that do not have display names, the
name of the object simply consists of the configuration ID in parentheses. An
example of such an object name is as follows:

(cells/MyCell/nodes/MyNode/servers/server1|server.xml#ApplicationServer_1)

Because the ID portion is completely unique, a user can always use it without
the prepended display name in any command that requires a configuration
object name.

 Chapter 6. Administration with scripting 283

list
The list command returns a list of objects for a given type. In a WebSphere
Application Server environment, there are several object types and many objects
configured that have the same object type.

Example 6-17 list all objects of DataSource object type in the test environment.
The list command returns five objects of DataSource type, one defined for the
PlatoCell cell, two for the SocratesServer1 server, one for the SocratesNode
node and one for the socServer2 server. Note how this command lists all objects
regardless of scope. From the administrative console, you would have to collect
this information by querying at each scope level.

Example 6-17 Finding objects of the same object type

wsadmin>$AdminConfig list DataSource
"Cell Datasource(cells/PlatoCell|resources.xml#DataSource_1097095184323)"
BANKDS(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

resources.xml#DataSource_1097097147246)
DefaultEJBTimerDataSource(cells/PlatoCell/nodes/SocratesNode/servers/

SocratesServer1|resources.xml#DataSource_1000001)
PLANTSDB(cells/PlatoCell/nodes/SocratesNode|

resources.xml#DataSource_1097095254434)
_SocratesNode.SocratesServer1-SocratesNodeSamplesBus(cells/PlatoCell/nodes/

SocratesNode/servers/socServer2|resources.xml#DataSource_1097097148798)

defaults
The defaults command displays a table of attributes, their types and defaults if
any for the configuration object. Each object has an object type and each object
type has attributes that might or might not have default values.

Example 6-18 shows the usage of the defaults command to list the attributes
and default values for those attributes for object type DynamicCache.

Example 6-18 Finding attributes and default values for an object type

wsadmin>$AdminConfig defaults DynamicCache
Attribute Type Default
enable boolean false
defaultPriority int 1
hashSize int 0
cacheSize int 2000
enableCacheReplication boolean false
replicationType ENUM NONE
pushFrequency int 0
enableDiskOffload boolean false
diskOffloadLocation String
flushToDiskOnStop boolean false

284 WebSphere Application Server V6: System Management and Configuration Handbook

enableTagLevelCaching boolean false
context ServiceContext
properties Property
cacheGroups ExternalCacheGroup
cacheReplication DRSSettings

Input and output of configuration object attributes
The AdminConfig attributes command is part of the wsadmin online help
feature. The information displayed does not represent any particular
configuration object but represents configuration object types or object metadata.
The metadata is used to show, modify, and create real configuration objects. In
this section, we discuss the interpretation of the output of those commands.

The attributes command displays the type and name of each attribute defined
for a given type of configuration object. The name of each attribute is always a
string, generally beginning with a lowercase letter. But the types of attributes
vary.

Example 6-19 shows the output of the attributes command for the
configuration object DynamicCache. There are 15 attributes listed, four simple
integer attributes, five Boolean attributes and one String attribute.

The cacheGroups and properties objects are lists of objects indicated by * at the
end of ExternalCacheGroup and Property(TypedProperty) respectively. These
are nested attributes. Another attributes invocation can be used to see the
composition of these nested attributes.

Example 6-19 Output of attribute command of AdminConfig object

wsadmin>$AdminConfig attributes DynamicCache
"cacheGroups ExternalCacheGroup*"
"cacheReplication DRSSettings"
"cacheSize int"
"context ServiceContext@"
"defaultPriority int"
"diskOffloadLocation String"
"enable boolean"
"enableCacheReplication boolean"
"enableDiskOffload boolean"
"enableTagLevelCaching boolean"
"flushToDiskOnStop boolean"
"hashSize int"
"properties Property(TypedProperty)*"
"pushFrequency int"
"replicationType ENUM(PULL, PUSH, PUSH_PULL, NONE)"

wsadmin>$AdminConfig attributes ExternalCacheGroup

 Chapter 6. Administration with scripting 285

"members ExternalCacheGroupMember*"
"name String"
"type ENUM(SHARED, NOT_SHARED)"

wsadmin>$AdminConfig attributes TypedProperty
"description String"
"name String"
"required boolean"
"type String"
"validationExpression String"
"value String"

In Example 6-19, the properties attribute of the DynamicCache object has a value
that is also a list of objects of the Property type. The Property type is a generic
type, so its sub-types are listed, that is TypedProperty. The replicationType
attribute is an ENUM type attribute whose value must be one of the four possible
values listed in parentheses.

The show command of the AdminConfig object can be used to display the
top-level attributes of a given object. In Example 6-20, the top-level attributes for
the SocratesServer1 object is shown by use of the show command.

Example 6-20 Finding top-level attributes for a given object (formatted for readability)

wsadmin>$AdminConfig show [$AdminConfig getid
/Node:SocratesNode/Server:SocratesServer1/]

{components
{(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#NameServer_1097069277361)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#ApplicationServer_1097069277361)}}
{customServices {}}
{developmentMode false}
{errorStreamRedirect

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#StreamRedirect_1097069277361)}

{name SocratesServer1}
{outputStreamRedirect

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#StreamRedirect_1097069277362)}

{parallelStartEnabled true}
{processDefinitions

{(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#JavaProcessDef_1097069277371)}}

{serverType APPLICATION_SERVER}
{services

{(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#PMIService_1097069277091)

286 WebSphere Application Server V6: System Management and Configuration Handbook

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#AdminService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#TraceService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#RASLoggingService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#CoreGroupBridgeService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#TPVService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#ObjectRequestBroker_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#TransportChannelService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#ThreadPoolManager_1097069277361)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#HTTPAccessLoggingService_1097069277361)}}

{stateManagement (cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#StateManageable_1097069277091)}

{statisticsProvider
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#StatisticsProvider_1097069277091)}

The value for a particular attribute can be retrieved with the showAttribute
command. In Example 6-21, the values for the name attribute and the services
attribute of SocratesServer1 server object are listed.

Example 6-21 Retrieving attribute values for a given object (formatted for readability)

wsadmin>set serv [$AdminConfig getid
/Node:SocratesNode/Server:SocratesServer1/]

wsadmin>$AdminConfig showAttribute $serv name
SocratesServer1

wsadmin>$AdminConfig showAttribute $serv services
{ (cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#PMIService_1097069277091)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#AdminService_1097069277091)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#TraceService_1097069277091)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#RASLoggingService_1097069277091)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#CoreGroupBridgeService_1097069277091)
(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|

server.xml#TPVService_1097069277091)

 Chapter 6. Administration with scripting 287

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#ObjectRequestBroker_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#TransportChannelService_1097069277091)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#ThreadPoolManager_1097069277361)

(cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1|
server.xml#HTTPAccessLoggingService_1097069277361)}

Another useful command to list all attributes and their values in the AdminConfig
object is the showall command. This command returns names and values for all
attributes of a given object, including nested attributes.

Configuring using AdminTask
Use of the classic wsadmin administrative objects AdminConfig and AdminControl
requires some knowledge of the JMX framework and WebSphere XML
configuration structure. For performing various scripted administrative tasks
without knowledge of the underlying infrastructure, the AdminTask object has
been introduced.

The AdminTask object commands are more like wizards, providing a
step-by-step guide to performing management operations. The AdminTask
commands can either be invoked interactively, in order to prompt the user for the
parameters required, or be invoked batch-like, with all input specified as part of
the invocation.

AdminTask is introduced with support of a new command framework API in the
WebSphere product. The AdminTask commands offered are direct reflections of
the tasks each component provides through the command framework. As the
command set is discovered dynamically on wsadmin startup, the number of
commands can differ, depending on server environment and WebSphere
Application Server package.

Overview of AdminTask commands
The AdminTask object provides a large number of commands that performs
simple and complex administrative tasks. In order to find a command for a
specific task, commands have been logically grouped into command groups. To
find AdminTask commands related to service integration bus administration, the

Tip: Scripting examples for managing the WebSphere Application Server V6
configuration are available from the IBM WebSphere Developer Domain
(WSDD) library in the samples collection. Even though the samples are for
WebSphere Application Server V5, they are just as useful for WebSphere
Application Server V6.

288 WebSphere Application Server V6: System Management and Configuration Handbook

commands of the SIBAdminCommands group can be listed. All the command
groups and the commands in the SIBAdminCommands group are listed in
Example 6-22.

Example 6-22 AdminTask Groups and SIBAdmin commands (formatted for readability)

wsadmin>$AdminTask help -commandGroups
WASX8005I: Available admin command groups:

ChannelFrameworkManagement - A group of admin commands that help in configuring
the WebSphere Transport Channel Service

ClusterConfigCommands - Commands for configuring application server clusters
and cluster members.

ConfigArchiveOperations - A command group that contains various config archive
related operations.

CoreGroupBridgeManagement - A group of administrative commands that help in
configuring core groups.

CoreGroupManagement - A set of commands for modifying core groups
JCAManagement - A group of administrative commands that helps to configure

Java 2 Connector Architec ture (J2C)-related resources.
LocalModeGroup - No description available
ManagedObjectMetadata - Managed Object Metetadata Helper Commands
NodeGroupCommands - a group of admin commands for the Node Group Administration
SIBAdminBusSecurityCommands - SIB_ADMIN_SECURITY_COMMANDS_GROUP_DESCRIPTION
SIBAdminCommands - A group of commands that help configure SIB queues and

messaging engines.
SIBJMSAdminCommands - A group of commands that help configure SIB JMS

connection factories, queues and topics.
SIBWebServices - A group of commands to configure service integration

bus Web services.
ServerManagement - A group of command that configure servers
TAMConfig - This group contains commands for configuring embedded Tivoli

Access Manager.
UnmanagedNodeCommands - Commands to configure unmanaged nodes.
WSGateway - A group of commands to configure Web services gateway.

wsadmin>$AdminTask help SIBAdminCommands
WASX8007I: Detailed help for command group: SIBAdminCommands

Description: A group of commands that help configure SIB queues and messaging
engines.

Commands:
createSIBus - Create a bus.
deleteSIBus - Delete a named bus, including everything on it.
listSIBuses - List all buses in the cell.
modifySIBus - Modify a bus.
showSIBus - Show the attributes of a bus.
addSIBusMember - Add a member to a bus.

 Chapter 6. Administration with scripting 289

removeSIBusMember - Remove a member from a bus.
listSIBusMembers - List the members on a bus.
showSIBusMember - Show a member from a bus.
modifySIBusMember - Modify a bus member.
createSIBEngine - Create a messaging engine.
deleteSIBEngine - Delete the default engine or named engine from the

target bus.
listSIBEngines - List messaging engines.
showSIBEngine - Show a messaging engine's attributes.
listSIBDestinations - List destinations belonging to a bus.
createSIBDestination - Create bus destination.
deleteSIBDestination - Delete bus destination.
modifySIBDestination - Modify bus destination.
showSIBDestination - Show a bus destination's attributes.
createSIBMediation - Create a mediation.
deleteSIBMediation - Delete a mediation.
listSIBMediations - List the mediations on a bus.
modifySIBMediation - Modify a mediation.
showSIBMediation - Show the attributes of a mediation.
mediateSIBDestination - Mediate a destination.
unmediateSIBDestination - Mediate a destination.

All the available AdminTask commands can be retrieved in one list with use of
the help command:

$AdminTask help -commands

In order to invoke the createSIBus command, a number of options are needed.
To list the options for a command, invoke help on the command:

$AdminTask help createSIBus

An example of creating a service integration bus interactively is shown in
Example 6-23 on page 291. The batch invocation of the command is displayed at
the end of the interactive guide with all the correct options added. This command
can be used to form scripted creations of additional service integration buses. It
is a means to help the script developer become familiar with the command
invocation of the AdminTask object. Using the interactive approach for obtaining
the correct invocation syntax can be very useful when developing automated
scripted installations and configurations.

Tip: The AdminTask batch command syntax is displayed at the time of
command invocation. To obtain the command syntax without changing the
master WebSphere configuration repository, the change need not be saved
from the local workspace to the repository. The change to the workspace can
be reversed with use of the AdminConfig reset command:

$AdminConfig reset

290 WebSphere Application Server V6: System Management and Configuration Handbook

Example 6-23 Interactive invocation of AdminTask

wsadmin>$AdminTask createSIBus -interactive
Create a bus

Create a bus.

*Bus name (bus): WSBus
Description of bus (description): Web Services cell wide bus
Security (secure): [true] false
Inter-engine authentication alias (interEngineAuthAlias):
Mediations authentication alias (mediationsAuthAlias):
Protocol (protocol):
Discard messages after queue deletion (discardOnDelete): [false]
Max bus queue depth (highMessageThreshold):
Dynamic configuration reload enabled (configurationReloadEnabled): [true]

Create a bus

F (Finish)
C (Cancel)

Select [F, C]: [F] F
WASX7278I: Generated command line: $AdminTask createSIBus {-bus WSBus
-description "Web Services cell wide bus" -secure false}
WSBus(cells/PlatoCell/buses/WSBus|sib-bus.xml#SIBus_1097761138869)

As some configuration tasks are dependent on other resources to exist, the task
commands can provide a means for configuring related resources for completing
the intended task. Such tasks are split into steps. An example of a multi-step task
is the createCluster command, that provide steps to create a replication domain
and convert servers to cluster members as part of the cluster creation. See the
help text for the createCluster command in Example 6-24.

Example 6-24 createCluster help text

wsadmin>$AdminTask help createCluster
WASX8006I: Detailed help for command: createCluster

Description: Creates a new application server cluster.

Target object: None

Arguments:
 None

Steps:
 clusterConfig - Specifies the configuration of the new server cluster.
 replicationDomain - Specifies the configuration of a replication domain

 Chapter 6. Administration with scripting 291

for this cluster. Used for HTTP session data replication.
 convertServer - Specifies an existing server will be converted to be

the first member of cluster.

Some steps are required for performing the intended task, while others are
optional. When starting the command task in interactive mode, the steps are
numbered with an optional marker prefixed to the number. A prefix of:

� The asterisk (*) character indicates a required step.
� A parentheses (), indicates a step that is disabled.
� No denotation indicates an optional step.
� An arrow (→) indicates the current step in process.

6.3 Common operational administrative tasks using
wsadmin

In this section we describe how you can use wsadmin to perform common
WebSphere operations. This section discusses a general approach for
operational tasks and gives specific examples of common administrative tasks.

6.3.1 General approach for operational tasks
In order to invoke an operation on a running MBean, you first need to know the
object name of the running object. Then you invoke the method on a fully
qualified object name. This means that invoking operations usually involves two
types of commands:

� Find the object name.
� Invoke the operation.

In simple cases, two commands can be combined into one command.

Similarly in order to change an attribute of a running object, you first need to
know the object name of that running object. This means that getting or setting
attributes involves a sequence of two commands:

� Find the object name of the running object/MBeans.
� Get or set attributes for that running object.

Note: You can use the queryNames and completeObjectName commands of
the AdminControl object to identify the name of a running object. See “Help”
on page 275 for information about how to do this.

292 WebSphere Application Server V6: System Management and Configuration Handbook

6.3.2 Examples of common administrative tasks
Common operational tasks performed using wsadmin include:

� Starting and stopping the deployment manager
� Starting and stopping nodes
� Starting and stopping application servers
� Starting, stopping, and viewing enterprise applications
� Starting and stopping clusters
� Generating the Web server plug-in configuration file
� Enabling tracing for WebSphere components

6.3.3 Managing the deployment manager
This section describes how to start and stop tasks on the deployment manager
using the WebSphere scripting interface wsadmin.

Starting the deployment manager
wsadmin works on MBeans. Because the MBean representing the deployment
manager is not available unless the process is running, you have to start the
deployment manager (see 5.3.2, “Starting and stopping the deployment
manager” on page 187).

Stopping the deployment manager
The deployment manager can be stopped using the AdminControl object and
invoking the stopServer command. To invoke stopServer, you must provide the
deployment manager name and the node name. Example 6-25 on page 294
shows an example of stopping the deployment manager.

Note: Some of the examples used in this section need Network Deployment
installed. In our test environment, we installed both WebSphere Application
Server Express and Network Deployment on the same machine. To show the
command syntax, we used the WebSphere sample applications.

The elements of our Network Deployment environment include:

� Server node: SocratesNode
� Deployment manager node: PlatoCellManager
� Node agent server: nodeagent
� Servers: SocratesServer1 and socServer2

 Chapter 6. Administration with scripting 293

Example 6-25 Stopping deployment manager using a single line command

wsadmin>$AdminControl stopServer dmgr PlatoCellManager
WASX7337I: Invoked stop for server "dmgr" Waiting for stop completion.
WASX7264I: Stop completed for server "dmgr" on node "PlatoCellManager"

The stop operation can also be performed by invoking the stop method of the
AdminControl object on the MBean representing the deployment manager. To do
this, you need to identify the MBean that represents the deployment manager
using the completeObjectName command of AdminControl object.

Example 6-26 shows the command to query the MBeans information and the
command to stop the deployment manager. First the variable named dmgr is
assigned to the DeploymentManager Server MBean, subsequently this variable
is used for starting the invoke command.

Example 6-26 Getting MBean information and stopping the deployment manager

wsadmin>set dmgr [$AdminControl completeObjectName
"type=Server,processType=DeploymentManager,*"]

WebSphere:name=dmgr,process=dmgr,platform=common,node=PlatoCellManager,j2eeType
=J2EEServer,version=6.0.0.0,type=Server,mbeanIdentifier=cells/PlatoCell/nodes/P
latoCellManager/servers/dmgr/server.xml#Server_1,cell=PlatoCell,processType=Dep
loymentManager
wsadmin>$AdminControl invoke $dmgr stop

6.3.4 Managing nodes
This section describes how to perform common administration tasks on nodes
and their node agent using wsadmin.

Starting a node agent
As with the deployment manager, the node agent cannot be started with wsadmin
because there are no MBeans available yet. Use the startNode command to
start the node agent. For information, see 5.5.4, “Starting and stopping nodes”
on page 230.

Stopping a node agent
The node agent process controls all of the WebSphere managed processes on a
node. Therefore stopping a node agent limits the ability to issue any further
commands against managed servers. In a WebSphere cell, there is one node
agent per node.

You can stop Node agents by invoking the stopServer command of the
AdminControl object. The name of the node agent server and the name of the

294 WebSphere Application Server V6: System Management and Configuration Handbook

node need to be supplied as arguments. Example 6-27 shows the command to
stop a node agent.

Example 6-27 Single line command to stop a node agent

wsadmin>$AdminControl stopServer nodeagent SocratesNode
WASX7337I: Invoked stop for server "nodeagent" Waiting for stop completion.
WASX7264I: Stop completed for server "nodeagent" on node "SocratesNode"

The stop operation of the node agent can also be performed by invoking the stop
operation on the MBean representing the node agent. You first need to identify
the Server MBean for the node agent using the completeObjectName command.

Example 6-28 shows the command syntax to query MBean information for the
node agent Server object and to invoke the stop method on the identified MBean.

Example 6-28 Getting MBean information for a node agent Server object

wsadmin>set naServer [$AdminControl completeObjectName
"type=Server,node=SocratesNode,name=nodeagent,*"]

WebSphere:name=nodeagent,process=nodeagent,platform=common,node=SocratesNode,j2
eeType=J2EEServer,version=6.0.0.0,type=Server,mbeanIdentifier=cells/PlatoCell/n
odes/SocratesNode/servers/nodeagent/server.xml#Server_1097068263653,cell=PlatoC
ell,processType=NodeAgent

wsadmin>$AdminControl invoke $naServer stop

6.3.5 Managing application servers
This section describes how to perform common administration tasks on
application servers using wsadmin.

Starting an application server
In a Network Deployment environment the node agent can start an application
server. Example 6-29 shows the command for starting the socServer2
application server by use of the startServer command.

Example 6-29 Start an application server

wsadmin>$AdminControl startServer socServer2 SocratesNode
WASX7262I: Start completed for server "socServer2" on node "SocratesNode"

You can also use the launchProcess operation on the NodeAgent to start the
socServer2 application server. Example 6-30 on page 296 shows the command
syntax to query the MBean information for the NodeAgent object and to invoke
the launchProcess operation from the identified MBean.

 Chapter 6. Administration with scripting 295

Example 6-30 Getting MBean information for a node agent NodeAgent object

wsadmin>set naMain [$AdminControl completeObjectName
"name=NodeAgent,node=SocratesNode,type=NodeAgent,*"]

WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=NodeAgent,mbeanId
entifier=NodeAgent,type=NodeAgent,node=SocratesNode,process=nodeagent
wsadmin>$AdminControl invoke $naMain launchProcess {{socServer2}}
true

Stopping an application server
Example 6-31 shows the command for stopping the socServer2 application
server.

Example 6-31 Stop an application server

wsadmin>$AdminControl stopServer socServer2 SocratesNode
WASX7337I: Invoked stop for server "socServer2" Waiting for stop completion.
WASX7264I: Stop completed for server "socServer2" on node "SocratesNode"

You can also use the AdminControl object to invoke the stop method on the
application server. To do this you need to identify the MBean representing the
application server. Example 6-32 shows the command to query the MBean
information of the application server and stop the server.

Example 6-32 MBean information for Application Server server1

wsadmin>set socSrv2 [$AdminControl completeObjectName
"name=socServer2,node=SocratesNode,type=Server,*"]

WebSphere:name=socServer2,process=socServer2,platform=common,node=SocratesNode,
j2eeType=J2EEServer,version=6.0.0.0,type=Server,mbeanIdentifier=cells/PlatoCell
/nodes/SocratesNode/servers/socServer2/server.xml#Server_1097183733881,cell=Pla
toCell,processType=ManagedProcess
wsadmin>$AdminControl invoke $socSrv2 stop

If there are multiple application servers running on a node, you can stop all the
servers from a single script. Example 6-33 on page 297 shows a script that stops
all application servers on the SocratesNode node. In this example, the node
name is hard-coded, but it is also possible to write Jacl code that accepts the
node name from the command line or a menu.

To invoke the script from a command, type the following:

cd \WebSphere\Appserver\profiles\<profile_name>\bin
wsadmin -f <script_filename>

296 WebSphere Application Server V6: System Management and Configuration Handbook

Example 6-33 Stopping all application servers on a node

set servername [$AdminControl queryNames
node=SocratesNode,type=Server,processType=ManagedProcess,*]
foreach item $servername {
set shortname [$AdminControl getAttribute $item name]
set completename [$AdminControl completeObjectName
type=Server,node=SocratesNode,name=$shortname,*]
puts "Stopping server : $shortname"
$AdminControl invoke $completename stop {}
}

6.3.6 Managing enterprise applications
This section describes how to perform common administration tasks on
enterprise applications using the scripting interface, wsadmin.

Viewing installed applications
Us the AdminApp object to view the applications installed on an application server.
Example 6-34 shows the use of the list command and the resulting output.

Example 6-34 Listing installed applications

wsadmin>$AdminApp list
DefaultApplication
PlantsByWebSphere
Query
SamplesGallery
WebSphereBank

You can also do this by querying the MBeans for running applications on a node.
Example 6-35 shows you how to perform this task.

Example 6-35 Listing applications by MBeans query

wsadmin>$AdminControl queryNames type=Application,node=PericlesNode,*
WebSphere:name=DefaultApplication,process=server1,platform=dynamicproxy,node=Pe
riclesNode,J2EEName=DefaultApplication,Server=server1,version=6.0.0.0,type=Appl
ication,mbeanIdentifier=cells/PericlesCell/applications/DefaultApplication.ear/
deployments/DefaultApplication/deployment.xml#ApplicationDeployment_10970951643
25,cell=PericlesCell
...

Running objects are represented by MBeans. If an object is not running the
MBean for that object does not exist. Based on this, we can write a simple Jacl
script that will display running applications.

 Chapter 6. Administration with scripting 297

Example 6-36 shows a script using the AdminApp object which lists the installed
applications. The data obtained is configurational data and cannot be
interrogated to determine runtime status. Use queryNames for each installed
application to see if an MBean exists, if the application is running. If the
application is running, queryNames returns a name, otherwise queryNames
returns a null value.

Example 6-36 Script to display the status of Applications

set application [$AdminApp list]
foreach app $application {

set objName [$AdminControl queryNames type=Application,name=$app,*]
if {[llength $objName] ==0} {
puts "The Application $app is not running"
} else {
puts "The Application $app is running"
}

}

Stopping a running application
To stop a running application, we use the AdminControl object and invoke the
stopApplication method on the MBean of the running application. Example 6-37
shows the sequence of commands used to query the MBean and stop the
application.

Example 6-37 Stopping a running application

wsadmin>set appservername [$AdminControl queryNames
type=ApplicationManager,node=PericlesNode,process=server1,*]
WebSphere:platform=dynamicproxy,cell=PericlesCell,version=6.0.0.0,name=Applicat
ionManager,mbeanIdentifier=ApplicationManager,type=ApplicationManager,node=Peri
clesNode,process=server1
wsadmin>$AdminControl invoke $appservername stopApplication DefaultApplication

Starting a stopped application
To start a stopped application, we use the AdminControl object and invoke the
startApplication method on the stopped application. This requires the identity
of the application server MBean. Example 6-38 on page 299 shows the
sequence of commands used to start the DefaultApplication application.

298 WebSphere Application Server V6: System Management and Configuration Handbook

Example 6-38 Starting a stopped application

wsadmin>set appservername [$AdminControl queryNames
type=ApplicationManager,node=PericlesNode,process=server1,*]
WebSphere:platform=dynamicproxy,cell=PericlesCell,version=6.0.0.0,name=Applicat
ionManager,mbeanIdentifier=ApplicationManager,type=ApplicationManager,node=Peri
clesNode,process=server1
wsadmin>$AdminControl invoke $appservername startApplication DefaultApplication

6.3.7 Managing clusters
This section describes how to perform common administration tasks on clusters
using wsadmin.

Starting a cluster
Example 6-39 shows the sequence of commands needed to start a cluster. The
first command lists the configured clusters in the cell. In this case, there is only
one cluster, testCluster. The second command initializes a variable named
tstClst with the cluster object name. The final command invokes the start
operation on the cluster object.

Example 6-39 Start a cluster

wsadmin>$AdminControl queryNames type=Cluster,*
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=testCluster,mbean
Identifier=testCluster,type=Cluster,node=PlatoCellManager,process=dmgr

wsadmin>set tstClst [$AdminControl completeObjectName
type=Cluster,name=testCluster,*]
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=testCluster,mbean
Identifier=testCluster,type=Cluster,node=PlatoCellManager,process=dmgr

wsadmin>$AdminControl invoke $tstClst start

Stopping a cluster
Example 6-40 on page 299 shows the sequence of commands used to stop a
cluster. The first command lists the configured clusters in the cell. The second
command initializes a variable named tstClst with the cluster object name. The
final command invokes the stop operation on the cluster object.

Example 6-40 Stopping a cluster

wsadmin>$AdminControl queryNames type=Cluster,*
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=testCluster,mbean
Identifier=testCluster,type=Cluster,node=PlatoCellManager,process=dmgr

 Chapter 6. Administration with scripting 299

wsadmin>set tstClst [$AdminControl completeObjectName
type=Cluster,name=testCluster,*]
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=testCluster,mbean
Identifier=testCluster,type=Cluster,node=PlatoCellManager,process=dmgr

wsadmin>$AdminControl invoke $tstClst stop

6.3.8 Generating the Web server plug-in configuration
Example 6-41 shows the sequence of commands used to generate the Web
server plug-in configuration file. The first command identifies the MBean for the
Web server plug-in on a node. The second command generates the Web server
plug-in.

Example 6-41 Generating the Web server plug-in

wsadmin>set pluginGen [$AdminControl completeObjectName
type=PluginCfgGenerator,*]
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=PluginCfgGenerato
r,mbeanIdentifier=PluginCfgGenerator,type=PluginCfgGenerator,node=PlatoCellMana
ger,process=dmgr

wsadmin>$AdminControl invoke $pluginGen generate "C:/WebSphere/Appserver
C:/WebSphere/AppServer/profiles/PlatoDMGR/config PlatoCell PlatoCellManager
dmgr plugin-cfg.xml"

The argument for the generate command includes:

� Install root directory
� Configuration root directory
� Cell name
� Node name
� Server name
� Output file name

You can use null as an argument for the Node and Server name options. The
generate operation generates a plug-in configuration for all the nodes and
servers residing in the cell. The output file, plugin-cfg.xml, is created in the
configuration root directory.

6.3.9 Enabling tracing for WebSphere components
Tracing used for problem determination is discussed in 9.4, “Traces” on
page 430. This section illustrates how to enable tracing for a server process
using the setAttribute command on the TraceService MBean.

300 WebSphere Application Server V6: System Management and Configuration Handbook

In a Network Deployment environment, there are multiple server processes and
therefore multiple TraceService MBeans. Example 6-42 shows how to use
queryNames to list the TraceService MBeans.

Example 6-42 List of TraceService MBeans

wsadmin>$AdminControl queryNames type=TraceService,*
WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=TraceService,mbea
nIdentifier=cells/PlatoCell/nodes/PlatoCellManager/servers/dmgr/server.xml#Trac
eService_1,type=TraceService,node=PlatoCellManager,process=dmgr

WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=TraceService,mbea
nIdentifier=cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1/server.x
ml#TraceService_1097069277091,type=TraceService,node=SocratesNode,process=Socra
tesServer1

WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=TraceService,mbea
nIdentifier=cells/PlatoCell/nodes/SocratesNode/servers/nodeagent/server.xml#Tra
ceService_1097068263653,type=TraceService,node=SocratesNode,process=nodeagent

To start tracing for a server, you need to locate the TraceService MBean for the
server process using the completeObject command. Example 6-43 shows how
to do this, using a variable named ts which is set to the value of the tracing
service MBean. In the second step, the setAttribute command is used to
enable the tracing.

Example 6-43 Enable tracing using TraceService mbean

wsadmin>set ts [$AdminControl completeObjectName
type=TraceService,process=SocratesServer1,*]

WebSphere:platform=common,cell=PlatoCell,version=6.0.0.0,name=TraceService,mbea
nIdentifier=cells/PlatoCell/nodes/SocratesNode/servers/SocratesServer1/server.x
ml#TraceService_1097069277091,type=TraceService,node=SocratesNode,process=Socra
tesServer1

wsadmin>$AdminControl setAttribute $ts traceSpecification com.ibm.ejs.*=all

The SystemOut.log file for the Server reflects this new trace specification as the
TraceService has logged this statement:

TRAS0018I: The trace state has changed. The new trace state is
=info:com.ibm.ejs.=all

Note that setting trace level with use of the AdminControl object only changes
the current trace specification of the TraceService. The specification is not stored
to the WebSphere configuration repository. To change the configuration
permanently, use the modify command of the AdminConfig object to change the
traceSpecification attribute of the TraceService configuration object.

 Chapter 6. Administration with scripting 301

6.4 Common configuration tasks
In this section we describe how to use wsadmin to create, modify, and change
the WebSphere Application Server configuration. The section is described in two
parts as follows:

� 6.4.1, “General approach for configuration tasks” on page 302
� 6.4.2, “Specific examples of WebSphere configuration tasks” on page 302

6.4.1 General approach for configuration tasks
The are many possible configuration tasks that can be performed in a
WebSphere environment. Rather than document every possible modification, we
describe a general approach to use when performing configuration tasks and
then give a few specific examples.

This general approach has three steps:

1. Find the object you want to change using $AdminConfig getid.
2. Change or create a configuration using $AdminConfig modify or create.
3. Save the changes using $AdminConfig save.

The create and modify commands use an attribute list. In general, the attribute
is supplied as a list of Jacl lists. A Jacl list can be constructed using name and
value pairs as follows:

{ { name1 value1} {name2 value2} {name3 value3}.........}

The attributes for a WebSphere configuration object are often deeply nested. If
you need to modify a nested attribute you can get the ID of the object and modify
it directly. This is the preferred method, although it requires more lines of
scripting.

6.4.2 Specific examples of WebSphere configuration tasks
This section describes how a variety of typical configuration tasks can be done
using the wsadmin objects, including:

� Application server

– Create or remove an application server

� Enterprise application

– Install or uninstall an enterprise application
– Change attributes of an enterprise application

302 WebSphere Application Server V6: System Management and Configuration Handbook

� Configure and modify WebSphere configuration

– Configure virtual hosts
– Configure JDBC providers
– Edit an application server
– Create a cluster
– Add member to a cluster

Creating an application server
With the introduction of the AdminTask object, there are now two ways of
creating an application server. The AdminTask provides the interactive approach,
and is shown in Example 6-44. Notice the batch invocation of the
createApplicationServer command shown at the end of the input.

Notice the extra step after collecting the configuration values for the server
creation. This extra step provides the ability to configure ConfigCoreGroup
options for the server being created. The → arrow in front of the line indicates
this to be the current step of the interactive guide. To input a core group name for
this server, type S (for select), then press Enter. To skip configuration of a core
group for this server type F (as shown).

Example 6-44 Creating an application server using AdminTask

wsadmin>$AdminTask createApplicationServer -interactive
Create Server

Command that creates a server

*Node Name: SocratesNode
*Server Name (name): socServer3
Template Name (templateName):
Generate Unique Ports (genUniquePorts): [true]
template location (templateLocation):
Create Server

Command that creates a server

-> 1. No description available (ConfigCoreGroup)

S (Select)
F (Finish)
C (Cancel)
H (Help)

Select [S, F, C, H]: [F] F
WASX7278I: Generated command line: $AdminTask createApplicationServer
SocratesNode {-name socServer3 }

 Chapter 6. Administration with scripting 303

socServer3(cells/PlatoCell/nodes/SocratesNode/servers/socServer3|server.xml#Ser
ver_1098190565885)

wsadmin>$AdminConfig save

The alternative approach to using AdminTask for creating an application server is
using the AdminConfig object. Example 6-45 illustrates application server
creation using AdminConfig. The first command initializes a variable named node
to set the value of the node configuration ID. The second command creates the
server on the node.

Example 6-45 Creating an application server using AdminConfig

wsadmin>set node [$AdminConfig getid /Node:SocratesNode/]
SocratesNode(cells/PlatoCell/nodes/SocratesNode|node.xml#Node_1)

wsadmin>$AdminConfig create Server $node {{name socServer4}}
socServer4(cells/PlatoCell/nodes/SocratesNode/servers/socServer4|server.xml#Ser
ver_1098190899605)

wsadmin>$AdminConfig save

Removing an application server
As with creating application servers, an application server can be removed by
either use of the AdminTask object or the AdminConfig object. Example 6-46
illustrates removing an application server using AdminTask.

Example 6-46 Remove an application server using AdminTask

wsadmin>$AdminTask deleteServer -interactive
Delete Server

Delete a server configuration

*ADMG0106I (serverName): socServer4
*ADMG0104I (nodeName): SocratesNode
Delete Server

Delete a server configuration

-> 1. No description available (ConfigCoreGroup)
 2. No description available (CleanupSIBuses)

S (Select)
N (Next)
F (Finish)
C (Cancel)

304 WebSphere Application Server V6: System Management and Configuration Handbook

H (Help)

Select [S, N, F, C, H]: [F] F
WASX7278I: Generated command line: $AdminTask deleteServer {-serverName
socServer4 -nodeName SocratesNode }

wsadmin>$AdminConfig save

The general syntax for removing an application server using the AdminConfig
object is:

$AdminConfig remove <server Config id>

Installing an enterprise application
There are two options for installing an application:

� Perform an interactive installation using the installInteractive command.
The interactive install prompts you for options. The syntax is:

$AdminApp installInteractive <ear_file_location>

For example:

$AdminApp installInteractive
C:/WebSphere/AppServer/samples/lib/BeenThere/BeenThere.ear

� Perform a non-interactive installation using the install command.

Using the install command
The general syntax for installing an enterprise application is as follows:

$AdminApp install <location of the ear file> {task or non-task option}

There are two types of options that can be specified when using the install
command:

� To see a list of install task options, use the following syntax:

$AdminApp options

The list includes options for specifying server name, cluster name, install
directory, and so on.

� To see a list of application-specific options, use the following syntax:

$AdminApp options <ear_file_location>

Note: In Windows, use either a forward slash (/), or double backslashes
(\\) when specifying the path to the .ear file.

 Chapter 6. Administration with scripting 305

Here is a sample output for application-specific options:

$AdminApp options
C:/WebSphere/AppServer/samples/lib/BeenThere/BeenThere.ear

The list of options includes things that define application information, security
role mapping, module-to-virtual host mapping, and whether to pre-compile
JSPs.

Example 6-47 shows an example of installing a new application named
BeenThere on a server named socServer2.

Example 6-47 Installing an application

wsadmin>$AdminApp install
C:/WebSphere/AppServer/samples/lib/BeenThere/BeenThere.ear {-node SocratesNode
-server socServer2 -appname BeenThere}
....
wsadmin>$AdminConfig save

Uninstalling an enterprise application
The general syntax for uninstalling enterprise application is:

$AdminApp uninstall <application name>

Example 6-48 shows an example of uninstalling an application.

Example 6-48 Uninstalling an enterprise application

wsadmin>$AdminApp uninstall BeenThere
ADMA5017I: Uninstallation of BeenThere started.
ADMA5104I: The server index entry for
WebSphere:cell=PlatoCell,node=SocratesNode is updated successfully.
ADMA5102I: The configuration data for BeenThere from the configuration
repository is deleted successfully.
ADMA5011I: The cleanup of the temp directory for application BeenThere is
complete.
ADMA5106I: Application BeenThere uninstalled successfully.

wsadmin>$AdminConfig save

Note: All options supplied for the install command must be supplied in a
single string. In Jacl, a single string is formed by collecting all options within
curly braces or double quotes:

$AdminApp install c:/temp/application.ear {-server serv2 -appname -TestApp}

306 WebSphere Application Server V6: System Management and Configuration Handbook

Editing an enterprise application
Editing of an enterprise application can be done either interactively or
non-interactively. The following commands are available for editing:

� Interactively, use the editInteractive command, which prompts you for
input. The syntax is:

$AdminApp editInteractive <application name>

� Non-interactively, you can use the edit command.

Using the edit command
The general syntax for editing an enterprise application in non-interactive mode
is:

$AdminApp edit <application_name> {-taskname {{item1a item2a item3a}
{item1b item2b item3b}.......}}

In Example 6-49, you can see how to change the module to server mapping for
an application. The options are the same as those you would use during
installation with the install command.

Example 6-49 Edit an enterprise application

wsadmin>$AdminApp edit BeenThere {-MapModulesToServers {{"BeenThere WAR"
BeenThere.war,WEB-INF/web.xml
WebSphere:cell=PlatoCell,node=SocratesNode,server=socServer3}}}

wsadmin>$AdminConfig save

Preventing startup of an application
To prevent startup of a specific enterprise application when starting the
application server, change the configuration property to enable the enterprise
application on the deployed target. In Example 6-50 the steps to locate, modify
and save the target property are outlined.

Note the use of lindex in this example. All commands that return lists, are nested
within a lindex method call in order to retrieve the target list item. Also, be aware
that the modify command takes a list option containing list items of property
name and value to modify.

Example 6-50 Disable of enterprise application on target server

wsadmin>$AdminConfig list ApplicationDeployment
(cells/PericlesCell/applications/WebSphereBank.ear/deployments/WebSphereBank|

deployment.xml#ApplicationDeployment_1097097167195)

wsadmin>set eaBk [lindex [$AdminConfig list ApplicationDeployment] 0]
(cells/PericlesCell/applications/WebSphereBank.ear/deployments/WebSphereBank|

 Chapter 6. Administration with scripting 307

deployment.xml#ApplicationDeployment_1097097167195)

wsadmin>$AdminConfig show $wsBank
....
{targetMappings {(cells/PericlesCell/applications/WebSphereBank.ear/

deployments/WebSphereBank|
deployment.xml#DeploymentTargetMapping_1097097167195)}}

....

wsadmin>set eaBTgt [lindex [$AdminConfig showAttribute $eaBk targetMappings] 0]
(cells/PericlesCell/applications/WebSphereBank.ear/deployments/WebSphereBank|

deployment.xml#DeploymentTargetMapping_1097097167195)

wsadmin>$AdminConfig modify $eaBTgt {{enable false}}

wsadmin>$AdminConfig queryChanges
WASX7146I: The following configuration files contain unsaved changes:

cells/PericlesCell/applications/WebSphereBank.ear/deployments/WebSphereBank/dep
loyment.xml

wsadmin>$AdminConfig save

Creating a virtual host
The command to create a virtual host is:

$AdminConfig create VirtualHost <cell object> {name <vhost name>}

First, you need to find the ID of the object you want to change. Virtual host is a
WebSphere resource defined in a WebSphere cell. Therefore, by creating a
virtual host we are modifying the configuration of the WebSphere cell object.
Example 6-51 shows the command syntax for retrieving the configuration ID of
the cell object and creating the virtual host resource. Finally, save the changes to
the WebSphere configuration repository.

Example 6-51 Find an object using AdminConfig command

wsadmin>set cell [$AdminConfig getid /Cell:PlatoCell/]
PlatoCell(cells/PlatoCell|cell.xml#Cell_1)

wsadmin>$AdminConfig create VirtualHost $cell {{name WSBank}}
WSBank(cells/PlatoCell|virtualhosts.xml#VirtualHost_1098199040140)

wsadmin>$AdminConfig save

308 WebSphere Application Server V6: System Management and Configuration Handbook

Modifying a virtual host
Modify the virtual host configuration with the modify command in the
AdminConfig object. Example 6-52 shows an example of modifying a virtual host.
The example gets the ID of the WSBank virtual host, then uses that ID in the
modify command to redefine the list of aliases.

Example 6-52 Modifying a virtual host

wsadmin>set wsbVHost [$AdminConfig getid /VirtualHost:WSBank/]
WSBank(cells/PlatoCell|virtualhosts.xml#VirtualHost_1098199040140)

wsadmin>$AdminConfig modify $wsbVHost {{aliases {{{hostname *}{port
9082}}{{hostname *}{port 80}}}}}

wsadmin>$AdminConfig save

Modifying an application server
Modify an application server configuration using the AdminConfig object. The
modify command is used for changing attribute values for configuration objects.
As the AdminConfig commands interacts with the configuration service, changes
are written to the WebSphere configuration repository (XML documents). All
services within the WebSphere runtime environment read from the configuration
repository at startup only. As a result, changes made with the AdminConfig
commands take effect only after restarting the service or WebSphere runtime.

Example 6-53 on page 310 shows an example of changing the ping interval for a
server named socServer3.

Tip: To find the parent-child relationships for configuration objects placed in
the application server configuration hierarchy, use the output from the showall
command. To use showall, use the following syntax:

AdminConfig showall <object id of application server>

Also, the layout of the WebSphere administrative console presents some kind
of logical progression from parent to child. For example, to change the
PingInterval you would need to traverse through the following:

Application Server →Process Definition →Monitoring Policy →Ping
Interval

 Chapter 6. Administration with scripting 309

Example 6-53 Modifying an application server

wsadmin>$AdminControl stopServer socServer3 SocratesNode

WASX7337I: Invoked stop for server "socServer3" Waiting for stop completion.
WASX7264I: Stop completed for server "socServer3" on node "SocratesNode"

wsadmin>set srv [$AdminConfig getid /Node:SocratesNode/Server:socServer3/]
socServer3(cells/PlatoCell/nodes/SocratesNode/servers/socServer3|server.xml#Ser
ver_1098190565885)

wsadmin>set prcDef [$AdminConfig list ProcessDef $srv]
(cells/PlatoCell/nodes/SocratesNode/servers/socServer3|server.xml#JavaProcessDe
f_1098190565895)

wsadmin>set monPol [$AdminConfig list MonitoringPolicy $prcDef]
(cells/PlatoCell/nodes/SocratesNode/servers/socServer3|server.xml#MonitoringPol
icy_1098190565895)

wsadmin>$AdminConfig modify $monPol {{pingInterval 120}}

wsadmin>$AdminConfig save

wsadmin>$AdminControl startServer socServer3 SocratesNode
WASX7262I: Start completed for server "socServer3" on node "SocratesNode"

Creating a cluster
To create a new cluster use either the AdminTask or AdminConfig object. In
Example 6-54, the AdminTask object is used for creating a cluster named
T4SCluster adding an existing server named socServer3 as a cluster member.

Example 6-54 Create a server cluster

wsadmin>$AdminTask createCluster -interactive
Create Server Cluster

Creates a new application server cluster.

-> *1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)

310 WebSphere Application Server V6: System Management and Configuration Handbook

S (Select)
N (Next)
C (Cancel)
H (Help)

Select [S, N, C, H]: [S] S

Cluster Configuration (clusterConfig)

*Cluster Name (clusterName):
Prefer Local (preferLocal):

Select [C (Cancel), E (Edit)]: [E] E
*Cluster Name (clusterName): T4SCluster
Prefer Local (preferLocal): [true]
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
-> 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)

S (Select)
N (Next)
P (Previous)
F (Finish)
C (Cancel)
H (Help)

Select [S, N, P, F, C, H]: [F] N
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
-> 3. Convert Server (convertServer)

S (Select)
P (Previous)
F (Finish)
C (Cancel)
H (Help)

 Chapter 6. Administration with scripting 311

Select [S, P, F, C, H]: [F] S

Convert Server (convertServer)

Converted Server Node Name (serverNode):
Converted Server Name (serverName):
Member Weight (memberWeight):
Node Group (nodeGroup):
Create Replicator Entry (replicatorEntry):

Select [C (Cancel), E (Edit)]: [E] E
Converted Server Node Name (serverNode): SocratesNode
Converted Server Name (serverName): socServer3
Member Weight (memberWeight):
Node Group (nodeGroup):
Create Replicator Entry (replicatorEntry):
Create Server Cluster

Creates a new application server cluster.

 1. Cluster Configuration (clusterConfig)
 2. Replication Domain (replicationDomain)
 3. Convert Server (convertServer)
-> End of task

P (Previous)
F (Finish)
C (Cancel)
H (Help)

Select [P, F, C, H]: [F] F
WASX7278I: Generated command line: $AdminTask createCluster {-clusterConfig
{{T4SCluster true}} -convertServer {{SocratesNode socServer3 "" "" ""}}}
T4SCluster(cells/PlatoCell/clusters/T4SCluster|cluster.xml#ServerCluster_109821
6719021)

The AdminConfig object provides different means of creating a cluster. Use the
convertToCluster command to create a cluster with an existing server added.
Use the create command to create an empty cluster with the ServerCluster type
object.

312 WebSphere Application Server V6: System Management and Configuration Handbook

Adding a member to an existing cluster
As with creating a cluster, both AdminTask and AdminConfig objects provide
means for creating a new cluster members. Servers have to be created as
cluster members from the start, they cannot be joined to a cluster later.

Example 6-55 shows how to create a new server, socServer4, and make it a
member of a cluster, T4SCluster, by use of the batch invocation of the
createClusterMember command from the AdminTask.

Example 6-55 Create a new cluster member

wsadmin>$AdminTask createClusterMember {-clusterName T4SCluster -memberConfig
{{SocratesNode socServer4 "" "" true false}}}
socServer4(cells/PlatoCell/clusters/T4SCluster|cluster.xml#ClusterMember_109822
1876367)

wsadmin>$AdminConfig save

Deleting a member from a cluster
To delete a member from a cluster, use the AdminTask deleteClusterMember
command. Example 6-56 shows how to delete a cluster member.

Example 6-56 Delete a cluster member

wsadmin>$AdminTask deleteClusterMember {-clusterName T4SCluster -memberNode
SocratesNode -memberName socServer4}
ADMG9239I: Cluster member socServer4 on node SocratesNode deleted from cluster
T4SCluster.

wsadmin>$AdminConfig save

Configuring JDBC providers
Example 6-57 on page 314 shows a common method for creating a JDBC
provider. The provider is created based on a template.

 Chapter 6. Administration with scripting 313

In Example 6-57, the JDBC provider is added at the cluster scope, so the first
command gets the configuration ID for the cluster and assigns it to a variable
named cluster to hold the ID. The second command uses listTemplates to set
the JDBCTempl variable to the template ID. The third command creates the JDBC
provider using the template.

Example 6-57 Configuring a JDBC driver

wsadmin>set cluster [$AdminConfig getid /ServerCluster:testCluster/]
testCluster(cells/PlatoCell/clusters/testCluster|cluster.xml#ServerCluster_1098
125859682)

wsadmin>set JDBCTempl [lindex [$AdminConfig listTemplates JDBCProvider
"Cloudscape JDBC Provider (XA)"] 1]
Cloudscape JDBC Provider
(XA)(templates/servertypes/APPLICATION_SERVER/servers/default|resources.xml#bui
ltin_jdbcprovider)

wsadmin>$AdminConfig createUsingTemplate JDBCProvider $cluster {{name
testDriver}} $JDBCTempl
testDriver(cells/PlatoCell/clusters/testCluster|resources.xml#JDBCProvider_1098
203064998)

wsadmin>$AdminConfig save

Using templates: A group of templates are supplied with the WebSphere
installation as XML files in the <profile_home>/config/templates directory.
Within each XML file, you will find multiple entries. To use a template, you
specify the XML file and the entry within the file that you want to use.

Templates are especially useful when using AdminConfig object for
configuration purposes. The template reduces the amount of typed input
required, speeding up the process and reducing the probability of syntax
errors.

The listTemplates command of the AdminConfig object prints a list of
templates matching a given type. These templates can be used with the
createUsingTemplate command.

314 WebSphere Application Server V6: System Management and Configuration Handbook

6.5 Differences from WebSphere V5

WebSphere Application Server V6 implements Java Management Extensions
(JMX) Version 1.2, while WebSphere Application Server V5 implements JMX
Version 1.0.

Due to the evolution of the JMX specification, the serialization format for JMX
objects, such as the javax.management.ObjectName object, differs between the
V5 implementation and the V6 implementation. The V6 JMX run time is
enhanced to be aware of the version of the client with which it is communicating.
The V6 run time makes appropriate transformations on these incompatible
serialized formats to support communication between the different version run
times. A V5 wsadmin script or a V5 administrative client can call a V6 deployment
manager, node, or server. A V6 wsadmin script or a V6 administrative client can
call a V5 node or server.

When a V5 wsadmin script or a V5 administrative client calls a V6 MBean, the
instances of classes that are new in V6 cannot be passed back to V5 because
these classes are not present in the V5 environment. The problem occurs
infrequently. However, it usually occurs when an exception embeds a nested
exception that is new in V6. The symptom is usually a serialization exception or a
NoClassDefFoundException exception.

Due to changes in the JMX implementation from V5 to V6, different exceptions
are created when a method on an MBean is invoked for V5 than when a method
on an MBean is invoked for V6. For example, when a method gets or sets an
unknown attribute for V5, the MBeanRuntimeException exception is created.
When a method gets or sets an unknown attribute for V6, the MBeanException
exception that wraps a ServiceNotFoundException exception is created.

An instance of a user-defined class that implements the serializable interface that
is passed as a parameter or return value during MBean invocation, or sent as
part of a notification, cannot contain a non-transient instance variable that is in
the javax.management.package package. If the instance does, it cannot be
properly deserialized when passed between V5 and V6 run times.

Due to changes in the supported format for the ObjectName class from V5 to V6,
the configuration ID in V6 contains a vertical bar (|), but in V5, the ID contains a
colon (:). This change is reflected in the output for wsadmin clients. For example,
for a V5 client, the output is:

wsadmin>$AdminConfig list Cell
DefaultCellNetwork(cells/DefaultCellNetwork:cell.xml#Cell_1)

 Chapter 6. Administration with scripting 315

For a V6 client, the output is:

wsadmin>$AdminConfig list Cell
DefaultCellNetwork(cells/DefaultCellNetwork|cell.xml#Cell_1)

The change to the configuration ID is not usually a problem because
configuration IDs are generated dynamically. When a V5 client passes a
configuration ID that contains a colon, the JMX run time, for upward compatibility,
automatically transforms the configuration ID with a colon into a configuration ID
with a vertical bar. Similarly, a reverse transformation is performed for backward
compatibility.

Do not save the configuration ID and then try to use it later. Only query the ID
and use it.

6.6 End-to-end examples

Examples of installing and configuring applications and resources, can be found
in the Samples gallery, installed as part of an application server profile. The
gallery manages installation and configuration by use of Jacl scripts. See the
Information Center topic Accessing the Samples (Samples Gallery) for
information about the Gallery samples.

6.7 Using Java for administration

An alternative way of managing the WebSphere environment from a
programmatic point of view is to develop a Java client that attaches to the
WebSphere JMX infrastructure directly. Every administrative task can be
performed with the use of MBean resources, just as the administrative console
and wsadmin administrative objects use MBeans to do their tasks. The
advantage of using Java for developing the administrative client is that the
language is well-adopted in the WebSphere community. Every administrative
aspect can be highly-customized. The disadvantage is that the developer needs
to have a very detailed understanding of the WebSphere infrastructure and every
administrative task has to be built directly from the MBean resources. This
means that wsadmin object functionality has to be programmed by the
developer.

The Information Center has more on this topic. Also the IBM WebSphere
Developer Technical Journal article series System Administration for WebSphere
Application Server V5 discussed this subject in detail.

316 WebSphere Application Server V6: System Management and Configuration Handbook

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

See Scripting: Resources for learning

� MBeanInspector for WebSphere Application Server

http://www.alphaworks.ibm.com/tech/mbeaninspector

� Sample Scripts for WebSphere Application Server Versions 5 and 6

http://www-106.ibm.com/developerworks/websphere/library/samples/
SampleScripts.html

� Tcl Developer Xchange

http://www.tcl.tk/

� IBM WebSphere Developer Technical Journal

http://www-106.ibm.com/developerworks/websphere/techjournal/

 Chapter 6. Administration with scripting 317

http://www-106.ibm.com/developerworks/websphere/techjournal/
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.tcl.tk/
http://www.ibm.com/software/webservers/appserv/infocenter.html

318 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 7. Configuring WebSphere
resources

Resource providers are a class of objects that provide resources needed by
running Java applications, and J2EE applications in particular. For example, if an
application requires database access through a data source, you would need to
install a JDBC data source provider and then configure a data source to be used
by your application.

This chapter discusses the following application server resource providers:

� 7.2, “JDBC resources” on page 321
� 7.3, “JCA resources” on page 341
� 7.4, “JavaMail resources” on page 354
� 7.5, “URL providers” on page 364
� 7.6, “Resource environment providers” on page 369
� 7.7, “Resource authentication” on page 374

7

© Copyright IBM Corp. 2005. All rights reserved. 319

7.1 WebSphere resources
WebSphere Application Server provides a number of resources you can define
for applications to use. The resource types can be seen in the administrative
console under the Resources category, as in Figure 7-1.

Figure 7-1 WebSphere Application Server resource types

In this chapter we discuss the following topics:

� JDBC resources
� Resource adapters
� Mail providers
� URL providers
� Resource environment providers

For information about configuring JMS resources see Chapter 10,
“Asynchronous messaging” on page 463.

For information about dynamic cache, including servlet cache and object cache
configuration, see WebSphere Application Server V6 Scalability and
Performance Handbook, SG24-6392.

Asynchronous beans, object pools, and schedulers are programming model
extensions that have previously been available only in WebSphere Application
Server Enterprise and in WebSphere Business Integration Server Foundation.
These programming model extensions are not covered in this book. Information
on them can be found in the Information Center. Conceptual information and
examples of these at the previous versions can be found in:

320 WebSphere Application Server V6: System Management and Configuration Handbook

� WebSphere Application Server Enterprise V5 and Programming Model
Extensions, SG24-6932

� WebSphere Business Integration Server Foundation V5.1 Handbook,
SG24-6318

7.2 JDBC resources
The JDBC API provides a programming interface for data access of relational
databases from the Java programming language. The JDBC 3.0 API is
comprised of two packages:

� The java.sql package, the JDBC 3.0 core API
� The javax.sql package, the JDBC 3.0 Standard Extension API

This package provides data source and connection pooling functionality.

In the next sections, we explain how to create and configure data source objects
for use by JDBC applications. This is the recommended way of getting a
connection to a database, and the only way if you are looking to use connection
pooling and distributed transactions.

The following database platforms are supported for JDBC:

� DB2 family
� Oracle
� Sybase
� Informix
� SQL Server
� Cloudscape
� Third-party vendor JDBC data source using SQL99 standards

7.2.1 What are JDBC providers and data sources?
A data source represents a real-world data source, such as a relational
database. When a data source object has been registered with a JNDI naming
service, an application can retrieve it from the naming service and use it to make
a connection to the data source it represents.

Information about the data source and how to locate it, such as its name, the
server on which it resides, its port number, and so on, is stored in the form of
properties on the DataSource object. This makes an application more portable
because it does not need to hard code a driver name, which often includes the
name of a particular vendor. It also makes maintaining the code easier because
if, for example, the data source is moved to a different server, all that needs to be

 Chapter 7. Configuring WebSphere resources 321

done is to update the relevant property in the data source. None of the code
using that data source needs to be touched.

Once a data source has been registered with an application server’s JNDI name
space, application programmers can use it to make a connection to the data
source it represents.

The connection will usually be a pooled connection. In other words, once the
application closes the connection, the connection is returned to a connection
pool, rather than being destroyed.

Data source classes and JDBC drivers are implemented by the data source
vendor. By configuring a JDBC provider, we are providing information about the
set of classes used to implement the data source and the database driver. We
are providing the environment settings for the DataSource object.

In the next sections we describe how to create and configure data source
objects, as well as how to configure the connection pools used to serve
connections from the data source.

7.2.2 WebSphere support for data sources
The programming model for accessing a data source is as follows:

1. An application retrieves a DataSource object from the JNDI naming space.

2. After the DataSource object is obtained, the application code calls
getConnection() on the data source to get a Connection object. The
connection is obtained from a pool of connections.

3. Once the connection is acquired, the application sends SQL queries or
updates to the database.

In addition to the data source support for J2EE 1.3 and J2EE 1.4 applications,
support is also provided for J2EE 1.2 data sources. The two types of support
differ in how connections are handled. However, from an application point of
view, they look the same.

Note: A driver can be written purely in the Java programming language or in a
mixture of the Java programming language and the Java Native Interface
(JNI) native methods.

322 WebSphere Application Server V6: System Management and Configuration Handbook

Data source support
The primary data source support is intended for J2EE 1.3 and J2EE 1.4
applications. Connection pooling is provided by two components, a JCA
Connection Manager, and a relational resource adapter. See Figure 7-2.

Figure 7-2 Resource adapter in J2EE connector architecture

The JCA Connection Manager provides connection pooling, local transaction,
and security support.

The relational resource adapter provides JDBC wrappers and the JCA CCI
implementation that allows BMP, JDBC applications, and CMP beans to access
the database.

Figure 7-3 on page 324 shows the relational resource adapter model.

Application Server

JD
BC

 D
riv

er

C
on

ne
ct

io
ns

Resource
Adapter

Ap
pl

ic
at

io
n DB Server

Datasource

Connection
Factory

Delegate

JCA
Connection

Manager

DB Connection
Pool

 Chapter 7. Configuring WebSphere resources 323

Figure 7-3 Persistence resource adapter model

WebSphere Application Server has a Persistence Resource Adapter that
provides relational persistence services to EJB beans as well as providing
database access to BMP and JDBC applications. The Persistence Resource
Adapter has two components: the Persistence Manager, which supports the EJB
CMP persistence model, and the Relational Resource Adapter. The Persistence
Resource Adapter code is included in the following Java packages:

� com.ibm.ws.rsadapter.cci contains CCI implementation and JDBC wrappers.
� com.ibm.ws.rsadapter.spi contains SPI implementation.
� com.ibm.ws.rsadapter.jdbc contains all the JDBC wrappers.
� com.ibm.websphere.rsadapter DataStoreHelper, WSCallerHelper and

DataAccessFunctionSet.

The Relational Resource Adapter is the Persistence Manager's vehicle to handle
data access to and from the back-end store, providing relational persistence
services to EJB beans. The implementation is based on the J2EE Connector
(JCA) specification and implements the JCA CCI and SPI interfaces.

When an application uses a data source, the data source uses the JCA
connector architecture to get to the relational database.

CCI

Relational Resource Adapter

Plug-in Layer

JDBC Wrappers

SP1

JDBC SQLJ

JDBC API

CMP
Bean

Persistence
Manager

Connection
Manager

BMPJDBC
Application

JDBC API

324 WebSphere Application Server V6: System Management and Configuration Handbook

For an EJB the sequence is as follows:

1. An EJB performs a JNDI lookup of a data source connection factory and
issues a getConnection() request.

2. The connection factory delegates the request to a connection manager.

3. The connection manager looks for an instance of a connection pool in the
application server. If no connection pool is available, then the manager uses
the ManagedConnectionFactory to create a physical, or nonpooled,
connection.

Version 4 data source
WebSphere Application Server V4 provided its own JDBC connection manager
to handle connection pooling and JDBC access. This support is included with
WebSphere Application Server V6 to provide support for J2EE 1.2 applications. If
an application chooses to use a Version 4 data source, the application will have
the same connection behavior as in Version 4 of the application server.

Figure 7-4 Connection pooling in WebSphere Application Server Version 4

Use the Version 4 data source for the following:

� J2EE 1.2 applications

All EJB beans, JDBC applications, or Version 2.2 servlets must use the
Version 4 data source.

� EJB 1.x modules with 1.1 deployment descriptor

All of these must use the Version 4 data source.

Application Server

JDBC
Connection

Manager

JD
BC

 D
riv

er

Connections

DB Server
DB Connection

Pool

Ap
pl

ic
at

io
n

D
at

as
ou

rc
e

 Chapter 7. Configuring WebSphere resources 325

7.2.3 Creating a data source
The following steps are involved in creating a data source:

1. Create a JDBC provider resource.

The JDBC provider gives the classpath of the data source implementation
class and the supporting classes for database connectivity. This is
vendor-specific.

2. Create a data source resource.

The JDBC data source encapsulates the database-specific connection
settings.

7.2.4 Creating a JDBC provider
To create a JDBC provider, complete the following steps from the administrative
console:

1. Expand Resources from the navigation tree.

2. Click JDBC Providers.

3. Select Scope and click Apply.

The administrative console now shows all the JDBC providers created at that
scope level. In Figure 7-5 on page 327, you can see that there are four JDBC
providers defined at the server level.

Note: JDBC resources are created at a specific scope level. The data
source scope level is inherited from the JDBC provider. For example, if we
create a JDBC provider at the node level and then create a data source
using that JDBC provider, the data source will inherit:

� The JDBC provider settings, such as classpath, implementation class,
and so on

� The JDBC provider scope level.

In this example, if the scope were set to node-level, all application
servers running on that node would register the data source in their
name space.

The resources.xml file will also get updated at the node and application
server level.

326 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-5 JDBC providers

4. Select New to create a new JDBC provider.

 Chapter 7. Configuring WebSphere resources 327

5. Use the list boxes to select the type of provider you want to create. See
Figure 7-6.

Figure 7-6 Define a new JDBC provider: Panel 1

– Database type

Select the vendor-specific database type. If the database type you need is
not in the list, select User-defined and consult the vendor documentation
for the specific properties that will be required.

– Provider type

Select from a predefined list of supported provider types, based on the
database type you select.

– Implementation type

Select from the implementation types for the provider type you selected.

6. Click Next. The settings page for your JDBC provider appears. Figure 7-7 on
page 329 shows the configuration page for a DB2 JDBC Provider.

328 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-7 Define a new JDBC provider: Panel 2

Enter the JDBC provider properties.

– Name

Enter a name for the provider. It is good practice to enter a name that is
suggestive of the database product you are using.

– Classpath

This field is a list of paths or JAR file names which together form the
location for the resource provider classes. For example,
c:\sqllib\java\db2java.zip is the path if the data source connects to DB2.
Separate the entries by pressing the Enter between each one

– Native Library Path

This field is an optional path to any native libraries. Entries are required if
the JBDC provider chosen uses non-Java, or native, libraries.

 Chapter 7. Configuring WebSphere resources 329

– Implementation class name

The name of the Java data source class used to connect to the database,
as provided by the database vendor. This is provided for you when you
select the type of JDBC provider.

This class must be available in the driver file specified by the Classpath
property.

7. After verifying the settings, click Apply. This enables the links to create data
sources under the Additional Properties section.

To create one or more data sources for this provider, proceed to 7.2.5, “Creating
JDBC data source” on page 331. If you are not ready to create the data source
yet, click OK and then save your changes.

Note: The default settings use environment variables in the path names for
the classpath and native library path settings. After you complete the
process of defining the data source, make sure to update the environment
variables used to reflect the proper locations of these files on your system.
You can set variables by selecting Environment →WebSphere Variables
in the navigation menu.

Refer to 5.1.10, “Using variables” on page 179 for more information about
WebSphere environment variables.

Tip: To make a data source available on multiple nodes using different
directory structures, complete the following steps using the administrative
console:

1. Define the JDBC provider at the cell scope. Use WebSphere environment
variables for the classpath and native path.

2. Create the data source that uses this JDBC provider at the cell scope. All
files defined at the cell scope are replicated to every node in the cell.

3. For the paths to the driver on each node to be unique, use a variable to
specify the driver location and have that variable be defined differently on
each node.

For example, ${DRIVER_PATH} can be used for the classpath in the
provider definition. You can then define a variable called
${DRIVER_PATH} at the cell scope to act as a default driver location. Then
you can override that variable on any node by defining ${DRIVER_PATH}
at the node scope. The node-level definition takes precedence over the
cell-level definition.

330 WebSphere Application Server V6: System Management and Configuration Handbook

7.2.5 Creating JDBC data source
Data sources are associated with a specific JDBC provider and can be viewed or
created from the JDBC provider configuration page. You have two options when
creating a data source, depending on the J2EE support of the application. This
section discusses creating or modifying data sources for J2EE 1.3 and J2EE 1.4
applications.

For information about using data sources with J2EE 1.2 applications see the
Data sources (Version 4) topic in the Information Center.

To create a data source, do the following:

1. Expand Resources from the navigation tree.

2. Click JDBC Providers.

3. Select Scope and click Apply.

4. Select the JDBC provider to be used by your data source.

5. Select Data Sources under the Additional Properties section.

6. Click New to create a new data source, or select an existing one to modify the
data source properties.

The configuration panel for the data source contains general property
settings, including those that you see in Figure 7-8 on page 332, plus security
settings shown in Figure 7-9 on page 333, and the data source-specific
properties shown in Figure 7-10 on page 334.

The links to the additional and related properties shown on the right of
Figure 7-8 on page 332 will be enabled once you complete the required
settings and click Apply.

 Chapter 7. Configuring WebSphere resources 331

Figure 7-8 Data source general properties

� Name

This field is a name by which to administer the data source. Use a name that
is suggestive of the database name or function.

� JNDI name

This field refers to the data source’s name as registered in the application
server’s name space. When installing an application that contains modules
with JDBC resource references, the resources defined by the deployment
descriptor of the module need to be bound to the JNDI name of the
resources.

For example, jdbc/<database_name>.

� Container-managed persistence (CMP)

This field specifies if the data source is to be used for container-managed
persistence of EJB beans. Checking this box causes a CMP connection
factory corresponding to this data source to be created for the relational
resource adapter. The connector factory created has the name
<datasourcename>_CF and is registered in JNDI under the entry
eis/<jndi_name>_CMP.

332 WebSphere Application Server V6: System Management and Configuration Handbook

You can see the properties of the just created connection factory by selecting
Resources →Resource Adapters → WebSphere Relational Resource
Adapter → CMP Connection Factories. Be sure to set the scope so it is the
same as that for the data source.

� Datasource Helper Classname

This field specifies the data store helper used to perform database-specific
functions. This is used by the relational resource adapter at runtime. The
default DataStoreHelper implementation class is set based on the JDBC
driver implementation class, using the structure:

com.ibm.websphere.rsadapter.<database>DataStoreHelper

For example, if the JDBC provider is DB2, then the default DataStoreHelper
class is:

com.ibm.websphere.rsadapter.DB2DataStoreHelper

You can change the value to refer to a specific subclass of this
DataStoreHelper if necessary.

Figure 7-9 Data source security settings

The settings shown in Figure 7-9 deal with authentication to the data source.
For information about how these setting are used see 7.7, “Resource
authentication” on page 374.

� Component-managed authentication alias

This field specifies a user ID and password to be used by J2C security. The
entry references authentication data defined in the J2C authentication data
entries. Make new entries by selecting the J2EE Connector Architecture
(J2C) authentication data entries link on the data source configuration
panel. See Figure 7-8 on page 332.

 Chapter 7. Configuring WebSphere resources 333

� Authentication alias for XA recovery

This optional field is used to specify the authentication alias that should be
used during XA recovery processing. You can use the same J2C
authentication entry as specified for the component-managed authentication
alias, or you can specify another J2C authentication entry.

� Container-managed Authentication Alias (deprecated)

This field specifies a user ID and password to be used by J2C security. The
entry references authentication data defined in the J2C authentication data
entries. This setting has been deprecated in V6.

� Mapping-Configuration Alias (deprecated)

Through this selection, allows users to select from the Security → JAAS
Configuration → Application Logins Configuration list. The
DefaultPrincipalMapping JAAS configuration maps the authentication alias to
the user ID and password. You can define and use other mapping
configurations.

Figure 7-10 Data source-specific properties

The last settings, shown in Figure 7-10, are specific to the JDBC driver and
data source type. Figure 7-10 shows the properties for the DB2 Universal
data source.

In this case, the DB2 Universal data source requires the database name and
driver type to be specified.

7. Click Apply.

The links under the Additional Properties and Related Items sections become
enabled. Use the Test Connection button at the top of the page to make sure
the connection to the data source works.

334 WebSphere Application Server V6: System Management and Configuration Handbook

Adding or updating custom properties
To add or update custom properties, do the following:

1. Click Custom Properties in the Additional Properties table, to provide or
update data source properties that might be required. A list of predefined
properties based on the data source type appears.

2. Click New to add a custom property, or click a property name to modify it.

Figure 7-11 shows the first few custom properties configured for a data source
connecting to a DB2 database.

Figure 7-11 Data Source custom properties

3. Click OK when you finish.

Configure connection pooling properties
The link to connection pooling settings is found in the Additional Properties
section of the data source configuration panel. See Figure 7-8 on page 332.

 Chapter 7. Configuring WebSphere resources 335

Figure 7-12 Data source connection pool properties

� Connection Timeout:

Specify the interval, in seconds, after which a connection request times out
and a ConnectionWaitTimeoutException is thrown. This can occur when the
pool is at its maximum (Max Connections) and all of the connections are in
use by other applications for the duration of the wait.

For example, if Connection Timeout is set to 300 and the maximum number of
connections is reached, the Pool Manager waits for 300 seconds for an
available physical connection. If a physical connection is not available within
this time, the Pool Manager throws a ConnectionWaitTimeoutException.

� Max Connections

Specify the maximum number of physical connections that can be created in
this pool.

These are the physical connections to the back-end database. Once this
number is reached, no new physical connections are created and the
requester waits until a physical connection that is currently in use is returned
to the pool, or a ConnectionWaitTimeoutException is thrown.

Tip: If Connection Timeout is set to 0, the Pool Manager waits as long as
necessary until a connection is allocated.

336 WebSphere Application Server V6: System Management and Configuration Handbook

For example, if Max Connections is set to 5, and there are 5 physical
connections in use, the Pool Manager waits for the amount of time specified
in Connection Timeout for a physical connection to become free. If after that
time there are still no free connections, the Pool Manager throws a
ConnectionWaitTimeoutException to the application.

� Min Connections

Specify the minimum number of physical connections to be maintained. Until
this number is reached, the pool maintenance thread does not discard any
physical connections. However, no attempt is made to bring the number of
connections up to this number.

For example ,if Min Connections is set to 3, and one physical connection is
created, that connection is not discarded by the Unused Timeout thread. By
the same token, the thread does not automatically create two additional
physical connections to reach the Min Connections setting.

� Reap Time

Specify the interval, in seconds, between runs of the pool maintenance
thread.

For example, if Reap Time is set to 60, the pool maintenance thread runs
every 60 seconds. The Reap Time interval affects the accuracy of the Unused
Timeout and Aged Timeout settings. The smaller the interval you set, the
greater the accuracy. When the pool maintenance thread runs, it discards any
connections that have been unused for longer than the time value specified in
Unused Timeout, until it reaches the number of connections specified in Min
Connections. The pool maintenance thread also discards any connections
that remain active longer than the time value specified in Aged Timeout.

The Reap Time interval also affects performance. Smaller intervals mean that
the pool maintenance thread runs more often and degrades performance.

� Unused Timeout

Specify the interval in seconds after which an unused or idle connection is
discarded.

Tip: If the pool maintenance thread is enabled, set the Reap Time value
less than the values of Unused Timeout and Aged Timeout.

Tip: Set the Unused Timeout value higher than the Reap Timeout value for
optimal performance. Unused physical connections are only discarded if
the current number of connections not in use exceeds the Min Connections
setting.

 Chapter 7. Configuring WebSphere resources 337

For example, if the unused timeout value is set to 120, and the pool
maintenance thread is enabled (Reap Time is not 0), any physical connection
that remains unused for two minutes is discarded. Note that accuracy of this
timeout, as well as performance, is affected by the Reap Time value. See
Reap Time for more information.

� Aged Timeout

Specify the interval in seconds before a physical connection is discarded,
regardless of recent usage activity.

Setting Aged Timeout to 0 allows active physical connections to remain in the
pool indefinitely. For example, if the Aged Timeout value is set to 1200, and
the Reap Time value is not 0, any physical connection that remains in
existence for 1200 seconds (20 minutes) is discarded from the pool. Note that
accuracy of this timeout, as well as performance, is affected by the Reap
Time value. See Reap Time for more information.

� Purge Policy

Specify how to purge connections when a stale connection or fatal connection
error is detected.

Valid values are EntirePool and FailingConnectionOnly. If you choose
EntirePool, all physical connections in the pool are destroyed when a stale
connection is detected. If you choose FailingConnectionOnly, the pool
attempts to destroy only the stale connection. The other connections remain
in the pool. Final destruction of connections which are in use at the time of the
error might be delayed. However, those connections are never returned to the
pool.

Selecting the Advanced connection pool properties link in the Additional
Properties section of the connection pool configuration page (Figure 7-12 on
page 336) allows you to modify the properties shown in Figure 7-13 on
page 339.

Tip: Set the Aged Timeout value higher than the Reap Timeout value for
optimal performance.

338 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-13 Advanced connection pool properties

These properties require advanced knowledge of how connection pooling works
and how your system performs. For information about these settings see the
Connection pool advanced settings topic in the Information Center.

WebSphere Application Server data source properties
These properties apply to the WebSphere Application Server connection, rather
than to the database connection.

The WebSphere Application Server data source properties are accessed through
the link under the Additional Properties section of the data source configuration
page. See Figure 7-8 on page 332. Clicking the link gives you the window in
Figure 7-14 on page 340.

 Chapter 7. Configuring WebSphere resources 339

Figure 7-14 WebSphere data source custom properties

� Statement Cache Size

Specify the number of prepared statements that are cached per connection. A
prepared statement is a precompiled SQL statement that is stored in a
prepared statement object. This object is used to execute the given SQL
statement multiple times. The WebSphere Application Server data source
optimizes the processing of prepared statements.

In general, the more statements your application has, the larger the cache
should be. For example, if the application has 5 SQL statements, set the
statement cache size to 5, so that each connection has 5 statements.

� Enable multithreaded access detection

If you enable this feature, the application server detects the existence of
access by multiple threads.

� Enable database reauthentication

Connection pool searches do not include user name and password. If you
enable this feature, a connection can still be retrieved from the pool, but you
must extend the DataStoreHelper class to provide implementation of the
doConnectionSetupPerTransaction() method where the reauthentication
takes place.

Connection reauthentication can help improve performance by reducing the
overhead of opening and closing connections, particularly for applications
that always request connections with different user names and passwords.

340 WebSphere Application Server V6: System Management and Configuration Handbook

� Manage cached handles

When you call the getConnection() method to access a database, you get a
connection handle returned. The handle is not the physical connection, but a
representation of a physical connection. The physical connection is managed
by the connection manager. A cached handle is a connection handle that is
held across transaction and method boundaries by an application.

This setting specifies whether cached handles should be tracked by the
container. This can cause overhead and only should be used in specific
situations. For more information about cached handles, see the Connection
Handles topic in the Information Center.

� Log missing transaction context

The J2EE programming model indicates that connections should always have
a transaction context. However, some applications do not have a context
associated with them. This option tells the container to log that there is a
missing transaction context in the activity log when the connection is
obtained.

� Pretest connection

If you check this box, the application server tries to connect to this data
source before it attempts to send data to or receive data from this source. If
you select this property, you can specify how often, in seconds, the
application server retries to make a connection if the initial attempt fails. The
pretest SQL string is sent to the database to test the connection.

7.3 JCA resources
The J2EE Connector architecture (JCA) defines a standard architecture for
connecting the J2EE platform to heterogeneous Enterprise Information Systems
(EIS), for example, ERP, mainframe transaction processing, database systems,
and legacy applications not written in the Java programming language. By
defining a set of scalable, secure, and transactional mechanisms, the JCA
enables the integration of EISs with application servers and enterprise
applications.

WebSphere Application Server V6 provides a complete implementation of the
JCA 1.5 specification, including the features of the JCA 1.0 Specification:

� Connection sharing (res-sharing-scope)

� A get/use/close programming model for connection handles

� A get/use/cache programming model for connection handles

 Chapter 7. Configuring WebSphere resources 341

� XA, Local, and No Transaction models of resource adapters, including XA
recovery

� Security options A and C as in the specification

� Applications with embedded .rar files

The new features for the JCA 1.5 specification are:

� Deferred enlistment transaction optimization

� Lazy connection association optimization

� Inbound communication from an enterprise information system (EIS) to a
resource adapter

� Inbound transactions from an EIS to a resource adapter

� Work management, enabling a resource adapter to put work on separate
threads and pass execution context, such as inbound transactions, to the
thread.

� Life cycle management, enabling a resource adapter to be stopped and
started.

The JCA Resource Adapter is a system-level software driver supplied by EIS
vendors or other third-party vendors. It provides the following functionality:

� Provides connectivity between J2EE components such as an application
server or an application client and an EIS

� Plugs into an application server

� Collaborates with the application server to provide important services such as
connection pooling, transaction and security services

JCA defines the following set of system-level contracts between an
application server and EIS:

– A connection management contract lets an application server pool connect
to an underlying EIS, and lets application components connect to an EIS.
This leads to a scalable application environment that can support a large
number of clients requiring access to EISs.

– A transaction management contract between the transaction manager and
an EIS supports transactional access to EIS resource managers. This
contract lets an application server use a transaction manager to manage
transactions across multiple resource managers. This contract also
supports transactions that are managed internal to an EIS resource
manager without the necessity of involving an external transaction
manager.

342 WebSphere Application Server V6: System Management and Configuration Handbook

– A security contract enables a secure access to an EIS. This contract
provides support for a secure application environment, reducing security
threats to the EIS and protecting valuable information resources managed
by the EIS.

The resource adapter implements the EIS-side of these system-level
contracts.

� Implements the Common Client Interface (CCI) for EIS access

The CCI defines a standard client API through which a J2EE component
accesses the EIS. This simplifies writing code to connect to an EIS data store.

The resource adapter provides connectivity between the EIS, the application
server and the enterprise application via the CCI.

� Implements the standard Service Provider Interface (SPI)

The SPI integrates the transaction, security and connection management
facilities of an application server (JCA Connection Manager) with those of a
transactional resource manager

Multiple resource adapters (one resource adapter per type of EIS) are pluggable
into an application server. This capability enables application components
deployed on the application server to access the underlying EISs. This is shown
in Figure 7-15.

Figure 7-15 Common Client Interface API

The benefits of JCA include:

� Once an application server implements JCA, any JCA-compliant resource
adapter can plug in.

Resource Adapter
for the EIS Oracle

J2EE
Component

J2EE
Component

J2EE
Component

Provided by EIS vendor
or Third Party vendor

Common
Client

Interface
API

EIS
(Oracle)

Resource Adapter
for the EIS CICS

EIS
(CICS)

Resource Adapter
for the EIS IMS

EIS
(IMS)

J2EE Server Runtime

Included with J2EE

 Chapter 7. Configuring WebSphere resources 343

� Once a resource adapter implements JCA, it can plug in to any
JCA-compliant application server.

� Each EIS requires just one implementation of the resource adapter.

� The common client interface simplifies application integration with diverse
EISs.

7.3.1 WebSphere Application Server JCA support
In WebSphere Application Server, two types of objects are configured for JCA
support:

� Resource adapters
� Connection factories

The role of the WebSphere administrator is to:

� Install and define the resource adapter.
� Define one or more connection factories associated with the resource

adapter.

From the application point of view, the application using the resource adapter
requests a connection from the connection factory through a JNDI lookup. The
connection factory connects the application to the resource adapter.

Resource adapter
� A WebSphere resource adapter administrative object represents the library

that supplies implementation code for connecting applications to a specific
EIS, such as CICS or SAP. Resource adapters are stored in a Resource
Adapter Archive (RAR) file, which is a Java archive (JAR) file used to
package a resource adapter for the connector architecture. The file has a
standard file extension .rar.

A RAR file can contain the following:

� EIS-supplied resource adapter implementation code in the form of JAR files
or other executables, such as DLLs

� Utility classes

� Static documents, such as HTML files for developer documentation, not used
for runtime

� J2C common client interfaces, such as cci.jar

� A mandatory deployment descriptor (ra.xml)

This deployment descriptor instructs the application server about how to use
the resource adapter in an application server environment. The deployment

344 WebSphere Application Server V6: System Management and Configuration Handbook

descriptor contains information about the resource adapter, including security
and transactional capabilities, and the ManagedConnectionFactory class
name.

The RAR file or JCA resource adapter is provided by your EIS vendor.

WebSphere provides two JCA resource adapters:

� The WebSphere Relational Resource Adapter, used to connect to relational
databases using JDBC

� The SIB JMS Resource Adapter, used to connect to the default messaging
provider

Connection factory
The WebSphere connection factory administrative object represents the
configuration of a specific connection to the EIS supported by the resource
adapter. The connection factory can be thought of as a holder of a list of
connection configuration properties.

Application components, such as CMP enterprise beans, have
cmpConnectionFactory descriptors that refer to a specific connection factory, not
to the resource adapter.

7.3.2 Installing and configuring resource adapters
To use a resource adapter, you need to install the resource adapter code and
create connection factories that use the adapter. Resource adapter configuration
is stored in the resources.xml file.

To install a resource adapter (.rar file), do the following:

1. From the administrative console, expand Resources from the navigation
tree.

2. Click Resource Adapters. The administrative console shows all the
configured resource adapter objects. In Figure 7-16 on page 346 you see the
two resource adapters supplied with WebSphere.

 Chapter 7. Configuring WebSphere resources 345

Figure 7-16 JCA resource adapters

3. Click Install RAR to install a new resource adapter.

4. Enter the path to the RAR file supplied by your EIS vendor. It can reside
locally, on the same machine as the browser, or on any of the nodes in your
cell. See Figure 7-17 on page 347.

346 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-17 RAR file location

5. Select the node where you want to install the RAR file. You have to install the
file on each node separately.

6. Click Next. The Configuration page for the resource adapter selected is
displayed. This is shown in Figure 7-18 on page 348.

 Chapter 7. Configuring WebSphere resources 347

Figure 7-18 JCA resource adapter properties

In this example you do not have to configure any properties. The defaults
combined with the information supplied in the RAR file provide all the
information needed. However, you have the option of configuring the
following:

– Name

Create an administrative name for the resource adapter.

– Description

Create an optional description of the resource adapter, for your
administrative records.

– Archive path

This field is the path where the RAR file is installed. If this property is not
specified, the archive will be extracted to the absolute path represented by
the ${CONNECTOR_INSTALL_ROOT} variable. The default is
<profile_home>/installedConnectors/<adaptername.rar>

– Class path

A list of paths or JAR file names which together form the location for the
resource adapter classes. The resource adapter codebase itself, the RAR
file, is automatically added to the classpath.

348 WebSphere Application Server V6: System Management and Configuration Handbook

– Native path

This is a list of paths that together form the location for the resource
adapter native libraries (.dll, and .so files).

7. Click OK.

7.3.3 Configuring J2C connection factories

A J2C connection factory represents a set of connection configuration values.
Application components such as EJBs have <resource-ref> descriptors that refer
to the connection factory, not the resource adapter. The connection factory is just
a holder of a list of connection configuration properties. In addition to the arbitrary
set of configuration properties defined by the vendor of the resource adapter,
there are several standard configuration properties that apply to the connection
factory. These standard properties are used by the connection pool manager in
the application server runtime and are not used by the vendor supplied resource
adapter code.

To create a J2C connection factory, do the following:

1. Select the J2C resource adapter just created. You now have entries in the
Additional Properties section, allowing you access to connection factories,
custom properties, and the deployment descriptor (ra.xml).

See Figure 7-19 on page 350

Note: The terms J2C and JCA both refer to J2EE Connector Architecture and
they are used here interchangeably.

 Chapter 7. Configuring WebSphere resources 349

Figure 7-19 Configurable resources for the JCA connector

2. Click J2C Connection Factories under the Additional Properties.

3. Click New to create a new connection factory, or select an existing one to
modify the connection factory properties.

The J2C Connection Factory Configuration page is shown in Figure 7-20 on
page 351.

350 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-20 J2C connection factory properties

The general properties are:

– Name

Type an administrative name for the J2C connection factory.

– JNDI name

This field is the connection factory name to be registered in the application
server’s name space, including any naming subcontext.

When installing an application that contains modules with J2C resource
references, the resources defined by the deployment descriptor of the
module need to be bound to the JNDI name of the resource.

As a convention, use the value of the Name property prefixed with eis/,
for example,

eis/<ConnectionFactoryName>

 Chapter 7. Configuring WebSphere resources 351

– Description

This is an optional description of the J2C connection factory, for your
administrative records.

– Connection factory interface

This field is the name of the connection factory interfaces supported by the
resource adapter.

– Category

Specify a category that you can use to classify or group the connection
factory.

– Component-managed authentication alias

This authentication alias is used for component-managed sign-on to the
resource.

4. Click Apply. The links under the Additional Properties section for connection
pool, advanced connection factory, and custom properties become active.

The connection pool properties are configured the same as for a JDBC data
source. For information about these settings, see “Configure connection
pooling properties” on page 335.

The advanced connection factory properties are shown in Figure 7-21 on
page 353.

Note: The following security settings are deprecated in V6:

� Container managed authentication alias
� Authentication preference
� Mapping configuration alias

Resource authentication settings should be used instead. For more
information, see 7.7, “Resource authentication” on page 374.

352 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-21 Advanced connection factory properties

� Manage cached handles

When you call the getConnection() method to access a database, you get a
connection handle returned. The handle is not the physical connection, but a
representation of a physical connection. The physical connection is managed
by the connection manager. A cached handle is a connection handle held
across transaction and method boundaries by an application.

This setting specifies whether cached handles should be tracked by the
container. This can cause overhead and only should be used in specific
situations. For more information about cached handles, see the Connection
Handles topic in the Information Center.

� Log missing transaction context

The J2EE programming model indicates that connections should always have
a transaction context. However, some applications do not have a context
associated with them. This option tells the container to log that there is a
missing transaction context in the activity log when the connection is
obtained.

7.3.4 Using resource adapters from an application
Example 7-1 shows how you might access the CICS ECI resource adapter we
just installed from an application. This code snippet assumes you have a
resource reference called eis/ref/ECICICS that points to a
javax.resource.cci.ConnectionFactory with JNDI name eis/ECICICS. It is a
minimal sample, with no connection factory caching, and so on.

Example 7-1 Using resource adapters from an application. Code sample

private int getRate(String source) throws java.lang.Exception {

// get JNDI context

 Chapter 7. Configuring WebSphere resources 353

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
// get local JNDI environment
javax.naming.Context env =

(javax.naming.Context)ctx.lookup("java:comp/env");
javax.resource.cci.ConnectionFactory connectionFactory connectionFactory =

(javax.resource.cci.ConnectionFactory) env.lookup("eis/ref/ECICICS");

// get a connection to the EIS
javax.resource.cci.Connection connection =

connectionFactory.getConnection();

// create an interaction and a CICS ECI specific interaction spec
javax.resource.cci.Interaction interaction =

connection.createInteraction();
com.ibm.connector2.cics.ECIInteractionSpec interactionSpec = new

com.ibm.connector2.cics.ECIInteractionSpec();

// create the comm area record
source = (source.trim().toUpperCase()+" ").substring(0, 12);
GenericRecord record = new GenericRecord((source).getBytes("IBM037"));

// set the CICS program name we want to call
interactionSpec.setFunctionName("CALCRATE");

// invoke the CICS program
interaction.execute(interactionSpec, record, record);

// close the interation and the connection
interaction.close();
connection.close();

// get the results from the return comm area record
byte[] commarea = record.getCommarea();
int value = Integer.parseInt(new String(commarea,

"IBM037").substring(8,12).trim());
return value;

}

7.4 JavaMail resources
The JavaMail APIs provide a platform and protocol-independent framework for
building Java-based mail client applications. The JavaMail APIs are generic for
sending and receiving mail. They require service providers, known in
WebSphere as protocol providers, to interact with mail servers that run the
protocols.

354 WebSphere Application Server V6: System Management and Configuration Handbook

A JavaMail provider encapsulates a collection of protocol providers. WebSphere
Application Server has a Built-in Mail Provider that encompasses three protocol
providers: SMTP, IMAP and POP3. These protocol providers are installed as the
default and should be sufficient for most applications.

� Simple Mail Transfer Protocol (SMTP)

This is a popular transport protocol for sending mail. JavaMail applications
can connect to an SMTP server and send mail through it by using this SMTP
protocol provider.

� Post Office Protocol (POP3)

This is the standard protocol for receiving mail.

� Internet Message Access Protocol (IMAP)

This is an alternative protocol to POP3 for receiving mail.

To use other protocols, you must install the appropriate service provider for those
protocols.

In addition to service providers, JavaMail requires the Java Activation
Framework (JAF) as the underlying framework to deal with complex data types
that are not plain text, like Multipurpose Internet Mail Extensions (MIME),
Uniform Resource Locator (URL) pages, and file attachments.

The JavaMail APIs, the JAF, the service providers and the protocols are shipped
as part of WebSphere Application Server using the following Sun licensed
packages:

� mail.jar

This file contains the JavaMail APIs, and the SMTP, IMAP, and POP3 service
providers.

� activation.jar

This file Contains the JavaBeans Activation Framework.

Figure 7-22 on page 356 illustrates the relationship among the different JavaMail
components.

Note: In this section, the terms JavaMail provider and mail provider are used
interchangeably.

 Chapter 7. Configuring WebSphere resources 355

Figure 7-22 JavaMail components

WebSphere Application Server supports JavaMail Version 1.3 and the
JavaBeans Activation Framework (JAF) Version 1.0. All Web components of
WebSphere including servlets, JSPs, EJBs, and application clients, support
JavaMail.

7.4.1 JavaMail sessions
A JavaMail session object, or session administrative object, is a resource used
by the application to obtain connections to a mail server. A mail session object
manages the configuration options and user authentication information used to
interact with the mail system. JavaMail sessions are configured to use a
particular JavaMail provider.

7.4.2 Configuring the mail provider
A mail provider encapsulates a collection of protocol providers. Protocol
providers interact with JavaMail APIs and mail servers running those protocols.
WebSphere Application Server has a built-in mail provider that encompasses
three protocol providers: SMTP, IMAP and POP3. These protocol providers are
installed by default and should be sufficient for most applications. However you
can configure a new provider if necessary.

SMTP
Server

IMAP
Mail Store

POP3
Mail Store

JavaMail Installation

SMTP
SP

IMAP
SP

POP3
SP

JavaMail API JAF

JavaMail Application

356 WebSphere Application Server V6: System Management and Configuration Handbook

To configure a new mail provider complete the following steps from the
administrative console:

1. Expand Resources from the navigation tree.

2. Click Mail Providers.

3. Select Scope and click Apply. The scope determines whether JavaMail
resources configured to use this provider will be available at the cell, node or
the application server level.

Figure 7-23, shows the mail provider installed with WebSphere. The built-in
mail provider is available to all the application servers in the cell.

Figure 7-23 Mail provider page

4. Click New to configure a new mail provider.

5. Enter a name and a description, then click Apply. The properties required to
configure a new mail provider are shown in Figure 7-24 on page 358.

 Chapter 7. Configuring WebSphere resources 357

Figure 7-24 Mail Provider general properties

6. Click Protocol Providers under the Additional Properties section.

7. Click New to add a protocol provider.

358 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-25 Protocol provider configuration page

The properties to configure are:

– Protocol

This field specifies the protocol name.

– Classname

This field specifies the implementation class for the specific protocol
provider. The class must be available in the classpath.

– Classpath

This field specifies the path to the JAR files that contain the
implementation classes for this protocol provider.

– Type

This field specifies the type of protocol provider. Valid options are:

• STORE: This protocol is used for receiving mail.
• TRANSPORT: This protocol is used for sending mail.

 Chapter 7. Configuring WebSphere resources 359

For guidance, you can look at the protocol providers provided with the built-in
mail provider, shown in Figure 7-26.

Figure 7-26 Protocol providers

8. Click OK and save the configuration.

7.4.3 Configuring JavaMail sessions
To configure JavaMail sessions with a particular mail provider, complete the
following steps from the administrative console:

1. Expand Resources from the navigation tree.

2. Click Mail Providers.

3. Select Scope and click Apply.

4. Select the mail provider to be used by the JavaMail session.

5. Select Mail Sessions in the Additional Properties section. See Figure 7-24
on page 358.

6. Select New to create a new mail session object. Figure 7-27 on page 361
shows the configuration page for the PlantsByWebSphere sample
application.

360 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-27 Configuration page for the mail session

Define the following properties, according to your situation:

– Name

Type an administrative name for the JavaMail session object.

 Chapter 7. Configuring WebSphere resources 361

– JNDI name

Use the JavaMail session object name as registered in the application
server’s name space, including any naming subcontext.

When installing an application that contains modules with JavaMail
resource references, the resources defined by the deployment descriptor
of the module need to be bound to the real JNDI name of the resources.

As a convention, use the value of the Name property prefixed with mail/,
such as mail/<mail_session_name>.

– Mail transport host

This field specifies the server to connect to when sending mail. Use the
fully qualified Internet host name of the mail server.

– Mail transport Protocol

This field defines the transport protocol to use when sending mail, for
example SMTP. Select from the transport protocols defined for the
provider.

– Mail transport userid

This field contains the user ID to provide when connecting to the mail
transport host. This setting is not generally used for most mail servers.
Leave this field blank unless you use a mail server that requires a user ID
and password.

– Mail transport password

Use this field to specify the password to provide when connecting to the
mail transport host. Like the user ID, this setting is rarely used by most
mail servers. Leave this field blank, unless you use a mail server that
requires a user ID and password.

– Enable strict Internet parsing

Check this box to enforce RFC 822 syntax rules for parsing Internet
addresses when sending mail.

– Mail from

This value represents the Internet e-mail address that displays as either
the From or the Reply-To address. The recipient's reply is sent to this
address.

– Mail store host

This field defines the server to which to connect when receiving mail. This
setting combines with the mail store user ID and password to represent a
valid mail account. For example, if the mail account is itso@itso.ibm.com,
then the mail store host is itso.ibm.com.

362 WebSphere Application Server V6: System Management and Configuration Handbook

– Mail store protocol

This field specifies the protocol to be used when receiving mail. It could be
IMAP, POP3 or any store protocol for which the user has installed a
provider.

– Mail store userid

This field specifies the user ID to use when connecting to the mail store.
This setting combines with the mail store host and password to represent
a valid mail account. For example, if the mail account is
itso@itso.ibm.com then the user ID is itso.

– Mail store password

This field defines the password to use when connecting to the mail store
host. This property combines with the mail store user ID and host to
represent a valid mail account.

– Enable debug mode

Use this field to toggle debug mode on and off for this mail session. When
true, JavaMail’s interaction with mail servers, along with this mail session’s
properties will be printed to <stdout>.

7. Click OK and save the configuration.

7.4.4 Example code
The code segment shown in Example 7-2 illustrates how an application
component sends a message and saves it to the Sent folder.

Example 7-2 JavaMail application code

//get JavaMail session

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.mail.Session mail_session = (javax.mail.Session)
ctx.lookup("java:comp/env/mail/MailSession");

//prepare message

 MimeMessage msg = new MimeMessage(mail_session);
 msg.setRecipients(Message.RecipientType.TO,
InternetAddress.parse("bob@coldmail.net"));
msg.setFrom(new InternetAddress("alice@mail.eedge.com"));
 msg.setSubject("Important message from eEdge.com");
 msg.setText(msg_text);

//send message

 Chapter 7. Configuring WebSphere resources 363

 Transport.send(msg);

//save message in “Sent” folder

 Store store = mail_session.getStore();
 store.connect();
 Folder f = store.getFolder("Sent");
 if (!f.exists()) f.create(Folder.HOLDS_MESSAGES);
 f.appendMessages(new Message[] {msg});

7.5 URL providers
A URL provider implements the functionality for a particular URL protocol, such
as HTTP, by extending the java.net.URLStreamHandler and
java.net.URLConnection classes. It enables communication between the
application and a URL resource that is served by that particular protocol.

A URL provider named Default URL Provider is included in the initial WebSphere
configuration. This provider utilizes the URL support provided by the IBM JDK.
Any URL resource with protocols based on the Java 2 Standard Edition 1.3.1,
such as HTTP, FTP or File, can use the default URL provider.

You can also plug in your own URL provider for another protocol not supported
by the JDK.

7.5.1 Configuring URL providers
URL resource objects are administrative objects used by an application to
communicate with an URL. These resource objects are used to read from an
URL or to write to an URL. URL resource objects use URL providers for class
implementation.

To configure or create a URL provider from the administrative console, do the
following:

1. Expand Resources from the navigation tree.

2. Click URL Providers.

3. Select Scope and click Apply.

4. Click New to configure a new URL provider, or select an existing one to edit it.

364 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-28 URL provider configuration page

Configure the following properties:

– Name

Type an administrative name for the URL provider.

– Class path

Make a list of paths or JAR file names that together form the location for
the URL provider classes.

– Stream handler class name

Define the fully qualified name of the Java class that implements the
stream handler for the protocol specified by the Protocol property. A
stream protocol handler knows how to make a connection for a particular
protocol type, such as HTTP or FTP. It extends the
java.net.URLStreamHandler class for that particular protocol.

 Chapter 7. Configuring WebSphere resources 365

– Protocol

Define the protocol supported by this stream handler, for example http or
ftp.

5. Click OK and save the configuration.

7.5.2 Configuring URLs
To configure a URL administrative object, do the following from the administrative
console:

1. Expand Resources from the navigation tree.

2. Click URL Providers.

3. Select Scope and click Apply.

4. Select the URL provider that implements the protocol required to access the
URL resource.

5. Select URLs under Additional Properties. Select New. See Figure 7-29 on
page 367.

Important: You need to manually install the URL provider (a set of JARs) on
each node where the URL provider is going to be used and ensure that it is
included in the classpath above.

366 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-29 Defining URLs

Use the following properties:

– Name

Define the administrative name for the URL resource object.

– JNDI Name

Type the URL session object name as registered in the application servers
name space, including any naming subcontext.

When installing an application that contains modules with URL resource
references, the resources defined by the deployment descriptor of the
module need to be bound to the real JNDI name of the resources.

As a convention, use the value of the Name property prefixed with url/,
such as url/<UrlName>.

– Specification

Type the URL resource to which this URL object is bound.

6. Click OK and save the configuration.

 Chapter 7. Configuring WebSphere resources 367

7.5.3 URL provider sample
Example 7-3 provides a code sample making use of the URL provider and URL
resources. Note that the Web module resource reference, myHttpUrl, is bound to
the URL resource JNDI name, url/MotdUrl, during application assembly or
deployment.

Example 7-3 HTTP URL provider sample

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.naming.Context env =

(javax.naming.Context) ctx.lookup("java:comp/env");
java.net.URL url = (java.net.URL) env.lookup("myHttpUrl");
java.io.InputStream ins = url.openStream();
int c;
while ((c = ins.read()) != -1) {

out.write(c);
}

In this case, we inserted the Example 7-3 code into a JSP, added the JSP to a
Web module, added a URL resource reference to the Web module, then
deployed the Web module. Then we checked that the contents of the file
specified in the MotdUrl URL resource, file:///d:/url/motd.txt, were
included in the JSP’s output.

Similarly, a stock quote custom URL provider could be accessed as shown in
Example 7-4. The Web module resource reference, myQuoteUrl, is bound to a
URL resource with JNDI name, url/QuoteUrl, and URL quote://IBM. The
custom URL provider will access an online stock quote for IBM.

Example 7-4 Quote URL provider sample

javax.naming.InitialContext ctx = new javax.naming.InitialContext();
javax.naming.Context env =

(javax.naming.Context) ctx.lookup("java:comp/env");
java.net.URL url = (java.net.URL) env.lookup("myQuoteUrl");
out.println("The stock price is "+url.getContent());

Note: Each application server’s name space is initialized on startup. This
means application servers must be restarted to load a modified resource
property, such as a URL string.

368 WebSphere Application Server V6: System Management and Configuration Handbook

7.6 Resource environment providers
The java:comp/env environment provides a single mechanism by which both
JNDI name space objects and local application environment objects can be
searched. WebSphere Application Server provides a number of local
environment entries by default.

The J2EE 1.4 specification also provides a mechanism for defining custom,
non-default, environment entries using <resource-env-ref> entries defined in an
application's standard deployment descriptors. The specification separates the
definition of the resource environment entry from the application by:

� Requiring the application server to provide a mechanism for defining separate
administrative objects that encapsulate a resource environment entry. The
administrative objects are accessible through JNDI in the application server’s
local name space, java:comp/env. The specification does not define how an
application server should provide this functionality. As a result, the
mechanism is generally application-server product-specific.

� Specifying the administrative object's JNDI lookup name and the expected
returned object type in the <resource-env-ref>.

Example 7-5 shows a resource environment entry defined in an application's
Web module deployment descriptor, web.xml.

Example 7-5 Resource-env-ref in deployment descriptor

<web-app>
.....
<resource-env-ref>

<resource-env-ref-name>myapp/MyLogWriter</resource-env-ref-name>
<resource-env-ref-type>com.ibm.itso.test.LogWriter</resource-env-ref-type>

</resource-env-ref>
.....
</web-app>

Example 7-6 shows how this resource environment entry could be accessed
from Java code in the Web module.

Example 7-6 Java code to access resource environment reference

import com.ibm.itso.test.*;
.....
InitialContext ctx = new InitialContext();
LogWriter myLog = (LogWriter) ctx.lookup("java:comp/env/myapp/MyLogWriter");
myLog.write(msg);
.....

 Chapter 7. Configuring WebSphere resources 369

http://java.sun.com/products/jdk/1.2/docs/api/java/net/URL.html

7.6.1 Resource environment references

WebSphere Application Server supports the <resource-env-ref> mechanism by
providing resource environment provider administrative objects that are
configured using the administration tools. Each <resource-env-ref> requires the
creation of the following administered objects in the order shown:

1. Resource environment provider

This provider defines an administrative object that groups together the
referenceable, resource environment entry administrative objects and any
required custom properties.

The scope you choose determines which resources.xml configuration file is
updated to contain the provider’s configuration stanza:

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName"/>

2. Referenceable

This object defines the classname of the factory class that returns object
instances implementing a Java interface.

The referenceable’s configuration is added to the provider’s stanza in the
resources.xml file appropriate to the scope, as in Example 7-7.

Example 7-7 Referenceable object

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName">
 <referenceables xmi:id="Referenceable_1"
factoryClassname="com.ibm.itso.test.LogWriterFactory"
classname="com.ibm.itso.test.LogWriter"/>
 </resources.env:ResourceEnvironmentProvider>

3. Resource environment entry

Defines the binding target (JNDI name), factory class and return object type
(via link to the Referenceable) of the resource environment entry.

The referenceable’s configuration is added to the provider’s stanza in the
resources.xml file appropriate to the scope, as in Example 7-8.

Example 7-8 Resource environment entry

<resources.env:ResourceEnvironmentProvider
xmi:id="ResourceEnvironmentProvider_1" name="ResProviderName">

<factories xmi:type="resources.env:ResourceEnvEntry"
xmi:id="ResourceEnvEntry_1" name="MyLogWriter" jndiName="myapp/MyLogWriter"
referenceable="Referenceable_1"/>

370 WebSphere Application Server V6: System Management and Configuration Handbook

<referenceables xmi:id="Referenceable_1"
factoryClassname="com.ibm.itso.test.LogWriterFactory"
classname="com.ibm.itso.test.LogWriter"/>
 </resources.env:ResourceEnvironmentProvider>

7.6.2 Configuring the resource environment provider
To create settings for a resource environment provider:

1. Click Resources → Resource Environment Providers in the navigation
tree.

2. Select the scope and click Apply.

3. Click New.

4. Enter a name and description for the new resource environment provider.

5. Click Apply. See Figure 7-30.

Figure 7-30 Creating a resource environment provider

6. Click Referenceables in the Additional Properties section.

 Chapter 7. Configuring WebSphere resources 371

7. Click New. Use this page to set the classname of the factory that will convert
information in the name space into a class instance for the type of resource
you want. See Figure 7-31.

Figure 7-31 Create a reference

– Factory class name

This field contains a javax.naming.ObjectFactory implementation class
name.

– Class name

This field refers to the Java type that a referenceable provides access to,
for binding validation and to create the reference data type string.

8. Click OK.

9. Select the resource environment provider (in the top navigation path) and
click Resource Env Entries under Additional Properties.

10.Click New. See Figure 7-32 on page 373.

372 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 7-32 Creating a resource environment entry

– Name

Type a display name for the resource.

– JNDI name

Type the JNDI name for the resource, including any naming subcontexts.

This name is used as the link between the platform's binding information
for resources defined by a module's deployment descriptor and resources
bound into JNDI by the platform.

– Referenceable

The referenceable holds the factoryClassname of the factory that will
convert information in the name space into a class instance for the type of
resource desired, and for the classname of the type to be returned.

11.Click OK.

12.Save your configuration.

 Chapter 7. Configuring WebSphere resources 373

7.7 Resource authentication
Resources often require you to perform authentication and authorization before
an application can access them. You can configure the settings to determine how
this is done in a number of ways. This section discusses the configuration
settings and how to use them. However, before implementing any security, you
should review the information in WebSphere Application Security V6 Security
Handbook, SG24-6316.

The party responsible for the authentication and authorization is determined by
the res-auth setting found in the Web and EJB deployment descriptors. There
are two possible settings:

� res-auth=Application: The application, or component, is responsible.

� res-auth=Container: WebSphere is responsible.

These settings can be configured during application assembly using Rational
Application Developer or the Application Server Toolkit in the EJB or Web
deployment descriptor. They can also be set or overridden during application
installation.

Table 7-1 Authentication settings

Component-managed authentication
In the case of component-managed authentication, the application component
accessing the resource or adapter is responsible for programmatically supplying
the credentials. WebSphere can also supply a default component-managed
authetication alias if available. After obtaining the connection factory for the
resource from JNDI, the application component creates a connection to the
resource using the create method on the connection factory supplying the
credentials. If no credentials are supplied when creating a connection and a
component-managed authentication alias has been specified on the J2C
connection factory, the credentials from the authentication alias will be used.
Assuming the credentials are valid, future requests using the same connection
will use the same credentials.

The application follows these basic steps:

Authentication type Setting at assembly
Authorization type

Setting during installation
Resource authorization

Application (component) managed:
res-auth=Application

Per_Connection_Factory Per application

WebSphere managed:
res-auth=Container

Container Container

374 WebSphere Application Server V6: System Management and Configuration Handbook

1. Get the initial JNDI context.
2. Lookup the connection factory for the resource adapter.
3. Create a ConnectionSpec object holding credentials.
4. Obtain a connection object from the connection factory by supplying the

ConnectionSpec object.

Authentication with WebSphere
Container-managed authentication removes the requirement that the component
programmatically supply the credentials for accessing the resource. Instead of
calling the getConnection() method with a ConnectionSpec object,
getConnection() is called with no arguments. The authentication credentials are
then supplied by the Web container, application container or the EJB container,
depending on from where the resource is accessed. WebSphere Application
Server V6 supports the JAAS specification, so the credentials can be mapped
from any of the configured JAAS authentication login modules, including any
custom JAAS authentication login module.

When using container-managed authentication, you have the following options
for the authentication method to be used:

� Select None if you are using the WebSphere administrative console or
Container Managed Authentication (deprecated) in the Application Server
Toolkit.

This option uses the container-managed authentication settings that are
defined for the resource’s connection factory. The credentials can come from
a JAAS authentication alias when using the DefaultPrincipalMapping
Mapping-configuration alias setting, or mapped from another JAAS
authentication login module. Any application that can get the resource’s
connection factory from JNDI will be able to access the EIS. This creates a
security exposure where unauthorized applications can gain access to the
resource.

Selecting this option and specifying DefaultPrincipalMapping and selecting a
JAAS authentication alias when defining the resource’s connection factory
provides the same functionality as WebSphere Application Server V5. This is
no longer the recommended method.

� Select the Use default method.

The Use Default Method setting behaves very similar to container-managed
authentication using the DefaultPrincipalMapping option. A JAAS
authentication alias is linked to the connection factory and all container-
managed authentication requests using the resource reference use the
credentials from the alias. The difference is that the linking from the JAAS
authentication alias to connection factory is done at the resource reference
level within the application. This alleviates a security exposure by limiting the

 Chapter 7. Configuring WebSphere resources 375

scope of the credentials to the application defining the resource reference. All
other applications would need to supply their own credentials when accessing
the connection factory directly from JNDI. This is the recommended method
for mapping JAAS authentication aliases to connection factories.

� Select Use custom login configuration.

You can also use any WebSphere or user-supplied custom JAAS login
configuration.

7.8 More information
These documents and Web sites are also relevant as further information
sources:

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java 2 Platform Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� JDBC Technology

http://java.sun.com/products/jdbc/index.html

� Enterprise JavaBeans Technology

http://java.sun.com/products/ejb/

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� JavaMail API Specification

http://java.sun.com/products/javamail/reference/api/index.html

376 WebSphere Application Server V6: System Management and Configuration Handbook

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/javamail/reference/api/index.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/connector/

Chapter 8. Managing Web servers

This chapter describes in detail the system management functionality of the Web
server. We cover:

� 8.1, “Web server support overview” on page 378
� 8.2, “Web server installation examples” on page 383
� 8.3, “Working with Web servers” on page 389
� 8.3.5, “Mapping modules to servers” on page 402
� 8.4, “Working with the plug-in configuration file” on page 404

For information regarding the topology of the Web server installation, refer to
section 8.4, Planning and Designing for WebSphere Application Server V6,
SG24-6446.

8

© Copyright IBM Corp. 2005. All rights reserved. 377

8.1 Web server support overview
WebSphere Application Server provides Web server plug-ins that work with a
Web server to route requests for dynamic content, such as servlets, from the
Web server to the proper application server. A Web server plug-in is specific to
the type of Web server. It is installed on the Web server machine and configured
in the Web server configuration.

A plug-in configuration file generated on the application server and placed on the
Web server is used for routing information. In order to manage the generation
and propagation of these plug-in configuration files, Web servers are defined to
the WebSphere Application Server configuration repository. In some cases, Web
server configuration and management features are also available from the
WebSphere administrative tools.

New in WebSphere Application Server V6: These features are new with this
release.

� Web servers are defined to WebSphere Application Server. A Web server
resides on a managed or unmanaged node.

If located on a managed node in a distributed server environment only, a
node agent is installed on the Web server system and belongs to a
WebSphere Application Server administrative cell. The administrative tools
communicate with the Web server through the node agent.

If located on an unmanaged node, the Web server is defined to the cell, but
does not have a node agent running to manage the process.

In either case, the Web server definition allows you to generate the plug-in
configuration file for the Web server.

� Web applications can be mapped to Web servers. This mapping is used to
generate routing information during plug-in configuration generation.

� The Web server plug-in installation provides a wizard that takes you
through the installation process. The wizard defines and installs the
plug-in, configures the Web server, and defines the Web server to
WebSphere. Depending on whether the Web server is local or remote to
the application server, you can perform the Web server definition by script
or automatically with the wizard.

� IBM HTTP Server (IHS) V6 is bundled with WebSphere Application Server
V6. The administrative functionality is integrated into WebSphere
Application Server to provide remote administration through the
administrative console. This enhanced administrative function is only
available to the IBM HTTP Server.

378 WebSphere Application Server V6: System Management and Configuration Handbook

The following are the supported Web servers for WebSphere Application Server
V6:

� Apache HTTP Server
� Domino Web Server
� IBM HTTP Server
� Microsoft Internet Information Services
� Sun Java System Web Server (formerly Sun ONE and iPlanet)

For the latest list of supported Web servers and the versions supported, see the
prerequisite document at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

8.1.1 Request routing using the plug-in
The Web server plug-in uses an XML configuration file to determine whether a
request is for the Web server or the application server. When a request reaches
the Web server, the URL is compared to those managed by the plug-in. If a
match is found, the plug-in configuration file contains the information needed to
forward that request to the Web container using the Web container inbound
transport chain. See Figure 8-1 on page 380.

 Chapter 8. Managing Web servers 379

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

Figure 8-1 Web server plug-in routing

The plug-in configuration file is generated using the WebSphere administrative
tools. Each time you make a change to the WebSphere Application Server
configuration that would affect how requests are routed from a Web server to the
application server, you need to regenerate and propagate the plug-in
configuration file to the Web server. You can propagate manually or configure it
to be done automatically.

8.1.2 Web server and plug-in management
The setup of your Web server and Web server plug-in environment is defined in
a Web server definition. The Web server definition includes information about the
location of the Web server, its configuration files, and plug-in configuration. Each
Web server is association with a node, either managed or unmanaged. The Web
server definition is configured as part of the plug-in installation process. The Web
server definition is also used during application deployment. Web modules can
be mapped to a Web server, ensuring the proper routing information is generated
for the plug-in configuration file.

Web server

application server

plug-in configuration file

http://www.myhost.com/hello

<VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:80"/>
 </VirtualHostGroup>
 <ServerCluster LoadBalance="Round Robin" Name="server1_AppSrvNode_Cluster" ...>
 <Server ... Name="AppSrvNode_server1">
 <Transport Hostname="AppsHost" Port="9080" Protocol="http"/>
 </Server>
 </ServerCluster>
 <UriGroup Name="default_host_server1_AppSrvNode_Cluster_URIs">

 <Uri ... Name="/hello"/>

 </UriGroup>
 <Route ServerCluster="server1_AppSrvNode_Cluster"
UriGroup="default_host_server1_AppSrvNode_Cluster_URIs" VirtualHostGroup="default_host"/>

Web container

default_host
port 9080
/hello

LoadModule was_ap20_module
"C:\WebSphere\Plugins\bin\mod_was_ap20_http.dll"
WebSpherePluginConfig "C:\WebSphere\AppServer\
profiles\AppSrv01\config\cells\Cell01\nodes\AppSrvNode\
servers\webserver1\plugin-cfg.xml"

AppsHost

hello servlet

380 WebSphere Application Server V6: System Management and Configuration Handbook

Web server definitions are located under Servers → Web servers in the
administrative console. See Figure 8-2.

Figure 8-2 Web server definition

Contrasting Managed and unmanaged
When defining Web servers to WebSphere Application Server, it is important to
understand the concept of managed versus unmanaged nodes. A supported
Web server can be on a managed node or an unmanaged node, depending on
the environment in which you are running the Web server.

WebSphere Application Server supports basic administrative functions for all
supported Web servers. For example, generation of a plug-in configuration can
be performed for all Web servers. If the Web server is defined on a managed
node, automatic propagation of the plug-in configuration can be performed using
node synchronization. If the Web server is defined on an unmanaged node,
automatic propagation of a plug-in configuration is only supported for IBM HTTP
Servers.

WebSphere Application Server supports some additional administrative console
tasks for IBM HTTP Servers on managed and unmanaged nodes. For instance,
you can start IBM HTTP Servers, stop them, terminate them, display their log
files, and edit their configuration files.

Unmanaged nodes
An unmanaged node does not have a node agent to manage its servers. In a
standalone server environment, you can define one Web server and it, by

 Chapter 8. Managing Web servers 381

necessity, resides on an unmanaged node. In a distributed server environment,
Web servers defined to an unmanaged node are typically remote Web servers.

If the Web server is defined to an unmanaged node, do the following:

1. Check the status of the Web server.

2. Generate a plug-in configuration file for that Web server.

If the Web server is an IBM HTTP Server and the IHS Administration server is
installed and properly configured, you can also:

a. Display the IBM HTTP Server Error log (error.log) and Access log
(access.log) files.

b. Start and stop the server.

c. Display and edit the IBM HTTP Server configuration file (httpd.conf).

d. Propagate the plug-in configuration file after it is generated.

You cannot propagate an updated plug-in configuration file to a non-IHS Web
server that is defined to an unmanaged node. You must install an updated plug-in
configuration file manually to a Web server that is defined to an unmanaged
node.

Managed nodes
In a distributed server environment, you can define multiple Web servers. These
Web servers can be defined on managed or unmanaged nodes. A managed
node has a node agent. If the Web server is defined to a managed node, do the
following:

1. Check the status of the Web server.

2. Generate a plug-in configuration file for that Web server.

3. Propagate the plug-in configuration file after it is generated.

If the Web server is an IBM HTTP Server (IHS) and the IHS Administration
server is installed and properly configured, you can also:

a. Display the IBM HTTP Server Error log (error.log) and Access log
(access.log) files.

b. Start and stop the server.

c. Display and edit the IBM HTTP Server configuration file (httpd.conf).

How are nodes and servers defined?
During the installation of the plug-in, the Plug-ins installation wizard creates a
Web server configuration script named configureWeb_server_name. This
configuration script is used to create the Web server definition and, if necessary,
the node definition in the configuration of the application server.

382 WebSphere Application Server V6: System Management and Configuration Handbook

If a Web server definition already exists for a stand-alone application server,
running the script does not add a new Web server definition. Each stand-alone
application server can have only one Web server definition. A managed node, on
the other hand, can have multiple Web server definitions. The script creates a
new Web server definition unless the Web server name is the same.

The Plug-ins installation wizard stores the script in the <plug-in_home>/bin
directory on the Web server machine. If the plug-in is installed locally (on the
same machine as the application server), the configuration script will be run
automatically.

For remote installations, you must copy the script from the Web server machine
to the <was_home>/bin directory on the application server machine for
execution. The script runs against the default profile. If one machine is running
under Linux or UNIX and the other machine is running under Windows, use the
script created in the <plug-in_home>/Plugins/bin/crossPlatformScripts directory.

If you need to create a Web server definition for a distributed server environment,
you must federate your standalone application servers to the deployment
manager first. Any Web server definitions created for a standalone application
server will be lost when they are federated into a cell.

8.2 Web server installation examples
The options for defining and managing Web servers depend on your chosen
Web server topology and your WebSphere Application Server package.
Decisions to make include whether to collocate the Web server with other
WebSphere Application Server processes, and whether to make the Web server
managed or unmanaged.

Note: Always open a new command window in which to execute the
configureWeb_server_name script. There is a potential conflict between a shell
environment variable, the WAS_USER_SCRIPT variable, and the real default
profile. The script always works against the default profile. However, if the
WAS_USER_SCRIPT environment variable is set, a conflict arises as the
script attempts to work on the profile identified by the variable.

Using administrative tools: In a distributed server environment, the
administrative console can also be used to define the nodes and Web servers.
See 8.3.1, “Defining nodes and Web servers” on page 389.

 Chapter 8. Managing Web servers 383

The following examples outline the process required to create each sample
topology. Note that each example assumes that only the WebSphere processes
shown in the diagrams are installed on each system and that the profile for the
process is the default profile.

This is not a substitute for using the product documentation, rather it is intended
to help you understand the process. For detailed information about how the
Plug-ins installation wizard works and the logic it follows to determine how to
create the configuration scripts, see the Getting Started with Web server plug-ins
guide that comes with the plug-in.

8.2.1 Standalone server environment
In a standalone server environment, a Web server can be remote to the
application server machine or local, but there can only be one defined to
WebSphere Application Server. The Web server always resides on an
unmanaged node.

Remote Web server
In this scenario, the application server and the Web server are on separate
machines. The Web server machine can reside in the internal network, or more
likely, will reside in the DMZ. See Figure 8-3.

Figure 8-3 Remote Web server in a standalone server environment

Assume the application server is already installed and configured on Machine A.
Perform the following tasks:

1. Install the Web server on Machine B.

2. Install the Web server plug-in on Machine B by doing the following:

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
is under the config directory in the plug-in install directory. For example,

Firewall

Application
Server

Machine B

W eb Server

Plug-in
W eb C lient
(Browser)

Machine A

Firewall

Internet Intranet

384 WebSphere Application Server V6: System Management and Configuration Handbook

when the name specified for the Web server definition in the previous step
is webserver1, the default location for the plug-in file is:

<plugin_home>/config/webserver1/plugin-cfg.xml

During installation, the following tasks are performed:

a. Create a temporary plug-in configuration file and places it in the location
specified.

b. Update the Web server configuration file with the plug-in configuration,
including the location of the plug-in configuration file.

c. Generate a script to define the Web server to WebSphere Application
Server. The script is located in:

<plug-in_home>/bin/configure<web_server_name>

3. At the end of the plug-in installation, copy the script to the <was_home>/bin
directory of the application server machine, Machine A. Start the application
server, then execute the script.

4. When the Web server is defined to WebSphere Application Server, the
plug-in configuration file is generated automatically. For the IBM HTTP
Server, the new plug-in file will be propagated to the Web server
automatically. For other Web server types, you need to propagate the new
plug-in configuration file to the Web server.

Local Web server
In this scenario, a standalone application server exists on machine A. The Web
server and Web server plug-in will also be installed on machine A. This topology
is suited to a development environment or for internal applications. See
Figure 8-4.

Figure 8-4 Local Web server in a standalone server environment

Assume the application server is already installed and configured. Perform the
following tasks:

1. Install the Web server on Machine A.

2. Install the Web server plug-in on Machine A by doing the following:

a. Select Local installation.

M achine A

W eb Server
P lug-in

Applica tion
Server

W eb C lient
(B row ser)

 Chapter 8. Managing Web servers 385

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
under the config directory in the profile for the standalone application
server will be selected. For example, when the name specified for the Web
server definition in the previous step is webserver1, the default location for
the plug-in file is:

<profile_home>/config/cells/<cell_name>/nodes/webserver1_node/servers/we
bserver1/plugin-cfg.xml

Be aware that in a local scenario, the plug-in configuration file does not
need to be propagated to the server when it is regenerated. The file is
generated directly in the location the Web server reads it from.

During installation, the following tasks are performed:

a. Create the plug-in configuration file and places it in the location specified.

b. Update the Web server configuration file with the plug-in configuration,
including the location of the plug-in configuration file.

c. Update the WebSphere Application Server configuration to define the new
Web server.

The plug-in configuration file is automatically generated. Because this is a local
installation, you don’t have to propagate the new plug-in configuration to the Web
server.

8.2.2 Distributed server environment
Web servers in a distributed server environment can be local to the application
server or remote. The Web server can also reside on the deployment manager
system. You have the possibility of defining multiple Web servers and the Web
servers can reside on managed or unmanaged nodes.

Remote Web server
The deployment manager and the Web server are on separate machines. The
Web server machine can reside in the internal network, or more likely, it resides
in the DMZ.

Note that this scenario and the process are almost identical to that outlined for a
remote Web server in a standalone server environment. The primary difference
is that the script that defines the Web server is run against the deployment
manager and you will see an unmanaged node created for the Web server node.
In Figure 8-5 on page 387, the node is unmanaged because there is no node
agent on the Web server system.

386 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 8-5 Remote Web server in a standalone server environment

Assume that the deployment manager is already installed and configured on
Machine A. Perform the following tasks:

1. Install the Web server on Machine B.

2. Install the Web server plug-in on Machine B.

a. Select Remote installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
will be under the config directory in the plug-in install directory. For
example, when the name specified for the Web server definition in the
previous step is webserver1, the default location for the plug-in file is:

<plugin_home>/config/webserver1/plugin-cfg.xml

During installation, the following tasks are performed:

a. Create a temporary plug-in configuration file and places it in the location
specified.

b. Update the Web server configuration file with the plug-in configuration,
including the location of the plug-in configuration file.

c. Generate a script to define the Web server and an unmanaged node to
WebSphere Application Server. The script is located in:

<plug-in_home>/bin/configure<web_server_name>.

3. At the end of the plug-in installation, you need to copy the script to the
<was_home>/bin directory of the deployment manager machine (Machine A),
start the deployment manager and execute the script.

When the Web server is defined to WebSphere Application Server, the plug-in
configuration file is generated automatically. For the IBM HTTP Server, the new
plug-in file is propagated to the Web server automatically. For other Web server
types, you need to propagate the new plug-in configuration file to the Web server.

Firewall

Deploym net
Manager

Machine B

W eb Server

Plug-in
W eb Client
(Browser)

Machine A

Firewall

Internet Intranet

 Chapter 8. Managing Web servers 387

Local to a federated application server
In this scenario the Web server is installed on a machine that also has a
managed node. Note that this scenario would also be the same if the deployment
manager was also installed on Machine A. See Figure 8-6.

Figure 8-6 Web server installed locally on an application server system

Assume that the application server is already installed, configured and federated
to the deployment manager cell. Perform the following tasks:

1. Install the Web server on Machine A.

2. Install the Web server plug-in on Machine A.

a. Select Local installation.

b. Enter a name for the Web server definition. The default is webserver1.

c. Select the location for the plug-in configuration file. By default, the location
will be under the config directory in the profile for the application server will
be selected. For example, when the name specified for the Web server
definition in the previous step is webserver1, the default location for the
plug-in file is:

<profile_home>/config/cells/<cell_name>/nodes/<AppSrv_node>/servers/webs
erver1/plugin-cfg.xml

During installation, the following tasks are performed:

a. Create the plug-in configuration file and places it in the location specified.

b. Update the Web server configuration file with the plug-in configuration,
including the location of the plug-in configuration file.

c. Generate a script to define the Web server and an unmanaged node to
WebSphere Application Server. The script is located in:

<plug-in_home>/bin/configure<web_server_name>.

M a ch in e A

W e b S e rve r

P lu g - in
W e b S p e re
A p p lic a tio n

S e rve r N o d e

D e p lo ym e n t
M a n a g e r

F e d e ra te

M a ch in e B

388 WebSphere Application Server V6: System Management and Configuration Handbook

3. At the end of the plug-in installation, you need to execute the script to define
the Web server from the location the wizard stored it in on Machine A. Make
sure the deployment manager is running on Machine B. The deployment
manager configuration will be updated and propagated back to Machine A at
node synchronization.

The plug-in configuration file will be generated automatically and will be
propagated at the next node synchronization.

8.3 Working with Web servers
With the introduction of Web server definitions to the WebSphere Application
Server administrative tools, comes the following administrative features:

� Define nodes (distributed server environment)
� Define and modify Web servers
� Check the status of a Web server
� Start and stop IBM HTTP Servers
� Administer IBM HTTP Servers
� View or modify the Web server configuration file
� Map modules to servers

8.3.1 Defining nodes and Web servers
A managed node is added to the cell as part of the process when you federate an
application server profile or custom profile to the cell. An unmanaged node,
however, is not created using a profile. As you have seen, the Web server
definition script created by the Plug-ins installation wizard defines an unmanaged
node for a Web server and the Web server.

However, there might be times when you need to define or update the definitions
using the administrative console.

Adding an unmanaged node to the cell
To add an unmanaged node using the administrative console:

1. Select System Administration →Nodes in the console navigation tree.

2. Click Add Node.

Tip: See Hints and tips for managing IBM HTTP Server using the WebSphere
administrative console in the Information Center for valuable information in
troubleshooting problems when managing an IBM HTTP Server.

 Chapter 8. Managing Web servers 389

3. Select Unmanaged node. See Figure 8-7.

Figure 8-7 Add node page

4. Click Next.

5. Enter the following values in the General Properties page. See Figure 8-8 on
page 391.

a. Name

Type a logical name for the node. The name must be unique within the
cell. A node name usually is identical to the host name for the computer.
However, you can make the node name different than the host name.

b. Host name

Enter the host name of the unmanaged node that is added to the
configuration.

390 WebSphere Application Server V6: System Management and Configuration Handbook

c. Platform Type

Select the operating system on which the unmanaged node runs. Valid
options are:

• Windows
• AIX
• HP-UX
• Solaris
• Linux
• OS/400®
• z/OS

Figure 8-8 General properties for an unmanaged node

6. Click OK. The node is added and the name is displayed in the collection on
the Nodes page. See Figure 8-9 on page 392.

 Chapter 8. Managing Web servers 391

Figure 8-9 Nodes in a cell

Adding a Web server
Once the node for the Web server has been defined, you can add the Web
server definition. To add a Web server definition, do the following:

1. Select Servers → Web servers.

2. Click New. See Figure 8-10.

3. Select the node and enter the server name.

Figure 8-10 Defining a Web server: Step 1

4. Enter the properties for the Web server. See Figure 8-11 on page 393.

392 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 8-11 Defining a Web server: Step 2

When defining a Web server hosted on a Windows operating system, use the
real service name instead of the display name. The service name does not
contain spaces. If you do not use the service name, you might have problems
starting and stopping the service.

5. Enter the parameters required for remote administration. See Figure 8-12.

Figure 8-12 Defining a Web server: Step 3

6. As in Figure 8-13 on page 394, select a template. Initially, this template will be
one supplied with WebSphere specific to the Web server type. Once you have
defined a Web server, you can make it a template for use the next time.

 Chapter 8. Managing Web servers 393

Figure 8-13 Defining a Web server: Step 4

7. Review the options as in Figure 8-14, and click Finish.

Figure 8-14 Defining a Web server: Step 5

8.3.2 Viewing the status of a Web server
Web server status is reflected in the administrative console. To view Web
servers and their status, do the following:

1. Select Servers → Web servers. If a Web server is started or stopped using a
native command, you might need to refresh the view by clicking on the
icon to see the new status.

394 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 8-15 Web server status

WebSphere Application Server reports server status using the Web server host
name and port that you have defined. See Figure 8-10 on page 392 and
Figure 8-11 on page 393. This is normally port 80. You do not use the remote
administration port. If Use secure protocol is defined, SSL will be used. See
Figure 8-17 on page 398.

8.3.3 Starting and stopping a Web server
A Web server can be started or stopped in one of the following methods:

From the administrative console
You can start or stop the following Web servers from the WebSphere
administrative console:

� All Web servers on a managed node

The node agent will be used to start or stop the Web server.

� IBM HTTP Server on an unmanaged node

The IBM HTTP Server administration must be up and running on the Web
server node.

To start or stop a Web server from the administrative console, do the following:

1. Select Servers → Web servers. See Figure 8-16 on page 396.

2. Check the box to the left of each Web server you want.

3. Click Start or Stop.

 Chapter 8. Managing Web servers 395

Figure 8-16 Web server definitions

If you have problems starting or stopping an IBM HTTP Server, check the
WebSphere console logs (trace) and, if using the IBM HTTP administration
server, check the admin_error.log file.

If you have problems starting and stopping IBM HTTP Server on a managed
node using the node agent, you can try to start and stop the server by setting up
the managed profile and issuing the startserver <IBM HTTP Server> -nowait
-trace command and check the startServer.log file for the IBM HTTP Server
specified.

From a command window
You can also use the native startup or shutdown procedures for the supported
Web server. From a command window, change to the directory of your IBM
HTTP Server installed image, or to the installed image of a supported Web
server.

� To start or stop the IBM HTTP Server for Linux or Unix platforms, enter one of
the following at a command prompt:

– # <ihs_install>/bin/apachectl start
– # <ihs_install>/bin/apachectl stop

� To start or stop the IBM HTTP Server on Windows platform, select the IBM
HTTP Server 6.0 service from the Services panel and invoke the appropriate
action.

396 WebSphere Application Server V6: System Management and Configuration Handbook

8.3.4 IBM HTTP Server remote administration
You can administer and configure IBM HTTP Server V6.0 using the WebSphere
administrative console. On a managed node, administration is performed using
the node agent. This true of all Web server types. However, unlike other Web
servers, administration is possible for an IBM HTTP Server installed on an
unmanaged node. In this case, administration is done through the IBM HTTP
administration server. This server must be configured and running.
Administration is limited to generation and propagation of the plug-in
configuration file.

Remote administration setup
In order for the administrative console to access the IBM HTTP administration
server, you must define a valid user ID and password to access the IBM HTTP
Server administration server. The user ID and password are stored in the Web
server’s IHS administration server properties.

You can update your IHS administration server properties in the Web server
definition through the Remote Web server management properties page of the
administrative console. To set or change these properties, do the following:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Remote Web server management in the Additional Properties section.

4. Enter the remote Web server management information, as in Figure 8-17 on
page 398.

Note: When the Web server is started or stopped with the native methods, the
Web server status on the Web servers page of the administrative console is
updated accordingly.

 Chapter 8. Managing Web servers 397

Figure 8-17 IHS remote management properties

a. Enter the port number for the IHS administration server. The default is
8008.

b. Check the Use secure protocol box if the port is secure. The default is
not set.

c. Enter a user ID and password that are defined to the IBM HTTP
administration server. The IBM HTTP administration server User ID and
Password are not verified until you attempt to connect.

5. Click OK and save the configuration.

398 WebSphere Application Server V6: System Management and Configuration Handbook

When you are managing an IBM HTTP Server using the WebSphere
administrative console, you must ensure the following conditions are met:

� Verify that the IBM HTTP Server administration server is running.

� Verify that the Web server host name and port defined in the WebSphere
administrative console match the IBM HTTP Server administration host name
and port.

� Verify that the firewall is not preventing you from accessing the IBM HTTP
Server administration server from the WebSphere administrative console.

� Verify the user ID and password specified in the WebSphere administrative
console under Remote Web server management is an authorized
combination for IBM HTTP Server administration.

� If you are trying to connect securely, verify that you have exported the IBM
HTTP Server administration server keydb personal certificate into the
WebSphere key database as a signer certificate. This key database will be
specified by the com.ibm.ssl.trustStore in the sas.client.props file in which
profile your console is running. This is mainly for self-signed certificates.

� Verify the IBM HTTP Server admin_error.log file and the WebSphere
Application Server logs (trace.log) do not contain any errors.

Hints and tips
The following list describes hints and tips on starting, stopping and obtaining
status for the IBM HTTP Server using the WebSphere administrative console:

Setting the user ID and password in the IBM HTTP administration server:
The IBM HTTP administration server is set, by default, to look at the following
file to get the user ID and passwords to use for authentication:

<ihs_install>/conf/admin.passwd

To initialize this file with a user ID, use the htpasswd command. The following
example initializes the file with the user ID webadmin:

C:\IBM HTTP Server\bin>htpasswd "C:\IBM HTTP Server\conf\admin.passwd"
webadmin

Automatically using MD5 format.
New password: ******
Re-type new password: ******
Adding password for user webadmin

 Chapter 8. Managing Web servers 399

Viewing or modifying the Web server configuration file
The Plug-ins installation wizard automatically configures the Web server
configuration file with the information necessary to use the plug-in. For example,
among the updates made are the following lines in Example 8-1 at the bottom of
the httpd.conf file.

Example 8-1 Plug-in configuration location defined in httpd.conf

LoadModule was_ap20_module "C:\opt\WebSphere\Plugins\bin\mod_was_ap20_http.dll"
WebSpherePluginConfig
"C:\opt\WebSphere\Plugins\config\webserver1\plugin-cfg.xml"

Note that the location the Web server expects to find the plug-in configuration file
is specified in these lines. When you generate the Web server plug-in
configuration from the managed Web server, you will need to propagate or copy
the generated file to this location.

The Web server configuration file is a text file and can be modified or viewed
manually with a text editor. You can also view or modify this file using the
WebSphere Application Server administrative console.

To view or modify the contents of the Web server configuration file in your Web
browser:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Configuration File in the Additional Properties section. See
Figure 8-18 on page 401.

400 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 8-18 IBM HTTP Server configuration file httpd.conf

4. Type your changes directly in the window and click OK. Save the changes.

Viewing Web server logs
With remote administration, you can also view the IBM HTTP Server access log
and error log. To view the logs, do the following:

1. Click Servers → Web servers.

2. Select the Web server.

3. Click Log file in the Additional Properties section.

4. Select the Runtime tab. See Figure 8-19 on page 402.

Note: If you made changes to the configuration file, you need to restart your
Web server for the changes to take effect.

 Chapter 8. Managing Web servers 401

Figure 8-19 Web server Runtime page for logs

5. Click View beside the log you want to view. See Figure 8-20.

Figure 8-20 Viewing the error log

8.3.5 Mapping modules to servers
Each module of an application is mapped to one or more target servers. The
target server can be an application server, cluster of application servers or Web
server. Modules can be installed on the same application server or dispersed
among several application servers. Web servers specified as targets will have
routing information for the application generated in the plug-in configuration file
for the Web server.

402 WebSphere Application Server V6: System Management and Configuration Handbook

This mapping takes place during application deployment. Once an application is
deployed, you can view or change these mappings. To check or change the
mappings, do the following:

1. Select Applications →Enterprise Applications.

2. Click the application for which you want to review the mapping.

3. Select Map modules to servers in the Additional Properties section.

4. The Selecting servers panel is displayed, as in Figure 8-21.

5. Examine the list of mappings. Ensure that each Module entry is mapped to all
targets identified under Server.

Figure 8-21 Map modules to selected servers

6. To change a mapping, do the following:

a. Select each module that you want mapped to the same targets by placing
a check mark in the box to the left of the module.

b. From the Clusters and Servers list, select one or more targets. Use the
Ctrl key to select multiple targets. For example, to have a Web server
serve your application, use the Ctrl key to select an application server and
the Web server together.

7. Click Apply.

 Chapter 8. Managing Web servers 403

8. Repeat step 6 on page 403 until each module maps to the desired targets.

9. Click OK and save your changes.

10.Regenerate and propagate the plug-in configuration, if it is not automatic.

Once you have defined at least one Web server, you must specify a Web server
as a deployment target whenever you deploy a Web application. If the Web
server plug-in configuration service is enabled, a Web server plug-in's
configuration file is automatically regenerated whenever a new application is
associated with that Web server.

8.4 Working with the plug-in configuration file
The plug-in configuration file (plugin-cfg.xml) contains routing information for all
applications mapped to the Web server. This file is read by a binary plug-in
module loaded in the Web server. An example of a binary plug-in module is the
mod_ibm_app_server_http.dll file for IBM HTTP Server on the Windows
platform.

The binary plug-in module does not change. However, the plugin configuration
file for the binary module needs to be regenerated and propagated to the Web
server whenever a change is made to the configuration of applications mapped
to the Web server. The binary module reads the XML file to adjust settings and to
locate deployed applications for the Web server.

Example 8-2 shows an excerpt from a generated plug-in configuration file.

Example 8-2 An except from the plugin-cfg.xml

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the webserver ITSOCell.wan.webserver1 generated on 2004.10.29 at 03:32:12
PM BST-->
<Config ASDisableNagle="false" AcceptAllContent="false"
AppServerPortPreference="HostHeader" ChunkedResponse="false"
IISDisableNagle="false" IISPluginPriority="High" IgnoreDNSFailures="false"
RefreshInterval="60" ResponseChunkSize="64" VHostMatchingCompat="false">
 <Log LogLevel="Error"
Name="c:\opt\WebSphere\Plugins\logs\webserver1\http_plugin.log"/>
 <Property Name="ESIEnable" Value="true"/>
 <Property Name="ESIMaxCacheSize" Value="1024"/>
 <Property Name="ESIInvalidationMonitor" Value="false"/>

 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:9080"/>
 <VirtualHost Name="*:80"/>
 <VirtualHost Name="*:9443"/>

404 WebSphere Application Server V6: System Management and Configuration Handbook

 </VirtualHostGroup>

 <ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="server1_NodeA_Cluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="60">
 <Server ConnectTimeout="0" ExtendedHandshake="false" MaxConnections="-1"
Name="NodeA_server1" WaitForContinue="false">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">
 <Property Name="keyring"
Value="c:\opt\WebSphere\Plugins\etc\plugin-key.kdb"/>
 <Property Name="stashfile"
Value="c:\opt\WebSphere\Plugins\etc\plugin-key.sth"/>
 </Transport>
 </Server>
 </ServerCluster>

 <UriGroup Name="default_host_server1_NodeA_Cluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/snoop/*"/>
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/hello"/>

 </UriGroup>
 <Route ServerCluster="server1_NodeA_Cluster"
UriGroup="default_host_server1_NodeA_Cluster_URIs"
VirtualHostGroup="default_host"/>
</Config>

The specific values for the UriGroup Name and AffinityCookie attributes depend
on how you have assembled your application. When you assemble your
application:

� If you specify File Serving Enabled, then only a wildcard URI is generated,
regardless of any explicit servlet mappings.

� If you specify Serve servlets by class name, then a URI of the form URI
name = <webappuri>/servlet/ is generated.

Both these options apply for both the Name and AffinityCookie attributes.

When the plug-in configuration file is generated, it does not include admin_host
in the list of virtual hosts. See Allowing Web servers to access the administrative
console in the Information Center for information about how to add it to the list.

 Chapter 8. Managing Web servers 405

8.4.1 Regenerating the plug-in configuration file
The plug-in configuration file needs to be regenerated and propagated to the
Web servers when there are changes to your WebSphere configuration that
affect how requests are routed from the Web server to the application server.
These changes include:

� Installing an application
� Creating or changing a virtual host
� Creating a new server
� Modifying HTTP transport settings
� Creating or altering a cluster

The plug-in file can be regenerated manually using the administration tools. You
can also set up the plug-in properties of the Web server to enable automatic
generation of the file whenever a relevant configuration change is made. See
“Enabling automated plug-in regeneration” on page 410.

To regenerate the plug-in configuration manually you can either use the
administrative console, or you can issue the GetPluginCfg command.

Generating the plug-in with administrative console
To generate or regenerate the plug-in configuration file, do the following:

1. Select Servers → Web servers.

2. Click the box to the left of your Web server.

3. Click Generate Plug-in.

4. Verify that the generation was successful by looking at the messages. A
success message will be accompanied with the location of the generated
plug-in configuration file:

<profile_home>/config/cells/<cell_name>/nodes/<web_server_node>/servers/<we
b_server>/plugin-cfg.xml

See Figure 8-22 on page 407.

406 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 8-22 Web server definitions

5. You can view the plug-in configuration file by selecting the View button next
to the Plug-in configuration file name on the Plug-in properties page of your
Web server definition. See Figure 8-23 on page 408. You can also open it with
a text editor.

 Chapter 8. Managing Web servers 407

Figure 8-23 Plug-in properties

To use the new plugin-cfg.xml file you must propagate it to the Web server
system. See 8.4.2, “Propagating the plug-in configuration file” on page 411.

Regenerating the plug-in with the GenPluginCfg command
The GenPluginCfg command is used to regenerate the plug-in configuration file.
Depending on the operating platform, the command is:

408 WebSphere Application Server V6: System Management and Configuration Handbook

� Linux and Unix: GenPluginCfg.sh
� Windows: GenPluginCfg.bat

You can use the -profileName option to define the profile of the Application
Server process in a multi-profile installation. The -profileName option is not
required for running in a single profile environment. The default for this option is
the default profile. For a distributed server environment, the default profile is the
deployment manager profile.

Syntax
The GenPluginCfg command reads the contents of the configuration repository
on the local node to generate the Web server plug-in configuration file.

The syntax of the GenPluginCfg command is as follows:

:GenPluginCfg.bat(sh) [options]

All options are optional.The options are listed in Table 8-1.

Table 8-1 Options for GenPluginCfg

Option Description

-config.root <config root> Specify the directory path of the particular
configuration repository to be scanned. The default is
the value of CONFIG_ROOT defined in the
SetupCmdLine.bat(sh) script.

-profileName <profile> Use this profile to run the command against. If the
command is run from <was_home>/bin and
-profileName is not specified, the default profile is
used. If it is run from <profile_home>/bin, that profile
is used.

-cell.name <cell name> Restrict generation to only the named cell in the
configuration repository. The default is the value of
WAS_CELL defined in the SetupCmdLine.bat(sh)
script.

-node.name <node name> Restrict generation to only the named node in the
particular cell of the configuration repository. The
default is the value of WAS_NODE defined in the
SetupCmdLine.bat(sh) script.

-webserver.name <webserver1> Required for creating plug-in configuration file for a
given Web server.

-propagate yes/no This option applies only when the option
webserver.name is specified. The default is no.

 Chapter 8. Managing Web servers 409

Examples
To generate a plug-in configuration for all of the clusters in a cell, type the
following:

GenPluginCfg -cell.name NetworkDeploymentCell

To generate a plug-in configuration for a single server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name appServerNode
-server.name appServerName

To generate a plug-in configuration file for a Web server:

GenPluginCfg -cell.name BaseApplicationServerCell -node.name webserverNode
-webserver.name webserverName

When this command is issued without the option -webserver.name
webservrName, the plug-in configuration file is generated based on topology.

Enabling automated plug-in regeneration
The Web server plug-in configuration service by default regenerates the
plugin-cfg.xml file automatically. You can view or change the configuration
settings for the Web server plug-in configuration service.

-cluster.name <cluster_name,cluster_name>
| ALL

Generate an optional list of clusters. Ignored when the
option webserver.name is specified.

-server.name <server_name, server_name> Generate an optional list of servers. It is required for
single server plug-in generation. It is ignored when the
option webserver.name is specified.

-output.file.name <filename> Define the path to the generated plug-in configuration
file. The default is <configroot_dir>/plugin-cfg.xml
file. It is ignored when the option webserver.name is
specified.

-destination.root <root> Specify the installation root of the machine the
configuration is used on. It is ignored when the option
webserver.name is specified.

-destination.operating.system windows/unix Specify the operating system of the machine the
configuration is used on. It is ignored when the option
webserver.name is specified.

-debug <yes | no> Enable or disable output of debugging messages.
The default is no. That is, debug is disabled.

-help or -? Print command syntax.

Option Description

410 WebSphere Application Server V6: System Management and Configuration Handbook

See Example 8-22 on page 407. To view or change the plug-in generation
property, do the following:

1. Select Servers → Web servers.

2. Click your Web server.

3. Select Plug-in properties in the Additional Properties section.

4. View or change the Automatically generate the plug-in configuration file
option.

When selected, the Web server plug-in configuration service automatically
generates the plug-in configuration file whenever the Web server environment
changes. For example, the plug-in configuration file is regenerated whenever
one of the following activities occurs:

– A new application is deployed on an associated application server.
– The Web server definition is saved.
– An application is removed from an associated application server.
– A new virtual host is defined.

Whenever a virtual host definition is updated, the plug-in configuration file
is automatically regenerated for all of the Web servers.

8.4.2 Propagating the plug-in configuration file
After a plug-in configuration file is regenerated, it needs to be propagated to the
Web server.

The configuration service can automatically propagate the plugin-cfg.xml file to a
Web server machine if it is configured on a managed node, and to an IBM HTTP
Server if it is configured on an unmanaged node. For other scenarios, you must
manually copy the file to the Web server machines.

You can manually propagate the file by copying it from the application server
machine to the Web server machine, or you can do it from the administrative
console.

From a command window
To copy the file from one machine to another, do the following:

1. Copy the file

<profile_home>/config/cells/<cell_name>/nodes/<web_server_node>/servers/<we
b_server>/plugin-cfg.xml

2. Place the copy in this directory on the remote Web server machine.

<plug-ins_home>/config/<web_server>

 Chapter 8. Managing Web servers 411

From the administrative console
To propagate the plug-in configuration manually from the administrative console,
do the following:

1. Select Servers → Web servers.

2. Click the box to the left of your Web server.

3. Click Propagate plug-in. See Example 8-22 on page 407.

4. Verify that the propagation was successful by looking at the messages.

If you are in doubt, check whether the plug-in configuration file has been
propagated to the Web server plug-in location by viewing it.

Activating the new plug-in configuration
The Web server binary plug-in module checks for a new configuration file every
60 seconds. You can wait for the plug-in to find the changes, or you can restart
the Web sever to invoke the changes immediately.

Enable automated plug-in propagation

The Web server plug-in configuration service by default propagates the
plugin-cfg.xml file automatically. To view or change the plug-in propagation
property, do the following steps. See Example 8-22 on page 407 for further
information.

1. Select Servers → Web servers.

2. Click your Web server.

3. Select Plug-in properties in the Additional Properties sub section.

4. View or change the Automatically propagate plug-in configuration file
option.

8.4.3 Modifying the plug-in request routing options
You can specify the load balancing option that the plug-in uses when sending
requests to the various application servers associated with that Web server.

To view or modify the Request routing, do the following:

Tip: If you encounter problems restarting your Web server, check the
http_plugin.log file in <plug-ins_home>/config/<web_server> for
information about what portion of the plugin-cfg.xml file contains an error. The
log file states the line number on which the error occurred along with other
details that might help you diagnose why the Web server did not start.

412 WebSphere Application Server V6: System Management and Configuration Handbook

1. Select Servers → Web Servers.

2. Click your Web server.

3. Select Plug-in properties in the Additional Properties section.

4. Select Request Routing in the Additional Properties section. See
Figure 8-24.

Figure 8-24 Request routing properties

a. Load balancing option

This field corresponds to the LoadBalanceWeight element in the
plugin-cfg.xml file. The load balancing options are covered in detail in
WebSphere Application Server V6 Scalability and Performance
Handbook, SG24-6392. The following items are short overviews.

 Chapter 8. Managing Web servers 413

i. Round robin (default)

When using this algorithm, the plug-in selects a cluster member at
random from which to start. The first successful browser request will be
routed to this cluster member and then its weight is decremented by
one. New browser requests are then sent round robin to the other
application servers and, subsequently, the weight for each application
server is decremented by one. The spreading of the load is equal
between application servers until one application server reaches a
weight of zero. From then on, only application servers without a weight
higher than zero will receive routed requests. The only exception to this
pattern is when a cluster member is added or restarted.

ii. Random

Requests are passed to cluster members randomly. Weights are not
taken into account as in the round robin algorithm. The only time the
application servers are not chosen randomly is when there are
requests with associated sessions. When the random setting is used,
cluster member selection does not take into account where the last
request was handled. This means that a new request could be handled
by the same cluster member as the last request.

b. Retry interval

The length of time, in seconds, that should elapse from the time an
application server is marked down to the time that the plug-in retries a
connection.

This field corresponds to the ServerWaitforContinue element in the
plugin-cfg.xml file. The default is 60 seconds.

c. Maximum size of request content

Limits the size of request content. If limited, this field also specifies the
maximum number of bytes of request content allowed in order for the
plug-in to attempt to send the request to an application server.

This field corresponds to the PostSizeLimit element in the plugin-cfg.xml
file. When a limit is set, the plug-in fails any request that is received that is
greater than the specified limit.

You can set a limit in kilobytes or no limit. The default is set to no limit for
the post size.

d. Remove special headers

When enabled, the plug-in will remove any headers from incoming
requests before adding the headers the plug-in is supposed to add before
forwarding the request to an application server.

414 WebSphere Application Server V6: System Management and Configuration Handbook

This field corresponds to the RemoveSpecialHeaders element in the
plugin-cfg.xml file. The plug-in adds special headers to the request before
it is forwarded to the application server. These headers store information
about the request that will need to be used by the application. Not
removing the headers from incoming requests introduces a potential
security exposure.

The default is to remove special headers.

e. Clone separator change

When enabled, the plug-in expects the plus character (+) as the clone
separator.

This field corresponds to the ServerCloneID element in the plugin-cfg.xml
file. Some pervasive devices cannot handle the colon character (:) used
to separate clone IDs in conjunction with session affinity. If this field is
checked, you must also change the configurations of the associated
application servers so that the application servers separate clone IDs with
the plus character as well.

 Chapter 8. Managing Web servers 415

416 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 9. Problem determination

Problems within an e-business environment can take many forms, including poor
performance, application unavailability, or unexpected results. The first step in
resolving a problem is to isolate and understand it.

In this chapter, we introduce tools and techniques that can be used to analyze
and correct problems. Included in this chapter is information about:

� 9.1, “Resources for identifying problems” on page 418
� 9.2, “Administrative console messages” on page 419
� 9.3, “Log files” on page 420
� 9.4, “Traces” on page 430
� 9.5, “Log Analyzer” on page 443
� 9.6, “Collector tool” on page 451
� 9.7, “First Failure Data Capture logs” on page 452
� 9.8, “Dumping the contents of the name space” on page 453
� 9.9, “HTTP session monitoring” on page 454
� 9.10, “Application debugging and tracing” on page 455
� 9.11, “Product installation information” on page 456
� 9.12, “Resources for problem determination” on page 459

9

© Copyright IBM Corp. 2005. All rights reserved. 417

9.1 Resources for identifying problems
WebSphere provides the following sources of feedback to help with problem
determination. Each are described separately in subsequent sections:

� Administrative console messages provide important information regarding
runtime events and configuration problems. They are an important starting
point to determine the cause of any configuration problem.

� Several general-purpose log files are provided, such as JVM standard logs,
process (native) logs, and IBM service logs.

� Traces provide more detailed information about WebSphere components to
determine what is wrong with your WebSphere environment.

� The Log Analyzer is a GUI tool that permits the user to view any logs
generated with log analyzer trace format, such as the IBM service log file.
This tool gives the user error message explanations and information such as
why the error occurred and how to recover from it.

� The Collector tool gathers information about the application server
installation and packages it in an output JAR file. The information in the file
includes logs, property files, configuration files, operating system and Java
data, and prerequisite software presence and levels. If the need arises, you
can send this file to IBM Customer Support to assist in problem determination
and analysis.

� The First Failure Data Capture (FFDC) function preserves the information
generated from a processing failure and returns control to the affected
engines. The captured data is saved automatically for use in analyzing the
problem, and could be collected by the Collector tool.

418 WebSphere Application Server V6: System Management and Configuration Handbook

9.2 Administrative console messages
The Troubleshooting section of the administrative console displays Runtime
status messages. You can view the messages from the Configuration
Problems and Runtime Messages folder structures, respectively.

Figure 9-1 shows the runtime messages pane containing the Error list.

Figure 9-1 Runtime message errors view

View a message in detail by clicking the message text in the Message column.
Figure 9-2 on page 420 shows sample message details.

 Chapter 9. Problem determination 419

Figure 9-2 Message details

This same layout structure is available for the configuration problem views. The
problem entries are removed from the configuration problem list as the problems
are corrected.

9.3 Log files
WebSphere Application Server can write system messages to several
general-purpose logs. Here is a list of log types and where they are stored:

� JVM logs are created by redirecting the System.out and System.err streams
of the JVM. By default, these files are stored as
<profile_home>/logs/<server_name>/SystemOut.log and SystemErr.log.

� Process (native) logs are created by redirecting the stdout and stderr streams
of the process’s native module (.dlls, .so, UNIX libraries, and other JNI native

420 WebSphere Application Server V6: System Management and Configuration Handbook

modules), including the JVM native code itself. These logs can contain
information relating to problems in native code, or diagnostic information
written by the JVM. By default, these files are stored as
<profile_home>/logs/<server_name>/native_stderr.log and native_stdout.log.

� Service log is a special log named, by default, activity.log. This log is written in
a binary format and cannot be viewed directly using a text editor. Use Log
Analyzer or the Showlog tool to view the log.

9.3.1 JVM (standard) logs
The JVM (standard) logs are created by redirecting the System.out and
System.err streams. WebSphere Application Server writes formatted messages
to the System.out stream. In addition, applications and other code can write to
these streams using the print() and printing() methods defined by the streams.
Some JDK built-ins such as the printStackTrace() method on the Throwable
class can also write to these streams.

Typically, the System.out log is used to monitor the health of the running
application server. The System.err log contains exception stack trace information
that is useful when performing problem analysis.

Configuring the JVM logs
To view and modify the settings for the JVM System.out and System.err logs
using the administrative console:

1. Click Troubleshooting →Logs and Trace in the navigation tree

2. Select a server by clicking the server name.

3. Click JVM Logs.

4. Select the Configuration tab, if it is not selected by default.

Note: You can also reach this point by selecting Servers →Application
Servers. Open the server configuration page and select Logging and
Tracing under the Troubleshooting section.

 Chapter 9. Problem determination 421

5. Scroll through the window to display the attributes. See Figure 9-3.

Figure 9-3 Configuring the JVM logs setting

422 WebSphere Application Server V6: System Management and Configuration Handbook

Fill in the information for the following fields.

� File Name:

You can enter the name of the System.out or System.err file. The file name
specified on the Configuration tab must have one of the following values:

– file name

The name of a file in the file system.You can use a fully qualified file name.
If the file name is not fully qualified, it is considered to be relative to the
current working directory (<profile_home>) for the server. The file will be
created if it does not exist. See Figure 9-4.

Figure 9-4 Enter the file name

The default is ${SERVER_LOG_ROOT} with the following options:

• ${SERVER_LOG_ROOT}= ${LOG_ROOT}/server1 (server scope)
• ${LOG_ROOT} = ${USER_INSTALL_ROOT}/logs (node scope).
• ${USER_INSTALL_ROOT} = <profile_home> (node scope)

For example, the default name for the System.out log on a Windows
system might look like this:

C:\WebSphere\AppServer\profiles\AppSrv01\logs\server1\SystemOut.log

– console

This is a special file name used to redirect the stream to the corresponding
process stream. If this value is specified for System.out, the file is
redirected to stdout. If this value is specified for System.err, the file is
redirected to stderr. See Figure 9-5.

Figure 9-5 Enter console

 Chapter 9. Problem determination 423

– none

Using the value of none discards all data written to the stream and is
equivalent to redirecting the stream to dev/null on a UNIX system. See
Figure 9-6.

Figure 9-6 Enter none

� File formatting:

The File formatting field specifies the format to use in saving the System.out
file. Your choices are:

– Basic records only basic information. This is the default:

<timestamp><threadID><shortName><eventType>[class][method]<message>

– Advanced extends the basic format by adding information about an event,
when possible:

<timestamp><threadID><eventType><UOW><source=longName>[class][method]<Or
ganization><Product><Component><message>

The addition of the unit of work information is particularly valuable when
debugging in a distributed environment.

� Log file rotation:

A self-managing log file writes messages to a file until some criteria, either
size or time, is reached. At the specified time, or when the file reaches the
specified size, the current file is closed and renamed to a name consisting of
the current name plus a time stamp. The stream then reopens a new file
reusing the original name and continues writing.

– File size

If this option is selected, the file automatically performs self-maintenance
by rolling over the file when it reaches the specified maximum size.

– Maximum size

This attribute specifies the maximum size in megabytes to which the file is
allowed to grow.

424 WebSphere Application Server V6: System Management and Configuration Handbook

– Time

Selecting this attribute allows the log file to manage itself based on the
age of the file. If this option is selected, the file will roll itself over after the
specified time period.

– Start time

This attribute specifies the hour of the day, from 1 to 24, from which the
periodic rollover algorithm begins. The periodic rollover algorithm uses this
hour to load the algorithm at application server startup. Once started, the
rollover algorithm runs without adjustment until the application server is
stopped.

– Rollover period

Specify the hour of the day, from 1 to 24, when the periodic rollover
algorithm starts. The rollover always occurs at the beginning of the
specified hour of the day. The first hour of the day, which starts at 00:00:00
(midnight), is hour 1 and the last hour of the day, which starts at 23:00:00,
is hour 24. Therefore, if you want log files to roll over at midnight, set the
start time to 1.

Note that if both file size and time are selected, the file is rolled over based
on the criteria met first.

� Maximum Number of Historical Log Files:

In this field, you can specify the number of rolled-over files to keep.

� Installed Application Output:

Specify whether the System.out or System.err print statements issued from
the application code are logged and formatted. Your choices are:

– Show application print statements

This option causes application messages written to this stream using the
print and println stream methods to be shown. This will have no effect on
system messages written to the stream by the WebSphere Application
Server.

– Format print statements

This option causes application messages written to this stream using the
print and println stream methods to be formatted like WebSphere system
messages.

6. Change the appropriate configuration attributes and click Apply.

7. Save your configuration changes.

The JVM logs are written as plain text files, so you can open and view the files
directly using your own text editor.

 Chapter 9. Problem determination 425

You can also view the JVM logs using the Runtime tab as shown in Figure 9-7,
enabling viewing the JVM logs from a remote machine.

Figure 9-7 System.out log

JVM log message formats
Analyzing and understanding logs is a significant step in the problem
determination process. Messages logged by application server components and
associated IBM products start with a unique message identifier that indicates the
component or application that issued the message.

Example 9-1 illustrates the basic format of a log or trace entry.

Example 9-1 JVM logs (basic format)

[10/25/04 11:58:46:518 EDT] 0000000a TCPPort E TCPC0003E: TCP Channel
TCP_1 initialization failed. The socket bind failed for host * and port 9061.
The port may already be in use.

A description of each field is shown in Table 9-1.

426 WebSphere Application Server V6: System Management and Configuration Handbook

Table 9-1 Log entry format description

The message identifier (message ID) can be either eight or nine characters in
length and has the form:

CCCC1234X

To decode the message ID, understand the following:

� CCCC is a four-character alphabetic component or application identifier.

� 1234 is a four-character numeric identifier used to identify the specific
message for that component.

Field Example Description

Time stamp [10/25/04 11:58:46:518 EDT] The time stamp in fully qualified date,
time and time zone format

Thread ID 0000000a The thread ID or the hash code of the
thread issuing this message

Component TCPPort The short name of component issuing
this message

Event Type E The type of the message or trace
event, of which possible values are:
A Audit
I Informational
W Warning
E Error
F Fatal
O System.out by the user application
or internal components
R System.err by the user application
or internal components
u A special type used by the message
logging component of the WebSphere
Application Server runtime
Z A placeholder to indicate the type
was not recognized

Message ID TCPC0003E The identifier of the message.

Message TCP Channel TCP_1
initialization failed. The
socket bind failed for host
* and port 9061. The port
may already be in use.

The text of the message and message
arguments

 Chapter 9. Problem determination 427

� X is an optional, alphabetic severity indicator:

– I = Informational,
– W = Warning,
– E = Error

To view the message IDs, or the meaning of the messages generated by
WebSphere Application Server components, select the Reference view on the
Information Center and from the Troubleshooter branch, expand the Messages
topic.

9.3.2 Process (native) logs
The stdout and stderr streams written by native modules (.dlls, .so, UNIX
libraries, and other JNI modules) are redirected to the native log files at
application server startup. By default, these files are stored as
<profile_home>/logs/<server_name>/native_stderr.log and native_stdout.log.

To view or change the log settings or to view the log, do the following:

1. Click Troubleshooting →Logs and Trace in the navigation tree.

2. Select a server by clicking the server name.

3. Click Process Logs.

4. To view the settings, select the Configuration tab. To view the logs, select
the Runtime tab.

9.3.3 IBM service (activity) log
The IBM service log is a special log written in a binary format to capture events
that show a history of WebSphere Application Server activities, also known as
the activity log.

By default, the IBM service log is shared among all server processes for a node.
The configuration values for the IBM service log are inherited by each server
process from the node configuration.

Note: You can also reach this point by selecting Servers →Application
Servers. Open the server configuration page and select Logging and
Tracing under the Troubleshooting section.

Note: You can configure a separate IBM service log for each server process
by overriding the configuration values at the server level.

428 WebSphere Application Server V6: System Management and Configuration Handbook

Follow these steps to view or change the IBM service log settings using the
administrative console:

1. Select Troubleshooting → Logs and Trace.

2. Select the server by clicking the name.

3. Select IBM Service Logs. See Figure 9-8.

Figure 9-8 IBM Service log

Define the following fields:

– The service log is enabled by default. Clear the Enable service log check
box to disable it.

– File Name: sets the name for the service log. The default location is
<profile_home>/logs/activity.log. If the name is changed, the runtime
requires write access to the new file, and the file must use the .log
extension.

 Chapter 9. Problem determination 429

– Maximum File Size specifies the number of megabytes to which the file
can grow. When the file reaches this size, it wraps, replacing the oldest
data with the newest data.

– Message Filtering sets the message filter level to the desired state. You
can select to store all messages or select a combination of service,
warning, and error message.

– The Enable Correlation ID option allows you to specify whether a
correlation ID should be generated and included in message events and
diagnostic trace entries. If you check this box, each application client
request is assigned a unique identifier that is propagated to all servers
touched as part of servicing that request. This allows correlation of events
across multiple server processes.

4. Save the configuration.

5. Restart the server to apply the configuration changes.

Viewing the service log
To view the service log, use the showlog command in the <profile_home>/bin
directory. This command dumps the binary log file to standard out or a file. The
format is:

showlog [option] binaryFilename [outputFilename]

outputFilename is optional. If no file name is given, showlog dumps the service
log file to standard out. For example:

showlog ../logs/activity.log

The option can specify the output to be formatted in XML syntax. Use the option
-format CBE-XML-1.0.1. for XML syntax.

Another powerful way to view the service log file is to use Log Analyzer,
described in 9.5, “Log Analyzer” on page 443.

9.4 Traces
Tracing can be useful if you have problems with particular components of
WebSphere Application Server, clients and other processes, and the log files do
not provide you with enough information to determine the problem.

430 WebSphere Application Server V6: System Management and Configuration Handbook

9.4.1 Diagnostic trace service
By default, the trace for all WebSphere Application Server components is
disabled.

Enabling trace at server startup
The trace configuration settings are read at server startup time and used to
configure the trace service. To configure or change the diagnostic trace settings,
using the administrative console:

1. Select Troubleshooting → Logs and Trace.

2. Click the server name. You can select an application server, node agent, or
the deployment manager.

3. Select Diagnostic Trace.

4. Select the Configuration tab, if it is not shown by default. See Figure 9-9 on
page 432.

Note: Traces need manual activation, and you need to remember to turn off
tracing when you have finished collecting the information. Traces can impact
performance rather severely.

Tracing is most likely to be used by IBM Service for diagnosing WebSphere
problems and not by the typical user diagnosing application problems.

 Chapter 9. Problem determination 431

Figure 9-9 Trace service configuration

Check the information in the following fields:

– Check the Enable Trace box to enable tracing.

– Trace Output

Select whether to direct trace output to either a file or an in-memory
circular buffer.

• If the in-memory buffer is selected, set the size of the buffer, expressed
in thousands of lines. When using the in-memory circular buffer, the
buffer must be dumped to a file before it can be viewed. This can be
done using the Dump button on the Runtime tab.

432 WebSphere Application Server V6: System Management and Configuration Handbook

• If a file is selected, set the maximum size in megabytes to which the file
should be allowed to grow. When the file reaches the size, the existing
file will be closed, renamed and a new file with the original name
reopened.

– Trace output format

Select the desired format for the generated trace. The options are Basic
(Compatible) for a minimum trace, Advanced for detailed traces, and
Log Analyzer.

5. Save the changed configuration.

6. Set the proper trace strings. The options for this are described in “Trace string
specification” on page 433.

7. Start or restart the server.

Trace string specification
The trace information logged from the Diagnostic trace service depends on the
monitoring level set on the WebSphere components. The level is configured by
use of a trace specification string. To configure the trace level using the
administrative console, do the following:

1. Select Troubleshooting → Logs and Trace.

2. Click the server name. You can select an application server, node agent, or
the deployment manager.

3. Select Change Log Detail Levels.

4. Select the Configuration tab, if it is not shown by default. See Figure 9-10 on
page 434.

Note: You can also enable a trace for a running server. See “Enabling trace on
a running server” on page 437.

 Chapter 9. Problem determination 433

Figure 9-10 Log details levels properties

Every WebSphere component offers a comprehensive detail of information for
tracing. The list shown in Figure 9-10 shows all base components with a default
log level specification of info. You can specify the log level either by manually
entering the trace string into the text box, or by clicking the name of the
component from the list and selecting the log level from the pop-up box. Log level
can also be configured from the administrative console on Groups instead (logical
grouping of the components). Simply select the Groups link on the properties
pane on the left. See Figure 9-11 on page 435.

434 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 9-11 Log level details by Group

Trace strings must conform to a specific grammar for processing by the trace
service:

COMPONENT_TRACE_STRING[:COMPONENT_TRACE_STRING]*

For example, you can use this phrase:

COMPONENT_TRACE_STRING = COMPONENT_NAME=LEVEL

The elements in this string are as follows:

� COMPONENT_NAME is the name of a component or group registered with the
trace service. Typically, WebSphere Application Server components register
using a fully qualified Java class name, for example
com.ibm.ws.webcontainer.servlet.ServletWrapper. In addition, you can use
a wildcard character of asterisk (*) to terminate a component name and
indicate multiple classes or packages. For example, use a component name
of com.ibm.ws.webcontainer.servlet.* to specify all components whose
names begin with com.ibm.ws.webcontainer.servlet.

� LEVEL = <level> represents the type of tracing to perform. The possible level
values are listed in the Version 6 Logging Level column of Table 9-2 on
page 436. Only the levels Fine, Finer, Finest and All generate trace
information for the Diagnostic trace service.

 Chapter 9. Problem determination 435

Table 9-2 Logging level

Version 6
Logging
Level

Logging
Level
pre-Version 6

Trace Level
pre-Version
6

Content / Significance

Off Off All disabled* Logging is turned off.

*In Version 6, a trace level of All
disabled will turn off trace, but will not
turn off logging. Logging will be
enabled from the Info level.

Fatal Fatal - Task cannot continue and component/
application/ server cannot function.

Severe Error - Task cannot continue but component/
application/ server can still function.
This level can also indicate an
impending fatal error.

Warning Warning - Potential error or impending error. This
level can also indicate a progressive
failure (for example, the potential
leaking of resources).

Audit Audit - Significant event affecting server state
or resources

Info Info - General information outlining overall
task progress

Config - - Configuration change or status

Detail - - General information detailing subtask
progress

Fine - Event Event Trace information - General
trace + method entry / exit / return
values

Finer - Entry/Exit Trace information - Detailed trace

Finest - Debug Trace information - Most detailed trace
that includes all the detail that is
needed to debug problems

All - All enabled All events are logged

436 WebSphere Application Server V6: System Management and Configuration Handbook

Examples of legal trace strings include:

Example 9-2 Lega trace strings

com.ibm.wsspi.*=detail
com.ibm.ws.tcp.channel.impl.TCPChannel=all:com.ibm.ws.webcontainer.*=fine
com.ibm.ws.wlm.*=finest
com.ibm.ws.wlm.*=finest:com.ibm.wsspi.*=detail:com.ibm.ws.tcp.channel.impl.
TCPChannel=all

Trace strings cannot contain blanks and are processed from left to right. Specify
a trace string such as:

abc.*=all

This string enables the trace for all components whose names start with abc.

Enabling trace on a running server
You can also trace a server that is already active:

1. Select Troubleshooting → Logs and Trace.

2. Click the server name. You can select an application server, node agent, or
the deployment manager.

3. Select Change Log Detail Levels.

4. Select the Runtime tab. The options are similar to those in the Configuration
tab, described in “Trace string specification” on page 433.

– Check the box for Save runtime changes... if you want to write your
changes back to the server configuration. If this option is not selected, the
changes you make will apply only for the life of the server process that is
currently running.

– Specify the trace string as described in “Trace string specification” on
page 433.

5. Click Apply.

6. To configure the trace output select Troubleshooting → Logs and Trace.

7. Click the server name. You can select an application server, node agent, or
the deployment manager.

8. Select Diagnostic Trace Service.

9. Select the Runtime tab. The options are similar to those in the Configuration
tab, described in “Enabling trace at server startup” on page 431.

– Click the Save Trace check box if you want to write your changes back to
the server configuration. If this option is not selected, the changes you

 Chapter 9. Problem determination 437

make will apply only for the life of the server process that is currently
running.

– If you are using the in-memory buffer, use the Dump button to dump the
buffer to the specified file. This is necessary before viewing the trace
output. The dump buffer file will be placed in the <profile_home> directory,
for example:

c:\websphere\appserver\profiles\myNode

Looking at trace output
Traces in basic format have the following format in Example 9-3:

Example 9-3 Basic format

<timestamp><threadId><shortName><eventType>[className][methodName]<textmessage>
 [parameter 1]
 [parameter 2]

Traces in advanced format have the following format in Example 9-4:

Example 9-4 Advanced format

<timestamp><threadId><eventType><UOW><source=longName>[className][methodName]
<Organization><Product><Component>[thread=threadName]<textMessage>
[parameter 1=parameterValue][parameter 2=parameterValue]

The EventType field is a one-character field that indicates the type of the trace
event. Table 9-3 shows the possible values:

Table 9-3 Trace event types

Example 9-5 on page 439 shows the trace output in basic format.

Type Description

> method entry

< method exit

1 fine or event trace type

2 finer trace type

3 finest, debug or dump trace type

Z type was not recognized

438 WebSphere Application Server V6: System Management and Configuration Handbook

Example 9-5 Trace output (basic format)

[10/25/04 16:40:17:386 EDT] 000010a9 LocalNotifica < handleNotification Exit
[10/25/04 16:40:17:386 EDT] 000010a9 NotificationD 3 Returned from listener
#0
[10/25/04 16:40:17:386 EDT] 0000085f jsp 1
com.ibm.ws.jsp.webcontainerext.JSPExtensionServletWrapper checkForTranslation
Exiting checkForTranslation sync block for /jsp/template.jsp
[10/25/04 16:40:17:386 EDT] 0000085f BNFHeadersImp 3 getHeaderAsString(h,i):
$WSIS 0 [null]
[10/25/04 16:40:17:386 EDT] 0000085f WebAppTransac 3
WebAppTransactionCollaborator.preInvoke() -->
/WebSphereBank/jsp/searchbycustomer.jsp

9.4.2 Web server logs and traces
If a problem is suspected with the Web server or between the Web server and
the Web container, there are several tools you can use.

Web server plug-in generation
The Web server plug-in configuration file controls what content is transferred
from the Web server to an application server. This file must be regenerated after
certain changes to the WebSphere configuration server and then moved or
propagated to the proper location on the Web server.

If there is a problem with requests being routed to WebSphere Application Server
from the Web server, make sure the Web server plug-in has been properly
generated and moved to the Web server. For information about how to do this,
see 8.4.1, “Regenerating the plug-in configuration file” on page 406.

Web server plug-in log
The Web server plug-in creates a log file containing error and informational
messages. The level of information placed in this log is determined by a setting in
the Web server plug-in configuration file. The possible values in order of
significance are:

� Trace
� Stats
� Warn
� Error (Default)

Specifying one value for the level means you get that level plus the functions
below it. With Trace, you also get Stats, Warn and Error. Choosing Stats gives
you Stats, Warn and Error. Example 9-6 on page 440 gives a sample of a file log
setting.

 Chapter 9. Problem determination 439

Example 9-6 Web server plug-in configuration file log setting

<

<?xml version="1.0" encoding="ISO-8859-1"?>
.....
<Log LogLevel="Error" Name="....\Plugins\logs\http_plugin.log"/>

...
</Config>

This setting can be changed manually or from the administrative console.
Configuring the plug-in trace level from the administrative console is done from
the plug-in configuration page, found from:

1. Select Servers →Web servers.

2. Select the web server by clicking the name from the list.

3. Select Plug-in properties.

4. The properties page has a plug-in logging section for configuring the logging
level.

By changing this setting manually in the plug-in file, the setting is only changed
temporarily, until you generate the Web server plug-in configuration using the
administrative console.

IBM HTTP Server logs
The IBM HTTP Server has the following log files that aid in problem diagnosis:

� Error log
� Access logs

Error log
The error log records IBM HTTP Server errors. The location for the error log is
specified with the ErrorLog directive. The LogLevel directive determines the level
of logging. You can specify one of the following values for LogLevel:

emerg: Emergencies - system is unusable
alert: Action must be taken immediately
crit: Critical conditions
error: Error conditions
warn: Warning conditions

Note: Be careful when setting the level to Trace. A lot of error messages are
logged at this level that can cause the disk space to fill up very quickly. A
Trace setting should never be used in a normally functioning environment
because it affects performance.

440 WebSphere Application Server V6: System Management and Configuration Handbook

notice: Normal but significant condition
info: Informational
debug: Debug level messages

When a particular level is specified, messages from all other levels of higher
significance will be reported as well. A level of at least crit is recommended.

Access log
The access log records all Web server activity, including the following information
for each request:

� What was requested
� Who requested it
� When it was requested
� The method used
� The type of file sent in response
� The return code

Often, the access log is combined with two other logs called the referrer and
agent logs by specifying a log format that includes all the information normally
found in each log. The information in these last two logs is of more interest to a
Webmaster who is gathering statistical information.

The format and location of the logs is determined by the log settings in the
<ihs_home>/conf/httpd.conf configuration file. Example 9-7 shows the settings
for the log files.

The LogFormat directives define the content of the log records. At the end of each
LogFormat directive is a name identifying the format. Looking at the LogFormat
directives in Example 9-7, the names are combined, common, referer, and agent.
If you would like to customize the log formats, refer to the Apache Directives
section of the IBM HTTP Server online Information Center.

The CustomLog directive indicates that the custom log format is to be used to
store the log records. These records will be stored in
/usr/IBMHttpServer/logs/access_log.

Example 9-7 IHS configuration file, httpd.conf

...
ErrorLog: The location of the error log file. If this does not start
with /, ServerRoot is prepended to it.

ErrorLog /usr/IBMHttpServer/logs/error_log

LogLevel: Control the number of messages logged to the error_log.
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

 Chapter 9. Problem determination 441

LogLevel warn

The following directives define some format nicknames for use with
a CustomLog directive (see below).

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\""
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%{Referer}i -> %U" referer
LogFormat "%{User-agent}i" agent

The location of the access logfile (Common Logfile Format).
If this does not start with /, ServerRoot is prepended to it.

CustomLog /usr/IBMHttpServer/logs/access_log common
...

Including elapsed times in the log records
The default LogFormat record used (common) does not include the setting for
service elapsed time. The elapsed time is often useful in understanding
performance problems. To add the elapsed time option, add %T at the LogFormat
entry. This will report the time taken to serve the request, in seconds.

Example 9-8 Elapsed time option %T

...
#LogFormat "%h %l %u %t \"%r\" %>s %b" common
LogFormat "%h %l %u %t \"%r\" %>s %b %T" common
...

The elapsed time is reported in seconds.

IBM HTTP Server log rotation
On even a moderately busy server, the quantity of information stored in the log
files is very large. It will, consequently, be necessary to periodically rotate the log
files by moving or deleting the existing logs. This cannot be done while the server
is running, because the server will continue writing to the old log file as long as it
holds the file open. Instead, the server must be restarted after the log files are
moved or deleted so that it will open new log files.

IBM HTTP Server is capable of writing error and access log files through a pipe
to another process, rather than directly to a file. Example 9-9 on page 443 is a
simple example using piped logs:

442 WebSphere Application Server V6: System Management and Configuration Handbook

Example 9-9 Piped logs

compressed logs
CustomLog "|/usr/bin/gzip -c >> /var/log/access_log.gz" common
almost-real-time name resolution
CustomLog "|/usr/local/apache/bin/logresolve >> /var/log/access_log" common

One important use of piped logs allows log rotation without having to restart the
server. The IBM HTTP Server includes a simple program called rotatelogs for
this purpose. For example, to rotate the logs every 24 hours, you can use:

CustomLog "|/usr/local/apache/bin/rotatelogs /var/log/access_log 86400" common

ignore unnecessary log records in the access log file
Like all Web servers, the IBM HTTP Server records all HTTP access traffic in a
log file. To manage the amount of information recorded, you can configure the
log to ignore certain entries. Example 9-10 shows how to code the directives so
that log entries for .gif and .jpg files are not recorded.

Example 9-10 Ignoring image entries in the access_log

...
SetEnvIf Request_URI \.gif$ ignore=gif
SetEnvIf Request_URI \.jpg$ ignore=jpg

#CustomLog /usr/IBMHttpServer/logs/access_log common
CustomLog /usr/IBMHttpServer/logs/access_log common env=!ignore
...

9.5 Log Analyzer
The Log Analyzer is a GUI tool that permits the user to view service and activity
logs. It can take one or more logs, merge all the data, and display the entries in
sequence.

More importantly, this tool is shipped with an XML database, the symptom
database, which contains strings for some common problems, reasons for the
errors, and recovery steps. The Log Analyzer compares every error record in the
log file to the internal set of known problems in the symptom database and
displays all the matches. From this, you can get error message explanations,
why the error occurred and how to recover from it, as shown in Figure 9-12 on
page 444.

 Chapter 9. Problem determination 443

Figure 9-12 Log Analyzer concept

9.5.1 Using Log Analyzer
To start using the Log Analyzer:

1. Run the waslogbr.bat (.sh) command from the <was_home>/bin directory

2. When the Log Analyzer GUI starts, select File → Open from the main menu.
Navigate to the <profile_home>/logs directory, select activity.log and click
Open.

You should now see the open activity log, similar to Figure 9-13 on page 445. All
servers write log records to this file.

Note: The symptom database is maintained by IBM. We recommend that you
refresh your copy often. To do this, see 9.5.3, “Updating the symptom
database” on page 450.

Symptom
Database
XML File

IBM
Support

Problem
Diagnosis

Log
Analyzer

Activity
Log

444 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 9-13 Log Analyzer

3. Select an entry in the UnitOfWorkView folder and the details appear in the
upper-right pane.

4. To analyze a log entry, right-click the entry and select Analyze from the
pop-up menu, as shown in Figure 9-14 on page 446. The entry is compared
to the symptom database. If there is a match, the information appears in the
lower-right pane.

 Chapter 9. Problem determination 445

Figure 9-14 Selecting an entry to analyze

After the analyze action has been invoked, each analyzed log entry has an icon
indicating whether analysis information is available. The check icon to the left of
the entry in Figure 9-15 on page 447 indicates that analysis information is
available.

446 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 9-15 Log Analyzer information

Log entries (left pane)
By default, the pane on the left displays log entries by unit of work (UOW). It lists
all the UOW instances and associated entries from the logs that you have
opened. You might find the UOW grouping useful when you are trying to find
related entries in the service or activity log, or when you are diagnosing problems
across multiple machines.

The file name of the first log that you opened is shown in the pane's title bar.
There is a root folder and under it, each UOW has a folder icon that you can
expand to show all the entries for that UOW. All log entries without any UOW
identification are grouped into a single folder in this tree view.

The UOW folders are sorted to show the UOW with the latest time stamp at the
top of the list. The entries within each UOW are listed in the reverse sequence,
that is the first (earliest) entry for that UOW is displayed at the top of the list. If
you have merged several logs, all the log entries are merged in time stamp
sequence within each UOW folder, as though they all came from the same log.

Each UOW folder name has the following format (see Figure 9-13 on page 445):

2004-10-22 17:33:16.359000000 (3469)

 Chapter 9. Problem determination 447

This example is comprised of these elements:

� 2004-10-22 17:33:16.359000000 is the time stamp.
� (3469) is the number of entries in the UOW.

Click the + icon next to the UOW folder to expand the folder. See Figure 9-15 on
page 447. Each log entry's identification has the following format:

Rec_3407_com.ibm.ws.webcontainer.oselistener.OSEListenerDispatcher

In this example:

� Rec_3407 is the entry number.
� com.ibm.ws.webcontainer.oselistener.OSEListenerDispatcher is the class

name.

Every log entry is assigned an entry number, Rec_nnnn, when a log is opened in
the Log Analyzer. If more than one file is opened, as in merged files, the
Rec_nnnn identification will not be unique because the number is relative to the
entry sequence in the original log file and not to the merged data that is
displayed. This Rec_nnnn also appears in the first line in the Records pane.

By default, each entry in this pane is color-coded to help you quickly identify the
ones that have high severity errors.

Non-selected log entries have a background color of:

� Pink, if it has a severity 1 error
� Yellow, if it has a severity 2 error
� White, if it has a severity 3 error

Selected log entries have a background color of:

� Red, if it has a severity 1 error
� Green, if it has a severity 2 error
� Blue, if it has a severity 3 error

These colors are configurable and can be changed in the Log Analyzer's
Preferences Log page. Select File → Preferences → Logs → Severity.

The Log Analyzer can also display the log entries in different sorting sequences.
Select File →Preferences → Logs.

After the analyze action has been invoked, each analyzed log entry has the
following icons:

448 WebSphere Application Server V6: System Management and Configuration Handbook

The check icon indicates that the entry has some analysis information in
one or more pages in the analysis pane.

The plus icon indicates that the entry has some analysis information. Look
at the log entry prior to this one when diagnosing problems.

The question mark icon indicates that the entry has either a severity 1 or 2
error, but no additional analysis information is available for it.

The cross icon indicates that the entry has a severity 3 error and it has no
analysis information.

Record pane (upper right)
When you select an entry under the unit of work in the logs pane, you see the
details of the entry (process ID, thread ID, server name, severity, and so on) in
the Record pane. The entry's identification is shown in the pane's title bar.
Right-click in this record pane to see the actions that you can perform on the
entry. These actions include Analyze, Save to File, Find, Select All.

There is a drop-down arrow to the left of Record in the pane’s title bar. By clicking
Record, you can look at the last 10 records that you have viewed. The default
cache size for the historical data is 10. Select File → Preferences → General to
modify this number.

Analysis pane (lower right)
When the analyze action has been invoked, any information found in the
symptoms database for the selected log entry appears in the symptom page. If
the page tab is grayed out, there is no information in that page.

There is a status line at the bottom of the pane showing the status of actions.

9.5.2 Merging logs on multiple application servers
The correlation ID can be used to correlate activity to a particular client request,
or correlate activities on multiple application servers.

To merge different service or activity.log files from different machines where your
transaction occurred, do the following:

1. Make sure that Enable Correlation ID box is checked as discussed in 9.3.3,
“IBM service (activity) log” on page 428.

 Chapter 9. Problem determination 449

2. Open one of the files in Log Analyzer and select File →Preferences →Logs
to sort the log records in UnitOfWork and TimeStamp order to have a
distributed log view.

3. Use the File →Merge with option to merge files.

9.5.3 Updating the symptom database
The symptom database included in the Log Analyzer package contains entries
for common events and errors. New versions of the symptom database provide
additional entries.

To download the symptoms database for your version using the Log Analyzer
GUI, do the following:

� For WebSphere Application Server or Express, select File →Update
Database →WebSphere Application Server Symptom Database.

� For WebSphere Application Server Network Deployment, select WebSphere
Application Server Network Deployment Symptom Database from the
main menu, as shown in Figure 9-16.

Figure 9-16 Updating the symptom database

Alternatively, you can download new versions of the database from the IBM FTP
site. The URL for the FTP site is:

<was_home>/properties/logbr/ivblogbr.properties file

The symptom files are located in the <was_home>/properties/logbr/symptoms
file.

If your organization uses an FTP or SOCKS proxy server, you can add a proxy
definition to the Proxy Preferences page by doing the following:

1. Select File →Preferences →Proxy.

450 WebSphere Application Server V6: System Management and Configuration Handbook

2. Select the appropriate proxy type.
3. Enter the host name and port number of the proxy server on the Proxy

window.

9.6 Collector tool
The Collector tool gathers information about a WebSphere Application Server
installation and packages it in an output JAR file. The file can be sent to IBM
Customer Support to assist in problem determination and analysis. The
information in the file includes logs, property files, configuration files, operating
system and Java data, and prerequisite software presence and levels.

The -Summary option, is useful for determining the features installed. It produces
a plain text file.

Running the Collector tool
Run the Collector tool under the root or administrator user ID because some of
the commands require system access authority. However, if this is not possible
and you proceed without administrator authority, most of the Collector functions
work just fine.

The Collector tool writes its output files to the current directory, so it is good
practice to create a new directory from which to run the tool. You cannot run the
Collector tool in a directory under the WebSphere Application Server installation
directory.

� For Windows systems, log on to the system as administrator or another user
with administrator authority and enter the following, as in Example 9-11:

Example 9-11 Windows Collector tool logon

C:\> mkdir work
C:\> cd work
C:\work> <profile_home>\bin\collector.bat

� For UNIX systems, log on to the system as root and type as in Example 9-12
on page 452:

 Chapter 9. Problem determination 451

Example 9-12 Unix Collector tool logon

itsosvr:/home/# id
root(....)
itsosvr:/home/# mkdir work
itsosvr:/home/# cd work
itsosvr:/home/work# <profile_home>/bin/collector.sh

To collect information in a distributed server environment, invoke the Collector
tool from the deployment manager profile directory.

Results
The Collector program creates an output .jar file in the current work directory.
The .jar file name is based on the host name and package of the server on which
the Collector tool was run, in the format:
<hostname-cellname-nodename-servername>-WASenv.jar.

What to do with the results
Send the <hostname-cellname-nodename-servername>-WASenv.jar file to IBM
Customer Support for analysis.

9.7 First Failure Data Capture logs
The First Failure Data Capture (FFDC) function preserves the information
generated from a processing failure and returns control to the affected engines.
There are three property files located in <was_home>/properties which control
the behavior of the FFDC filter:

� ffdcStart.properties, used while the server is starting
� ffdcRun.properties, used after the server is ready
� ffdcStop.properties, used while the server is stopping

The captured data is saved automatically in the <profile_home>/logs/ffdc
directory for use in analyzing the problem, and could be collected by the
Collector tool.

The First Failure Data Capture tool is intended primarily for use by IBM Service.
It runs as part of the WebSphere Application Server and you cannot start or stop
it. It is recommended that you not attempt to configure the FFDC tool. If you
experience conditions requiring you to contact IBM Service, your IBM Service
representative will assist you in reading and analyzing the FFDC log.

452 WebSphere Application Server V6: System Management and Configuration Handbook

9.8 Dumping the contents of the name space
The name space stored by a given name server can be dumped with the
dumpNameSpace utility that is shipped with WebSphere Application Server. This
utility can be invoked from the command line or from a Java program. The
naming service for the WebSphere Application Server host must be active when
this utility is invoked.

To invoke the utility through the command line, enter the following command from
the <profile_home>/bin directory:

� UNIX:

dumpNameSpace.sh [[-keyword value]...]

� Windows:

dumpNameSpace [[-keyword value]...]

The following command shows how to invoke the dumpNameSpace utility from
the command line:

dumpNameSpace -?

The generated output looks like Example 9-13, which is the short dump format.

dumpNameSpace -host localhost -report short

Example 9-13 dumpNameSpace output

Getting the initial context
Getting the starting context
==
Name Space Dump
 Provider URL: corbaloc:iiop:localhost:30006
 Context factory: com.ibm.websphere.naming.WsnInitialContextFactory
 Requested root context: cell
 Starting context: (top)=PericlesCell
 Formatting rules: jndi
 Time of dump: Wed Oct 27 15:10:09 EDT 2004
==

==
Beginning of Name Space Dump
==

1 (top)
 2 (top)/nodes javax.naming.Context
 3 (top)/nodes/PericlesNode javax.naming.Context
 4 (top)/nodes/PericlesNode/cell javax.naming.Context
 4 Linked to context: PericlesCell
 5 (top)/nodes/PericlesNode/nodename java.lang.String

 Chapter 9. Problem determination 453

 6 (top)/nodes/PericlesNode/node javax.naming.Context
 6 Linked to context: PericlesCell/nodes/PericlesNode
 7 (top)/nodes/PericlesNode/domain javax.naming.Context
 7 Linked to context: PericlesCell
 8 (top)/nodes/PericlesNode/persistent javax.naming.Context
 9 (top)/nodes/PericlesNode/servers javax.naming.Context
 10 (top)/nodes/PericlesNode/servers/server1 javax.naming.Context
 11 (top)/nodes/PericlesNode/servers/server1/servername
 11 java.lang.String
 12 (top)/nodes/PericlesNode/servers/server1/cell javax.naming.Context
 12 Linked to context: PericlesCell
 13 (top)/nodes/PericlesNode/servers/server1/eis javax.naming.Context
...

72 (top)/domain javax.naming.Context
 72 Linked to context: PericlesCell
 73 (top)/cellname java.lang.String
 74 (top)/clusters javax.naming.Context
==
End of Name Space Dump
==

9.9 HTTP session monitoring
In the event of session-related problems, it is helpful to collect all session-related
information. WebSphere Application Server provides an HTTP session tracker
servlet called IBMTrackerDebug. To access the servlet from a browser, use the
following URL:

http://localhost:9080/servlet/com.ibm.ws.webcontainer.httpsession.IBM
TrackerDebug

The result is the printout in Example 9-14.

Example 9-14 Result of IBMTrackerDebug servlet

J2EE NAME(AppName#WebModuleName):: DefaultApplication#DefaultWebApplication.war
cloneId : -1

Number of sessions in memory: (for this webapp) : 11
use overflow : true
overflow size (for this webapp) :
Invalidation alarm poll interval (for this webapp) : 304
Max invalidation timeout (for this webapp) : 1800
Using Cookies : true
Using URL Rewriting : false
use SSLId : false
URL Protocol Switch Rewriting : false

454 WebSphere Application Server V6: System Management and Configuration Handbook

Session Cookie Name : JSESSIONID
Session Cookie Comment : SessionManagement
Session Cookie Domain : null
Session Cookie Path : /
Session Cookie MaxAge : -1
Session Cookie Secure : false
Maximum in memory table size : 1000
current time : Wed Oct 23 18:18:37 EDT 2002
integrateWASSec :false
Session locking : false
Session locking timeout: 5
Allow access on lock timeout:true
Sessions Created:11
Active Count:0
Session Access Count:8
Invalidated Sessions Count:0
Invalidated By SessionManager:0
Garbage Collected count:0
SessionAffinity Breaks:0
Number of times invalidation alarm has run:0
Rejected Session creation requests(overflow off):0
Cache Discards:0
Attempts to access non-existent sessions:2
Number of binary reads from external store:0
Total time spent in reading from external store(ms):0
Total number of bytes read:0
Number of binary writes to external store:0
Total time spent in writing to external store(ms):0
Total number of bytes wriiten out:0
Total size of serializable objects in memory :1859
Total number objects in memory :11
Min size session object size:169
Max size session object size :169

9.10 Application debugging and tracing
Debugging applications is beyond the scope of this book. However, we want to
point out two facilities provided by WebSphere Application Server:

� Application Server Toolkit
� Java Logging API and Framework (Also known as JSR 47)

 Chapter 9. Problem determination 455

9.10.1 Application Server Toolkit
The Application Server Toolkit is included with WebSphere Application Server
V6. It includes debugging functionality built on the Eclipse workbench. It provides
the following adapters:

� WebSphere Application Server debug adapter

This adapter allows you to debug Web objects that are running on
WebSphere Application Server and that you have launched in a browser.
These objects include EJBs, JSPs, and servlets.

� JavaScript debug adapter

The JavaScript debug adapter enables server-side JavaScript debugging.

� Compiled language debugger

The compiled language debugger allows you to detect and diagnose errors in
compiled-language applications such as C and C++.

� Java development tools (JDT) debugger

The JDT debugger allows you to debug Java.

All debug components in the Application Server Toolkit can be used for both local
and remote debugging. To learn more about the debug components, launch the
Application Server Toolkit and select Help →Help Contents. Choose the
Debugger Guide bookshelf entry.

9.10.2 Java logging interface
With support of J2SE 1.4 in WebSphere Application Server V6, the Java logging
interface is now supported. This framework enables application programmers to
add logging statements to applications and categorize the information in a
fine-grained fashion, for both debugging and production situations.

The log level can be configured in WebSphere to allow high-level (production) or
detailed (tracing) information to be written to the system out or trace logs. See
“Diagnostic trace service” on page 431. You can define specific application
package strings to control the log level detail.

9.11 Product installation information
The WebSphere Application Server version and the versions of related software
are important. All components need to be the correct versions for proper
interoperation. In this section, we describe how to determine the versions and
build levels of the various components in your environment.

456 WebSphere Application Server V6: System Management and Configuration Handbook

9.11.1 Using the administrative console to find product information

Perhaps the easiest way to get comprehensive information about the installation
is to use the administrative console. You can use this when the server is running.

1. Select Servers →Application Servers.
2. Click the server.
3. Select the Runtime tab.
4. Click Product Information from the Additional Properties list. See

Figure 9-17.

Figure 9-17 Product information

9.11.2 Locating WebSphere Application Server version information
To check the version of the product installed use one of these options:

� Look in the product version properties file of the installation:

<was_home>/properties/version/WAS.product

The file contains content similar to that shown in Example 9-15.

Example 9-15 WAS.product content

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE product PUBLIC "productId" "product.dtd">
<product name="IBM WebSphere Application Server - ND">
 <id>ND</id>

Note: You can use this method only if the application server is running.

 Chapter 9. Problem determination 457

 <version>6.0.0.1</version>
 <build-info date="11/10/04" level="o0445.08"/>
</product>

� Look in the SystemOut.log file of one of the profile instances:

<profile_home>/logs/server1/SystemOut.log

The file will contain content similar to that shown in Example 9-16.

Example 9-16 Node agent SystemOut.log content

************ Start Display Current Environment ************
WebSphere Platform 6.0 [ND 6.0.0.1 o0445.08] running with process name
dmgr01cell\Node01\nodeagent and process id 2600
Host Operating System is Windows 2000, version 5.0
Java version = J2RE 1.4.2 IBM Windows 32 build cn142sr1w-20041028 (JIT enabled:
jitc), Java Compiler = jitc, Java VM name = Classic VM
....
....
************* End Display Current Environment *************

5. Execute the versionInfo command from the bin directory of the installation.
Output similar to Example 9-17 will be generated.

Example 9-17 versionInfo output for base installation

$ cd <was_home>/bin
$ versionInfo
...
...
Installation Platform

Name IBM WebSphere Application Server
Version 6.0

Technology List

ND installed

Installed Product

Name IBM WebSphere Application Server - ND
Version 6.0.0.1
ID ND
Build Level o0445.08
Build Date 11/10/04

458 WebSphere Application Server V6: System Management and Configuration Handbook

9.11.3 Finding the JDK version
To determine which version of the JDK is installed in your environment, use one
of the following options:

� Look in the SystemOut.log file of one of the profile instances.

<profile_home>/logs/server1/SystemOut.log

� Run java -fullversion from the command linem as in Example 9-13.

<was_home>/java/bin/java -fullversion

Example 9-18 java -fullversion command

C:\WebSphere\AppServer\java\bin>java -fullversion
java full version "J2RE 1.4.2 IBM Windows 32 build cn142sr1w-20041028"

9.11.4 Finding the IBM HTTP Server version
To check the version of your IBM HTTP Server on Windows platforms, run
apache -v, as in Example 9-19.

Example 9-19 The apache -v command

C:\IBM HTTP Server\bin>apache -v
Server version: IBM_HTTP_Server/6.0 Apache/2.0.47
Server built: Nov 4 2004
10:11:21

On UNIX platforms, run httpd -v.

9.12 Resources for problem determination
� WebSphere Application Server support (Fix Packs, fixes, and hints and tips)

http://www.ibm.com/software/webservers/appserv/support.html

� IBM alphaWorks® emerging technologies

http://www.alphaworks.ibm.com

� IBM developerWorks®

http://www.ibm.com/developerworks/

� Worldwide WebSphere User Group

http://www.websphere.org

 Chapter 9. Problem determination 459

http://www.ibm.com/software/webservers/appserv/support.html
http://www.alphaworks.ibm.com
http://www.alphaworks.ibm.com
http://www.ibm.com/developerworks/
http://www.websphere.org

� An Introduction to Java Stack Traces

http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/

� Apache HTTP Server Log Files

http://httpd.apache.org/docs/logs.html

� IBM HTTP Server documentation library

http://www.ibm.com/software/webservers/httpservers/library/

460 WebSphere Application Server V6: System Management and Configuration Handbook

http://www.ibm.com/software/webservers/httpservers/library/
http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://httpd.apache.org/docs/logs.html

Part 2 Messaging with
WebSphere

This part of the book introduces you to the new service integration technology
included with WebSphere Application Server V6. It gives you the basic
knowledge you need to configure a runtime environment for messaging
applications.

This part includes the following chapters:

� Chapter 10, “Asynchronous messaging” on page 463
� Chapter 11, “Default messaging provider” on page 593

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 461

462 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 10. Asynchronous messaging

In this chapter, we describe the concepts behind the asynchronous messaging
functionality provided as part of WebSphere Application Server V6. We discuss:

� Messaging concepts
� Java Message Service
� Messaging and the J2EE Connector Architecture
� Message-driven beans
� Managing WebSphere JMS providers
� Configuring WebSphere JMS administered objects
� Connecting to a service integration bus

10

© Copyright IBM Corp. 2005. All rights reserved. 463

10.1 Messaging concepts
The term messaging, in the generic sense, is usually used to describe the
exchange of information between two interested parties. In the context of
computer science, messaging can be used to loosely describe a broad range of
mechanisms used to communicate data. For instance, e-mail and Instant
Messaging are two communication mechanisms that could be described using
the term messaging. In both cases, information is exchanged between two
parties, but the technology used to achieve the exchange is different.

10.1.1 Loose coupling
These two technologies can also be used to describe one of the main benefits of
messaging, that is, loose coupling. We discuss two aspects of coupling in the
context of messaging applications: process coupling and application coupling.

Process coupling
In the case of Instant Messaging, both parties involved in the exchange of
messages need to be available at the point in time when the message is sent.
Therefore, from a process point of view, the sending and receiving applications
can be said to have tight coupling.

In contrast, a user can send an e-mail to a recipient regardless of whether the
recipient is currently online. In this case the sender connects to an intermediary
which is able to store the message until the recipient requests it. The sender and
receiver processes in this situation can be described as loosely coupled. The
intermediary in this situation is usually a mail server of some variety, but it can be
generically referred to as a messaging provider.

Application coupling
As well as enabling loose coupling at the process level, messaging can also
enable loose coupling at the application level. In this context, loose coupling
means that the sending application is not dependent on any interface exposed by
the receiving application. Both applications need only worry about the interface
that the messaging provider exposes to enable them to connect and exchange
data. With most messaging providers today, these interfaces are reasonably
stable and, in some cases, based on open standards. This allows messaging
applications to focus on the format of the data that is being exchanged, rather
than the interface used to exchange the data. For this reason, messaging
applications can be described as datacentric.

Contrast this with applications that make use of Enterprise JavaBeans (EJB).
EJB client applications need to know about the interface exposed by the EJB. If

464 WebSphere Application Server V6: System Management and Configuration Handbook

this interface changes, then the EJB client application needs to be recompiled to
prevent runtime errors. For this reason, EJBs and their clients can be described
as tightly coupled. Also, due to the dependence on the interface exposed by the
EJB, they can also be described as interface centric applications.

10.1.2 Messaging types
The terms tight and loose coupling are not commonly used when describing
messaging applications. It is more common to refer to the type of messaging that
a given application uses. The messaging type describes the style of interaction
between the sender and receiver.

The two messaging types are:

� Synchronous messaging

Synchronous messaging involves tightly coupled processes, where the
sending and receiving applications communicate directly and both must be
available in order for the message exchange to occur.

� Asynchronous messaging

Asynchronous messaging involves loosely coupled processes, where the
sending and receiving applications communicate through a messaging
provider. The sending application is able to pass the data to the messaging
provider and then continue with its processing. The receiving application is
able to connect to the messaging provider, possibly at some later point in
time, to retrieve the data.

10.1.3 Destinations
With synchronous messaging, because there is no intermediary involved in the
exchange of messages, the sending application must know how to connect to the
receiving application. Once connected, there is no ambiguity to the intended
destination of a message because messages can only be exchanged between
the connected parties. This is shown in Figure 10-1.

Figure 10-1 Direct communication using synchronous messaging

Sender Receiver
Message

Sender Receiver
Message

 Chapter 10. Asynchronous messaging 465

With asynchronous messaging, however, we need to introduce the concept of a
destination. The need for a destination becomes apparent when we consider the
fact that a single messaging provider can act as an intermediary for many
applications. In this situation, the sending and receiving applications must agree
on a single destination used to exchange messages. This destination must be
specified when sending a message to the messaging provider, or receiving a
message from the messaging provider. This is shown in Figure 10-2.

Figure 10-2 Indirect communication via a destination using asynchronous messaging

A sending application might need to exchange different messages with several
receiving applications. In this situation, it would be normal for the sending
application to use a different destination for each receiving application with which
it wants to communicate. This is shown in Figure 10-3.

Figure 10-3 Communicating with multiple receivers using asynchronous messaging

10.1.4 Messaging models
As messaging technologies have evolved, two types of asynchronous
messaging models have emerged, Point-to-Point and Publish/Subscribe. These
models describe how the messaging provider distributes messages to the target
destination, that is, they describe the cardinalities for the sender-receiver
relationship. It is possible for an application to make use of both messaging
models. The Point-to-Point and Publish/Subscribe messaging models are
described in the following sections.

Sender Receiver
Message

Messaging Provider

Message
Destination

Sender Receiver
Message

Messaging Provider

Message
Destination

Sender

Receiver

Message 1 Messaging Provider Message 1

Destination 1

Destination 2
Message 2

Receiver

Message 2

Sender

Receiver

Message 1 Messaging Provider Message 1

Destination 1

Destination 2
Message 2

Receiver

Message 2

466 WebSphere Application Server V6: System Management and Configuration Handbook

Point-to-Point
In the Point-to-Point messaging model, the sending application must specify the
target destination for the message. In order to receive the message, the
receiving application must specify the same destination when it communicates
with the messaging provider. This means that there is a one-to-one mapping
between the sender and receiver of a message. This is the same situation as
depicted in Figure 10-2 on page 466. In the Point-to-Point messaging model, the
destination is usually referred to as a queue.

Publish/Subscribe
In the Publish/Subscribe messaging model, the sending application publishes
messages to a destination. Multiple receiving applications can subscribe to this
destination in order to receive a copy of any messages that are published.

When a message arrives at a destination, the messaging provider distributes a
copy of the message to all of the receiving applications who have subscribed to
the destination. This means that there is potentially a one-to-many relationship
between the sender and receiver of a message. However, there might also be no
receiving applications subscribed to a destination when a message arrives.

Note that this is not the same situation as depicted in Figure 10-3 on page 466.
Figure 10-3 shows a sending application communicating with several receiving
applications using the Point-to-Point messaging model with each. Figure 10-4
shows the Publish/Subscribe messaging model.

Figure 10-4 Publish/Subscribe messaging model

10.1.5 Messaging patterns
Several patterns also exist that describe the way in which messaging
applications connect to, and use, messaging providers. These patterns describe

Publisher

Message
Topic

Subscriber

Subscriber

Message

Message

Publisher

Message
Topic

Subscriber

Subscriber

Message

Message

 Chapter 10. Asynchronous messaging 467

whether a messaging application interacts with the messaging provider as a
message producer, message consumer or both. When a messaging application
acts as both message producer and message consumer, the messaging pattern
is referred to as request-reply. These messaging patterns are discussed in more
detail in the following sections.

Message producers
In the message producer pattern, the sending application simply connects to the
messaging provider, sends a message and then disconnects from the messaging
provider. Because the sending application is not interested in what happens to
the message once the messaging provider has accepted it, this pattern is
sometimes referred to as fire and forget, although it is also commonly referred to
as datagram. The message producer pattern is shown in Figure 10-5.

Figure 10-5 Message producer pattern

Message consumers
Message consumers operate in one of two modes:

� Pull mode

In pull mode, the receiving application connects to the messaging provider
and explicitly receives a message from the target destination. Obviously,
there is no guarantee that a message will be available on the destination at a
given point in time, so the receiving application might need to retry at some
later stage in order to retrieve a message. For this reason, the receiving
application is said to poll the destination.

� Push mode

In push mode, it is the messaging provider who initiates the communication
with the receiving application when a message arrives at a destination. The
receiving application must register an interest in messages that arrive at the
target destination with the messaging provider.

The message consumer pattern is shown in Figure 10-6 on page 469.

Message
Producer Message

Messaging Provider

Destination

Message
Producer Message

Messaging Provider

Destination

468 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-6 Message consumer pattern

Request-Reply
The request-reply pattern involves the sending and receiving applications acting
as both message producers and message consumers. The sending application
initiates the process by sending a message to a destination within the messaging
provider and then waiting for a reply. The receiving application receives the
message from the messaging provider, performs any required processing, and
then sends the reply to the messaging provider. The sending application then
receives this response from the messaging provider.

In this situation, the sending and receiving applications are tightly coupled
processes, even though they are communicating using asynchronous
messaging. For this reason, this pattern is often referred to as
pseudo-synchronous messaging.

The request-reply pattern is shown in Figure 10-7.

Figure 10-7 Request-reply pattern

Message
Consumer

Messaging Provider

Message
Destination

Message
Consumer

Messaging Provider

Message
Destination

Message
Producer

Message
Consumer

Message Messaging Provider Message
Destination

Destination

Message Message

Message
Producer

Message
Consumer

Message Messaging Provider Message
Destination

Destination

Message Message

 Chapter 10. Asynchronous messaging 469

10.2 Java Message Service
The Java Message Service (JMS) API is the standard Java API for accessing
enterprise messaging systems from Java programs. In other words, it is a
standard API that sending and receiving applications written in Java can use to
access the messaging provider to create, send, receive and read messages. We
discuss some of the important features of the JMS specification in this section,
such as:

� JMS API history
� JMS providers
� JMS domains
� JMS administered objects
� JMS and JNDI
� JMS connections
� JMS sessions
� JMS messages
� JMS message producers
� JMS consumers
� JMS exception handling
� Application Server Facilities
� JMS and J2EE

For a complete discussion of JMS, refer to the Java Message Service
specification, Version 1.1. A link for this specification is contained in 10.8,
“References and resources” on page 590.

10.2.1 JMS API history
IBM, among others, was involved actively with Sun Microsystems in the
specification process that led to the original JMS API being published in 1999.
Several versions of the API have subsequently been released. The latest is
version 1.1, which includes many changes that resulted from a review of the API
by the Java community.

It is important to note that the JMS API defines a vendor-independent
programming interface. It does not define how the messaging provider should be
implemented or which communication protocol should be used by clients to
communicate with the messaging provider. Different vendors can produce

Note: This section introduces the features of the JMS API as described in the
JMS version 1.1 specification. The J2EE version 1.4 specification places
certain restrictions on the use of the JMS API within the various J2EE
containers. These restrictions are discussed in Section 10.2.13, “JMS and
J2EE” on page 485.

470 WebSphere Application Server V6: System Management and Configuration Handbook

different JMS implementations. They should all be able to run the same JMS
applications, but the implementations from different vendors will not necessarily
be able to communicate directly with each other.

10.2.2 JMS providers
JMS providers are simply messaging providers that provide a JMS API
implementation. However, this does not mean that the underlying messaging
provider will be written using the Java programming language. It simply means
that the JMS provider written by a specific vendor will be able to communicate
with the corresponding messaging provider. As an example, the WebSphere MQ
JMS provider knows how to communicate with WebSphere MQ.

10.2.3 JMS domains
The JMS API introduces the concept of JMS domains, and defines the
point-to-point and publish/subscribe domains. These JMS domains simply
represent, in the Java environment, the messaging models described in 10.1.4,
“Messaging models” on page 466.

The JMS API also defines a set of domain-specific interfaces that enable client
applications to send and receive messages in a given domain. However, version
1.1 of the JMS specification introduces a set of domain independent interfaces,
referred to as the common interfaces, in support of a unified messaging model.
The domain-specific interfaces have been retained in version 1.1 of the JMS
specification for backwards compatibility.

The preferred approach for implementing JMS client applications is to use the
common interfaces. For this reason, the JMS code examples in this chapter all
make use of the common interfaces.

Durable subscriptions in the Publish/Subscribe domain
The JMS API also recognizes the need in the Publish/Subscribe domain for topic
subscriptions to persist beyond the lifetime of the Java objects that represent
them. The JMS API introduces the concept of durable subscriptions to address
this requirement.

A topic subscriber is said to be active when the Java objects that represent them
exist. That is, they are active when the JMS client application that they are
defined within is executing. When the JMS client application is not executing, a
topic subscriber is said to inactive.

A non-durable subscription only lasts as long as the topic subscriber is active. A
topic subscriber only receives messages that are published on a topic as long as

 Chapter 10. Asynchronous messaging 471

it is active. When the topic subscriber is inactive, it is no longer subscribed to the
topic and, therefore, will not receive any messages published to the topic.

A durable subscription, on the other hand, continues to exist even when the topic
subscriber is inactive. If there is no active topic subscriber for a durable
subscription, the JMS provider stores any publication messages until they expire.
The next time that a topic subscriber for a durable subscription becomes active,
the JMS provider delivers any messages that it is storing for the durable
subscription. A topic subscriber specifies a unique identity when it creates the
durable subscription. Subsequent topic subscribers that specify the same unique
identity, resume the subscription in the state it was left in by the previous
subscriber.

10.2.4 JMS administered objects
Administered objects encapsulate JMS provider-specific configuration
information. They are created by an administrator and are later used at runtime
by JMS clients.

The JMS specification states that the benefits of administered objects are:

� They hide provider specific configuration details from JMS clients.

� They abstract JMS administrative information into Java objects that are easily
organized and administered from a common management console.

The JMS specification defines two types of administered objects, JMS
connection factories and JMS destinations. These are discussed in the following
sections.

JMS connection factories
A connection factory encapsulates the configuration information that is required
to connect to a specific JMS provider. A JMS client uses a connection factory to
create a connection to that JMS provider. ConnectionFactory objects support
concurrent use, that is, they can be accessed at the same time by multiple
threads within a JMS client application.

The connection factory interfaces defined within the JMS specification are shown
in Table 10-1.

Table 10-1 JMS connection factory interfaces

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

472 WebSphere Application Server V6: System Management and Configuration Handbook

JMS destinations
A destination encapsulates addressing information for a specific JMS provider. A
JMS client uses a destination object to address a message to a specific
destination on the underlying JMS provider. Destination objects support
concurrent use, that is, they can be accessed at the same time by multiple
threads within a JMS client application.

The destination interfaces defined within the JMS specification are shown in
Table 10-2.

Table 10-2 JMS destination interfaces

10.2.5 JMS and JNDI
At runtime, JMS clients need a mechanism by which to obtain references to the
configured JMS administered objects. The JMS specification establishes the
convention that these references are obtained by looking them up in a name
space using the Java Naming and Directory Interface (JNDI) API.

The JMS specification does not define a naming policy that indicates where
messaging resources should be placed in a name space. However, if the JMS
client is a J2EE application then the J2EE specification does recommend that
messaging-related resources be placed in a jms sub-context.

Administrators require additional tools in order to create and bind the JMS
administered objects into the JNDI name space. The JMS specification places
the onus of providing these tools on the JMS provider. The tools that are
provided for this purpose by WebSphere Application Server V6 are discussed in
section 10.5, “Managing WebSphere JMS providers” on page 514 and section
10.6, “Configuring WebSphere JMS administered objects” on page 526.

J2EE references and JMS
An additional consideration in this discussion is that the JMS client application
needs to know where the JMS administered object was placed within the JNDI
name space in order to be able to locate it at runtime. This requirement creates a
dependency between the JMS client code and the runtime topology. If the JMS
administered object is moved within the JNDI name space, the JMS client
application needs to be modified. This is obviously unacceptable.

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Destination Queue Topic

 Chapter 10. Asynchronous messaging 473

The J2EE specification provides various naming mechanisms you can use to
decouple the JMS client code from the real JNDI names to which the JMS
administered objects are bound. For a JMS connection factory, use a Resource
Manager Connection Factory Reference. For a JMS destination, use a
Resource Environment Reference. These references are defined within the
deployment descriptor for a J2EE component. Refer to Chapter 5, “Naming,” of
version 1.4 of the J2EE Specification for more information about the definition of
these references.

Defining either of these references within a J2EE component results in a JNDI
entry being created in the local JNDI name space for that component at runtime.
You can access this local JNDI name space by the JMS client by performing
JNDI lookups with names that begin with java:comp/env.

These references are mapped by the administrator to the real JMS-administered
objects in the global JNDI name space when the application is deployed to the
target operational environment. At runtime, when the JMS client performs a
lookup in its local JNDI name space, it is redirected to the JMS administered
object in the global name space.

Consequently, if a JMS administered object is moved within the JNDI name
space, only the mapping for the resource reference needs to modified. The code
for the JMS client application would remain unchanged.

Retrieving administered objects from JNDI
The code required to obtain references to a ConnectionFactory and Destination
object is shown in Example 10-1.

Example 10-1 Using JNDI to retrieve JMS administered objects

import javax.jms.*;
import javax.naming.*

// Create the JNDI initial context
InitialContext initCtx = new InitialContext();

// Get the connection factory
ConnectionFactory connFactory

= (ConnectionFactory)initCtx.lookup(“java:comp/env/jms/myCF”);

// Get the destination used to send a message
Destination destination

= (Destination)initCtx.lookup(“java:comp/env/jms/myQueue”);

474 WebSphere Application Server V6: System Management and Configuration Handbook

10.2.6 JMS connections
A JMS Connection object represents the connection that a JMS client has to its
JMS provider. The JMS specification states that a Connection encapsulates an
open connection with a JMS provider and that it typically represents an open
TCP/IP socket between a client and a JMS provider. However, this is dependent
on the JMS providers implementation.

It is important to note that the creation of a Connection object normally results in
resources being allocated within the JMS provider itself. That is, resources are
allocated outside of the process running the JMS client. For this reason, care
must be taken to close a Connection when it is no longer required within the JMS
client application. Invoking the close method on a Connection object results in
the close method being called on all of the objects created from it.

The creation of the Connection object is also the point at which the JMS client
authenticates itself with the JMS provider. If no credentials are specified, then the
identity of the user under which the JMS client is running is used.

Connection objects support concurrent use.

ConnectionFactory objects are used to create instances of Connection objects.
The connection interfaces defined within the JMS specification are shown in
Table 10-3.

Table 10-3 JMS connection interfaces

The code required to create a Connection object is shown in Example 10-2.

Example 10-2 Creating JMS Connections

// User credentials
String userID = “jmsClient“;
String password = “password“;

// Create the connection, specifying no credentials
Connection conn1 = connFactory.createConnection();

// Create connection, specifying credentials
Connection conn2 = connFactory.createConnection(userID, password);

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Connection QueueConnection TopicConnection

 Chapter 10. Asynchronous messaging 475

10.2.7 JMS sessions
A JMS session is used to create message producers and message consumers
for a single JMS provider. It is created from a Connection object.

It is also used to define the scope of local transactions. It can group multiple send
and receive interactions with the JMS provider into a single unit of work.
However, the unit of work only spans the interactions performed by message
producers or consumers created from this Session object. A transacted session
can complete a transaction using the commit or rollback methods of the Session
object. Once the current transaction has been completed, a new transaction is
automatically started.

Session objects do not support concurrent use. They cannot be accessed at the
same time by multiple threads within a JMS client application. If a JMS client
requires one thread to produce messages while another thread consumes them,
the JMS specification recommends that the JMS client uses separate Sessions
for each thread.

The session interfaces defined within the JMS specification are shown in
Table 10-4.

Table 10-4 JMS session interfaces

The code required to create a Session object is shown in Example 10-3.

Example 10-3 Creating JMS Sessions

// Create a non-transacted session
Session session = conn1.createSession(false, Session.AUTO_ACKNOWLEDGE);

10.2.8 JMS messages
The JMS session acts as factory for JMS messages. The JMS specification
defines a logical format for the messages that can be sent to, and received from,
JMS providers. Recall that the JMS specification only defines interfaces and not
any implementation specifics, so the physical representation of a JMS message
is provider-specific.

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

Session QueueSession TopicSession

476 WebSphere Application Server V6: System Management and Configuration Handbook

The elements that make up a JMS message are:

� Headers

All messages support the same set of header fields. Header fields contain
values that are used by both clients and providers to identify and route
messages.

� Properties

Each message contains a built-in facility to support application-defined
property values. Properties provide an efficient mechanism to filter
application-defined messages.

� Body

The JMS specification defines several types of message body.

The logical format of a JMS message is shown in Figure 10-8.

Figure 10-8 Logical format of a JMS Message

The JMS specification defines five Message interface children. These child
interfaces enable various types of data to be placed into the body of the
message. The JMS message interfaces are described in Table 10-5.

Table 10-5 JMS Message interface types

Message type Message body

BytesMessage A stream of uninterpreted bytes. This message type is for literally
encoding a body to match an existing message format.

JMS Message

Headers

Body

Properties

JMS Message

Headers

Body

Properties

 Chapter 10. Asynchronous messaging 477

Message selectors
A JMS message selector allows a JMS client to filter the messages on a
destination so that it only receives the messages that it is interested in. It must be
a String whose syntax is based on a subset of the SQL92 conditional expression
syntax. However, the message selector expression might only reference JMS
message headers and properties, not values which might be part of the message
body. An example of a message selector is shown in Example 10-4.

Example 10-4 Sample message selector

JMSType='car' AND color='blue' AND weight>2500

If a message consumer specifies a message selector when receiving a message
from a destination, only messages whose headers and properties match the
selector are delivered. If the destination in question is a JMS queue, the
message remains on the queue. If the destination in question is a topic, the
message is never delivered to the subscriber (from the subscribers perspective,
the message does not exist).

For a full description of message selectors and their syntax, please refer to the
JMS specification. A link for this specification is contained in 10.8, “References
and resources” on page 590.

10.2.9 JMS message producers
The JMS session also acts as a factory for JMS message producers. A JMS
message producer is used to send messages to a specific destination on the
JMS provider. A JMS message producer does not support concurrent use.

The target destination is specified when creating the message producer.
However, it is possible to pass a value of null when creating the message
producer. When using a message producer created in this manner, the target
destination must be specified on every invocation of the send method.

MapMessage A set of name-value pairs, where names are strings and values are
Java primitive types. The entries can be accessed sequentially or
randomly by name. The order of the entries is undefined.

ObjectMessage A message that contains a serializable Java object

StreamMessage A stream of Java primitive values. It is filled and read sequentially.

TextMessage A message containing a java.lang.String.

Message type Message body

478 WebSphere Application Server V6: System Management and Configuration Handbook

The message producer can also be used to specify certain properties of
messages that it sends, such as, delivery mode, priority and time-to-live.

The message producer interfaces defined within the JMS specification are
shown in Table 10-6.

Table 10-6 JMS MessageProducer Interfaces

The code required to create and send a message is shown in Example 10-5.

Example 10-5 Creating and sending a JMS message

// Create the message producer
MessageProducer msgProducer = session.createProducer(destination);

// Create the message
TextMessage txtMsg = session.createTextMessage(“Hello World”);

// Send the message
msgProducer.send(txtMsg);

10.2.10 JMS message consumers
The JMS session also acts as a factory for JMS message consumers. A JMS
client uses a message consumer to receive messages from a destination on the
JMS provider. A JMS message consumer does not support concurrent use.

The message consumer interfaces defined within the JMS specification are
shown in Table 10-7.

Table 10-7 JMS MessageConsumer Interfaces

Recall from the discussion in “Message consumers” on page 468, that message
consumers can operate in pull mode or push mode. The JMS specification
defines message consumers for both of these modes. The message consumers
for these are modes are discussed in the following sections.

Common Interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

MessageProducer QueueSender TopicPublisher

Common interface Domain-specific interfaces

Point-to-Point Publish/Subscribe

MessageConsumer QueueReceiver TopicSubscriber

 Chapter 10. Asynchronous messaging 479

Pull mode
A JMS client operates in pull mode simply by invoking one of the receive
methods on the MessageConsumer object. The MessageConsumer interface
exposes a variety of receive methods that allow a client to poll the destination or
wait for the next message to arrive.

The code required to receive a message using pull mode is shown in
Example 10-6.

Example 10-6 Receiving a JMS message using pull mode

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Start the connection
conn1.start();

// Attempt to receive a message
Message msg = msgConsumer.receiveNoWait();

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

// Print the contents of the message
System.out.println(txtMsg.getText());

}

Push mode
In order to implement a solution that uses push mode, the JMS client must
register an object that implements the javax.jms.MessageListener interface with
the MessageConsumer. With a message listener instance registered, the JMS
provider delivers messages as they arrive by invoking the listener’s onMessage
method.

The javax.jms.MessageListener interface is shown in Example 10-7 on
page 481.

Note: The start method must be invoked on the Connection object prior to
attempting to receive a message. A connection does not need to be started in
order to send messages, only to receive them. This enables the application to
complete all of the required configuration steps before attempting to receive a
message.

480 WebSphere Application Server V6: System Management and Configuration Handbook

Example 10-7 The javax.jms.MessageListener interface

package javax.jms;

public interface MessageListener
{

public void onMessage(Message message);
}

A simple class the implements the javax.jms.MessageListener interface is shown
in Example 10-8.

Example 10-8 Simple MessageListener implementation

package com.ibm.itso.jms;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.TextMessage;

public class SimpleListener implements MessageListener
{

public void onMessage(Message msg)
{

// Make sure that we have a text message
if (msg instanceof TextMessage)
{

// Cast the message to the correct type
TextMessage txtMsg = (TextMessage)msg;

try
{

// Print the contents of the message
System.out.println(txtMsg.getText());

}
catch (JMSException e)
{

e.printStackTrace();
}

}
}

}

An instance of the message listener can now be registered with the JMS
message consumer by the JMS client application. Once the listener is registered,
the connection needs to be started in order for messages to be delivered to the

 Chapter 10. Asynchronous messaging 481

message listener. The code required to register a message listener with a JMS
message consumer is shown in Example 10-9.

Example 10-9 Receiving a JMS message using push mode

import com.ibm.itso.jms.SimpleListener;

// Create the message consumer
MessageConsumer msgConsumer = session.createConsumer(destination);

// Create an instance of the message listener
SimpleListener listener = new SimpleListener();

// Register the message listener with the consumer
msgConsumer.setMessageListener(listener);

// Start the connection
conn1.start();

10.2.11 JMS exception handling
Any runtime errors in a JMS application results in a thrown
javax.jms.JMSException. The JMSException class is the root class of all JMS
API exceptions.

A JMSException contains the following information:

� A provider-specific string describing the error

� A provider-specific string error code

� A reference to another exception

The JMSException is usually caused by another exception being thrown in
the underlying JMS provider. The JMSException class allows JMS client
applications to access the initial exception using the getLinkedException
method. The linked exception can then be used to determine the root cause
of the problem in the JMS provider.

Note: In the JMS Point-to-Point domain, messages remain on a destination
until they are either received by a message consumer, or they expire. In the
JMS Publish/Subscribe domain, messages remain on a destination until they
have been delivered to all of the registered subscribers for the destination or
they expire. In order for a message to be retained when a subscribing
application is not available, the subscribing application must create a durable
subscription. Please refer to “Durable subscriptions in the Publish/Subscribe
domain” on page 471, for more information.

482 WebSphere Application Server V6: System Management and Configuration Handbook

The implementation of JMSException does not include the embedded exception
in the output of its toString method. Therefore, it is necessary to check explicitly
for an embedded exception and print it out, as shown in Example 10-10.

Example 10-10 Handling a javax.jms.JMSException

try
{

// Code which may throw a JMSException
}
catch (JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}

However, when using a message listener to receive messages asynchronously,
the application code cannot catch exceptions raised by failures to receive
messages. This is because the application code does not make explicit calls to
the receive methods on the message consumer.

The JMS API provides the javax.jms.ExceptionListener interface to solve this
problem. An exception listener allows a client to be notified of a problem
asynchronously. The JMS client must register an object that implements this
interface with the connection using the setExceptionListener method. With an
exception listener instance registered, the JMS provider invokes its onException
method to notify it that a problem has occurred.

The javax.jms.ExceptionListener interface is shown in Example 10-11.

Example 10-11 The javax.jms.ExceptionListener interface

package javax.jms;

public interface ExceptionListener
{

public void onException(JMSException exception);
}

A simple class the implements the javax.jms.ExceptionListener interface is
shown in Example 10-12.

 Chapter 10. Asynchronous messaging 483

Example 10-12 Simple ExceptionListener implementation

package com.ibm.itso.jms;

import javax.jms.ExceptionListener;
import javax.jms.JMSException;

public class SimpleExceptionListener implements ExceptionListener
{

public void onException(JMSException exception)
{

System.err.println("Exception caught: " + exception);
Exception linkedException = exception.getLinkedException();
if (linkedException != null)
{

System.err.println("Linked exception: " + linkedException);
}

}
}

10.2.12 Application Server Facilities
The JMS specification defines a number of optional facilities that are intended to
be implemented by JMS providers and application server vendors. These
facilities extend the functionality of JMS when the JMS client is executing within
the context of a J2EE container. The Application Server Facilities are concerned
with two main areas of functionality, concurrent message processing and
distributed transactions, and these are briefly described in the following sections.

Concurrent message consumers
Recall that Session and MessageConsumer objects do not support being
accessed from multiple threads concurrently. Such a restriction would be a huge
obstacle to implementing JMS applications within an application server
environment, where performance and resource usage are key concerns. The
Application Server Facilities define a mechanism that allows an application
server to create MessageConsumers that can concurrently process multiple
incoming messages.

Distributed transactions
The JMS specification states that it does require a JMS provider to support
distributed transactions. However, it also states that if a provider supplies this
support, it should be done in the JTA XAResource API. The Application Server
Facilities define the interfaces that an application server should implement in
order to correctly provide support for distributed transactions.

484 WebSphere Application Server V6: System Management and Configuration Handbook

10.2.13 JMS and J2EE
The JMS API was first included in version 1.2 of the J2EE specification. This
specification required that the JMS API definitions be included in a J2EE product,
but that the platform was not required to include an implementation of the JMS
ConnectionFactory and Destination objects.

Subsequent versions of the J2EE specification have placed further requirements
on application server vendors. WebSphere Application Server V6 is fully
compliant with version 1.4 of the J2EE specification. See section 6.6, “Java
Message Service (JMS) 1.1 Requirements”, of the J2EE Specification V1.4 for
information related to these requirements.

The J2EE Specification V1.4 can be downloaded from the following Web site:

http://java.sun.com/j2ee/index.jsp

WebSphere Application Server V6 also provides full support for the Application
Server Facilities described in 10.2.12, “Application Server Facilities” on
page 484.

10.3 Messaging in the J2EE Connector Architecture
Prior to J2EE version 1.3, there was no architecture that specified the interface
between an application server and providers implementing an Enterprise
Information System (EIS). Consequently, application server and EIS vendors
used vendor-specific architectures to provide EIS integration. This meant that, for
each application server that an EIS vendor wanted to support, it needed to
provide a specific resource adapter; and, for every resource adapter that an
application server vendor wanted to support, it needed to extend the application
server.

J2EE version 1.3 required application servers to support version 1.0 of the J2EE
Connector Architecture (JCA). The J2EE Connector Architecture defines a
standard for connecting a compliant application server to an EIS. It defines a
standard set of system-level contracts between the J2EE application server and
a resource adapter.

As a result, application servers only need to be extended once to add support for
all J2EE Connector Architecture compliant resource adapters. Conversely, EIS
vendors only need to implement one J2EE Connector Architecture compliant
resource adapter, which can then be installed on any compliant application
server.

 Chapter 10. Asynchronous messaging 485

http://java.sun.com/j2ee/index.jsp

The system contracts defined by version 1.0 of the J2EE Connector Architecture
are described by the specification as follows:

� Connection management

Connection management enables an application server to pool connections
to the underlying EIS and enables application components to connect to an
EIS. This leads to a scalable application environment that can support a large
number of clients requiring access to an EIS.

� Transaction management

Transaction management enables an application server to use a transaction
manager to manage transactions across multiple resource managers. This
contract also supports transactions that are managed internal to an EIS
resource manager without the necessity of involving an external transaction
manager.

� Security management

Security management provides support for a secure application environment
that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

While version 1.0 of the J2EE Connector Architecture addressed the main
requirements of both application server and EIS vendors, it left some issues
unresolved. As a result, version 1.5 of the specification was produced and it is
this version that application servers are now required to support by version 1.4 of
the J2EE specification.

The additional system contracts defined by version 1.5 of the J2EE Connector
Architecture are described by the specification as follows:

� Lifecycle management

Lifecycle management enables an application server to manage the life cycle
of a resource adapter. This contract provides a mechanism for the application
server to bootstrap a resource adapter instance during its deployment or
application server startup, and to notify the resource adapter instance during
its undeployment or during an orderly shutdown of the application server.

� Work management

Work management enables a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to
an application server for execution. The application server dispatches threads
to execute submitted Work instances. This allows a resource adapter to avoid
creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment.
The resource adapter can control the transaction context with which Work
instances are executed.

486 WebSphere Application Server V6: System Management and Configuration Handbook

� Transaction inflow management

Transaction inflow management enables a resource adapter to propagate an
imported transaction to an application server. This contract also allows a
resource adapter to transmit transaction completion and crash recovery calls
initiated by an EIS, and ensures that the ACID (Atomicity, Consistency,
Isolation and Durability) properties of the imported transaction are preserved.

Message inflow management

Message inflow management enables a resource adapter to asynchronously
deliver messages to message endpoints residing in the application server
independent of the specific messaging style, messaging semantics, and
messaging infrastructure used to deliver messages. This contract also serves
as the standard message provider pluggability contract that allows a wide
range of message providers (Java Message Service (JMS), Java API for XML
Messaging (JAXM), etc.) to be plugged into any J2EE compatible application
server with a resource adapter.

In the context of asynchronous messaging, we are interested in the connection
management and message inflow system contracts. These system contracts
provide for both inbound and outbound communication from a messaging client,
to a messaging provider. This is shown in Figure 10-9 on page 487.

Figure 10-9 Inbound and outbound communication using a resource adapter

Note: For a full description of all of the system contracts listed above, please
refer to the J2EE Connector Architecture Version 1.5 specification. A link for
this specification is included in 10.8, “References and resources” on page 590.

Application

Resource Adapter

Connection
Management

Message
Inflow

Messaging
Provider

Application

Outbound
Communication

Inbound
Communication

Application

Resource Adapter

Connection
Management

Message
Inflow

Messaging
Provider

Application

Outbound
Communication

Inbound
Communication

 Chapter 10. Asynchronous messaging 487

Because the connection management system contract was introduced in version
1.0 of the J2EE Connector Architecture, we will not discuss it further here. Refer
to the J2EE Connector Architecture Version 1.5 specification for more
information regarding the connection management system contract.

The sections that follow discuss the following aspects of the message inflow
system contract:

� Message endpoints
� Resource adapters
� JMS ActivationSpec JavaBean
� Administered objects

10.3.1 Message endpoints
The message inflow system contract makes use of the message-driven bean
(MDB) programming model to asynchronously deliver messages from an EIS
into a running application server. A message endpoint is simply a
message-driven bean application that is running inside a J2EE application
server. It asynchronously consumes messages from a message provider.

An application server compliant with J2EE version 1.4 is required to support
version 2.1 of the Enterprise JavaBeans specification. This version of the EJB
specification has defined additional elements for the message-driven bean
deployment descriptor to support the message inflow system contract of the
J2EE Connector Architecture. These deployment descriptor elements are
discussed in more detail in 10.4.6, “Message-driven bean activation configuration
properties” on page 507.

10.3.2 MessageEndpointFactory
The J2EE Connector Architecture requires application server vendors to provide
a MessageEndpointFactory implementation. A MessageEndpointFactory is used
by the resource adapter to obtain references to message endpoint instances in
order to process messages. In other words, the resource adapter uses the
MessageEndpointFactory to obtain references to message-driven beans.
Multiple message endpoint instances can be created for a single message
endpoint, enabling messages to be processed concurrently.

10.3.3 Resource adapters
A resource adapter is the component that maps the proprietary API exposed by
the EIS to the API defined by the JCA or some other architecture, JDBC or JMS,
for example. Resource adapters are also commonly referred to as connectors.

488 WebSphere Application Server V6: System Management and Configuration Handbook

The resource adapter itself runs in the same process as the application server
and is responsible for delivering messages to the message endpoints hosted by
the application server.

Resource adapter packaging
A resource adapter typically is provided by the messaging provider or a third
party and comes packaged in a Resource Adapter Archive (RAR) file. This RAR
must be packaged using the Java Archive (JAR) file format and can contain:

� Any utility classes
� Native libraries required for any platform dependencies
� Documentation
� A deployment descriptor
� Java classes that implement the J2EE Connector Architecture contracts and

any other functionality of the adapter

The only element of the RAR file that is required is the deployment descriptor.
This must called ra.xml and must be placed in the META-INF subdirectory of the
RAR file.

The resource adapter is installed normally on the application server so that it is
available to several J2EE applications at runtime. However, it is possible to
package the resource adapter within the message endpoint application.

WebSphere Application Server V6 provides a pre-configured resource adapter
for the default messaging JMS provider. The RAR file for this resource adapter is
called sib.api.jmsra.rar and is located in the \lib\ subdirectory of the WebSphere
installation directory.

Resource adapter deployment descriptor
The resource adapter deployment descriptor contains several pieces of
information that are used by the application server and the resource adapter at
runtime, such as:

� Supported message listener types

The resource adapter lists the types of message listener that it supports. The
J2EE Connector Architecture version 1.5 and the EJB version 2.1
specifications do not restrict message listeners to using the JMS API.

� ActivationSpec JavaBean

For each message listener type supported for the resource adapter, the
deployment descriptor must also specify the Java class name of the
ActivationSpec JavaBean. An ActivationSpec JavaBean instance
encapsulates the configuration information needed to setup asynchronous
message delivery to a message endpoint. Section 10.3.4, “JMS

 Chapter 10. Asynchronous messaging 489

ActivationSpec JavaBean” on page 491 discusses the ActivationSpec
JavaBean for JMS providers in more detail.

� Required configuration properties

Each ActivationSpec can also specify a list of required properties. These
required properties can be used to validate the configuration of an
ActivationSpec JavaBean instance. Example 10-13 shows the
messagelistener entry in the deployment descriptor for the default messaging
JMS provider. Notice that it supports the JMS message listener
(javax.jms.MessageListener) and that the ActivationSpec JavaBean has
three required properties; destination, destinationType and busName.

Example 10-13 J2EE Connector Architecture message listener definition

<inbound-resourceadapter>
<messageadapter>

<messagelistener>
<messagelistener-type>

javax.jms.MessageListener
</messagelistener-type>
<activationspec>

<activationspec-class>
com.ibm.ws.sib.api.jmsra.impl.JmsJcaActivationSpecImpl

</activationspec-class>
<required-config-property>

<config-property-name>destination</config-property-name>
</required-config-property>
<required-config-property>

<config-property-name>destinationType</config-property-name>
</required-config-property>
<required-config-property>

<config-property-name>busName</config-property-name>
</required-config-property>

</activationspec>
</messagelistener>

</messageadapter>
</inbound-resourceadapter>

� Administered objects

The resource adapter deployment descriptor can also specify a set of
administered objects. For each administered object listed, the deployment
descriptor must provide the Java class name of the administered object and
the interface that it implements.

These administered objects are similar in nature to JMS administered objects,
discussed in 10.2.4, “JMS administered objects” on page 472. In fact, for the
default messaging JMS provider within WebSphere Application Server V6,

490 WebSphere Application Server V6: System Management and Configuration Handbook

the J2EE Connector Architecture administered objects that it defines
implement the relevant JMS administered object interfaces. This is shown in
Example 10-14.

Example 10-14 J2EE Connector Architecture administered object definition

<adminobject>
<adminobject-interface>

javax.jms.Queue
</adminobject-interface>
<adminobject-class>

com.ibm.ws.sib.api.jms.impl.JmsQueueImpl
</adminobject-class>
<config-property>

<config-property-name>QueueName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>

... additional properties removed ...

<config-property>
<config-property-name>BusName</config-property-name>
<config-property-type>java.lang.String</config-property-type>

</config-property>
</adminobject>

10.3.4 JMS ActivationSpec JavaBean
An ActivationSpec JavaBean instance encapsulates the configuration
information needed to setup asynchronous message delivery to a message
endpoint. The J2EE Connector Architecture recommends that JMS providers
include the following properties in their implementation of an ActivationSpec
JavaBean:

� destination

Recall that a JMS destination encapsulates addressing information for the
JMS provider. A JMS client explicitly specifies a destination when sending a
message to, or receiving a message from, the JMS provider. A message
endpoint needs to specify which destination the resource adapter should
monitor for incoming messages. The resource adapter is then responsible for
notifying the message endpoint when a message arrives at the specified
destination.

The J2EE Connector Architecture does not define the format for the
destination property, but it does acknowledge that it is not always practical for
a value to be specified in the deployment descriptor for a message endpoint
application. However, a value for the destination property is required when

 Chapter 10. Asynchronous messaging 491

deploying the message endpoint application. For this reason, the J2EE
Connector Architecture recommends that a JMS resource adapter defines the
destination property as a required property on the ActivationSpec JavaBean.
The resource adapter for the default messaging JMS provider within
WebSphere Application Server V6 does just this, as shown in Example 10-13
on page 490.

The J2EE Connector Architecture also recommends that, if the destination
object specified implements the javax.jms.Destination interface, the JMS
resource adapter should provide an administered object that implements this
same interface. Once again, the resource adapter for the default messaging
JMS provider within WebSphere Application Server V6 does just this, as
shown in Example 10-14 on page 491.

� destinationType

The destinationType property simply indicates whether the destination
specified is a JMS queue or JMS topic. The valid values for this property are,
therefore, javax.jms.Queue or javax.jms.Topic. The J2EE Connector
Architecture recommends that a JMS resource adapter defines the
destinationType property as a required property on the ActivationSpec
JavaBean. The resource adapter for the default messaging JMS provider
within WebSphere Application Server V6 does just this, as shown in
Example 10-13 on page 490.

492 WebSphere Application Server V6: System Management and Configuration Handbook

� messageSelector

The JMS ActivationSpec JavaBean can optionally define a messageSelector
property. JMS message selectors are discussed in “Message selectors” on
page 478.

� acknowledgeMode

The JMS ActivationSpec JavaBean can optionally define an
acknowledgeMode property. This property indicates to the EJB container,
how a message received by a message endpoint (MDB) should be
acknowledged. Valid values for this property Auto-acknowledge or
Dups-ok-acknowledge. If no value is specified, Auto-acknowledge is
assumed.

For a full description of message acknowledgement, please see both the JMS
version 1.1 and the EJB version 2.1 specifications. Links for these
specifications are contained in 10.8, “References and resources” on
page 590.

� subscriptionDurability

The JMS ActivationSpec JavaBean can optionally define a
subscriptionDurability property. This property is only relevant if the message
endpoint (MDB) is receiving messages from a JMS topic. The
destinationType property specifies a value of javax.jms.Topic.

As discussed in “Durable subscriptions in the Publish/Subscribe domain” on
page 471, in the JMS Publish/Subscribe domain, in order for a message to be
retained on a destination when a subscribing application is not available, the
subscribing application must create a durable subscription. With
message-driven beans, it is the EJB container that is responsible for creating
subscriptions when the specified destination is a JMS topic. This property
indicates to the EJB container whether it must create a durable subscription
to the JMS topic.

The valid values for the subscriptionDurability property are either Durable or
NonDurable. If no value is specified, NonDurable is assumed.

� clientId

The JMS ActivationSpec JavaBean can optionally define a clientId property.
This property is only relevant if the message endpoint (MDB) defines a
durable subscription to a JMS topic (the destinationType property specifies a
value of javax.jms.Topic and the subscriptionDurability property specifies a
value of Durable).

The JMS provider uses the clientId for durable subscriptions to uniquely
identify a message consumer. If a message endpoint defines a durable
subscription, then a value for the clientId property must be specified. A

 Chapter 10. Asynchronous messaging 493

suitable value for the clientId property would normally be specified when
deploying the message endpoint application.

� subscriptionName

The JMS ActivationSpec JavaBean can optionally define a subscriptionName
property. This property is only relevant if the message endpoint (MDB)
defines a durable subscription to a JMS topic. The destinationType property
specifies a value of javax.jms.Topic and the subscriptionDurability property
specifies a value of Durable.

The JMS provider uses the subscriptionName in combination with the clientId
to uniquely identify a message consumer. If a message endpoint defines a
durable subscription, then a value for the subscriptionName property must be
specified. A suitable value for the subscriptionName property would normally
be specified when deploying the message endpoint application.

10.3.5 Message endpoint deployment
Before any messages can be delivered to a message endpoint, the message
endpoint must be associated with a destination. This task is performed during
application installation. Therefore, the responsibility of associating a
message-driven bean with a destination lies with the application deployer.

The application deployer creates an instance of the ActivationSpec JavaBean for
the relevant resource adapter and associates it with the message endpoint
during installation. In this way an ActivationSpec JavaBean, through its
destination property, associates a message endpoint with a destination on the
message provider. This relationship is shown in Figure 10-10 on page 495.

494 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-10 Associating an MDB with a destination using a ActivationSpec JavaBean

10.3.6 Message endpoint activation
A message endpoint is activated by the application server when the message
endpoint application is started. During message endpoint activation, the
application server passes the ActivationSpec JavaBean, and a reference to the
MessageEndpointFactory, to the resource adapter by invoking its
endpointActivation method.

The resource adapter uses the information in the ActivationSpec JavaBean to
interact with messaging provider and setup message delivery to the message
endpoint. For a JMS message-driven bean, this might involve configuring a
message selector or a durable subscription against the destination. Once the
endpointActivation method returns, the message endpoint is ready to receive
messages. This process is shown in Figure 10-11 on page 496.

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

M essageEndpointFactory

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

M essageEndpointFactory

 Chapter 10. Asynchronous messaging 495

Figure 10-11 Activating a message endpoint

10.3.7 Message delivery
The following steps describe the sequence of events that occur when a message
arrives at a destination:

1. The resource adapter detects the arrival of a message at the destination.

2. The resource adapter invokes the createEndpoint method on the
MessageEndpointFactory.

3. The MessageEndpointFactory obtains a reference to a message endpoint.
This might be an unused message endpoint obtained from a pool or, if no
message endpoints are available, it can create a new message endpoint.

4. The MessageEndpointFactory returns a proxy to this message endpoint
instance to the resource adapter.

5. The resource adapter uses the message endpoint proxy to deliver the
message to the message endpoint.

This process is shown in Figure 10-12 on page 497.

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

MessageEndpointFactory

Application Server

EJB Container

Message-driven
Bean

Messaging Provider

Resource Adapter

Destination

ActivationSpec
JavaBean

MessageEndpointFactory

496 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-12 Delivering a message to a message endpoint

10.3.8 Administered objects
The resource adapter deployment descriptor defines the list of administered
objects implemented by the resource adapter. However, it does not define any
administered object instances. This must still be performed as an administrative
task within the WebSphere administrative console. Because the default
messaging JMS provider is specific to the JMS programming model, the
WebSphere administrative console provides a set of JMS administration panels
for this resource adapter. Section 10.6, “Configuring WebSphere JMS
administered objects” on page 526 details the steps required to configure
administered objects for the default messaging JMS provider.

10.4 Message-driven beans
The Enterprise JavaBeans specification (EJB), version 2.0 introduced a new type
of EJB called the message-driven bean (MDB). Message-driven beans are
asynchronous message consumers that run within the context of an application
servers EJB container. This enables the EJB container to provide additional
services to the message-driven bean during the processing of a message, such
as transactions, security, concurrency and message acknowledgement.

Application Server

Resource Adapter

EJB Container

Message-driven
Bean

Messaging Provider
Destination Message

1

2

MessageEndpointFactory
3

4 5

Application Server

Resource Adapter

EJB Container

Message-driven
Bean

Messaging Provider
Destination Message

1

2

MessageEndpointFactory
3

4 5

 Chapter 10. Asynchronous messaging 497

The EJB container is also responsible for managing the lifetime of the
message-driven beans and for invoking message-driven beans when a message
arrives for which a given message-driven bean is the consumer.

Message-driven bean instances should not maintain any conversational state on
behalf of a client. This enables the EJB container to maintain a pool of
message-driven bean instances and to select any instance from this pool to
process an incoming message. However, this does not prevent a
message-driven bean from maintaining state that is not specific to a client, for
instance, data source references or references to another EJB.

WebSphere Application Server V6 is fully compliant with version 1.4 of the J2EE
specification, which requires application servers to support version 2.1 of the
EJB specification.

10.4.1 Message-driven bean types
Version 2.0 of the EJB specification defined a single type of message-driven
bean that enabled the asynchronous delivery of messages via the Java Message
Service.

However, the integration of multiple JMS providers into application servers has
proven difficult. For various reasons, many application server vendors have only
provided support for one JMS provider within their product. Also, the fact that
message-driven beans within the EJB 2.0 specification only support the JMS
programming model was considered too restrictive. Several other messaging
providers exist that require similar functionality to message-driven beans within
the EJB container, such as the Java API for XML Messaging (JAXM).

Because of this, version 2.1 of the EJB specification expanded the definition of
message-driven beans to provide support for messaging providers other than
JMS providers. It does this by allowing a message-driven bean to implement an
interface other than the javax.jms.MessageListener interface. The type of
message listener interface that a message-driven bean implements determines
its type. Therefore, a message-driven bean that implements the
javax.jms.MessageListener interface is a referred to as a JMS message-driven
bean.

10.4.2 Client view of a message-driven bean
Unlike session and entity beans, message-driven beans do not expose home or
component interfaces. A client is not able to locate instances of a
message-driven bean and invoke methods on it directly.

498 WebSphere Application Server V6: System Management and Configuration Handbook

The only manner in which a client can interact with a message-driven bean is to
send a message to the destination or endpoint for which the message-driven
bean is the listener. The EJB container is responsible for invoking an instance of
the message-driven bean as a result of the arrival of a message. From the clients
perspective, the existence of the message-driven bean is completely
transparent. This is shown in Figure 10-13, where the client is only able to see
the messaging provider and the target destination.

Figure 10-13 Client view of a message-driven bean

10.4.3 Message-driven bean implementation
A bean provider developing a message-driven bean must provide a
message-driven bean implementation class. This class must implement, directly
or indirectly, the javax.ejb.MessageDrivenBean interface and a message listener
interface. It must also provide an ejbCreate method implementation. These
aspects of message-driven implementation are discussed in the next sections.

MessageDrivenBean interface
The javax.ejb.MessageDrivenBean interface defines a number of callback
methods that allow the EJB container to manage the life cycle of each
message-driven bean instance. Because message-driven beans expose no
home or component interfaces, the javax.ejb.MessageDrivenBean interface
defines fewer callback methods than the corresponding javax.ejb.SessionBean
and java.ejb.EntityBean interfaces. The definition of the
javax.ejb.MessageDrivenBean interface is shown in Example 10-15.

Example 10-15 The javax.ejb.MessageDrivenBean interface

public interface MessageDrivenBean extends javax.ejb.EnterpriseBean
{

public void setMessageDrivenContext(MessageDrivenContext ctx);
public void ejbRemove();

}

Client

Message
Messaging Provider

Destination/Endpoint

Message Application Server

MDBMDBMDBMDBMDB

EJB Container

Application Server

Client

Message
Messaging Provider

Destination/Endpoint

Message Application Server

MDBMDBMDBMDBMDB

MDBMDBMDBMDBMDBMDBMDBMDBMDBMDB

EJB Container

Application Server

 Chapter 10. Asynchronous messaging 499

The purpose of each of the callback methods is described below:

� setMessageDrivenContext

This method is invoked by the EJB container to associate a context with an
instance of a message-driven bean. The message-driven bean instance
stores a reference to the context as part of its state.

� ejbRemove

This method is invoked by the EJB container to notify the message-driven
bean instance that it is in the process of being removed. This gives the
message-driven bean the opportunity to release any resources that it might
be holding.

Message listener interface
As discussed in section 10.4.1, “Message-driven bean types” on page 498,
version 2.1 of the EJB specification no longer requires a message-driven bean to
implement the javax.jms.MessageListener interface. The specification simply
states that a message-driven bean is required to implement the appropriate
message listener interface for the messaging type that the message-driven bean
supports.

The specification also allows the message listener interface to define more than
one message listener method and for these methods to specify return types. If a
messaging provider has defined an interface that contains more than one
message listener method, it is the responsibility of the resource adapter to
determine which of these methods to invoke upon the receipt of a message.

The message listener interface for JMS message-driven beans is the
javax.jms.MessageListener interface, as shown in Example 10-7 on page 481.

As an example of other types of message listener interface that might be used by
messaging providers, again, consider a theoretical JAXM messaging provider. A
JAXM messaging provider might decide to use the
javax.xml.messaging.ReqRespListener interface as its message listener
interface. This interface is shown in Example 10-16.

Example 10-16 The javax.xml.messaging.ReqRespListener interface

package javax.xml.messaging;

import javax.xml.soap.SOAPMessage;

public interface ReqRespListener
{

public SOAPMessage onMessage(SOAPMessage message);
}

500 WebSphere Application Server V6: System Management and Configuration Handbook

Notice that this interface is similar to the javax.jms.MessageListener interface in
that it defines an onMessage method. However, any method name can be used
when defining methods within the message listener interface.

Also, notice that the onMessage method specifies a return type of
SOAPMessage. The SOAPMessage can be considered to be a reply message.
However, because it is the EJB container which invokes the onMessage method,
the SOAPMessage is returned to the EJB container. The EJB specification states
that, if the message listener interface supports the request-reply pattern in this
manner, it is the responsibility of the EJB container to deliver the reply message
to the resource adapter.

The ejbCreate method
One other requirement on the implementation class for a message-driven bean
is that it implements the ejbCreate method. Once again, this implementation can
be defined within the message-driven bean class itself, or within any of its
superclasses. The EJB container invokes the ejbCreate as the last step in
creating a new instance of a message-driven bean.This gives the
message-driven bean the opportunity to allocate any resources that it requires.

10.4.4 Message-driven bean life cycle
The EJB container is responsible for hosting and managing message-driven
bean instances. It controls the life cycle of the message-driven bean and uses
the callback methods within the bean implementation class to notify the instance
when important state transitions are about to occur.

The life cycle of a message-driven bean is shown in Figure 10-14.

Figure 10-14 Message-driven bean life cycle

Method-ready pool

Does not exist

ejbRemove()
1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

Message listener
method ejbTimeout(arg)Method-ready pool

Does not exist

ejbRemove()
1. newInstance()
2. setMessageDrivenContext(mdc)
3. ejbCreate()

Message listener
method ejbTimeout(arg)

 Chapter 10. Asynchronous messaging 501

The relevant state transitions for a message-driven bean are:

� Message-driven bean creation

Message-driven bean instances are created in three steps by the EJB
container:

a. The EJB container invokes the Class.newInstance() method on the bean
implementation class.

b. The EJB container provides the new instance with its
MessageDrivenContext reference by invoking the
setMessageDrivenContext method.

c. The EJB container gives the new message-driven bean instance the
opportunity to perform one-time initialization by invoking the ejbCreate
method. The message-driven bean is able to allocate any resources that it
requires here.

� Message listener method invocation

Once in the method-ready pool, a message-driven bean instance is available
to process any message that is sent to its associated destination or endpoint.
When a message arrives at this destination, the EJB container receives the
message and allocates a message-driven bean instance from the
method-ready pool to process the message. When processing is complete,
the message-driven bean instance is returned to the method-ready pool.

� Message-driven bean removal

The EJB container decides at any time that it needs to release resources. To
do this, it can reduce the number of message-driven bean instances in the
method-ready pool. As part of the removal process it invokes the ejbRemove
method on the instance being removed to give the message-driven bean the
opportunity to release any resources that it might be holding.

10.4.5 Message-driven beans and transactions
A bean provider can specify whether a message-driven bean will demarcate its
own transactions programmatically or whether it will rely on the EJB container to
demarcate transactions on its behalf. The bean provider does this by specifying
either Bean or Container as the value for the transaction-type field for the
message-driven bean in the EJB module deployment descriptor.

Note: The EJB container performs a number of other operations during the
processing of a message, such as ensuring that the processing takes
place within the specified transactional context and performing any
required security checks. These steps have been omitted for clarity.

502 WebSphere Application Server V6: System Management and Configuration Handbook

Regardless of whether transaction demarcation is bean-managed or
container-managed, a message-driven bean can only access the transactional
context within which it is running by using the relevant methods of the
MessageDrivenContext interface.

MessageDrivenContext interface
The javax.ejb.MessageDrivenContext interface extends the
javax.ejb.EJBContext interface. However, unlike the SessionContext and
EntityContext interfaces, the MessageDrivenContext interface does not define
any additional methods. The parent EJBContext interface is shown in
Example 10-17.

Example 10-17 The javax.ejb.EJBContext interface

package javax.ejb;

import java.security.Identity;
import java.security.Principal;
import java.util.Properties;
import javax.transaction.UserTransaction;

public interface EJBContext
{

// EJB Home methods
public abstract EJBHome getEJBHome();
public abstract EJBLocalHome getEJBLocalHome();

// Security methods
public abstract Principal getCallerPrincipal();
public abstract boolean isCallerInRole(String s);

// Transaction methods
public abstract UserTransaction getUserTransaction()

throws IllegalStateException;
public abstract void setRollbackOnly() throws IllegalStateException;
public abstract boolean getRollbackOnly() throws IllegalStateException;

// Timer service methods
public abstract TimerService getTimerService()

throws IllegalStateException;

// Deprecated Methods
public abstract Properties getEnvironment();
public abstract Identity getCallerIdentity();
public abstract boolean isCallerInRole(Identity identity);

}

 Chapter 10. Asynchronous messaging 503

Container-managed transactions
A message-driven bean with a transaction-type of Container is said to make use
of container-managed transactions. When a message-driven bean is using
container-managed transactions, the EJB container uses the transaction
attribute of the message listener method to determine the actions that it needs to
take when a message arrives at the relevant destination.

The transaction attributes that can be specified for message listener method are:

� NotSupported

The EJB container does 1‘not create a transaction prior to receiving the
message from the destination and invoking the message listener method on
the message-driven bean. Consequently, if the message-driven bean
accesses other resource managers or enterprise beans, it does so with an
unspecified transaction context.

Also, depending on the capabilities of the underlying JMS provider, if an error
occurs during the processing of the message, it might not be placed back on
the destination for redelivery.

� Required

The EJB container creates a transaction prior to receiving the message from
the destination and invoking the message listener method on the
message-driven bean.

If the message-driven bean accesses a resource manager within the
message listener method, then this access takes place within the context of
this transaction. Similarly, if the message-driven bean invokes other EJBs

Note: When using a message-driven bean instance, only invoke the
transaction and timer service methods exposed by the
MessageDrivenContext interface.

Attempting to invoke the EJB home methods results in a
java.lang.IllegalStateException being thrown because message-driven beans
do not define EJBHome or EJBLocalHome objects.

Attempting to invoke the getCallerPrincipal method is allowed by version 2.1.
of the EJB specification. However, with a message-driven bean, the caller is
the EJB container, which does not have a client security context. In this
situation the getCallerPrincipal method returns a representation of the
unauthenticated identity. Invoking the isCallerInRole method is still not allowed
by the EJB specification and will result in a java.lang.IllegalStateException
being thrown.

504 WebSphere Application Server V6: System Management and Configuration Handbook

within the message listener method, the EJB container passes the transaction
context with the invocation.

When the message listener method completes, the EJB container attempts to
commit the transaction. For a JMS message-driven bean, a rollback of the
transaction has the effect of placing the message back on the destination for
redelivery.

When a message listener method specifies a transaction attribute of Required, it
can only use the getRollbackOnly and setRollbackOnly methods of the
MessageDrivenContext object. The code required to mark a transaction for
rollback within a message listener method is shown in Example 10-18.

Example 10-18 Using the setRollbackOnly method

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

try
{

// Process the message

// Try to access a relational database
}
catch (SQLException e)
{

// An error occured, rollback the transaction
msgDrivenCtx.setRollbackOnly();

}
}

}

Bean-managed transactions
A message-driven bean with a transaction-type of Bean is said to make use of
bean-managed transactions. When a message-driven bean is using
bean-managed transactions, the EJB container does not create a transaction
prior to receiving the message from the destination and invoking the message
listener method on the message-driven bean. Consequently, for a JMS
message-driven bean, the message might not be placed back on the destination
for redelivery if an error occurs during the processing of the message. The
message listener method is responsible for creating any transactions that it
requires when processing a message.

 Chapter 10. Asynchronous messaging 505

A message-driven bean using bean-managed transactions can only use the
getUserTransaction method of the MessageDrivenContext object. It is then able
to use the javax.transaction.UserTransaction interface to begin, commit and
rollback transactions. The code required to use the UserTransaction interface
within a message listener method is shown in Example 10-19.

Example 10-19 Using the javax.transaction.UserTransaction interface

public class SampleMDBBean implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext msgDrivenCtx;

// Lifecycle methods removed for clarity

public void onMessage(Message msg)
{

// Get the UserTransaction object reference
UserTransaction userTx = msgDrivenCtx.getUserTransaction();

try
{

// Begin the transaction
userTx.begin();

// Process the message

// Try to access a relational database

// Attempt to commit the transaction
userTx.commit();

}
catch (Exception e)
{

try
{

// An error occured, rollback the transaction
userTx.rollback();

}
catch (SystemException e2)
{

e2.printStackTrace();
}

}
}

}

506 WebSphere Application Server V6: System Management and Configuration Handbook

10.4.6 Message-driven bean activation configuration properties
The way in which message-driven beans specify deployment options within the
EJB deployment descriptor has changed significantly for EJB version 2.1. This
reflects the changes made to the J2EE Connector Architecture specification to
enable a resource adapter to asynchronously deliver messages to a
message-driven bean, independent of the specific messaging style, messaging
semantics and messaging infrastructure. Consequently, version 2.1 of the EJB
specification introduced a more generic mechanism to specify the messaging
semantics of a message-driven bean, known as activation configuration
properties.

The EJB specification defines the following activation configuration properties for
a JMS message-driven bean:

� destinationType
� messageSelector
� acknowledgeMode
� subscriptionDurability

Notice that the names of these activation configuration properties match the
names of the equivalent JMS ActivationSpec JavaBean properties described in
10.3.4, “JMS ActivationSpec JavaBean” on page 491. The description of each of
the properties is also the same.

This is intentional on the part of the J2EE Connector Architecture and the EJB
specifications. The intention is that this will allow the automatic merging of the
activation configuration element values with the corresponding entries in the JMS
ActivationSpec JavaBean, while configuring the JMS ActivationSpec JavaBean
during endpoint deployment. This is exactly what happens when WebSphere
starts an application that contains a message-driven bean.

Example 10-20 on page 508, shows the relevant entry for the BankListener
message-driven bean that is packaged as part of the WebSphereBank sample in
WebSphere Application Server V6. The elements of the deployment descriptor

Note: Because of the complex nature of distributed transactions, it is
recommended that bean providers make use of container-managed
transactions.

Note: If a message-driven bean and the JMS activation specification with
which it is associated both specify a value for a given property, the value
contained in the EJB deployment descriptor for the message-driven bean will
be used.

 Chapter 10. Asynchronous messaging 507

that are specific to messaging are shown in bold. Table 10-8 shows activation
configuration properties are defined within the deployment descriptor:

Table 10-8 Activation configuration properties for the BankListener message-driven bean

Example 10-20 BankListener message-driven bean deployment descriptor

<message-driven id="MessageDriven_1037986117955">
<ejb-name>BankListener</ejb-name>
<ejb-class>com.ibm.websphere.samples.bank.ejb.BankListenerBean</ejb-class>
<messaging-type>javax.jms.MessageListener</messaging-type>
<transaction-type>Container</transaction-type>
<message-destination-type>javax.jms.Queue</message-destination-type>
<message-destination-link>BankJSQueue</message-destination-link>
<activation-config>

<activation-config-property>
<activation-config-property-name>

destinationType
</activation-config-property-name>
<activation-config-property-value>

javax.jms.Queue
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
acknowledgeMode

</activation-config-property-name>
<activation-config-property-value>

Auto-acknowledge
</activation-config-property-value>

</activation-config-property>
<activation-config-property>

<activation-config-property-name>
messageSelector

</activation-config-property-name>
<activation-config-property-value>

JMSType = 'transfer'
</activation-config-property-value>

</activation-config-property>
</activation-config>
<ejb-local-ref id="EJBLocalRef_1037986243867">

<description></description>

Property name Property value

destinationType javax.jms.Queue

acknowledgeMode Auto-acknowledge

messageSelector JMSType = ‘transfer’

508 WebSphere Application Server V6: System Management and Configuration Handbook

<ejb-ref-name>ejb/Transfer</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>

com.ibm.websphere.samples.bank.ejb.TransferLocalHome
</local-home>
<local>com.ibm.websphere.samples.bank.ejb.TransferLocal</local>
<ejb-link>Transfer</ejb-link>

</ejb-local-ref>
</message-driven>

10.4.7 Associating a message-driven bean with a destination
Before any messages can be delivered to a message-driven bean, the
message-driven bean must be associated with a destination. As discussed in
10.3.5, “Message endpoint deployment” on page 494, the responsibility of
associating a message-driven bean with a destination lies with the application
deployer.

Within WebSphere Application Server V6, there are two mechanisms that can be
used to associate these objects, JMS activation specifications and listener ports.
This is due to the fact that the service integration bus within WebSphere
Application Server V6 is accessed using a J2EE Connector Architecture
resource adapter, while WebSphere MQ is accessed using a standard JMS API
implementation.

If the message-driven bean that is being deployed needs to be associated with a
destination defined on a service integration bus, use a JMS activation
specification. If the message-driven bean that is being deployed needs to be
associated with a destination defined on WebSphere MQ, use a listener port.
JMS activation specifications and listener ports are discussed in the sections that
follow.

JMS activation specification
An ActivationSpec JavaBean, through its destination property, associates a
message endpoint with a destination. Within WebSphere Application Server V6,
an instance of the ActivationSpec JavaBean for the default messaging JMS
provider is configured by creating a JMS activation specification using the
WebSphere administrative console. These JMS activation specifications are
normally created prior to installing the message-driven bean application and are
stored in the JNDI name space by WebSphere.

 Chapter 10. Asynchronous messaging 509

At installation time, the deployer specifies which JMS activation specification to
associate with a particular message-driven bean, using its JNDI name. The
destination property within the JMS activation specification, specifies the JNDI
name of the target JMS destination. This relationship is shown Figure 10-15.

Figure 10-15 Associating an MDB with a destination using a JMS activation specification

The steps required to create a JMS activation specification for the default
messaging JMS provider are described in “JMS activation specification
configuration” on page 549.

Listener ports
Prior to version 1.5 of the J2EE Connector Architecture, there was no standard
way to associate a message-driven bean with a destination. To solve this
problem, WebSphere Application Server V5 introduced the concept of a listener
port. A listener port is used to simplify the administration of the association
between a connection factory, destination, and deployed message-driven bean,
as shown in Figure 10-16 on page 511. WebSphere Application Server V6
continues to use listener ports for those JMS providers that are not accessed
using a resource adapter.

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Activation
Specification

Service Integration Bus

Default Messaging
Resource Adapter

JMS Destination

Destination

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Activation
Specification

Service Integration Bus

Default Messaging
Resource Adapter

JMS Destination

Destination

510 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-16 Associating an MDB with a destination using a listener port

The steps required to create a listener are described in 10.6.4, “Configuring
listener ports” on page 568.

10.4.8 Message-driven bean best practices
As with all programming models, certain best practices have emerged for using
the message-driven bean programming model. These best practices are
discussed below:

� Delegate business logic to another handler.

Traditionally the role of a stateless session bean is to provide a facade for
business logic. Message-driven beans should delegate the business logic
concerned with processing the contents of a message to a stateless session
bean. Message-driven beans can then focus on what they were designed to
do, which is processing messages. This is shown in Figure 10-17.

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Connection
Factory

WebSphere MQ

WebSphere MQ
JMS Provider

JMS Destination

Destination

Listener Port

Application Server

EJB Container

Message-driven
Bean

JNDI

JMS Connection
Factory

WebSphere MQ

WebSphere MQ
JMS Provider

JMS Destination

Destination

Listener Port

 Chapter 10. Asynchronous messaging 511

Figure 10-17 Delegating business logic to a stateless session bean

An additional benefit of this approach is that the business logic within the
stateless session bean can be reused by other EJB clients. This is shown in
Figure 10-18.

Figure 10-18 Business logic reuse

� Do not maintain a client-specific state within an MDB.

As discussed earlier, message-driven bean instances should not maintain
any conversational state on behalf of a client. This enables the EJB container
to maintain a pool of message-driven bean instances and to select any
instance from this pool to process an incoming message. However, this does
not prevent a message-driven bean from maintaining a state that is not
specific to a client, for instance, datasource references or references to
another EJB.

� Avoid large message bodies.

A JMS message probably will travel over the network at some point in its life.
It will definitely need to be handled by the JMS provider. All of these

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DB

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DB

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DBEJB Client

JMS Provider

Destination

Application Server

EJB Container

JMS Client

Message

Message-driven
Bean

Stateless session
Bean

Message

DBEJB Client

512 WebSphere Application Server V6: System Management and Configuration Handbook

components contribute to the overall performance and reliability of the
system. The amount of data contained in the body of a JMS message should
be kept as small as possible to avoid impacting the performance of the
network or the JMS provider.

� Minimize message processing time.

Recall from the discussion in 10.4.4, “Message-driven bean life cycle” on
page 501, that instances of a message-driven bean are allocated from the
method-ready pool to process incoming messages. These instances are not
returned to the method-ready pool until message processing is complete.
Therefore, the longer it takes for a message-driven bean to process a
message, the longer it is unavailable for reallocation.

If an application is required to process a high volume of messages, the
number of message-driven bean instances in the method-ready pool could be
rapidly depleted if each message requires a significant processing. The EJB
container would then need to spend valuable CPU time creating additional
message-driven bean instances for the method-ready pool, further impacting
the performance of the application.

Additional care must be taken if other resources are enlisted into a global
transaction during the processing of a message. The EJB container will not
attempt to commit the global transaction until the MDB’s onMessage method
returns. Until the global transaction commits, these resources cannot be
released on the resource managers in question.

For these reasons, the amount of time required to process each message
should be kept to a minimum.

� Avoid dependencies on message ordering.

Try to avoid having an application making any assumptions with regard to the
order in which JMS messages are processed. This is due to the fact that
application servers enable the concurrent processing of JMS messages by
MDB’s and that some messages can take longer to process than others.
Consequently, a message delivered later in a sequence of messages might
finish message processing before a message delivered earlier in the
sequence. It might be possible to configure the application server in such a
way that messaging ordering is maintained within the application, but this is
usually done at the expense of performance or architectural flexibility, such as
the inability to deploy an application to a cluster.

� Be aware of poison messages.

Sometimes, a badly-formatted JMS message arrives at a destination. Such a
message might cause an exception to be thrown within the MDB during
message processing. An MDB that is making use of container-managed
transactions then marks the transaction for rollback, as discussed in 10.4.5,
“Message-driven beans and transactions” on page 502. The EJB container n

 Chapter 10. Asynchronous messaging 513

rolls back the transaction, causing the message to be placed back on the
queue for redelivery. However, the same problem occurs within the MDB the
next time the message is delivered. In this situation, such a message might
be received, and then returned to the queue, repeatedly. These messages
are known as poison messages.

Fortunately, some messaging providers have implemented mechanisms that
can detect poison messages and redirect them to a another destination.
WebSphere MQ and the service integration bus are two such providers.

10.5 Managing WebSphere JMS providers
WebSphere Application Server V6 supports the following JMS providers:

� Default messaging
� WebSphere MQ
� Generic
� V5 default messaging

The sections that follow describe the first three of these JMS providers and how
the WebSphere administrative console can be used to configure and administer
them. Note that the V5 default messaging provider is supported for migration
purposes only. We are not be discussing that provider in this book. For
information about the V5 default messaging provider, see IBM WebSphere
Application Server V5.1 System Management and Configuration, SG24-6195.

10.5.1 Managing the default messaging JMS provider
WebSphere Application Server V6 supplies a preconfigured J2EE Connector
Architecture resource adapter implementation that can be used to communicate
with a service integration bus. This resource adapter is installed as a
fully-integrated component of WebSphere Application Server V6, at all levels of
the WebSphere cell, and needs no separate installation steps.

The administered objects for this resource adapter also implement the
corresponding interfaces of version 1.1 of the JMS specification. This enables
them to the be used by JMS clients for both the point-to-point and
Publish/Subscribe messaging models.

The WebSphere administrative console exposes a set of panels that you can use
to configure the resource adapter as though it were purely a JMS provider,
known as the default messaging JMS provider. These panels can be used to
configure the following JMS resources:

514 WebSphere Application Server V6: System Management and Configuration Handbook

� A JMS connection factory that can be used to connect to a service integration
bus

� A JMS queue or topic destination that refers to a destination on a service
integration bus

Such JMS queues and topics are available, over a long period of time, to all
applications with access to the bus destination.

� A JMS activation specification that can be used to associate a
message-driven bean with a JMS queue or topic destination

The sections that follow discuss how to configure the resource adapter using the
default messaging JMS provider panels. To view the properties of the default
messaging JMS provider, use the administrative console to complete the
following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click Default messaging.

3. The properties for the Default messaging JMS provider are displayed in the
main content pane of the WebSphere administrative console, as shown in
Figure 10-19 on page 516.

Note: WebSphere Application Server V6 does not require that the underlying
service integration bus resources are configured, before configuring the
corresponding JMS resources. However, certain fields within the default
messaging JMS provider administration panels are populated with relevant
service integration bus resources, if they exist. Therefore, to simplify the
process of creating JMS resources for the default messaging JMS provider, it
is recommended that that you create and configure the underlying service
integration bus resources first.

 Chapter 10. Asynchronous messaging 515

Figure 10-19 Default messaging provider configuration properties

It is worth noting, however, that the resource adapter can also be configured as a
generic J2EE Connector Architecture resource adapter. However, the
administration panels used for configuring a generic resource adapter are not
specific to JMS resources and are, therefore, not as easy to use as the default
messaging JMS provider administration panels. To view the properties of the
resource adapter, use the administrative console to complete the following steps:

1. In the navigation tree, expand Resources → Resource adapters.

2. Set the Scope for the resource adapter.

3. A list of resource adapters defined at this scope is displayed. Remember that
the resource adapter for the service integration bus is defined at all levels
within the WebSphere Application Server V6 cell. The list of resource
adapters is shown in Figure 10-20 on page 517.

516 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-20 Resource adapters

4. Click SIB JMS Resource Adapter.

5. The properties for the resource adapter are displayed. These are shown in
Figure 10-21 on page 518.

 Chapter 10. Asynchronous messaging 517

Figure 10-21 SIB JMS Resource Adapter properties

The links under the Additional Properties section of the configuration panel
shown in Figure 10-21, can be used to configure the following J2C resources,
at the relevant scope of the resource adapter:

– J2C Activation specifications
– J2C administered objects
– J2C connection factories

Note: Using the generic resource adapter configuration panels to configure
JMS resources for a service integration bus is not recommended. However,
the following advanced properties for a JMS activation specification can be
configured only using these panels:

� readAhead
� shareDataSourceWithCMP
� targetTransportChain

518 WebSphere Application Server V6: System Management and Configuration Handbook

10.5.2 Managing the WebSphere MQ JMS provider
WebSphere Application Server V6 supplies a pre-configured JMS provider
implementation for communicating with installations of the following products,
using both the Point-to-Point and Publish/Subscribe messaging models:

� WebSphere MQ
� WebSphere Business Integration Event Broker
� WebSphere Business Integration Message Broker

The WebSphere MQ JMS provider allows WebSphere solutions to be integrated
into heterogeneous WebSphere MQ environments. It is also fully compliant with
version 1.1 of the JMS specification.

However, the WebSphere MQ JMS provider is only partially integrated into
WebSphere system management. While the WebSphere administration tools
can be used to both configure and manage WebSphere MQ JMS administered
objects, the creation and management of queue managers, channels, and
queues must be performed using WebSphere MQ native tools.

To view the properties of the WebSphere MQ JMS provider, use the
administrative console to, do the following:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click WebSphere MQ, as shown in Figure 10-22 on page 520.

Note: Publish/Subscribe functionality for WebSphere MQ is provided through
the WebSphere MQ MA0C SupportPac™. However, use of MA0C is
discouraged, because the other brokers provide a much more robust
production publish/subscribe environment.

Note: Unlike the default messaging JMS provider, the WebSphere MQ JMS
provider is not a J2EE Connector Architecture version 1.5 compliant resource
adapter. It simply provides an implementation of version 1.1 of the JMS API,
enabling JMS clients to communicate directly with WebSphere MQ.

 Chapter 10. Asynchronous messaging 519

Figure 10-22 Finding the WebSphere MQ JMS provider in the navigation tree

3. The properties for the WebSphere MQ JMS provider are displayed in the
main content pane of the WebSphere administrative console, as shown in
Figure 10-23 on page 521.

520 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-23 WebSphere MQ JMS provider configuration properties

Each of these properties is described in Table 10-9.

Table 10-9 WebSphere MQ JMS provider properties

Property Description

Scope The scope of the configured resource.

Name The name by which the WebSphere MQ JMS provider is known for
administrative purposes

Description A description of the JMS provider, for administrative purposes
within IBM WebSphere Application Server

Class path � The list of paths or JAR file names that form the location of
the JMS provider classes

� Change the classpath by modifying the value of the
MQJMS_LIB_ROOT WebSphere variable.

 Chapter 10. Asynchronous messaging 521

10.5.3 Managing a generic JMS provider
WebSphere Application Server V6 supports the use of third party JMS providers
within its runtime environment through the use a generic JMS provider. However,
unlike the default messaging and WebSphere MQ JMS providers, a generic JMS
provider must be defined to WebSphere Application Server before any JMS
resources can be configured for that provider. Defining a generic JMS provider to
WebSphere ensures that the JMS provider classes are available on the
application server classpath at runtime.

A generic JMS provider is recommended in the following situations:

� A non-WebSphere MQ messaging system already exists in the environment,
and into which the WebSphere installation is required to integrate directly.

� A non-WebSphere MQ JMS provider supports functionality that is not
available using the default messaging or WebSphere MQ JMS providers, and
which would be useful for the user’s messaging environment.

Native library path � An optional path to any native libraries (.dll's, .so's) required
by the JMS provider

� The native path can be changed by modifying the value of the
MQJMS_LIB_ROOT WebSphere variable.

Note: The MQJMS_LIB_ROOT WebSphere variable points to the WebSphere MQ
JMS provider implementation libraries installed with WebSphere Application
Server V6. It is recommended that these libraries are used to communicate
with WebSphere MQ when using the WebSphere MQ JMS provider and that
the value of the MQJMS_LIB_ROOT WebSphere variable is not modified.

Property Description

Note: WebSphere Application Server V6 also supports the use of third-party
JMS providers that are implemented as J2EE Connector Architecture
resource adapters. The JMS resources for such JMS providers are configured
using the generic resource adapter configuration panels.

If the third party JMS provider is not implemented as a J2EE Connector
Architecture resource adapter, it is recommended that it supports the JMS
Application Server Facilities described in 10.2.12, “Application Server
Facilities” on page 484.

522 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere interaction with a generic JMS provider
The JMS administered objects for a generic JMS provider are bound into the
local JNDI name space within WebSphere Application Server V6. However,
these JNDI entries act as aliases to the real JMS administered objects that have
been configured in the external JNDI name space of the messaging provider.
This is shown in Figure 10-24.

Figure 10-24 Generic JMS provider components

This indirection is achieved by providing additional JNDI information when
configuring the JMS administered objects for the generic JMS provider. JMS
client application code is not affected in any way. It is the responsibility of the
WebSphere runtime to resolve accesses to the real JNDI entries in the external
name space.

However, WebSphere is not responsible for binding the JMS administered
objects into the external name space. This administrative task, along with
creating the underlying messaging objects, queues and topics, must be
performed using the tools provided by the generic JMS provider.

Defining a generic JMS provider
Before you can configure a generic JMS provider within WebSphere Application
Server V6, you must install the underlying messaging provider software and
configure it using the tools and information provided with the messaging provider.

To define a new generic messaging provider to WebSphere Application Server
V6, use the administrative console to complete the following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click Generic, as shown in Figure 10-25 on page 524.

Generic JMS Provider

Destination

Application Server

Local JNDI

Application

Connection
Factory

Destination

External JNDI

Connection
Factory

Destination

Messaging Provider
Admin Tool

Generic JMS Provider

Destination

Application Server

Local JNDI

Application

Connection
Factory

Destination

External JNDI

Connection
Factory

Destination

Messaging Provider
Admin Tool

 Chapter 10. Asynchronous messaging 523

Figure 10-25 Finding the generic JMS provider in the navigation tree

3. Set the scope at which to define the generic JMS provider by using the
relevant controls. Any existing generic JMS providers defined at this scope
are displayed in the content pane.

4. Click New in the content pane.

5. Define the JMS provider by specifying the appropriate values in the General
Properties section of the content pane, shown in Figure 10-26 on page 525.
The properties are described in Table 10-10 on page 525.

524 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-26 Generic JMS provider general properties

Table 10-10 Generic JMS provider properties

Property Description

Scope The scope of the generic JMS provider.

Name The name by which the generic JMS provider is known for
administrative purposes

Description A description of the generic JMS provider, for administrative
purposes within IBM WebSphere Application Server.

Class path The list of paths or JAR file names that together form the location
for the generic JMS providers classes

Native library path An optional path to any native libraries (.dll's, .so's) required by the
generic JMS provider

 Chapter 10. Asynchronous messaging 525

6. Click OK.

7. Save the changes and synchronize them with the nodes.

Once the generic JMS provider has been defined, JMS administered objects can
be configured for it. This is discussed in 10.6.5, “Configuring the generic JMS
provider” on page 572.

10.6 Configuring WebSphere JMS administered objects
As discussed earlier, an administrator must configure JMS administered objects
before they can be used within a JMS client application. Within WebSphere
Application Server V6, JMS administered objects are configured using the
WebSphere administrative console. The sections that follow discuss the
properties exposed by the JMS administered objects supported by WebSphere.

10.6.1 Common administration properties
All of the JMS administered objects that can be configured within WebSphere
Application Server V6 expose a subset of properties that are common. These
properties are used by WebSphere for administrative purposes. For instance, the
name and description properties are used for display purposes within the
WebSphere administrative console. These common administration properties
are shown in Table 10-11 on page 527.

External initial
context factory

This property is the Java classname of the generic JMS providers
initial context factory. For example, this would be
com.swiftmq.jndi.InitialContextFactoryImpl for the SwiftMQ JMS
provider.

External provider
URL

This is the JMS provider URL for external JNDI lookups. The
external provider URL specifies how the initial context factory
should connect to the external naming service. The format of the
external provider URL is <protocol>://<host name>:<port
number>. Continuing with the example above, the provider URL
smqp://localhost:4001 indicates that the initial context factory
connects to the SwiftMQ naming service using port 4001 on the
local machine and using the sqmq protocol.

Property Description

526 WebSphere Application Server V6: System Management and Configuration Handbook

Table 10-11 Common administration properties

10.6.2 Configuring the default messaging JMS provider
The sections that follow describe how to configure connection factories and
destinations for the default messaging JMS provider.

JMS connection factory properties
A JMS connection factory is used to create connections to a service integration
bus. These connections form part of the common interfaces described in section
10.2.3, “JMS domains” on page 471 and can be used by a JMS client to interact
with a service integration bus using both the point-to-point and Publish/Subscribe
messaging models.

The sections that follow describe the properties of the JMS connection factory for
the default messaging JMS provider. These properties have been grouped as
follows:

� Connection properties
� Durable subscription properties
� Quality of service properties
� Advanced messaging properties
� Advanced administrative properties

Connection properties
A connection to a service integration bus is a connection to an individual
messaging engine that is part of that bus. The connection properties for a
connection factory determine to which messaging engine a JMS client connects.
These connection properties provide an administrator with a range of possibilities
when configuring a connection factory, from simply connecting to any suitable

Property Description

Scope This is the scope of the configured JMS administered object
within the cell. The value of this property specifies the level at
which this resource definition is visible to applications.

Name This property is the name by which the JMS administered
object is known for administrative purposes.

JNDI name The JNDI name os used to bind the JMS administered object
into the application server's JNDI name space.

Description This is an optional description for the JMS administered
object.

Category This is an optional category string to use when classifying or
grouping the JMS administered object.

 Chapter 10. Asynchronous messaging 527

messaging engine within the named service integration bus, to using a highly
specific messaging engine selection algorithm.

It is worth noting that, in its simplest form, the only connection property that must
be specified is the name of the service integration bus with which to connect. It is
anticipated that, in the majority of cases, a connection factory configured in such
a way is suitable for the needs of most applications. For this reason, only a brief
description of the connection properties is included here. For an in depth
discussion of the connection properties and how they can be used to control
messaging engine selection, refer to section 10.7, “Connecting to a service
integration bus” on page 576.

A brief description of the connection properties for a default messaging JMS
provider connection factory are shown in Table 10-12.

Table 10-12 JMS connection factory connection properties

Property Description

Bus name This property is the name of the service integration bus to
which to connect. The connection factory creates JMS
connections to this service integration bus.

Target This property specifies the name of a target that identifies a
group of messaging engines.

Target type This property specifies the type of target named in the Target
property. If no target is specified, this property is ignored. The
default value for this property is Bus member name, indicating
that the target property specifies the name of a bus member.

Target significance This property specifies whether it is required that the
messaging engine selected is part of the named target group,
or whether it is only preferred. If no target is specified, this
property is ignored. The default value for this property is
Preferred.

Target inbound
transport chain

This property identifies the transport chain used by the JMS
client when connecting remotely to a messaging engine. Only
messaging engines that have this transport chain available are
considered for selection. If no value is specified, the
connection factory defaults to using the
InboundBasicMessaging transport chain.

528 WebSphere Application Server V6: System Management and Configuration Handbook

Durable subscription properties
The default messaging JMS provider supports the concept of durable
subscriptions, as required by the JMS specification. The durable subscription
properties for a connection factory configure this support. These properties are
described in Table 10-13.

Table 10-13 JMS connection factory durable subscription properties

Provider endpoints This property specifies a comma separated list of endpoints
used by a JMS client to connect to a bootstrap server. It is only
necessary to specify a provider endpoint list if the JMS client
is not running within the WebSphere Application Server V6
environment, or if the target bus is defined within another
WebSphere cell. For more information, see 10.7, “Connecting
to a service integration bus” on page 576.

Connection proximity This property defines the proximity of messaging engines that
can accept connection requests, in relation to the JMS client
or the bootstrap server.

Property Description

Client identifier JMS clients must provide a unique identifier when attempting
to register a durable subscription. This identifier is used by the
messaging provider to associate messages with a JMS client
while it is inactive. When the JMS client becomes active again,
it subscribes to the durable subscription, passing the same
unique identifier. The messaging provider is then able to
deliver persisted messages to the correct client.

The unique identifier can either be provided programatically by
a JMS client running inside the J2EE Client Container, or
administratively by the connection factory. The client identifier
property enables an administrator to specify the identifier that
should be assigned to connections created by the connection
factory. This identifier is then used if the JMS client attempts to
register a durable subscription without programmatically
providing a client identifier.

Durable subscription
home

Messages that are published to a topic that has inactive
durable subscribers registered, must be stored by the
messaging provider and delivered to each subscriber as and
when they become active. The durable subscription home
property enables an administrator to specify which messaging
engine is responsible for persisting such messages. A suitable
messaging engine must be specified in order to enable JMS
clients to use durable subscriptions.

Property Description

 Chapter 10. Asynchronous messaging 529

Quality of service properties
The JMS specification supports two modes of delivery for JMS messages;
persistent and non-persistent. However, the service integration bus defines
several levels of reliability that can be applied to both persistent and
non-persistent messages. The levels of reliability defined by the service
integration bus are discussed in more detail in “Reliability” on page 604. The
quality of service properties enable an administrator to define the reliability
applied to messages sent using connections created from this connection
factory. These properties are described in Table 10-14.

Table 10-14 JMS connection factory quality of service properties

Advanced messaging properties
The connection factory for the default messaging JMS provider also exposes a
number of properties for advanced JMS users. These properties are described in
Table 10-15 on page 531.

Property Description

Nonpersistent
message reliability

Reliability should be applied to non-persistent JMS messages
sent using connections created from this connection factory.
Different reliability options can be specified for individual
destinations by setting the value of this property to As bus
destination. The reliability is then defined by the reliability
properties specified on the underlying bus destination to which
the JMS destination is assigned. The default value for this
property is Express nonpersistent.

Persistent message
reliability

Reliability should be applied to persistent JMS messages sent
using connections created from this connection factory.
Different reliability options can be specified for individual
destinations by setting the value of this property to As bus
destination. The reliability is then defined by the reliability
properties specified on the underlying bus destination to which
the JMS destination is assigned. The default value for this
property is Reliable nonpersistent.

530 WebSphere Application Server V6: System Management and Configuration Handbook

Table 10-15 JMS connection factory advanced messaging properties

Property Description

Read ahead Read ahead is an optimization technique used by the default
messaging JMS provider to reduce the time taken to satisfy
requests from message consumers. It works by preemptively
assigning messages to message consumers. Messages
assigned to message consumers are locked on the server and
sent to a proxy destination on the client, prior to the message
consumer requesting them. The message consumer running
within the client is then able to consume the messages from
the local proxy destination.

Messages that are locked on the server cannot be consumed
by any other message consumers for that destination.
Messages that are assigned to a message consumer, but not
consumed before it is closed, are subsequently unlocked on
the server and are then available for receipt by other message
consumers.

Valid values for this property are:

� Default

Read ahead is enabled in situations where there can only
be a single message consumer. That is, read ahead is
enabled for message consumers on non-durable
subscriptions and unshared durable subscriptions. This is
the default value for this property.

� Enabled

Read ahead is enabled for all message consumers.

� Disabled

Read ahead is disabled for all message consumers.

The read ahead property for the connection factory can be
overridden by specifying a value for the read ahead property
on a specific JMS destination.

Temporary queue
name prefix

Enter the prefix to be used when generating the names of
temporary queues created within JMS clients using this
connection factory. The prefix can be up to twelve characters
long. By default, no value is specified for this property, which
causes temporary queues to be generated without any prefix.

 Chapter 10. Asynchronous messaging 531

Advanced administrative properties
The connection factory for the default messaging JMS provider also exposes a
number of advanced properties that are used for administrative purposes. These
properties are described in Table 10-16.

Table 10-16 JMS connection factory advanced administrative properties

Temporary topic
name prefix

Enter the prefix to be used when generating the names of
temporary topics created within JMS clients using this
connection factory. The prefix can be up to twelve characters
long. By default, no value is specified for this property, which
causes temporary topics to be generated without any prefix.

Share durable
subscriptions

This property specifies whether multiple TopicSubscribers,
created using this connection factory, can consume messages
simultaneously from a single durable subscription. Normally,
only one session at a time can have a TopicSubscriber for a
particular durable subscription. This property enables you to
override this behavior, to enable a durable subscription to
have multiple simultaneous consumers.

Valid values for this property are:

� In cluster

Allow sharing of durable subscriptions when connections
are made from within a server cluster. This is the default
value for this property.

� Always shared

Share durable subscriptions across connections.

� Never shared

Never share durable subscriptions across connections.

Property Description

Component-managed
authentication alias

Specify the J2C authentication data entry alias to be used to
authenticate the creation of a new connection to the JMS
provider. The alias encapsulates the user ID and password
that will be used to authenticate the creation of the connection.

A component-managed authentication alias is only required if
global security has been enabled for WebSphere Application
Server. The use of this alias depends on the resource
authentication (res-auth) setting declared in the connection
factory resource reference of an application component's
deployment descriptors.

Property Description

532 WebSphere Application Server V6: System Management and Configuration Handbook

Log missing
transaction contexts

Specify whether the Web or EJB container logs the fact that
there is no transaction context associated with the thread on
which a connection is obtained. This situation can occur if an
application has created its own threads. The log entry is
written to the SystemOut.log file. The default value for this
property is false. The check box is not selected.

Manage cached
handles

Specify whether the Web or EJB container tracks connection
handles that have been cached by an application. An
application caches connection handles by storing them in
instance variables. If the application subsequently fails, the
Web or EJB container will attempt to close any connections
that it was using. However, tracking cached connection
handles incurs a large run time performance overhead and
should only be used for debugging purposes. The default
value for this property is false (the check box is not selected).

Share data source
with CMP

Use this property to enable the sharing of JDBC connections
between the data store component of a messaging engine and
container-managed persistence (CMP) entity beans. In order
for this to provide a performance improvement, the data
source used by the data store and the CMP entity bean must
be the same. If this is the case, a JDBC connection can be
shared within the context of a global transaction involving the
messaging engine and the CMP entity bean. If no other
resources are accessed as part of the global transaction,
WebSphere is able to use local transaction optimization in an
effort to improve performance. The default value for this
property is false (the check box is not selected).

Please refer to the WebSphere Information Center for a full
description of this performance optimization.

XA recovery
authentication alias

Specify the J2C authentication data entry alias to be used to
authenticate the creation of a connection to the JMS provider
during XA recovery processing. The alias encapsulates the
user ID and password that will be used to authenticate the
creation of the connection.

During XA recovery processing, a connection might need to be
made to a messaging engine within the service integration
bus. If security is enabled for the bus, it might be necessary to
authenticate the creation of the connection. The XA recovery
authentication alias is used for this purpose.

Property Description

 Chapter 10. Asynchronous messaging 533

JMS connection factory configuration
To configure a JMS connection factory for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources →JMS Providers.

2. Click Default messaging.

3. Set the Scope for the JMS connection factory.

4. Click JMS connection factory in the Connection Factories section. A list of
any existing JMS connection factories defined at this scope will be displayed.
This is shown in Figure 10-27.

Figure 10-27 Default messaging JMS connection factory administered objects

In this example, we already have one JMS connection factory object defined,
called BankJMSConnFactory. This connection factory object has all of the
necessary properties configured in order to connect to a service integration
bus.

5. To create a new JMS connection factory object, click New. Alternatively, to
change the properties of an existing JMS connection factory, click one of the
connection factories displayed. Figure 10-28 on page 535 shows the top
portion of the configuration page for BankJMSConnFactory object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Bus name. In
Figure 10-28, the value specified for the Bus name property is SamplesBus.
This specifies that the BankJMSConnFactory object will create connections to
the SamplesBus service integration bus.

534 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-28 Default messaging JMS connection factory properties

6. Enter the required configuration properties for the JMS connection factory.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, any application servers within the scope
of the resources will need to be restarted.

JMS destination properties
Both queue and topic destinations can be configured for the default messaging
JMS provider. The sections that follow describe the properties of the queue and
topic destinations. These properties have been grouped as follows:

 Chapter 10. Asynchronous messaging 535

� Common connection properties
� Queue specific connection properties
� Topic specific connection properties
� Advanced destination properties

Common connection properties
JMS queue and JMS topic destinations share a number of common connection
properties. These common properties are described in Table 10-17.

Table 10-17 JMS destination connection properties

Property Description

Bus name Use this property to specify the name of the service integration
bus on which the destination is defined. The default behavior
if, no value is specified for this property, is to assume that the
destination is defined on the same service integration bus to
which the application is connected. That is, the service
integration bus will be determined from the connection factory
that is used in conjunction with this JMS destination.

The only situation in which a bus name must be specified is if
the underlying destination that this JMS destination refers to is
defined on a foreign bus. The foreign bus specified can refer
to a service integration bus, or to WebSphere MQ. Please
refer to section 11.1.7, “Foreign buses” on page 606 for more
information.

Delivery mode Us this property to specify the delivery mode to be used for
messages that are sent to this destination. This property
allows an administrator to override the delivery mode specified
by the JMS client when sending a message.

Valid values for this property are:

� Application

The persistence of messages sent to this destination is
determined by the JMS client application when sending a
message. This is the default value for this property.

� Nonpersistent

All messages that are sent to this destination are treated
as non-persistent.

� Persistent

All messages that are sent to this destination are treated
as persistent.

536 WebSphere Application Server V6: System Management and Configuration Handbook

Queue specific connection properties
The property that is specific to JMS queue destinations are described in
Table 10-18 on page 537.

Table 10-18 JMS queue specific connection properties

Topic specific connection properties
When configuring a JMS topic destination, it is possible to partition the topic
space into a tree-like hierarchical structure. You can achieve this by defining
multiple JMS topic destinations that refer to the same underlying topic space
destination, but specifying different topic names. It is the topic name property on
a JMS topic destination that is used to partition a topic space.

The topic name property also allows the use of wildcards characters.
Figure 10-19 on page 538, describes the wildcard characters that can be used
when specifying the topic name.

Time to live Specify the length of time, in milliseconds, from its dispatch
time that a message sent to this destination should be kept by
the system. Specifying a time to live on a destination overrides
the time to live specified by the JMS client when sending a
message. A value of 0 (zero) means that messages are kept
indefinitely. By default, no value is specified for this property,
allowing the JMS client application to determine the time to
keep messages.

Priority Specify the relative priority for messages sent to this
destination. Specifying a priority on a destination overrides the
priority specified by the JMS client when sending a message.
The JMS specification defines ten levels of priority ranging
from 0 (zero) to 9. Zero is the lowest priority and 9 is the
highest. By default, no value is specified for this property,
allowing the JMS client application to determine the priority for
a message. If the JMS client application does not specify a
priority, the default JMS priority of 4 will be used.

Property Description

Queue name Use this property to specify the name of the queue destination
on the underlying service integration bus or foreign bus. If this
JMS destination refers to a destination defined on WebSphere
MQ, through a foreign bus, special consideration must be
given to the queue name specified. Refer to , “Addressing
destinations across the WebSphere MQ link” on page 633 for
more information.

Property Description

 Chapter 10. Asynchronous messaging 537

Table 10-19 Service integration bus topic wildcard characters

Refer to the WebSphere Information Center for a full description of using topic
wildcards in topic expressions to retrieve topics provided by the default
messaging provider and service integration bus.

The properties that are specific to JMS topic destinations are described in
Table 10-20.

Table 10-20 JMS topic specific connection properties

Topic name Topics selected

A/B Selects the B child of A

A/* Selects all children of A

A//* Selects all descendents of A

A//. Selects A and all descendents of A

//* Selects everything

A/./B Equivalent to A/B

A/*/B Selects all B grandchildren of A

A//B Selects all B descendents of A

//A Selects all A elements at any level

* Selects all first level elements

Note: The use of wildcards within a topic name for a JMS topic destination is
only valid when the JMS topic destination is used by a message consumer. If
a message producer attempts to use such a JMS topic destination, a JMS
exception will be thrown to the JMS client application.

Property Description

Topic space Use this property to specify the name of the topic space
destination on the underlying service integration bus.

538 WebSphere Application Server V6: System Management and Configuration Handbook

Advanced destination properties
The JMS queue and JMS topic destinations for the default messaging JMS
provider also exposes the advanced properties described in Table 10-21.

Table 10-21 JMS destination advanced properties

JMS queue configuration
To configure a queue destination for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources →JMS Providers.

2. Click Default messaging.

3. Set the Scope for the queue destination.

Topic name The topic name property allows a topic space to be partitioned
into a tree-like hierarchical structure. Several JMS topic
destinations can be defined that refer different nodes of this
tree structure within the same underlying topic space on a
service integration bus. By default, no value is specified for this
property. In this situation, the topic name will default to the
value specified for the Name property for this JMS topic
destination.

Property Description

Read ahead The read ahead property on a JMS destination enables an
administrator to override the value of the read ahead property
specified on the JMS connection factory.

Valid values for this property are:

� Enabled

Read ahead is enabled for all message consumers that
are consuming messages from this destination.

� Disabled

Read ahead is disabled for all message consumers that
are consuming messages from this destination.

� As connection factory

The value of the read ahead property specified on the
JMS connection factory should be used.

For information about the read ahead property, refer to
Table 10-15 on page 531.

Property Description

 Chapter 10. Asynchronous messaging 539

4. Click JMS queue in the Destinations section. A list of any existing queue
destinations defined at this scope will be displayed. This is shown in
Figure 10-29.

Figure 10-29 Default messaging queue destination administered objects

In this example, we already have one JMS queue destination object defined,
called BankJMSQueue.

5. To create a new queue destination object, click New. Alternatively, to change
the properties of an existing queue destination, click one of the queue
destinations displayed. Figure 10-30 on page 541 shows the configuration
page for the BankJMSQueue object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Queue name. In
Figure 10-30 on page 541, the value specified for the Queue name property is
BankJSQueue. This must match the name of the queue destination defined
on the corresponding service integration bus.

By default, no value is specified for the Bus name property. The default
behavior when no bus name is specified, is to assume that the queue
destination is defined on the same service integration bus to which the
application is connected. That is, the service integration bus will be
determined from the connection factory that is used in conjunction with the
JMS queue destination.

540 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-30 Default messaging queue destination properties

6. Enter the required configuration properties for the JMS queue destination.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

JMS topic configuration
To configure a topic destination for the default messaging JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources →JMS Providers.

2. Click Default messaging.

3. Set the Scope for the queue destination.

4. Click JMS topic in the Destinations section. A list of any existing topic
destinations defined at this scope will be displayed. This is shown in
Figure 10-31 on page 542.

 Chapter 10. Asynchronous messaging 541

Figure 10-31 Default messaging topic destination administered objects

In this example, we already have three JMS topic destination objects defined,
FootballTopic, RugbyTopic and SportsTopic.

5. To create a new topic destination object, click New. Alternatively, to change
the properties of an existing topic destination, click one of the topic
destinations displayed. Figure 10-32 on page 543 shows the configuration
page for the FootballTopic object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Topic space. In
Figure 10-32 on page 543, the value specified for the Topic space property is
SportsTopic. This must match the name of the topic space destination defined
on the corresponding service integration bus.

542 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-32 Default messaging topic destination properties

By default, no value is specified for the Bus name property. The default
behavior when no bus name is specified, is to assume that the topic
destination is defined on the same service integration bus to which the
application is connected. The service integration bus will be determined from
the connection factory that is used in conjunction with the JMS topic
destination.

It is also worth noting that the Topic name property shown in Figure 10-32
has a value of sports/football. The topic name property allows a topic space
to be partitioned into a tree-like hierarchical structure. The three JMS topic
destinations shown in Figure 10-31 on page 542, all refer to the SportsTopic

 Chapter 10. Asynchronous messaging 543

destination on the underlying service integration bus. However, they all
specify different topic names, as shown in Table 10-22.

Table 10-22 Sample sports topic names

Effectively, this configuration partitions the SportsTopic topic space into the
hierarchical structure shown in Figure 10-33.

Figure 10-33 Sample sports topic hierarchy

If a subscriber subscribes to the FootballTopic JMS destination, which
represents the sports/football topic name, it will only receive publications sent
using the FootballTopic JMS destination, that map on to the same topic name.

However, the SportsTopic JMS destination defines a topic name that ends
with a wildcard character. This allows a subscriber interested in all sports to
subscribe to the SportsTopic destination. This subscriber would then receive
publications sent to either the FootballTopic or RugbyTopic JMS destinations.

See “Topic specific connection properties” on page 537 for more information
about using wild cards.

6. Enter the required configuration properties for the JMS topic destination.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

JMS topic destination Topic name

SportsTopic sports/*

FootballTopic sports/football

RugbyTopic sports/rugby

Sports

Football Rugby

Sports

Football Rugby

544 WebSphere Application Server V6: System Management and Configuration Handbook

JMS activation specification properties
As we discussed in section 10.4.7, “Associating a message-driven bean with a
destination” on page 509, a JMS activation specification is used to configure an
instance of an ActivationSpec JavaBean for the default messaging JMS provider.
A JMS activation specification is then associated with a message-driven bean
during application installation.

The JMS activation specification object defines all of the properties that the J2EE
Connector Architecture requires or recommends an ActivationSpec JavaBean to
support. For more information about these properties, please refer to 10.3.4,
“JMS ActivationSpec JavaBean” on page 491. It also defines other properties
specific to using it in conjunction with a service integration bus.

The sections that follow describe the properties of the JMS activation
specification. These properties have been grouped as follows:

� Destination properties
� Additional properties
� Subscription durability properties
� Advanced properties

Destination properties
The JMS activation specification defines a number of properties that identify the
destination with which a message-driven bean will be associated. These
properties are described in Table 10-23 on page 546.

Note: JMS activation specifications also expose the following administration
properties:

� Scope
� Name
� JNDI name

A description for these properties can be found in section 10.6.1, “Common
administration properties” on page 526.

 Chapter 10. Asynchronous messaging 545

Table 10-23 JMS activation specification destination properties

Property Description

Destination type Use this property to specify the type of the JMS destination
with which a message-driven bean will be associated. Valid
values for this property are:

� Queue

The target destination is a queue destination. This is the
default value for this property.

� Topic

The target destination is a topic destination

Destination JNDI
name

You must specify a JNDI name for the target destination.

Message selector This property specifies a JMS message selector that should
be applied to the target JMS destination. Only messages that
match this message selector will be delivered to the
message-driven bean. By default, no message selector is
specified for a JMS activation specification. Refer to “Message
selectors” on page 478 for more information.

Bus name This property is the name of the service integration bus on
which the target destination is defined. This bus must exist
within the same cell as the application server on which the
message-driven bean is running, but this application server is
not required to be a member of the bus. However, the best
performance will be obtained if the application server on which
the message-driven bean is running is a member of the bus
specified. A value must be specified for this property.

Acknowledge mode Use this property to specify how the EJB container
acknowledges the receipt of a message by a message-driven
bean instance that is using bean managed transactions. Valid
values for this property are:

� Auto-acknowledge

The EJB container automatically acknowledges the
delivery of a message when the onMessage method of
the message-driven bean successfully returns.

� Duplicates-ok auto-acknowledge

The EJB container lazily acknowledges the delivery of
messages to message-driven beans. This can improve
performance, but can lead to a message-driven bean
receiving a message more than once.

546 WebSphere Application Server V6: System Management and Configuration Handbook

Additional properties
The JMS activation specification for the default messaging JMS provider also
exposes a group of additional properties, as described in Table 10-24 on
page 547.

Table 10-24 JMS activation specification additional properties

Subscription durability properties
A JMS activation specification can be configured with a destination type of Topic.
It might be required that message-driven beans that are associated with such a
JMS activation specification need to register durable subscriptions with the topic
destination. However, a message-driven bean is not able to programatically
configure a durable subscription. The subscription durability properties on a JMS
activation specification enable the configuration properties for a durable
subscription to be specified administratively. These properties are described in
Table 10-25 on page 548.

Property Description

Authentication alias Use this property to specify the J2C authentication data entry
alias to be used to authenticate the creation of a new
connection to the JMS provider. The alias encapsulates the
user ID and password that will be used to authenticate the
creation of the connection. An authentication alias is only
required if global security has been enabled for WebSphere
Application Server.

Maximum batch size Specify the maximum number of messages that can be
received from a messaging engine in a single batch. These
messages are then delivered serially to an instance of the
message-driven bean that is associated with this JMS
activation specification. Delivering messages in a batch can
improve the performance of the JMS application. However, if
message ordering must be maintained across failed
deliveries, the batch size should be set to 1. If no value is
specified for this property, it defaults to 1.

Maximum concurrent
endpoints

This property specifies the maximum number of message
endpoints to which messages are delivered concurrently. In
the case of a JMS activation specification, a message
endpoint is a JMS message-driven bean. Increasing this
number can improve performance but will also increase the
number of running threads within the application server. If
message ordering must be maintained across failed
deliveries, the number of maximum concurrent endpoints
should be set to 1. If no value is specified for this property, it
defaults to 10.

 Chapter 10. Asynchronous messaging 547

Table 10-25 JMS activation specification subscription durability properties

Property Description

Subscription durability Use this property to specify whether a JMS topic subscription
is durable or nondurable.

Valid values for this property are:

� Durable

The messaging provider stores messages while the
message-driven bean is not available, and delivers the
messages when the message-driven bean becomes
available again.

� Nondurable

The messaging provider does not store and redeliver
messages if a message-driven bean is not available. This
is the default value for this property.

Subscription name JMS clients must provide a subscription name when
attempting to register a durable subscription. Because a JMS
client can create several durable subscriptions, the
subscription name must be unique within the context of a
particular client identifier (described within this table).

A message-driven bean is not able to programatically specify
a subscription name when it creates a durable subscription. A
suitable subscription name must be specified in order to
enable message-driven beans associated with this JMS
activation specification to use durable subscriptions.

Client identifier JMS clients must provider a unique identifier when attempting
to register a durable subscription. This identifier is used by the
messaging provider to associate messages with a JMS client
while it is inactive. When the JMS client becomes active again,
it subscribes to the durable subscription, passing the same
unique identifier. The messaging provider is then able to
deliver persisted messages to the correct client.

A message-driven bean is not able to programatically specify
a client identifier when it creates a durable subscription. A
suitable client identifier must be specified in order to enable
message-driven beans associated with this JMS activation
specification to use durable subscriptions.

548 WebSphere Application Server V6: System Management and Configuration Handbook

Advanced properties
The JMS activation specification for the default messaging JMS provider also
exposes the advanced properties described in Table 10-26 on page 549.

Table 10-26 JMS activation specification advanced properties

JMS activation specification configuration
To configure a JMS activation specification for the default messaging JMS
provider, complete the following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click Default messaging.

3. Set the Scope for the queue destination.

4. Click JMS activation specifications in the Activation specifications
section. A list of any existing activation specifications defined at this scope will
be displayed. This is shown in Figure 10-34 on page 550.

Durable subscription
home

Messages that are published to a topic that has inactive
durable subscribers registered, must be stored by the
messaging provider and delivered to each subscriber as and
when the become active. The durable subscription home
property enables an administrator to specify which messaging
engine is responsible for persisting such messages. A suitable
messaging engine must be specified in order to enable
message-driven beans associated with this JMS activation
specification to use durable subscriptions.

Property Description

Share durable
subscriptions

The share durable subscriptions property for the JMS
activation specification defines whether a durable subscription
should be shared across connections. This property is only
relevant if the value of the destination type property is Topic
and the value of the subscription durability property is Durable.
The default value for this property is In cluster. Refer to
Table 10-15 on page 531 for more information.

Property Description

 Chapter 10. Asynchronous messaging 549

Figure 10-34 Default messaging JMS activation specifications

In this example, we already have one JMS activation specification object
defined, called BankActivationSpec.

5. To create a new JMS activation specification object, click New. Alternatively,
to change the properties of an existing JMS activation specification, click one
of the JMS activation specifications displayed. Figure 10-32 on page 543
shows the top portion of the configuration page for the BankActivationSpec
object.

The JMS activation specification object is not, strictly speaking, a JMS
administered object. However, it still exposes a number of the properties that
are common among all JMS administered objects. These are scope, name
and JNDI name. As with JMS administered objects, values for these
properties are required by the WebSphere administrative console for
administrative purposes.

Values must also be specified for all of the properties on the ActivationSpec
JavaBean that are defined as required within the deployment descriptor for
the default messaging resource adapter. Recall from Example 10-13 on
page 490, that these properties are destination, destinationType and
busName. The relevant mappings between these properties and the
corresponding properties on the JMS activation specification are shown in
Table 10-27.

Table 10-27 Required properties for a JMS activation specification object

ActivationSpec
JavaBean property

JMS activation
specification property

BankActivationSpec
value

destination Destination JNDI name jms/BankJMSQueue

destinationType Destination type Queue

busName Bus name SamplesBus

550 WebSphere Application Server V6: System Management and Configuration Handbook

Following our example through, using the JMS queue defined in “JMS queue
configuration” on page 539, we know that the BankJMSQueue object was
bound into the JNDI name space with the name jms/BankJMSQueue. This
JMS queue object maps on to the BankJSQueue on the SamplesBus service
integration bus.

Therefore, if a message-driven bean is associated with this JMS activation
specification, it would be invoked when messages arrived at the
BankJSQueue destination on the SamplesBus. See Figure 10-35.

Figure 10-35 Default messaging JMS activation specification properties

6. Enter the required configuration properties for the JMS activation
specification.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

 Chapter 10. Asynchronous messaging 551

10.6.3 Configuring the WebSphere MQ JMS provider
The WebSphere MQ JMS provider can be configured to communicate with
WebSphere MQ using a bindings or client connection. These two connectivity
options are described below:

� Bindings connection

When used in bindings mode, the WebSphere MQ JMS provider uses the
Java Native Interface (JNI) to call directly into the existing queue manager
API, rather than communicating through a network. This provides better
performance when connecting to WebSphere MQ than using a client
connection.

However, to use a bindings connection, WebSphere MQ and WebSphere
Application Server V6 must be installed on the same machine.

� Client connection

If it is not possible to collocate WebSphere Application Server V6 and
WebSphere MQ on the same machine, the WebSphere MQ JMS provider
must be configured to connect to WebSphere MQ using TCP/IP. Using a
client connection allows you to perform authorization checks.

Additional considerations must be taken into account when configuring the
WebSphere MQ JMS provider to use a client connection, for instance:

– Whether the connection needs to be secured by encrypting the data that
flows over the connection

– Whether the connection will go through a firewall

The sections that follow describe the properties exposed by WebSphere MQ
connection factories and destinations, and also how to configure connection
factories and destinations for the WebSphere MQ JMS provider.

WebSphere MQ connection factory properties
A WebSphere MQ connection factory is used to create connections to
WebSphere MQ. These connections form part of the common interfaces
described in section 10.2.3, “JMS domains” on page 471 and can be used by a
JMS client to interact with WebSphere MQ using both the Point-to-Point and
Publish/Subscribe messaging models.

Note: As discussed in section 10.5.2, “Managing the WebSphere MQ JMS
provider” on page 519, WebSphere MQ resources such as queue managers,
channels, and queues must be created using the tools provided with
WebSphere MQ.

552 WebSphere Application Server V6: System Management and Configuration Handbook

However, because the WebSphere MQ connection factory is not specific to either
JMS domain, it encapsulates all of the configuration information that might be
required to communicate using either messaging model. Consequently, a large
number of properties are exposed by the WebSphere MQ connection factory
object. Fortunately, default values are defined for many of these properties.

The sections that follow describe some of the more important properties that are
exposed by the WebSphere MQ connection factory object. These properties
have been grouped as follows:

� Bindings connection properties
� Client connection properties
� Queue connection specific properties
� Topic connection specific properties
� Connection security properties
� Advanced connection properties

Bindings connection properties
With respect to the number of properties, setting up a bindings connection
between a WebSphere MQ connection factory and WebSphere MQ is the
simplest configuration. The properties required to configure a bindings
connection for a WebSphere MQ connection factory object are shown in
Table 10-28.

Table 10-28 WebSphere MQ connection factory bindings connection properties

Note: Not all of the properties of the WebSphere MQ connection factory are
described. For a full description of all of the properties please refer to the
WebSphere Information Center and the WebSphere MQ Using Java manual,
links for which are contained in section 10.8, “References and resources” on
page 590.

Property Description

Transport type Use this property to specify whether WebSphere MQ client
TCP/IP connection or interprocess bindings connection is to
be used to connect to the WebSphere MQ queue manager.
Inter-process bindings can only be used to connect to a queue
manager on the same physical machine. Transport type
defaults to BINDINGS.

Queue manager This property is the name of the WebSphere MQ queue
manager for this connection factory. Connections created by
this factory connect to the specified queue manager on the
local machine. If no queue manager is specified, the
connections created by this factory will connect to the default
queue manager on the local machine if one exists.

 Chapter 10. Asynchronous messaging 553

Client connection properties
The properties required to configure a basic client connection for a WebSphere
MQ connection factory object are shown in Table 10-29.

Table 10-29 WebSphere MQ connection factory client connection properties

Queue connection properties
A number of the properties defined by the WebSphere MQ connection factory
object are specific to WebSphere MQ queue destinations. Table 10-30 on
page 555 describes these properties.

Property Description

Transport type Use this property to specify whether WebSphere MQ client
TCP/IP connection or interprocess bindings connection is to
be used to connect to the WebSphere MQ queue manager. To
configure a WebSphere MQ client TCP/IP connection a value
of CLIENT must be specified.

Host This property is the name of the host on which the WebSphere
MQ queue manager runs.

Port This property defines the TCP/IP port number used for
connection to the WebSphere MQ queue manager. This port
number should match the listener port defined for the queue
manager. The default value for the port property is 0 (zero).
The default port for a WebSphere MQ queue manager listener
is 1414.

Channel Specify the name of the channel used for connection to the
WebSphere MQ queue manager. If no channel is specified,
the channel defaults to a standard server connection channel
defined by all queue managers, called SYSTEM.DEF.SVRCONN.

Local server address In some network configurations, firewalls are configured to
prevent connection attempts unless they originate from
specific ports or range of ports. The local server address
property allows a port or range of ports to be specified for the
WebSphere MQ connection factory to use when creating the
outbound client connection. The local server address property
defaults to null.

554 WebSphere Application Server V6: System Management and Configuration Handbook

Table 10-30 WebSphere MQ connection factory queue connection specific properties

Topic connection properties
A large number of the properties defined by the WebSphere MQ connection
factory object are specific to WebSphere MQ topic destinations. Table 10-31
describes some of the more important topic connection specific properties.

Table 10-31 WebSphere MQ connection factory topic connection specific properties

Property Description

Enable message
retention

Check this box to specify that unwanted messages are to be
left on the queue. Otherwise, unwanted messages are dealt
with according to their disposition options. By default, this
means that a message is sent to the queue manager’s
dead-letter queue. It is also possible to specify that unwanted
messages be discarded. The default value for the enable
message retention property is true. The box is checked.

Model queue
definition

This property is the name of the model queue from which
WebSphere MQ dynamic queues are created. The model
queue acts a template for the WebSphere MQ dynamic.
WebSphere MQ dynamic queues are created as a result of the
JMS client invoking the createTemporaryQueue method on
the Session object. If no model queue definition is specified, it
defaults to a standard model queue defined by all queue
managers called SYSTEM.DEFAULT.MODEL.QUEUE.

Temporary queue
prefix

The prefix that is used to form the name of a WebSphere MQ
dynamic queue. The prefix must end in an asterisk (*) and be
no more than 33 characters in length, including the asterisk. If
no temporary queue prefix is specified, it defaults to AMQ.*.

Property Description

Broker queue
manager

Use this property to define the name of the WebSphere MQ
queue manager that is hosting WebSphere Business
Integration Event Broker or WebSphere Business Integration
Message Broker. This can be different from the value specified
for the queue manager property. However, if it is different,
server channels must be defined between the two queue
managers. If no broker queue manager is specified, it defaults
to having the same value as the queue manager property.

Broker control queue Define the name of the queue on the broker queue manager
to which subscription requests should be sent. If no broker
control queue is specified, it defaults to a standard control
queue on the broker queue manager called
SYSTEM.CONTROL.BROKER.QUEUE.

 Chapter 10. Asynchronous messaging 555

Connection security properties
Security is an additional consideration when configuring a bindings connection
between a WebSphere MQ connection factory and WebSphere MQ. Table 10-32
describes the properties of a WebSphere MQ connection factory that relate to
security.

Table 10-32 WebSphere MQ connection factory connection security properties

Broker publication
queue

This property defines the name of the queue on the broker
queue manager to which publications should be sent. If no
broker publication queue definition is specified, it defaults to a
standard publication queue on the broker queue manager
called SYSTEM.BROKER.DEFAULT.STREAM.

Broker subscription
queue

Specify the name of the queue on the broker queue manager
from which non-durable subscription messages are retrieved.
If no broker subscription queue is specified, it defaults to a
SYSTEM.JMS.ND.SUBSCRIBER.QUEUE.

Client ID Define the client identifier used when creating durable
subscriptions to a topic. The client identifier is ignored for
point-to-point connections.

Property Description

Component-managed
authentication alias

The component-managed authentication alias drop down can
be used to specify a J2C authentication data entry. If the
resource reference used within the JMS client application
specifies a res-auth of Application, the user ID and password
defined by the J2C authentication data entry will be used to
authenticate the creation of a connection.
component-managed authentication alias defaults to none. If
no component-managed authentication alias is specified and
the WebSphere MQ queue manager requires the user ID and
password to get a connection, then an exception will be thrown
when attempting to connect.

SSL cipher suite Enter the SSL cipher suite used to encrypt the communication
with the queue manager. If set, the value of this property must
be a valid CipherSuite provided by the JSSE provider
configured within WebSphere Application Server. It must also
be equivalent to the CipherSpec specified on the server
connection channel within WebSphere MQ, named by the
CHANNEL property. By default, no value is specified for this
property.

Property Description

556 WebSphere Application Server V6: System Management and Configuration Handbook

Advanced connection properties
The WebSphere MQ connection factory object also exposes a number of
properties that affect how the WebSphere MQ JMS provider interacts with
WebSphere MQ. In order to fully understand these properties, an advanced
knowledge of WebSphere MQ is required. Some of the more important
properties are described in Table 10-33.

Table 10-33 WebSphere MQ connection factory advanced properties

SSL CRL The SSL CRL property specifies zero or more Certificate
Revocation List (CRL) servers. These are LDAP servers that
are used to check whether a SSL certificate has been revoked.

If SSLCRL is not set, which is the default, no such checking is
performed. Also, SSL CRL is ignored if no SSL cipher suite is
specified.

SSL peer name The SSL peer name property specifies a distinguished name
which must match the SSLPEER parameter specified on the
server connection channel named by the CHANNEL property.

If the SSL peer name property is not set, which is the default,
no such checking is performed. Also, SSL peer name is
ignored if no SSL cipher suite is specified.

Property Description

CCSID Use this property to define the coded-character-set-ID to be
used on connections. The value for this property defaults to
null. This indicates to the WebSphere MQ JMS provider that
its default CCSID should not be overridden. The default
CCSID within the WebSphere MQ JMS provider is 819, which
represents the ASCII character set. Changing this value
affects the way in which the queue manager that this
connection factory creates connections for translates
information in the WebSphere MQ headers.

XA enabled Specify whether the resources of WebSphere MQ can be
enlisted into a distributed transaction. The default value for the
XA enabled property is true. The box is checked. If the XA
enabled check box is not selected, the JMS session is still
enlisted in a transaction, but uses the resource manager local
transaction calls (session.commit and session.rollback)
instead of XA calls. This can lead to an improvement in
performance. However, unless last participant support is used,
this means that only a single resource can be enlisted in a
transaction in WebSphere Application Server.

Property Description

 Chapter 10. Asynchronous messaging 557

WebSphere MQ connection factory configuration
To configure a connection factory for the WebSphere MQ JMS provider,
complete the following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click WebSphere MQ.

3. Set the Scope for the connection factory.

4. Click WebSphere MQ connection factories in the Additional Properties
section. A list of any existing connection factories defined at this scope will be
displayed. This is shown in Figure 10-36.

Enable return
methods during
shutdown

Define whether a JMS client application returns from a method
call if the queue manager has entered a controlled shutdown.
The default value for the enable return methods during
shutdown property is true (the check box is selected).

Polling interval The polling interval property specifies the interval, in
milliseconds, between scans of all receivers during
asynchronous message delivery. The polling interval property
defaults to 5000.

Rescan interval The rescan interval property specifies the interval in
milliseconds between which a queue is scanned to look for
messages that have been added to a queue out of order. This
interval controls the scanning for messages that have been
added to a queue out of order with respect to a WebSphere
WebSphere MQ browse cursor. The rescan interval property
defaults to 5000.

Enable MQ
connection pooling

This property specifies whether MQ connection pooling should
be used to pool the connections to the WebSphere MQ queue
manager. If MQ connection pooling is used, when a
connection is no longer required, instead of destroying it, it can
be pooled, and later reused. This can provide a substantial
performance enhancement for repeated connections to the
same queue manager. The default value for the enable MQ
connection pooling property is true. The box is checked.

Property Description

558 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-36 WebSphere MQ connection factory administered objects

In this example, we already have one WebSphere MQ connection factory
object defined, called BankMQJMSConnFactory. This connection factory
object has all of the necessary properties configured in order to connect to a
full WebSphere MQ JMS provider using a client connection.

5. To create a new connection factory object, click New. Alternatively, to change
the properties of an existing connection factory, click one of the connection
factories displayed. Figure 10-37 on page 560 shows the top portion of the
configuration page for BankMQJMSConnFactory object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only other properties that we must specify values for, in order to
configure a client connection to WebSphere MQ, are as follows:

– Transport type

A transport type of CLIENT has been specified to indicate that we will
connect to WebSphere MQ using a WebSphere MQ client TCP/IP
connection.

– Host

The WebSphere MQ queue manager is running on host kaa5070.

– Port

The WebSphere MQ queue manager listener is listening on port 1414.

The BankMQJMSConnFactory object uses the default value for the Channel
property, which is SYSTEM.DEF.SVRCONN.

 Chapter 10. Asynchronous messaging 559

Figure 10-37 WebSphere MQ connection factory properties

6. Enter the required configuration properties for the WebSphere MQ connection
factory.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

560 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere MQ destination properties
Both queue and topic destinations can be configured for the WebSphere MQ
JMS provider. The sections that follow describe the properties of the queue and
topic destinations. These properties have been grouped as follows:

� Basic destination connection properties
� Queue specific destination properties
� Topic specific destination properties
� Advanced destination properties

Basic destination properties
The WebSphere MQ queue and WebSphere MQ topic destinations share a
number of basic common properties. These properties are described in
Table 10-34.

Table 10-34 Basic WebSphere MQ destination properties

Property Description

Persistence Use this property to specify whether the messages sent to this
destination are persistent, non-persistent, or have their
persistence defined by the application or queue. The default
value for the persistence property is APPLICATION DEFINED.
This specifies that the messages on the destination have their
persistence defined by the application that put them onto the
queue.

Priority Use this property to specify whether the message priority for
this destination is defined by the application, queue or the
Specified priority property. The default value for the priority
property is APPLICATION DEFINED. This specifies that the
priority of messages on this destination is defined by the
application that put them onto the destination.

Specified priority If the Priority property is set to Specified, the value of this
property determines the message priority for messages sent
to this destination. Priorities range from 0 (lowest) through 9
(highest).

Expiry Specify whether the expiry timeout for this destination is
defined by the application or the Specified Expiry property, or
messages on the destination never expire (have an unlimited
expiry timeout). The default value for the expiry property is
APPLICATION DEFINED. This specifies that the expiry
timeout of messages on this destination is defined by the
application that put them onto the destination.

 Chapter 10. Asynchronous messaging 561

Queue specific destination properties
The properties specific to WebSphere MQ queue destination objects are shown
in Table 10-35.

Table 10-35 WebSphere MQ queue destination properties

Topic specific destination properties
The properties specific to WebSphere MQ topic destination objects are shown in
Table 10-36.

Table 10-36 WebSphere MQ topic destination properties

Specified expiry If the Expiry Timeout property is set to Specified, the value of
this property determines the number of milliseconds (greater
than 0) after which messages on this destination expire.

Property Description

Base queue name Use this property to specify the name of the queue to which
messages are sent, on the queue manager specified by the
Base Queue Manager Name property.

Base queue manager
name

Specify the name of the WebSphere MQ queue manager to
which messages are sent. This queue manager provides the
queue specified by the Base queue name property. The
default value for this property is null, in which case the queue
manager is assumed to be that of the connection factory object
used to connect to WebSphere MQ.

Property Description

Base topic name Use this property to specify the name of the topic on the
underlying queue manager that JMS clients will publish or
subscribe to.

Broker durable
subscription queue

Define the name of the brokers queue from which durable
subscription messages are retrieved. The subscriber specifies
the name of the queue when it registers a subscription.

Broker CC durable
subscription queue

Specify the name of the brokers queue from which durable
subscription messages are retrieved for a
ConnectionConsumer.

Enable multicast
transport

Indicate whether or not this topic destination uses multicast
transport if supported by the connection factory.

Property Description

562 WebSphere Application Server V6: System Management and Configuration Handbook

Advanced destination properties
The WebSphere MQ queue and WebSphere MQ topic destinations share a
number of advanced common properties. These properties are described in
Table 10-37.

Table 10-37 Advanced WebSphere MQ destination properties

WebSphere MQ queue destination configuration
To configure a queue destination for the WebSphere MQ JMS provider, complete
the following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click WebSphere MQ.

3. Set the Scope for the queue destination.

4. Click WebSphere MQ queue destinations in the Additional Properties
section. A list of any existing queue destinations defined at this scope will be
displayed. This is shown in Figure 10-38 on page 564.

Property Description

CCSID Use this property to identify the coded character set identifier
for use with the WebSphere MQ queue manager. This coded
character set identifier (CCSID) must be one of the CCSIDs
supported by WebSphere MQ.

Use native encoding Indicate whether or the destination should use native
encoding, appropriate encoding values for the Java platform.

Integer encoding If native encoding is not enabled, select whether integer
encoding is normal or reversed.

Decimal encoding If native encoding is not enabled, select whether decimal
encoding is normal or reversed.

Floating point
encoding

If native encoding is not enabled, select the type of floating
point encoding.

Target client Indicate whether the receiving application is JMS-compliant or
is a traditional WebSphere MQ application.

 Chapter 10. Asynchronous messaging 563

Figure 10-38 WebSphere MQ queue destination administered objects

In this example, we already have one WebSphere MQ queue destination
object defined, called BankMQJMSQueue.

5. To create a new queue destination object, click New. Alternatively, to change
the properties of an existing queue destination, click one of the queue
destinations displayed. Figure 10-39 on page 565 shows the top portion of
the configuration page for BankMQJMSQueue object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Base queue
name. In Figure 10-39, the value specified for the Base queue name property
is BankJSQueue. This must match the name of the queue defined on the
WebSphere MQ queue manager to which we are connecting.

564 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-39 WebSphere MQ queue destination properties

6. Enter the required configuration properties for the WebSphere MQ queue
destination.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

 Chapter 10. Asynchronous messaging 565

WebSphere MQ topic destination configuration
To configure a topic destination for the WebSphere MQ JMS provider, complete
the following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click WebSphere MQ.

3. Set the Scope for the queue destination.

4. Click WebSphere MQ topic destinations in the Additional Properties
section. A list of any existing topic destinations defined at this scope will be
displayed. This is shown in Figure 10-40.

Figure 10-40 WebSphere MQ topic destination administered objects

In this example, we already have one WebSphere MQ topic destination object
defined, called TestMQTopic.

5. To create a new topic destination object, click New. Alternatively, to change
the properties of an existing topic destination, click one of the topic
destinations displayed. Figure 10-41 on page 567 shows the top portion of
the configuration page for TestMQTopic object.

Other than the standard JMS administered object properties, Name and JNDI
name, the only property that we must specify a value for is Base topic name.
In Figure 10-41, the value specified for the Base topic name property is
TestTopic. This must match the name of the topic defined on the broker.

566 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-41 WebSphere MQ topic destination properties

6. Enter the required configuration properties for the WebSphere MQ topic
destination.

7. Click OK.

8. Save the changes and synchronize them with the nodes.

9. For the changes to become effective, restart any application servers within
the scope of the resources.

 Chapter 10. Asynchronous messaging 567

10.6.4 Configuring listener ports
As discussed in section 10.4.7, “Associating a message-driven bean with a
destination” on page 509, a listener port is used to associate a message-driven
bean with a connection factory and a destination for the WebSphere MQ JMS
provider. A listener must be defined on the application server on which the
message-driven application will be installed. To configure a listener port,
complete the following steps:

1. In the navigation tree, expand Servers.

2. Click Application servers.

3. A list of the application servers defined within the cell will be displayed. This is
shown in Figure 10-42.

Figure 10-42 Application servers defined within the cell

4. Click the application server on which to create the listener port.

5. The configuration properties for the application server will be displayed. In the
Communications section, expand Messaging.

6. Click Message Listener Service, as shown in Figure 10-43 on page 569.

568 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-43 Message listener service link

7. The configuration properties for the message listener service will be
displayed.

8. Click Listener Ports. A list of listener ports that are currently defined for this
application server will be displayed. This is shown in Figure 10-44 on
page 570.

 Chapter 10. Asynchronous messaging 569

Figure 10-44 Listener ports

In this example, we already have one listener port defined, called
BankListenerPort.

9. To create a new listener port, click New. Alternatively, to change the
properties of an existing listener port, click one of the listener ports displayed.
Figure 10-45 on page 571 shows the configuration page for the
BankListenerPort object. Values must be specified for the Name, Initial State,
Connection factory JNDI name and Destination JNDI name properties.

570 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-45 Listener port properties

10.Enter the required configuration properties for the JMS activation
specification.

11.Click OK.

12.Save the changes and synchronize them with the nodes.

13.For the changes to become effective, restart any application servers within
the scope of the resources.

Following our example through, using the WebSphere MQ connection factory
defined in “WebSphere MQ connection factory configuration” on page 558 and
the WebSphere MQ queue defined in “WebSphere MQ queue destination
configuration” on page 563, we know that the BankMQJMSConnFactory object
was bound into the JNDI name space with the name jms/BankJMSConnFactory.
This JMS connection factory maps to a WebSphere MQ Queue Manager running

 Chapter 10. Asynchronous messaging 571

on host kaa5070 and listening on port 1414. We also know that the
BankMQJMSQueue object was bound into the JNDI name space with the name
jms/BankJMSQueue. This JMS queue maps on to the BankJSQueue on this
WebSphere MQ Queue Manager.

Therefore, if a message-driven bean is associated with this listener port, it would
be invoked when messages arrived at the BankJSQueue destination on the
WebSphere MQ Queue Manager listening on port 1414 of host kaa5070.

10.6.5 Configuring the generic JMS provider
If you use a generic JMS provider, the WebSphere administrative console can
still be used to configure JMS administered objects within the JNDI name space
of the application server. The sections that follow describe how the WebSphere
administrative console can be used to configure JMS connection factories and
JMS destinations for a generic JMS provider.

JMS connection factory configuration
To configure a JMS connection factory for a generic JMS provider, complete the
following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click Generic.

3. Set the scope to the level at which the generic JMS provider has been
configured. The generic JMS provider should appear in the list providers
defined at this level.

4. Select the generic JMS provider for which you want to configure the JMS
connection factory.

5. Click JMS connection factories in the Additional Properties section to
display a list of the connection factories that have been defined for the
generic JMS provider.

6. To create a new connection factory object, click New. Alternatively, to change
the properties of an existing connection factory, click one of the connection
factories displayed. Figure 10-46 on page 573 shows the configuration page
for a connection factory object.

572 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-46 Generic JMS provider connection factory configuration panel

7. Enter the required configuration properties for the JMS connection factory.
The common properties are described in 10.6.1, “Common administration
properties” on page 526. The properties specific to the generic JMS
connection factory object are shown in Table 10-38 on page 573.

Table 10-38 Generic JMS provider connection factory properties

Property Description

Type Use this property to specify whether the connection factory is
for JMS queues (QUEUE) or JMS topics (TOPIC).

 Chapter 10. Asynchronous messaging 573

8. Click OK.

9. Save the changes and synchronize them with the nodes.

10.For the new connection factory to be bound into the JNDI name space at the
correct scope, restart the relevant application servers.

JMS destination configuration
To configure a JMS destination for a generic JMS provider, complete the
following steps:

1. In the navigation tree, expand Resources → JMS Providers.

2. Click Generic.

3. Set the scope to the level at which the generic JMS provider has been
configured. The generic JMS provider should appear in the list providers
defined at this level.

4. Select the generic JMS provider for which you want to configure the JMS
destination.

5. Click JMS destinations in the Additional Properties section to display a list
of the destinations that have been defined for the generic JMS provider.

6. To create a new destination, click New. Alternatively, to change the properties
of an existing destination, click one of the destinations displayed.
Figure 10-47 on page 575 shows the configuration page for a destination
object.

External JNDI name Specifiy the JNDI name used to bind the JMS connection
factory into the name space of the messaging provider.

Component managed
authentication alias

The component-managed authentication alias list can be used
to specify a Java 2 Connector authentication data entry. If the
resource reference used within the JMS client application
specifies a res-auth of Application, the user ID and password
defined by the Java 2 Connector authentication data entry will
be used to authenticate the creation of a connection. The
component-managed authentication alias defaults to none. If
no component-managed authentication alias is specified and
the messaging provider requires the user ID and password to
get a connection, then an exception will be thrown when
attempting to connect.

Property Description

574 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-47 Generic JMS provider destination configuration panel

7. Enter the required configuration properties for the JMS destination. The
common properties are described in 10.6.1, “Common administration
properties” on page 526. The properties specific to the generic JMS
destination object are shown in Table 10-39.

Table 10-39 Generic JMS provider destination properties

8. Click OK.

Property Description

Type Use this property to specify whether the connection factory is
for JMS queues (QUEUE) or JMS topics (TOPIC).

External JNDI name Define the JNDI name used to bind the JMS connection
factory into the name space of the messaging provider.

 Chapter 10. Asynchronous messaging 575

9. Save the changes and synchronize them with the nodes.

10.For the new destination to be bound into the JNDI name space at the correct
scope, restart the relevant application servers.

10.7 Connecting to a service integration bus
A JMS client obtains connections to a service integration bus using a suitably
configured JMS connection factory, defined for the default messaging JMS
provider. However, the selection of which messaging engine within a particular
service integration bus a JMS client will connect to, depends on the connection
properties defined within the JMS connection factory. The options available can
range from simply connecting to any suitable messaging engine within the
named service integration bus, to using a highly specific connection selection
algorithm. The sections that follow describe the mechanisms used to determine
the most suitable messaging engine when a JMS client is connecting to a service
integration bus.

10.7.1 JMS client runtime environment
Regardless of the environment in which a JMS client is executing, it will always
perform the same steps in order to connect to a JMS provider. These steps are:

1. Obtain a reference to a JMS connection factory from the JNDI name space.

2. Invoke the createConnection method on the JMS connection factory.

The important point here is that the JMS connection factory object will always
execute within the same process as the JMS client. However, the JMS client, and
therefore the JMS connection factory, might be executing inside of a WebSphere
Application Server V6 process, or they might be executing within a stand-alone
JVM. In the case of the connection factory for the default messaging JMS
provider, the behavior of the connection factory depends on the environment in
which it is executing.

� Clients running inside of WebSphere Application Server V6

When the connection factory is executing within the WebSphere Application
Server V6 environment, it is able to communicate with components of the

Note: None of the messaging engine selection processes discussed in this
section effect the JMS client in any way. As far as the JMS client is concerned,
the ConnectionFactory simply returns a connection to the underlying
messaging provider, in this case a service integration bus. The process of
configuring a ConnectionFactory in order to tailor the messaging engine that is
selected, is a purely administrative task.

576 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere runtime in order to determine which messaging engines are
defined within the specified service integration bus, and where these
messaging engines are currently located. The relevant connection properties
configured on the connection factory can then be used to select a suitable
messaging engine to which to connect.

� Clients running outside of WebSphere Application Server V6

When the connection factory is executing outside of the WebSphere
Application Server V6 environment, or in a WebSphere Application Server V6
environment in a different cell to the target bus, it is not able to determine
which messaging engines are defined within the specified service integration
bus or where they are currently located. In order to obtain this information, the
connection factory must connect to an application server within the same cell
as the target bus. This application server is known as a bootstrap server.

A bootstrap server is simply an ordinary application server that is running the
SIB service. The SIB service is the component within an application server
that manages the service integration bus resources for that application server.
It is the SIB service that enables an application server to act as bootstrap
server for default messaging JMS provider connection factories. However,
while the bootstrap server needs to be running the SIB service, it does not
necessarily need to be hosting any messaging engines. This is shown in
Figure 10-48 on page 578.

Note: The connection factory is only able to determine the location of
messaging engines that are defined within the same WebSphere cell. If the
target bus is defined within another cell then a list of suitable provider
endpoints must be configured on the connection factory.

 Chapter 10. Asynchronous messaging 577

Figure 10-48 Using a bootstrap server with a messaging engine

Use the provider endpoints property to configure the bootstrap servers to
which a connection factory can connect. See Figure 10-28 on page 535.

Provider endpoints
The provider endpoints property of the connection factory allows an administrator
to specify a comma-separated list of suitable bootstrap servers for the
connection factory. Each bootstrap server in the list is specified as a triplet of the
form:

hostname : port : transport chain

The different elements are:

� hostname is the name of the host on which the bootstrap server is running. If a
hostname is not specified the value will default to localhost.

� port is the port number that the SIB service for the bootstrap server is
listening on. This can be determined from the relevant messaging engine
inbound transport that will be used for the bootstrap request. If no port is
specified the value will default to 7276 (the default port number for
SIB_ENDPOINT_ADDRESS).

� transport chain specifies the transport chain that will be used to send the
bootstrap request to the bootstrap server. Valid values for transport chain are:

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

1. Bootstrap 2. Connect

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

1. Bootstrap 2. Connect

578 WebSphere Application Server V6: System Management and Configuration Handbook

– BootstrapBasicMessaging

The bootstrap request will be sent to the bootstrap server using a standard
TCP/IP connection to the InboundBasicMessaging transport chain.

– BootstrapSecureMessaging

The bootstrap request will be sent to the bootstrap server over a secure
TCP/IP connection to the InboundSecureMessaging transport chain.

– BootstrapTunneledMessaging

The bootstrap request will be tunneled to the bootstrap server over an
HTTP connection. Before you can use this transport chain, you must
define a corresponding transport chain on the bootstrap server.

– BootstrapTunneledSecureMessaging

The bootstrap request will be tunneled to the bootstrap server over a
secure HTTP connection. Before you can use this transport chain, you
must define a corresponding transport chain on the bootstrap server.

If no transport chain is specified the value will default to
BootstrapBasicMessaging.

If no value is specified for the provider endpoint property, the connection factory
will use the following default provider endpoint address:

localhost:7276:BootstrapBasicMessaging

Dedicated bootstrap servers
Because the location of a bootstrap server is defined explicitly within the provider
endpoints property of a connection factory, consideration must be given to the
availability of the bootstrap server. By specifying a list of bootstrap servers in the
provider endpoints property, a connection factory is able to transparently
bootstrap to another server in the list in the event that one of the bootstrap
servers fails. The connection factory attempts to connect to a bootstrap server in
the order in which they are specified in the provider endpoints list. However, you
want to avoid specifying a long list of bootstrap servers. Consider configuring
only a few highly available application servers as dedicated bootstrap servers.

10.7.2 Controlling messaging engine selection
The remaining connection properties that can be specified on a connection
factory for the default messaging JMS provider are used to control how the
connection factory selects the messaging engine to connect to on the specified
service integration bus. The sections that follow discuss these properties in more
detail.

 Chapter 10. Asynchronous messaging 579

Bus name
The only connection property that is required when configuring a connection
factory for the default messaging JMS provider is the bus name property. The
value of the bus name property specifies the name of the bus to which the
connection factory will create JMS connections.

In the absence of any other connection properties, the connection factory returns
a connection to any available messaging engine in the bus. However, despite the
freedom to connect to any available messaging engine in the bus, the connection
factory applies a few simple rules to find the most suitable messaging engine
with which to connect. The rules are as follows:

1. The connection factory looks for a messaging engine within the specified
service integration bus that is in the same server process as the JMS client. If
a messaging engine within the specified bus is found in the same application
server process, then a direct in-process connection is made from the JMS
client to the messaging engine. This is shown in Figure 10-49.

Figure 10-49 In-process connection for a JMS client and a messaging engine

WebSphere Application Server V6 Cell

Host 1
Server 1

Messaging
Engine

JMS Client

Server 2
Messaging

Engine

Host 2
Server 3

Messaging
Engine

Server 4
Messaging

Engine

WebSphere Application Server V6 Cell

Host 1
Server 1

Messaging
Engine

JMS Client

Server 2
Messaging

Engine

Host 2
Server 3

Messaging
Engine

Server 4
Messaging

Engine

580 WebSphere Application Server V6: System Management and Configuration Handbook

2. If it is not possible for the connection factory to create a connection to a
messaging engine in the same application server process, the connection
factory looks for a messaging engine that is running on the same host as the
JMS client. If a messaging engine within the specified bus is found on the
same host, then a remote connection is made from the JMS client to the
messaging engine. This is shown in Figure 10-50.

Figure 10-50 Remote connection on the same host

3. If it is not possible for the connection factory to create a connection to a
messaging engine on the same host as the JMS client, the connection factory

Note: A direct in-process connection provides the best performance when
connecting a JMS client to a messaging engine.

Note: If multiple messaging engines are available on the same host as the
JMS client, new connections to the target bus will be load-balanced across
them.

WebSphere Application Server V6 Cell

Host 1
Server 1

JMS Client

Server 2
Messaging

Engine

Host 2
Server 3

Messaging
Engine

Server 4
Messaging

Engine

WebSphere Application Server V6 Cell

Host 1
Server 1

JMS Client

Server 2
Messaging

Engine

Host 2
Server 3

Messaging
Engine

Server 4
Messaging

Engine

 Chapter 10. Asynchronous messaging 581

looks for any other messaging engine that is part of the specified service
integration bus. This is shown in Figure 10-51.

Figure 10-51 Remote connection on a different host

4. If it is not possible for the connection factory to create a connection to any of
the messaging engines that make up the specified service integration bus,
the connection factory throws a javax.jms.JMSException to the JMS client.
The javax.jms.JMSException contains a linked exception to a service
integration bus specific exception, similar to that shown in Example 10-21.

Example 10-21 Failure to connect to a messaging engine

com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus SamplesBus.

Note: If multiple messaging engines are available within the target bus,
new connections to the target bus will be load balanced across them.

WebSphere Application Server V6 Cell

Host 1
Server 1

JMS Client

Server 2

Host 2
Server 3 Server 4

Messaging
Engine

WebSphere Application Server V6 Cell

Host 1
Server 1

JMS Client

Server 2

Host 2
Server 3 Server 4

Messaging
Engine

582 WebSphere Application Server V6: System Management and Configuration Handbook

Target inbound transport chain
The target inbound transport chain property for a connection factory specifies the
transport chain that the JMS client should use when establishing a remote
connection to a messaging engine. Suitable values for this property are:

– InboundBasicMessaging

The JMS client establishes a standard TCP/IP connection to the
messaging engine. This is the default value for the target inbound
transport chain property.

– InboundSecureMessaging

The JMS client establishes a secure TCP/IP connection to the messaging
engine.

The process of selecting a suitable messaging engine takes into account the
inbound transport chains that are currently available to those messaging engines
under consideration. There is no point in selecting a messaging engine which
cannot be contacted using the target transport chain specified, so a final
selection is made only from those messaging engines which have the specified
target transport chain available to them.

Connection proximity
The messaging engine selection process performed by the connection factory
can be subtly altered by specifying different connection proximities. The
connection proximity property is used to restrict the set of available messaging
engines considered for selection by the connection factory. The set of available
messaging engines is restricted based on their proximity to the JMS client or the
bootstrap server acting on behalf of the JMS client. The valid values for the
connection proximity property are as follows:

� Bus

The set of available messaging engines will include all messaging engines
defined within the target service integration bus. This is the default value for
the connection proximity property and, in effect, does not restrict the set of
available messaging engines in any way. When a connection proximity of Bus
is specified, the messaging engine selection process described in “Bus name”
on page 580, is used.

� Cluster

The set of available messaging engines for the target service integration bus l
only includes those messaging engines defined within the same cluster as the
JMS client or bootstrap server.

 Chapter 10. Asynchronous messaging 583

� Host

The set of available messaging engines for the target service integration bus
only includes those messaging engines running on the same host as the JMS
client or bootstrap server.

� Server

The set of available messaging engines for the target service integration bus
only includes those messaging engines running on the within the same
application server process as the JMS client or bootstrap server.

To see how the value of the connection proximity property effects the messaging
engine selection process, consider the configuration shown in Figure 10-52. All
of the messaging engines shown in Figure 10-52 exist within the same service
integration bus.

Figure 10-52 Sample topology for a service integration bus

The effect of the value of the connection proximity property on messaging engine
selection is described in Table 10-40 on page 585.

WebSphere Application Server V6 Cell

Host 1

Server 1

JMS Client

Server 2
Messaging

Engine

Host 2

Server 3
Messaging

Engine

Server 4
Messaging

Engine

Cluster 1 Cluster 2

WebSphere Application Server V6 Cell

Host 1

Server 1

JMS Client

Server 2
Messaging

Engine

Host 2

Server 3
Messaging

Engine

Server 4
Messaging

Engine

Cluster 1 Cluster 2

584 WebSphere Application Server V6: System Management and Configuration Handbook

Table 10-40 Effect of connection proximity on messaging engine selection

Target groups
Target groups provide a further means of controlling the selection of a suitable
messaging engine by restricting the messaging engines available for
consideration during the connection proximity check. Before the connection
proximity search is performed, the set of messaging engines which are members
of the specified target group is determined. The connection proximity check is
then restricted to these messaging engines.

The use of target groups is controlled through the target, target type and target
significance properties of the connection factory, the descriptions for which are
as follows:

� Target

The target property identifies a group of messaging engines that should be
used when determining the set of available messaging engines. If no target
group is specified, then no sub-setting of the available messaging engines
takes place and every messaging engine within the bus is considered during
the connection proximity check. By default, no target group is specified.

� Target type

The target type property specifies the type of the group identified by the target
property. Valid values for the target type property are:

– Bus member name

Bus member name indicates that the target property specifies the name of
a bus member. Because bus members can only be application servers or
application server clusters, the value of the target property must be an

Connection proximity
value

Messaging engine selected

Bus The JMS client connects to the messaging engine on Server
2, following the rules described in “Bus name” on page 580.

Cluster The JMS client connect to the messaging engine on Server
3, because this is the only messaging engine in the same
cluster as the client.

Host The JMS client connects to the messaging engine on Server
2, because this is the only messaging engine on the same
host as the client.

Server The JMS client fails to connect to the service integration bus,
because there is no messaging engine in the same server as
the client.

 Chapter 10. Asynchronous messaging 585

application server name of the form <node name>.<server name> or the
name of the cluster.

– Custom messaging engine group name

This value indicates that the target property specifies the name of a user
defined custom group of messaging engines. A messaging engine is
registered with a custom group by specifying the name of the group in the
target groups property for the messaging engine. The registration of the
messaging engine takes place when the messaging engine is started.

– Messaging engine name

Choosing this value indicates that the target property specifies the name
of a specific messaging engine. This is the most restrictive target type that
can be specified.

� Target significance

The target significance property allows the connection factory to relax the
rules that are applied regarding the target group. The valid values for this
property are as follows:

– Preferred

Use Preferred to indicate that a messaging engine be selected from the
target group. A messaging engine in the target group is selected if one is
available. If a messaging engine in the target group is not available, an
available messaging engine within the specified service integration bus,
but outside of the target group, is selected.

– Required

Use Required to indicate that a messaging engine be selected from the
target group. A messaging engine in the target group is selected if one is
available. If a messaging engine in the target group is not available, the
connection process fails.

To see how the values of the target group properties affect the messaging engine
selection process, consider the configuration shown in Figure 10-53 on
page 587. All of the messaging engines shown in Figure 10-53 exist the same
service integration bus.

586 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-53 Sample topology for a service integration bus

The effect of the value of the connection proximity property on messaging engine
selection is described in Table 10-41.

Table 10-41 Effect of target group properties on messaging engine selection

Connection property Messaging engine selected

Name Value

Target Cluster 2 The set of available messaging engines
in the target group, Cluster 2, is:
{Messaging Engine 2, Messaging
Engine 4}. Because a connection
proximity of Bus has been specified, the
JMS client would connect to Messaging
Engine 2. This is the only messaging
engine in the set that is on the same host
as the client.

Target type Bus member name

Target significance Required

Connection proximity Bus

WebSphere Application Server V6 Cell

Host 1

Server 1

JMS Client

Server 2
Messaging
Engine 2

Host 2

Server 3
Messaging
Engine 3

Server 4
Messaging
Engine 4

Cluster 1 Cluster 2

Messaging
Engine 1

WebSphere Application Server V6 Cell

Host 1

Server 1

JMS Client

Server 2
Messaging
Engine 2

Host 2

Server 3
Messaging
Engine 3

Server 4
Messaging
Engine 4

Cluster 1 Cluster 2

Messaging
Engine 1

 Chapter 10. Asynchronous messaging 587

10.7.3 Load balancing bootstrapped clients
JMS clients that connect to a service integration bus using a bootstrap server,
which is itself running a suitable messaging engine, always connect to the
messaging engine running in the bootstrap server. This is because this
messaging engine is the closest suitable messaging engine to the bootstrap
server.

If there are many JMS clients using the same connection factory, they all
bootstrap using the same list of bootstrap servers. Because the connection
factory attempts to connect to a bootstrap server in the order in which they are
specified in the provider endpoints list, it is likely that all of the JMS clients will be
connected to the same messaging engine in the first available bootstrap server.
The JMS clients will not be load-balanced across the set of suitable messaging
engines. This is shown in Figure 10-54 on page 589.

Target Cluster 2 The set of available messaging engines
in the target group, Cluster 2, is:
{Messaging Engine 2, Messaging
Engine 4}. Because a connection
proximity of Server and a target
significance of Required have been
specified, the JMS client would fail to
connect to the service integration bus,
because there are no messaging
engines in the target group that are on
the same server as the client.

Target type Bus member name

Target significance Required

Connection proximity Server

Target Cluster 2 By relaxing the target significance to
Preferred, the JMS client is now able to
connect to an alternative messaging
engine that does not necessarily meet
the connection proximity constraint. In
this case, the JMS client would connect
to Messaging Engine 1.

Target type Bus member name

Target significance Preferred

Connection proximity Server

Connection property Messaging engine selected

Name Value

Note: The term suitable messaging engine describes a messaging engine that
matches all of the target group and connection proximity rules described in
10.7.2, “Controlling messaging engine selection” on page 579.

588 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 10-54 Bootstrapped JMS clients connecting to a single messaging engine

A solution to this problem is to make use of a dedicated bootstrap server that is
not a running a messaging engine for the target bus. This ensures that the
connections established for JMS client are load-balanced across the available
messaging engines for the target bus. This is shown in Figure 10-55 on
page 590.

We expect that a future release will support the automatic load-balancing of
bootstrapped JMS clients across the set of suitable messaging engines thus
reducing the tendency for bootstrapped JMS clients to congregate at a single
bootstrap server.

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

Messaging
Engine

J2EE Client Container

JMS Client

J2EE Client Container

JMS Client

1. Bootstrap
2. Connect

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

Messaging
Engine

J2EE Client Container

JMS Client

J2EE Client Container

JMS Client

1. Bootstrap
2. Connect

 Chapter 10. Asynchronous messaging 589

Figure 10-55 Load balancing of connections for bootstrapped JMS clients

10.8 References and resources
These documents and web sites are also relevant as further information sources:

� WebSphere Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Java 2 Platform Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� WebSphere MQ Using Java

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/
manuals/crosslatest.html

� Java Message Service (JMS)

http://java.sun.com/products/jms

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

Messaging
Engine

J2EE Client Container

JMS Client

J2EE Client Container

JMS Client

1. Bootstrap

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

2. Connect 2. Connect 2. Connect

WebSphere Application Server V6 Cell
Application Server

SIB Service

Messaging
Engine

SIB_ENDPOINT_ADDRESS

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

J2EE Client Container

JMS Client

Messaging
Engine

J2EE Client Container

JMS Client

J2EE Client Container

JMS Client

1. Bootstrap

Application Server

SIB Service

SIB_ENDPOINT_ADDRESS

2. Connect 2. Connect 2. Connect

590 WebSphere Application Server V6: System Management and Configuration Handbook

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://java.sun.com/products/jms
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://java.sun.com/j2ee/connector/
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html

� Enterprise Messaging Using JMS and WebSphere (Kareem Yusuf), Prentice
Hall, ISBN: 0-13-146863-4

� Java Message Service (Monson-Haefel, Chappell), O’Reilly, ISBN:
0-596-00068-5

� Professional JMS (Grant, Kovacs, et al), Wrox Press Inc., ISBN: 1861004931

� Enterprise JavaBeans, Fourth Edition (Monson-Haefel, Burke, Labourey),
O’Reilly, ISBN: 0-596-00530-X

� EJB Design Patterns (Marinescu), Wiley, ISBN: 0471208310

 Chapter 10. Asynchronous messaging 591

592 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 11. Default messaging provider

WebSphere Application Server V6 introduces a new component called the
service integration bus. In this chapter, we describe the concepts behind the
service integration bus, focusing on its role as the default messaging provider
within WebSphere Application Server V6. We cover:

� Concepts and architecture
� Runtime components
� High availability and workload management
� Service integration bus topologies
� Service integration bus and message-driven beans
� Service integration bus security
� Problem determination
� Configuration and management

11

© Copyright IBM Corp. 2005. All rights reserved. 593

11.1 Concepts and architecture
The service integration bus provides a managed communications framework
which supports a variety of message distribution models, reliability options and
network topologies. It provides support for traditional messaging applications as
well as enabling the implementation of service-oriented architectures within the
WebSphere Application Server V6 environment.

The service integration bus is the underlying messaging provider for the default
messaging JMS provider, replacing the embedded messaging provider that was
supported in WebSphere Application Server V5.

The service integration bus introduces a number of new concepts. The sections
that follow discuss each of these concepts in more detail.

11.1.1 Buses
A service integration bus, or bus, within WebSphere Application Server V6 is
simply an architectural concept. It gives an administrator the ability to group a
collection of resources together that provide the messaging capabilities of the
bus. At runtime, the bus presents these cooperating messaging resources to
applications as a single entity, hiding from those applications the details of how
the bus is configured and where on the bus the different resources are located.

A bus is defined at the cell level within WebSphere Application Server V6. It is
anticipated that, in a standard configuration, no more than one service
integration bus will be required within a WebSphere Application Server V6 cell.
However, a WebSphere cell can contain any number of buses.

Resources are created within, or added to, the scope of a specific bus. Simply
defining a bus within a WebSphere cell has no runtime impact on any of the
components running within a cell. It is not until members are added to a bus that
any of the runtime components within an application server are affected.

Figure 11-1 on page 595 shows a service integration bus defined within a
WebSphere Application Server V6 cell.

594 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-1 Service integration buses within a WebSphere Application Server V6 cell

11.1.2 Bus members
A bus member is simply an application server, or cluster of application servers,
that has been added as a member of a bus. Adding an application server, or
cluster of application servers, as a member of a bus automatically defines a
number of resources on the bus member in question. In terms of the functionality
provided by a service integration bus, the most important of the resources that
are automatically defined is a messaging engine.

11.1.3 Messaging engines
A messaging engine is the component within an application server that provides
the core messaging functionality of a service integration bus. At runtime, it is the
messaging engines within a bus that communicate and cooperate with each
other to provide the messaging capabilities of the bus. A messaging engine is
responsible for managing the resources of the bus and it also provides a
connection point to which local and remote client applications can connect.

A messaging engine is associated with a bus member. When an application
server is added as a member of a bus, a messaging engine is automatically

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

Accounts Department Bus

 Chapter 11. Default messaging provider 595

created and associated with this application server. Figure 11-2 on page 596
shows a WebSphere Application Server V6 cell that contains two buses, each of
which has two application servers defined as bus members.

Figure 11-2 Messaging engines within service integration bus members

A messaging engine is a relatively lightweight runtime object. This allows a single
application server to host several messaging engines. If an application server is
added as a member of multiple buses, that application server is associated with
multiple messaging engines, one messaging engine for each bus of which it is a
member. This is shown in Figure 11-3 on page 597.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME

ME

Accounts Department Bus
Members = {Application Server 1, Application Server 4}

HR Department Bus
Members = {Application Server 2, Application Server 3}

ME

ME

596 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-3 Multiple messaging engines within a single application server

When a cluster of application servers is added as a member of bus, a single
messaging engine is automatically created and associated with the application
server cluster, regardless of the number of application servers defined as
members of the cluster. At runtime, this messaging engine is activated within a
single application server within the cluster. The application server that is chosen
to host the messaging engine will be the first cluster member to start. This is
shown in Figure 11-4.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

Application
Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME

ME

Accounts Department Bus
Members = {Application Server 1, Application Server 4}

HR Department Bus
Members = {Application Server 2, Application Server 3}

ME

MEME

Payroll Department Bus
Members = {Application Server 1}

 Chapter 11. Default messaging provider 597

Figure 11-4 An application server cluster as a bus member

However, this messaging engine is able to run within any of the application
servers defined as members of the cluster. If the messaging engine, or the
application server within which it is running, should fail, the messaging engine is
activated on another available server in the cluster. Therefore, adding an
application server cluster as a member of a bus enables failover for messaging
engines that are associated with that cluster. This is shown in Figure 11-5 on
page 599.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME

HR Department Bus
Members = {Cluster 1}

598 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-5 Messaging engine fail-over within an application server cluster

Once an application server cluster has been added as a member of a bus, it is
also possible to create additional messaging engines and associate them with
the cluster. These additional messaging engines can then be configured to run
within a specific cluster member, if required. Such a configuration enables a bus
to be scaled to meet the needs of applications that generate high message
volumes. It also improves the availability of the bus in question. This is shown in
Figure 11-6 on page 600.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME

HR Department Bus
Members = {Cluster 1}

ME

 Chapter 11. Default messaging provider 599

Figure 11-6 Messaging engine scalability within an application server cluster

For more information about fail-over and scalability within the service integration
bus, refer to 11.3, “High availability and workload management” on page 638.

Messaging engine naming
As discussed previously, when a member is added to a service integration bus, a
messaging engine is automatically created and associated with the new bus
member. The name of the new messaging engine is generated based on the
details of the new bus member, as follows:

� Application server bus members

The format of the messaging engine name generated when an application
server is added as a member of a bus is as follows:

<Node Name>.<Server Name>-<Bus Name>

The elements are defined as:

– <Node Name> is the name of the node on which the new bus member is
defined.

– <Server Name> is the name of the new application server bus member.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Cluster 1
Application

Server 3
Application

Server 4

HR Department Bus
Members = {Cluster 1}

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME MEME ME

600 WebSphere Application Server V6: System Management and Configuration Handbook

– <Bus Name> is the name of the service integration bus to which the new
bus member has been added.

We can use it in an example, such as:

ITSONode.Server 1-ITSOBus

� Application server cluster bus members

The format of the messaging engine name generated when an application
server cluster is added as a member of a bus is as follows:

<Cluster Name>.XXX-<Bus Name>

The elements of this format are:

– <Cluster Name> is the name of the new application server cluster bus
member.

– XXX is a number that is used to uniquely identify the messaging engine
within the cluster. This value is incremented each time a new messaging
engine is added to the cluster.

– <Bus Name> is the name of the service integration bus to which the new
bus member has been added.

We can use it in an example, such as:

ITSOCluster.000-ITSOBus

11.1.4 Data stores
Every messaging engine defined within a bus has a data store associated with it.
A messaging engine uses this data store to persist durable data, such as
persistent messages and transaction states. Durable data written to the data
store survives the orderly shutdown, or failure, of a messaging engine,
regardless of the reason for the failure.

It can also use the data store to reduce runtime resource consumption. For
example, the messaging engine can write non-persistent messages to the data
store in order to reduce the size of the Java heap when handling high message
volumes. This is known as spilling.

Figure 11-7 on page 602, shows messaging engines associated with data stores.
Two of the messaging engines shown in Figure 11-7 are associated with data
stores that exist within the same database. There are certain considerations you
must take into account when deciding the data store topology. These
considerations are discussed in more detail in 11.2.3, “Data stores” on page 620,
as part of the description of the runtime components of the service integration
bus.

 Chapter 11. Default messaging provider 601

Figure 11-7 Messaging engine data stores

11.1.5 Destinations
A destination within a service integration bus is a logical address to which
applications can attach as message producers, message consumers, or both, in
order to exchange messages. The main types of destination that can be
configured on a bus are:

� Queue destinations

Queue destinations are destinations that can be configured for point-to-point
messaging.

� Topic space destinations

Topic space destinations are destinations that can be configured for
publish/subscribe messaging.

� Alias destinations

Alias destinations are destinations that can be configured to refer to another
destination, potentially on a foreign bus. They can provide an extra level of

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

Application
Server 3

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

MEME ME

DBDB

602 WebSphere Application Server V6: System Management and Configuration Handbook

indirection for messaging applications. An alias destination can also be used
to override some of the values specified on the target destination, such as
default reliability and maximum reliability. Foreign buses are discussed in
section 11.1.7, “Foreign buses” on page 606.

� Foreign destinations

Foreign destinations are not destinations within a service integration bus, but
they can be used override the default reliability and maximum reliability
properties of a destination that exists on a foreign bus. Foreign buses are
discussed in section 11.1.7, “Foreign buses” on page 606.

Message points
Recall that a service integration bus is simply an architectural concept within a
WebSphere Application Server V6 cell. Similarly, when a destination is
configured on a service integration bus, it simply defines a logical address to
which applications can attach. Queue and topic space destinations must be
associated with a messaging engine in order for any persistent messages
directed at those destinations to be persisted to an underlying data store. These
destinations are associated with a messaging engine using a message point. A
message point is a physical representation of a destination defined on a bus. A
message point can be configured to override some of the properties inherited
from the bus destination.

The two main types of message point that can be contained with a messaging
engine are:

� Queue points

A queue point is the message point for a queue destination. When creating a
queue destination on a bus, an administrator specifies the bus member which
will hold the messages for the queue. This action automatically defines a
queue point for each messaging engine associated with the specified bus
member.

If the bus member is an application server, a single queue point will be
created and associated with the messaging engine on that application server.
All of the messages that are sent to the queue destination will be handled by
this messaging engine. In this configuration, message ordering is maintained
on the queue destination.

If the bus member is a cluster of application servers, a queue point is created
and associated with each messaging engine defined within the bus member.
The queue destination is partitioned across the available messaging engines
within the cluster. In this configuration, message ordering is not maintained on
the queue destination. For more information about partitioned destinations
within the service integration bus, please refer to 11.3, “High availability and
workload management” on page 638.

 Chapter 11. Default messaging provider 603

� Publication points

A publication point is the message point for a topic space. When creating a
topic space destination, an administrator does not need to specify a bus
member to hold messages for the topic space. Creating a topic space
destination automatically defines a publication point on each messaging
engine within the bus.

Figure 11-8 on page 604 shows a queue destination and a topic space
destination and their associated queue and publication points.

Figure 11-8 Queue and publication points in the service integration bus

Reliability
It is on a destination that an administrator specifies the default quality of service
levels that will be applied when a message producer or message consumer
interacts with the destination. An administrator is able to configure a default
reliability and a maximum reliability for each service integration bus destination.

Node Agent

Node 1

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

Accounts Department Bus
Members = {Application Server 1, Application Server 2}

Application
Server 1

ME

Publication Point

Queue Destination
Members = Application Server 2

Topic Space
Destination

Application
Server 2

ME

Publication Point

Queue PointDB DB

604 WebSphere Application Server V6: System Management and Configuration Handbook

There are five levels of reliability that can be specified for these properties.
These are described in Table 11-1.

Table 11-1 Service integration bus destination reliabilities

Administrators can also allow message producers to override the default
reliability that is specified on a destination. The mechanism that is used to
achieve this depends on the type of the message producer. For instance, a JMS
message producer can use the quality of service properties on the default
messaging JMS provider connection factory to map the JMS PERSISTENT and
NON_PERSISTENT delivery modes onto the required service integration bus
reliabilities. This is discussed in more detail in “Quality of service properties” on
page 530.

Reliability Description

Best Effort nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it associated is
stopped, or if it fails. Messages can also be discarded if
the connection used to send them becomes unavailable
or as a result of constrained system resources.
Messages delivered asynchronously to
non-transactional MessageListeners or
message-driven beans will not be redelivered if an
exception is thrown.

Express nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it is associated
is stopped or if it fails. Messages can also be discarded
if the connection used to send them becomes
unavailable.

Reliable nonpersistent Messages that are sent to this destination are discarded
when the messaging engine with which it is associated
is stopped or if it fails.

Reliable persistent Messages that are sent to this destination can be
discarded when the messaging engine with which it is
associated fails, but are persisted if the messaging
engine is stopped normally.

Assured persistent Messages that are sent to this destination are never
discarded.

Least reliable

Most reliable

Note: Reliability should be chosen according to your messaging needs. More
reliable qualities of service might not perform as well as less reliable qualities
of service.

 Chapter 11. Default messaging provider 605

11.1.6 Mediations
A mediation processes in-flight messages between the production of a message
by one application, and the consumption of a message by another application.
Mediations enable the messaging behavior of a service integration bus to be
customized. Examples of the processing that can be performed by a mediation
are:

� Transforming a message from one format into another
� Routing messages to one or more target destinations that were not specified

by the sending application
� Augmenting messages by adding data from a data source
� Distributing messages to multiple target destinations
� Discarding messages

A mediation is defined within a specific service integration bus. This mediation
can then be associated with a destination on the bus. A corresponding mediation
point is automatically created and associated with the destination as a result of
this process. A mediation point is a specialized type of message point. A
destination with which the mediation is associated is referred to as a mediated
destination.

11.1.7 Foreign buses
A service integration bus can be configured to connect to, and exchange
messages with, other messaging networks. In order to do this, a foreign bus
must be configured.

A foreign bus encapsulates information related to the remote messaging
network, such as the type of the foreign bus and whether messaging applications
are allowed to send messages to the foreign bus. A foreign bus can represent:

� A service integration bus in the same WebSphere Application Server V6 cell
as the local bus

� A service integration bus in a different WebSphere Application Server V6 cell
from the local bus

� A WebSphere MQ network

The ability of a service integration bus to be able to communicate with other
messaging networks provides several benefits, examples of which are:

Note: The reliability specified by a message producer can never exceed the
maximum reliability specified on a service integration bus destination. In the
case of a JMS message producer, attempting to do this will cause a JMS
exception to be thrown to the client application.

606 WebSphere Application Server V6: System Management and Configuration Handbook

� It enables the separation of resources for different messaging applications
which only need to communicate with each other infrequently. This simplifies
the administration of the resources for each individual messaging application.

� It enables a bus to be integrated with preexisting messaging networks.

When buses are interconnected, applications can send messages to
destinations that are defined on other buses. Published messages can also span
multiple buses, if the links between the buses are configured to allow it.

Routing definition types
During foreign bus configuration, an administrator defines a routing definition that
specifies the type of the foreign bus. This information is used at runtime to
determine the protocol that will be used to communicate with the foreign bus.
The three types of routing definition that can be defined are:

� Direct, service integration bus link

This routing definition type indicates that the local bus will connect directly to
another service integration bus. This is shown in Figure 11-9, where the
Accounts Department Bus is linked to the HR Department Bus within its own
WebSphere Application Server V6 cell and the Payroll Department Bus within
another WebSphere Application Server V6 cell.

Figure 11-9 Direct, service integration bus links

Note: Care must be taken to avoid creating circular link dependencies (Bus A
→ Bus B → Bus C → Bus A), when configuring foreign buses within complex
topologies. Circular links are not supported by the service integration bus.

WebSphere Application Server V6 CellWebSphere Application Server V6 Cell

HR Department Bus
Foreign Bus = {Accounts

Department Bus}

Accounts Department Bus
Foreign Buses = {HR Department Bus,

Payroll Department Bus}

Payroll Department Bus
Foreign Bus = {Accounts

Department Bus}

 Chapter 11. Default messaging provider 607

� Direct, WebSphere MQ link

This routing definition type indicates that the local bus will connect directly to
a WebSphere MQ gateway queue manager. This WebSphere MQ queue
manager might itself be connected to several other queue managers in a
WebSphere MQ network. This is shown in Figure 11-10.

Figure 11-10 Direct, WebSphere MQ link

� Indirect

The indirect routing definition type indicates that the foreign bus being
configured is not directly connected to the local bus. In this situation, the
administrator specifies the name of the next bus in the route. This bus can be
another service integration bus or a WebSphere MQ network, but it must
already be defined in order to configure an indirect routing definition.
Ultimately, a message could travel through several intermediate buses before
it reaches its destination.

This is shown in Figure 11-11, where the Accounts Department Bus is linked
indirectly to the Payroll Department Bus via the HR Department Bus.

Figure 11-11 Indirect foreign bus link

WebSphere MQ

Accounts Department Bus
Foreign Bus = {IT Department Bus}

WebSphere Application Server V6 Cell

IT Department Bus

WebSphere Application Server V6 CellWebSphere Application Server V6 Cell

HR Department Bus
Foreign Buses = {Accounts

Department Bus, Payroll
Department Bus}

Accounts Department Bus
Foreign Buses = {HR Department Bus,

{Payroll Department Bus,
Next Bus = HR Department Bus}}

Payroll Department Bus
Foreign Bus = {Accounts

Department Bus}

608 WebSphere Application Server V6: System Management and Configuration Handbook

Foreign bus links
Recall that a service integration bus is simply an architectural concept within a
WebSphere Application Server V6 cell. Similarly, when a foreign bus is
configured on a service integration bus, it simply describes a link between the
two buses at an architectural level.

In order for the two buses to be able to communicate with each other at runtime,
links must be configured between a specific messaging engine within the local
bus and a specific messaging engine, or queue manager, within the foreign bus.
When configuring a direct service integration bus link, these links must be
configured in both directions in order for the two buses to be able to
communicate. At runtime, messages that are routed to a foreign bus will flow
across the corresponding link. This is shown in Figure 11-12.

Figure 11-12 Runtime view of foreign buses

Note: It is not possible to define multiple links between the local bus and a
specific foreign bus.

WebSphere Application Server V6 CellWebSphere Application Server V6 Cell

HR Department Bus

Accounts
Department

Bus

Link

Li
nkME

Link

Link

ME

WebSphere MQ

IT Department Bus

Queue
Manager

Channels

Payroll Department Bus

Li
nk ME

 Chapter 11. Default messaging provider 609

Foreign buses and point-to-point messaging
Messaging applications that make use of the Point-to-Point messaging model,
with destinations that are defined on a local bus, are able to act as both message
producers and message consumers. This is shown in Figure 11-13.

Figure 11-13 Point-to-point messaging on the local bus

However, when a messaging application is making use of the Point-to-Point
messaging model with destinations that are defined on a foreign bus, it is only
able to act as a message producer. This is shown in Figure 11-14.

Figure 11-14 Point-to-point message producer for a foreign bus

If a messaging application is required to consume messages from a destination
that is defined on a foreign bus, the messaging application must connect directly
to the foreign bus. This is shown in Figure 11-15 on page 611.

Local Bus

Produce and
Consume
Messages

Client

Local Bus

Produce
Messages

Only

Client

Foreign Bus

610 WebSphere Application Server V6: System Management and Configuration Handbook

This is similar to the restrictions placed on WebSphere MQ messaging clients,
where a client application is only able to consume messages from a queue by
connecting directly to the WebSphere MQ queue manager on which the queue is
defined.

Figure 11-15 Point-to-point messaging on a foreign bus

If the messaging application is unable to connect directly to the foreign bus, then
the destinations on the foreign bus must be configured to forward messages to
destinations on the local bus. The messaging application is then able to connect
to the local bus to consume the messages. This is shown in Figure 11-16.

Figure 11-16 Forwarding messages for consumption from the local bus

Local Bus

Client

Foreign Bus

Produce and
Consume
Messages

Local Bus

Consume
Messages

Client

Foreign Bus
Client

Produce
Messages

 Chapter 11. Default messaging provider 611

Foreign buses and Publish/Subscribe messaging
By default, foreign bus links will not flow messages that are produced by
messaging applications using the Publish/Subscribe messaging model. It is
possible to configure a foreign bus link such that messages published to topic
spaces on the local bus will be published on the foreign bus.

11.2 Runtime components
At runtime, a service integration bus is comprised of a collection of cooperating
messaging resources. The sections that follow describe the runtime aspects of
these messaging resources in more detail.

11.2.1 SIB service
The SIB service is a WebSphere Application Server V6 component that is
responsible for managing all of the messaging resources that have been
associated with a particular application server. However, the SIB service is not
associated with a specific service integration bus or messaging engine. Its
management tasks include:

� Managing the life cycle of any messaging related transport chains that have
defined within the application server

� Handling inbound connection requests from external messaging applications

Figure 11-17 shows a SIB service within an application server environment.

Figure 11-17 SIB service

PORT

Application Server 1

MEME ME

Inbound Transport Chain

PORT

Inbound Transport Chain

SIB Service

612 WebSphere Application Server V6: System Management and Configuration Handbook

Every application server has exactly one SIB service. However, by default the
SIB service within an application server is disabled. This ensures that the SIB
service does not consume resources unnecessarily, if the application server is
not hosting any messaging resources.

The process of adding an application server as a member of a service integration
bus automatically enables its SIB service. This ensures that the SIB service is
available to manage the messaging resources that are created as a result of
adding the application server as a bus member.

The SIB service can also be manually enabled within an application server that is
not a member of a service integration bus. An application server configured in
this manner is able to act as a bootstrap server for clients that are running
outside of the WebSphere Application Server V6 environment, or for messaging
engines that are running in a different WebSphere Application Server V6 cell.
Refer to section 10.7, “Connecting to a service integration bus” on page 576 for
more information regarding bootstrap servers.

Configuration reload
The SIB service also allows certain configuration changes to be applied to a
service integration bus, without requiring a restart of the application servers that
are hosting components associated with that bus. The configuration changes
that can be applied without an application server restart are:

� Creation, modification or deletion of a destination
� Creation, modification or deletion of a mediation

For example, if a new destination is created on a service integration bus, that
destination can be made available for use without needing to restart application
servers or messaging engines associated with the bus.

However, the configuration changes that require the affected application servers
or messaging engines to be restarted before the changes come into effect
include:

� Creation of a new service integration bus
� Creation of a new messaging engine
� Creation of a service integration bus link
� Creation of a WebSphere MQ link

Note: Each service integration bus that requires this functionality must also be
configured to support configuration reload. By default, each service integration
bus has configuration reload support enabled. See Section 11.8.1, “SIB
service configuration” on page 655 for more information.

 Chapter 11. Default messaging provider 613

11.2.2 Service integration bus transport chains
The SIB service and any messaging engines running within an application server
make use of a variety of transport chains in order to communicate with each
other and with client applications. The sections that follow describe the inbound
and outbound transport chains used by service integration bus components.

Inbound transport chains
When an application server is created using the default template, a number of
inbound transport chains are automatically defined. These transport chains
enable messaging clients to communicate with a messaging engine. A
messaging client can be a client application or another messaging engine.
Table 11-2 describes these transport chains.

Table 11-2 Messaging engine inbound transport chains

Transport chain &
associated port

Default
port

Client Types Description

InboundBasicMessaging

SIB_ENDPOINT_ADDRESS

7276 Remote messaging engines

JMS client applications
running in the J2EE client
container and using the
default messaging JMS
provider

This chain allows clients of the
specified type to communicate
with a messaging engine using
the TCP protocol

InboundSecureMessaging

SIB_ENDPOINT_SECURE_
ADDRESS

7286 Remote messaging engines

JMS client applications
running in the J2EE client
container and using the
default messaging JMS
provider

This chain allows clients of the
specified type to communicate
securely with a messaging
engine using the secure
sockets layer (SSL) protocol
over a TCP connection. The
SSL configuration information
for this chain is based on the
default SSL repertoire for the
application server.

InboundBasicMQLink

SIB_MQ_ENDPOINT_
ADDRESS

5558 WebSphere MQ queue
manager sender channels

JMS client applications
running in the J2EE client
container and using the
WebSphere MQ JMS
provider

This chain allows clients of the
specified type to communicate
with a messaging engine using
the TCP protocol.

614 WebSphere Application Server V6: System Management and Configuration Handbook

As discussed in section 11.2.1, “SIB service” on page 612, the SIB service is
responsible for managing the life cycle of the messaging-related inbound
transport chains within an application server. Certain transport chains can be
started even if the application server is not hosting any messaging engines.
When a transport chain starts, it binds to the TCP port to which it has been
assigned and listens for network connections. Table 11-3 describes the
circumstances under which the inbound transport chains are started by the SIB
service.

Table 11-3 Default transport chain initialization during application server startup

InboundSecureMQLink

SIB_MQ_ENDPOINT_
SECURE_ADDRESS

5578 WebSphere MQ queue
manager sender channels

JMS client applications
running in the J2EE client
container and using the
WebSphere MQ JMS
provider

This chain allows clients of the
specified type to communicate
securely with a messaging
engine using the secure
sockets layer (SSL) protocol
over a TCP connection. The
SSL configuration information
for this chain is based on the
default SSL repertoire for the
application server.

Transport chain &
associated port

Default
port

Client Types Description

Note: Table 11-2 describes the default port numbers that are associated with
the ports:

� SIB_ENDPOINT_ADDRESS
� SIB_ENDPOINT_SECURE_ADDRESS
� SIB_MQ_ENDPOINT_ADDRESS
� SIB_MQ_ENDPOINT_SECURE_ADDRESS

However, on nodes that are hosting multiple application servers, these ports
might have been automatically configured to use different port numbers to
avoid conflicts with existing application servers.

Application server
configuration

Transport chains

InboundBasicMessaging
InboundSecureMessaging

InboundBasicMQLink
InboundSecureMQLink

SIB service disabled Not started Not started

 Chapter 11. Default messaging provider 615

Figure 11-18 shows the InboundBasicMessaging and InboundSecureMessaging
transport chains, and the corresponding ports that they are bound to, within an
application server.

Figure 11-18 Messaging engine inbound transport chains

Outbound transport chains
When you create an application server using the default template, a number of
outbound transport chains are automatically defined. These transport chains are
also available to JMS client applications running within the J2EE client container.
Outbound transport chains are used by messaging clients to establish network
connections to bootstrap servers or to WebSphere MQ queue manager receiver
channels. Table 11-4 on page 617 describes these transport chains.

SIB service enabled
No WebSphere MQ links
No WebSphere MQ client
links

Started Not started

SIB service enabled
WebSphere MQ links
or WebSphere MQ client
links defined

Started Started

Application server
configuration

Transport chains

InboundBasicMessaging
InboundSecureMessaging

InboundBasicMQLink
InboundSecureMQLink

Application Server 1

MEME ME

InboundBasicMessaging

SIB_ENDPOINT_ADDRESS

InboundSecureMessaging

SIB_ENDPOINT_SECURE_ADDRESS

SIB Service

616 WebSphere Application Server V6: System Management and Configuration Handbook

Table 11-4 Default messaging engine outbound transport chains

Transport chain Description

BootstrapBasicMessaging This chain is suitable for establishing a
bootstrap connection to inbound transport
chains within an application server that are
configured to use the TCP protocol. An
example of such a transport chain is the
InboundBasicMessaging chain.

BootstrapSecureMessaging This chain is suitable for establishing a
bootstrap connection to inbound transport
chains within an application server that are
configured to use SSL over a TCP connection.
An example of such a transport chain is the
InboundSecureMessaging transport chain.
Success in establishing such a connection is
dependent on a suitably compatible set of SSL
credentials being associated with both this
bootstrap outbound transport chain and also
the inbound transport chain to which it is
connecting. The SSL configuration used is
taken from the default SSL repertoire of the
application server within which the messaging
client is running, or from the relevant
configuration file if the messaging client is
running within the J2EE client container.

BootstrapTunneledMessaging This chain can be used to tunnel a bootstrap
request through the Hypertext Transfer
Protocol (HTTP). Before this transport can be
used, a corresponding inbound transport
chain must be configured on the bootstrap
server.

 Chapter 11. Default messaging provider 617

When attempting to establish a network connection, a messaging client must use
an outbound transport chain suitable for connecting to the corresponding target.
For instance, the BootstrapTunneledMessaging transport chain can only be used
to connect to an inbound transport chain that supports bootstrap requests
tunneled over the HTTP protocol. Similarly, the OutboundBasicMQLink can only
be used to connect to a WebSphere MQ queue manager receiver channel. Refer
to section 10.7, “Connecting to a service integration bus” on page 576 for more
information regarding bootstrap servers.

BootstrapTunneledSecureMessaging This chain can be used to tunnel a secure
bootstrap request through the Hypertext
Transfer Protocol (HTTPS). Success in
establishing such a connection is dependent
on a suitably compatible set of SSL credentials
being associated with both this bootstrap
outbound transport chain and also the inbound
transport chain to which it is connecting. The
SSL configuration used is taken from the
default SSL repertoire of the application server
within which the messaging client is running,
or from the relevant configuration file if the
messaging client is running within the J2EE
client container. Before this transport can be
used, a corresponding inbound transport
chain must be configured on the bootstrap
server.

OutboundBasicMQLink This chain is suitable for establishing a
connection to a WebSphere MQ queue
manager receiver channel using the TCP
protocol.

OutboundSecureMQLink This chain is suitable for establishing a secure
connection to a WebSphere MQ queue
manager receiver channel that has been
configured to accept SSL connections.
Success in establishing such a connection is
dependent on a suitably compatible set of SSL
credentials being associated with both this
outbound transport chain and also the
WebSphere MQ receiver channel to which it is
connecting. The SSL configuration for the
outbound transport chain is taken from the
default SSL repertoire of the application server
that is attempting to contact the WebSphere
MQ queue manger receiver channel.

Transport chain Description

618 WebSphere Application Server V6: System Management and Configuration Handbook

Configuring outbound transport chains within an application server used for
bootstrap purposes, is considered to be an advanced administrative task. For
this reason, these transport chains can only be altered, or new bootstrap
transport chains defined, using the wsadmin command line environment.

Outbound transport chains within the J2EE client container environment that are
used for bootstrap purpose are not configurable. However, certain attributes of
the outbound transport chains that are used to establish SSL connections can be
customized.

Secure transport considerations
As discussed previously, additional considerations need to be taken into account
when using a transport chain that makes use of the SSL protocol to encrypt the
traffic that flows over the connection.

Establishing an SSL or HTTPS connection between messaging engines, or
between a messaging engine and a JMS application running within the J2EE
client container, requires a set of compatible credentials to be supplied by both
the party initiating the connection, and the party accepting the connection.

Within an application server environment, the credentials used by a secure
transport chain can be configured by associating the required SSL repertoire with
the relevant SSL channel within the chain. For inbound transport chains, this can
be performed using the WebSphere administrative console. By default, secure
transport chains within an application server environment are associated with the
default SSL repertoire for the WebSphere Application Server V6 cell. When
configuring secure communications between two messaging engines, the name
of the inbound transport chain on both messaging engines must match in order
for the connection to be established. These transport chains must also be
configured with compatible SSL credentials. This is true when securing both
intra-bus messaging engine connections and inter-bus messaging engine
connections.

Within the J2EE client container environment, the credentials used by a secure
outbound transport chain are specified in the sib.client.ssl.properties file. Every
WebSphere Application Server V6 profile has its own copy of this file, contained
in the properties subdirectory of the profile. The properties contained within this
file specify, among other things, the location of the key store and trust store to be
used by the outbound transport chain, when attempting to establish a secure
connection to a messaging engine.

 Chapter 11. Default messaging provider 619

11.2.3 Data stores
A messaging engine uses a JDBC data source to access the data store with
which it is associated. The process of adding an application server as a member
of a service integration bus automatically creates a messaging engine on that
application server. By default, a data store will also be created for this messaging
engine, hosted within an embedded Cloudscape database. A JDBC data source
for this database is also defined on the server that has been added to the bus.
These defaults allow the messaging engine to run without any further
configuration.

However, while adding a bus member, it is possible to specify the JNDI name of
a different data source for use by the messaging engine. The sections that follow
describe the issues that must be considered when deciding which RDBMS to use
as a data store.

Data store location
The data store can be located on the same host as the messaging engine with
which it is associated, or it can be located on a remote host. The decision of
where to locate the data store might depend on the capabilities of the RDBMS
that host the data store. For instance, the embedded Cloudscape database must
run within the same application server process on which the messaging engine
runs.

The location chosen for the data store can have an impact on the overall
performance, reliability or availability characteristics of the service integration
bus components. For instance, a data store located on the same host as the
messaging engine with which it is associated, can provide higher persistent
message throughput by avoiding flowing data over the network to the data store.
However, such a configuration might not provide the availability required,
because failure of the host would mean that both the messaging engine and its
data store would become unavailable.

Note: Any messaging engine that is active on an application server can be
contacted by any enabled inbound transport chain. By default, all application
servers are created with both secure and insecure transport chains. In order to
ensure that a messaging engine can only be contacted using a secure
transport chain, it is necessary to either disable or delete the insecure
transport chains that are defined on the corresponding application server.

Note: Check with your database administrator to ensure that your RDBMS
supports remote access from JDBC client applications.

620 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-19, shows the various options available when deciding where to locate
a data store. The messaging engine in application server 1 uses the default
Cloudscape data store, running in the same process as the application server.
The messaging engine in application server 2 uses a data store hosted by a DB2
instance running on the same host as node 1. The messaging engine in
application server 3 uses a data store hosted by a DB2 instance running on a
remote host.

Figure 11-19 Data store locations relative to the associated messaging engine

Data store access
Each messaging engine must have exclusive access to the tables defined within
its data store. This can be achieved, either by using a separate database as the
data store for each messaging engine, or by partitioning a single, shared,
database into multiple data stores using unique schema names for each data
store.

Deciding which of these mechanisms to use depends on the capabilities of the
RDBMS that will host the data store. For instance, the embedded Cloudscape
database does not support concurrent access by multiple processes.

Application
Server 2

Application
Server 1

Node Agent

Node 1

Node Agent

Node 2

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

ME

Application
Server 3

ME

DB2

ME Cloudscape DB2

 Chapter 11. Default messaging provider 621

Figure 11-20 on page 623 shows the options available when deciding whether to
use exclusive access or shared access to a data store. The messaging engine in
application server 1 has exclusive access to the database hosting its data store.
The messaging engines in application servers 2 and 3 have shared access to the
database hosting their data stores. This shared database has been partitioned
into separate schemas, with each messaging engine accessing the data store
tables within a different schema.

Note: Check with your database administrator to ensure that your RDBMS
supports shared access from JDBC client applications and that it allows
schema names to be specified on a JDBC connection. DB2 and Network
Cloudscape support this functionality.

For databases that do not allow a schema name to be specified on a JDBC
connection, multiple messaging engines share database access by each
messaging engine using a different user ID when connecting to the database.

622 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-20 Exclusive and shared access to data stores

Data store tables
The messaging engine expects its data store to contain a set of specific tables,
each of which has a specific table definition. Each messaging engine can be
configured to create the tables within its data store, if they are not already
present. During initialization, a messaging engine connects to its data store and
checks for the required tables. If the messaging engine has the functionality to
create tables, and they do not exist, it attempts to create the tables.

Some organizations allow a database administrator to perform only certain tasks
on a database, such as creating tables. In this situation, the database
administrator can use the sibDDLGenerator command to generate the DDL
statements required to create these tables. The sibDDLGenerator command is
located in the \bin\ subdirectory of the WebSphere installation directory. Refer to
the WebSphere Information Center for a full description of the sibDDLGenerator
command.

Node Agent

Node 1

HR Department Bus

Deployment
Manager

Deployment Manager Node

WebSphere Application Server V6 Cell

Application
Server 1

ME

DB2

Schema
Data Store

Schema
Data Store

Application
Server 2

ME

Node Agent

Node 2

Application
Server 3

ME

DB2

Schema
Data Store

 Chapter 11. Default messaging provider 623

Table 11-5 describes the tables defined within the data store for a messaging
engine.

Table 11-5 Messaging engine data store tables

Note: In order for the messaging engine to be able to create the required
tables within its data store, the user ID for the database must have sufficient
privileges. Please refer to the WebSphere Information Center for a full
description of the database privileges required in order for the messaging
engine to access the data store.

Table name Description

SIBOWNER Ensures exclusive access to the data store by an
active messaging engine

SIBCLASSMAP Catalogs the different object types in the data store

SIBLISTING Catalogs the SIBnnn tables

SIBXACTS Maintains the status of active two-phase commit
transactions

SIBKEYS Assigns unique identifiers to objects in the
messaging engine

SIBnnn, where nnn is a number Contains persisted objects such as messages and
subscription information. These tables hold both
persistent and nonpersistent objects, using separate
tables for the different types of data, according to the
following convention:

� SIB000

Use this name for the table which contains
information about the structure of the data in the
other two tables

� SIB001

Use this name for the table which contains
persistent objects

� SIB002

Use this name for the table which contains
non-persistent objects saved to the data store to
reduce the messaging engine memory
requirement

624 WebSphere Application Server V6: System Management and Configuration Handbook

Embedded Cloudscape considerations
As we discussed previously, each messaging engine defaults to using an
embedded Cloudscape database to host its data store. However, when adding
an application server cluster as a bus member, you do not have this default
configuration. This is because the embedded Cloudscape database is not
supported for cluster bus members. In certain failover scenarios, multiple
processes might attempt to access the embedded Cloudscape database, and
this is not supported.

11.2.4 Exception destinations
If a messaging client encounters a problem when attempting to consume a
message from a bus destination, message delivery has failed. The message can
be placed back on the bus destination for redelivery. Use the maximum failed
deliveries property on a bus destination to determine the number of times a
message can fail delivery. The default value of this property is five.

An exception destination handles undeliverable messages. Both queue and topic
space destinations can define an exception destination. If a message cannot be
delivered to its intended bus destination, it is rerouted to the specified exception
destination. This mechanism prevents the loss of messages that cannot be
delivered.

Each messaging engine has a default exception destination of
_SYSTEM.Exception.Destinaton.<ME_NAME>. By default, all bus destinations
that have message points on a messaging engine use the default exception
destination for that messaging engine when rerouting undeliverable messages.

Note: When you remove a messaging engine, WebSphere Application Server
V6 does not automatically delete the tables in its data store. To reuse this data
store with another messaging engine, delete the tables within the data store
manually.

Note: Messages can also be placed on an exception destination for a variety
of other reasons, examples of which include:

� When a destination is deleted, any messages on the destination are placed
on the exception destination, unless the bus has been configured to
discard them.

� When a message is received from a foreign bus, the message is placed on
the exception destination if the target destination has reached its high
message threshold.

 Chapter 11. Default messaging provider 625

This enables administrators to access all of the undeliverable messages for a
messaging engine in one place.

However, an administrator can also configure a bus destination to use a
nondefault exception destination. This enables administrators to access all of the
undeliverable messages for a specific destination in one place, allowing for more
fine-grained management of undeliverable messages.

When configuring a destination to use a non-default exception destination, the
exception destination specified can be a local or a remote bus destination. It is
also recommended that this destination is a queue destination and that it exists
prior to the creation of the bus destination with which it is associated. If the
exception destination specified has been deleted when a destination attempts to
reroute an undeliverable message, the undeliverable message is rerouted to the
default exception destination for the message engine.

When message order is important, it might be necessary to configure a bus
destination not to use an exception destination. In this case, any messages that
cannot be delivered to the target destination are not rerouted, and will be
redelivered repeatedly. This has the effect of blocking the delivery of subsequent
messages to the bus destination in question. For this reason, such a
configuration should be used with caution.

Note: It is not possible to delete a default exception destination from a service
integration bus. This ensures that there is always a default exception
destination available on each messaging engine within the bus.

Note: Errors might occur as a message traverses the bus to its target
destination. In this situation, the messaging engine handling the message
attempts to redeliver the message. However, if the messaging engine
determines that the target destination is unreachable, it can place the
message on its default exception destination. For this reason, all exception
destinations on the bus must be monitored to ensure that problem messages
are processed appropriately.

Note: Publication messages arriving at a topic space destination for which
there are no subscribers are not considered to be undeliverable. Such
messages are discarded.

626 WebSphere Application Server V6: System Management and Configuration Handbook

11.2.5 Service integration bus links
As discussed in section 11.1.7, “Foreign buses” on page 606, defining a foreign
bus on a service integration bus simply defines a link between the two buses at
an architectural level. When the foreign bus in question represents another
service integration bus, the link is implemented at runtime by establishing a
connection between a messaging engine from each of the buses. This link is
configured on a messaging engine by defining a service integration bus link. A
service integration bus link encapsulates the information required to
communicate with a specific messaging engine, within a specific foreign bus.

When configuring a service integration bus link, it must be associated with the
target foreign bus definition. The foreign bus definition with which it is associated
enables the service integration bus link to determine the name of the target
service integration bus. This is shown in Figure 11-21.

Figure 11-21 Association between a service integration bus link and a foreign bus

This requirement also determines the order in which these objects must be
defined. The foreign bus must be defined within a service integration bus before
a corresponding service integration bus link can be configured on a messaging
engine.

Note: The name specified for the foreign bus must exactly match the real
name of the target service integration bus.

The names of each of the buses involved in the link must also be unique. For
this reason, if two service integration buses within separate WebSphere
Application Server V6 cells need to be linked, care must be taken when
naming each of the buses.

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus

 Chapter 11. Default messaging provider 627

When attempting to establish the connection, the messaging engine within the
local bus always attempt to connect to the foreign bus as though it were a remote
client, even if the foreign bus is defined within the same WebSphere Application
Server V6 cell. For this reason, a list of provider endpoints must also be specified
when configuring the service integration bus link. These provider endpoints are
used by the messaging engine in the local bus to connect to a bootstrap server in
the foreign bus. For more information about the bootstrap process, refer to
section 10.7, “Connecting to a service integration bus” on page 576.

The service integration bus link is also required to specify the name of the
messaging engine on the target bus with which to connect. The messaging
engine in the local bus uses the bootstrap server to locate the target messaging
engine in the foreign bus. Figure 11-22 shows this process.

Figure 11-22 Bootstrapping during service integration bus link initialization

Once again, this requirement imposes an order in which the various
configuration tasks must be performed. Each of the buses involved in the link
must have at least one bus member defined before a service integration bus link
can be configured.

The final requirement when configuring a service integration bus link, is that the
link must be configured in both directions in order for the two buses to
communicate at runtime. This is shown in Figure 11-23 on page 629.

Note: The name specified for the service integration bus link within both
buses must be the same.

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus

1. Bootstrap

2. Connect

628 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-23 Defining a service integration bus link in both directions

Topic space mappings
By default, a service integration bus link only flows messages across the link that
are addressed to a queue destination on the foreign bus. In order to flow
publication messages across the service integration bus link, topic space
mappings need to be configured on the foreign bus definition.

These mappings define the topic space destination within the local bus for which
publication messages are passed over the link. They also define the topic space
destination on the foreign bus to which these publication messages are
addressed. Refer to the WebSphere Information Center for more information
regarding the definition of topic space mappings.

11.2.6 WebSphere MQ links
As discussed in section 11.1.7, “Foreign buses” on page 606, defining a foreign
bus on a service integration bus simply defines a link between the two buses at
an architectural level. When the foreign bus in question represents a WebSphere
MQ network, the link is implemented at runtime by establishing sender and
receiver channels between a specific messaging engine and a WebSphere MQ

Note: If the transport chain used by the service integration bus link encrypts
its traffic using SSL, the names of the target inbound transport chain on each
link must be the same. The transport chain specified must also be configured
identically on each bus to ensure that compatible SSL credentials are used
when establishing the link.

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

SIB Service

Foreign Bus
Name = HR Bus

Accounts Bus

WebSphere Application Server V6 Cell

Node 2
Application Server 2

HR ME

SIB Service

HR Bus

1. Bootstrap

2. Connect Li
nk HR ME

Foreign Bus
Name = Accounts Bus

 Chapter 11. Default messaging provider 629

queue manager. These channels are configured on a messaging engine by
defining a WebSphere MQ link.

To a messaging engine configured with a WebSphere MQ link, the WebSphere
MQ queue manager appears to be a foreign bus. To the WebSphere MQ queue
manager, the messaging engine appears to be another WebSphere MQ queue
manager. When configuring a WebSphere MQ link, an administrator must specify
a virtual queue manager name. This is the queue manager name by which the
messaging engine will be known to the remote WebSphere MQ queue manager.
The WebSphere MQ queue manager is completely unaware that it is
communicating with a messaging engine.

When you configure a WebSphere MQ link, you must be associate it with the
target foreign bus definition. The name specified for the foreign bus does not
need to match the name of the target WebSphere MQ queue manager. However,
specifying a name for the foreign bus that matches the target WebSphere MQ
queue manager, simplifies the routing of messages across the link.

Figure 11-24 shows a high level view of a WebSphere MQ link. Notice that the
name of the foreign bus with which the WebSphere MQ link is associated,
matches the name of the target WebSphere MQ queue manager.

Figure 11-24 Overview of a WebSphere MQ link

WebSphere MQ link sender channel
The WebSphere MQ link sender channel establishes a connection to a receiver
channel on the target WebSphere MQ queue manager. It converts messages
from the format used within the service integration bus, to the format used by
WebSphere MQ, and then sends these messages to the receiver channel on the
target WebSphere MQ queue manager. For a full description of how messages

WebSphere MQ

IT Department Bus

C
ha

nn
el

s

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

Queue Manager
Name = QM_itbus

630 WebSphere Application Server V6: System Management and Configuration Handbook

are converted as they traverse the WebSphere MQ link, refer to the WebSphere
Information Center. The WebSphere MQ link sender channel emulates the
behavior of a sender channel in WebSphere MQ. This is shown in Figure 11-25.

Figure 11-25 WebSphere MQ link sender channel

When you configure a WebSphere MQ link sender channel, you are required to
specify the following information:

� A name for the channel, which must exactly match, including case, the name
of the receiver channel defined on the target WebSphere MQ queue
manager.

� The host name or IP address of the machine hosting the target WebSphere
MQ queue manager

� The port number on which the target WebSphere MQ queue manager is
listening for inbound communication requests

� An outbound transport chain

Note: It is only necessary to define a WebSphere MQ link sender channel if
messages are required to be sent from the service integration bus to the
WebSphere MQ network.

Note: If the receiver channel on the target WebSphere MQ queue manager
accepts only SSL connections, you must associate the transport chain with a
suitably compatible set of SSL credentials.

WebSphere MQ

IT Department Bus

Receiver
Channel

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

MQ Link Sender Queue Manager
Name = QM_itbus

 Chapter 11. Default messaging provider 631

WebSphere MQ link receiver channel
The WebSphere MQ link receiver channel allows a sender channel within a
WebSphere MQ queue manager to establish a connection to a messaging
engine within the service integration bus. It converts messages from the format
used within WebSphere MQ, to the format used by the service integration bus.
For a full description of how messages are converted as they traverse the
WebSphere MQ link, refer to the WebSphere Information Center. The
WebSphere MQ link receiver channel emulates the behavior of a receiver
channel in WebSphere MQ. This is shown in Figure 11-26.

Figure 11-26 WebSphere MQ link receiver channel

When configuring a WebSphere MQ link receiver channel, the following
information is required:

� A Name for the channel, which must exactly match, including case, the name
of the sender channel defined on the target WebSphere MQ queue manager

The inbound transport chain with which the sender channel on the WebSphere
MQ queue manager communicates, is dependent on the configuration of the
WebSphere MQ sender channel. The WebSphere MQ administrator should be
consulted to ensure that the sender channel is configured appropriately. As
discussed in “Inbound transport chains” on page 614, the InboundBasicMQLink

Note: It is only necessary to define a WebSphere MQ link receiver channel if
messages are required to be sent from the WebSphere MQ network to the
service integration bus.

WebSphere MQ

IT Department Bus

WebSphere Application Server V6 Cell

Node 1
Application Server 1

Li
nkAccounts ME

Foreign Bus
Name = QM_itbus

Accounts Bus

MQ Link Receiver Sender
Channel

Queue Manager
Name = QM_itbus

632 WebSphere Application Server V6: System Management and Configuration Handbook

transport chain defaults to listening on port 5558 for connections from
WebSphere MQ, and the InboundSecureMQLink transport chain defaults to
listening on port 5578 for connections from WebSphere MQ.

MQ Publish/Subscribe broker profile
By default, a WebSphere MQ link only flows messages across the link that are
addressed to a queue destination on the WebSphere MQ network. To flow
publication messages across the WebSphere MQ link, configure a
publish/subscribe broker profile for the WebSphere MQ link. A
Publish/Subscribe broker profile allows topic mappings to be defined. These
topic mappings define the topic names for which publication messages will be
flowed across the WebSphere MQ link. Please refer to the WebSphere
Information Center for more information about the definition of topic mappings
within a publish/subscribe broker profile.

Addressing destinations across the WebSphere MQ link
There are several issues that must be considered when addressing a message
to a destination that will flow across a WebSphere MQ link. These issues exist
because of the differences in naming structure between the service integration
bus and WebSphere MQ.

WebSphere MQ has a two-level addressing structure, as follows:

� Queue manager name
� Queue name

Each of these elements within WebSphere MQ is limited in length to 48
characters. Within the service integration bus, a destination can be uniquely
identified using the following elements:

� Service integration bus name
� Destination name

The service integration bus places no length restrictions on these elements.

The difference in the allowable lengths of the various naming elements causes
problems when a messaging application running in one environment attempts to
address a message to a destination defined in the other environment, across the
WebSphere MQ link. These issues are discussed in the sections that follow.

WebSphere MQ to service integration bus addressing
Messages that are sent from a WebSphere MQ application to a bus destination
which has a name greater than 48 characters in length, must have some means
of using the shorter name used in WebSphere MQ to address the long name
used in the service integration bus.

 Chapter 11. Default messaging provider 633

The service integration bus uses an alias destination to map between the shorter
name used by WebSphere MQ, and the longer name used by the service
integration bus. A WebSphere MQ client application can address a message to
an alias destination within a service integration bus that is defined with a short
name of less than 48 characters. The alias destination then maps this message
onto the destination defined with a long name of greater than 48 characters.

Service integration bus to WebSphere MQ addressing
Another problem can happen when a messaging client is required to address a
message to a queue defined on an arbitrary queue manager within the
WebSphere MQ network. For example, when defining JMS destinations for use
by JMS client applications, it is only possible to specify the name of the bus on
which the target destination is defined, and the name of the destination. If the
destination exists within the WebSphere MQ network, the name of the foreign
bus is specified as the bus name. However, if the target queue is not defined on
the queue manager to which the WebSphere MQ link connects, additional
information is required in order to address messages to the correct queue.

To solve this problem, when defining a JMS queue or an alias destination that
represents a queue on a WebSphere MQ network, use a special format for the
target queue name, of the form: <queue>@<queue manager>. These
destination names are only parsed by the WebSphere MQ link, which uses the
information to determine which values to place in the target queue and queue
manager fields of the message header.

In the most simple case, the name specified for the foreign bus matches the
name of the queue manager on which the target queue is defined. When this is
the case, only the name of the target queue needs to be specified. If no queue
manager name is applied as a suffix, then the foreign bus name will be added as
the queue manager name by default. This is shown in Figure 11-27 on page 635.

634 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-27 Simple WebSphere MQ addressing

This is still the case, even if the WebSphere MQ queue manager on which the
target queue is defined, is not the same queue manager to which the WebSphere
MQ link connects. This is shown in Figure 11-28.

Figure 11-28 Simple WebSphere MQ addressing

When the name specified for the foreign bus does not match the name of the
queue manager on which target queue is defined, the queue manager name

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1
Foreign Bus

QM1

JMS Queue
Bus name = QM1
Queue = bob

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1
Foreign Bus

QM2

MQ Queue
Manager

QM2

JMS Queue
Bus name = QM2
Queue = bob

 Chapter 11. Default messaging provider 635

must be included as part of the queue name using the format described
previously. This allows the message to be appropriately routed by WebSphere
MQ once the message has left the service integration bus. This is shown in
Figure 11-29.

Figure 11-29 Advanced WebSphere MQ addressing

This mechanism enables a messaging client to address a message to a queue
that is defined on any queue manager within the WebSphere MQ network. This is
shown in Figure 11-30 on page 637.

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1
Foreign Bus

Fred

JMS Queue
Bus name = Fred
Queue = bob@QM1

636 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-30 Advanced WebSphere MQ addressing

WebSphere MQ client links
A WebSphere MQ client link enables a messaging engine to act as a WebSphere
Application Server V5.x embedded JMS Server. This function is provided as an
aid to migration of V5.x to V6 and should not be used for any other purpose.

A WebSphere MQ client link enables any applications that are installed and
configured on V5.x, using V5.x JMS resources, to continue to function as normal
after the V5.x JMS server has been migrated to V6.

The process of migrating a V5.x node that contains an embedded JMS server
will remove that JMS server and create a service integration bus with a
WebSphere MQ client link. Queues previously defined on the V5.x embedded
JMS server will be created automatically on the service integration bus.

See the Information Center topic Migrating from version 5 embedded messaging
for more information.

Note: The naming mechanism described within this section can only be used
to address messages to destinations defined within WebSphere MQ. It must
not be used to attempt to address messages to destinations defined on
another service integration bus. An indirect foreign bus must be used for that
purpose.

Queue
bob

Service Integration Bus

MQ Queue
Manager

QM1
Foreign Bus

QM1

MQ Queue
Manager

QM2

JMS Queue
Bus name = QM1
Queue = bob@QM2

 Chapter 11. Default messaging provider 637

You should not need to create a WebSphere MQ client link manually. Use the
one created automatically for you by the migration process.

11.3 High availability and workload management

High availability and workload management can be achieved using clusters as
service integration bus members. It is worth noting however, that service
integration bus messaging engines do not follow the same clustering model that
J2EE applications do in clusters.

11.3.1 Cluster bus members for high availability
When You add a cluster to a service integration bus, a single messaging engine
is created. The messaging engine is active on only one server within the cluster.
In the event of an application server or messaging engine failure, the messaging
engine becomes active on another server in the cluster if one is available.

By default, the messaging engine starts on the first available server in a cluster. If
you want to ensure that the messaging engine runs on a particular server, for
example if you have one primary server and one backup server, or if you want
the messaging engine to only run on a small group of servers within the cluster,
then you must specifically configure this. See 11.8.9, “Setting up preferred
servers” on page 672 for details on configuring preferred servers.

11.3.2 Cluster bus members for workload management
Because a single messaging engine for the cluster is active, there is no workload
management by default. To achieve greater throughput of messages, it is

Important: It is recommended that you replace all v5.x JMS resources with
v6.0 default messaging provider JMS resources as soon as possible. Once all
resources have been changed, it is possible to delete the WebSphere MQ
client link as all applications will be using the v6.0 default messaging provider
directly.

Note: This section introduces you to the high availability and workload
management capabilities when using the service integration bus. Before
configuring your system, consult the following:

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392.

� WebSphere Application Server V6: High Availability Solutions, REDP-3971

638 WebSphere Application Server V6: System Management and Configuration Handbook

beneficial to spread messaging load across multiple servers and, optionally,
across multiple hosts. You can achieve this, while maintaining a simple
destination model, by creating additional messaging engines for the cluster, each
of which has a preference to run on a separate server in the cluster.

You can configure these messaging engines with a preference to run on
particular servers within the cluster. This enables a messaging engine to run in
every server in the cluster, thus providing every application in the cluster with a
messaging engine for local access to the bus. Local access to the bus is always
better for messaging performance, especially in the case of queues where the
queue is assigned to the bus member from which it is being accessed.

When a queue is assigned to a cluster bus member the queue will be partitioned
across all messaging engines in the cluster.

11.3.3 Partitioned queues
A queue is partitioned automatically for you when a queue destination is
assigned to a cluster bus member. Every messaging engine within the cluster
owns a partition of that queue and is responsible for managing messages
assigned to the partition. Every message sent to the queue is assigned to exactly
one of the partitions.

Local partitions
When a JMS client attempting to access a partitioned queue is connected to a
messaging engine hosting one of those partitions (a messaging engine in the
cluster), then the client is able to access only that local partition of the queue for
both consuming and producing messages.

Remote partitions
If the JMS client connects to a messaging engine not hosting a destination
partition, a messaging engine in the same bus but not in the cluster, then each
client-created consumer connects to one remote partition to consume messages.
Each session created is workload managed with respect to which remote
partition it connects for consuming messages.

Note: The only instance where messages are not sent to the local partition is
when that local partition is full and other partitions of the queue are not. In this
case, messages are routed to an available remote partition.

Clients attempt to consume only from the local partition, even if there are no
messages on the local partition and there are messages available on other
partitions.

 Chapter 11. Default messaging provider 639

Messages sent to a remote partitioned destination are workload-managed
across the individual partitions on an individual message basis, regardless of the
session.

.

11.3.4 JMS clients connecting into a cluster of messaging engines
JMS clients outside of a cluster can connect directly into a workload-managed
cluster of messaging engines. In this case, workload-managed means the cluster

Important: Cluster bus members and partitioned queues alone do not give
better message throughput. The applications producing and consuming the
messages must be configured to use the service integration bus.

� Message producers must be configured to ensure that their messages will
be workload-managed onto the different partitions of a partitioned queue.
Following are examples of workload management:

– Message producers, JMS clients, connect directly to the cluster. This
has some restrictions in version 6.0. See 11.3.4, “JMS clients
connecting into a cluster of messaging engines” on page 640. We
anticipate removing these restrictions in the near future with a Fix Pack.

– Message producers connect to messaging engines that are not part of
the cluster. This requires servers outside of the cluster to be available
and added to the bus, and for the message producers to make their
JMS connections to those messaging engines. Once a messaging
engine outside of the cluster accepts a message, the engine becomes
responsible for routing the message through the bus to a queue point
for the destination. Workload management selects a particular queue
point of the partitioned destination so messages are spread evenly
across all partitions of the queue.

– An EJB or servlet in a cluster produces messages. Because the calls to
the EJB or servlet are workload-managed across the cluster, and
assuming that messages are produced to a local queue partition, it
follows that the messages produced will be workload managed across
the partitions of the queue.

� Message consumers must be configured to connect to each partition of a
partitioned queue to consume messages. If any partitions do not have
consumers, then the messages sent to that partition might never be
consumed.

The simplest, and recommended way of configuring consumers to every
partiton of a partitioned queue is by installing a message-driven bean on
the cluster.

640 WebSphere Application Server V6: System Management and Configuration Handbook

is a bus member and one messaging engine has been added for every server in
the cluster. Each messaging engine has been configured to prefer a different
server in the cluster. JMS clients connect to the messaging engines using the
connection rules described in 10.7, “Connecting to a service integration bus” on
page 576.

In this scenario, there is an undesirable side effect of the rules when the servers
in the cluster are used as the provider endpoints for the connection factory.
Consider the following example:

A JMS client connects into a cluster of servers A,B and C. The connection factory
is configured with provider endpoints of A,B and C. This allows the client to
bootstrap to any of the three servers in the cluster. Following the connection
rules, the connection factory bootstraps to the first server in the provider
endpoints list, A. Server A has a local messaging engine, therefore the
messaging engine on Server A is chosen as the preferred connection point for
the client.

Because the connection always tries the first entry in the provider endpoints list
first, every client connecting directly into the cluster connects to the messaging
engine in server A. All messages produced for a destination partitioned across
the cluster are assigned to the partiton of the destination associated with the
messaging engine. This is obviously not very good for workload management of
messages. There are two methods that can overcome this.

� Enable a SIB service on a server outside of the cluster. Configure the provider
endpoints on the connection factory to point to this SIB service. If there is no
messaging engine local to this SIB service, then the client connections will be
workload-managed around all of the messaging engines in the bus.

If you only have messaging engines in the cluster, no further configuration is
required. If there are other non-cluster bus members, and you only want the
clients to connect directly to the messaging engines in the cluster, then you
must configure a target group on your connection factory. See “Target groups”
on page 585.

� Provide different clients with differently configured connection factories, each
of which has a different provider endpoint in the first position in the list.

11.3.5 Preferred servers and core group policies
To configure a messaging engine to prefer a server or group of servers you must
configure a core group policy. A core group policy is used to identify server
components, and define how they will behave within a cell or cluster. This section
discusses these components.

 Chapter 11. Default messaging provider 641

Policy type
For service integration bus messaging engines, use a policy type of One of N.
This means that, while the messaging engine cam be defined on every server in
the cluster, WebSphere’s HA Manager ensures that it is only active on one of the
servers in the group, and will always be active on one of the servers, if one is
available.

Match criteria
The match criteria of a core group policy enables the HA Manager to decide what
server components match the policy and so should be managed according to the
policy. There are two match criteria that you must use to match a messaging
engine:

� type=WSAF_SIB

This criterion matches any messaging engine

� WSAF_SIB_MESSAGING_ENGINE=<messaging_engine_name>

This criterion matches the messaging engine of the name provided.

Preferred servers
The preferred servers defined in a policy allow you to list a group of servers on
which the messaging engine will prefer to run. The higher up in the list of
preferred servers a particular server is, the more preferred it is. For a messaging
engine that is part of a cluster bus member, select only preferred servers that are
part of the cluster. The messaging engines are defined only in the cluster and
cannot be run on any servers outside of the cluster.

Fail back and preferred servers only
These two options have a large effect on how a particular policy will make a
messaging engine behave in a cluster.

If you select fail back, when a more preferred server becomes available then the
messaging engine will be deactivated where it currently runs and activated on
the more preferred server.

Enabling fail back ensures that a messaging engine always run on the most
preferred server that is available. This is usually desirable as there should be a
good reason for configuring a preferred server in the first place.

If you do not enable fail back, then once a messaging engine has started it will
not move to a more preferred server if one becomes available.

If you select preferred servers only, then the messaging engine will only be
allowed to be active on servers in the policy’s preferred servers list. If you do no

642 WebSphere Application Server V6: System Management and Configuration Handbook

select Preferred servers only, all servers in the cluster that are not in the list will
be able to have the messaging engine active on them, but they will be selected
only if none of the preferred servers are available.

Be very careful when selecting preferred servers only because it is possible to
reduce or remove the high availability of a messaging engine and of the queue
partitions that the messaging engine owns.

If none of the preferred servers are available, then the messaging engine will not
be active anywhere. This means any queue partitions owned by that messaging
engine will also be unavailable. Any messages currently on those partitions will
be trapped and cannot be consumed until one of the preferred servers has
become available and the messaging engine has been activated.

Large clusters
If you have a medium or large cluster of servers, five or more, configured with
messaging engines, then we recommend a slightly special configuration of
preferred servers.

With a large number of messaging engines defined on a cluster, it would be
undesirable to have all of the messaging engines starting up on the first server in
the cluster to start. We suggest the following configuration.

Configure each messaging engine with a group of preferred servers consisting of
a subset of the cluster with fail back and preferred servers only enabled. The set
of preferred servers should be large enough to support your availability
requirements by providing sufficient failover capabilities for the messaging
engine. For example, you might decide that the messaging engine must be able
to run on two or three servers. Configure each messaging engine with a different
subset of servers, with each messaging engine having a unique, most-preferred
server, as in Figure 11-31 on page 644.

In Figure 11-31 on page 644, the shading indicates the preference order of the
servers.

 Chapter 11. Default messaging provider 643

Figure 11-31 Configuring large clusters of messaging engines

11.3.6 Best practices
For the greatest throughput of messages, do the following:

1. Create a cluster bus member with messaging engines running on every
server in the cluster.

2. Define the queue or queues being used on the cluster bus member.

3. Ensure that message production to the queue is workload-managed across
the cluster:

– Install an EJB or servlet application on the cluster and have that
application produce the messages. Workload management of the client
calls to the application workload manages the message production across
the cluster.

– Produce messages from clients connected to messaging engines outside
of the cluster. The service integration bus can then workload manage the
messages across the cluster.

4. Install an MDB application on the cluster to consume the queue messages.

Server 1 Server 2 Server 3

Cluster
Server 4 Server 5

Messaging Engine 000

Messaging Engine 001

Messaging Engine 002

Messaging Engine 003Messaging
Engine 003

Messaging
Engine 004

Messaging Engine 004

644 WebSphere Application Server V6: System Management and Configuration Handbook

11.4 Service integration bus topologies
This section discusses briefly some messaging topologies, working up from the
simplest to more complex configurations.

11.4.1 One server in the cell is a member of one bus
In this topology, there is only one service integration bus. There might be multiple
application servers in the cell, but only one is a member of the bus. This is
roughly equivalent to the typical v5.x JMS server topology.

The pros of this topology are:

� It is very simple to set up and manage.

� It can be expanded later by adding more servers to the bus.

The cons are:

� Clients running on other application servers in the cell have to connect
remotely to the bus rather than connecting locally. This can affect messaging
performance.

� Clients running outside application servers have to connect to the bus
member to do messaging. The connection factory you use needs to have
provider endpoints configured with the details of the bus member server.

If the SIB service is enabled on other application servers in the cell, then
connection factories can be configured with provider endpoints that point to a
list of bootstrap servers. See 10.7, “Connecting to a service integration bus”
on page 576 for more information about using a bootstrap server and defining
a list of provider endpoints.

In either case, all messaging connections go to the bus member server and
might affect messaging performance.

� Message consumers might not be on the same server as the queue points
they are consuming from. This could have a performance impact.

� This topology cannot be upgraded easily to support high availability or
workload management. High availability and workload management require
clustering application servers. You can create a new cluster and include the
bus member as the first application server in the cluster. However, this will not
automatically give you the messaging high availability features that are
normally associated with adding a cluster as a bus member.

– Using the bus member server as the template for a cluster server is not
equivalent to adding a cluster to the bus. No bus information is copied as
part of the template process. The SIB service will be enabled on the new
cluster server as a server property, not part of any particular bus.

 Chapter 11. Default messaging provider 645

– Using the bus member as the first server in cluster server is not equivalent
to adding a cluster to the bus. Only the original server is part of the bus.

It is possible to add a cluster to the bus, delete all of the queues you want to
be highly available or workload-managed and recreate queues of the same
name that have their queue points located on the new cluster bus member.
Any messages on the queues are lost when they are deleted.

11.4.2 Every server in the cell is a member of the same bus
In this topology there are multiple application servers, but no clusters. There is
one service integration bus and each application server is a member of that bus.

The pros of this topology are:

� Clients in application servers can connect locally to the bus, improving
performance. If only some servers in the cell are members of the bus, then
install any messaging applications on those servers.

� Clients running outside application servers can connect to any cell server to
perform messaging, providing some degree of high availability for those
clients.

� It is possible to have queue points in the same servers as applications that
consume messages from them, improving performance.

The cons are:

� This topology is not easily upgradable to support high availability or workload
management. See the list of cons in 11.4.1, “One server in the cell is a
member of one bus” on page 645.

11.4.3 A single cluster bus member and one messaging engine
This scenario assumes that all the application servers in the cell belong to one
cluster and that cluster is a member of the service integration bus.

The benefit of this scenario is:

� The messaging engine is highly available. If the messaging engine or the
server on which it runs fails, then the messaging engine starts up on another
available server in the cluster. See “High availability and workload
management” on page 638 for more details.

646 WebSphere Application Server V6: System Management and Configuration Handbook

The drawback of this scenario is:

� If you want to ensure that the messaging engine runs on one preferred server,
for example, if you have one primary server and one backup server, then you
must specifically configure this. See “Setting up preferred servers” on
page 672.

11.4.4 A cluster bus member with multiple messaging engines
This scenario assumes that all the application servers in the cell belong to one
cluster. Multiple messaging engines have been defined for the cluster.

The pros of this topology are:

� The messaging engines in the cluster are highly available.

� The cluster bus member is capable of messaging workload management. A
queue point assigned to the cluster bus member is partitioned onto every
messaging engine in the cluster and messages delivered into the cluster are
distributed between the partitions. See “High availability and workload
management” on page 638 for more details.

The drawback is:

� There are some restrictions on the workload management of client
connections directly into a cluster. See 11.3.4, “JMS clients connecting into a
cluster of messaging engines” on page 640 for details.

11.4.5 Mixture of cluster and server bus members
The cell has some application server clusters and other non-clustered servers.
Both non-clustered servers and server clusters have been added as bus
members. Complex configurations such as these can be completely tailored to
best suit your application and server topologies.

Note: Be aware that some configurations of preferred servers for a
messaging engine can make that messaging engine not highly available.

If preferred servers are set up for the messaging engine with the preferred
servers only option, then it is possible, if none of the preferred servers is
available, that the messaging engine will not have another server on which
to start even if other servers are available in the cluster. See “High
availability and workload management” on page 638.

 Chapter 11. Default messaging provider 647

The benefits of this topology are:

� Cluster bus members can be configured with partitioned destinations to
support workload-managed, message-consuming applications such as
message-driven beans.

� Cluster bus members can be used to make system-critical destinations highly
available.

� To overcome the workload management restrictions of clients connecting to a
cluster, clients outside the cell can connect to server bus members. Clients
can then put messages to destinations with partitioned queue points.
Messages are workload-managed between the partitions.

� To overcome the workload management restrictions of clients connecting to a
cluster (see 11.3.4, “JMS clients connecting into a cluster of messaging
engines” on page 640), clients outside the cell can connect to server bus
members outside of the cluster. Clients can then put messages to partitioned
destinations and the messages will be workload-managed across the
partitions.

� Clients bootstrapping to servers (with a SIB service) outside the cluster can
get workload management of their connections to the messaging engines
within the cluster bus member.

The drawback is:

� These more complex messaging topologies take a little more planning and
configuration than simpler topologies.

11.4.6 Multiple buses in a cell
It is possible to have many service integration buses within a cell. This topology
can be desirable under in the following situations:

� Separation of concerns

Applications that do not need to share messages can be isolated from each
other by using their own bus.

� Test configuration

A test configuration with identical destination names can be created on
separate bus that is not used by the production system. Changing the name
of the bus in the connection factories can then redirect the test application to
the production bus without changing any other configuration.

648 WebSphere Application Server V6: System Management and Configuration Handbook

11.5 Service integration bus and message-driven beans
Message-driven beans (MDBs) attached to destinations in the service integration
bus are attached by means of the SIB JMS Resource Adapter, an activation
specification and a JMS destination. The resource adapter is responsible for
connecting to the service integration bus and delivering messages to the MDB.

11.5.1 Message-driven beans connecting to the bus
The resource adapter always attempts to connect a message-driven bean to a
messaging engine in the same server, if one is defined there. If there is no
messaging engine in the same server, then a messaging engine is selected from
the bus using the standard connection selection process, see 10.7, “Connecting
to a service integration bus” on page 576.

There are three scenarios where an MDB will start but not connect to the
destination for which it is configured to listen. The resource adapter will allow the
MDB application to start under these circumstances and will attempt to connect
the MDB to its configured destination as soon as possible.

Local messaging engine defined but unavailable
If a messaging engine is defined locally, but is unavailable when the MDB
application starts, the MDB application starts sucessfully and the resource
adapter connects it to the messaging engine when it activates. Situations when
this happens include:

� If the messaging engine has not started by the time the MDB application is
started

� The MDB is installed on a cluster bus member which has been configured for
high availability, and is on a server other than the one with the active
messaging engine

When an MDB application is started but the locally defined messaging engine is
unavailable the following warning message will appear in SystemOut.log:

Example 11-1 Message: local messaging engine not available

CWSIV0759W: During activation of a message-driven bean, no suitable active
messaging engines were found in the local server on the bus MyBus

Note: For performance reasons, we recommend that MDBs are always
installed on a server that has an active local messaging engine and a queue
point on that local messaging engine.

 Chapter 11. Default messaging provider 649

When the messaging engine activates, the message in Example 11-2 is
displayed when the MDB is connected to its destination:

Example 11-2 MDB connected to messaging engine

CWSIV0764I: A consumer has been created for a message-driven bean against
destination MyQueue on bus MyBus following the activation of messaging engine
cluster1.000-MyBus.

Remote destination unavailable
If there is an active locally defined messaging engine, but the MDB is configured
to listen to a queue currently unavailable (for example if the messaging engine
that hosts the queue point is not active), then the warning message
Example 11-3 is displayed:

Example 11-3 Message: remote destination unavailable

CWSIV0769W: The creation of a consumer for remote destination MyQueue on bus
MyBus for endpoint activation ...<section removed>... failed with exception
javax.resource.ResourceException: CWSIP0517E: Cannot attach to queue message
point for destination MyQueue.

The resource adapter tries to connect the MDB to the configured destination
every 30 seconds until it succeeds. Each failure to connect results in the
message in Example 11-3.

Remote messaging engine unavailable
If there is no locally defined messaging engine, then a messaging engine is
selected from the bus. If there are no currently available messaging engines in
the bus, then the resource adapter allows the MDB application to start anyway
and attempt to connect the MDB to a messaging engine every 30 seconds. The
message in Example 11-4 appears on the first failed attempt to connect to a
messaging engine. Subsequent failures are silent:

Example 11-4 Message: remote messaging engine unavailable

CWSIV0775W: The creation of a connection for destination MyQueue on bus MyBus
for endpoint activation ...<section removed>... failed with exception
com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus MyBus.

Note: Messaging engines are frequently the last component of an application
server to complete their startup, often even after the open for e-business
message is issued for the server. As a result, it is not unusual for MDB
applications to cause the above warning message.

650 WebSphere Application Server V6: System Management and Configuration Handbook

No messages are delivered to the MDB until the resource adapter has been able
to start a connection to an active messaging engine. The message in
Example 11-5 is displayed with a connection is made:

Example 11-5 Message: connection made to remote messaging engine

CWSIV0777I: A connection to remote messaging engine myNode.server1-MyBus for
destination MyQueue on bus MyBus for endpoint activation ...<section
removed>... is successfully created.

11.5.2 MDBs and clusters
The behavior of message-driven beans installed on clusters that use the service
integration bus is directly related to the service integration bus configuration.

Clusters that are not part of a bus
When an MDB is installed on a cluster that is not part of a bus, the MDBs on
each server connect independently to the bus to consume messages.

Clusters configured for highly available messaging
When a cluster is configured for highly available messaging, a messaging engine
is active on one of the servers in the cluster. An MDB application installed on that
cluster will start on all servers in the cluster, but only the MDB on the server with
the active messaging engine will receive messages. Should the active
messaging engine fail, or the server on which it is active fail or be stopped, then
the messaging engine will start on another server in the cluster. The MDB on that
server will be connected to the messaging engine and start receiving messages.

In this scenario, the service integration bus has been configured to have one
active messaging engine in the cluster, and, effectively, the MDB mirrors that
configuration.

Clusters configured for messaging workload management
When a cluster is configured for messaging workload management, a messaging
engine will most likely be active on each server in the cluster.

Note: You should not configure an MDB on a cluster with no local messaging
engine to listen to a partitioned queue in another cluster. There is no
guarantee that every partition of the queue in the other cluster will have at
least one MDB listening to it. This could lead to a partition without any
consumers.

 Chapter 11. Default messaging provider 651

For a MDB installed on the cluster and listening to a topic with a non-durable
subscription, each message on the topic will be received once on each server
with an active messaging engine. If more than one messaging engine be active
on a server, a publish topic message will still be received only once by the MDB
on that server.

If the MDB installed on the cluster is listening to a topic with a shared, durable
subscription, then one MDB in the cluster receives each message published on
the topic only once.

If the MDB installed on the cluster is listening to a queue partitioned on the
cluster, then the MDB is attached to each partition active on the server. Should
more than one messaging engine be active on a server then the MDB will receive
messages from each messaging engine’s partition of the queue.

For a MDB installed on the cluster and listening to a queue with its queue point
on a messaging engine outside of the cluster, the MDB on each server is
attached to the queue. An MDB on a server with more than one active
messaging engine will not receive a greater proportion of the messages than an
MDB on a server with only a single active messaging engine.

11.6 Service integration bus security
When security is enabled on WebSphere Application Server V6, certain steps
must be taken for JMS applications using the service integration bus to
authenticate themselves to the bus, allowing them to continue to use the
messaging resources.

� All JMS connection factory connections must be authenticated. This can be
done in two ways:

– The connection factory can have a valid authentication alias defined on it.

– The JMS application can pass a valid user name and password on the call
to ConnectionFactory.createConnection(). An ID passed in this way
overrides any ID specified in an authentication alias on the connection
factory.

� All activation specifications must have a valid authentication alias defined on
them.

652 WebSphere Application Server V6: System Management and Configuration Handbook

Any user that authenticates as a valid user to WebSphere has, by default, full
access to the bus and all destinations on it. It is possible to configure destination
and even topic-specific authentication requirement, if you want.

Every bus has an optional inter-engine authentication alias which can be
specified. If this property is left unset, then it will be ignored. However, if an alias
is specified and security enabled, then the ID will be checked when each
messaging engine starts communications to other messaging engines in the bus.
This provides additional security to prevent hackers pretending to be another
messaging engine in the bus.

Details on WebSphere security can be found in WebSphere Application Security
V6 Security Handbook, SG24-6316

11.7 Problem determination
The following information is presented to help you become familiar with
successful messaging engine startup, and some common problems.

No problems
Example 11-6 shows an example of what you can expect to see in systemOut.log
on server start up for a messaging engine that starts sucessfully:

Example 11-6 Successful messaging engine start

...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Joined.
...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Starting.
...
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Started.
...

Note: If a connection factory is looked up in the server JNDI from outside of
the server environment, as from the client container, any authentication alias
defined on the connection factory will be unavailable. This prevents
unauthorized use of an authenticated connection factory.

JMS clients outside of the server can provide user name and password on the
call to create connection. If the client is a J2EE client application running in the
WebSphere application client environment, it is possible to define an
authenticated connection factory resource in the .ear file.

 Chapter 11. Default messaging provider 653

When you have more than one messaging engine in a bus, you will also see the
messaging engines communicate with each other. Every messaging engine in
the bus connects to every other messaging engine in the bus, as shown in
Example 11-7.

Example 11-7 Messaging engine connections

...
CWSIT0028I: The connection for messaging engine Node1.server1-ITSOBus in bus
ITSOBus to messaging engine Node2.server2-ITSOBus started.
...
CWSIP0382I: messaging engine B68588EF698F4527 responded to subscription
request, Publish Subscribe topology now consistent.
...

CWSIS1535E: Messaging engine’s unique id does not match...
If you see the error shown in Example 11-8, the database that the messaging
engine points to contains the unique ID of a different messaging engine. The
most likely cause of this is when you create a bus, add a server to that bus using
the default Cloudscape database and start the server. Later, you delete and
recreate a bus of the same name. The newly created messaging engine will use
a default data source that points to the same database used by the old
messaging engine, and this database will contain the ID of the old messaging
engine.

This error can also be caused by configuring any messaging engine with the
same data store as another messaging engine.

Example 11-8 Messaging engine unique id doesn’t match

CWSIS9999E: Attempting to obtain an exclusive lock on the data store.
CWSIS1535E: The messaging engine's unique id does not match that found in the
data store. ME_UUID=1C80283E64EAB2CA, ME_UUID(DB)=B1C40F1182B0A045
WSIS1519E: Messaging engine Node1.server1-ITSOBus cannot obtain the lock on its
data store, which ensures it has exclusive access to the data.

Note: When you start a server that is part of a cluster bus member, then the
messaging engine will not always be started. Only one server in the cluster will
have a specific messaging engine activated on it and this messaging engine
might already be started.

If this is the case, then you will see the messaging engine in the state Joined,
but not Starting or Started. This is perfectly normal and means that the
messaging engine is in a stand-by state, waiting to be activated should the
currently active instance of the messaging engine become unavailable.

654 WebSphere Application Server V6: System Management and Configuration Handbook

CWSID0027I: Messaging engine Node1.server1-ITSOBus cannot be restarted because
a serious error has been reported.
CWSID0016I: Messaging engine Node1.server1-ITSOBus is in state Stopped.

The simplest solution is to drop the tables in the database, or delete and recreate
the database then restart the server. Another solution is to change the
messaging engine’s data store by changing the schema, user, and database
configured for the messaging engine. See , “Adding the bus member” on
page 664 for more details.

CWSIT0019E: No suitable Messaging Engine...
This exception shown in Example 11-9 can be thrown to a JMS client on a
createConnection call. Causes of this exception include:

� The JMS connection factory cannot contact an SIB service, for out of cell JMS
clients only. Check that the provider endpoints listed in the connection factory
match the host and port for the SIB services on the servers. Ensure that the
SIB services are enabled and the servers are started.

� The bus name defined in the JMS connection factory does not match the
name of a bus defined in WebSphere.

� No messaging engines on the named bus are active.

Example 11-9 Exception on createConnection call

javax.jms.JMSException: CWSIA0241E: An exception was received during the call
to the method JmsManagedConnectionFactoryImpl.createConnection:
com.ibm.websphere.sib.exception.SIResourceException: CWSIT0019E: No suitable
messaging engine is available in bus ITSOBus.

11.8 Configuration and management
This section discusses how to set up and configure a service integration bus
using the administrative console.

11.8.1 SIB service configuration
SIB service is an application server service enabling the server for service
integration activities. When a server is added to a bus, it automatically has its SIB
service enabled. Having the SIB service allows an application server to have

Note: In the following instructions, we frequently suggest saving the changes.
You do not have to do this and can make several changes before saving.

 Chapter 11. Default messaging provider 655

active messaging engines and to be used as a provider endpoint for default
messaging connection factories. The port on which the SIB service listens can be
looked up on the servers configuration panel.

1. Select Servers → Application Servers.

2. Select any server.

3. Under Communications, expand the Ports heading. SIB_ENDPOINT_ADDRESS
is the port used by SIB Service for that server. See Figure 11-32.

Figure 11-32 Port numbers used by a server

The settings for the SIB service of an application server can be found on the
administrative console:

1. Select Servers → Application Servers.

2. Select any server.

3. Under Server messaging select SIB service. See Figure 11-33 on
page 657.

Note: SIB service listens on a number of ports, not just the port for
SIB_ENDPOINT_ADDRESS. SIB_ENDPOINT_SECURE_ADDRESS is also available, and
is used for secure communications. Tunnelled and tunnelled secure endpoints
are also provided: jfap/http/tcp and jfap/http/ssl/tcp. Refer to the
Information Center for more details.

656 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-33 SIB Service panel

The panel for SIB service has two options.

– Enable service at server startup

This option is not enabled on a server by default. However, it is
automatically enabled if you add a server to a bus. If you disable the SIB
service, then any messaging engines defined on the server will not be
started.

– Configuration reload enabled

This option allows the SIB service to activate dynamically select changes
to a bus configuration during runtime. Creation, deletion or modification of
a destination or mediation takes effect almost immediately on a running
system. If a new destination is created, it becomes available for use
without having to restart servers or messaging engines. Some
configuration changes do require the affected server or messaging engine
to be restarted before the changes become effective, such as the creation
of a new bus, messaging engine, foreign bus link or MQ link.

A matching flag must also be enabled on each bus on which you want to
enable configuration reload. This flag is enabled by default on every bus,
but can be disabled if you want. To modify the flag either way, do the
following:

i. Select Service integration → Buses.
ii. Select a bus.

 Chapter 11. Default messaging provider 657

iii. Modify the Configuration reload enabled flag as appropriate.
iv. Save the changes.

11.8.2 Creating a bus
No service integration buses are defined by default. To create a bus, do the
following:

1. Select Service integration → Buses.

2. Click New. See Figure 11-34.

Figure 11-34 Bus creation panel

658 WebSphere Application Server V6: System Management and Configuration Handbook

The only required property is Name. You cannot change the name of a bus
after it has been created, but you can create any number of buses in a cell
and delete old ones. Make your bus name unique and meaningful.

The following properties can also be set:

– Description

This field is an optional description for the bus, for administrative
purposes.

– Secure

Select this option to inherit the Global Security setting of the cell. Deselect
this option if you always want to disable bus security. When the Secure
property is selected and global security for the cell is also selected, access
to the bus itself and to all destinations on the bus must be authorized.

– Inter-engine authentication alias

This field contains the name of the authentication alias used to authorize
communication between messaging engines on the bus. This field is
optional. If a value is specified, and bus security is enabled, incoming
connections to the bus are controlled to prevent unauthorized clients or
messaging engines from establishing a connection.

– Mediations authentication alias

Enter the name of the authentication alias used to authorize mediations to
access the bus.

– Inter-engine transport chain

The transport chain used for communication between messaging engines
in this bus. It must correspond to one of the transport chains defined in the
Messaging engine inbound transports settings for the server. When you
specify the name of a transport chain, that chain must be defined to all
servers hosting messaging engines in the bus. Otherwise, some
messaging engines might not be able to communicate with their peers in
the bus. The default transport chain is InboundBasicMessaging.

– Discard messages

Use this field to specify whether messages on a deleted message point
should be retained at a system exception destination or can be discarded.

– Configuration reload enabled

Select this option to enable certain changes to the bus configuration to be
applied without requiring the messaging engines to be restarted. If you
select this option, make sure the matching flag on the SIB service is also
enabled. See 11.8.1, “SIB service configuration” on page 655.

 Chapter 11. Default messaging provider 659

– High message threshold

Enter a threshold above which the messaging system will take action to
limit the addition of more messages to a message point. When a
messaging engine is created on this bus, the value of this property sets
the default high message threshold for the messaging engine.

3. Click Apply or OK and save your changes.

11.8.3 Adding a bus member using a default data store
Every messaging engine has a data store associated with it. If you elect to use
the default data store, a Cloudscape database will be created automatically and
initialized with the messaging engine tables. To create create a bus member
which automatically creates a messaging engine and uses the default
Cloudscape database, do the following.

1. Select Service integration → Buses.

2. Select the bus to which you want to add a member.

3. Select Bus members in the Additional Properties section.

4. On the Bus members panel click Add. See Figure 11-35 on page 661.

660 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-35 Adding a bus member

– Click the appropriate radio button to add a server or cluster, then select
the server or cluster from the list.

– Check the Default box to use the default Cloudscape data store. You do
not need to enter the data source JNDI name. It will default to the proper
value when the server or cluster is added to the bus.

5. Click Next and then Finish and save your changes.

11.8.4 Adding a bus member with a different data store
This section discusses the steps required to create a bus member using a
different data source from the default. In this section, we use DB2 as an
example.

Creating a database
The first step is to create the new database and define the user IDs allowed to
access the database. The privileges required are outlined in the Information
Center. Refer to the Data Stores topic under the service integration bus
administration topics for further information.

 Chapter 11. Default messaging provider 661

For example, The user ID for a DB2 database must have the following privileges:

� SELECT, INSERT, UPDATE, and DELETE privileges on the tables
� CREATETAB authority on the database
� USE privilege on the tablespace
� CREATEIN privilege on the schema

Use the sibDDLGenerator command to generate the DDL statements needed to
create the data store for the messaging engine, including the proper privileges.
For information about using this command, see the sibDDLGenerator command
topic in the Information Center.

Creating a J2C authentication alias
To define access to the new database, define a J2C authentication alias
containing the user ID and password defined in “Creating a database” on
page 661.

1. Select Security → Global security.

2. Under Authentication expand the JAAS Configuration section and select
J2C Authentication data.

3. Click New.

a. Provide a name for this Alias. The alias name will be used later to identify
this name as the one to access the database.

b. Provide a User ID and Password that have permission to access the
resource you will be using.

c. Click Apply or OK and save your changes.

Creating a JDBC provider and data source
With this step, you define the database to the application server. First, a JDBC
provider is defined to tell the application server how to find the libraries required
to access the database. Information about defining JDBC providers and data
sources can be found in 7.2, “JDBC resources” on page 321.

1. Select Resources → JDBC Providers.

2. Select the appropriate scope for the JDBC Provider. If you are adding a
cluster as a bus member, then select that cluster as the scope. If you are
adding a server as a bus member, then select the server as the scope.

3. Click New.

a. Select a database type. In this example, we use DB2.

b. Select the provider type. This is dependent on the database type. For a
DB2 database, select DB2 Universal JDBC Driver Provider.

662 WebSphere Application Server V6: System Management and Configuration Handbook

c. Select the implementation type. For DB2, use Connection pool data
source.

4. Click Next and then click Apply.

5. The default values for the DB2 provider use a variable to designate the
directory path where the JDBC drivers are found. Ensure that the
DB2UNIVERSAL_JDBC_DRIVER_PATH environment variable is correctly set:

a. Select Environment →WebSphere Variables

b. Select an appropriate scope for the variable, usually node.

c. Set the value for the DB2UNIVERSAL_JDBC_DRIVER_PATH variable to be the
path to the Java folder in the DB2 installation on the host appropriate to the
scope selected.

d. Save your changes.

6. Create a data source for the bus member. Select Resources → JDBC
Providers and then select your DB2 JDBC Provider.

7. Select Data sources.

8. Click New to create a new data source.

a. Provide a JNDI Name for the data source. Remember this name because
you will need to provide it when adding your cluster or server to the bus.

b. Provide the Database name, Driver type and, optionally, the Server name.
Get this information from your database administrator.

i. The database name must be the name of an existing DB2 Database.

ii. The driver type is 2 if the DB2 database exists locally or is catalogued
locally. If the database is only available on a remote host, then the
driver type is 4 and you must enter the Server name.

c. Click Apply or OK and save your changes.

Note: When the data source is being created at cluster scope, each node that
has a server in the cluster must have the DB2 JAR files available on it. The
DB2UNIVERSAL_JDBC_DRIVER_PATH variable must be set appropriately for every
node.

Note: There is no need to provide a component-managed authentication
alias at this stage. That will be specified later in the data store of the
messaging engine. Specifying the alias in either location is supported, but
for tighter security control, we recommend that you specify it in the
messaging engine’s data store.

 Chapter 11. Default messaging provider 663

Adding the bus member
Once the database and supporting definitions are in place, the bus member can
be added. To add the bus member, do the following:

1. Select Service integration → Buses. Select the bus you want.

2. Select Bus members in the Additional Properties section.

3. Click Add. See Figure 11-35.

4. To add a server to the bus, do the following:

a. Select Server on the radio button.
b. Select the server you want to add from the drop-down list.
c. Provide the data source JNDI name for the data store.

To add a cluster to the bus, do the following:

a. Select Cluster on the radio button.
b. Select the cluster you want to add from the drop down list.
c. Enter the data source JNDI name for the data store.

Figure 11-36 Adding a cluster to a bus.

5. Click Next and then click Finish.

664 WebSphere Application Server V6: System Management and Configuration Handbook

6. You now have to set the J2C authentication alias on the newly created
messaging engines data store. Select Service integration → Buses. Select
the appropriate bus.

7. Select Messaging engines.

8. Select the messaging engine created when you added the bus member.

9. Select Data store in the Additional Properties section. See Figure 11-37.

10.From the menu, select the authentication alias, allowing the messaging
engine to access the database.

Figure 11-37 Defining the authentication alias for the data store

11.Ensure that the Create tables box is checked. The messaging engine will
create all of the tables it needs in the database when it starts for the first time.

 Chapter 11. Default messaging provider 665

11.8.5 Creating a queue destination
Queue destinations are destinations that you can configure for point-to-point
messaging.

1. Select Service integration → Buses.

2. Select the bus on which you want to create a queue.

3. Select Destinations in the Additional Properties section. See Figure 11-38.

Figure 11-38 Default destinations

The Destinations panel shows two destinations that are created automatically
for you. The Default.Topic.Space is a default topic space which can be used
for publish/subscribe messaging. It can be deleted. The
_SYSTEM.Exception.Destination is a built in queue which cannot be deleted.

4. Click New. See Figure 11-39 on page 667.

Important: The user ID in the authentication alias must have sufficient
authority to be able to create tables in the database. Check with your
database administrator.

If you do not want the data store to use an ID with authority to create and drop
tables, then your database administrator must create the tables for you before
you start the messaging engine. See the Information Center section on
Enabling your database administrator to create the data store tables.

666 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-39 Options when creating a new destination

Select Queue from the radio button list and click Next. See Figure 11-40.

5. Provide an identifier and optional description for the queue.

Figure 11-40 Provide an identifier for your destination

If your application uses the JMS interface, it is not sufficient to create a
destination on the service integration bus. A JMS destination referencing the
service integration bus destination must also be created. The identifier value
specified here must match the Queue name property of the JMS queue
definition (see “JMS queue configuration” on page 539).

Click Next. See Figure 11-41 on page 668.

6. Select a bus member for the queue point for this queue from the list for the
queue. Click Next.

 Chapter 11. Default messaging provider 667

Figure 11-41 Select a bus member for the queue

7. Click Finish and then save your changes.

11.8.6 Creating a topic space destination
Topic space destinations are destinations that can be configured for
publish/subscribe messaging.

1. Select Service integration → Buses.
2. Select the bus on which you want to create a topic space on.
3. Select Destinations in the Additional Properties section.
4. Click New.
5. Select Topic space from the list and click Next.
6. Provide an identifier and optional description for your topic space.
7. Click Next.
8. Click Finished.
9. Save your changes.

11.8.7 Creating an alias destination
Alias destinations refer to another destination, potentially on a foreign bus,
providing an extra level of indirection for messaging applications. An alias
destination can also be used to override some of the values specified on the
target destination, such as default reliability and maximum reliability. Foreign
buses are discussed in 11.1.7, “Foreign buses” on page 606.

1. Select Service integration → Buses.
2. Select the bus on which you want to create a topic space.
3. Select Destinations. in the Additional Properties section.

668 WebSphere Application Server V6: System Management and Configuration Handbook

4. Click New.
5. Select Alias from the list and click Next. See Figure 11-42.

Figure 11-42 Alias destination properties

The properties to note are:

– Identifier

This field is the destination name as known by applications.

– Bus

Enter the name of the bus used by applications when referring to the alias
destination.

If the destination that clients will attempt to access is known to them to be
on a foreign bus, then select that bus from the menu. An example of this is
if a foreign destination is configured in the JMS layer and you want to
redirect client requests for that destination.

If the bus does not appear in the list, select other, specify from the list and
enter the name of the bus in the text box.

 Chapter 11. Default messaging provider 669

If you leave the Bus field empty, the alias destination is created on the
local bus.

– Target identifier

Enter the identifier of the target destination to which you want this alias
destination to route messages. If the alias destination is targeting a queue
provided by WebSphere MQ, type the value as a concatenation of the
queue name and the queue manager name, for example:

queue_name@qmanager_name; for example: Queue1@Qmgr2.

– Target bus

Enter the name of the service integration bus or foreign bus hosting the
target destination. This can be the name of a foreign bus representing a
WebSphere MQ network. The default is the name specified for the Bus
property.

Override any of the other values on the panel that you want to override for the
destination.

6. Click Next.

7. Click Finished.

8. Save your changes.

11.8.8 Adding messaging engines to a cluster
When you add a cluster to a bus, you get one messaging engine. To define
additional messaging engines, do the following:

1. Ensure that you have defined a data source that the new messaging engine
will use for its data store before starting this section, see “Creating a JDBC
provider and data source” on page 662.

2. Select Service integration → Buses. Select the bus you want to use.

3. Select Bus members in the Additional Properties section.

4. Select the cluster bus member to which you want to add an additional
messaging engine. This will display the list of messaging engines that are
defined for the cluster bus member. See Figure 11-43 on page 671.

670 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-43 Messaging engines as part of a cluster bus member

5. Click Add messaging engine. Enter data store information for the new
messaging engine as in Figure 11-44.

Figure 11-44 Provide information for the messaging engines data store.

6. Enter the required information for the database. For information about using
multiple data stores, see 11.2.3, “Data stores” on page 620.

7. Click Apply or OK and save your changes.

 Chapter 11. Default messaging provider 671

11.8.9 Setting up preferred servers
Configure a messaging engine to prefer to run on one server or a group of
servers in a cluster using a core groups policy. The use of policies is required if
you want to workload-manage your messaging with the service integration bus.

Setting up a policy with the appropriate values can give many different behaviors,
including the following:

� A messaging engine will have an affinity for one particular server in the
cluster. If that server fails, then the messaging engine will run on other
servers, but will move back to the preferred server as soon as it becomes
available. This is set up by having a One-of-N Policy defined with one
preferred server configured, preferred servers only set to false and fail
back set to true.

� A messaging engine will run on only one server inside the cluster. This means
that the messaging engine cannot fail over to another server in the cluster
and will only ever run on the defined server. This can be set up by having a
One-of-N Policy with one preferred server and preferred servers only set to
true.

To create a core group policy for a messaging engine, do the following:

1. Select Servers → Core groups → Core group settings.

2. Select the DefaultCoreGroup. This will show the properties for the default
core group. See Figure 11-45 on page 673.

Note: Before attempting to configure a system for workload management and
high availability, consult the following:

� 11.3, “High availability and workload management” on page 638

� The Configuring high availability and workload sharing of service
integration topic in the Information Center

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392.

� WebSphere Application Server V6: High Availability Solutions, REDP-3971

Important: If you have more than one messaging engine defined on a cluster
bus member and do not define additional core group policies to set up
preferred servers, then all messaging engines will start and run on the first
server to become available.

672 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-45 Default Core Group

3. Select Policies in the Additional Properties section. This will show you the list
of policies defined for the core group. Two policies are created by default. Do
not delete or modify these policies. See Figure 11-46.

Figure 11-46 Predefined core group policies in the default core group.

4. Click New.

5. From the drop-down list select the One of N Policy. Click Next. See
Figure 11-47 on page 674.

 Chapter 11. Default messaging provider 673

6. Enter a name for the new policy. It might be helpful if the name includes the
name of the messaging engine for which you are creating this policy.

Enable fail back and preferred servers only as desired. These settings can
be changed later.

Click Apply.

Figure 11-47 Defining a new policy

674 WebSphere Application Server V6: System Management and Configuration Handbook

7. A warning will show that you must define at least one match criteria. Match
criteria are name and value pairs used to match server components such as
messaging engines.

8. Select Match criteria in the Additional Properties section.

9. Click New. See Figure 11-48.

Enter type for the name and WSAF_SIB for the value. This match criteria will
match any messaging engine.

Figure 11-48 Defining match criteria for any messaging engine

Click OK.

10.Click New to define another set of match criteria. See Figure 11-49 on
page 676.

Enter WSAF_SIB_MESSAGING_ENGINE for the name and the messaging engine
name for the value.

Important: Be aware that if you set preferred servers only that this can
prevent the messaging engine from being highly available. If the
messaging engine or the server it runs on fails or stops and no other
servers that are preferred are available, then the messaging engine cannot
be started on other servers that are available in the cluster. They are not
preferred and only preferred servers can be used.

 Chapter 11. Default messaging provider 675

Figure 11-49 Defining a match criteria for a specific messaging engine

Click OK.

11.Return to your policy by clicking the policy name in the navigation trail. See
Figure 11-50 on page 677.

676 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-50 Match criteria for a messaging engine

12.Click Preferred servers in the Additional Properties section.

13.Select the servers you want to configure as preferred and click Add>>.

You can select as many preferred servers as you want. All preferred servers
must be servers that are in the cluster on which the messaging engine is
defined. Do not select a node agent or deployment manager.

See Figure 11-51 on page 678. Preferred servers have an order of
preference. The higher up the list of preferred servers, the more preferred the
server will be. To move a server up or down the list select the server and click
Move up or Move down. If Fail back is enabled, then a messaging engine
will fail over to the highest available server in the list.

 Chapter 11. Default messaging provider 677

Figure 11-51 Selecting preferred servers for a core group policy

14.Click OK and save your changes.

11.8.10 Setting up a foreign bus link to a service integration bus
To define a foreign bus to the bus from which you want to access it, do the
following:

1. Select Service integration → Buses.

2. Select the bus from which you want to access the foreign bus.

3. Select Foreign buses in the Additional Properties section.

4. Click New. See Figure 11-52 on page 679.

5. Provide the Name of the foreign bus.

Important: When your foreign bus is a service integration bus, then this
name must match exactly the name of that bus.

678 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-52 Creating a new foreign bus

Checking the Send allowed box allows this bus to send messages to
destinations on the foreign bus. This is the default.

You can change this setting at any time. This can be useful if you want to
disable a foreign bus for a short time, for example while configuration
changes are being made.

Click Next. See Figure 11-53.

6. Select the appropriate value for the routing type.

Figure 11-53 Selecting the type of foreign bus

 Chapter 11. Default messaging provider 679

To define another service integration bus, select Direct, service integration
bus link from the menu. Click Next. See Figure 11-54.

7. Optionally, define outbound and inbound user IDs.

Figure 11-54 Define inbound and outbound user IDs

The inbound user ID authorizes individual messages arriving from the foreign
bus to destinations in this bus. When set, this property replaces the user ID in
messages entering this bus from the foreign bus. If this is not a secure bus,
this property does not affect on messages.

The outbound user ID replaces the user ID that identifies the source of a
message in all messages being sent to the foreign bus. When set, this
property replaces the user ID in messages leaving this bus for the foreign
bus. The foreign bus also uses this ID to authorize the message to its
destination if both buses are secure buses and the foreign bus has not
overridden the user ID with its own inbound user ID.

8. Click Next.

9. Click Finish and save your changes.

Define the link to the service integration bus
Now that your bus knows about the foreign bus, you will have to set up the link to
that bus. This link will be managed by a particular messaging engine on your
bus. A link must be created on each bus and it is important that the link has the
same name on each bus.

1. Select Service integration → Buses. Select the bus you want to use.

2. Select Messaging engines in the Additional Properties section and select
the messaging engine you want to host the link.

3. Select Service integration bus link in the Additional Properties section

4. Click New. See Figure 11-55 on page 681 and fill in the following properties:

680 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 11-55 Defining a service integration bus link

– Name

Enter a name for the link. It might be helpful if this name includes the
names of the buses you are linking.

– Foreign bus name

Important: This link name must be the exactly the same as the link
name on the other bus.

 Chapter 11. Default messaging provider 681

Enter the name of the messaging engine in the foreign bus to which you
are linking. This name must also match exactly the name of the
messaging engine in the foreign bus hosting the link and is required to
prevent configuration changes on the other bus from causing problems
with the link.

– Bootstrap endpoints

Provide bootstrap endpoints to allow your bus to connect to the foreign
bus. This field is equivalent to the Provider endpoints field for a default
messaging provider connection factory. Both provide a list of endpoints to
be used to connect to a SIB service.

See 10.7.1, “JMS client runtime environment” on page 576.

– Authentication alias

If the foreign bus is secure, then you need to provide authentication data
for the link.

5. Click Apply or OK and save your changes.

Configuring topic space mappings to a foreign bus
This section discusses the steps required to create a topic space mapping
between two service integration buses. Before starting this section, you must
have defined a foreign bus that is a service integration bus.

� Select Service integration → Buses. Select the local bus.

� Select Foreign buses in the Additional Properties section.

� Select the foreign service integration bus you to which you want to create a
topic mapping.

� Select Service integration bus link routing properties in the Additional
Properties section.

� Select Topic space mappings in the Additional Properties section.

� Optionally, enter a description.

Click Apply.

� Select Topic space map entries in the Additional Properties section.

Important: You must configure a corresponding foreign bus and service
integration bus link on the other bus to complete the link. Ensure that the
name of the link is the same in both buses.

Note: You have to click Apply even if you do not enter a description.

682 WebSphere Application Server V6: System Management and Configuration Handbook

� Click New.

– Enter the name of the Local topic space from which you want to receive
published messages.

– Enter the name of the Remote Topic space from which you want to
receive published messages.

Click Apply or OK and save your changes.

11.8.11 Setting up a foreign bus link to an MQ queue manager
A WebSphere MQ link allows your service integration bus to exchange
messages with a WebSphere MQ queue manager.

First, you must define a foreign bus and define it in your bus. From there, enter
information in the following fields.

1. Select Service integration → Buses. Select the bus you want to use.

2. Select Foreign buses in the Additional Properties section.

3. Click New. See Figure 11-56. Enter information in the following fields.

Figure 11-56 creating a new foreign bus

Note: Before creating these definitions, review the information in 11.2.6,
“WebSphere MQ links” on page 629.

 Chapter 11. Default messaging provider 683

– Name

Enter the name of the foreign bus.

– Send allowed

Checking the Send allowed box allows this bus to send messages to
destinations on the foreign bus. This is the default. You can change this
setting at any time. This can be useful if you want to disable a foreign bus
for a short time, for example while configuration changes are being made.

Click Next. See Figure 11-57.

4. Select Direct, WebSphere MQ link from the menu.

Figure 11-57 Selecting the type of foreign bus

5. Define inbound and outbound user IDs (optional)

The inbound user ID authorizes individual messages arriving from the foreign
bus to destinations in this bus. When set, this property replaces the user ID in
messages entering this bus from the foreign bus. If this is not a secure bus,
this property does not affect messages.

The outbound user ID replaces the user ID that identifies the source of a
message in all messages being sent to the foreign bus. When set, this
property replaces the user ID in messages leaving this bus for the foreign
bus. The foreign bus also uses this user ID to authorize the message to its
destination if both buses are secure buses and the foreign bus has not
overridden the user ID with its own inbound user ID.

6. Click Next.

7. Click Finish and save your changes.

684 WebSphere Application Server V6: System Management and Configuration Handbook

Define the WebSphere MQ link
Now that your bus knows about the foreign bus, set up the link to that MQ queue
manager. This link is managed by a particular messaging engine on your bus.

1. Select Service integration → Buses.

2. Select the bus you want to use.

3. Click Messaging engines and select the messaging engine you want to host
the link.

4. Select WebSphere MQ Links in the Additional Properties section.

5. Click New. See Figure 11-58 on page 686 and enter information in the
following fields.

Important: If you are unsure of any of the correct MQ values to supply for the
MQ link, then refer to your MQ administrator or documentation for more
information.

 Chapter 11. Default messaging provider 685

Figure 11-58 Defining properties for a new MQ link

– Name

Enter a name for the link. It might be helpful if this name includes the
name of the foreign bus for which you are creating the link.

– Foreign bus name

From the menu select the name of the foreign bus to which this link will
connect. This should be the name of the queue manager that is
participating in the link.

– Queue manager name

This is the queue manager name by which the MQ queue manager will
know this bus. You must ensure that the MQ queue manager participating
in this link is configured to know about this bus as another queue manager
using this queue manager name.

686 WebSphere Application Server V6: System Management and Configuration Handbook

– Nonpersistent message speed

This field define whether the channel to MQ will have MQ’s NPMSPEED
channel attribute set to fast or normal.

– Adoptable

This option, enabled by default, provides function similar to MQ’s
ADOPTMCA function. If selected, the receiver channel can be reused
when the sender channel fails or has to be restarted.

Click Next.

6. You must now provide details on how the link will send information to the MQ
queue manager. See Figure 11-59. Enter the following:

Figure 11-59 Providing the link with details on how to send messages to MQ

– Sender MQ channel name

This is the name of the receiver channel that the link will send messages
to in the MQ queue manager.

 Chapter 11. Default messaging provider 687

– Host name

Enter the host name or IP address of the server hosting the MQ queue
manager.

– Port

If the MQ queue manager is using a port other than the default port of
1414, then enter that information.

– Transport chain

Select the appropriate transport chain from the menu. See 11.2.2,
“Service integration bus transport chains” on page 614 for further
information.

Click Next. See Figure 11-60.

7. Enter information about the virtual queue manager. Remember, this link
performs as a virtual queue manager for WebSphere MQ. Enter the following
information:

Figure 11-60 Providing the link with details on how MQ will send messages to it

– Receiver MQ channel name

The MQ queue manager participating in the link must be configured with a
sender channel of this name.

688 WebSphere Application Server V6: System Management and Configuration Handbook

– Provide default information for mapping incoming persistent and
nonpersistent MQ messages into service integration messages, see
“Reliability” on page 604 for more information about service integration
message reliability.

Click Next.

8. Click Finish and save your changes.

Configuring topic space mappings to WebSphere MQ
To configure an MQ publish/subscribe profile, define a WebSphere MQ link to the
WebSphere MQ network. The link does not need to be directly to the broker’s
queue manager. However, it must be to a queue manager that is able to route to
the broker’s queue manager.

1. Select Service integration → Buses. Select the bus you want to use.

2. Click Messaging engines and select the messaging engine that hosts the
MQ link.

3. Select WebSphere MQ links in the Additional Properties section.

WebSphere MQ considerations: Ensure that the WebSphere MQ queue
manager participating in the link has the appropriate sender and receiver
channels defined. Consult your MQ administrator or documentation for details
on how to perform this configuration.

� Sender channel

This channel must have the same name as the name defined in the
MQLink’s receiver channel.

The connection name is the IP address or host name for the server hosting
the messaging engine on which the link is defined.

The port used should match the value of the SIB_MQ_ENDPOINT_ADDRESS
port defined for the server hosting the messaging engine on which the link
is defined. The default is 5559. To find this value through the administrative
console, do the following:

a. Select Servers → Application Servers.

b. Select the server hosting the messaging engine.

c. Under Communications expand the Ports heading. Find the port
number for SIB_MQ_ENDPOINT_ADDRESS.

� Receiver channel

This channel must have the same name as the name defined in the
MQLink’s sender channel.

 Chapter 11. Default messaging provider 689

4. Select the MQ link on which you want to define a MQ publish/subscribe
profile.

5. Select Publish/Subscribe broker profiles in the Additional Properties
section.Click New.

– Enter a name for the profile.

– Enter the name of the queue manager associated with the broker.

Click Apply. Define some topic mappings to link MQ topics to service
integration topics.

6. Select Topic mappings in the Additional Properties section.

7. Click New. See Figure 11-61 and enter information in the following fields:

Figure 11-61 Defining a new Topic mapping

– Topic name

Enter the name of the topic that you want to map. This name is the topic
name that will be linked in the service integration bus and MQ. You can
use service integration bus wildcards in this topic name to map a group of
topics. For more information about the use of wildcard characters when
specifying topic names, refer to “Topic specific connection properties” on
page 537.

690 WebSphere Application Server V6: System Management and Configuration Handbook

– Topic space

Select the Topic space in which this topic will be published on the service
integration bus.

– Direction

Select the desired direction of the mapping.

• Bi-directional

Messages published in either WebSphere MQ or the service
integration bus will be published in both.

• To WebSphere MQ

Messages published in the service integration bus will be published in
WebSphere MQ, but messages published in WebSphere MQ will not
be published in the service integration bus.

• From WebSphere MQ

Messages published in WebSphere MQ will be published in the service
integration bus, but messages published in the service integration bus
will not be published in WebSphere MQ.

– Broker stream queue

Select the appropriate broker stream queue from the menu, if required.
The broker stream queue is the queue in MQ to which the message broker
is connected. If the queue does not appear in the list then, select other,
please specify. A text entry box will appear to the right of the drop-down
menu. Enter the name of the queue there.

– Subscription point

Select an appropriate subscription point from the menu, if required. If the
subscription point does not appear in the list then select other, please
specify. A text entry box will appear to the right of the dropdown menu.
Enter the name of the subscription point there.

Ask your WebSphere MQ administrator if a subscription point should be
specified and what it should be.

Note: Broker stream queue is required if you want to send messages to
WebSphere MQ. If your topic mapping is Bi-directional, To
WebSphere MQ or if it is From WebSphere MQ and your applications
need to be able to send reply messages to publications received, then a
broker stream queue must be specified.

 Chapter 11. Default messaging provider 691

11.8.12 Creating a foreign destination
To create a destination on a foreign bus, do the following:

1. Select Service integration → Buses.

2. Select the bus on which you want to create a queue.

3. Select Destinations in the Additional Properties section.

4. Click New.

5. Select Foreign from the list and click Next. Enter information as in
Figure 11-62.

Figure 11-62 Creating a new foreign destination

– Identifier

Enter the name of the foreign destination for which you want to provide
defaults. This must match the name of the destination that exists on the
foreign bus.

692 WebSphere Application Server V6: System Management and Configuration Handbook

– Bus

From the drop-down menu, select the foreign bus on which this
destination exists. If the foreign bus is not in the list then select other,
please specify and enter the name of the foreign bus in the box.

– Default reliability and Maximum reliability

Select the desired default and maximum reliabilities from the drop-down
menus. Consult “Reliability” on page 604.

Click Next.

6. Click Finished.

 Chapter 11. Default messaging provider 693

694 WebSphere Application Server V6: System Management and Configuration Handbook

Part 3 Working with
applications

This part takes you through the process of packaging and deploying applications.
In addition, it contains information about concepts that you need to understand to
successfully develop and package applications for the WebSphere Application
Server V6 runtime environment.

This part includes the following chapters:

� Chapter 12, “Session management” on page 697
� Chapter 13, “WebSphere naming implementation” on page 769
� Chapter 14, “Understanding class loaders” on page 821
� Chapter 15, “Packaging applications” on page 847
� Chapter 16, “Deploying applications” on page 907
� Chapter 17, “WebSphere Rapid Deployment” on page 957

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 695

696 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 12. Session management

Session support allows a Web application developer to maintain state
information across multiple user visits to the application. In this chapter, we
discuss HTTP session support in WebSphere Application Server V6 and how to
configure it. We also discuss the new support for stateful session bean failover.
The topics include:

� 12.1, “What is new?” on page 698
� 12.2, “HTTP session management” on page 698
� 12.3, “Session manager configuration” on page 699
� 12.4, “Session scope” on page 700
� 12.5, “Session identifiers” on page 702
� 12.6, “Local sessions” on page 710
� 12.7, “General properties for session management” on page 711
� 12.8, “Session affinity” on page 715
� 12.9, “Persistent session management” on page 719
� 12.10, “Invalidating sessions” on page 749
� 12.11, “Session security” on page 751
� 12.12, “Session performance considerations” on page 752
� 12.13, “Stateful session bean failover” on page 760
� 12.11, “Session security” on page 751

12

© Copyright IBM Corp. 2005. All rights reserved. 697

12.1 What is new?
The following improvements have been made to session management in
WebSphere Application Server V6:

� The Data Replication Service (DRS) that provides session persistence using
memory-to-memory replication has the following improvements:

– Simplified topology
– Simplified configuration
– Improved performance with faster underlying transport
– Integration with workload management (WLM) to provide hot failover in

peer-to-peer mode

� Stateful session bean failover support

WebSphere Application Server V6 utilizes the functions of DRS and WLM to
enable stateful session bean failover.

12.2 HTTP session management
In many Web applications, users collect data dynamically as they move through
the site based on a series of selections on pages they visit. Where the user goes
next, and what the application displays as the user's next page, or next choice,
depends on what the user has chosen previously from the site. For example, if
the user clicks the checkout button on a site, the next page must contain the
user's shopping selections.

In order to do this, a Web application needs a mechanism to hold the user's state
information over a period of time. However, HTTP alone does not recognize or
maintain a user's state. HTTP treats each user request as a discrete,
independent interaction.

The Java servlet specification provides a mechanism for servlet applications to
maintain a user’s state information. This mechanism, known as a session,
addresses some of the problems of more traditional strategies such as a pure
cookie solution. It allows a Web application developer to maintain all user state
information at the host, while passing minimal information back to the user
through cookies, or another technique known as URL rewriting.

Note: The above features are only available for Network Deployment
distributed server environments.

698 WebSphere Application Server V6: System Management and Configuration Handbook

12.3 Session manager configuration
Similar to WebSphere Application Server V5, session management in
WebSphere Application Server V6 can be defined at the following levels:

� Application server

This is the default level. Configuration at this level is applied to all Web
modules within the server.

� Application

Configuration at this level is applied to all Web modules within the application.

� Web module

Configuration at this level is applied only to that Web module.

12.3.1 Session management properties
With one exception, the session management properties you can set are the
same at each configuration level:

� Session tracking mechanism lets you select from cookies, URL rewriting, and
SSL ID tracking. Selecting cookies will lead you to a second configuration
page containing further configuration options.

� Select Maximum in-memory session count and whether to allow this number
to be exceeded, or overflow.

� Session timeout specifies the amount of time to allow a session to remain idle
before invalidation.

� Security integration specifies that the user ID be associated with the HTTP
session.

� Serialize session access determines if concurrent session access in a given
server is allowed.

� Overwrite session management, for enterprise application and Web module
level only, determines whether these session management settings are used
for the current module, or if the settings are used from the parent object.

� Distributed environment settings select how to persist sessions
(memory-to-memory replication or a database) and set tuning properties.
Memory-to-memory persistence is only available in a Network Deployment
distributed server environment.

 Chapter 12. Session management 699

12.3.2 Accessing session management properties
You can access all configuration settings using the administrative console.

Application server session management properties
To access session management properties at the application server level, from
the administrative console, do the following:

1. Click Servers →Application servers.

2. Click the application server.

3. In the Container Settings section of the Configuration tab, click Web
Container Settings.

4. In the Additional Properties section, click Session management.

Application session management properties
To access session management properties at the application level, from the
administrative console, do the following:

1. Click Applications → Enterprise Applications.

2. Click the application.

3. In the Additional Properties section of the Configuration tab, click Session
management.

Web module session management properties
To access session management properties at the Web module level, from
administrative console, do the following:

1. Click Applications →Enterprise Applications.

2. Click the application.

3. In the Related Items section of the Configuration tab, click Web modules.

4. Click the Web module.

5. In the Additional Properties section, click Session Management.

12.4 Session scope
The Servlet 2.4 specification defines session scope at the Web application level.
Session information can be accessed only by a single Web application. However,
there can be times when there is a logical reason for multiple Web applications to
share information, for example, a user name.

700 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere Application Server provides an IBM extension to the specification
allowing session information to be shared among Web applications within an
enterprise application. This option is offered as an extension to the application
deployment descriptor. No code change is necessary to enable this option. This
option is specified during application assembling.

Sharing session context
The WebSphere extension for sharing session context is set in the
META-INF/ibm-application-ext.xmi file in the enterprise project. You can set this
using the Application Server Toolkit or from Rational Application Developer:

1. Start the Application Server Toolkit or Rational Application Developer and
switch to the J2EE perspective.

2. Double-click the EAR file in the J2EE Hierarchy view. This will open the
application deployment descriptor.

3. Click the Overview tab.

4. Select Shared session context. See Figure 12-1 on page 702.

Note: Because session information is shared within the enterprise application,
you cannot use the Overwrite Session Management property at the Web
module level when the IBM option for shared session context is selected.

 Chapter 12. Session management 701

Figure 12-1 Shared HTTP session context using the Application Server Toolkit

5. Save and close the deployment descriptor.

12.5 Session identifiers
WebSphere session support keeps the user’s session information about the
server. WebSphere passes the user an identifier known as a session ID, which
correlates an incoming user request with a session object maintained on the
server.

Note: The example session IDs provided in this chapter are for illustrative
purposes only and are not guaranteed to be absolutely consistent in value,
format and length.

702 WebSphere Application Server V6: System Management and Configuration Handbook

12.5.1 Choosing a session tracking mechanism
WebSphere supports three approaches to tracking sessions:

� SSL session identifiers
� Cookies
� URL rewriting

It is possible to select all three options for a Web application. If you do this:

� SSL session identifiers are used in preference to cookie and URL rewriting.
� Cookies are used in preference to URL rewriting.

To set or change the session mechanism type, do the following:

1. Open the session management properties for the application server,
enterprise application, or Web module.

2. Select the session tracking mechanism that you require. See Figure 12-2 on
page 704.

Note: If SSL session ID tracking is selected, we recommended that you also
select cookies or URL rewriting so that session affinity can be maintained. The
cookie or rewritten URL contains session affinity information enabling the Web
server to properly route a session back to the same server for each request.

 Chapter 12. Session management 703

Figure 12-2 Selecting a session tracking mechanism window

3. Click OK.

4. Save and synchronize the configuration changes.

5. Restart the application server or the cluster.

12.5.2 SSL ID tracking
When SSL ID tracking is enabled for requests over SSL. SSL session
information is used to track the HTTP session ID.

704 WebSphere Application Server V6: System Management and Configuration Handbook

Because the SSL session ID is negotiated between the Web browser and HTTP
server, it cannot survive an HTTP server failure. However, the failure of an
application server does not affect the SSL session ID and if the distributed
session is not configured, the session itself is lost. In environments that use
WebSphere Edge Server with multiple HTTP servers, you must use an affinity
mechanism when SSL session ID is used as the session tracking mechanism.

The lifetime of an SSL session ID can be controlled by configuration options in
the Web server. For example, in the IBM HTTP Server, the configuration variable
SSLV3TIMEOUT must be set to allow for an adequate lifetime for the SSL
session ID. Too short an interval could result in premature termination of a
session. Also, some Web browsers might have their own timers that affect the
lifetime of the SSL session ID. These Web browsers might not leave the SSL
session ID active long enough to be useful as a mechanism for session tracking.

When the SSL session ID is to be used as the session tracking mechanism in a
clustered environment, either cookies or URL rewriting must be used to maintain
session affinity. The cookie or rewritten URL contains session affinity information
that enables the Web server to properly route requests back to the same server
once the HTTP session has been created on a server. The SSL ID is not sent in
the cookie or rewritten URL but is derived from the SSL information.

Disadvantages of SSL ID tracking
The main disadvantage of using SSL ID tracking is the performance hit of using
SSL. If you have a business requirement to use SSL, then this would be a good
choice. If you do not have such a requirement, it is probably a good idea to
consider using cookies instead.

As discussed previously, Web server and Web browser SSL session timeout
settings can also limit the usefulness of SSL ID tracking.

12.5.3 Cookies
Many sites choose cookie support to pass the user’s identifier between
WebSphere and the user. WebSphere Application Server session support
generates a unique session ID for each user, and returns this ID to the user’s
browser with a cookie. The default name for the session management cookie is
JSESSIONID. See Figure 12-3 on page 706.

Note: SSL tracking is supported only for the IBM HTTP Server and SUN ONE
Web Server.

 Chapter 12. Session management 705

Figure 12-3 Cookie overview

A cookie consists of information embedded as part of the headers in the HTML
stream passed between the server and the browser. The browser holds the
cookie and returns it to the server whenever the user makes a subsequent
request. By default, WebSphere defines its cookies so they are destroyed if the
browser is closed. This cookie holds a session identifier. The remainder of the
user’s session information resides at the server.

The Web application developer uses the HTTP request object’s standard
interface to obtain the session:

HttpSession session = request.getSession(true);

WebSphere places the user’s session identifier in the outbound cookie whenever
the servlet completes its execution, and the HTML response stream returns to
the end user. Again, neither the cookie nor the session ID within it require any
direct manipulation by the Web application. The Web application only sees the
contents of the session.

Cookie disadvantages
The main disadvantage with cookies is that some users, either by choice or
mandate, disable them from within their browser.

Cookie settings
To configure session management using cookies, do the following from
administrative console:

1. Open the Session Manager window at your preferred level.

2. Click the box for Enable Cookies as the session tracking mechanism. See
Figure 12-4 on page 707.

JSESSIONID: 123
Counter: 5
Age: 35
Salary:

Browser's Cookie List

Session Cache

WebSphere Application ServerUser

JSESSION ID: 123

JSESSIONID: 123

JSESSIONID: 123

706 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 12-4 Session tracking mechanism

3. If you would like to view or change the cookies settings, select the Enable
Cookies hot link. The following cookie settings are available:

– Cookie name

The cookie name for session management should be unique. The default
cookie name is JSESSIONID, which is required by the Servlet 2.4
specification for all cookie-based session IDs. However, this value can be
configured for flexibility.

– Restrict cookies to HTTPS sessions

Enabling this feature restricts the exchange of cookies only to HTTPS
sessions. If it is enabled, the session cookie’s body includes the secure
indicator field.

 Chapter 12. Session management 707

– Cookie domain

This value dictates to the browser whether or not to send a cookie to
particular servers. For example, if you specify a particular domain, the
browser will only send back session cookies to hosts in that domain. The
default value in the session manager restricts cookies to the host that sent
them.

– Cookie path

The paths on the server to which the browser will send the session
tracking cookie. Specify any string representing a path on the server. Use
the slash (/) to indicate the root directory.

Specifying a value restricts the paths to which the cookie will be sent. By
restricting paths, you can keep the cookie from being sent to certain URLs
on the server. If you specify the root directory, the cookie will be sent no
matter which path on the given server is accessed.

– Cookie maximum age

The amount of time that the cookie will live in the client browser. There are
two choices:

• Expire at the end of the current browser session
• Expire at a configurable maximum age

If you choose the maximum age option, specify the age in seconds.

4. Click OK to exit the page and change your settings.

5. Click OK to exit the session management settings.

6. Save and synchronize your configuration changes.

7. Restart the application server or the cluster.

For more information about cookie properties, see Persistent Client State HTTP
Cookies at :

http://home.netscape.com/newsref/std/cookie_spec.html

Note: The LTPA token/cookie that is sent back to the browser is scoped by
a single DNS domain specified when global security is configured. This
means that all application servers in an entire WebSphere Application
Server domain must share the same DNS domain for security purposes.

708 WebSphere Application Server V6: System Management and Configuration Handbook

http://home.netscape.com/newsref/std/cookie_spec.html
http://home.netscape.com/newsref/std/cookie_spec.html

12.5.4 URL rewriting
WebSphere also supports URL rewriting for session ID tracking. While session
management using SSL IDs or cookies is transparent to the Web application,
URL rewriting requires the developer to use special encoding APIs, and to set up
the site page flow to avoid losing the encoded information.

URL rewriting works by storing the session identifier in the page returned to the
user. WebSphere encodes the session identifier as a parameter on URLs that
have been encoded programmatically by the Web application developer. This is
an example of a Web page link with URL encoding:

When the user clicks this link to move to the /store/catalog page, the session
identifier passes into the request as a parameter.

URL rewriting requires explicit action by the Web application developer. If the
servlet returns HTML directly to the requester, without using a JavaServer Page,
the servlet calls the API, as shown in Example 12-1, to encode the returning
content.

Example 12-1 URL encoding from a servlet

out.println("<a href=\");
out.println(response.encodeURL ("/store/catalog"));
out.println("\>catalog");

Even pages using redirection, a common practice, particularly with servlet or JSP
combinations, must encode the session ID as part of the redirect, as shown in
Example 12-2.

Example 12-2 URL encoding with redirection

response.sendRedirect(response.encodeRedirectURL("http://myhost/store/catalog")
);

When JavaServer Pages (JSPs) use URL rewriting, the JSP calls a similar
interface to encode the session ID:

<% response.encodeURL ("/store/catalog"); %>

 Chapter 12. Session management 709

URL rewriting configuration
URL rewriting is selected in the same way as cookies. The only additional
configuration option is:

� Enable protocol switch rewriting

This option defines whether the session ID, added to a URL as part of URL
encoding, should be included in the new URL if a switch from HTTP to
HTTPS or from HTTPS to HTTP is required. For example, if a servlet is
accessed over HTTP and that servlet is doing encoding of HTTPS URLs,
URL encoding will be performed only when protocol switch rewriting is
enabled, and vice versa.

Disadvantages of using URL rewriting
The fact that the servlet or JSP developer has to write extra code is a major
drawback over the other available session tracking mechanisms.

URL rewriting limits the flow of site pages exclusively to dynamically generated
pages, such as pages generated by servlets or JSPs. WebSphere inserts the
session ID into dynamic pages, but cannot insert the user’s session ID into static
pages, .htm or .html.

Therefore, after the application creates the user’s session data, the user must
visit dynamically generated pages exclusively until they finish with the portion of
the site requiring sessions. URL rewriting forces the site designer to plan the
user’s flow in the site to avoid losing their session ID.

12.6 Local sessions
Many Web applications use the simplest form of session management: the
in-memory, local session cache. The local session cache keeps session
information in memory and local to the machine and WebSphere Application
Server where the session information was first created.

Local session management does not share user session information with other
clustered machines. Users only obtain their session information if they return to
the machine and WebSphere Application Server holds their session information
about subsequent accesses to the Web site.

Most importantly, local session management lacks a persistent store for the
sessions it manages. A server failure takes down not only the WebSphere
instances running on the server, but also destroys any sessions managed by
those instances.

710 WebSphere Application Server V6: System Management and Configuration Handbook

WebSphere allows the administrator to define a limit on the number of sessions
held in the in-memory cache from the administrative console settings on the
session manager. This prevents the sessions from acquiring too much memory
in the Java VM associated with the application server.

The session manager also allows the administrator to permit an unlimited
number of sessions in memory. If the administrator enables the Allow overflow
setting on the session manager, the session manager permits two in-memory
caches for session objects. The first cache contains only enough entries to
accommodate the session limit defined to the session manager, 1000 by default.
The second cache, known as the overflow cache, holds any sessions the first
cache cannot accommodate, and is limited in size only by available memory. The
session manager builds the first cache for optimized retrieval, while a regular,
un-optimized hash table contains the overflow cache.

For best performance, define a primary cache of sufficient size to hold the normal
working set of sessions for a given Web application server.

If you choose to enable session overflow, the state of the session cache should
be monitored closely.

12.7 General properties for session management
The session management settings allow the administrator to tune a number of
parameters that are important for both local or persistent sessions. See
Figure 12-5 on page 712/

Important: If you enable overflow, the session manager permits an unlimited
number of sessions in memory. Without limits, the session caches might
consume all available memory in the WebSphere instance’s heap, leaving no
room to execute Web applications. For example, two scenarios under which
this could occur are:

� The site receives greater traffic than anticipated, generating a large
number of sessions held in memory.

� A malicious attack occurs against the site where a user deliberately
manipulates their browser so the application creates a new session
repeatedly for the same user.

Note: Each Web application will have its own base, or primary, in-memory
session cache, and with overflow allowed, its own overflow, or secondary,
in-memory session cache.

 Chapter 12. Session management 711

Figure 12-5 Session Management window 2

� Maximum in-memory session count

This field specifies the maximum number of sessions to maintain in memory.
The meaning differs depending on whether you are using local or persistent
sessions. For local sessions, this value specifies the number of sessions in
the base session table. Select Overflow to specify whether to limit sessions
to this number for the entire session manager, or to allow additional sessions
to be stored in secondary tables. Before setting this value, see 12.6, “Local
sessions” on page 710.

712 WebSphere Application Server V6: System Management and Configuration Handbook

For persistent sessions, this value specifies the size of the general cache.
This value determines how many sessions will be cached before the session
manager reverts to reading a session from the database automatically.
Session manager uses a least recently used (LRU) algorithm to maintain the
sessions in the cache.

This value holds when you use local sessions, persistent sessions with
caching, or persistent sessions with manual updates. The manual update
cache keeps the last n time stamps representing the last access times, where
n is the maximum in-memory session count value.

� Allow overflow

Choosing this option specifies whether to allow the number of sessions in
memory to exceed the value specified in the maximum in-memory session
count field. If Allow overflow is not checked, then WebSphere limits the
number of sessions held in memory to this value.

For local sessions, if this maximum is exceeded and Allow overflow is not
checked, then sessions created thereafter will be dummy sessions and will
not be stored in the session manager. Before setting this value, see 12.6,
“Local sessions” on page 710.

As shown in Example 12-3, the IBM HttpSession extension can be used to
react if sessions exceed the maximum number of sessions specified when
overflow is disabled.

Example 12-3 Using IBMSession to react to session overflow

com.ibm.websphere.servlet.session.IBMSession sess =
(com.ibm.websphere.servlet.session.IBMSession) req.getSession(true);

if(sess.isOverFlow()) {
//Direct to a error page…

}

� Session timeout

If you select set timeout, when a session is not accessed for this many
minutes it can be removed from the in-memory cache and, if persistent
sessions are used, from the persistent store. This is important for
performance tuning. It directly influences the amount of memory consumed
by the JVM in order to cache the session information.

Note: Allowing an unlimited amount of sessions can potentially exhaust
system memory and even allow for system sabotage. Someone could write
a malicious program that continually hits your site, creating sessions, but
ignoring any cookies or encoded URLs and never utilizing the same
session from one HTTP request to the next.

 Chapter 12. Session management 713

The value of this setting is used as a default when the session timeout is not
specified in a Web module’s deployment descriptor.

If you select no timeout, a session will be never removed from the memory
unless explicit invalidation has been performed by the servlet. This can cause
memory leak when the user closes the window without logging out from the
system. This option might be useful when sessions should be kept for a while
until explicit invalidation has been done, when an employee leaves the
company, for example. To use this option, make sure that enough memory or
space in a persistent store is kept to accommodate all sessions.

� Security integration

When security integration is enabled, the session manager associates the
identity of users with their HTTP sessions. See 12.11, “Session security” on
page 751 for more information.

� Serialize session access

In WebSphere V4, sessions could be accessed concurrently, meaning
multiple threads could access the same session at the same time. It was the
programmer’s responsibility to serialize access to the session to avoid
inconsistencies.

In WebSphere V5 and WebSphere V6, this option is available to provide
serialized access to the session in a given JVM. This ensures thread-safe
access when the session is accessed by multiple threads. No special code is
necessary for using this option. This option is not recommended when
framesets are used heavily because it can affect performance.

An optional property, Maximum wait time, can be set to specify the
maximum amount of time a servlet request waits on an HTTP session before
continuing execution. The default is two minutes.

Note: For performance reasons the session manager invalidation process
runs at regular intervals to invalidate any invalid sessions. This interval is
determined internally based on the Session timeout interval specified in the
Session manager properties. For the default timeout value of 30 minutes,
the invalidation process interval is around 300 seconds. In this case, it
could take up to 5 minutes (300 seconds) beyond the timeout threshold of
30 minutes for a particular session to become invalidated.

Note: Do not enable this property if the application server contains a Web
application that has form-based login configured as the authentication
method and the local operating system is the authentication mechanism. It
will cause authorization failures when users try to use the Web application.

714 WebSphere Application Server V6: System Management and Configuration Handbook

If you set the Allow access on timeout option, multiple servlet requests that
have timed out concurrently will execute normally. If it is false, servlet
execution aborts.

12.8 Session affinity
The Servlet 2.4 specification requires that an HTTP session be:

� Accessible only to the Web application that created the session

The session ID, but not the session data, can be shared across Web
applications.

� Handled by a single JVM for that application at any one time

In a clustered environment, any HTTP requests associated with an HTTP
session must be routed to the same Web application in the same JVM. This
ensures that all of the HTTP requests are processed with a consistent view of the
user’s HTTP session. The exception to this rule is when the cluster member fails
or has to be shut down.

WebSphere is able to assure that session affinity is maintained in the following
way: Each server ID is appended to the session ID. When an HTTP session is
created, its ID is passed back to the browser as part of a cookie or URL
encoding. When the browser makes further requests, the cookie or URL
encoding will be sent back to the Web server. The Web server plug-in examines
the HTTP session ID in the cookie or URL encoding, extracts the unique ID of the
cluster member handling the session, and forwards the request.

This can be seen in Figure 12-6 on page 716, where the session ID from the
HTTP header, request.getHeader("Cookie"), is displayed along with the session
ID from session.getId(). The application server ID is appended to the session ID
from the HTTP header. The first four characters of HTTP header session ID are
the cache identifier that determines the validity of cache entries.

 Chapter 12. Session management 715

Figure 12-6 Session ID containing the server ID and cache ID

The JSESSIONID cookie can be divided into four parts: cache ID, session ID,
separator, clone ID, and partition ID (new in V6). JSESSION ID will include a
partition ID instead of a clone ID when memory-to-memory replication in
peer-to-peer mode is selected. Typically the partition ID is a long numeric
number.

Table 12-1 shows their mappings based on the example in Figure 12-6. A clone
ID is an ID of a cluster member.

Table 12-1 Cookie mapping

content value in the example

Cache ID 0000

Session ID SHOQmBQ8EokAQtzl_HYdxIt

separator :

Clone ID vuel491u

716 WebSphere Application Server V6: System Management and Configuration Handbook

The application server ID can be seen in the Web server plug-in configuration
file, plug-in-cfg.xml file, as shown in Example 12-4.

Example 12-4 Server ID from plugin-cfg.xml file

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the cell ITSOCell generated on 2004.10.15 at 07:21:03 PM BST-->
<Config>
......
 <ServerCluster Name="MyCluster">
 <Server CloneID="vuel491u" LoadBalanceWeight="2" Name="NodeA_server1">
 <Transport Hostname="wan" Port="9080" Protocol="http"/>
 <Transport Hostname="wan" Port="9443" Protocol="https">

</Config>

12.8.1 Session affinity and failover
Server clusters provide a solution for failure of an application server. Sessions
created by cluster members in the server cluster share a common persistent
session store. Therefore, any cluster member in the server cluster has the ability
to see any user’s session saved to persistent storage. If one of the cluster
members fail, the user can continue to use session information from another
cluster member in the server cluster. This is known as failover. Failover works
regardless of whether the nodes reside on the same machine or several
machines. See Figure 12-7 on page 718.

Note: Session affinity can still be broken if the cluster member handling the
request fails. To avoid losing session data, use persistent session
management. In persistent sessions mode, cache ID and server ID will
change in the cookie when there is a failover or when the session is read from
the persistent store. So don’t rely on the value of the session cookie remaining
the same for a given session.

 Chapter 12. Session management 717

Figure 12-7 Session affinity and failover

After a failure, WebSphere redirects the user to another cluster member, and the
user’s session affinity switches to this replacement cluster member. After the
initial read from the persistent store, the replacement cluster member places the
user’s session object in the in-memory cache, assuming the cache has space
available for additional entries.

The Web server plug-in maintains the cluster member list in order and picks the
cluster member next in its list to avoid the breaking of session affinity. From then
on, requests for that session go to the selected cluster member. The requests for
the session go back to the failed cluster member when the failed cluster member
restarts.

WebSphere provides session affinity on a best-effort basis. There are narrow
windows where session affinity fails. These windows are:

� When a cluster member is recovering from a crash, a window exists where
concurrent requests for the same session could end up in different cluster
members. The reason for this is the Web server is multi-processed and each

Note: According to the Servlet 2.4 specification, only a single cluster member
can control and access a given session at a time.

User A Session

User A

Affinity
Routing

Session
Cache

User A
User C
User Z

User D
User E
User K

User A Session

New Affinity
Routing

Session
Retrieved

and Cached

User D
User E
User K
User A

Session
Database

User A Session
Database

718 WebSphere Application Server V6: System Management and Configuration Handbook

process separately maintains its own retry timer value and list of available
cluster members. The end result is that requests being processed by different
processes might end up being sent to more than one cluster member after at
least one process has determined that the failed cluster member is running
again.

To avoid or limit exposure in this scenario, if your cluster members are
expected to crash very seldom and are expected to recover fairly quickly,
consider setting the retry timeout to a small value. This narrowed the window
during which multiple requests being handled by different processes get
routed to multiple cluster members.

� A server overload can cause requests belonging to the same session to go to
different cluster members. This can occur even if all the cluster members are
running. For each cluster member, there is a backlog queue where an entry is
made for each request sent by the Web server plug-in waiting to be picked up
by a worker thread in the servlet engine. If the depth of this queue is
exceeded, the Web server plug-in starts receiving responses that the cluster
member is not available. This failure is handled in the same way by the Web
server plug-in as an actual JVM crash. Examples of when this can happen
are:

– The servlet engine does not have an appropriate number of threads to
handle the user load.

– The servlet engine threads take a long time to process the requests.
Reasons for this include: applications taking a long time to execute,
resources being used by applications taking a long time, and so on.

12.9 Persistent session management
By default, WebSphere places session objects in memory. However, the
administrator has the option of enabling persistent session management, which
instructs WebSphere to place session objects in a persistent store.
Administrators should enable persistent session management when:

� The user’s session data must be recovered by another cluster member after a
cluster member in a cluster fails or is shut down.

� The user’s session data is too valuable to lose through unexpected failure at
the WebSphere node.

� The administrator desires better control of the session cache memory
footprint. By sending cache overflow to a persistent session store, the
administrator controls the number of sessions allowed in memory at any
given time.

 Chapter 12. Session management 719

There are two ways to configure session persistence in WebSphere Application
Server V6, as in Figure 12-8:

� Database persistence

� Memory-to-memory session state replication using the data replication
service available in distributed server environments

Figure 12-8 Persistent session options

All information stored in a persistent session store must be serialized. As a
result, all of the objects held by a session must implement java.io.Serializable if
the session needs to be stored in a persistent session store.

In general, consider making all objects held by a session serialized, even if
immediate plans do not call for the use of persistent session management. If the
Web site grows, and persistent session management becomes necessary, the
transition between local and persistent management occurs transparently to the
application if the sessions only hold serialized objects. If not, a switch to
persistent session management requires coding changes to make the session
contents serialized.

D a ta b a s e P e rs is te n t S e s s io n s

W e b
C o n ta in e r

W A S

W e b
C o n ta in e r

W A S

D a ta b a s e

D a ta R e p lic a tio n S e rv ic e
W A S

(S to re)

W e b
C o n ta in e r

W A S

W e b
C o n ta in e r

W A S

720 WebSphere Application Server V6: System Management and Configuration Handbook

Persistent session management does not impact the session API, and Web
applications require no API changes to support persistent session management.
However, as mentioned previously, applications storing unserializable objects in
their sessions require modification before switching to persistent session
management.

If you use database persistence, using multi-row sessions becomes important if
the size of the session object exceeds the size for a row, as permitted by the
WebSphere session manager. If the administrator requests multi-row session
support, the WebSphere session manager breaks the session data across
multiple rows as needed. This allows WebSphere to support large session
objects. Also, this provides a more efficient mechanism for storing and retrieving
session contents under certain circumstances. See 12.9.6, “Single and multi-row
schemas (database persistence)” on page 743 for information about this feature.

Using a cache lets the session manager maintain a cache of most recently used
sessions in memory. Retrieving a user session from the cache eliminates a more
expensive retrieval from the persistent store. The session manager uses a least
recently used scheme for removing objects from the cache. Session data is
stored to the persistent store based on your selections for write frequency and
write option.

12.9.1 Enabling database persistence
It is assumed in this section that the following tasks have already completed
before enabling database persistence:

1. Create a session database. In this example, it is assumed that the data
source JNDI name is jdbc/Sessions.

2. Create a JDBC provider and data source. See 7.2, “JDBC resources” on
page 321 and 7.2.3, “Creating a data source” on page 326.

To enable database persistence, repeat the following steps for each application
server:

1. Click Servers →Application servers

2. Select the server.

3. Click Session management under Web container in the Additional
Properties section.

Note: The following example illustrates the steps to enable database
persistence at the application server level. Session management settings can
also be performed at the enterprise application level and the Web application
level.

 Chapter 12. Session management 721

4. Click Distributed environment settings.

5. Select Database and click Database. See Figure 12-9.

Figure 12-9 Distributed Environment Setting (database)

6. Enter the database information:

a. Enter the data source JNDI name. The data source must be a non-JTA
enabled data source.

b. Enter the user ID and password to access the database.

c. If you are using DB2 and you anticipate requiring row sizes greater than
4 KB, select the appropriate value from the DB2 row size menu. See
12.9.5, “Larger DB2 page sizes and database persistence” on page 742
for more information.

d. If DB2 row size is other than 4 KB, you are required to enter the name of
tablespace. See “Larger DB2 page sizes and database persistence” on
page 742.

e. If you intend to use a multi-row schema, select Use Multi row schema.
See 12.9.6, “Single and multi-row schemas (database persistence)” on
page 743 for more information. See Figure 12-10.

722 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 12-10 Database

7. Click OK.

After you have updated each server, save the configuration changes,
synchronize them with the servers, and restart the application servers.

12.9.2 Memory-to-memory replication
Memory-to-memory replication uses the data replication service to replicate data
across many application servers in a cluster without using a database. Using this
method, sessions are stored in the memory of an application server, providing
the same functionality as a database for session persistence. Separate threads
handle this functionality within an existing application server process.

 Chapter 12. Session management 723

The data replication service is an internal WebSphere Application Server
component. In addition to its use by the session manager, it is also used to
replicate dynamic cache data and stateful session beans across many
application servers in a cluster.

The advantages of using this method of session persistence are:

� Flexible configuration options such as peer-peer and client/server

� Elimination of the overhead and cost of setting up and maintaining a real-time
production database.

� Elimination of single point of failure that can occur with a database.

� Encrypted session information between application servers.

Version 5.X versus version 6 data replication service
The following changes have been made to the Data Replication Service in
WebSphere Application Server V6:

� Simplified configuration

Many fields from V5.X have been deprecated and the configuration panels
are now more intuitive.

� Terminology changes

Some of the terms from V5.X have been deprecated to reflect the new
topologies and configuration needs. The terms replicas and partitions have
been removed. In V6 we have client and servers in a replication domain.

� Topology changes

Partitions from V5.X have been deprecated. Replication domain still exists,
but defined differently. It is no longer a collection of replicas.You can select
the replication mode of server, client, or both when configuring the session
management facility for memory-to-memory replication in WebSphere
Application Server V6. The default is both.

� Integration with workload management to provide hot failover in peer-to-peer
mode

� Ability to collocate stateful session EJB replicas with HTTP session replicas in
hot failover

V5.X wsadmin DRS scripts continue to work with V6.

724 WebSphere Application Server V6: System Management and Configuration Handbook

Data replication service modes
The memory-to-memory replication function is accomplished by the creation of a
data replication service instance in an application server that communicates to
other data replication service instances in remote application servers.

There are three possible modes you can set up a replication service instance to
run in:

� Server mode

In this mode a server only stores backup copies of other application server
sessions. It does not send copies of sessions created in that particular server.

� Client mode

In this mode, a server only broadcasts or sends copies of the sessions it
owns. It does not receive backup copies of sessions from other servers

� Both mode

In this mode, the server simultaneously sends copies of the sessions it owns,
and acts as a backup table for sessions owned by other application servers.

You can select the replication mode of server, client, or both when configuring the
session management facility for memory-to-memory replication. The default is
both.

With respect to mode, the following are the primary examples of
memory-to-memory replication configuration:

� Peer-to-peer replication
� Client/server replication

Although the administrative console allows flexibility and additional possibilities
for memory-to-memory replication configuration, only these configurations are
officially supported.

There is a single replica in a cluster by default. You can modify the number of
replicas through the replication domain.

Peer-to-peer topology
Figure 12-11 on page 726 shows an example of peer-to-peer topology. Each
application server stores sessions in its own memory. It also stores sessions to
and retrieves sessions from other application servers. Each application server
acts as a client by retrieving sessions from other application servers. Each
application server acts as a server by providing sessions to other application
servers.

 Chapter 12. Session management 725

Figure 12-11 Example of peer-to-peer topology

The basic peer-to-peer, both mode, topology is the default configuration and has
a single replica. However, you can also add additional replicas by configuring the
replication domain.

In this basic peer-to-peer topology, each application server can:

� Host the Web application leveraging the HTTP session
� Send changes to the HTTP session that it owns
� Receive backup copies of the HTTP session from all of the other servers in

the cluster

This configuration represents the most consolidated topology, where the various
system parts are collocated and requires the fewest server processes. When
using this configuration, the most stable implementation is achieved when each
node has equal capabilities (CPU, memory, and so on), and each handles the
same amount of work.

The advantage of this topology is that no additional processes and products are
required to avoid a single point of failure. This reduces the time and cost required
to configure and maintain additional processes or products.

One of the disadvantages of this topology is that it can consume large amounts
of memory in networks with many users, because each server has a copy of all

W AS

W AS

HTTP servers
w ith a ffin ity

HTTP servers
w ith a ffin ity

Replication Dom ain

Local

Local

Backup

Backup

W ebSphere Application Server
Servers including HTTP
sessions w ith backup tables

W AS

Local

Backup

726 WebSphere Application Server V6: System Management and Configuration Handbook

sessions. For example, assuming that a single session consumes 10 KB and one
million users have logged into the system, each application server consumes
10 GB of memory in order to keep all sessions in its own memory. Another
disadvantage is that every change to a session must be replicated to all
application servers. This can cause a performance impact.

Client/server topology
Figure 12-12 on page 727 shows an example of client/server topology. In this
setup, application servers act as either a replication client or a server. Those that
act as replication servers store sessions in their own memory and provide
session information to clients. They are dedicated replication servers that just
store sessions but do not respond to the users’ requests. Client application
servers send session information to the replication servers and retrieve sessions
from the servers. They respond to user requests and store only the sessions of
the users with whom they interact.

Figure 12-12 Example of client/server topology

The advantage of this topology is that it clearly distinguishes the role of client and
server. Only replication servers keep all sessions in their memory and only the
clients interact with users. This reduces the consumption of memory on each
application server and reduces the performance impact, because session
information is only sent to the servers.

WAS

WAS

WAS

WAS

WAS

WebSphere Application Server
Servers including HTTP
sessions with local tables

WebSphere Application Server
Servers including HTTP
sessions with backup tables

Replication Domain

Backup

Backup

HTTP servers
with affinity

HTTP servers
with affinity

Local

Local

Local

 Chapter 12. Session management 727

You can recycle a backup server without affecting the servers running the
application, When there are two or more backups, failure recovery is possible.
Conversely, you can recycle an application server without losing the backup
data.

When running Web applications on lower-end hardware, you can choose to have
one or two more powerful computers that have the capacity to run a couple of
session managers in replication server mode; allowing you to reduce the load on
the Web application hardware.

One of the disadvantages of this topology is that additional application servers
have to be configured and maintained over and above those that interact with
users. We recommended that you have multiple replication servers configured to
avoid a single point of failure.

Replication domain
The memory-to-memory replication function is accomplished by the creation of a
data replication service instance in an application server that communicates to
other data replication service instances in remote application servers. You must
configure this data replication service instance as a part of a replication domain.

Data replication service instances on disparate application servers that replicate
to one another must be configured as a part of the same domain. You must
configure all session managers connected to a replication domain to have the
same topology. If one session manager instance in a domain is configured to use
the client/server topology, then the rest of the session manager instances in that
domain must be a combination of servers configured as Client only and Server
only.

If one session manager instance is configured to use the peer-to-peer topology,
then all session manager instances must be configured as both client and server.
For example, a server only data replication service instance and a both client and
server data replication service instance cannot exist in the same replication
domain. Multiple data replication service instances that exist on the same
application server due to session manager memory-to-memory configuration at
various levels that are configured to be part of the same domain must have the
same mode.

WebSphere Application Server V6 encourages the creation of a separate
replication domain for each consumer. For example, create one replication
domain for session manager and another replication domain for dynamic cache.

728 WebSphere Application Server V6: System Management and Configuration Handbook

The only situation where you should configure one replication domain is when
you configure session manager replication and stateful session bean failover.
Using one replication domain in this case ensures that the backup state
information of HTTP sessions and stateful session beans are on the same
application servers.

Enabling memory-to-memory replication
It is assumed in this section that the following tasks have already been
completed before enabling data the replication service:

1. You have created a cluster consisting of at least two application servers.

In this example, we are working with a cluster called MyCluster. It has two
servers, server1 and server2.

2. You have installed applications to the cluster.

To enable memory-to-memory replication, do the following:

1. Create a replication domain to define the set of replicator processes that
communicate with each other.

a. Select Environment →Replication domains. Click New. See
Figure 12-13 on page 730, and enter information in the fields

Note: A replication domain created with WebSphere Application Server V5.X
is referred to as a multi-broker domain. This type of replication domain
consists of replicator entries. This is deprecated in WebSphere Application
Server V6 and supported only for backward compatibility. Multi-broker
replication domains do not communicate with each other, so migrate any
multi-broker replication domains to the new data replication domains. You
cannot create a multi-broker domain or replicator entries in the administrative
console of WebSphere Application Server V6.

Note: This example illustrates setting up the replication domain and
replicators after the cluster has been created. You also have the option of
creating the replication domain and the replicator the first server in the cluster
when you create the cluster.

 Chapter 12. Session management 729

Figure 12-13 Create a replication domain

– Name

At a minimum, you need to enter a name for the replication domain. The
name must be unique within the cell. In this example, we used
MyClusterRepDomain as name and defaults are used as other properties.

– Encryption

Encrypted transmission achieves better security but can impact
performance. If DES or TRIPLE_DES is specified, a key for data
transmission is generated. We recommend that you generate a key by
clicking the Regenerate encryption key button periodically to enhance
security.

730 WebSphere Application Server V6: System Management and Configuration Handbook

– Number of replicas

A single replica allows you to replicate a session to only one other server.
This is the default. When you choose this option, a session manager picks
another session manager connected to the same replication domain to
which to replicate the HTTP session during session creation. All updates
to the session are only replicated to that single server. This option is set at
the replication domain level. When this option is set, every session
manager connected to this replication domain creates a single backup
copy of HTTP session state information about a backup server.

Alternatively, you can replicate to every application server that is
configured as a consumer of the replication domain with the Entire
Domain option or to a specified number of replicas within the domain.

b. Click Apply.

c. Click OK.

d. Save the configuration changes.

2. Configure cluster members.

Repeat the following steps for each application server:

a. Select Servers →Application servers.

b. Click the application server name. In this example, server1 and server2
are selected as application servers respectively.

c. Click Web container in the Container settings section.

d. Click Session management.

e. Click Distributed environment settings.

f. Select Memory-to-memory replication. See Figure 12-14 on page 732.

 Chapter 12. Session management 731

Figure 12-14 Distributed environment settings

g. Choose a replicator domain and replicator mode either from listed
domains. See Figure 12-15 on page 733.

732 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 12-15 Data replication service settings

Select the replication topology by specifying the replication mode.
Selecting Both client and server identifies this as a peer-to-peer
topology. In a client/server topology, select Client only for application
servers that will be responding to user requests. Select Server only for
those that will be used as replication servers.

h. Click OK.

3. Save the configuration and restart the cluster. You can restart the cluster by
selecting Servers →Clusters. Check the cluster, and click Stop. After the
messages indicate the cluster has stopped, click Start.

Configuration file results
The replication domain configuration is written to

<profile_home>/config/cells/<cell>/ multibroker.xml,

See Example 12-5 on page 734.

 Chapter 12. Session management 733

Example 12-5 Replication domain configuration in multibroker.xml

<?xml version="1.0" encoding="UTF-8"?>
<multibroker:DataReplicationDomain xmi:version="2.0"
xmlns:xmi="http://www.omg.org/XMI"
xmlns:multibroker="http://www.ibm.com/websphere/appserver/schemas/5.0/multibrok
er.xmi" xmi:id="DataReplicationDomain_1098124985651" name="MyClusterRepDomain">
 <defaultDataReplicationSettings xmi:id="DataReplication_1098124985651"
requestTimeout="5" encryptionType="NONE" numberOfReplicas="1">
 <partition xmi:id="DRSPartition_1098124985651" size="10"
partitionOnEntry="false"/>
 <serialization xmi:id="DRSSerialization_1098124985651"
entrySerializationKind="BYTES" propertySerializationKind="BYTES"/>
 <pooling xmi:id="DRSConnectionPool_1098124985651" size="10"
poolConnections="false"/>
 </defaultDataReplicationSettings>
</multibroker:DataReplicationDomain>

Configuring an application server to use a replication domain for session
persistence updates the server.xml file:

<profile_home>/config/cells/<cell>/nodes/<node>/servers/<server>/ server.xml

See Example 12-6.

Example 12-6 Server.xml updates

<sessionDRSPersistence xmi:id="DRSSettings_1097867741921"
messageBrokerDomainName="MyClusterRepDomain"/>

12.9.3 Session management tuning
Performance tuning for session management persistence consists of defining the
following:

� How often session data is written (write frequency settings)
� How much data is written (write contents settings)
� When the invalid sessions are cleaned up (session cleanup settings)

These settings are set in the Custom tuning parameters found under the
Additional properties section for session management settings. Several
combinations of these settings are predefined and available for selection, or you
can customize them.

734 WebSphere Application Server V6: System Management and Configuration Handbook

Writing frequency settings
You can select from three different settings that determine how often session
data is written to the persistent data store:

� End of servlet service

If the session data has changed, it will be written to the persistent store after
the servlet finishes processing an HTTP request.

� Manual update

The session data will be written to the persistent store when the sync()
method is called on the IBMSession object.

� Time-based

The session data will be written to the persistent store based on the specified
write interval value.

Consider an example where the Web browser accesses the application once
every five seconds:

� In End of servlet service mode, the session would be written out every five
seconds.

� In Manual update mode, the session would be written out whenever the
servlet issues IBMSession.sync(). It is the responsibility of the servlet writer to
use the IBMSession interface instead of the HttpSession Interface and the
servlets/JSPs must be updated to issue the sync().

� In Time-based mode, the servlet or JSP need not use the IBMSession class
nor issue IBMSession.sync(). If the write interval is set to 120 seconds, then
the session data is written out at most every 120 seconds.

Note: The last access time attribute is always updated each time the session
is accessed by the servlet or JSP, whether the session is changed or not. This
is done to make sure the session does not time out.

� If you choose the end of servlet service option, each servlet or JSP access
will result in a corresponding persistent store update of the last access
time.

� If you select the manual update option, the update of the last access time
in persistent store occurs on sync() call or at later time.

� If you use time-based updates, the changes are accumulated and written
in a single transaction. This can significantly reduce the amount of I/O to
the persistent store.

See 12.12.2, “Reducing persistent store I/O” on page 756 for options to
change this database update behavior.

 Chapter 12. Session management 735

End of servlet service
When the write frequency is set to the end of servlet service option, WebSphere
writes the session data to the persistent store at the completion of the
HttpServlet.service() method call. The write content settings determine output.

Manual update
In manual update mode, the session manager only sends changes to the
persistent data store if the application explicitly requests a save of the session
information.

Manual update mode requires an application developer to use the IBMSession
class for managing sessions. When the application invokes the sync() method,
the session manager writes the modified session data and last access time to the
persistent store. The session data written to the persistent store is controlled by
the write contents option selected.

If the servlet or JSP terminates without invoking the sync() method, the session
manager saves the contents of the session object into the session cache (if
caching is enabled), but does not update the modified session data in the
session database. The session manager will only update the last access time in
the persistent store asynchronously, at later time. Example 12-7 shows how the
IBMSession class can be used to manually update the persistent store.

Example 12-7 Using IBMSession for manual update of the persistent store

public void service (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
// Use the IBMSession to hold the session information
// We need the IBMSession object because it has the manual update
// method sync()
com.ibm.websphere.servlet.session.IBMSession session =

(com.ibm.websphere.servlet.session.IBMSession)req.getSession(true);

Integer value = 1;

//Update the in-memory session stored in the cache
session.putValue("MyManualCount.COUNTER", value);

//The servlet saves the session to the persistent store
session.sync();

}

Note: Manual updates use an IBM extension to HttpSession that is not part of
the Servlet 2.4 API.

736 WebSphere Application Server V6: System Management and Configuration Handbook

This interface gives the Web application developer additional control of when and
if session objects go to the persistent data store. If the application does not
invoke the sync() method, and manual update mode is specified, the session
updates go only to the local session cache, not the persistent data store. Web
developers use this interface to reduce unnecessary writes to the session
database, and thereby to improve overall application performance.

All servlets in the Web application server must perform their own session
management in manual update mode.

Time-based writes to the session database
Using the time-based write option will write session data to the persistent store at
a defined write interval. The reasons for implementing time-based write lies in the
changes introduced with the Servlet 2.2 API. The Servlet 2.2 specification
introduced two key concepts:

� It limits the scope of a session to a single Web application.

� It both explicitly prohibits concurrent access to an HttpSession from separate
Web applications, and allows for concurrent access within a given JVM.

Because of these changes, WebSphere provides the session affinity mechanism
that assures an HTTP request is routed to the Web application handling its
HttpSession. This assurance still holds in a WLM environment when using
persistent HttpSessions. This means that the necessity to immediately write the
session data to the persistent store can now be relaxed somewhat in these
environments, as well as non-clustered environments, because the persistent
store is used now only for failover and session cache full scenarios.

With this in mind, it is now possible to gain potential performance improvements
by reducing the frequency of persistent store writes.

The following details apply to time-based writes:

� The expiration of the write interval does not necessitate a write to the
persistent store unless the session has been touched,
getAttribute/setAttribute/removeAttribute was called, since the last write.

� If a session write interval has expired and the session has only been
retrieved, request.getSession() was called since the last write, then the last
access time will be written to the persistent store regardless of the write
contents setting.

� If a session write interval has expired and the session properties have been
either accessed or modified since the last write, then the session properties

Note: Time-based writes requires session affinity for session data integrity.

 Chapter 12. Session management 737

will be written in addition to the last access time. Which session properties get
written is dependent on the write contents settings.

� Time-based write allows the servlet or JSP to issue IBMSession.sync() to
force the write of session data to the database.

� If the time between session servlet requests for a particular session is greater
than the write interval, then the session effectively gets written after each
service method invocation.

� The session cache should be large enough to hold all of the active sessions.
Failure to do this will result in extra persistent store writes, because the
receipt of a new session request can result in writing out the oldest cached
session to the persistent store. To put it another way, if the session manager
has to remove the least recently used HttpSession from the cache during a
full cache scenario, the session manager will write that HttpSession using the
Write contents settings upon removal from the cache.

� The session invalidation time must be at least twice the write interval to
ensure that a session does not inadvertently get invalidated prior to getting
written to the persistent store.

� A newly created session will always be written to the persistent store at the
end of the service method.

Writing content settings
These options control what is written. See 12.9.7, “Contents written to the
persistent store using a database” on page 745 before selecting one of the
options, because there are several factors to decide. The options available are:

� Only update attributes are written to the persistent store.
� All session attributes are written to the persistent store.

Session cleanup settings
WebSphere allows the administrator to defer to off hours the clearing of
invalidated sessions from the persistent store. Invalidated sessions are sessions
that are no longer in use and timed out. For more information, see 12.10,
“Invalidating sessions” on page 749. This can be done either once or twice a day.
The fields available are:

� First time of day (0-23) is the first hour during which the invalidated
persistent sessions will be cleared from the persistent store. This value must
be a positive integer between 0 and 23.

� Second time of day (0-23) is the second hour during which the invalidated
persistent sessions will be cleared from the persistent store. This value must
be a positive integer between 0 and 23.

� Select Schedule sessions cleanup to enable this option.

738 WebSphere Application Server V6: System Management and Configuration Handbook

Also consider using schedule invalidation for intranet-style applications that have
a somewhat fixed number of users wanting the same HTTP session for the
whole business day.

Configuration
The session management tuning parameters can be set by selecting a
predefined tuning level or by specifying each parameter. To specify the
performance settings for session management, do the following:

1. Select Servers →Application Servers and click the application server.

2. Expand the Web Container Settings and click Web container.
3. Click Session management.
4. Click Distributed environment settings.
5. Select from the predefined tuning levels or click Custom tuning parameters.

See Figure 12-16 on page 740.

Note: Remember, session management options can also be set at the
enterprise application level (see “Application session management
properties” on page 700) or at the Web module level (see “Web module
session management properties” on page 700).

 Chapter 12. Session management 739

Figure 12-16 Session management tuning parameters

If you want to set each tuning parameter explicitly, select Custom settings.
See Figure 12-17 on page 741.

740 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 12-17 Session management tuning parameters

12.9.4 Persistent sessions and non-serializable J2EE objects
In order for the WebSphere session manager to persist a session to the
persistent store, all of the Java objects in an HttpSession must be serializable.
They must implement the java.io.Serializable interface. The HttpSession can
also contain the following J2EE objects, which are not serializable:

� javax.ejb.EJBObject
� javax.ejb.EJBHome
� javax.naming.Context
� javax.transaction.UserTransaction

 Chapter 12. Session management 741

The WebSphere session manager works around the problem of serializing these
objects in the following manner:

� EJBObject and EJBHome each have Handle and HomeHandle object
attributes that are serializable and can be used to reconstruct the EJBObject
and EJBHome.

� Context is constructed with a hash table based environment, which is
serializable. WebSphere will retrieve the environment, then wrap it with an
internal, serializable object. On reentry, it can check the object type and
reconstruct the Context.

� UserTransaction has no serializable attributes. WebSphere provides two
options:

a. The Web developer can place the object in the HttpSession, but
WebSphere will not persist it outside the JVM.

b. WebSphere has a new public wrapper object,
com.ibm.websphere.servlet.session.UserTransactionWrapper, which is
serializable and requires the InitialContext used to construct the
UserTransaction. This will be persisted outside the JVM and be used to
reconstruct the UserTransaction.

In general, Web developers should consider making all other Java objects held
by HttpSession serializable, even if immediate plans do not call for the use of
persistent session management. If the Web site grows, and persistent session
management becomes necessary, the transition between local and persistent
management occurs transparently to the application if the sessions hold only
serializable objects. If not, a switch to persistent session management requires
coding changes to make the session contents serializable.

12.9.5 Larger DB2 page sizes and database persistence
WebSphere supports 4 KB, 8 KB, 16 KB, and 32 KB page sizes, and can have
larger varchar for bit data columns of about 7 KB, 15 KB, or 31 KB. Using this
performance feature, we see faster persistence for HttpSession of sizes of 7 KB
to 31 KB in the single-row case, or attribute sizes of 4 KB to 31 KB in the
multi-row case.

Note: According to J2EE, a Web component can only start a transaction in
a service method. A transaction that is started by a servlet or JSP must be
completed before the service method returns. That is, transactions cannot
span Web requests from a client. If there is an active transaction after
returning from the service method, WebSphere will detect it and abort the
transaction.

742 WebSphere Application Server V6: System Management and Configuration Handbook

Enabling this feature involves dropping any existing table created with a 4 KB
buffer pool and tablespace. This also applies if you subsequently change
between 4 KB, 8 KB, 16 KB, or 32 KB.

To use a page size other than the default 4 KB, do the following:

1. If the SESSIONS table already exists, drop it from the DB2 database:

DB2 connect to session
DB2 drop table sessions

2. Create a new DB2 buffer pool and tablespace, specifying the same page size
(8 KB, 16 KB or 32 KB) for both, and assign the new buffer pool to this
tablespace. Example 12-8 shows simple steps for creating an 8 KB page:

Example 12-8 Creating an 8K page size

DB2 connect to session
DB2 CREATE BUFFERPOOL sessionBP SIZE 1000 PAGESIZE 8K
DB2 connect reset
DB2 connect to session
DB2 CREATE TABLESPACE sessionTS PAGESIZE 8K MANAGED BY SYSTEM USING
('D:\DB2\NODE0000\SQL00005\sessionTS.0') BUFFERPOOL sessionBP
DB2 connect reset

Refer to the DB2 product documentation for details.

3. Configure the correct tablespace name and page size, DB2 row size, in the
session management database configuration. See Figure 12-10 on page 723.

Restart WebSphere. On startup, the session manager creates a new SESSIONS
table based on the page size and tablespace name specified.

12.9.6 Single and multi-row schemas (database persistence)
When using the single-row schema, each user session maps to a single
database row. This is WebSphere’s default configuration for persistent session
management. With this setup, there are hard limits to the amount of
user-defined, application-specific data that WebSphere Application Server can
access.

When using the multi-row schema, each user session maps to multiple database
rows, with each session attribute mapping to a database row.

In addition to allowing larger session records, using a multi-row schema can yield
performance benefits, as discussed in 12.12.3, “Multirow persistent sessions:
Database persistence” on page 757.

 Chapter 12. Session management 743

Switching from single-row to multi-row schema
To switch from single-row to multi-row schema for sessions, do the following:

1. Modify the session manager properties to switch from single to multi-row
schema. Select the Use multi row schema on the Database setting of the
Session Manager window, shown in Figure 12-10 on page 723.

2. Manually drop the database table or delete all the rows in the session
database table. To drop the table:

a. Determine which data source the session manager is using. This is set in
the session management distributed settings window. See 12.9.1,
“Enabling database persistence” on page 721.

b. Look up the database name in the data source settings. Find the JDBC
provider, then the data source. The database name is in the custom
settings.

c. Use the database facilities to connect to the database and drop it.

3. Restart the application server or cluster.

Design considerations
Consider configuring direct, single-row usage to one database and multi-row
usage to another database while you verify which option suits your application's
specific needs. You can do this by switching the data source used, then
monitoring the performance. Table 12-2 provides an overview.

Table 12-2 Single versus multi-row schemas

Programming issue Application scenario

Reasons to use single-row � You can read/write all values with just one
record read/write.

� This takes up less space in a database,
because you are guaranteed that each
session is only one record long.

Reasons not to use single-row There is a 2 MB limit of stored data per
session. The sum of sizes of all session
attributes is limited to 2 MB.

744 WebSphere Application Server V6: System Management and Configuration Handbook

In the case of multi-row usage, design your application data objects so they do
not have references to each other. This is to prevent circular references.

For example, suppose you are storing two objects A and B in the session using
HttpSession.put(..), and A contains a reference to B. In the multi-row case,
because objects are stored in different rows of the database, when objects A and
B are retrieved later, the object graph between A and B is different from that
stored. A and B behave as independent objects.

12.9.7 Contents written to the persistent store using a database
WebSphere supports two modes for writing session contents to the persistent
store:

� Only updated attributes

Write only the HttpSession properties that have been updated via
setAttribute() and removeAttribute().

� All session attributes

Write all the HttpSession properties to the database.

Reasons to use multi-row � The application can store an unlimited
amount of data. You are limited only by
the size of the database and a
2 MB-per-record limit. The size of each
session attribute can be 2 MB.

� The application can read individual fields
instead of the whole record. When large
amounts of data are stored in the session
but only small amounts are specifically
accessed during a given servlet's
processing of an HTTP request, multi-row
sessions can improve performance by
avoiding unneeded Java object
serialization.

Reasons not to use multi-row If data is small in size, you probably do not
want the extra overhead of multiple row reads
when everything could be stored in one row.

Programming issue Application scenario

 Chapter 12. Session management 745

When a new session is initially created with either of the above two options, the
entire session is written, including any Java objects bound to the session. When
using database persistence, the behavior for subsequent servlet or JSP requests
for this session varies depending on whether the single-row or multi-row
database mode is in use.

� In single-row mode, choose from the following:

– Only updated attributes

If any session attribute has been updated, through setAttribute or
removeAttribute, then all of the objects bound to the session will be written
to the database.

– All session attributes

All bound session attributes will be written to the database.

� In multi-row mode:

– Only updated attributes

Only the session attributes that were specified via setAttribute or
removeAttribute will be written to the database.

– All session attributes

All of the session attributes that reside in the cache will be written to the
database. If the session has never left the cache, then this should contain
all of the session attributes.

By using the All session attributes mode, servlets and JSPs can change Java
objects that are attributes of the HttpSession without having to call setAttribute()
on the HttpSession for that Java object in order for the changes to be reflected in
the database.

Using the All session attributes mode provides some flexibility to the application
programmer and protects against possible side effects of moving from local
sessions to persistent sessions.

However, using All session attributes mode can potentially increase activity and
be a performance drain. Individual customers will have to evaluate the pros and
cons for their installation. It should be noted that the combination of All session
attributes mode with time-based write could greatly reduce the performance
penalty and essentially give you the best of both worlds.

As shown in Example 12-9 and Example 12-10, the initial session creation
contains a setAttribute, but subsequent requests for that session do not need to
use setAttribute.

746 WebSphere Application Server V6: System Management and Configuration Handbook

Example 12-9 Initial servlet

HttpSession sess = request.getSession(true);
myClass myObject = new myClass();
myObject.someInt = 1;
sess.setAttribute("myObject", myObject); // Bind object to the session

Example 12-10 Subsequent servlet

HttpSession sess = request.getSession(false);
myObject = sess.getAttribute("myObject"); // get bound session object
myObject.someInt++; // change the session object
// setAttribute() not needed with write "All session attributes" specified

Example 12-11 and Example 12-12 show setAttribute is still required even
though the write all session attributes option is enabled.

Example 12-11 Initial servlet

HttpSession sess = request.getSession(true);
String myString = new String("Initial Binding of Session Object");
sess.setAttribute("myString", myString); // Bind object to the session

Example 12-12 Subsequent servlet

HttpSession sess = request.getSession(false);
String myString = sess.getAttribute("myString"); // get bound session object
...
myString = new String("A totally new String"); // get a new String object
sess.setAttribute("myString", myString); // Need to bind the object to the
session since a NEW Object is used

HttpSession set/getAttribute action summary
Table 12-3 summarizes the action of the HttpSession setAttribute and
removeAttribute methods for various combinations of the row type, write
contents, and write frequency session persistence options.

Table 12-3 Write contents versus write frequency

Row type Write
contents

Write
frequency

Action for
setAttribute

Action for
removeAttribute

Single-row Only
updated
attributes

End of servlet
service /
sync() call with
Manual update

If any of the session
data has changed, then
write all of this session's
data from cache1

If any of the session data has
changed, then write all of this
session's data from cache1

 Chapter 12. Session management 747

Multi-row mode has the notion of thread-specific data. Thread-specific data is
defined as session data that was added or removed while executing under this
thread. If you use End of servlet service or Manual update modes and enable
Only updated attributes, then only the thread-specific data is written to the
database.

Single-row Only
updated
attributes

Time-based If any of the session
data has changed, then
write all of this session's
data from cache1

If any of the session data has
changed, then write all of this
session's data from cache1

All session
attributes

End of servlet
service /
sync() call with
Manual update

Always write all of this
session's data from
cache2

Always write all of this
session's data from cache2

Time-based Always write all of this
session's data from
cache

Always write all of this
session's data from cache

Multi-row Only
updated
attributes

End of servlet
service /
sync() call with
Manual update

Write only
thread-specific data
that has changed

Delete only thread-specific
data that has been removed

Time-based Write thread-specific
data that has changed
for all threads using
this session

Delete thread-specific data
that has been removed for all
threads using this session

All session
attributes

End of servlet
service /
sync() call with
Manual update

Write all session data
from cache

Delete thread-specific data
that has been removed for all
threads using this session

Time-based Write all session data
from cache

Delete thread-specific data
that has been removed for all
threads using this session

1 When a session is written to the database while using single-row mode, all of the session data is
written. Therefore, no database deletes are necessary for properties removed with removeAttribute(),
because the write of the entire session does not include removed properties.

Row type Write
contents

Write
frequency

Action for
setAttribute

Action for
removeAttribute

748 WebSphere Application Server V6: System Management and Configuration Handbook

12.10 Invalidating sessions
This section discusses invalidating sessions when the user no longer needs the
session object. for example, when the user has logged off a site. Invalidating a
session removes it from the session cache, as well as from the persistent store.

WebSphere offers three methods for invalidation session objects:

� Programmatically, you can use the invalidate() method on the session object.
If the session object is accessed by multiple threads in a Web application, be
sure that none of the threads still have references to the session object.

� An invalidator thread scans for timed-out sessions every n seconds, where n
is configurable from the administrative console. The session timeout setting is
in the general properties of the session management settings.

� For persistent sessions, the administrator can specify times when the scan
runs. This feature has the following benefits when used with persistent
session:

– Persistent store scans can be scheduled during periods that normally
have low demand. This avoids slowing down online applications due to
contention in the persistent store.

– When this setting is used with the End of servlet service write frequency
option, WebSphere does not have to write the last access time with every
HTTP request. The reason is, WebSphere does not have to synchronize
the invalidator thread's deletion with the HTTP request access.

You can find the session cleanup schedule setting in the session
management settings under the custom tuning properties for distributed
environments.

If you are going to use session cleanup, be aware of the following:

– HttpSession timeouts are not enforced. Instead, all invalidation processing
is handled at the configured invalidation times.

– With listeners, described in 12.10.1, “Session listeners”, processing is
potentially delayed by this configuration. It is not recommended if listeners
are used.

12.10.1 Session listeners
Some listener classes are defined in the Servlet 2.4 specification to listen for
state changes of a session and its attributes. This allows greater control over
interactions with sessions, leading programmers to monitor creation, deletion,
and modification of sessions. Programmers can perform initialization tasks when
a session is created, or clean up tasks when a session is removed. It is also

 Chapter 12. Session management 749

possible to perform some specific tasks for the attribute when an attribute is
added, deleted or modified.

The following are the Listener interfaces to monitor the events associated with
the HttpSession object:

� javax.servlet.http.HttpSessionListener

Use this interface to monitor creation and deletion, including session timeout,
of a session.

� javax.servlet.http.HttpSessionAttributeListener

Use this interface to monitor changes of session attributes, such as add,
delete, and replace.

� javax.servlet.http.HttpSessionActivationListener

This interface monitors activation and passivation of sessions. This interface
is useful to monitor if the session exists, whether on memory or not, when
persistent session is used.

Table 12-4 is a summary of the interfaces and methods.

Table 12-4 Listener interfaces and their methods

For more information, see Java 2 Platform Enterprise Edition, v 1.4 API
Specification at:

http://java.sun.com/j2ee/1.4/docs/api/index.html

Target Event Interface Method

session create HttpSessionListener sessionCreated()

destroy HttpSessionListener sessionDestroyed()

activate HttpSessionActivationListener sessionDidActivate()

passivate HttpSessionActivationListener sessionWillPassivate()

attribute add HttpSessionAttributeListener attributeAdded()

remove HttpSessionAttributeListener attributeRemoved()

replace HttpSessionAttributeListener attributeReplaced()

750 WebSphere Application Server V6: System Management and Configuration Handbook

http://java.sun.com/j2ee/1.4/docs/api/index.html
http://java.sun.com/j2ee/1.4/docs/api/index.html

12.11 Session security
WebSphere Application Server maintains the security of individual sessions.
When session manager integration with WebSphere security is enabled, the
session manager checks the user ID of the HTTP request against the user ID of
the session held within WebSphere. This check is done as part of the processing
of the request.getSession() function. If the check fails, WebSphere throws an
com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException
exception. If it succeeds, the session data is returned to the calling servlet or
JSP.

Session security checking works with the standard HttpSession. The identity or
user name of a session can be accessed through the
com.ibm.websphere.servlet.session.IBMSession interface. An unauthenticated
identity is denoted by the user name anonymous.

The session manager uses WebSphere’s security infrastructure to determine the
authenticated identity associated with a client HTTP request that either retrieves
or creates a session. For information about WebSphere security features, see
WebSphere Application Security V6 Security Handbook, SG24-6316.

Security integration rules for HTTP sessions
Session management security has the following rules:

� Sessions in unsecured pages are treated as accesses by the anonymous
user.

� Sessions created in unsecured pages are created under the identity of that
anonymous user.

� Sessions in secured pages are treated as accesses by the authenticated
user.

� Sessions created in secured pages are created under the identity of the
authenticated user. They can only be accessed in other secured pages by the
same user. To protect these sessions from use by unauthorized users, they
cannot be accessed from an unsecure page. Do not mix access to secure and
unsecure pages.

� Security integration in session manager is not supported in HTTP form-based
login with SWAM (Simple WebSphere Authentication Mechanism).

 Chapter 12. Session management 751

Table 12-5 lists possible scenarios when security integration is enabled, where
outcomes depend on whether the HTTP request was authenticated and whether
a valid session ID and user name was passed to the session manager.

Table 12-5 HTTP session security

See 12.7, “General properties for session management” on page 711 for more
information about the security integration setting.

12.12 Session performance considerations
This section includes guidance for developing and administering scalable,
high-performance Web applications using WebSphere Application Server
session support.

Request session ID/
user name

Unauthenticated HTTP
request is used to
retrieve the session

Authenticated HTTP
request is used to
retrieve the session. The
user ID in the HTTP
request is FRED.

No session ID was passed
in for this request, or the ID
is for a session that is no
longer valid.

A new session is created.
The user name is
anonymous.

A new session is created.
The user name is FRED.

A valid session ID is
received. The current
session user name is
anonymous.

The session is returned. The session is returned.
The session manager
changes the user name to
FRED.

A valid session ID is
received. The current
session user name is
FRED.

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown1.

The session is returned.

A valid session ID is
received. The current
session user name is BOB.

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown1.

The session is not
returned.
UnauthorizedSession-
RequestException is
thrown1.

1 com.ibm.websphere.servlet.session.UnauthorizedSessionRequestException is
thrown to the servlet or JSP.

752 WebSphere Application Server V6: System Management and Configuration Handbook

12.12.1 Session size
Large session objects pose several problems for a Web application. If the site
uses session caching, large sessions reduce the memory available in the
WebSphere instance for other tasks, such as application execution.

For example, assume a given application stores 1 MB of information for each
user session object. If 100 users arrive over the course of 30 minutes, and
assume the session timeout remains at 30 minutes, the application server
instance must allocate 100 MB just to accommodate the newly arrived users in
the session cache:

1 MB for each user session * 100 users = 100 MB

Note this number does not include previously allocated sessions that have not
timed out yet. The memory required by the session cache could be considerably
higher than 100 MB.

Web developers and administrators have several options for improving the
performance of session management:

� Reduce the size of the session object.
� Reduce the size of the session cache.
� Add additional application servers.
� Invalidate unneeded sessions.
� Increase the memory available.
� Reduce the session timeout interval.

Reducing session object size
Web developers must consider carefully the information kept by the session
object:

� Removing information easily obtained or easily derived helps keep the
session object small.

� Rigorous removal of unnecessary, unneeded, or obsolete data from the
session.

� Consider whether it would be better to keep a certain piece of data in an
application database rather than in the HTTP session. This gives the
developer full control over when the data is fetched or stored and how it is
combined with other application data. Web developers can leverage the
power of SQL if the data is in an application database.

 Chapter 12. Session management 753

Reducing object size becomes particularly important when persistent sessions
are used. Serializing a large amount of data and writing it to the persistent store
requires significant WebSphere performance overhead. Even if the Write
contents option is enabled, if the session object contains large Java objects or
collections of objects that are updated regularly, there is a significant
performance penalty in persisting these objects. This penalty can be reduced by
using time-based writes.

Session cache size
The session manager allows administrators to change the session cache size to
alter the cache’s memory footprint. By default, the session cache holds 1000
session objects. By lowering the number of session objects in the cache, the
administrator reduces the memory required by the cache.

However, if the user’s session is not in the cache, WebSphere must retrieve it
from either the overflow cache, for local caching, or the session database, for
persistent sessions. If the session manager must retrieve persistent sessions
frequently, the retrievals can impact overall application performance.

WebSphere maintains overflowed local sessions in memory, as discussed in
12.6, “Local sessions” on page 710. Local session management with cache
overflow enabled allows an unlimited number of sessions in memory. To limit the
cache footprint to the number of entries specified in session manager, use
persistent session management, or disable overflow.

Notes: In general, you can obtain the best performance with session objects
that are less than 2 KB in size. When the session object exceeds 4-5 KB, you
can expect a significant decrease in performance.

Even if session persistence is not an issue, minimizing the session object size
will help to protect your Web application from scale-up disasters as user
numbers increase. Large session objects will require more and more JVM
memory, leaving no room to run servlets.

See 12.9.5, “Larger DB2 page sizes and database persistence” on page 742
to learn how WebSphere can provide faster persistence of larger session
objects when using DB2.

Note: When using local session management without specifying the Allow
overflow property, a full cache will result in the loss of user session objects.

754 WebSphere Application Server V6: System Management and Configuration Handbook

Creating additional application servers
WebSphere also gives the administrator the option of creating additional
application servers. Creating additional instances spread the demand for
memory across more JVMs, thus reducing the memory burden on any particular
instance. Depending on the memory and CPU capacity of the machines
involved, the administrator can add additional instances within the same
machine. Alternatively, the administrator can add additional machines to form a
hardware cluster, and spread the instances across this cluster.

Invalidating unneeded sessions
If the user no longer needs the session object, for example, when the user has
logged out of the site, it should be invalidated. Invalidating a session removes it
from the session cache, as well as from the session database. For more
information see 12.10, “Invalidating sessions” on page 749.

Increasing available memory
WebSphere allows the administrator to increase an application server’s heap
size. By default, WebSphere allocates 256 MB as the maximum heap size.
Increasing this value allows the instance to obtain more memory from the
system, and thus hold a larger session cache.

A practical limit exists, however, for an instance heap size. The machine memory
containing the instance needs to support the heap size requested. Also, if the
heap size grows too large, the length of the garbage collection cycle with the
JVM might impact overall application performance. This impact has been
reduced with the introduction of multi-threaded garbage collection.

Session timeout interval
By default, each user receives a 30-minute interval between requests before the
session manager invalidates the user’s session. Not every site requires a
session timeout interval this generous. By reducing this interval to match the
requirements of the average site user, the session manager purges the session
from the cache and the persistent store, if enabled, more quickly.

Note: When configuring a session cluster, session affinity routing provides the
most efficient strategy for user distribution within the cluster, even with session
persistence enabled. With cluster members, the Web server plug-in provides
affinity routing among cluster member instances.

 Chapter 12. Session management 755

Avoid setting this parameter too low and frustrating users. The administrator
must take into account a reasonable time for an average user to interact with the
site when setting the interval. User activities include reading returned data, filling
out forms, and so on. Also, the interval must represent any increased response
time during peak times on the site, such as heavy trading days on a brokerage
site, for example.

Finally, in some cases where the persistent store contains a large number of
entries, frequent execution of the timeout scanner reduces overall performance.
In cases where the persistent store contains many session entries, avoid setting
the session timeout so low it triggers frequent, expensive scans of the persistent
store for timed-out sessions. Alternatively, the administrator should consider
schedule-based invalidation where scans for invalid object can be deferred to a
time that normally has low demand. See 12.10, “Invalidating sessions” on
page 749.

12.12.2 Reducing persistent store I/O
From a performance point of view, the Web developer’s considerations are the
following:

� Optimize the use of the HttpSession within a servlet. Only store the minimum
amount of data required in HttpSession. Data that does not have to be
recovered after a cluster member fails or is shut down can be best kept
elsewhere, such as in a hash table. Recall that HttpSession is intended to be
used as a temporary store for state information between browser invocations.

� Specify session=false in the JSP directive for JSPs that do not need to
access the session object.

� Use time-based write frequency mode. This greatly reduces the amount of
I/O, because the persistent store updates are deferred up to a configurable
number of seconds. Using this mode, all of the outstanding updates for a Web
application are written periodically based on the configured write interval.

� Use the Schedule sessions cleanup option. When using the End of servlet
service write frequency mode, WebSphere does not have to write out the last
access time with every HTTP request. This is because WebSphere does not
have to synchronize the invalidator thread's deletion with the HTTP request’s
access.

756 WebSphere Application Server V6: System Management and Configuration Handbook

12.12.3 Multirow persistent sessions: Database persistence

When a session contains multiple objects accessed by different servlets or JSPs
in the same Web application, multi-row session support provides a mechanism
for improving performance. Multi-row session support stores session data in the
persistent session database by Web application and value. Table 12-6 shows a
simplified representation of a multi-row database table.

Table 12-6 Simplified multi-row session representation

In this example, if the user visits the ShoeStore application, and the servlet
involved needs the user’s first name, the servlet retrieves this information through
the session API. The session manager brings into the session cache only the
value requested. The ShoeStore.Big.String item remains in the persistent
session database until the servlet requests it. This saves time by reducing both
the data retrieved and the serialization overhead for data the application does not
use.

After the session manager retrieves the items from the persistent session
database, these items remain in the in-memory session cache. The cache
accumulates the values from the persistent session database over time as the
various servlets within the Web application request them. With WebSphere’s
session affinity routing, the user returns to this same cached session instance
repeatedly. This reduces the number of reads against the persistent session
database, and gives the Web application better performance.

How session data is written to the persistent session database has been made
configurable in WebSphere. For information about session updates using single
and multi-row session support, see 12.9.6, “Single and multi-row schemas
(database persistence)” on page 743. Also see 12.9.7, “Contents written to the
persistent store using a database” on page 745.

Even with multi-row session support, Web applications perform best if the overall
contents of the session objects remain small. Large values in session objects
require more time to retrieve from the persistent session database, generate
more network traffic in transit, and occupy more space in the session cache after
retrieval.

Session ID Web
application

Property Small
value

Large
value

DA32242SSGE2 ShoeStore ShoeStore.First.Name Alice

DA32242SSGE2 ShoeStore ShoeStore.Last.Name Smith

DA32242SSGE2 ShoeStore ShoeStore.Big.String A big
string....

 Chapter 12. Session management 757

Multi-row session support provides a good compromise for Web applications
requiring larger sessions. However, single-row persistent session management
remains the best choice for Web applications with small session objects.
Single-row persistent session management requires less storage in the
database, and requires fewer database interactions to retrieve a session’s
contents (all of the values in the session are written or read in one operation).
This keeps the session object’s memory footprint small, as well as reducing the
network traffic between WebSphere and the persistent session database.

12.12.4 Managing your session database connection pool
When using persistent session management, the session manager interacts with
the defined database through a WebSphere Application Server data source.
Each data source controls a set of database connections known as a connection
pool. By default, the data source opens a pool of no more than 10 connections.
The maximum pool size represents the number of simultaneous accesses to the
persistent session database available to the session manager.

For high-volume Web sites, the default settings for the persistent session data
source might not be sufficient. If the number of concurrent session database
accesses exceeds the connection pool size, the data source queues the excess
requests until a connection becomes available. Data source queuing can impact
the overall performance of the Web application (sometimes dramatically).

For best performance, the overhead of the connection pool used by the session
manager needs to be balanced against the time that a client cab spend waiting
for an occupied connection to become available for use. By definition, a
connection pool is a shared resource, so in general the best performance is
realized typically with a connection pool that has significantly fewer connections
than the number of simultaneous users.

A large connection pool does not necessarily improve application performance.
Each connection represents memory overhead. A large pool decreases the
memory available for WebSphere to execute applications. Also, if database
connections are limited because of database licensing issues, the administrator
must share a limited number of connections among other Web applications
requiring database access as well. This is one area where performance tuning
tests are required to determine the optimal setting for a given application.

Note: Avoid circular references within sessions if using multi-row session
support. The multi-row session support does not preserve circular references
in retrieved sessions.

758 WebSphere Application Server V6: System Management and Configuration Handbook

As discussed above, session affinity routing combined with session caching
reduces database read activity for session persistence. Likewise, manual update
write frequency, time-based write frequency, and multi-row persistent session
management reduce unnecessary writes to the persistent database.
Incorporating these techniques can also reduce the size of the connection pool
required to support session persistence for a given Web application.

Prepared statement caching is a connection pooling mechanism that can be
used to further improve session database response times. A cache of previously
prepared statements is available on a connection. When a new prepared
statement is requested on a connection, the cached prepared statement is
returned, if available. This caching reduces the number of costly prepared
statements created, which improves response times.

In general, base the prepared statement cache size on the following:

� The smaller of:

– Number of concurrent users
– Connection pool size

� The number of different prepared statements

With 50 concurrent users, a connection pool size of 10, and each user using 2
statements, a select and an insert, the prepared statement cache size should be
at least 10 x 2 = 20 statements. To read more, see the “Prepared statement
cache size” article in the WebSphere Tuning Guide , included with the
Information Center.

12.12.5 Session database tuning
While the session manager implementation in WebSphere provides for a number
of parameters that can be tuned to improve performance of applications that
utilize HTTP sessions, maximizing performance requires tuning the underlying
session persistence table. WebSphere provides a first step by creating an index
for the sessions table when creating the table. The index is comprised of the
session ID, the property ID for multi-row sessions, and the Web application
name.

While most database managers provide a great deal of capability in tuning at the
table or tablespace level, creating a separate database or instance provides the
most flexibility in tuning. Proper tuning of the instance and database can improve
performance by 5% or more over that which can be achieved by simply tuning
the table or tablespace.

 Chapter 12. Session management 759

While the specifics vary, depending on you database and operating system, in
general tune and configure the database as appropriate for a database that
experiences a great deal of I/O. The database administrator (DBA) should
monitor and tune the database buffer pools, database log size, and write
frequency. Additionally, maximizing performance requires striping the database
or instance across multiple disk drives and disk controllers, and utilizing any
hardware or OS buffering available to reduce disk contention.

12.13 Stateful session bean failover
Stateful session bean failover is supported now in WebSphere Application
Server V6. This feature utilizes the functions of the data replication service and
workload management.

Each EJB container provides a method for stateful session beans to fail over to
other servers. This enables you to specify whether failover occurs for the stateful
session beans at the EJB module level or container level. You can also override
the parent object's stateful session bean replication settings from the module
level.

12.13.1 Enabling stateful session bean failover
Depending on the requirement, you might not want to enable failover for every
single stateful session bean installed in the EJB container. You can set or
override the EJB container settings at either the application or EJB module level.
You can either enable or disable failover at each of these levels. For example,
consider the following situations:

� You want to enable failover for all applications except for a single application.
To do this, you enable failover at the EJB container level and override the
setting at the application level to disable failover on the single application.

� You want to enable failover for a single, installed application. To do this,
disable failover at the EJB container level and then override the setting at the
application level to enable failover on the single application.

� You want to enable failover for all applications except for a single module of
an application. To do this, enable failover at the EJB container level, then
override the setting at the module application level to disable failover on the
single module.

� You want to enable failover for a single, installed EJB module. To do this,
disable failover at the EJB container level and then override the setting at the
EJB module level to enable failover on the single EJB module.

760 WebSphere Application Server V6: System Management and Configuration Handbook

EJB container stateful session bean failover properties
To access stateful session bean failover properties at the EJB container level
from the administrative console:

1. Click Servers →Application servers.

2. Click the application server.

3. In the Container Settings section of the Configuration tab, click EJB
container.

4. In the General Properties section, check Enable stateful session bean
failover using memory-to-memory replication.

This check box is disabled until you define a replication domain. This
selection has a hyperlink to help you configure the replication settings. If no
replication domains are configured, the link takes you to a panel where you
can create one. If at least one domain is configured, the link takes you to a
panel where you can select the replication settings to be used by the EJB
container. See Figure 12-18 on page 762.

 Chapter 12. Session management 761

Figure 12-18 Stateful session bean failover settings at the container level

EJB module stateful session bean failover properties
To access stateful session bean failover properties at the EJB module level from
the administrative console:

1. Click Applications →Enterprise applications.

2. Click the application.

3. In the Additional Properties section of the Configuration tab, click Stateful
session bean failover settings.

This enables failover for all stateful session beans in this application. If you
want to disable the failover, clear this check box. See Figure 12-19 on
page 763.

762 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 12-19 Stateful session bean failover settings at the module level

4. In the General Properties section, select your choice of Replication settings:

– Use replication settings from EJB container

If you select this option, any replication settings defined for this application
are ignored.

Important: If you use this radio button, then you must configure
memory to memory replication at the EJB container level. Otherwise,
the settings on this panel are ignored by EJB container during server
startup and the EJB container will log a message indicating that stateful
session bean failover is not enabled for this application.

 Chapter 12. Session management 763

– Use application replication settings

If you select this option, you override the EJB container settings. This
button is disabled until you define a replication domain. This selection has
a hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a panel to create one. If at
least one domain is configured, the link takes you to a panel where you
can select the replication settings to be used by the application.

5. Select your choice of replication from:

– Use replication settings from EJB container or
– Use application replication settings using memory-to-memory

replication

6. Select OK.

12.13.2 Stateful session bean failover considerations
The following presents a few considerations when using the stateful session
bean failover feature.

Stateful session bean activation policy with failover enabled
WebSphere Application Server V6 allows an application assembler to specify an
activation policy to use for stateful session beans. It is important to consider that
the only time the EJB container prepares for failover. by replicating the stateful
session bean data using DRS, is when the stateful session bean is passivated. If
you configure the bean with an activate once policy, the bean is essentially never
passivated. If you configure the activate at transaction boundary policy, the bean
is passivated whenever the transaction that the bean is enlisted in completes.
For stateful session bean failover to be useful, the activate at transaction
boundary policy is required.

Rather than forcing you to edit the deployment descriptor of every stateful
session bean and reinstall the bean, the EJB container simply ignores the
configured activation policy for the bean when you enable failover. The container
automatically uses the activate at transaction boundary policy.

Container or bean managed units of work
The relevant units of work in this case are transactions and activity sections.
WebSphere Application Server V6 supports stateful session bean failover for:

Note: The stateful session bean failover settings are available to WebSphere
Application Server V6 enterprise applications. They are ignored by
WebSphere Application Server V5 enterprise applications.

764 WebSphere Application Server V6: System Management and Configuration Handbook

� Container managed transactions (CMT)
� Bean managed transactions (BMT)
� Container managed activity sessions (CMAS)
� Bean managed activity sessions (BMAS).

In the container-managed cases, preparation for failover only occurs if a request
for an enterprise bean method invocation fails to connect to the server. Also,
failover does not take place if the server fails after a request is sent to it and had
been acknowledged.

When a failure occurs in the middle of a request or unit of work, WLM cannot
safely fail over to another server without some compensation code being
executed by the application. When that happens, the application receives a
Common Object Request Broker Architecture (CORBA) exception and minor
code telling it that transparent failover could not occur because the failure
happened during execution of a unit of work. The application should be written to
check for the CORBA exception and minor code, and compensate for the failure.
After the compensation code executes, the application can retry the requests
and if a path exists to a backup server WLM routes the new request to a new
primary server for the stateful session bean.

The same is true for bean-managed units of work, transactions or activity
sessions. However, bean managed work introduces a new possibility that needs
to be considered.

For bean managed units of work, the failover process is not always able to detect
that a BMT or BMAS started by a stateful session bean method has not
completed. Thus, it is possible that failover to a new server can occur despite the
unit of work failing during the middle of a transaction or session. Because the unit
of work is implicitly rolled back, WLM behaves as thought it is safe to
transparently fail over to another server, when in fact some compensation code
might be required. When this happens, the EJB container detects this on the new
server and initiates an exception. This exception occurs under the following
scenario:

1. A method of a stateful session bean using bean-managed transaction or
activity session calls begin on a UserTransaction it obtained from the
SessionContext. The method does some work in the started unit of work, but
does not complete the transaction or session before returning to the caller of
the method.

2. During post invocation of the method started in step 1, the EJB container
suspends the work started by the method. This is the action required by EJB
specification for bean managed units of work when the bean is a stateful
session bean.

 Chapter 12. Session management 765

3. The client starts several other methods on the stateful session bean. Each
invocation causes the EJB container to resume the suspended transaction or
activity session, dispatch the method invocation, and then suspend the work
again before returning to the caller.

4. The client calls a method on the stateful session bean that completes the
transaction or session started in step 1.

This scenario depicts a sticky bean-managed unit of work. The transaction or
activity session sticks around for more than a single stateful session bean
method. If an application uses a sticky BMT or BMAS, and the server fails after a
sticky unit of work completes and before another sticky unit of work starts,
failover is successful. However, if the server fails before a sticky transaction or
activity session completes, the failover is not successful. Instead, when the
failover process routes the stateful session bean request to a new server, the
EJB container detects that the failure occurred during an active, sticky
transaction or activity session. At that time, the EJB container initiates an
exception.

Essentially, this means that failover for both container-managed and
bean-managed units of work is not successful if the transaction or activity
session is still active. The only real difference is the exception that occurs.

Application design considerations
Consider the following when designing applications that use the stateful session
bean failover process:

� To avoid the possibility described in the section above, you are encouraged to
write your application to configure stateful session beans to use
container-managed transactions (CMT) rather than bean-managed
transactions (BMT).

� If you want immediate failover, and your application creates either an HTTP
session or a stateful session bean that stores a reference to another stateful
session bean, then the administrator must ensure the HTTP session and
stateful session bean are configured to use the same replication domain.

� Do not use a local and a remote reference to the same stateful session bean.

J2EE 1.4 specification has added additional requirements for Http Sessions
which required the Http Session state objects to be able to contain local
references to EJBs.

Normally a stateful session bean instance with a given primary key can only
exist on a single server at any given moment in time. Failover might cause the
bean to be moved from one server to another, but it never exists on more than
one server at a time. However, there are some unlikely scenarios that can
result in the same bean instance, the same primary key, existing on more

766 WebSphere Application Server V6: System Management and Configuration Handbook

than one server concurrently. When that happens, each copy of the bean is
unaware of the other, and no synchronization occurs between the two
instances to ensure they have the same state data. Thus, your application
receives unpredictable results.

Note: To avoid this situation you must remember that with failover
enabled, your application should never get both a local (EJBLocalObject)
and remote (EJBObject) reference to the same stateful session bean
instance.

 Chapter 12. Session management 767

768 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 13. WebSphere naming
implementation

In this chapter, we describe the concepts behind the naming functionality
provided as part of IBM WebSphere Application Server:

� Features in WebSphere Application Server V6
� WebSphere naming architecture
� Interoperable Naming Service (INS)
� Distributed CosNaming
� Configured bindings
� Initial contexts
� Federation of name spaces
� Interoperability
� Examples
� Naming tools
� Configuration

13

© Copyright IBM Corp. 2005. All rights reserved. 769

13.1 Features
The following are features of a WebSphere Application Server V6 name space
that remain unchanged from WebSphere Application Server V5:

� Distributed name space

For additional scalability, the name space for a cell is distributed among the
various servers. The deployment manager, node agent and application server
processes all host a name server.

The default initial context for a server is its server root. System artifacts, such
as EJB homes and resources, are bound to the server root of the server with
which they are associated.

� Transient and persistent partitions

The name space is partitioned into transient areas and persistent areas.
Server roots are transient. System-bound artifacts such as EJB homes and
resources are bound under server roots. There is a cell persistent root, which
can be used for cell-scoped persistent bindings, and a node persistent root,
which can be used to bind objects with a node scope.

� Federated name space structure

A name space is a collection of all names bound to a particular name server.
A name space can contain naming context bindings to contexts located in
other servers. If this is the case, the name space is said to be a federated
name space, because it is a collection of name spaces from multiple servers.
The name spaces link together to cooperatively form a single logical name
space.

The name space for the WebSphere Application Server V6 cell is federated
among the deployment manager, node agents, and application servers of the
cell. Every server process hosts a name server. All name servers provide the
same logical view of the cell name space, with the various server roots and
persistent partitions of the name space being interconnected by means of the
single logical name space.

� Configured bindings

Administrators can configure bindings into the name space. A configured
binding is different from a programmatic binding in that the system creates the
binding every time a server is started, even if the target context is in a
transient partition.

� Support for CORBA Interoperable Naming Service (INS) object URLs

WebSphere Application Server contains support for CORBA object URLs
(corbaloc and corbaname) as JNDI provider URLs and lookup names.

770 WebSphere Application Server V6: System Management and Configuration Handbook

13.2 WebSphere naming architecture
WebSphere Application Server name servers are an implementation of the
CORBA CosNaming interface. WebSphere Application Server provides a JNDI
implementation that you can use to access CosNaming name servers through
the JNDI interface. CosNaming provides the server-side implementation and is
where the name space is stored. JNDI essentially provides a client-side wrapper
of the name space stored in CosNaming, and interacts with the CosNaming
server on behalf of the client.

The model of JNDI over CosNaming has existed in several releases of
WebSphere. Since J2EE 1.3, limited CosNaming functionality has been required
for interoperability between application servers from different vendors. This level
of CosNaming, known as Interoperable Naming Service (INS), was introduced in
WebSphere Application Server V5.

The following sections provide a summary of the WebSphere naming
architecture, its federated name space, and its support for JNDI.

For an explanation of the WebSphere implementations of INS and Distributed
CosNaming, see 13.3, “Interoperable Naming Service (INS)” on page 785 and
13.4, “Distributed CosNaming” on page 787 respectively.

13.2.1 Components
WebSphere application clients use the naming service to obtain references to
objects related to those applications, such as EJB homes. These objects are
bound into a mostly hierarchical structure, referred to as a name space. In this
structure, all non-leaf objects are called contexts. Leaf objects can be contexts
and other types of objects. Naming operations, such as lookups and binds, are
performed on contexts. All naming operations begin with obtaining an initial
context. You can view the initial context as a starting point in the name space.

The name space structure consists of a set of name bindings, each consisting of
a name relative to a specific context and the object bound with that name. For
example, the name myApp/myEJB consists of one non-leaf binding with the
name myApp, which is a context. The name also includes one leaf binding with
the name myEJB, relative to myApp. The object bound with the name myEJB in
this example happens to be an EJB home reference. The whole name
myApp/myEJB is relative to the initial context, which can be viewed as a starting
place when performing naming operations.

The name space can be accessed and manipulated through a name server.
Users of a name server are referred to as naming clients. Naming clients
typically use Java Naming and Directory Interface (JNDI) to perform naming

 Chapter 13. WebSphere naming implementation 771

operations. Naming clients can also use the Common Object Request Broker
Architecture (CORBA) CosNaming interface.

Figure 13-1 summarizes the naming architecture and its components.

Figure 13-1 Naming topology

Notice that all WebSphere Application Server processes host their own naming
service and local name space. Also the name servers in the deployment
manager and node agents are listening on their default ports of 9809 and 2809,
respectively. The name servers within each application server are listening from
a starting default port of 9810.

13.2.2 JNDI support
Each IBM WebSphere Application Server managed process (JVM) includes:

� A name server providing shared access to its components

� An implementation of the javax.naming JNDI package, allowing users to
access the WebSphere name server through the JNDI naming interface

Machine A

LookupJNDI
Client

Deployment Manager

9809
Namespace

Machine C

Node Agent 2

2809

Application Server 3

9810

Machine B

2809

9810 9811

LookupLookup

JNDI lookup

Namespace

NamespaceNamespace

Namespace

Namespace

Link between namespaces

Node Agent 1

Application Server 1 Application Server 2

Note: The JNDI implementation provided by IBM WebSphere Application
Server is based on Version 1.2.1 of the JNDI interface, and was tested with
Version 1.2.1 of Sun's JNDI SPI (Service Provider Interface).

772 WebSphere Application Server V6: System Management and Configuration Handbook

IBM WebSphere Application Server does not provide implementations for the
following Java extension packages:

� javax.naming.directory
� javax.naming.ldap

In addition, IBM WebSphere Application Server does not support interfaces
defined in the javax.naming.event package.

However, to provide access to LDAP servers, the JDK shipped with IBM
WebSphere Application Server supports Sun Microsystem’s implementation of:

� javax.naming.ldap
� com.sun.jndi.ldap.LdapCtxFactory

13.2.3 JNDI bindings
There are three options available for binding EJB (<ejb-ref>) and resource
(<resource-ref>) object names to the WebSphere Application Server name
space:

� Simple name
� Compound/fully qualified name
� Corbaname

The binding you can use to look up an object depends on whether or not the
application is running within the same application server. The following sections
describe each of these in more detail.

Simple name
The simple name binding is guaranteed to succeed if lookup is within the same
server or when connected directly to the name space of the server containing the
target of the lookup. It can be used in a servlet or EJB, if it is certain that the
object is located on the same application server. Here is an example of a simple
name:

ejb/webbank/Account

Lookup names of this form provide a level of indirection such that the name used
to look up an object is not dependent on the object's name as it is bound in the
name server's name space. The deployment descriptors for the application
provide the mapping between the name and the name server lookup name. The
container sets up the name space based on the deployment descriptor
information so that the name is correctly mapped to the corresponding object.

 Chapter 13. WebSphere naming implementation 773

Compound name
Applications that do not run in the same server cannot use simple name lookup
because the simple name is not local to the application. Instead, an application of
this type must look the object up directly from the name server. Each application
server contains a name server. System artifacts such as EJB homes are bound
relative to the server root context in that name server.

The fully qualified (compound name) JNDI name is always guaranteed to work.
Here is an example of a compound name:

cell/nodes/node1/servers/server1/ejb/webbank/Account

We recommend using compound names for JNDI bindings.

Corbaname
The corbaname binding is always guaranteed to work. However, it requires that
you know the correct path to the object at deployment time. Here is an example
of a corbaname:

corbaname::myhost1:9812/NameServiceServerRoot#ejb/webbank/Account

13.2.4 Federated name space
All name servers with a cell are federated into the cell name space. Every
application server process contains a name server. All name servers provide the
same logical view of the cell name space. The various server roots and
persistent partitions of the name space are interconnected by a system name
space. You can use the system name space structure to traverse any context in
the cell's name space. A logical view of the name space is shown in Figure 13-2
on page 775.

774 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 13-2 Federated name space

The name space can be broken down into distinct partitions that are updateable
and persistent.

System partition
The system partition is a reflection of the cell topology and is read-only. This part
of the name space cannot be changed programmatically, because it is based on
the configuration rather than runtime settings.

The root of this structure is the cell root and contains a node root for each node in
the cell. You can access other contexts to a specific node from the node root,
such as the node persistent root and server roots for servers configured in that
node.

This partition of the name space is persistent, with the data stored in the XML
repository containing the topological information.

Cell and node persistent partitions
The persistent partitions are primarily for the storage of resource configuration,
such as data sources, JMS destinations etc. This data can be modified by
accessing the JNDI APIs directly, or through the administration clients, which

cell
root

Nodes

Cells

Foreign Cells

Node
Root

X
Y

Z

Nodes

Node Persistent
Root

X
Y

Z

<Node-Name>

Node Servers
X

Y
Z

Servers

Server Root A
B

C

Cell Clusters
Clusters

<cluster-name>

Cell Persistent
Root

<user-created-bindings>
<system-artifacts>

<user-created-bindings>

<server-name>

User Persistent
Sub-ctxs &

Objs

X
Y

Z

System Artifact
Sub-ctxs & Objs

A
B

C

User Transient
Sub-ctxs & Objs

A
B

C
User Persistent
Sub-ctxs & ObjsCell Root

of Foreign Cell

M
N

L

System Name Space
(Read Only)

Server
Roots

(Read/Write
Transient)

Cell
Persistent

(Read/Write)

Node Persistent
(Read/Write)

Legacy Root

Persistent

Persistent

<foreign-cell-names>

<non-clustered-server-name>

<user-created-bindings>

 Chapter 13. WebSphere naming implementation 775

access the APIs on the user’s behalf. The persistent data is stored to a group of
XML files.

There are two persistent partitions in the federated name space:

� Cell persistent root

This partition is used to register persistent objects that are available to all the
nodes and managed processes of a cell. A binding created under the cell
persistent root is saved as part of the cell configuration and continues to exist
until it is explicitly removed.

Applications that need to create additional persistent object bindings
associated with the cell can bind those objects under the cell persistent root.

� Node persistent root

This partition is used to register persistent objects available to the nodes and
it their managed processes. It is similar to the cell partition except that each
node has its own node persistent root. A binding created under a node
persistent root is saved as part of that node's configuration and continues to
exist until it is explicitly removed.

Applications that need to create additional persistent object bindings
associated with a specific node can bind those objects under that particular
node's node persistent root.

Note: The cell persistent root is not designed for transient, rapidly
changing bindings. Instead, the bindings should be more static in nature,
such as part of application setup or configuration, and not created at
runtime.

To bind objects to the cell persistent root, the deployment manager and all
node agents in the cell must be running.

776 WebSphere Application Server V6: System Management and Configuration Handbook

Transient partitions
The server root transient partition in Figure 13-2 on page 775 is updateable
through APIs, and is meant for information such as EJB bindings and JNDI
names. This name space is transient and bindings are created each time a
server process starts. It reads configuration data from the file system, for
example EJB deployment descriptors, to register the necessary objects in this
space.

13.2.5 Local name space structure
The structure of the federated name space is hierarchical, with each process’
local name space federated and linked using corbaloc URLs that allow
transparent name searches both within a single local name space and from one
local name space to another.

The contents of the cell, node, and process local name spaces are described in
the following sections.

Cell-level name space
The cell-level name space, hosted by the deployment manager, has a structure
as shown in Example 13-1.

(top) represents the root of the federated name space.

Note: The node persistent area is not designed for transient, rapidly
changing bindings. Instead, the bindings should be more static in nature,
such as part of application setup or configuration, and not created at
runtime.

The node persistent area for a node can be read from any server in the
node even if the respective node agent is not running. However, the node
agent must be running to update the node persistent area, or for any server
outside the node to read from that node persistent partition.

In the federated name space, there is no node root for the deployment
manager node because no node agent or application servers run in that
node.

Note: The Naming Service of each managed process listens to configuration
changes. This means the local name space is updated automatically when
configuration changes occur. For example, there is no need to restart a node
agent to update its name space when a new application server is created.

 Chapter 13. WebSphere naming implementation 777

Example 13-1 Cell name space dump (dumpNameSpace -port <dmgr_bootstrap>)

1 (top)
 2 (top)/clusters javax.naming.Context
 3 (top)/clusters/MyCluster javax.naming.Context
 3 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 4 (top)/domain javax.naming.Context
 4 Linked to context: ITSOCell
 5 (top)/legacyRoot javax.naming.Context
 5 Linked to context: ITSOCell/persistent
 6 (top)/persistent javax.naming.Context
 7 (top)/persistent/cell javax.naming.Context
 7 Linked to context: ITSOCell
 8 (top)/cellname java.lang.String
 9 (top)/cell javax.naming.Context
 9 Linked to context: ITSOCell
 10 (top)/nodes javax.naming.Context
 11 (top)/nodes/ITSOCellManager javax.naming.Context
 12 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 12 Linked to context: ITSOCell
 13 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 14 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 15 (top)/nodes/ITSOCellManager/servers/dmgr/tm javax.naming.Context
 16 (top)/nodes/ITSOCellManager/servers/dmgr/tm/default
 16
com.ibm.ws.asynchbeans.timer.TimerManagerImpl
 17 (top)/nodes/ITSOCellManager/servers/dmgr/com.ibm.isc
 17 javax.naming.Context
 18 (top)/nodes/ITSOCellManager/servers/dmgr/com.ibm.isc/PluginRegistry
 18
com.ibm.ws.PluginRegistry
 19 (top)/nodes/ITSOCellManager/servers/dmgr/services javax.naming.Context
 20 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache
 20 javax.naming.Context
 21 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache/basecache
 21
com.ibm.websphere.cache.DistributedObjectCache
 22 (top)/nodes/ITSOCellManager/servers/dmgr/services/cache/distributedmap
 22
com.ibm.websphere.cache.DistributedObjectCache
 23 (top)/nodes/ITSOCellManager/servers/dmgr/ejb javax.naming.Context
 24 (top)/nodes/ITSOCellManager/servers/dmgr/ejb/mgmt javax.naming.Context
 25 (top)/nodes/ITSOCellManager/servers/dmgr/ejb/mgmt/MEJB
 25
javax.management.j2ee.ManagementHome
 26 (top)/nodes/ITSOCellManager/servers/dmgr/cell javax.naming.Context
 26 Linked to context: ITSOCell
 27 (top)/nodes/ITSOCellManager/servers/dmgr/servername
 27 java.lang.String

778 WebSphere Application Server V6: System Management and Configuration Handbook

 28 (top)/nodes/ITSOCellManager/servers/dmgr/thisNode javax.naming.Context
 28 Linked to context: ITSOCell/nodes/ITSOCellManager
 29 (top)/nodes/ITSOCellManager/node javax.naming.Context
 29 Linked to context: ITSOCell/nodes/ITSOCellManager
 30 (top)/nodes/ITSOCellManager/cell javax.naming.Context
 30 Linked to context: ITSOCell
 31 (top)/nodes/ITSOCellManager/nodename java.lang.String
 32 (top)/nodes/NodeA javax.naming.Context
 33 (top)/nodes/NodeA/nodename java.lang.String
 34 (top)/nodes/NodeA/persistent javax.naming.Context
 34 Linked to URL: corbaname::wan:2809/NameServiceNodeRoot#persistent
 35 (top)/nodes/NodeA/cell javax.naming.Context
 35 Linked to context: ITSOCell
 36 (top)/nodes/NodeA/domain javax.naming.Context
 36 Linked to context: ITSOCell
 37 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 37 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 38 (top)/nodes/NodeA/node javax.naming.Context
 38 Linked to context: ITSOCell/nodes/NodeA
 39 (top)/nodes/NodeA/servers javax.naming.Context
 40 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 40 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 41 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 41 Linked to URL: corbaloc::wan:9810/NameServiceServerRoot
 42 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 42 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 43 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 43 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 44 (top)/deploymentManager javax.naming.Context
 44 Linked to context: ITSOCell/nodes/ITSOCellManager/servers/dmgr
 45 (top)/cells javax.naming.Context

The cell-level name space contains:

� A link to the cell persistent root, /persistent/cell

� A hierarchy of contexts for nodes and the servers managed by each node

� A full set of entries for the deployment manager node (ITSOCellManager) and
the deployment manager server (dmgr)

� The objects registered in JNDI by the dmgr server

� A corbaloc URL link to the local name space of each of the other nodes in the
cell

� A number of cross links for the federated name space:

– /cells
– /clusters
– /legacyRoot

 Chapter 13. WebSphere naming implementation 779

Node-level name space
A node-level name space, hosted by a node agent, has a structure as shown in
Example 13-2.

Example 13-2 Node-level name space (dumpNameSpace -port <NodeA_bootstrap>)

1 (top)
 2 (top)/clusters javax.naming.Context
 3 (top)/clusters/MyCluster javax.naming.Context
 3 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 4 (top)/domain javax.naming.Context
 4 Linked to context: ITSOCell
 5 (top)/legacyRoot javax.naming.Context
 5 Linked to context: ITSOCell/persistent
 6 (top)/persistent javax.naming.Context
 7 (top)/persistent/cell javax.naming.Context
 7 Linked to context: ITSOCell
 8 (top)/cellname java.lang.String
 9 (top)/cell javax.naming.Context
 9 Linked to context: ITSOCell
 10 (top)/nodes javax.naming.Context
 11 (top)/nodes/ITSOCellManager javax.naming.Context
 12 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 12 Linked to context: ITSOCell
 13 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 14 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 14 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 15 (top)/nodes/ITSOCellManager/node javax.naming.Context
 15 Linked to context: ITSOCell/nodes/ITSOCellManager
 16 (top)/nodes/ITSOCellManager/nodename java.lang.String
 17 (top)/nodes/ITSOCellManager/cell javax.naming.Context
 17 Linked to context: ITSOCell
 18 (top)/nodes/NodeA javax.naming.Context
 19 (top)/nodes/NodeA/nodename java.lang.String
 20 (top)/nodes/NodeA/persistent javax.naming.Context
 21 (top)/nodes/NodeA/cell javax.naming.Context
 21 Linked to context: ITSOCell

Note: Because of the hierarchical structure of the cell/node/server
relationship, the following naming conventions and constraints exist:

1. No two nodes can have the same name. Node names must be unique
within a cell.

2. Two application servers on different nodes can have the same name.

3. Two application servers on the same node must have different names.
Application server names must be unique within a node.

780 WebSphere Application Server V6: System Management and Configuration Handbook

 22 (top)/nodes/NodeA/domain javax.naming.Context
 22 Linked to context: ITSOCell
 23 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 23 Linked to context: ITSOCell/nodes/NodeA/servers/nodeagent
 24 (top)/nodes/NodeA/node javax.naming.Context
 24 Linked to context: ITSOCell/nodes/NodeA
 25 (top)/nodes/NodeA/servers javax.naming.Context
 26 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 26 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 27 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 27 Linked to URL: corbaloc::wan:9810/NameServiceServerRoot
 28 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 29 (top)/nodes/NodeA/servers/nodeagent/cell javax.naming.Context
 29 Linked to context: ITSOCell
 30 (top)/nodes/NodeA/servers/nodeagent/servername java.lang.String
 31 (top)/nodes/NodeA/servers/nodeagent/thisNode javax.naming.Context
 31 Linked to context: ITSOCell/nodes/NodeA
 32 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 32 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 33 (top)/deploymentManager javax.naming.Context
 33 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 34 (top)/cells javax.naming.Context

The node-level name space contains:

� A full set of entries for the node and the node agent server (<nodename> or
nodeAgent)

� A corbaloc URL link to the local name space root (NameServiceServerRoot)
of each application server managed by the node

� Links to other nodes in the cell and to the servers on those nodes

� A corbaloc URL link to the root of the deployment manager local name space
(NameServiceServerRoot)

� A number of cross-links for the federated name space:

– /cells
– /clusters
– /legacyRoot

� A link to the cell persistent root, /persistent/cell

� A link to the node persistent root, /nodes/<nodename>/persistent

Managed process-level name space
A process-level name space, hosted by a managed process, has a structure as
shown in Example 13-3 on page 782.

 Chapter 13. WebSphere naming implementation 781

Example 13-3 Managed process-level name space

1 (top)
 2 (top)/domain javax.naming.Context
 2 Linked to context: ITSOCell
 3 (top)/cellname java.lang.String
 4 (top)/nodes javax.naming.Context
 5 (top)/nodes/ITSOCellManager javax.naming.Context
 6 (top)/nodes/ITSOCellManager/servers javax.naming.Context
 7 (top)/nodes/ITSOCellManager/servers/dmgr javax.naming.Context
 7 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 8 (top)/nodes/ITSOCellManager/domain javax.naming.Context
 8 Linked to context: ITSOCell

9 (top)/nodes/ITSOCellManager/cell javax.naming.Context
9 Linked to context: ITSOCell
10 (top)/nodes/ITSOCellManager/nodename java.lang.String

 11 (top)/nodes/ITSOCellManager/node javax.naming.Context
 11 Linked to context: ITSOCell/nodes/ITSOCellManager
 12 (top)/nodes/NodeA javax.naming.Context
 13 (top)/nodes/NodeA/nodename java.lang.String
 14 (top)/nodes/NodeA/persistent javax.naming.Context
 15 (top)/nodes/NodeA/cell javax.naming.Context
 15 Linked to context: ITSOCell
 16 (top)/nodes/NodeA/domain javax.naming.Context
 16 Linked to context: ITSOCell
 17 (top)/nodes/NodeA/nodeAgent javax.naming.Context
 17 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 18 (top)/nodes/NodeA/node javax.naming.Context
 18 Linked to context: ITSOCell/nodes/NodeA
 19 (top)/nodes/NodeA/servers javax.naming.Context
 20 (top)/nodes/NodeA/servers/server1 javax.naming.Context
 21 (top)/nodes/NodeA/servers/server1/servername java.lang.String
 22 (top)/nodes/NodeA/servers/server1/services javax.naming.Context
 23 (top)/nodes/NodeA/servers/server1/services/cache javax.naming.Context
 24 (top)/nodes/NodeA/servers/server1/services/cache/basecache
 24 com.ibm.websphere.cache.DistributedObjectCache
 25 (top)/nodes/NodeA/servers/server1/services/cache/distributedmap
 25 com.ibm.websphere.cache.DistributedObjectCache

26 (top)/nodes/NodeA/servers/server1/thisNode javax.naming.Context
 26 Linked to context: ITSOCell/nodes/NodeA
 27 (top)/nodes/NodeA/servers/server1/com javax.naming.Context
 28 (top)/nodes/NodeA/servers/server1/com/ibm javax.naming.Context
 29 (top)/nodes/NodeA/servers/server1/com/ibm/websphere
 29 javax.naming.Context
 30 (top)/nodes/NodeA/servers/server1/com/ibm/websphere/ejbquery
 30 javax.naming.Context

782 WebSphere Application Server V6: System Management and Configuration Handbook

 31 (top)/nodes/NodeA/servers/server1/com/ibm/websphere/ejbquery/Query
 31 com.ibm.websphere.ejbquery.QueryHome
 32 (top)/nodes/NodeA/servers/server1/Increment

com.ibm.defaultapplication.IncrementHome
33 (top)/nodes/NodeA/servers/server1/DefaultDatasource
33 javax.resource.cci.ConnectionFactory
34 (top)/nodes/NodeA/servers/server1/eis javax.naming.Context

 35 (top)/nodes/NodeA/servers/server1/eis/jdbc javax.naming.Context
 36(top)/nodes/NodeA/servers/server1/eis/jdbc/PlantsByWebSphereDataSource_CMP
 36 javax.resource.cci.ConnectionFactory
 37 (top)/nodes/NodeA/servers/server1/eis/DefaultDatasource_CMP
37 javax.resource.cci.ConnectionFactory
 38 (top)/nodes/NodeA/servers/server1/jdbc javax.naming.Context
 39 (top)/nodes/NodeA/servers/server1/jdbc/PlantsByWebSphereDataSource
 39 javax.resource.cci.ConnectionFactory

40 (top)/nodes/NodeA/servers/server1/jdbc/DefaultEJBTimerDataSource
 40 javax.resource.cci.ConnectionFactory
 41 (top)/nodes/NodeA/servers/server1/tm javax.naming.Context
 42 (top)/nodes/NodeA/servers/server1/tm/default
com.ibm.ws.asynchbeans.timer.TimerManagerImpl
 43 (top)/nodes/NodeA/servers/server1/plantsby javax.naming.Context
 44 (top)/nodes/NodeA/servers/server1/plantsby/LoginHome
 44 com.ibm.websphere.samples.plantsbywebsphereejb.LoginHome
 45 (top)/nodes/NodeA/servers/server1/plantsby/MailerHome
 45 com.ibm.websphere.samples.plantsbywebsphereejb.MailerHome
 46 (top)/nodes/NodeA/servers/server1/plantsby/BackOrderHome
 46 com.ibm.websphere.samples.plantsbywebsphereejb.BackOrderHome
 47 (top)/nodes/NodeA/servers/server1/plantsby/SuppliersHome
 47 com.ibm.websphere.samples.plantsbywebsphereejb.SuppliersHome
 48 (top)/nodes/NodeA/servers/server1/plantsby/ResetDBHome
 48 com.ibm.websphere.samples.plantsbywebsphereejb.ResetDBHome
 49 (top)/nodes/NodeA/servers/server1/plantsby/ReportGeneratorHome
 49 com.ibm.websphere.samples.plantsbywebsphereejb.ReportGeneratorHome
 50 (top)/nodes/NodeA/servers/server1/plantsby/CatalogHome
 50 com.ibm.websphere.samples.plantsbywebsphereejb.CatalogHome
 51 (top)/nodes/NodeA/servers/server1/plantsby/ShoppingCartHome
 51 com.ibm.websphere.samples.plantsbywebsphereejb.ShoppingCartHome
 52 (top)/nodes/NodeA/servers/server1/plantsby/SupplierHome
 52 com.ibm.websphere.samples.plantsbywebsphereejb.SupplierHome
 53 (top)/nodes/NodeA/servers/server1/plantsby/BackOrderStockHome
 53 com.ibm.websphere.samples.plantsbywebsphereejb.BackOrderStockHome
 54 (top)/nodes/NodeA/servers/server1/mail javax.naming.Context
 55 (top)/nodes/NodeA/servers/server1/mail/PlantsByWebSphere
 55 javax.mail.Session
 56 (top)/nodes/NodeA/servers/server1/jta javax.naming.Context

 Chapter 13. WebSphere naming implementation 783

 57 (top)/nodes/NodeA/servers/server1/jta/usertransaction
 57 java.lang.Object
 58 (top)/nodes/NodeA/servers/server1/cell javax.naming.Context
 58 Linked to context: ITSOCell
 59 (top)/nodes/NodeA/servers/server1/wm javax.naming.Context
 60 (top)/nodes/NodeA/servers/server1/wm/default
com.ibm.websphere.asynchbeans.WorkManager
 61 (top)/nodes/NodeA/servers/MyClusterServer1 javax.naming.Context
 61 Linked to URL: corbaloc::wan:9811/NameServiceServerRoot
 62 (top)/nodes/NodeA/servers/MyClusterServer2 javax.naming.Context
 62 Linked to URL: corbaloc::wan:9812/NameServiceServerRoot
 63 (top)/nodes/NodeA/servers/nodeagent javax.naming.Context
 63 Linked to URL: corbaloc::wan:2809/NameServiceServerRoot
 64 (top)/clusters javax.naming.Context
 65 (top)/clusters/MyCluster javax.naming.Context
 65 Linked to URL: corbaloc::wan:9811,:wan:9812/NameServiceServerRoot
 66 (top)/legacyRoot javax.naming.Context
 66 Linked to context: ITSOCell/persistent
 67 (top)/persistent javax.naming.Context
 68 (top)/persistent/cell javax.naming.Context
 68 Linked to context: ITSOCell
 69 (top)/cell javax.naming.Context
 69 Linked to context: ITSOCell
 70 (top)/deploymentManager javax.naming.Context
 70 Linked to URL: corbaloc::wan:9809/NameServiceServerRoot
 71 (top)/cells javax.naming.Context

The process-level name space contains:

� A full set of entries for objects registered in the local name space of the
process.

These entries include resources (JDBC, JMS, etc.) read from the
resources.xml of the process, as well as those registered at runtime by
applications, for example EJB homes.

� A corbaloc URL link to the local name space root (NameServiceServerRoot)
of the node agent.

� A corbaloc URL link to the root of the deployment manager local name space
(NameServiceServerRoot).

� A number of cross-links for the federated name space:

– /cells
– /clusters
– /legacyRoot

� A link to the cell persistent root, /persistent/cell.

� A link to the node persistent root, /nodes/<nodename>/persistent.

784 WebSphere Application Server V6: System Management and Configuration Handbook

13.3 Interoperable Naming Service (INS)
It is a requirement in J2EE 1.4 to provide a CosNaming service to support the
EJB interoperability through the Interoperable Naming Service (INS). The INS
allows J2EE application servers to deal with and understand names formulated
according to the CORBA 2.3 naming scheme. The main advantage of INS is that
it improves interoperability with other application server products, as well as
CORBA servers. The naming architecture of WebSphere Application Server is
compliant with the Interoperable Naming Service (INS). The requirements of INS
CosNaming include:

� corbaloc and corbaname URLs must be supported, in addition to the IIOP
URL supported in WebSphere Application Server V4.

– Corbaloc designates an endpoint, such as a host machine.
– Corbaname designates an object’s name.

� The default bootstrap port must be 2809, as compared to the default of 900
used in earlier versions of IBM WebSphere Application Server.

13.3.1 Bootstrap ports
Every WebSphere Application Server V6 process, has a bootstrap server and
port assignment.

Each process on a given machine and WebSphere logical node requires unique
ports, including the bootstrap port. The default port assignments are:

� Application server

The default for application server is 9810. Each subsequently created
application server will be assigned a unique ascending port number that does
not conflict.

� Network deployment

The default for node agent is 2809. Application servers are each assigned a
unique non-default port, either explicitly by the administrator, or automatically
determined by the administration tool.

13.3.2 CORBA URLs
CORBA URL syntax, both corbaloc and corbaname, is supported by IBM
WebSphere Application Server.

corbaloc
The corbaloc form of the CORBA 2.3 URL has the following syntax:

corbaloc:<protocol>:<addresslist>/<key>

 Chapter 13. WebSphere naming implementation 785

Table 13-1 corbaloc options

The following list illustrates how the corbaloc URL can range from simple to
complex, depending upon whether fault tolerance (request retry with second,
third, and so on, server) is required:

� Basic

corbaloc::myhost

� Cell’s name space root from a specific server

corbaloc:iiop:1.2@myhost.raleigh.ibm.com:9344/NameServiceCellRoot

� Server name space root with fault tolerance

corbaloc::myhost1:9333,:myhost2:9333,:myhost2:9334/NameServiceServerRoot

corbaname
A corbaname can be useful at times as a lookup name. If, for example, the target
object is not a member of the federated name space and cannot be located with
a qualified name, a corbaname can be a convenient way to look up the object.

The corbaloc form of the CORBA 2.3 URL has the following syntax:

corbaname:<protocol>:<addresslist>/<key>#<INS string-formatted-name>

Table 13-2 corbaname options

Setting Description

protocol The protocol used for the communication. Currently, the only valid
value is iiop.

addresslist List of one or more addresses (host name and port number). The
addresses are separated by commas, and each address has a
colon prefix.

key Define the type of root to access. See Table 13-5 on page 795 for
further information.

Note: corbaloc URLs are usually used for the provider URL when retrieving an
InitialContext.

Setting Description

protocol Use this protocol used the communication. Currently, the only
valid value is iiop.

addresslist This is a list of one or more addresses (host name and port
number). The addresses are separated by commas, and each
address has a colon prefix.

786 WebSphere Application Server V6: System Management and Configuration Handbook

The following examples illustrate how the corbaname URL can range from
simple to complex, depending upon whether fault tolerance, request retry with
second, third, etc. server, is required.

� Fully qualified name access

corbaname::myhost:9333#cell/nodes/node1/servers/server5/someEjb

� Object access through a specific server root

corbaname::myhost:9333/NameServiceServerRoot/someEjb

13.4 Distributed CosNaming
One of the advantages of the distributed nature of CosNaming in WebSphere
Application Server is that it removes the bottleneck of having a single name
server for all naming lookups. Each WebSphere process, such as deployment
manager, node agent and application server, hosts its own ORB, NameService
and local name space. Lookups are made by accessing the NameService in the
most convenient process. They are not bottlenecked through a single server
process in the cell.

The WebSphere Application Server naming architecture uses CORBA
CosNaming as its foundation. The CosNaming architecture has been changed to
support a distributed and federated collection of CosNaming servers. Each
deployment manager, node agent, and application server is a CosNaming server
and is responsible for managing the names of the objects that are bound locally.
Objects are bound into the local context. Lookups start in the local process and
end in the process where the target object is located. This reduces the
dependency of the WebSphere Application Server network on a single name
server for all lookups.

key Define the type of root to access. See Table 13-5 on page 795
for details.

<INS
string-formatted-n
ame>

This is the fully qualified path to entry under the specific root
context.

Note: corbaname URLs are usually used when performing a direct URL
lookup using a previously obtained InitialContext, for example
ic.lookup(“urlstring”).

Setting Description

 Chapter 13. WebSphere naming implementation 787

A single, logical name space exists across the cell. The separate name spaces
of each server process are linked and federated via context links in the cell name
space. It is possible to navigate to specific subcontexts, as every server cluster
and non-clustered server has its own context stored in a level of the cell name
space.

The contents of the federated name space are mostly transient, built from
configuration data read from the XML configuration files on the startup of each
server process. Persistent roots are provided at the cell and node level of the
name space to provide locations where objects can be persistently bound. These
bindings are persisted to XML files on the file system.

Each separate server process has its own bootstrap port, thereby reducing
bottlenecks.

13.5 Configured bindings
With the configured bindings feature you can add objects to the name space
using the administrative interfaces. This feature allows an administrator to
explicitly add bindings to the cell name space without having to write code. The
administrator configures an alias in a persistent name space that refers to a real
reference in one of the local name spaces, thus providing an additional level of
indirection for names. (The configuration details are covered later in 13.11.1,
“Name space bindings” on page 811.)

The functionality is useful in these areas:

� Federation of name spaces

As long as it is CORBA 2.3 compliant, supporting INS, the name space of
other WebSphere Application Server V6 or V5 cells, WebSphere Application
Server V4 administrative domains, third-party application servers and even
CORBA servers can be federated into the cell’s name space.

� Interoperability with WebSphere Application Server V4

The default context of WebSphere Application Server V4 clients is the global,
or legacy, context. However, WebSphere Application Server V6 processes
bind their objects in local, transient name spaces. Therefore, WebSphere
Application Server V4 clients looking up and accessing objects in WebSphere
Application Server V6 without requiring changes to the client, requires the
WebSphere Application Server V6 object to be bound to the legacy name
space accessible to the client. Enter configured bindings. An alias can be
configured into the legacy name space. When used by the WebSphere
Application Server V4 client, the client is transparently redirected to the real
object reference in one of the cell’s local name spaces.

788 WebSphere Application Server V6: System Management and Configuration Handbook

13.5.1 Types of objects
The following types of objects can be bound using configured bindings:

� EJB hosted by a server in the cell

The configured binding identifies an EJB home based on its configured JNDI
name and the server in which it is deployed.

A possible use of this is to put a binding for an EJB into the cell-scoped name
space so that a lookup can be done without knowledge about the server in
which the EJB is deployed. This mechanism is useful for allowing WebSphere
Application Server V4 clients to look up WebSphere Application Server V6
EJBs without having to redeploy.

� CORBA object

The configured binding identifies a CORBA object bound somewhere in this
or another name space by using a corbaname URL string. Included is also an
indicator of whether the object is a CosNaming NamingContext, in which case
the binding is a federated link from one name space to another.

� JNDI name

The configured binding identifies a provider URL and a JNDI name that can
be used to look up an object. This can be used to reference a resource or
other Java serialized object bound elsewhere in this name space or another
name space.

� String constant

The string constant can be used to bind environment data into the name
space.

13.5.2 Types of binding references
There are several different references that can be specified for configured
bindings. Valid types are summarized in Table 13-3.

 Chapter 13. WebSphere naming implementation 789

Table 13-3 Types of binding reference

The configured bindings can be relative to one of the following context roots:

� Server root
� Node persistent root
� Cell persistent root

Binding type Required Settings

EJB (EjbNameSpaceBinding) 1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
the configured root.

3. The JNDI is the name of EJB.

4. Use the server or server cluster where
the EJB is deployed.

CORBA
(CorbaObjectNameSpaceBinding)

1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Use the corbaname URL.

4. It is an indicator if the target object is a
federated context object, or a leaf node
object.

Indirect
(IndirectLookupNameSpaceBinding)

1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Use the Provider URL.

4. Use the JNDI name of object.

String (StringNameSpaceBinding) 1. The binding identifier is the name that
uniquely identifies this configured
binding.

2. The name in name space is relative to
configured root.

3. Set the constant string value.

790 WebSphere Application Server V6: System Management and Configuration Handbook

13.6 Initial contexts
In WebSphere, an initial context for a name server is associated with a bootstrap
host and bootstrap port. These combined values can be viewed as the address
of the name server owning the initial context. To get an initial context, you must
know the bootstrap host and port for the initial context's name server.

JNDI clients should assume the correct environment is already configured, so
there is no need to explicitly set property values and pass them to the
InitialContext constructor.

However, a JNDI client might need to access a name space other than the one
identified in its environment. In this case, it is necessary to explicitly set the
javax.naming.provider.url (provider URL) property used by the InitialContext
constructor. A provider URL contains bootstrap server information that the initial
context factory can use to obtain an initial context. Any property values passed
directly to the InitialContext constructor take precedence over settings of those
same properties found elsewhere in the environment.

Two provider URL forms can be used with WebSphere's initial context factory:

� CORBA object URL
� IIOP URL

CORBA object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. CORBA object URLs are part of the OMG
CosNaming Interoperable Naming Specification. The IIOP URLs are the legacy
JNDI format, but are still supported by the WebSphere initial context factory. The
examples in the following sections illustrate the use of these URLs.

Using a CORBA object URL
An example of using a corbaloc URL with a single address to obtain an initial
context is shown in Example 13-4.

Example 13-4 Initial context using CORBA object URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

 Chapter 13. WebSphere naming implementation 791

Using a CORBA object URL with multiple addresses

CORBA object URLs can contain more than one bootstrap server address. This
feature can be used in WebSphere when attempting to obtain an initial context
from a server cluster. The bootstrap server addresses for all servers in the
cluster can be specified in the URL. The operation will succeed if at least one of
the servers is running, eliminating a single point of failure.

An example of using a corbaloc URL with multiple addresses to obtain an initial
context is shown in Example 13-5 on page 792.

Example 13-5 Initial context using CORBA object URL with multiple addresses

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaloc::myhost1:2809,:myhost2:2809,:myhost3:2809");

Context initialContext = new InitialContext(env);

Using a CORBA object URL from a non-WebSphere JNDI
To access a WebSphere name server from a non-WebSphere environment, such
that the WebSphere initial context factory is not used, a corbaloc URL must be
used that has an object key of NameServiceServerRoot to identify the server root
context.

The server root is where system artifacts such as EJB homes are bound. The
default key of NameService can be used when fully qualified names are used for
JNDI operations.

Example 13-6 shows a CORBA object type URL from a non-WebSphere JNDI
implementation. It assumes full CORBA object URL support by the
non-WebSphere JNDI implementation.

Note: There is no guarantee of any particular order in which the address list
will be processed. For example, the second bootstrap server address might be
used to obtain the initial context even though the first bootstrap server in the
list is available.

792 WebSphere Application Server V6: System Management and Configuration Handbook

Example 13-6 Using a CORBA object URL from non-WebSphere JNDI

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable(); env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.somecompany.naming.TheirInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaname:iiop:myhost.mycompany.com:2809/NameServiceServerRoot");

Context initialContext = new InitialContext(env);

Using an IIOP URL
The IIOP type of URL is a legacy format that is not as flexible as CORBA object
URLs. However, URLs of this type are still supported by the WebSphere initial
context factory.

Example 13-7 shows an IIOP type URL as the provider URL.

Example 13-7 Initial context using an IIOP URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "iiop://myhost.mycompany.com:2809");

Context initialContext = new InitialContext(env);

13.6.1 Setting initial root context
Each server contains its own server root context. When bootstrapping to a
server, the server root is the default initial JNDI context. Most of the time, this is
the desired initial context, because system artifacts such as EJB homes are
bound at this point. However, other root contexts exist that might contain
bindings of interest. It is possible to specify a provider URL to select other root
contexts.

Note: The default is that the name will be resolved based upon the context
associated with the server bootstrap to which the client is connected.

 Chapter 13. WebSphere naming implementation 793

The initial root context can be selected using the following settings:

� CORBA object URL
� Name space root property

Default initial context
The default initial context depends on the type of client. Table 13-4 summarizes
the different categories of clients and the corresponding default initial context.

Table 13-4 Default initial context versus client type

Selecting initial root context with a CORBA object URL
There are several object keys registered with the bootstrap server that you can
use to select the root context to be used as the initial context. To select a
particular root context with a CORBA object URL object key, set the object key to
the corresponding value. The default object key is NameService. Using JNDI,
this will yield the server root context.

Table 13-5 lists the different root contexts and their corresponding object key.

Client type Description Default initial context

WebSphere
Application Server V6
or V5 JNDI

EJB applications use the JNDI
interface to perform name space
lookups. WebSphere clients by
default use WebSphere's
CosNaming JNDI plug-in
implementation.

Server root

WebSphere
Application Server V4
JNDI

WebSphere clients running in
releases prior to V5 by default use
WebSphere's V4 CosNaming JNDI
plug-in implementation.

Cell persistent root
(legacy root)

Other JNDI Some applications might perform
name space lookups with a
non-WebSphere CosNaming JNDI
plug-in implementation.

Cell root

CORBA Standard CORBA client obtains an
initial
org.omg.CosNaming.NamingCont
ext reference with the key
NamingContext.

Cell root

794 WebSphere Application Server V6: System Management and Configuration Handbook

Table 13-5 CORBA object URL root context values

Example 13-8 shows the use of a corbaloc URL with the object key set to select
the cell persistent root context as the initial context.

Example 13-8 Select cell persistent root context using corbaloc URL

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL,
"corbaloc:iiop:myhost.mycompany.com:2809/NameServiceCellPersistentRoot");

Context initialContext = new InitialContext(env);

Selecting initial root context with name space root property
You can select the initial root context by passing a name space root property
setting to the InitialContext constructor. Generally, the object key setting is
sufficient.

Sometimes, a property setting might be preferable. For example, the root context
property can be set on the Java invocation to make it transparent to the
application which server root is being used as the initial context. The default
server root property setting is defaultroot, which will yield the server root context.

Root context CORBA object URL object key Description

Server root NameServiceServerRoot Server root for the
accessed server

Cell persistent root NameServiceCellPersistentRoot The persistent cell root
for the accessed server

Cell root NameServiceCellRoot The cell root for the
accessed server

Node root NameServiceNodeRoot The node root for the
accessed server

Note: The name server running in the deployment manager process has no
node root registered under the NameServiceNodeRoot key, because there is
no node agent, nor application servers, running in its node.

 Chapter 13. WebSphere naming implementation 795

Table 13-6 Name space root values

The name space root property is used to select the default root context only if the
provider URL does not contain an object key or contains the object key,
NameService. Otherwise, the property is ignored.

Example 13-9 shows use of the name space root property to select the cell
persistent root context as the initial context.

Example 13-9 Use of name space root property to select cell persistent root context

import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.ibm.websphere.naming.PROPS;

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc:iiop:myhost.mycompany.com:2809");
env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

Context initialContext = new InitialContext(env);

Tip: If a simple name is used, the root context that will be assumed can be set
by passing the com.ibm.websphere.naming.namespaceroot property to
InitialContext.

Root context CORBA object URL object key

Server root bootstrapserverroot

Cell persistent root cellpersistentroot

Cell root cellroot

Node root bootstrapnoderoot

Tip: WebSphere makes available constants that can be used instead of
hard-coding the property name and value, for example:

env.put(PROPS.NAME_SPACE_ROOT, PROPS.NAME_SPACE_ROOT_CELL_PERSISTENT);

796 WebSphere Application Server V6: System Management and Configuration Handbook

13.7 Federation of name spaces
Federating name spaces involves binding contexts from one name space into
another name space. In a WebSphere Application Server V6 name space,
federated bindings can be created with the following restrictions:

� Federation is limited to CosNaming name servers. A WebSphere name
server is a CORBA CosNaming implementation.

Federated bindings to other CosNaming contexts can be created, but
bindings to LDAP name server implementation contexts cannot.

� If JNDI is used to federate the name space, the WebSphere initial context
factory must be used to obtain the reference to the federated context. If any
other initial context factory implementation is used, the binding might not be
created, or the level of transparency might be reduced.

� A federated binding to a non-WebSphere naming context has the following
functional limitations:

– JNDI operations are restricted to the use of CORBA objects. For example,
EJB homes can be looked up, but non-CORBA objects such as data
sources cannot.

– JNDI caching is not supported for non-WebSphere name spaces. This
only affects the performance of lookup operations.

� Do not federate two WebSphere single server name spaces. If this is done,
incorrect behavior can result. If you require federation of WebSphere name
spaces, then servers running under IBM WebSphere Application Server
Network Deployment are required.

In the example in Figure 13-3, assume that a name space, Namespace 1,
contains a context under the name a/b. Also assume that a second name space,
Namespace 2, contains a context under the name x/y. If context x/y in
Namespace 2 is bound into context a/b in Namespace 1 under the name f2, the
two name spaces are federated. Binding f2 is a federated binding because the
context associated with that binding comes from another name space. As shown
in Figure 13-3, from Namespace 1, a lookup of the name a/b/f2 would return the
context bound under the name x/y in Namespace 2. Furthermore, if context x/y
contained an EJB home bound under the name ejb1, the EJB home could be
looked up from Namespace1 with the lookup name a/b/f2/ejb1. Notice that the
name crosses name spaces. This fact is transparent to the naming client.

 Chapter 13. WebSphere naming implementation 797

Figure 13-3 JNDI access using federated name spaces

13.8 Interoperability
The name space in IBM WebSphere Application Server V5 is the same as in
WebSphere Application Server V6. Thus, an EJB client running on IBM
WebSphere Application Server V5 accessing EJB applications running on
WebSphere Application Server V6 will have no interoperability issues.

WebSphere Application Server V6 provides the following support for
interoperating with previous releases of WebSphere and with non-WebSphere
JNDI clients:

� EJB clients running on WebSphere V4.0.x, accessing EJB applications
running on WebSphere Application Server V6

� EJB clients running on WebSphere Application Server V6, accessing EJB
applications running on WebSphere V4.0.x servers

� EJB clients running in an environment other than WebSphere, accessing EJB
applications running on WebSphere Application Server V6 servers

13.8.1 WebSphere V4.0 EJB clients
Applications migrated from previous WebSphere releases can still have clients
running in a previous release. The default initial JNDI context for EJB clients
running on previous versions of WebSphere is the cell persistent root, the legacy
root. However, the home for an EJB deployed in V6.0 is bound to the server root
context. For the EJB lookup name for down-level clients to remain unchanged,
configure a binding for the EJB home under the cell persistent root.

Namespace 1

a (context)
a/b (context)
a/b/ f2

Namespace 2

x (context)
x/y (context)
x/y/ejb1 (ejbhome)corbaloc

Link

a/b/f2/ejb1 x/y/ejb1

EJB
Lookup

EJB
Lookup

JNDI
Client

798 WebSphere Application Server V6: System Management and Configuration Handbook

The following options enable interoperability with WebSphere Application Server
V4 clients:

� Set the client’s default initial context to legacyRoot. This option is equivalent
to the cell persistent root of WebSphere Application Server V6.

� Redeploy the clients using the Application Server Toolkit so that the JNDI
names can be fixed to reflect the real, fully qualified names in the WebSphere
Application Server V6 name space.

� Use aliases for the names the clients look up. These transparently redirect to
the correct object in the WebSphere Application Server V6 name space. This
option uses configured bindings.

Options for EJB lookup
The following options support EJB lookup from a WebSphere Application Server
V4 client to a WebSphere Application Server V6 hosted EJB:

� Redeploy the WebSphere Application Server V4 client.

Update the <ejb-ref> to reflect the WebSphere Application Server V6
compatible JNDI name.

� In WebSphere Application Server V6, configure EjbNameSpaceBinding:

a. Use the same JNDI name as looked up by the WebSphere Application
Server V4 client.

b. Identify the JNDI name and server, or cluster, of the target EJB.

c. Configure the binding in the cell persistent root.

Options for resources bound in external name space
Options for resources bound in external name spaces include the following:

� Redeploy the WebSphere Application Server V4 client.

Update the <resource-ref> to reflect the WebSphere Application Server V6
compatible JNDI name.

� In WebSphere Application Server V6, run the program to bind the resource
into the WebSphere Application Server V6 cell persistent root.

� In WebSphere Application Server V6, configure
IndirectLookupNameSpaceBinding by doing the following:

a. Use the same JNDI name as looked up by the WebSphere Application
Server V4 client.

 Chapter 13. WebSphere naming implementation 799

b. Specify the provider URL and JNDI name of the name space where the
resource is already bound (a WebSphere Application Server V4 name
space).

c. Configure the binding in the cell persistent root.

13.8.2 WebSphere V4.0 server
The default initial context for a WebSphere V4.0 server is the correct context.
WebSphere Application Server V6 clients simply look up the JNDI name under
which the EJB home is bound.

13.8.3 EJB clients hosted by non-WebSphere environment
When an EJB application running in WebSphere Application Server V6 is
accessed by a non-WebSphere EJB client, the JNDI initial context factory is
presumed to be a non-WebSphere implementation. In this case, the default initial
context is the cell root. If the JNDI service provider being used supports CORBA
object URLs, use the following corbaname format to look up the EJB home:

Example 13-10 corbaname format for EJB home lookup

initialContext.lookup("corbaname:iiop:myHost:2809#cell/clusters/myCluster/myEJB
");

According to the URL in Example 13-10, the bootstrap host and server (node
agent) port are myHost and 2809. The EJB is installed in a server cluster named
myCluster. The EJB is bound in that cluster under the name myEJB.

To avoid a single point of failure, the bootstrap server host and port for each
cluster member could be listed in the URL as shown in Example 13-11.

Example 13-11 corbaname format with multiple addresses for EJB home lookup

initialContext.lookup("corbaname:iiop:host1:9810,host2:9810#cell/clusters/myClu
ster/myEJB");

The name prefix cell/clusters/<clustername>/ is not necessary if
bootstrapping to the cluster itself, but it always works. The prefix is required,
however, when looking up EJBs in other clusters. The server binding for the

Note: The server name could also be the name of a non-clustered server. This
form of lookup works in the following situations:

� With any name server bootstrap host and port configured in the same cell
� If the bootstrap host and port belong to a member of the cluster itself

800 WebSphere Application Server V6: System Management and Configuration Handbook

prefix used to access another cluster is implemented in a way that avoids a
single point of failure during a lookup.

If the JNDI initial context factory you use does not support CORBA object URLs,
the initial context can be obtained from the server, and the lookup can be
performed on the initial context as shown in Example 13-12.

Example 13-12 corbaname format with multiple addresses for EJB home lookup

Hashtable env = new Hashtable();
env.put(CONTEXT.PROVIDER_URL, "iiop://myHost:2809");
Context ic = new InitialContext(env);
Object o = ic.lookup("cell/clusters/myCluster/myEJB");

This form of lookup works from any server in the same cell as the EJB home
being looked up. However, this approach does not allow multiple hosts and ports
to be specified in the provider URL and does not incorporate the availability
advantages of a corbaloc or corbaname URL with multiple hosts and ports
belonging to the server cluster members.

13.9 Examples
The following examples highlight a number of different server topologies and the
affect the topologies have on the use of the Naming Service:

� Single server
� Single server with a non-default port
� Two single servers on the same box
� Two Network Deployment application servers on the same box
� WebSphere Application Server V4 client

13.9.1 Single server
In the single-server environment, the naming functionality works in exactly the
same way as in WebSphere Application Server V4. There is only one server and
only one root context and, therefore, no ambiguity in the location of a named
object. This is illustrated by the example in Figure 13-4.

 Chapter 13. WebSphere naming implementation 801

Figure 13-4 Single server

By accessing the server root directly, the J2EE or or servlet client does not need
to traverse the cell name space (cell root → servers →server root → object).

In a single-server, the server root acts as the default bootstrap, and should be
assigned port 2809. Clients external to the server process using the provider
URL do not need a port number.

If the named object is looked up by a client running in the same process, then a
provider URL, and corbaloc, is not needed. By default, the lookup is performed
against the local process name space. Table 13-7 illustrates the Provider URL.

Table 13-7 Lookup settings required for a single server

Note: Even in a single-server case, clients can still use the fully qualified JNDI
name to look up an object. This removes any dependency on the particular
topology. However, there is a small performance degradation.

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

Svr1
EJB=Customer
JNDINAME=CustomerHome

EJB=Account
JNDINAME=AccountHome

HOSTNAME=h1

PORT=2809

Servlet
Provider URL:
 not needed
Name used in code:
 java:comp/env/AccountHome
ejb-ref in deployment:
 NAME=AccountHome
 JNDINAME=AccountHome

J2EE Client
Provider URL:
 corbaloc::h1
Name used in code:

java:comp/env/ejb/Cust
ejb-ref in deployment:
 NAME=ejb/Cust
 JNDINAME=CustomerHome

nodescell
root

CustomerHome

AccountHome

nodes node
root

h1Node node
servers

server
root

Svr1servers

Namespace

802 WebSphere Application Server V6: System Management and Configuration Handbook

13.9.2 Two single servers on the same box
When more than one instance of the application server runs on a single machine,
then you must configure each server’s bootstrap to run on a different port. In this
case, you can have a J2EE component in one server looking up objects in the
other server. This is illustrated by the example in Figure 13-5.

Figure 13-5 Two single servers on the same box

Because each application server name space is separate, the different objects
can use the same name, CustomerHome. There is no name collision. The fully
qualified JNDI name can be used to uniquely identify the name registered in one
server from the name in another. If objects are registered under the name
CustomerHome on two servers, look up the name using:

J2EE client (external process) corbaloc::<hostname> CustomerHome

Component Provider URL JNDI name

server1
port=9811

Customer EJB

server2
port=9812

EJB or servlet
Provider URL: corbaloc::h01:9811
Name used in code:
 java:comp/env/ejb/myCust
ejb-ref in deployment:
 NAME=ejb/myCust
 JNDINAME=CustomerHome

servlet or
ejb

Customer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9812
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustomerHome

EJB or servlet
Provider URL: not needed
Name used in code:
 java:comp/env/ejb/myCust
ejb-ref in deployment:
 NAME=ejb/myCust
 JNDINAME=CustomerHome

servlet or
ejb

hostname=h01

nodescell
root

CustomerHome
nodes node

root
h01Node node

servers
server
root

server1servers

Namespace for server1

nodescell
root

CustomerHome
nodes node

root
h01Node node

servers
server
root

server2servers

Namespace for server2

 Chapter 13. WebSphere naming implementation 803

cell/nodes/<nodename>/servers/<server1>/CustomerHome
cell/nodes/<nodename>/servers/<server2>/CustomerHome

Table 13-8 illustrates the required Provider URL settings.

Table 13-8 Lookup settings for two single servers on the same box

13.9.3 Network Deployment application servers on the same box
The configuration becomes more complex when we move from an standalone
server environment to a Network Deployment distributed server environment. In
this topology, there can be separate application servers as well as a node agent
process, all of which have a bootstrap port and host a local name space:

� The node agent is the default bootstrap for the node, and has its bootstrap
port configured on 2809.

� The application servers are not the default bootstrap, and, therefore, each is
configured to use a non-default bootstrap port.

This concept is illustrated by the example in Figure 13-6 on page 805.

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

Servlet (external process) corbaloc::<hostname>:<port#> CustomerHome

J2EE client (external process) corbaloc::<hostname>:<port#> CustomerHome

804 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 13-6 Two network deployment application servers on the same box

Unless a client uses a specific application server in its provider URL, the lookup
is performed on the node agent. For the lookup to succeed, the bindings have to
specify the fully qualified name of the object:

cell/nodes/<nodename>/servers/<servername>/<name of object>

That is, the client needs to specify where the object is located. This is a big
difference from the behavior in WebSphere Application Server V4, where all
named objects were registered in a single global name space.

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9812
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustomerHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

J2EE Client
Provider URL: corbaloc::h01
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=
cell/nodes/h01/servers/server1/CustomerHome

J2EE Client
Provider URL: corbaloc::h01:9811
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=
cell/nodes/h01/servers/server2/CustomerHome

node
servers

server
root

cell
root

server1
CustomerHome

Namespace

server
root

server2 CustomerHome

nodes
nodes node

root
h01Node serverscell

root
nodes

nodes node
root

h01Node

 Chapter 13. WebSphere naming implementation 805

Table 13-9 illustrates the Provider URL settings required.

Table 13-9 Lookup settings for two Network Deployment servers on the same box

Tip: When you need server clusters for high availability, bootstrap to a server
cluster so that the initial context has failover support. Lookups which resolve
to other clusters from that bootstrap cluster also have failover support from the
name server implementation. The provider URL should have the bootstrap
address of each cluster member to avoid a single point of failure when
obtaining the initial context.

In a distributed server environment, choose a bootstrap server which has a
stable bootstrap address, such as a designated cluster, server, or node agent.

Component Provider URL JNDI name

Servlet (same process) Not needed CustomerHome

Servlet (external process
accessing local name space to
access local object)

Not needed cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

Servlet (external process
accessing other appserver’s
name space to access object
on that appserver)

corbaloc::<appserver2
hostname>:<port#>

CustomerHome

(or) Not needed cell/persistent/Custome
rHome21

J2EE client (external process
accessing appserver1 with
object located on appserver1)

corbaloc::<appserver
hostname>:<port#>

CustomerHome

(or) Not needed cell/persistent/Custome
rHome11

J2EE client (external process
accessing node agent)

corbaloc::<node agent
hostname>

cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

(or) Not needed cell/persistent/Custome
rHome21

J2EE client (external process
accessing appserver1 with
object located on appserver2)

corbaloc::<appserver1
hostname>:<port#>

cell/nodes/<nodename>
/servers/<server2>/Cust
omerHome

(or) Not needed cell/persistent/Custome
rHome21

1 You must manually configure indirect JNDI references to the respective EJB in the
cell/persistent name space.

806 WebSphere Application Server V6: System Management and Configuration Handbook

13.9.4 WebSphere Application Server V4 client
In WebSphere Application Server V4, there is no need to specify a path to a
named object, because all objects are registered in a single global name space.
Although convenient, this causes naming conflicts because no two objects can
be registered across all application servers with the same names.

The use of configured bindings, aliases, in the cell persistent root provides a
mechanism by which the V4 naming structure can be mapped to the fully
qualified names of V6. This is illustrated in Figure 13-7.

Figure 13-7 WebSphere Application Server V4 client

Table 13-10 illustrates the Provider URL settings required.

Table 13-10 Lookup settings for WebSphere Application Server V4 client interoperability

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

R4.0 J2EE Client
Provider URL: iiop://h01:2809
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

servers node
servers

server
root

server1 CustomerHome

Namespace

server
root

server2 CustomerHome

cell
persistent

root

persistent

CustHome

Configured Binding
Type: EJB
Scope: Cell
NameInNamespace: CustHome
Node: h01Node
Server: Server2
JNDI Name: CustomerHome

node
root

cell
root

nodes
nodes

h01Node

Component Provider URL JNDI name

V4 client iiop://<hostname>:2809 CustHome

 Chapter 13. WebSphere naming implementation 807

CustHome is the name registered in the cell-level persistent root, the legacy root,
for cell/nodes/<nodename>/servers/<servername>/CustomerHome.

The WebSphere Application Server V4 client accesses the JNDI alias registered
in the cell persistent root of the WebSphere Application Server V6 cell. The
WebSphere Application Server V6 runtime transparently redirects the client to
the JNDI entry located in a specific local name space hosted by one of the name
servers of the cell.

13.10 Naming tools
IBM WebSphere Application Server provides the following tools for the support of
the naming architecture.

13.10.1 dumpNameSpace
Run the dumpNameSpace command against any bootstrap port to get a listing of
the names bound with that provider URL.

The output of the command:

� Does not present a full logical view of the name space
� Shows CORBA URLs where the name space transitions to another server

The tool indicates that certain names point to contexts external to the current
server and its name space. The links show the transitions necessary to perform a
lookup from one name space to another.

Syntax
To run the dumpNameSpace command, type the following:

dumpNameSpace [options]

All arguments are optional. Table 13-11 on page 809 shows the available
options.

Tip: An invocation of the dumpNameSpace command cannot generate a
dump of the entire name space, only the objects bound to the bootstrap server
and links to other local name spaces that compose the federated name space.
Use the correct host name and port number for the server to be dumped.

808 WebSphere Application Server V6: System Management and Configuration Handbook

Table 13-11 Options for dumpNameSpace

Option Description

-host <hostname> This option is the host name of bootstrap server. If it is not defined, then
the default is localhost.

-port <portnumber> This option is the bootstrap server port number. If i is not defined, then
the default is 2809.

-factory <factory> This option is the initial context factory to be used to get initial context.
The default of com.ibm.websphere.naming.WsnInitialContextFactory is
ok for most use.

-root [cell | server | node | host
| legacy | tree | default]

WebSphere V5.0 or later

� cell: dumpNameSpace default. Dump the tree starting at the cell
root context.

� server: Dump the tree starting at the server root context.

� node: Dump the tree starting at the node root context.
(Synonymous with "host")

WebSphere V4.0

� legacy: dumpNameSpace default. Dump the tree starting at the
legacy root context.

� host: Dump the tree starting at the bootstrap host root context
(Synonymous with node)

� tree: Dump the tree starting at the tree root context.

All WebSphere and other name servers

� default: Dump the tree starting at the initial context which JNDI
returns by default for that server type. This is the only -root choice
that is compatible with WebSphere servers prior to V4.0 and with
non-WebSphere name servers.

-url <url> This option is the value for the java.naming.provider.url property used to
get the initial JNDI context. This option can be used in place of the -host,
-port, and -root options. If the -url option is specified, the -host, -port,
and -root options are ignored.

-startAt <context> This option is the path from the requested root context to the top
level context where the dump should begin. Recursively dumps
subcontexts below this point. Defaults to empty string, that is, root
context requested with the -root option.

-format <format> � jndi: Display name components as atomic strings.
� ins: Display name components parsed against INS rules (id.kind).
The default format is jndi.

 Chapter 13. WebSphere naming implementation 809

Finding the bootstrap address
To find the bootstrap address for node agents, servers, and the cell, do the
following:

� For application servers, click Servers →Application Servers. Click on the
server to open the configuration. Select Ports from the Communications
section, then BOOTSTRAP_ADDRESS.

� For node agents, click System Administration →Node Agents. Select the
node agent to open the configuration. Select Ports from the Additional
Properties section, then BOOTSTRAP_ADDRESS.

� For the cell, click System Administration →Deployment Manager. Select
Ports from the Additional Properties section, then BOOTSTRAP_ADDRESS.

To find the dumpNameSpace usage, see Example 13-13.

Example 13-13 dumpNameSpace usage

$ cd c:\ibm\was60\AppServer\bin

Get help on options:
$ dumpNameSpace -?

Dump server on localhost:2809 from cell root:
$ dumpNameSpace

Dump server on localhost:2806 from cell root:
$ dumpNameSpace -port 2806

Dump server on yourhost:2811 from cell root:
$ dumpNameSpace -port 2811 -host yourhost

Dump server on localhost:9810 from server root:
$ dumpNameSpace -root server‘

-report <length> � short: Dumps the binding name and bound object type, essentially
what JNDI Context.list() provides.

� long: Dumps the binding name, bound object type, local object
type, and string representation of the local object. In other words,
IORs, string values, and so on, are printed.

The default report option is short.

-traceString <tracespec> Trace string of the same format used with servers, with output going to
the file DumpNameSpaceTrace.out.

-help or -? Prints a usage statement.

Option Description

810 WebSphere Application Server V6: System Management and Configuration Handbook

Dump server at corbaloc
dumpNameSpace -url corbaloc:iiop:yourhost:901

13.11 Configuration
This section discusses how to configure a name binding for an enterprise bean, a
CORBA CosNaming naming context or CORBA leaf node object, an object that
can be looked up using JNDI, or a constant string value using the administrative
console.

13.11.1 Name space bindings
The configured bindings feature allows objects to be added to the name space
using the administrative console. An administrator can now explicitly add
bindings to the cell name space without having to write code. With this feature,
an administrator can configure an alias in a persistent name space for a
reference in one of the local name spaces.

Name space bindings can be created for the following four object types:

� String
� EJB
� CORBA
� Indirect

As an example, look at Figure 13-7. In this scenario, an alias is configured to
allow an application using the WebSphere V4 naming style to access an EJB
while running on WebSphere V6. Because the V4 application code does not
specify a path to the named object, a binding is added to the cell persistent root
to redirect the client to the JNDI entry in the local name space.

 Chapter 13. WebSphere naming implementation 811

Figure 13-8 WebSphere Application Server V4 client

To create the binding, do the following:

1. Select Environment →Naming → Name Space Bindings.
2. Set the scope to cell.
3. Click New. See Figure 13-9 on page 813.

hostname=h01

Customer EJBCustomer EJB

JNDINAME=CustomerHome JNDINAME=CustomerHome

R4.0 J2EE Client
Provider URL: iiop://h01:2809
Name used in code:
 java:comp/env/theCustomers
ejb-ref in deployment:
 NAME=theCustomers
 JNDINAME=CustHome

port=9812
server2

port=9811
server1

port=2809
h01

NodeAgent AppServer AppServer

Configured Binding
Type: EJB
Scope: Cell
NameInNamespace: CustHome
Node: h01Node
Server: Server2
JNDI Name: CustomerHome

812 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 13-9 Name space binding

4. Choose EJB and click Next.
5. Enter the values as shown in Figure 13-10 on page 814.

– Binding identifier is a unique identifier for the binding.

– Name in Name Space matches the JNDI name used in the application
code.

– Enterprise Bean Location is the cluster or node where the EJB resides.

– Server is the name of the server where the EJB resides.

– JNDI Name is the the JNDI name of the deployed EJB. Use the name in
the enterprise beans bindings, not the java:comp name.

 Chapter 13. WebSphere naming implementation 813

Figure 13-10 Defining an EJB name space binding

6. Click Next.
7. Click Finish and save your changes.

Note: Name space bindings can be configured at the cell, node, and server
scope:

� Bindings configured at the cell scope are included in the local runtime
name space of all application servers in that cell.

� Bindings configured at the node scope area included in the local runtime
name space of all application servers in that node.

� Bindings configured at the server scope are included in the local runtime
name space of only that application server.

814 WebSphere Application Server V6: System Management and Configuration Handbook

13.11.2 CORBA naming service users and groups
The J2EE role-based authorization concept has been extended to protect the
WebSphere CosNaming service. CosNaming security offers increased
granularity of security control over CosNaming functions, which affect the content
of the WebSphere name space. There are generally two ways in which client
programs will make a CosNaming call. The first is through the JNDI interfaces.
The second is CORBA clients invoking CosNaming methods directly.

You can design authorization based on users and groups of users defined to the
active user registry. Design the authorization by assigning an authority level to
one of the following:

� User

� Group

� ALL_AUTHENTICATED (special subject that acts as a group)

This means any user who authenticates by entering a valid user ID and
password.

� EVERYONE (special subject that acts as a group)

All users are authorized. No authentication is necessary.

The roles now have authority level from low to high as follows:

� Users assigned the CosNamingRead role are allowed to do queries of the
WebSphere Name Space, such as through the JNDI lookup method. The
special subject “Everyone” is the default policy for this role.

� Users assigned to the CosNamingWrite role are allowed to do write
operations such as JNDI bind, rebind, or unbind, plus CosNamingRead
operations. The special subject All_Authenticated is the default policy for this
role.

� Users assigned to the CosNamingCreate role are allowed to create new
objects in the Name Space through such operations as JNDI
createSubcontext, plus CosNamingWrite operations. The special subject,
All_Authenticated, is the default policy for this role.

Note: The authorization policy is only enforced when global security is
enabled. Before enabling global security, you should design your entire
security solution. See WebSphere Application Security V6 Security Handbook,
SG24-6316 for information about designing and implementing WebSphere
security.

 Chapter 13. WebSphere naming implementation 815

� Users assigned to the CosNamingDelete role are able to destroy objects in
the Name Space, for example using the JNDI destroySubcontext method, as
well as CosNamingCreate operations.

By default, you have the following:

� The ALL_AUTHENTICATED group has the following role privileges:
CosNamingRead, CosNamingWrite, CosNamingCreate, and
CosNamingDelete.

� The EVERYONE group has CosNamingRead privileges only.

Working with the CORBA naming service authorization is straightforward.

Working with CORBA naming service users
To work with users, do the following:

1. Select Environment →Naming →CORBA Naming Service Users. See
Figure 13-11.

Figure 13-11 Add CORBA naming service users

2. Click Add.

Enter a case-sensitive user ID and select an authorization level. The user
must be a valid user in the active user registry. If you have not activated
global security, the local operating system user registry will be used.

816 WebSphere Application Server V6: System Management and Configuration Handbook

To specify multiple roles, hold the Ctrl key while you click the applicable roles.
See Figure 13-12.

Figure 13-12 Assign an authorization level

3. Click Apply.
4. Click OK and save your changes.

Working with CORBA naming service groups
To work with groups, do the following:

1. Select Environment →Naming →CORBA Naming Service Groups. Notice
that the default settings are defined. Figure 13-13 on page 818 shows the
initial settings.

Note: Before these settings take effect, you will have to enable and
configure WebSphere global security.

 Chapter 13. WebSphere naming implementation 817

Figure 13-13 Default settings for CORBA naming service groups

2. To add a new group, click Add. See Figure 13-14 on page 819.

Note: The two special groups are already defined and have roles
assigned. To change the roles assigned to the two special groups, click the
group name link).

818 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 13-14 Assign an authorization level

3. Select the Specify Group button, enter a case-sensitive group name and
select an authorization level, or role. The group must be a valid user in the
active user registry. If you have not activated global security, the local
operating system user registry will be used. Remember, before these settings
take effect, you will have to enable and configure WebSphere global security.

To specify multiple roles, hold the Ctrl key while you click the applicable roles.

4. Click Apply.

5. Click OK and save your changes.

 Chapter 13. WebSphere naming implementation 819

820 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 14. Understanding class loaders

Understanding how the Java and WebSphere class loaders work is critical to
J2EE packaging. Failure to set up the class loaders properly most likely results in
a cascade of the infamous class loading exceptions like
ClassNotFoundException when trying to start your application.

This chapter starts by giving a little background on Java class loaders. Then, we
describe the different WebSphere class loaders and finally how you can
customize the behavior of the WebSphere class loaders to suit your particular
application’s requirements.

The chapter concludes with an example designed to illustrates these concepts.

14

© Copyright IBM Corp. 2005. All rights reserved. 821

14.1 A brief introduction to Java class loaders
Class loaders enable the Java virtual machine (JVM) to load classes. Given the
name of a class, the class loader locates the definition of this class. Each Java
class must be loaded by a class loader.

When you start a JVM, you use three class loaders: the Bootstrap class loader,
the Extensions class loader, and the System class loader.

� The bootstrap class loader is responsible for loading the core Java libraries,
that is core.jar, server.jar etc. in the <JAVA_HOME>/lib directory. This class
loader, which is part of the core JVM, is written in native code.

� The extensions class loader is responsible for loading the code in the
extensions directories (<JAVA_HOME>/lib/ext or any other directory specified
by the java.ext.dirs system property). This class loader is implemented by
the sun.misc.Launcher$ExtClassLoader class.

� The system class loader is responsible for loading the code that is found on
java.class.path, which ultimately maps to the system CLASSPATH variable.
This class loader is implemented by the sun.misc.Launcher$AppClassLoader
class.

Delegation is a key concept to understand when dealing with class loaders. It
states that a custom class loader, a class loader other than the bootstrap,
extension or system class loaders, delegates class loading to its parent before
trying to load the class itself. The parent class loader can be either another
custom class loader or the bootstrap class loader.

The Extensions class loader is the parent for the System class loader. The
Bootstrap class loader is the parent for the Extensions class loader. The class
loaders hierarchy is shown in Figure 14-1 on page 823.

If the System class loader needs to load a class, it first delegates to the
Extensions class loader, which, in turn, delegates to the Bootstrap class loader. If
the parent class loader cannot load the class, the child class loader tries to find
the class in its own repository. In this manner, a class loader is only responsible
for loading classes that its ancestors cannot load.

Note: Beginning with JDK 1.4 the core, Java libraries in the IBM JDK are
no longer packaged in rt.jar, but, instead, are split into multiple JAR files.
Previously, they were packaged together and still are for the Sun JDKs.

822 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 14-1 Java class loaders hierarchy

This behavior can lead to some interesting problems if a class is loaded from a
class loader that is not on a leaf node in the class loader tree. Consider
Example 14-1. A class called WhichClassLoader1 loads a class called
WhichClassLoader2, in turn invoking a class called WhichClassLoader3.

Example 14-1 WhichClassLoader1 and WhichClassLoader2 source code

public class WhichClassLoader1 {

public static void main(String[] args)
throws javax.naming.NamingException

{
// Getting Classpathes Value
StringBuffer bootstrapClassPath =

new StringBuffer(System.getProperty("sun.boot.class.path"));
StringBuffer extClassPath =

new StringBuffer(System.getProperty("java.ext.dirs"));
StringBuffer systemClassPath =

new StringBuffer(System.getProperty("java.class.path"));
// Printing them out
System.out.println("Bootstrap classpath=\t" +

bootstrapClassPath + "\t");
System.out.println("\nExtension classpath=\t" + extClassPath + "\t");
System.out.println("\nSystem classpath=\t" + systemClassPath + "\t\n");

//Loading Classes
Object obj = new Object();
WhichClassLoader1 wcl1 = new WhichClassLoader1();
WhichClassLoader2 wcl2 = new WhichClassLoader2();

 Chapter 14. Understanding class loaders 823

//Who loaded what?
System.out.println("->Object was loaded by " +

obj.getClass().getClassLoader());
System.out.println(

"->WCL1 class was loaded by " + wcl1.getClass().getClassLoader());
System.out.println(

"->WCL2 class was loaded by " + wcl2.getClass().getClassLoader());
wcl2.getTheClass();

}
}
==
public class WhichClassLoader2 {

//This method is invoked from WhichClassLoader1.
public void getTheClass() {

WhichClassLoader3 wcl3 = new WhichClassLoader3();
System.out.println("->WCL 3 was loaded

by:"+wcl3.getClass().getClassLoader());
}

}

If all WhichClassLoaderX classes are put on the system class path, the three
classes are loaded by the System class loader, and this sample runs just fine.
Now suppose you package the WhichClassLoader2.class file in a JAR file that
you store under <JAVA_HOME>/lib/ext directory. You see the output in
Example 14-2.

Example 14-2 NoClassDefFoundError exception trace

Bootstrap classpath=
F:\WSADV5\eclipse\jre\lib\rt.jar;F:\WSADV5\eclipse\jre\lib\i18n.jar;F:\WSADV5\e
clipse\jre\classes
Extension classpath=F:\WSADV5\eclipse\jre\lib\ext
System classpath=E:\WSADworkspaces\WebbankV5\ClassloadersTest\bin

->Object was loaded by null
->WCL1 class was loaded by sun.misc.Launcher$AppClassLoader@5059e39d
->WCL2 class was loaded by sun.misc.Launcher$ExtClassLoader@505ca39d
java.lang.NoClassDefFoundError:
com/ibm/wss/lge/classloaders/test/WhichClassLoader3
at
com.ibm.wss.lge.classloaders.test.WhichClassLoader2.getTheClass(WhichClassLoade
r2.java:6)
at
com.ibm.wss.lge.classloaders.test.WhichClassLoader1.main(WhichClassLoader1.java
:27)
Exception in thread "main"

824 WebSphere Application Server V6: System Management and Configuration Handbook

As you can see, the program fails with a NoClassDefFoundError exception,
which might sound strange because WhichClassLoader3 is on the system class
path. The problem is that it is on the wrong class path.

As you can see from the trace, the WhichClassLoader2 class was loaded by the
Extensions class loader. In fact, the System class loader delegated the load of
the WhichClassLoader2 class to the Extensions class loader, which delegated
the load to the Bootstrap class loader. Because the Bootstrap class loader could
not find the class, the class loading control was returned to the Extensions class
loader. The Extensions class loader found the class and loaded it.

Now, the Extensions class loader needs to load the WhichClassLoader3 class. It
delegates to the Bootstrap class path, which cannot find the class, then tries to
load it itself and does not find it either. A NoClassDefFoundError exception is
thrown. Once a class is loaded by a class loader, any new classes that it tries to
load reuse the same class loader, or go up the hierarchy to find a class.

A class loader can only find classes by going up the hierarchy, never down.

14.2 WebSphere class loaders overview

WebSphere provides several custom delegated class loaders as shown in
Figure 14-2 on page 826.

Note: Remember that developers very often also load property files through
the class loader mechanism using the following syntax:

Properties p = new Properties();
p.load(MyClass.class.getClassLoader().getResourceAsStream("myApp.properties"
));

This means, if the class MyClass is loaded by the Extension class loader and
the myApp.properties file is only seen by the System class loader, the loading
of the property file fails.

Note: Keep in mind when reading the following discussion that each JVM has
its own setup of class loaders. In a WebSphere environment hosting multiple
application servers (JVMs), such as a Network Deployment configuration, this
means the class loaders for the JVMs are completely separated even if they
are running on the same physical machine.

 Chapter 14. Understanding class loaders 825

Figure 14-2 WebSphere class loaders hierarchy

The top box in red represents the Java (Bootstrap, Extension and System) class
loaders. WebSphere loads just enough here to get itself bootstrapped and
initialize the WebSphere extension class loader.

14.2.1 WebSphere extensions class loader
The WebSphere extensions class loader is where WebSphere itself is loaded. It
uses the following directories to load the required WebSphere classes:

� <JAVA_HOME>\lib
� <WAS_HOME>\classes (Runtime Class Patches directory, or RCP)
� <WAS_HOME>\lib (Runtime class path directory, or RP)
� <WAS_HOME>\lib\ext (Runtime Extensions directory, or RE)
� <WAS_HOME>\installedChannels

The WebSphere runtime is loaded by the WebSphere extensions class loader
based on the ws.ext.dirs system property, initially derived from the
WS_EXT_DIRS environment variable set in the setupCmdLine script file. The
default value of ws.ext.dirs is displayed in Example 14-3 on page 827.

Java class loaders

WebSphere Extension class loader
(Runtime, Library JARs)

Application class loader
(EJBs, RARs, Utility JARs)

Application class loader
(EJBs, RARs, Utility JARs)

WAR
class loader

WAR
class loader

WAR
class loader

WAR
class loader

826 WebSphere Application Server V6: System Management and Configuration Handbook

Example 14-3 Default value of we.ext.dirs

SET
WAS_EXT_DIRS=%JAVA_HOME%\lib;%WAS_HOME%\classes;%WAS_HOME%\lib;%WAS_HOME%\insta
lledChannels;%WAS_HOME%\lib\ext;%WAS_HOME%\web\help;%ITP_LOC%\plugins\com.ibm.e
tools.ejbdeploy\runtime

The RCP directory is intended to be used for fixes and other APARs that are
applied to the application server runtime. These patches override any copies of
the same files lower in the RP and RE directories. The RP directory contains the
core application server runtime files. The bootstrap class loader first finds
classes in the RCP directory then in the RP directory. The RE directory is used
for extensions to the core application server runtime.

Each directory listed in the ws.ext.dirs environment variable is added to the
WebSphere extensions class loaders class path. In addition, every JAR file and
ZIP file in the directory is added to the class path.

You can extend the list of directories and files loaded by the WebSphere
extensions class loaders by setting a ws.ext.dirs custom property to the Java
virtual machine settings of an application server.

14.2.2 Application and Web module class loaders
J2EE applications consist of five primary elements: Web modules, EJB modules,
application client modules, resource adapters (RAR files), and Utility JARs. Utility
JARs contain code used by both EJBs and servlets. Utility frameworks such as
log4j are good examples of a utility JAR.

EJB modules, utility JARs, resource adapters files, and shared libraries
associated with an application are always grouped together into the same class
loader. This class loader is called the Application class loader. Depending on the
application class loader policy, this application class loader can be shared by
multiple applications (EARs), or be unique for each application, which is the
default.

By default, Web modules receive their own class loader, a WAR class loader, to
load the contents of the WEB-INF/classes and WEB-INF/lib directories. Modify
the default behavior by changing the application's WAR class loader policy. The
default is Module. If the WAR class loader policy is set to Application, the Web
module contents are loaded by the Application class loader in addition to the
EJBs, RARs, utility JARs, and shared libraries. The Application class loader is
the parent of the WAR class loader.

 Chapter 14. Understanding class loaders 827

The application and the Web module class loaders are reloadable class loaders.
They monitor changes in the application code to automatically reload modified
classes. You can modify this behavior at deployment time.

14.2.3 Handling JNI code
Due to a JVM limitation, code that access to native code through a Java Native
Interface (JNI) must be placed on a static class path, not on a reloadable class
path. This includes shared libraries for which you can define a native class path,
or the application server class path. If you you have a class loading native code
through JNI, this class must not be placed on the WAR or Application class
loaders, but rather on the WebSphere extensions class loader.

You can break out just the lines of code that load the native library into a class of
its own and place this class on a static class loader. This way you can have all
the other code on a reloadable class loader.

14.3 Configuring WebSphere for class loaders
In the previous topic, you learned about WebSphere class loaders and how they
work together to load classes. There are settings in WebSphere Application
Server that allow you to influence WebSphere class loader behavior. This section
discusses these options.

14.3.1 Class loader policies
For each application server in the system, the application class loader policy can
be set to Single or Multiple.

When the application class loader policy is set to Single, a single application
class loader is used to load all EJBs, utility JARs, and shared libraries within the
application server (JVM). If the WAR class loader policy then has been set to
Application, the Web module contents for this particular application are also
loaded by this single class loader.

When the application class loading policy is set to Multiple, the default, each
application will receive its own class loader for loading EJBs, utility JARs, and
shared libraries. Depending on whether the WAR class loader loading policy is
set to Module or Application, the Web module might or might not receive its own
class loader.

Here is an example to illustrate. You have two applications, Application1 and
Application2, running in the same application server. Each application has one
EJB module, one utility JAR and two Web modules. If the application server has

828 WebSphere Application Server V6: System Management and Configuration Handbook

its class loader policy set to Multiple, the default, and the class loader policy for
all the Web modules are set to Module, also the default, the result is as shown in
Figure 14-3.

Figure 14-3 Class loader policies: Example 1

Each application is completely separated from the other and each Web module is
also completely separated from the other one in the same application.
WebSphere’s default class loader policies results in total isolation between the
applications and the modules.

If we now change the class loader policy for the WAR2-2 module from Module to
Application, the result is as shown in Figure 14-4 on page 830.

WebSphere Extension class loader

Application1 class loader
EJB1.jar
Util1.jar

WAR1-1
class loader

WAR1-2
class loader

WAR2-1
class loader

Application2 class loader
EJB2.jar
Util2.jar

WAR2-2
class loader

 Chapter 14. Understanding class loaders 829

Figure 14-4 Class loader policies: Example 2

Web module WAR2-2 is loaded by Application2’s class loader and classes for
example in Util2.jar are able to see classes in WAR2-2’s /WEB-INF/classes and
/WEB-INF/lib directories.

As a last example, if we change the class loader policy for the application server
from Multiple to Single and also change the class loader policy for WAR2-1 from
Module to Application, the result is as shown in Figure 14-5 on page 831.

WebSphere Extension class loader

Application1 class loader
EJB1.jar
Util1.jar

WAR1-1
class loader

WAR1-2
class loader

WAR2-1
class loader

Application2 class loader
EJB2.jar
Util2.jar

WAR2-2.war

830 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 14-5 Class loader policies: Example 3

There is now only a single application class loader loading classes for both
Application1 and Application2. Classes in Util1.jar can see classes in EJB2.jar,
Util2.jar, WAR2-1.war and WAR2-2.war. The classes loaded by the application
class loader can still not, however, see the classes in the WAR1-1 and WAR1-2
modules because a class loader can only find classes by going up the hierarchy,
never down.

14.3.2 Class loader/delegation mode
WebSphere’s application class loader and WAR class loader both have a setting
called the class loader mode. This setting determines whether they should follow
the normal Java class loader delegation mechanism as described in 14.1, “A
brief introduction to Java class loaders” on page 822 or override it. There are two
possible values for the class loader mode: PARENT_FIRST and PARENT_LAST.

The default value for class loader mode is PARENT_FIRST. This mode causes
the class loader to first delegate the loading of classes to its parent class loader
before attempting to load the class from its local class path. This is the default
policy for standard Java class loaders.

WebSphere Extension class loader

WAR1-1
class loader

WAR1-2
class loader

EJB1.jar
Util1.jar

EJB2.jar
Util2.jar

WAR2-1.war
WAR2-2.war

Application class loader

 Chapter 14. Understanding class loaders 831

If the class loading policy is set to PARENT_LAST, the class loader attempts to
load classes from its local class path before delegating the class loading to its
parent. This policy allows an application class loader to override and provide its
own version of a class that exists in the parent class loader.

Delegation mode can be set for the following class loaders:

� Application class loader
� WAR class loader
� Shared library class loader

Assume you have an application, similar to Application1 in the previous
examples, and it uses the popular log4j package to perform logging from both the
EJB module and the two Web modules. Also assume that each module has its
own, unique, log4j.properties file packaged into the module. It is tempting to
configure log4j as a utility JAR so you only have a single copy of it in your EAR
file.

However, if doing so you would perhaps be surprised to see that all modules,
also the Web modules, load the log4j.properties file from the EJB module. The
reason is that when a Web module initializes the log4j package, the log4j classes
are loaded by the application class loader. Log4j is configured as a utility JAR.
Log4j then looks for a log4j.properties file on its class path and finds it in the EJB
module.

Even if you do not use log4j for logging from the EJB module and the EJB
module does not, therefore, contain a log4j.properties file, log4j does not find the
log4j.properties file in any of the Web modules anyway. The reason is that a
class loader can only find classes by going up the hierarchy, never down.

To solve this problem you can either:

� Create a separate file, for example Resource.jar, configure it as a utility JAR,
move all log4j.properties files from the modules into this file, make their
names unique (like war1-1_log4j.properties, war1-2_log4j.properties and
ejb1_log4j.properties). When initializing log4j from each module, tell it to load
the proper configuration file for the module instead of the default
(log4j.properties).

� Keep the log4j.properties for the Web modules in their original place
(/WEB-INF/classes), add log4j.jar to both Web modules (/WEB-INF/lib) and
set the class loader mode for the Web modules to PARENT_LAST. When
initializing log4j from a Web module, it loads the log4j.jar from the module
itself and log4j would find the log4j.properties on its local classpath, the Web
module itself. When the EJB module initializes log4j, it loads from the
application class loader and it finds the log4j.properties file on the same class
path, the one in the EJB1.jar file.

832 WebSphere Application Server V6: System Management and Configuration Handbook

� Merge, if possible, all log4j.properties files into one and place it on the
application class loader, in a Resource.jar file, for example).

14.3.3 Class preloading
The first time that a WebSphere Application Server process starts, the name of
each run-time class that is loaded and the name of the JAR file that contains the
class are written to a preload file. The names of non-runtime classes such as
custom services, resource classes such as db2jcc.jar, classes on the JVM class
path, and application classes, your own J2EE applications, are not written to the
preload file. Subsequent startups of the process use the preload file to start the
process more quickly.

Preload files have the .preload extension. WebSphere Application Server
processes that have preload files include those listed in Table 14-1.

Table 14-1 WebSphere class preloading file names

Running the startServer server1 command causes the startServer command to
use a WsServerLauncher.preload file and the server to use a
cell_name.node_name.server1.preload file. Later, running a command such as
startServer server1 -script, where the -script option creates a new script, uses
the cell_name.node_name.server1.preload file only.

Preload files, by default, are created in the logs/preload directory of the profile
directory.

New classes required during the startup of a process are added to the preload
file. Any classes removed from a process are ignored during subsequent
startups. Although it is not necessary, an administrator can delete the preload file
and force a refresh that removes the ignored classes from the file.

 Singletons: The Singleton pattern is used to ensure that a class is
instantiated only once. However, once only means once for each class loader.
If you have a Singleton being instantiated in two separated Web modules, two
separate instances of this class will be created, one for each WAR class
loader. So in a multi-class loader environment, special care must be taken
when implementing Singletons.

Process Preload file name

Application server cell_name.node_name.server_name.preload

startServer WsServerLauncher.preload

launchClient launchClient.preload

 Chapter 14. Understanding class loaders 833

Class preloading is enabled by default. If you want to disable it for a particular
application server, set the JVM property ibm.websphere.preload.classes to
false for that application server. To do this, do the following:

1. In the administrative console, click Servers > Application Servers >
server_name > Java and Process Management > Process Definition >
Java Virtual Machine.

2. On the Java Virtual Machine page, specify
-Dibm.websphere.preload.classes=false for Generic JVM arguments.

3. Click OK.

4. Save your administrative configuration.

5. Stop the application server and then restart it.

To enable class preloading again, either remove the
ibm.websphere.preload.classes setting or set it to true and then stop and restart
the application server.

14.3.4 Shared libraries
Shared libraries are files used by multiple applications. Examples of shared
libraries are commonly used frameworks like Apache Struts or log4j. You use
shared libraries typically to point to a set of JARs and associate those JARs to an
application or application server. Shared libraries are especially useful when you
have different versions of the same framework you want to associate to different
applications.

Shared libraries are defined using the administration tools. They consist of a
symbolic name, a Java class path, and a native path for loading JNI libraries.
They can be defined at the cell, node, or server level. However, defining a library
at one of the three levels does not cause the library to be loaded. You must
associate the library to an application and an application server, or just an
application server, for the classes represented by the shared library to be loaded.

You can associate the shared file to an application in one of two ways:

� You can use the administration tools. The library is added under the Libraries
section of the additional properties for the enterprise application.

� You can use the manifest file of the application and the shared library. The
shared library contains a manifest file that identifies it as an extension. The
dependency to the library is declared in the application’s manifest file by
listing the library extension name in an extension list.

For more information about this method, search installed optional packages in
the Information Center.

834 WebSphere Application Server V6: System Management and Configuration Handbook

Shared files are associated with an application server using the administrative
tools. The settings are found in the Server Infrastructure section. Expand the
Java and Process Management. Select Class loader. At this point, you have two
options:

� If you associate the shared library to an application, the JARs listed on the
shared library path are loaded by the application class loader together with
EJB JARs, RARs and utility JARs.

� If you associate the shared library at the application server level, the JARs
listed on the shared library path are loaded by a specific class loader, which
you define.

See “Step 4: Sharing utility JARs among multiple applications” on page 840 for
more details.

14.4 Learning class loaders by example
We have now described all the different options for influencing class loader
behavior. In this section we take an example and use all the different options we
have discussed to this point so that you can better evaluate the best solution for
your applications.

We have created a very simple application, with one JSP and one EJB. Both call
a class, VersionChecker, shown in Example 14-4. This class can print which
class loader was used to load the class. The VersionChecker class also has an
internal value that can be printed to check which version of the class we are
using. This will be used later to demonstrate the use of multiple versions of the
same utility JAR.

Example 14-4 VersionChecker class source code

public class VersionChecker {

static final public String classVersion = "1.0";

public String printClassLoaderInfo() {
return ("Class Version Checker was loaded by: " +

this.getClass().getClassLoader());
}

public String printVersionInfo () {
return ("Class version is: " + classVersion);

}
}

 Chapter 14. Understanding class loaders 835

Once installed, the application can be invoked through
http://localhost:9080/testclassloaders. This invokes a JSP
(callVersionChecker.jsp) which returns the sample information in Example 14-5.

Example 14-5 Invoking callVersionChecker.jsp

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@1284e9f8
Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\kcfn7r6Cell\ClassloaderT
est.ear\ClassloaderTestEJB.jar;C:\WebSphere\AppServer\profiles\AppSrv01\install
edApps\kcfn7r6Cell\ClassloaderTest.ear\myjars\ClassloadersTest.jar; Delegation
Mode: PARENT_FIRST
Class version is: 1.0

The ClassloadersTest.jar file contains the VersionChecker class file. For all the
following tests, we have, unless otherwise noted, left the class loader policies
and loading modes to their defaults. In other words, we have one class loader for
the application and one for the WAR file. Both have their delegation modes set to
PARENT_FIRST. We assume the application has been deployed to an application
server called AppSrv01. See Example 14-6.

Example 14-6 CallVersionChecker.jsp source

...
<TITLE>WAS V6 Classloaders Info</TITLE>
</HEAD>
<BODY>
<h2> Version Checker Information </h2>
<h3> Direct call from Servlet to Version Checker Class </h3>
<%
 com.ibm.wss.lge.classloaders.VersionChecker versionChecker

= new com.ibm.wss.lge.classloaders.VersionChecker();
 out.println("
" + versionChecker.printClassLoaderInfo());
 out.println("
" + versionChecker.printVersionInfo());
%>
<h3> Call the VersionChecker via Access bean-> enterprise session bean </h3>
<%
 com.ibm.wss.lge.ejbs.ClassLoaderTesterAccessBean versionCheckerAB

= new com.ibm.wss.lge.ejbs.ClassLoaderTesterAccessBean();
 out.println("
" + versionCheckerAB.callVersionChecker());
%>
</BODY>
...

During the tests, we worked directly on the file system by modifying the contents
of the <profile_home>\installedApps\kcfn7r6Cell\ClassloaderTest.ear directory.
Obviously, this is not a wise thing to do in production!

836 WebSphere Application Server V6: System Management and Configuration Handbook

14.4.1 Step 1: Simple WAR packaging
Start with the following assumption: our utility class is only used by a servlet. In
the JSP, we have commented out the lines that invoke the EJB part of the
application. We have placed the ClassloadersTest.jar file under the WEB-INF/lib
directory of the WAR file.

When we run the application in such a configuration, we obtain the results shown
in Example 14-7.

Example 14-7 Class loader: Example 1

Version Checker Information
Direct call from Servlet to Version Checker Class

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@31d13f47

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest2
.ear\ClassloaderTestWeb2.war\WEB-INF\classes;C:\WebSphere\AppServer\profiles\Ap
pSrv01\installedApps\Cell01\ClassloadersTest2.ear\ClassloaderTestWeb2.war\WEB-I
NF\lib\ClassloadersTest.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedA
pps\Cell01\ClassloadersTest2.ear\ClassloaderTestWeb2.war;

Delegation Mode: PARENT_FIRST
Class version is: 1.0

There are a few things we can learn from this trace:

1. The type of the WAR class loader is
com.ibm.ws.classloader.CompoundClassLoader.

2. It searches classes in the following order:

ClassloaderTestWeb.war\WEB-INF\classes
ClassloaderTestWeb.war\WEB-INF\lib\ClassloadersTest.jar
ClassloaderTestWeb.war

The WEB-INF/classes folder is usually used for servlets and property files, while
the WEB-INF/lib is used for JARs (not ZIPs). Note that the class loader class
path is built at application startup, which is why you see only the
ClassloadersTest JAR listed there. If multiple JARs had been placed under this
folder, you would see all of them listed on the local class path. The root of the
WAR file is the next place where you can put code or properties classes.

Tip: You put under WEB-INF/lib JAR files used by a single Web module, or a
JAR file that only this Web module should see.

 Chapter 14. Understanding class loaders 837

14.4.2 Step 2: Sharing the utility JAR among multiple modules
Next, we decided to run the EJB part of the application, which also depends on
our ClassloadersTest.jar JAR file. Because the JAR file is to be used by multiple
modules in the same application, the best solution is to place it relative to the root
of the EAR file and to reference it from a Class-Path entry in the JAR manifest
file.

In Example 14-7 on page 837, the VersionChecker stored in in
WEB-INF/LIB/ClassloadersTest.jar returned a class version of 1.0 in the output.
For illustration purposes, we have created a new JAR file called
ClassloadersTestV2.jar. The VersionChecker stored in this JAR file returns
version 2.0.

The Manifest Class-Path entry
In this situation, we place the JAR file in a /myjars/ directory at the root of the
EAR file. From a J2EE perspective, this directory is unknown, and the directory
contents will not be added to the class path automatically. The solution is to
create a Class-Path entry in the META-INF/MANIFEST.MF file for each module
which uses classes from the classloadersTest.jar file. Paths are relative to the
root of the EAR file.

Update the WAR file as in Example 14-8:

Example 14-8 Updating the WAR file

#This is the Manifest file for ClassloaderTestWeb file
Manifest-Version: 1.0
Class-Path: ClassloaderTestEJB.jar myjars/ClassloadersTestV2.jar

In the EJB file, update the MANIFEST.MF as in Example 14-9:

Example 14-9 Updating MANIFEST.MF

#This is the Manifest file for ClassloaderTestEJB
Manifest-Version: 1.0
Class-Path: myjars/ClassloadersTestV2.jar

The test results are then as shown in Example 14-10.

Example 14-10 Class loader: Example 2

Version Checker Information
Direct call from Servlet to Version Checker Class

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@3096c631

838 WebSphere Application Server V6: System Management and Configuration Handbook

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestEJB.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedAp
ps\Cell01\ClassloadersTest.ear\myjars\ClassloadersTestV2.jar;

Delegation Mode: PARENT_FIRST
Class version is: 2.0

Call the VersionChecker via Access bean to enterprise session bean
VersionChecker Classloader Info

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@3096c631 Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestEJB.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedAp
ps\Cell01\ClassloadersTest.ear\myjars\ClassloadersTestV2.jar;

Delegation Mode: PARENT_FIRST
Class version is: 2.0

Although the class loader type is the same (CompoundClassLoader), this is the
application class loader, not the WAR class loader. You can see this from the
class path, which is very different. Remember, all utility JARs are loaded by the
application class loader. As soon as you reference a JAR with a Class-Path
directive, it is considered a utility JAR. The same class loader is used by the servlet
and the EJBs to load the VersionChecker class.

14.4.3 Step 3: Changing the WAR class loader delegation mode
What happened to the ClassloadersTest.jar under WEB-INF/lib? It is still there,
but it is ignored because the delegation mode of the WAR is set to PARENT_FIRST.

Set the delegation mode to PARENT_LAST, using the following steps:

1. Select the Enterprise Applications entry in the navigation area.
2. Select the ClassloaderTest application.
3. Select Web Modules under the Related Items section.
4. Select the ClassloaderTestWeb.war.
5. Change the Class loader Mode to PARENT_LAST.
6. Click OK.
7. Save the configuration.
8. Restart the application.

The VersionChecker in WEB-INF/lib returns a class version of 1.0. You can see
in Example 14-11 on page 840 that this is the version used by the WAR file.

 Chapter 14. Understanding class loaders 839

Example 14-11 Class loader: Example 3

Version Checker Information
Direct call from Servlet to Version Checker Class

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@30a70501

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestWeb.war\WEB-INF\classes;C:\WebSphere\AppServer\profiles\AppS
rv01\installedApps\Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war\WEB-INF\l
ib\ClassloadersTest.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\
Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war;

Delegation Mode: PARENT_LAST
Class version is: 1.0

Call the VersionChecker via Access bean to enterprise session bean
VersionChecker Classloader Info

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@30c94501

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestEJB.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedAp
ps\Cell01\ClassloadersTest.ear\myjars\ClassloadersTestV2.jar;

Delegation Mode: PARENT_FIRST
Class version is: 2.0

14.4.4 Step 4: Sharing utility JARs among multiple applications

In this situation, the ClassloaderTest.jar file is used by a single application. What
if you wanted to share it among multiple applications? Of course, you could
package it within each EAR file. But changes to this utility JAR file require
redeploying all applications again. To avoid this, you can externalize global utility
JARs.

Tip: Use this to specify that a Web module should use a specific version of a
library such as Struts, or to override classes coming with the WebSphere
runtime. Put the common version at the top of the hierarchy, and the
specialized version in WEB-INF/lib.

840 WebSphere Application Server V6: System Management and Configuration Handbook

You have two solutions to this problem:

� Use the application extensions class loader, inherited from Version 4.0.
� Use shared libraries, the recommended solution.

Using the application extensions class loader
The role of this class loader is to load any JAR file placed in the
<was_home>/lib/app directory. This class loader has a delegation mode set to
PARENT_LAST.

By default, the <was_home>/lib/app directory does not exist. However, at
application startup, the class loader runtime checks for its existence and starts
the application extensions class loader if it does exist.

For testing purposes only, if you create this <was_home>/lib/app directory, drop
in the ClassloadersTest.jar, and restart the application server, the results are
shown in Example 14-12.

Example 14-12 Class loader: Example 4

Version Checker Information
Direct call from Servlet to Version Checker Class

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@3128395a

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestWeb.war\WEB-INF\classes;C:\WebSphere\AppServer\profiles\AppS
rv01\installedApps\Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war\WEB-INF\l
ib\ClassloadersTest.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\
Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war;

Delegation Mode: PARENT_LAST
Class version is: 1.0

Call the VersionChecker via Access bean to enterprise session bean
VersionChecker Classloader Info

Note: All applications running within the same WebSphere node running with
PARENT_FIRST delegation mode see what is contained in this directory,
regardless of the application server in which they run. This might be what you
want to achieve. You might have a framework that needs to be shared by all
your applications. But if some applications want to use the level 1.0 of the
framework while others want to use Version 2.0, using the lib/app directory is
not the right solution.

 Chapter 14. Understanding class loaders 841

Class Version Checker was loaded by:
com.ibm.ws.classloader.ExtJarClassLoader@1483061593 Local ClassPath:
C:\WebSphere\AppServer\lib\app\ClassloadersTest.jar;

Delegation Mode: PARENT_LAST
Class version is: 1.0

Note that the servlet still uses the code from WEB-INF/lib because its delegation
mode is set to PARENT_LAST. The EJB, however, uses the code from the lib/app
directory.

Using shared libraries
A much cleaner and manageable way to work is to use the shared libraries
support. Shared libraries can be defined at the cell, node, and application server
levels. Once you have defined a shared library, you must associate it to an
application or to a server. JARs and folders listed on a shared library are always
loaded by the application class loader.

You can define as many shared libraries as you want. You can also associate
multiple shared libraries with an application or application server.

Using shared libraries at the application level
To define a shared library named VersionCheckerV2_SharedLib and associate it
to our ClassloaderTest application, do the following:

1. In the administrative console, select Environment →Shared Libraries.

2. Select the level at which you want this shared library to be defined, such as
Cell, and click New.

3. Specify the following properties as in Figure 14-6 on page 843.

842 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 14-6 Shared library configuration

– Name: Enter VersionCheckerV1.

– Class path: Enter the list of entries on the class path. Press Enter
between each entry. We highly recommend that if you need to provide an
absolute path that you use WebSphere variables, such as
%FRAMEWORK_JARS%/ClassloadersTest.jar. Make sure that you
declare this variable at the same scope as the shared library for cell, node,
or server).

– Native library path: Enter a list of DLLs and .so files for use by the JNI
code.

4. Click OK.

5. Select Applications →Enterprise Applications.

6. Select the ClassloadersTest application.

7. In Additional Properties, select Libraries.

8. Click Add. You should see the library you just created. If not, you probably
have a scoping problem.

9. Select the shared library, and click OK.

10.Save the configuration.

 Chapter 14. Understanding class loaders 843

If we now remove the ClassloadersTest.jar file from the lib/app folder and restart
the application server, we see the following test results in Example 14-13:

Example 14-13 Class loader: Example 5

Call the VersionChecker via Access bean to enterprise session bean
VersionChecker Classloader Info

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@30ec422c Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestEJB.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedAp
ps\Cell01\ClassloadersTest.ear\myjars\ClassloadersTestV2.jar;C:\classloaders\Cl
assloadersTest.jar;

Delegation Mode: PARENT_FIRST
Class version is: 2.0

Although we have put the V1.0 of the ClassloadersTest.jar on the shared library,
we see V2.0 being loaded. This is because we are loading the
ClassloadersTestV2.jar, which is inside the EAR file. We have not removed it!
The list of JAR files you declare in a shared library is appended to the application
class loader class path. Keep in mind that order is very important.

Therefore, if you want the shared library code to be loaded, remove the
Class-path entry from the EJB module MANIFEST.MF file, restart the
application, and try again.

Using shared libraries at the application server level
A shared library can also be associated to an application server. All applications
deployed in this server see the code listed on that shared library. To associate a
shared library to an application server, you must first create a class loader as
follows:

1. Select an application server.

2. In the Server Infrastructure section, expand the Java and Process
Management. Select Class loader.

3. Choose New, and select a class loading policy for this class loader,
PARENT_FIRST or PARENT_LAST. If you set the application policy to
PARENT_LAST, you will be able to use your own classes in place of some
WebSphere runtime classes , for example typically, XML parsers or
transformers.

4. Click Apply.

5. Select the Libraries entry.

844 WebSphere Application Server V6: System Management and Configuration Handbook

6. Click Add, and select the library you want to associate to this application
server. Repeat this operation to associate multiple libraries to this class
loader.

7. Click OK.

8. Save the configuration.

If we attach the VersionCheckerV1 shared library to the application server, we
obtain the results in Example 14-14 with our application:

Example 14-14 Class loader: Example 6

Version Checker Information
Direct call from Servlet to Version Checker Class

Class Version Checker was loaded by:
com.ibm.ws.classloader.CompoundClassLoader@3118cdc9

Local ClassPath:
C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\Cell01\ClassloadersTest.
ear\ClassloaderTestWeb.war\WEB-INF\classes;C:\WebSphere\AppServer\profiles\AppS
rv01\installedApps\Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war\WEB-INF\l
ib\ClassloadersTest.jar;C:\WebSphere\AppServer\profiles\AppSrv01\installedApps\
Cell01\ClassloadersTest.ear\ClassloaderTestWeb.war;

Delegation Mode: PARENT_LAST
Class version is: 1.0

Call the VersionChecker via Access bean to enterprise session bean
VersionChecker Classloader Info

Class Version Checker was loaded by:
com.ibm.ws.classloader.ExtJarClassLoader@1204276682

Local ClassPath: C:\classloaders\ClassloadersTest.jar;

Delegation Mode: PARENT_FIRSTClass version is: 1.0

Note that the WAR class loader continues to load its own version due to the
delegation mode, PARENT_LAST, while the EJB module loads the code from the
highest class loader in the hierarchy, the one we just defined at the application
server level.

 Chapter 14. Understanding class loaders 845

846 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 15. Packaging applications

In this chapter, we show you how to perform some common tasks involved in
packaging a J2EE application. For this purpose we will use the WebSphere Bank
sample application that ships with WebSphere Application Server V6. We will
show you how to:

� Set the JNDI bindings for its EJBs
� Change the sample to use a DB2 database
� Generate deployment code for the application

We will also discuss some advanced configuration options such as EJB caching
and access intents.

Finally, we explain the concept of the Enhanced EAR file, introduced in
WebSphere Application Server V6, and show how to add more deployment
information to the WebSphere Bank EAR file.

To package the application, we will use the Application Server Toolkit. The toolkit
is based on the Eclipse V3 platform and contains a subset of the plug-ins that
make up Rational Application Developer V6. It allows you to create and modify
J2EE applications and modules, edit deployment descriptors, and map
databases. The toolkit also allows you to perform basic testing, debugging and
profiling of WebSphere applications.

15

© Copyright IBM Corp. 2005. All rights reserved. 847

15.1 WebSphere Bank sample application
WebSphere Bank is an Internet bank that provides online checking and savings
banking. Using WebSphere Bank, customers can open accounts, get account
balances, and transfer funds between accounts. It has both a Web front-end and
a simple text-mode interface accessible by running its J2EE application clients.

The application uses many of the J2EE and WebSphere Application Server
functions such as EJBs (session, entity and message-driven beans), servlets,
JSPs, Web services, JMS, and so forth.

We will not go into details on how WebSphere Bank works. For more detailed
information, refer to the WebSphere Information Center. If you have installed the
sample applications on your system, you can also find information at:

http://localhost:9080/WSsamples

When WebSphere Bank is installed and configured properly, it can be invoked at:

http://localhost:9080/WebSphereBank

The WebSphereBank EAR file consists of the modules show in Figure 15-1.

Figure 15-1 WebSphereBank modules

BankAdapter
Interface.jar

WsaEJB
DeployUtility.jar

Utility JARs

BankCMR
QLEJB.jar

EJB module

BankRA.rar

Resource
Adapter RAR

Find
Accounts.jar

Get
Accounts.jar

Transfer
JMSClient.jar

Application
Client modules

BankCMR
QLEJB.war

BankCMR
QLWeb.war

Bank
Gallery.war

Deposit
JCAWeb.war

Web modules

848 WebSphere Application Server V6: System Management and Configuration Handbook

http://localhost:9080/WSsamples
http://localhost:9080/WSsamples
http://localhost:9080/WebSphereBank
http://localhost:9080/WSsamples

As shown, the WebSphere Bank EAR file has two utility JARs, one EJB module,
four Web modules and one resource adapter module. It also has three
application client modules which are used to invoke services on the system from
a standalone JVM.

15.1.1 WebSphere Bank resources used
To run successfully, WebSphere Bank requires the following resources to be
configured:

� JAAS authentication alias

– Scope: cell level
– Name: <cellname>/samples
– Userid: samples
– Password: s1amples

� JDBC provider

– Scope: server level
– Name: Samples Cloudscape JDBC Provider (XA)
– Driver: Built-in Cloudscape JDBC Provider (XA)

� Data source

– Scope: server level
– JDBC provider: Samples Cloudscape JDBC Provider (XA)
– Name: BANKDS
– JNDI name: jdbc/Bank
– Database name:

${APP_INSTALL_ROOT}/${CELL}/WebSphereBank.ear/Database/BankDB

� Data source connection factory

– Scope: server level
– JDBC provider: Samples Cloudscape JDBC Provider (XA)
– Datasource name: BANKDS
– Name: BANKDS_CF
– Authentication mechanism: BASIC_PASSWORD
– Authentication alias: N_O_N_E
– Interface: javax.resource.cci.ConnectionFactory

� Service integration bus

– Scope: node level
– Name: <nodename>SamplesBus

� JMS connection factory

– Scope: node level
– Name: BankJMSConnFactory

 Chapter 15. Packaging applications 849

– JNDI name: jms/BankJMSConnFactory
– Authentication alias: <cell_name>/samples
– Service Integration Bus name: <node_name>SamplesBus

� JMS queue

– Scope: node level
– Name: BankJMSQueue
– JNDI name: jms/BankJMSQueue
– Service Integration Bus queue: BankJSQueue

� Service integration bus queue

– Scope: server level
– Name: BankJSQueue
– Service Integration Bus: <node_name>SamplesBus

� JMS activation spec

– Scope: node level
– Name: BankActivationSpec
– JNDI name: eis/BankActivationSpec
– Destination JNDI name: jms/BankJMSQueue
– Destination type: javax.jms.Queue
– Authentication alias: <cell_name>/samples
– Service integration bus: <node_name>SamplesBus

The resources can be configured automatically by running the WebSphere Bank
install script, which uses wsadmin. When you first access the WebSphere
samples, you will see two options in the navigation panel on the left: Installed
Samples and Installable Samples. Expand Installable Samples and select
WebSphere Bank under Applications. This will show you information about how
to run the script.

You can also define the environment manually by inspecting the installation
scripts and using the administrative console to define the resources.

15.2 Packaging using the Application Server Toolkit
To illustrate packaging techniques, we will import the WebSphere Bank
application into the Application Server Toolkit and go through the various aspects
of packaging an application for deployment. The application can then be
exported as an EAR file for deployment.

850 WebSphere Application Server V6: System Management and Configuration Handbook

15.2.1 Preparing the sample code
In our example, we used the WebSphere Bank sample application shipped with
WebSphere Application Server V6. To obtain sample code suitable for import to
the Application Server Toolkit, we used the documentation available with the
Samples Gallery to rebuild the sample code using ANT. The steps required to
prepare the code for import on a Windows system are as follows:

1. Create an application server profile. The new profile includes the sample
code and the build script.

2. Open a command prompt and change to this directory:

<profile_root>\samples\src\WebSphereBank

3. Run the Sample build script:

<profile_root>\samples\bin\WebSphereBank\buildbank.bat

The script will remove the deploy code from the sample and repackage the
EAR file. The resulting EAR file will be in the following directory:

<profile_root>\samples\lib\WebSphereBank

15.2.2 Importing an EAR file
To work with the WebSphere Bank EAR file in the Application Server Toolkit, we
first need to import it.

1. Select Start →Programs → IBM WebSphere Application Server Toolkit,
V6.0 → Application Server Toolkit.

2. When asked for a default location for a workspace, browse to a suitable
directory and then click OK. Do not check the Use this as the default and do
not ask again check box.

3. When the toolkit has launched, close the Welcome page by clicking the X in
the Welcome tab, as in Figure 15-2.

Figure 15-2 Welcome page

4. Select File →Import.

5. Select EAR file from the list, click Open, and then click Next.

 Chapter 15. Packaging applications 851

6. Click Browse, select the WebSphereBank.ear file and click Open. The file is
located in the <was_home>\samples\lib\WebSphereBank directory. Then click
Next.

7. On the second page, accept the defaults with nothing selected and click Next.

8. On the third page, accept the defaults and click Finish. This will import the
code into your workspace.

9. When the code has been imported, click Yes on the dialog box asking you to
switch to the J2EE perspective.

The Project explorer view in Figure 15-3 shows the EAR file contents organized
by module.

Figure 15-3 WebSphere Bank modules list

As you can see, it has the modules shown in Figure 15-1 on page 848.

Note: When you import an EAR file, the workspace rebuilds the project.
The build process runs as a separate background thread and can take a
minute or two, depending on the application. In the lower right corner of the
Application Server Toolkit window a progress indicator tells you what is
happening. When rebuild is complete, any error messages will appear in
the Problems view.

852 WebSphere Application Server V6: System Management and Configuration Handbook

If you click the Problems tab you see that the workspace has a lot of problems.
See Figure 15-4. WebSphere V6 samples were not built using Application Server
Toolkit or Rational Application Developer and do not have the extra meta
information about the classpaths these tools need. Before doing anything else,
we need to remove these problems.

Figure 15-4 Problems after importing WebSphere Bank EAR file

1. In the Project Explorer, expand Dynamic Web Projects.

2. Select and right-click the BankCMRQLWeb and select Properties. See
Figure 15-5 on page 854.

 Chapter 15. Packaging applications 853

Figure 15-5 Open the properties for a Web module

3. Select the Java Build Path section and click the Projects tab.

4. Check the BankCMRQLEJB_EJB project in the list as shown in Figure 15-6
on page 855 and click OK.

854 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-6 Configure Java Build Path for BankCMRQLWeb project

5. Next we need to configure the build path also for the DepositJCAWeb project.
Right-click the DepositJCAWeb project and select Properties.

6. Select the Java Build Path section and click the Projects tab.

7. Check the BankRA project in the list as shown in Figure 15-7 on page 856
and click OK.

 Chapter 15. Packaging applications 855

Figure 15-7 Configure Java Build Path for DepositJCAWeb project

This reduces the number of problems to no errors, three warnings and one
informational message. We do not need to care about these warnings because
the EAR file now builds properly and should work fine for our purposes.

Tip: When using the Application Server Toolkit, keep in mind the following:

� To perform a complete rebuild of your project(s) select Project →Clean
and then select either to clean current or all projects. This will remove all
build problems from the Problems view and perform a complete re-build of
the selected projects. This sometimes removes errors and warnings in the
Problems view.

� As you update and save modules in the toolkit, the contents of the modules
are automatically validated and problems are listed in the Tasks view. You
can also manually invoke validation of modules by selecting any module
and choosing Run Validation from the context menu. To verify the settings
for validation, select Window →Preferences and click Validation.

856 WebSphere Application Server V6: System Management and Configuration Handbook

15.2.3 Working with deployment descriptors
Information describing a J2EE application and how to deploy it into a J2EE
container is stored in XML files called deployment descriptors. An EAR file
normally contains multiple deployment descriptors, depending on the modules it
contains. Figure 15-8 shows a schematic overview of a J2EE EAR file. In this
figure the various deployment descriptors are designated with DD after their
name.

Figure 15-8 J2EE EAR file structure

The deployment descriptor of the EAR file itself is stored in the META-INF
directory in the root of the EAR and is called application.xml. It contains
information about the modules which make up the application.

The deployment descriptors for each module are stored in the META-INF
directory of the module and are called web.xml (for Web modules), ejb-jar.xml
(for EJB modules), ra.xml (for resource adapter modules) and
application-client.xml (for application client modules). These files describe the
contents of a module and allow the J2EE container to configure things like
servlet mappings, JNDI names and so forth.

Classpath information specifying which other modules and utility JARs are
needed for a particular module to run, is stored in the manifest.mf file also in the
META-INF directory of the modules.

In addition to the standard J2EE deployment descriptors, EAR files produced by
the Application Server Toolkit can also include additional WebSphere-specific

Web
DD

EJB
Module
JAR file

EJB
Module
JAR file

Web
Module

WAR file

Web
Module

WAR file

Client
Module
JAR file

Client
Module
JAR file

J2EE
Application

EAR file
Installed

RARs
Installed

RARs

IBM Bind

Schema
Map

Schema
Attributes

Table
Creation

was.policy
(Java2 Sec)

IBM
Bind/Ext

HTML,
GIFs,
etc.

HTML,
GIFs,
etc.

Servlet
JSP

Servlet
JSP

Application
DD

Web
Services

DD
Client

Classes
Client

Classes

EJBsEJBs

IBM
Bind/Ext

IBM
Bind/Ext

EJB
DD

WS IBM
Bind/Ext

Web
Services

DD

Client
DD

WS Client
IBM Bind/Ext

WSDL <-> Java
Mapping Files

WSDL <-> Java
Mapping Files

WS Client IBM
Bind/Ext

WS IBM
Bind/Ext

WS Client IBM
Bind/Ext

WSDL <-> Java
Mapping Files

 Chapter 15. Packaging applications 857

information used when deploying applications to WebSphere environments. This
supplemental information is stored in files called ibm-xxx-xxx-xxx.xmi, also in the
META-INF directory of the respective modules. Examples of information in the
IBM-specific files are IBM extensions like servlet reloading and EJB access
intents.

New in WebSphere Application Server V6 is also the information contained in the
Enhanced EAR files. This information, including settings for the resources
required by the application, is stored in an ibmconfig subdirectory of the EAR
file’s META-INF directory. In the ibmconfig directory are the directories for a
WebSphere cell configuration.

The Application Server Toolkit has easy-to-use editors for working with all
deployment descriptors. The information that goes into the different files are
shown on one page in the GUI, eliminating the need to be concerned about what
information is put into what file. However, if you are interested, you can click the
Source tab of the deployment descriptor editor to see the text version of what is
stored in that descriptor. For example, if you open the EJB deployment
descriptor, you will see settings that are stored across multiple deployment
descriptors for the EJB module, including:

� The EJB deployment descriptor, ejb-jar.xml
� The extensions deployment descriptor, ibm-ejb-jar-ext.xmi
� The bindings file, ibm-ejb-jar-bnd.xmi files
� The access intent settings, ibm-ejb-access-bean.xmi

To work with a deployment descriptor, do the following:

1. Open the J2EE perspective.

2. In the J2EE Project Explorer view, expand the project category (EJB
Projects), and then expand the module you want to work with.

3. Double-click the Deployment Descriptor to open the editor for it. See
Figure 15-9 on page 859.

858 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-9 Finding the deployment descriptor

4. Figure 15-10 on page 860 shows the deployment descriptor for the
WebSphere Bank EJB module, BankCMRQLEJB, open with the deployment
descriptor editor.

 Chapter 15. Packaging applications 859

Figure 15-10 EJB deployment descriptor

While the editor shows you information stored in all the relevant deployment
descriptor files on the appropriate tabs, the Source tab only shows you the
source of the deployment descriptor itself (for example, ejb-jar.xml or web.xml)
and not the IBM extensions and bindings stored in the WebSphere-specific
deployment descriptor files. If you want to view the results of updates to those
files in the source, open each file individually. By hovering over the EJB
Deployment Descriptor caption tab you can see the different files that makes up
the EJB deployment descriptor you are editing. The descriptor files are kept in
the META-INF directory of the module you are editing.

When you have made changes to a deployment descriptor, save it by pressing
Ctrl+S and then close it.

15.3 Setting application bindings
At packaging time, you create references to resources. For an application to run,
you need to bind these references to the real resources, such as JDBC data
sources, created from the administrative console. This needs to be done for EJB
references and resource references. You also need to define the enterprise
bean’s JNDI names, and security roles.

860 WebSphere Application Server V6: System Management and Configuration Handbook

Bindings can be defined at development or deployment time. Most likely,
developers will deliver a preconfigured EAR file which will then be modified at
deployment time by the deployment team to suit the target environment.
Developers use a tool like Rational Application Developer to define bindings,
while deployers use the Application Server Toolkit.

All binding definitions are stored in the ibm-xxx-bnd.xmi files, where xxx can be
ejb-jar, web, application, or application-client.

In the next steps, you define the following bindings using the Application Server
Toolkit:

� EJB JNDI names
� EJB references
� ActivationSpecs for message-driven beans
� Data source for entity beans

All sections below assume that you have started the Application Server Toolkit
and opened the WebSphere Bank application EAR file.

15.3.1 Defining EJB JNDI names
For each session and entity enterprise bean, you must specify a JNDI name.
This name is used to bind the EJB home object to an entry in the global JNDI
name space. The bind happens automatically when the application server starts.

The WebSphere Bank enterprise beans are declared to be bound in the
ejb/Bank/ subcontext. For clarity, we recommend that you place all enterprise
bean JNDI names for an application in a separate subcontext. You can find the
JNDI names for the WebSphere Bank session and entity EJBs in Table 15-1.

Table 15-1 Webbank enterprise bean JNDI names

Use this table and the instructions below to define a JNDI name for each
WebSphere Bank enterprise bean:

1. In the Project Explorer view, expand the EJB Projects section.

2. Expand the BankCMRQLEJB_EJB module and then expand the Session
Beans and Entity Beans sections under Deployment Descriptor.

EJB Name JNDI Name

Sender session bean ejb/Bank/Sender

Transfer session bean ejb/Bank/Transfer

Account entity bean ejb/Bank/Account

Customer entity bean ejb/Bank/Customer

 Chapter 15. Packaging applications 861

3. Double-click the Sender session bean. The EJB deployment descriptor editor
opens to the Bean page, shown in Figure 15-11.

4. Look for the WebSphere Bindings section in the editor.

5. In the JNDI name field, enter ejb/Bank/Sender.

Figure 15-11 Defining EJB JNDI names

6. Repeat these steps for each of the session and entity enterprise beans in the
EJB module, that is, Transfer, Account and Customer.

7. Save the deployment descriptor.

15.3.2 Binding EJB and resource references
An EJB client can define EJB references, logical names or nicknames, used by
the client to find the EJB homes. When using references, the client can hard
code the name of the reference. Then, during deployment, the reference is
mapped to the real name in the JNDI namespace to which the EJB is bound. A
reference to an EJB specifies either the Local or Remote home of the EJB.

For the WebSphere Bank sample, we use the resource references shown in
Table 15-2 on page 863.

862 WebSphere Application Server V6: System Management and Configuration Handbook

Table 15-2 EJB and resource references : JNDI names list

The last reference, ejb/CustomerHome, is a reference to the remote home
interface of the Customer entity EJB. All other are references to their respective
EJB’s local home.

Follow these steps to bind an EJB local reference to a JNDI name:

1. In the Project Explorer view, expand the Dynamic Web Projects.

2. Expand the BankCMRQLWeb module and then double-click the deployment
descriptor. The editor opens to the overview.

3. Click the References tab.

4. Click the ejb/Account reference, as shown in Figure 15-12.

Figure 15-12 Setting EJB References bindings

EJB/Resource Reference Corresponding JNDI Name

ejb/Account ejb/Bank/Account

ejb/Customer ejb/Bank/Customer

ejb/Transfer ejb/Bank/Transfer

ejb/CustomerHome ejb/Bank/Customer

 Chapter 15. Packaging applications 863

5. In the WebSphere bindings section, specify ejb/Bank/Account.

6. Repeat these steps for all references in this Web module, using Table 15-2 as
a guide for JNDI and resources names.

7. Save the deployment descriptor.

15.3.3 Binding the message-driven bean to an ActivationSpec
The WebSphere Bank sample includes two message-driven beans. The
BankListener is a JMS-type bean and the BankATMListener is a non-JMS-type
bean. These message-driven beans must be bound to ActivationSpecs so they
can be activated when an incoming message for them arrives.

To do this, follow these steps:

1. In the Project Explorer view, expand the EJB Projects section.

2. Expand the BankCMRQLEJB_EJB module and double-click the deployment
descriptor.

3. Click the Bean tab at the bottom of the editor and select the BankListener
bean, as shown in Figure 15-13 on page 865.

Note: EJB reference bindings can be defined or overridden at deployment
time in the administrative console for all modules except for application clients,
for which you must use the Application Server Toolkit.

864 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-13 Configuring an ActivationSpec for a Message-driven bean

4. In the WebSphere bindings section, set the ActivationSpec JNDI name to
eis/BankActivationSpec.

5. Repeat steps 3 on page 864 and 4 for the BankATMListener, but use the
ActivationSpec JNDI name
eis/com.ibm.websphere.samples.bank.adapter.BankMessageListener.

6. Save the deployment descriptor file.

All bindings are now complete. Save the ready-to-deploy EAR file.

15.3.4 Defining data sources for entity beans
The entity beans in the WebSphere Bank application are container-managed
(CMP) EJBs. The EJB container handles the persistence of the EJB attributes in
the underlying persistent store. You must specify which data store to use. This is
done by binding an EJB module or an individual EJB to a data source. If you bind
the EJB module to a data source, all EJBs in that module use the same data
source for persistence. If you specify the data source at the EJB level, then this
data source is used instead.

 Chapter 15. Packaging applications 865

For the WebSphere Bank application, the data source is bound at the EJB
module level. The data source configured for the EJB must match the data
source configured in the WebSphere environment. The JNDI name for this data
source is jdbc/Bank. See “WebSphere Bank resources used” on page 849.

To bind the WebSphere Bank EJB module to this data source, follow these steps:

1. In the Project Explorer view, expand the EJB Projects section.

2. Expand the BankCMRQLEJB_EJB module and then double-click the
deployment descriptor.

3. In the Overview tab, scroll down and find the WebSphere bindings section, as
in Figure 15-14. Check the following fields:

Figure 15-14 Specifying the default CMP data source for the entity EJBs

– Backend ID

In EJB 2.x, mapping and schema files make up a back end for EJB 2.x
projects. The WebSphere Bank sample ships with a Cloudscape back end
defined. Leave this for now, though in “Creating a new database mapping
and schema” on page 867, we will create a new backend for DB2 and
change this binding to point it.

– JNDI name

Enter jdbc/Bank in the JNDI name field. This is the value the application
uses to access the database. Note that this is the same, regardless of
which backend ID is used.

866 WebSphere Application Server V6: System Management and Configuration Handbook

– Container authorization type

Select Per_Connection_Factory for the Container authorization type.

4. Save the deployment descriptor.

Creating a new database mapping and schema
The WebSphere Bank sample is configured to run against a Cloudscape
database. However, for the purpose of showing how to create a new database
backend and deployed code, we will configure it so it can also run against a DB2
database.

Creating the database mapping
First you need to create a database mapping using the EJB project. To do this,
perform the following steps:

1. Expand the EJB Projects section

2. Right-click the BankCMRQLEJB_EJB project and select EJB to RDB
Mapping →Generate Map

3. Select Create a new backend folder and click Next.

4. Select Top-down and click Next.

5. On the Top-down mapping options page, select DB2 Universal Database
Express V8.2, or the corresponding DB2 product and version you are using
as the target database. Enter database name BANK and leave NULLID as the
schema name. See Figure 15-15 on page 868.

Tip: An EJB JAR can contain database mappings and EJB deployed code for
multiple databases. Currently the WebSphere Bank sample application
contains a database mapping and EJB deployed code only for Cloudscape 5,
but we will also add it for DB2 UDB. You can set which backend ID will be
used at runtime in the WebSphere bindings section. This choice can also be
overriden at deployment time.

 Chapter 15. Packaging applications 867

Figure 15-15 Generating a DB2 mapping

6. Click Finish.

A Table.ddl file containing the script to set up the DB2 tables is created in the
BankCMRQLEJB_EJB\ejbModule\META-INF\backends\DB2EXPRESS_V82
_1 directory of the Application Server Toolkit workspace. You will need this
script when creating the DB2 BANK database before deploying WebSphere
Bank. The file has the commands shown in Example 15-1.

Example 15-1 WebSphere Bank Table.ddl

CREATE TABLE ACCOUNT
 (ACCOUNTNUMBER INTEGER NOT NULL,
 BALANCE REAL NOT NULL,
 ACCOUNTTYPE INTEGER NOT NULL,
 ACCOUNTSCUSTOMERINVERSE_CUSTO2 BIGINT);

ALTER TABLE ACCOUNT
 ADD CONSTRAINT PK_ACCOUNT PRIMARY KEY (ACCOUNTNUMBER);

CREATE TABLE CUSTOMER
 (CUSTOMERNUMBER BIGINT NOT NULL,
 FIRSTNAME VARCHAR(250),

868 WebSphere Application Server V6: System Management and Configuration Handbook

 TAXID VARCHAR(250),
 LASTNAME VARCHAR(250));

ALTER TABLE CUSTOMER
 ADD CONSTRAINT PK_CUSTOMER PRIMARY KEY (CUSTOMERNUMBER);

7. The Application Server Toolkit database mapping editor (Map.mapxmi editor)
opens allowing you to make adjustments to the mapping between the fields of
the entity EJBs and the database columns. We do not need to do that so
close the editor.

8. Right-click the BankCMRQLEJB_EJB project again and select Deploy. This
generates the EJB deployed code, as shown in Figure 15-16.

Figure 15-16 Generating EJB deployed code

If you receive the following error during the deploy code generation you can
ignore it:

Deployment from com.ibm.etools.webservice.was.deployer.WSDeployer had
errors: Deployment error:

Change the backend ID
Because we have now created a new database backend map, we can set the
default backend map for the EJB to the newly created DB2 map. To map to the
new DB2 map, do the following:

 Chapter 15. Packaging applications 869

1. Open the deployment descriptor for the EJB module, scroll down do the
bottom of the Overview tab and select DB2EXPRESS_V82_1 as the Current
Backend ID as shown in Figure 15-17.

Figure 15-17 Setting default backend id for EAR file

2. Press Ctrl-S to save the deployment descriptor.

15.4 IBM EJB extensions: EJB caching options
This section discusses the caching options for entity and stateful session beans.

15.4.1 EJB container caching option for entity beans
The Enterprise JavaBeans specification defines three EJB caching options:
options A, B, or C. Those options define how the EJB container handles entity
bean instances between transactions. EJB caching options are set at the bean
level, and are part of the IBM extensions deployment descriptor.

Caching option A
With caching option A, you assume that the entity bean has exclusive access to
the underlying persistent store. In other words, between transactions, no one can
modify the data. This includes a batch program updating the data, a Java
application updating the data, or even the same entity bean running in a different
container. This implies option A cannot be used in a clustered environment
(WLM). Note that it is your responsibility to ensure no other application will
modify the data, as the EJB container has no way to control write access to the
underlying database from other servers.

When caching option A is used, the entity bean instance is kept in a memory
cache across transactions. At transaction commit, the entity bean attributes are
synchronized with the underlying persistent store, and the bean instance remains
cached in memory.

If you were tracing the calls made by the container, you would see something
similar to Example 15-2 on page 871. The first time the entity bean is used, its
runtime context is set (step 1), a bean is taken from the entity beans instance

870 WebSphere Application Server V6: System Management and Configuration Handbook

pool (step 2), the bean instance attributes are synchronized with the underlying
data store (step 3), the method setBalance is invoked on the bean (step 4), and,
finally, the bean attributes are saved back to the database (step 5). The bean is
not returned to the pool. On subsequent calls, the setBalance method is invoked
directly on the cached bean instance, and the bean attributes are synchronized
with the underlying persistent data store.

Example 15-2 Entity beans call trace with option A caching

Transaction 1 (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Transaction 1 (Commit)

Transaction 2 (Begin)
Step 1: 284485f1 BranchAccount E called setBalance() method
Step 2: 284485f1 BranchAccount E called ejbStore() method
Transaction 2 (Commit)

Using caching option A can provide some performance enhancements at the
expense of higher memory usage. You should only use it if you do not intend to
use WebSphere clustering capabilities and you mostly access data in read
mode.

Caching option B
With caching option B, you assume that you have shared access to the
underlying database. This means the data could be changed by another
application between transactions. When option B is used, the bean instance
attributes are always synchronized with the underlying back-end data store at the
beginning of every transaction. Similar to Option A, the bean is kept in the cache
between transactions. Therefore, if you were tracing the different calls made in
Option B, you would obtain the trace shown in Example 15-3.

Example 15-3 Entity beans call trace with option B caching

Transaction 1 (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Transaction 1 (Commit)

Transaction 2 (Begin)

 Chapter 15. Packaging applications 871

Step 1: 284485f1 BranchAccount E called ejbLoad() method
Step 2: 284485f1 BranchAccount E called setBalance() method
Step 3: 284485f1 BranchAccount E called ejbStore() method
Transaction 2(Commit)

Caching option B can be safely used in a clustered environment, or when you are
not sure if you have exclusive access to data. You are assured that you always
work with the last committed data. Option B memory usage is the same as for
option A. The performance of both options can slightly differ depending on the
nature of your application.

Caching option C
Similar to option B, caching option C assumes shared access to the database.
Unlike option B or A, the bean instance is returned to the entity beans pool at the
end of the transaction. A new bean instance is used at the beginning of every
transaction. Each transaction results in the sequence of calls shown in
Example 15-4.

Example 15-4 Entity beans call trace with option C caching

Transaction (Begin)
Step 1: 1c9585f1 BranchAccount E called setEntityContext() method
Step 2: 1c9585f1 BranchAccount E called ejbActivate() method
Step 3: 1c9585f1 BranchAccount E called ejbLoad() method
Step 4: 1c9585f1 BranchAccount E called setBalance() method
Step 5: 1c9585f1 BranchAccount E called ejbStore() method
Step 6: 1c9585f1 BranchAccount E called ejbPassivate() method
Step 7: 1c9585f1 BranchAccount E called unsetEntityContext() method
Transaction (Commit)

Caching option C has the best memory usage at the expense of a larger number
of methods calls. This is the default behavior.

How to set the EJB caching option
You must combine the Activate at and Load at options to set the EJB caching
option to A, B, or C. Use Table 15-3 to choose the right combination.

Table 15-3 Setting entity EJB caching properties

Option Activate at must be set to Load at must be set to

Option A Once Activation

Option B Once Transaction

Option C (default) Transaction Transaction

872 WebSphere Application Server V6: System Management and Configuration Handbook

To set the EJB caching option, do the following:

1. Open the EJB deployment descriptor.

2. Switch to the Bean tab.

3. Select the entity bean in the window to the left, then scroll down the options at
right until you see the Bean Cache settings under the WebSphere extensions
section, as in Figure 15-18.

Figure 15-18 Setting the activate and load settings for entity beans

4. Select the Activate at and Load at options according to Table 15-3 on
page 872.

5. Close and save the deployment descriptor.

The settings are saved in the ibm-ejb-jar-ext.xmi file. They correspond to the
following line:

<beanCache xmi:id="BeanCache_1" activateAt="ONCE" loadAt="TRANSACTION"/>

There is one line for each entity bean for which you have set this option.

15.4.2 EJB container caching option for stateful session beans
Similarly to entity beans, you can specify which caching strategy to use for
stateful session beans. This caching option specifies the point at which an

 Chapter 15. Packaging applications 873

enterprise bean is activated and placed in the cache. Removal from the cache
and passivation are also governed by this setting. Valid values are:

� Once (default)

Choosing Once indicates that the bean is activated when it is first accessed in
the server process. It is passivated and removed from the cache at the
discretion of the container, for example, when the cache becomes full.

� Transaction

Choosing Transaction indicates that the bean is activated at the start of a
transaction. It is passivated and removed from the cache at the end of the
transaction.

You can set this caching option by opening the EJB deployment descriptor for the
EJB module. The Activate at setting is found on the Bean tab (Figure 15-19).
Select the bean and scroll down to the Bean Cache category.

Figure 15-19 Activate settings for stateful session beans

15.4.3 Stateful EJB timeout option
Additionally, you can specify a timeout value for stateful session beans. A bean
can time out in the METHOD_READY or in the PASSIVATED state. If you try to
access a bean that has timed out, you see an exception similar to that in
Example 15-5 on page 875:

874 WebSphere Application Server V6: System Management and Configuration Handbook

Example 15-5 Stateful EJB timed out exception

com.ibm.ejs.container.SessionBeanTimeoutException: Stateful bean
StatefulBeanO(BeanId(Webbank#webbankEJBs.jar#Transfer, ebf64d846a), state =
METHOD_READY) timed out.

Session beans that have timed out can be removed by the container, for example
if it needs to free memory. However, a well-written application should not rely on
beans to time out to free memory. Instead, it is important that the developer
explicitly calls remove() on a bean when this stateful bean is not needed
anymore.

The default timeout is 600 seconds. You can set the timeout integer value as a
parameter of a stateful session bean by opening the EJB deployment descriptor
and selecting the Bean tab as in Figure 15-19 on page 874. By specifying a
value of 0, you set the bean to never expire.

Setting this timeout inserts the following property in the ejbExtensions tag of the
IBM bindings file:

<ejbExtensions xmi:type="ejbext:SessionExtension"
xmi:id="Session_1_Ext" timeout="120">

15.5 IBM EJB extensions: EJB access intents
Access intents are used to optimize the access to relational data. Access intents
are only applicable to EJB 2.x beans. For EJB 1.1 beans, you still use the old
method of setting the transaction isolation level at the method level, as well as
mark methods as read-only. In this section we only cover access intents for EJB
2.x beans.

Access intent policies are specifically designed to supplant the use of isolation
level and read-only, method-level modifiers found in the extended deployment
descriptor for EJB Version 1.1 enterprise beans. You cannot specify isolation
level and read-only modifiers for EJB Version 2.x enterprise beans. The
WebSphere persistence manager uses access intent hints to make decisions
about isolation level, cursor management, and more.

Note: If a bean times out in the METHOD_READY state and is consequently
removed by the container, the ejbRemove() method is called on the bean
instance. If a bean times out in the passivated state, ejbRemove() is not
called, according to the EJB specification.

 Chapter 15. Packaging applications 875

15.5.1 Transaction isolation levels overview
Transaction isolation levels provide a trade-off between accuracy of reads versus
concurrent readers. The levels can best be described by the types of read
anomalies they permit and forbid. Consider the read anomalies that can occur
with two concurrent transactions, T1 and T2:

� Dirty read

T1 reads data that has been modified by T2, before T2 commits.

� Non-repeatable read

Non-repeatable read is caused by fine-grained locks.

– T1 reads a record and drops its lock.
– T2 updates.
– T1 re-reads different data.

� Phantom read

This is a non-repeatable read involving a range of data and inserts or deletes
on the range.

– T1 reads a set of records that match some criterion.
– T2 inserts a record that matches the criterion.
– T1 continues processing the set, which now includes records that were not

part of the original matching set.

There are four possible settings for the transaction isolation level:

� Repeatable read (TRANSACTION_REPEATABLE_READ)

This setting permits phantom reads and forbids both dirty and unrepeatable
reads.

� Read committed (TRANSACTION_READ_COMMITTED)

This setting permits non-repeatable and phantom reads and forbids dirty
reads.

� Read uncommitted (TRANSACTION_READ_UNCOMMITTED)

This setting permits all the read anomalies including dirty reads,
non-repeatable reads, and phantom reads.

� Serializable (TRANSACTION_SERIALIZABLE)

This setting forbids all the read anomalies.

The container applies the isolation level as follows:

� For entity beans with Container Managed Persistence (CMP), the container
generates code that assures the desired level of isolation for each database
access.

876 WebSphere Application Server V6: System Management and Configuration Handbook

� For session beans and Bean-Managed Persistence (BMP) entity beans, the
container sets the isolation level at the start of each transaction, for each
database connection.

The transaction isolation level is tied to a database connection. The connection
uses the isolation level specified in the first bean that uses the connection. The
container throws an IsolationLevelChangeException whenever the connection is
used by another bean method that has a different isolation level.

Not all databases support all JDBC isolation levels. Moreover, JDBC definitions
for isolation levels might not match the database definition of isolation levels. As
an example, DB2 definitions for isolation levels follow the naming conventions
used in Jim Gray's classic book on transaction processing, Transaction
Processing: Concepts and Techniques. Table 15-4 shows a mapping between
EJB and DB2 isolation levels.

Table 15-4 Mapping JDBC isolation levels to DB2 isolation levels

To learn more, refer to the documentation provided by your database product.

15.5.2 Concurrency control
Concurrency control is the management of contention for data resources. A
concurrency control scheme is considered pessimistic when it locks a given
resource early in the data-access transaction and does not release it until the
transaction is closed. A concurrency control scheme is considered optimistic
when locks are acquired and released over a very short period of time at the end
of a transaction.

The objective of optimistic concurrency is to minimize the time over which a
given resource is unavailable for use by other transactions. This is especially
important with long-running transactions, which under a pessimistic scheme
would lock up a resource for unacceptably long periods of time.

WebSphere uses an overqualified update scheme to test whether the underlying
data source has been updated by another transaction since the beginning of the
current transaction. With this scheme, the columns marked for update and their

JDBC isolation level DB2 isolation level

TRANSACTION_SERIALIZABLE Repeatable Read

TRANSACTION_REPEATABLE_READ Read Stability

TRANSACTION_READ_COMMITTED Cursor Stability

TRANSACTION_READ_UNCOMMITTED Uncommitted Read

 Chapter 15. Packaging applications 877

original values are added explicitly through a WHERE clause in the UPDATE
statement so that the statement fails if the underlying column values have been
changed. As a result, this scheme can provide column-level concurrency control;
pessimistic schemes can control concurrency at the row level only.

Optimistic schemes typically perform this type of test only at the end of a
transaction. If the underlying columns have not been updated since the
beginning of the transaction, pending updates to container-managed persistence
fields are committed and the locks are released. If locks cannot be acquired or if
some other transaction has updated the columns since the beginning of the
current transaction, the transaction is rolled back and all work performed within
the transaction is lost.

Pessimistic and optimistic concurrency schemes require different transaction
isolation levels. Enterprise beans that participate in the same transaction and
require different concurrency control schemes cannot operate on the same
underlying data connection unless the connection is able to change its isolation
level on an individual-query basis. Some, but not all, JDBC drivers can do this.
For those JDBC drivers that cannot, mixing concurrency controls requires the
use of multiple connections within a transaction.

Whether or not to use optimistic concurrency depends on the type of transaction.
Transactions with a high penalty for failure might be better managed with a
pessimistic scheme. For low-penalty transactions, it is often worth the risk of
failure to gain efficiency through the use of an optimistic scheme.

15.5.3 Using EJB 2.x access intents
Access intents policies let you define, in a very flexible and powerful way, how
relational data will be accessed, if you use BMP or CMP entity beans.

Access intents policies
Seven access intent policies are available. They cover a wide variety of ways to
access data. They are summarized in Table 15-5 on page 879.

Important: Although you can set access intents on a BMP, you are
responsible for reading the access intent metadata from your code and
applying the corresponding change to the isolation levels yourself by calling
connection.setTransactionLevel(). The EJB container has no control over
your persistence strategy, and therefore cannot perform the same tasks as it
can for CMPs. Access intent data is valid in the WebSphere naming service for
the time of the transaction. See the Information Center for more coding
examples.

878 WebSphere Application Server V6: System Management and Configuration Handbook

Table 15-5 Access intent policies

Access Intent Policy Concurrency
control

Used for
update

Transaction
isolation level

Notes

wsPessimisticRead pessimistic No read committed Read locks are held for the
duration of the transaction.
Updates are not permitted;
the generated SELECT
query does not include
FOR UPDATE

wsPessimisticUpdate pessimistic Yes For Oracle,
read
committed.
Otherwise,
repeatable read

The generated SELECT
FOR UPDATE query grabs
locks at the beginning of
the transaction

wsPessimisticUpdate-
Exclusive

pessimistic Yes serializable SELECT FOR UPDATE is
generated; locks are held
for the duration of the
transaction

wsPessimisticUpdate-
NoCollision

pessimistic No read committed The generated SELECT
query does not include
FOR UPDATE. No locks
are held, but updates are
permitted.

wsPessimisticUpdate-
WeakestLockAtLoad
(DEFAULT VALUE)

pessimistic No
(Oracle,
yes)

For Oracle,
read
committed,
otherwise
repeatable read

For Oracle, this is the same
as wsPessimisticUpdate.
Otherwise, the generated
SELECT query does not
include FOR UPDATE;
locks are escalated by the
persistent store at storage
time if updates were made.

wsOptimisticRead optimistic No read committed

wsOptimisticUpdate optimistic No read committed Generated
overqualified-update query
forces failure if CMP
column values have
changed since the
beginning of the
transaction

 Chapter 15. Packaging applications 879

There are two critical questions to ask yourself when using access intents:

� At which point in my transaction do I access data? This is critical in selecting
on which method you must set the access intent.

� How do I want to access data? This is critical to selecting the best access
intent to apply on the method.

Choosing where to apply the access intent
This is critical because it is at this point that the WebSphere persistence
manager decides which access intent to use. To illustrate this point, we will use
the following example.

The Consultation session bean obtains the CustomerAccount balance using
getBranchAccountBalance, as in Example 15-6:

Example 15-6 Obtaining CustomerAccount balance using getBranchAccountBalance

int getCustomerAccountBalance () {
...
custAcct = (CustomerAccountLocal) custAcctHome.findByPrimaryKey(custAcctKey);
return custAcct.getBranchBalance();
}

Imagine you have applied AccessWriteIntent1 on the findByPrimarykey() method
of the CustomerAccount bean, and AccessReadIntent2 on the
getBranchBalance() method. Because the first access to the database in the
transaction started by the call to getCustomerAccountBalance() is done by the
findByPrimaryKey method, then AccessWriteIntent1 is used for all calls within
the transaction. AccessReadIntent2 will be ignored by the persistence manager
and therefore useless in this case.

This might be satisfactory or not, depending on what you want to achieve. The
critical point here is that you can use the findByPrimaryKey method in read and
update transactions. If you use it in an update transaction, you probably want to
execute it with, for example, a PessimisticUpdate intent. If you access data only
for reading it, this would be more than you need.

There are two main solutions you can adopt for this problem. The simplest one is
to have two or more versions of your finder methods, specialized by access
intent. You could use the standard findByPrimaryKey in update scenarios and
add another finder method such as findByPrimaryKeyForRead and use it in
read-only scenarios. You would set the access intent of the
findByPrimaryKeyForRead finder, say to wsOptimisticRead. The default access
intent (wsPessimisticUpdate-WeakestLockAtLoad) is fine in most cases for the
findByPrimaryKey() method, as well as for other finder or non-finder methods.

880 WebSphere Application Server V6: System Management and Configuration Handbook

Another solution is to run findByPrimaryKey, or another finder, in its own
transaction. Do this by applying a RequiresNew transaction flag on it. Take
another look at the previous sample:

1. The getCustomerAccountBalance method starts a new transaction.

2. findByPrimaryKey is called. The current transaction is paused. The
findByPrimary method executes within its own transaction and, therefore,
own access intent. The call to findByPrimaryKey() returns an unhydrated
instance, which means it has not been activated nor loaded.

3. The transaction initiated by the session bean resumes.

4. getBalance() is called on the instance returned by findByPrimaryKey. The
instance is hydrated and the access intent specified for this method is used.
Any other method calls within the transaction will execute with the same
access intent.

Choosing the right access intent
The main rule is: keep it simple.

Start with the default setting (wsPessimisticUpdate-WeakestLockAtLoad), and
work from there. Specifying access intents on all your business methods could
lead to a configuration, debugging, and maintenance nightmare. Specify access
intents on a selected number of methods. Also, choose access intents wisely.

� Access intents can be applied to your business methods, to the
findByPrimaryKey() method, as well as the create and remove method. As
much as possible, avoid other methods.

Important: This solution is also well adapted to BMPs. By having a different
findByPrimaryKey method for read and write transactions, you can easily set a
different isolation level in the code for each of them. You can also define a
different SELECT query, one with a FOR UPDATE clause and one without,
then call them from those different methods.

Note: WebSphere Application Server V6 also includes a new feature
(inherited from WebSphere Application Server V5 Enterprise Edition) that
provides an extension to access intents called Application Profiles, which
handles the problem mentioned above in a powerful way. Application profiles
let you externally specify a set of tasks (that is, a flow of calls in your code),
and specify which access intent should be used for a specific task. For
information about Application Profiles, please refer to the WebSphere
Information Center.

 Chapter 15. Packaging applications 881

� Make sure that no method is configured with more than one access intent
policy. Applications that are misconfigured in this way will not be runnable
until the configuration errors are fixed.

� For entity beans backed by tables with nullable columns, use optimistic
policies with caution. Nullable columns are automatically excluded from
overqualified updates at deployment time. This means that at commit time,
those columns will not be used in the update statement to check whether the
data has changed or not. Therefore, concurrent changes to a nullable field
might result in lost updates. Using the Application Server Toolkit, you can set
a property on each enterprise bean attribute called OptimisticPredicate, as
shown in Figure 15-20 on page 883. You can change this property by editing
the data mappings of your EJBs. When this property is set, the column, even
if it is nullable, will be reflected in the overqualified update statement that is
generated in the deployment code to support optimistic policies.

In V6, support has been added for a new optimistic concurrency control
scheme for EJB 2.x CMP entity beans. This new support allows you to add a
column for collision detection in your relational database table. This column is
reserved to determine if a record has been updated. When using a collision
detection column, the overqualified UPDATE statement only needs the
collision detection column and the primary key. To manage the collision
detection column, provide your own database trigger implementation. Using
the collision detection column overcomes the nullable column limitation and
the unsupported optimistic concurrency control data types such as BLOBs
and CLOBs.

Tip: If you want to check which SQL code is executed for an optimistic
update, check the storeUsingOCC method in the <beanname>FunctionSet
generated class.

882 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-20 Optimistic predicate property

If a bean is loaded for read intent and an update is attempted during that
transaction, then the persistence manager will raise an
UpdateCannotProceedWithIntegrity exception. In other words, if you call
findByPrimaryKeyForRead() and an update is attempted, it will fail.

15.5.4 Using read-ahead hints
Read-ahead schemes enable applications to minimize the number of database
round trips by retrieving a working set of CMP beans for the transaction within
one query. Read-ahead involves activating the requested CMP beans and
caching the data for their related beans, which ensures that data is present for
the beans that are most likely to be needed next by an application.

Important: The behavior described above is true for all access intents except
wsPessimisticUpdate-NoCollision. This access intent will not flag updates,
even if no locks are held. Our recommendation is that you avoid this access
intent in production.

 Chapter 15. Packaging applications 883

A read-ahead hint is a canonical representation of the related beans to be read. It
is associated with a finder method for the requested bean type, which must be an
EJB 2.x-compliant CMP entity bean. Currently, only findByPrimaryKey methods
can have read-ahead hints. Only beans related to the requested beans by a
container-managed relationship (CMR), either directly or indirectly through other
beans, can be read ahead.

To set Read-ahead hints, do the following:

1. Open the EJB deployment descriptor editor.

2. Select the Access tab and scroll down to the WebSphere Extensions section.

3. Click the Add button to the right of the Access Intent for Entities 2.x (Method
Level) field. See Figure 15-21.

Figure 15-21 Adding a read ahead hint

In the wizard, the Read Ahead Hint check box is enabled only with access
intent policies with optimistic concurrency. Read-ahead is limited to optimistic
policies because locking persistent data store for all beans represented in the
hint would be more likely to cause lock conflicts, and optimistic policies do not
obtain locks until immediately before the database operation.

See Figure 15-22 on page 885.

884 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-22 Specifying read-ahead hint

4. Follow the panels in the wizard to select the beans and methods, then click
Finish.

15.5.5 Tracing access intents behavior
You can obtain a very detailed trace of the EJB persistence manager behavior by
specifying the following trace specification for an application server:

com.ibm.ejs.container.*=all=enabled:com.ibm.ejs.persistence.*=all=enabled:
com.ibm.ws.appprofile.*=all=enabled.

15.6 IBM EJB extensions: Inheritance relationships
Support for entity beans inheritance, which is not part of the EJB 1.1 nor EJB 2.x
specifications, is also available in the toolkit. Support for enterprise entity beans
relationships for EJB 1.1, although not standard, is also available using this tool.
Refer to the toolkit documentation for more details.

 Chapter 15. Packaging applications 885

15.7 IBM Web module extensions
WebSphere Application Server V6 also provides multiple extensions for Web
modules. To work with these extensions, open the Web deployment descriptor by
double-clicking the Web module in the J2EE Hierarchy view. To see the IBM Web
module extensions, select the Extensions tab, as in Figure 15-23.

Figure 15-23 Web module extensions

15.7.1 File serving servlet
When dealing with static content (HTML pages, images, style sheets and so on),
you can choose to have these resources served by WebSphere, or have them
served by the HTTP server itself.

If you want WebSphere to serve the static content of your application, you must
enable file servlet, also known as the file serving servlet or file serving enabler.
This servlet serves up any resource file packaged in the WAR file. The File
serving enabled attribute is set to true by default. By changing it to false,
WebSphere’s HTTP plug-in will not send requests for static content to
WebSphere, but leave it up to the HTTP server to serve them.

886 WebSphere Application Server V6: System Management and Configuration Handbook

If you want the HTTP server to serve static content, you can experience better
performance than using WebSphere in this instance, because the HTTP server is
serving the content directly. Moreover, an HTTP server has much more
customization options than the file servlet can offer.

However, using the WebSphere file serving servlet has the advantage of keeping
the static content organized in a single, deployable unit with the rest of the
application. Additionally, this allows you to protect the static pages using
WebSphere security.

To enable this option, check the File serving enabled box. Enter attributes used
by the file serving servlet in the File Serving Attributes section.

15.7.2 Web application auto reload
If you check the Reloading enabled option, the class path of the Web
application is monitored and all components, JAR or class files, are reloaded
whenever a component update is detected. The Web module’s class loader is
shut down and restarted. The reload interval is the interval between reloads of
the Web application. It is set in seconds.

The auto reload feature plays a critical role in hot deployment and dynamic
reload of your application.

This option is set to true by default, with the reload interval set to three (3)
seconds. In production mode, you might consider making the reload interval
much higher.

15.7.3 Serve servlets by class name
The invoker servlet can be used to invoke servlets by class name. Note there is a
potential security risk with leaving this option set in production. It should be seen
as more of a development-time feature, for quickly testing your servlets.

This option is turned off by default.

Important: You must set the Reloading enabled option to true for JSP files to
be reloaded when they are changed on the file system. Reloading a JSP does
not trigger the reload of the Web module, because separate class loaders are
used for servlets and JSP.

 Chapter 15. Packaging applications 887

15.7.4 Default error page
This page will be invoked to handle errors if no error page has been defined, or if
none of the defined error pages matches the current error.

15.7.5 Directory browsing
This boolean defines whether it is possible to browse the directory if no default
page has been found.

This option is turned off by default.

15.7.6 JSP attributes
The following options can be set for the JSP compiler:

� keepgenerated

If this boolean is set to true, the source code of the servlet created by
compilation of a JSP page is kept on the file system. Otherwise, it is deleted
as soon as the servlet code has been compiled, only the .class file is
available.

� scratchdir

This string represents the directory in which servlets code will be generated. If
this string is not set, code is created under:

<was_home>\temp\<hostname>\<application_server_name>\<applicationname>\<web
modulename>.

15.7.7 Automatic HTTP request and response encoding
The Web container no longer automatically sets request and response
encodings and response content types. The programmer is expected to set
these values using the methods available in the Servlet 2.4 API. If you want the
application server to attempt to set these values automatically, check the
Automatic Request Encoding enabled option in order to have the request
encoding value set. Similarly, you can check the Automatic Response
Encoding enabled in order to have the response encoding and content type set.

The default value of the autoRequestEncoding and autoResponseEncoding
extensions is false, which means that both the request and response character
encoding is set to the Servlet 2.4 specification default of ISO-8859-1. Different
character encodings are possible if the client defines character encoding in the
request header, or if the code uses the setCharacterEncoding(String encoding)
method.

888 WebSphere Application Server V6: System Management and Configuration Handbook

If the autoRequestEncoding value is set to true, and the client did not specify
character encoding in the request header, and the code does not include the
setCharacterEncoding(String encoding) method, the Web container tries to
determine the correct character encoding for the request parameters and data.

The Web container performs each step in the following list until a match is found:

� Looks at the character set (charset) in the Content-Type header

� Attempts to map the server’s locale to a character set using defined
properties

� Attempts to use the DEFAULT_CLIENT_ENCODING system property, if one
is set

� Uses the ISO-8859-1 character encoding as the default

If you set the autoResponseEncoding value to true and the client:

� The client did not specify character encoding in the request header.
� The code does not include the setCharacterEncoding(String encoding)

method,

The Web container does the following:

� Attempts to determine the response content type and character encoding
from information in the request header.

� Uses the ISO-8859-1 character encoding as the default.

15.8 IBM EAR extensions: Sharing session context
In accordance with the servlet 2.4 API specification, the session manager
supports session scoping by Web module only. Only servlets in the same Web
module can access the data associated with a particular session. WebSphere
Application Server provides an option that you can use to extend the scope of the
session attributes to an enterprise application. Therefore, you can share session
attributes across all the Web modules in an enterprise application.

This option can be set in the toolkit in the enterprise application deployment
descriptor.

1. Open the deployment descriptor by double-clicking the enterprise application.

1. Check the Shared httpsession context option in the WebSphere Extensions
section. See Figure 15-24 on page 890.

 Chapter 15. Packaging applications 889

Figure 15-24 EAR deployment descriptor

Important: To use this option, you must install all the Web modules in the
enterprise application in the same application server. You cannot use this
option when one Web module is installed in one server and the second Web
module is installed in a different server.

In such split installations, applications might share session attributes across
Web modules using distributed sessions. However, session data integrity is
compromised when concurrent access to a session is made in different Web
modules.

Sharing HTTP session context also severely restricts the use of some session
management features, like time-based writes. For enterprise applications on
which this option is enabled, the session management configuration set at the
Web module level is ignored. Instead, the session management configuration
defined at the enterprise application level is used.

890 WebSphere Application Server V6: System Management and Configuration Handbook

15.9 Exporting WebSphere Bank EAR file
Once you have made all the changes to your application and are ready to deploy,
you need to export the EAR file to a location where it can be picked up for
deployment by the application server.

To export the WebSphere Bank sample application, do the following:

1. Select File → Export.

2. Select EAR file as export target and click Next.

3. Select to export the WebSphereBank EAR project and enter a suitable
destination for the EAR file, such as C:\WebSphereBank.ear. Then click
Finish. See Figure 15-25.

Figure 15-25 Exporting WebSphere Bank EAR file

15.10 WebSphere Enhanced EAR
The Enhanced EAR, introduced in WebSphere Application Server V6, is a
normal J2EE EAR file, but with additional configuration information for resources
required by J2EE applications. While adding this extra configuration information
at packaging time is not mandatory, it can simplify deployment of J2EE
applications to WebSphere if the environments where the application is to be
deployed is similar.

 Chapter 15. Packaging applications 891

Table 15-6 shows the resources supported by the Enhanced EAR and the scope
in which they are created:

Table 15-6 Scope for resources in WebSphere Enhanced EAR file

When an Enhanced EAR is deployed to a WebSphere Application Server V6
server, WebSphere can automatically configure the resources specified in the
Enhanced EAR. This reduces the number of configuration steps required to set
up the WebSphere environment to host the application.

When an Enhanced EAR is uninstalled, the resources that are defined at the
application level scope are removed as well. However, resources defined at a
scope other than application level are not removed because they might be in use
by other applications.

Worth noticing is that in WebSphere Application Server V6 the Enhanced EAR
file does not support configuration information about, for example, JMS queues.
These resources will still have to be configured using the WebSphere
administrative console or wsadmin before the application is deployed.

15.10.1 Configuring a WebSphere Enhanced EAR
The supplemental information in an Enhanced EAR is modified by using the
WebSphere Enhanced EAR editor, the Deployment tab of the application
deployment descriptor in the Application Server Toolkit.

Resource Scope

JDBC providers Application

Data sources Application

Substitution variables Application

Class loader policies Application

Shared libraries Server

JAAS authentication aliases Cell

Virtual hosts Cell

Note: Resources created at Application level scope are limited in visibility to
only that application. Also, these resources are not visible from the
WebSphere administrative console. To modify these resources once the
application is deployed in WebSphere, you have to use wsadmin. And
example of this is changing the connection pool settings for a data source.

892 WebSphere Application Server V6: System Management and Configuration Handbook

To access the Enhanced EAR deployment options, do the following:

1. In the J2EE Project Explorer view expand Enterprise Applications, then the
application.

2. Double-click Deployment Descriptor and select the Deployment tab. This
opens up the Enhanced EAR editor as shown Figure 15-26.

Figure 15-26 WebSphere Enhanced EAR editor

Note: Before adding or removing J2EE modules using the Module page in the
Application Deployment Descriptor editor, do the following:

1. Click the Deployment tab to activate the functions in the deployment page.
2. Add your modules to the Module page.

Complete this task for each Application Deployment Descriptor editor session
that you want to add or remove modules from the Module page.

 Chapter 15. Packaging applications 893

In the Application section in Figure 15-27, you can see the class loader policies
and class loader mode configured for each of the containing module. WebSphere
Bank runs fine with the default policies and modes so they do not need to be
changed.

Figure 15-27 Configuring class loader mode and class loader policies

In the Enhanced EAR editor you also configure resources such as JDBC
providers, datasources, class loader policies, JAAS authentication aliases, virtual
hosts and so forth.

To configure the WebSphere Bank application, we need to add the following:

� JAAS authentication alias
� JDBC provider for DB2
� Data source for DB2 database

Just to show the editor, we will also configure a new virtual host for a domain
called www.webspherebank.com.

Configuring a JAAS authentication alias
To configure the the JAAS authentication alias, do the following:

1. In the Deployment tab, expand the Authentication section.

2. Click the Add button. See Figure 15-28 on page 895.

894 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-28 Configuring JAAS authentication alias for WebSphere Bank

3. In the dialog box that displays, enter:

– webspherebank as the alias
– A user ID with access to the BANK database
– The password for the user ID.
– WebSphere Bank as the description

4. Click OK.

Configuring a DB2 JDBC provider
To configure the DB2 JDBC provider, do the following:

1. Click the Add button next to the JDBC provider list in the Data Sources
section. See Figure 15-29 on page 896.

 Chapter 15. Packaging applications 895

Figure 15-29 Creating a DB2 JDBC Provider

2. In the dialog box:

– Select IBM DB2 as the Database type

– Select DB2 Universal JDBC Driver Provider (XA) as the JDBC provider
type

Click Next.

3. In the next dialog box, enter a name for the JDBC provider (for administration
purposes only) and leave the other properties as the default values. See
Figure 15-30 on page 897.

896 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-30 Creating a DB2 JDBC provider

Click Finish.

4. Select the WebSphereBank DB2 JDBC Provider (XA) you just created and
click the Add button next to the Data source list, as in Figure 15-31.

Figure 15-31 Add a data source

 Chapter 15. Packaging applications 897

5. In the Create a Data Source dialog box, select DB2 Universal JDBC Driver
Provider (XA) as the JDBC provider type and Version 5.0 data source as
the data source type, as in Figure 15-32.

Figure 15-32 Creating a DB2 data source

Click Next.

6. In the dialog box displayed enter the appropriate values for the DB2 data
source. See Figure 15-33 on page 899.

898 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-33 Creating a DB2 data source

– Enter DB2BankDS as the name.
– Enter jdbc/Bank as the JNDI name.
– Enter DB2 Data Source for WebSphere Bank as the description.
– Select webspherebank as the Component-managed authentication alias.
– Check Use this data source in container manager persistence (CMP).

Click Next.

7. In the Create Resource Properties dialog box, select databaseName and
enter BANK as the value. See Figure 15-34 on page 900.

 Chapter 15. Packaging applications 899

Figure 15-34 Setting database properties for DB2 data source

Click Finish.

When you are finished, your data source configuration should look like
Figure 15-35 on page 901.

900 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 15-35 DB2 data source configured

Adding a virtual host
To configure a virtual host, do the following:

1. Expand the Virtual Hosts section of the Deployment tab and click the Add
button next to the Virtual host name list.

2. In the Add Host Name Entry dialog box, enter webspherebank_host and click
OK.

3. Click the Add button next to the Host aliases list.

4. In the Add Host Alias Entry dialog box, enter www.webspherebank.com for the
host name and 80 for the port number. Click OK.

Repeat the procedure to add port numbers 9085 and 443 as well. We will use
these port numbers when we deploy the application later.

The flow is shown in Figure 15-36 on page 902.

 Chapter 15. Packaging applications 901

Figure 15-36 Configuring the virtual host for WebSphere Bank

5. When you are finished, press Ctrl-S to save the deployment descriptor editor.

902 WebSphere Application Server V6: System Management and Configuration Handbook

Setting default virtual host for Web modules
Just because we have configured a new virtual host, webspherebank_host, in
the Enhanced EAR file does not mean that all our Web modules automatically
use it.

The default virtual host for a Web module created in the Application Server
Toolkit or Rational Application Developer is default_host, and so is the case also
for the Web modules of the WebSphere Bank application. This setting can be
found in the ibm-web-bdn.xmi file in the /WEB-INF directory of each Web
module.

To configure the Web modules to default to the webspherebank_host instead, do
the following:

1. Expand Dynamic Web Project in the Project Explorer view.

2. Expand the BankCMRQLEJB_WEB project and double-click Deployment
Descriptor.

3. Scroll to the bottom of the Overview page and replace default_host with
webspherebank_host as shown in Figure 15-37.

Figure 15-37 Setting default virtual host for a Web module

4. Save the deployment descriptor by pressing Ctrl-S and then close it.

5. Repeat these steps for the other Web modules (BankCMRQLWeb,
BankGallery and DepositJCAWeb) as well. Remember to save each Web
module’s deployment descriptor.

Examining the WebSphere Enhanced EAR file
The information about the resources configured is stored in the ibmconfig
subdirectory of the EAR file’s META-INF directory. Expanding this directory
reveals the well-known directory structure for a WebSphere cell configuration, as
seen in Figure 15-38 on page 904. You can also see the scope level where each
resource is configured.

 Chapter 15. Packaging applications 903

Figure 15-38 Enhanced EAR file contents

After you have re-packaged the application into an Enhanced EAR, export it as
explained in “Exporting WebSphere Bank EAR file” on page 891.

At deployment time, WebSphere Application Server V6 uses this information to
automatically create the resources.

15.11 Packaging recommendations
Here are some basic rules to consider when packaging an enterprise application:

� The EJB JAR modules and Web WAR modules comprising an application
should be packaged together in the same EAR module.

� When a Web module accesses an EJB module, you should not package the
EJB interfaces and stubs in the WAR modules. Thanks to the class loading
architecture, EJB stubs and interfaces are visible by default to WAR modules.

� Utility classes used by a single Web module should be placed within its
WEB-INF/lib folder.

904 WebSphere Application Server V6: System Management and Configuration Handbook

� Utility classes used by multiple modules within an application should be
placed at the root of the EAR file. This is what is done for the
BankAdapterInterface.jar and WsaEJBDeployUtility.jar, which are used both
by servlets and EJBs.

� Utility classes used by multiple applications can be placed on a directory
referenced through a shared library definition.

See 14.4, “Learning class loaders by example” on page 835 for more details on
how WebSphere finds and loads classes.

 Chapter 15. Packaging applications 905

906 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 16. Deploying applications

In Chapter 15, “Packaging applications” on page 847, we discussed how to use
the Application Server Toolkit to perform common tasks for packaging an
application. In this chapter we show you how to deploy the application. We take
you through setting up the environment for the application, and then deploying
the application itself. Next, we explain how to deploy the client part of the
application.

The deployment tasks in this chapter can also be automated using
command-line tools as explained Chapter 6, “Administration with scripting” on
page 267. You might also want to take a look at Chapter 17, “WebSphere Rapid
Deployment” on page 957 to see if using the new automatic application
installation mode of the WebSphere Rapid Deployment features is appropriate
for your environment.

WebSphere Application Server V6 supports the J2EE Deployment API
Specification (JSR-88), which defines standard APIs to enable deployment of
J2EE applications and standalone modules to J2EE application servers. For
more information about how to use this API, see the WebSphere Information
Center by searching for JSR-88 and browse to the section discussing Installing
J2EE modules with JSR-88.

16

© Copyright IBM Corp. 2005. All rights reserved. 907

16.1 Preparing the environment
In this chapter we show you how to set up a fairly complete environment for the
WebSphere Bank application and deploy the EAR file. Many times, however, you
might not need or want to customize the environment as far as we do in this
chapter. Some steps are optional. If all you want to do is deploy your application
quickly, using the WebSphere defaults for directory names, log files, and so forth,
skip to 16.3, “Deploying the application” on page 930.

The steps in this section are performed typically by the application deployer. To
deploy the WebSphere Bank application, do the following:

1. Create the DB2 database for WebSphere Bank. This step is required.

2. Create an environment variable for WebSphere Bank server. This step is
optional.

3. Create an application server to host the application. This step is optional.

4. Customize the IBM HTTP Server configuration. This step is optional.

5. Define a JDBC provider, data source and authentication alias. This step is
required if you are not using an Enhanced EAR.

6. Define virtual hosts. This step is optional and not required if you are using an
Enhanced EAR.

7. Configure WebSphere messaging. This step is required.

If the application to be deployed is a WebSphere Enhanced EAR file, the
resources configured in the Enhanced EAR file are created automatically when
the application is deployed. If the application to be deployed is a WebSphere
Enhanced EAR file, the resources configured in the Enhanced EAR file are
created automatically when the application is deployed.

16.1.1 Creating the WebSphere Bank DB2 database
The WebSphere samples by default use Cloudscape as the database. However,
in this chapter we will configure WebSphere Bank to use a DB2 UDB 8.2
database instead.

To set up the DB2 database, make sure you have DB2 installed and running.
Then run the following commands:

1. Select Start →Programs → IBM DB2 → Command Line Tools →
Command Window.

2. Create the database using the commands in Example 16-1 on page 909.

908 WebSphere Application Server V6: System Management and Configuration Handbook

Example 16-1 Creating the DB2 database

db2 create database bank
db2 connect to bank user <user_id<> using <password>
db2 -tvf Table.ddl
db2 connect reset

The Table.ddl file is located in the BankCMRQLEJB_EJB\ejbModule\META-INF\
backends\DB2EXPRESS_V82_1 directory of your Application Server Toolkit
workspace. See “Creating a new database mapping and schema” on
page 867.

16.1.2 Creating a WEBSPHEREBANK_ROOT environment variable
It is recommended that you use WebSphere environment variables, rather than
hard-coded paths when deploying an application. In the following steps, we
assume you have declared a WEBSPHEREBANK_ROOT variable. You will use
it when specifying, for example, the JVM log’s location.

Be certain you declare this variable at the right scope. For example, if you define
this variable at the application server scope, it will only be known at that level. As
long as you work with the WebSphere Application Server Base or Express
editions, this is fine. But if you later decide to use the Network Deployment
edition and you create a cluster of application servers, the
WEBSPHEREBANK_ROOT variable will need to be defined at the node level if
all members of a cluster are on the same node, and at cell level if the cluster
spans multiple nodes. Use the steps in 5.1.10, “Using variables” on page 179 to
create a WEBSPHEREBANK_ROOT variable with a value of
C:\apps\WebSphereBank.

There are several ways to organize WebSphere applications. Some companies
prefer to create a directory for each application, as we do in our example, such
as C:\apps\<application_name>, and keep all resources and directories required
by the application in subdirectories under this directory. This strategy works well
when deploying only one application per application server, again as we do in our
example, because the application server’s log files could then all be changed to
point to c:\apps\<application_name>\logs.

Other companies prefer to organize resources by resource type, and so create
directories such as c:\apps\logs\<application_name.log>,
c:\apps\properties\<application_name.properties> etc. And some companies
prefer to stick with the vendor defaults as far as possible. For WebSphere, that
means that the applications are installed in the <was_home>/installedApps
directory and the logs files are written to the <was_home>/logs/<server_name>
directory. Which option you choose is a matter of personal preferences and
corporate guidelines.

 Chapter 16. Deploying applications 909

16.1.3 Creating the WebSphere Bank application server
In a distributed server environment, you have the option of using a single
application server, or creating multiple application servers or clusters.

The advantages of deploying multiple applications to a single application server
is that it consumes less resources. There is no overhead for any extra application
server processes. Another benefit is that applications can make in-process calls
to each other. For example, servlets in one EAR file could access Local
interfaces of EJBs in another EAR file.

One alternative to using a single application server is to deploy each application
to its own server. The advantages of deploying only one application on an
application server, is that it gives you greater control over the environment. The
JVM heap sizes and environment variables are set at application server level, so
all applications running in an application server share the JVM memory given to
the application server and they would all see the same environment variables.
Running each application in its own application server could also make it easier
to perform problem determination. For example, if an application runs amok and
consumes a lot of CPU, you could see which application it is by looking at the
process ID of the application server.

In our example, we create a unique application server on which to run the
WebSphere Bank sample application.

To create an application server, do the following:

1. Select Servers → Application Servers.

2. Click the New button and provide the information as shown in Figure 16-1 on
page 911.

Note: Make sure you create the target directory you specify for the
WEBSPHEREBANK_ROOT variable before proceeding. If the directory is not
created, the application server will not start.

Note: For a full discussion of application server properties, see 5.4, “Working
with application servers” on page 190.

910 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 16-1 Creating the WebSphere Bank application server

– Node

Select the node on which the application server will be created.

– Server name

Enter the application server name, such as WebSphereBankServer.

Click Next.

3. In Step 2, select which server template to use as the base for this new
application server. If you have not created any templates, your only choice is
to select the WebSphere default. Otherwise, select the server template you
want to use and click Next.

4. In step 3 you can select if you want WebSphere to generate a unique set of
port numbers for this application server. This ensures the ports defined for
this server does not conflict with another server currently configured on this
node. Check the Generate Unique Http Ports box and click Next.

5. On the Summary page, click Finish.

Changing the working directory
The next thing we want to do is to change the working directory for the
application server process. This directory is the relative root for searching files.
For example, if you do a File.open(“foo.gif"), foo.gif must be present in the
working directory. This directory will be created by WebSphere if it does not exist.
We recommend that you create a specific working directory for each application
server.

 Chapter 16. Deploying applications 911

1. Select the server, WebSphereBankServer, you just created.

2. Expand the Java and Process Management in the Server Infrastructure
section and select Process Definition.

3. Scroll down the page and change the working directory from
${USER_INSTALL_ROOT} to ${WEBSPHEREBANK_ROOT}/workingDir.

4. Click OK.

Changing the logging and tracing options
Next, we want to customize the logging and tracing properties for the new
application server. These properties are discussed in detail in Chapter 9,
“Problem determination” on page 417. There are several ways to access the
logging and tracing properties for an application server:

� Select Troubleshooting → Logs and Trace in the navigation bar, then
select a server.

� Select Servers → Application Servers, select a server, and then select
Logging and Tracing from the Troubleshooting section.

� Select Servers → Application Servers, select a server, select Process
definition from the Java and Process Management section. Select Logging
and Tracing from the Additional Properties section.

Because we have just finished updating the application server process definition,
we will take the third navigation path to customize the location of the JVM logs,
the diagnostic trace logs, and the process logs.

1. Select Logging and Tracing.

2. Select JVM Logs.

This allows you to change the JVM standard output and error file properties.
Both are rotating files. You can choose to save the current file and create a
new one, either when it reaches a certain size, or at a specific moment during
the day. You can also choose to disable the output of calls to
System.out.print() or System.err.print().

We recommend that you specify a new file name, using an environment
variable to specify it, such as:

${WEBSPHEREBANK_ROOT}/logs/SystemOut.log
${WEBSPHEREBANK_ROOT}/logs/SystemErr.log

Click OK.

Note: The working directory will not be created if you use a composed path,
such as C:/apps/WebSphereBank/workingDir. If you want to use such a path,
create it before starting the application server, or the startup sequence fails.

912 WebSphere Application Server V6: System Management and Configuration Handbook

3. Select Diagnostic Trace.

Each component of the WebSphere Application Server is enabled for tracing
with the JRas interface. This trace can be changed dynamically while the
process is running from the Runtime tab, or added to the application server
definition from the Configuration tab. As shown in Figure 16-2, the trace
output can be either directed to memory or to a rotating trace file.

Change the trace output file name so the trace is stored in a specific location
for the server using the WEBSPHEREBANK_ROOT variable and select the
Log Analyzer format.

Figure 16-2 Specifying diagnostic trace service options

Click OK.

4. Select the Process Logs.

Messages written by native code (JNI) to standard out and standard error
streams are redirected by WebSphere to process logs, usually called
native_stdout.log and native_stderr.log. Change the native process logs to:

${WEBSPHEREBANK_ROOT}/logs/native_stdout.log
${WEBSPHEREBANK_ROOT}/logs/native_stderr.log

Click OK.

 Chapter 16. Deploying applications 913

5. All log files produced by the application server are now redirected to the
${WEBSPHEREBANK_ROOT}/logs directory. Save the configuration.

16.1.4 Defining the WebSphere Bank virtual host

Web modules need to be bound to a specific virtual host. For our sample, we
chose to bind the WebSphere Bank Web module to a specific virtual host called
webspherebank_host. This virtual host has the following host aliases:

� www.webspherebank.com:80
� www.webspherebank.com:9085
� www.webspherebank.com:443 (for SSL access)

Any request starting with <webspherebank_host_alias>/WebSphereBank, such as
http://www.webspherebank.com:9085/WebSphereBank, is served by the
WebSphere Bank application.

Note: The rest of this example assumes a default HTTP port of 9085 for the
Web container. Before proceeding, check the application server you created
to determine the port you should use:

1. Select Servers → Application Servers.
2. Select the WebSphereBankServer.
3. Select Ports in the Communications section.
4. Scroll down the page and note the port listed for WC_defaulthost.

Enhanced EAR file users: If you are using an Enhanced EAR file, the virtual
host can be defined at packaging time. See “Adding a virtual host” on
page 901.

Tip: You can restrict the list of hosts used to access the WebSphere Bank
Web application by removing hosts from the virtual host definition.

Imagine you want to prevent users from directly accessing the WebSphere
Bank application from the WebSphere internal HTTP server when they invoke
http://www.webspherebank.com:9085/WebSphereBank. In other words, you
want to force all requests to go through the Web server plug-in. You can
achieve this by removing www.webspherebank.com:9085 from the virtual host
aliases list. The application server will still listen on that port, and that port will
still be used in the plug-in configuration file. However, the application server
will prevent any direct call to this port.

914 WebSphere Application Server V6: System Management and Configuration Handbook

To create the webspherebank_host virtual host, do the following:

1. Select the Environment → Virtual Hosts entry in the navigation pane.
2. Click New.
3. Enter the virtual host name, webspherebank_host.
4. Click Apply.
5. Select Host Aliases in the Additional Properties section.
6. Add the three aliases shown in Figure 16-3 by clicking New, entering the

values, and clicking OK.

Figure 16-3 WebSphere Bank virtual host aliases

7. Click OK.
8. Save the configuration.

16.1.5 Creating the virtual host for IBM HTTP Server and Apache
Now that we have defined a webspherebank_host virtual host, we need to
configure the Web server to serve the host aliases in the virtual host. The steps
below are valid for both the IBM HTTP Server V6 and Apache 2.0.

Configuring virtual hosting

Note: It is not necessary to create a virtual host in httpd.conf. It is required
only if you want to customize the configuration, for example, by separating the
logs for each virtual host. This is not normally done.

 Chapter 16. Deploying applications 915

Creating virtual hosts is done using the VirtualHost directive, as in Example 16-2.

Example 16-2 Using VirtualHost

<VirtualHost www.webspherebank.com:80>
ServerAdmin webmaster@webspherebank.com
ServerName www.webspherebank.com
DocumentRoot "C:\WebSphere\IBMHTTPServer\htdocs\webspherebank"
ErrorLog logs/webspherebank_error.log
TransferLog logs/webspherebank_access.log

</VirtualHost>

:If you want to have multiple virtual hosts for the same IP address, you must use
the NameVirtualHost directive. See Example 16-3.

Example 16-3 Using the NameVirtualHost and VirtualHost directives

NameVirtualHost 9.42.171.190:80

<VirtualHost itso_server:80>
ServerAdmin webmaster@itso_server.com
ServerName itso_server
DocumentRoot "C:\WebSphere\IBMHTTPServer\htdocs\itso_server"
ErrorLog logs/itso_server_error.log
TransferLog logs/itso_server_access.log

</VirtualHost>

<VirtualHost www.webspherebank.com:80>
ServerAdmin webmaster@webspherebank.com
ServerName www.webspherebank.com
DocumentRoot "C:\WebSphere\IBMHTTPServer\htdocs\webspherebank"
ErrorLog logs/webspherebank_error.log
TransferLog logs/webspherebank_access.log

</VirtualHost>

The www.webspherebank.com and the itso_server hosts have the same IP
address, 9.42.171.190. We have set this by inserting the following line in the
machine hosts file, located in %windir%\system32\drivers\etc or in /etc on UNIX
systems):

9.42.171.190 www.webspherebank.com itso_server

In a real-life environment, this would probably be achieved by creating aliases at
the DNS level. In any event, you must be able to ping the host you have defined,
using commands such as ping www.webspherebank.com.

916 WebSphere Application Server V6: System Management and Configuration Handbook

As you can see in Example 16-3, each virtual host has a different document root.
Make sure that the directory you specify exists before you start the HTTP server.
We recommend that you place an index.html file at the document root stating
which virtual host is being called. This lets you easily test which virtual host is
being used.

You must restart the IBM HTTP Server to apply these changes. If you are
running a Windows system, we recommend that you try to start the server by
running apache.exe from the command line rather than from the Services
window. This allows you to spot error messages thrown at server startup.

If your virtual hosts are correctly configured, invoking
http://www.webspherebank.com or http://itso_server returns different HTML
pages.

Configuring listening ports
If you want to use a different port rather than the default port 80, use the Listen
directive to tell the Web server to listen to requests on that specific port:

1. Make a backup of the <ihs_home>\conf\httpd.conf file.

1. Start your favorite editor and edit this file.

2. Search for the line containing the # Listen string, and edit it as follows to
make it listen on, for example, port 90:

Listen 90

3. Save the httpd.conf file.

4. Restart the HTTP server.

16.1.6 Creating a DB2 JDBC provider and data source

The WebSphere Bank sample application uses a relational database, via entity
beans, to store account information. To access this database, define a data
source, which you then associate with the entity beans. The WebSphere Bank
sample application, just like the other sample applications, is configured for
Cloudscape by default. In Chapter 15, “Packaging applications” on page 847,

Enhanced EAR file users: If you are using an Enhanced EAR file, the JDBC
provider, data source, and J2C authentication entry can be defined at
packaging time. See “Configuring a DB2 JDBC provider” on page 895.

 Chapter 16. Deploying applications 917

however, we also added a backend and EJB deployed code for the WebSphere
Bank application to run against a DB2 database. We will now create the DB2
JDBC provider, datasource and JAAS authentication alias required to run against
DB2.

For detailed information about JDBC providers and data sources, refer to 7.2,
“JDBC resources” on page 321.

Configuring environment variables for DB2 JDBC driver
For the DB2 Universal JDBC Provider to find its classes the
DB2UNIVERSAL_JDBC_DRIVER_PATH and DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH
environment variables must be setup. To set up these variables, do the following:

1. Select Environment → WebSphere Variables.

2. Locate and click the DB2UNIVERSAL_JDBC_DRIVER_PATH entry.

3. In the value field, enter the path to where the DB2 JDBC driver is located. For
example, for DB2, the location is likely to be:

C:\Program Files\IBM\SQLLIB\java

See Figure 16-4.

Figure 16-4 Configuring DB2 Driver Path

Click OK.

918 WebSphere Application Server V6: System Management and Configuration Handbook

4. Repeat the process for the DB2UNIVERSAL_JDBC_DRIVER_NATIVEPATH variable.
For DB2, it should use the same path, C:\Program Files\IBM\SQLLIB\java.

Configuring J2C authentication data
The user ID and password required to access the database are specified in a
J2C authentication data entry.

1. Select Security → Global Security. Expand the JAAS Configuration section
and select J2C Authentication Data.

2. Click New, and specify the following information to create the authentication
data. Once completed, the authentication information should be similar to
Figure 16-5.

– Alias

Enter the name of the security information alias, such as webspherebank.

– User ID

Enter a user ID with the proper authority to access the database.

– Password

Enter the password for the user ID.

Figure 16-5 Creating WebSphere Bank JAAS authentication alias

3. Click OK.

 Chapter 16. Deploying applications 919

Creating the WebSphere Bank JDBC provider
The following steps take you through the creation of a JDBC provider targeting a
DB2 database. To create a JDBC provider from the administrative console, do
the following:

1. Expand the Resources entry and select the JDBC Providers entry.

2. Select the scope of this resource. In a standalone server environment, it is
sufficient to create the data source at the server level. Otherwise, define it at
the node or cell level. A rationale for this is to be able to share the definition
across multiple servers in a cluster. To change this, select the server you are
deploying to in the scopes list and click Apply.

3. Click the New button.

4. In the Configuration dialog box, select the general properties for the JDBC
provider as shown in Figure 16-6.

Figure 16-6 Creating a DB2 JDBC provider

– Database type: DB2
– Provider type: DB2 Universal JDBC Driver Provider
– Implementation type: XA data source

5. Specify the following information for the provider, as shown in Figure 16-7.

Note: We used the DB2 XA-capable JDBC Driver for the WebSphere Bank
sample. If your application does not require two-phase commit capabilities,
use the regular driver. If using an XA-capable driver, it is a best practice to
indicate that it is an XA-capable driver by including XA in its name, such as
MyJDBCDriverXA.

920 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 16-7 WebSphere Bank JDBC provider properties

– Name

Enter the JDBC provider name, such as WebSphere Bank DB2 JDBC
Provider (XA).

– Classpath

Enter the path to the JAR/ZIP file that contains the JDBC provider code,
for example, ${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar. We
encourage you to use variables rather than hard-code the path to the
JDBC drivers.

– Native library path

Enter the path to any native libraries required by the JDBC driver.

 Chapter 16. Deploying applications 921

– Implementation class

Enter the Java class that provides the JDBC service, such as
com.ibm.db2.jcc.DB2ConnectionPoolDataSource.

The classpath, native library path and the implementation class fields are
all automatically completed for known JDBC providers.

6. Click OK.

Creating the WebSphere Bank data source
The next step is to create the data source for the WebSphere Bank DB2
database. To create a data source, do the following:

1. Select Resources → JDBC Providers.

2. Select the WebSphere Bank DB2 JDBC Provider (XA) and select Data
Sources under Additional Properties.

3. Click New to add the new data source. See Figure 16-8 on page 923.

922 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 16-8 WebSphere Bank data source properties

 Chapter 16. Deploying applications 923

– Name

Enter the data source name, which must be unique in the administrative
domain or cell. It is recommended that you use a value indicating the
name of the database this data source is targeting, such as
“WebSphereBankDS”.

– JNDI name

Enter the name by which applications access this data source. If not
specified, the JNDI name defaults to the data source name prefixed with
jdbc/. For the WebSphere Bank, set this field to jdbc/BANK. This value can
be changed at any time after the data source has been created.

– Use this Data Source in container-managed persistence (CMP)

Check this option to indicate that the WebSphere Bank data source is
used for persisting the application entity beans.

– Datasource helper class name

Select the name of the class used by the Relational Resource Adapter at
runtime to implement the functionality of a specific database driver. Select
DB2 Universal data store helper.

– Component-managed authentication alias

Enter the J2C alias used when connecting to this data source by selecting
the authentication alias created previously, <cell name>/webspherebank.

– DB2 Universal data source properties

Enter the database name, driver type, server name and port number
required to access the database. In our environment the database is
called BANK and is located on the same physical machine as our
application server so we use the Type 2 driver.

For DB2, specify at least the database name and the driver type. For
Oracle, provide the driver type (thin/oci8), and the database URL, or
server name and listening port.

4. Click OK.

5. Save the configuration.

Note: The component-managed authentication alias is used when the
res-auth tag in the deployment descriptor is set to Application and the
application itself does not specify a user ID when obtaining a
connection (that is, when datasource.getConnection() is called). The
container-managed application alias (used when res-auth tag is set to
Container) is deprecated in WebSphere Application Server V6.

924 WebSphere Application Server V6: System Management and Configuration Handbook

6. Test the connection by selecting the data source and clicking the Test
Connection button.

16.1.7 Configuring the messaging resources
The messaging function of the WebSphere Bank consists of the following
resources that need to be defined. The details of defining each are covered in the
messaging chapters of this book.

� J2C authentication alias entry

Create a J2C authentication alias entry with the properties in Table 16-1.

Table 16-1 J2C authentication alias properties

� Service integration bus

The service integration bus is the default messaging provider. By default,
there is no bus defined. Define a bus with the the following property in
Table 16-2.

Table 16-2 Service integration bus property

Let the rest of the properties default.

To see an example of how to create the service integration bus, see 11.8.2,
“Creating a bus” on page 658.

Next, add the application server to the bus as a member. See 11.8.3, “Adding
a bus member using a default data store” on page 660 for information and an
example.

In this case, we are using the default data store in Cloudscape, so no action is
needed to create the database.

� Service integration bus queue

Define a queue to the bus with the following properties in Table 16-3 on
page 926.

Property Value

Alias <cell>/samples

User ID samples

Password s1amples

Property Value

Name SamplesBus

 Chapter 16. Deploying applications 925

Table 16-3 Service integration bus queus properties

See 11.8.5, “Creating a queue destination” on page 666 for information and
an example of how to do this.

� JMS provider:

WebSphere Bank uses the default messaging provider. This provider is
preconfigured at all scope levels. For information about viewing and working
with the default messaging provider, see 10.5.1, “Managing the default
messaging JMS provider” on page 514.

� JMS connection factory

A JMS connection factory is required to create a connection to the service
integration bus. The connection factory has the following properties in
Table 16-4.

Table 16-4 JMS connection factory properties

Let the rest of the properties default.

For information about JMS connection factory properties see “JMS
connection factory properties” on page 527. To see an example of how to
create this connection factory, see “JMS connection factory configuration” on
page 534.

� JMS queue

A JMS destination is used to address a message to a specific destination on
the JMS provider. For this application, the destination is a JMS queue and will
reference a queue on the bus. Enter the properties in Table 16-5.

Property Value

Destination type Queue

Identifier BankJSConnFactory

Bus member <node>:<server>

Property Value

Scope Node

Connection factory name BankJMSConnFactory

JNDI name jms/BankJMSConnFactory

Bus name SamplesBus

Component managed authentication alias <cell>/samples

926 WebSphere Application Server V6: System Management and Configuration Handbook

Table 16-5 JMS queue properties

Let the rest of the properties default.

For information about JMS queue properties see “JMS destination properties”
on page 535. To see an example of how to create this JMS queue, see “JMS
queue configuration” on page 539.

� Activation specification

The activation specification is used to associated a destination with a
message-driven bean. In this case, a message-driven bean associated with
this activation specification would be invoked when a message arrives on the
BankJSQueue destination on the service integration bus, which is mapped to
jms/BankJMSQueue. Enter the following properties in Table 16-6.

Table 16-6 Activation specification properties

Let the rest of the properties default.

For information about activation specification properties see “JMS activation
specification properties” on page 545. To see an example of how to create
this activation specification, see “JMS activation specification configuration”
on page 549.

Property Value

Scope Node

Connection factory name BankJMSQueue

JNDI name jms/BankJMSQueue

Bus queue name BankJSQueue

Property Value

Scope Node

Name BankActivationSpec

JNDI name eis/BankActivationSpec

Destination type queue

Destination queue name jms/BankJMSQueue

Bus queue name SamplesBus

 Chapter 16. Deploying applications 927

16.2 Generating deployment code
At some point, you will need to generate the deployment code for the Enterprise
JavaBeans. You can do this in Rational Application Developer, in the Application
Server Toolkit, from the command line, or at deployment time using the install
panels in the WebSphere administrative console. The deployed code should
match the version of the runtime target. If you plan to deploy an EAR file which
was developed in WebSphere Studio version 5, we recommend you regenerate
the deployed code to match WebSphere Application Server V6.

For information about how to generate the deployed code using the Application
Server Toolkit, see “Creating a new database mapping and schema” on
page 867.

16.2.1 Using EJBDeploy command line tool
You can generate the EJB deployed code using the EJBDeploy command-line
tool. The syntax of the EJBDeploy command is shown in Example 16-4.

Example 16-4 EJBDeploy syntax

EJBDeploy (v6.0, dms0444.09)

Syntax: EJBDeploy inputEar workingDirectory outputEar [options]
Options:
 -cp "jar1;jar2" List of jar filenames required on classpath
 -codegen Only generate the deployment code, do not run RMIC or Javac
 -bindear:options Bind references within the EAR
 -dbschema schema The name of the schema to create
 -dbvendor DBTYPE Set the database vendor type, to one of:
 DB2UDB_V81 DB2UDB_V82
 CLOUDSCAPE_V5
 DB2UDBOS390_V7 DB2UDBOS390_V8
 DB2UDBISERIES DB2UDBISERIES_V52 DB2UDBISERIES_V53
 INFORMIX_V73 INFORMIX_V93 INFORMIX_V94
 MSSQLSERVER_V7 MSSQLSERVER_2000
 ORACLE_V9I ORACLE_V10G SYBASE_V1200 SYBASE_V1250
 -debug Compile the code with java debug information
 -keep Do not delete the contents of the working directory
 -ignoreErrors Do not halt for compilation or validation errors
 -quiet Only display errors, suppress informational messages
 -nowarn Disable warning and informational messages
 -noinform Disable informational messages
 -rmic "options" Set additional options to use for RMIC
 -35 Use the WebSphere 3.5 top-down mapping rules
 -40 Use the WebSphere 4.0 top-down mapping rules
 -target Set the server target, to one of:

928 WebSphere Application Server V6: System Management and Configuration Handbook

 WAS510 WAS502 WAS501 WAS500
 -trace Trace progress of the deploy tool
 -sqlj Use SQLJ instead of JDBC
 -OCCColumn Add a column for collision detection for WebSphere 6.0 or
later release

For a complete description of the EJBDeploy command and its parameters, see
the Information Center. Search for ejbdeploy.

Example 16-5 shows a sample EJBDeploy run using the WebSphereBank EAR
file.

Example 16-5 EJBDeploy sample run

C:\WebSphere\AppServer\bin>ejbdeploy c:\WebSphereBankEnhanced.ear
c:\temp c:\WebSphereBankEnhanced_Deployed.ear -dbvendor DB2UDB_V82

Starting workbench.
Creating the project.
Building: /BankCMRQLEJB_EJB
Deploying jar BankCMRQLEJB_EJB
Validating
[*Information]
imported_classes/com/ibm/websphere/samples/bank/ejb/Customer.class(Method:
getAccountsList(), Class: com.ibm.websphere.samples.bank.ejb.Customer):
CHKJ2500I: java.util.Collection must be serializable at runtime (EJB 2.0:
10.6.9).
[*Warning] ejbModule/META-INF/ejb-jar.xml(BankCMRQLEJB): CHKJ2874W: Migrate
this EJB module's default datasource binding to a default CMP Connection
Factory binding.
Generating deployment code
Refreshing: /BankCMRQLEJB_EJB/ejbModule.
Building: /BankCMRQLEJB_EJB
Invoking RMIC.
Generating DDL
Generating DDL
Building: /WsaEJBDeployUtility
Building: /WsaEJBDeployUtility
Writing output file
Shutting down workbench.
EJBDeploy complete.
0 Errors, 1 Warnings, 1 Informational Messages

 Chapter 16. Deploying applications 929

16.3 Deploying the application
In this section, we show the steps required to deploy the application to
WebSphere Application Server. We show you how to deploy a regular EAR file
as well as an Enhanced EAR file, and then also how to not honor the
configuration information packaged into the Enhanced EAR file.

Follow these steps to deploy the application:

1. Select Applications → Install New Application from the administrative
console navigation bar.

2. Check the Local file system box and click the Browse button to locate the
WebSphereBank.ear file. Then click Next.

From the install panels you can install files that are located either on the same
machine as the browser you are using to access the WebSphere
administrative console, the local file system option, or on the WebSphere
Application Server itself, the remote file system option. If you select the Local
file system option, the administrative console automatically uploads the file
you select to the application server, or to the deployment manager if this is a
distributed server environment. If select the Remote file system check box,
you can browse all the nodes in the cell to find the file. The file is then, if
necessary, uploaded to the application server or deployment manager.

3. In the next window, specify default bindings for the application you are
deploying. Unless you check the Override option, bindings already specified
in the EAR are not altered. The various bindings you can specify in this page
are documented in Table 16-7 on page 931. If you do choose to override
bindings, select Generate Default Bindings at the top of this window to
apply changes to the application you are deploying.

In this example, the bindings were set in the application EAR file using the
Application Server Toolkit and there is no need to override them. The defaults
are also correct.

Tip: WebSphere Application Server also provides a set of Ant tasks that you
can use to automate the packaging and deployment of your applications. One
of those tasks allows you to call EJBDeploy. Search for Ant tasks in the
Information Center for more details.

930 WebSphere Application Server V6: System Management and Configuration Handbook

Table 16-7 Application default bindings

4. Click Next.

5. The WebSphere Bank EAR file includes a was.policy file which grants the
application access to certain resources, when WebSphere security is
enabled. The installation panel warns you about this as a potential security
exposure and asks you to decide whether to continue installing the
application or abort. For the WebSphere Bank sample we are fine, so click
Continue.

The rest of the wizard is divided into steps.

6. Step 1: Select installation options

Step 1 gives you a chance to review the installation options. You can specify
various deployment options such as JSP precompiling, whether you want to
generate EJB deployment code, or enable reloadable classloaders for Web
modules.

If you are deploying an Enhanced EAR file, this is where you make the
decision whether to use the resource configuration information packaged in
the Enhanced EAR file or not. If the EAR file you are installing is an Enhanced
EAR, the install panel preselects the Process embedded configuration

Binding name Detailed information

EJB prefix You can generate default EJB JNDI names using a common
prefix. EJBs for which you did not specify a JNDI name will get a
default one, built by concatenating the prefix and the EJB name.
If you specify a prefix of myApp/ejb, then JNDI names default to
myApp/ejb/EJBName, such as myApp/ejb/Account.

Override Enter whether you want to override the current bindings. By
default, existing bindings are not altered.

EJB 1.1 CMP
bindings

You can bind all EJB 1.1 CMP entity beans to a specific data
source, including user ID and password.

Connection
Factory bindings

You can bind all EJB modules to a specific data source.
You will have to go to the next window to override this setting at
the EJB level.

Virtual host
bindings

You can bind all Web modules to a specific virtual host, such as
webspherebank_host.

Specify bindings
file

You can also create a specific bindings file using your favorite
editor and load it during application installation by clicking
Browse next to the specific bindings file. For information about
using a bindings file, see 16.3.1, “Using a bindings file” on
page 936.

 Chapter 16. Deploying applications 931

check box. If you do not want to use the resource configuration information
packaged in the Enhanced EAR file, you must deselect this check box.

Selecting the Pre-compile JSP option makes WebSphere compile all JSPs in
the EAR file during install time. This causes the time-consuming task of JSP
compilation to be performed during install time instead of during run time,
avoiding the first user that hits the application to pay that penalty.

A second alternative to pre-compile JSPs is to use the JspBatchCompiler
script found in the bin directory of the profile you are using to compile the
JSPs after the application has been installed.

Click Next.

7. Step 2: Map modules to servers

Select the server on which you want each module deployed. For better
performance, we recommend that you deploy all modules from one
application in a single server. Especially, do not separate the EJB clients,
usually servlets in Web modules, from the EJBs themselves.

Click the icon to select all modules in the WebSphere Bank EAR file. In
the Clusters and Servers box, select the WebSphereBankServer. Then click
Apply. This assigns all modules to the WebSphereBankServer application
server. If you deploy to a cluster, select the cluster instead of the single
application server.

See Figure 16-9 on page 933.

Important: The WebSphere Bank application uses JMS resources, which
are not supported by the Enhanced EAR. It is important that you deselect
the Process embedded configuration check box.

Web servers: If you have a Web server defined, select both the Web
server and WebSphereBankServer in the server list. Press and hold the
CTRL key to select multiple servers. Mapping Web modules to Web
servers ensures the Web server plug-in will be generated properly.

932 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 16-9 Mapping modules to application servers

8. Step 3: Select current back-end ID.

A single EAR file can contain multiple database mappings. At deployment
time, you can choose which one you want to use. In this case, set it to
DB2EXPRESS_V82 because this is the version we are using.

9. Step 4: Provide listener bindings for message-driven beans

In this step you can select listener ports or ActivationSpecs to which to bind
your message-driven beans. The WebSphere Bank application requires the
bindings shown in Table 16-8.

Table 16-8 Listener bindings for message-driven beans

We configured this in 15.3.3, “Binding the message-driven bean to an
ActivationSpec” on page 864 so the defaults shown should be correct.

Click Next.

Note: Steps 3 - 11 allow you to define bindings. We have already taken
care of this using the Application Server Toolkit when we packaged the
EAR file. You can skip directly to Step 12 if you like. See 17 on page 935.

Message-driven bean ActivationSpec

BankListener eis/BankActivationSpec

BankATMListener eis/com.ibm.websphere.samples.bank.adapter.BankMessageListener

 Chapter 16. Deploying applications 933

10.Step 5: Provide JNDI names for beans

Use this window to bind the enterprise beans in your application or module to
a JNDI name. In 15.3.1, “Defining EJB JNDI names” on page 861, we defined
these values in Table 16-9, so the defaults shown should be correct.

Table 16-9 Webbank enterprise bean JNDI names

Click Next.

11.Step 6: Bind message destination references to administered objects

In this step, bind the message destination references to their JNDI names.
Again, the values configured in the WebSphere Bank are fine.

Click Next.

12.Step 7: Map JCA resource references to resources

Each J2C object must be bound to a JNDI name. For the WebSphere Bank
application, the ActivationSpec
com.ibm.websphere.samples.bank.adapter.BankMessageListener should
therefore be bound to a JNDI name.

In 15.3.3, “Binding the message-driven bean to an ActivationSpec” on
page 864 we configured these values, which are fine.

Click Next.

13.Step 8: Provide default data source mapping for modules containing 2.x entity
beans

Specify the default data source for the EJB 2.x module containing 2.x CMP
beans. In 15.3.4, “Defining data sources for entity beans” on page 865 we
defined the JNDI name for the EJBs in the BankCMRQLEJB module as
jdbc/Bank. You see this in the window.

Click Next.

14.Step 9: Map data sources for all 2.x CMP beans

Specify an optional data source for each 2.x CMP bean. Mapping a specific
data source to a CMP bean overrides the default data source for the module
containing the enterprise bean (defined in step 7, (12 on page 934). We do
not need to do anything here. Click Next.

EJB Name JNDI Name

Sender session bean ejb/Bank/Sender

Transfer session bean ejb/Bank/Transfer

Account entity bean ejb/Bank/Account

Customer entity bean ejb/Bank/Customer

934 WebSphere Application Server V6: System Management and Configuration Handbook

15.Step 10: Map EJB references to beans

Each EJB reference defined in your application must be mapped to an
enterprise bean. We used the Application Server Toolkit to do this in 15.3.2,
“Binding EJB and resource references” on page 862.

Click Next.

16.Step 11: Map resource references to resources

Each resource reference defined in the application must be mapped to the
corresponding resource. The EJB module BankCMRQLEJB has a resource
reference to jms/BankJMSConnFactory, which is shown here.

Click Next.

At this step we now get an Application Resource Warning. What this tells us is
that the resource we just referenced, jms/BankJMSConnFactory, is not
defined for the specific application server to which we are installing our
application. This is fine because the resource is defined at the node level
instead.

Click Continue.

17.Step 12: Map virtual hosts for Web modules

For each Web module, select the virtual host we created for the application
(webspherebank_host).

Click Next.

18.Step 13: Map security roles to users and groups

Because the WebSphere Bank EAR file contains security roles, we need to
map them to users and groups in our target environment. However, because
we have not enabled J2EE security (global security), WebSphere will not
authenticate users trying to access the application. As a result we do not
need to map the roles to users and groups.

Click Next.

19.Step 14: Ensure all unprotected 2.x methods have the correct level of
protection

By default, EJB methods are unprotected. On this window, you can elect to
refuse all calls to unprotected methods, or specify which methods you want to
exclude.

Again, because we have not enabled J2EE security, WebSphere will not
authenticate users trying to access the EJBs.

Click Next.

 Chapter 16. Deploying applications 935

20.Step 15: Summary

The Summary window gives an overview of application deployment settings.
If those settings are fine, click Finish to deploy the application.

21.Save the configuration.

If you are working in a distributed server environment, make sure you
synchronize the changes with the nodes so they application is propagated to
the target application server (s).

Deployment is now complete. If you mapped the Web modules to a Web server,
make sure the Web server plug-in is regenerated and propagated to the Web
server. For a quick refresh, restart the Web server.

You can now start the WebSphereBankServer application server and try the
application by invoking http://www.webspherebank.com/WebSphereBank. Make
sure that the host name is one of the three names you have added to the
webspherebank_host definition. See 16.1.5, “Creating the virtual host for IBM
HTTP Server and Apache” on page 915.

16.3.1 Using a bindings file
If generating default bindings during deployment, default names suitable for most
applications are used. However, these defaults do not work if:

� You want to explicitly control the global JNDI names of one or more EJB files.

� You need tighter control of data source bindings for container-managed
persistence (CMP) beans. That is, you have multiple data sources and need
more than one global data source.

� You must map resource references to global resource JNDI names that are
different from the java:comp/env name

In such cases, you can use a specific bindings file to customize the bindings
created.

To use a bindings file when installing an application, load it by clicking Browse
next to the Specific bindings file option. When using this file, only specify
bindings that differ from the defaults, not the full bindings.

Example 16-6 is an example showing a bindings file used to change the JNDI
name of an EJB:

Example 16-6 Using a bindings file to change the JNDI of an EJB

<?xml version="1.0"?>
<!DOCTYPE dfltbndngs SYSTEM "dfltbndngs.dtd">
<dfltbndngs>

936 WebSphere Application Server V6: System Management and Configuration Handbook

 <module-bindings>
 <ejb-jar-binding>
 <jar-name>helloEjb.jar</jar-name>
<!-- this name must match the module name in the .ear file -->
 <ejb-bindings>
 <ejb-binding>
 <ejb-name>HelloEjb</ejb-name>
<!-- this must match the <ejb-name> entry in the EJB jar DD -->
 <jndi-name>com/acme/ejb/HelloHome</jndi-name>
 </ejb-binding>
 </ejb-bindings>
 </ejb-jar-binding>
 </module-bindings>
</dfltbndngs>

For more information about creating specific bindings file, refer to the Information
Center.

16.4 Deploying application clients
To run a Java-based client/server application, the client application executes in a
client container of some kind. You might, for example, use a graphical Swing
application that calls EJBs on an application server. WebSphere Application
Server V6 supports the following five types of application client environments:

� J2EE application client

This client uses services provided by the J2EE Client Container.

This client is a Java application program that accesses EJBs, JDBC
databases, and JMS queues. The J2EE application client program runs on
client machines. This program allows the same Java programming model as
other Java programs. However, the J2EE application client depends on the
application client runtime to configure its execution environment, and it uses
the JNDI name space to access resources, the same as you would in a
normal server application like a servlet).

The J2EE application client brings the J2EE programming model to the client,
and provides:

– XML deployment descriptors

– J2EE naming (java:comp/env) including EJB references and resource
references

The J2EE application client is launched using the launchClient script which
sets up the environment with the necessary classpaths and so on, for you.

 Chapter 16. Deploying applications 937

� Thin application client

This client does not use services provided by the J2EE Client Container.

This client provides a lightweight Java client programming model and is best
suited for use in situations where a Java client application exists, but the
application must be enhanced to make use of EJBs. It can also be used
where the client application requires a thinner, more lightweight environment
than the one offered by the J2EE application client. The Thin application client
includes the IBM JDK. When launching the Thin application client you must
set up the correct classpaths yourself and make sure that the required
libraries for your application and the WebSphere libraries are included.

� Pluggable application client

This client does not use services provided by the J2EE Client Container.

This client is similar to the Thin application client, but does not include a JVM.
The user is required to provide a JVM. It can also use the Sun JDK instead of
the IBM JDK.

� Applet application client

In the Applet client model, a Java applet embedded in an HTML document
executes in a Web browser. With this type of client, the user accesses an
enterprise bean in the application server through the Java applet in the HTML
document.

� ActiveX to EJB Bridge application client

The ActiveX application client allows ActiveX programs to access enterprise
beans through a set of ActiveX automation objects. The ActiveX application
client uses the Java Native Interface (JNI) architecture to programmatically
access the Java virtual machine (JVM) API. Therefore, the JVM code exists in
the same process space as the ActiveX application (Visual Basic, VBScript,
or Active Server Pages files) and remains attached to the process until that
process terminates.

The capabilities of the different application clients are shown in Table 16-10.

Table 16-10 Application client features comparison

Available functions J2EE
client

Thin
client

Plugg-
able
client

Applet
client

ActiveX
client

Provides all the benefits of a
J2EE platform

Yes No No No Yes

Portable across all J2EE
platforms

Yes No No No No

938 WebSphere Application Server V6: System Management and Configuration Handbook

Provides the necessary
run-time support for
communication between a
client and a server

Yes Yes Yes Yes Yes

Supports the use of
nicknames in the
deployment descriptor files.

Yes No No No Yes

Supports use of the
RMI-IIOP protocol

Yes Yes Yes Yes Yes

Browser-based application No No No Yes No

Enables development of
client applications that can
access enterprise bean
references and CORBA
object references

Yes Yes Yes Yes Yes

Enables the initialization of
the client application
run-time environment

Yes No No No Yes

Supports security
authentication to enterprise
beans

Yes Yes Yes Limited Yes

Supports security
authentication to local
resources

Yes No No No Yes

Requires distribution of
application to client
machines

Yes Yes Yes No Yes

Enables access to
enterprise beans and other
Java classes through Visual
Basic, VBScript, and Active
Server Pages (ASP) code

No No No No Yes

Provides a lightweight client
suitable for download

No Yes Yes Yes No

Available functions J2EE
client

Thin
client

Plugg-
able
client

Applet
client

ActiveX
client

 Chapter 16. Deploying applications 939

Install the application client environments from the WebSphere installation
panels by selecting the Launch the installation wizard for WebSphere
Application Clients option. The installation package contains the following
installable components:

� IBM Java Runtime Environment (JRE), or an optional full Software
Development Kit

� WebSphere Application Server run time for J2EE application client
applications, or Thin application client applications

� An ActiveX to EJB Bridge run time for ActiveX to EJB Bridge application client
applications (only for Windows)

� IBM plug-in for Java platforms for Applet client applications (Windows only)

16.4.1 Defining application client bindings
The WebSphere Bank sample application provides four client applications, the
GetAccounts, FindAccounts, TransferWS and TransferJMS clients. The various
client applications demonstrate the capabilities of the WebSphere Bank sample
application.

For an application client to be able to access resources, such as EJBs provided
by a J2EE server application, the proper bindings must be set up.

Enables access JNDI APIs
for enterprise bean
resolution

Yes Yes Yes Yes Yes

Runs on client machines
that use the Sun Java
Runtime Environment

No No Yes No No

Supports CORBA services
(using CORBA services can
render the application client
code nonportable)

Yes No No No No

Note: The J2EE client is automatically installed as part of a full WebSphere
install. In other words, if you will run the client application on a machine that
already has WebSphere installed, you do not need to install the WebSphere
J2EE client on top.

Available functions J2EE
client

Thin
client

Plugg-
able
client

Applet
client

ActiveX
client

940 WebSphere Application Server V6: System Management and Configuration Handbook

You need to specify the complete naming structure to reach the server where the
EJBs are deployed. For example, the machine where we deployed the
application for testing has the Network Deployment version installed. The
WebSphere Bank application is running in the WebSphereBank application
server on node ITSONode1.

Therefore, the ejb/Bank/Customer EJB reference can be bound to:

cell/nodes/ITSONode1/servers/WebSphereBankServer/ejb/Bank/Customer

If you have created a cluster of application servers, use:

cell/clusters/<clusterName>/ejb/Bank/Customer

You will also need to change the provider URL, according to the target server. If
you are running in a single server environment you can simply use:

ejb/Bank/Customer

When you have configured the proper bindings for the resources, you must
export the EAR file and copy it to the client machine. Although you do not need
the complete contents of the EAR file to run the application client, for example
the Web modules, it is better to keep a single EAR file. This is mainly for
maintenance purposes.

For more information about JNDI and naming, please refer to Chapter 13,
“WebSphere naming implementation” on page 769.

16.4.2 Launching the J2EE client
A J2EE client application needs a container to run in. In this example we will use
the J2EE application client container. This container can be started using the
launchClient program in the <<was_home>>/bin directory. The launchClient
program has the following syntax:

Usage: launchClient [-profileName pName | -JVMOptions options | -help | -?]
<userapp> [-CC<name>=<value>] [app args]

The elements of syntax are:

-profileName This option defines the profile of the Application Server
process in a multi-profile installation. The -profileName
option is not required for running in a single profile
environment or in an Application Clients installation. The
default is default_profile.

-JVMOptions This is a valid Java standand or nonstandard option
string. Insert quotation marks around the option string.

 Chapter 16. Deploying applications 941

-help, -? Print the usage information.

<userapp.ear> Type the path/name of the .ear file containing the client
application.

The -CC properties are for use by the Application Client runtime. There are
numerous parameters available and because of this we only describe the more
commonly used ones. For full explanation of all parameters execute
launchClient -help.

-CCverbose Use this option with <true | false> to display additional
informational messages. The default is false.

-CCclasspath This property is a classpath value. When an application is
launched, the system classpath is not used. If you need to
access classes that are not in the EAR file or part of the
resource classpaths, specify the appropriate classpath
here. Multiple paths can be concatenated.

-CCjar This is the name of the client JAR file within the EAR file
that contains the application you want to launch. This
argument is only necessary when you have multiple client
JAR files in the EAR file.

-CCBootstrapHost This option is the name of the host server you want to
connect to initially. The format is
your.server.ofchoice.com.

-CCBootstrapPort This option is the server port number. If not specified, the
WebSphere default value (2809) is used.

-CCproviderURL This option provides bootstrap server information that the
initial context factory can use to obtain an initial context.
WebSphere Application Server initial context factory can
use either a CORBA object URL or an IIOP URL. CORBA
object URLs are more flexible than IIOP URLs and are the
recommended URL format to use. This value can contain
more than one bootstrap server address. This feature can
be used when attempting to obtain an initial context from
a server cluster. In the URL, you can specify bootstrap
server addresses for all servers in the cluster. The
operation will succeed if at least one of the servers is
running, eliminating a single point of failure. The address
list does not process in a particular order. For naming
operations, this value overrides the -CCBootstrapHost
and -CCBootstrapPort parameters. An example of a
CORBA object URL specifying multiple systems is:
-CCproviderURL=corbaloc:iiop:myserver.mycompany.com
:9810,:mybackupserver.mycompany.com:2809

942 WebSphere Application Server V6: System Management and Configuration Handbook

-CCtrace Use this option with <true|false> to have WebSphere
write debug trace information to a file. The value true is
equivalent to a trace string value of com.*=all=enabled.
Instead of the value true you can specify a trace string, for
example, -CCtrace=com.ibm.ws.client.*=all=enabled.
Multiple trace strings can be specified by separating them
with a colon (:). You might need this information when
reporting a problem to IBM Service. The default is false.

-CCtracefile This option is the name of the file to which to write trace
information. The default is to output to the console.

-CCpropfile This option is the name of a properties file containing
launchClient properties. In the file, specify the properties
without the -CC prefix. For example: verbose=true.

The app args are for use by the client application and are ignored by
WebSphere.

To start the WebSphere Bank GetAccounts client using the launchClient
command execute the command shown in Figure 16-7:

Example 16-7 Launching WebSphere Bank application client

C:\WebSphere\AppServer\profiles\AppSrv01\bin>launchClient.bat
c:\WebSphereBankClient.ear -CCBootstrapPort=2809 -CCjar=GetAccounts.jar 100

IBM WebSphere Application Server, Release 6.0
J2EE Application Client Tool
Copyright IBM Corp., 1997-2004
WSCL0012I: Processing command line arguments.
WSCL0013I: Initializing the J2EE Application Client Environment.
WSCL0035I: Initialization of the J2EE Application Client Environment has
completed.
WSCL0014I: Invoking the Application Client class
com.ibm.websphere.samples.bank.client.GetAccounts
Get the account numbers owned by a certain customer

Getting the customer home...

Done....

Finding the customer....
Done....
Account Number: 101
All done!

Finding the customer from invoke
Account Number: 101

 Chapter 16. Deploying applications 943

All done!

Get accounts owned by customer from invoke...
Account Number: 101
Account balance: 200.0
Get number of customer accounts from invoke...
Account :1
All done!

Because the WebSphereBank EAR file contains multiple client applications (JAR
files) the -CCjar option must be used to specify which client application to
launch.

The WebSphere Bank GetAccounts client application is a text-mode application
that simply displays the accounts for a certain customer number 100 in our
example.

16.5 Updating applications
WebSphere Application Server V6 introduces new features that allow
applications to be updated and restarted at a more fine-grained level than in
earlier versions. In V6 it is possible to update only parts of an application or
module and only the necessary parts are restarted. In V6 you can:

� Replace an entire application (.ear file)
� Replace, add, or remove a single module (.war, EJB .jar, or connector .rar file)
� Replace, add, or remove a single file
� Replace, add and remove multiple files by uploading a compressed file

describing the actions to take

If the application is running while being updated, WebSphere Application Server
automatically stops the application, or only its affected components, updates the
application and restarts the application or components.

When updating an application, only the portion of the application code that
changed needs to be presented to the system. The application management
logic calculates the minimum actions that the system needs to execute in order
to update the application. Under certain circumstances the update can occur
without stopping any portion of the running application.

Also introduced in V6 is enhanced support for managing applications in a cluster
for continuous availability. The new action, Rollout Update, sequentially updates
an application installed on multiple cluster members across a cluster. After you
update an application's files or configuration, use the Rollout Update option to

944 WebSphere Application Server V6: System Management and Configuration Handbook

install the application's updated files or configuration on all cluster members of a
cluster on which the application is installed.

Rollout Update does the following for each cluster member in sequence:

1. Saves the updated application configuration
2. Stops all cluster members on a given node
3. Updates the application on the node by synchronizing the configuration
4. Restarts the stopped cluster members on that node

This action updates an application on multiple cluster members while providing
continuous availability of the application.

16.5.1 Replacing an entire application EAR file
To replace a full EAR with a newer version, do the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation panel, Select the
Full application option.

3. Select either the Local file system or Remote file system option. Click the
Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining panels and make any changes necessary. For
information about the panels see “Deploying the application” on page 930. On
the Summary panel click Finish.

5. When the application has been updated in the Master repository, select the
Save To Master Configuration link.

6. If you are working in a distributed server environment, make sure the
Synchronize changes with Nodes option is selected so that the application
is distributed to all nodes. Click the Save button. The application is distributed
to the nodes, updated and restarted as necessary.

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

16.5.2 Replacing or adding an application module
To replace only a module, such as an EJB or Web module of an application, do
the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

 Chapter 16. Deploying applications 945

2. On the Preparing for the application installation panel, select the Single
module option.

3. In the Relative path to module field, enter the relative path to the module to
replace in the EAR file. For example, if you were to replace the HelloWeb.war
Web module in the HelloApp EAR file, you would enter HelloWeb.war. If you
enter a path that does not exist in the EAR file, the module will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to select the updated module.

5. For Web modules, also enter the context root (e.g. HelloWeb) in the Context
root field.

6. Click Next.

7. Proceed through the remaining panels and make any changes necessary. For
information about the panels see “Deploying the application” on page 930. On
the Summary panel click Finish.

8. When the application has been updated in the Master repository, select the
Save To Master Configuration link.

9. If you are working in a distributed server environment, make sure the
Synchronize changes with Nodes option is selected so that the application
is distributed to all nodes. Click the Save button. The application is distributed
to the nodes, updated and restarted as necessary.

10.If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

16.5.3 Replacing or adding single files in an application or module
To replace a single file such as a GIF image or a properties file in an application
or module, do the following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation panel, select the Single file
option.

3. In the Relative path to file field, enter the relative path to the file to replace in
the EAR file. For example, if you were to replace the logo.gif in the images
diectory of the HelloWeb.war Web module, you would enter

Note: If you are adding a module, make sure to select the correct target
server for the module in the Map modules to servers step.

946 WebSphere Application Server V6: System Management and Configuration Handbook

HelloWeb.war/images/logo.gif. If you enter a path or file that does not exist
in the EAR file, it will be added.

4. Select either the Local file system or Remote file system option and click
the Browse button to locate the updated file. Click Next.

5. On the Updating Application panel, click OK.

6. When the application has been updated in the Master repository, select the
Save To Master Configuration link.

7. If you are working in a distributed server environment, make sure the
Synchronize changes with Nodes option is selected so that the application
is distributed to all nodes. Click the Save button. The application is distributed
to the nodes, updated and restarted as necessary.

16.5.4 Removing application content
Files can also easily be removed either from an EAR file or from a module in an
EAR file.

Removing files from an EAR file
To remove a file from an EAR file, do the following:

1. Select Applications → Enterprise Applications. Select the application to
remove the file from and click the Remove File button.

2. In the Remove file dialog box, select the file to be removed in the list as
shown in Figure 16-10 and click OK.

Figure 16-10 Removing a file from an application

3. Save the configuration.

 Chapter 16. Deploying applications 947

Removing files from a module
To remove a file from a module, do the following:

1. Select Applications → Enterprise Applications and click the link for the
application to which the module belongs.

2. In the Related items list on the right-hand part of the screen, click the link for
Web modules, EJB modules or Connector modules, depending on the type of
module the file to remove is.

3. Select the module and click the Remove File button.

4. In the Remove file dialog box, select the file to be removed in the list as
shown Figure 16-10 and click OK.

5. Save the configuration.

16.5.5 Performing multiple updates to an application or module
Multiple updates to an application and its modules can be packaged in a
compressed file, .zip or .gzip format, and uploaded to WebSphere Application
Server V6. The uploaded file is analyzed and the necessary actions to update
the application is taken.

Depending on the contents of the compressed file, this method to update an
application can replace files in, add new files to, and delete files from the
installed application all in one single administrative action. Each entry in the
compressed file is treated as a single file and the path of the file from the root of
the compressed file is treated as the relative path of the file in the installed
application.

� To replace a file, a file in the compressed file must have the same relative
path as the file to be updated in the installed application.

� To add a new file to the installed application, a file in the compressed file must
have a different relative path than the files in the installed application.

� To remove a file from the installed application, specify metadata in the
compressed file using a file named META-INF/ibm-partialapp-delete.props
at any archive scope. The ibm-partialapp-delete.props file must be an
ASCII file that lists files to be deleted in that archive with one entry for each
line. The entry can contain a string pattern such as a regular expression that
identifies multiple files. The file paths for the files to be deleted must be
relative to the archive path that has the
META-INF/ibm-partialapp-delete.props file.

� To delete a file from the EAR file (not a module), include a
META-INF/ibm-partialapp-delete.props in the root of the compressed file. In
the .props file, list the files to be deleted. File paths are relative to the root of
the EAR file.

948 WebSphere Application Server V6: System Management and Configuration Handbook

For example, to delete a file named docs/readme.txt from the root of the
HelloApp.ear file, include the line docs/readme.txt in the
META-INF/ibm-partialapp-delete.props file in the compressed file.

� To delete a file from a module in the EAR, include a
module_uri/META-INF/ibm-partialapp-delete.props in the compressed file.
The module_uri part is the name of the module, such as HelloWeb.war.

For example, to delete images/logo.gif from the HelloWeb.war module
include the line images/logo.gif in the
HelloWeb.war/META-INF/ibm-partialapp-delete.props file in the
compressed file.

� Multiple files can be deleted by specifying each file on its own line in the
metadata .props file.

Regular expressions can also be used to target multiple files. For example, to
delete all JavaServer Pages (.jsp files) from the HelloWeb.war file, include the
line .*jsp in the HelloWeb.war/META-INF/ibm-partialapp-delete.props file. The
line uses a regular expression, .*jsp, to identify all .jsp files in the HelloWeb.war
module.

As an example, assume we have prepared the compressed
HelloApp_update.zip file shown in Figure 16-11.

Figure 16-11 HelloApp_update.zip compressed file

The META-INF/ibm-partialapp-delete.props file contains the following line:

docs/readme.txt

 Chapter 16. Deploying applications 949

The HelloWeb.war/META-INF/ibm-partialapp-delete.props contains the following
lines:

images/logo.gif

When performing the partial application update using the compressed file,
WebSphere does the following:

� Adds the log4j.jar file to the root of the EAR.

� Updates the entire HelloEJB.jar module.

� Deletes the docs/readme.txt file (if it exists) from the EAR file, but not from
any modules.

� Adds the images/newlogo.jpg file to the HelloWeb.war module.

� Updates the HelloServlet.class file in the
WEB-INF/classes/com/itso/wrd/servlets directory of the HelloWeb.war
module.

� Deletes the images/logo.gif file from the HelloWeb.war module.

To perform the actions specified in the HelloWeb_updated.zip file do the
following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation panel, select the Partial
Application option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the compressed ZIP file with the modifications
you have created. Click Next.

4. On the Updating Application panel, click OK.

5. When the application has been updated in the Master repository select the
Save To Master Configuration link.

6. If in a distributed server environment, make sure the Synchronize changes
with Nodes option is selected so that the application is distributed to all
nodes. Click the Save button. The application is distributed to the nodes,
updated and restarted as necessary

7. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

950 WebSphere Application Server V6: System Management and Configuration Handbook

16.5.6 Rolling out application updates to a cluster
The new Rollout Update feature allows you to easily roll out a new version of an
application, or part of an application using the techniques described previously,
to a cluster. The Rollout Update feature takes care of stopping the cluster
members, distributing the new application, synchronizing the configuration and
restarting the cluster members. The operation is done sequentially over all
cluster members in order to keep the application continuously available.

When stopping and starting the cluster members, the Rollout Update feature
works on node level, so all cluster members on a node are stopped, updated and
then restarted, before the process continues to the next node.

Because the Web server plug-in module is not able to detect that an individual
application on an application server is unavailable, the Rollout Update feature
always restarts the whole application server hosting the application. Because of
this, if HTTP session data is critical to your application it should either be
persisted to database or replicated to other cluster members using the
memory-to-memory replication feature.

The order in which the nodes are processed and the cluster members are
restarted is the order in which they are read from the cell configuration repository.
There is no way to tell the Rollout Update feature to process the nodes and
cluster members in any particular order.

Assume we have an environment with two nodes, ITSONode1 and ITSONode2,
and a cluster called HelloCluster, which has one cluster member on each node
(HelloServer1 on ITSONode1 and HelloServer2 on ITSONode2). Assume we
have an application called HelloApp deployed and running on the cluster. To
update this application using the Rollout Update feature we would to the
following:

1. Select Applications → Enterprise Applications. Select the application to
update and click the Update button.

2. On the Preparing for the application installation panel, select the appropriate
action depending on the type of update. In this example we will update the
entire application EAR to a new version, so we select the Full Application
option.

3. Select either the Local file system or Remote file system option and click
the Browse button to select the updated EAR file. Click Next.

4. Proceed through the remaining panels and make any changes necessary. For
information about the panels see “Deploying the application” on page 930. On
the Summary panel click Finish.

5. When the application has been updated in the master repository, the status
window shown in Figure 16-12 on page 952 is displayed:

 Chapter 16. Deploying applications 951

Figure 16-12 Preparing for application rollout

You then have two options to start the rollout action:

– Click the Rollout Update link.

– Click the Manage Applications link and on the Enterprise Applications
panel, select the application and click the Rollout Update button.

During the rollout the window in Figure 16-13 on page 953 is displayed in the
status window.

Note: Do not click the Save to Master Configuration link or otherwise save
the configuration yourself. The Rollout Update will do that for you. If you
save the configuration yourself, the rollout update action will be canceled
and it will be handled as a normal application update.

952 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 16-13 Rolling out an application

For each node, the cluster members are stopped, the application is
distributed and they are restarted. When the rollout has completed, click
Continue.

6. If the application update changes the set of URLs handled by the application
(servlet mappings added, removed or modified), make sure the Web server
plug-in is regenerated and propagated to the Web server.

Although the Rollout Update feature makes it very easy to rollout an application
to a cluster while keeping the application continuously available, make sure that
your application can handle the roll out.

For example, assume you have version 1.0 of an application running in a cluster
consisting of two application servers, server1 and server2, and that HTTP
session data is persisted to a database. When you roll out version 2.0 of the

Note: The automatic file synchronization of the node agent is temporarily
disabled during the rollout process and then re-enabled afterwards, if it was
previously enabled. The Rollout Update feature works regardless of the
automatic file synchronization setting. However, in production systems the
automatic synchronization is often disabled anyway to give the administrator
greater control over exactly when changes made to the cell configuration are
distributed to the nodes.

 Chapter 16. Deploying applications 953

application and server1 is stopped, the Web server plug-in redirects the users on
server1 to server2. Then when server1 is started again, bringing up version 2.0
of the application, the plug-in will start distributing requests to server1 again.
Now, if the application update incurred a change in the interface of any class
stored in the HTTP session, when server1 tries to get these session objects from
the database, it might run into a deserialization or class cast exception,
preventing the application from working properly.

Another situation to consider is when the database structure changes between
application versions, as when tables or column names change name or content.
In that case, the whole application might need to be stopped and the database
migrated before the new version can be deployed. The Rollout Update feature
would not be suitable in that kind of scenario.

So it is very important to understand the changes made to your application
before rolling it out.

16.5.7 Hot deployment and dynamic reloading
Hot deployment and dynamic reloading characterize how application updates are
handled when updates to the applications are made by directly manipulating the
files on the server. In either case, updates do not require a server restart, though
they might require an application restart:

� Hot deployment of new components

Hot deployment of new components is the process of adding new
components such as WAR files, EJB JAR files, EJBs, servlets, and JSP files
to a running application server without having to stop and then restart the
application server.

However, in most cases such changes require the application itself to be
restarted, so that the application server runtime reloads the application and its
changes.

� Dynamic reloading of existing components

Dynamic reloading of existing components is the ability to change an existing
component without the need to restart the application server for the change to
take effect. Dynamic reloading can involve changes to the :

– Implementation of an application component, such as changing the
implementation of a servlet

– Settings of the application, such as changing the deployment descriptor
for a Web module

To edit the files manually, locate the binaries in use by the server. See
“Repository files used for application execution” on page 109. Although the

954 WebSphere Application Server V6: System Management and Configuration Handbook

application files can be manually edited on one or more of the nodes, these
changes will be overwritten the next time the node synchronizes its configuration
with the deployment manager. Therefore, it is recommended that manual editing
of an application’s files should only be performed in the master repository,
located on the deployment manager machine.

There are three settings that affect dynamic reload:

� Enable class reloading and Reloading interval for the enterprise application.

In order for application files to be reloaded automatically after an update,
Enable class reloading must be enabled and the Reloading interval must be
greater than 0.

Select Applications →Enterprise Applications. Double-click the application
to open the configuration page. These settings can be found in the General
Properties section.

� reloadingEnabled in the Web module extensions

A Web container reloads a Web module only when this setting is enabled.

This setting is found in the ibm-web-ext.xmi file and can be updated using
the Application Server Toolkit. Open the Web module deployment descriptor
and select the Extensions tab.

� Application class loader policy for the application server

The application class loader policy should be set to Multiple. If it is set to
Single, the application server will need to be restarted after an application
update.

Select Servers →Application Servers. Double-click the server to open the
configuration page. The setting is found in the General Properties section.

For more information about using hot deployment and dynamic reload, see the
Updating applications and Hot deployment and dynamic reloading topics in the
Information Center.

Note: Unless you are familiar with updating applications by directly
manipulating the server files, it might be better to use the administrative
console Update wizard.

 Chapter 16. Deploying applications 955

956 WebSphere Application Server V6: System Management and Configuration Handbook

Chapter 17. WebSphere Rapid
Deployment

WebSphere Rapid Deployment is a collection of tools and technologies
introduced in WebSphere Application Server V6 that make application
development and deployment easier than ever before.

WebSphere Rapid Deployment consists of the following:

� Support for annotation-based (Xdoclet) programming
� Fine-grained application updates
� Rapid deployment tools

In this chapter we briefly discuss the concept of annotation-based programming
and then show how to use the rapid deployment tools for the following two
project types (modes):

� Free-form development projects
� Automatic application installation projects

Using free-form development, you can quickly develop small J2EE applications
without using an integrated development environment. Automatic application
installation is an easy way to manage your applications by letting WebSphere
automatically install, update and uninstall your EAR files.

17

© Copyright IBM Corp. 2005. All rights reserved. 957

17.1 Annotation-based programming
Annotation-based programming is a method of speeding up application
development by reducing the number of artifacts you need to develop and
manage on your own. By adding metadata tags to your Java source code, the
WebSphere Rapid Deployment tools can automatically create and manage the
artifacts required to build J2EE compliant modules and applications.

For example, consider a stateless session EJB. With annotation-based
programming, you simply create a single Java source file containing the bean
implementation logic, add a few tags indicating that you want to deploy this class
as an EJB, and indicate which methods should be made public on the EJB
interface. Using this single artifact, WebSphere Rapid Deployment can create:

� The home and remote interface classes
� A stateless session implementation wrapper class
� The EJB deployment descriptor (ejb-jar.xml)
� The WebSphere-specific binding data
� All of the remaining artifacts required to produce a J2EE application

All you have to deal with is a single Java artifact, the other required artifacts are
generated, as shown in Figure 17-1 on page 959.

958 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 17-1 Artifacts generated by annotation-based class

WebSphere Rapid Deployment supports numerous tags to help you build your
applications. These tags map directly to known J2EE artifacts and deployment
descriptor elements. Specifically, WebSphere Rapid Deployment supports tags
for the following artifact types and generation targets:

� EJBs
� Servlets
� Java classes
� Web services

WebSphere Rapid Deployment supports annotations using Javadoc-style
comments in the package, class, field, or method declarations. The syntax uses
XDoclet syntax, where it exists. Currently, WebSphere Rapid Deployment
supports the syntax used by XDoclet for J2EE 1.3.

We do not go into the details of annotation-based programming in this book, but
we do use it when developing the example application for showing the free-form
development projects. For detailed information about annotation-based

Single Java source file with
Annotation-based programming
package com.ibm.wrd;
/**
 * @ejb.session
 * name="Hello"
 * type="Stateless"
 * view-type=both
 * jndi-name="HelloBean"
*/
public class Hello {
 /**
 * @ejb.interface-method view-type=both
 */
 public String hello(String name) {
 return "Hello: " + name;
 }
} Hello.java

HelloSSB
HelloHomeSSB

EJB Deployment
Code

HelloLocalHomeSSB
HelloLocalSSB

HelloBeanSSB

Multiple Java source files
and application artifacts

WebSphere Rapid
Deployment generates

 Chapter 17. WebSphere Rapid Deployment 959

programming, see the WebSphere Information Center. Search for annotation
and resources on the Internet, for example:

http://xdoclet.sourceforge.net/xdoclet/index.html

17.2 Rapid deployment tools
Using the rapid deployment tools part of WebSphere Rapid Deployment you can:

� Package J2EE artifacts quickly into an EAR file.
� Deploy and test J2EE modules and full applications quickly on a server.
� Create a new J2EE application quickly without the overhead of using an

integrated development environment (IDE).

For example, you can place full J2EE applications (EAR files), application
modules (WAR files, EJB JAR files), or application artifacts (Java source files,
Java class files, images, JSPs etc.) into a configurable location on your file
system, referred to as the monitored, or project, directory. The rapid deployment
tools then automatically detect added or changed parts of these J2EE artifacts
and perform the steps necessary to produce a running application on an
application server.

There are two ways to configure the monitored directory, each performing
separate and distinct tasks. You can specify the monitored directory as a
free-form project or an automatic application installation project.

With the free-form approach, you can place in a single project directory the
individual parts of your application, such as Java source files that represent
servlets or enterprise beans, static resources, XML files and other supported
application artifacts. The rapid deployment tools use your artifacts to place them
automatically in the appropriate J2EE project structure, generate any additional
required artifacts to construct a J2EE compliant application and deploy that
application on a target server.

The automatic application installation project allows you to quickly and easily
install, update, and uninstall J2EE applications on a server. If you place EAR files
in the project directory, they are deployed automatically to the server. If you
delete EAR files from the project directory, the application is uninstalled from the
server. If you place a new copy of the same EAR file in the project directory, the
application is reinstalled. If you place WAR or EJB JAR files in the automatic
application installation project, the rapid deployment tool generates the
necessary EAR wrapper, then publishes that EAR file on the server. For RAR
files, a wrapper is not created. The standalone RAR files are published to the
server.

960 WebSphere Application Server V6: System Management and Configuration Handbook

http://xdoclet.sourceforge.net/xdoclet/index.html

The advantage of using a free-form project is that you do not need to know how
to package your application artifacts into a J2EE application. The free-form
project does the packaging part for you. The free-form project is suitable when
you just want to test something quickly, perhaps write a servlet that performs a
task.

An automatic application installation project simplifies management of
applications and relieves you of the burden of going through the installation
panels in the WebSphere administrative console, or developing wsadmin scripts
to automate your application deployment.

Figure 17-2 describes the two modes.

Figure 17-2 WebSphere Rapid Deployment modes

Note: The rapid deployment tools can be configured to deploy applications
either onto a local or remote WebSphere Application Server.

and/or

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

Client
JARs

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)
WAR

J2EE
Apps

(EARs)

J2EE
Apps

(EARs)

EJB
JARs

Module Archives

Add J2EE
Applications or

Module archives
to WRD

workspace
WRD

Change
Detection /

Trigger
process

Application - Installed,
Restarted, Reinstalled

or Uninstalled

V6
Application

Server

Static
File

(Image,
HTML)

Servlet,
JSP,
etc.

Java
Source

Add J2EE Artifacts to
WRD workspace -

J2EE project
structure not

required
WRD

Change
Detection /

Trigger
process

User creates individual
J2EE artifacts (Java

Source, Web resources,
etc.) WRD generates

J2EE artifacts
and package

Application - Installed,
Restarted, Reinstalled

or Uninstalled

Automated Application Install

Free-Form Project

 Chapter 17. WebSphere Rapid Deployment 961

17.3 Using rapid deployment commands
The rapid deployment tools are managed by two commands, wrd-config and
wrd. Wrd-config is used to configure a workspace directory for a rapid
deployment session, either free-form or automatic application installation mode.
The wrd command is then used to tell the rapid deployment tools to start
monitoring the directory and act on the changes you introduce to it.

17.3.1 wrd-config command
The wrd-config command is used to configure a workspace for either free-form
development or automatic application installation mode.

The syntax for the wrd-config command is:

wrd-config.bat(sh) -project <project_name> -style <freeform| autoappinstall>
[<optional parameters>]

Table 17-1describes the mandatory parameters.

Table 17-1 wrd-config mandatory parameters

The free-form project allows you to create or drop in your J2EE artifacts (such as
servlet, EJB or general Java source or class files, JSPs, static Web content, and
all other generic files) into the free-form project. These resources are then
automatically compiled (if necessary), placed in the appropriate location in the
J2EE project structure and deployed on an application server. Optionally, the
rapid deployment tools can also export an EAR file to a target directory.

Note: Before running the wrd-config command, you must set up the
WORKSPACE environment variable to point to the workspace directory your rapid
deployment session will use. This is done by executing:

� Windows: set WORKSPACE=<workspace_root>
� Linux: export WORKSPACE=<workspace_root>

Parameter Description

-project <“project_name”> This is the name of the rapid deployment project
that you want to create. The project name needs
to be unique in your workspace.

-style <“freeform” | “autoappinstall”> The deployment approach - either the free-form
or automatic application installation project is
used as the deployment style.

962 WebSphere Application Server V6: System Management and Configuration Handbook

The automatic application installation project creates a single project that listens
for fully composed EAR or module files. If EAR files are placed inside this project,
the EAR file is deployed automatically to the server. If the EAR file is deleted,
then that application is uninstalled from the server. If you place WAR or EJB jar
files in an automatic application installation project, the rapid deployment tool
generates the necessary EAR wrapper, then publishes that EAR file on the
server. For RAR files, a wrapper is not created. The standalone RAR files are
published to the server.

The wrd-config command also takes the optional parameters described in
Table 17-2. Not all parameters are applicable to the automatic application
installation mode, however.

Table 17-2 wrd-config optional parameters

Parameter Description

-rebuild Clean and rebuildsthe contents of the rapid
deployment project. Use this to start a new session,

-configure Open an interactive console session to modify any
available parameters.

-runtime <“was51” | “was60”> Targeting your runtime will configure which JRE
library to use, based on the runtime location, and
configure the project's classpath to contain the
WebSphere runtime libraries. Specify as an identifier
if either WebSphere Application Server v5.1
("was51") or WebSphere Application Server v6.0
("was60") is used as the target run-time environment
for rapid deployment processing. If this parameter is
not specified, the default setting is WebSphere
Application Server v6.0. This parameter is only used
with -runtimePath parameter.

-runtimePath <“was_home”> Was_home is the directory where WebSphere
Application Server is installed (for example,
c:\WebSphere\AppServer).

-j2eeVersion <“1.3” | “1.4”> Specify either J2EE version 1.3 or 1.4 is used for
development and deployment.

-configPath “x:\filename.xml” Specify the destination file path for the configuration
file, where x is the temporary directory. This file
persists the configuration data to an XML file, which
can later be used to drive other rapid deployment
configuration sessions. If this path is not specified, the
default location is in the root of the rapid deployment
workspace.

 Chapter 17. WebSphere Rapid Deployment 963

When running wrd-config, an interactive Parameter Configuration Settings
dialog window is displayed as shown in Example 17-1:

Example 17-1 Parameter Configuration Setting dialog window

Parameter Configuration Settings

Press ENTER to accept defaults
The * symbol denotes required input

 Enter the server name* (server1) :
 Enter the server JMX host name* (localhost) :
 Enter the server JMX port number* (8880) :
 Enter a path for containing the exported EAR (--) :
 Enter your server username (--) :
 Enter your server password (--) :

-configData “x:\filename.xml” The path of an existing XML configuration file that is
used to drive the configuration session. If this path is
not specified, the default location of the XML
configuration file is in the root of the rapid deployment
workspace with the naming convention
projectName_headlessconfig.xml, where
projectName is the value specified in the -project
parameter.

-listStyles List the available deployment styles (AutoAppInstall
and FreeForm) and their descriptions.

-listServers List the available runtime server targets.

-properties List the properties for a given deployment project.
This parameter is only used with -project.

-buildMode Specify to disable all console outputs. This is useful
for silent builds.

-usage Display the optional and required parameters for this
command.

Note: The runtimePath is not used for targeting the server to publish against,
but, rather, specifying the WebSphere libraries you want your application to
compile against. If the runtime and runtimePath are not specified, the default
runtime environment used is WebSphere Application Server v6.0.

Parameter Description

964 WebSphere Application Server V6: System Management and Configuration Handbook

Table 17-3 describes the settings that should be configured in the dialog window.
The order listed is the way they are presented by the dialog window.

Table 17-3 wrd-config Parameter Configuration Settings

Example 17-2 shows some examples of how to use the wrd-config command.

Example 17-2 wrd-config examples

To create a new free-form project called MyProject:

wrd-config.bat -project "MyProject" -style "freeform"

To create a new automatic application installation project called MyProject:

Option Description

serverName Use the name of the server process you want to publish your
application. For example, server1. For WebSphere Application
Server Network Deployment, the server name is in the form
<cell_name>/<node_name>/<server_name>.
Note: WebSphere Rapid Deployment cannot publish to a cluster.

serverJMXHost Use the host name of the machine containing the server to which
you want to make a connection. For example, localhost. For
WebSphere Application Server Network Deployment, type the host
name of the Network Deployment Manager.

serverJMXPort Use the server administrative port number, also known as the SOAP
connector port. This port is used for making JMX connections with
the server. For example, 8880. In a distributed server environment,
use the SOAP port number of thedeployment manager. the default
is 8879.

earExportPath This is an optional field to specify the directory location of the output
EAR file that is created by rapid deployment tools and contains the
generated classes required for deployment. For example: c:\temp

Note: When you specify the directory for the output EAR file and
then run the wrd-config command, any existing output EAR file of
the same name will be overwritten without warning. In addition, the
EAR file gets overwritten as additional J2EE artifacts are added to
the free-form project to reflect the new changes.

username (Optional) If security is enabled, specify the user name for current
active authentication settings defined in the server configuration.

password (Optional) If security is enabled, specify the password for current
active authentication settings defined in the server configuration.

 Chapter 17. WebSphere Rapid Deployment 965

wrd-config.bat -project "MyProject" -style "autoappinstall"

To persist configuration data to an XML file:

WRD-config.bat -project "MyProject" -style "freeform" -runtime "was60"
-runtimePath "c:\WebSphere\AppServer" -configPath
"c:\configData\myHeadlessConfig.xml"

To create a new rapid deployment project using an existing XML configuration
file:

wrd-config.bat -configData "c:\configData\myHeadlessConfig.xml"

To clean and rebuild an existing rapid deployment project:

wrd-config.bat -project "MyProject" -rebuild

To modify available deployment parameters:

wrd-config.bat -project "MyProject" -configure

To query properties of an existing rapid deployment project:

wrd-config.bat -project "MyProject" -properties

To query available rapid deployment styles and run-time targets:

wrd-config.bat -listStyles -listServers

17.3.2 wrd command
The wrd command is used to configure the rapid deployment tools to start
monitoring a project directory, configured by the wrd-config command, for
changes.

The syntax for the wrd command is:

wrd.bat(sh) [<optional parameters>]

Note: A projectName_headlessconfig.xml file is generated in the root of your
rapid deployment workspace. Use this file later to configure a project with the
same configuration, without having to be prompted again for these
parameters. Use the optional -configData parameter to complete this task.

966 WebSphere Application Server V6: System Management and Configuration Handbook

The wrd command has no mandatory parameters, but takes the optional
parameters described inTable 17-4.

Table 17-4 wrd optional parameters

17.4 Free-form projects
Free-form projects provide a simple way to develop small J2EE applications
quickly, without having to use a full-blown integrated development environment.
However, when developing larger applications, you almost always want the
benefits of an integrated development environment, such as Rational Application
Developer for WebSphere software to give you features like application
modeling, version control, debugging, profiling, and so forth.

Also, if your application cannot conform to the assumptions and defaults made
by the rapid deployment tools, you need to use an integrated development
environment to give you total control over how your application is packaged.

When using free-form projects, the rapid deployment tools make certain
assumptions about the J2EE application being created. The J2EE project
structure created will hold one EJB module, one EJB client JAR, one Web
module and one utility JAR, all encapsulated in one enterprise application (EAR
file). There will be, at most one of each type of module. A module is created only

Parameter Description

-monitor Enable console feedback from the rapid deployment tool.

-project <"project_name"> Use the name of the rapid deployment project that you
want to target to run in batch mode. This -project
parameter is only used in conjunction with -batch
parameter.

-batch Enable batch mode on a specified target project. Batch
mode runs a full build on a rapid deployment workspace
and then shuts down the process.

-usage Display the optional parameters for this command.

Note: Before starting a WebSphere Rapid Deployment session, make sure
the application server that will host the application is started. Otherwise, you
will see the following error message in the console output:

[04:31:32 PM] Publishing HelloApp to server_510658053
[04:31:32 PM] ERROR! Failed to make connection to WebSphere Application
Server.

 Chapter 17. WebSphere Rapid Deployment 967

when necessary. So, unless you have introduced any EJB code in your project,
no EJB module is created. Table 17-5 shows the naming conventions used for
naming the modules.

Table 17-5 Naming conventions for free-form project contents

Project_name is the name given the project when setting up the environment and
is the directory being monitored.

The rapid deployment tools will configure and update the manifest files and
project references to maintain the following default settings:

� The EJB module project will have reference and visibility to the EJB client jar
project.

� The Web module project will have reference and visibility to the EJB client jar
project.

� The Web module project, EJB module project, and EJB client jar project will
have reference and visibility to the utility project.

� The enterprise application project will contain the Web module project, EJB
module project, and EJB client jar project.

� The utility Java project is added as a utility JAR inside the enterprise
application project.

Each of the projects, excluding the enterprise application project, contains an
imported_classes directory. The imported_classes folder is set as an exported
entry on the classpath of its containing project. As a result, the directory and any
contents within it, is visible to any projects referencing that project.

The initial configuration of the free-form project creates the following
subdirectories in the project directory:

� The gen folder is a repository of non-Java artifacts that are generated by the
rapid deployment tools.

Naming conventions for the project
folder

Project type

project_name The free-form project

project_nameApp A single enterprise application project

project_nameEJB A single EJB module project

project_nameEJBClient A single EJB client jar project

project_nameWeb A single Web module project

project_nameUtility A single utility Java project

968 WebSphere Application Server V6: System Management and Configuration Handbook

� The src folder is a subdirectory of the gen folder and is a repository of Java
artifacts generated by the rapid deployment tools. For example, if you drop an
annotated session EJB, the remote, home and local interfaces are generated
in src directory.

� The bin directory contains the class files that were compiled for any Java
source files dropped into the free-form project.

When Java source files are dropped into a free-form project, they are
compiled into this project and the generated class files are copied into the
target J2EE project’s imported_classes folder. The source files are not copied
into any of the J2EE project structures. The deployed application contains
only class files.

If a classification of a resource changes from one artifact type to another that
results in changes to its target J2EE module project, the old mapped locations
are purged. For example, if Hello.java implemented a servlet, its class files map
to the Web module project. If the content of Hello.java changes to implement an
enterprise bean, its class files now map to the EJB module project. The dangling
class in the Web project is removed.

Any resources that cannot be classified by the rapid deployment tools are
mapped to the utility Java project, and their folder structure is preserved as
created and dropped into the free-form project. For example, if the following
resource exists in the free-form project, /MyFreeForm/data/myproperties.props,
this file is mapped to /MyFreeFormUtility/data/myproperties.props,
preserving the data folder. In addition, if the class files cannot be classified by the
rapid deployment tools as other than a class file, the tool maps these files to the
imported classes folder in the utility Java project.

When removing artifacts from the free-form project, the rapid deployment tools
remove the artifacts from their mapped J2EE project structure location and, if
applicable, also remove the deployment descriptor entries. However, the rapid
deployment tools keep any project folders created.

The application generated can be published and deployed either on a local or
remote WebSphere Application Server. When publishing to a local server, the
server runs the application using the resources (.class files) within the
workspace. As a result, the server itself does not maintain the resources for the
application on the local server. To have the server maintain the resources within
the application, use remote publishing, even though you are using a local server.
This way, you can later modify server-specific configurations using the
WebSphere administrative console.

To use remote publishing on a local server to keep resources in an application,
do the following:

 Chapter 17. WebSphere Rapid Deployment 969

1. Open the headless.props file in the
workspace/.plugins/.metadata/com.ibm.ws.rapiddeploy.core directory,
where workspace is the directory where your rapid deployment project
resides.

2. Set the parameter value of TREAT_SERVER_AS_REMOTE to true. This enables the
WebSphere Administrative console to work with the application.

If the free-form project is configured to a local server (on the same machine
running the rapid deployment session), the application synchronizes with the
server after every change. If the free-form project is configured to a remote
server, changes are batched together in one minute intervals to limit file transfers
over the network for every change. A publish is triggered every minute, only
when a change occurs.

The rapid deployment tools only manage the J2EE part of your application, not
any additional resources (such as JDBC Providers, DataSources, JMS
configuration, and so on) your application might also need. You must manually
configure these resources using the WebSphere administrative console before
your application can run.

17.5 Free-form development example
For the purpose of showing how to develop an application using a free-form
project we will create a very very simple J2EE application. When completed, the
application will contain the following artifacts:

� A stateless session EJB, called HelloEJB
� A servlet, called HelloServlet
� A JSP, called hello.jsp
� A GIF image, called logo.gif in a directory called images

The EJB has only a remote interface and only a single method, getGreeting,
returning a String value. When invoked, HelloServlet looks up HelloEJB and calls
its getGreeting method. It then forwards to the JSP, which displays the message
along with the GIF image.

The EJB and servlet are developed using annotation-based programming to
reduce the number of artifacts that need to be managed.

The WebSphere Rapid Deployment session will be set up to automatically
produce an EAR file with the contents of our application.

The scenario we will use contains the following steps:

1. Create a workspace directory

970 WebSphere Application Server V6: System Management and Configuration Handbook

2. Configure a free-form project in the workspace.

3. Launch a WebSphere Rapid Deployment session. This step configures the
rapid deployment tools to monitor the project directory for changes.

4. Copy the EJB source code into the project directory.

5. Copy the servlet source code into the project directory.

6. Copy the JSP source code into the project directory.

7. Copy the GIF image into the project directory.

8. Verify that the code has been compiled, packaged it into a J2EE application
and is installed on the application server.

9. Test the application.

10.Examine the EAR file exported.

17.5.1 Setting up the environment for free-form development
Before starting out with our free-form example project, we need to set up the
environment. Do the following:

1. Open a command prompt. This will be used for running the rapid deployment
tools in headless, nongraphical, mode. All output from the tools will be written
to this window. We, therefore, also refer to it as the console window.

2. Create a workspace directory, for example c:\wrd, by typing:

mkdir c:\wrd

The workspace directory holds the projects with which you work.

3. Set the WORKSPACE environment variable by typing:

set WORKSPACE=c:\wrd

4. Configure the rapid deployment tools to create a free-form project called
Hello in the workspace directory by typing:

cd <profile_home>\bin
wrd-config.bat -project “Hello” -style ”freeform”

<profile_home> is the root directory of the application server profile you are
using.

This brings up the interactive Parameter Configuration Settings dialog
window. Enter the information as requested in Example 17-3 on page 972.

Tip: To list all environment variables currently set, type set in Windows, or
export -n in Linux and press Enter.

 Chapter 17. WebSphere Rapid Deployment 971

Example 17-3 Parameter Configuration Settings

Parameter Configuration Settings

Press ENTER to accept defaults
The * symbol denotes required input

 Enter the server name* (server1) : ITSOCell/ITSONode1/server1
 Enter the server JMX host name* (localhost) :
 Enter the server JMX port number* (8880) : 8879
 Enter a path for containing the exported EAR (--) : c:\temp
 Enter your server username (--) :
 Enter your server password (--) :

Configuring the workspace...
Building the workspace...
WebSphere Rapid Deployment configuration completed.

When creating this example, we were running in a distributed server
environment and, therefore, used the JMX port (8879) for our deployment
manager. Our target application server is called server1 and exists on node
ITSONode1 in the cell called ITSOCell.

If you were running on a standalone server, you would use the JMX port
number, default 8880, for the standalone application server, default server1.
In our environment, the deployment manager and the application server are
located on the same physical machine so we used the default JMX hostname
localhost. Also, we did not have WebSphere global security enabled, so we
did not need to supply a username or password.

We entered c:\temp as the exported EAR target directory. This means that
the WebSphere Rapid Deployment tools will produce an EAR file for us in this
directory in addition to deploying the application to our server.

When the wrd-config command has finished, the directory structure shown in
Figure 17-3 on page 973 is created in the workspace directory.

Note: Make sure the application server that the application will be
published on (ITSOCell/ITSONode1/server1 in our example) is started
before proceeding to the next step.

972 WebSphere Application Server V6: System Management and Configuration Handbook

Figure 17-3 Initial free-form project structure

The Hello directory is the project directory and will be monitored by the tools.
You can have multiple projects in a workspace as long as their names are
unique. In the root of the workspace, the Hello_headlessconfig.xml file has
been created. This file holds the configuration for our project.

5. Launch the WebSphere Rapid Deployment session by typing:

wrd.bat -monitor

This tells the rapid deployment tools to start monitoring the project directory
for changes and display messages on the console.

The wrd command displays the messages in Example 17-4 in the console
window:

Example 17-4 Launching WebSphere Rapid Deployment

Launching WebSphere Rapid Deployment. Please wait...
Starting Workbench...

WebSphere Rapid Deployment ready for e-business...

Type 'q', 'quit', or 'exit' to shut down WebSphere Rapid Deployment processes.

Note: The wrd command itself is used to tell the rapid deployment tools to
start monitoring the project directory and the optional -monitor switch
enables the console output messages.

 Chapter 17. WebSphere Rapid Deployment 973

To terminate a WebSphere Rapid Deployment session, type Q, quit or exit
and press Enter in the console window. This stops the monitoring of the
project directory. You can continue working where you stopped by simply
running the wrd command again.

17.5.2 Adding application source code
When the WebSphere Rapid Deployment session is configured and monitoring
of the project directory is activated, we can introduce the Java files and the other
artifacts that make up our application. We will use annotated Java source code
and let the rapid deployment compile it for us, but we could also have copied
.class files directly to the project directory.

Adding EJB source code
To add EJB source code, do the following:

1. Create a directory called com\itso\wrd\ejbs in the c:\wrd\Hello project
directory. The reason for doing this is that the Java source file must be placed
in the correct directory structure, matching the class package name.

2. Using a text editor, add the EJB code shown in Example 17-5 and save the
file as HelloEJBBean.java in the c:\wrd\Hello\com\itso\wrd\ejbs directory:

Example 17-5 Source code for HelloEJBBean.java

package com.itso.wrd.ejbs;
import javax.ejb.*;
/**
 * Bean implementation class for Session Bean: HelloEJB
 *
 * @ejb.bean
 * name="HelloEJB"
 * type="Stateless"
 * jndi-name="ejb/com/itso/wrd/ejbs/HelloEJBHome"
 * view-type="remote"
 * transaction-type="Container"
 *
 * @ejb.home
 * remote-class="com.itso.wrd.ejbs.HelloEJBHome"
 *
 * @ejb.interface
 * remote-class="com.itso.wrd.ejbs.HelloEJB"
 *
 */
public class HelloEJBBean implements SessionBean {

private SessionContext mySessionCtx;
/**
 * @ejb.interface-method view-type=remote

974 WebSphere Application Server V6: System Management and Configuration Handbook

 */
public String getGreeting() {

return "Hello WebSphere!";
}
public SessionContext getSessionContext() {

return mySessionCtx;
}
public void setSessionContext(SessionContext ctx) {

mySessionCtx = ctx;
}
public void ejbCreate() throws CreateException { }
public void ejbActivate() {}
public void ejbPassivate() { }
public void ejbRemove() { }

}

After a few seconds, the introduced change is picked up by the rapid deployment
tools and the console window displays the contents of Example 17-6 on
page 976.

 Chapter 17. WebSphere Rapid Deployment 975

Example 17-6 Adding the HelloEJBBean.java

[11:14:20 AM] [/Hello/com/itso/wrd/ejbs/HelloEJBBean.java] Added
[11:14:20 AM] [/Hello/bin/com/itso/wrd/ejbs/HelloEJB.class] copied to project
[HelloEJBClient]
[11:14:20 AM] [/Hello/bin/com/itso/wrd/ejbs/HelloEJBBean.class] copied to
project [HelloEJB]
[11:14:20 AM] [/Hello/bin/com/itso/wrd/ejbs/HelloEJBHome.class] copied to
project [HelloEJBClient]
[11:14:28 AM] Publishing IBMUTC to server_1617843630
[11:14:30 AM] Installing New Application: IBMUTC
...
...
[11:15:45 AM] Publishing HelloApp to server_1617843630
[11:15:46 AM] Installing New Application: HelloApp
...
...
[11:16:05 AM] ADMA5013I: Application HelloApp installed successfully.
[11:16:41 AM] Installation Completed Sucessfully: HelloApp
[11:16:41 AM] Starting Application: HelloApp
[11:16:42 AM] Application Started Sucessfully: HelloApp
[11:16:43 AM] Publishing HelloApp to server_1617843630
[11:16:43 AM] Updating Application.
[11:16:44 AM] Update is not required.

When the annotated EJB source code is introduced in the monitored directory,
the necessary EJB files such as home and remote interfaces are generated and
compiled. They are packaged in an EJB module which is, in turn, packaged into
an application called HelloApp. HelloApp is deployed onto the application server.

If the rapid deployment does not find the Universal Test Client (UTC) on the
application server, it will be automatically installed. The Universal Test Client can
be used for testing for example EJBs and can be accessed at

http://localhost:9080/UTC.

If you open the WebSphere administrative console and select Applications →
Enterprise Applications → HelloApp you can verify the application
configuration as shown in Figure 17-4 on page 977.

976 WebSphere Application Server V6: System Management and Configuration Handbook

http://localhost:9080/UTC

Figure 17-4 HelloApp deployed to WebSphere Application Server

The application resources (binaries) are pointing at the project directory,
c:\wrd\HelloApp, indicating that the application server is executing the application
using the resources directly from the project directory. This is possible because
we are publishing to a local server. If we would have run against a remote server,
the rapid deployment tools would have packaged the HelloApp.ear file,
distributed it to the remote server and deployed it there. Running against a local
server is, of course, faster.

If you click the EJB Modules, you see that the application has one EJB module,
HelloEJB.jar, defined. But there are no Web modules yet.

 Chapter 17. WebSphere Rapid Deployment 977

If you are dropping whole EJB modules (ejb.jar files) into a free-form project, you
need to generate the deployed code yourself. The EJBDeploy tools do not
automatically run on these already packaged ejb.jar files. For information about
the EJBDeploy tool, see 16.2.1, “Using EJBDeploy command line tool” on
page 928.

If you drop an entity bean, by default the rapid deployment tools will generate a
bean-managed persistence (BMP) entry in the deployment descriptor. If you
want a container-managed persistence (CMP) bean, specify this using an
annotated source file.

A naming convention must be followed for the Java source, compiled class, or
annotated source files for each enterprise bean. For example, if an enterprise
bean implementation class is named HelloEJBBean.java, follow this convention
for any bean interfaces that are defined:

� The remote interface class must be named HelloEJB.java.
� The home interface class must be named HelloEJBHome.java.
� The local interface class must be named HelloEJBLocal.java.
� The local home interface class must be named HelloEJBLocalHome.java.

The primary key class for entity beans can be named anything because the rapid
deployment tools logically locate the correct class name by introspecting either
the remote home or local home interface.

These rules do not imply that both remote and local view types must be created.
These are just naming conventions when creating source for a set of bean
interfaces.

A new EJB entry to the deployment descriptor is only added when a minimum set
of resources are available in the free-form project. For example, if the bean class
is placed in the free-form project, its compiled class maps to the EJB project, but
no deployment descriptor entry is created until the rapid deployment tools locate
either a set of remote view type classes or local view type classes. For entity
beans, a primary key class is also required. If the minimum resources are
removed, the bean descriptor entry is removed.

Note: It is important that the Java source files you add to the project directory
are created in the correct directory structure, matching the class files package
name. If you simply drop the HelloEJBBean.java class into the c:\wrd\Hello
directory instead of the c:\wrd\Hello\com\itso\wrd\ejbs directory, you see a
compilation error such as:

[05:15:43 PM] 'The declared package does not match the expected package ' in
resource 'HelloEJBBean.java' on line number 1

978 WebSphere Application Server V6: System Management and Configuration Handbook

Adding servlet source code
Using the same technique as for the EJB, now add the servlet code by doing the
following:

1. Create a directory called com\itso\wrd\servlets in the c:\wrd\Hello project
directory.

2. Add the servlet code shown in Example 17-7 and save the file as
HelloServlet.java in the c:\wrd\Hello\com\itso\wrd\servlets directory:

Example 17-7 Source code for HelloServlet.java

package com.itso.wrd.servlets;
import java.io.*;
import javax.naming.*;
import javax.rmi.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.itso.wrd.ejbs.*;
/**
 * Servlet implementation class for Servlet: HelloServlet
 *
 * @web.servlet name="HelloServlet" display-name="HelloServlet"
 *
 * @web.servlet-mapping url-pattern="/HelloServlet"
 *
 */
public class HelloServlet extends javax.servlet.http.HttpServlet

implements javax.servlet.Servlet {

protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String greeting = null;
try {

InitialContext ctx = new InitialContext();
Object objectHome =

ctx.lookup("ejb/com/itso/wrd/ejbs/HelloEJBHome");
HelloEJBHome helloEJBHome = (HelloEJBHome)

PortableRemoteObject.narrow(objectHome, HelloEJBHome.class);
HelloEJB helloEJB = helloEJBHome.create();
greeting = helloEJB.getGreeting();

} catch (Exception e) {
e.printStackTrace(System.out);

}
req.setAttribute("greeting", greeting);
RequestDispatcher dispatch = req.getRequestDispatcher("/hello.jsp");
dispatch.forward(req, resp);

}

protected void doPost(HttpServletRequest req, HttpServletResponse resp)

 Chapter 17. WebSphere Rapid Deployment 979

throws ServletException, IOException {
doGet(req, resp);

}

After a few seconds, rapid deployment tools have picked up the new changes
and Example 17-8 is shown in the console window.

Example 17-8 HelloServlet.java added

[11:23:21 AM] [/Hello/com/itso/wrd/servlets/HelloServlet.java] Added
[11:23:21 AM] [/Hello/bin/com/itso/wrd/servlets/HelloServlet.class] copied to
project [HelloWeb]
[11:23:21 AM] Publishing HelloApp to server_1617843630
[11:23:22 AM] Updating Application.
[11:23:23 AM] Servlet added to web.xml: HelloServlet
[11:23:23 AM] Servlet mapping added. URL is: [HelloWeb/HelloServlet]
...
...

Using the WebSphere administrative console, you can now see that there is a
Web module called HelloWeb.war added to the HelloApp application. The
context root for the Web module is the same as its name, HelloWeb. Also, a
servlet mapping HelloWeb/HelloServlet is added to the web.xml file.

Adding JSP source code
Using the same procedure as before, add the JSP code shown in Example 17-9
and save the file as hello.jsp in the c:\wrd\Hello directory:

Example 17-9 Source code for hello.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<HTML>
<HEAD>
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
pageEncoding="ISO-8859-1"%>
<META http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">
<TITLE>Greeting</TITLE>
</HEAD>
<BODY>
<H1><%= request.getAttribute("greeting") %></H1>

Note: In our very simple example application, our EJB publishes only a
remote interface and our servlet looks it up in the JNDI namespace directly
without using an EJB reference. We could have used the @web.ejb-ref tag if
we wanted to use an EJB reference instead of looking it up directly. To access
an EJB’s local interface, you must use the @web.ejb-local-ref tag.

980 WebSphere Application Server V6: System Management and Configuration Handbook

</BODY>
</HTML>

When the JSP is added, Example 17-10 on page 981 is shown in the console
window.:

Example 17-10 Adding hello.jsp

[11:24:58 AM] [/Hello/hello.jsp] Added
[11:24:58 AM] [/Hello/hello.jsp] copied to project [HelloWeb]
[11:24:58 AM] JSP entry added to web.xml: hello
[11:24:58 AM] Servlet mapping added. URL is: [HelloWeb/hello]
...
...

As you can see in the console window, the web.xml file is updated also with a
servlet mapping for the JSP.

Adding a GIF image
Because we want rapid deployment tools to maintain the directory structure for
our static resources, we first need to create a directory to hold our image before
we can add it to the project.

1. Create a directory called images in c:\wrd\Hello
2. Copy logo.gif to c:\wrd\Hello\images directory

The following is shown in the console window:

[11:26:05 AM] [/Hello/images/logo.gif] Added
[11:26:05 AM] [/Hello/images/logo.gif] copied to project [HelloWeb]

17.5.3 Terminating the WebSphere Rapid Deployment session
We have added the source code and resources that make up our example
application and can now terminate the WebSphere Rapid Deployment session.
Type Q and press Enter in the console window to do this. This stops monitoring
of the project directory.

17.5.4 Verifying results
We are now ready to see what has been generated for us and to test our simple
application.

The application we have developed can now be accessed at

http://localhost:9080/HelloWeb/HelloServlet.

 Chapter 17. WebSphere Rapid Deployment 981

http://localhost:9080/HelloWeb/HelloServlet

The output is shown in Figure 17-5 on page 982.

Figure 17-5 HelloServlet output

In the c:\temp directory, the rapid deployment tools have also produced an EAR
file called HelloApp.ear. The contents of this EAR file are shown in Figure 17-6.
As you can be see, it uses the default names for the project modules.

Figure 17-6 HelloApp.ear file produced

Note: The rapid deployment tools do not automatically regenerate the HTTP
server plug-in configuration file. You must manually regenerate the plug-in
configuration file.

982 WebSphere Application Server V6: System Management and Configuration Handbook

17.6 Automatic application installation projects
Automatic application installation mode allows you to set up a directory and have
it monitored for either fully composed EAR files or application modules such as
WAR files, EJB JAR files, or standalone resource adapter archive (RAR) files.

If you drop EAR files in the monitored directory, the EAR file is automatically
deployed to the server. If you delete the EAR file from the monitored directory,
that application is uninstalled from the server. If you drop an updated EAR file in
the monitored directory, the application is updated on the server. If you drop
WAR or EJB JAR files in the monitored directory, the rapid deployment tools
generate the necessary EAR wrapper and then publishes that EAR file on the
server. For RAR files, a wrapper is not created. The standalone RAR files are
published to the server.

The automatic application installation mode only manages your applications, not
any resources, such as data sources, they might require. You need to create and
manage these resources yourself by using the WebSphere administrative
console or wsadmin scripts, before the application can run.

To use the automatic application installation mode you must:

1. Create a workspace directory.
2. Configure an autoappinstall project in the workspace directory.
3. Configure the rapid deployment tools to monitor the directory for changes.
4. Drop EAR files or application modules into the directory.

We will show how to use the automatic application installation mode using a
simple example.

17.7 Automatic application installation example
For the purpose of showing how the automatic application installation mode
works, we will use the Hello application we developed in the “Free-form
development example” on page 970. In this example, the rapid deployment tools

Note: If you drop an EJB module, or an EAR file containing an EJB module,
which does not contain EJB deployed code, the rapid deployment tools
generate the deployment code with the default EJBDeploy settings, for
example, the backend option will be set to DB2UDB_V81. If you want to set a
different backend option, run the EJB deployment tools (ejbdeploy.bat) on the
EAR file before dropping it into the automatic application installation project.
See 16.2.1, “Using EJBDeploy command line tool” on page 928.

 Chapter 17. WebSphere Rapid Deployment 983

produced an EAR file, HelloApp.ear, for us. We will use this EAR file in the
following scenario:

� Install application
� Update the application
� Uninstall the application

17.7.1 Setting up an automatic application installation session
Using the automatic application installation mode requires you to set up a
directory on your system and configure WebSphere to monitor the directory for
changes. Do the following:

1. Open a command prompt. This will be used for running the rapid deployment
tools in headless, non-graphical, mode. All output from the tools will be written
to this window. We therefore also refer to it as the console window).

2. Create a workspace directory, for example c:\wrd, by typing:

mkdir c:\wrd

3. Set the WORKSPACE environment variable by typing:

set WORKSPACE=c:\wrd

4. Configure the WebSphere Rapid Deployment tools to create an automatic
application installation project called install_server1 by typing:

cd <profile_home>\bin

wrd-config.bat -project “install_server1” -style ”autoappinstall”

<profile_home> is the root directory of the application server profile.

This brings up the interactive Parameter Configuration Settings dialog
window, Example 17-11. Enter the information as requested:

Example 17-11 Parameter Configuration Settings dialog window

Parameter Configuration Settings

Press ENTER to accept defaults
The * symbol denotes required input

 Enter the server name* (server1) : ITSOCell/ITSONode1/server1
 Enter the server JMX host name* (localhost) :
 Enter the server JMX port number* (8880) : 8879

Tip: To list all environment variables currently set, you can type set in
Windows or export -n in Linux and press Enter.

984 WebSphere Application Server V6: System Management and Configuration Handbook

 Enter your server username (--) :
 Enter your server password (--) :

Configuring the workspace...
Building the workspace...
WebSphere Rapid Deployment configuration completed.

When creating this example, we were running in a distributed server
environment and used the JMX port (8879) for our deployment manager. Our
target application server is called server1 and exists on node ITSONode1 in
the cell called ITSOCell.

If you were running on a standalone server, you would use the JMX port
number (default 8880) for the standalone application server (default server1).
In our environment, the deployment manager and the application server were
located on the same physical machine, so we used the default JMX hostname
localhost. Also, we did not have WebSphere global security enabled. As a
result, we did not need to supply a username or password.

When the wrd-config command has finished, a directory called
install_server1 is created in the c:\wrd directory. The install_server1
directory is the project directory and is the directory that will be monitored by
the tools. In the root of the workspace the
install_server1_headlessconfig.xml file has been created. This file holds
the configuration for our project.

5. Launch the WebSphere Rapid Deployment session by typing:

wrd.bat -monitor

This tells the rapid deployment tools to start monitoring the project directory
for changes and to display messages on the console.

Note: We named our automatic application installation project
install_server1 because the rapid deployment tools then create the
c:\wrd\install_server1 monitored directory for us and this name explains
well what the directory is used for. We could have given the project any
name, however, because it is only used to name the monitored directory.

The real name of the application server that the application is installed on
is configured in the Parameter Configuration Settings dialog window
(ITSOCell/ITSONode1/server1).

Note: The wrd command itself is used to tell the rapid deployment tools to
start monitoring the project directory and the (optional) -monitor switch
enables the console output messages.

 Chapter 17. WebSphere Rapid Deployment 985

The wrd command displaysExample 17-12 in the console window:

Example 17-12 Launching wrd.bat -monitor

Launching WebSphere Rapid Deployment. Please wait...
Starting Workbench...

WebSphere Rapid Deployment ready for e-business...

Type 'q', 'quit', or 'exit' to shut down WebSphere Rapid Deployment processes.

To terminate a rapid deployment session, type Q, quit or exit and press
Enter in the console window. This stops the monitoring of the project
directory. You can start monitoring the directory by simply running the wrd
command again.

17.7.2 Managing applications
When the WebSphere Rapid Deployment session is configured and monitoring
of the project directory is activated, we can use it for installing, updating and
uninstalling our application.

Installing an application
To install an application, simply copy the EAR file to the monitored directory:

� Copy the HelloApp.ear file to the c:\wrd\install_server1 directory. The
application is automatically installed on the application server, as shown in
the console output window in Example 17-13.

Example 17-13 Installing the HelloApp.ear

[01:09:12 PM] [/install_server1/HelloApp.ear] Added
[01:09:12 PM] !INSTALL_EAR_FILE HelloApp.ear!
[01:09:12 PM] Publishing HelloApp to server_1617843630
[01:09:14 PM] Installing New Application: HelloApp
[01:09:18 PM] ADMA5016I: Installation of HelloApp started.
...
...
[01:09:19 PM] ADMA5013I: Application HelloApp installed successfully.
[01:09:35 PM] Installation Completed Sucessfully: HelloApp
[01:09:37 PM] Starting Application: HelloApp
[01:09:38 PM] Application Started Sucessfully: HelloApp

You can access the application at

http://localhost:9080/HelloWeb/HelloServlet.

The output is shown in Figure 17-5 on page 982.

986 WebSphere Application Server V6: System Management and Configuration Handbook

http://localhost:9080/HelloWeb/HelloServlet

Updating an application
To show what happens when an application is updated, we changed the
getGreeting method of the HelloEJB to return another greeting message. We
then exported the application as a new HelloApp.ear file and copied it into the
c:\wrd\install_server1 directory, replacing the earlier version of the
HelloApp.ear file. When the change is picked up by the WebSphere Rapid
Deployment tools, Example 17-14 is shown in the console window:

Example 17-14 Updating the HelloEJB

[01:26:57 PM] [/install_server1/HelloApp.ear] Modified
[01:26:57 PM] !INSTALL_EAR_FILE HelloApp.ear!
[01:26:57 PM] Publishing HelloApp to server_1617843630
[01:26:58 PM] Reinstalling Application.
[01:27:18 PM] ADMA5017I: Uninstallation of HelloApp started.
...
...
[01:27:18 PM] ADMA5013I: Application HelloApp installed successfully.
[01:27:34 PM] Application Updated Successfully. HelloApp
[01:27:39 PM] Starting Application: HelloApp
[01:27:39 PM] Application Started Sucessfully: HelloApp

Access the application again at

http://localhost:9080/HelloWeb/HelloServlet

See the new greeting message as shown in Figure 17-7 on page 988.

Note: The rapid deployment tools do not automatically regenerate the HTTP
server plug-in configuration file when an application has been installed,
updated or uninstalled. You must manually regenerate the plug-in
configuration file.

 Chapter 17. WebSphere Rapid Deployment 987

http://localhost:9080/HelloWeb/HelloServlet

Figure 17-7 Updated HelloApp running

Uninstalling an application
To uninstall the application, simply delete the EAR file from the project directory.
The rapid deployment tools will automatically uninstall it from the application
server. The console window shows Example 17-15.

Example 17-15 Uninstalling HelloApp.ear

[01:31:50 PM] [/install_server1/HelloApp.ear] Deleted
[01:31:50 PM] !DELETE_EAR_WRAPPER HelloApp.ear!
[01:31:50 PM] Uninstalling HelloApp:server_1617843630
[01:31:59 PM] ADMA5017I: Uninstallation of HelloApp started.
...
...
[01:31:59 PM] ADMA5106I: Application HelloApp uninstalled successfully.
[01:32:35 PM] Application Uninstalled: HelloApp

988 WebSphere Application Server V6: System Management and Configuration Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this IBM Redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 991. Note that some of the documents referenced here may
be available in softcopy only.

� WebSphere Application Security V6 Security Handbook, SG24-6316

� WebSphere Application Server V6 Scalability and Performance Handbook,
SG24-6392

� WebSphere Application Server V6: High Availability Solutions, REDP-3971

� WebSphere Application Server V6 Migration Guide, SG24-6369

� WebSphere Application Server V6: Web Services Development and
Deployment, SG24-6461

� IBM WebSphere Application Server V5.1 System Management and
Configuration, SG24-6195

Other publications
These publications are also relevant as further information sources:

� Transaction Processing: Concepts and Techniques (Jim Gray, Andreas
Reuter), Elsevier Science & Technology Books, ISBN 1-55860-190-2 1

� Enterprise Messaging Using JMS and WebSphere (Kareem Yusuf), Prentice
Hall, ISBN: 0-13-146863-4

� Java Message Service (Monson-Haefel, Chappell), O’Reilly, ISBN:
0-596-00068-5

� Professional JMS (Grant, Kovacs, et al), Wrox Press Inc., ISBN: 1861004931

� Enterprise JavaBeans, Fourth Edition (Monson-Haefel, Burke, Labourey),
O’Reilly, ISBN: 0-596-00530-X

� EJB Design Patterns (Marinescu), Wiley, ISBN: 0471208310

© Copyright IBM Corp. 2005. All rights reserved. 989

Online resources
These Web sites and URLs are also relevant as further information sources:

� Service Data Objects, John Beatty, Stephen Brodsky, Raymond Ellersick,
Martin Nally, Rahul Patel

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Com
monj-SDO-Specification-v1.0.doc

� WebSphere Application Server home page

http://www.ibm.com/software/webservers/appserv/was/

� WebSphere Application Server system requirements

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� WebSphere Application Server support (Fix Packs, fixes, and hints and tips)

http://www.ibm.com/software/webservers/appserv/support.html

� Java Community Process home

http://www.jcp.org/en/jsr/all

� Java 2 Platform Enterprise Edition Specification, v1.4

http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf

� Java 2 Platform Enterprise Edition, v 1.4 API Specification at:

http://java.sun.com/j2ee/1.4/docs/api/index.html

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� MBeanInspector for WebSphere Application Server

http://www.alphaworks.ibm.com/tech/mbeaninspector

� Sample Scripts for WebSphere Application Server Versions 5 and 6

http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScrip
ts.html

� Tcl Developer Xchange

http://www.tcl.tk/

� IBM WebSphere Developer Technical Journal

http://www-106.ibm.com/developerworks/websphere/techjournal/

� JDBC Technology

http://java.sun.com/products/jdbc/index.html

� Enterprise JavaBeans Technology

http://java.sun.com/products/ejb/

990 WebSphere Application Server V6: System Management and Configuration Handbook

ftp://www6.software.ibm.com/software/developer/library/j-commonj-sdowmt/Commonj-SDO-Specification-v1.0.doc
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv/was/
http://www.jcp.org/en/jsr/all
http://java.sun.com/j2ee/j2ee-1_4-fr-spec.pdf
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.alphaworks.ibm.com/tech/mbeaninspector
http://www-106.ibm.com/developerworks/websphere/library/samples/SampleScripts.html
http://www.tcl.tk/
http://www-106.ibm.com/developerworks/websphere/techjournal/
http://www.ibm.com/software/webservers/appserv/support.html
http://java.sun.com/products/jdbc/index.html
http://java.sun.com/products/ejb/
http://java.sun.com/j2ee/sdk_1.3/techdocs/api/

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/

� JavaMail API Specification

http://java.sun.com/products/javamail/reference/api/index.html

� IBM alphaWorks emerging technologies

http://www.alphaworks.ibm.com

� IBM developerWorks

http://www.ibm.com/developerworks/

� Worldwide WebSphere User Group

http://www.websphere.org

� An Introduction to Java Stack Traces

http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/

� Apache HTTP Server Log Files

http://httpd.apache.org/docs/logs.html

� IBM HTTP Server documentation library

http://www.ibm.com/software/webservers/httpservers/library/

� WebSphere MQ Using Java

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manua
ls/crosslatest.html

� Java Message Service (JMS)

http://java.sun.com/products/jms

� Persistent Client State HTTP Cookies

http://home.netscape.com/newsref/std/cookie_spec.html

� XDoclet Attribute Oriented Programming

http://xdoclet.sourceforge.net/xdoclet/index.html

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

 Related publications 991

http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://java.sun.com/j2ee/connector/
http://java.sun.com/products/javamail/reference/api/index.html
http://www.alphaworks.ibm.com
http://www.alphaworks.ibm.com
http://www.ibm.com/developerworks/
http://www.websphere.org
http://java.sun.com/developer/technicalArticles/Programming/Stacktrace/
http://httpd.apache.org/docs/logs.html
http://www.ibm.com/software/webservers/httpservers/library/
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://www-306.ibm.com/software/integration/mqfamily/library/manualsa/manuals/crosslatest.html
http://java.sun.com/products/jms
http://home.netscape.com/newsref/std/cookie_spec.html
http://xdoclet.sourceforge.net/xdoclet/index.html

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

992 WebSphere Application Server V6: System Management and Configuration Handbook

http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
$ 314
${DB2UNIVERSAL_JDBC_DRIVER_PATH} 921
${DRIVER_PATH} 330
${LOG_ROOT} 423
${SERVER_LOG_ROOT} 423
${USER_INSTALL_ROOT} 423
$AdminApp 275–276

edit 307
editInteractive 307
install 305–306
installInteractive 305
list 297–298
options 305
uninstall 306

$AdminConfig 274, 276, 281–282, 285
attributes 285
create 302, 308
create Server 304
createUsingTemplate 314
defaults 284
getid 287, 302, 304, 308, 310, 314
list 284, 307, 310
listTemplates 314
modify 302, 308, 310
parent 283
queryChanges 308
remove 305
reset 290
save 302, 306
show 286, 308
showAttribute 287, 308

$AdminConfig types 282
$AdminControl 274, 277, 293, 296

queryNames 277–278, 298
refreshRepositoryEpoch 101–102
stopServer 294

$AdminTask 275–276, 281, 288
createApplicationServer 303
createCluster 291, 310
createClusterMember 313
createSIBus 290–291
deleteClusterMember 313

© Copyright IBM Corp. 2005. All rights reserved.
deleteServer 304
exportServer 263
exportWasprofile 263
help 289

$Help 275

A
access intent 875, 878, 880

application profile 881
policies 878

access intents
application profiles 210
tracing 885

activation specification 927
activation.jar 61, 355
ActivationSpec 50
ActivationSpec JavaBean 489, 491, 493–494, 507,
509
Active Server Pages 938
ActiveX to EJB Bridge application client 938, 940
ActivitionSpec 32
activity session service 211
activity.log 421, 449
ActivitySession Service 15
addNode 220–221, 223, 225
admin_host 38, 240
AdminControl 279
administration services 185, 212
administrative console 68

changing the session timeout for the admincon-
sole application 165
home page 166
logging in 164
scope 171
securing 182
starting 163

administrative console port 126, 133
administrative console secure port 126, 133
administrative service 29, 33
AdminServer 157
AdminService 93–94
AffinityCookie 405
Aged Timeout 337–338

 993

alias destination 602, 634, 668
ALL_AUTHENTICATED 815–816
analyze 449
annotation-based programming 957–958
Apache 915
apache 459
Apache Server 12
apachectl 396
applet application client 938
application

deploying 930
editing with wsadmin 307
exporting 246
finding the URL 253
installation 242, 244, 305, 986
listing installed 297
multiple updates 948
preventing from starting 247
preventing startup 307
removing files 947
single file update 946
single module update 946
starting 247
starting order 247
starting with wsadmin 298
stopping 247
stopping with wsadmin 298
uninstalling 246, 988
uninstalling with wsadmin 306
updating 944, 987
viewing 248
viewing EJB modules 250

application class loader 827, 832, 839
application classloader policy 207
application client 937

deployment 937
launching 941

application client bindings 940
application client container 26, 28
application extensions class loader 841
application module

updating 945
Application Profiling 15
application profiling service 210
Application Response Time (ARM) agents 36
application server 24, 69

clustering 24
creating 192, 303, 910
logs and trace 912

modifying with wsadmin 309
removing 304
restarting 202
runtime attributes 203
starting 197, 295
stopping 200–201, 296

Application Server Facilities 484
application server profile 114–117, 119–121, 130,
149, 151, 153, 163, 191, 197, 200, 259, 261,
263–264, 271, 316, 389, 971, 984
Application Server Toolkit 10, 17, 76, 78, 456, 850,
856, 858, 864, 903, 909, 928, 930
application.xml 108, 857
application-client.xml 857
applications

deployment
dynamic reload 887
hot deployment 887

starting and stopping 178
Asynchronous Beans 15
asynchronous beans 320
asynchronous messaging 465–466
attributes 280, 282, 285
authentication 51, 54–55

component managed 374
component-managed 333–334, 352
container 375
container-managed 333–334
resource 374

authentication alias 662, 682
authorization 55
auto reload 887
automatic application installation 957, 960, 963,
983–985
automatic file synchronization 953
autoRequestEncoding 888
autoResponseEncoding 888

B
backend ID 245, 866–867, 869, 933
backupConfig 259–260
bean managed activity session 765
bean managed transaction 765–766
bean managed transactions 505
Bean Scripting Framework (BSF) 69, 268
bean-managed transaction 31
binding 860

application client bindings 940

994 WebSphere Application Server V6: System Management and Configuration Handbook

compound name 774
configured 770
corbaname 774
CorbaObjectNameSpaceBinding 790
data sources 865
EJB JNDI names 861
EJB references 862
EjbNameSpaceBinding 790
IndirectLookupNameSpaceBinding 790
name 771
overriding defaults 930
simple name 773
StringNameSpaceBinding 790

bindings
configured 35
Name bindings 34

bindings connection 552–553
bindings file 936
BMP 877–878
boot class path 184
bootstrap 785, 791–794, 800, 802–804, 808–809,
822
bootstrap class loader 822, 825
bootstrap endpoint 682
bootstrap server 577, 579, 588–589, 616, 628
BOOTSTRAP_ADDRESS 219
BootstrapBasicMessaging 617
bootstrapnoderoot 796
bootstrapped client 588
BootstrapSecureMessaging 617
bootstrapserverroot 796
BootstrapTunneledMessaging 617
BootstrapTunneledSecureMessaging 618
Built-in Mail Provider 61, 355, 357
bus member 47, 595, 600, 603, 644–645, 648, 654

adding to the service integration bus 664

C
cache 210, 721, 738, 754–755, 759, 870, 874

EJB 871–873
cache disk offload 32
cache ID 716–717
cache identifier 715
cache replication 31
cached connection handles 533
cached handles 341, 353
cacheGroups 285
Caching Proxy 10, 78

CCI 343
cci.jar 344
cell 97, 106, 162

definition 23
cell persistent root 770, 776, 779, 781, 784, 790,
794–796, 798–800, 807–808

definition of 776
cellroot 796
CICS 42, 344
class loader 211, 822, 825, 827–828, 831–832,
835, 839

Java 2 class loaders 822
policies 828
WebSphere class loaders 825

RCP directory 826
RE directory 826
RP directory 826

class loader policy 830
class loading 184
class loading mode 207
class path 184
class preloading 833–834
classloader 931
classloader policy 207
ClassNotFoundException 821
Class-Path 838–839
classpath 857

JDBC provider 329
protocol provider 359
resource adapter 348
URL provider 365

client caching 42
client connection 552–554
client/server replication 725
client/server topology 37
client-server topology 727, 733
Cloudscape 12
cluster 17–18, 23–24, 47, 49–50, 64–65, 75, 167,
191, 235, 241, 244, 597, 625, 638, 640, 643–644,
651–652, 654, 755, 870, 872, 909, 932, 941, 944,
951, 953

add a server using wsadmin 313
adding messaging engines 670
create with wsadmin 310
creating 236
definition 24
managing with wsadmin 299
message-driven beans 651
messaging engine 640, 646

 Index 995

messaging engines 583
restarting servers 202
starting 299
starting and stopping 239
stopping 299
viewing topology 238
workload management 66

cluster.xml 106
CMP 876, 878, 883–884
CMP 2.0 enterprise bean 345
cmpConnectionFactory 345
Collector tool 418, 451
com.ibm.scripting.host 270
com.ibm.websphere.rsadapter 324
com.ibm.ws.rsadapter.cci 324
com.ibm.ws.rsadapter.jdbc 324
com.ibm.ws.rsadapter.spi 324
com.ibm.ws.scripting.connectionType 270
com.ibm.ws.scripting.defaultLang 270
com.ibm.ws.scripting.traceFile 270
com.ibm.ws.scripting.traceString 270
com.sun.jndi.ldap.LdapCtxFactory 773
Common Client Interface (CCI) 343
Common Secure Interoperability 53
communication channel 97
communication settings 212
compiled language debugger 456
completeObject 301
completeObjectName 278–279, 292, 295
component managed authentication 374
component managed authentication alias 574
component-managed authentication 333–334, 352
component-managed authentication alias 556,
663, 924
CompoundClassLoader 839
concurrency control 877
concurrent message consumers 484
configuration ID 283
configuration reload 657, 659
configuration repository 69–70
connection factory 344–345, 472, 572, 579, 581,
641

bindings 931
CMP 332
data source 325
J2C 349, 351
JCA 344
resource adapter 345
WebSphere MQ 552

connection factory bindings 245
connection handles 341
connection management 486
connection management contract 342
connection manager 30
Connection object 475
connection pool 758–759
connection pooling 321, 335, 342
connection proximity 583–584
Connection Timeout 336–337
ConnectionFactory object 475
ConnectionWaitTimeoutException 336–337
connectors

JMX 87
console

See administrative console
container managed activity session 765
container managed authentication 375
container managed transaction 765–766
container managed transactions 504
container-managed authentication 333–334
container-managed authentication alias 334
container-managed persistence 332, 878

See also CMP
container-managed relationship 884
container-managed transaction 31
context root 253–255, 946
cookies 38, 699, 703, 705–708, 715
CORBA 33, 791, 811, 815

naming service groups 817
naming service users 816
URL 791

corbaloc 35, 770, 777, 779, 781, 784–786,
791–792, 795–796, 801–804, 806, 811
corbaname 35, 770, 773–774, 785–787, 789–790,
793, 800–801
core group 67, 185, 193, 219, 223
core group bridge service 213
core group policy 641, 672
core group service 213
correlation ID 449
CosNaming 33–34, 769, 771, 787, 789, 791, 794,
797, 811

CORBA 797
CORBA interface 772
distributed 787
INS 785
JNDI plug-in 794
security 815

996 WebSphere Application Server V6: System Management and Configuration Handbook

CosNamingCreate 815
CosNamingDelete 816
CosNamingRead 815
CosNamingWrite 815
Covalent Enterprise Ready Server 12
cpplication client module 74
createSubcontext 815
createUsingTemplate 314
CSIv2 51, 57–58, 77
CSIV2_SSL_MUTUALAUTH_LISTENER_ADDRE
SS 219
custom profile 115, 117, 120, 138, 143, 145–147,
263
custom services settings 185
custom user registry 54
CVS 73

D
data centric 464
data replication service 698, 724–725, 728
Data Replication Service (DRS) 36
data source 59–60, 72, 662, 922, 924

binding using the AAT 865
creating 326, 331
version 4 325
version 5 323

data source connection factory 849
data sources

mapping to CMP beans 934
DataAccessFunctionSet 324
database mapping 867
database mapping editor 869
database persistence 721, 742
database reauthentication 340
DataDirect Technologies JDBC Drivers for Web-
Sphere Application Server 10
datagram 468
datasource helper classname 333
DataSource object 59, 321–322
DataStoreHelper 324, 333
DB2 7, 10, 12
DB2UNIVERSAL_JDBC_DRIVER_PATH 918
DDL 244
debug adapter

JavaScript 456
WebSphere 456

debugging service 213
default core group 219

default data source mapping 934
default error page 888
default messaging provider 62–63
default node group 129, 219
default profile 117–118, 122–123, 130, 139,
383–384, 409
Default URL Provider 62
default virtual host 208, 245
default_host 240, 257–258
default_host virtual host 37
DefaultCoreGroup 185
DefaultNodeGroup 23
defaults 284
delegation 822, 831, 839, 841
deployment descriptor 97, 107, 109, 344, 858, 860,
865, 870, 875

application 97
EJB module

IBM extensions 885
viewing 251, 254

deployment manager 10, 23–24, 33, 68–70, 78,
129–130, 133, 143

starting 155, 163, 187–188, 293
stopping 187, 189–190, 293

deployment manager node 129
deployment manager profile 115–116, 120–121,
151, 153, 183, 185, 187–188, 191, 264
deployment.xml 108
DES 730
destination 465–466, 473, 602

configuration 574
destinations 48
destroySubcontext 816
diagnostic trace service 437
diagnostic trace service settings 185
directory browsing 888
discovery address 95
distributed discovery 94
distributed server configuration 34
distributed server environment 82, 84, 92, 106,
119, 378, 382, 936, 945, 950, 972, 985
distributed transaction 484
dmgr 162

server 779
starting 163

dmgr_profile_home 104
DNS domain 708
dumpNameSpace 453, 808
durable subscription 471, 493, 529, 532, 547

 Index 997

dynamic cache 29, 31, 210, 728
dynamic cache replication 36
Dynamic Query 15
dynamic reload 887, 954–955
DynamicCache object type 284–285

E
Edge Side Include caching 32
editInteractive 307
EIS 343–344, 346
eis/datasourcename_CMP 332
EJB

binding 773
EJB client 66, 798
EJB collaborator 58
EJB container 26, 28, 36, 65–66, 72, 209, 870
EJB Deploy Tool 928
EJB home 34, 770–771, 789, 797–798, 800–801
EJB module 74

deployment descriptor
IBM extensions 885

viewing 250
EJB references

mapping to beans 935
EJB security collaborator 57
ejbCreate 501
EJBDeploy 929
EJBHome 742
ejb-jar.xml 857–858, 860
EJBLocalObject 767
EjbNameSpaceBinding 799
EJBObject 742, 767
ejbRemove 500, 502
embedded JMS provider 17
embedded JMS Server 637
end of servlet service 735–736, 747–748
Enhanced EAR 17, 74, 847, 891–894, 903, 908,
932
enterprise applications

extensions sharing session context 889
See also application

enterprise beans
isolation level attributes 877

Enterprise Edition management API 85
Enterprise Information Systems (EIS) 341
Enterprise JavaBeans

using EJBDeploy 928
Enterprise Service Bus (ESB) 17

enterprise services 42
enterprise Web services 41, 43
EntirePool 338
entity beans 870, 872–873, 877–878, 882,
884–885, 917

caching options 870
environment entry 184, 211
environment variables 909

See also variables
epoch 103
EventProvider 91
EventType 438
EVERYONE 815–816
exception destination 625–626
Extended JTA Support 15
extensions class loader 822, 825–827, 841
external caching 32

F
factoryClassname 372–373
fail back 642–643, 672, 674, 677
FailingConnectionOnly 338
failover

critical services 67
deployment manager 66
EJB container 66
hot 724
HTTP server 66
JMS messaging 67
messaging engine 598
node agent 66
stateful session beans 17
Web container 66

federated name space 34, 770–771, 774, 776–777,
779, 781, 784, 788, 798, 808
FFDC 452
file permission mode mask 184
File Serving Enabled 405
file serving servlet 886
file servlet 886
file synchronization service 99, 227
file transfer 70
findByPrimaryKey 880–881, 884
finder method 880
fire and forget 468
First Failure Data Capture

See FFDC
First Steps 123, 128–130, 134, 136–137, 142, 200

998 WebSphere Application Server V6: System Management and Configuration Handbook

foreign bus 606–607, 609–612, 627, 634–635, 657,
678, 680, 682–683

service integration bus 678
WebSphere MQ 629

foreign bus link 678
foreign destination 603, 692
free-form development 957, 959
free-form project 961–962, 968–970, 978
free-form projects 967
frequency settings 735
Full Resynchronize 103

G
garbage collection 184, 755
generic JMS provider 62–63
generic server 25
GenPluginCfg 408–409
getAttribute 280
getConnection() 322, 325
getid 283
getLocalHost() 96

H
Handle 742
heap size 184, 211, 755, 910
help 181
high availability 50, 66

messaging 645, 647, 651
messaging engine 638

high availability domain 67
High Availability Manager 18
high-volume Web sites 758
HomeHandle 742
host alias 239, 257, 915
host aliases 240, 258
hosts file 916
hot deployment 887, 954
hot failover 724
hot standby 67

transaction log 67
htpasswd 399
HTTP session persistence 36
HTTP session tracker servlet 454
HTTP transport 208
HttpServletRequest

getHeader 715
getSession 706, 751

HttpServletResponse

encodeRedirectURL 709
encodeURL 709

HttpSession 713, 735–738, 741–742, 745–747,
749–751, 756, 766

getAttribute 747
getId 715
removeAttribute 745
setAttribute 745, 747

I
IBM HTTP Server 10, 12, 26, 399, 404, 915

admin password 399
administration server port 398
listen ports 917
logs 440
NameVirtualHosts 916
remote administration 397
Startup errors 917
version 459
VirtualHosts 915

ibm.websphere.preload.classes 834
ibm-application-bnd.xmi 108
ibm-application-ext.xmi 108
ibmconfig directory 858
ibm-ejb-access-bean.xmi 858
ibm-ejb-jar-bnd.xmi files 858
ibm-ejb-jar-ext.xmi 858
ibm-partialapp-delete.props 949
IBMSession

isOverFlow 713
sync 735–736

IBMTrackerDebug 454
IBMTrackerDebug servlet 454
IIOP 785, 791, 793

URL 791
IMAP 61, 355–356, 363
immediate stop 201
IMS 42
inbound user ID 680, 684
InboundBasicMessaging 614
InboundBasicMQLink 614
InboundSecureMessaging 614
InboundSecureMQLink 615, 633
index.html 917
indirect foreign bus 637
IndirectLookupNameSpaceBinding 799
InetAddress.getLocalHost() 96
Informix Dynamic Server 12

 Index 999

initial context 769–771, 791, 794–796, 801, 809
default 799–800

initial context factory 791–793, 797, 800–801, 809
InitialContext 791
in-memory buffer 432, 438
install 306
installed optional packages 834
installedApps directory 109
installInteractive 305
inter-engine authentication alias 659
interface centric 465
Internationalization Service 15
Interoperable Naming Service (INS) 35, 769–770
invoke 281, 294
invoker servlet 887
isolation level 875–877
isolation level attributes 877
IsolationLevelChangeException 877

J
J2C 344, 349
J2C authentication alias 925
J2C authentication data 919
J2C connection factory 349
J2EE 1.4 85
J2EE application client 937
J2EE client 941
J2EE Connector Architecture (JCA) 30
J2EE Management 77
J2EE security 53
J2SE 1.4 85, 456
JAAS 29, 51, 55, 77
JAAS authentication alias 849, 894
JACC 51, 55, 77
Jacl 272–273, 296–297, 302, 306
JAF 77, 355
JAR manifest file 838
Java 2 Platform, Enterprise Edition (J2EE) 4
Java 2 security 29, 51–52, 55, 108
Java 2 Standard Edition (J2SE) 4
Java Activation Framework (JAF) 355
Java and process management settings 184
Java API for XML Messaging (JAXM) 498
Java API for XML Registries (JAXR 13
Java API for XML-based RPC (JAX-RPC) 13
Java Authentication and Authorization Services
(JAAS) 52
Java Authorization Contract with Containers (JACC)

18
Java Build Path 854–855
java comp name 813
java comp/env 369
Java Contract for Containers (JACC) 53
Java DataBase Connectivity 321

See also Resource providers JDBC
Java logging interface 456
Java Management Extension (JMX) 78
Java Management Extensions (JMX) 85
Java Native Interface (JNI) 322
Java Secure Socket Extension (JSEE) 53
java.net.URLConnection 364
java.net.URLStreamHandler 364–365
JavaBeans Activation Framework (JAF) 61,
355–356
JavaMail 59–61, 77, 354–357, 360–361

Built-in Mail Provider 61
JavaScript debug adapter 456
JavaServer Faces (JSF) 15
JavaServer Pages 888
javax.ejb.EJBHome 741
javax.ejb.EJBObject 741
javax.ejb.MessageDrivenBean 499
javax.ejb.MessageDrivenContext 503
javax.jms.JMSException 582
javax.jms.MessageListener 500
javax.jms.Queue 850
javax.naming.Context 741
javax.naming.directory 773
javax.naming.ldap 773
javax.naming.ObjectFactory 372
javax.servlet.http.HttpSessionActivationListener
750
javax.servlet.http.HttpSessionAttributeListener 750
javax.servlet.http.HttpSessionListener 750
javax.transaction.UserTransaction 741
javax.xml.messaging.ReqRespListener 500
JAXM 500
JAXP 77
JAXR 41, 77
JAX-RPC 41, 43–44, 48, 77
JCA 12, 341, 343, 349

CCI implementation 60
connection manager 60
resource adapter 61
services 29–30

JCA CCI 323–324
JCA connection manager 323, 343

1000 WebSphere Application Server V6: System Management and Configuration Handbook

JCA connector 50
JCA resource adapter 342
JCA resource reference 934
JCA Web services 42
JDBC 77
JDBC driver 59, 918
JDBC provider 59, 662, 849, 920

configuring with wsadmin 313
creating 326

JDBC resource provider 59
JDT 456
JMS 8, 12, 17, 77
JMS activation specification 509–510, 515, 518,
545, 547, 549–551, 571
JMS activation specification. See also Activation-
Spec JavaBean
JMS administered object 550
JMS administered objects 472, 490, 523, 526
JMS client 49, 576, 580–581, 588, 616
JMS connection 475
JMS connection factory 472, 515, 527, 534, 849,
926
JMS destination 32, 473, 491, 926

generic JMS provider configuration 574
JMS domains 471
JMS exception 482
JMS message 476–477
JMS message selector 478
JMS provider 59, 62, 471, 514, 926

default messaging 514, 519, 529, 539, 541,
547, 580
generic 522–523, 572
WebSphere MQ 519, 552

JMS queue 850, 926
JMS server 25, 785
JMS session 476
JMX 36, 67, 69, 77, 83, 87, 270, 276–277, 972, 985

agent 87
architecture 86
connectors 87
enabled management application 87
ObjectName 92

JMX connector 185
JMX MBeans 58
JNDI 33–34, 64, 72, 75, 245, 771, 789, 797,
799–800, 802–804, 806–809, 811, 813, 815

APIs 775
caching 797
client 791

Context.list() 810
EJB Home 789
initial context 809
initial context factory 800–801
javax.naming package 772
javax.naming.provider.url 791
JMS 473–474
objects registered by dmgr server 779
over CosNaming 771
provider URL 35, 770
service provider 800
using to federate name space 797

JNDI bindings 847
JNI 184, 828, 938
JRas 913
JSESSIONID 38, 705, 707, 716
JSP

finding the URL 253
JSP precompile 931
JspBatchCompiler 932
JSR 101 41
JSR 109 41, 43, 79
JSR-003 85
JSR-077 35
JSR-109 48
JSR-77 85
JSR-88 907
JTA 77
JTA XAResource API 484
Jython 273

L
Last Participant Support 15
launchClient 941–942
LDAP 51, 54, 77, 773, 797
legacyRoot 779, 781, 784, 799, 808
Light Weight Third Party Authentication (LTPA) 55
lindex 307
listener port 50, 509–510, 554, 568–570, 572, 933
listTemplates 314
Load Balancer 10, 78
load balancing 413
Location Service Daemon (LSD) 96
log 186, 198, 201, 396, 418

activity 421, 428, 443
activity.log 429
HTTP 382
IBM HTTP Server 440, 442–443

 Index 1001

JVM 420–421, 425–426
merging 449
native 420
native_stderr.log 421, 428
native_stdout.log 421, 428
process 420
service 421, 428, 443
standard 421
startServer 189–190, 198–199
stderr 184
stdout 184
stopServer.log 202
System.err 421
System.out 421
SystemErr.log 420
SystemOut.log 420, 423, 458–459
Web server 401
Web server plug-in 439

Log Analyzer 78, 418, 421, 430, 443, 448, 913
Merging activity logs 449
starting 444
Symptom database 443
Updating the symptom database 450

log and trace settings 186
logs

file formatting 424
file rotation 424
profile creation 128, 134, 142
startServer.log 129, 135
SystemOut.log 129, 135

loopback address 96
loose coupling 464
Lotus Domino Enterprise Server 12
LTPA 51, 55, 77

M
mail from 362
mail provider 356
mail store 362
mail transport 362
mail.jar 61, 355
managed application server 191
managed node 25, 378, 381–382, 386, 388–389
managed objects 85, 91
managed process 82, 772, 776–777, 781
managed server 16, 97
ManagedConnectionFactory 325, 345
manifest 838

MANIFEST.MF 844
master configuration 165
master repository 97
match criteria 642, 675
Max Connections 336–337
maximum failed deliveries 625
maximum in-memory session count 699
Mbean extensions 185
MBean proxy 89
MBean server 88–89
mbeanIdentifier 278
MBeans 86–87, 91, 93–94, 279, 292

server 86
TraceService 301

mbList 277
mediation 50, 606, 659
memory-to-memory replication 699, 723, 725,
728–729
memory-to-memory session persistence 40
message consumer 468, 476, 479, 481, 610, 640
message consumer pattern 468
message consumers 645
message endpoint 488, 494–496
message endpoint proxy 496
message listener 29, 32, 481, 483, 489, 505
message listener service 212
message order 513
message point 603
message producer 468, 476, 478, 605–606, 610,
640
message producer pattern 468
message selector 546
message store 48
message-driven bean 50, 75, 77
message-driven beans 212, 245, 488, 493, 495,
497–502, 504–505, 507, 509–513, 515, 545–549,
551, 568, 572, 605, 640, 649, 651, 848, 861, 927,
933

binding 864
life cycle 501

MessageEndpointFactory 488
messaging bus 46
messaging client 636
messaging engine 47, 49, 581, 595–597, 619, 638,
644, 649

data store 601, 620–621, 623, 660
failover 598
name 600
policy type 642

1002 WebSphere Application Server V6: System Management and Configuration Handbook

preferred server 672
secure communications 619

messaging provider 464, 466
meta-data 285
metadata 111
METHOD_READY state 874–875
Microsoft Internet Information Services 12
Microsoft SQL Server 12
MIME 61, 241, 355
Min Connections 337
missing transaction context 341, 353
monitored directory 960, 983
monitoring policy 212
multi-broker domain 729
multibroker.xml

 733–734
multicast 95–96
multicast address 95
multi-row persistent session management 759
multi-row schema 743–744
multi-row session support 757
multithreaded access detection 340
multi-threaded garbage collection 755

N
name bindings 771
name server 34, 770
name service (JNDI) 29
name space 34, 770

viewing contents 453
name space bindings

configuring 811–812
NameService 787, 792, 794, 796
NameServiceCellPersistentRoot 795
NameServiceCellRoot 795
NameServiceNodeRoot 795
NameServiceServerRoot 781, 784, 792–793, 795
namestore.xml 107
naming clients 771
naming service

name bindings 34
nanny process 157
native library path 329
native path 349
native_stderr.log 421, 428
native_stdout.log 421, 428
nboundBasicMQLink 632
nhanced 858

NoClassDefFoundError 825
node

adding 220
See also addNode

clustering 25
definition 23
managing 217
removing 225

See also removeNode
restoring 260
starting 230
stopping 156, 228, 230, 233
synchronization 227

See also syncNode
node agent 33–34, 69, 89, 92, 95–97, 99, 106, 129,
143, 146, 151, 156, 162, 198, 221, 277, 295, 770

definition 70
restarting 233
starting 144, 155, 198, 230, 294
stopping 144, 231, 294

node group 23, 129, 219, 223
node groups 16
node persistent root 770, 776, 781, 784, 790

definition of 776
non-durable subscription 471, 652
nonpersistent message reliability 530
nonpersistent MQ messages 689
non-serializable J2EE objects 741

O
Object Pools 15
object pools 320
Object Request Broker (ORB) 32
Object Request broker (ORB) 29, 32
onMessage 501
operating system security 52
operations 280
optimistic 877
optimistic concurrency 878
OptimisticPredicate 882
Option A EJB caching 870
Option B EJB caching 871
Option C EJB caching 872
Oracle 12
ORB 58
ORB service 185, 211
ORB_LISTENER_ADDRESS 218
outbound user ID 680, 684

 Index 1003

OutboundBasicMQLink 618
OutboundSecureMQLink 618
outputFilename 430
overwrite session management 699

P
parent 282
PARENT_FIRST 831, 836, 839, 841
PARENT_LAST 831, 839, 842
partition ID 716
partitioned queues 639
passivation 209, 874
peer-to-peer mode 724
peer-to-peer replication 725
peer-to-peer topology 37, 725–726, 733
peferred servers only 675
Performance Monitoring Infrastructure (PMI) 35
Performance Monitoring Instrumentation (PMI) 78
Performance Monitoring Interface (PMI) 29
performance monitoring service 206, 212
persistence manager 324, 875, 880, 883, 885
Persistence Resource Adapter 324
persistent area 34
persistent message reliability 530
persistent MQ messages 689
persistent partition 770
persistent session 711, 713, 741
persistent session database 757
persistent store 710, 870
pessimistic 877
PessimisticUpdate 880
pluggable application client 938
pluggable authentication module 54
plug-in configuration file

automated propagation 412
automatic regeneration 410
propagating 411
regenerating 406, 408
viewing 407

plugin-cfg.xml 404
PMI request metrics 36
PMI service 35
Point-to-Point domain 482
Point-to-Point messaging model 466–467, 514,
519, 610
poison message 513
pooled connection 59
POP3 61, 355–356, 363

port
admin_host virtual host 38
bootstrap 785, 788, 791, 804, 809
CELL_DISCOVERY_ADDRESS 95
default host 37
NODE_DISCOVERY_ADDRESS 95
NODE_MULTICAST_DISCOVERY_ADDRESS
95
SSL 240

pre-compile JSP 932
prefer local 237
preferred server 642, 647, 672, 677
preferred servers only 642–643, 647, 672, 674
Principals 55
print 425
print() 421
println() 421, 425
printStackTrace() 421
Private UDDI Registry 79
process definition 211
process execution 184, 211
process group assignment 184
processor partitioning 184
product information

viewing 206, 457
profile 16

deleting 263
exporting and importing 262

Profile creation wizard 121, 123, 128–130, 134,
136, 138, 142, 151, 153–154, 158, 191
profile registry 151
profile_home 104, 118
ProfileCreator 121
profileRegistry.xml 151
profiles

about 114
creating 121
types 116

Programming Model Extensions 15, 29
programming model extensions 210, 320
project directory 960
protocol adapters 87

JMX 87
protocol provider 61, 354, 359
protocol switch rewriting 710
provider endpoint 578, 628, 641, 682
provider URL 789–790, 793

javax.naming.provider.url 791
pseudo-synchronous messaging 469

1004 WebSphere Application Server V6: System Management and Configuration Handbook

publication point 604
publish/subscribe broker profile 633
publish/subscribe domain 471, 482
Publish/Subscribe messaging model 466–467,
514, 519, 612
publish/subscribe profile 689
pull mode 468, 480
Purge Policy 338
push mode 468, 480
Python 273

Q
quality of service 50
queryNames 277–278, 292
queue destination 515, 535, 537, 539, 554,
562–563, 602–603

creating 666
queue destinations 561
queue manager 611, 616, 630, 632, 634, 683, 689
queue point 603
QueueConnectionFactory object 474

R
ra.xml 344, 349, 857
Rational Application Developer 10, 17, 43, 73–75
Rational ClearCase 73
Rational Rose 73
Rational Web Developer 10, 75
Rational XDE 73
RCP directory 826
RE directory 826
read ahead 539
read-ahead 883–884
Reap Time 337–338
Reap Timeout 337–338
receiver channel 631–632, 688–689
Redbooks Web site 991

Contact us xxi
referenceable 64, 370–371, 373
RegenerateKey 730
relational resource adapter 60, 323–324, 333
reloadingEnabled 955
removeNode 225–226
replica 731
replication client 727
replication domain 237, 726, 728–730
replication entry 238
replication mode 733

replication server 727
replicationType 286
replicator entry 728–729
repository 84, 95–97, 104–106

application data 107
application execution 109
saving work to 180

request routing 379
request-reply 468
request-reply pattern 469
reset 290
resource adapter 59, 74, 343–346, 349, 488, 649,
827

deployment descriptor 489
installation 345
lifecycle management 486
message inflow management 487
packaging 489
service integration bus 514, 517, 649
transaction inflow management 487
WebSphere Relational Resource Adapter 345
work management 486

Resource Adapter Archive (RAR) 344
resource environment entry 64
resource environment provider 59, 64, 370–371
resource provider

J2C 341, 343, 345, 349
JavaMail 356
JDBC 326, 331
URL 364, 368

Configuring URLs 366
resource providers 58
resource references 935
resources.xml 326, 345, 370
res-sharing-scope 341
restoreConfig 259–260
ripplestart 239
RMI 218, 222, 270
RMI connector 87
RMI/IIOP 66, 222
Rollout Update 25, 944, 951–953
rollout update 244
round robin 414
round robin routing policy 66
RP directory 826

S
SAAJ 77

 Index 1005

sample applications 137
SAP 344
SAS interceptor 58
scalability 50
Scheduler Service (Timer Service) 15
schedulers 320
scope 107, 171–172, 176
security 18, 164, 182

console 85
session 751
session management 751
Web services 41
WebSphere Application Server 29, 37, 51,
56–57, 77
WebSphere UDDI Registry 44

security collaborator 57
security contract 343
security management 486
security roles 246, 935
security server 56
sender channel 630–632, 688–689
serialize session access 699
serve servlets by class name 887
server

starting 156
status 156
stopping 156

server ID 717
server root 770, 790
server root context 792–795, 798, 809
server weight 237
server weighted routing policy 66
server.xml 221
ServerCloneID 415
serverindex.xml 95, 97
serverStatus 135, 156, 163, 194–195
Service Data Object (SDO) 77
Service Data Objects (SDO) 14
service integration 17
service integration bus 17, 45–46, 48–50, 106, 149,
168, 212, 218, 221, 223, 515, 577, 594, 849, 925

architecture 594
bus member. See bus member
clustering 638
configuration 655
connecting to 576
controlling messaging engine selection 579
creating 658
creating with wsadmin 290

data store 620
destination 602, 667
exception destination 626
foreign bus. See foreign bus
foreign link 680
JMS activation specification 509, 518, 545–546
JMS connection factory 515, 527–528
JMS destination 536
JMS queue 537, 540
JMS topic 542
link 627–629
load balancing bootstrapped clients 588
mediation 606
message-driven beans 649, 651
messaging engine. See messaging engine
quality of service 530
reliability 604, 606
resource adapter 509, 514, 516, 518
runtime components 612
scalability 600
security 652
SIB service. See SIB service
topic destination 543
topologies 645–646
transport chain 614
WebSphere MQ addressing 633–634
XA recovery 533

service integration bus queue 850
service provider 355
Service Provider Interface (SPI) 343, 772
Servlet 2.2 API 718
servlet caching 208
servlets

finding the URL 253
serve by class name 887

servlets by class name 405
session

performance 752
session administrative object 356
session affinity 698, 703, 705, 715, 755
session beans 873

caching options 873
stateful 874
stateful EJB timeout 874

session cache 710
session cleanup settings 738
session context 701
session ID 702, 705, 710, 715–716
session identifier 706, 709

1006 WebSphere Application Server V6: System Management and Configuration Handbook

session invalidation time 738
session management 27, 38, 208

affinity 715, 717–718
cleanup schedule 749
DB2 page sizes 742
HTTP 698
invalidating sessions 749, 755
JSESSIONID 38
last access time 735
local 710
maximum in-memory session count 712
multi-row schemas 743
overflow 713
overflow cache 711–712, 754
persistent 719–721, 734
properties 699–700
row type 743
security ID 751
security integration 714
serializable requirements 741
serialize session access 714
session affinity 717
session cache size 754
session listeners 749
session object size 753
session size 753
session timeout 755
session tracking mechanism 703
single-row schemas 743
single-row to multi-row migration 744
SSL ID tracking 704–705
SSL session identifiers 38
time-based write frequency 737
write contents 745–746
URL rewriting
See also cookies

session management properties
application 700
application server 700, 761–762
Overwrite Session Management 701
Web module 700

session manager 711, 724, 728, 731, 751, 755,
757–759

overflow 711
session object size 753
session persistence 39, 698, 705
session scope 700
session store 717
session write interval 737

SessionBeanTimeoutException 875
SESSIONS table 743
setAttribute 280, 300–301
setCharacterEncoding 889
setMessageDrivenContext 500, 502
setupCmdLine 221
shared libraries 834, 842
shared library class loader 832
shared session context 701
showall 288
showAttribute 287
Showlog 421
showlog 430
SIB JMS Resource Adapter 517, 649
SIB service 577, 612–615, 641, 648, 655–657, 682
sib.client.ssl.properties 619
SIB_ENDPOINT_ADDRESS 578, 614–615, 656
SIB_ENDPOINT_SECURE_ADDRESS 614–615,
656
SIB_MQ_ENDPOINT_ ADDRESS 614
SIB_MQ_ENDPOINT_ SECURE_ADDRESS 615
SIB_MQ_ENDPOINT_ADDRESS 615, 689
SIB_MQ_ENDPOINT_SECURE_ADDRESS 615
sibDDLGenerator 623, 662
Simple WebSphere Authentication Mechanism 751
Simple WebSphere Authentication Mechanism
(SWAM) 54, 77
single sign-on 55
Singletons 833
SMTP 61, 355–356
SNMP 67
snoop 258
SOAP 79, 222
SOAP connector por 212
SOAP connector port 101, 126, 133
SOAP with Attachments API for Java (SAAJ) 13, 41
SOAP_CONNECTOR_ADDRESS 217, 220, 222
SOAP_CONNECTOR_PORT 218
special header 414
SPI 324, 343, 772
spilling 601
SQL92 conditional expression syntax 478
SSL 44, 216, 619, 629, 631, 705
SSL ID tracking 699
SSL session ID 703, 705
SSL session identifiers 38
SSLV3TIMEOUT 705
standalone application server 191
standalone server environment 83, 106, 119, 384

 Index 1007

Standard Java security 52
startApplication 298
startManager 130, 155, 160, 163, 188, 190
startNode 144, 155, 198
startServer 136, 156, 198, 200, 202
startserver 396
startServer.log 189–190, 198–199
Startup Beans 15
stateful 873
stateful session bean failover 698, 729, 760–762,
764
stateful session EJB persistence 36, 40
StateManageable 91
statement cache size 340
StatisticsProvider 91
stderr 420, 423, 428
stdout 420, 423, 428
sticky bean managed unit of work 766
stopApplication 298
stopManager 190
stopNode 144, 156, 228, 231–232
stopServer 137, 156, 201–203, 293
stopServer.log 202
storeUsingOCC 882
stream 71
Stream Handler Class 365
Subject class 55
subscription durability 547
Sun Java System Web Server 12
sun.misc.Launcher$AppClassLoader 822
SWAM 51, 55, 751
Sybase Adaptive Server Enterprise 12
symptom database 450
Symptom database See Log Analyzer
synchronization 70, 98, 100, 227–228, 389

forced 99
scheduling 99

synchronize 97, 103
synchronous messaging 465
syncNode 103, 228–229
system class loader 822, 825
System.err 420–421, 423, 425, 427
System.out 420–421, 423–425, 427
SystemErr.log 420
SystemOut.log 155, 301, 420, 423, 458–459

T
target groups 585

target mappings 247
target server 402, 960
template 147, 153, 192, 314

application server (creating) 194
Web server 393

thin application client 938
thread

ID 427
thread pool 213
tightly coupled 464
time-based write 737
time-based writes 737
timeout

aged 337–338
connection 336–337
ConnectionWaitTimeoutException 336
reap 337–338
session 713, 749, 755
unused 337

Tivoli Access Manager 53
Tivoli Access Manager (TAM) 18
Tivoli Access Manager Servers for WebSphere Ap-
plication Server 11
Tivoli Directory Server for WebSphere Application
Server 11
Tivoli Performance Viewer 36, 78
topic destination 515, 535–538, 541, 555,
561–562, 566
topic mappings 633
topic space destination 602–603

creating 668
topic space mappings 629, 682, 689
topic subscriber 471
trace 418, 430–431, 437, 913

enabling using wsadmin 300
output 438
starting for a running server 437
strings 433
viewing output 438
Web server plug-in 439

trace specification string 433
trace string 437
TraceService 300–301
transaction

bean managed 505
commit 870
container managed 504
isolation level 876–877
message-driven beans 502

1008 WebSphere Application Server V6: System Management and Configuration Handbook

viewing 205
transaction management 29, 486
transaction management contract 342
transaction service 30, 205, 210
transient area 34
transient partition 770
transport chain 26, 186, 208, 216, 578, 583, 612,
614–616, 619, 629, 631–632, 659, 688
TRIPLE_DES 730
types 282

U
UDDI 41, 46
UDDI Registry 44
UnauthorizedSessionRequestException 751
Unified Modeling Language (UML) 73
unique ID 654
unit of work 447, 449, 765
Universal Description, Discovery and Integration
(UDDI) 13
Universal Test Client 976
unmanaged node 378, 381, 386, 389
unmanaged Web server node 26
UriGroup Name 405
URL provider 59, 62, 364, 368
URL rewriting 38, 698–699, 703, 705, 709–710
user registry 53
user rights 127, 133
utility JAR 838–840

V
V5 default messaging provider 63
variable 179–180, 909–910, 918
variables 330
variables.xml 107
versionInfo 458
virtual host 75, 405, 901, 903, 917, 935

admin_host 38, 240
and Web server plug-in 241
architectural overview 239
architecture 37
binding 931
creating 240
creating with wsadmin 308
default_host 37, 240, 257–258
example 914–915
finding the URL for a servlet or JSP 253,
256–257

host alias 257
host aliases 240, 258
IBM HTTP Server 916
in a cluster 241
managing 239
map to Web modules 246
mapping 256
MIME settings 241
modifying with wsadmin 309
scope 240

virtual hosting 915
Virtual hosts 915

See also IBM HTTP Server VirtualHosts

W
WAR class loader 827, 832, 839
WAR classloader 837
was.policy 108, 931
was_home 117
WAS_USER_SCRIPT 383
waslogbr 444
wasprofile 118, 151–153, 263–264
WASService 157–159, 194
WC_defaulthost 914
Web container 26, 57, 64–66, 71, 207, 889

See also J2EE Web container
overview 26

Web container inbound chain 27
Web container inbound transport chain 379
Web container transport chain 186
Web module 74–75, 886, 889

auto reload 887
default error page 888
directory browsing 888
file serving servlet 886
serve servlets by class name 887

Web security collaborator 57
Web server 16, 25, 57, 932, 945, 950

adding 392
configuration file 400
logs 401
logs and traces 439
starting and stopping 395
viewing status 394

Web server plug-in 10, 26–27, 32, 57, 64–65, 71,
75, 378–380, 945, 951

overview 27
regenerating 406

 Index 1009

request routing 412
Web server plugin 27, 240–241, 293, 715,
718–719, 755

generating 409
log 439
regenerating with wsadmin 300
trace 439

Web server plug-in configuration service 410
Web service client 43
Web service endpoint 48
Web service provider 43
Web services 8, 50

WebSphere Application Server support 40
Web Services Description Language (WSDL) 40
Web services engine 27
Web Services Explorer 43
Web services for J2EE (JSR 109) 79
Web services for Java 2 Platform, Enterprise Edition
13
Web Services Gateway 14, 17, 44, 51, 79
Web Services Security (WS-Security) 13
Web Services-Interoperability (WS-I) Basic Profile
13
web.xml 369, 857, 860
WebSphere

security server 56
Version 457

WebSphere Application Server 9
WebSphere Application Server - Express 8

architecture 20
WebSphere Application Server Enterprise 320
WebSphere Application Server Network Deploy-
ment 9

architecture 21
WebSphere Business Integration Event Broker 519
WebSphere Business Integration Message Broker
519
WebSphere Business Integration Server Founda-
tion 8, 320
WebSphere Enhanced EAR 74
WebSphere MQ 8, 17, 49, 62–63, 519, 608, 633

link 630
WebSphere MQ client 634
WebSphere MQ client link 637
WebSphere MQ connection factory 552, 558, 571
WebSphere MQ JMS provider 62–63
WebSphere MQ link 630–635, 685
WebSphere Rapid Deployment 17, 75–77, 242,
957, 959–960, 967, 970, 973–974, 981, 985–986

WebSphere Relational Resource Adapter 62, 345
WebSphere Studio 42
WebSphere UDDI Registry 44
Windows service 126, 133, 150, 157, 159, 194, 223
WLM 698, 870
work area partition service 211
work area service 211
WorkArea Service 15
working directory 911
workload management 64, 67, 760

EJS WLM 870
messaging 644–645, 647–648, 651
messaging engine 638, 644
WebSphere Application Server 78

workspace 168
wrd 962, 966, 985
wrd-config 962–966, 972, 985
ws.ext.dirs 826–827
wsadmin 68, 268

definition 268
getid 283
help 269
interactive 271
list 284
profile 271, 273
properties 270, 274
script files 272
show 286
showattribute 287
starting session 268

WSCallerHelper 324
WSDL 44–46, 79
WS-I Basic Profile 79
WSIF 42, 44
WSIL 79
wsinstance 114
wsOptimisticRead 879–880
wsOptimisticUpdate 879
wsPessimisticRead 879
wsPessimisticUpdate 879
wsPessimisticUpdate-NoCollision 883
wsPessimisticUpdate-WeakestLockAtLoad 881
WS-Security 41

X
XAResource 30
XAResources 31
XDoclet 959

1010 WebSphere Application Server V6: System Management and Configuration Handbook

Xdoclet 957

 Index 1011

1012 WebSphere Application Server V6: System Management and Configuration Handbook

(1.5” spine)
1.5”<

->
 1.998”

789 <
->

1051 pages

W
ebSphere Application

Server V6: System

M
anagem

ent and

®

SG24-6451-00 ISBN 0738492019

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application Server V6
System Management and
Configuration Handbook

Read this book and
others in the
WebSphere
Handbook Series

Learn to design and
administer your own
system

Customize profiles,
scripts and
applications

This IBM Redbook provides system administrators,
developers, and architects with the knowledge to configure a
WebSphere Application Server V6 runtime environment, to
package and deploy Web applications, and to perform
ongoing management of the WebSphere environment.

One in a series of handbooks, the entire series is designed to
give you in-depth information about the entire range of
WebSphere Application Server products. In this book, we
provide a detailed exploration of the WebSphere Application
Server V6 runtime environments and administration process.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Notices
	Trademarks

	Part 1 The basics
	Chapter 1. WebSphere Application Server V6 for distributed platforms
	1.1 WebSphere overview
	1.2 WebSphere family
	1.3 WebSphere Application Servers
	1.4 WebSphere Application Server for distributed platforms
	1.4.1 Packaging
	1.4.2 System requirements and support for distributed platforms
	1.4.3 New for V6

	Chapter 2. WebSphere Application Server V6 architecture
	2.1 Application server configurations
	2.1.1 Stand-alone server configuration
	2.1.2 Distributed server configuration

	2.2 Application servers, nodes, and cells
	2.2.1 Application servers
	2.2.2 Nodes, node groups, and node agents
	2.2.3 Cells

	2.3 Servers
	2.3.1 Application servers
	2.3.2 Clusters
	2.3.3 JMS servers (V5)
	2.3.4 External servers

	2.4 Containers
	2.4.1 Web container
	2.4.2 Enterprise JavaBeans container
	2.4.3 Application client container

	2.5 Application server services
	2.5.1 J2EE Connector Architecture services
	2.5.2 Transaction service
	2.5.3 Dynamic cache service
	2.5.4 Message listener service
	2.5.5 Object Request Broker service
	2.5.6 Administrative service
	2.5.7 Name service
	2.5.8 Performance Monitoring Infrastructure service
	2.5.9 Security service

	2.6 Data Replication Service
	2.7 Virtual hosts
	2.8 Session management
	2.8.1 HTTP Session persistence
	2.8.2 Stateful session EJB persistence

	2.9 Web services
	2.9.1 Enterprise services (JCA Web services)
	2.9.2 Web service client
	2.9.3 Web service provider
	2.9.4 Enterprise Web Services
	2.9.5 IBM WebSphere UDDI Registry
	2.9.6 Web Services Gateway

	2.10 Service integration bus
	2.10.1 Application support
	2.10.2 Service integration bus and messaging
	2.10.3 Web services and the service integration bus

	2.11 Security
	2.11.1 User registry
	2.11.2 Authentication
	2.11.3 Authorization
	2.11.4 Security components
	2.11.5 Security flows

	2.12 Resource providers
	2.12.1 JDBC resources
	2.12.2 Mail providers
	2.12.3 JCA resource adapters
	2.12.4 URL providers
	2.12.5 JMS providers
	2.12.6 Resource environment providers

	2.13 Workload management
	2.14 High availability
	2.15 Administration
	2.15.1 Administration tools
	2.15.2 Configuration repository
	2.15.3 Centralized administration

	2.16 The flow of an application
	2.17 Developing and deploying applications
	2.17.1 Application design
	2.17.2 Application development
	2.17.3 Application packaging
	2.17.4 Application deployment
	2.17.5 WebSphere Rapid Deployment

	2.18 Technology support summary

	Chapter 3. System management: A technical overview
	3.1 System management overview
	3.1.1 System management tools
	3.1.2 System management in a standalone server environment
	3.1.3 System management in a distributed server environment
	3.1.4 Role-based administration

	3.2 Java Management Extensions (JMX)
	3.2.1 JMX architecture
	3.2.2 JMX distributed administration
	3.2.3 JMX MBeans
	3.2.4 JMX usage scenarios
	3.2.5 J2EE management

	3.3 Distributed administration
	3.3.1 Distributed process discovery
	3.3.2 Centralized changes to configuration and application data
	3.3.3 File synchronization

	3.4 Configuration and application data repository
	3.4.1 Repository directory structure
	3.4.2 Variable scoped files
	3.4.3 Application data files

	Chapter 4. Getting started with profiles
	4.1 Understanding profiles
	4.1.1 Types of profiles
	4.1.2 Directory structure and default profiles

	4.2 Building a system using profiles
	4.2.1 Standalone server environment
	4.2.2 Distributed server environment

	4.3 Creating profiles
	4.3.1 Creating a deployment manager profile
	4.3.2 Creating an application server profile
	4.3.3 Creating a custom profile
	4.3.4 Federating a custom node to a cell
	4.3.5 Creating a new application server on an existing node
	4.3.6 Federating an application server profile to a cell

	4.4 Creating profiles manually
	4.4.1 Using the wasprofile command
	4.4.2 Creating a profile

	4.5 Managing the processes
	4.5.1 Starting a distributed server environment
	4.5.2 Stopping the distributed server environment
	4.5.3 Enabling process restart on failure

	Chapter 5. Administration basics
	5.1 Introducing the WebSphere administrative console
	5.1.1 Starting the administrative console
	5.1.2 Logging in to the administrative console
	5.1.3 Changing the administrative console session timeout
	5.1.4 The graphical interface
	5.1.5 Finding an item in the console
	5.1.6 Updating existing items
	5.1.7 Adding new items
	5.1.8 Removing items
	5.1.9 Starting and stopping items
	5.1.10 Using variables
	5.1.11 Saving work
	5.1.12 Getting help

	5.2 Securing the administrative console
	5.3 Working with the deployment manager
	5.3.1 Deployment manager configuration settings
	5.3.2 Starting and stopping the deployment manager

	5.4 Working with application servers
	5.4.1 Creating an application server
	5.4.2 Viewing the status of an application server
	5.4.3 Starting an application server
	5.4.4 Stopping an application server
	5.4.5 Viewing runtime attributes of an application server
	5.4.6 Customizing application servers

	5.5 Working with nodes
	5.5.1 Adding a node
	5.5.2 Removing a node
	5.5.3 Node agent synchronization
	5.5.4 Starting and stopping nodes
	5.5.5 Node groups

	5.6 Working with clusters
	5.6.1 Creating clusters
	5.6.2 Viewing cluster topology
	5.6.3 Managing clusters

	5.7 Working with virtual hosts
	5.7.1 Creating a virtual host

	5.8 Managing applications
	5.8.1 Using the administrative console to manage applications
	5.8.2 Installing an enterprise application
	5.8.3 Uninstalling an enterprise application
	5.8.4 Exporting an enterprise application
	5.8.5 Starting an enterprise application
	5.8.6 Stopping an enterprise application
	5.8.7 Preventing an enterprise application from starting on a server
	5.8.8 Viewing installed applications
	5.8.9 Viewing EJB modules
	5.8.10 Viewing Web modules
	5.8.11 Finding a URL for a servlet or JSP

	5.9 Managing your configuration files
	5.9.1 Backing up a profile configuration
	5.9.2 Restoring a node configuration
	5.9.3 Exporting and importing profiles
	5.9.4 Deleting profiles

	Chapter 6. Administration with scripting
	6.1 Overview of WebSphere scripting
	6.2 Using wsadmin
	6.2.1 Launching wsadmin
	6.2.2 Configuring wsadmin
	6.2.3 Commands and scripts invocation
	6.2.4 Overview of wsadmin objects
	6.2.5 Management using wsadmin objects

	6.3 Common operational administrative tasks using wsadmin
	6.3.1 General approach for operational tasks
	6.3.2 Examples of common administrative tasks
	6.3.3 Managing the deployment manager
	6.3.4 Managing nodes
	6.3.5 Managing application servers
	6.3.6 Managing enterprise applications
	6.3.7 Managing clusters
	6.3.8 Generating the Web server plug-in configuration
	6.3.9 Enabling tracing for WebSphere components

	6.4 Common configuration tasks
	6.4.1 General approach for configuration tasks
	6.4.2 Specific examples of WebSphere configuration tasks

	6.5 Differences from WebSphere V5
	6.6 End-to-end examples
	6.7 Using Java for administration
	Online resources

	Chapter 7. Configuring WebSphere resources
	7.1 WebSphere resources
	7.2 JDBC resources
	7.2.1 What are JDBC providers and data sources?
	7.2.2 WebSphere support for data sources
	7.2.3 Creating a data source
	7.2.4 Creating a JDBC provider
	7.2.5 Creating JDBC data source

	7.3 JCA resources
	7.3.1 WebSphere Application Server JCA support
	7.3.2 Installing and configuring resource adapters
	7.3.3 Configuring J2C connection factories
	7.3.4 Using resource adapters from an application

	7.4 JavaMail resources
	7.4.1 JavaMail sessions
	7.4.2 Configuring the mail provider
	7.4.3 Configuring JavaMail sessions
	7.4.4 Example code

	7.5 URL providers
	7.5.1 Configuring URL providers
	7.5.2 Configuring URLs
	7.5.3 URL provider sample

	7.6 Resource environment providers
	7.6.1 Resource environment references
	7.6.2 Configuring the resource environment provider

	7.7 Resource authentication
	7.8 More information

	Chapter 8. Managing Web servers
	8.1 Web server support overview
	8.1.1 Request routing using the plug-in
	8.1.2 Web server and plug-in management

	8.2 Web server installation examples
	8.2.1 Standalone server environment
	8.2.2 Distributed server environment

	8.3 Working with Web servers
	8.3.1 Defining nodes and Web servers
	8.3.2 Viewing the status of a Web server
	8.3.3 Starting and stopping a Web server
	8.3.4 IBM HTTP Server remote administration
	8.3.5 Mapping modules to servers

	8.4 Working with the plug-in configuration file
	8.4.1 Regenerating the plug-in configuration file
	8.4.2 Propagating the plug-in configuration file
	8.4.3 Modifying the plug-in request routing options

	Chapter 9. Problem determination
	9.1 Resources for identifying problems
	9.2 Administrative console messages
	9.3 Log files
	9.3.1 JVM (standard) logs
	9.3.2 Process (native) logs
	9.3.3 IBM service (activity) log

	9.4 Traces
	9.4.1 Diagnostic trace service
	9.4.2 Web server logs and traces

	9.5 Log Analyzer
	9.5.1 Using Log Analyzer
	9.5.2 Merging logs on multiple application servers
	9.5.3 Updating the symptom database

	9.6 Collector tool
	9.7 First Failure Data Capture logs
	9.8 Dumping the contents of the name space
	9.9 HTTP session monitoring
	9.10 Application debugging and tracing
	9.10.1 Application Server Toolkit
	9.10.2 Java logging interface

	9.11 Product installation information
	9.11.1 Using the administrative console to find product information
	9.11.2 Locating WebSphere Application Server version information
	9.11.3 Finding the JDK version
	9.11.4 Finding the IBM HTTP Server version

	9.12 Resources for problem determination

	Part 2 Messaging with WebSphere
	Chapter 10. Asynchronous messaging
	10.1 Messaging concepts
	10.1.1 Loose coupling
	10.1.2 Messaging types
	10.1.3 Destinations
	10.1.4 Messaging models
	10.1.5 Messaging patterns

	10.2 Java Message Service
	10.2.1 JMS API history
	10.2.2 JMS providers
	10.2.3 JMS domains
	10.2.4 JMS administered objects
	10.2.5 JMS and JNDI
	10.2.6 JMS connections
	10.2.7 JMS sessions
	10.2.8 JMS messages
	10.2.9 JMS message producers
	10.2.10 JMS message consumers
	10.2.11 JMS exception handling
	10.2.12 Application Server Facilities
	10.2.13 JMS and J2EE

	10.3 Messaging in the J2EE Connector Architecture
	10.3.1 Message endpoints
	10.3.2 MessageEndpointFactory
	10.3.3 Resource adapters
	10.3.4 JMS ActivationSpec JavaBean
	10.3.5 Message endpoint deployment
	10.3.6 Message endpoint activation
	10.3.7 Message delivery
	10.3.8 Administered objects

	10.4 Message-driven beans
	10.4.1 Message-driven bean types
	10.4.2 Client view of a message-driven bean
	10.4.3 Message-driven bean implementation
	10.4.4 Message-driven bean life cycle
	10.4.5 Message-driven beans and transactions
	10.4.6 Message-driven bean activation configuration properties
	10.4.7 Associating a message-driven bean with a destination
	10.4.8 Message-driven bean best practices

	10.5 Managing WebSphere JMS providers
	10.5.1 Managing the default messaging JMS provider
	10.5.2 Managing the WebSphere MQ JMS provider
	10.5.3 Managing a generic JMS provider

	10.6 Configuring WebSphere JMS administered objects
	10.6.1 Common administration properties
	10.6.2 Configuring the default messaging JMS provider
	10.6.3 Configuring the WebSphere MQ JMS provider
	10.6.4 Configuring listener ports
	10.6.5 Configuring the generic JMS provider

	10.7 Connecting to a service integration bus
	10.7.1 JMS client runtime environment
	10.7.2 Controlling messaging engine selection
	10.7.3 Load balancing bootstrapped clients

	10.8 References and resources

	Chapter 11. Default messaging provider
	11.1 Concepts and architecture
	11.1.1 Buses
	11.1.2 Bus members
	11.1.3 Messaging engines
	11.1.4 Data stores
	11.1.5 Destinations
	11.1.6 Mediations
	11.1.7 Foreign buses

	11.2 Runtime components
	11.2.1 SIB service
	11.2.2 Service integration bus transport chains
	11.2.3 Data stores
	11.2.4 Exception destinations
	11.2.5 Service integration bus links
	11.2.6 WebSphere MQ links

	11.3 High availability and workload management
	11.3.1 Cluster bus members for high availability
	11.3.2 Cluster bus members for workload management
	11.3.3 Partitioned queues
	11.3.4 JMS clients connecting into a cluster of messaging engines
	11.3.5 Preferred servers and core group policies
	11.3.6 Best practices

	11.4 Service integration bus topologies
	11.4.1 One server in the cell is a member of one bus
	11.4.2 Every server in the cell is a member of the same bus
	11.4.3 A single cluster bus member and one messaging engine
	11.4.4 A cluster bus member with multiple messaging engines
	11.4.5 Mixture of cluster and server bus members
	11.4.6 Multiple buses in a cell

	11.5 Service integration bus and message-driven beans
	11.5.1 Message-driven beans connecting to the bus
	11.5.2 MDBs and clusters

	11.6 Service integration bus security
	11.7 Problem determination
	11.8 Configuration and management
	11.8.1 SIB service configuration
	11.8.2 Creating a bus
	11.8.3 Adding a bus member using a default data store
	11.8.4 Adding a bus member with a different data store
	11.8.5 Creating a queue destination
	11.8.6 Creating a topic space destination
	11.8.7 Creating an alias destination
	11.8.8 Adding messaging engines to a cluster
	11.8.9 Setting up preferred servers
	11.8.10 Setting up a foreign bus link to a service integration bus
	11.8.11 Setting up a foreign bus link to an MQ queue manager
	11.8.12 Creating a foreign destination

	Part 3 Working with applications
	Chapter 12. Session management
	12.1 What is new?
	12.2 HTTP session management
	12.3 Session manager configuration
	12.3.1 Session management properties
	12.3.2 Accessing session management properties

	12.4 Session scope
	12.5 Session identifiers
	12.5.1 Choosing a session tracking mechanism
	12.5.2 SSL ID tracking
	12.5.3 Cookies
	12.5.4 URL rewriting

	12.6 Local sessions
	12.7 General properties for session management
	12.8 Session affinity
	12.8.1 Session affinity and failover

	12.9 Persistent session management
	12.9.1 Enabling database persistence
	12.9.2 Memory-to-memory replication
	12.9.3 Session management tuning
	12.9.4 Persistent sessions and non-serializable J2EE objects
	12.9.5 Larger DB2 page sizes and database persistence
	12.9.6 Single and multi-row schemas (database persistence)
	12.9.7 Contents written to the persistent store using a database

	12.10 Invalidating sessions
	12.10.1 Session listeners

	12.11 Session security
	12.12 Session performance considerations
	12.12.1 Session size
	12.12.2 Reducing persistent store I/O
	12.12.3 Multirow persistent sessions: Database persistence
	12.12.4 Managing your session database connection pool
	12.12.5 Session database tuning

	12.13 Stateful session bean failover
	12.13.1 Enabling stateful session bean failover
	12.13.2 Stateful session bean failover considerations

	Chapter 13. WebSphere naming implementation
	13.1 Features
	13.2 WebSphere naming architecture
	13.2.1 Components
	13.2.2 JNDI support
	13.2.3 JNDI bindings
	13.2.4 Federated name space
	13.2.5 Local name space structure

	13.3 Interoperable Naming Service (INS)
	13.3.1 Bootstrap ports
	13.3.2 CORBA URLs

	13.4 Distributed CosNaming
	13.5 Configured bindings
	13.5.1 Types of objects
	13.5.2 Types of binding references

	13.6 Initial contexts
	13.6.1 Setting initial root context

	13.7 Federation of name spaces
	13.8 Interoperability
	13.8.1 WebSphere V4.0 EJB clients
	13.8.2 WebSphere V4.0 server
	13.8.3 EJB clients hosted by non-WebSphere environment

	13.9 Examples
	13.9.1 Single server
	13.9.2 Two single servers on the same box
	13.9.3 Network Deployment application servers on the same box
	13.9.4 WebSphere Application Server V4 client

	13.10 Naming tools
	13.10.1 dumpNameSpace

	13.11 Configuration
	13.11.1 Name space bindings
	13.11.2 CORBA naming service users and groups

	Chapter 14. Understanding class loaders
	14.1 A brief introduction to Java class loaders
	14.2 WebSphere class loaders overview
	14.2.1 WebSphere extensions class loader
	14.2.2 Application and Web module class loaders
	14.2.3 Handling JNI code

	14.3 Configuring WebSphere for class loaders
	14.3.1 Class loader policies
	14.3.2 Class loader/delegation mode
	14.3.3 Class preloading
	14.3.4 Shared libraries

	14.4 Learning class loaders by example
	14.4.1 Step 1: Simple WAR packaging
	14.4.2 Step 2: Sharing the utility JAR among multiple modules
	14.4.3 Step 3: Changing the WAR class loader delegation mode
	14.4.4 Step 4: Sharing utility JARs among multiple applications

	Chapter 15. Packaging applications
	15.1 WebSphere Bank sample application
	15.1.1 WebSphere Bank resources used

	15.2 Packaging using the Application Server Toolkit
	15.2.1 Preparing the sample code
	15.2.2 Importing an EAR file
	15.2.3 Working with deployment descriptors

	15.3 Setting application bindings
	15.3.1 Defining EJB JNDI names
	15.3.2 Binding EJB and resource references
	15.3.3 Binding the message-driven bean to an ActivationSpec
	15.3.4 Defining data sources for entity beans

	15.4 IBM EJB extensions: EJB caching options
	15.4.1 EJB container caching option for entity beans
	15.4.2 EJB container caching option for stateful session beans
	15.4.3 Stateful EJB timeout option

	15.5 IBM EJB extensions: EJB access intents
	15.5.1 Transaction isolation levels overview
	15.5.2 Concurrency control
	15.5.3 Using EJB 2.x access intents
	15.5.4 Using read-ahead hints
	15.5.5 Tracing access intents behavior

	15.6 IBM EJB extensions: Inheritance relationships
	15.7 IBM Web module extensions
	15.7.1 File serving servlet
	15.7.2 Web application auto reload
	15.7.3 Serve servlets by class name
	15.7.4 Default error page
	15.7.5 Directory browsing
	15.7.6 JSP attributes
	15.7.7 Automatic HTTP request and response encoding

	15.8 IBM EAR extensions: Sharing session context
	15.9 Exporting WebSphere Bank EAR file
	15.10 WebSphere Enhanced EAR
	15.10.1 Configuring a WebSphere Enhanced EAR

	15.11 Packaging recommendations

	Chapter 16. Deploying applications
	16.1 Preparing the environment
	16.1.1 Creating the WebSphere Bank DB2 database
	16.1.2 Creating a WEBSPHEREBANK_ROOT environment variable
	16.1.3 Creating the WebSphere Bank application server
	16.1.4 Defining the WebSphere Bank virtual host
	16.1.5 Creating the virtual host for IBM HTTP Server and Apache
	16.1.6 Creating a DB2 JDBC provider and data source
	16.1.7 Configuring the messaging resources

	16.2 Generating deployment code
	16.2.1 Using EJBDeploy command line tool

	16.3 Deploying the application
	16.3.1 Using a bindings file

	16.4 Deploying application clients
	16.4.1 Defining application client bindings
	16.4.2 Launching the J2EE client

	16.5 Updating applications
	16.5.1 Replacing an entire application EAR file
	16.5.2 Replacing or adding an application module
	16.5.3 Replacing or adding single files in an application or module
	16.5.4 Removing application content
	16.5.5 Performing multiple updates to an application or module
	16.5.6 Rolling out application updates to a cluster
	16.5.7 Hot deployment and dynamic reloading

	Chapter 17. WebSphere Rapid Deployment
	17.1 Annotation-based programming
	17.2 Rapid deployment tools
	17.3 Using rapid deployment commands
	17.3.1 wrd-config command
	17.3.2 wrd command

	17.4 Free-form projects
	17.5 Free-form development example
	17.5.1 Setting up the environment for free-form development
	17.5.2 Adding application source code
	17.5.3 Terminating the WebSphere Rapid Deployment session
	17.5.4 Verifying results

	17.6 Automatic application installation projects
	17.7 Automatic application installation example
	17.7.1 Setting up an automatic application installation session
	17.7.2 Managing applications

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

