

ibm.com/redbooks

WebSphere Application Server V6
Scalability and Performance Handbook

Birgit Roehm
Gang Chen

Andre de Oliveira Fernandes
Cristiane Ferreira

Rodney Krick
Denis Ley

Robert R. Peterson
Gerhard Poul
Joshua Wong

Ruibin Zhou

WebSphere Handbook Series

Workload manage Web server,
servlet, and EJB requests

Learn about performance
monitoring and tuning

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

WebSphere Application Server V6 Scalability and
Performance Handbook

May 2005

International Technical Support Organization

SG24-6392-00

© Copyright International Business Machines Corporation 2005. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (May 2005)

This edition applies to IBM WebSphere Application Server Network Deployment V6 for distributed
platforms.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xvii.

Contents

Notices . xvii
Trademarks . xviii

Preface . xix
The team that wrote this redbook. xx
Become a published author . xxiv
Comments welcome. xxv

Summary of changes .xxvii
May 2005, First Edition. .xxvii

Part 1. Getting started . 1

Chapter 1. Overview and key concepts. 3
1.1 Objectives . 4

1.1.1 Scalability . 5
1.1.2 Workload management . 6
1.1.3 Availability . 7
1.1.4 Maintainability . 9
1.1.5 Session state. 10
1.1.6 Performance impact of WebSphere Application Server security . . . 10

1.2 WebSphere Application Server architecture . 12
1.2.1 WebSphere Application Server Network Deployment components . 12
1.2.2 Web clients . 15
1.2.3 Java clients . 16

1.3 Workload management . 16
1.3.1 Web server workload management . 17
1.3.2 Plug-in workload management . 17
1.3.3 Workload management using WebSphere clustering 19
1.3.4 Enterprise Java Services workload management 23

1.4 Managing session state among servers . 24
1.4.1 HTTP sessions and the session management facility. 25
1.4.2 EJB sessions or transactions . 28
1.4.3 Server affinity . 30

1.5 Performance improvements over previous versions 31
1.6 The structure of this redbook. 35

Chapter 2. Infrastructure planning and design . 39
2.1 Infrastructure deployment planning . 40

© Copyright IBM Corp. 2005. All rights reserved. iii

2.1.1 IBM Design Centers for e-business on demand 41
2.2 Design for scalability . 42

2.2.1 Understanding the application environment 42
2.2.2 Categorizing your workload. 44
2.2.3 Determining the most affected components 50
2.2.4 Selecting the scaling techniques to apply . 51
2.2.5 Applying the technique(s) . 56
2.2.6 Re-evaluating . 57

2.3 Sizing. 58
2.4 Benchmarking . 59

2.4.1 IBM eServer™ Benchmarking Centers . 60
2.4.2 IBM Test Center . 61

2.5 Performance tuning . 62
2.5.1 Application design problems . 62
2.5.2 Understand your requirements . 63
2.5.3 Test environment setup. 63
2.5.4 Test phases. 64
2.5.5 Load factors . 66
2.5.6 Production system tuning . 66
2.5.7 Conclusions. 68

Chapter 3. Introduction to topologies . 71
3.1 J2EE tiers model . 72
3.2 Topology selection criteria. 74
3.3 Strategies for scalability . 74
3.4 Web server topology in a Network Deployment cell 78

3.4.1 Web server managed node. 79
3.4.2 Web server unmanaged node. 79
3.4.3 IBM HTTP Server (IHS) as unmanaged node (special case) 80

3.5 Single machine, single node, Web server separated 81
3.6 Vertical scaling topology . 82
3.7 Horizontal scaling topology . 82
3.8 Horizontal scaling with IP sprayer topology. 84
3.9 Topology with redundancy of several components 85
3.10 The sample topology . 86
3.11 Topologies and high availability . 89

3.11.1 Using WebSphere Load Balancer custom advisor 91
3.12 Topology selection summary. 94

Part 2. Distributing the workload . 97

Chapter 4. Introduction to WebSphere Edge Components 99
4.1 Introduction . 100

4.1.1 Scalability . 100

iv WebSphere Application Server V6 Scalability and Performance Handbook

4.1.2 Availability . 100
4.1.3 Performance . 100

4.2 IBM WebSphere Edge Components overview . 101
4.3 Load Balancer overview . 102

4.3.1 Dispatcher . 102
4.3.2 Content Based Routing (CBR) . 109
4.3.3 Site Selector . 110
4.3.4 Cisco CSS Controller and Nortel Alteon Controller 110

4.4 Server affinity in Load Balancer . 110
4.4.1 Stickyness to source IP address . 111
4.4.2 Cross port affinity . 112
4.4.3 Passive cookie affinity . 113
4.4.4 Active cookie affinity . 113
4.4.5 URI affinity. 113
4.4.6 SSL session ID . 114

4.5 Load Balancer topologies . 114
4.5.1 Load Balancer on a dedicated server . 114
4.5.2 Collocated servers . 115
4.5.3 High availability . 116
4.5.4 Mutual high availability . 118

4.6 Dispatcher scripts . 119
4.7 Load Balancer features comparison . 120
4.8 Caching Proxy overview . 122

4.8.1 Forward proxy . 122
4.8.2 Reverse proxy (IP forwarding) . 123
4.8.3 Using multiple Caching Proxy servers . 124
4.8.4 Dynamic caching. 124

4.9 WebSphere Edge Components V6 new features 125

Chapter 5. Using IBM WebSphere Edge Components. 127
5.1 Load Balancer installation . 128

5.1.1 Load Balancer installation wizard . 128
5.1.2 Load Balancer installation using SMIT in AIX 132
5.1.3 Post installation tasks . 134

5.2 Load Balancer configuration: basic scenario. 135
5.2.1 Configuring the Load Balancer cluster . 136
5.2.2 Configuring the balanced servers . 148
5.2.3 Testing the basic scenario . 156

5.3 Load Balancer: high availability scenario . 162
5.3.1 Configuring high availability . 162
5.3.2 Adding reach targets . 169
5.3.3 Checking the configuration . 170
5.3.4 Configuring the high availability scripts . 171

 Contents v

5.3.5 Testing the high availability scenario . 177
5.4 Load Balancer: NAT scenario . 181

5.4.1 Testing the NAT scenario . 189
5.5 Load Balancer: additional configuration options 190

5.5.1 Basic Load Balancer scenario with customizable
advisor settings. 190

5.5.2 Using WebSphere Application Server custom advisor 193
5.5.3 Starting Dispatcher automatically after a reboot 203
5.5.4 Starting and stopping Dispatcher components 204

5.6 Caching Proxy installation . 204
5.6.1 Checking prerequisites . 205
5.6.2 Caching Proxy installation wizard . 206
5.6.3 Caching Proxy installation using SMIT in AIX 210

5.7 Caching Proxy configuration . 212
5.7.1 Using the Caching Proxy configuration wizard 213
5.7.2 Using the Caching Proxy Web-based administration tool 216
5.7.3 Manual configuration. 218
5.7.4 Creating and defining a cache storage . 219

5.8 Managing the Caching Proxy process. 222
5.8.1 Testing the Caching Proxy scenario . 224

Chapter 6. Plug-in workload management and failover. 227
6.1 Introduction . 228
6.2 WebContainer transport chains and virtual hosts 230

6.2.1 WebContainer Inbound Chains . 231
6.2.2 Virtual hosts . 232
6.2.3 Transport chains: the details . 234

6.3 Creating clusters and cluster members. 244
6.4 Web server topologies. 244

6.4.1 Managed Web servers . 246
6.4.2 Unmanaged Web servers . 248
6.4.3 Unmanaged IBM HTTP Server V6.0 server (special case). 250

6.5 WebSphere plug-in configuration file . 251
6.5.1 The plug-in configuration file . 252
6.5.2 Generation of the plug-in configuration file 258
6.5.3 Propagation of the plug-in file . 262
6.5.4 Bypassing the plug-in . 263

6.6 WebSphere plug-in workload management . 264
6.6.1 Processing requests . 264
6.6.2 Plug-in workload management policies. 267

6.7 Web container failures and failover . 272
6.7.1 Primary and backup servers . 275

6.8 HTTP session management . 279

vi WebSphere Application Server V6 Scalability and Performance Handbook

6.8.1 Session affinity . 281
6.8.2 Session identifiers . 282
6.8.3 Session management and failover inside the plug-in 285
6.8.4 Session management configuration . 287
6.8.5 Database session management configuration 291
6.8.6 Memory-to-memory replication configuration 294
6.8.7 Understanding DRS (Data Replication Services) 297
6.8.8 Session management tuning. 300

6.9 Troubleshooting the Web server plug-in . 304
6.9.1 Logging . 304
6.9.2 Trace . 308

6.10 WebSphere plug-in behavior. 309
6.10.1 Normal operation. 310
6.10.2 Failover operation . 320
6.10.3 Tuning failover. 335

Chapter 7. EJB workload management . 341
7.1 Enabling EJB workload management . 342
7.2 EJB types and workload management . 343

7.2.1 Stateless session beans . 344
7.2.2 Stateful session beans . 344
7.2.3 Entity beans . 345

7.3 EJB bootstrapping . 347
7.3.1 Bootstrapping within WebSphere containers 347
7.3.2 Bootstrapping outside of a J2EE container 352

7.4 How EJBs participate in workload management 354
7.4.1 Initial request. 355
7.4.2 Subsequent requests . 356
7.4.3 Cluster run state changes . 357

7.5 EJB workload management routing policy . 358
7.5.1 Server weighted round robin . 359
7.5.2 Prefer local . 366
7.5.3 Process affinity . 370
7.5.4 Transaction affinity . 370

7.6 EJB high availability and failover. 371
7.6.1 EJB client redundancy and bootstrap failover support 371
7.6.2 EJB container redundancy and EJB WLM failover support 372
7.6.3 EJB failover behavior . 374

Part 3. Implementing the solution . 385

Chapter 8. Implementing the sample topology. 387
8.1 Overview . 388
8.2 Software products . 388

 Contents vii

8.2.1 The sample topology. 388
8.2.2 Applications used in our sample topology. 391

8.3 Installation summary . 392
8.4 Installing and configuring WebSphere Edge Components 393

8.4.1 Configuring the Caching Proxy . 394
8.4.2 Configuring the Load Balancer . 394
8.4.3 Checking the Load Balancer and Caching Proxy configurations . . 395

8.5 Installing WebSphere and configuring clusters . 395
8.5.1 Introduction . 395
8.5.2 Deployment Manager installation and profile creation 396
8.5.3 Application server nodes installation (federated nodes) 400
8.5.4 Verifying the profiles . 402
8.5.5 Creating the Web container cluster. 404
8.5.6 Creating the EJB cluster . 407
8.5.7 Verifying the cluster topology . 410
8.5.8 Configure distributed session management 411
8.5.9 Starting the clusters . 415

8.6 Installing and configuring IBM HTTP Server 6.0 416
8.6.1 IBM HTTP Server 6.0 installation . 416
8.6.2 WebSphere plug-in installation . 417
8.6.3 Configuring Web servers in the cell . 420
8.6.4 Testing Web server configurations . 426

8.7 Installing and configuring BeenThere . 426
8.7.1 BeenThere installation summary. 427
8.7.2 Install BeenThere . 427
8.7.3 Regenerate Web server plug-in . 431
8.7.4 Configuring WEBcluster members for BeenThere 432
8.7.5 Verifying BeenThere . 434

8.8 Installing and configuring Trade 6 . 436
8.8.1 Download the Trade 6.0.1 installation package 438
8.8.2 Set up and configure tradedb database . 438
8.8.3 Configure the WebSphere cell . 440
8.8.4 Install Trade 6 from the WebSphere Administrative Console 450
8.8.5 Regenerate Web server plug-in and start servers 453
8.8.6 Install Trade 6 using the installation script 453
8.8.7 Working with Trade 6 . 457
8.8.8 Verify failover with Trade 6 . 460
8.8.9 Volume testing Trade 6 . 460
8.8.10 Uninstalling Trade 6 . 460

Part 4. High availability and caching . 463

Chapter 9. WebSphere HAManager . 465

viii WebSphere Application Server V6 Scalability and Performance Handbook

9.1 Introduction . 466
9.2 Core group . 467

9.2.1 Core group coordinator . 468
9.2.2 Transport buffer. 472
9.2.3 Distribution and Consistency Services . 474
9.2.4 Core group policy . 474
9.2.5 Match criteria. 477
9.2.6 Transport type . 478

9.3 High availability group . 479
9.4 Discovery of core group members . 482
9.5 Failure Detection . 483

9.5.1 Active failure detection . 483
9.5.2 TCP KEEP_ALIVE . 484

9.6 JMS high availability . 485
9.7 Transaction Manager high availability . 485

9.7.1 Transaction Manager HA of previous versions of WebSphere 487
9.7.2 Hot-failover of Transaction Manager using shared file system 489
9.7.3 Hot-failover of transaction logs using external HA software 496

Chapter 10. Dynamic caching . 501
10.1 Introduction . 502

10.1.1 WWW caching services . 502
10.1.2 Fragment caching . 506
10.1.3 Dynamic caching scenarios . 507

10.2 What is new in WebSphere V6 dynamic caching 509
10.2.1 Dynamic Content Provider interface . 509
10.2.2 Cache instances . 509
10.2.3 Caching Struts and Tiles applications . 510
10.2.4 Cache replication . 511

10.3 The cachespec.xml configuration file . 511
10.3.1 cachespec.xml elements. 512
10.3.2 Dynamic Cache Policy Editor . 515

10.4 Using WebSphere dynamic cache service . 515
10.4.1 Installing Dynamic Cache Monitor. 516
10.4.2 Enabling dynamic cache service. 524

10.5 WebSphere dynamic caching scenarios . 528
10.5.1 Servlet/JSP result caching . 529
10.5.2 Struts and Tiles caching . 537
10.5.3 Command caching . 540
10.5.4 Cache replication . 547
10.5.5 Cache invalidation. 556
10.5.6 Troubleshooting the dynamic cache service 557

10.6 WebSphere external caching scenarios . 558

 Contents ix

10.6.1 WebSphere External Cache configuration 560
10.6.2 External caching by Web server plug-in . 566
10.6.3 External caching on the IBM HTTP Server 574
10.6.4 External caching on the Caching Proxy . 578

10.7 Using the Dynamic Cache Policy Editor . 586
10.7.1 Dynamic Cache Policy Editor installation 586
10.7.2 Creating cache policy entries . 590
10.7.3 Examples: Creating cachespec.xml entries with the Dynamic Cache

Policy Editor . 592
10.8 Conclusion. 609
10.9 Benchmarking Trade 3 . 611

10.9.1 Dynamic caching. 611
10.9.2 Edge Side Includes . 614

10.10 Reference . 616

Part 5. Messaging . 619

Chapter 11. Using asynchronous messaging for scalability and
performance . 621

11.1 Introduction . 622
11.2 Basic use of the JMS API . 622

11.2.1 The unified programming interface . 622
11.2.2 Consuming JMS messages . 625

11.3 Choosing what format to use within JMS messages. 625
11.4 Managing workload for asynchronous messaging 627

11.4.1 Basic workload patterns . 627
11.4.2 Selectors . 637
11.4.3 Application defined persistence . 641
11.4.4 Freeing JMS object resources . 641

Chapter 12. Using and optimizing the default messaging provider 643
12.1 Introduction . 644
12.2 Introduction to the Service Integration Bus and the default messaging

provider. 645
12.2.1 Bus or Service Integration Bus . 645
12.2.2 Bus members and messaging engines . 646
12.2.3 Destinations . 647
12.2.4 JMS activation specification . 647
12.2.5 Message reliability. 648
12.2.6 Data stores . 649

12.3 Components used in a default messaging provider configuration. 649
12.3.1 JMS component diagram for sending a message. 650
12.3.2 Bus and message-driven beans . 652

12.4 Component relationships. 655

x WebSphere Application Server V6 Scalability and Performance Handbook

12.5 Clustering, high availability and workload management 656
12.5.1 Cluster bus members for high availability 656
12.5.2 Cluster bus members for workload management 657
12.5.3 Partitioned queues . 657
12.5.4 JMS clients connecting into a cluster of messaging engines 659
12.5.5 Preferred servers and core group policies 660

12.6 Choosing optimal configuration settings . 663
12.6.1 Important connection factory settings . 663
12.6.2 Setting up default messaging provider connection pools 667
12.6.3 Important JMS activation specification settings 670

12.7 Failure to process a message . 671
12.8 Usage scenarios: Trade 6 and the default messaging provider 672

12.8.1 What does Trade 6 use the default messaging provider for? 673
12.8.2 Example 1: One messaging engine on the bus 674
12.8.3 Example 2: One messaging engine per server 686

12.9 Workload management example using BeenThere 691
12.9.1 Taking advantage of the BeenThere documentation 691
12.9.2 Possible topologies to use with BeenThere 692

12.10 Monitoring performance with Tivoli Performance Viewer 693

Chapter 13. Understanding and optimizing the use of WebSphere MQ. 697
13.1 Introduction . 698

13.1.1 JMS component diagram for sending a message. 699
13.1.2 JMS and message-driven beans. 702

13.2 MQ JMS component relationships . 705
13.2.1 Component relationships when using MDBs 705

13.3 Choosing optimal configuration settings . 708
13.3.1 Creation of the MQ provider objects at the correct scope. 708
13.3.2 Important MQ JMS component settings . 711
13.3.3 The listener service and listener ports . 718
13.3.4 Setting up the connection factory pools . 724
13.3.5 More information . 725

13.4 JMS Listener port failure behavior. 726
13.4.1 Failure in the listener port . 726
13.4.2 Failure to process a message . 728

13.5 Example JMS topologies and scenarios . 729
13.5.1 What does Trade 6 use JMS for? . 730
13.5.2 Clustered Trade 6 with WebSphere MQ and WebSphere Business

Integration Event Broker . 732
13.6 Monitoring performance with Tivoli Performance Viewer 765

13.6.1 What do the counters under JCA Connection Pools mean?. 766

Part 6. Performance monitoring, tuning, and coding practices . 767

 Contents xi

Chapter 14. Server-side performance and analysis tools 769
14.1 The dimensions of monitoring . 770

14.1.1 Overview: Collecting and displaying application server data 771
14.2 Performance Monitoring Infrastructure . 771

14.2.1 Performance data classification . 773
14.2.2 Performance data hierarchy . 774
14.2.3 Performance data counters. 779
14.2.4 PMI predefined statistic sets . 780
14.2.5 Enabling the PMI service . 782
14.2.6 Using JVMPI facility for PMI statistics . 786
14.2.7 Summary. 790

14.3 Using Tivoli Performance Viewer . 790
14.3.1 About Tivoli Performance Viewer . 791
14.3.2 What can Tivoli Performance Viewer do? 792
14.3.3 Starting Tivoli Performance Viewer. 793
14.3.4 Configuring Tivoli Performance Viewer. 794
14.3.5 Tivoli Performance Viewer summary reports 796
14.3.6 Displaying by performance modules . 798
14.3.7 Getting online help . 803

14.4 Other performance monitoring and management solutions 803
14.5 Developing your own monitoring application. 804
14.6 Request Metrics . 805

14.6.1 Enabling and configuring Request Metrics 806
14.6.2 Request Metrics trace record format. 808
14.6.3 Filters . 812

14.7 Performance Advisors . 813
14.7.1 Runtime Performance Advisor configuration settings 815
14.7.2 Advice configuration settings . 816
14.7.3 Using the Runtime Performance Advisor 817
14.7.4 Runtime Performance Advisor output . 819
14.7.5 Using TPV Advisor . 821
14.7.6 TPV Advisor output . 824

14.8 Dynamic Cache Monitor . 826
14.9 Monitoring the IBM HTTP Server . 826
14.10 Log Analyzer . 828
14.11 Application management. 829

14.11.1 Tivoli Monitoring for Transaction Performance V5.3 (TMTP) . . . 831
14.11.2 WebSphere Studio Application Monitor V3.1 (WSAM) 833

14.12 Reference . 838

Chapter 15. Development-side performance and analysis tools 839
15.1 Introduction . 840
15.2 The Profiler (profiling tools) . 840

xii WebSphere Application Server V6 Scalability and Performance Handbook

15.2.1 What’s new with profiling. 841
15.2.2 Profiling architecture . 844
15.2.3 IBM Rational Agent Controller. 846
15.2.4 Setting up for Profiling. 848
15.2.5 Profiling an application . 856
15.2.6 Profiler views. 857
15.2.7 Resolving performance bottlenecks - Execution time analysis . . . 873

15.3 IBM Page Detailer . 886
15.3.1 Overview . 886
15.3.2 Important considerations. 890
15.3.3 Key factors . 890
15.3.4 Tips for using Page Detailer . 891
15.3.5 Reference . 894

Chapter 16. Application development: best practices for application design,
performance and scalability . 895

16.1 Introduction . 896
16.2 Presentation layer . 898

16.2.1 JavaServer Pages. 899
16.2.2 Struts. 901
16.2.3 JavaServer Faces . 903
16.2.4 XML/XSLT processing . 905
16.2.5 Caching for the presentation layer . 907

16.3 Control. 907
16.3.1 Maintaining state: stateful session beans versus HTTP session . 909

16.4 Business logic layer. 912
16.4.1 How to implement the interface to the business logic 913
16.4.2 Facade . 915
16.4.3 EJB Command Framework . 917
16.4.4 Caching business logic . 919

16.5 Data access layer . 919
16.5.1 Service Data Objects . 920
16.5.2 Entity beans . 924
16.5.3 Java Data Objects. 928
16.5.4 EJB session bean: direct access to back end. 929

16.6 Key factors for application performance . 930
16.6.1 Memory . 930
16.6.2 Synchronization. 933
16.6.3 Logging . 934
16.6.4 Database access. 935

16.7 General coding issues. 936
16.8 Reference . 938

 Contents xiii

Chapter 17. Performance tuning . 939
17.1 Testing the performance of an application . 940

17.1.1 Introduction to application performance testing 940
17.2 Selecting testing tools . 942
17.3 Tools of the trade . 945

17.3.1 ApacheBench . 945
17.3.2 OpenSTA . 948
17.3.3 Rational Performance Tester . 956
17.3.4 Other testing tools . 964

17.4 Performance monitoring guidelines. 965
17.4.1 Top ten monitoring hotlist . 965
17.4.2 Performance analysis . 969

17.5 Performance tuning guidelines . 975
17.5.1 Tuning parameter hotlist . 975
17.5.2 Parameters to avoid failures . 976
17.5.3 Hardware and capacity settings . 976
17.5.4 Adjusting WebSphere Application Server system queues 977
17.5.5 Application assembly performance checklist 991
17.5.6 Java tuning . 1002
17.5.7 Operating system tuning . 1012
17.5.8 The Web server. 1015
17.5.9 Dynamic Cache Service . 1020
17.5.10 Security settings . 1020
17.5.11 Tuning Secure Sockets Layer . 1021
17.5.12 Object Request Broker (ORB). 1022
17.5.13 XML parser selection . 1025
17.5.14 DB2 tuning . 1026
17.5.15 Additional reference materials. 1029

Part 7. Appendixes . 1031

Appendix A. Sample URL rewrite servlet . 1033
Setting up the servlet . 1034
Source code . 1034
Steps to install SessionSampleURLRewrite servlet 1035

Installing the urltest Web module . 1035

Appendix B. Additional material . 1037
Locating the Web material . 1037
Using the Web material . 1038

System requirements for downloading the Web material 1038
How to use the Web material . 1038

Related publications . 1039

xiv WebSphere Application Server V6 Scalability and Performance Handbook

IBM Redbooks . 1039
Other publications . 1040
Online resources . 1040
How to get IBM Redbooks . 1047
Help from IBM . 1047

Index . 1049

 Contents xv

xvi WebSphere Application Server V6 Scalability and Performance Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2005. All rights reserved. xvii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

Eserver®
Eserver®
Redbooks (logo) ™
alphaWorks®
developerWorks®
e-business on demand™
eServer™
ibm.com®
iSeries™
pSeries®
xSeries®
z/OS®
zSeries®

AFP™
AIX®
CICS®
Domino®
DB2®
Extreme Blue™
HACMP™
IBM®
IMS™
Lotus®
Notes®
OS/2®
OS/390®

OS/400®
Purify®
Rational Suite®
Rational®
Redbooks™
RS/6000®
S/390®
SecureWay®
TestStudio®
Tivoli®
TotalStorage®
WebSphere®
Workplace™

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

xviii WebSphere Application Server V6 Scalability and Performance Handbook

Preface

This IBM® Redbook discusses various options for scaling applications based on
IBM WebSphere Application Server Network Deployment V6. It explores how a
basic WebSphere® configuration can be extended to provide more computing
power by better exploiting the power of each machine and by using multiple
machines. It examines a number of techniques:

� Using the IBM WebSphere Edge Components’ Load Balancer to distribute
the load among multiple Web servers.

� Using the WebSphere Web server plug-in to distribute the load from one Web
server to multiple application servers in a server cluster.

� Using the WebSphere EJB workload management facility to distribute the
load at the EJB level.

� Using dynamic caching techniques and the IBM WebSphere Edge
Components’ Caching Proxy to improve the performance of a Web site.

� Using application development best practices to develop a scalable
application.

� Using the performance tuning options available with WebSphere to adjust the
application server configuration to the needs of your application.

This redbook provides step-by-step instructions for implementing a sample,
multiple-machine environment. We use this environment to illustrate most of the
IBM WebSphere Application Server Network Deployment V6 workload
management and scalability features.

© Copyright IBM Corp. 2005. All rights reserved. xix

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

From left to right: Joshua Wong, Balazs Csepregi-Horvath, Gerhard Poul, Denis Ley, Birgit
Roehm, Andre de Oliveira Fernandes, Cristiane Ferreira

Birgit Roehm is a Project Leader at the International Technical Support
Organization, Raleigh Center. She writes and teaches workshops about various
aspects of WebSphere and Domino®. Before joining the ITSO in 2003, Birgit
worked in IBM Eserver® iSeries™ Advanced Technical Support, Germany, and
was responsible for Domino and WebSphere on iSeries.

Gang Chen is a Consulting I/T specialist in IBM Software
Services for WebSphere, servicing the New York Metro area.
Gang is an expert in helping enterprise customers with their
complex transactional requirements. He works with several
major Wall Street customers in building mission-critical
transactional systems.

xx WebSphere Application Server V6 Scalability and Performance Handbook

Andre de Oliveira Fernandes is a WebSphere specialist working for Banco
Central do Brasil (Brazilian Central Bank). After five years of developing J2EE
applications, Andre now coordinates the team responsible for Banco Central’s
WebSphere production environment. Andre also helps to define and enforce
development practices and processes that result in a more predictable behavior
for critical applications.

Cristiane Ferreira is an IT Specialist working for IBM Global Services in Brazil.
She has ten years of experience in UNIX® platforms and TCP/IP networking,
and has been working with the WebSphere Support and Services team for the
past three years. Her areas of expertise include WebSphere Application Server,
WebSphere Edge Components, AIX® and Linux® systems, TCP/IP networking,
firewalls and networking security. She is an IBM Certified Advanced System
Administrator - WebSphere Application Server V5.0 and IBM Certified Systems
Expert - Administration for IBM WebSphere Application Server Advanced Edition
V4.0. She is also an AIX Certified Specialist, Linux Professional Institute Certified
Level 1 Specialist and Tivoli® Certified Solutions Expert - IBM SecureWay®
Firewall for AIX.

Rodney Krick works as a Senior Consultant for aformatik
Training & Consulting GmbH & Co KG in Germany. He has
15 years of experience in system design and
implementation, coaching and teaching, first in Brazil and,
since 1996, in Germany. He teaches Java™, WebSphere
Administration and DB2® UDB. He is a Certified Instructor
for IBM DB2 Software in ECIS (Education Center for IBM
Software), IBM Certified Database Administrator (DB2 UDB
V8.1 for Linux, UNIX and Windows®), IBM Certified
Solutions Expert (DB2 UDB V7.1 Database Administration

for Linux, UNIX, Windows and OS/2®), IBM Certified Solutions Expert (DB2 V7.1
Family Application Development) and IBM Certified Solutions Expert (DB2 UDB
V7.1 Database Administration for OS/390®).

Denis Ley is a WebSphere Technical Consultant working for the IBM Innovation
Center for Business Partners in Stuttgart, Germany. He has five years of
experience with WebSphere Application Server and the corresponding
development tools. He holds a degree in Computer Science from the University
of Stuttgart. His main area of expertise is consulting on the WebSphere
foundation and tools products, in particular best practices, design patterns,
building portable applications, J2EE compliance and performance tuning. In the
IBM Innovation Center, he assists Independent Software Vendors (ISVs) in
developing new WebSphere based solutions or porting their existing applications
from different application servers to IBM WebSphere. He also has extensive
experience with the architecture and the implementation of e-business/on
demand solutions, with a strong focus on performance aspects.

 Preface xxi

Robert Peterson is a member of IBM Software Services
for WebSphere, consultants who help customers achieve
success with WebSphere products. He is also an alumnus
of the IBM Extreme Blue™ program, during which he built a
prototype for a demand-based pricing system for the
energy industry. He was chosen to present his work to the
CEO and Chairman of the IBM board, Sam Palmisano. He
holds a M.S. in Computer Engineering from the University
of Florida.

Gerhard Poul is an IT Specialist in IBM Global Services
based in Vienna, Austria. He is a specialist for WebSphere Application Server on
distributed platforms with knowledge in advanced scalability and performance
topics. Gerhard is an IBM Certified Advanced System Administrator (WebSphere
Application Server V5.0). His areas of expertise include WebSphere Application
Server Security, WebSphere Commerce, WebSphere Portal, and Lotus®
Workplace™.

Joshua Wong is an IT Specialist working for IBM Integrated Technology
Services, Hong Kong. He has three years of project experience in AIX and
WebSphere technologies. Joshua was a member of the IBM team which
delivered a high-performing, resilient infrastructure to one of the largest Hong
Kong law enforcement agencies. His areas of expertise include AIX HACMP™,
WebSphere Application Server, WebSphere Edge Components and JVM tuning.
He holds a degree in Computer Science and Information Systems from the
University of Hong Kong.

Ruibin Zhou is a staff software engineer in WebSphere
Application Server SVT located at RTP, NC. He has four
years of experience in developing customer-like J2EE
applications to test WebSphere Application Server. His
areas of expertise include J2EE, WebSphere Application
Server, WebSphere MQ and DB2. He has written
extensively on server-side performance tools and the
default messaging provider.

A special thank you goes to Balazs Csepregi-Horvath who worked on updating
the workshop material of the ITSO course “WebSphere V5.1 Performance and
Scalability” for WebSphere V6 while the rest of the team was updating the
redbook.

xxii WebSphere Application Server V6 Scalability and Performance Handbook

Balazs Csepregi-Horvath is a Customer Engineer working for IBM Global
Services in Hungary. He holds a bachelor’s degree in Heavy Current Automation
and a bachelor’s degree in Information Technology, both from Kando Kalman
Technical College, Budapest, Hungary. He has five years of expertise supporting
WebSphere and DB2 products and is an IBM Certified Advanced Technical
Expert for IBM pSeries® and AIX 5L.

A very special thank you goes to David Currie, Martin Phillips, and Martin
Smithson, IBM United Kingdom, for their support with the messaging chapters.

Thanks to the following people for their contributions to this project:

Hernan Cunico, John Ganci, Peter Kovari, Linda Robinson, Carla Sadtler,
Margaret Ticknor, Jeanne Tucker, Cecilia Bardy
International Technical Support Organization, Raleigh Center

Aleksandr Nartovich
International Technical Support Organization, Rochester Center

Morten Moeller
International Technical Support Organization, Austin Center

Joe DeCarlo
International Technical Support Organization, Almaden Center

Masahiro Ozaki
Mitsubishi Electronics

David Adcox, Christopher Blythe, Andy Chow, Priyanka Jain, Nirmala Kodali,
Joel Meyer, Jakob Mickley, Robbie J. Minshall, Michael Morton, Wenjian Qiao,
Jeff Robbins, Andrew Spyker, Arvind Srinivasan, Rengan Sundararaman,
Sharon Weed
IBM Raleigh

Randall Baartman, Douglas Berg, Joe Bockhold, Erik Daughtrey, Perry Dykes,
Kevin Kepros, Li-Fang Lee, Billy Newport, Terry O’Brien, Randy Schnier, Michael
Schmitt, Rob Wisniewski
IBM Rochester

Tom Alcott
IBM Costa Mesa

Roger Cundiff, Geoffrey Hambrick, Richard Mayo, Fergus Stewart
IBM Austin

 Preface xxiii

Richard Backhouse, Erik Burckart, John Cammarata, Andy Ivory, Betsy Riggins,
Ying Wang
IBM Durham

Madhu Chetuparambil
IBM Pittsburgh

David Granshaw, Benjamin Hardill, Andrew Schofield
IBM United Kingdom

Mark Endrei, Richard Raszka
IBM Australia

Thomas Hikade
IBM Austria

Elton C. Oliveira
IBM Brazil

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

xxiv WebSphere Application Server V6 Scalability and Performance Handbook

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

 Preface xxv

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xxvi WebSphere Application Server V6 Scalability and Performance Handbook

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for SG24-6392-00
for WebSphere Application Server V6 Scalability and Performance Handbook
as created or updated on May 25, 2005.

May 2005, First Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

This redbook is based on the redbook IBM WebSphere V5.1 Performance,
Scalability, and High Availability, WebSphere Handbook Series, SG24-6198-01.
There is, however, a major change in this redbook compared to the previous
version: We have removed the High Availability part of the book and moved it into
a new redbook entitled WebSphere Application Server Network Deployment V6:
High availability solutions, SG24-6688. Therefore, you only find information
regarding the new High Availability Manager in this book but no explanation as to
how to make WebSphere objects highly available using external clustering
software, such as IBM HACMP or Tivoli System Automation. For this kind of
information, please refer to the redbook.

All chapters have been updated for IBM WebSphere Application Server Network
Deployment V6, so the list below only highlights significant enhancements or
changes.

New information
� Information about how Web servers are now handled inside a cell can be

found in Chapter 3, “Introduction to topologies” on page 71 or Chapter 6,
“Plug-in workload management and failover” on page 227.

� The new WebSphere High Availability Manager is introduced in Chapter 9,
“WebSphere HAManager” on page 465.

© Copyright IBM Corp. 2005. All rights reserved. xxvii

Changed information
� The chapter entitled “Design for scalability” from the previous version of the

book has been enhanced and includes now also information about
infrastructure planning, sizing, benchmarking, etc. See Chapter 2,
“Infrastructure planning and design” on page 39.

� We have now two chapters on the WebSphere Edge Components: Chapter 4,
“Introduction to WebSphere Edge Components” on page 99 which explains
the concepts and features of the Edge Components and Chapter 5, “Using
IBM WebSphere Edge Components” on page 127 which gives the installation
and configuration details.

� Caching Proxy installation and configuration was added to Chapter 5, “Using
IBM WebSphere Edge Components” on page 127.

� Chapter 7, “EJB workload management” on page 341. Updated for version 6.
Information about failover of stateful session beans was added.

� Chapter 10, “Dynamic caching” on page 501 has new sections, for example
10.3, “The cachespec.xml configuration file” on page 511 and 10.3.2,
“Dynamic Cache Policy Editor” on page 515.

� Chapter 12, “Using and optimizing the default messaging provider” on
page 643 explains how the new default messaging provider can be used and
optimized for a IBM WebSphere Application Server Network Deployment V6
environment.

� Chapter 14, “Server-side performance and analysis tools” on page 769 has a
new section on application management that gives an introduction to Tivoli
Monitoring for Transaction Performance V5.3 (TMTP) and WebSphere Studio
Application Monitor V3.1 (WSAM).

� The Profiler section in Chapter 15, “Development-side performance and
analysis tools” on page 839 has been rewritten.

� A new structure and with it many enhancements has been applied to
Chapter 16, “Application development: best practices for application design,
performance and scalability” on page 895. This new structure lists the
recommendations as they apply to the various layers, for example, the
presentation or business logic layer.

xxviii WebSphere Application Server V6 Scalability and Performance Handbook

Part 1 Getting started

Part 1

© Copyright IBM Corp. 2005. All rights reserved. 1

2 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 1. Overview and key concepts

This chapter provides a conceptual overview of the goals and issues associated
with scaling applications in the WebSphere environment. It also presents the
various techniques that can be used to implement scaling.

A short section highlights the performance improvements of WebSphere
Application Server V6 over previous versions (see 1.5, “Performance
improvements over previous versions” on page 31).

A prerequisite for all WebSphere scalability and workload management concepts
discussed in this redbook is the use of IBM WebSphere Application Server
Network Deployment V6 or IBM WebSphere Business Integration Server
Foundation V6. We assume the use of IBM WebSphere Application Server
Network Deployment throughout this book.

1

© Copyright IBM Corp. 2005. All rights reserved. 3

1.1 Objectives
As outlined by the product documentation, a typical minimal configuration for a
WebSphere Application Server V6 installation is illustrated in Figure 1-1. There is
a single Web (HTTP) server and a single application server, and both are
co-resident on a single machine. Please note that such a configuration is not
recommended for security reasons; there is no DMZ established. This is true for
both internal (intranet) and external (Internet) applications. Naturally, the
performance characteristics of this setup are limited by the power of the machine
on which it is running, by various constraints inherent in the configuration itself,
and by the implementation of WebSphere Application Server. A short
introduction to the various components of the WebSphere runtime is provided in
1.2, “WebSphere Application Server architecture” on page 12.

Figure 1-1 Basic WebSphere configuration

The objective of this book is to explore how this basic configuration can be
extended to provide more computing power by better exploiting the power of
each machine and by using multiple machines. Specifically, we are interested in
defining system configurations that exhibit the following properties:

� Scalability
� Workload management
� Availability
� Maintainability
� Session management
� Performance impacts of WebSphere Application Server security

WebSphere
Application Server

Configuration
Repository
(XML Files)

HTTP Web
Server

Application
Database

EJBServletWeb
Client

Admin
Service

4 WebSphere Application Server V6 Scalability and Performance Handbook

Note that scaling the application server environment does not help if your
application has an unscalable design. For Web application and EJB development
best practices, refer to Chapter 16, “Application development: best practices for
application design, performance and scalability” on page 895 and to the white
paper WebSphere Application Server Development Best Practices for
Performance and Scalability, found at:

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

1.1.1 Scalability
Scalability defines how easily a site will expand. Web sites must expand,
sometimes with little warning, and grow to support an increased load. The
increased load may come from many sources:

� New markets
� Normal growth
� Extreme peaks

An application and infrastructure that is architected for good scalability makes
site growth possible and easy.

Most often, one achieves scalability by adding hardware resources to improve
throughput. A more complex configuration, employing additional hardware,
should allow one to service a higher client load than that provided by the simple
basic configuration. Ideally, it should be possible to service any given load simply
by adding additional servers or machines (or upgrading existing resources).

However, adding new systems or processing power does not always provide a
linear increase in throughput. For example, doubling the number of processors in
your system will not necessarily result in twice the processing capacity. Nor will
adding an additional horizontal server in the Application Server tier necessarily
result in twice the request serving capacity. Adding additional resources
introduces additional overhead for resource management and request
distribution. While the overhead and corresponding degradation may be small,
you need to remember that adding n additional machines does not always result
in n times the throughput.

Also, you should not simply add hardware without doing some investigation and
possible software tuning first to identify potential bottlenecks in your application
or any other performance-related software configurations. Adding more
hardware may not necessarily improve the performance if the software is badly
designed or not tuned correctly. Once the software optimization has been done,
then the hardware resources should be considered as the next step for improving
performance. See also section 14.2, “Scalability” of the redbook IBM WebSphere
V6 Planning and Design Handbook, SG24-6446 for information about this topic.

 Chapter 1. Overview and key concepts 5

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

There are two different ways to improve performance when adding hardware:
vertical scaling and horizontal scaling. See “Scalability” on page 21 for more
information about these concepts.

Performance
Performance involves minimizing the response time for a given request or
transaction.

The response time is the time it takes from the moment the user initiates a
request at the browser to the moment the result of the HTML page returns to the
browser. At one time, there was an unwritten rule of the Internet known as the ”8
second rule.” This rule stated that any page that did not respond within eight
seconds would be abandoned. Many enterprises still use this as the response
time benchmark threshold for Web applications.

Throughput
Throughput, while related to performance, more precisely defines the number of
concurrent transactions that can be accommodated.

For example, if an application can handle 10 customer requests simultaneously
and each request takes one second to process, this site has a potential
throughput of 10 requests per second.

1.1.2 Workload management
Workload management (WLM) is a WebSphere facility to provide load balancing
and affinity between application servers in a WebSphere clustered environment.
Workload management can be an important facet of performance. WebSphere
uses workload management to send requests to alternate members of the
cluster. WebSphere also routes concurrent requests from a user to the
application server that serviced the first request, as EJB calls, and session state
will be in memory of this application server.

The proposed configuration should ensure that each machine or server in the
configuration processes a fair share of the overall client load that is being
processed by the system as a whole. In other words, it is not efficient to have one
machine overloaded while another machine is mostly idle. If all machines have
roughly the same capacity (for example, CPU power), each should process a
roughly equal share of the load. Otherwise, there likely needs to be a provision
for workload to be distributed in proportion to the processing power available on
each machine.

6 WebSphere Application Server V6 Scalability and Performance Handbook

Furthermore, if the total load changes over time, the system should automatically
adapt itself; for example, all machines may use 50% of their capacity, or all
machines may use 100% of their capacity. But not one machine uses 100% of its
capacity while the rest uses 15% of their capacity.

In this redbook, we discuss both Web server load balancing using WebSphere
Edge Components and WebSphere workload management techniques.

1.1.3 Availability
Also known as resiliency, availability is the description of the system’s ability to
respond to requests no matter the circumstances. Availability requires that the
topology provide some degree of process redundancy in order to eliminate single
points of failure. While vertical scalability can provide this by creating multiple
processes, the physical machine then becomes a single point of failure. For this
reason, a high availability topology typically involves horizontal scaling across
multiple machines.

Hardware-based high availability
Using a WebSphere Application Server multiple machine configuration
eliminates a given application server process as a single point of failure. In
WebSphere Application Server V5.0 and higher, the removal of the application
dependencies on the administrative server process for security, naming and
transactions further reduces the potential that a single process failure can disrupt
processing on a given node. In fact, the only single point of failure in a
WebSphere cell is the Deployment Manager, where all central administration is
performed. However, a failure at the Deployment Manager only impacts the
ability to change the cell configuration and to run the Tivoli Performance Viewer
which is now included in the Administrative Console; application servers are
more self-sufficient in WebSphere Application Server V5.0 and higher compared
to WebSphere Application Server V4.x. A number of alternatives exist to provide
high availability for the Deployment Manager, including the possible use of an
external high availability solution, though the minimal impact of a Deployment
Manager outage typically does not require the use of such a solution. In many
cases, manual solutions such as the one outlined in the article “Implementing a
Highly Available Infrastructure for WebSphere Application Server Network
Deployment, Version 5.0 without Clustering” provides suitable availability. This
article is available at

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0304_a
lcott/alcott.html

See the redbook WebSphere Application Server Network Deployment V6: High
availability solutions, SG24-6688 for further details on external HA solutions.

 Chapter 1. Overview and key concepts 7

http://www-128.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html

Failover
The proposition to have multiple servers (potentially on multiple independent
machines) naturally leads to the potential for the system to provide failover. That
is, if any one machine or server in the system were to fail for any reason, the
system should continue to operate with the remaining servers. The load
balancing property should ensure that the client load gets redistributed to the
remaining servers, each of which will take on a proportionately slightly higher
percentage of the total load. Of course, such an arrangement assumes that the
system is designed with some degree of overcapacity, so that the remaining
servers are indeed sufficient to process the total expected client load.

Ideally, the failover aspect should be totally transparent to clients of the system.
When a server fails, any client that is currently interacting with that server should
be automatically redirected to one of the remaining servers, without any
interruption of service and without requiring any special action on the part of that
client. In practice, however, most failover solutions may not be completely
transparent. For example, a client that is currently in the middle of an operation
when a server fails may receive an error from that operation, and may be
required to retry (at which point the client would be connected to another, still
available server). Or the client may observe a pause or delay in processing,
before the processing of its requests resumes automatically with a different
server. The important point in failover is that each client, and the set of clients as
a whole, is able to eventually continue to take advantage of the system and
receive service, even if some of the servers fail and become unavailable.
Conversely, when a previously failed server is repaired and again becomes
available, the system may transparently start using that server again to process a
portion of the total client load.

The failover aspect is also sometimes called fault tolerance, in that it allows the
system to survive a variety of failures or faults. It should be noted, however, that
failover is only one technique in the much broader field of fault tolerance, and that
no such technique can make a system 100 percent safe against every possible
failure. The goal is to greatly minimize the probability of system failure, but keep
in mind that the possibility of system failure cannot be completely eliminated.

Note that in the context of discussions on failover, the term server most often
refers to a physical machine (which is typically the type of component that fails).
However, we will see that WebSphere also allows for the possibility of one server
process on a given machine to fail independently, while other processes on that
same machine continue to operate normally.

HAManager
WebSphere V6 introduces a new concept for advanced failover and thus higher
availability, called the High Availability Manager (HAManager). The HAManager
enhances the availability of WebSphere singleton services like transaction

8 WebSphere Application Server V6 Scalability and Performance Handbook

services or JMS message services. It runs as a service within each application
server process that monitors the health of WebSphere clusters. In the event of a
server failure, the HAManager will failover the singleton service and recover any
in-flight transactions. Please see Chapter 9, “WebSphere HAManager” on
page 465 for details.

1.1.4 Maintainability
Maintainability is the ability to keep the system running before, during, and after
scheduled maintenance. When considering maintainability in performance and
scalability, remember that maintenance periodically needs to be performed on
hardware components, operating systems, and software products in addition to
the application components.

While maintainability is somewhat related to availability, there are specific issues
that need to be considered when deploying a topology that is maintainable. In
fact, some maintainability factors are at cross purposes to availability. For
instance, ease of maintainability would dictate that one should minimize the
number of application server instances in order to facilitate online software
upgrades. Taken to the extreme, this would result in a single application server
instance, which of course would not provide a high availability solution. In many
cases, it is also possible that a single application server instance would not
provide the required throughput or performance.

Some of the maintainability aspects that we consider are:

� Dynamic changes to configuration
� Mixed configuration
� Fault isolation

Dynamic changes to configuration
In certain configurations, it may be possible to modify the configuration on the fly
without interrupting the operation of the system and its service to clients. For
example, it may be possible to add or remove servers to adjust to variations in
the total client load. Or it may be possible to temporarily stop one server to
change some operational or tuning parameters, then restart it and continue to
serve client requests. Such characteristics, when possible, are highly desirable,
since they enhance the overall manageability and flexibility of the system.

Mixed configuration
In some configurations, it may be possible to mix multiple versions of a server or
application, so as to provide for staged deployment and a smooth upgrade of the
overall system from one software or hardware version to another. Coupled with
the ability to make dynamic changes to the configuration, this property may be
used to effect upgrades without any interruption of service.

 Chapter 1. Overview and key concepts 9

Fault isolation
In the simplest application of failover, we are only concerned with clean failures of
an individual server, in which a server simply ceases to function completely, but
this failure has no effect on the health of other servers. However, there are
sometimes situations where one malfunctioning server may in turn create
problems for the operation of other, otherwise healthy servers. For example, one
malfunctioning server may hoard system resources, or database resources, or
hold critical shared objects for extended periods of time, and prevent other
servers from getting their fair share of access to these resources or objects. In
this context, some configurations may provide a degree of fault isolation, in that
they reduce the potential for the failure of one server to affect other servers.

1.1.5 Session state
Unless you have only a single application server or your application is completely
stateless, maintaining state between HTTP client requests also plays a factor in
determining your configuration. Use of the session information, however, is a fine
line between convenience for the developer and performance and scalability of
the system. It is not practical to eliminate session data altogether, but care
should be taken to minimize the amount of session data passed. Persistence
mechanisms decrease the capacity of the overall system, or incur additional
costs to increase the capacity or even the number of servers. Therefore, when
designing your WebSphere environment, you need to take session needs into
account as early as possible.

In WebSphere V6, there are two methods for sharing of sessions between
multiple application server processes (cluster members). One method is to
persist the session to a database. An alternate approach is to use
memory-to-memory session replication functionality, which was added to
WebSphere V5 and is implemented using WebSphere internal messaging. The
memory-to-memory replication (sometimes also referred to as “in-memory
replication”) eliminates a single point of failure found in the session database (if
the database itself has not been made highly available using clustering
software). See 1.4.1, “HTTP sessions and the session management facility” on
page 25 for additional information.

1.1.6 Performance impact of WebSphere Application Server security

The potential to distribute the processing responsibilities between multiple
servers and, in particular, multiple machines, also introduces a number of

Tip: Refer to the redbook A Practical Guide to DB2 UDB Data Replication V8,
SG24-6828, for details about DB2 replication.

10 WebSphere Application Server V6 Scalability and Performance Handbook

opportunities for meeting special security constraints in the system. Different
servers or types of servers may be assigned to manipulate different classes of
data or perform different types of operations. The interactions between the
various servers may be controlled, for example through the use of firewalls, to
prevent undesired accesses to data.

SSL
Building up SSL communication causes extra HTTP requests and responses
between the machines and every SSL message is encrypted on one side and
decrypted on the other side.

SSL at the front end or Web tier is a common implementation. This allows for
secured purchases, secure viewing of bank records, etc. SSL handshaking,
however, is expensive from a performance perspective. The Web server is
responsible for encrypting data sent to the user, and decrypting the request from
the user. If a site will be operated using SSL more often than not and the server
is operating at close to maximum CPU then using some form of SSL accelerator
hardware in the server, or even an external device that offloads all SSL traffic
prior to communication with the Web server, may help improve performance.

Performance related security settings
The following settings can help to fine-tune the security-related configurations to
enhance performance:

� Security cache timeout

Its setting determines how long WebSphere should cache information related
to permission and security credentials. When the cache timeout expires, all
cached information becomes invalid. Subsequent requests for the information
result in a database lookup. Sometimes, acquiring the information requires
invoking an LDAP-bind or native authentication, both of which are relatively
costly operations in terms of performance.

� HTTP session timeout

This parameter specifies how long a session will be considered active when it
is unused. After the timeout, the session expires and another session object
will be created. With high-volume Web sites, this may influence the
performance of the server.

� Registry and database performance

Databases and registries used by an application influence the WebSphere
Application Server performance. In a distributed environment, it is highly
recommended that you put the authorization server onto a separate machine
in order to offload application processing. When planning for a secured
environment, special attention should be given to the sizing and
implementation of the directory server. It is a best practice to first tune the

 Chapter 1. Overview and key concepts 11

directory server and make sure that it performs well before looking at the
WebSphere environment. Also, make sure that this directory does not
introduce a new single point of failure.

1.2 WebSphere Application Server architecture
This section introduces the major components within WebSphere Application
Server. Refer to the Redpaper entitled WebSphere Application Server V6
architecture, REDP3918 and to the redbook WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451 for details about
the WebSphere Application Server architecture and components.

1.2.1 WebSphere Application Server Network Deployment
components

The following is a short introduction of each WebSphere Network Deployment
runtime component and their functions:

� Deployment Manager

The Deployment Manager is part of an IBM WebSphere Application Server
Network Deployment V5.x and higher installation. It provides a central point of
administrative control for all elements in a distributed WebSphere cell. The
Deployment Manager is a required component for any vertical or horizontal
scaling and there exists only one specimen of it at a time.

� Node Agent

The Node Agent communicates directly with the Deployment Manager, and is
used for configuration synchronization and administrative tasks such as
stopping/starting of individual application servers and performance
monitoring on the application server node.

� Application server (instance)

An application server in WebSphere is the process that is used to run your
servlet and/or EJB-based applications, providing both Web container and EJB
container.

� Web server and Web server plug-in

While the Web server is not strictly part of the WebSphere runtime,
WebSphere communicates with your Web server of choice: IBM HTTP Server

Note: WebSphere security is out of the scope of this redbook. However, an
entire redbook is dedicated to this topic. See WebSphere Application Server
V6: Security Handbook, SG24-6316 for details.

12 WebSphere Application Server V6 Scalability and Performance Handbook

powered by Apache, Lotus Domino, Microsoft® Internet Information Server,
Apache, Sun ONE Web server/Sun Java System Web Server, and Covalent
Enterprise Ready Server via a plug-in. This plug-in communicates requests
from the Web server to the WebSphere runtime. In WebSphere Application
Server V6, the Web server and plug-in XML file can also be managed from
the Deployment Manager. For more information about this new function, see
3.4, “Web server topology in a Network Deployment cell” on page 78.

� WebContainer Inbound Chain (formerly embedded HTTP transport)

The WebContainer Inbound Chain is a service of the Web container. An
HTTP client connects to a Web server and the HTTP plug-in forwards the
requests to the application server through the WebContainer Inbound Chain.
The communication type is either HTTP or HTTPS.

Although the WebContainer Inbound Chain is available in any WebSphere
Application Server to allow testing or development of the application
functionality prior to deployment, it should not be used for production
environments. See 6.2.1, “WebContainer Inbound Chains” on page 231 for
more details.

� Default messaging provider

An embedded JMS server was introduced with WebSphere Application
Server V5 but has been totally rewritten for WebSphere Application Server V6
and is now called the default messaging provider. This infrastructure supports
both message-oriented and service-oriented applications, and is fully
integrated within WebSphere Application Server V6 (all versions). The default
messaging provider is a JMS 1.1 compliant JMS provider that supports
point-to-point and publish/subscribe styles of messaging.

� Administrative service

The administrative service runs within each WebSphere Application Server
Java virtual machine (JVM). Depending on the version installed, there can be
administrative services installed in many locations. In WebSphere Application
Server V6 and in WebSphere Application Server - Express V6, the
administrative service runs in each application server. In a Network
Deployment configuration, the Deployment Manager, Node Agent, and
application server(s), all host an administrative service. This service provides
the ability to update configuration data for the application server and its
related components.

� Administrative Console

The WebSphere Administrative Console provides an easy-to-use, graphical
“window” to a WebSphere cell and runs in a browser. In a Network
Deployment environment, it connects directly to the Deployment Manager,
which allows management of all nodes in the cell.

 Chapter 1. Overview and key concepts 13

� Configuration repository

The configuration repository stores the configuration for all WebSphere
Application Server components inside a WebSphere cell. The Deployment
Manager communicates changes in configuration and runtime state to all cell
members through the administrative service and the Node Agent. Each
application server maintains a subset of the cell’s configuration repository,
which holds this application server’s configuration information.

� Administrative cell

A cell is a set of application servers managed by the same Deployment
Manager. Some application server instances may reside on the same node,
others on different nodes. Cell members do not necessarily run the same
application.

� Server cluster and cluster members

A server cluster is a set of application server processes (the cluster
members). They run the same application, but usually on different nodes. The
main purpose of clusters is load balancing and failover.

Figure 1-2 on page 15 shows the relationship between these components.

14 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 1-2 WebSphere configuration with Java clients and Web clients

1.2.2 Web clients
The basic configuration shown in Figure 1-1 on page 4 refers to a particular type
of client for WebSphere characterized as a Web client. Such a client uses a Web
browser to interact with the WebSphere Application Servers, through the
intermediary of a Web server (and plug-in), which in turn invokes a servlet within
WebSphere (you can also access static HTML pages).

Node Agent

Node

Application
Database

Config
repository
(subset)

Cell

Master
repository

(file)

Deployment Manager
Admin

application
Name Server (JNDI)

Admin Service

Admin Service

Scripting
client

Admin
UI

SOAP or
RMI/IIOP

HTTP(s)

Web
browser

client

HTTP(s)

Config
repository
(subset)

EJB container

Web container

Webcontainer
Inbound
channel

Application Server

EJB container

Web container

Webcontainer
Inbound
channel

Application Server

Java client
Client container RMI/IIOP

HTTP server

WebSphere
plug-in

Cluster

 Chapter 1. Overview and key concepts 15

1.2.3 Java clients
Although Web clients constitute the majority of users of WebSphere today,
WebSphere also supports another type of client characterized as a Java client.
Such a client is a stand-alone Java program (GUI-based or not), which uses the
Java RMI/IIOP facilities to make direct method invocations on various EJB
objects within an application server, without going through an intervening Web
server and servlet, as shown in Figure 1-2 on page 15.

1.3 Workload management
Workload Management (WLM) is the process of spreading multiple requests for
work over the resources that can do the work. It optimizes the distribution of
processing tasks in the WebSphere Application Server environment. Incoming
work requests are distributed to the application servers and other objects that
can most effectively process the requests.

Workload management is also a procedure for improving performance,
scalability, and reliability of an application. It provides failover when servers are
not available.

Workload management is most effective when the deployment topology is
comprised of application servers on multiple machines, since such a topology
provides both failover and improved scalability. It can also be used to improve
scalability in topologies where a system is comprised of multiple servers on a
single, high-capacity machine. In either case, it enables the system to make the
most effective use of the available computing resources.

Workload management provides the following benefits to WebSphere
applications:

� It balances client processing requests, allowing incoming work requests to be
distributed according to a configured WLM selection policy.

� It provides failover capability by redirecting client requests to a running server
when one or more servers are unavailable. This improves the availability of
applications and administrative services.

� It enables systems to be scaled up to serve a higher client load than provided
by the basic configuration. With clusters and cluster members, additional
instances of servers can easily be added to the configuration. See 1.3.3,
“Workload management using WebSphere clustering” on page 19 for details.

� It enables servers to be transparently maintained and upgraded while
applications remain available for users.

� It centralizes administration of application servers and other objects.

16 WebSphere Application Server V6 Scalability and Performance Handbook

Two types of requests can be workload-managed in IBM WebSphere Application
Server Network Deployment V6:

� HTTP requests can be distributed across multiple Web containers, as
described in 1.3.2, “Plug-in workload management” on page 17. We refer to
this as Plug-in WLM.

� EJB requests can be distributed across multiple EJB containers, as described
in 1.3.4, “Enterprise Java Services workload management” on page 23. We
refer to this as EJS WLM.

1.3.1 Web server workload management
If your environment uses multiple Web servers, a mechanism is needed to allow
servers to share the load. The HTTP traffic must be spread among a group of
servers. These servers must appear as one server to the Web client (browser),
making up a cluster, which is a group of independent nodes interconnected and
working together as a single system. This cluster concept should not be
confused with a WebSphere cluster as described in 1.3.3, “Workload
management using WebSphere clustering” on page 19.

As shown in Figure 1-3, a load balancing mechanism called IP spraying can be
used to intercept the HTTP requests and redirect them to the appropriate
machine on the cluster, providing scalability, load balancing, and failover.

See Chapter 4, “Introduction to WebSphere Edge Components” on page 99 for
details.

Figure 1-3 Web server workload management

1.3.2 Plug-in workload management
This is a short introduction into plug-in workload management, where servlet
requests are distributed to the Web container in clustered application servers, as
shown in Figure 1-4 on page 18. This configuration is also referred to as the
servlet clustering architecture.

IP Sprayer

HTTP
RequestsW eb

Client
Caching

Proxy

Plugin

HTTP Server

Plugin

HTTP Server

HTTP
Requests

 Chapter 1. Overview and key concepts 17

Figure 1-4 Plug-in (Web container) workload management

Clustering application servers that host Web containers automatically enables
plug-in workload management for the application servers and the servlets they
host. In the simplest case, the cluster is configured on a single machine, where
the Web server process also runs.

Routing of servlet requests occurs between the Web server plug-in and the
clustered application servers using HTTP or HTTPS. This routing is based purely
on the weights associated with the cluster members. If all cluster members have
identical weights, the plug-in sends an equal number of requests to all members
of the cluster, when assuming no session affinity. If the weights are scaled in the
range from zero to 20, the plug-in routes requests to those cluster members with
the higher weight value more often. A rule of thumb formula for determining
routing preference would be:

% routed to Server1 = weight1 / (weight1+weight2+...+weightn)

where n is the number of cluster members in the cluster. The Web server plug-in
distributes requests around cluster members that are not available.

See Chapter 6, “Plug-in workload management and failover” on page 227 for
details.

Servlet
Requests

Application Server

Application Server

Web
Container

Web
Container

Plugin

HTTP Server

18 WebSphere Application Server V6 Scalability and Performance Handbook

1.3.3 Workload management using WebSphere clustering
This section describes how workload management is implemented in IBM
WebSphere Application Server Network Deployment V6 by using application
server clusters and cluster members. How to create clusters and cluster
members is detailed in Chapter 8, “Implementing the sample topology” on
page 387.

A cluster is a set of application servers that are managed together and
participate in workload management. Application servers participating in a
cluster can be on the same node or on different nodes. A Network Deployment
cell can contain no clusters, or have many clusters depending on the need of the
administration of the cell.

The cluster is a logical representation of the application servers. It is not
necessarily associated with any node, and does not correspond to any real
server process running on any node. A cluster contains only application servers,
and the weighted workload capacity associated with those servers.

When creating a cluster, it is possible to select an existing application server as
the template for the cluster without adding that application server into the new
cluster (the chosen application server is used only as a template, and is not
affected in any way by the cluster creation). All other cluster members are then
created based on the configuration of the first cluster member.

Cluster members can be added to a cluster in various ways: during cluster
creation and afterwards. During cluster creation, one existing application server
can be added to the cluster and/or one or more new application servers can be
created and added to the cluster. There is also the possibility of adding additional
members to an existing cluster later on. Depending on the capacity of your
systems, you can define different weights for the various cluster members.

It may be a good idea to create the cluster with a single member first, adjust the
member's configuration and then add the other members. This process
guarantees that all cluster members are created with the same settings. Cluster
members are required to have identical application components, but they can be
sized differently in terms of weight, heap size, and other environmental factors.
You must be careful though not to change anything that might result in different
application behavior on each cluster member. This concept allows large
enterprise machines to belong to a cluster that also contains smaller machines
such as Intel® based Windows servers.

Starting or stopping the cluster automatically starts or stops all cluster members,
and changes to the application are propagated to all application servers in the
cluster.

 Chapter 1. Overview and key concepts 19

Figure 1-5 shows an example of a possible configuration that includes server
clusters. Server cluster 1 has two cluster members on node B only. Server
cluster 2, which is completely independent of server cluster 1, has two cluster
members on node A and three cluster members on node B. Finally, node A also
contains a free-standing application server that is not a member of any cluster.

Figure 1-5 Server clusters and cluster members

Clusters and cluster members provide the necessary support for workload
management, failover, and scalability. For details, please refer to Chapter 6,
“Plug-in workload management and failover” on page 227.

Distributing workloads
The ability to route a request to any server in a group of clustered application
servers allows the servers to share work and improving throughput of client
requests. Requests can be evenly distributed to servers to prevent workload
imbalances in which one or more servers has idle or low activity while others are
overburdened. This load balancing activity is a benefit of workload management.
Using weighted definitions of cluster members allows nodes to have different
hardware resources and still participate in a cluster. The weight specifies that the
application server with a higher weight will be more likely to serve the request
faster, and workload management will consequently send more requests to that
node.

Cluster
Members in
Server
Cluster 1

Cluster
Members in
Server
Cluster 2

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member EJBServlet

Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

EJBServlet

Application Server/Cluster Member
Application Server/Cluster Member

Node A

EJBServlet

Application Server

Node B

EJBServlet

EJBServlet

EJBServlet

Server Cluster 2

Server Cluster 1

20 WebSphere Application Server V6 Scalability and Performance Handbook

Failover
With several cluster members available to handle requests, it is more likely that
failures will not negatively affect throughput and reliability. With cluster members
distributed to various nodes, an entire machine can fail without any application
downtime. Requests can be routed to other nodes if one node fails. Clustering
also allows for maintenance of nodes without stopping application functionality.

Scalability
Clustering is an effective way to perform vertical and horizontal scaling of
application servers.

� In vertical scaling, shown in Figure 1-6, multiple cluster members for an
application server are defined on the same physical machine, or node, which
may allow the machine’s processing power to be more efficiently allocated.

Even if a single JVM can fully utilize the processing power of the machine, you
may still want to have more than one cluster member on the machine for other
reasons, such as using vertical clustering for software failover. If a JVM
reaches a table/memory limit (or if there is some similar problem), then the
presence of another process provides for failover.

Figure 1-6 Vertical scaling

We recommend that you avoid using “rules of thumb” when determining the
number of cluster members needed for a given machine. The only way to
determine what is correct for your environment and application(s) is to tune a
single instance of an application server for throughput and performance, then

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

Cluster 1

 Chapter 1. Overview and key concepts 21

add it to a cluster, and incrementally add additional cluster members. Test
performance and throughput as each member is added to the cluster. Always
monitor memory usage when you are configuring a vertical scaling topology
and do not exceed the available physical memory on a machine.

In general, 85% (or more) utilization of the CPU on a large server shows that
there is little, if any, performance benefit to be realized from adding additional
cluster members.

� In horizontal scaling, shown in Figure 1-7, cluster members are created on
multiple physical machines. This allows a single WebSphere application to
run on several machines while still presenting a single system image, making
the most effective use of the resources of a distributed computing
environment. Horizontal scaling is especially effective in environments that
contain many smaller, less powerful machines. Client requests that
overwhelm a single machine can be distributed over several machines in the
system. Failover is another benefit of horizontal scaling. If a machine
becomes unavailable, its workload can be routed to other machines
containing cluster members.

Figure 1-7 Horizontal scaling

Horizontal scaling can handle application server process failures and
hardware failures (or maintenance) without significant interruption to client
service.

� WebSphere applications can combine horizontal and vertical scaling to reap
the benefits of both scaling techniques, as shown in Figure 1-8 on page 23.

Note: WebSphere Application Server V5.0 and higher supports horizontal
clustering across different platforms and operating systems. Horizontal
cloning on different platforms was not supported in WebSphere Application
Server V4.

E JB
C onta iner

W eb
C onta iner

C luster 1 , M em ber 1

N ode A

E JB
C onta ine r

W eb
C onta iner

C luster 1 , M em ber 2

N ode B

C luste r 1

22 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 1-8 Vertical and horizontal scaling

Secure application cluster members
The workload management service has its own built-in security, which works with
the WebSphere Application Server security service to protect cluster member
resources. If security is needed for your production environment, enable security
before you create a cluster for the application server. This enables security for all
of the members in that cluster.

The EJB method permissions, Web resource security constraints, and security
roles defined in an enterprise application are used to protect EJBs and servlets
in the application server cluster. Refer to WebSphere Application Server V6:
Security Handbook, SG24-6316 for more information.

1.3.4 Enterprise Java Services workload management
In this section, we discuss Enterprise Java Services workload management (EJS
WLM), in which the Web container and EJB container are on different application
servers. The application server hosting the EJB container is clustered.

Configuring the Web container in a separate application server from the
Enterprise JavaBean container (an EJB container handles requests for both
session and entity beans) enables distribution of EJB requests between the EJB
container clusters, as seen in Figure 1-9 on page 24.

EJB
Container

Web
Container

Cluster 1, Member 1

Node A

EJB
Container

Web
Container

Cluster 1, Member 2

EJB
Container

Web
Container

Cluster 1, Member 3

Node B

EJB
Container

Web
Container

Cluster 1, Member 4

Cluster 1

 Chapter 1. Overview and key concepts 23

Figure 1-9 EJB workload management

In this configuration, EJB client requests are routed to available EJB containers
based on the workload management EJB selection policy (Server-weighted
round robin routing or Prefer local).

The EJB clients can be servlets operating within a Web container, stand-alone
Java programs using RMI/IIOP, or other EJBs.

EJS workload management is covered in detail in Chapter 7, “EJB workload
management” on page 341.

1.4 Managing session state among servers
All the load distribution techniques discussed in this book rely, on one level or
another, on using multiple copies of an application server and arranging for
multiple consecutive requests from various clients to be serviced by different
servers.

Important: Although it is possible to split the Web container and EJB
container, it is not recommended because of the negative performance
impact. In addition, application maintenance also becomes more complex
when the application runs in different application servers.

EJB
Requests

Application Server

EJB
Container

Application Server

EJB
Container

EJB
Requests Java

Client

Application Server

Web
Container

24 WebSphere Application Server V6 Scalability and Performance Handbook

If each client request is completely independent of every other client request,
then it does not matter if two requests are processed on the same server or not.
However, in practice, there are many situations where all requests from an
individual client are not totally independent. In many usage scenarios, a client
makes one request, waits for the result, then makes one or more subsequent
requests that depend upon the results received from the earlier requests.

Such a sequence of operations on behalf of one client falls into one of two
categories:

� Stateless: the server that processes each request does so based solely on
information provided with that request itself, and not on information that it
“remembers” from earlier requests. In other words, the server does not need
to maintain state information between requests.

� Stateful: the server that processes a request does need to access and
maintain state information generated during the processing of an earlier
request.

Again, in the case of stateless interactions, it does not matter if different requests
are being processed by different servers. But in the case of stateful interactions,
we must ensure that whichever server is processing a request has access to the
state information necessary to service that request. This can be ensured either
by arranging for the same server to process all the client requests associated
with the same state information, or by arranging for that state information to be
shared and equally accessible by all servers that may require it. In that last case,
it is often advantageous to arrange for most accesses to the shared state to be
performed from the same server, so as to minimize the communications
overhead associated with accessing the shared state from multiple servers.

This consideration for the management of stateful interactions is a factor in the
discussions of various load distribution techniques throughout this book. It also
requires the discussion of a specific facility, the session management facility, and
of server affinity.

1.4.1 HTTP sessions and the session management facility
In the case of an HTTP client interacting with a servlet, the state information
associated with a series of client requests is represented as an HTTP session,
and identified by a session ID. The session manager module that is part of each
Web container is responsible for managing HTTP sessions, providing storage for
session data, allocating session IDs, and tracking the session ID associated with
each client request, through the use of cookies, URL rewriting, or SSL ID
techniques.

 Chapter 1. Overview and key concepts 25

The session manager provides for the storage of session-related information
either in-memory within the application server, in which case it cannot be shared
with other application servers, in a back-end database, shared by all application
servers, or by using memory-to-memory replication.

The second option, sometimes referred to as persistent sessions or session
clustering, is one method that uses HTTP sessions with the load-distribution
configuration. With this option, whenever an application server receives a
request associated with a session ID, which is not in memory, it can obtain it by
accessing the back-end database, and can then serve the request. When this
option is not enabled, and another clustering mechanism is not used, if any load
distribution mechanism happens to route an HTTP request to an application
server other than the one where the session was originally created, that server
would be unable to access the session, and would thus not produce correct
results in response to that request. One drawback to the database solution, just
as with application data, is that it provides a single point of failure (SPOF) so it
should be implemented in conjunction with hardware clustering products such as
HACMP or solutions such as database replication. Another drawback is the
performance hit, caused by database disk I/O operations and network
communications.

The last option, memory-to-memory replication, provides a mechanism for
session clustering within IBM WebSphere Application Server Network
Deployment. It uses the built-in Data Replication Service (DRS) of WebSphere to
replicate session information stored in memory to other members of the cluster.
Using this functionality removes the single point of failure that is present in
persistent sessions through a database solution that has not been made highly
available using clustering software. The sharing of session state is handled by
creating a replication domain and then configuring the Web container to use that
replication domain to replicate session state information to the specified number
of application servers. DRS, like database replication, also incurs a performance
hit, primarily because of the overhead of network communications. Additionally,
since copies of the session object reside in application server memory this
reduces the available heap for application requests and usually results in more
frequent garbage collection cycles by the application server JVM.

26 WebSphere Application Server V6 Scalability and Performance Handbook

Storing session states in a persistent database or using memory-to-memory
replication provides a degree of fault tolerance to the system. If an application
server crashes or stops, any session state that it may have been working on
would normally still be available either in the back-end database or in another still
running application server’s memory, so that other application servers can take
over and continue processing subsequent client requests associated with that
session.

More information can be found in 6.8, “HTTP session management” on
page 279.

Note: DRS, and thus the session replication mechanism, has changed in
WebSphere V6. Configuration has been greatly simplified. The default
configuration setting is now to have a single replica. You can also replicate to
the entire domain (which corresponds to the peer-to-peer configuration in
WebSphere V5.x) or specify the number of replicas.

Performance measurements showed that the overhead associated with
replicating the session to every other cluster member is more significant than
contention introduced by using the database session repository (the more
application servers in the cluster, the more overhead for memory-to-memory
replication). Therefore, it is not recommended that you use the Entire Domain
setting for larger replication domains.

For larger session sizes, the overhead of session replication increases.
Database replication has a lower overall throughput than memory-to-memory,
due to database I/O limitations (the database becomes the bottleneck).
However, while database replication with large sessions performs slower, it is
doing so with less CPU power than memory-to-memory replication. The
unused processor power can be used by other tasks on the system.

Important: Neither mechanism provides a 100% guarantee that a session
state will be preserved in case of a server crash. If a server happens to crash
while it is literally in the middle of modifying the state of a session, some
updates may be lost and subsequent processing using that session may be
affected. Also, in the case of memory replication, if the node crashes during a
replication, or in between the time interval that has been set for replicating
session information, then some session information may be lost.

However, such a situation represents only a very small window of vulnerability
and a very small percentage of all occurrences throughout the life of a system
in production.

 Chapter 1. Overview and key concepts 27

1.4.2 EJB sessions or transactions
In the case of an EJB client interacting with one or more EJBs, the management
of state information associated with a series of client requests is governed by the
EJB specification and implemented by the WebSphere EJS container, and
depends on the types of EJBs that are the targets of these requests.

Stateless session bean
By definition, when interacting with a stateless session bean, there is no
client-visible state associated with the bean. Every client request directed to a
stateless session bean is independent of any previous request that was directed
to the same bean. The container maintains a pool of instances of stateless
session beans of each type, and will provide an arbitrary instance of the
appropriate bean type whenever a client request is received. It does not matter if
the same actual bean instance is used for consecutive requests, or even if two
consecutive requests are serviced by bean instances in the same application
server.

Stateful session bean
In contrast, a stateful session bean is used precisely to capture state information
that must be shared across multiple consecutive client requests that are part of
one logical sequence of operations. The client must take special care to ensure
that it is always accessing the same instance of the stateful session bean, by
obtaining and keeping an EJB object reference to that bean. The various
load-distribution techniques available in WebSphere make special provisions to
support this characteristic of stateful session beans.

A new feature in WebSphere V6 is the failover support for stateful session beans;
the state information is now replicated to other application servers in the cluster
using the Data Replication Service (DRS). If an application server fails, a new
instance of the bean is created on a different server, the state information is
recovered, requests are directed to the recovered instance and processing
continues.

Entity bean
Finally, we must consider the case of an entity bean. Most external clients access
WebSphere services through session beans, but it is possible for an external
client to access an entity bean directly. Furthermore, a session bean inside
WebSphere is itself often acting as a client to one or more entity beans also
inside WebSphere; if load distribution features are used between that session
bean and its target entity bean, then the same questions arise as with plain
external clients.

28 WebSphere Application Server V6 Scalability and Performance Handbook

Strictly speaking, the information contained in an entity bean is not usually
associated with a “session” or with the handling of one client request or series of
client requests. However, it is common for one client to make a succession of
requests targeted at the same entity bean instance. Unlike all the previous
cases, it is possible for multiple independent clients to access the same entity
bean instance more or less concurrently. Therefore, it is important that the state
contained in that entity bean be kept consistent across the multiple client
requests.

For entity beans, the notion of a session is more or less replaced by the notion of
transaction. For the duration of one client transaction to which it participates, the
entity bean is instantiated in one container (normally the container where the first
operation within that transaction was initiated). All subsequent accesses to that
same bean, within that same transaction, must be performed against that same
instance in that same container.

In between transactions, the handling of the entity bean is specified by the EJB
specification, in the form of a number of caching options:

� With option A caching, WebSphere Application Server assumes that the
entity bean is used within a single container. Clients of that bean must direct
their requests to the bean instance within that container. The entity bean has
exclusive access to the underlying database, which means that the bean
cannot be clustered or participate in workload management if option A
caching is used.

� With option B caching, the bean instance remains active (so it is not
guaranteed to be made passive at the end of each transaction), but it is
always reloaded from the database at the start of each transaction. A client
can attempt to access the bean and start a new transaction on any container
that has been configured to host that bean.

� With option C caching (which is the default), the entity bean is always
reloaded from the database at the start of each transaction and made passive
at the end of each transaction. A client can attempt to access the bean and
start a new transaction on any container that has been configured to host that
bean. This is effectively similar to the session clustering facility described for
HTTP sessions: the shared state is maintained in a shared database, and can
be accessed from any server when required.

Message-driven beans
The message-driven bean (MDB) was introduced with WebSphere V5. Support
for MDBs is a requirement of a J2EE 1.3 compliant application server. In
WebSphere V4.0, the Enterprise Edition offered a similar functionality called
message beans that leveraged stateless session EJBs and a message listener
service. That container, however, did not implement the EJB 2.0 specification.

 Chapter 1. Overview and key concepts 29

The MDB is a stateless component that is invoked by a J2EE container when a
JMS message arrives at a particular JMS destination (either a queue or topic).
Loosely, the MDB is triggered by the arrival of a message.

Messages are normally anonymous. If some degree of security is desired, the
listener will assume the credentials of the application server process during the
invocation of the MDB.

MDBs handle messages from a JMS provider within the scope of a transaction. If
transaction handling is specified for a JMS destination, the listener will start a
global transaction before reading incoming messages from that destination. Java
Transaction API (JTA) transaction control for commit or rollback is invoked when
the MDB processing has finished.

1.4.3 Server affinity
The discussion above implies that any load-distribution facility, when it chooses a
server to direct a request, is not entirely free to select any available server:

� In the case of stateful session beans or entity beans within the context of a
transaction, there is only one valid server. WebSphere WLM will always direct
a client's access of a stateful session bean to the single server instance
containing the bean (there is no possibility of choosing the wrong server
here). If the request is directed to the wrong server (for example because of a
configuration error), it will either fail, or that server itself will be forced to
forward the request to the correct server, at great performance cost.

� In the case of clustered HTTP sessions or entity beans between transactions,
the underlying shared database ensures that any server can correctly
process each request. However, accesses to this underlying database may
be expensive, and it may be possible to improve performance by caching the
database data at the server level. In such a case, if multiple consecutive
requests are directed to the same server, they may find the required data still
in the cache, and thereby reduce the overhead of access to the underlying
database.

The characteristics of each load-distribution facility, which take these constraints
into account, are generally referred to as server affinity: In effect, the load
distribution facility recognizes that multiple servers may be acceptable targets for
a given request, but it also recognizes that each request may have a particular
affinity for being directed to a particular server where it may be handled better or
faster.

30 WebSphere Application Server V6 Scalability and Performance Handbook

We will encounter this notion of server affinity throughout the discussion of the
various load-distribution facilities in Chapter 6, “Plug-in workload management
and failover” on page 227 and Chapter 7, “EJB workload management” on
page 341. In particular, we will encounter the notion of session affinity, where the
load distribution facility recognizes the existence of a session and attempts to
direct all requests within that session to the same server, and we will also discuss
the notion of transaction affinity, in which the load distribution facility recognizes
the existence of a transaction, and behaves similarly.

Finally, we will also see that a particular server affinity mechanism can be weak
or strong. In a weak affinity mechanism, the system attempts to enforce the
desired affinity for the majority of requests most of the time, but may not always
be able to provide a total guarantee that this affinity will be respected. In a strong
affinity mechanism, the system guarantees that affinity will always be strictly
respected, and generates an error when it cannot.

1.5 Performance improvements over previous versions
WebSphere Application Server V6 contains a significant set of functional and
performance improvements over the initial release of WebSphere Version 5.0
and the incremental releases that followed. Most of the improvements listed
below are as compared to WebSphere V5.1.

Improved performance with Java V1.4.2
� Java Virtual Machine (JVM) enhancements.

� Various class-level enhancements for logging, BigDecimal, NumberFormat,
date formatting and XML parsing.

� Reduced lock contention for improved ORB scalability.

Improved Web container performance/scalability
� Channel Framework

The Channel Framework with NIO (a new Java framework for input/output)
supports non-blocking IO allowing for a large number of
concurrently-connected clients to be supported, which helps client scalability
by enabling the WebSphere Application Server containers to handle more
client requests with a fewer number of threads than was required previously.

� Code path improvements

The Web container is redesigned and reimplemented for significant
reductions in code path and memory utilization.

 Chapter 1. Overview and key concepts 31

� Caching enhancements

The Web container redesign also contains internal improvements for caching
various types of objects inside the Web container. These caching
improvements provide better performance and scalability.

� Improved HTTP session replication using a new high-performing transport

The Domain Replication Service is rebased on the HAManager framework,
which uses a multicast/unicast based transport (DCS), which itself uses the
channel framework.

See Chapter 6, “Plug-in workload management and failover” on page 227 and
Chapter 9, “WebSphere HAManager” on page 465 for more information about
this topic.

EJB improvements
� Cached data verification (functional improvement)

The new cached data verification in the EJB container allows for aggressive
caching of data while maintaining consistency with the database by
performing an optimistic versioning field check at transaction commit time.
This increases performance of transactions and maintains data consistency
required in high transaction rate environments.

All EJB applications can benefit from improved EJB performance due to:

� Code path lengths which are reduced throughout the runtime.

� Application profiling

The application profiling technology (which was previously only available in
IBM WebSphere Application Server Enterprise) improves overall entity EJB
performance and throughput by fine tuning the run-time behavior by enabling
EJB optimizations to be customized for multiple user access patterns without
resorting to "worst case" choices (such as Pessimistic Update on
findByPrimaryKey, regardless of whether the client needs it for read or for
actual update).

� Higher-performance Access Intent settings

An automatic analysis tool is provided that determines the most performant
access intent setting on each entity bean in the application, for each
application scenario in which that entity bean may be accessed.

� Stateful session bean replication

The new stateful session bean replication is using a new high performance
transport.

32 WebSphere Application Server V6 Scalability and Performance Handbook

� Improved persistence manager

The improved persistence manager allows for more caching options and
better database access strategies.

Applications with compatible design patterns can exploit the following EJB
improvements:

� Keep-update-locks optimization for DB2 UDB V8.2

This enables applications to use a row blocking protocol for data fetching and
also avoid deadlocks by enforcing update locks on affected rows. This feature
enhances performance for applications that use search updates, such as EJB
CMP Entity Applications.

� Read-only beans

The new "Read Only Beans" optimization provides enhanced EJB caching
performance.

� Improved read-ahead

Improved Read-ahead functionality enables reading in data from multiple
CMP with a single SQL statement.

See Chapter 7, “EJB workload management” on page 341 for more information
about this topic.

Improved Web Services performance
Web Services performance improvements can be seen in several areas:

� Improved deserialization

Improvements in V6.0 tooling generates higher-performing deserializers for
all JAX-RPC beans. Because of this, redeploying a V5.x application into V6.0
may significantly decrease the processing time for large messages.

� Web Services caching

Additional capabilities are added for Web Services caching. The V6.0
serialization/deserialization runtime is enhanced to cache frequently used
serializers/deserializers, significantly decreasing the processing time for large
messages. Web Services caching also includes JAX/RPC client side Web
Services caching (first introduced in V5.1.1).

� Other Web Services improvements come in the areas of in-process
performance enhancements.

Refer to the redbook WebSphere Version 6 Web Services Handbook
Development and Deployment, SG24-6461 for more information about Web
Services.

 Chapter 1. Overview and key concepts 33

Default messaging provider
The embedded JMS server from V5.x has been replaced by a new, in-process
Java messaging engine that makes nonpersistent messaging primitives up to 5x
faster.

The improved default messaging provider for V6.0 is a new all-Java
implementation that runs within the WebSphere Application Server JVM process
and uses a relational database for its persistent store. It provides improved
function and performance over V5.1, particularly in the nonpersistent messaging
scenarios. Nonpersistent point-to-point in-process messaging (EJB to MDB) is
up to 5 times faster than V5.1. See Chapters 10 and 11 of the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451 for more information.

Improved Dynamic Fragment Caching
DMap caching (or DistributedMap caching), which was previously only available
in IBM WebSphere Application Server Enterprise, performs better than
command caching because of how the caching mechanisms are implemented.

See Chapter 10, “Dynamic caching” on page 501 for more information.

Type 4 JDBC driver
The Universal JDBC Driver performs better than the legacy/CLI JDBC driver, due
mainly to significant code path reductions, a reduced dependency on JNI, and
optimizations not available to the legacy/CLI JDBC driver architecture.

Tip: The IBM WebSphere Performance team publishes a performance report
for each release of WebSphere Application Server. This performance report
provides performance information using the Trade benchmark, information
about the new default messaging provider, memory considerations, and much
more. To obtain a copy of the WebSphere performance report, please contact
your IBM sales or technical support contact.

34 WebSphere Application Server V6 Scalability and Performance Handbook

1.6 The structure of this redbook
This redbook is divided into six parts containing the following chapters and
appendixes:

Part 1: Getting started
Chapter 2, “Infrastructure planning and design” on page 39 introduces scalability
and scaling techniques, and helps you to evaluate the components of your
e-business infrastructure for their scalability. Basic considerations regarding
infrastructure deployment planning, sizing, benchmarking, and performance
tuning are also covered in this chapter.

Chapter 3, “Introduction to topologies” on page 71 discusses topologies
supported by WebSphere Application Server V6 and the variety of factors that
come into play when considering the appropriate topology choice.

Part 2: Distributing the workload
Chapter 4, “Introduction to WebSphere Edge Components” on page 99 gives an
overview of the capabilities and options of WebSphere Edge Components.

Chapter 5, “Using IBM WebSphere Edge Components” on page 127 looks at
Web server load balancing with the WebSphere Edge Components of IBM
WebSphere Application Server Network Deployment V6, describing some
important configurations and its use with the IBM WebSphere Application Server
Network Deployment V6. An introduction to the Caching Proxy is also included in
this chapter.

Chapter 6, “Plug-in workload management and failover” on page 227 covers Web
container workload management. It discusses components, configuration
settings, and resulting behaviors. It also covers session management in a
workload-managed environment.

Chapter 7, “EJB workload management” on page 341 examines how EJB
requests can be distributed across multiple EJB containers.

Part 3: Implementing the solution
Chapter 8, “Implementing the sample topology” on page 387 provides
step-by-step instructions for implementing a sample multi-machine environment.
This environment is used to illustrate most of IBM WebSphere Application Server
Network Deployment V6’s workload management and scalability features
throughout this book, including a Caching Proxy and Load Balancer.

 Chapter 1. Overview and key concepts 35

Part 4: High availability and caching
Chapter 9, “WebSphere HAManager” on page 465 introduces the new
HAManager feature of WebSphere Application Server V6 and shows some basic
usage and configuration examples.

Chapter 10, “Dynamic caching” on page 501 describes the use of caching
technologies in three-tier and four-tier application environments involving
browser-based clients and applications using WebSphere Application Server.

Part 5: Messaging
Chapter 11, “Using asynchronous messaging for scalability and performance” on
page 621 gives an introduction into the JMS 1.1 API.

Chapter 12, “Using and optimizing the default messaging provider” on page 643
introduces the new default messaging provider that is part of WebSphere
Application Server V6. It also explains configuration options in a clustered
application server environment. This chapter extends Chapters 10 and 11 of the
redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451 and should thus be read in conjunction
with these chapters.

Chapter 13, “Understanding and optimizing the use of WebSphere MQ” on
page 697 describes how the various components for WebSphere MQ interact,
takes you through manually configuring the components for the Trade 6
application, and demonstrates running this with WebSphere MQ and WebSphere
Business Integration Event broker.

Part 6: Performance monitoring, tuning and coding practices
Chapter 14, “Server-side performance and analysis tools” on page 769 explains
the tools that can be run on the application server side to analyze and monitor
the performance of the environment. The topics covered include the Performance
Monitoring Infrastructure, Request Metrics, Tivoli Performance Viewer, and the
Performance Advisors.

Chapter 15, “Development-side performance and analysis tools” on page 839
offers an introduction into the tools that come with IBM Rational Application
Developer V6.0, such as the profiling tools or the separately downloadable Page
Detailer.

Chapter 16, “Application development: best practices for application design,
performance and scalability” on page 895 gives suggestions for developing
WebSphere Application Server based applications.

Chapter 17, “Performance tuning” on page 939 discusses tuning an existing
environment for performance and provides a guide for testing application servers

36 WebSphere Application Server V6 Scalability and Performance Handbook

and components of the total serving environment that should be examined and
potentially tuned to increase the performance of the application

Part 6: Appendixes
Appendix A, “Sample URL rewrite servlet” on page 1033 explains how to set up
an example to test session management using URL rewrites.

Appendix B, “Additional material” on page 1037 gives directions for downloading
the Web material associated with this redbook.

 Chapter 1. Overview and key concepts 37

38 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 2. Infrastructure planning and
design

Are you wondering about how to plan and design an infrastructure deployment
based on WebSphere middleware? This chapter covers the WebSphere-specific
components that you need to be familiar with to run a successful WebSphere
infrastructure project.

This chapter is organized in the following sections:

� Infrastructure deployment planning
� Design for scalability
� Sizing
� Benchmarking
� Performance tuning

2

© Copyright IBM Corp. 2005. All rights reserved. 39

2.1 Infrastructure deployment planning
This section gives a general overview of which phases you have to go through
during a project, how you gather requirements, and how to apply them to a
WebSphere project.

Typically, a new project starts with only a concept. Very little is known about
specific implementation details, especially as they relate to the infrastructure.
Hopefully, your development team and infrastructure team work closely together
to help bring some scope to the needs of the overall application environment.

In some cases, the involvement of an IBM Design Center for e-business on
demand™ might be useful. For more information about this service, please see
2.1.1, “IBM Design Centers for e-business on demand” on page 41.

Bringing together a large team of people can create an environment that helps
hone the environment requirements. If unfocused, however, a large team can be
prone to wandering aimlessly and creating more confusion than resolving issues.
For this reason, pay close attention to the size of the requirements team, and
keep the meetings focused. Provide template documents to be completed by the
developers, the application business owners, and the user experience team. Try
to gather information that falls into the following categories:

� Functional requirements, which are usually determined by the business-use
of the application and are related to function.

� Non-functional requirements, which start to describe the properties of the
underlying architecture and infrastructure like reliability, availability, or
security.

� Capacity requirements, which include traffic estimates, traffic patterns, and
expected audience size.

Requirement gathering is an iterative process. There is no way, especially in the
case of Web-based applications, to have absolutes for every item. The best you
can do is create an environment that serves your best estimates, and then
monitor closely to adjust as necessary after launch. Make sure that all your plans
are flexible enough to deal with future changes in requirements and always keep
in mind that they may have an impact on every other part of your project.

With this list of requirements, you can start to create the first drafts of your
designs. You should target developing at least the following designs:

� Application design

To create your application design, you use your functional and non-functional
requirements to create guidelines for your application developers about how
your application is built.

40 WebSphere Application Server V6 Scalability and Performance Handbook

This redbook does not attempt to cover the specifics of a software
development cycle. There are multiple methodologies for application design,
and volumes dedicated to best practices. However, Chapter 16, “Application
development: best practices for application design, performance and
scalability” on page 895 will give you a quick start to this topic.

� Implementation design

This design defines your target deployment infrastructure on which your
application will be deployed.

The final version of this implementation design will contain every detail about
hardware, processors, and software installed on the different components, but
you do not start out with all these details in the beginning. Initially, your
implementation design will simply list component requirements such as a
database, a set of application servers, a set of Web servers, and whatever
other components are defined in the requirements phase.

This design might need to be extended during your project, whenever a
requirement for change occurs, or when you get new sizing information. Too
often, however, the reality is that a project may require new hardware, and
therefore be constrained by capital acquisition requirements. Try to not go
back too often for additional resources once the project has been accepted.

Information that helps you to create this design is found in 2.2, “Design for
scalability” on page 42.

With the two draft designs in hand, you can now begin the process of formulating
counts of servers, network requirements, and the other infrastructure related
items. Basic information about sizing can be found in 2.3, “Sizing” on page 58.

In some cases, it might be appropriate to perform benchmark tests. There are
many ways to perform benchmarking tests, and some of these methods are
described in 2.4, “Benchmarking” on page 59.

The last step in every deployment is to tune your system and measure if it can
handle the projected load specified in your non-functional requirements. Section
2.5, “Performance tuning” on page 62 covers in more detail how to plan for load
tests.

2.1.1 IBM Design Centers for e-business on demand
The IBM Design Centers for e-business on demand are state-of-the-art facilities
where certified IT architects work with customers from around the world to
design, architect, and prototype advanced IT infrastructure solutions to meet the
challenges of on demand computing. Customers are nominated by their IBM
representative based upon their current e-business plans and are usually
designing a first-of-a-kind e-business infrastructure to solve a unique business

 Chapter 2. Infrastructure planning and design 41

problem. After a technical and business review, qualified customers come to a
Design Center for a Design Workshop which typically lasts three to five days. If
appropriate, a proof-of-concept session ranging from two to eight weeks may
follow.

The centers are located in:

� Poughkeepsie, USA
� Montpellier, France
� Makuhari, Japan

For more information about this service, please go to

http://www-1.ibm.com/servers/eserver/design_center/

2.2 Design for scalability
Understanding the scalability of the components in your e-business infrastructure
and applying appropriate scaling techniques can greatly improve availability and
performance. Scaling techniques are especially useful in multi-tier architectures,
when you want to evaluate components associated with IP load balancers such
as dispatchers or edge servers, Web presentation servers, Web application
servers, data servers and transaction servers.

You can use the following high-level steps to classify your Web site and identify
scaling techniques that are applicable to your environment:

1. Understanding the application environment
2. Categorizing your workload
3. Determining the most affected components
4. Selecting the scaling techniques to apply
5. Applying the technique(s)
6. Re-evaluating

This systematic approach needs to be adapted to your situation. We look at each
step in detail in the following sections.

2.2.1 Understanding the application environment
For existing environments, the first step is to identify all components and
understand how they relate to each other. The most important task is to
understand the requirements and flow of the existing application(s) and what can
or cannot be altered. The application is a significant contributor to the scalability
of any infrastructure, so a detailed understanding is crucial to scale effectively. At
a minimum, application analysis must include a breakdown of transaction types
and volumes as well as a graphic view of the components in each tier.

42 WebSphere Application Server V6 Scalability and Performance Handbook

http://www-1.ibm.com/servers/eserver/design_center/

Figure 2-1 can aid in determining where to focus scalability planning and tuning
efforts. The figure shows the greatest latency for representative customers in
three workload patterns, and on which tier the effort should be concentrated.

Figure 2-1 How latency varies based on workload pattern and tier

For example, for online banking, most of the latency typically occurs in the
database server, whereas the application server typically experiences the
greatest latency for online shopping and trading sites. Planning to resolve those
latencies from an infrastructure solution becomes very different as the latency
shifts.

The way applications manage traffic between tiers significantly affects the
distribution of latencies between the tiers, which suggests that careful analysis of
application architectures is an important part of this step and could lead to
reduced resource utilization and faster response times. Collect metrics for each
tier, and make user-behavior predictions for each change implemented.
WebSphere offers various facilities for monitoring the performance of an
application, as discussed in Chapter 14, “Server-side performance and analysis
tools” on page 769 and Chapter 15, “Development-side performance and
analysis tools” on page 839.

Users
Edge

Server
Web

Server
Application

Server

Database Server
and Legacy Systems

ES WS AS DB

End-to-end response time

Network latency Web site latency

Scope of performance management

5426 19

5 27 53 15

5 11 23 61Banking

Shopping

Trading

Examples of
percent of
latency

Edge Server

Application Server

Web Server

Database Server

Internet

 Chapter 2. Infrastructure planning and design 43

As requirements are analyzed for a new application, strive to build scaling
techniques into the infrastructure. Implementation of new applications offer the
opportunity to consider each component type, such as open interfaces and new
devices, and the potential to achieve unprecedented transaction rates. Each
scaling technique affects application design. Similarly, application design impacts
the effectiveness of the scaling technique. To achieve proper scale, application
design must consider potential architectural scaling effects. An iterative,
incremental approach will need to be followed in the absence of known workload
patterns.

2.2.2 Categorizing your workload
Knowing the workload pattern for a site determines where to focus scalability
efforts and which scaling techniques to apply. For example, a customer
self-service site such as an online bank needs to focus on transaction
performance and the scalability of databases that contain customer information
used across sessions. These considerations would not typically be significant for
a publish/subscribe site, where a user signs up for data to be sent to them,
usually via a mail message.

Workload patterns and Web site classifications
Web sites with similar workload patterns can be classified into site types.
Consider five distinct workload patterns and corresponding Web site
classifications:

� Publish/subscribe (user to data)
� Online shopping (user to online buying)
� Customer self-service (user to business)
� Online trading (user to business)
� Business to business

Publish/subscribe (user to data)
Sample publish/subscribe sites include search engines, media sites such as
newspapers and magazines, as well as event sites such as sports
championships (for example the site for the Olympics).

Site content changes frequently, driving changes to page layouts. While search
traffic is low in volume, the number of unique items sought is high, resulting in the
largest number of page views of all site types. Security considerations are minor
compared to other site types. Data volatility is low. This site type processes the
fewest transactions and has little or no connection to legacy systems. Refer to
Table 2-1 on page 45 for details on these workload patterns.

44 WebSphere Application Server V6 Scalability and Performance Handbook

Table 2-1 Publish/subscribe site workload pattern

Online shopping (user to online buying)
Sample sites include typical retail sites where users buy books, clothes, or even
cars. Site content can be relatively static, such as a parts catalog, or dynamic,
where items are frequently added and deleted, such as for promotions and
special discounts that come and go. Search traffic is heavier than on a
publish/subscribe site, although the number of unique items sought is not as
large. Data volatility is low. Transaction traffic is moderate to high, and almost
always grows.

When users buy, security requirements become significant and include privacy,
non-repudiation, integrity, authentication, and regulations. Shopping sites have
more connections to legacy systems, such as fulfillment systems, than

Workload pattern Publish/subscribe

Categories/examples � Search engines
� Media
� Events

Content � Dynamic change of the layout of a page, based
on changes in content, or need

� Many page authors; page layout changes
frequently

� High volume, non-user-specific access
� Fairly static information sources

Security Low

Percent secure pages Low

Cross-session info No

Searches � Structured by category
� Totally dynamic
� Low volume

Unique Items High

Data volatility Low

Volume of transactions Low

Legacy integration/ complexity Low

Page views High to very high

 Chapter 2. Infrastructure planning and design 45

publish/subscribe sites, but generally fewer than the other site types. This is
detailed in the following table.

Table 2-2 Online shopping site workload pattern

Customer self-service (user to business)
Sample sites include those used for home banking, tracking packages, and
making travel arrangements. Home banking customers typically review their
balances, transfer funds, and pay bills. Data comes largely from legacy
applications and often comes from multiple sources, thereby exposing data
consistency.

Security considerations are significant for home banking and purchasing travel
services, less so for other uses. Search traffic is low volume; transaction traffic is

Workload pattern Online shopping

Categories/examples � Exact inventory
� Inexact inventory

Content � Catalog either flat (parts catalog) or dynamic
(items change frequently, near real time)

� Few page authors and page layout changes
less frequently

� User-specific information: user profiles with
data mining

Security � Privacy
� Non-repudiation
� Integrity
� Authentication
� Regulations

Percent secure pages Medium

Cross-session info High

Searches � Structured by category
� Totally dynamic
� High volume

Unique items Low to medium

Data volatility Low

Volume of transactions Moderate to high

Legacy integration/ complexity Medium

Page views Moderate to high

46 WebSphere Application Server V6 Scalability and Performance Handbook

moderate, but growing rapidly. Refer to Table 2-3 for details on these workload
patterns.

Table 2-3 Customer self-service site workload pattern

Online trading (user to business)
Of all site types, trading sites have the most volatile content, the potential for the
highest transaction volumes (with significant swing), the most complex
transactions, and are extremely time sensitive. Auction sites are characterized by
highly dynamic bidding against items with predictable life times.

Trading sites are tightly connected to the legacy systems. Nearly all transactions
interact with the back-end servers. Security considerations are high, equivalent

Workload pattern Customer self-service

Categories/examples � Home banking
� Package tracking
� Travel arrangements

Content � Data is in legacy applications
� Multiple data sources, requirement for

consistency

Security � Privacy
� Non-repudiation
� Integrity
� Authentication
� Regulations

Percent secure pages Medium

Cross-session info Yes

Searches � Structured by category
� Low volume

Unique items Low

Data volatility Low

Volume of transactions Moderate and growing

Legacy integration/ complexity High

Page views Moderate to low

 Chapter 2. Infrastructure planning and design 47

to online shopping, with an even larger number of secure pages. Search traffic is
low volume. Refer to Table 2-4 for details on these workload patterns.

Table 2-4 Online trading site workload pattern

Business to business
These sites include dynamic programmatic links between arm’s length
businesses (where a trading partner agreement might be appropriate). One
business is able to discover another business with which it may want to initiate
transactions.

In supply chain management, for example, data comes largely from legacy
applications and often from multiple sources, thereby exposing data consistency.
Security requirements are equivalent to online shopping. Transaction volume is
moderate, but growing; transactions are typically complex, connecting multiple

Workload pattern Online trading

Categories/examples � Online stock trading
� Auctions

Content � Extremely time sensitive
� High volatility
� Multiple suppliers, multiple consumers
� Transactions are complex and interact with

back end

Security � Privacy
� Non-repudiation
� Integrity
� Authentication
� Regulations

Percent secure pages High

Cross-session info Yes

Searches � Structured by category
� Low volume

Unique items Low to medium

Data volatility High

Volume of transactions High to very high (very large swings in volume)

Legacy integration/ complexity High

Page views Moderate to high

48 WebSphere Application Server V6 Scalability and Performance Handbook

suppliers and distributors. Refer to Table 2-5 for details on these workload
patterns.

Table 2-5 Business-to-business site workload pattern

Workload characteristics
Your site type will become clear as it is evaluated using Table 2-6 on page 50 for
other characteristics related to transaction complexity, volume swings, data
volatility, security, and so on.

If the application has further characteristics that could potentially affect its
scalability, then add the extra characteristics to Table 2-6 on page 50.

Workload pattern Business to business

Categories/examples e-Procurement

Content � Data is in legacy applications
� Multiple data sources, requirement for

consistency
� Transactions are complex

Security � Privacy
� Non-repudiation
� Integrity
� Authentication
� Regulations

Percent secure pages Medium

Cross-session info Yes

Searches � Structured by category
� Low to moderate volume

Unique items Moderate

Data volatility Moderate

Volume of transactions Moderate to low

Legacy integration/ complexity High

Page views Moderate

 Chapter 2. Infrastructure planning and design 49

Table 2-6 Workload characteristics and Web site classifications

2.2.3 Determining the most affected components
This step involves mapping the most important site characteristics to each
component. Once again, from a scalability viewpoint, the key components of the
infrastructure are the load balancers, the Web application servers, security
services, transaction and data servers, and the network. Table 2-7 on page 51
specifies the significance of each workload characteristic to each component. As
seen in the table, the effect on each component is different for each workload
characteristic.

Note: All site types are considered to have high volumes of dynamic
transactions. This may or may not be a standard consideration when
performing sizing and site classification.

Workload characteristics Publish/
subscribe

Online
shopping

Customer
self-
service

Online
trading

Business
to
business

Your
workload

Volume of user-specific
responses

Low Low Medium High Medium

Amount of cross-session
information

Low High High High High

Volume of dynamic searches Low High Low Low Medium

Transaction complexity Low Medium High High High

Transaction volume swing Low Medium Medium High High

Data volatility Low Low Low High Medium

Number of unique items High Medium Low Medium Medium

Number of page views High Medium Low Medium Medium

Percent secure pages
(privacy)

Low Medium Medium High High

Use of security
(authentication, integrity,
non-repudiation)

Low High High High High

Other characteristics High

50 WebSphere Application Server V6 Scalability and Performance Handbook

Table 2-7 Load impacts on components

2.2.4 Selecting the scaling techniques to apply
The best efforts in collecting the information needed are worthwhile in order to
make the best possible scaling decisions. Only when the information gathering is
as complete as it can be is it time to consider matching scaling techniques to
components.

Manageability, security, and availability are critical factors in all design decisions.
Techniques that provide scalability but compromise any of these critical factors
cannot be used.

Here is a list of the eight scaling techniques:

� Using a faster machine
� Creating a cluster of machines
� Using appliance servers
� Segmenting the workload

Workload
characteristics

Web
present.
server

Web
app.
server

Network Security
servers

Fire-
walls

Existing
busi-
ness
servers

Data-
base
server

High % user-specific
responses

Low High Low Low Low High High

High % cross-session
information

Med High Low Low Low Low Med

High volume of
dynamic searches

High High Med Low Med Med High

High transaction
complexity

Low High Low Med Low High High

High transaction
volume swing

Med High Low Low Low High High

High data volatility High High Low Low Low Med High

High # unique items Low Med Low Low Low High High

High # page views High Low High Low High Low Low

High % secure pages
(privacy)

High Low Low High Low Low Low

High security High High Low High Low High Low

 Chapter 2. Infrastructure planning and design 51

� Batch requests
� Aggregating user data
� Managing connections
� Caching

Using a faster machine
The goal is to increase the ability to do more work in a unit of time by processing
tasks more rapidly. Upgrading the hardware or software will result in a faster
machine. However, one of the issues is that software capabilities can limit the
hardware exploitation and vice versa. Another issue is that due to hardware or
software changes, changes may be needed to existing system management
policies.

Creating a cluster of machines
The goal is to service more client requests. Parallelism in machine clusters
typically leads to improvements in response time. Database partitioning can be
utilized to implement more machines running the database, allowing for parallel
processing of large queries. Also, system availability is improved due to failover
safety in replicas.

Note: Rather than buying hardware that can handle exponential growth that
may or may not occur, consider specific approaches for these three types of
servers:

� For application servers, the main technique for the growth path is to add
more machines. It is therefore appropriate to start with the expectation of
more than one application server. Depending on the topology, as
discussed in Chapter 3, “Introduction to topologies” on page 71, you may
assume a load balancer in front of the Web tier, or possibly in front of the
application server tier. Adding more machines then becomes easier and far
less disruptive.

� For data servers, get a server that is initially oversized; some customers
run at just 30% capacity. This avoids the problem in some environments
where the whole site can only use one data server. Another scaling option
when more capacity is needed is to partition the database into multiple
servers. Another possibility is to partition the data into multiple smaller
servers, taking advantage of distributed parallel processing techniques.

� Just as many sites separate the application server from the database
server, so do they separate the Web server from the application server.
The front-end Web serving and commerce application functions are placed
on less expensive commodity machines. Because these machines are
lower cost, a load balancer is also generally deployed with these machines.

52 WebSphere Application Server V6 Scalability and Performance Handbook

The service running in a replica may have associated with it state information
that must be preserved across client requests, and thus should be shared among
machines. State sharing is probably the most important issue with machine
clusters and can complicate the deployment of this technique. WebSphere's
workload balancing feature uses an efficient data-sharing technique to support
clustering. Issues such as additional system management for hardware and
software can also be challenging.

WebSphere Application Server V6 - Network Deployment provides the
WebSphere Edge Components that can be used for Web server load balanced
clusters. The clustering concept is discussed in various chapters throughout this
book. Details can also be found in Chapter 9, “Topologies” of the redbook IBM
WebSphere V6 Planning and Design Handbook, SG24-6446, which covers
several configurations utilizing clusters to improve performance and scalability.

Using appliance servers
The goal is to improve the efficiency of a specific component by using a special
purpose machine to perform the required action. These machines tend to be
dedicated machines that are very fast and optimized for a specific function.
Examples are network appliances and routers with cache.

Some issues to consider regarding special machines are the sufficiency and
stability of the functions and the potential benefits in relation to the added
complexity and manageability challenges. Make sure to apply the same
resiliency techniques to these devices. Do not introduce an appliance that
creates a new single point of failure in the environment.

Segmenting the workload
The goal is to split up the workload into manageable chunks, thereby obtaining a
more consistent and predictable response time. The technique also makes it
easier to manage which servers the workload is being placed on. Combining
segmentation with replication often offers the added benefit of an easy
mechanism to redistribute work and scale selectively, as business needs dictate.

An issue with this technique is that, in order to implement the segmentation, the
different workloads serviced by the component need to be characterized. Care
should be taken during implementation to ease the characterization of the
workload. After segmenting the workload, additional infrastructure may be
required to balance physical workload among the segments. If you decide that
workload segmentation is appropriate for your application, you may want to
investigate the use of WebSphere Partitioning Facility (WPF), which is available
in WebSphere Extended Deployment. Refer to Chapter 3, “Introduction to
topologies” on page 71 and Chapter 9, “Topologies” of the redbook IBM

 Chapter 2. Infrastructure planning and design 53

WebSphere V6 Planning and Design Handbook, SG24-6446 for further details
on workload segmentation and balancing configurations.

Batch requests
The goal is to reduce the number of requests sent between requesters and
responders (such as between tiers or processes) by allowing the requester to
define new requests that combine multiple requests.

The benefits of this technique arise from the reduced load on the responders by
eliminating overhead associated with multiple requests. It also reduces the
latency experienced by the requester due to the elimination of the overhead
costs with multiple requests. These requests can be processed offline or at night
time to reduce the load during peak hours.

One issue may be limits in achieving reuse of requests due to inherent
differences in various requests types (for instance, Web front end differs from
voice response front end). This can lead to increased costs of supporting
different request types. Another issue is the latency associated with batch
applications. There may also be regulations against delay of delivery of that
information that restrict the ability to batch requests.

Aggregating user data
The goal is to allow rapid access to large amounts of customer data controlled by
existing system applications and support personalization based on customer
specific data.

Accessing existing customer data spread across multiple legacy system
applications may cause these applications to become overloaded, especially
when the access is frequent. This can degrade response time. To alleviate this
problem, the technique calls for aggregating customer data into a customer
information service (CIS). A CIS that is kept current can provide rapid access to
the customer data for a very large number of customers; thus, it can provide the
required scalability. Another possible tool is the use of a front end software that
maps all the back end data as a single store, though in native format. A product
like DB2 Information Integrator provides such a facility.

An issue with a CIS is that it needs to scale very well to support large data as
well as to field requests from a large number of application servers (requesters).
Data currency issues also can result from creation of a CIS. An issue associated
with DB2 Information Integrator type tools is that not all proprietary formats for
data are supported. It may be necessary to develop your own maps, depending
on the nature of the legacy application.

54 WebSphere Application Server V6 Scalability and Performance Handbook

Managing connections
The goal is to minimize the number of connections needed for an end-to-end
system, as well as to eliminate the overhead of setting up connections during
normal operations. To reduce the overhead associated with establishing
connections between each layer, a pool of pre-established connections is
maintained and shared among multiple requests flowing between the layers.

For instance, WebSphere Application Server provides database connection
managers to allow connection reuse. It is important to note that a session may
use multiple connections to accomplish its tasks, or many sessions may share
the same connection. This is called connection pooling in the WebSphere
connection manager.

Another pool of connections is at the Web container level. The application server
environment pre-allocates this pool to allow for quick access to requests. Once a
request has been satisfied, the container releases the connection back to the
pool. There are configuration options for allowing this pool to grow beyond the
maximum, and to limit how far beyond that it can grow. These, however, can
create additional memory requirements. Care should be taken when adjusting
the parameters related to the Web container thread pool.

The key issue is with maintaining a session's identity when several sessions
share a connection. Reusing existing database connections conserves
resources and reduces latency for application requests, thereby helping to
increase the number of concurrent requests that can be processed. Managing
connections properly can improve scalability and response time. Administrators
must monitor and manage resources proactively to optimize component
allocation and use.

Refer to Chapter 14, “Server-side performance and analysis tools” on page 769
and Chapter 17, “Performance tuning” on page 939 for more information.

Caching
The goal is to improve performance and scalability by reducing the length of the
path traversed by a request and the resulting response, and by reducing the
consumption of resources by components.

Caching techniques can be applied to both static and dynamic Web pages. A
powerful technique to improve performance of dynamic content is to
asynchronously identify and generate Web pages that are affected by changes to
the underlying data. Once these changed pages are generated, they must be
effectively cached for subsequent data requests. There are several examples of
intelligent caching technologies that can significantly enhance the scalability of
e-business systems. For static Web pages, the key is to determine the

 Chapter 2. Infrastructure planning and design 55

appropriate content expiration, so that if a site changes, the caching component
knows to refresh the cached copy.

The key issue with caching dynamic Web pages is determining what pages
should be cached and when a cached page has become obsolete. Information
regarding caching techniques can be found in 4.8, “Caching Proxy overview” on
page 122 and Chapter 10, “Dynamic caching” on page 501.

At the database layer, caching should be used based on what facilities are
provided by the Database Management System. Using data pre-fetching, you
can have the database read additional data with the expectation that this data will
also be needed very soon. This can increase performance by minimizing the
number of disk reads required. Also, memory buffers can be used to house data
pages once read into memory. This also will reduce disk access. The key is to
make sure the system has adequate main physical memory to provide to the
database.

2.2.5 Applying the technique(s)
When performing any scaling, tuning, or adjustments to the application
environment, you should first try to apply the selected technique(s) to a test
environment to avoid directly impacting the production environment. The idea is
to evaluate not only the performance and scalability impact to a component, but
also to determine how each change affects the surrounding components and the
end-to-end infrastructure. A situation where improvements on one component
result in an increased (and unnoticed) load on another component is undesirable.

Figure 2-2 on page 57 illustrates the typical relationship between the techniques
and the key infrastructure components. By using this figure, the key techniques
for each component can be identified.

In many cases, all techniques cannot be applied because one or more of the
following statements are true:

� Investing in the techniques, even if it would prove helpful, is not affordable.

� There is no perceived need to scale as much as the techniques will allow.

� Cost/benefit analysis shows that the technique will not result in a reasonable
payback.

Therefore, there must be a process for applying these techniques in different
situations so that the best return is achieved. This mapping is a starting point and
shows the components to focus on first, based on application workload.

56 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 2-2 Scaling techniques applied to components

2.2.6 Re-evaluating
As with all performance-related work, tuning will be required. The goals are to
eliminate bottlenecks, scale to a manageable status for those that cannot be
eliminated, and work around those that cannot be scaled. Some examples of
tuning actions and the benefits realized are:

� Increasing Web server threads raises the number of requests that could be
processed in parallel.

� Adding indexes to the data server reduces I/O bottlenecks.

� Changing the defaults for several operating system variables allows threaded
applications to use more heap space.

Internet
Firewall

Load
Balancer

Cache

UI
Data

Business
Data

Business
Partners and

External
Services

Existing
Applications

and Data

Directory &
Security
Services

Intranet
Firewall

Client

Client

Web
Server

Appl
Server

DB
Server

Connectors

DNS Server

Storage Area
Network

1 2 3 5 6 7 84

8

Techniques

5

6

7

8

Request Batching
User Data Aggregation
Connection Management
Caching

Faster Machines
Clustered Machines
Specialized Machines
Segmented Workload

1

2

3

4

1
8

51
53
2

1
43
2

1 3

1
86
3 4

 Chapter 2. Infrastructure planning and design 57

� Caching significantly reduces the number of requests to the data server.

� Increasing the number of edge/appliance servers improves load balancing.

� Upgrading the data server increases throughput.

Such results demonstrate the potential benefits of systematically applying
scaling techniques and continuing to tune.

For an introduction into WebSphere tuning, refer to Chapter 17, “Performance
tuning” on page 939.

Recognize that any system is dynamic. The initial infrastructure will, at some
point, need to be reviewed, and possibly grown. Changes in the nature of the
workload can create a need to re-evaluate the current environment. Large
increases in traffic will require examination of the machine configurations. As
long as you understand that scalability is not a one-time design consideration,
that instead it is part of the growth of the environment, you will be able to keep a
system resilient to changes and avoid possibly negative experiences due to
poorly planned infrastructure.

For more details on the approach used in this section refer to the Design for
Scalability article available at the following URL:

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/scala
bility.html

2.3 Sizing
After creating a draft of your initial design, you should have built some scalability
into the architecture, but you still need to know the number of machines you will
have to work with for the project. The sizing of your hardware environment is
usually done in cooperation with IBM or a business partner.

For our further discussion, we assume that you do not have your application
completed yet because, for most projects, this will be the case. As an example,
the overall project budget has to be approved before the development project is
started. Or, the developers do not anticipate having the application ready for
some time.

It is imperative that you have as static a version of your application design at this
point as possible. Work closely with your development team, if at all possible.
The better you understand the application, the better your sizing estimation is
going to be.

58 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/scalability.html

At this point in time, you should also consider which hardware platform you want
to deploy and whether you prefer either scaling-up or scaling-out. The hardware
platform decision is primarily dependent on your platform preference, which
platforms have sizing information available, and which platforms are supported
by WebSphere Application Server. Hardware decisions may also be driven by
availability of hardware that forces a limitation in the operating systems that can
be deployed.

The choice between scaling-up or scaling-out is usually a decision of preference
and cost for your environment. The reality is, however, that application resiliency
issues may change your preferences. Scaling-up means to implement vertical
scaling on a small number of machines with many processors. This can present
fairly significant single points of failure (SPOF) because your environment is
composed of fewer large machines. Scaling-out, on the other hand, means using
a larger number of smaller machines. This can generally be thought of as
significantly more resilient, since it is unlikely that the failure of one small server
is adequate to create a complete application outage. However, scaling-out
introduces a higher maintenance overhead.

What you need to understand, however, is that the sizing estimations are solely
based on your input (which means that the better the input, the better the result).
The sizing work assumes an average application performance behavior. There
are no tests being run, but an average response time is assumed for each
transaction and calculations are performed to determine the estimated number of
machines and processors your application will require. If your enterprise has a
user experience team, they may have documented standards for typical
response times that your new project will be required to meet.

If you need a more accurate estimation of your hardware requirements and your
application is in a state that allows it to be used for benchmark tests, then you
might want to consider one of the benchmarking services offered by IBM or
Business Partners as discussed in 2.4, “Benchmarking” on page 59.

Please notice that this sizing is for your production environment only. Based on
this estimation, you not only have to update your production implementation
design but you also have to update the designs for the integration and
development environments accordingly. The key is to remember that changes to
the production environment should be incorporated into the development and
testing environments as well, if cost considerations do not merit otherwise.

2.4 Benchmarking
Benchmarking is the process used to take an application environment and
determine the capacity of that environment through load testing. This allows you

 Chapter 2. Infrastructure planning and design 59

to make reasonable judgements as your environment begins to change. Using
benchmarks, you can determine the current work environment capacity, and set
expectations as new applications and components are introduced.

Benchmarking is primarily interesting to two kinds of clients:

� Clients who already have an application and want to migrate to a new version
of WebSphere or want to evaluate the exact number of machines for their
target deployment platform.

� Clients who sell products based on WebSphere and want to provide sizing
estimations for their products.

Many sophisticated enterprises maintain a benchmark of their application stack
and change it after each launch or upgrade of a component. These customers
usually have well developed application testing environments, and teams
dedicated to the cause. For those that do not, alternatives are available, such as
the IBM Eserver Benchmark Centers or the IBM Test Center. Please refer to
“IBM eServer™ Benchmarking Centers” on page 60 and “IBM Test Center” on
page 61 for more information about these options.

There are also third party benchmark companies that provide this service. When
choosing, make sure that the team performing the benchmark tests has
adequate knowledge of the environment, and a clear set of goals. This helps to
reduce the costs of the benchmark tests, and creates results that are much
easier to quantify.

2.4.1 IBM eServer™ Benchmarking Centers
Learning by trial and error or placing your leading-edge solution into production
and then learning it doesn't work the way you expected can be a very painful
experience. That's why the IBM Eserver Benchmark Centers are the resource
to tap when you want to minimize risks before moving a new solution into your
production environment. This service is available both for customers and IBM
Business Partners.

If you need to test your solution in a simulated production environment but you do
not have a test environment big enough to stress the solution, the IBM Eserver
Benchmark Centers can run your applications and your configuration and stress
the solution for you using the safety of the simulated environment created in the
Benchmark Center. You can also use the Benchmark Centers when you require
more performance and scalability proof than what's published in
industry-standard and application-specific benchmarks. The Benchmark Centers
offer the assurance that your developed solution will hold up under the stresses
of real-world e-business transactions in your environment. Fees vary by
engagement.

60 WebSphere Application Server V6 Scalability and Performance Handbook

To get started, ask your IBM Sales Representative or Business Partner about
getting help for testing your solution or to perform a proof of concept in a
simulated production environment.

For xSeries®, there is a center in Montpellier, France.

For iSeries, the centers are in:

� Montpellier, France
� Rochester, USA

See http://www-1.ibm.com/servers/eserver/iseries/benchmark/cbc/ for
details.

For pSeries, the centers are in:

� Montpellier, France
� Poughkeepsie, USA

For zSeries®, there are centers in:

� Montpellier, France
� Boeblingen, Germany
� Poughkeepsie, USA
� Gaithersburg, USA

For more information, go to:

http://www-1.ibm.com/servers/eserver/benchmark.html
http://www-1.ibm.com/partnerworld/pwhome.nsf/weblook/tech_support_emea_ats.
html

IBM Business Partners can also get in touch with an IBM Innovation Center for
benchmarking. You will find additional information at:

http://www.developer.ibm.com/en_US/spc/istc/benchmark.html

2.4.2 IBM Test Center
IBM Global Services offers customers the ability to retain IBM for Performance
Management, Testing and Scalability services. This team will come to a
customer site and assess the overall site performance. This investigation is
platform neutral, with no sales team poised to sell additional hardware as a result
of the analysis. Offerings include, but are not limited to:

Note: This list of Benchmark Centers might not be complete. If in doubt,
please contact your local IBM representative to find centers close to you.

 Chapter 2. Infrastructure planning and design 61

http://www-1.ibm.com/servers/eserver/benchmark.html
http://www.developer.ibm.com/en_US/spc/istc/benchmark.html
http://www-1.ibm.com/servers/eserver/iseries/benchmark/cbc/
http://www-1.ibm.com/partnerworld/pwhome.nsf/weblook/tech_support_emea_ats.html

� Testing and Scalability Services for TCP/IP networks
� Testing and Scalability Services for Web site stress analysis
� Performance Engineering and Test Process Consulting
� Performance Testing and Validation
� Performance Tuning and Capacity Optimization

When utilizing a service like those provided by the IBM Test Center, you are
presented with large amounts of supporting documentation, and evidence to
support the results of the tests. This data can then be used to revise your current
architecture, or possibly just change the overall infrastructure footprint to add
additional machines, or correct single points of failure.

These offerings can be purchased through your local IBM account
representative.

2.5 Performance tuning
Performance is one of the most important non-functional requirements for any
WebSphere environment. Application performance should be tracked
continuously during your project.

Imagine your project is finished; you switch your environment to production, and
your environment is unable to handle the user load. This is by far the most
user-visible problem that you could have. Most users are willing to accept small
functional problems when a system is rolled out, but performance problems are
unacceptable to most users and affect everyone working on the system.

2.5.1 Application design problems
Many performance problems, however, cannot be fixed by utilizing more
hardware or changing WebSphere parameters as they are related to the
application design. Because of this, you really want to make performance testing
(and tuning) part of your development and release cycles. It will take much more
effort and money to correct the problem after it occurred in production than to fix
the problem up front.

The value of frequent testing starting early during the development cycle ensures
that performance and scalability bottlenecks are identified early enough to take
corrective action either through application remediation or by identifying
additional hardware requirements. In addition to minimizing performance and
scalability issues, application problems are also identified earlier and have less of
an opportunity to manifest themselves in production.

62 WebSphere Application Server V6 Scalability and Performance Handbook

2.5.2 Understand your requirements
Without a clear understanding of your requirements, you have no target to tune
against. The most important thing when doing performance tuning is to know
your objectives. Do not waste time trying to do performance tuning on a system
that was improperly sized and cannot withstand the load no matter how long you
tune it. Nor should you continue tuning your system when you are already
beyond your performance targets.

You need to know the following two things to understand your requirements:

� Non-functional requirements
� Sizing

If you do not have this information and you are asked to tune a system, either
you will fail or you will not know when to stop tuning.

2.5.3 Test environment setup
When performing any performance tests, make sure these criteria are applied
throughout all your tests:

� Perform your tests on machines that mirror the production server state. Be as
realistic as possible with the test environment. Try to get the closest hardware
configuration possible to the production environment. Make sure you will be
able to extrapolate the test results to the production environment.

� Make sure you are using the same data set for all your tests. This allows for
better comparability of your test results. At least one of your test environments
should also include production data volumes to ensure that all data access
paths are realistically tested.

� Make sure that nobody is using the test machines and that no background
processes are running that consume more resources than what you find in
production. As an example, if the intent is to test performance during the
database backup, then make sure the backup is running.

This means that running your monitoring software in the background, which
also runs in production, like Tivoli or BMC is all right, but having a database
backup running may not be valid for your desired test.

� Check CPU, memory and disk utilization before and after each test run to see
if there are any unusual patterns. If the target environment will be using
shared infrastructure (messaging servers, authentication providers, for
example), try to make sure the shared component is performing under a
projected shared load.

� Isolate network traffic as much as possible. Using switches, there is rarely a
circumstance where traffic from one server will overrun the port of another. It

 Chapter 2. Infrastructure planning and design 63

is possible, however, to flood ports used for routing off the network to other
networks, or even the switch backbone for very heavy traffic. Make sure that
your network is designed in such a manner that it isolates the testing
environment as much as possible prior to starting, since performance
degradation of the network can create unexpected results.

2.5.4 Test phases
There are different test phases during your project cycle. These phases are:

� Development testing
� Application and environment testing

Development testing
During the application development phase, the development team should publish
regular code base versions and builds to a test server. This activity supports
incremental code development, integration, and testing. The development team
should also create a Build Verification Test process, one where each new build is
executed before making this build available to the team. A Build Verification Test
covers one or more test cases or scenarios, and it should test the critical paths
through the code that are operational and require validation. Executing the Build
Verification Test will ensure that the new build has no obvious errors.

The Build Verification Test process should start as soon as one or more use
cases are ready and have been tested on the test server.

The back-end test system where the Build Verification Test is carried out should
reasonably mimic the interfaces and communication systems of the production
systems to ensure the code can be tested using end-to-end scenarios. The
better able the development team is to create an accurate test environment, the
more effective and thorough its tests will be.

Application test phase
Following the application development phase is the application test phase. This
phase is entirely dedicated to testing and adds value by ensuring that all code is
tested at the site level before the site itself becomes fully operational. Unless
otherwise indicated, all stress and performance tests should be performed on the
actual site code.

The main activities during the application test phase are:

� Functional Verification Test (FVT)

The main objective of this activity is to test the functionality of the code from
end to end, using a suite of test cases.

64 WebSphere Application Server V6 Scalability and Performance Handbook

� System Integration Test (SIT)

This activity is a preparatory phase that determines if the customer test
environment is ready to support system tests and User Acceptance Test.

� System Verification Test (SVT)

The purpose of this activity is to validate the functionality of site code received
from the development team. All system tests should be performed in the
simulated environment.

� User Acceptance Test (UAT)

This activity focuses on the final site look and feel, the site flows and
behaviors, and overall business process validation. Normally, the final
consumer, the customer, is the one who carries out this activity.

Each activity focuses on a different aspect of the application testing phase; the
details of these activities are beyond the scope of this book.

System integration and verification testing
An integration system should be a very close approximation of the logical layout
of the production environment. This could mean multiple partitioned machines to
simulate the numbers of production machines, or it could mean smaller machines
in terms of processing, but equal in number. The following are general
recommendations that you may want to follow:

� For a production system with up to two machines in a single layer, you should
either get the same machine for integration testing, or half the processors in
each machine.

� If you have more than two clustered machines in a single layer, you might
want to get half the number of machines than you have in production.

It is important to keep in mind that the integration system should be at least half
as large as your production environment to get meaningful results, and you want
to have the same WLM characteristic that you have in production. This is
necessary because WebSphere Application Server behaves differently in a
cluster than with a single application server. If using persistent session state, this
is an essential item for testing. Again, try to be as realistic as possible, ensuring
that you can extrapolate the test results to the production environment.

During the production phase of your application, you use this environment to
perform load tests and compare their results to baseline results that you captured
with your earlier software builds. Based on this, because your production
environment is some multiple of the size of your integration environment, you will
be able to tell how the new release impacts your production environment and
whether this release is already fit to be deployed there.

 Chapter 2. Infrastructure planning and design 65

2.5.5 Load factors
The most important factors that determine how you conduct your load tests are
the following:

� Request rate
� Concurrent users
� Usage patterns

This is not a complete list and other factors may become more important
depending on the kind of site being developed. These factors are explained in
greater detail in Chapter 17, “Performance tuning” on page 939.

Usage patterns
At this point in the project, it is very important that you think about how your users
will use the site. You may want to use the use cases that your developers defined
for their application design as the input to build your usage patterns. This makes
it easier to later build the scenarios that the load test would use.

Usage patterns consist of the following parts:

� Use cases modeled as click streams through your pages
� Weights applied to your use cases

Combining weights with click streams is very important because it shows you
how many users you expect in which of your application components and where
they generate load.

After all, it is a different kind of load if you expect 70% of your users to search
your site instead of browsing through the catalog than the other way around.
These assumptions also have an impact on your caching strategy.

To use this information later when recording your load test scenarios, we
recommend you write a report with screen shots or URL paths for the click
streams (user behavior). Include the weights for your use cases to show the
reviewers how the load was distributed.

Make sure that you notify the developers of your findings so they can apply them
to their development effort. Also make sure that the most common use cases are
the ones where most of the performance optimization work is done.

2.5.6 Production system tuning
This is the only environment that impacts the user experience for your customers.
This is where you apply all the performance, scalability and high availability
considerations and techniques described throughout this book and where you

66 WebSphere Application Server V6 Scalability and Performance Handbook

tune WebSphere parameters as described in 17.5, “Performance tuning
guidelines” on page 975.

Tuning this system is an iterative process and instead of testing multiple
application versions here and comparing them to each other, you are changing
WebSphere configuration parameters themselves and optimize them to suit your
runtime environment.

When changing a production environment, you should use regular system
administration practices, such as those outlined in Chapter 17, “Performance
tuning” on page 939. This implies some standard practices:

� Change only one parameter at a time
� Document all your changes
� Compare several test runs to the baseline

These test runs should not differ by more than a small percentage or you have
some other problem with your environment that you need to sort out before you
continue tuning.

As soon as you have finished tuning your production systems, you should apply
the settings, where it makes sense, to your other test environments to make sure
they are similar to production. You should also re-run your tests there to establish
new baselines on these systems and to see how these changes affect the
performance.

Please keep in mind that usually you only have one chance on getting this right.
Normally, as soon as you are in production with your system, you can no longer
run performance tests on this environment because you cannot take the
production system offline to run more performance tests. If a production system
is being tested, it is likely that the system is running in a severely degraded
position, and you have already lost half the battle.

Important: You should use the final application code to perform tuning in the
production environment. This version should have passed performance tests
on the integration environment prior to changing any WebSphere parameters
on the production system.

Note: Because it is rare to use a production system for load tests, it is usually
a bad idea to migrate these environments to new WebSphere versions without
doing a proper test on an equivalent test system or new hardware.

 Chapter 2. Infrastructure planning and design 67

After completing your first performance tests on your production systems and
tuning the WebSphere parameters, you should evaluate your results and
compare them to your objectives to see how all of this worked out.

2.5.7 Conclusions
There are various possible outcomes of your performance tests that you should
clearly understand and act upon:

� Performance meets your objectives.

Congratulations! But do not stop here. Make sure you have planned for future
growth and are meeting all your performance goals. We recommend
documenting your findings in a performance tuning report and archiving it.
Include all the settings you changed to reach your objectives.

This report will be very useful when you set up a new environment or you
have to duplicate your results somewhere else on a similar environment with
the same application. This data will also be essential when adding additional
replicas of some component in the system because it ensures that you can
change settings on the new system to the settings of the current system.

� Performance is slower than required.

Your application performance is somewhat slower than expected and you
have already performed all possible application and WebSphere parameter
tuning. You might need to add more hardware (for example, increase
memory, upgrade processors, etc.) to those components in your environment
that proved to be bottlenecks during your performance tests. Then run the
tests again. Verify with the appropriate teams that there were no missed
bottlenecks in the overall system flow.

� Performance is significantly slower than required.

In this case, you should start over with your sizing and ask the following
questions:

– Did you underestimate any of the application characteristics during your
initial sizing? If so, why?

– Did you underestimate the traffic and number of users/hits on the site?

– Is it still possible to change parts of the application to improve
performance?

– Is it possible to obtain additional resources?

After answering these questions, you should have a better understanding of
the problem that you face right now. Your best bet is to analyze your
application and try to find the bottlenecks that cause your performance
problems. Tools like the Profiler, which is part of IBM Rational Application

68 WebSphere Application Server V6 Scalability and Performance Handbook

Developer V6.0, can help you with this (refer to 15.2, “The Profiler (profiling
tools)” on page 840 for more information).

 Chapter 2. Infrastructure planning and design 69

70 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 3. Introduction to topologies

This chapter discusses some basic topologies and a variety of factors that come
into play when considering the appropriate choice, such as:

� Performance and throughput
� Scalability, availability, maintainability
� Security, session state

We describe some topologies that address these factors.

The following topics are discussed in this chapter:

� J2EE tiers model
� Topology selection criteria
� Strategies for scalability
� Web server topology in a Network Deployment cell
� Single machine, single node, Web server separated
� Vertical scaling topology
� Horizontal scaling topology
� Horizontal scaling with IP sprayer topology
� Topology with redundancy of several components
� The sample topology
� Topologies and high availability
� Topology selection summary

3

© Copyright IBM Corp. 2005. All rights reserved. 71

3.1 J2EE tiers model
This section covers the basics of a generic J2EE multi-tier application.

Java 2 Platform Enterprise Edition (J2EE) is a set of standards for developing
and deploying enterprise Java applications, providing a multi-tier distributed
application model, which can be divided basically into four main architectural
tiers, as depicted in Figure 3-1:

� Client tier
� Presentation tier
� Business logic tier
� The Enterprise Information Systems (EIS) tier

Figure 3-1 Multi-tier application model

The client tier encompasses various client types, such as browsers, applets or
stand-alone application clients. These clients can reside both within and outside
of the enterprise firewall. User actions are translated into server requests and the
server responses are translated into a user-readable format.

The presentation tier embraces Web components, either JSPs or servlets, which
are deployed on Web containers. They access data and services from other tiers,
handle user requests and screen flow, and can also control user interaction,
presenting the returned information back to the client.

Client Tier Presentation Tier EIS Tier

EIS Resources

Business Logic Tier

Application Server
Web

Container

JSP

Servlet

EJB
Container

Java Beans

EJB

DBMS

Legacy
Systems

ERP
Stand-alone

Client

Browser

72 WebSphere Application Server V6 Scalability and Performance Handbook

Business logic components access enterprise data and business rules,
consisting of enterprise beans, deployed on EJB containers. There are three
kinds of enterprise beans: session beans, entity beans, and message-driven
beans.

The Enterprise Information Systems tier is commonly referred to as the back-end
tier; examples include database management systems, mainframe transaction
processing and other legacy systems.

J2EE does not specify the structure and implementation of the runtime. It
introduces the concept of container; the contract between applications and the
container is specified via the J2EE APIs. WebSphere Application Server delivers
the infrastructure for deploying J2EE-compliant applications, providing the
application servers on which we will run our Java programs. The application
server implements the Web container and EJB container components.

On a WebSphere topology, the basic components that interact to execute our
application are:

� The HTTP server and WebSphere Web server plug-in
� WebSphere Application Server (Web containers and EJB containers)
� Databases (application databases)

The emphasis of our topologies scenarios will be the mapping of the J2EE
application architecture tiers to a physical deployment on WebSphere Application
Server as well as how to apply different techniques and component associations
in order to provide scalability, load balancing and failover, based on multiple
criteria.

Note: The Web container in WebSphere Application Server has an embedded
HTTP transport (the so-called WebContainer Inbound Chain), which allows for
direct connection to the application without the need for a separate Web
server. While using this transport as a Web server is very handy for testing or
development purposes it should not be used in production environments. For
performance and security reasons, it is recommended that you use a
stand-alone Web server and the HTTP plug-in for the Web server in a
production environment.

 Chapter 3. Introduction to topologies 73

3.2 Topology selection criteria
While a variety of factors come into play when considering the appropriate
topology for a WebSphere deployment (see Chapter 1, “Overview and key
concepts” on page 3), the primary factors to plan for typically include:

� Security
� Performance
� Throughput
� Scalability
� Availability
� Maintainability
� Session state

To assist you with selecting a topology, we provide a selection criteria table in
3.12, “Topology selection summary” on page 94.

For detailed information about topologies, their advantages and disadvantages,
required software, as well as topology selection criteria, please refer to the
redbook IBM WebSphere V6 Planning and Design Handbook, SG24-6446.

3.3 Strategies for scalability
On demand computing requires the ability to scale up or scale down an
application, depending on the current requirements. Thus, scalability is important
to improve efficiency and reduce cost.

We start by discussing scalability strategies using WebSphere Application Server
that can help us in ensuring high availability, load balancing, and removing
bottlenecks.

Note: For each of the Network Deployment topologies, a decision needs to be
made regarding the placement of the Deployment Manager and master cell
repository. The Deployment Manager can be located either on a dedicated
machine, or on the same machine as one of its nodes. It is, however,
considered a best practice to place the Deployment Manager on a separate
machine. For more information about possible configurations please refer
to 9.3, “Cell topologies” in the redbook IBM WebSphere V6 Planning and
Design Handbook, SG24-6446.

74 WebSphere Application Server V6 Scalability and Performance Handbook

The basic infrastructure components that make up a WebSphere application are:

� HTTP server and Web server plug-in
� Web container
� EJB container
� Database(s)

IBM WebSphere Application Server implements Web containers and EJB
containers in each application server. The application servers each run in their
own JVM (Java Virtual Machine).

If we have all components co-located on a single machine, they might:

� Compete for machine resources
� Influence each other’s behavior
� Have unauthorized access to strategic resources

One strategy is to physically separate some components, preventing them from
competing for resources (CPU, memory, I/O, network, and so on) or to restrict the
access to a resource from another machine (for example, inserting a firewall in
order to protect confidential information). This approach is represented in
Figure 3-2.

Figure 3-2 Separating components across multiple machines

Application ServerHTTP
Requests

Single Machine

HTTP
Requests

Application Server

Web
Container

Machine B

Application Server

EJB
Container

Machine C Machine D

Database
HTTP
Server

Machine A

Web
Container

EJB
Container Database

HTTP
Server

 Chapter 3. Introduction to topologies 75

We can also exploit another strategy, distributing the load among the most
appropriate resources, and using workload management techniques such as
vertical and horizontal scaling, as described in 1.3.3, “Workload management
using WebSphere clustering” on page 19. WebSphere Application Servers can
benefit from vertical and horizontal scaling and the HTTP servers can be
horizontally scaled on a clustered configuration. The use of these techniques is
represented in Figure 3-3 on page 77.

Important: Figure 3-2 shows the Web container and the EJB container
separated on different machines. Although this is a possible configuration, it is
not recommended because doing so results in out-of-process calls from the
EJB clients in the Web container to the EJB container and will likely have a
negative impact on performance. As a result, we will not cover this split JVM
topology further in this chapter.

76 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 3-3 Vertical and horizontal scaling

Starting with 3.5, “Single machine, single node, Web server separated” on
page 81, we describe some basic topologies, beginning with a single machine
topology and expanding it to a complex topology where different techniques are
applied on a set of distributed machines, in order to provide a reliable and
efficient processing environment.

Node 1

Application Server 1

Application Server 2

DatabaseApplication Server

Node 1

Application Server 1

Node2

Application Server 2

HTTP
Server

HTTP
Server

Cluster

IP
Sprayer

HTTP
Server

Horizontal Scaling

Vertical Scaling

Horizontal Scaling

HTTP
Requests

Cluster

Cluster

 Chapter 3. Introduction to topologies 77

Session persistence considerations
If the application maintains state between HTTP requests and we are using
vertical or horizontal scaling, then we must consider using an appropriate
strategy for session management.

Each application server runs in its own JVM process. To allow a failover from one
application server to another without logging out users, we need to share the
session data between multiple processes. There are two ways of doing this in
WebSphere Application Server Network Deployment:

� Memory-to-memory session replication

This method employs Data Replication Service (DRS) to provide replication of
session data between the process memory of different application server
JVMs. DRS is included with WebSphere Application Server and is
automatically started when the JVM of a clustered (and properly configured)
application server starts.

� Database persistence

Session data is stored in a database shared by all application servers.

Memory-to-memory replication has the following advantages and disadvantages
compared to database persistence:

� No separate database product is required.

� Enabling and configuring replication is very easy using the Administrative
Console.

� The overhead of replicating session information might be significant
depending on the number of application servers in your replication domain,
the size of the sessions, and the configuration of the replication domain
(Single replica, Entire Domain, Number of replicas). Therefore, care must be
taken to configure the replication domain correctly and database persistence
might be the better choice in a memory constraint environment.

Refer to Chapter 12, “Session management”, especially Section 12.9, “Persistent
session management”, of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451 for detailed information.

3.4 Web server topology in a Network Deployment cell
A new feature in WebSphere Application Server V6 is that a Web server can be
defined in a cell as a Web Server Node. This allows the association of
applications to one or more Web servers. This way, custom plug-in configuration
files can be generated for specific Web servers. The subsequent sections will
cover some more details for this topology.

78 WebSphere Application Server V6 Scalability and Performance Handbook

3.4.1 Web server managed node
A managed node means that the Web server is managed by the Deployment
Manager. This configuration provides the ability to start and stop the Web server
from the Administrative Console and automatically push the plug-in configuration
file to the Web server. It requires a Node Agent to be installed on the Web server
machine as shown in Figure 3-4.

Figure 3-4 Web server managed node

3.4.2 Web server unmanaged node
This is the standard deployment option employed prior to the introduction of a
managed node WebSphere Application Server V6. This is most often used for
Web servers deployed between two firewalls inside a "DMZ" where no Node
Agent is installed. The use of this topology requires that each time the plug-in
configuration file is regenerated, it has to be copied manually from the machine
where WebSphere Application Server is installed to the machine where the Web
server is running. Refer to Figure 3-5 on page 80 for this topology.

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Cell

Server A

Manages

Web
Server

Deployment
Manager

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

Node
Agent

 Chapter 3. Introduction to topologies 79

Figure 3-5 Web server unmanaged node

3.4.3 IBM HTTP Server (IHS) as unmanaged node (special case)
If the Web server is IBM HTTP Server V6, then the Web server can be installed
on a remote machine without a Node Agent and still be administered from the
Deployment Manager using the IBM HTTP Server Admin Process for tasks such
as starting and stopping the Web server or automatically pushing the plug-in
configuration file to it. This is shown in Figure 3-6.

Figure 3-6 IHS unmanaged - special case

Cell

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Server A

Web
Server

Server B

Plug-in
Module

Plug-in
Config

XML File

Deployment
Manager

Manual copy or shared file

Cell

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Server A HTTP
commands to
manage IHS

Web
Server

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

IHS Admin
Process

Deployment
Manager

80 WebSphere Application Server V6 Scalability and Performance Handbook

3.5 Single machine, single node, Web server separated

Although it is possible to collocate the Web server with the application server, this
is not recommended, mainly for security reasons (no DMZ established). When
compared to such a collocated configuration, separation of the application server
and the Web server provides improvement in security, performance, throughput,
availability and maintainability. Figure 3-7, “Web server separation” on page 81
illustrates this topology.

Figure 3-7 Web server separation

The Web server plug-in allows the Web server to route requests to the
application server even when they are physically separated. It uses an XML
configuration file (plugin-cfg.xml) that contains settings that describe how to
handle and pass on requests to the WebSphere Application Server(s). Be aware
that in this case, the plugin-cfg.xml configuration file is generated on the machine
where the application server is installed so it has to be moved, each time it is
regenerated, from the machine where the application server resides to the
machine where the Web server and the plug-in module are installed.

A failure on the Web server could be bypassed pointing the DNS to the machine
where WebSphere Application Server is installed. This way, the embedded
WebSphere Application Server Web server (WebContainer Inbound Chain) can
replace (with limited throughput) the Web server while the problem is being
solved.

I
N
T
E
R
N
E
T

Outside World

LDAP

DMZ Internal Network

Pr
ot

oc
ol

 F
ire

w
al

l

User

Existing
Applications

and Data

Directory and
Security
Services

HTTP/HTTPS

Web
Server

Server A D
om

ai
n

Fi
re

w
al

l

Application
Data

Existing
Applications

and Data
Database

Server

Application
Server

Server B

 Chapter 3. Introduction to topologies 81

3.6 Vertical scaling topology
Vertical scaling refers to configuring multiple application servers on a single
machine and creating a cluster of associated application servers all hosting the
same J2EE application(s). This configuration is depicted in Figure 3-8.

Figure 3-8 Vertical scaling

Represented in Figure 3-8 is a vertical scaling example that includes a cluster
with three cluster members. In this case, the Web server plug-in routes the
requests according to the application servers availability. Load balancing is
performed at the Web server plug-in level based on a round-robin algorithm and
with consideration of session state. Failover is also possible as long as there are
active application servers (JVMs) on the system.

Vertical scaling can be combined with other topologies to boost performance,
throughput and availability.

3.7 Horizontal scaling topology
Horizontal scaling exists when the cluster members are located across multiple
machines. This lets a single application span over several machines, yet still
presenting the application as a single logical image. Figure 3-9 on page 83

Web Server
Node

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

Pr
ot

oc
ol

 F
ire

w
al

l

User

LDAP

HTTP/HTTPS

Application
Data

Application
Server
Node

Server A

Web
Server

Server C

D
om

ai
n

Fi
re

w
al

l

Web Server
Plug-in

Deployment
Manager

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data
Database

Server

Server B

Cluster

Application
Server 1

Application
Server 2

Application
Server 3

82 WebSphere Application Server V6 Scalability and Performance Handbook

illustrates a horizontal scaling topology with two Application Server Nodes, each
one on a separate machine (Servers B and C). Notice that there is a fourth
server, Server D, where the Deployment Manager is installed to manage the
cluster.

Figure 3-9 Horizontal scaling with cluster

The Web server plug-in distributes requests to the cluster members on each
node and performs load balancing and failover. If the Web server (Server A) goes
down, then the WebContainer Inbound Chain of Server B or C could be utilized
(limited throughput) meanwhile Server A or the Web server on Server A is
repaired.

Be aware that this configuration introduces a single point of failure; when the
HTTP server is out of service, your entire application is inaccessible from the
outside network (internal users could still access the application server(s) using
the WebContainer Inbound Chain). You can omit this SPOF by adding a backup
Web server.

If any component in the Application Server Node 1 (hardware or software) fails,
the Application Server Node 2 can still serve requests from the Web Server Node
and vice versa.

The Load Balancer, part of the WebSphere Edge Components, can be
configured to create a cluster of Web servers and add it to a cluster of application
servers. This is shown in 3.8, “Horizontal scaling with IP sprayer topology” on
page 84.

Application
Server
Node 2

Server C

Web Server
Node

I
N
T
E
R
N
E
T

Outside World DMZ Internal Network

Pr
ot

oc
ol

 F
ire

w
al

l

User

LDAP

HTTP/HTTPS

Application
Data

Application
Server
Node 1

Web
Server

Server D

D
om

ai
n

Fi
re

w
al

l

Server A

Web Server
Plug-in

Application
Server 2

Server B

Cluster

Application
Server 1

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data
Database

Server

Deployment
Manager

 Chapter 3. Introduction to topologies 83

3.8 Horizontal scaling with IP sprayer topology
Load balancing products can be used to distribute HTTP requests among Web
servers that are running on multiple physical machines.

The Dispatcher component of Load Balancer, which is part of the WebSphere
Edge Components, is an IP sprayer that performs intelligent load balancing
among Web servers based on server availability and workload capacity as the
main selection criteria to distribute the requests. Refer to Chapter 4, “Introduction
to WebSphere Edge Components” on page 99 for details.

Figure 3-10 illustrates a horizontal scaling configuration that uses an IP sprayer
on the Load Balancer Node to distribute requests between Web servers on
multiple machines.

Figure 3-10 IP sprayer horizontally scaled topology

The Load Balancer Node sprays Web client requests to the Web servers. The
Load Balancer is configured in cascade. The primary Load Balancer
communicates to his backup through a heartbeat to perform failover, if needed,
and thus eliminates the Load Balancer Node as a single point of failure.

Both Web servers perform load balancing and failover between the application
servers (cluster members) through the Web server plug-in.

Load
Balancer

Node
I
N
T
E
R
N
E
T

Outside World DMZ Internal Network
P

ro
to

co
l F

ire
w

al
l

User

LDAP

HTTP/HTTPS

Application
Data

Load
Balancer

Server A

Cascade
Load

Balancer
Backup
Node

Load
Balancer

Server B

Server G

Existing
Applications

and Data

Directory and
Security
Services

Existing
Applications

and Data
Database

Server

Deployment
Manager

Web Server
Node

Web Server
Node

Server C

Server D

Server F

Cluster

Application
Server

Application
Server

Server E

Application
Server Node

Application
Server Node

Web
Server

Web
Server

D
om

ai
n

Fi
re

w
al

l

84 WebSphere Application Server V6 Scalability and Performance Handbook

If any component on Server C, D, E, or F fails, the other ones can still continue
receiving requests.

3.9 Topology with redundancy of several components
The idea behind having as much redundancy of components as possible is to
eliminate (keep minimized) the single points of failure (SPOF). Most of the
components allow some kind of redundancy like a Load Balancer backup node
for the primary Load Balancer node, or clustered Web servers and/or application
servers, etc. Some other components like the Deployment Manager do not
support any automatic backup/failover. Figure 3-11 on page 86 illustrates a
topology with redundancy of several components including:

� Two Load Balancers
The one on Server A is the primary (active) Load Balancer. It is synchronized,
through a heartbeat, with a backup Load Balancer (in standby status) on
another machine, Server B.

� Two Web servers
Both of them receive requests from the Load Balancer and share the requests
that come from the Internet. Each one is installed on a different machine.

� An application server cluster
The cluster implements vertical and horizontal scaling.

� Eight cluster members
Two on each Application Server Node.

� Four Application Server Nodes
Each one hosting two application servers. The nodes on Server E are
independent installations. The nodes on Server F are profiles of a single
installation.

� Two database servers
Using a HA (high availability) software product. This means that one copy of
the database is the one that is being used and the other one is a replica that
will replace the first one if it fails.

� Two LDAP servers
Using a HA (high availability) software product. This means that one copy of
the database is the one that is being used and the other one is a replica that
will replace the first one if it fails.

Tip: The Web server and Load Balancer can be collocated.

 Chapter 3. Introduction to topologies 85

Figure 3-11 Topology with redundancy of several components

3.10 The sample topology
We started our discussion of topologies with a single server configuration where
all components reside on the same machine. Now we introduce a sample
configuration that explores some of the subjects discussed so far:

� Separating the HTTP server
� Separating the database
� Vertical scaling
� Horizontal scaling
� HTTP server clustering

Load
Balancer

Node

Outside World DMZ Internal Network

Server A

Cluster

Cascade
Load

Balancer
Backup

Node

Server B

LDAP

Existing
Applications

and Data

Directory and
Security
Services

Application
Data

Existing
Applications

and Data
Database

Server

Server J

LDAP

Existing
Applications

and Data

Directory and
Security
Services

Application
Data

Existing
Applications

and Data
Database

Server

Deployment
Manager

Web Server
Node 1

Web Server
Node 2

Load
Balancer

Application Server Node 1

Application Server Node 2

Application Server Node 3

Application Server Node 4

Server H

Pr
ot

oc
ol

 F
ire

w
al

lI
N
T
E
R
N
E
T

HTTP/HTTPS

User

Load
Balancer

Cell Multiple Servers

D
om

ai
n

Fi
re

w
al

lServer C

Server D

Web
Server

Web
Server

Application Server 1

Application Server 1

Server E

Application Server 2

Application Server 3

Server F

Application Server 5

Application Server 6

Server G

Application Server 7

Application Server 8

86 WebSphere Application Server V6 Scalability and Performance Handbook

To configure, test, and evaluate the behavior of several components, we set up
the configuration illustrated in Figure 3-12 on page 88 and used it throughout this
book to test and evaluate aspects of IBM WebSphere Application Server V6
scalability and high availability. Chapter 8, “Implementing the sample topology”
on page 387, describes the steps to set up this sample configuration.

The resulting topology is composed of:

� A cluster of two Web servers (IBM HTTP Server) supplemented by a Caching
Proxy and a Load Balancer (both from WebSphere Edge Components). Both
the Caching Proxy and the Load Balancer are installed with backup servers to
provide high availability of these components.

� A dedicated Deployment Manager machine managing the WebSphere
Application Server cell, running IBM WebSphere Application Server Network
Deployment V6.

� A WebSphere cluster of three application server processes on two physical
machines. WebSphere Application Server V6 is installed on both machines.

A dedicated database server running IBM DB2 UDB V8.2.

Important: To make it easier to demonstrate the workload management and
failover capabilities of WebSphere, we have chosen to split the Web container
and the EJB container in our sample topology.

As mentioned earlier, while this is a possible configuration, however, it is not
recommended because it will most likely have a negative impact on the
performance. This is as a result of the out of process calls from the EJB clients
in the Web container to the EJB container.

 Chapter 3. Introduction to topologies 87

Figure 3-12 ITSO sample topology

We have two HTTP servers configured as a cluster under the control of
WebSphere Load Balancer. The HTTP servers are configured to respond both to
port 80 (HTTP) and port 443 (HTTPS). The Load Balancer server distributes
requests among the caching proxies and HTTP servers based on weights set by
the Load Balancer’s Manager component.

In addition to monitoring the network reachability of the machines, an HTTP
advisor is activated to poll the availability of the HTTP service on each machine.

Admin Console

app2

app1

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

D
B2

 C
lie

nt
D

B2
 C

lie
nt

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB2b

Web
Cont.

Web2b

EJB
Cont.

EJB1

Web
Cont.

Web1

EJB
Cont.

EJB2a

Web
Cont.

Web2a

Client

IBM HTTP
Server

http1

IBM HTTP
Server

http2

Plug-in

Plug-incproxy
 C

ac
hi

ng
 P

ro
xy

B

ac
ku

p
 C

ac
hi

ng
 P

ro
xy

lb2

 L
oa

d
B

al
an

ce
r

B
ac

ku
p

 L
oa

d
B

al
an

ce
r f

or

H
TT

P
S

er
ve

rs

 L
oa

d
Ba

la
nc

er

B
ac

ku
p

lb1

 L
oa

d
Ba

la
nc

er
 fo

r
C

ac
hi

ng
 P

ro
xy

Client

Node Agent

 Application Server Clusters

88 WebSphere Application Server V6 Scalability and Performance Handbook

3.11 Topologies and high availability
In order to select the most appropriate topology, it is important to understand how
WebSphere provides high availability for the Web container and EJB container.
Therefore, we examine the three failure situations shown in Figure 3-13: HTTP
server, Web container, and EJB container.

Figure 3-13 Failure situations

In normal operation, the HTTP requests are forwarded to one of the clustered
machines (http1 or http2) acting as HTTP servers. If the requests should be
served by WebSphere, the plug-in uses HTTP transport to route requests to the
application servers on system app1 or app2. The Web applications are deployed
on member application servers in the WEBcluster (Web1 on app1, and Web2a
and Web2b on app2).

Admin Console

Node Agent

app2

 app1

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB2b

Web
Cont.

Web2b

EJB
Cont.

EJB1

Web
Cont.

Web1

EJB
Cont.

EJB2a

Web
Cont.

Web2a

Client

IBM HTTP
Server

http1

IBM HTTP
Server

http2

Plug-in

Plug-in

D
B2

 C
lie

nt
D

B2
 C

lie
nt

 L
oa

d
Ba

la
nc

er

Ba
ck

up

lb1

 L
oa

d
Ba

la
nc

er
 fo

r
C

ac
hi

ng
 P

ro
xy

cproxy

 C
ac

hi
ng

 P
ro

xy

Ba
ck

up
 C

ac
hi

ng
 P

ro
xy

lb2

 L
oa

d
Ba

la
nc

er

Ba
ck

up

 L
oa

d
Ba

la
nc

er
 fo

r
H

TT
P

 S
er

ve
rs

Client

 Application Server Clusters

 Chapter 3. Introduction to topologies 89

In the case of a failure of one of these application servers, or if the application
server is not active, the plug-in redirects the requests to the available members
in the same cluster (WEBcluster). The requests will be sent using HTTP, either to
the same machine or to a separate machine. For plug-in workload management
and failover details, refer to Chapter 6, “Plug-in workload management and
failover” on page 227.

The same applies to EJB containers. We configured a cluster consisting of
applications servers in EJBcluster (EJB1 on system app1, and EJB2a and
EJB2b on app2). If an EJB application server is not available, requests are
directed to the available EJB application server in the EJBcluster. Chapter 7,
“EJB workload management” on page 341 provides further details on EJB
workload management.

If an HTTP server fails, Load Balancer redirects HTTP requests to the available
HTTP servers on the cluster. Figure 3-14 on page 91 shows how requests are
routed around the failed Web server and application servers in our sample
topology.

Note: Failure of the Deployment Manager does not interrupt the managed
servers. The Deployment Manager node stores the master configuration
repository and every managed server stores only the appropriate subset of the
master configuration. Therefore, we do recommend maintaining the master
configuration repository on a shared file server. The objective is to recover the
configuration data, in exceptional cases such as a complete failure of the
machine running Deployment Manager. See the redbook WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451 for more information about the configuration repository.

90 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 3-14 Failover behavior

3.11.1 Using WebSphere Load Balancer custom advisor
If the WebSphere machine has stopped or the application server is down while
the HTTP server is still running, you will receive an error message on the
browser, as illustrated in Figure 3-15 on page 92.

Admin Console

app2

app1

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

D
B2

 C
lie

nt
D

B2
 C

lie
nt

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB2b

Web
Cont.

Web2b

EJB
Cont.

EJB1

Web
Cont.

Web1

EJB
Cont.

EJB2a

Web
Cont.

Web2a

Client

IBM HTTP
Server

http1

IBM HTTP
Server

http2

Plug-in

Plug-in

 L
oa

d
Ba

la
nc

er

Ba
ck

up

lb1

 L
oa

d
Ba

la
nc

er
 fo

r
C

ac
hi

ng
 P

ro
xy

cproxy
 C

ac
hi

ng
 P

ro
xy

Ba

ck
up

 C
ac

hi
ng

 P
ro

xy

lb2

 L
oa

d
Ba

la
nc

er

Ba
ck

up

 L
oa

d
Ba

la
nc

er
 fo

r
H

TT
P

Se
rv

er
s

 Application Server Clusters

Node Agent

 Chapter 3. Introduction to topologies 91

Figure 3-15 Message when application server is down

To help avoid this problem, WebSphere Load Balancer provides a sample
custom advisor for WebSphere Application Server. We used this advisor instead
of the default HTTP advisor. The basic layout (without back-up servers) of our
solution is shown in Figure 3-16.

Figure 3-16 Using WebSphere custom advisor

Now, when the WebSphere custom advisor is running, we can continue to
access the application server2 on machine E without getting the error message
even when machine D is stopped. The custom advisor directs the request to the
HTTP server on machine E, as shown in Figure 3-17 on page 93.

 L
oa

d
Ba

la
nc

er

application
server1

HTTP
Server

Plug-in

D
B

2
C

lie
nt

App
Data

Database
Server

application
server2

HTTP
Server

Plug-in

D
B

2
C

lie
nt

Machine D

Machine A
Machine F

Machine CMachine B

 L
oa

d
B

al
an

ce
r

ru
nn

in
g

cu
st

om
 a

dv
is

or

Client
HTTP

Requests

Machine E

 C
ac

hi
ng

 P
ro

xy

92 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 3-17 Requests dispatched to active application server

For more information about this topic, please refer to Chapter 5, “Using IBM
WebSphere Edge Components” on page 127.

Notes:

� You cannot run the HTTP advisor and the WebSphere custom advisor at
the same time if you specify the same port number for both advisors.

� WebSphere custom advisor must be considered as a monitoring extension
associated with each HTTP server on the cluster. The custom advisor
prevents requests from being sent to a specific HTTP server when this
HTTP server cannot appropriately fulfill them (for example, when the
WebSphere server it sends requests to is down).

When we use WebSphere workload management, the requests from
multiple HTTP servers are sent to a group of application servers,
distributed also among multiple machines. We cannot associate the
service layer provided by the application server to an HTTP server
anymore, since the plug-in is responsible for distributing the requests.

WebSphere custom advisor can have a more meaningful use when
WebSphere workload management is not used or a whole cluster
associated with a specific HTTP server is down.

When using WebSphere plug-in workload management, as in our sample
topology, monitoring the HTTP servers using the HTTP advisor is probably
the best choice.

application
server1

HTTP
Server

Plug-in

D
B

2
C

lie
nt

App
Data

Database
Server

application
server2

HTTP
Server

Plug-in

D
B2

 C
lie

nt

Machine D

Machine A
Machine F

Machine CMachine B

Client
HTTP

Requests

Machine E

 L
oa

d
Ba

la
nc

er

 L
oa

d
B

al
an

ce
r

ru
nn

in
g

cu
st

om
 a

dv
is

or

 C
ac

hi
ng

 P
ro

xy

 Chapter 3. Introduction to topologies 93

3.12 Topology selection summary
Table 3-1 to Table 3-5 on page 96 provide a summary of possible considerations
for topology selection as discussed in this chapter. These tables list the
requirements (such as availability, performance, security, maintainability, and
session persistence) and the possible solution(s) for the Web server, the
application server(s) and the database server:

Table 3-1 Topology selection based on availability requirements

Table 3-2 Topology selection based on performance requirements

Requirement =
Availability

Solution/Topology Where do you find more
information?

Web server Either Edge Components
Load Balancer (with backup)
or high availability (HA)
solution, based on your other
requirements

� Chapters 4 and 5 (Edge
Components)

� WebSphere Application
Server Network
Deployment V6: High
availability solutions,
SG24-6688

Application server � Vertical scaling (process
redundancy)

� Horizontal scaling
(hardware and process
redundancy)

� A combination of both

� Chapters 8 and 9 of the
redbook IBM WebSphere
V6 Planning and Design
Handbook, SG24-6446

� Chapters 6, 7, and 8
(Workload management
and Sample Topology)

Database server HA software solution � WebSphere Application
Server Network
Deployment V6: High
availability solutions,
SG24-6688

Requirement =
Performance and
Throughput

Solution/Topology Where do you find more
information?

Web server � Multiple Web servers in
conjunction with Edge
Components Load
Balancer

� Caching proxy
� Dynamic caching with

AFPA or ESI external
caching

� Chapters 4 and 5 (Edge
Components)

� Chapter 10 (Dynamic
caching)

94 WebSphere Application Server V6 Scalability and Performance Handbook

Table 3-3 Topology selection based on security requirements

Application server � Clustering (in most cases
horizontal)

� Dynamic caching
� Serving static content

from Web server to
offload application server

� Chapters 8 and 9 of the
redbook IBM WebSphere
V6 Planning and Design
Handbook, SG24-6446

� Chapters 6, 7, and 8
(Workload management
and Sample Topology)

� Chapter10 (Dynamic
caching)

� Technote TIPS0223
(Separating Static and
Dynamic Web Content) at
http://publib-b.boulder
.ibm.com/Redbooks.nsf/R
edbookAbstracts/tips022
3.html?Open

Database server Separate DB server � Chapters 8 and 9 of the
redbook IBM WebSphere
V6 Planning and Design
Handbook, SG24-6446

Requirement =
Security

Solution/Topology Where do you find more
information?

Web server Separate the Web server into
the DMZ - either on LPAR or
separate system

� Chapters 8 and 9 of the
redbook IBM WebSphere
V6 Planning and Design
Handbook, SG24-6446

Application server not covered � Redbook WebSphere
Application Server V6:
Security Handbook,
SG24-6316

Database server

Requirement =
Performance and
Throughput

Solution/Topology Where do you find more
information?

 Chapter 3. Introduction to topologies 95

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0223.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0223.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0223.html?Open

Table 3-4 Topology selection based on maintainability requirements

Table 3-5 Topology selection based on session affinity requirements

As mentioned earlier, for detailed information about topology selection criteria,
please refer to the redbook IBM WebSphere V6 Planning and Design Handbook,
SG24-6446.

Requirement =
Maintainability

Solution/Topology Where do you find more
information?

Web server Single machine environment
is easiest to maintain, but can
only be combined with
horizontal scaling

� Chapters 8 and 9 of the
redbook IBM WebSphere
V6 Planning and Design
Handbook, SG24-6446

Application server

Database server

Requirement =
Session
persistence

Solution/Topology Where do you find more
information?

Web server Session affinity is handled by
the WebSphere plug-in

� Chapter 6 (Plug-in
workload management)

Application server � Session database
(possible SPOF if not HA)

� Memory-to-memory
replication

� Chapters 6 (Plug-in
workload management)

� Chapter 12 of the
redbook WebSphere
Application Server V6
System Management
and Configuration
Handbook, SG24-6451

Database server n/a � n/a

96 WebSphere Application Server V6 Scalability and Performance Handbook

Part 2 Distributing the
workload

Part 2

© Copyright IBM Corp. 2005. All rights reserved. 97

98 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 4. Introduction to WebSphere
Edge Components

In this chapter, we describe the functions and possibilities offered by the IBM
WebSphere Edge Components which are part of IBM WebSphere Application
Server Network Deployment V6. We provide an introduction to the following
functions of Edge Components:

� Load Balancer
� Caching Proxy

Details on how to configure and use these components are covered in Chapter 5,
“Using IBM WebSphere Edge Components” on page 127.

4

© Copyright IBM Corp. 2005. All rights reserved. 99

4.1 Introduction
In a real-world environment, when the number of users accessing your Web site
increases, you experience slow response times. Your site may even fail under
critical load conditions. Simply increasing the processing power and other
resources on your server may no longer be cost effective. You need to provide
scalability for your environment and ensure that it has the required availability
and provides better performance.

4.1.1 Scalability
Applications need to scale for increasing numbers of simultaneous users on a
wide range of Web access devices.

By adding one or more Web servers to the existing environment, you can prevent
a single Web server from becoming overloaded. The incoming requests are then
dispatched to a group of servers, called a cluster. A cluster is a group of
independent nodes interconnected and working together as a single system.

Load balancer software is used to dispatch the load to the Web servers in the
cluster. It uses a load balancing mechanism usually known as IP spraying, which
intercepts the HTTP requests and redirects them to the appropriate machine in
the cluster, providing scalability, load balancing, and failover.

4.1.2 Availability
Users must be able to reach the application regardless of failed servers. In a
clustered Web server environment, the load balancer monitors the availability of
the Web servers. If a Web server has failed, no more requests are sent to it.
Instead, all requests are routed to the remaining active Web servers. It is also
recommended that you ensure high availability of the load balancer system itself
to eliminate it as a single point of failure (SPOF).

4.1.3 Performance
Quick response times can be provided by routing requests based on the
geographic location, user identity, or content requested and by caching the
retrieved data.

100 WebSphere Application Server V6 Scalability and Performance Handbook

4.2 IBM WebSphere Edge Components overview
WebSphere Edge Components, which are part of IBM WebSphere Application
Server Network Deployment V6, help you to reduce Web server congestion,
increase content availability, and improve Web server performance.

The following products are included in the Edge Components of IBM WebSphere
Application Server Network Deployment V6:

� Load Balancer
� Caching Proxy

WebSphere Edge Components are supported on a wide range of operating
systems, such as AIX, HP-UX, Linux (on various platforms, such as Intel,
zSeries, iSeries, and pSeries), Solaris, Windows 2000 and Windows 2003. For
more information about the supported platforms and product requirements, refer
to Concepts, Planning, and Installation for Edge Components Version 6.0,
GC31-6855.

Figure 4-1 Edge Components

Details about the Load Balancer can be found in 4.3, “Load Balancer overview”
on page 102, and about the Caching Proxy in 4.8, “Caching Proxy overview” on
page 122. Both components are covered in more detail in Chapter 5, “Using IBM
WebSphere Edge Components” on page 127.

Internet Router

Client

Client

Client

Caching
Proxy

Caching
Proxy

Load
Balancer
(Primary)

Load
Balancer
(Standby)

HTTP
Server 1

HTTP
Server 2

HTTP
Server 3

Caching
Proxy

Caching
Proxy

 Chapter 4. Introduction to WebSphere Edge Components 101

4.3 Load Balancer overview
Load Balancer consists of the following five components that can be used
separately or together:

� Dispatcher (see 4.3.1, “Dispatcher” on page 102).
� Content Based Routing (CBR) for HTTP and HTTPS (see 4.3.2, “Content

Based Routing (CBR)” on page 109).
� Site Selector (see 4.3.3, “Site Selector” on page 110).
� Cisco CSS Controller (see 4.3.4, “Cisco CSS Controller and Nortel Alteon

Controller” on page 110).
� Nortel Alteon Controller (see 4.3.4, “Cisco CSS Controller and Nortel Alteon

Controller” on page 110).

We cover these components in more detail in the following sections.

Session affinity is an option that applies to all of these components. See 4.4,
“Server affinity in Load Balancer” on page 110 for details.

4.3.1 Dispatcher
The Dispatcher component distributes the load it receives to servers contained in
a cluster (a set of servers that run the same application and can provide the
same contents to its clients). This mechanism is also known as IP spraying.

Dispatcher decides which server will handle a certain TCP/IP connection based
on the weight of each server in the cluster. The weight is the value that
determines the number of connections that each server receives. The weight can
be fixed in the configuration or it can be dynamically calculated by Dispatcher.

If you choose to configure the weight of the servers and set it as a fixed value, it
will not change no matter the conditions of the balanced servers. For example, if
you configure a cluster containing two servers, and you set the weight of the first
server to 1, and the weight of the second server to 2, meaning that the second
server will always receive twice the load as the first server. The only exception to
this is when an Advisor detects a failed server.

If you choose to work with dynamic weights (which is the default option),
Dispatcher will calculate the load of each balanced server dynamically. In our
previous example, if the response time of the second server was slower than the

Note: Load balancing can handle any TCP/IP compliant protocol, not only
HTTP and HTTPS. For example, Dispatcher can provide load balancing for
such protocols as FTP, NNTP, IMAP, POP3, SMTP, Telnet, and so on.

102 WebSphere Application Server V6 Scalability and Performance Handbook

response time of the first server, it would now be possible to detect this and
generate the correct weight value according to the real conditions of each server.

Dispatcher’s internal components
Dispatcher has internal components that are responsible for the tasks mentioned
earlier, like distributing TCP/IP packets and calculating the weight of the
balanced servers. These components are:

� Executor
� Manager
� Advisors
� Metric Server

Executor
Executor is the core component of Dispatcher, and it is responsible for the load
distribution. It receives the packet, identifies if this packet is destined to the
operating system or if it is destined to a cluster. If the packet is destined to a
cluster, it will then determine whether this packet is a follow up to an existing
connection, or if it is a request for a new connection. Executor keeps a
connection table in memory to keep track of all active connections. After that, it
chooses the back-end server to which this packet will be sent.

In order to be able to identify the packets meant for the operating system, the
administrator needs to associate an IP address to the variable NFA
(non-forwarding address). This variable contains the IP address that is used for
all connections that should not be load balanced by Dispatcher, like telneting into
the machine, connecting to the Dispatcher’s admistration service, etc. In other
words, NFA determines the IP address that the Executor will ignore as far as load
balancing is concerned.

Manager
Manager is the component responsible for providing weight values of each
balanced server to Executor, so it can make its load balancing decision. Running
this component is optional, but it is necessary for dynamic weighting of the
servers and also for identifying failed servers.

Manager uses four metric values for calculating the weight value of each server:
the number of active connections being handled by that server, the number of
new connections that were forwarded to that server since the last check (the
default is two seconds) and the input from two components that gather load
information about the balanced servers: the Advisors and the Metric Server.

 Chapter 4. Introduction to WebSphere Edge Components 103

Advisors
The Advisors are lightweight clients that run on the Dispatcher server, and they
are aware of the protocol used by the back-end servers. Load Balancer provides
advisors for HTTP, HTTPS, FTP, LDAP, among others.

Each advisor connects to a certain service running on each server of the cluster,
and submits a request that will validate the health of that service. This means
that the advisor actually tests the service, not only the connectivity to the server
(a system can be reachable by ping, but if the Web server is not running, it
cannot be used in load balancing). The advisor then returns a value to the
Manager, which represents how long it took for each server to respond. If it does
not receive a response from a server, it will provide a value of -1 for this server,
which is interpreted by the Manager as a server being down. Refer to “Advisors”
on page 107 for more information about the Advisors and to 5.2, “Load Balancer
configuration: basic scenario” on page 135 for usage examples.

Metric Server
If you need to collect more information from the back-end server for the load
balancing, you can also use the Metric Server, which is a component that is
installed and runs in each back-end server. Metric Server can additionally
provide values for the server where it is running. For example, Metric Server can
monitor memory and CPU usage. This information is also sent to the Manager
and it is used to calculate the final weight value for each server.

The interaction of Executor, Manager, and other Load Balancer components is
shown in Figure 4-2.

Figure 4-2 Dispatcher components interaction

HTTP Server 3

HTTP Server 1

Web
Client

HTTP Server 2

dscontrol

Executor

lbadmin

Manager

Dispatcher

dsserver
advisorsadvisorsAdvisors

Metric ServerMetric ServerMetric Server

Metric Server

Metric Server

104 WebSphere Application Server V6 Scalability and Performance Handbook

Forwarding methods
There are three methods used by Executor to forward packets to the balanced
servers:

� MAC forwarding
� Network Address Translation (NAT)/ Network Address Port Translation

(NAPT)
� Content Based Routing (CBR), also referred to as Kernel CBR (KCBR) in

previous versions

MAC forwarding
This is the default forwarding method. When Dispatcher receives a packet and
chooses which server to send it to, it only changes the source and destination
MAC address of the packet; the IP addresses remain the same. This means that
the source IP address remains the IP address of the client machine, and the
destination IP address remains the cluster IP address.

When the balanced server receives the packet, it responds directly to the client
(because the source IP address in the packet belongs to the client).

MAC forwarding is the fastest forwarding method because Dispatcher receives
only the incoming traffic. All outbound traffic is sent directly from the balanced
server to the client. This requires that all balanced servers be connected to the
same subnet as Dispatcher.

Figure 4-3 MAC forwarding - Network flow

MAC Forwarding

Client

Load Balancer

Backend server

Incoming traffic

Incoming traffic

Outgoing
traffic

 Chapter 4. Introduction to WebSphere Edge Components 105

This method also requires that the services running on the balanced servers be
able to accept the packets containing the cluster IP address as the destination IP
address. The easier solution is to add an IP alias to the loopback interface (so it
is not advertised in the network). Refer to 5.2.2, “Configuring the balanced
servers” on page 148 or Load Balancer Administration Guide Version 6.0,
GC31-6858 for instructions on how to add an IP alias in various operating
systems.

Network Address Translation (NAT)/ Network Address Port
Translation (NAPT)

This forwarding method allows Dispatcher to provide load balancing for remote
servers, which is not available in the MAC forwarding method.

Dispatcher receives the TCP/IP packet and chooses which server to send it to,
then it rewrites the IP header and changes the source IP address (which is
originally the IP address of the client machine), puts the return address instead
(this is an IP address configured by the Dispatcher administrator), changes the
destination IP address (which is originally the IP address of the cluster) and puts
the balanced server IP address instead. Now this packet can be routed to the
balanced server even if it is on a remote network. But because Dispatcher
changes the packet, it needs to receive the response so it can also change the IP
header before sending it to the client.

Figure 4-4 NAT forwarding - Network flow

NAT Forwarding

Client

Load Balancer

Backend server

Incoming traffic

Incoming trafficOutgoing
traffic

Outgoing
traffic

106 WebSphere Application Server V6 Scalability and Performance Handbook

This method also allows port redirection (NAPT). This means that the port that
you configure on the cluster configuration does not need to be the same port that
the service is listening on in the balanced server. In this case, Dispatcher
changes the port information in the TCP header the same way it does with the IP
addresses in the IP header of the TCP/IP packet.

This method implies that Dispatcher needs to handle all traffic, both inbound and
outbound. It also needs one extra IP address to implement the configuration,
which is the return address.

Content Based Routing (CBR)
The CBR forwarding method does not require Caching Proxy, as does the CBR
component (refer to 4.3.2, “Content Based Routing (CBR)” on page 109). It
allows content-based load balancing for HTTP and HTTPS protocols.

For the HTTP protocol, the connection distribution is based on the contents of the
URL or the HTTP header. For the HTTPS protocol, the distribution is based on
the SSL session ID field of the client request.

CBR also allows load distribution to servers connected to remote networks; it
also requires one IP address for the return address.

For more details, advantages and disadvantages of each forwarding method,
refer to the Load Balancer Administration Guide Version 6.0, GC31-6858.

Advisors
Advisors are lightweight clients that run on the Dispatcher machine, providing
information about the load of a given server. The product provides
protocol-specific advisors for several protocols and products, such as HTTP,
HTTPS, FTP, Telnet, DB2, DNS, LDAP, SMTP, and others.

Standard advisors send transactions periodically to determine the status of the
servers (for example, for HTTP an HTTP HEAD request is sent, and for FTP a
SYST command is sent). If the transaction succeeds, the server is considered
up.

Note: By default, the only available forwarding method is MAC forwarding. In
order to enable NAT/NAPT and CBR, you need to configure the client gateway
property of Executor, and set it to the IP address of the router of the network.

Refer to 5.4, “Load Balancer: NAT scenario” on page 181 for more details on
how to enable all available forwarding methods.

 Chapter 4. Introduction to WebSphere Edge Components 107

Load Balancer also provides a generic advisor, called Connect, that can be used
in case you need to load balance a service or protocol for which there is no
dedicated advisor available. Connect opens a connection to the server using the
server port informed in the advisor configuration and closes the connection after
the TCP/IP handshake is done.

In order to calculate a load value, the advisor:

1. Opens a connection with each server.

2. Sends a protocol-specific request message.

3. Listens for a response from the server.

4. Calculates the load value.

After getting the response, the advisor makes an assessment of the server.
To calculate this “load” value, most advisors measure the time for the server
to respond, and then use this value (in milliseconds) as the load.

You may also set the connecttimeout and receivetimeout parameters for
each advisor. connecttimeout is the amount of time the advisor will wait
before aborting the connection and receivetimeout is the amount of time the
advisor will wait before giving up on the data over the socket.

5. Reports the load value to Manager.

If the server does not respond, the advisor returns a negative value (-1) for the
load. A downed server is given a weight of zero by the Executor, and packets will
not be forwarded to it until the server responds to the advisor again.

Manager obtains the load value reported by the advisor, which is available in the
Port column of the Manager report (see Example 5-7 on page 157). The
manager obtains these values from all of its sources and sets proportional weight
values for Executor.

Customizable advisor settings
An additional feature available since WebSphere Edge Components V5.0 allows
you to customize settings for the HTTP and HTTPS advisors. This enables an
administrator to set a request type and expected response header per server
without writing any code. For example, you can solicit a different request such as
GET /index.html and parse the response for the intended header.

The HTTPS advisor fully negotiates an SSL connection and issues the
request/response encrypted to the back-end server.

Customizable advisors are an alternative to the custom advisors (this is
discussed in “Custom advisors” on page 109) when you don't need the extensive
functionality that the custom advisors give you.

108 WebSphere Application Server V6 Scalability and Performance Handbook

Custom advisors
You can also write your own advisors for specific applications. These are called
custom advisors, and you can write your own advisor based on sample Java
code provided with the product. The sample code is available in the
<install_path>/servers/samples/CustomAdvisors directory, where <install_path>
is the Load Balancer installation path (such as /opt/ibm/edge/lb on AIX, or
C:\Program Files\IBM\edge\lb on Windows).

Custom advisors run on the Dispatcher node, and must be written using Java
language and compiled with a Java compiler for the Dispatcher machine.

Class file names must follow the form ADV_name.class, where name is the name
you choose for the advisor.

Using the Java SDK, the compile command is:

javac -classpath <install_path>/servers/lib/ibmlb.jar ADV_<name>.java

The advisor code must then be copied to the
<install_path>/servers/lib/CustomAdvisors directory, and it can be started using
the command line interface or the graphical interface.

Make sure that Manager is running before you try to start any advisor.

Refer to 5.5, “Load Balancer: additional configuration options” on page 190 for an
example of using a custom advisor.

More detailed information about custom advisors, describing how they work, how
to write, compile and test them, including examples, development techniques,
and interface methods, can be found in the Load Balancer Administration Guide
Version 6.0, GC31-6858.

4.3.2 Content Based Routing (CBR)
The CBR component load balances based on the content of the request. Load
Balancer supports content-based routing in two ways: the CBR component and
the Dispatcher CBR forwarding method (discussed in “Forwarding methods” on
page 105).

Important: For the Edge Components that are part of IBM WebSphere
Application Server Network Deployment V6, you need a Java compiler version
1.4.2.

Note: The Load Balancer base classes, found in ibmlb.jar, must be referenced
in the classpath during compilation.

 Chapter 4. Introduction to WebSphere Edge Components 109

In conjunction with Caching Proxy, the CBR component has the ability to proxy
HTTP and HTTPS (SSL) requests to specific servers based on the content
requested. The Dispatcher component also provides content-based routing, but
it does not require the Caching Proxy to be installed. Because the Dispatcher
component’s content-based routing is performed in the kernel as packets are
received, it can provide faster content-based routing than the CBR component.

When do you use which CBR method?
� For fully secure SSL traffic (client through server):

– The CBR component (in conjunction with Caching Proxy) can process
SSL encryption/decryption in order to perform content-based routing.

– The Dispatcher CBR forwarding method can only be configured with SSL
ID affinity because it cannot process the encryption/decryption to perform
true content-based routing on the requested URL.

� For HTTP traffic:

The Dispatcher CBR forwarding method provides a faster response to client
requests than the CBR component. Also, the Dispatcher CBR forwarding
method does not require the installation and use of Caching Proxy.

4.3.3 Site Selector
This component performs load balancing using a DNS round robin approach or a
more advanced user-specified approach. Site Selector works in conjunction with
a name server to map DNS names to IP addresses. System Metrics (provided by
the Metric Server) should be used in addition to advisor weights to achieve a
well-balanced and accurate weighting of servers.

4.3.4 Cisco CSS Controller and Nortel Alteon Controller
These controllers can be used to generate server weighting metrics that are then
sent to the Cisco and Alteon Switch, respectively, for optimal server selection,
load optimization, and fault tolerance.

4.4 Server affinity in Load Balancer
Server affinity is a technique that enables the Load Balancer to remember which
balanced server was chosen for a certain client at its initial request. Subsequent
requests are then directed to the same server again.

110 WebSphere Application Server V6 Scalability and Performance Handbook

If the affinity feature is disabled when a new TCP/IP connection is received from
a client, Load Balancer chooses the right server at that moment and forwards the
packet to it. If a subsequent connection comes in from the same client, Load
Balancer treats it as an unrelated connection, and again chooses the most
appropriate server at that moment.

Server affinity allows load balancing for those applications that need to preserve
state across distinct connections from a client. Maintaining state is a requirement
of many applications encountered on the Internet today, including “shopping
carts,” home banking, and so on.

Some options available to maintain application state based on server affinity are:

� Stickyness to source IP address
� Cross port affinity
� Passive cookie affinity
� Active cookie affinity
� URI affinity
� SSL session ID

The passive cookie, active cookie, and URI affinity options are rules-based. They
depend on the content of the client requests.

4.4.1 Stickyness to source IP address
This affinity feature is enabled by configuring the clustered port to be sticky.
Configuring a cluster port to be sticky allows subsequent client requests to be
directed to the same server. This is done by setting the sticky time to a positive
number; the feature can be disabled by setting the sticky time to zero.

The sticky time value represents the timeout of the affinity counter. The affinity
counter is reset every time Load Balancer receives a client request. If this
counter exceeds sticky time, new connections from this client may be forwarded
to a different back-end server.

In Dispatcher and CBR components, you can set the sticky time in three
elements of the Load Balancer configuration:

� Executor: setting the sticky time for the Executor makes this value valid for
all clusters and ports in the configuration.

� Cluster: you can set a specific sticky time value for each cluster.

� Port: you can set a specific sticky time value for each port.

 Chapter 4. Introduction to WebSphere Edge Components 111

In Site Selector, you set the sticky time on the sitename.

This feature applies to the Dispatcher (all forwarding methods), the CBR and the
Site Selector components of Load Balancer.

4.4.2 Cross port affinity
Cross port affinity is the sticky feature that has been expanded to cover multiple
ports. For example, if a client request is first received on one port and the next
request is received on another port, cross port affinity allows Dispatcher to send
the client requests to the same server.

One example of this feature is a shopping cart application. The user browses the
products and adds them to his shopping cart using port 80 (HTTP). When he is
ready to place the order, he is redirected to a HTTPS (port 443) site, which will
encrypt all communication between the browser and the server. Cross port
affinity enables Dispatcher to forward this user’s requests for both ports 80 and
443 to the same server.

In order to use this feature, the ports must:

� Share the same cluster address
� Share the same servers
� Have the same sticky time value (not zero)
� Have the same sticky mask value

Important: Setting affinity at the different levels means that any
subsequent lower level objects inherit this setting by default (when they are
added). In fact, the only true value that is used for sticky time is what is set
at the port level. So if you set the sticky time for the Executor to 60, then
add a Cluster and Port, these also have a sticky time of 60.

However, if you set a different sticky time for the Cluster or the Port, for
example, you set it to 30, then this value overrides the Executor sticky
time.

Note: This affinity strategy has some drawbacks: some ISPs use proxies that
collapse many client connections into a small number of source IP addresses.
A large number of users who are not part of the session will be connected to
the same server. Other proxies use a pool of user IP addresses chosen at
random, even for connections from the same user, invalidating the affinity.

112 WebSphere Application Server V6 Scalability and Performance Handbook

More than one port can link to the same cross port. When subsequent
connections come in from the same client on the same port or a shared port, the
same server will be accessed.

Cross port affinity applies to the MAC and NAT/NAPT forwarding methods of the
Dispatcher component.

4.4.3 Passive cookie affinity
Passive cookie affinity is based on the content of cookies (name/value)
generated by the HTTP server or by the application server. You must specify a
cookie name to be monitored by Load Balancer in order to distinguish which
server the request is to be sent to.

If the cookie value in the client request is not found or does not match any of the
cookie values of the servers, the most appropriate server at that moment will be
chosen by Load Balancer.

This feature applies to both the CBR component and to the Dispatcher’s CBR
forwarding method.

4.4.4 Active cookie affinity
Active cookie affinity enables load balancing Web traffic with affinity to the same
server based on cookies generated by the Load Balancer. This function is
enabled by setting the sticky time of a rule to a positive number, and setting the
affinity to cookie. The generated cookie contains:

� The cluster, port, and rule
� The server that was load balanced to
� A timeout time stamp for when the affinity is no longer valid

Active cookie affinity formats the cluster/port/server/time information into a key
value in the format of IBMCBR##### so the IP and configuration information is not
visible to the client browser.

The active cookie affinity feature applies only to the CBR component.

4.4.5 URI affinity
URI affinity allows you to load balance Web traffic to caching proxy servers,
which allow unique content to be cached on each individual server. As a result,
you will effectively increase the capacity of your site’s cache by eliminating
redundant caching of content on multiple machines. You can configure URI
affinity at the rule level and once it is enabled and the servers are running, then

 Chapter 4. Introduction to WebSphere Edge Components 113

the Load Balancer will forward new incoming requests with the same URI to the
same server.

URI affinity applies to the CBR component and to Dispatcher’s CBR forwarding
method.

4.4.6 SSL session ID
During establishment of an SSL encrypted session, a handshake protocol is
used to negotiate a session ID. This handshaking phase consumes a good deal
of CPU power, so directing subsequent HTTPS requests to the same server,
using the already established SSL session, saves processing time and increases
the overall performance of the HTTP server.

Load Balancer watches the packets during the handshake phase and holds
information about the session ID if SSL session negotiation is detected.

The forwarding method used to configure SSL session ID affinity is the
Dispatcher’s CBR forwarding method.

4.5 Load Balancer topologies
Load Balancer can be configured for different topologies, depending on the
number of machines available and the high availability requirements. In this
section, we discuss the following topologies:

� Load Balancer on a dedicated server
� Collocated servers
� High availability
� Mutual high availability

4.5.1 Load Balancer on a dedicated server
This is the basic topology where you install Load Balancer on a dedicated server
and configure it to balance the workload between multiple Web servers as shown
in Figure 4-5 on page 115.

114 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 4-5 Dispatcher basic topology

4.5.2 Collocated servers
Load Balancer can reside on the same machine as a Web server to which it is
distributing incoming requests. This is commonly referred to as collocating a
server. Collocated servers keep initial costs down but allow evolving to a more
complex configuration, such as a dedicated server for Dispatcher or even a high
availability solution. Collocation is also supported for CBR. See Figure 4-6 on
page 116.

Collocation applies to the Dispatcher and Site Selector components.

WebSphere Edge Components V6 added support for collocation on Windows
systems for the MAC forwarding method, as mentioned in 4.9, “WebSphere Edge
Components V6 new features” on page 125.

Client Internet Dispatcher

Web
Server 1

Web
Server 2

Web
Server 3

Note: To use collocated servers in a Linux environment, you must apply an
arp patch which varies for the different kernel versions of Linux. This patch is
also necessary for non-collocated balanced servers. For details on what you
need to apply, refer to the Load Balancer Administration Guide Version 6.0,
GC31-6858, available at:

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

 Chapter 4. Introduction to WebSphere Edge Components 115

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

Figure 4-6 Dispatcher collocated topology

4.5.3 High availability
Load Balancer provides a built-in high availability function. It allows you to
configure a backup Load Balancer server; if the primary Load Balancer server
fails, the backup server will take over the load balancing for all clusters.

The two Load Balancer servers need connectivity to the same clients and to the
same cluster of servers, as well as connectivity between themselves. Both Load
Balancer servers must be running the same operating systems, and they must be
connected to the same network. This configuration is illustrated in Figure 4-7 on
page 117.

Note: A collocated Web server competes for resources with Load Balancer
during times of high traffic. However, in the absence of overloaded machines,
using collocated servers offers a reduction in the total number of machines
necessary to set up a load-balanced site.

Client Internet Dispatcher Web
Server 1

Web
Server 2

Web
Server 3

116 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 4-7 Dispatcher high-availability topology

The two Load Balancer servers are referred to as the primary server and the
backup server. These are the roles that are associated with each server during
the configuration.

Load Balancer servers run in a specific state: one server is active and the other
server is standby. This means that the Load Balancer server that is in active state
is the one that is distributing the workload.

The Load Balancer server that is in standby state is monitoring the active one. If
the active server fails, the standby server performs a failover; it switches to active
state and starts load balancing the cluster. So the state of a server changes
when a failure occurs, but the roles do not change during a failure.

When the primary server is operational again, but in standby state, you can either
decide that it automatically forces a takeover and it becomes the active server
again, or it stays in standby mode, monitoring the other server for a failure. In this
last case, you will have to manually force a takeover if you later want it to become
the active server again. This is known as auto recovery or manual recovery.

In order to monitor the health of the active server, heartbeats are sent every half
second. The failover occurs when the standby server receives no response from

Note: You can also configure the backup server to respond to other clusters’
addresses while it works as a standby server for the clusters on the primary
server. See 4.5.4, “Mutual high availability” on page 118.

Client

Dispatcher 2
Backup

Dispatcher 1
Primary

Web
Server 1

Web
Server 2

Web
Server 3

Web
Server 4

Internet

 Chapter 4. Introduction to WebSphere Edge Components 117

the active server within two seconds. Another possible reason for a failover is
when the standby server is able to ping more reach targets than the primary
machine. A reach target is a server out of the load balancing environment that is
used for an external connectivity test. We usually recommend using the default
gateway of the network as the reach target of your configuration.

4.5.4 Mutual high availability
The mutual high availability feature of Load Balancer provides the administrator
with the opportunity to use both Dispatcher servers in a high availability
configuration, where both servers actively perform load balancing for a cluster
and are the backup for each other. So, in a simple high-availability configuration,
only one machine performs load balancing. In mutual high availability, both
machines participate in load balancing.

For mutual high availability, client traffic is assigned to each Dispatcher server on
a cluster address basis. As illustrated in Figure 4-8 on page 119, you have to
configure a cluster for each node that is a primary Dispatcher (so you have at
least two clusters in your environment). Each cluster can be configured with the
NFA (non-forwarding address) of its primary Dispatcher. The primary Dispatcher
server normally performs load balancing for that cluster. In the event of a failure,
the other machine performs load balancing for both its own cluster and for the
failed Dispatcher’s cluster.

Note: By default, high availability is only supported for the Dispatcher
component, not for the Site Selector.

For a highly available Site Selector, you should configure Dispatcher to host a
cluster in front of multiple Site Selectors. The cluster will act as the sitename
DNS clients are requesting. The Dispatcher tier can provide the failover
mechanism and the Site Selectors will then have no single point of failure. The
DNS advisor to be used to detect a failed site selector is included with the
product.

118 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 4-8 Dispatcher mutual high availability topology

4.6 Dispatcher scripts
Dispatcher scripts are command-based scripts that are automatically run
whenever a certain event is triggered. They are mostly used in high availability
environments.

The following is a list of some of the scripts that Dispatcher uses:

� goActive

This script is run every time a Load Balancer server switches into active state.

� goStandby

This script is run every time a Load Balancer server goes into standby state.

� goInOp

This script is run when the Load Balancer Executor component is stopped or
when it is started.

� goIdle

This script is not used in high availability environments. It is run when the
Load Balancer server goes into idle state (when the machine is a stand-alone
dispatcher, or when the high availability features have not yet been added).
Do not use this script if you are configuring high availability.

Client

Web
Server 1

Web
Server 2

Web
Server 3

Web
Server 4

Internet

Dispatcher 1
Primary: Cluster A
Backup: Cluster B

Dispatcher 2
Primary: Cluster B
Backup: Cluster A

Cluster A

Cluster B

 Chapter 4. Introduction to WebSphere Edge Components 119

� serverDown

This script is run when the Manager identifies that a balanced server is down.
Using this script is not mandatory, but you can use it to send an e-mail
message to the administrator or log the information to a file.

� serverUp

This script is run when the Manager identifies that a balanced server is back
up. This script is also not mandatory, you can use it to send an e-mail
message to the administrator or log the information to a file.

� highavailChange

This script is run when the state of a Load Balancer server changes or when
the Executor is started. It is not mandatory, but you can use it to send an
e-mail message to the administrator or log the information to a file.

These scripts must be placed in the <product_install_path>/servers/bin directory.
In UNIX systems, you need to add execution permission to these files.

You will find a set of examples in the <product_install_path>/servers/samples
directory. You can start building your own scripts based on these examples. If
you want to use the samples, copy them to the bin subdirectory, rename them
and edit them there.

There are two sets of samples for the high availability scripts (goActive,
goStandby and goInOp): one for regular high availability and one for mutual high
availability.

We show how to use some of these scripts in 5.3.4, “Configuring the high
availability scripts” on page 171.

4.7 Load Balancer features comparison
Table 4-1 on page 121 compares most of the characteristics of each forwarding
method and CBR component.

You can use this table to check which features you need and what forwarding
method or component can provide them to you.

Note that the columns containing the components are ordered according to how
fast the response time of each component is, from MAC forwarding (which has
the shortest response time) to CBR component (which has the longest response
time).

120 WebSphere Application Server V6 Scalability and Performance Handbook

Table 4-1 Load Balancer features comparison table

MAC
forwarding

NAT
forwarding

CBR
forwarding

CBR
component
(requires CP) a

a. CP = Caching Proxy

High
availability

Yes Yes Yes
(does not fail
over content
information)

Not internal, it
needs the
Dispatcher
component

Local routing Yes Yes Yes Yes

Remote
routing

No
(except with
advanced wide
area lb config.)

Yes Yes Yes

Routing
based on
content

No No Yes
(except
HTTPS)

Yes
(including
HTTPS)

Affinity based
on IP address

Yes Yes Yes Yes

Passive
cookie affinity

No No Yes Yes

Active cookie
affinity

No No No Yes

URI affinity No No Yes Yes

Session
affinity

No No Yes
(HTTP only)

Yes
(HTTP and
HTTPS)

SSL session
ID affinity

No No Yes
(no decryption)

No

Cross port
affinity

Yes Yes No
(except with
passive cookie
affinity with
global cookie
values)

No

Caching No No No Yes

 Chapter 4. Introduction to WebSphere Edge Components 121

For more information about the features listed in this table, refer to the previous
topics in this chapter and to the product documentation, available at:

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

4.8 Caching Proxy overview
Caching Proxy intercepts requests from the client, retrieves the requested
information from the content-hosting machines, and delivers that information
back to the client. You can configure Caching Proxy to handle protocols such as
HTTP, FTP, and Gopher.

The Caching Proxy stores cachable content in a local cache before delivering it
to the requestor. Examples of cachable content include static Web pages and
whole dynamic Web pages. Caching enables the Caching Proxy to satisfy
subsequent requests for the same content by delivering it directly from the local
cache, which is much quicker than retrieving it again from the content host.

The Caching Proxy can be configured as a Reverse or Forward Proxy Server.
The cache can be stored on physical storage devices or in memory.

4.8.1 Forward proxy
The Caching Proxy can be configured as a forward proxy. Normally, Internet
access providers configure it in this mode.

When configured in forward proxy mode, it handles requests from multiple client
browsers, retrieves data from the Internet and caches the retrieved data for
future use. In this case, the client browser has to be configured to use the proxy
server.

When a client requests a page, the caching proxy connects to the content host
located across the Internet, sends the request that it received from the client,
then caches the retrieved data and delivers the retrieved data to the client. If
other client sends the same request afterwards, it will be served from the cache.
This decreases the network usage and provides better response times.

122 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

Figure 4-9 Forward proxy scenario

4.8.2 Reverse proxy (IP forwarding)
IP-forwarding topologies use a reverse proxy server, such as the Caching Proxy,
to receive incoming HTTP requests and forward them to a Web server. The Web
server forwards the requests to the application servers for actual processing. The
reverse proxy returns completed requests to the client, masquerading the
originating Web server.

If a client then requests the same data the next time, it will not be sent to the
back-end server for processing, but instead will be served from the cache. This
prevents unnecessary back-end processing for the same data requests, thus
providing better response times.

Caching Proxy
 Forward Proxy

Enterprise

FF
ii
rr
ee
ww
aa
ll
ll

Browsers configured
to use proxy

GET /index.html
HOST: www.itso.ibm.com

Internet

www.itso.ibm..com

GET http://www.itso.ibm.com/index.html

 Chapter 4. Introduction to WebSphere Edge Components 123

Figure 4-10 Reverse proxy scenario

4.8.3 Using multiple Caching Proxy servers
Multiple caching proxy servers can be configured to increase your site
performance, compared with a single caching proxy at peak load times. The
Load Balancer Dispatcher component can be used to distribute the load to the
caching proxy servers.

Figure 4-11 Load balancing multiple caching proxy servers

4.8.4 Dynamic caching
The dynamic caching function enables the Caching Proxy to cache dynamically
generated content in the form of responses from JSPs and servlets generated by
an IBM WebSphere Application Server. A caching proxy adapter module is used
at the application server to modify the responses, so that they can be cached at

Internet

GET /index.html
HOST: www.itso.ibm.com

GET /index.html
HOST: www-1.itso.ibm.com

Caching Proxy
Reverse Proxy

www.itso.ibm.com

Proxy /* http://www-1.itso.ibm.com/* www.itso.ibm.com

Enterprise

FF
ii
rr
ee
ww
aa
ll
ll www-1.itso.ibm.com

FF
ii
rr
ee
ww
aa
ll
ll

Caching
Proxy 1

Client DispatcherInternet

Caching
Proxy 2

Dispatcher

Web
Server 1

Web
Server 2

Web
Server 3

124 WebSphere Application Server V6 Scalability and Performance Handbook

the proxy server in addition to being cached in the application server’s dynamic
cache. With this feature, dynamically generated content can be cached at the
entry point of the network, avoiding repeated requests to the application server,
when the same content is requested by multiple clients. However, the Caching
Proxy can only cache full pages, not fragments, and all subcomponents of that
page must also be cachable. Secure content requiring authorization is not
cached externally at the proxy server.

See Chapter 10, “Dynamic caching” on page 501 for more information about this
topic and for details on how to configure the Caching Proxy to cache dynamic
content.

4.9 WebSphere Edge Components V6 new features
WebSphere Edge Components V6 provide several new features and
modifications:

� The Load Balancer Dispatcher now supports collocation on Windows
systems for the MAC forwarding method. In previous versions, collocation on
Windows systems was only available for NAT/NAPT and CBR forwarding
methods.

� The Load Balancer Dispatcher now offers a stop command for the Executor
component on Windows systems. In previous versions, this command was
only available on UNIX platforms.

� The Load Balancer Dispatcher provides a new method for connection
cleanup, which improves the performance of connection record allocation and
reuse. It no longer needs the dscontrol executor set fincount command,
so this command has been deprecated and removed from the product.

� Load Balancer Dispatcher dsconfig and ndconfig commands have been
deprecated. Make sure you replace these commands in all existing scripts
with their replacement command: dscontrol executor configure.

� Previous versions supported both ndcontrol and dscontrol commands. Now
only the dscontrol command is supported. Make sure you update all scripts.

� Load Balancer now requires the 32-bit Java 2 Runtime Environment
version 1.4.2.

� WebSphere Edge Components added support for AIX V5.3, Linux for iSeries
and Linux for pSeries (the previous version only supported Linux for Intel and
Linux for S/390® zSeries). For more information, refer to Concepts, Planning,
and Installation for Edge Components Version 6.0, GC31-6855.

� In UNIX systems, the default browser for viewing the documentation is now
Mozilla 1.4 or higher, and it is required to run the LaunchPad tool. On

 Chapter 4. Introduction to WebSphere Edge Components 125

Windows systems, the recommended browsers are Internet Explorer 5.5 or
higher and Mozilla 1.4 or higher.

126 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 5. Using IBM WebSphere Edge
Components

In this chapter, we describe how to configure and set up various usage examples
for the Load Balancer and the Caching Proxy components of IBM WebSphere
Edge Components.

For WebSphere Load Balancer, we explain how to configure the most commonly
used scenarios, such as:

� Basic load balancing scenario
� High availability scenario
� NAT scenario
� How to use sample custom advisors

We do not intend to exhaust all possibilities, so if you need information about
functionality that is not covered here, please refer to the Load Balancer
Administration Guide Version 6.0, GC31-6858 or contact your IBM Support
Center in order to get more information about a specific implementation.

For the Caching Proxy, we cover the following tasks:

� Caching Proxy installation
� Caching Proxy configuration
� Managing the Caching Proxy process

5

© Copyright IBM Corp. 2005. All rights reserved. 127

5.1 Load Balancer installation
You can install the WebSphere Edge Components product using either the
common installation wizard or the operating system tools and commands.

We first describe the installation on a Windows 2000 server using the wizard, and
later we describe the installation on an AIX server using SMIT (a management
tool provided by the operating system). See 5.1.1, “Load Balancer installation
wizard” on page 128 and 5.1.2, “Load Balancer installation using SMIT in AIX” on
page 132.

Before starting the installation, refer to Load Balancer Administration Guide
Version 6.0, GC31-6858 for the prerequisites and supported operating systems.

5.1.1 Load Balancer installation wizard
The Edge components installation media provides an installation wizard for all
platforms so the installation is similar for all supported operating systems.

1. Mount the installation media and start LaunchPad by running launchpad.sh
(in UNIX/Linux systems) or launchpad.bat (in Windows systems).

The LaunchPad window opens as shown in Figure 5-1 on page 129.

Important: Before starting with the installation, you should have Java
Runtime (V1.4.2 or later) installed on your system.

128 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-1 LaunchPad window

Click Launch the installation wizard for WebSphere Application Server -
Edge Components.

2. Click Next on the Welcome screen and click Yes to accept the product
license.

3. In the Component Selection window, you can select which components you
want to install. Select the Load Balancer checkbox, and click the Change
Subcomponents button as shown in Figure 5-2 on page 130.

 Chapter 5. Using IBM WebSphere Edge Components 129

Figure 5-2 Component Selection window

4. The Subcomponent Selection window opens. Select the subcomponents you
want to install. The Administration and License subcomponents are
mandatory. By default, all subcomponents are selected, as shown in
Figure 5-3 on page 131. Click OK to return to the Component Selection
window.

130 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-3 Subcomponent Selection window

5. The default installation path is C:\Program Files\IBM\edge\lb for Windows
systems (for UNIX/Linux systems, it is /opt/ibm/edge/lb). If you want to install
the product in a different directory, click Change Folder and enter the correct
path. Click Next to continue the installation.

6. Verify that the selected options are listed in the Installation Selection
Summary, and click Finish to start the installation, as shown in Figure 5-4 on
page 132.

 Chapter 5. Using IBM WebSphere Edge Components 131

Figure 5-4 Installation confirmation window

7. At the end of the installation, you have the option to reboot the server. Make
sure you do so before using the product.

5.1.2 Load Balancer installation using SMIT in AIX
AIX provides a tool to manage the operating system, which is SMIT. In this
section, we describe how to install WebSphere Edge Components using SMIT.

1. Log on as the root user.

2. Mount the WebSphere Edge Components installation media and change to
the directory you used as the mount point (for example, /cdrom).

3. Change to the lb directory:

cd lb

4. Run the following command:

smit install_all

5. On the Install and Update from ALL Available Software screen, type the full
path to the lb directory mentioned in step 3 or type a period (.) which
represents the current directory, as shown in Figure 5-5 on page 133.

132 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-5 Selecting the path of the installation media

6. On the Install and Update from ALL Available Software screen, put the cursor
into the SOFTWARE to install field (see Figure 5-6 on page 134) and press
the F4 key (ESC+4 in VT100 and ASCII emulators).

7. From the SOFTWARE to install list, select the components you want to install.
We selected the following components:

– LB Admin Messages - U.S. English (ibmlb.msg.en_US.admin.rte)
– LB Administration (ibmlb.admin.rte)
– LB Base (ibmlb.base.rte)
– LB Dispatcher (ibmlb.disp.rte)
– LB Dispatcher Device Driver (ibmlb.lb.driver)
– LB Documentation (ibmlb.doc.rte)
– LB License (ibmlb.lb.license)
– LB Messages - U.S. English (ibmlb.msg.en_US.lb.rte)
– Load Balancer Documentation - U.S. English (ibmlb.msg.en_US.doc)

You may need to scroll the screen to the left using the right arrow key in order
to see the fileset names listed in parenthesis.

After you finish selecting the filesets, press the Enter key.

8. Back on the Install and Update from ALL Available Software screen, select
yes for the ACCEPT new license agreements? field as shown in Figure 5-6 on
page 134, and press Enter to start the installation.

 Chapter 5. Using IBM WebSphere Edge Components 133

Figure 5-6 SMIT installation screen

9. When the installation finishes, check the installation summary to make sure
that all filesets were installed successfully, as shown in Example 5-1.

Example 5-1 Installation summary

Installation Summary

Name Level Part Event Result

ibmlb.lb.license 6.0.0.0 USR APPLY SUCCESS
ibmlb.doc.rte 6.0.0.0 USR APPLY SUCCESS
ibmlb.admin.rte 6.0.0.0 USR APPLY SUCCESS
ibmlb.base.rte 6.0.0.0 USR APPLY SUCCESS
ibmlb.lb.driver 6.0.0.0 USR APPLY SUCCESS
ibmlb.msg.en_US.doc 6.0.0.0 USR APPLY SUCCESS
ibmlb.msg.en_US.admin.rte 6.0.0.0 USR APPLY SUCCESS
ibmlb.msg.en_US.lb.rte 6.0.0.0 USR APPLY SUCCESS
ibmlb.disp.rte 6.0.0.0 USR APPLY SUCCESS

5.1.3 Post installation tasks
Before trying to start any Load Balancer components, it is necessary to check for
a supported Java 2 Runtime Environment available to the operating system.
Refer to Concepts, Planning, and Installation for Edge Components Version 6.0,
GC31-6855 for all software requisites.

134 WebSphere Application Server V6 Scalability and Performance Handbook

For the AIX V5.2 operating system, WebSphere Edge Components V6 requires
32-bit Java 2 Runtime Environment version 1.4.2. We downloaded it from the
following URL:

http://www.ibm.com/developerworks/java/jdk/index.html

We installed it according to the instructions provided with the package and added
the /usr/java14/bin directory to the contents of the PATH environment variable for
user root, by adding the following commands to the $HOME/.profile file:

PATH=/usr/java14/bin:$PATH
export PATH

After that, we ran the command shown in Example 5-2 to make sure the default
Java command being used is the correct one.

Example 5-2 Checking the Java command version

java -version
java version "1.4.2"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)
Classic VM (build 1.4.2, J2RE 1.4.2 IBM AIX build ca1420-20040626 (JIT enabled:
jitc))

5.2 Load Balancer configuration: basic scenario
This scenario represents the most simple example of load balancing where Load
Balancer is configured on one system only and load balances the traffic between
two Web servers, as shown in Figure 5-7.

Figure 5-7 Basic Load Balancer scenario

HTTP
Server1

Plug-in

App
Data

Database
Server

Client
HTTP

Requests

Application
Server1

HTTP
Server2

Plug-in

Application
Server2

 L
oa

d
Ba

la
nc

er

 Chapter 5. Using IBM WebSphere Edge Components 135

http://www.ibm.com/developerworks/java/jdk/index.html

This scenario shows the Dispatcher component using the MAC forwarding
method. It does not have high availability, which will be added in the next
scenario (see “Load Balancer: high availability scenario” on page 162).

The steps to implement this scenario are described in:

� 5.2.1, “Configuring the Load Balancer cluster” on page 136
� 5.2.2, “Configuring the balanced servers” on page 148
� 5.2.3, “Testing the basic scenario” on page 156

5.2.1 Configuring the Load Balancer cluster
The configuration can be done using the Load Balancer graphical user interface
(lbadmin) or using the command line interface (dscontrol). We first explain how
to do it using the GUI, and later we show the commands (which give you the
same result).

In order to send commands through the GUI or through the command line
interface to Load Balancer, you need to start the component element that
receives those commands and executes them.

In this scenario, we only use the Dispatcher component.

1. Start the Dispatcher server in order to start configuring it. To do so, run the
following command:

dsserver

2. Open the Load Balancer GUI by running the following command:

lbadmin

The Load Balancer GUI is a Java client that can also be installed on a client
machine, so the administrator can work remotely.

3. When the Load Balancer administration tool comes up, right-click Dispatcher
in the left pane and select Connect to Host... as shown in Figure 5-8 on
page 137.

136 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-8 Load Balancer administration tool

4. A pop-up window is displayed, prompting you for the Load Balancer server
which you want to connect to. Select the hostname of the Load Balancer
server, as shown in Figure 5-9.

Figure 5-9 Selecting the Load Balancer server

After connecting to the Load Balancer server, a new entry is added to the GUI
window in the left pane, containing the hostname of the selected server. All
the configuration we perform from now on is added to this element in a tree
structure.

5. Now we need to start the Executor component, which is the component that
actually distributes the load to the servers. Right-click Host:lb.itso.ibm.com
and select Start Executor, as shown in Figure 5-10 on page 138.

 Chapter 5. Using IBM WebSphere Edge Components 137

Figure 5-10 Starting Executor

If Executor is started successfully, a new item named Executor is added to the
left pane. In our scenario, the Load Balancer IP address is 10.20.10.102, so
this IP address is shown in this new item as well.

6. The next thing we need to do is to add our cluster. In our scenario, we have a
cluster called cluster.itso.ibm.com (10.20.10.100) and this cluster contains
two Web servers, http1 (10.20.10.103) and http2 (10.20.10.104).

Right-click Executor: 10.20.10.102 and select Add Cluster..., as shown in
Figure 5-11 on page 139.

Tip: For every action you perform, you can see a message in the bottom
pane of the GUI window that confirms whether or not the action was
performed successfully.

138 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-11 Adding a cluster

7. A new window is displayed, prompting for the necessary information to add
the new cluster. Type the name of the cluster in the Cluster field (we
recommend using the hostname). Then type the cluster IP address in the
Cluster address field, and make sure that the Load Balancer’s IP address is
selected in the Primary host for the cluster field.

Check the option Configure this cluster? as shown in Figure 5-12 on
page 140. This option is used to create an IP alias in the operating system for
the cluster IP address. You can also uncheck this option and add the IP alias
manually using operating system tools or commands.

 Chapter 5. Using IBM WebSphere Edge Components 139

Figure 5-12 Filling in the information to add a cluster

8. If you checked the Configure this cluster? checkbox, another window is
displayed. Enter the interface identification in the Interface name field (in our
server the interface that is associated with the IP address 10.20.10.102 is
en0) and the network mask in the Netmask field, as shown in Figure 5-13.

Figure 5-13 Configuring the interface

Although these fields are optional, we recommend you provide them,
otherwise Load Balancer uses the default values, which may not be correct
for your system. For example, the default network mask for our network
(10.20.10.0) is 255.0.0.0 (because it is a class A network), but we use a
subnet mask. So the default value would not work properly in this example.

140 WebSphere Application Server V6 Scalability and Performance Handbook

A new item which identifies your cluster is added to the left pane of the GUI.

9. Add each port that will be load balanced by Dispatcher. Right-click Cluster:
cluster.itso.ibm.com and select Add Port....

Note: In our tests using a Windows machine, the interface was
automatically configured as en1 when we left the fields unfilled, which
resulted in errors.

If you have only one Ethernet card in your machine, the interface name will
be en0. Likewise, if you have only one Token Ring card, the interface name
will be tr0. If you have multiple cards of either type, you will need to
determine the mapping of the cards. Use the following steps:

Click Start -> Run and run regedit. Expand HKEY_LOCAL_MACHINE ->
Software -> Microsoft -> Windows NT® -> Current Version ->
NetworkCards.

The network interface adapters are listed under Network Cards. Click each
one to determine the interface type. The type of interface is listed in the
Description column. The names assigned by the executor configure
command map to the interface types. For example, the first Ethernet
interface in the list is assigned to en0, the second to en1, and so on; the
first Token Ring interface is assigned to tr0, the second to tr1, and so on.

 Chapter 5. Using IBM WebSphere Edge Components 141

Figure 5-14 Adding a port

The port that we are adding refers to the port that the client will access. In our
scenario, we use port 80.

Fill in the number of the port in the Port number field and select MAC Based
Forwarding in the Forwarding method field, as shown in Figure 5-15.

Figure 5-15 Port information

For more information about the available forwarding methods, refer to
“Forwarding methods” on page 105.

A new item representing port 80 is added to the left pane of the GUI.

142 WebSphere Application Server V6 Scalability and Performance Handbook

10.Add the servers that will receive the load for port 80 of cluster
cluster.itso.ibm.com. Right-click Port:80 and select Add Server..., as shown
in Figure 5-16.

Figure 5-16 Adding a server

The next window prompts you for the information of the first server. Fill in the
hostname of your Web server in the Server field and enter its IP address in
the Server address field, as shown in Figure 5-17 on page 144.

The first server we add in our scenario is http1, and its IP address is
10.20.10.103.

 Chapter 5. Using IBM WebSphere Edge Components 143

Figure 5-17 Adding the first balanced server

Note that the Network router address checkbox is disabled because we
selected MAC Based Forwarding and this forwarding method does not allow
load balancing to remote servers.

Repeat step 10 on page 143 for all servers in the cluster.

We also add our second server; the hostname of this server is http2 and the
IP address is 10.20.10.104.

The load balancing part of the configuration is done. All the information that
Dispatcher needs to provide load balancing for our cluster is now configured.
But we also need the Manager component because we want to work with
dynamic weight values and failure detection.

11.Therefore, we now need to start the Manager component. Right-click Host:
lb.itso.ibm.com and select Start Manager, as shown in Figure 5-18 on
page 145.

144 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-18 Starting Manager

A window is displayed in which you can select the name of the Manager log
file and the metric port, as shown in Figure 5-19. We chose the default
options.

Figure 5-19 Manager options

Manager needs advisors in order to generate a weight value based on the
response time from each server in the cluster. The advisor is also needed in
order to detect a failure in the service of any balanced server (in our case, a
failure in the Web server service).

 Chapter 5. Using IBM WebSphere Edge Components 145

Due to the importance of the advisor, when you start Manager, the Load
Balancer GUI automatically displays a pop-up window prompting you to start
an advisor.

The Load Balancer product offers advisors for specific protocols and services,
and a generic advisor called Connect.
In our scenario, we are load balancing a Web server using the HTTP protocol.
Therefore, we use the default values as shown in Figure 5-20, which are HTTP
in the Advisor name field and port 80 in the Port number field. These are the
default values presented to us because we previously added port 80 in our
configuration.

Figure 5-20 Starting the HTTP advisor

You can also choose a specific cluster with which to associate this advisor. By
leaving the optional Cluster to advise on field blank, this advisor is
automatically associated with all clusters that are load balancing port 80.

If you want to specify a log filename for this advisor, type in the desired name
in the Log filename field. The default filename for the HTTP advisor is
Http_80.log.

We have concluded the basic load balancing configuration, so the last thing
we need to do is to save the configuration performed so far.

12.Right-click Host: lb.itso.ibm.com and select Save Configuration File As...,
as shown in Figure 5-21 on page 147.

146 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-21 Saving the Load Balancer configuration

A pop-up window is displayed. In the Filename field, you can either select an
existing configuration file (which will be overwritten) or you can enter a new
filename.

The filename default.cfg is the default name for Load Balancer. This means
that when you start the Dispatcher server (dsserver), it will look for the file
default.cfg and, if it exists, it will load it. default.cfg is stored in
<LB_install_path>/servers/configurations/dispatcher.

Figure 5-22 Choosing the configuration filename

The resulting configuration file is shown in Example 5-3 on page 148. Please
note that each individual command has to be on one line in the configuration

 Chapter 5. Using IBM WebSphere Edge Components 147

file. However, because of size limitations, some lines might be printed on two
lines in our examples.

Example 5-3 Configuration file for the basic scenario

dscontrol set loglevel 1
dscontrol executor start

dscontrol cluster add cluster.itso.ibm.com address 10.20.10.100 primaryhost
10.20.10.102

dscontrol cluster set cluster.itso.ibm.com proportions 49 50 1 0
dscontrol executor configure 10.20.10.100 en0 255.255.255.0

dscontrol port add cluster.itso.ibm.com:80 reset no

dscontrol server add cluster.itso.ibm.com:80:http2 address 10.20.10.104

dscontrol server add cluster.itso.ibm.com:80:http1 address 10.20.10.103

dscontrol manager start manager.log 10004

dscontrol advisor start Http 80 Http_80.log

If you do not want to use the Load Balancer GUI to configure the scenario
described here, you can copy the commands shown in Example 5-3 into your
own default.cfg file, and when you run dsserver, it will automatically be loaded.

You can also type those commands into the operating system prompt, one by
one.

Note that in either case, you need to change the hostnames and IP addresses
shown here to the appropriate ones for your environment.

5.2.2 Configuring the balanced servers
Although Dispatcher is ready to begin load balancing the traffic, there is still one
more configuration step to perform: preparing the balanced servers to accept
packets sent to the cluster IP address.

We do this by adding an IP alias to the loopback interface of these servers. This
alias is the IP address of the cluster.

Important: The cluster IP address must be added to the balanced servers as
a non-advertising address (the server must not respond to ARP requests for
that address). That is why we use it as an IP alias to the loopback interface.

148 WebSphere Application Server V6 Scalability and Performance Handbook

We describe how to add this IP alias for Windows 2000 and AIX machines in
“Aliasing the loopback interface in Windows 2000 systems” on page 149 and
“Aliasing the loopback interface in AIX systems” on page 155.

Aliasing the loopback interface in Windows 2000 systems
This procedure may add a new route to your routing table, so we recommend you
save an output of your current routing table to use later. See Example 5-4.

Example 5-4 Original routing table

C:\> route print
===
Interface List
0x1 MS TCP Loopback interface
0x1000003 ...00 02 55 91 4b 4c AMD PCNET Family Ethernet Adapter
===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.20.10.1 10.20.10.103 1
 10.20.10.0 255.255.255.0 10.20.10.103 10.20.10.103 1
 10.20.10.103 255.255.255.255 127.0.0.1 127.0.0.1 1
 9.255.255.255 255.255.255.255 10.20.10.103 10.20.10.103 1
 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 224.0.0.0 10.20.10.103 10.20.10.103 1
 255.255.255.255 255.255.255.255 10.20.10.103 10.20.10.103 1
Default Gateway: 10.20.10.1
===
Persistent Routes:
 None

Now you need to install the MS Loopback Adapter (if you have not already done
so).

1. Click Start -> Settings -> Control Panel -> Add/Remove Hardware. In the
Add/Remove Hardware Wizard, click Next, select Add/Troubleshoot a
device, and click Next.

2. Select Add a new device as shown in Figure 5-23 on page 150 and click
Next.

 Chapter 5. Using IBM WebSphere Edge Components 149

Figure 5-23 Adding a new device in Windows

3. In the Find New Hardware window select No, I want to select the hardware
from a list as shown in Figure 5-24 and click Next.

Figure 5-24 Find new hardware window

4. In the Hardware Type window, select Network Adapters as shown in
Figure 5-25 on page 151 and click Next.

150 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-25 Adding a network adapter

5. In the Select Network Adapter window, locate and select Microsoft from the
list on the left hand side, and select Microsoft Loopback Adapter from the
list on the right hand side, as shown in Figure 5-26, then click Next.

Figure 5-26 Adding the Microsoft Loopback Adapter

 Chapter 5. Using IBM WebSphere Edge Components 151

6. Confirm the selection in the following window by clicking Next. When the
installation has finished, click the Finish button.

7. Now we need to configure this new adapter. Click Start -> Settings ->
Control Panel -> Network and Dial-up Connections and locate the newly
installed device. You can identify it by looking at the Device Name column,
and locating the Microsoft Loopback Adapter device, as shown in Figure 5-27.

Figure 5-27 Locating the Microsoft Loopback Adapter device

8. Right-click the connection that represents the Microsoft Loopback Adapter
and select Properties.

9. In the components list pane, click Internet Protocol (TCP/IP) and click the
Properties button, as shown in Figure 5-28.

Figure 5-28 Local Area Connection properties

152 WebSphere Application Server V6 Scalability and Performance Handbook

10.In the Internet Protocol (TCP/IP) Properties window, click Use the following
IP address and type the cluster IP address into the IP address field. Then
enter the mask of your network in the Subnet mask field, as shown in
Figure 5-29.

Figure 5-29 Configuring the cluster IP address in the loopback

11.Leave all other fields blank and click OK.

12.After the loopback device is enabled, check the routing table. Compare it to
the one you saved in the beginning of this configuration (see the original
routing table in Example 5-4 on page 149 and the new routing table in
Example 5-5).

Example 5-5 Routing table after adding the loopback adapter

C:\> route print
===
Interface List
0x1 MS TCP Loopback interface
0x1000003 ...00 02 55 91 4b 4c AMD PCNET Family Ethernet Adapter
0x3000004 ...02 00 4c 4f 4f 50 MS LoopBack Driver
===
===
Active Routes:
Network Destination Netmask Gateway Interface Metric
 0.0.0.0 0.0.0.0 10.20.10.1 10.20.10.103 1
 10.20.10.0 255.255.255.0 10.20.10.100 10.20.10.100 1
 10.20.10.0 255.255.255.0 10.20.10.103 10.20.10.103 1
 10.20.10.100 255.255.255.255 127.0.0.1 127.0.0.1 1
 10.20.10.103 255.255.255.255 127.0.0.1 127.0.0.1 1
 10.255.255.255 255.255.255.255 10.20.10.100 10.20.10.100 1
 10.255.255.255 255.255.255.255 10.20.10.103 10.20.10.103 1

 Chapter 5. Using IBM WebSphere Edge Components 153

 127.0.0.0 255.0.0.0 127.0.0.1 127.0.0.1 1
 224.0.0.0 224.0.0.0 10.20.10.100 10.20.10.100 1
 224.0.0.0 224.0.0.0 10.20.10.103 10.20.10.103 1
 255.255.255.255 255.255.255.255 10.20.10.103 10.20.10.103 1
Default Gateway: 10.20.10.1
===
Persistent Routes:
 None

Note that after the loopback adapter was added, the system also added three
extra routes to the routing table. Now, there are three sets of routes to the
same destination using two different gateways: first, the cluster IP address
that was added to the loopback (10.20.10.100), and second the Ethernet
adapter IP address (10.20.10.103).

From the three sets of repeated routes, the one that may cause routing
problems is the one that was created for the local network, using the cluster
IP address as the gateway:

10.20.10.0 255.255.255.0 10.20.10.100 10.20.10.100 1

13.The gateway is incorrect, and you need to remove this route. You can use the
following command in a command prompt window:

C:\> route delete 10.20.10.0 10.20.10.100

14.This command must also be run after each reboot, because every time the
loopback adapter is activated, the route is added back to the system.
Therefore, we create a batch file, C:\routedel.bat, and add the following
lines to it:

@echo off
route delete 10.20.10.0 10.20.10.100
exit

15.In order to run this batch file automatically after a reboot, we add it to the
Registry. Run the command regedit and locate the key
HKEY_LOCAL_MACHINE -> SOFTWARE -> Microsoft -> Windows ->
CurrentVersion -> Run. On the menu bar, select Edit -> New -> String
Value. Rename the new string value name to a name that makes sense to
you, then double-click it so you can change the value data field. Enter
C:\routedel.bat and click OK.

This batch file will be run after a reboot and it will delete that second route. If
you need to add more aliases to the loopback, add the route delete for each
alias to this same batch file.

154 WebSphere Application Server V6 Scalability and Performance Handbook

Aliasing the loopback interface in AIX systems
The only thing you need to do in AIX in order to add the IP alias is to run the
ifconfig command, as follows:

ifconfig lo0 alias 10.20.10.100 netmask 255.255.255.255

Add this command to the end of the /etc/rc.net file so it will be run every time the
networking configuration is run (for example, after a system reboot).

If you want to confirm that the alias was added to the loopback adapter, run the
following command:

ifconfig lo0

You should see an output similar to the one shown in Example 5-6.

Example 5-6 New IP alias added to the loopback device in AIX

ifconfig lo0
lo0:
flags=e08084b<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
 inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
 inet6 ::1/0
 inet 10.20.10.100 netmask 0xffffffff broadcast 10.20.10.100
 tcp_sendspace 65536 tcp_recvspace 65536

You can now test if your server is responding to requests sent to the cluster IP
address by using a browser on the local machine and requesting the IP address
of the cluster.

Other examples of aliasing the loopback interface
The following table is a list of commands to add an alias on different platforms:

Note: Due to a characteristic of the operating system, this batch file added
to the Run registry entry will only run after a user logs in.

In order to have this batch file run after a reboot even if no user logs in, you
need to create a Windows service for it. Refer to the operating system
documentation for more information about how to create services.

Important: Make sure you use the netmask option with the netmask
255.255.255.255 when you are adding an IP alias to the loopback device in
AIX. If you use an incorrect netmask, or do not use this option at all, a new
route will be added to your routing table using the loopback as the gateway,
which causes routing problems.

 Chapter 5. Using IBM WebSphere Edge Components 155

Table 5-1 Adding an IP alias

After adding the alias, check for the extra route that may have been created, and
remove it according to the correct procedure for each operating system.

5.2.3 Testing the basic scenario
Dispatcher provides reports that can be used to verify the configuration. You can
see whether the back-end servers that make up the cluster are active and
sending responses to the advisors. You can also see if the traffic is being
balanced using the server monitor on the GUI.

Example 5-7 on page 157 shows the output of the dscontrol manager report
command. The first table lists the back-end servers being load balanced and
their status. The second table lists the servers by port, weight, number of active
and new connections, and load values.

The last table shows the advisors that were started, the port, and the timeout
value attributed to it.

Platform Command

AIX 4.3 ifconfig lo0 alias <cluster_IP_address> netmask <netmask>

AIX 5.x ifconfig lo0 alias <cluster_IP_address> netmask 255.255.255.255

HP-UX ifconfig lo0:1 <cluster_IP_address> up

Linux ifconfig lo:1 <cluster_IP_address> netmask 255.255.255.255 up
For the second alias, use lo:2, and so forth.

OS/2 ifconfig lo <cluster_IP_address>

Solaris 7 ifconfig lo0:1 <cluster_IP_address> 127.0.0.1 up

Solaris 8 and 9 ifconfig lo0:1 plumb <cluster_IP_address> netmask <netmask> up

Restriction: Some operating systems do not allow adding an alias to the
loopback adapter. One solution is to change the loopback IP address, but you
will not be able to use this server on more than one cluster.

Note: If you test the access with a browser and do not get a response, but
other services are responding to the cluster IP address (FTP, for example),
you may need to configure your HTTP server to listen to the IP address of the
cluster (refer to the documentation of your HTTP server for more information
about how to do this).

156 WebSphere Application Server V6 Scalability and Performance Handbook

Example 5-7 Manager report example

--
| SERVER | IP ADDRESS | STATUS |
--
| http2 | 10.20.10.104 | ACTIVE |
| http1 | 10.20.10.103 | ACTIVE |
--

MANAGER REPORT LEGEND
ACTV
NEWC
SYS
NOW
NEW
WT
CONN

| cluster.itso.ibm.com |
| 10.20.10.100 | WEIGHT | ACTV | NEWC | PORT | SYS |
| PORT: 80 |NOW NEW| 49% | 50% | 1% | 0% |

| http2 | 10 10 | 1 | 9 | 28 | 0 |
| http1 | 9 9 | 1 | 9 | 34 | 0 |

| ADVISOR | CLUSTER:PORT | TIMEOUT |

| http | 80 | unlimited |

You can check whether packets are being forwarded to the cluster by issuing the
dscontrol executor report command, which produces a report of the packet
traffic on the Executor component of Dispatcher, as shown in Example 5-8.

Example 5-8 Executor report example

Executor Report:

Version level 06.00.00.00
Total packets received since starting 591,860
Packets sent to nonforwarding address 1,300
Packets processed locally on this machine 0
Packets sent to collocated server 0
Packets forwarded to any cluster 200,251
Packets not addressed to active cluster/port .. 20,631

 Chapter 5. Using IBM WebSphere Edge Components 157

KBytes transferred per second 3,259
Connections per second 97
Packets discarded - headers too short 0
Packets discarded - no port or servers 0
Packets discarded - network adapter failure ... 0
Packets with forwarding errors................. 0

We can use the server monitor on the GUI to graphically view the load being
distributed among the servers. It is available per port and per server. If you
right-click a desired port or a specific server, you can select the Monitor... option.

The Monitor tool provides the same information that you can view in the Manager
report, but it dynamically updates the data and shows it in a chart.

If you choose to monitor a port, there will be one bar or line for each server
configured on that port. If you choose to monitor a specific server then there will
be only one bar or line for the chosen server.

By default, the chart presents the Weight of the servers (see Figure 5-30). You
can also select Port load (the load value provided by the Advisor), System load
(the load value provided by the Metric Server), Active connections and New
connections.

Figure 5-30 Monitor tool

158 WebSphere Application Server V6 Scalability and Performance Handbook

In order to monitor the behavior of the cluster, you can try repeatedly selecting a
clustered page using the browser, or you can use an HTTP benchmarking tool to
send requests to the cluster. In our lab, we used Rational® Performance Tester
to issue a burst of requests to the home page of our cluster (refer to 17.3.3,
“Rational Performance Tester” on page 956 for more information about this tool).

Using the Monitor tool, we can see the distribution of the load by selecting New
Connections in the Data Type box, as shown in Figure 5-31.

Figure 5-31 Load distribution among two Web servers

In order to simulate a server failure, we stop the Web server process in server
http2, and the Monitor chart shows that Dispatcher identifies that http2 is no
longer available (the server is still up, but the process is no longer responding to
the requests), and it stops sending requests to it. As shown in Figure 5-32 on
page 160, all requests are then forwarded to the remaining Web server, http1.

 Chapter 5. Using IBM WebSphere Edge Components 159

Figure 5-32 Dispatcher detects a failure in http2

This information is also available in the dscontrol manager report output, as
shown in Example 5-9.

Example 5-9 Manager report - failure in server http2

--
| SERVER | IP ADDRESS | STATUS |
--
| http2 | 10.20.10.104 | ACTIVE |
| http1 | 10.20.10.103 | ACTIVE |
--

MANAGER REPORT LEGEND
ACTV
NEWC
SYS
NOW
NEW
WT
CONN

160 WebSphere Application Server V6 Scalability and Performance Handbook

| cluster.itso.ibm.com |
| 10.20.10.100 | WEIGHT | ACTV | NEWC | PORT | SYS |
| PORT: 80 |NOW NEW| 49% | 50% | 1% | 0% |

| http2 | 0 0 | 1 | 0 | -1 | 0 |
| http1 | 11 11 | 1 | 17 | 35 | 0 |

| ADVISOR | CLUSTER:PORT | TIMEOUT |

| http | 80 | unlimited |

Note that the PORT column shows the value -1 for the http2 server. This means
that the advisor is getting no response from this server. That makes the weight of
this server set to zero (see column WEIGHT).

After a while, we restarted the Web server process in server http2. The Server
monitor chart in Figure 5-33 shows that Dispatcher identifies that the server is
available again, and distributes part of the load to it. The line for the http1 server
starts dropping because its load starts being shared with http2.

Figure 5-33 Dispatcher detects that http2 is back up

 Chapter 5. Using IBM WebSphere Edge Components 161

5.3 Load Balancer: high availability scenario
This scenario extends the configuration shown in 5.2, “Load Balancer
configuration: basic scenario” on page 135 by adding a backup Load Balancer
server and a high availability configuration.

We recommend that you first set up the basic scenario and test the load
balancing. Once this is working, follow the instructions below to add the second
Load Balancer server and the high availability configuration.

5.3.1 Configuring high availability
You can use the configuration file that was created for the basic scenario. We
assume that the basic scenario is already set up and working.

When you are using the high availability feature of Load Balancer, you do not use
the dscontrol cluster configure command in the Dispatcher configuration file.
For a high availability configuration, we create scripts that control all IP aliases
that need to be added or removed from the network interfaces and the loopback
interface, depending on the state of the server.

Leaving the dscontrol cluster configure command in the configuration would
break the high availability configuration because it adds the IP alias to the
network interface no matter what the state of the Load Balancer server is (active
or standby). We need to make sure that the IP alias is only added to the network
interface when a server changes to the active state. For more information, refer
to 5.3.4, “Configuring the high availability scripts” on page 171.

First, we have to remove the cluster IP alias from the existing basic configuration
before proceeding.

1. Open the Load Balancer GUI and connect to the primary server as described
in steps 1 on page 136 through 4 on page 137. Make sure that the basic
configuration is loaded by checking that the cluster, port, and servers are
already configured.

2. Right-click Executor: 10.20.10.102 and select Unconfigure Interface
Address..., as shown in Figure 5-34 on page 163.

162 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-34 Unconfiguring a cluster interface address

A pop-up window is displayed; enter the IP address of the cluster in the
Interface address field. In our scenario, we want to remove the IP alias for the
cluster address 10.20.10.100, as shown in Figure 5-35.

Figure 5-35 Unconfiguring the cluster address 10.20.10.100

3. Save the current configuration then copy it to the backup Dispatcher server,
so you do not need to set up the basic load balancing configuration there
again.

 Chapter 5. Using IBM WebSphere Edge Components 163

4. Now we need to add the high availability configuration. Right-click High
Availability in the left pane of the GUI window and select Add High
Availability Backup..., as shown in Figure 5-36.

Figure 5-36 Adding a high availability backup entry

A new pop-up window is displayed as shown in Figure 5-37 on page 165.

First, you need to choose a port number that will be used by both Dispatcher
servers to exchange the information needed to keep them synchronized, and
fill it into the Port number field. You can choose any port, you just need to
make sure that the port number matches on both servers. For our scenario,
we chose port 12345.

In the Role field, select the role that this machine will have in the high
availability scenario (Primary, Backup, or Both). In our scenario, this machine
is our primary machine, so we selected Primary.

In the Recovery strategy field, choose how your primary machine is going to
behave in case the backup machine has taken over. If you select Auto, it will

Tip: To save the configuration file, right-click Host -> Save Configuration
File As....

164 WebSphere Application Server V6 Scalability and Performance Handbook

take over as soon as it is up (and responding to the network). If you select
Manual, you will need to take an action (either using the Load Balancer GUI
or running the command dscontrol high takeover) to force it to take over. As
long as you do not force the takeover, the backup remains active. In our
scenario, we selected Auto.

The last thing you need to add in this window is the heartbeat source address
and the heartbeat destination address. The heartbeat is a GRE (Generic
Route Encapsulation) packet that is sent from the local machine to the other
server in the same high availability cluster to make sure it is responding. Enter
the IP address of the local machine into the Heartbeat source address field,
and the IP address of the backup machine into the Heartbeat destination
address field.

When you are finished, click OK.

Figure 5-37 Configuring high availability for the primary server

For now, the configuration is done on the primary Dispatcher server. Click High
Availability in the left pane, and you can see the high availability status
information in the right pane, as shown in Figure 5-38 on page 166.

 Chapter 5. Using IBM WebSphere Edge Components 165

Figure 5-38 High availability status information

The next steps must be performed on the backup Dispatcher server, which in our
scenario is the server http2.

1. Open the Load Balancer GUI and connect to the backup server as described
in steps 1 on page 136 through 4 on page 137. In our scenario, the backup
server is http2.itso.ibm.com, as shown in Figure 5-39; the backup server is
collocated with the Web server.

Figure 5-39 Connecting to the backup Load Balancer server

166 WebSphere Application Server V6 Scalability and Performance Handbook

2. First, you have to load the configuration file you copied from the primary
server in step 3 on page 163. Right-click Host: http2.itso.ibm.com and
select Load New Configuration... as shown in Figure 5-40.

Figure 5-40 Loading a configuration

Select the filename in the pop-up window and click OK. See Figure 5-41.

Figure 5-41 Loading the default configuration file

3. As mentioned earlier, we are using a collocated scenario for the backup
Dispatcher server (which means that it is running on the same system as one
of the Web servers). This requires a change in the configuration to indicate
that http2 is a collocated server. In our case, this change is only required on
the backup server, and you do not need to do it if you use a dedicated server.

Click the collocated server name in the left pane under Port:80 (in our
scenario, we selected http2). Locate the Collocated field in the right pane,
select the option yes and click Update Configuration at the bottom of this
pane, as shown in Figure 5-42 on page 168.

 Chapter 5. Using IBM WebSphere Edge Components 167

Figure 5-42 Configuring the collocated option

4. Add the high availability information for the backup server. Right-click High
Availability in the left pane of the GUI window and select Add High
Availability Backup... (this is the same procedure we performed for the
primary server in step 4 on page 164).

Figure 5-43 Configuring high availability in the backup server

You need to use the same parameters for Port number and Recovery strategy
that you used in the configuration of the primary server (see Figure 5-37 on
page 165).

Select Backup in the Role field.

168 WebSphere Application Server V6 Scalability and Performance Handbook

For the backup server, the Heartbeat source address is the backup server
itself, and the Heartbeat destination address is the primary server, as shown
in Figure 5-43 on page 168.

5. Save the configuration of the primary and backup servers.

Refer to 5.3.3, “Checking the configuration” on page 170 for the complete
configuration files of both Load Balancer servers.

5.3.2 Adding reach targets
The final step in the configuration of our high availability scenario is to add the
reach target.

A reach target works in a similar way to the heartbeat, but this time we use
another machine as the destination for the ping packet. The same reach targets
are added to the configuration of both primary and backup servers.

If the active Load Balancer cannot reach this target (it does not receive a
response from the ping packet), but the standby server still receives responses
from it, the standby server will force a failover. Therefore, it is very important that
you choose a stable server or network appliance as the reach target. We usually
recommend using the default router of the local network (use the IP of the
interface that is directly connected to the local network).

If you configure more than one reach target, the standby Load Balancer will fail
over if it receives responses from more reach targets than the active Load
Balancer.

In our scenario, we used the IP address of our local router, which is 10.20.10.1.

To add this IP address as a reach target IP address, right-click High Availability
in the left pane of the window and select Add Reach Target... A pop-up window
is displayed, as shown in Figure 5-44.

Figure 5-44 Adding a reach target

 Chapter 5. Using IBM WebSphere Edge Components 169

Type the IP address of the destination you chose, and click OK. Make sure you
add the same reach target in both the primary and the backup Dispatcher
servers’ configurations. Save the configuration file.

You can add more than one reach target if you need to.

5.3.3 Checking the configuration
The resulting configuration file for our primary server is shown in Example 5-10.
Please note that each individual command has to be on one line in the
configuration file. However, because of size limitations, some lines might be
printed on two lines in our examples.

Example 5-10 Primary server configuration file

dscontrol set loglevel 1
dscontrol executor start

dscontrol highavailability heartbeat add 10.20.10.102 10.20.10.104
dscontrol highavailability backup add primary=10.20.10.102 auto 12345
dscontrol highavailability reach add 10.20.10.1

dscontrol cluster add cluster.itso.ibm.com address 10.20.10.100 primaryhost
10.20.10.102
dscontrol cluster set cluster.itso.ibm.com proportions 49 50 1 0

dscontrol port add cluster.itso.ibm.com:80 reset no

dscontrol server add cluster.itso.ibm.com:80:http2 address 10.20.10.104
dscontrol server add cluster.itso.ibm.com:80:http1 address 10.20.10.103

dscontrol manager start manager.log 10004

dscontrol advisor start Http 80 Http_80.log

The configuration file of our backup server is shown in Example 5-11 on
page 171.

Note: We recommend that you add the reach target after you have already
tested the high availability configuration (including takeover and failover) and
the load balancing.

The reason for this is that you could experience unwanted failovers during
your initial high availability tests if the reach target system is unstable.

170 WebSphere Application Server V6 Scalability and Performance Handbook

Example 5-11 Backup server configuration file

dscontrol set loglevel 1
dscontrol executor start

dscontrol highavailability heartbeat add 10.20.10.104 10.20.10.102
dscontrol highavailability backup add backup auto 12345
dscontrol highavailability reach add 10.20.10.1

dscontrol cluster add cluster.itso.ibm.com address 10.20.10.100 primaryhost
10.20.10.102
dscontrol cluster set cluster.itso.ibm.com proportions 49 50 1 0

dscontrol port add cluster.itso.ibm.com:80 reset no

dscontrol server add cluster.itso.ibm.com:80:http2 address 10.20.10.104
dscontrol server set cluster.itso.ibm.com:80:http2 collocated y
dscontrol server add cluster.itso.ibm.com:80:http1 address 10.20.10.103

dscontrol manager start manager.log 10004

dscontrol advisor start Http 80 Http_80.log

5.3.4 Configuring the high availability scripts
After configuring high availability on both Dispatcher servers, you now need to
create the high availability scripts (refer to 4.6, “Dispatcher scripts” on page 119).

You need to configure at least the goActive, goStandby, and goInOp scripts but
we also show how to use the serverUp, serverDown and highavailChange
scripts.

You can start working with the samples available in the
<product_install_path>/servers/samples directory and customize them for your
environment, or you can write them from scratch.

All scripts are created in the <LB_install_path>/servers/bin directory, and you
need to name them exactly as indicated (Load Balancer is case sensitive).

Note: The scripts are identical for the primary and the backup Dispatcher
servers, unless there is some particular command you need to run on each
machine. This might be the case, for example, if your backup Dispatcher is
collocated while your primary Dispatcher is not. In this case, you need to
delete/add the loopback alias commands on the collocated server.

 Chapter 5. Using IBM WebSphere Edge Components 171

We used two AIX V5.2 servers so we wrote the scripts using ksh syntax.

goActive
Executor runs this script whenever the Load Balancer server switches to active
state. For example, when a fail over occurs and the standby server switches to
active, or when the Load Balancer is started in the primary server and the
recovery strategy is set to automatic.

This script is configured to remove the cluster IP alias (10.20.10.100) from the
loopback (lo0) and add it to the network interface (defined in the INTERFACE
variable). As mentioned earlier, we removed the dscontrol executor configure
command from the configuration in step 2 on page 162 because when we
implement high availability we do all IP aliasing through the scripts. See
Example 5-12.

We added a text message that will be written to a log file using the echo
command. Note that you can also start or stop processes, you can use
while/for/if and other ksh commands.

It is important that each individual command be on one line in the configuration
file.

Example 5-12 goActive script

#!/bin/ksh
ND_LOGDIR=/opt/ibm/edge/lb/servers/logs/dispatcher
CLUSTER1=10.20.10.100
INTERFACE=en0
NETMASK=255.255.255.0

date >> $ND_LOGDIR/ha.log
echo "This machine is Active. Aliasing cluster address(es) to NIC" >>
$ND_LOGDIR/ha.log

ifconfig lo0 delete $CLUSTER1
ifconfig $INTERFACE alias $CLUSTER1 netmask $NETMASK

goStandby
Executor runs this script whenever the Load Balancer server switches to standby
state. For example, when the Load Balancer is started in the backup server and
the primary server is active.

Note: Only delete the loopback alias (in our example, we do it with the line
“ifconfig lo0 delete $CLUSTER1“) if you are doing both MAC forwarding and
collocation on the Load Balancer machine.

172 WebSphere Application Server V6 Scalability and Performance Handbook

This script is configured to remove the cluster IP alias (10.20.10.100) from the
network interface (defined in the INTERFACE variable) and add it to the loopback
(lo0). See Example 5-13.

Example 5-13 goStandby script

#!/bin/ksh
ND_LOGDIR=/opt/ibm/edge/lb/servers/logs/dispatcher
CLUSTER1=10.20.10.100
INTERFACE=en0
NETMASK=255.255.255.0

date >> $ND_LOGDIR/ha.log
echo "Deleting the device aliases and adding the loopback aliases" >>
$ND_LOGDIR/ha.log

ifconfig en0 delete $CLUSTER1
ifconfig lo0 alias $CLUSTER1 netmask 255.255.255.255

Note that when we configure an IP alias to the loopback we use the full netmask
(255.255.255.255) in order to prevent the operating system from adding extra
routes to the routing table.

goInOp
Executor runs this script whenever Executor is stopped or it is first started, so we
want to remove the IP aliases from all network interfaces and loopback. See
Example 5-14.

Example 5-14 goInOp script

#!/bin/ksh
ND_LOGDIR=/opt/ibm/edge/lb/servers/logs/dispatcher
CLUSTER1=10.20.10.100
INTERFACE=en0
NETMASK=255.255.255.0

date >> $ND_LOGDIR/ha.log
echo "Executor has stopped. Removing loopback and device aliases. \n" >>
$ND_LOGDIR/ha.log

ifconfig lo0 delete $CLUSTER1
ifconfig $INTERFACE delete $CLUSTER1

Note: Only add the loopback alias (in our example, we do it with the line
“ifconfig lo0 alias $CLUSTER1 netmask 255.255.255.255“) if you are doing both
MAC forwarding and collocation on the Load Balancer machine.

 Chapter 5. Using IBM WebSphere Edge Components 173

serverDown
Executor runs this script whenever a balanced server is marked down by
Manager.

We use this script to record an entry in a log file informing that one of the HTTP
servers was marked down by Manager. See Example 5-15.

Example 5-15 serverDown script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE $1 has been marked down."

echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/dispatcher/lb.log

serverUp
Executor runs this script whenever a balanced server is marked up by Manager.

We use this script to record an entry in a log file informing that one of the HTTP
servers was marked up by Manager. See Example 5-16.

Example 5-16 serverUp script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE $1 has been marked back up."

echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/dispatcher/lb.log

highavailChange
Executor runs this script whenever the state of the Load Balancer server
changes (from active to standby or from standby to active).

Note: Only delete the loopback alias (in our example, we do it with the line
“ifconfig lo0 delete $CLUSTER1“) if you are doing both MAC forwarding and
collocation on the Load Balancer machine.

Note: When Dispatcher runs the serverUp and serverDown scripts, it passes
the name of the balanced server as the first parameter to the script. So the
variable $1 contains the server name in the format <cluster>:<port>:<server>.

For example, in our scenario the http1 server would be identified as
cluster.itso.ibm.com:80:http1.

174 WebSphere Application Server V6 Scalability and Performance Handbook

We use this script to record an entry in a log file informing that the state of the
local Load Balancer server has changed. See Example 5-17.

Example 5-17 highavailChange script

#!/bin/ksh
DATE=`date`
OUTPUT="$DATE LB just ran $1."

echo $OUTPUT >> /opt/ibm/edge/lb/servers/logs/dispatcher/lb.log
#echo $OUTPUT | mail -s "highavailChange" root@localhost

After creating and editing the scripts in our AIX systems, we need to add
execution permission to the files, or they will not be able to run.

For better security, we added read, write and execute permissions for the owner
of the file (root) and we removed all other permissions by running the commands
shown in Example 5-18.

Example 5-18 Setting the file permissions

cd /opt/ibm/edge/lb/servers/bin
chmod 700 go*
chmod 700 server*
chmod 700 highavailChange

ls -l
total 2066
-rwx------ 1 root system 1141 Oct 15 18:07 goActive
-rwx------ 1 root system 1073 Oct 15 16:49 goInOp
-rwx------ 1 root system 1147 Oct 15 16:49 goStandby
-rwx------ 1 root system 1090 Oct 15 16:49 highavailChange
-rwx------ 1 root system 1046318 Oct 11 11:23 ibmlb
-rwx------ 1 root system 527 Oct 11 11:23 lbpd
-rwx------ 1 root system 933 Oct 15 16:49 serverDown
-rwx------ 1 root system 929 Oct 15 16:49 serverUp

Configuring the high availability scripts in Windows
The approach to configuring the high availability scripts in Windows is the same
as in AIX: first, you locate the scripts in the \samples directory and change them
according to the instructions in the sample file. The filenames are the same in

Note: When Dispatcher runs the highavailChange script, Dispatcher passes
the name of the high availability script which was run (goActive, goStandby,
goInOp or goIdle) as the first parameter to the script. You can use it by
referencing the variable $1.

 Chapter 5. Using IBM WebSphere Edge Components 175

Windows, and they must end with .cmd. Then you copy them to the \bin directory.
Example 5-19 shows the sample goActive file in Windows. We have bolded the
lines that need to be changed or contain important information.

Example 5-19 Sample goActive script in Windows

@echo off
echo 5639-D57, 5630-A36, 5630-A37, 5724-D18, 5724-H88, 5724-H89 (C) COPYRIGHT
International Business Machines Corp. 1998, 2004
echo All Rights Reserved * Licensed Materials - Property of IBM
rem
rem goActive script
rem
rem Configure this script when using the high availability feature of
rem Load Balancer.
rem
rem This script is executed when Dispatcher goes into the
rem 'Active' state and begins routing packets.
rem
rem This script must be placed in Load Balancer's bin directory (by default
this is
rem C:\Program Files\ibm\edge\lb\servers\bin) and it must have the extension
.cmd in order
rem to be executable.
rem
rem Modify CLUSTER, INTERFACE and NETMASK to match your environment.
rem
rem tr0=first Token ring adapter, en0=first Ethernet adapter
rem
rem NETMASK must be the netmask of your LAN. It may be hexadecimal or
dotted-decimal notation.
rem
rem CLUSTER must be in dotted-decimal format if you are deleting the loopback
aliasing (see below)
rem
set CLUSTER=your.cluster.in.dotteddecimalformat
set INTERFACE=tr0
set NETMASK=255.255.248.0
rem
rem Deleting loopback alias(es): Only delete the loopback alias if you are
doing both MAC
rem forwarding and collocation on the Load Balancer machine. Use the
rem 'netsh interface dump' command to determine your loopback interface name.
rem
rem echo "Deleting loopback alias(es)

176 WebSphere Application Server V6 Scalability and Performance Handbook

rem call netsh interface ip delete address "Local Area Connection 1" %CLUSTER%
rem
echo "Adding device alias(es)"
call dscontrol e config %CLUSTER% %INTERFACE% %NETMASK%

5.3.5 Testing the high availability scenario
After you finish configuring both Dispatcher servers and all the scripts, we
recommend that you first test the load balancing in each Dispatcher server
separately. Stop Executor on both servers, start one of them and test the load
balancing. Then stop Executor on the first server, start it on the second one and
do the tests again. Once you confirmed that each Dispatcher server is
distributing the load correctly, start them both, first the primary server and then
the backup server.

Tests with automatic recovery strategy
Open the Load Balancer GUI, connect to the primary server and click High
Availability in the left pane. The high availability status information is displayed
in the right pane, as shown in Figure 5-45 on page 178.

Note: You need to remove the “rem” in front of the call netsh interface
command line and add the correct name for the loopback adapter (for
example lo0) if you are using both MAC forwarding and collocation. This
makes sure the loopback alias is deleted (or added in the goStandby script
respectively).

Important: When testing the high availability scenario in a Windows
environment using the first version of WebSphere Edge Components V6
(available December 2004) we encountered problems with the stop executor
command as well as when trying to stop Executor in the GUI (the system
crashed). This problem has been fixed with APAR PK00545.

Please call IBM Service to get the fix associated with this APAR.

If you are using WebSphere Edge Components V6.0.0.2 or higher, then the fix
is already included in the code.

As an alternative to stopping the Executor you can disable the network
interface or unplug the network cable for your tests.

 Chapter 5. Using IBM WebSphere Edge Components 177

Figure 5-45 High availability status

It shows that the current server is the active server (State field) and that both
servers are synchronized (Sub-state field). It also shows the port number (which
needs to be the same on both servers), the role of this server and the recovery
strategy.

The List of heartbeats shows the heartbeat connections that were configured
and the List of reach targets shows the status of the connectivity test to each IP
address configured as a reach target.

Repeat the same procedure on the backup server and compare the values of
these fields.

This information can also be obtained by running the command dscontrol high
status, as shown in Example 5-20.

Example 5-20 High availability status on primary server

dscontrol high status

High Availability Status:

Role Primary
Recovery strategy Auto

178 WebSphere Application Server V6 Scalability and Performance Handbook

State Active
Sub-state Synchronized
Primary host 10.20.10.102
Port 12345
Preferred target 10.20.10.104

Heartbeat Status:

Count 1
Source/destination ... 10.20.10.102/10.20.10.104

Reachability Status:

Count 1
Address 10.20.10.1 reachable

Check the network interfaces configuration on both Dispatcher servers. The
active server should have the cluster IP address aliased to the network interface,
and the standby server should have it aliased to the loopback interface.

In order to test the high availability configuration we need to simulate a failure on
the current active server. A simple way to do that is to disable the network
interface.

If we were using the manual recovery strategy we would first issue a takeover
command, and check how it is performed before actually simulating a problem.

In our scenario, lb is the primary machine, and http2 is the backup machine. In
order to simulate a failure, we stopped the Ethernet interface on the primary
machine, using the command below:

ifconfig en0 down

This causes the standby server to failover. We can see that the backup machine
has become the active server by running the dscontrol high status command
again, as shown in Example 5-21.

Example 5-21 High availability status on the backup server

dscontrol high status

High Availability Status:

Role Backup
Recovery strategy Auto
State Active
Sub-state Not Synchronized
Primary host 10.20.10.102

 Chapter 5. Using IBM WebSphere Edge Components 179

Port 12345
Preferred target n/a

Heartbeat Status:

Count 1
Source/destination ... 10.20.10.104/10.20.10.102

Reachability Status:

Count 1
Address 10.20.10.1 reachable

Note that this Dispatcher server is now active, but the Sub-state is Not
Synchronized (because it cannot communicate with the primary server).

If you look at the IP addresses on the network interfaces of the backup machine,
you will notice that this machine now has an IP alias on the Ethernet interface for
the cluster IP address, as shown in Example 5-22.

Example 5-22 Network interfaces in the backup server after a failover

ifconfig -a
en0:
flags=4e080863,80<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64B
IT,PSEG,CHAIN>
 inet 10.20.10.104 netmask 0xffffff00 broadcast 10.20.10.255
 inet 10.20.10.100 netmask 0xffffff00 broadcast 10.20.10.255
lo0:
flags=e08084b<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
 inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
 inet6 ::1/0
 tcp_sendspace 65536 tcp_recvspace 65536

We kept sending HTTP requests to the cluster address while we were doing the
high availability tests to make sure that there is no interruption in the
communication between the client and the balanced Web servers.

Tests with manual recovery strategy
If you configured the high availability recovery strategy as manual, you start your
tests by forcing the standby server to take over. To do so, go to the standby
server, and run the following command:

dscontrol high takeover

You can also issue a takeover using the Load Balancer GUI. Open the GUI and
connect to the standby server. Right-click High Availability and select Takeover.

180 WebSphere Application Server V6 Scalability and Performance Handbook

5.4 Load Balancer: NAT scenario
In this scenario we use the same servers that we worked with in 5.2, “Load
Balancer configuration: basic scenario” on page 135, but now we use NAT/NAPT
as the forwarding method instead of MAC forwarding. We assume an
unconfigured Load Balancer for this scenario. So if you have tested the basic
MAC forwarding scenario first, then you need to delete the existing configuration.

1. Start dsserver, connect to the Dispatcher server and start Executor as
explained in steps 1 on page 136 through 5 on page 137.

2. After starting Executor, click Executor: 10.20.10.102 in the left pane of the
GUI window, and locate the Client gateway address field in the right pane
(see Figure 5-46 on page 182). This field needs to be filled in order to enable
NAT/NAPT and CBR forwarding methods. This is the IP address of the
gateway router which handles traffic from the cluster back to the client
browser.

In our scenario, where the Web servers are connected to the same network
as the Dispatcher server, we used the default gateway IP address in our
configuration, which is 10.20.10.1.

Enter the correct IP address and click the Update Configuration button.

Note: You can only run the dscontrol high takeover command if the
following three conditions are met:

1. The recovery strategy is manual.
2. The machine state is Standby.
3. The Sub-state is Synchronized.

You can confirm this information by first running the dscontrol high status
command.

Important: We are using 10.20.10.1 because we use the same IP address
for inbound and outbound traffic. In case you are not using a common IP
address, then you need to specify the IP address of the router which
serves as the first hop on the way from the Load Balancer to the client.

 Chapter 5. Using IBM WebSphere Edge Components 181

Figure 5-46 Configuring the client gateway address

3. After configuring the client gateway address we need to configure the cluster.
Right-click Executor: 10.20.10.102 in the left pane of the GUI and select Add
Cluster..., as shown in Figure 5-47 on page 183.

182 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-47 Add a cluster - NAT configuration

The information provided for the cluster creation is similar to what we used in
the basic scenario (see steps 6 on page 138 through 8 on page 140), details
are shown in Figure 5-48.

Figure 5-48 Cluster information

 Chapter 5. Using IBM WebSphere Edge Components 183

If you selected the Configure this cluster? checkbox, you need to also
provide the information to add the IP alias, as shown in Figure 5-49.

Figure 5-49 Configuring the interface

4. Right-click Cluster: cluster.itso.ibm.com in the left pane and select Add
Port..., as shown in Figure 5-50.

Figure 5-50 Add a port

A pop-up window is displayed similar to the one we had in the basic scenario.
But this time, you have all options available in the Forwarding method field.

Type 80 into the Port number field, select NAT / NAPT as the Forwarding
method and click OK. See Figure 5-51 on page 185.

184 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-51 Adding a port - NAT forwarding method

5. Right-click Port: 80 in the left pane and select Add Server... as shown in
Figure 5-52.

Figure 5-52 Add a server

A pop-up window is displayed, but it contains more fields compared to the one
we got when configuring the basic scenario with MAC forwarding.

The two extra fields are the return address and the network router address.

The return address is an extra IP address that is used by Dispatcher as the
source IP address of the packets that are sent to the Web servers. You cannot
use neither the cluster address nor the NFA (non-forwarding address) as the
return address, so you need one additional IP address for this configuration.

 Chapter 5. Using IBM WebSphere Edge Components 185

The network router address is the router which serves as the first hop on the
way from the Load Balancer to the load balanced server. With our single
subnet scenario, it is the same address as the client gateway. This field is
provided in the server configuration in case you have several balanced
servers spread in different remote networks, and you need a different router
IP address to reach each server.

We added our first Web server as shown in Figure 5-53. We used the same
values we had used in the basic scenario (see Figure 5-17 on page 144) and
we also provided the IP address we selected as our Return address and our
default gateway IP address as our Network router address.

Figure 5-53 Adding the first balanced server

6. Add the second Web server. We used the same values for our second Web
server as the ones we used in the basic scenario, and we also used the same
return address and the same network router address, as shown in
Figure 5-54 on page 187.

Note: When you configure NAT/NAPT on a collocated server, you need to
use the local IP address as the network router address. This tells
Dispatcher that the desired server is collocated on the local machine.

186 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-54 Adding the second balanced server

7. Follow steps 11 on page 144 through step 12 on page 146 to start Manager,
advisors and save the configuration.

8. The last thing you need to configure is to add the return address to the
operating system, so it is able to handle the responses from the balanced
servers. You can either use the GUI or the command line to do this.

a. In the GUI, right-click Executor and select Configure Interface
Address... Enter the return address into the Interface address field (in our
example this is 10.20.10.105), type the interface name into the optional
Interface name field (in our example this is en0) and enter the netmask
into the Netmask field (in our example this is 255.255.255.0). See
Figure 5-55 on page 188.

Important: It is sufficient to configure the return address if you are not in a
collocated environment. If, however, one or both of your Load Balancer
servers are collocated, you need to perform additional steps. These differ
for each operating system, so refer to the Load Balancer Administration
Guide, Chapter 21, Section “Using collocated servers - Configuring server
collocation with Dispatcher’s nat forwarding” for complete instructions for
your operating system.

 Chapter 5. Using IBM WebSphere Edge Components 187

Figure 5-55 Configure the return address

a. Alternatively, if you prefer the command line interface, run one of the
following commands:

dscontrol executor configure 10.20.10.105 en0 255.255.255.0 (AIX)
dscontrol executor configure 10.20.10.105 en0 255.255.255.0 (Windows)
dscontrol executor configure 10.20.10.105 eth0:1 255.255.255.0 (Linux)

9. Do not forget to save your configuration file.

Example 5-23 shows the default.cfg configuration file for this scenario (remember
each command must be on one line):

Example 5-23 Configuration file (default.cfg) for NAT scenario

dscontrol set loglevel 1
dscontrol executor start
dscontrol executor set clientgateway 10.20.10.1

dscontrol cluster add cluster.itso.ibm.com address 10.20.10.100 primaryhost
10.20.10.102
dscontrol cluster set cluster.itso.ibm.com proportions 49 50 1 0
dscontrol executor configure 10.20.10.100 en0 255.255.255.0

dscontrol port add cluster.itso.ibm.com:80 method nat reset no
dscontrol port set cluster.itso.ibm.com:80 porttype tcp

dscontrol server add cluster.itso.ibm.com:80:http1 address 10.20.10.103 router
10.20.10.1 returnaddress 10.20.10.105
dscontrol executor configure 10.20.10.105 en0 255.255.255.0

dscontrol server add cluster.itso.ibm.com:80:http2 address 10.20.10.104 router
10.20.10.1 returnaddress 10.20.10.105
dscontrol executor configure 10.20.10.105 en0 255.255.255.0

188 WebSphere Application Server V6 Scalability and Performance Handbook

dscontrol manager start manager.log 10004

dscontrol advisor start Http 80 Http_80.log

5.4.1 Testing the NAT scenario
The tests we performed were similar to the ones we did in 5.2.3, “Testing the
basic scenario” on page 156.

We generated requests to the cluster using Rational Load Tester and monitored
the load distribution using the port Monitor, as shown in Figure 5-56.

Figure 5-56 Monitoring the NAT scenario test

Note: You do not need to configure the balanced Web servers when using the
NAT/NAPT forwarding method as described in 5.2.2, “Configuring the
balanced servers” on page 148. This step is only necessary when using the
MAC forwarding method.

 Chapter 5. Using IBM WebSphere Edge Components 189

5.5 Load Balancer: additional configuration options

This section describes some additional configuration and usage options that you
might want to add to your setup. We cover the following:

� “Basic Load Balancer scenario with customizable advisor settings” on
page 190.

� “Using WebSphere Application Server custom advisor” on page 193.

� “Starting Dispatcher automatically after a reboot” on page 203.

� “Starting and stopping Dispatcher components” on page 204.

5.5.1 Basic Load Balancer scenario with customizable
advisor settings

The advisor used in our basic scenario tested the connectivity to the Web server
by sending the following request:

HEAD / HTTP/1.0

This request is served by the Web server default index page. There are certain
situations where this request will be inappropriate:

� If the Web server cannot serve a default page for URI “ /”; this causes the
request to fail, although the actual application is running fine in the back-end
application servers.

� If the Web server plug-in fails, the Web server can still respond to this request
if it is a local page, but it will not be able to communicate with the application
servers. Any request sent to this Web server which requires communication
with the back-end application servers will fail.

We have two options to solve this problem: we can customize the request that is
sent by the advisor, so we make sure the request tests the Web server plug-in
and the back-end application server, or we can write a custom advisor.

We first explain how to customize the advisor request, and later in 5.5, “Load
Balancer: additional configuration options” on page 190 we explain the custom
advisors.

Using the basic scenario that was set up in 5.2, “Load Balancer configuration:
basic scenario” on page 135, we now change the advisor request so it uses an
application request: /wlm/BeenThere.

1. Open the Load Balancer GUI and connect to the Dispatcher server.

2. Select http1 from the left pane (on Port:80).

190 WebSphere Application Server V6 Scalability and Performance Handbook

3. In the right pane, click the Configuration Settings tab (see Figure 5-57).

4. Enter the following into the HTTP Advisor Request field:

HEAD /wlm/BeenThere HTTP/1.0

Click the Update Configuration button.

5. In the HTTP Advisor Response field type:

200

Click the Update Configuration button.

Figure 5-57 Customizing the advisor request

6. Repeat steps 2 through 5 for each Web server.

You can check if the advisor is receiving responses for the new request in the
dscontrol manager report command, Monitor (select the Port load data type),
or you can click Advisor: Http 80 in the left pane of the GUI and check the
Server Statistics in the right pane as shown in Figure 5-58 on page 192.

 Chapter 5. Using IBM WebSphere Edge Components 191

Figure 5-58 Advisor statistics

Check the access log of each Web server, you should see the entries shown in
Example 5-24 which correspond to the advisor requests.

Example 5-24 Web server access log

10.20.10.102 - - [22/Oct/2004:16:05:50 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:02 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:10 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:23 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:30 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:37 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:45 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:06:57 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -
10.20.10.102 - - [22/Oct/2004:16:07:28 -0400] "HEAD /wlm/BeenThere HTTP/1.0" 200 -

Example 5-25 shows the commands that you can use to set the same
parameters using the command line interface. Please note that each individual
command has to be on one line in the configuration file.

Example 5-25 Changes in the configuration file

dscontrol server set cluster.itso.ibm.com:80:http2 advisorrequest "HEAD
/wlm/BeenThere HTTP/1.0"
dscontrol server set cluster.itso.ibm.com:80:http2 advisorresponse "200"

dscontrol server set cluster.itso.ibm.com:80:http1 advisorrequest "HEAD
/wlm/BeenThere HTTP/1.0"
dscontrol server set cluster.itso.ibm.com:80:http1 advisorresponse "200"

192 WebSphere Application Server V6 Scalability and Performance Handbook

5.5.2 Using WebSphere Application Server custom advisor
The WebSphere custom advisor must be considered as a monitoring extension
associated with each HTTP server on the cluster. The custom advisor prevents
requests from being sent to a specific HTTP server when this HTTP server
cannot appropriately fulfill them (for example, when the WebSphere server it
sends requests to is down).

A sample custom advisor for WebSphere Application Server is included in the
<install_path>/servers/samples/CustomAdvisors directory.

Two files are used to implement the advisor:

� ADV_was.java: The custom advisor code that should be compiled and
executed on the Dispatcher machine.

� LBAdvisor.java.servlet: The servlet code (it must be renamed to
LBAdvisor.java) that should be compiled and installed on the WebSphere
Application Server machine.

The servlet returns the following string in case of success:

LBAdvisor/0.92 100
Thu Nov 04 10:06:59 EST 2004

The advisor parses the string to get the WebSphere status (100) and informs the
Dispatcher monitor.

Restriction: Using the WebSphere Application server custom advisor is only
useful in environments where you are not using the WebSphere workload
management options - provided by the plug-in in the Web server. When we
use WebSphere workload management, the requests from multiple HTTP
servers are sent to a group of application servers, distributed also among
multiple machines. We cannot associate the service layer provided by the
application server to an HTTP server anymore, since the plug-in is responsible
for distributing the requests.

So the custom advisor could be used, for example, if you have enabled server
affinity on the Load Balancer, then forward requests from one Web server to a
certain application server and the related database. In such a configuration,
the advisor can accurately mark down or lower the weight based on the full
test - including the application server and the database.

When using WebSphere plug-in workload management, as in our sample
topology, monitoring the HTTP servers using the HTTP advisor is probably the
best choice.

 Chapter 5. Using IBM WebSphere Edge Components 193

Edit the sample files and prepare the advisor and the servlet to be installed on
the proper machines as follows:

1. Rename the file ADV_was.java to ADV_was6.java, because was6 will be the
name of the advisor.

2. Modify the Java file ADV_was6.java to reflect your settings.

a. To reflect the new class name, the line:

public class ADV_was extends ADV_Base implements ADV_MethodInterface
{

must be changed to:

public class ADV_was6 extends ADV_Base implements ADV_MethodInterface
{

and the line:

public ADV_was() {

must be changed to:

public ADV_was6() {

b. To reflect the new advisor name, the line:

static final String ADV_WAS_NAME = "was";

must be changed to:

static final String ADV_WAS_NAME = "was6";

c. To reflect the response of IBM HTTP Server on AIX, the line:

static final String HTTP_GOOD = "HTTP/1.1 200 ok";

must be changed to:

static final String HTTP_GOOD = "HTTP/1.1 200 OK";

d. To reflect the location, where you have deployed the LBAdvisor servlet, the
line:

static final String SERVLET_LOCATION ="/servlet/LBAdvisor";

must be changed to:

static final String SERVLET_LOCATION ="/advisor/servlet/LBAdvisor";

3. Compile the advisor using the following command (the command must be
typed on one single line):

javac -classpath
/opt/ibm/edge/lb/servers/lib/ibmlb.jar:/opt/ibm/edge/lb/admin/lib/j2ee.j
ar ADV_was6.java

Make sure that the compilation finishes without errors.

194 WebSphere Application Server V6 Scalability and Performance Handbook

4. Copy the ADV_was6.class file to the <LB_install_path>/servers/lib/
CustomAdvisors directory:

cp ADV_was6.class /opt/ibm/edge/lb/servers/lib/CustomAdvisors

The advisor is now installed, but you still need to compile and deploy the advisor
servlet, which will run in the back-end application servers.

We used Application Server Toolkit (AST) to edit and compile the advisor servlet,
and to create the WAR file. The structure of the application we created for the
LBAdvisor is shown in Figure 5-59.

Figure 5-59 LBAdvisor in AST

 Chapter 5. Using IBM WebSphere Edge Components 195

The provided sample performs a select in the sample database. In order to use
this sample with our scenario (we are using the Trade 6 database for this test),
we made the following changes to the servlet LBAdvisor.java using AST:

� Change the syntax of the sleep method call from:

try {
_checker.sleep(_interval * 1000);
} catch (Exception ignore) { }

to:

try {
Thread.sleep(_interval * 1000);
} catch (Exception ignore) { }

� Change the reference to the database from:

private static String _dataSourceName = "jdbc/sample";

to:

private static String _dataSourceName = "java:comp/env/jdbc/advisordb";

� Change the database user ID from:

private static String _dbUserid = "khygh";

to the proper one in your environment. In our scenario we used:

private static String _dbUserid = "Administrator";

� Change the password of the database user ID from:

private static String _dbPassword = "one4all";

to the proper one in your environment. In our scenario we used:

private static String _dbPassword = "my_password";

� Change the database schema name from:

private static String _dbOwner = "khygh";

to:

private static String _dbOwner = "ADMINISTRATOR";

� Change the select statement from:

private static final String _query1 = "Select FirstNme from ";

Important: The following changes assume that you installed the tradedb with
the user “Administrator”, and that the database uses the schema
“Administrator” for the tables. If you installed the database and created the
tables with the default user (db2admin in Windows and db2inst1 in
Linux/UNIX) you must change the code accordingly.

196 WebSphere Application Server V6 Scalability and Performance Handbook

private static final String _query2 = ".Employee where LASTNAME =
'PARKER'";

to:

private static final String _query1 = "Select EMAIL from ";
private static final String _query2 = ".accountprofileejb where USERID =
'uid:0'";

Note that we rewrote the select in the second line to use the USERID uid:0.
This user is created by default in the Trade 6 database. If you deleted this
user, change this line and insert a user that exists in your database. Be
careful to use the correct capitalization for the user ID. You can also
customize the whole select statement.

� Change the following lines from:

Hashtable parms = new Hashtable(2);
parms.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
parms.put(Context.PROVIDER_URL, "iiop:///"); // local machine
Context context = new InitialContext(parms);

to:

Context context = new InitialContext();

Note that we deleted the first three lines from the original code.

� Add a servlet mapping to the Web module deployment descriptor (the
web.xml file):

Example 5-26 Servlet mapping for LBAdvisor

<servlet>
<display-name>
LBAdvisor</display-name>
<servlet-name>LBAdvisor</servlet-name>
<servlet-class>
com.ibm.nd.advisor.servlet.LBAdvisor</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>LBAdvisor</servlet-name>
<url-pattern>/servlet/LBAdvisor</url-pattern>

</servlet-mapping>

� Add a resource reference to the Web module deployment descriptor (the
web.xml file):

Example 5-27 Resource reference for LBAdvisor application

<resource-ref id="ResourceRef_1099586856129">
<res-ref-name>jdbc/advisordb</res-ref-name>
<res-type>javax.sql.DataSource</res-type>

 Chapter 5. Using IBM WebSphere Edge Components 197

<res-auth>Container</res-auth>
<res-sharing-scope>Shareable</res-sharing-scope>

</resource-ref>

We then exported the application to a WAR file, and installed it on our sample
topology using these steps:

1. Create two application servers, Advisor1 on app1Node and Advisor2 on
app2Node. For more information about creating application servers refer to
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

2. Create a new datasource with the same parameters (except for the JNDI
name which should be jdbc/advisordb) as the Trade 6 TradeDataSouce for
your LBAdvisor application. You can use the same datasource, but we
recommend creating a new one so LBAdvisor does not use resources from
the Trade 6 datasource.

Refer to the InfoCenter for more information about how to create a
datasource. The InfoCenter is available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

3. Select Applications -> Enterprise Applications -> Install New
Application. Select LBAdvisor.war (the file that was generated previously
using AST) and enter /advisor in the Context root field, as shown in
Figure 5-60. Click Next.

Figure 5-60 Selecting LBAdvisor.war for installation

4. In the next pane select Use the virtual host name for Web modules, enter
the virtual host default_host and click Next.

198 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

5. Click Continue. In the Step 1 pane, enter LBAdvisor_war1 in the application
name field and click Next.

6. In the Step 2 window, select the Web server http1 and the application server
Advisor1 under Clusters and Servers, select the LBAdvisor module and
click Apply, as shown in Figure 5-61. Then click Next.

Figure 5-61 Mapping the LBAdvisor module to servers

In this case, http1 will only forward requests to the application server
Advisor1. If anything fails in the application itself, or in the communication of
this application server to the database, the advisor will detect it and set its
port value of http1 to -1.

7. In the next pane you need to associate the resource reference to the
datasource. You can select the datasource used by Trade 6
(jdbc/TradeDataSource) or the one you created in step 2 on page 198 (we
named our datasource /jdbc/advisordb).

Make sure you also map the correct authentication method
(TradeDataSourceAuthData), as shown in Figure 5-62. Click Next.

Figure 5-62 Mapping resources to the LBAdvisor module

8. Click Continue on the Application Resource Warnings pane, then in the
Step 4 window select the virtual host default_host. Click Next.

 Chapter 5. Using IBM WebSphere Edge Components 199

9. Click Finish on the Summary pane.

10.Repeat steps 3 on page 198 through 9. This time, however, you use
LBAdvisor_war2 as the application name in step 5 on page 199, and you
map it to the http2 Web server and Advisor2 application server.

11..Save the configuration, update and propagate the Web server plug-in, then
start the application servers (in case they are stopped) and the applications
LBAdvisor_war1 and LBAdvisor_war2. See Figure 5-63.

Figure 5-63 LBAdvisor_war1 and LBAdvisor_war2 applications

Note that the environment we just created does not use WebSphere workload
management: if either the application server Advisor1 or the Web server http1
fails, http1 will be marked down, so all requests will be forwarded to http2. The
same thing will happen if either Advisor2 or http2 fails: http2 will be marked
down.

12.Test if the servlet is responding using
http://http1/advisor/servlet/LBAdvisor?debug=1. This URL returns a
HTML/text page with some diagnostic information, as shown in Figure 5-64
on page 201.

200 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-64 LBAdvisor diagnostic information

13..Restart the Load Balancer server:

dsserver stop
dsserver start

14.Start the custom advisor using the command:

dscontrol advisor start was6 80

where was6 is your custom advisor name and 80 is the port number where the
advisor opens a connection with the target server.

15.Start the GUI of Load Balancer and select your new advisor, then select the
Current Statistics tab on the right. The advisor status is displayed. Click
Refresh to update the status. If the advisor is working properly, the load value
is displayed. If there is no response, a status of -1 is returned (see
Figure 5-65 on page 202).

Restriction: You can only start one advisor for a certain port. Therefore, if
you have the default HTTP Advisor started, you first need to stop it.

 Chapter 5. Using IBM WebSphere Edge Components 201

Figure 5-65 Advisor statistics

If there is no response, one option is to select the Configuration Settings pane
and change the advisor logging level to Advanced, for example, then look at the
log file at <LB_install_path>/servers/logs/dispatcher. A lot of detailed
information is recorded, showing all requests and responses, which may help you
locate where the problem is occurring.

If we simulate a failure by stopping the application server Advisor2 or causing a
failure in the communication to the database server, we can see how the
requests are directed to the available application server (associated with the
http1 server). We can see the graphical statistics of the traffic by selecting the
Monitor option under the cluster port the advisor is associated with, as shown in
Figure 5-66 on page 203.

202 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-66 Server monitor chart showing http2 is down

5.5.3 Starting Dispatcher automatically after a reboot
If you are running Dispatcher on a Windows system, the IBM Dispatcher service
that was created during the product installation is configured to be automatically
started after each reboot.

If you are running Dispatcher on a UNIX system, you must configure the system
to run the dsserver command after each reboot. Make sure your configuration
filename is default.cfg, because when dsserver is run it automatically loads the
default.cfg configuration file.

In our AIX environment, we enabled the automatic startup of dsserver. We added
it to the inittab by running the following command:

mkitab “ds:2:wait:/usr/bin/dsserver > /dev/console 2>&1”

 Chapter 5. Using IBM WebSphere Edge Components 203

5.5.4 Starting and stopping Dispatcher components
Each component has a start and stop command available. To stop all
components in the Dispatcher server use the following commands:

dscontrol executor stop
dsserver stop

To start Dispatcher, simply run dsserver (or start the Windows service called IBM
Dispatcher) and it automatically loads the configuration file default.cfg, which
contains the start commands for all other necessary components.

5.6 Caching Proxy installation
As mentioned in 5.1, “Load Balancer installation” on page 128, you can install the
WebSphere Edge Components products using the common wizard or the
operating system tools.

We first describe the installation in a Windows 2000 server using the wizard, and
later we describe the installation in an AIX server using SMIT (a management
tool provided by the operating system).

Before starting the installation, refer to Concepts, Planning, and Installation for
Edge Components Version 6.0, GC31-6855 for the prerequisites and supported
operating systems.

Tip: You can also use other scripts that are run during the server start up
process, for example /etc/rc.tcpip (in AIX systems) or /etc/rc.local (in
Linux systems). Make sure you consult the system administrator to find the
most suitable option for your environment.

Note: If you run only dsserver stop, Executor continues running, so the load
balancing mechanism is still active. When you intend to fully stop Dispatcher
you need to first stop Executor and then stop dsserver.

In Windows systems, stopping the IBM Dispatcher service only stops the
administration server. You need to stop Executor manually before stopping the
service.

204 WebSphere Application Server V6 Scalability and Performance Handbook

5.6.1 Checking prerequisites
There are several prerequisites you need to verify.

Windows prerequisites
Make sure you have a Java Runtime Environment 1.4.2 (or later) installed on
your system and it is in the system path. Caching Proxy does not come with a
JRE but the configuration wizard needs it.

AIX prerequisites
AIX installation requires the IOCP device, which is contained in the fileset
bos.iocp.rte. Check if this driver is already installed by running the command:

lslpp -l bos.iocp.rte

If this fileset is installed, you receive an output similar to the one shown in
Example 5-28.

Example 5-28 Checking the fileset bos.iocp.rte

lslpp -l bos.iocp.rte
 Fileset Level State Description
 --
Path: /usr/lib/objrepos
 bos.iocp.rte 5.2.0.10 COMMITTED I/O Completion Ports API

Path: /etc/objrepos
 bos.iocp.rte 5.2.0.10 COMMITTED I/O Completion Ports API

If this fileset is not installed, you receive the following message:

lslpp: 0504-132 Fileset bos.iocp.rte not installed.

This fileset is provided on the AIX installation media, so request the system
administrator to install this fileset and reboot the server before proceeding. The
reboot is necessary in order to create the iocp device.

Important: In our tests, the installation wizard for AIX systems did not detect
the absence of a prerequisite fileset: bos.iocp.rte. It is also not documented in
the product’s manuals.

Make sure you follow the instructions in 5.6.1, “Checking prerequisites” on
page 205 before installing Caching Proxy on an AIX system.

 Chapter 5. Using IBM WebSphere Edge Components 205

Make sure that the iocp device has already been created before starting the
Caching Proxy installation. See Example 5-29.

Example 5-29 Checking the iocp device

lsdev -Cc iocp
iocp0 Defined I/O Completion Ports

In Example 5-29, the iocp0 device is in Defined state. This state will be changed
to Available after the Caching Proxy installation.

Caching Proxy also requires the AIO device, which is contained in the fileset
bos.rte.aio. This fileset is automatically installed with the operating system
installation. Make sure the aio device is in available state by running the
command shown in Example 5-30.

Example 5-30 Checking the aio device

lsdev -Cc aio
aio0 Available Asynchronous I/O (Legacy)

If the device is in defined state, run the following command then reboot the
server.

chdev -l aio0 -P -a autoconfig='available'

5.6.2 Caching Proxy installation wizard
The WebSphere Edge Components installation media provides a wizard for all
platforms so the installation is similar for all supported operating systems.

If you are installing Caching Proxy on AIX, make sure you installed the IOCP
device as explained in 5.6.1, “Checking prerequisites” on page 205 before you
start the installation.

1. Mount the installation media and start LaunchPad by running launchpad.sh
(on UNIX servers) or launchpad.bat (on Windows servers).

The LaunchPad window opens as shown in Figure 5-1 on page 129.

206 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-67 LaunchPad window

Click Launch the installation wizard for WebSphere Application Server -
Edge Components.

2. Click Next on the Welcome screen and click Yes to accept the product
license.

3. In the Component Selection window you select the component you want to
install. Select the Caching Proxy checkbox, and click the button Change
Subcomponents... as shown in Figure 5-2 on page 130.

 Chapter 5. Using IBM WebSphere Edge Components 207

Figure 5-68 Components Selection window

4. The Subcomponent Selection window is opened. Select the subcomponents
you want to install. The Caching Proxy Base Server subcomponent is
mandatory. By default, all subcomponents are selected, as shown in
Figure 5-3 on page 131. Click OK to return to the Component Selection
window.

Figure 5-69 Subcomponent Selection window

208 WebSphere Application Server V6 Scalability and Performance Handbook

The default installation path is C:\Program Files\IBM\edge\cp. If you want to
install the product into a different path, click Change Folder and enter the
path. Click Next to continue the installation.

5. Make sure that the selected options are correct in the Installation Selection
Summary, and click Finish to start the installation, as shown in Figure 5-4 on
page 132.

Figure 5-70 Installation Summary window

6. At the end of the installation you have the option to reboot the server. Make
sure you do so before using the product.

Figure 5-71 Setup Complete window

 Chapter 5. Using IBM WebSphere Edge Components 209

5.6.3 Caching Proxy installation using SMIT in AIX
AIX provides a tool to manage the operating system, which is SMIT. In this
section we describe how to install Caching Proxy using SMIT.

Make sure you installed the IOCP device before you start the installation. Refer
to 5.6.1, “Checking prerequisites” on page 205.

Follow the steps described here in order to install the Caching Proxy.

1. Log in as root.

2. Mount the WebSphere Edge Components installation media and go to the
directory you used as mount point.

3. Go to the icu directory:

cd icu

4. Run the following command:

installp -acXd ./wses_icu.rte all

A summary is presented at the end of the installation process. Make sure that
the fileset was successfully installed, as shown in Example 5-31.

Example 5-31 Fileset wses_icu.rte successfully installed

Installation Summary

Name Level Part Event Result

wses_icu.rte 6.0.0.0 USR APPLY SUCCESS
wses_icu.rte 6.0.0.0 ROOT APPLY SUCCESS

5. Go to the admin directory:

cd ../admin

6. Run the following command:

installp -acXd ./wses_admin.rte all

A summary is presented at the end of the installation process. Make sure that
the fileset was successfully installed, as shown in Example 5-32.

Example 5-32 Fileset wses_admin.rte successfully installed

Installation Summary

Important: It is highly recommended that you also install the latest
eFixes/PTFs.

210 WebSphere Application Server V6 Scalability and Performance Handbook

Name Level Part Event Result

wses_admin.rte 6.0.0.0 USR APPLY SUCCESS
wses_admin.rte 6.0.0.0 ROOT APPLY SUCCESS

7. Go to the cp directory:

cd ../cp

8. Run the following command:

smit install_all

9. In the Install and Update from ALL Available Software screen, type the full
path to the cp directory mentioned in step 7 or type a period (.) which
represents the current directory, as shown in Figure 5-5 on page 133.

Figure 5-72 Selecting the path of the installation media

10.In the Install and Update from ALL Available Software screen, put the cursor
in the SOFTWARE to install field and press the F4 key (ESC+4 in VT100 and
ASCII emulators).

11.From the SOFTWARE to install list, select the components you want to install.
We selected the following components:

– Caching Proxy (wses_cp.base)

– Caching Proxy Messages - en_US (wses_cp.msg.en_US.base)

You may need to scroll the screen to the left using the right arrow key in order
to see the fileset names listed in parenthesis.

 Chapter 5. Using IBM WebSphere Edge Components 211

After you finish selecting the filesets to install, press the Enter key.

12.Back at the Install and Update from ALL Available Software screen, select
yes in the ACCEPT new license agreements? field as shown in Figure 5-73,
and press Enter to start the installation.

Figure 5-73 SMIT installation screen

13.When the installation finishes, check the installation summary to make sure
that all filesets were installed successfully, as shown in Example 5-33.

Example 5-33 Installation summary for Caching Proxy

Installation Summary

Name Level Part Event Result

wses_cp.msg.en_US.base 6.0.0.0 USR APPLY SUCCESS
wses_cp.msg.en_US.base 6.0.0.0 ROOT APPLY SUCCESS
wses_cp.base 6.0.0.0 USR APPLY SUCCESS
wses_cp.base 6.0.0.0 ROOT APPLY SUCCESS

5.7 Caching Proxy configuration
After installation, Caching Proxy is ready to use and it operates by default as a
forward proxy. For further configuration, you can use the Caching Proxy
configuration wizard, the Web-based administration tool or you can also edit the
configuration file manually.

212 WebSphere Application Server V6 Scalability and Performance Handbook

5.7.1 Using the Caching Proxy configuration wizard
The Caching Proxy configuration wizard allows you to easily create a reverse
proxy configuration for your server and to add an administrator user.

To run the wizard on Windows systems click Start -> Programs -> IBM
WebSphere -> Edge Components -> Caching Proxy -> Configuration
Wizard. The configuration wizard requires that JRE 1.4.2 is installed on your
system and in the system path.

To run the wizard on UNIX systems, run the command:

/opt/ibm/edge/cp/cpwizard/cpwizard.sh

1. Click Next on the welcome window. The following window allows you to
configure the port that Caching Proxy will listen on for requests. The default
value is 80 as shown in Figure 5-74. Enter the port number into the Port field
and click Next to continue.

Figure 5-74 Setting the port number

 Chapter 5. Using IBM WebSphere Edge Components 213

2. In the following window you need to enter the target Web server for the
reverse Caching Proxy. In our scenario, Caching Proxy redirects the requests
to the cluster called cluster.itso.ibm.com, which is handled by Dispatcher.

Type the hostname of the Web server in the Target Web Server field and click
Next, as shown in Figure 5-75.

Figure 5-75 Setting the target Web server

Notes:

� The default port used by Caching Proxy is 80, which is also the default
port of most Web servers. If you are collocating Caching Proxy and the
Web server, you have two options regarding Caching Proxy:

– Use another port (for example, 81)
– Configure Caching Proxy to bind to a specific IP address

If you choose to configure Caching Proxy to bind to a specific IP
address you need to make sure that the Web server is not binding to
that IP address also. Refer to 5.7.3, “Manual configuration” on page 218
for an example of how to configure Caching Proxy to bind to a specific
IP address.

� The default administration port used by Caching Proxy is 8008 which is
identical with the IBM HTTP Server administration port. Therefore, if
you collocate Caching Proxy with IBM HTTP server (or another Web
server using the same administration port number), then you need to
change the administration port directive AdminPort in the Caching
Proxy configuration file ibmproxy.conf to another port number.

Note: If you are not using a cluster scenario, enter the hostname of the
Web server to which the requests will be forwarded from the Caching
Proxy.

214 WebSphere Application Server V6 Scalability and Performance Handbook

3. The following window allows you to create an administrator user for the
Administration and Configuration forms (see 5.7.2, “Using the Caching Proxy
Web-based administration tool” on page 216). Type the user name you want
to create into the User Name field, type the password into the Password and
Verify Password fields, and click Next as shown in Figure 5-76.

Figure 5-76 Adding the administrator user

4. The last window shows a summary of the information you provided in the
previous windows. Make sure everything is correct, and click Finish to apply
the changes to the Caching Proxy configuration, as shown in Figure 5-77.

Figure 5-77 Summary of the configuration information

 Chapter 5. Using IBM WebSphere Edge Components 215

After the wizard is closed, you need to stop and start the Caching Proxy process
for the changes to take effect. Refer to 5.8, “Managing the Caching Proxy
process” on page 222.

5.7.2 Using the Caching Proxy Web-based administration tool
An administrator user ID and password needs to be created in order to
administer the Caching Proxy through a browser. We have created the user when
configuring the Caching Proxy as described in “Using the Caching Proxy
configuration wizard” on page 213. If you have not created the user at that time,
you can use the command line interface to do so or run the configuration wizard
again. The commands are:

On UNIX:

htadm -adduser /opt/ibm/edge/cp/server_root/protect/webadmin.passwd

On Windows:

cd c:\Program Files\IBM\edge\cp\server_root\protect\
htadm -adduser webadmin.passwd

When prompted, provide a username, password and name for the administrator.

After the Caching Proxy is started, you can then access the Front Page by typing
the URL http://<hostname>:<admin_port>/ in a supported browser, as shown in
Figure 5-78 on page 217.

You can access the Caching Proxy administration tool by clicking the
Configuration and Administration Forms link on the Front Page, or you can
access it directly using the following URL:

http://<hostname>:<admin_port>/admin-bin/webexec/wte.html

Important: If you enable reverse proxy, the Front Page URL will no longer
work. In order to access the Configuration and Administration Forms you need
to use the direct URL.

216 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-78 Caching Proxy front page

After clicking Configuration and Administration Forms, or accessing the direct
URL, you need to provide the username and password you added previously.

 Chapter 5. Using IBM WebSphere Edge Components 217

Figure 5-79 Caching Proxy configuration and administration tool

5.7.3 Manual configuration
You can change Caching Proxy settings by editing the file ibmproxy.conf located
in the <product_install_path>\etc\en_US (in Windows systems) or
<product_install_path>/etc/en_US (in UNIX systems).

In AIX systems, the installation wizard adds a link to the configuration file in the
/etc directory. So you can use the link /etc/ibmproxy.conf whenever you need to
edit the configuration file.

Any change made directly to the file requires that you stop and start the server
(refer to 5.8, “Managing the Caching Proxy process” on page 222).

For example, if you want Caching Proxy to bind to a specific IP address, you can
configure it by editing the ibmproxy.conf file:

1. Locate the BindSpecific directive, and change it to “on”:

BindSpecific on

218 WebSphere Application Server V6 Scalability and Performance Handbook

2. Add a Hostname directive specifying the full qualified hostname that resolves
to the IP address that you want Caching Proxy to bind to:

Hostname cproxy.itso.ibm.com

3. Save the file, stop and start the Caching Proxy process.

This configuration is necessary if you want to collocate Caching Proxy with
another process that also uses port 80, or with Load Balancer.

5.7.4 Creating and defining a cache storage
Caching Proxy by default stores the cache contents in memory. The default
memory cache size can (and should) be increased when a memory-only cache is
desired. However, it is not recommended that you set a memory cache larger
than 1600 MB. You can also format disk areas to be used by Caching Proxy.

Creating a cache storage on disk
Caching Proxy uses raw disk caching, which means that it reads and writes
directly to a partition on the disk device and does not use the regular file/directory
API for performing I/O. This requires that the disk is prepared using a formatting
tool provided by the product: htcformat.

When a raw cache device is specified, the memory cache becomes a buffer to
the disk cache. In other words when a disk device is defined, the memory cache
does not fill up first and then the raw device is used. Instead, the memory cache
acts as a buffer space for the disk cache. When a disk cache is used, it is
recommended that the memory cache be set to 1-2% the size of disk cache
space but no less than the default value.

In our scenario, we are running Caching Proxy on an AIX server. In AIX systems,
the area that is used as cache storage is a raw device. It is created as a logical
volume, but it has no file system associated with it.

Use the following command to create the logical volume:

mklv -y <logical_volume_name> <volume_group_name> <number_partitions>

We first created the logical volume using the following command:

mklv -y lvcache01 cachevg 64

The partition size used in our volume group cachevg is 16MB (you can check the
logical partition size for a volume group in AIX by using the command lsvg
<volume_group_name>), so this command creates a logical volume named
/dev/lvcache01 in the volume group cachevg, and sets its size to 1GB (64
partitions of 16MB each one).

 Chapter 5. Using IBM WebSphere Edge Components 219

After creating the logical volume, we need to format it using the htcformat tool.
Note that although we named the logical volume lvcache01, we need to refer to
the raw device, so we need to use the name rlvcache01 (this is an operating
system characteristic). See the htcformat command we used in Example 5-34.

Example 5-34 Running the htcformat command

htcformat /dev/rlvcache01
Are you sure you want to format /dev/rlvcache01? (y/n): y
Formatting device /dev/rlvcache01, block size 8192, 131072 blocks ... Done

The storage is ready to be used by Caching Proxy. The next thing we need to do
is to configure Caching Proxy to use this new cache area.

Access the Configuration and Administration Forms, click Cache Configuration
-> Cache Settings. Locate the Specify the device or devices to be used for
cache storage: field. Select Add and type the name of the new cache storage (in
our scenario it is /dev/rlvcache01), and click Submit as shown in Figure 5-80 on
page 221.

Note: Refer to the Caching Proxy Administration Guide Version 6.0,
GC31-6857 for more information about htcformat and how to use it in other
supported operating systems.

220 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-80 Adding a new cache storage

If you prefer to edit the configuration file instead of using the Configuration and
Administration Forms, you can do it by adding the following line to the
ibmproxy.conf file:

CacheDev /dev/rlvcache01

After stopping and starting the server, you can check the log files to confirm that
Caching Proxy was able to use the disk cache successfully.

Locate the event log file (by default, it is /opt/ibm/edge/cp/server_root/logs/
event.<timestamp>) and check the messages in it. Example 5-35 shows the
contents of our test server log file after we added the new disk cache storage.

Example 5-35 Event log entries

[21/Oct/2004:16:44:47 -0500] Edge Components Caching Proxy
[21/Oct/2004:16:44:47 -0500] Version: 6.0 .
[21/Oct/2004:16:44:47 -0500] Initializing disk cache.

 Chapter 5. Using IBM WebSphere Edge Components 221

[21/Oct/2004:16:44:47 -0500] block size is 8192 bytes
[21/Oct/2004:16:44:47 -0500] cache memory is 65536 KBytes
[21/Oct/2004:16:44:47 -0500] number of devices is 1
[21/Oct/2004:16:44:47 -0500] Cache device is /dev/rlvcache01
[21/Oct/2004:16:44:47 -0500] garbage collection policy is bandwidth
[21/Oct/2004:16:44:47 -0500] garbage collection low water mark is 60 percent
[21/Oct/2004:16:44:47 -0500] garbage collection high water mark is 90 percent
[21/Oct/2004:16:44:47 -0500] garbage collection startup callout is 0
[21/Oct/2004:16:44:47 -0500] garbage collection evaluation callout is 0
[21/Oct/2004:16:44:47 -0500] garbage collection shutdown callout is 0
[21/Oct/2004:16:44:47 -0500] garbage collection recent access is 60 seconds
[21/Oct/2004:16:44:47 -0500] garbage collection maximum lifetime is 2592000
seconds
[21/Oct/2004:16:44:47 -0500] garbage collection minimum size is 0 bytes
[21/Oct/2004:16:44:47 -0500] garbage collection maximum size is 0 bytes
[21/Oct/2004:16:44:47 -0500] garbage collection load threshold is 30 seconds
[21/Oct/2004:16:44:47 -0500] Disk cache is using 131072 blocks on 1 devices
[21/Oct/2004:16:44:47 -0500] container size is 1024 blocks
[21/Oct/2004:16:44:47 -0500] extent size is 8 blocks
[21/Oct/2004:16:44:47 -0500] header cache size is 13107 headers
[21/Oct/2004:16:44:47 -0500] header block cache size is 1024 blocks
[21/Oct/2004:16:44:47 -0500] data block cache size is 6730 blocks
[21/Oct/2004:16:44:47 -0500] file hash table has 11003 buckets
[21/Oct/2004:16:44:47 -0500] header hash table has 3001 buckets
[21/Oct/2004:16:44:47 -0500] block hash table has 2003 buckets
[21/Oct/2004:16:44:47 -0500] device hash table has 1009 buckets
[21/Oct/2004:16:44:47 -0500] number of temporary containers is 1024
[21/Oct/2004:16:44:47 -0500] number of writer threads is 1
[21/Oct/2004:16:44:47 -0500] number of compactor threads is 1
[21/Oct/2004:16:44:47 -0500] number of garbage collector threads is 1
[21/Oct/2004:16:44:47 -0500] cache write size is 8 extents
[21/Oct/2004:16:44:47 -0500] compactor read/write size is 8 extents
[21/Oct/2004:16:44:47 -0500] header write size is 7864 headers
[21/Oct/2004:16:44:47 -0500] Starting cache consistency check
[21/Oct/2004:16:44:47 -0500] Formatting /dev/rlvcache01
[21/Oct/2004:16:45:40 -0500] Finished formatting /dev/rlvcache01
[21/Oct/2004:16:45:40 -0500] Finished cache consistency check
[21/Oct/2004:16:45:40 -0500] The proxy cache is ready

5.8 Managing the Caching Proxy process
In Windows systems you can start and stop the Caching Proxy process by using
the Windows Services tool and locating the IBM Caching Proxy service, as
shown in Figure 5-81 on page 223.

Note: It may take a while (up to a few minutes) to init the disk cache device.

222 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-81 Caching Proxy service

In AIX systems, you can use the System Resource Controller commands to
administer the ibmproxy daemon. The commands are:

� To start the daemon:

startsrc -s ibmproxy

� To stop the daemon:

stopsrc -s ibmproxy

� To check the status of the daemon:

lssrc -s ibmproxy

� To stop the daemon on other UNIX operating systems:

Kill -TERM ibmproxy-pid

If you are using the Configuration and Administration Forms, you can restart the
server by clicking the Restart button in the upper right corner of the window, as
shown in Figure 5-82.

Figure 5-82 Restart button

Tip: It is recommeded to stop the Caching Proxy using the appropriate
command for each operating system. If the Caching Proxy is not shutdown
properly, it might take a long time to rescan/verify disk cache integrity.

 Chapter 5. Using IBM WebSphere Edge Components 223

5.8.1 Testing the Caching Proxy scenario
At this point, we have the Load Balancer servers up and running as described in
5.2, “Load Balancer configuration: basic scenario” on page 135 or 5.3, “Load
Balancer: high availability scenario” on page 162.

We configured Caching Proxy to act as a reverse proxy for our Load Balancer
cluster (see 5.7.1, “Using the Caching Proxy configuration wizard” on page 213).
This means that all requests we send to the Caching Proxy will be forwarded to
the Load Balancer cluster address, and subsequently they are balanced between
our two Web servers (http1 and http2). Finally the request is handled by the
application servers in the cluster (refer to Chapter 8, “Implementing the sample
topology” on page 387 for more information about our test scenario).

In order to test your configuration, open a browser and request the BeenThere
application URI using the hostname of the Caching Proxy server:

http://cproxy.itso.ibm.com/wlm/BeenThere

After generating several requests, access the Administration and Configuration
Forms of Caching Proxy to check the cache usage.

Log in, click Server Activity Monitor -> Proxy Access Statistics. This pane
shows the requests received by Caching Proxy, the lines in blue are requests that
were delivered from the local cache, the ones in black are requests that were
sent to the back-end servers.

In our test, Caching Proxy cached the file /wlm/success_banner.jpg and only
forwarded the requests for the servlet to the back-end servers, as shown in
Figure 5-83 on page 225.

Important: Some changes require you to stop and start the Caching Proxy
process; a restart is not enough. Refer to “Directives not changed on restart”
in Appendix B of Caching Proxy Administration Guide Version 6.0, GC31-6857
for more information about which changes require a stop and start of the
Caching Proxy process.

Note: If your Caching Proxy is collocated with a Web Server, do not forget to
use the correct port number for the request, for example:

http://cproxy.itso.ibm.com:81/wlm/BeenThere

224 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 5-83 Cache statistics for BeenThere

We also tested the Trade Application by requesting the URL

http://cproxy.itso.ibm.com:<port>/trade

Looking at the Proxy Access Statistics, we can see that Trade has more static
contents than BeenThere, so the number of cache hits is higher when compared
to BeenThere, as shown in Figure 5-84 on page 226.

 Chapter 5. Using IBM WebSphere Edge Components 225

Figure 5-84 Cache statistics for Trade

Note that we are not using dynamic caching in this scenario. For more
information about dynamic caching refer to Chapter 10, “Dynamic caching” on
page 501.

226 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 6. Plug-in workload
management and failover

In this chapter, we cover how to set up the Web container for workload
management. We discuss the components that make this possible, the
configuration settings, and the resulting behaviors. We also cover session
management in a workload-managed environment and the process of
troubleshooting all these areas.

This chapter covers in detail:

� WebContainer transport chains and virtual hosts
� Web server topologies
� WebSphere plug-in configuration file
� WebSphere plug-in workload management
� Web container failures and failover
� HTTP session management
� Troubleshooting the Web server plug-in
� WebSphere plug-in behavior

6

© Copyright IBM Corp. 2005. All rights reserved. 227

6.1 Introduction
The Web container manages the J2EE components, servlets and JSPs that are
accessed from the Web.

Traffic for these components is workload-managed by configuring clusters within
a cell in WebSphere Application Server and then configuring Web servers to
access cluster members.

WebSphere Application Server V6 supports a variety of Web servers. These
Web servers are necessary for directing traffic from users' browsers to the
applications running in WebSphere. This is achieved by installing the
WebSphere plug-in on the Web servers. As shown in Figure 6-1 on page 229,
the plug-in is a module that runs as part of the Web server process. It acts as a
router, deciding what traffic is for WebSphere and what traffic should be handled
by the Web server itself.

This workload management process also sets up failover and backup servers in
the event that one or more of the cluster members should fail or all primary
servers fail.

The Web containers may be running on the same machine as the Web server, a
different machine, or a combination of the two.

228 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-1 Plug-in components and interactions

The Web server plug-in uses HTTP and HTTPS as its transport protocol between
the Web server and the WebSphere Application Server(s). The WebSphere
plug-in was introduced in WebSphere 4.0. Since then, the WebSphere
Application Server plug-in gained some new features, such as:

� Weighted round robin and random workload management
� Backup servers

In this chapter we are using a subset of the sample topology described in
Figure 8-1 on page 390 to demonstrate plug-in work load management. This
subset is illustrated in Figure 6-2 on page 230.

Application Server

HTML
Servlets JSPs

Embedded
HTTP Server

EJBs

W
eb

 C
on

ta
in

er

P lugin

HTTP Server

Plug-inBrowser

log
file

XML
file

Plug-in
configuration

Application Server

HTML
Servlets JSPs

Embedded
HTTP Server

EJBs

W
eb

 C
on

ta
in

er

Application Server

EJBs

HTML
Servlets JSPsW

eb
 c

on
ta

in
er Webcontainer

Inbound chain

Application Server

HTML
Servlets JSPs

W ebcontainer
Inbound chain

EJBs

W
eb

 c
on

ta
in

er

HTTP or HTTPS

 Chapter 6. Plug-in workload management and failover 229

Figure 6-2 Topology used in this chapter

A new feature in WebSphere Application Server V6 is that Web servers are now
considered part of the cell. Naturally, Web servers were always part of the
topology managed by administrators — the new feature is that now they are
explicitly mentioned in the Administrative Console, with some very interesting
consequences regarding the plug-in configuration file management (especially
for those who use the IBM HTTP Server V6.0). You will find more information
about this topic in 6.4, “Web server topologies” on page 244 and 6.6,
“WebSphere plug-in workload management” on page 264.

6.2 WebContainer transport chains and virtual hosts
The workload management performed by the plug-in distributes the load
between available Web containers. Thus, the Web containers need to be set up
correctly so that the plug-in can route traffic to them.

This chapter discusses setting up transport chains, virtual hosts, Web servers,
clusters, and cluster members. By understanding these you will learn how and
over what connection the plug-in is routing requests.

C e l l
D e p l o y m e n t M a n a g e r

H T T P
S e r v e r

h t t p 1

P l u g - i n

W E B c l u s t e r

N o d e A p p 2 N o d e

N o d e A p p 1 N o d e

W e b 1

W e b 2 a

W e b 2 b

230 WebSphere Application Server V6 Scalability and Performance Handbook

6.2.1 WebContainer Inbound Chains
Before moving on to the main part of this chapter, it is important to discuss and
understand a new function in WebSphere Application Server V6 called transport
chains. WebSphere V6 introduced transport chains as a new communications
implementation that, although unnoticed most of the time, changes the way
communication through protocol stacks works.

As in earlier WebSphere versions, it is still true that each application server has a
built-in HTTP server, which is bound to Web container transport chains. In earlier
versions of WebSphere, we called this built-in HTTP server the “embedded
HTTP transport”, from now on, we refer to it as the WebContainer Inbound
Chain. One advantage of this new implementation is that it offers a much higher
request throughput.

The HTTP service is bound to the transport chain named WCInboundDefault, and
the HTTPS service is bound to the one named WCInboundDefaultSecure.

The transport chains of a Web container can be found and manipulated through
the Administrative Console by selecting Servers -> Application servers ->
<AppServer_Name> -> Web container transport chains, as shown in
Figure 6-4 on page 235.

Using the internal transport in the Web container is extremely useful for testing
and in development environments because there is no need to configure a
separate Web server or to update the Web server plug-in when changes are
made to URL mappings. A user can establish a direct connection from the
browser to the application server without the need for a separate Web server, just
using a URL with the application server host name and the WCInboundDefault
transport number:

http://app1.itso.ibm.com:9080/snoop

However, it is strongly recommended that this internal Web server should not be
used in production environments. If the users connect directly to the
WebContainer Inbound Chain, then they bypass the plug-in and the workload
management it performs, as well as the failover and session affinity mechanisms
it provides — not to mention the ESI dynamic caching function in the Web server
plug-in, if enabled.

Further information about this is found in 6.2.3, “Transport chains: the details” on
page 234.

 Chapter 6. Plug-in workload management and failover 231

6.2.2 Virtual hosts
The Web containers handle traffic for the Web modules contained within them.
WebSphere uses virtual hosts as filters for the traffic coming in from the Web. A
virtual host is a configuration enabling a single host machine to resemble multiple
host machines.

Each virtual host has a logical name and a list of one or more DNS aliases by
which it is known. A DNS alias is the TCP/IP host name and port number used to
request the servlet, for example yourHostName:80. When no port number is
specified, 80 is assumed as the default.

When a servlet request is made, the server name and port number entered into
the browser are compared to a list of all known aliases in an effort to locate the
correct virtual host and serve the servlet. If no match is found, an error is
returned to the browser.

A virtual host is not associated with a particular node (machine). It is a
configuration, rather than a “live object,” explaining why it can be created, but not
started or stopped.

For many users, virtual host creation is unnecessary because, by default,
WebSphere Application Server V6 provides two virtual hosts:

� The default_host, which is used for accessing most applications.
� The admin_host, which is configured for accessing the Administrative

Console (while other applications are not accessible through this virtual host).

The default settings for default_host map to all requests for any alias on ports 80,
9443, and 9080. The default settings for admin_host map to requests on ports
9060 and 9043.

The virtual host definition is a list of hosts and ports on which a Web module
accepts traffic. As shown in Figure 6-3 on page 233, the default_host virtual
host uses a wildcard (*) to allow traffic from all hosts on ports 80, 9080 and 9443.
The settings for virtual host aliases can be found in the Administrative Console by
clicking Environment -> Virtual Hosts -> <Virtual_Host_Name> -> Host
Aliases.

232 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-3 Virtual host setup

Virtual hosts are especially useful when setting up multiple application servers
that use the same URI. Virtual host filtering can be used so that the requests
www.vhost1.com/snoop and www.vhost2.com/snoop can be handled by two
different Web modules. In such a case, you naturally use the specific host
names, not wildcards, when defining the virtual hosts. Follow these steps to set
this up:

1. Define two virtual hosts (for example, vh1 and vh2).

2. Configure the www.vhost1.com host alias in vh1 (port 80) and www.vhost2.com
in vh2 (also in port 80).

Tip: We recommend adding wildcard settings for ports 80, 9080, and 9443 by
default for new virtual hosts.

However, with such a configuration, any Web server can redirect traffic to your
Web containers. Use specific host names instead of wildcards on port 80 if
you wish to prevent any Web server from redirecting traffic to your Web
containers.

 Chapter 6. Plug-in workload management and failover 233

For more information about configuring virtual hosts, see section 5.7, “Working
with virtual hosts” of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451.

6.2.3 Transport chains: the details
Each application server has a Web container and transports defined for it. This
information can be found by clicking Servers -> Application servers ->
<AppServer_Name> -> Web Container Settings -> Web container transport
chains as shown in Figure 6-4 on page 235. As can be seen, we have several
transport chains configured for a typical Web container; in our example, port
9081 is being used for normal HTTP communication.

Note: You may notice that in WebSphere V6 the plug-in is more forgiving
when the same wildcard aliases exist in several virtual hosts.

Still, some configurations might lead to a situation where the plug-in and the
Web container are not able to correctly match a virtual host with the request
URL received from the Web client (this happens when the associated host and
port do not exist in the virtual host group).

The error that would be seen would be similar to this:

PLGN0021E: Servlet Request Processor Exception: Virtual Host/WebGroup Not
Found : The web group /xx has not been defined

This is a generic error message and it can mean a number of things. You
could check whether the Web module is mapped to the correct virtual host or if
the plug-in configuration has been updated and reloaded by the Web server. If
you are sure that everything is configured correctly, then you should use
specific host names on the host aliases entries.

Note: As you can see in Figure 6-4, there are also two administration-related
transport chains in our default configuration. These transport chains will
actually not be used by the plug-in. In fact, when the plug-in file is generated,
the generator skips all transport chains that are related to administration.

234 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-4 Typical transport settings for Web container (ports may vary)

As discussed previously, a transport chain defines a communication mechanism
bound to a TCP/IP port that is used by the plug-in (or any HTTP client) to access
a Web container. The transport chain associated with each Web container
contains an HTTP channel that handles HTTP requests forwarded from the Web
server plug-in.

It is important to understand the transport chains, since their settings directly
affect how the plug-in works. Also, by understanding and setting up transports as
the first part of a cluster member setup, time can be saved. This is because, in a
workload-managed environment, transport settings are unique to each node.
When a cluster member is added, you have the option to generate unique port
numbers for the cluster member as shown in Figure 6-5 on page 236.
WebSphere Application Server then allocates unique port numbers and defines
the necessary transport settings for each application server.

 Chapter 6. Plug-in workload management and failover 235

Figure 6-5 Generating unique port numbers

Setting up transport chains
A newly created application server will typically have four transport chains
defined, as detailed in Table 6-1:

Table 6-1 Typical Web container transport chains

Transport chain Purpose

WCInboundAdmin On a stand-alone server, it is used by the
admin_host virtual host, which hosts the
WebSphere Administrative Console.

WCInboundAdminSecure Same function as WCInboundAdmin, but
for HTTPS communication.

WCInboundDefault This transport chain is connected to the
default HTTP channel associated with the
Web container. You can use this transport
directly to bypass the Web server plug-in.

WCInboundDefaultSecure Same function as WCInboundDefault, but
for HTTPS communication.

236 WebSphere Application Server V6 Scalability and Performance Handbook

To inspect a transport chain more closely, click the appropriate link
(WCInboundDefault, for example). This brings up a window like the one shown in
Figure 6-6:

Figure 6-6 A transport chain and its channels

As you can see here, a transport chain contains several Transport Channels that
reflect the protocol stack involved in the communication, such as TCP or HTTP.
Now you can click, for example, the TCP channel link to configure it further for
your particular needs, as shown in Figure 6-7 on page 238.

 Chapter 6. Plug-in workload management and failover 237

Figure 6-7 TCP channel settings

Ports
By default, individual ports are created automatically for each transport whenever
a new application server is created. WebSphere Application Server is smart
enough to generate port values that do not conflict with other WebSphere
servers on the same node, but the administrator should be careful not to
generate conflicts with other services. Port values can always be changed later
should port conflicts ever show up in the error log.

The port associated with the TCP channel in our example can be defined by
clicking the Ports link in the Related Items section. Next, select the respective
port name link to display the configuration settings as shown in Figure 6-8 on
page 239 (another way to do this is by selecting Servers -> Application servers
-> <AppServer_Name> -> Ports -> <Port_Name>).

238 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-8 TCP channel port

The Host is the host IP address to which the plug-in will attempt to connect. If “*”
is used, then WebSphere Application Server replaces the * with the application
server host name when the plug-in configuration is regenerated (see 6.5.2,
“Generation of the plug-in configuration file” on page 258). This is the
recommended method when setting up transports in a multi-cluster member,
multi-machine environment.

If you wish to use the secure transport chains, refer to Chapter 6, “Securing a
Web application”, of the redbook WebSphere Application Server V6: Security
Handbook, SG24-6316, for a more detailed look at SSL configuration.

Setting up multiple transport chains
If you define multiple transports chains of the same type (for example, HTTP) for
one application server, then the plug-in will try to cross-reference a port number
specified in the VirtualHostGroup to a transport specified for a plug-in member.

Setting up multiple transport chains requires the following steps:

 Chapter 6. Plug-in workload management and failover 239

1. Create new port(s)
2. Create new transport chain(s)
3. Add port numbers to list of host aliases

New ports are created by clicking Servers -> Application servers ->
<AppServer_Name> -> Ports -> New as shown in Figure 6-9:

Figure 6-9 Configuring a new port

After configuring a new port for a server, you need to assign it to a new transport
chain by clicking Servers -> Application servers -> <AppServer_Name> ->
Web Container Settings -> Web container transport chains -> New (as can
be seen in Figure 6-10 on page 241 and in Figure 6-11 on page 242).

240 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-10 Configuring multiple transports

On the “Step 1” panel, you can enter the name of your new transport chain.
Notice that an appropriate transport chain template must be chosen
(WebContainer or WebContainer-Secure) before you click Next.

 Chapter 6. Plug-in workload management and failover 241

Figure 6-11 Assigning a port to the new transport

On the next panel, you can either select a port you previously created from the
Existing port pull-down menu or you can create a new port on the fly. Click Next
and then Finish. Do not forget to save your changes.

If you want this transport chain to be usable from a Web client, then the last
configuration step is to add the port number to the list of host aliases of a virtual
host, as explained in 6.2.2, “Virtual hosts” on page 232.

An example of the type of plug-in configuration generated by such a
configuration is shown in Example 6-1 on page 243.

Important: All plugin-cfg.xml extracts shown in this book are for educational
purposes only. Usually, you do not need to manipulate these files directly.
Since WebSphere Application Server V6, most changes (with only a very few
exceptions) can and should be done via the Administrative Console.

One exception is the ClusterAddress tag, which cannot be set using the
Administrative Console. Please refer to “ClusterAddress” on page 271 for
information about this setting.

242 WebSphere Application Server V6 Scalability and Performance Handbook

Example 6-1 Extract of plugin-cfg.xml showing multiple transports

...
<VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:9080"/>
 <VirtualHost Name="*:80"/>
 <VirtualHost Name="*:9443"/>
 <VirtualHost Name="*:9081"/>
 <VirtualHost Name="*:9082"/>
</VirtualHostGroup>
 <ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="WEBcluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="120">
 <Server CloneID="vve2m4fh" ConnectTimeout="5" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app1Node_Web1"
WaitForContinue="false">
 <Transport Hostname="app1.itso.ibm.com" Port="9080" Protocol="http"/>
 <Transport Hostname="app1.itso.ibm.com" Port="9095" Protocol="http"/>
 </Server>

 <PrimaryServers>
 <Server Name="app2Node_Web2a"/>
 <Server Name="app2Node_Web2b"/>
 <Server Name="app1Node_Web1"/>
 </PrimaryServers>
 </ServerCluster>
 <UriGroup Name="default_host_WEBcluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/trade/*"/>
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/wlm/*"/>
 </UriGroup>
 <Route ServerCluster="WEBcluster" UriGroup="default_host_WEBcluster_URIs"
VirtualHostGroup="default_host"/>
...

Using Example 6-1, if a request to http://Webserver/trade was sent to the
plug-in and the server Web1 was chosen for the request, the request would be
sent to app1.itso.ibm.com on port 9080. This is because the plug-in has
cross-referenced the ports specified in the transports of Web1 and the ports
specified in the VirtualHostGroup default_host. The match between the two is
port 9080; hence the request is sent to the Web container transport chain on port
9080. If no match is found, then the last transport chain for Web1 is used, in this
case port 9095.

Note: Adding additional transport definitions will not increase the load
balancing or failover capabilities of an application server.

 Chapter 6. Plug-in workload management and failover 243

HTTPS considerations in a WLM environment
When using secure Web container transport chains with a self-signed certificate,
you need to distribute client (plug-in) and server (application server) certificates
as follows:

� Import the server certificate from each application server as a trusted CA
(certificate authority) into the plug-in’s keyfile.

� If you are using client (plug-in) authentication, you also need to import the
client certificate from each plug-in as a trusted CA (certificate authority) into
the application server’s keyfile.

For details about WebSphere Security, refer to the Redpaper WebSphere
security fundamentals, REDP-3944 and to the redbook WebSphere Application
Server V6: Security Handbook, SG24-6316.

6.3 Creating clusters and cluster members
To allow for workload management and failover, replicas of a Web module are
created. This is done by creating more servers as cluster members. The
concepts of clusters and cluster members are covered in 1.3.3, “Workload
management using WebSphere clustering” on page 19. Information about how to
set up clusters and cluster members can be found in 8.5, “Installing WebSphere
and configuring clusters” on page 395, where the cluster configuration of our
sample topology is done step by step.

6.4 Web server topologies
Since WebSphere Application Server V6, Web servers are an important
conceptual part of a cell configuration. In some cases, it is now possible to
manage a Web server from the WebSphere Administrative Console (you can
stop and start its process, for example). It may also be possible to propagate a
plug-in configuration file from the Administrative Console to the proper location in
the remote Web server machine (see 6.5.3, “Propagation of the plug-in file” on
page 262 for more information).

Whether or not you can manage a Web server (and propagate its plug-in
configuration file) depends on the Web server type and its configuration in the
cell. A configured Web server can fall into three categories:

Note: Clustering is performed at the application server level, not the Web
module or EJB level.

244 WebSphere Application Server V6 Scalability and Performance Handbook

� Managed Web servers
� Unmanaged Web servers
� IBM HTTP Server V6.0 (special case of unmanaged Web servers)

For details about Web server management in WebSphere V6, please refer to
Chapter 8, “Managing Web servers” of the redbook WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

You should have the Web server already installed and running before configuring
it in the cell. Information about how to install and configure the IBM HTTP Server
V6.0 is found in 8.6, “Installing and configuring IBM HTTP Server 6.0” on
page 416.

Web servers in a cell can be seen in the WebSphere Administrative Console by
selecting Servers -> Web servers, as shown in Figure 6-12.

Figure 6-12 Web servers in a cell

In WebSphere V6, during application installation, you should map the Web
modules to the appropriate Web servers, as shown in Figure 6-13 on page 246.

 Chapter 6. Plug-in workload management and failover 245

Figure 6-13 Mapping Web modules to Web servers

As a result of such a mapping, each Web server will have a specific WebSphere
plug-in configuration file generated according to its individual settings and
targeted applications (more on this can be found in 6.5, “WebSphere plug-in
configuration file” on page 251).

6.4.1 Managed Web servers
A managed Web server is a Web server managed by a Node Agent running on
the same node (that is, a managed node).

246 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-14 Managed Web server

In the situation shown in Figure 6-14, the Node Agent receives commands from
the Deployment Manager to administer the Web server. The main administering
functions are stopping and starting the Web server and the propagation of the
plug-in configuration file.

Configuring a managed Web server
To create a new Web server definition for a managed node, select Servers ->
Web servers and click New. This brings up the window shown in Figure 6-15 on
page 248.

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Cell

Server A

Manages

Web
Server

Deployment
Manager

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

Node
Agent

 Chapter 6. Plug-in workload management and failover 247

Figure 6-15 Creating a managed Web server definition

After entering the desired name and selecting an adequate node (which also
hosts an application server and thus a Node Agent), click Next. In the next
windows, you must enter the correct definitions for the already installed and
configured Web server.

It is very important to keep in mind that all paths asked for are local paths of the
remote managed node. Remember that, in the end, it is the remote Node Agent
and the Web server plug-in that refer to these paths.

A managed Web server makes sense behind a firewall, where a WebSphere
node can be installed. It is unlikely, though, in a production Web server residing
in a DMZ; in this case, you will most likely be using an unmanaged node.

6.4.2 Unmanaged Web servers
Web servers running on a node without a Node Agent are called unmanaged Web
servers. An unmanaged Web server is not managed by the Deployment Manager
(just as in WebSphere Application Server V5.1; for example, it cannot be started
or stopped from the Administrative Console). However, it still needs to be

248 WebSphere Application Server V6 Scalability and Performance Handbook

configured in the cell topology and targeted by Web modules so that the
Deployment Manager can generate its plug-in configuration properly.

Figure 6-16 Web server on unmanaged Node

The steps for configuring an unmanaged Web server are:

1. Configuring an unmanaged node
2. Configuring an unmanaged Web server

Configuring an unmanaged node
To configure an unmanaged node, select System administration -> Nodes and
click Add Node. Select the Unmanaged node radio button as shown in
Figure 6-17 on page 250.

Cell

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Server A

Web
Server

Server B

Plug-in
Module

Plug-in
Config

XML File

Deployment
Manager

Manual copy or shared file

 Chapter 6. Plug-in workload management and failover 249

Figure 6-17 Configuring an unmanaged node

After clicking Next, you are asked for the name, host name and OS platform of
the new node. Fill in all values and click OK.

Configuring an unmanaged Web server
To create a new Web server definition on the previously created node, select
Servers -> Web servers -> New, then enter the correct definitions for the
existing Web server on the previously defined node.

As mentioned earlier, remember that all paths asked for are local paths of the
remote unmanaged node.

6.4.3 Unmanaged IBM HTTP Server V6.0 server (special case)
Unmanaged Web servers that run the Apache-based IBM HTTP Server V6.0 are
a special type of unmanaged Web servers.

250 WebSphere Application Server V6 Scalability and Performance Handbook

The IBM HTTP Server V6.0 Administration Server (a separate process from the
Web server itself) in practice replaces the role of the Node Agent in Figure 6-14
on page 247, providing the very same services for the Deployment Manager.

Figure 6-18 Unmanaged IBM HTTP Server - special case

The only catch is that a port must be opened on the firewall to allow the HTTP(S)
communication between the Deployment Manager and the IBM HTTP
Server V6.0 Administration Server HTTP port (the default is 8008).

The configuration steps needed for setting up the IBM HTTP Server V6.0 are
identical to the configuration steps for an unmanaged Web server, as described
in 6.4.2, “Unmanaged Web servers” on page 248.

6.5 WebSphere plug-in configuration file
In this section, we explore the plug-in configuration file: what it is composed of,
how it is generated and how it is used by the WebSphere plug-in.

This section’s main topics are:

� “The plug-in configuration file” on page 252
� “Generation of the plug-in configuration file” on page 258
� “Propagation of the plug-in file” on page 262

Note: In fact, the IBM HTTP Server V6.0 Administration Server has been
modified so that its features are only available via the WebSphere
Administrative Console (in other words, you cannot connect directly to it with a
Web browser).

Cell

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Application Server Node

. . .Application
Server

Application
Server

Node
Agent

Server A HTTP
commands to
manage IHS

Web
Server

Server B

Start/Stop

Manage

Plug-in
Module

Plug-in
Config

XML File

IHS Admin
Process

Deployment
Manager

 Chapter 6. Plug-in workload management and failover 251

6.5.1 The plug-in configuration file
Unlike its previous versions, WebSphere Application Server V6 is now capable of
generating a specific plug-in configuration file for each Web server in the cell
topology. This is possible because Web modules are now mapped not only to
application servers (or clusters), but also to Web servers, as seen in Figure 6-13
on page 246.

Example 6-2 shows a sample configuration file for a single Web server. When
generating the plug-in configuration file (plugin-cfg.xml) for a Web server named
http1 which is running on node http1Node, the generated file is placed in this
location on the Deployment Manager node:

<WAS_HOME>/profiles/<dmProfileName>/config/cells/<cellName>/nodes/
<nodeName>/servers/<serverName

For example, in our AIX environment, this is:

/usr/WebSphere/AppServer/profiles/dm/config/cells/dmCell/nodes/
http1Node/servers/http1

For information about how to generate a plug-in configuration file, please see
6.5.2, “Generation of the plug-in configuration file” on page 258.

The configuration file should be propagated (or manually copied) to its respective
Web server node. We discuss the propagation of plug-in configuration files in
6.5.3, “Propagation of the plug-in file” on page 262.

The following is an example of a plug-in configuration file for a specific Web
server:

Example 6-2 plugin-cfg.xml example

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the webserver dmCell.http1Node.HTTP1 generated on 2004.10.12 at 04:43:03 PM
EDT-->

Note: It is still possible to generate a “full” plug-in XML file like in WebSphere
Application Server V5.x (a single plug-in configuration file that resolves all
URIs to all applications in every Web container in the cell). If this is the desired
outcome, all the administrator needs to do is to run the GenPluginCfg.bat (or
.sh) script with no parameters on the Deployment Manager node. The
plugin-cfg.xml generated this way must be copied manually onto each Web
server, just like it used to be with WebSphere V5.x.

Naturally, a Web server whose plug-in loads such a configuration file does not
need to be configured in the cell.

252 WebSphere Application Server V6 Scalability and Performance Handbook

<Config ASDisableNagle="false" AcceptAllContent="false"
AppServerPortPreference="HostHeader" ChunkedResponse="false"
IISDisableNagle="false" IISPluginPriority="High" IgnoreDNSFailures="false"
RefreshInterval="60" ResponseChunkSize="64" VHostMatchingCompat="false">
 <Log LogLevel="Error"
Name="c:\WebSphere\Plugins\logs\HTTP1\http_plugin.log"/>
 <Property Name="ESIEnable" Value="true"/>
 <Property Name="ESIMaxCacheSize" Value="1024"/>
 <Property Name="ESIInvalidationMonitor" Value="false"/>
 <VirtualHostGroup Name="default_host">
 <VirtualHost Name="*:9080"/>
 <VirtualHost Name="*:80"/>
 <VirtualHost Name="*:9081"/>
 </VirtualHostGroup>
 <ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="WEBcluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="60">
 <Server CloneID="vtnul4vu" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app1Node_Web1"
WaitForContinue="false">
 <Transport Hostname="app1.itso.ibm.com" Port="9080" Protocol="http"/>
 </Server>
 <Server CloneID="vtnul9n9" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app2Node_Web2a"
WaitForContinue="false">
 <Transport Hostname="app2.itso.ibm.com" Port="9080" Protocol="http"/>
 </Server>
 <Server CloneID="vtnuld27" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="3" MaxConnections="-1" Name="app2Node_Web2b"
WaitForContinue="false">
 <Transport Hostname="app2.itso.ibm.com" Port="9081" Protocol="http"/>
 </Server>
 <PrimaryServers>
 <Server Name="app1Node_Web1"/>
 <Server Name="app2Node_Web2a"/>
 <Server Name="app2Node_Web2b"/>
 </PrimaryServers>
 </ServerCluster>
 <UriGroup Name="default_host_WEBcluster_URIs">
 <Uri AffinityCookie="JSESSIONID" AffinityURLIdentifier="jsessionid"
Name="/trade/*"/>
 </UriGroup>
 <Route ServerCluster="WEBcluster" UriGroup="default_host_WEBcluster_URIs"
VirtualHostGroup="default_host"/>
 <RequestMetrics armEnabled="false" loggingEnabled="false" rmEnabled="false"
traceLevel="HOPS">
 <filters enable="false" type="URI">
 <filterValues enable="false" value="/snoop"/>
 <filterValues enable="false" value="/hitcount"/>

 Chapter 6. Plug-in workload management and failover 253

 </filters>
 <filters enable="false" type="SOURCE_IP">
 <filterValues enable="false" value="255.255.255.255"/>
 <filterValues enable="false" value="254.254.254.254"/>
 </filters>
 <filters enable="false" type="JMS">
 <filterValues enable="false" value="destination=aaa:topic=bbb"/>
 </filters>
 <filters enable="false" type="WEB_SERVICES">
 <filterValues enable="false"
value="wsdlPort=aaa:op=bbb:nameSpace=ccc"/>
 </filters>
 </RequestMetrics>
</Config>

The main tags within this file are listed in Table 6-2, and can be associated with
the flow chart shown in Figure 6-23 on page 265 to help understand what each is
defining.

Table 6-2 Plug-in configuration XML tag descriptions

No. XML Tag Description

2,3 VirtualHostGroup
VirtualHost

A group of virtual host names and ports that will be
specified in the HTTP Host header when the user
tries to retrieve a page. Enables you to group virtual
host definitions together that are configured to
handle similar types of requests. The requested
host and port number are matched to a VirtualHost
tag in a VirtualHostGroup.

2,4 UriGroup
Uri

A group of URIs that will be specified on the HTTP
request line. The incoming client URI is compared
with all the Uri tags in the UriGroup to see if there is
a match to determine if the application server will
handle the request for the Route in conjunction with
a virtual host match.

254 WebSphere Application Server V6 Scalability and Performance Handbook

Plug-in file tags related to workload management
There are some settings in the plug-in file that directly affect how the plug-in
works in a workload management environment. In WebSphere V6, all of these
settings can be modified using the Administrative Console:

� You can change the workload distribution policy in the configuration file. See
6.6.2, “Plug-in workload management policies” on page 267.

2,3,5,
6

Route The Route definition is the central element of the
plug-in configuration. It specifies how the plug-in will
handle requests based on certain characteristics of
the request. The Route definition contains the other
main elements: a required ServerCluster, and either
a VirtualHostGroup, UriGroup, or both.

Using the information that is defined in the
VirtualHostGroup and the UriGroup for the Route,
the plug-in determines if the incoming request to the
Web server should be sent on to the ServerCluster
defined in this Route.

The plug-in sets scores for Routes if there is a
VirtualHost and Uri match for an incoming request.
Once the plug-in processes all Routes, the Route
chosen is the one with the highest score.

6 ServerCluster
Server

The located ServerCluster from the Route tag
contains a list of Server tags that in turn contain the
requested object. At 7, the Server tag is used to
check session affinity. At 8 or9, the correct server is
selected.

8,9 ServerCluster
Server

The ServerCluster located by finding the correct
Route can optionally specify the WLM algorithm.
This will then be used to select one Server from
within the ServerGroup.

10 Transport Once a Server has been located, its Transport tags
describe how to connect to it.

Tip: A detailed description of each XML tag and its relationships can be found
in the WebSphere V6 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

To find the appropriate section, search for “plugin-cfg.xml file”.

No. XML Tag Description

 Chapter 6. Plug-in workload management and failover 255

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

� You can change the retry interval for connecting to a cluster member marked
as down.

� You can change the refresh interval for the reloading of the plug-in
configuration file. The refresh interval defines how often the plug-in will check
to see if the configuration file has changed. See “Refresh interval of the
plug-in” on page 263.

� You can change the maximum number of connections that will be allowed to a
server from a given plug-in. If this attribute is set to either zero or -1, there is
no limit to the number of pending connections to the application servers. The
default value is -1.

Changing plugin-cfg.xml settings
It is important to understand that manually editing the plug-in configuration files is
not necessary (nor recommended) anymore. Almost all settings can now be
changed through the Administrative Console (in various configuration panels).
For example, all application server related settings can be found in Servers ->
Application servers -> <AppServer_Name> -> Web Server plug-in
properties, as shown in Figure 6-19 on page 257.

256 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-19 Plug-in properties (application server level)

The Web server related settings can be found in Servers -> Web Servers ->
<WebServer_Name> -> Plug-in properties, as detailed in Figure 6-20 on
page 258.

 Chapter 6. Plug-in workload management and failover 257

Figure 6-20 Plug-in properties for Web servers

The only exception that we found during our testing is the ClusterAddress tag
which cannot be set using the Administrative Console. Please refer to
“ClusterAddress” on page 271 for information about this setting.

6.5.2 Generation of the plug-in configuration file
Generating the plug-in configuration for a Web server recreates its respective
plugin-cfg.xml using the current settings of objects in the cell. Once the plug-in
has reloaded its new configuration, clients are able to access the updated or new
Web resources.

WebSphere Application Server V6 can automatically regenerate (and propagate)
the plugin-cfg.xml file each time a related setting is changed. This is the default
option, as can be seen on Figure 6-20, for the Automatically generate...
checkbox. For this setting to work, however, the Web server plug-in configuration

258 WebSphere Application Server V6 Scalability and Performance Handbook

service must be enabled (see Figure 6-21), by selecting System Administration
-> Deployment manager -> Administration Services -> Web server plug-in
configuration service and checking the Enable automated Web server
configuration processing checkbox.

Figure 6-21 Web server plug-in configuration service

So the Web server’s default configuration (together with the setting just
mentioned) ensures that its plug-in configuration file will be regenerated
automatically whenever necessary (for example, when mapping a new Web
module to it). On the other hand, you can always regenerate the file manually
when you wish to do so.

As mentioned earlier, a generated plug-in configuration file is stored at the
following location:

<WAS_HOME>/profiles/<dmProfileName>/config/cells/<cellName>/nodes/
<nodeName>/servers/<serverName>

 Chapter 6. Plug-in workload management and failover 259

Manual regeneration of a plug-in file
Manual regeneration of a plug-in file can be performed at any time, whether
application servers are running or not. The result of its propagation (or manual
copy) and delay are discussed in 6.5.3, “Propagation of the plug-in file” on
page 262. There are two methods of manual regeneration:

� From the Administrative Console
� Via a command line using the GenPluginCfg command

From the Administrative Console
The Administrative Console can be used to regenerate the plug-in for one or
more Web servers. In a Network Deployment environment, the plug-in is
regenerated on the Deployment Manager system and, depending on the overall
configuration, propagated to the Web servers. This means that every Web server
configuration in the cell is relevant (even for unmanaged non-IBM HTTP Server
servers), as there are directory paths in the plugin-cfg.xml file that must
correspond to real paths on the machine this file is copied or propagated to.

To regenerate the plug-in file manually from the Administrative Console:

1. Select Servers -> Web Servers.

2. Select the appropriate Web server(s) as shown in Figure 6-22 on page 261.

3. Click Generate Plug-in. A message appears to inform you whether the
plug-in regeneration for each Web server was successful.

Note: As mentioned earlier, it is still possible to generate a “full” plug-in
configuration file so that a plug-in can redirect requests to all Web containers
in the cell (just like in WebSphere Application Server V5.x) by running the
GenPluginCfg script with no parameters on the Deployment Manager node.

Executing the same script (also without parameters) on any running node
other than the Deployment Manager results in a plugin-cfg.xml file that
contains a subset of the cell-wide configuration (serving all Web modules on
the node). This is the result of each node only having a subset of the master
configuration repository replicated locally.

260 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-22 Regenerating the plug-in using the Administrative Console

Using the GenPluginCfg command
The command GenPluginCfg can be used in its simplest form by typing:

GenPluginCfg.sh (for UNIX environments)

or

GenPluginCfg.bat (for Windows environments)

This generates the plug-in configuration file on the node where you are running
the command (the resulting file will consider all deployed Web modules and
configured Web containers on this node). However, it is recommended that you
run this command on the Deployment Manager node, since the resulting file then
considers the entire cell configuration. In other words, when generating the
plug-in configuration via GenPluginCfg on a node other than the Deployment
Manager node, the resulting file only contains the local node configuration.

The command GenPluginCfg can also be used for fine-grained work, generating
a plug-in configuration file for a single Web server by adding the appropriate
parameters. For example:

 Chapter 6. Plug-in workload management and failover 261

GenPluginCfg.sh -cell.name dmCell -node.name http1Node
-webserver.name http1

There are many other command-line tools available in WebSphere Application
Server V6. For details on the GenPluginCfg command as well as other available
commands, refer to Chapter 6, “Administration with scripting”, of the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

6.5.3 Propagation of the plug-in file
A new feature in WebSphere Application Server V6 is the propagation of a
plug-in configuration file from the Deployment Manager node to its respective
Web server node. This eliminates the need to manually copy these files to the
Web server; since Web servers usually reside in a segregated network (the
DMZ), the simple task of copying files can be sometimes tricky and cumbersome.

The propagation of a plug-in configuration file is only possible for managed Web
servers and for unmanaged IBM HTTP Server V6.0 servers. For other
unmanaged Web servers, the plug-in configuration file must still be copied
manually to the Web server system.

Depending on the current Web server configuration (see Figure 6-20 on
page 258, especially the Automatically propagate... checkbox) a recently
regenerated plug-in configuration file can also be propagated automatically to its
respective Web server node.

To manually propagate a plug-in configuration file:

1. Select Servers -> Web Servers.

2. Select the appropriate Web server(s), as shown in Figure 6-22 on page 261.

3. Click Propagate Plug-in. A message appears to inform you whether the
plug-in propagation for each Web server was successful.

You must specify the plug-in installation location during configuration of a Web
server in the cell (for example, c:\websphere\plugins). When propagating the
plug-in configuration file, it is then placed into the config directory found under
this previously specified directory on the Web server’s file system, normally:

<PLUGIN_HOME>/config/<WebServerName>

For our Web server on Windows, this is:

C:\WebSphere\Plugins\config\http1

If you copy the configuration file(s) manually, they must be copied to that very
same location.

262 WebSphere Application Server V6 Scalability and Performance Handbook

After propagation (or manual copy) of a plug-in configuration file there will be a
short delay before in the changes take effect. This delay is governed by the
refresh interval of the plug-in.

Refresh interval of the plug-in
The WebSphere plug-in checks for a new configuration file only at specified time
intervals. This interval (in seconds) is determined by the Refresh configuration
interval setting seen in Figure 6-20 on page 258 (which represents the
RefreshInterval attribute of the Config tag in the plugin-cfg.xml file shown in
Example 6-3). If a newly generated configuration file has been propagated (or
manually copied) to a Web server node, then there can be a delay of anything up
to the number specified in this setting before the plug-in will actually load and use
the new configuration.

Example 6-3 Plugin-cfg.xml extract showing RefreshInterval

<?xml version="1.0" encoding="ISO-8859-1"?><!--HTTP server plugin config file
for the webserver dmCell.http2Node.http2 generated on 2004.10.12 at 04:43:03 PM
EDT-->
<Config ASDisableNagle="false" AcceptAllContent="false"
AppServerPortPreference="HostHeader" ChunkedResponse="false"
IISDisableNagle="false" IISPluginPriority="High" IgnoreDNSFailures="false"
RefreshInterval="60" ResponseChunkSize="64" VHostMatchingCompat="false">
...

Once the RefreshInterval has passed, the actual loading of the new plug-in
configuration file into the plug-in runtime is triggered by a request to the Web
server.

In a development environment in which changes are frequent, a lower setting
than the default setting of 60 seconds might be useful. Once in production,
changing this to a higher value than the default is recommended because
updates to the configuration normally do not occur as often.

6.5.4 Bypassing the plug-in
If you are working in a development environment, where constant changes are
being made to installed applications, you could use the WebContainer Inbound
Chain of a specific Application Server to access your application directly instead
of going through a Web server. For example, pointing your browser to
http://myhost:9080/snoop will bypass the plug-in.

Note: If a change is made to the virtual host(s) that a Web module uses, a
generated plug-in file will be aware of that. However, you should also restart
the related application servers so that these also reflect the change.

 Chapter 6. Plug-in workload management and failover 263

If that is intended, the HTTP ports of the Web container transport chains must be
added to the proper virtual hosts aliases.

6.6 WebSphere plug-in workload management
The actual management of Web container workload is performed by the Web
server plug-in. This section describes how the plug-in routes requests to the
correct Web containers and how the plug-in is configured. Understanding how
the plug-in makes these decisions is key to understanding how WebSphere
workload manages Web requests.

6.6.1 Processing requests
Once a cluster and its members have been set up, the plug-in can start directing
requests from the Web server to the correct application server. Figure 6-23 on
page 265 shows what occurs within the plug-in when processing a request.

When things go wrong: Even in a production environment, it is sometimes
useful to bypass the plug-in for testing purposes.

For example, in our sample topology, a request from a client browser goes
through a Caching Proxy, a Load Balancer, a Web server (and its plug-in) and
finally arrives at the Web container. When things stop working, it is always
recommended that you send a request directly to the Web container to find out
quickly if it is still responding.

264 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-23 How the plug-in processes a request

Browser Web Server

WebSphere
Application

Server Cluster MemberWebSphere Plug-In

Process request:
host=http1:80

uri=/snoop

Check session affinity
(see session affinity section)

Not found - Check WLM
algorithm and choose a

member to handle request

Find and set transport. HTTP and
HTTPS transports defined?

No
Set to the transport defined

No
Set transport

HTTPS

Get connection to cluster member.
Is an

existing stream still alive?

No
Create new stream

Send request to member

Read response and pass
on to Web server

Yes
Use existing stream
(avoid setup time)

Yes
Is request HTTP?

Found. Set
associated member

Set HTTP
transport

Not found

Found

Send
request

Display
returned

data
Return
result

Process
request

Route request
to WebSphere

plug-In

Search static
resources

on Web Server

Not found
return error
to browser

Found - Return
Static HTML

page or graphic

HTTP or
HTTPS

HTTP
or

HTTPS

7

8
9

10

11

12
13

14

15

1

Search Routes for any virtual
host and URI match of

http1:80/snoop
2

Get next Route and find a
virtual host match to

http1:80

Search in current Route for URI
matching to /snoop

Anymore Routes
to check?

No

Yes

Set score for current Route

Not found

Choose Route with highest score

4

3

5

6

 Chapter 6. Plug-in workload management and failover 265

Here is an example walk-through of Figure 6-23 on page 265. Users asks for the
page http://http1:80/snoop from their browser. The request is routed to the
Web server over the Internet.

1. The Web server immediately passes the request to the plug-in (1). All
requests go to the plug-in first.

2. The plug-in then starts by looking at all Route definitions in the plugin-cfg.xml.
For each Route, it searches through its configuration to find if there is any
match to the virtual host http1:80 and URI /snoop. It will find the first match
and then decide that WebSphere should handle the request (2). If there is no
match, WebSphere will not handle the request.

3. The plug-in takes the request and separates the host name and port pair and
URI. The plug-in now starts by looking at all the defined Routes. It gets a
Route and then searches for a virtual host match to http1 port 80 in that
Route. It matches that host name and port to http1:80 in the VirtualHost block
(3).

4. The plug-in then tries to match the URI /snoop in the current Route. It
searches its configuration for a URI mapping that matches the requested URI
in the UriGroup block (4). It matches /snoop in the UriGroup.

5. Once the VirtualHostGroup and UriGroup are found, it sets a score depending
on the number of characters in the URI and virtual host (5).

6. The plug-in continues to the next Route and searches through virtual hosts
and URI’s setting scores for matches with any URI and virtual host match.
The Route that has the highest score is chosen (6) and the ServerCluster is
set.

7. The plug-in now checks the request to see if any session identification has
been passed to the server (7). See 6.8, “HTTP session management” on
page 279 for more information about this. Our request does not contain any
session information.

8. The plug-in chooses a cluster member to manage the request (8). See 6.6.2,
“Plug-in workload management policies” on page 267 for more information. A
server is chosen to handle the request. If there is a session identifier and a
CloneID associated with it, the plug-in will choose a server based on the
CloneID (9).

9. This cluster member has two transports associated with it: HTTP and HTTPS
are defined. Because this request is HTTP, the cluster member uses the
HTTP transport definition (10).

10.In box 11 the term stream is used. A stream is a persistent connection to the
Web container. Since HTTP 1.1 is used for persistent connections between
the plug-in and Web container, it is possible to maintain a connection (stream)
over a number of requests. In our example, no previous connection has been
created from the plug-in to the Web container, so a new stream is created

266 WebSphere Application Server V6 Scalability and Performance Handbook

(12). However, if a stream is already established, the plug-in uses the existing
stream (13).

11.The request is sent to the cluster member(14) and successfully processed.
The plug-in passes the response on to the Web server (15), which in turn
passes it back to the user’s browser.

6.6.2 Plug-in workload management policies
This section describes the process that the plug-in goes through to choose a
cluster member to serve a request. We cover the algorithms used to choose a
cluster member and the various ways this process can be manipulated. We also
take a deeper look at how the plug-in connects to each application server. With
this knowledge, it is possible to understand how failover situations are dealt with.

Workload management policies
Since WebSphere Application Server V5, the plug-in has two options for the load
distributing algorithm:

� Round robin with weighting
� Random

The default value is Round Robin. It can be changed by selecting Servers ->
Web Servers -> <WebServer_Name> -> Plug-in properties -> Request
Routing as shown in Figure 6-24 on page 268.

Note: The weighting for the round robin approach can be turned off by giving
all application servers in a cluster equal weights.

 Chapter 6. Plug-in workload management and failover 267

Figure 6-24 Plug-in load balancing options

There is also a feature in WebSphere Application Server V6 for the plug-in called
ClusterAddress that can be used to suppress load balancing. See
“ClusterAddress” on page 271 for more details.

For examples of these workload management policies, please refer to 6.10.1,
“Normal operation” on page 310.

Weighted round robin
When using this algorithm, the plug-in selects a cluster member at random from
which to start. The first successful browser request is routed to this cluster
member and then its weight is decremented by 1. New browser requests are
then sent round robin to the other application servers and subsequently the
weight for each application server is decremented by 1. The spreading of the
load is equal between application servers until one application server reaches a
weight of 0. From then on, only application servers with a weight higher than 0
will have requests routed to them. The only exception to this pattern is when a
cluster member is added or restarted or when session affinity comes into play.

268 WebSphere Application Server V6 Scalability and Performance Handbook

Using Table 6-3 on page 270 and the following explanations, we show you how
weighted round robin is performed. To begin with, we have a weight of 4 for Web1
and a weight of 3 for Web2a:

1. When the first request comes in, Web1 is randomly chosen. The request is
OK. Web1 weight is decremented by 1 to 3.

2. The second request is sent to Web2a. The request is OK. Web2a weight is
decremented by 1 to 2.

3. The third and fourth requests are sent to Web1 and Web2a, respectively. So
Web1 now has a weight of 2 and Web2a now has a weight of 1.

4. The fifth request has a cookie that specifies a server affinity to Web1. The
request is sent to Web1 and its weight is decremented by 1 to 1.

5. The sixth request is again sent to Web1 because of server affinity. The
request is OK. Web1’s weight is decremented by 1 to 0.

6. The seventh request again has a cookie that specifies server affinity to Web1.
The request is sent to Web1 and its weight is decremented by 1 to -1.

7. The eighth to eleventh request all have server affinity to Web1. The weight is
decremented by 1 for each request. After the eleventh request, Web1 now
has a weight of -5 while Web2a still has a weight of 1.

8. The twelfth request has no server affinity so it is sent to Web2a. Web2a
weight is decremented by 1 to 0.

9. When processing the thirteenth request, the plug-in decides to reset the
weights because there are no servers marked up having positive weights. A
multiple of the lowest common denominator of the servers’ maximum weight
is added back to the current weights to make all weights positive again. See
the Important shaded box below for a detailed description of how the weights
are reset.

Notes:

� We are only using two application servers (Web1 and Web2a) in this
example to make it easier to explain.

� The first request goes to a random application server to avoid multiple Web
servers and/or multi-process Web servers directing initial requests to the
same application server.

� When starting the HTTP Server, the application server weight is reduced to
the lowest common denominator. For example: Web1’s weight is 8 and
Web2a’s weight is 6. When you start the HTTP Server, the weight of Web1
is set to 4 and the weight of Web2a is set to 3. This is done to avoid
application servers with a lower weight to be idle for long.

 Chapter 6. Plug-in workload management and failover 269

After resetting the weights, the sequence is repeated with the same starting
point (there is no random server selection this time); in our case, this means
that the thirteenth request is sent to Web1 (after the weights have been reset)
and Web1’s weight is decremented by 1 to 2.

Table 6-3 Request handling using weighted round robin server selection

Important: In our example, the current weight of Web1 is -5 because many
session-based requests have been served. Web2a has a weight of 0. The
plug-in checks how many times the maxWeight should be added to make
the current weight positive for all servers. The starting weight for Web1 was
4 and 3 for Web2a. Because Web1’s current weight is -5, adding 4 (the
lowest common denominator) would not set it to a positive weight. Thus
the plug-in decides to add the starting weights * 2, which is 8 for Web1 and
6 for Web2a. So the new current weights are 3 for Web1 (-5 + 2 * 4) and 6
for Web2a (0 + 2 * 3).

Number of Requests Web1 Weight Web2a Weight

0 4 3

1 3 3

2 3 2

3 2 2

4 2 1

5 1 1

6 - Request with session
affinity to Web1

0 1

7 - Request with session
affinity to Web1

-1 1

8 - Request with session
affinity to Web1

-2 1

9 - Request with session
affinity to Web1

-3 1

10 - Request with session
affinity to Web1

-4 1

11 - Request with session
affinity to Web1

-5 1

270 WebSphere Application Server V6 Scalability and Performance Handbook

Random
Requests are passed to cluster members randomly. Weights are not taken into
account as with round robin. The only time the application servers are not
chosen randomly is when there are requests with sessions associated with them.
When the random setting is used, cluster member selection does not take into
account where the last request was handled. This means that a new request
could be handled by the same cluster member as the last request.

Suppressing workload management
There are two options to suppress plug-in workload management:

� By setting all servers to equal weights
� By adding the ClusterAddress tag to the plugin-cfg.xml file

ClusterAddress
As mentioned earlier, the plugin-cfg.xml tag called ClusterAddress can be used
to suppress plug-in based load balancing. You define a ClusterAddress when
you do not want the plug-in to perform any load balancing because you already
have some type of load balancer in between the plug-in and the application
servers, which can be a software or a hardware solution. The ClusterAddress
specified is the IP address of your external load balancing solution. When doing
so, the plug-in will only focus on route determination and session affinity. Once
ClusterAddress is defined, if a request comes in that does not have session
affinity established, the plug-in routes it to the ClusterAddress. If affinity has been
established, then the plug-in routes the request directly to the appropriate
application server, bypassing the ClusterAddress entirely. If no ClusterAddress is
defined for the ServerCluster, then the plug-in load balances across the
PrimaryServers list.

Unfortunately, the ClusterAddress configuration cannot be done using the
WebSphere Administrative Console. This is a special case where you have to
edit the plug-in configuration file directly.

12 - No session affinity for
this request

-5 0

13 RESET - no session
affinity for this request

2 6

Note: Suppressing the plug-in load balancing is normally not desirable. As in
the sample topology, a “low-level” load balancer (software or hardware-based)
normally precedes the Web servers and not the application servers.

Number of Requests Web1 Weight Web2a Weight

 Chapter 6. Plug-in workload management and failover 271

The ClusterAddress tag has the same attributes and elements as a Server
element. The difference is that you can only define one of them within a
ServerCluster, and you should also remove all subsequent Server tags.

An example of how to configure the ClusterAddress tag in the plugin-cfg.xml is
shown in Example 6-4. This example also shows the parts that should be deleted
(striked through).

Example 6-4 Extract of plugin-cfg.xml showing ClusterAddress

.
<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="WEBcluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="120">
 <ClusterAddress Name="MyOwnLoadBalancer">
 <Transport Hostname="myownlb.itso.ibm.com" Port="80" Protocol="http"/>
 </ClusterAddress>
 <Server CloneID="vve2m4fh" ConnectTimeout="5" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app1Node_Web1"
WaitForContinue="false">
 <Transport Hostname="app1.itso.ibm.com" Port="9080" Protocol="http"/>
 </Server>
</ServerCluster>
.

6.7 Web container failures and failover
As mentioned previously, a complete WebSphere environment may include
several Web server instances as well as several WebSphere Application Server
instances. A WebSphere administrator can create any number of application
server instances as cluster members. These cluster members can all reside on a
single node or can be distributed across multiple nodes in the WebSphere cell
(vertical or horizontal scaling).

Cluster members share application workload and provide failover support
between them. You may have thin Web clients or/and thick Java/C++ clients.
When using clustered WebSphere Application Servers, your clients can be
redirected either automatically or manually (depending on the nature of the
failure) to another healthy server in the case of a failure of a clustered application
server.

Important: When editing plug-in configuration files directly, do so on the
Deployment Manager machine. Please remember that each Web server has a
specific location for its plug-in file.

272 WebSphere Application Server V6 Scalability and Performance Handbook

In this chapter, we address only the thin Web client workload management and
failover which is fully implemented by the WebSphere plug-in running within each
Web server.

When a HTTP request reaches the Web server, it usually is passed to a Web
container running in a WebSphere Application Server (although some
administrators might want to set up an environment where static content is
handled directly by the Web servers or by some caching solution). The
WebSphere Web server plug-in, which runs in-process with the Web server itself,
is responsible for deciding which Web container the request should be passed to.
For these WebSphere requests, high availability of the Web container becomes
an important piece of the environment.

The Web container failover support in WebSphere Application Server V5 and
higher is provided by three mechanisms:

� A Web container server cluster, which creates server process redundancy for
failover support.

� The workload management routing technique built into the Web server
plug-in. It controls the routing of client requests among redundant server
processes.

� Session management and failover mechanism, which provides HTTP session
data for redundant server processes.

As we can see, satisfactory failover support for Web clients can only be achieved
by the use of all these three mechanisms.

There are a number of situations when the plug-in might not be able to complete
a request to a specific application server. In a clustered environment with several
cluster members, this does not mean an interruption of the service.

Here are some example scenarios when the plug-in cannot connect to a cluster
member:

1. Expected application server failures (the cluster member has been brought
down intentionally for maintenance, for example).

2. Unexpected server process failures (the application server JVM has crashed,
for example).

3. Server network problems between the plug-in and the cluster member (a
router is broken, for example).

4. System problems (expected or not), like system shutdown or power failures.

5. The cluster member is overloaded and cannot process the request.

 Chapter 6. Plug-in workload management and failover 273

When the plug-in has selected a cluster member to handle a request (see
Figure 6-23 on page 265, boxes 7,8 and 9), it will attempt to communicate with
the cluster member. If this communication is unsuccessful or breaks, then the
plug-in will mark the cluster member as down and attempt to find another cluster
member to handle the request.

In the first two failure cases described above, the physical machine where the
Web container is supposed to be running is still available, although the
WebContainer Inbound Chain is not available. When the plug-in attempts to
connect to the WebContainer Inbound Chain to process a request for a Web
resource, the machine will refuse the connection, causing the plug-in to mark the
application server as down.

In the third and fourth events, however, the physical machine is no longer
available to provide any kind of response. In these events, if non-blocking
connection is not enabled, the plug-in waits for the local operating system to time
out the request before marking the application server unavailable. While the
plug-in is waiting for this connection to time out, requests routed to the failed
application server appear to hang. The default value for the TCP timeout varies
based on the operating system. While these values can be modified at the
operating system level, adjustments should be made with great care.
Modifications may result in unintended consequences in both WebSphere and
other network dependent applications running on the machine. This problem can
be eliminated by enabling non-blocking connection. Refer to “Connection
Timeout setting” on page 335 for more information.

In the fifth case, client overloading can make a healthy server unavailable and
cause a server overloading failover. This is explained in “Overloading a cluster
member” on page 334.

The marking of the cluster member as down means that, should that cluster
member be chosen as part of a workload management policy or in session
affinity, the plug-in will not try to connect to it. The plug-in knows that it is marked
as down and ignores it.

The plug-in waits for a period of time before removing the marked as down status
from the cluster member. This period of time is called the retry interval. By
default, the retry interval is 60 seconds. If you turn on tracing in the plug-in log
file, it is possible to see how long is left until the cluster member will be tried
again. To set the retry interval, enter the proper value for the Web server plug-in
as was shown in Figure 6-24 on page 268. Refer to “Retry interval setting” on
page 337 for more information.

274 WebSphere Application Server V6 Scalability and Performance Handbook

By marking the cluster member as down, the plug-in does not spend time at
every request attempting to connect to it again. It will continue using other
available cluster members without retrying the downed cluster member, until the
retry interval has elapsed.

Figure 6-25 shows how this selection process works. It is an expansion of box 8
from Figure 6-23 on page 265.

Figure 6-25 Failover selection process

For more information about failover, go to 6.10, “WebSphere plug-in behavior” on
page 309. Most of the failure situations described here are discussed in detail in
this section. That discussion includes logs and traces these errors lead to, for an
administrator must be able to diagnose them correctly.

We also discuss primary and backup servers, an option within WebSphere
Application Server to provide a second level of failover support.

6.7.1 Primary and backup servers
Starting with V5, WebSphere Application Server also implements a feature called
primary and backup servers. When the plugin-cfg.xml is generated, all servers

Browser Web Server Cluster MemberWebSphere Plug-In

Check WLM
algorithm and choose a

cluster member to handle
request

cluster
member

marked as
down?

Yes

Yes No

No

Send request to cluster member Process
request

Mark
cluster

member
down

Yes

No

Check retry
interval. Interval

passed?

Continue with steps

Successful connection
to cluster member?

 Chapter 6. Plug-in workload management and failover 275

are initially listed under the PrimaryServers tag, which is an ordered list of
servers to which the plug-in can send requests.

There is also an optional tag called BackupServers. This is an ordered list of
servers to which requests should only be sent if all servers specified in the
Primary Servers list are unavailable.

Within the Primary Servers, the plug-in routes traffic according to server weight
and/or session affinity. When all servers in the Primary Server list are
unavailable, the plug-in will then route traffic to the first available server in the
Backup Server list. If the first server in the Backup Server list is not available, the
request is routed to the next server in the Backup Server list until no servers are
left in the list or until a request is successfully sent and a response received from
an application server. Weighted round robin routing is not performed for the
servers in the Backup Server list.

To change an application server’s role in a cluster, select Servers -> Application
servers -> <AppServer_Name> -> Web Server plug-in properties and select
the appropriate value from the Server Role pull-down menu (for example,
change from Primary to Backup) as shown in Figure 6-26 on page 277.

Important: In WebSphere V6, the Primary and Backup Server lists are only
used when the new partition ID logic is not used. In other words, when
partition ID comes into play, then Primary/Backup Server logic no longer
applies.

To learn about partition ID, please see “Session affinity” on page 281 and
“Partition ID” on page 297.

276 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-26 Setting up a backup server

All application server details in the plugin-cfg.xml file are listed under the
ServerCluster tag. This includes the PrimaryServers and BackupServers tags,
as illustrated in Example 6-5.

Example 6-5 ServerCluster element depicting primary and backup servers

...
<ServerCluster CloneSeparatorChange="false" LoadBalance="Round Robin"
Name="WEBcluster" PostSizeLimit="-1" RemoveSpecialHeaders="true"
RetryInterval="120">
 <Server CloneID="vve2m4fh" ConnectTimeout="5" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app1Node_Web1"
WaitForContinue="false">
 <Transport Hostname="app1.itso.ibm.com" Port="9080" Protocol="http"/>
 </Server>
 <Server CloneID="vv8kelbq" ConnectTimeout="5" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app2Node_Web2a"
WaitForContinue="false">
 <Transport Hostname="app2.itso.ibm.com" Port="9080" Protocol="http"/>
 </Server>

 Chapter 6. Plug-in workload management and failover 277

 <Server CloneID="vv8keohs" ConnectTimeout="5" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app2Node_Web2b"
WaitForContinue="false">
 <Transport Hostname="app2.itso.ibm.com" Port="9081" Protocol="http"/>
 </Server>
 <PrimaryServers>
 <Server Name="app2Node_Web2a"/>
 <Server Name="app1Node_Web1"/>
 </PrimaryServers>
 <BackupServers>
 <Server Name="app2Node_Web2b"/>
 </BackupServers>
</ServerCluster>
...

As mentioned before, the backup server list is only used when all primary servers
are down. Figure 6-27 shows this process in detail.

Figure 6-27 Primary and Backup server selection process

1. The request comes in and is sent to the plug-in.

Browser Web Server
 Cluster
MemberWebSphere Plug-In

Cluster
member

marked as
down?

Check retry
interval. Interval

passed?

Continue with steps

Yes

Yes No

No

Successful connection
to cluster member?

Process
request

Mark
cluster

member
down

Yes

No

Anymore
primary

members not
marked down?

No Choose next
backup
cluster

member

Send request to cluster member

Check WLM
algorithm and choose a

Primary cluster member to
handle request

278 WebSphere Application Server V6 Scalability and Performance Handbook

2. The plug-in chooses the next primary server, checks whether the cluster
member has been marked as down and the retry interval. If it has been
marked as down and the retry timer is not 0, it continues to the next cluster
member.

3. A stream is opened to the application server (if not already open) and a
connection is attempted.

4. The connection to the cluster member fails. When a connection to a cluster
member has failed, the process begins again.

5. The plug-in repeats steps 2, 3 and 4 until all primary servers are marked
down.

6. When all primary servers are marked as down, the plug-in will then repeat
steps 2 and 3 with the backup server list.

7. It performs steps 2 and 3 with a successful connection to the backup server.
Data is sent to the Web container and is then returned to the user. If the
connection is unsuccessful, the plug-in will then go through all the primary
servers again and then through all the servers marked as down in the backup
server list until it reaches a backup server that is not marked as down.

8. If another requests comes in and one of the primary server’s retry timer is
now at 0 the plug-in will try and connect to it.

6.8 HTTP session management
One of the other important functions that the plug-in provides, in addition to
failover and workload management, is the ability to manage HTTP sessions.

In many Web applications, users move through the site based on a series of
selections on pages they visit. Where the user goes next, and what the
application displays as the user's next page (or next choice) may depend on
what the user has chosen previously from the site. For example, if the user clicks
the checkout button on a site, the next page must contain the user's shopping
selections.

In order to do this, a Web application needs a mechanism to hold the user's state
information over a period of time. However, HTTP alone does not recognize or
maintain a user's state. HTTP treats each user request as a discrete,
independent and stateless interaction.

The Java servlet specification proposes a mechanism for servlet applications to
maintain a user’s state information across multiple user hits. This mechanism,
known as a session, allows a Web application developer to maintain all user

 Chapter 6. Plug-in workload management and failover 279

state information at the host, while exchanging only minimal information with a
user’s HTTP browser (mostly only session identification data).

Since the Servlet 2.3 specification, as implemented by WebSphere Application
Server V5.0 and higher, only a single cluster member may control/access a given
session at a time. After a session has been created, all following requests need
to go to the same application server that created the session. This session
affinity is provided by the plug-in. See 6.8.1, “Session affinity” on page 281 for
more information.

If this application server is unavailable when the plug-in attempts to connect to it,
the plug-in will choose another cluster member and attempt a connection. Once
a connection to a cluster member is successful, the session manager will decide
what to do with the session. The cluster member will find that it does not have the
session cached locally and thus will create a new session.

To avoid the creation of a new session, a distributed session can be used to
access sessions from other application servers.

There are two mechanisms to configure distributed sessions in WebSphere
Application Server V6:

� Database persistence

Session state is persisted to a database shared between the clustered
application servers. This feature was the only session persistence
mechanism provided by earlier versions of WebSphere Application Server
(pre-V5.0).

� Memory-to-memory replication, based on DRS (Data Replication Services), a
feature that has been much simplified in WebSphere Application Server V6. It
provides in-memory replication of session state between clustered application
servers.

For information about how to configure distributed session management using
either one of these mechanisms, please refer to 6.8.5, “Database session
management configuration” on page 291 and 6.8.6, “Memory-to-memory
replication configuration” on page 294.

The methods used to manage the sessions are very important in a
workload-managed environment. There are different methods of identifying,
maintaining affinity, and persisting the sessions; these are described in detail in
the following sections.

280 WebSphere Application Server V6 Scalability and Performance Handbook

6.8.1 Session affinity
As mentioned before, the Servlet 2.3 specification defines that, after a session
has been created, all following requests need to go to the same application
server that created the session.

However, in a clustered environment, there is more than one application server
that can serve the client request. Therefore, the plug-in needs to read a request
and be able to identify which cluster member should handle it.

Session identifiers are used to do this; they allow the plug-in to pick the correct
cluster member and the Web container to retrieve the current session object.

Example 6-6 Example of a session identifier

JSESSIONID=0000A2MB4IJozU_VM8IffsMNfdR:v544d0o0

As shown in Example 6-6, the JSESSIONID cookie can be divided into four
parts:

� Cache ID
� Session ID
� Separator
� Clone ID or Partition ID

Table 6-4 shows the mappings of these parts based on Example 6-6.

Table 6-4 JSESSIONID content

A clone ID is the ID of a cluster member, as shown in Example 6-7.

Example 6-7 Extract of plugin-cfg.xml showing the CloneID

<Server CloneID="vtnul4vu" ConnectTimeout="0" ExtendedHandshake="false"
LoadBalanceWeight="2" MaxConnections="-1" Name="app1Node_Web1"
WaitForContinue="false">

Content Value used in the example

Cache ID 0000

Session ID A2MB4IJozU_VM8IffsMNfdR

Separator :

Clone ID (cluster member)
- or -
Partition ID

v544d0o0

a long numeric number

 Chapter 6. Plug-in workload management and failover 281

6.8.2 Session identifiers
There are three methods of identifying a user’s session to the application server.
They are:

� Cookies
� URL rewriting
� SSL ID

This is a setting that can also be configured at the application server level, at the
enterprise application level or at the Web module level (as explained in 6.8.4,
“Session management configuration” on page 287).

Again, to learn more on this topic, please read Chapter 12, “Session
management” of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451.

Cookies
When this option is selected from the session manager pane, the plug-in will use
the JSESSIONID to manage requests. This name is required by the Servlet 2.3
specification. The session management tracking mechanism can be performed
at the application server, Web container, or the Web module level.

To use the cookie JSESSIONID, users must have their browsers set up to allow
cookies.

None of the workload management issues discussed in “SSL ID” on page 284
applies to cookies. The browser can be connected to any Web server and there
will be no effect on the session. Cookie session identifiers survive a Web server
crash and, provided persistent sessions are enabled, also survive unavailability
of the application server.

The session lifetime is governed by the cookie lifespan. By default, WebSphere
defines its cookies to last until the browser is closed. It is also possible to define
the maximum age of the cookie in the cookies configuration.

Important: There is a new processing logic in WebSphere V6 which is based
on the so-called partition ID. JSESSIONID will include a partition ID instead
of a clone ID when memory-to-memory replication in peer-to-peer mode is
selected. Typically, the partition ID is a long numeric number.

For more information about partition ID, please refer to “Partition ID” on
page 297.

282 WebSphere Application Server V6 Scalability and Performance Handbook

When to use cookies
Cookies are by far the most common method of tracking the session. They work
well in a workload-managed environment, with ease-of-use advantages over
SSL IDs.

They do not require additional application coding and can be used from static
HTML links, unlike URL rewriting.

The fact that any user can turn off cookie support in his/her browser could be
more important to your application. If this is the case, then one of the other
options must be considered.

If security is important, then it is possible to use cookies in an SSL environment
and not have the overhead of setting up SSL session ID management.

URL rewriting
URL rewriting (or URL encoding) is a useful mechanism that does not require
users to enable cookies in their browsers, and yet still allows WebSphere to
manage sessions.

The process of setting up URL rewriting, however, is not transparent to the Web
application. It requires a developer to include specific commands to append the
session information to the end of any HTTP link that will be used from the Web
browser. The plug-in will search for any URL encoded session information about
incoming requests and route them accordingly.

Rewriting the URLs can only be done on dynamic HTML that is generated within
WebSphere, for example the output from JSPs or servlets:

<A HREF=’<%=response.encodeURL(“/store/catalog“)%>’>Catalog

Session information is lost if static HTML links are accessed, restricting the flow
of site pages to dynamic pages only. From the first page, the user receives a
session ID, and the Web site must continue using dynamic pages until the
completion of the session.

There are no specific issues with using URL encoding in a workload-managed
environment.

When to use URL encoding
Due to the restrictions mentioned above, the only situation in which URL
encoding excels over the other options is when users have not enabled cookies
in their browsers.

Because it is possible to select more than one mechanism to pass session IDs, it
is also possible to compensate for users not using cookies. URL encoding could

 Chapter 6. Plug-in workload management and failover 283

be enabled and then used as a fallback mechanism if the users are not accepting
cookies.

SSL ID
To use the SSL ID as the session modifier, clients need to be using an SSL
connection to the Web server. This connection does not need to use client
certificate authentication, but simply a normal server authentication connection.
This can be enabled by turning on SSL support in the Web server. SSL
configuration is described in the redbook WebSphere Application Server V6:
Security Handbook, SG24-6316.

The session ID is generated from the SSL session information. This is passed to
the Web server and then passed on to the plug-in. If more than one Web server
is being used, then affinity must be maintained to the correct Web server, since
the session ID is defined by the connection between browser and Web server.
Connecting to another Web server will reset the SSL connection (a new session
ID is generated).

SSL tracking is supported only for the IBM HTTP Server and Sun Java System
Web server, Enterprise Edition.

It is possible to maintain the SSL session affinity using the Load Balancer from
IBM WebSphere Edge Components. See 4.4.6, “SSL session ID” on page 114for
details.

SSL session ID cannot be used on its own in a clustered environment. It is not
possible to add the cluster member ID to the end of the SSL session information,
so another mechanism must be used. Either cookies or URL rewriting needs to
be enabled to provide this function. The cookie or rewritten URL then contains
session affinity information that enables the Web server to properly route
requests back to the same server once the HTTP session has been created on a
server. If cookies or URL rewriting are not enabled, then a session is created but
there will be no mechanism to return the user to the correct cluster member at
their next request.

The format of the cookie or URL rewrite is shown in Example 6-8.

Example 6-8 Affinity information format when using SSL

SSLJSESSION=0000SESSIONMANAGEMENTAFFINI:v544d0o0

This is the same format as described in Example 6-6 on page 281 but in place of
the session ID is the word SESSIONMANAGEMENTAFFINI.

284 WebSphere Application Server V6 Scalability and Performance Handbook

With SSL, the session timeout is not controlled by the application server. The
session timeout delay is governed by the Web server and the Web browser. The
lifetime of an SSL session ID can be controlled by configuration options in the
Web server.

When to use SSL ID
When using a clustered environment, SSL ID requires a good deal of overhead
to set up the infrastructure. There is also a single point of failure for each
session: the Web server. If the Web server goes down, the user will lose the
session ID and therefore access to session information.

SSL ID is also slower than other mechanisms, since the browser has to
communicate using HTTPS and not HTTP. The inconsistency of browsers and
their SSL handling could also affect how the application performs.

However, SSL provides a more secure mechanism of user identification for
session information. The session identifier is difficult to copy.

If your Web site requires the highest security, then use SSL ID, but be aware that
it comes with the overheads and deficiencies mentioned above. Consider using
standard cookies over an SSL session instead.

6.8.3 Session management and failover inside the plug-in
As you know, the plug-in will always try and route a request that contains session
information to the application server that processed the previous requests. If
however the server that contains the session is not available to the plug-in when
it forwards the request, then the plug-in can route the request to an alternate
server. The alternate server can then retrieve the distributed session information
according to the chosen distribution method (database or memory-to-memory
replication).

Figure 6-28 on page 286 and the subsequent step-by-step explanation will help
you to understand how the plug-in performs the failover.

 Chapter 6. Plug-in workload management and failover 285

Figure 6-28 Session management example

Using Figure 6-28, the steps involved using our sample topology are:

1. The plug-in processes a request from user A to http://OurWebServer/snoop.
The request also contains a JSESSION cookie with a session ID and CloneID
of v544d031.

2. The plug-in matches the virtual host and URI to the cluster WEBcluster
(composed by servers Web1 and Web2a, each one located in a different
machine).

3. The plug-in then checks for session affinity and finds the CloneID of
v544d031 in the request’s JSESSIONID cookie.

4. It then searches for the CloneID of v544d031 in the plug-cfg.xml’s list of
primary servers and matches the CloneID to the Web1 application server.

5. The plug-in will then check to see if Web1 has been marked down. In our
case it has not been marked down yet.

6. It then attempts to get a stream to Web1. Finding the server is not
responding, Web1 is marked as down and the retry timer is started.

A P P 1

S e rv e r W e b 1

C lo n e ID v 5 4 4 d 0 3 1

U s e r A
U s e r B
U s e r C

S e s s io n C a c h e

U s e r A

A ff in ity
R o u t in g

S e s s io n
S to re

U s e r A

F a ilo v e rR o u te d
R e q u e s t

S e s s io n
re tr ie v e d

A P P 1

S e rv e r W e b 1

C lo n e ID v 5 4 4 d 0 3 1

U s e r A
U s e r B
U s e r C

S e s s io n C a c h e

A P P 2

S e rv e r W e b 2 a

C lo n e ID v 5 4 4 d 0 o 0

U s e r D
U s e r E

S e s s io n C a c h e

A P P 2

S e rv e r W e b 2 a

C lo n e ID v 5 4 4 d 0 o 0

U s e r D
U s e r E
U s e r A

S e s s io n C a c h e

S e s s io n
S to re

286 WebSphere Application Server V6 Scalability and Performance Handbook

7. The plug-in then checks the session identifier again.

8. It then checks the servers. When it reaches Web1, it finds it is marked down
and the retry timer is not 0, so it skips Web1 and checks the next cluster
member in the primary list.

9. Web2a (CloneID v544d0o0) is selected and the plug-in attempts to get a
stream to it. The plug-in either opens a stream or gets an existing one from
the queue.

10.The request is sent and received successfully to Web2a (which retrieves the
session information from the persistent session database or has it in-memory
because of a previous replication) and sent back to user A.

The following sections explain the configuration steps needed to enable
distributed session management using either a database or memory-to-memory
replication.

6.8.4 Session management configuration
Session configuration settings are found in the Administrative Console in several
different places. You need to set the General Properties for session management
first, then you define the Distributed environment settings.

Basic session settings (General Properties)
In the General Properties configuration you define settings such as the Session
tracking mechanism and the Session timeout. In WebSphere Application Server
V6, session management can be defined at the following levels:

� Application server level

This is the default level. Session management configuration at this level is
applied to all Web modules within the server. To define session management
at the this level, select Servers -> Application servers ->
<AppServer_Name> -> Web Container Settings -> Session management,
as shown in Figure 6-29 on page 288.

 Chapter 6. Plug-in workload management and failover 287

Figure 6-29 Session management at the application server level

� Application level

Configuration at this level is applied to all Web modules within the application.
To override the inherited configuration (from the application server level)
select Applications -> Enterprise Applications -> <Application_Name> ->
Session management, check the Override session management option
(as shown in Figure 6-30 on page 289) and click Apply.

288 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-30 Overriding inherited session management configuration

� Web module level

Configuration at this level is applied only to the Web module. To override the
inherited configuration (from the Application level), select Applications ->
Enterprise Applications -> <Application_Name> -> Web modules ->
<Module _Name> -> Session Management, check the Override session
management option (similar to the one shown in Figure 6-30) and click
Apply.

Distributed environment settings
The Distributed session settings define whether to use a database or
memory-to-memory replication (the default is not to use distributed sessions) as
well as tuning parameters (the write frequency).

Distributed sessions are also configured for the same three levels (Server,
Application and Web module) as the General Properties:

� Application server level

This is also the default level applied to all Web modules within the server. To
change it, select Servers -> Application servers -> <AppServer_Name> ->
Web Container Settings -> Session management -> Distributed
environment settings as shown in Figure 6-31 on page 290.

 Chapter 6. Plug-in workload management and failover 289

Figure 6-31 Configuring distributed sessions on the application server level

� Application level

To override the inherited configuration (from the Application Server level),
select Applications -> Enterprise Applications -> <Application_Name> ->
Session management, check the Override session management option
(see Figure 6-30 on page 289) and click Apply.

This will enable the Applications -> Enterprise Applications ->
<Application_Name> -> Session management -> Distributed
environment settings option, where you can configure the same settings as
for the application server level (see Figure 6-31).

� Web module level

To override the inherited configuration (from the Application Server level)
select Enterprise Applications -> <Application_Name> -> Web modules
-> <Module_Name> -> Session management, check the Override session
management option (similar to the one in Figure 6-30 on page 289) and click
Apply.

This will enable the Enterprise Applications -> <Application Name> ->
Web modules -> <Module_Name> -> Session management ->
Distributed environment settings option, where you also can configure the
same settings as for the application level.

290 WebSphere Application Server V6 Scalability and Performance Handbook

Please refer also to Chapter 12, “Session management”, of the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451, where you can find many more details on how to
configure sessions.

6.8.5 Database session management configuration
The use of a persistent store for sessions is not limited to use in a failover
situation. It can also be used when an administrator requires greater control over
the session cache memory usage.

In this chapter, we cover the basic setup and settings that are important to
workload management and failover. Chapter 12, “Session management”, of the
redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451, gives you additional information.

The two steps needed to set up database session persistence are:

� Creating a session persistence database on the database server
� Enabling database persistent session management for each application

server

Creating a session persistence database
Follow these steps to enable persistent sessions using a DB2 database:

1. Create a database that can be used for session management. The session
manager performs best when it has exclusive use of the database and its
connections. It is possible to use an existing database, but it is best to create
a new one. For this example, we are using DB2.

Open a DB2 command window and type:

db2 create db sessdb

2. If you are using multiple nodes and a multi-member, clustered environment,
then this database needs to be cataloged at each physical machine.

a. First, we need to catalog the DB2 node that contains the session
database.

If the node is not already cataloged, open a command window and type:

db2 catalog tcpip node <node_name> remote <remote_hostname> server
<service_name>

where:

• <node_name> is an arbitrary name for identification, for example
sessnode.

 Chapter 6. Plug-in workload management and failover 291

• <remote_hostname> is the host name that DB2 can use to connect to
the DB2 server containing the session database, for example sesshost.

• <service_name> is the port number that DB2 is listening to on the
remote DB2 server. The default is 50000.

b. Next, catalog the database at that node using the command:

db2 catalog db sessdb as sessdb at node <node_name>

Where, <node_name> is the node name specified in the previous step.

c. Verify that it is possible to connect to this newly cataloged database. Type
the command:

db2 connect to sessdb user <userid> using <password>

3. Set up a DB2 JDBC provider using the WebSphere administration tools, if you
have not done so already.

4. Set up the data source for use with the session manager by using the
WebSphere administration tools. Within the JDBC provider that you have just
created, configure a new data source.

For information about how to set up JDBC providers and data sources, refer
to 7.2, “JDBC resources”, of the redbook WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

Enabling database persistent session management
To enable persistent sessions, repeat the following steps for each application
server in the cluster:

1. Click Servers -> Application servers -> <AppServer_Name> -> Web
Container Settings -> Session management -> Distributed environment
settings.

Tip: Even though JDBC providers and JDBC data sources can be configured
at cell, node, cluster, or server levels, they are instantiated only within an
application server. In other words, a cell level data source is instantiated by
every application server at every node.

For most Network Deployment environments, creating the mentioned JDBC
provider and JDBC data source at cell level or cluster level is an excellent idea
that will save a lot of time. However, care must be taken when defining local
paths to libraries of the JDBC provider: the best trick is to use node-level
defined WebSphere variables.

It is still required to catalog the DB2 databases at each node’s DB2 client, no
matter how the JDBC providers and JDBC datasources are configured.

292 WebSphere Application Server V6 Scalability and Performance Handbook

2. Select the Database radio button. This takes you automatically to the
Database settings panel shown in Figure 6-32.

Figure 6-32 Database settings for the session manager

3. Enter values where necessary for the configuration properties:

– Enter your Datasource JNDI name. The data source must be a non-JTA
enabled data source.

– If required, enter a user ID and password.

– If you are using DB2 and you anticipate requiring row sizes greater than
4 KB, select the appropriate value from the DB2 row size pull-down. See
12.9.5, “Larger DB2 page sizes and database persistence”, of the redbook
WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451, for more information about this
setting.

– If you intend to use a multi-row schema, check the appropriate box. Again,
information about multi-row schemes can be found in section 12.9.6,
“Single and multi-row schemas (database persistence)” of the WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451.

 Chapter 6. Plug-in workload management and failover 293

4. Click OK.

5. Repeat these configuration steps for all cluster members.

How database session persistence works
Upon the first creation of a session, you should see that a table called Session is
created for you. The cluster members will now make use of this session
database.

In our example, we have two cluster members in WEBcluster: Web1 and Web2a.
If we make an initial session-based request to Web1 and shut it down afterwards,
the plug-in will then try to route requests through to Web2a. In general, if the
plug-in is unable to contact the initial server, it will try another cluster member.
The next cluster member that responds will check its local cache and, upon not
finding the session, will connect to the session database and retrieve the session
from there.

When the servlet returns the result to the plug-in, the cluster member that served
the page is appended to the list of clone IDs in the session identifier. The session
identifiers will now look like those shown in Example 6-9.

Example 6-9 Example of session JSESSION cookies with multiple clone IDs

JSESSIONID=0002VIS4-cfZD1hkdxF7MKGX5XZ:vu6kr6r0:vu6krbkq

The plug-in now tries both of these servers before resorting to the workload
management algorithm again. Once the original server is available again, all
session requests will return to it.

This behavior means that the plug-in performs faster and the user will go to a
server that has a local cached version of the session.

If you wish to test whether the failover and persistent sessions are working,
follow the steps in 6.10, “WebSphere plug-in behavior” on page 309.

6.8.6 Memory-to-memory replication configuration
Memory-to-memory replication enables the sharing of sessions between
application servers without using a database. Memory-to-memory replication is
based on the Data Replication Services (DRS) of WebSphere Application Server
V6 which allows the definition of replication domains whose members can have
their HTTP sessions replicated among themselves.

The benefits of using memory-to-memory replication rather than a database for
session persistence is that the overhead and cost of setting up and maintaining a
real-time, production database, such as preparing a machine, installing and

294 WebSphere Application Server V6 Scalability and Performance Handbook

configuring a database, starting and so on, is not needed. Also, the database
becomes a SPOF (Single Point Of Failure) for session persistence and certain
cost and effort is required to solve this issue at the database level. However, it
was found that database persistence might perform better than a badly
configured memory-to-memory replication. See 1.1.5, “Session state” on
page 10 for additional information.

All features available in database persistence are available in
memory-to-memory replication as well, except for DB2 variable row size and
multi-row features, which are features specific to a database.

To effectively deploy memory-to-memory replication in clustered environments,
especially large ones, implementers must think carefully about how to exactly
configure the replicator topology and settings. If care is not taken then the
amount of memory and resource usage taken by session replication can
increase significantly.

See 6.8.7, “Understanding DRS (Data Replication Services)” on page 297 for
information about how the underlying mechanism for memory-to-memory
replication works.

Configuring memory-to-memory session management
The following is a high-level description of how to set up this function.

Refer to 8.5, “Installing WebSphere and configuring clusters” on page 395 or,
again, to Chapter 12 of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451, for details on how to
configure clusters and memory-to-memory replication.

1. Create a replication domain (if not already done so during cluster creation).

Replication domains define the set of replicator processes that communicate
with each other through DRS (Data Replication Services). The number of
replicas to be created for each HTTP session can also be configured. Usually,
there will be a default replication domain for each created cluster (by selecting
the non-default option Create a replication domain for this cluster (click
Clusters -> New). If you did not create a replication domain during the initial
cluster definition, you can always do it later by selecting Environment ->
Replication domains -> New.

2. Configure each cluster members’ replication properties by selecting Servers
-> Application servers -> <AppServer_Name> -> Web Container Settings
-> Session management -> Distributed environment settings ->
Memory-to-memory replication (as shown in Figure 6-33 on page 296).

Here you can define the Replication domain as well as the Replication mode.

3. Restart the cluster.

 Chapter 6. Plug-in workload management and failover 295

Figure 6-33 Memory-to-memory replication of HTTP sessions

How memory-to-memory session replication works
In our example, we have two cluster members in WEBcluster: Web1 and Web2a.
If we make an initial session-based request to Web1 and shut it down afterwards,
the plug-in will then try and route requests through to Web2a. In general, if the
plug-in is unable to contact the initial server, it will try another cluster member.
The next cluster member that responds will already have the session in memory
since it has been replicated using memory-to-memory replication.

Again, when the servlet returns the result to the plug-in, the cluster member that
served the page is appended to the list of clone IDs in the session identifier. The
session identifiers now look like those shown in Example 6-10.

Example 6-10 Example of session JSESSION cookies with multiple clone IDs

JSESSIONID=0002YBY-wJPydXZvCZkc-LkoBBH:v544d031:v544d0o0

The plug-in now tries both of these servers before resorting to the workload
management algorithm again. Once the original server is available again, all
session requests will return to it.

If you wish to test whether the failover and persistent sessions are working,
follow the steps in 6.10, “WebSphere plug-in behavior” on page 309.

296 WebSphere Application Server V6 Scalability and Performance Handbook

Partition ID
As mentioned earlier, there is a new logic in WebSphere V6 called the partition
ID, which plays a role when memory-to-memory session replication is configured
in peer-to-peer (or “Both”) mode (see “Data replication service topologies” on
page 299 for information). The partition ID is related to the WebSphere
HAManager (described in Chapter 9, “WebSphere HAManager” on page 465).

For every cluster member, the HAManager generates a corresponding partition
ID and maintains a table where the partition ID is mapped to the clone ID. This
mapping is sent to the plug-in via internal headers as part of the response to the
client request. In every response, the plug-in looks for the two headers that hold
the partition table and the table version. If the partition ID table is sent as part of
the response, the mapping table is received and stored in memory by the plug-in.
The headers are then removed and are not sent to the client.

When JSESSIONID is received, the plug-in checks if the IDs match any of the
clone IDs. If there is a match, the corresponding cluster member is used. If there
is no match and if the partition ID table was previously received by the plug-in,
then IDs are checked for known partition IDs. If there is a match for a partition ID,
the corresponding clone ID is used for the request. If there is no match, existing
processing logic, as described before, continues.

If the plug-in uses the partition ID table to send a request but the cluster member
is down, the plug-in sends a separate request to retrieve the latest partition ID
table. The new table is then used for handling the request.

This new logic helps in hot session fail over. The plug-in is now made aware of
which server to fail over for a given cluster member. The partition ID table has the
required mapping of partition ID to clone ID and is sent to the plug-in by the
session management, if the version sent by the plug-in is not the latest copy.
Example 6-19 on page 328 is a trace that shows the partition ID failover
behavior.

6.8.7 Understanding DRS (Data Replication Services)
As mentioned in 6.8.6, “Memory-to-memory replication configuration” on
page 294, this session replication mechanism uses the Data Replication Service
(DRS) to replicate data between multiple application servers in a cluster without
using a database. Using this method, sessions are stored in the memory of two
or more application servers, providing the same functionality as a database for

Important: Depending on your memory-to-memory session replication
configuration, this behavior might be slightly different. See the section Partition
ID below for details.

 Chapter 6. Plug-in workload management and failover 297

session persistence. Separate threads handle this functionality within an existing
application server process.

What is DRS?
Data replication service (DRS) is an internal WebSphere Application Server
component designed for generic data replication. Apart from the Session
manager, it is also used to replicate dynamic cache data and stateful session
beans across many application servers in a cluster.

The advantages of using this method of session persistence are:

� Flexible configuration options such as peer-peer and client/server.

� Eliminates the overhead and cost of setting up and maintaining a real-time
production database.

� Eliminates the single point of failure problem that can occur when using a
database.

DRS has been greatly simplified from WebSphere Application Server V5.x to V6.
Replicators and partitions are not part of the configuration anymore, and thus
these terms have been abandoned.

Replication domain
The memory-to-memory replication function is accomplished by the creation of a
data replication service instance in an application server that communicates to
other data replication service instances in other application servers. You must
configure this data replication service instance as a part of a replication domain.

A new replication domain can be created at any time using the WebSphere
Administrative Console, but usually you will create one while creating a new
application server cluster, as explained in the example in 8.5.8, “Configure
distributed session management” on page 411.

You can view (and change) a replication domain configuration by selecting
Environment -> Replication domains -> <Replication_Domain_Name>, as
shown in Figure 6-34 on page 299.

298 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-34 Replication domain configuration

The most important setting is the number of replicas created for every entry or
piece of data that is replicated in the replication domain. In our case, it is the
number of copies of HTTP session data that will be replicated to other application
servers.

Data replication service topologies
Servers dynamically join a replication domain according to their configuration.
Whenever you configure memory-to-memory replication for an application
server, you are asked for a replication domain, as can be seen in Figure 6-33 on
page 296.

As explained before, the memory-to-memory replication function is accomplished
by the creation of a data replication service instance in an application server that

 Chapter 6. Plug-in workload management and failover 299

communicates to other data replication service instances in remote application
servers.

There are three possible modes you can set up in which a replication service
instance can run:

� Server mode: In this mode, a server only stores backup copies of other
application server sessions. It does not send out copies of sessions created in
that particular server.

� Client mode: In this mode, a server only broadcasts or sends out copies of
the sessions it owns. It does not receive backup copies of sessions from other
servers.

� Both mode: In this mode, the server simultaneously sends out copies of the
sessions it owns and acts as a backup table for sessions owned by other
application servers. Sometimes this also referred to as peer-to-peer mode.

You can select the replication mode of server, client, or both when configuring the
session management facility for memory-to-memory replication. The default is
both.

This application server setting and the number of replicas of the replication
domain together allow the definition of several possible replication topologies.
You can find much more information about this subject in section 12.9.2,
“Memory-to-memory replication” of the redbook WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451.

6.8.8 Session management tuning
Performance tuning for session management consists of defining the following:

� How often session data is written (write frequency settings).
� How much data is written (write contents settings).
� When the invalid sessions are cleaned up (session cleanup settings).

Writing frequency settings
You can select from three different settings that determine how often session
data is written to the persistent data store:

� Time-based: The session data will be written to the persistent store based on
the specified write interval value.

� End of servlet service: If the session data has changed, it will be written to
the persistent store after the servlet finishes processing an HTTP request.

� Manual update: The session data will be written to the persistent store when
the sync() method is called on the IBMSession object.

300 WebSphere Application Server V6 Scalability and Performance Handbook

To configure the session update frequency, you must select Servers ->
Application servers -> <AppServer_Name> -> Web Container Settings ->
Session management -> Distributed environment settings -> Custom
tuning parameters, as shown in Figure 6-35 on page 302.

Note: The last access time attribute is always updated each time the session
is accessed by the servlet or JSP whether or not the session is changed. This
is done to make sure the session does not time out.

� If you choose the end of servlet service option, each servlet or JSP access
will result in a corresponding persistent store update of the last access
time.

� If you select the manual update option, the update of the last access time
in the persistent store occurs on sync() call or at later time.

� If you use time-based updates, the changes are accumulated and written
in a single transaction. This can significantly reduce the amount of I/O to
the persistent store.

 Chapter 6. Plug-in workload management and failover 301

Figure 6-35 Session update tuning

Time-based (specified time interval)
In this configuration, session data is written into the database (or published into
the replication domain) at preset time intervals. Any modified session data since
the last update is lost during a failover.

In Figure 6-35, you can see the choices for some preset time intervals. A custom
interval can be set by selecting Custom settings, as shown in Figure 6-36 on
page 303.

302 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-36 Custom settings for session update

End of servlet service
When the write frequency is set to the end of servlet service option, WebSphere
writes the session data to the persistent store at the completion of the
HttpServlet.service() method call. Exactly what is written depends on the write
content settings.

To choose the End of servlet service setting, you can either select a tuning level
of Medium or Low or select Custom, if you wish to change the Schedule
sessions cleanup setting. See Figure 6-36.

 Chapter 6. Plug-in workload management and failover 303

Manual update
In manual update mode, the session manager only sends changes to the
persistent data store if the application explicitly requests a save of the session
information.

Manual update mode requires that an application developer use the IBMSession
class for managing sessions. When the application invokes the sync() method,
the session manager writes the modified session data and last access time to the
persistent store. The session data that is written out to the persistent store is
controlled by the write contents option selected.

To choose the Manual update setting you must opt for the Custom tuning level
and select Manual update as the write frequency. Again, refer to Figure 6-36 on
page 303.

For more information about Manual update, please see section 12.9.3, “Session
management tuning” of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451.

6.9 Troubleshooting the Web server plug-in
If problems occur with the plug-in, you can use the logging and tracing features
of WebSphere to find a solution.

6.9.1 Logging
Logging for the plug-in can occur in three different places:

1. The log specified in the plug-in configuration file (the default is
http_plugin.log).

2. WebSphere Application Server’s activity.log.

3. Web server error log.

Note: Manual updates use an IBM extension to HttpSession that is not part of
the Servlet 2.4 API. Such source code is not portable to other application
servers.

304 WebSphere Application Server V6 Scalability and Performance Handbook

The plug-in log
The plug-in log configuration can be set for each Web server by selecting
Servers -> Web Servers -> <WebServer_Name> -> Plug-in properties:

Figure 6-37 Plug-in log configuration

The LogLevel can be set to:

� Trace (see “Trace” on page 308)
� Stats (see “LogLevel Stats” on page 306)
� Warn
� Error

Error contains the least information and Trace contains the most. If you select
Trace, then there is much information created for each access to the Web server.
This setting should not be used in a normally functioning environment, because
the file will rapidly grow and there will be a significant reduction in performance.
To learn more about Trace, see 6.9.2, “Trace” on page 308.

The name of the plug-in log file in a remote Web server is, by default,
<PLUGIN_HOME>/logs/<yourWebServer>/http_plugin.log, but this can be
changed in the Log file name field of the Plug-in properties (see Figure 6-37).
Remember that each Web server plug-in will write its own plug-in log file in its
local file system.

If you wish to change the location of the log, change the name value and a new
log will be created and used the next time the plug-in refreshes its configuration.

 Chapter 6. Plug-in workload management and failover 305

Every time the Web server starts, it will create the plug-in log if it does not exist.
This is a simple way to see if the plug-in is running. If there is no log created
when the Web server is started, then either the plug-in was not initialized or it
was unable to create or open the log. Make sure that wherever you place the log,
the Web server has the authority to create and modify files.

If there is a problem with settings, creation, or modification of the log, an error will
appear in the Web server log.

Successful startup will be signified by lines similar to those shown in
Example 6-11 appearing in the log.

Example 6-11 Message shown on a successful startup on Windows

.

.
(...)PLUGIN: Plugins loaded.
(...)PLUGIN: --------------------System Information-----------------------
(...)PLUGIN: Bld version: 6.0.0
(...)PLUGIN: Bld date: Oct 1 2004, 22:03:36
(...)PLUGIN: Webserver: IBM_HTTP_Server/6.0 Apache/2.0.47 (Win32)
(...)PLUGIN: Hostname = http1
(...)PLUGIN: OS version 5.0, build 2195, 'Service Pack 4'
(...)PLUGIN: --
.
.

LogLevel Stats
Since WebSphere Application Server V5.1 the plug-in has been enhanced to
support a new log level called Stats. When this log level is selected, it will list all
ERROR and WARNING messages as well as additional server usage statistics
and server status used for server selection, yet with less verbosity than the Trace
level. For every request, the two messages shown in Example 6-12 are logged.

Example 6-12 Messages for Stats Loglevel

[Fri Jan 21 16:34:08 2005] 00000af0 00000b34 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of app1Node_Web1, ignoreWeights
1, markedDown 0, retryNow 0, wlbAllows -1 reachedMaxConnectionsLimit 0
[Fri Jan 21 16:34:08 2005] 00000af0 00000b34 - STATS: ws_server:
serverSetFailoverStatus: Server app1Node_Web1 : pendingConnections 0
failedConnections 0 affinityConnections 2 totalConnections 3.

There will be more than one occurrence of the serverGroupCheckServerStatus
message if the server was not selectable for the current request.

306 WebSphere Application Server V6 Scalability and Performance Handbook

The following server status attributes are used to decide whether the server can
handle the request (see Example 6-12 on page 306):

� ignoreWeights: This indicates whether the current request should ignore
weights. This will be set to 1 if the request has an associated affinity server or
if load balancing is chosen to be random.

� markedDown: This indicates whether the server is currently marked down
and can't be selected for the current request.

� retryNow: This indicates that the marked down server can be retried now.

� wlbAllows: This indicates whether the current server has positive weights. A
server can be selected only if it has positive weights when weights can't be
ignored (ignoreWeights set to 0).

� reachedMaxConnectionsLimit: This indicates whether the current server
has reached maximum pending connections. A server won't be selected if this
attribute has a value of 1.

The following are the additional server statistics. This information is logged after
getting the response from the server for the current request. Note that this is
collected per process.

� pendingConnections: Number of requests for which a response is yet to be
received from the server.

� failedConnections: Number of failed requests to the server.

� affinityConnections: Number of requests that are going to an affinity server.

� totalConnections: Total number of requests that are handled by the server.

WebSphere Application Servers activity.log
The activity.log contains errors that occur when:

1. Generation of the plug-in configuration is launched automatically or manually
from the Administrative Console and an error occurs.

When launching the generation of the plug-in configuration and something
goes wrong, the errors are listed in the activity.log file. The exception to this is
if it is run from the command line. In this case, all errors are written to the
screen.

2. An error occurs when the Web container attempts to process a request
passed to it by the plug-in. For example, where the information that is in the
plugin-cfg.xml does not map to the information in the configuration repository.

 Chapter 6. Plug-in workload management and failover 307

If the plug-in configuration is changed manually (which is not recommended),
it can lead to inconsistencies with the administrative repository. For example if
you manually added a virtual host to the definitions in the plugin-cfg.xml file
but did not add the same virtual host to the configuration repository. The error
message would be:

PLGN0021E: Servlet Request Processor Exception: Virtual Host/WebGroup
Not Found: The host hostname has not been defined.

Web server error log
Errors show up in the error log of the Web server when the plug-in has been
unable to access the plug-in log. With IBM HTTP Server, the log is error_log on
AIX and error.log on Windows. It is in the logs directory under the HTTP Server
installation directory.

A similar error will occur if the native.log file is locked or inaccessible to the Web
server. By default, all users have read, write, and executable permissions for the
WebSphere logs directory. This means that there should be no problems with
access unless the log location is changed from the default.

6.9.2 Trace
There are two areas of the plug-in configuration where tracing can be enabled:
the actions of the plug-in itself, and the generation of the configuration file.

Tracing the plug-in
Tracing is enabled in the plug-in by setting the Log level to Trace, as specified in
6.9.1, “Logging” on page 304.

A good method for starting a new trace is to change the LogLevel to Trace and
change the name of the file to a new value, for example traceplugin.log. This
way, you know where your trace starts and you have an easily manageable trace
file.

Once you are finished, you can return the plug-in configuration file to its original
settings and do not need to stop the Web server or the application server for any
of this to work.

The trace itself is quite straightforward to follow. If you are tracing requests, you
will see a request handled as explained in Figure 6-23 on page 265.

Tracing provides you with information about:

� The virtual hosts the plug-in is using. You can view how the virtual host is
matched to the request. One of the most common problems is specifying the

308 WebSphere Application Server V6 Scalability and Performance Handbook

same alias in multiple virtual hosts and so not giving the plug-in a unique
route to follow.

� The URIs the plug-in is searching. If you are unsure as to why a request is not
reaching your application, use a trace to see how the plug-in is matching your
browser request.

� Workload management selection process. Tracing is useful if you wish to
validate how your cluster members are being selected and watch failover
mechanisms operate.

� Observing the transport mechanism being used and connections or failures in
connection.

� Session management.

6.10 WebSphere plug-in behavior
There are various scenarios that can occur in the event of a failure somewhere in
your system. This section examines some example scenarios and shows the
system behavior.

The tests are designed to access a cluster from a browser via the plug-in in a
Web server. The number of nodes, cluster members, and physical servers is
specified in the two areas of investigation: Normal operation and Failover
operation.

Each of the test setup procedures assumes that the sample application
(DefaultApplication.ear) and the BeenThere application have already been
installed and that there has been a successful connection to:

� http://yourWebserver/snoop
� http://yourWebserver/hitcount
� http://yourWebserver/wlm/BeenThere

Refer to 8.7, “Installing and configuring BeenThere” on page 426 for information
about how to obtain, install, and configure BeenThere.

It is also assumed that a persistent session database or memory-to-memory
replication has been configured to handle distributed sessions. See 6.8.3,
“Session management and failover inside the plug-in” on page 285 for details.

 Chapter 6. Plug-in workload management and failover 309

6.10.1 Normal operation
In this section, we discuss using the WebSphere samples to show how the
plug-in achieves workload management and session affinity. These tests were
performed in our lab, using the sample topology described in Chapter 8,
“Implementing the sample topology” on page 387.

We are interested in how the Web server plug-in distributes browser requests to
the available WebSphere Web containers. We are sending our requests only to
the Web server http1 (not through the Load Balancer). This way, we only need to
observe the plug-in behavior on a single Web server.

Workload management with the plug-in
To check the behavior of plug-in workload management:

1. Use the default settings in the plugin-cfg.xml file.

2. Open a browser and go to the URL:

http://http1/wlm/BeenThere

where http1 is the host name of our Web server in the sample topology.

3. Observe the Server field as shown in Figure 6-38.

Figure 6-38 BeenThere first execution

310 WebSphere Application Server V6 Scalability and Performance Handbook

4. Click the Run button as many times as you have cluster members, and you
should see from the Server name that each request (clicking Run) is routed to
a different cluster member (since no session is created, there is no affinity).
Eventually all cluster members will be cycled through. You can also ask for
several bean executions at once, with results as shown in Figure 6-39.

Figure 6-39 BeenThere response for 5 executions

5. Now change the load balancing option for the Web server http1 from
round-robin to random using the Administrative Console.

6. Save and generate/propagate the plugin-cfg.xml file.

7. Restart the Web server or wait for the plug-in to reload the configuration file.
Go back to the browser and click Run again.

8. The requests will now be served in a random order, which could mean that all
clicks of the Run button go to the same cluster member.

Note: Changing the bean iteration will not round robin the servlet request.
There is only one Web request and multiple EJB requests.

 Chapter 6. Plug-in workload management and failover 311

Testing session management
As described before, there are three ways of tracking session management:

� Cookies
� SSL ID
� URL rewriting

Cookies
To test session affinity using cookies do the following:

1. In the http1 Web server configuration, change the plug-in log settings. Set the
plug-in log level to Trace and filename to, for example, sesstrace.log.

2. In the Administrative Console, click Servers -> Application servers ->
<AppServer_Name> -> Web Container Settings -> Session management
(in this example we choose the Web1 Application Server). The window shown
in Figure 6-40 appears.

3. Check the Enable Cookies check box (if not already checked).

4. Save and generate/propagate the plugin-cfg.xml file.

5. Repeat steps 2 to 4 for the other application servers in the cluster. In our
case, also servers Web2a and Web2b need updating. Save and synchronize
the changes with all nodes.

Figure 6-40 Setting Cookies for session management.

312 WebSphere Application Server V6 Scalability and Performance Handbook

6. Stop and start the cluster to make the session manager changes in all servers
operational.

7. Open a browser and go to the following URL (again, it is assumed that the
DefaultApplication.ear has already been installed in the cluster):

http://http1/hitcount

8. Select Session state from the Select a method of execution options, as
shown in Figure 6-41.

Figure 6-41 HitCount servlet

9. Click the Increment button a few times (always selecting the Session state
option before).

10.Open your plug-in log as specified in step 1 on page 312. Look through the
processing of the requests and search for websphereHandleSessionAffinity.

You should see something similar to that shown in Example 6-13.

 Chapter 6. Plug-in workload management and failover 313

11.Change the Log tag back to its original setting.

Example 6-13 Plug-in trace when using cookies

...
ws_common: websphereWriteRequestReadResponse: Enter
ws_common: websphereHandleSessionAffinity: Checking for session affinity
ws_common: websphereHandleSessionAffinity: Checking the SSL session id
lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'SSLJSESSION'
lib_htrequest: htrequestGetCookieValue: No cookie found for: 'SSLJSESSION'
ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='0000zWhbR5Dz12Egzy9A8911iSk:vtnul9n9'
ws_common: websphereParseCloneID: Parsing clone ids from '0000zWhbR5Dz12Egzy9A8911iSk:vtnul9n9'
ws_common: websphereParseCloneID: Adding clone id 'vtnul9n9'
ws_common: websphereParseCloneID: Returning list of clone ids
ws_server_group: serverGroupFindClone: Looking for clone
ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
ws_server_group: serverGroupFindClone: Comparing curCloneID 'vtnul9n9' to server clone id
'vtnul4vu'
ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
ws_server_group: serverGroupFindClone: Comparing curCloneID 'vtnul9n9' to server clone id
'vtnul9n9'
ws_server_group: serverGroupFindClone: Match for clone 'app2Node_Web2a'
ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount -1.
ws_server_group: serverGroupCheckServerStatus: Checking status of app2Node_Web2a, ignoreWeights
1, markedDown 0, retryNow 0, wlbAllows 0 reachedMaxConnectionsLimit 0
ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount -1.
ws_server_group: serverGroupIncrementConnectionCount: Server app2Node_Web2a picked,
pendingConnectionCount 1 totalConnectionsCount 3.
ws_common: websphereHandleSessionAffinity: Setting server to app2Node_Web2a
ws_common: websphereFindTransport: Finding the transport
ws_common: websphereFindTransport: Setting the transport(case 2): app2.itso.ibm.com on port
9080
ws_common: websphereExecute: Executing the transaction with the app server
ws_common: websphereGetStream: Getting the stream to the app server
ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ws_common: websphereSocketIsClosed: Checking to see if socket is still open
ws_common: websphereGetStream: Using existing stream from transport app2.itso.ibm.com:9080
queue, socket = 424
...

Note: If the plug-in log does not contain any trace information, the refresh
interval for the plug-in may not have been reached. Wait longer or restart
the Web server.

314 WebSphere Application Server V6 Scalability and Performance Handbook

SSL ID
We tested session affinity using SSL ID and cookies as follows:

1. Set up your Web server for SSL traffic. See the relevant Web server
documentation for details on this.

2. In the Administrative Console, go to the virtual host definitions by selecting
Environment -> Virtual Hosts -> <Virtual_Host_Name> -> Host Aliases ->
New.

3. Add the host name as http1 and the port as 443 and click Apply.

4. Go to Servers -> Application servers -> <AppServer_Name> -> Web
Container Settings -> Session management. Select both Enable SSL ID
tracking and Enable cookies. We did this at the application server level so
that all other session management levels would be overwritten. However, if
you have overwritten session management set at the application or Web
module level this will not work.

5. Click Apply, save and synchronize the changes.

6. Repeat steps 4 and 5 for all other members of the cluster.

7. Stop and start your cluster to make the session manager changes
operational.

8. In the http1 Web server configuration, change the plug-in log settings. Set the
plug-in log level to Trace and filename to, for example, sesstrace.log.

9. Regenerate/propagate the plug-in configuration file for your http1 Web server.

10.Open a browser and go to:

https://http1/hitcount

Make sure to connect using https from your Web browser.

11.From the Select a method of execution option, select Session state (see
Figure 6-41 on page 313).

12.Click the Increment button a few times.

13.Open your plug-in log as specified in step 8. Look through the processing of
the requests and search for websphereHandleSessionAffinity.

You should see something similar to that shown in Example 6-14 on
page 316.

14.Change the Log filename back to its original setting.

 Chapter 6. Plug-in workload management and failover 315

Example 6-14 Plug-in trace when using SSL ID and cookies

...
TRACE: ws_common: websphereWriteRequestReadResponse: Enter
TRACE: ws_common: websphereHandleSessionAffinity: Checking for session affinity
TRACE: ws_common: websphereHandleSessionAffinity: Checking the SSL session id
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'SSLJSESSION'
TRACE: lib_htrequest: htrequestGetCookieValue: name='SSLJSESSION',
value='0001SESSIONMANAGEMENTAFFINI:103u93kol'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'0001SESSIONMANAGEMENTAFFINI:103u93kol'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103u93kol'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103u93kol'
TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of app1Node_Web1,
ignoreWeights 1, markedDown 0, retryNow 0, wlbAllows 0 reachedMaxConnectionsLimit 0
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server app1Node_Web1 picked,
pendingConnectionCount 1 totalConnectionsCount 49.
TRACE: ws_common: websphereHandleSessionAffinity: Setting server to app1Node_Web1
...
TRACE: ws_server_group: lockedServerGroupUseServer: Server app1Node_Web1 picked, weight 0.
TRACE: ws_common: websphereFindTransport: Finding the transport

Note: When using SSL between the client and the Web server, WebSphere
Application Server V6 by default will use SSL communication between the
plug-in and the Web container also.

To change this, for example to improve performance, disable the
WCInboundDefaultSecure transport chains for the server. Once the
WCInboundDefaultSecure transport chain is disabled, the session
management will send JSESSIONID instead of SSLJSESSION to the Web
container.

316 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_common: websphereFindTransport: Setting the transport(case 1): app1.itso.ibm.com on
port 9447
TRACE: ws_common: websphereExecute: Executing the transaction with the app server
TRACE: ws_common: websphereGetStream: Getting the stream to the app server
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
TRACE: ws_common: websphereSocketIsClosed: Checking to see if socket is still open
TRACE: ws_common: websphereGetStream: Using existing stream from transport
app1.itso.ibm.com:9447 queue, socket = 16904

URL rewriting
There is no servlet provided with the WebSphere samples that uses URL
rewriting. To perform this test, you can either use your own example or the
sample given in Appendix A, “Sample URL rewrite servlet” on page 1033.

We tested session affinity using the URL rewrite sample from the Appendix as
follows:

1. Set up the URL rewrite sample application. Make sure you regenerate the
plug-in configuration on your Web server.

2. In the http1 Web server configuration, change the plug-in log settings. Set the
plug-in log level to Trace and filename to sesstrace.log.

3. Go to Servers -> Application servers -> <AppServer_Name> -> Web
Container Settings -> Session Management. In this example, the Web1
Application Server is first selected, as shown in Figure 6-42 on page 318.

4. Click the Enable URL Rewriting check box.

 Chapter 6. Plug-in workload management and failover 317

Figure 6-42 Setting URL rewriting for session management.

5. Repeat steps 3 on page 317 and 4 on page 317 for the rest of the cluster
members.

6. Save and synchronize the nodes.

7. Regenerate and propagate the http1 Web server plug-in configuration file.

8. Stop and start your cluster to make the session manager changes
operational.

9. Open a browser and go to:

http://http1/urltest/urltest

10.Click the Request this servlet again using the rewritten URL link, as
shown in Figure 6-43 on page 319.

11.Click the Request this servlet again using the rewritten URL link a few
more times.

318 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 6-43 URL rewriting example

12.Open your plug-in log as specified in step 2 on page 317. Look through the
processing of the requests and search for websphereHandleSessionAffinity.

You should see something similar to that shown in Example 6-15.

13.Change the Log tag back to its original setting.

Example 6-15 Plug-in trace when using URL rewriting

...
ws_common: websphereWriteRequestReadResponse: Enter
ws_common: websphereHandleSessionAffinity: Checking for session affinity
ws_common: websphereHandleSessionAffinity: Checking the SSL session id
lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'SSLJSESSION'
lib_htrequest: htrequestGetCookieValue: No cookie found for: 'SSLJSESSION'
ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
lib_htrequest: htrequestGetCookieValue: No cookie found for: 'JSESSIONID'
ws_common: websphereHandleSessionAffinity: Checking the url rewrite affinity: jsessionid
ws_common: websphereParseSessionID: Parsing session id from
'/urltest/urltest;jsessionid=0000evXHbbzKzo0qlDGhb7U0abn:103u93kol'
ws_common: websphereParseSessionID: Parsed session id
'jsessionid=0000evXHbbzKzo0qlDGhb7U0abn:103u93kol'
ws_common: websphereParseCloneID: Parsing clone ids from
'/urltest/urltest;jsessionid=0000evXHbbzKzo0qlDGhb7U0abn:103u93kol'
ws_common: websphereParseCloneID: Adding clone id '103u93kol'
ws_common: websphereParseCloneID: Returning list of clone ids
ws_server_group: serverGroupFindClone: Looking for clone
ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone id
'103slf9ld'
ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server

 Chapter 6. Plug-in workload management and failover 319

ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone id
'103slfaf2'
ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone id
'103u93kol'
ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount -1.
[Wed Dec 22 18:20:43 2004] 00000eec 00000104 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of app1Node_Web1, ignoreWeights 1, markedDown 0,
retryNow 0, wlbAllows 0 reachedMaxConnectionsLimit 0
ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount -1.
ws_server_group: serverGroupIncrementConnectionCount: Server app1Node_Web1 picked,
pendingConnectionCount 1 totalConnectionsCount 2.
ws_common: websphereHandleSessionAffinity: Setting server to app1Node_Web1
ws_server_group: assureWeightsValid: group WEBcluster
ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
ws_server_group: weights_need_reset: app2Node_Web2a: 1 max, 1 cur.
ws_server_group: lockedServerGroupUseServer: Server app1Node_Web1 picked, weight -1.
ws_common: websphereFindTransport: Finding the transport
ws_common: websphereFindTransport: Setting the transport(case 2): app1.itso.ibm.com on port
9082
ws_common: websphereExecute: Executing the transaction with the app server
ws_common: websphereGetStream: Getting the stream to the app server
ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ws_common: websphereSocketIsClosed: Checking to see if socket is still open
ws_common: websphereGetStream: Using existing stream from transport app1.itso.ibm.com:9082
queue, socket = 10712

6.10.2 Failover operation
This section shows what happens when certain failover situations are forced with
the Web container. These tests were performed in our lab, using the sample
topology described in Chapter 8, “Implementing the sample topology” on
page 387.

We stopped the second Web server, http2, to force all browser requests to http1.
This way, we only need to observe the plug-in behavior on http1.

The following failure scenarios are covered:

� Stopping a cluster member
� Stopping a cluster member containing active sessions
� Killing a cluster member during a request
� Overloading a cluster member

320 WebSphere Application Server V6 Scalability and Performance Handbook

Stopping a cluster member
We tested plug-in failover operation with a stopped cluster member, as follows:

1. Verify that all the cluster members are running within the cluster. Check this
by following the steps described in “Workload management with the plug-in”
on page 310.

Cycle through to make sure that all of the cluster members are available.
There is no need to repeat the changes to the workload management policy.

2. In the http1 Web server configuration, change the plug-in log settings. Set the
plug-in log level to Trace and filename to, for example,
stopclustermember.log.

3. Save and synchronize the nodes.

4. Regenerate and propagate the http1 Web server plug-in configuration file.

5. Open the Administrative Console and select one of your cluster members.

6. Stop this cluster member.

7. Repeat step 1, noting the absence of the cluster member just stopped.

8. Start the cluster member again.

9. Wait 60 seconds and repeat step 1. The cluster member should return to
serving requests.

What is happening?
The plug-in uses the round robin (or random) method to distribute the requests to
the cluster members. Upon reaching the cluster member that was stopped, the
plug-in attempts to connect and finds there is no HTTP process listening on the
port.

The plug-in marks this cluster member as down and writes an error to the log, as
shown in Example 6-16.

Example 6-16 Plug-in trace with cluster member down

...
ERROR: ws_common: websphereGetStream: Failed to connect to app server on host
'app2.itso.ibm.com', OS err=10061
TRACE: ws_common: websphereGetStream: socket 10712 closed - failed to connect
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_server: serverSetFailoverStatus: Marking app2Node_Web2b down
STATS: ws_server: serverSetFailoverStatus: Server app2Node_Web2b :
pendingConnections 0 failedConnections 1 affinityConnections 0 totalConnections
0.

 Chapter 6. Plug-in workload management and failover 321

ERROR: ws_common: websphereHandleRequest: Failed to execute the transaction to
'app2Node_Web2b'on host 'app2.itso.ibm.com'; will try another one
...

It then tries to connect to the next cluster member in the primary server list.
When it has found a cluster member that works, the request is served from that
cluster member instead.

The plug-in does not try the cluster member for another 60 seconds. If tracing is
enabled, you will be able to see that the plug-in shows the time left every time it
comes to the downed cluster member in the round robin algorithm, as shown in
Example 6-17.

Example 6-17 Plug-in trace cluster member retry interval countdown

...
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of
app2Node_Web2b, ignoreWeights 0, markedDown 1, retryNow 0, wlbAllows 0
reachedMaxConnectionsLimit 0
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupCheckServerStatus: Server app2Node_Web2b is
marked down; retry in 23
...

After restarting the cluster member and once the 60-second retry interval has
passed, the next request attempt to the downed cluster member tries to connect
again. This time, it is successful and the request is served.

Stopping a cluster member containing active sessions
When using sessions, the impact of stopping or killing a cluster member is that
session information in that cluster member is lost. This means that persistent or
replicated sessions need to be used to allow for the failover of the session to
another cluster member. Follow this procedure to discover what happens:

1. Make sure persistent or replicated sessions have been enabled. See 6.8.3,
“Session management and failover inside the plug-in” on page 285 for details.

2. Set up and test session tracking using cookies, as described in “Cookies” on
page 312.

3. Verify that all the cluster members are running within the cluster. Check this
by following the steps described in “Workload management with the plug-in”
on page 310.

Cycle through to make sure that all the cluster members are available. There
is no need to repeat the changes to the workload management policy.

322 WebSphere Application Server V6 Scalability and Performance Handbook

4. Return to the session tracking test at:

http://http1/hitcount

Click the Increment button a few times and remember the session count you
have reached.

5. Check the log to see which cluster member served your session, referring to
Example 6-13 on page 314 to see what to look for. Alternatively:

a. From the same browser, point to:

http://http1/wlm/BeenThere

b. Note the servlet server name, since this is the cluster member that is
serving your session.

c. Return to the session tracking test at:

http://http1/hitcount

6. Stop the cluster member that you located in the log file or using BeenThere.

7. Increment the session count in your Web browser. You will see that the
session count should continue from the number you noted in step 4.

8. Start the downed cluster member again.

9. Repeat step 7. The session counter will still continue from the previous
number and no new session will be created.

What is happening?
Upon choosing to increment the session counter, WebSphere adds a cookie to
your browser. Within this cookie is the session identifier and a clone ID (or
partition ID) of where this session is stored. This is the expected behavior that
makes session affinity possible, as previously discussed.

At the end of each request (or at the specified interval as described in 6.8.8,
“Session management tuning” on page 300), the session is written to the
database or distributed between the configured number of application servers
using memory-to-memory replication. When the cluster member running the
session is stopped, the plug-in chooses another cluster member for the request
to go to instead. In the case of using database persistence, this cluster member,
finding that it does not have the session cached locally, searches the database.

Note: If you use the same browser for the session management test and
the workload management test, you will find that all your BeenThere
requests return to the same server. This is because the cookie for your
session management test is still valid.

 Chapter 6. Plug-in workload management and failover 323

In the case of using memory-to-memory replication, the application server will
find the session in its own cache. So in both cases, the failover application server
finds the session and uses that one instead of creating a new one. This is why
the session counter is incremented, not reset.

You can verify this behavior when looking at the following plug-in traces.
Example 6-18 shows the plug-in activity when distributed sessions rely on
database persistence (or when using memory-to-memory replication in any other
configuration than peer-to-peer). When an incoming request finds its server
down, the WebSphere session manager changes the session cookie and
appends the cluster clone ID of the new cluster member to it. The cookie now
has two cluster clone IDs on it, the original (stopped) cluster member and the
failover cluster member.

The plug-in now tries to connect to the stopped cluster member first, and finding
it marked as down, will try the failover cluster member instead.

Starting up the stopped cluster member means that the plug-in now returns the
session requests to the original cluster member after the retry interval has
passed.

Example 6-18 Plug-in trace with session failover (database persistence)

...
We have a session with clone id '103u93kol' for app1Node_Web1.
TRACE: ws_server: serverCreate: Creating the server object
TRACE: ws_server: serverSetName: Setting name app1Node_Web1
TRACE: ws_server: serverSetCloneID: Setting clone id 103u93kol
...
We have a session with clone id '103slf9ld' for app2Node_Web2a.
TRACE: ws_server: serverCreate: Creating the server object
TRACE: ws_server: serverSetName: Setting name app2Node_Web2a
TRACE: ws_server: serverSetCloneID: Setting clone id 103slf9ld
...
When a request with session affinity comes, the plugin dispatches it to Web1.
TRACE: ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='0001O9Ra5SyRIRoycNXAnKusKEb:103u93kol'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'0001O9Ra5SyRIRoycNXAnKusKEb:103u93kol'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103u93kol'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server

324 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103u93kol'
TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
...
When the Web1 server is stopped it is marked as down.
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
TRACE: ws_common: websphereSocketIsClosed: Checking to see if socket is still open
TRACE: ws_common: websphereSocketIsClosed: socket 460 was closed by peer
TRACE: ws_common: websphereGetStream: Destroying queued stream; socket already closed
TRACE: lib_stream: destroyStream: Destroying the stream
TRACE: lib_rio: rclose: socket 460 closed
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ERROR: ws_common: websphereGetStream: Failed to connect to app server on host
'app1.itso.ibm.com', OS err=10061
TRACE: ws_common: websphereGetStream: socket 460 closed - failed to connect
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_server: serverSetFailoverStatus: Marking app1Node_Web1 down
STATS: ws_server: serverSetFailoverStatus: Server app1Node_Web1 : pendingConnections 0
failedConnections 2 affinityConnections 36 totalConnections 37.
ERROR: ws_common: websphereHandleRequest: Failed to execute the transaction to
'app1Node_Web1'on host 'app1.itso.ibm.com'; will try another one
...
The plugin iterates again descending through the primary server list until it finds an "up"
server (Web2a),who receives the request from the plug-in.
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='0001O9Ra5SyRIRoycNXAnKusKEb:103u93kol'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'0001O9Ra5SyRIRoycNXAnKusKEb:103u93kol'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103u93kol'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103u93kol'
TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of app1Node_Web1,
ignoreWeights 1, markedDown 1, retryNow 0, wlbAllows 0 reachedMaxConnectionsLimit 0

 Chapter 6. Plug-in workload management and failover 325

TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupCheckServerStatus: Server app1Node_Web1 is marked down;
retry in 60
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupGetNextUpPrimaryServer: Getting the next up primary server
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of app2Node_Web2a,
ignoreWeights 1, markedDown 0, retryNow 0, wlbAllows 11 reachedMaxConnectionsLimit 0
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server app2Node_Web2a picked,
pendingConnectionCount 1 totalConnectionsCount 26.
TRACE: ws_server_group: serverGroupFindClone: Returning next up server app2Node_Web2a
TRACE: ws_common: websphereHandleSessionAffinity: Setting server to app2Node_Web2a
...
On the response back from Web2a it’s cloneID is appended to the session cookie.
TRACE: lib_htrequest: htrequestWrite: Writing the request:
TRACE: GET /urltest/urltest HTTP/1.1
TRACE: User-Agent: Opera/6.05 (Windows XP; U) [en]
TRACE: Host: http1
...
TRACE: lib_htresponse: htresponseSetContentLength: Setting the content length |301|
TRACE: Set-Cookie: JSESSIONID=0002O9Ra5SyRIRoycNXAnKusKEb:103u93kol:103slf9ld; path=/
...
On the next incoming request from this client we have a second clone id on the session
cookie. Web1 will be skipped until the retry interval has elapsed.
TRACE: ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='0002O7eBLClK7y5vOtGuRcASBVd:103u93kol:103slf9ld'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'0002O7eBLClK7y5vOtGuRcASBVd:103u93kol:103slf9ld'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103u93kol'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103slf9ld'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103u93kol'

326 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of app1Node_Web1,
ignoreWeights 1, markedDown 1, retryNow 0, wlbAllows 0 reachedMaxConnectionsLimit 0
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupCheckServerStatus: Server app1Node_Web1 is marked down;
retry in 50
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103slf9ld' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app2Node_Web2a'
...
When Web1 comes back to life after the retry interval our session requests go back to it
TRACE: ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='0002O7eBLClK7y5vOtGuRcASBVd:103u93kol:103slf9ld'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'0002O7eBLClK7y5vOtGuRcASBVd:103u93kol:103slf9ld'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103u93kol'
TRACE: ws_common: websphereParseCloneID: Adding clone id '103slf9ld'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '103u93kol' to server clone
id '103u93kol'
TRACE: ws_server_group: serverGroupFindClone: Match for clone 'app1Node_Web1'
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of app1Node_Web1,
ignoreWeights 1, markedDown 1, retryNow 1, wlbAllows 0 reachedMaxConnectionsLimit 0
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount -1.
TRACE: ws_server_group: serverGroupCheckServerStatus: Time to retry server app1Node_Web1
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server app1Node_Web1 picked,
pendingConnectionCount 1 totalConnectionsCount 43.
TRACE: ws_common: websphereHandleSessionAffinity: Setting server to app1Node_Web1
TRACE: ws_server_group: assureWeightsValid: group WEBcluster
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: weights_need_reset: app2Node_Web2a: 1 max, -7 cur.

 Chapter 6. Plug-in workload management and failover 327

TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: weights_need_reset: app2Node_Web2b: 1 max, 2 cur.
TRACE: ws_server_group: lockedServerGroupUseServer: Server app1Node_Web1 picked, weight -1.
TRACE: ws_common: websphereFindTransport: Finding the transport

Looking at another trace, shown in Example 6-19, you can see the plug-in activity
when distributed sessions rely on memory-to-memory replication in the
peer-to-peer mode. Instead of a clone ID, the session cookie holds a partition ID
that maps to the partition table known by the plug-in.

When the plug-in finds a server down, it acquires a new partition table from
another application server and then resends the request to a cluster member that
holds a session replica. For more information about partition ID, please see
“Partition ID” on page 297.

Example 6-19 Plug-in trace with session failover (memory-to-memory with peer-to-peer configuration)

...
We have a session with clone id '103slf9ld' for app2Node_Web2a.
TRACE: ws_server: serverCreate: Creating the server object
TRACE: ws_server: serverSetName: Setting name app2Node_Web2a
TRACE: ws_server: serverSetCloneID: Setting clone id 103slf9ld
...
We have a session with clone id '103u93kol' for app1Node_Web1.
TRACE: ws_server: serverCreate: Creating the server object
TRACE: ws_server: serverSetName: Setting name app1Node_Web1
TRACE: ws_server: serverSetCloneID: Setting clone id 103u93kol
...
When a request with session affinity comes, the plugin dispatches it to Web1.
TRACE: ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParseCloneID: Adding clone id '-1101060518'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103u93kol'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server

328 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_server_group: serverGroupFindClone: Failed to find server that matched the clone id
TRACE: ws_common: websphereHandleSessionAffinity: Checking the url rewrite affinity: jsessionid
TRACE: ws_common: websphereParseSessionID: Parsing session id from '/urltest/urltest'
TRACE: ws_common: websphereParseSessionID: Failed to parse session id
TRACE: ws_common: websphereHandleSessionAffinity: Checking for partitionID cookie affinity:
JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereHandleSessionAffinity: Checking the partitionID
TRACE: ws_common: websphereHandleSessionAffinity: Look for partitionID in affinity cookie
JSESSIONID
TRACE: ws_common: websphereParsePartitionIDs: Parsing partition clone ids from
'00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParsePartitionIDs: Adding clone id '-1101060518'
TRACE: ws_common: websphereParsePartitionIDs: Returning list of partition clone ids
TRACE: ws_server_group: serverGroupFindDwlmServer: Looking for dwlm pair
TRACE: ws_server_group: serverGroupMatchPartitionID: Looking for partitionID
TRACE: ws_server_group: serverGroupMatchPartitionID: Comparing curCloneID '-1101060518' to
partitionID '-1352159645'
TRACE: ws_server_group: serverGroupMatchPartitionID: Comparing curCloneID '-1101060518' to
partitionID '-1101060518'
TRACE: ws_server_group: serverGroupMatchPartitionID: Match found for partitionID '-1101060518'
TRACE: ws_server_group: serverGroupGetFirstServer: getting the first server
TRACE: ws_server_group: serverGroupGetServerByID: Comparing curCloneID '103u93kol' to server
clone id '103u93kol'
TRACE: ws_server_group: serverGroupGetServerByID: Match for clone 'app1Node_Web1'
TRACE: ws_server_group: serverGroupFindDwlmServer: Match for clone 'app1Node_Web1'
...
When the Web1 server is stopped it is marked as down.
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
TRACE: ws_common: websphereSocketIsClosed: Checking to see if socket is still open
TRACE: ws_common: websphereSocketIsClosed: socket 520 was closed by peer
TRACE: ws_common: websphereGetStream: Destroying queued stream; socket already closed
TRACE: lib_stream: destroyStream: Destroying the stream
TRACE: lib_rio: rclose: socket 520 closed
TRACE: ws_transport: transportStreamDequeue: Checking for existing stream from the queue
ERROR: ws_common: websphereGetStream: Failed to connect to app server on host
'app1.itso.ibm.com', OS err=10061
TRACE: ws_common: websphereGetStream: socket 520 closed - failed to connect
ERROR: ws_common: websphereExecute: Failed to create the stream
ERROR: ws_server: serverSetFailoverStatus: Marking app1Node_Web1 down
STATS: ws_server: serverSetFailoverStatus: Server app1Node_Web1 : pendingConnections 0
failedConnections 2 affinityConnections 22 totalConnections 22.
ERROR: ws_common: websphereHandleRequest: Failed to execute the transaction to
'app1Node_Web1'on host 'app1.itso.ibm.com'; will try another one
...
The plugin retrieves an updated partition table from another member of the replication
domain.

 Chapter 6. Plug-in workload management and failover 329

TRACE: ws_server_group: lockedServerGroupUseServer: Server app2Node_Web2b picked, weight 0.
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server app2Node_Web2b picked,
pendingConnectionCount 1 totalConnectionsCount 1.
TRACE: ws_server_group: serverGroupFindDwlmServer: Retrieve updated dwlm partition table from
server app2Node_Web2b (dwlmStatus = 22)
TRACE: ws_common: websphereHandleSessionAffinity: Setting server to app2Node_Web2b
...
TRACE: ws_common: websphereGetDWLMTable: Sending request to get updated partition table
...
TRACE: ws_common: ParsePartitionIDs: Parsing partitionID pair from
'-1352159645:103slfaf2;-1101060518:103slf9ld;73531583571851:103slf9ld;133506901435975:103slf9ld
;'
TRACE: ws_common: ParsePartitionIDs: Adding partitionID / clone pair '-1352159645' :
'103slfaf2'
TRACE: ws_common: ParsePartitionIDs: Adding partitionID / clone pair '-1101060518' :
'103slf9ld'
TRACE: ws_common: ParsePartitionIDs: Adding partitionID / clone pair '73531583571851' :
'103slf9ld'
TRACE: ws_common: ParsePartitionIDs: Adding partitionID / clone pair '133506901435975' :
'103slf9ld'
TRACE: ws_common: ParsePartitionIDs: Returning partitionID / cloneid pair list
...
TRACE: ws_common: websphereExecute: Updated DWLM table received; dwlmStatus = 23
STATS: ws_server: serverSetFailoverStatus: Server app2Node_Web2b : pendingConnections 0
failedConnections 2 affinityConnections 2 totalConnections 0.
TRACE: ws_common: websphereHandleRequest: Updated DWLM table retrieved from 'app2Node_Web2b'on
host 'app2.itso.ibm.com'
...
Finally the plugin finds a proper match (another cluster member from the same replication
domain).
TRACE: ws_common: websphereHandleSessionAffinity: Checking the cookie affinity: JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParseCloneID: Parsing clone ids from
'00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParseCloneID: Adding clone id '-1101060518'
TRACE: ws_common: websphereParseCloneID: Returning list of clone ids
TRACE: ws_server_group: serverGroupFindClone: Looking for clone
TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103slf9ld'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server
TRACE: ws_server_group: serverGroupFindClone: Comparing curCloneID '-1101060518' to server
clone id '103u93kol'
TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next primary server

330 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_server_group: serverGroupFindClone: Failed to find server that matched the clone id
TRACE: ws_common: websphereHandleSessionAffinity: Checking the url rewrite affinity: jsessionid
TRACE: ws_common: websphereParseSessionID: Parsing session id from '/urltest/urltest'
TRACE: ws_common: websphereParseSessionID: Failed to parse session id
TRACE: ws_common: websphereHandleSessionAffinity: Checking for partitionID cookie affinity:
JSESSIONID
TRACE: lib_htrequest: htrequestGetCookieValue: Looking for cookie: 'JSESSIONID'
TRACE: lib_htrequest: htrequestGetCookieValue: name='JSESSIONID',
value='00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereHandleSessionAffinity: Checking the partitionID
TRACE: ws_common: websphereHandleSessionAffinity: Look for partitionID in affinity cookie
JSESSIONID
TRACE: ws_common: websphereParsePartitionIDs: Parsing partition clone ids from
'00018fMFv4U4msm2Gq12tW2JMOI:-1101060518'
TRACE: ws_common: websphereParsePartitionIDs: Adding clone id '-1101060518'
TRACE: ws_common: websphereParsePartitionIDs: Returning list of partition clone ids
TRACE: ws_server_group: serverGroupFindDwlmServer: Looking for dwlm pair
TRACE: ws_server_group: serverGroupMatchPartitionID: Looking for partitionID
TRACE: ws_server_group: serverGroupMatchPartitionID: Comparing curCloneID '-1101060518' to
partitionID '-1352159645'
TRACE: ws_server_group: serverGroupMatchPartitionID: Comparing curCloneID '-1101060518' to
partitionID '-1101060518'
TRACE: ws_server_group: serverGroupMatchPartitionID: Match found for partitionID '-1101060518'
TRACE: ws_server_group: serverGroupGetFirstServer: getting the first server
TRACE: ws_server_group: serverGroupGetServerByID: Comparing curCloneID '103slf9ld' to server
clone id '103u93kol'
TRACE: ws_server_group: serverGroupGetNextServer: getting the next server
TRACE: ws_server_group: serverGroupGetServerByID: Comparing curCloneID '103slf9ld' to server
clone id '103slfaf2'
TRACE: ws_server_group: serverGroupGetNextServer: getting the next server
TRACE: ws_server_group: serverGroupGetServerByID: Comparing curCloneID '103slf9ld' to server
clone id '103slf9ld'
TRACE: ws_server_group: serverGroupGetServerByID: Match for clone 'app2Node_Web2a'
TRACE: ws_server_group: serverGroupFindDwlmServer: Match for clone 'app2Node_Web2a'

Killing a cluster member during a request
Killing the Java virtual machine (JVM) that a cluster member is running on is the
best way to see what happens if a cluster member crashes during a request.
When killing a cluster member before a request, the effect is the same as seen in
“Stopping a cluster member” on page 321.

When you kill a cluster member during a request, sometimes that request is
dispatched to another cluster member. There is a mechanism for the plug-in to
swap over the request in the middle of the process. However, this mechanism
does not guarantee high-availability of all requests. In such a case, a cluster
member that is functioning will be chosen for a re-issued request, which can then
be tried again. The request will then be completed.

 Chapter 6. Plug-in workload management and failover 331

If you wish to see this, follow these steps.

1. Verify that all the cluster members are running within the cluster. Check this
by following the steps described in “Workload management with the plug-in”
on page 310.

Cycle through to make sure that all the cluster members are available. There
is no need to repeat the changes to the workload management policy.

2. In the http1 Web server configuration, change the plug-in log settings. Set the
plug-in log level to Trace and filename to, for example,
killclustermember.log. Also make sure that the load balancing is set to use
the round-robin option (For this example, we need to be able to predict the
next Application Server to be picked by the plug-in on the following request,
so it could also be a good idea to set equal weights on the servers just to
make the test a bit easier).

3. Save and synchronize the nodes.

4. Regenerate and propagate the http1 Web server plug-in configuration file.

5. Find the Java process ID of the application server cluster member you want
to kill. On AIX, we used the following command to find the process ID of our
cluster member named Web2a:

ps -ef | grep Web2a

Note the process ID of your cluster member.

6. Open a browser and go to:

http://http1/wlm/BeenThere

7. Click the Run button until the Server name field shows the name of the
cluster member before the one you are going to kill. Monitor how the round
robin process is cycling to find this out. The next time that you click Run, the
request needs to go to the cluster member that you intend to kill. This
assumes that you are using application servers with equal weights or you
need to make sure that none of your application servers reaches a weight of 0
while performing this test.

8. Set the Bean Iterations field to a large amount, for example, 10000.

9. If you are running on AIX, now is a good time to use the tail command to
monitor your plug-in log file.

10.Click the Run button. This starts the request running on your cluster member.
If you look at the plug-in log, you see that there is information passing
between browser and application server.

332 WebSphere Application Server V6 Scalability and Performance Handbook

11.Kill the cluster member you located in step 5 on page 332. The request will
subsequently be rerouted to another cluster member. In this case in
Example 6-20, the request is dispatched to another cluster member.

Example 6-20 Plug-in trace with request failover

...
At first, the request is beeing processed by Web2a.
[Sun Jan 30 23:02:51 2005] 000001e4 00000ec4 - TRACE: ws_server:
serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount
-1.
[Sun Jan 30 23:02:51 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
lockedServerGroupUseServer: Server app2Node_Web2a picked, weight 0.
[Sun Jan 30 23:02:51 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
serverGroupIncrementConnectionCount: Server app2Node_Web2a picked,
pendingConnectionCount 1 totalConnectionsCount 65.
[Sun Jan 30 23:02:51 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereFindTransport: Finding the transport
...
The plug-in detects the failure of Web2a and dispatches the request to
Web2b.
[Sun Jan 30 23:02:55 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereExecute: Failed to read from an old stream; probably Keep-Alive
timeout fired
[Sun Jan 30 23:02:55 2005] 000001e4 00000ec4 - TRACE: lib_stream:
destroyStream: Destroying the stream
[Sun Jan 30 23:02:55 2005] 000001e4 00000ec4 - TRACE: lib_rio: rclose: socket
416 closed
[Sun Jan 30 23:02:55 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereGetStream: Getting the stream to the app server
[Sun Jan 30 23:02:55 2005] 000001e4 00000ec4 - TRACE: ws_transport:
transportStreamDequeue: Checking for existing stream from the queue
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - ERROR: ws_common:
websphereGetStream: Failed to connect to app server on host
'app2.itso.ibm.com', OS err=10061
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereGetStream: socket 416 closed - failed to connect
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - ERROR: ws_common:
websphereExecute: Failed to create the stream
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - ERROR: ws_server:
serverSetFailoverStatus: Marking app2Node_Web2a down
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - STATS: ws_server:
serverSetFailoverStatus: Server app2Node_Web2a : pendingConnections 0
failedConnections 5 affinityConnections 33 totalConnections 64.
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - ERROR: ws_common:
websphereHandleRequest: Failed to execute the transaction to 'app2Node_Web2a'on
host 'app2.itso.ibm.com'; will try another one
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereHandleSessionAffinity: Checking for session affinity

 Chapter 6. Plug-in workload management and failover 333

...
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
serverGroupGetNextServer: getting the next server
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
serverGroupGetNextPrimaryServer: getting the next primary server
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server:
serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount
-1.
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - STATS: ws_server_group:
serverGroupCheckServerStatus: Checking status of app2Node_Web2b, ignoreWeights
0, markedDown 0, retryNow 0, wlbAllows 1 reachedMaxConnectionsLimit 0
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server:
serverHasReachedMaxConnections: currentConnectionsCount 0, maxConnectionsCount
-1.
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
lockedServerGroupUseServer: Server app2Node_Web2b picked, weight 0.
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_server_group:
serverGroupIncrementConnectionCount: Server app2Node_Web2b picked,
pendingConnectionCount 1 totalConnectionsCount 87.
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereFindTransport: Finding the transport
[Sun Jan 30 23:02:56 2005] 000001e4 00000ec4 - TRACE: ws_common:
websphereFindTransport: Setting the transport(case 2): app2.itso.ibm.com on
port 9082

Overloading a cluster member
There are only so many concurrent requests that can be handled by a Web
container in a cluster member. The number of concurrent requests is determined
by the maximum number of threads available (10 threads implies 10 concurrent
requests). However, a request does not necessarily constitute a user request. A
browser might make multiple requests to get the information a user requested.

Connections coming into the Web container’s WebContainer Inbound Chain feed
requests to threads. If there are more connections than threads available,
connections start to backlog, waiting for free threads. There is a maximum
setting for the number of connections that can be backlogged as well. If the
maximum number of connections in the backlog is exceeded, then no more
connections will be allowed to the WebContainer Inbound Chain’s port.

If there has been a successful connection but it is waiting for a thread in the Web
container, then the plug-in will wait for a response (and so will the client). If the
connection backlog is full, the plug-in will be refused a connection to the port and
the plug-in will treat this in the same way as a stopped cluster member. It will

334 WebSphere Application Server V6 Scalability and Performance Handbook

mark the cluster member as down and select a new cluster member to which to
pass the request. The cluster member will then hopefully be able to reduce its
connection backlog, since the plug-in will not try it again until the retry interval
passes.

To avoid this overloading of cluster members, your environment needs to be
configured to accept the load you are expecting. This includes the setting of
weights that correspond to the system capabilities, the correct balance of cluster
members and Web servers, and setting up the queues for requests and
connections.

To monitor the behavior of the plug-in when a cluster member has too many
requests, use a load testing tool (such as ApacheBench or JMeter), plug-in trace,
and Tivoli Performance Viewer.

6.10.3 Tuning failover
There are a few places where failover can be tuned. This section details these
settings. We cover the following options:

� Connection Timeout setting
� Retry interval setting
� Maximum number of connections

Connection Timeout setting
When a cluster member exists on a machine that is removed from the network
(because its network cable is unplugged or it has been powered off, for
example), the plug-in, by default, cannot determine the cluster member's status
until the operating system TCP/IP timeout expires. Only then will the plug-in be
able to forward the request to another available cluster member.

It is not possible to change the operating system timeout value without
unpredictable side effects. For instance, it might make sense to change this
value to a low setting so that the plug-in can fail over quickly.

However, the timeout value on some of the operating systems is not only used
for outgoing traffic (from Web server to application server) but also for incoming
traffic. This means that any changes to this value will also change the time it
takes for clients to connect to your Web server. If clients are using dial-up or slow
connections, and you set this value too low, they will not be able to connect.

To overcome this problem, WebSphere Application Server V6 offers an option
within the plug-in configuration file that allows you to bypass the operating
system timeout.

 Chapter 6. Plug-in workload management and failover 335

It is possible to change the connection timeout between the plug-in and each
Application Server, which makes the plug-in use a non-blocking connect, as
shown in Figure 6-19 on page 257. To configure this setting, go to Application
servers -> <AppServer_Name> -> Web Server plug-in properties.

Setting the Connect Timeout attribute for a server to a value of zero (default) is
equal to selecting the No Timeout option, that is, the plug-in performs a blocking
connect and waits until the operating system times out. Set this attribute to an
integer value greater than zero to determine how long the plug-in should wait for
a response when attempting to connect to a server. A setting of 10 means that
the plug-in waits for 10 seconds to time out.

To determine what setting should be used, you need to take into consideration
how fast your network and servers are. Complete some testing to see how fast
your network is, and take into account peak network traffic and peak server
usage. If the server cannot respond before the connection timeout, the plug-in
will mark it as down.

Since this setting is determined on the each Application Server, you can set it for
each individual cluster member. For instance, you have a system with four
cluster members, two of which are on a remote node. The remote node is on
another subnet and it sometimes takes longer for the network traffic to reach it.
You might want to set up your cluster in this case with different connection
timeout values.

If a non-blocking connect is used, you will see a slightly different trace output.
Example 6-21 shows what you see in the plug-in trace if a non-blocking connect
is successful.

Example 6-21 Plug-in trace when ConnectTimeout is set

...
TRACE: ws_common: websphereGetStream: Have a connect timeout of 10; Setting
socket to not block for the connect
TRACE: errno 55
TRACE: RET 1
TRACE: READ SET 0
TRACE: WRITE SET 32
TRACE: EXCEPT SET 0
TRACE: ws_common: websphereGetStream: Reseting socket to block
...

336 WebSphere Application Server V6 Scalability and Performance Handbook

Retry interval setting
There is a setting in the plug-in configuration file that allows you to specify how
long to wait before retrying a server that is marked as down. This is useful in
avoiding unnecessary attempts when you know that server is unavailable. The
default is 60 seconds.

This setting is specified in the configuration of each Web server, as shown in
Figure 6-24 on page 268, on the Retry interval field. This default setting means
that if a cluster member was marked as down, the plug-in would not retry it for 60
seconds. To change this value, go to Servers -> Web Servers ->
<WebServer_Name> -> Plug-in properties -> Request Routing.

There is no way to recommend one specific value; the value chosen depends on
your environment, for example on the number of cluster members in your
configuration.

For example, if you have numerous cluster members, and one cluster member
being unavailable does not affect the performance of your application, then you
can safely set the value to a very high number.

Alternatively, if your optimum load has been calculated assuming all cluster
members to be available or if you do not have very many, then you will want your
cluster members to be retried more often to maintain the load.

Also, take into consideration the time it takes to restart your server. If a server
takes a long time to boot up and load applications, then you will need a longer
retry interval.

Maximum number of connections
All requests to the application servers flow through the HTTP Server plug-in. The
application server selection logic in the plug-in has been enhanced so that it
takes into account the number of pending connections to the application server.
The Maximum number of connections attribute is used to specify the maximum
number of pending connections to an application server that can be flowing
through a Web server process at any point in time.

Each application server can have a maximum number of pending connections
coming from Web server plug-ins, as shown in Figure 6-19 on page 257. To
change this setting, go to Application servers -> <AppServer_Name> -> Web
Server plug-in properties.

The default setting is No Limit, which is the same as if the value is set to -1 or
zero. The attribute can be set to any arbitrary value.

 Chapter 6. Plug-in workload management and failover 337

For example, let the two application servers be fronted by two nodes running IBM
HTTP Server. If the MaxConnections attribute is set to 10, then each application
server could potentially get up to 20 pending connections.

If the number of pending connections reaches the maximum limit of the
application server, then it is not selected to handle the current request. If no other
application server is available to serve the request, HTTP response code 503
(Service unavailable) is returned to the user.

This can be seen in the plug-in trace listing in Example 6-22.

Example 6-22 Plug-in trace when MaxConnections is set

..
When the request comes, it is pended.
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 0,
maxConnectionsCount 10.
TRACE: ws_server_group: lockedServerGroupUseServer: Server
was1node_PluginMember1 picked, weight 0.
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server
was1node_PluginMember1 picked, pendingConnectionCount 1 totalConnectionsCount
1.
TRACE: ws_common: websphereFindTransport: Finding the transport

When the next request comes, it is pended again.
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 1,
maxConnectionsCount 10.
TRACE: ws_server_group: lockedServerGroupUseServer: Server
was1node_PluginMember1 picked, weight 0.
TRACE: ws_server_group: serverGroupIncrementConnectionCount: Server
was1node_PluginMember1 picked, pendingConnectionCount 2 totalConnectionsCount
2.
TRACE: ws_common: websphereFindTransport: Finding the transport

When the number of pending connections reaches the MaxConnections(in this
case, 10), the HTTP response code 503 is returned to the user.

TRACE: ws_server_group: serverGroupGetFirstPrimaryServer: getting the first
primary server
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 10,
maxConnectionsCount 10.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of
was1node_PluginMember1, ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 1
reachedMaxConnectionsLimit 1
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 10,
maxConnectionsCount 10.
WARNING: ws_server_group: serverGroupCheckServerStatus: Server
was1node_PluginMember1 has reached maximmum connections and is not selected

338 WebSphere Application Server V6 Scalability and Performance Handbook

TRACE: ws_server_group: serverGroupGetNextPrimaryServer: getting the next
primary server
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 10,
maxConnectionsCount 10.
STATS: ws_server_group: serverGroupCheckServerStatus: Checking status of
was2Node_PluginMember2, ignoreWeights 0, markedDown 0, retryNow 0, wlbAllows 1
reachedMaxConnectionsLimit 1
TRACE: ws_server: serverHasReachedMaxConnections: currentConnectionsCount 10,
maxConnectionsCount 10.
WARNING: ws_server_group: serverGroupCheckServerStatus: Server
was2Node_PluginMember2 has reached maximmum connections and is not selected
ERROR: ws_server_group: serverGroupNextRoundRobinServer: Failed to find a
server; all could be down or have reached the maximimum connections limit
WARNING: ws_common: websphereFindServer: Application servers have reached
maximum connection limit
ERROR: ws_common: websphereWriteRequestReadResponse: Failed to find a server
ERROR: ESI: getResponse: failed to get response: rc = 8
TRACE: ESI: esiHandleRequest: failed to get response
TRACE: ESI: esiRequestUrlStackDestroy
TRACE: ESI: esiRequestPopUrl: '/wlm/beenthere'
TRACE: ESI: esiUrlDestroy: '/wlm/beenthere'
ERROR: ws_common: websphereHandleRequest: Failed to handle request
TRACE: ws_common: websphereCloseConnection
TRACE: ws_common: websphereEndRequest: Ending the request
..

As mentioned earlier, when the plug-in detects that there are no application
servers available to satisfy the request, HTTP response code 503 (Service
unavailable) is returned. This response code appears in the Web server access
log, as shown in Example 6-23.

Example 6-23 HTTP Server access log example

[08/Dec/2003:14:08:03 -0500] "GET /wlm/beenthere HTTP/1.0" 503 419
[08/Dec/2003:14:08:03 -0500] "GET /wlm/beenthere HTTP/1.0" 503 419
[08/Dec/2003:14:08:03 -0500] "GET /wlm/beenthere HTTP/1.0" 503 419

This feature helps you to better load balance the application servers fronted by
the plug-in. If application servers are overloaded, the plug-in will automatically
skip these application servers and try the next available application server.

This feature solves the main problem of application servers taking a long time to
respond to requests. It is achieved by throttling the number of connections going
to the application server through the plug-in.

 Chapter 6. Plug-in workload management and failover 339

340 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 7. EJB workload management

The Enterprise JavaBeans (EJB) specification is the foundation of the Java 2
Platform Enterprise Edition (J2EE). Vendors use this specification to implement
an infrastructure in which EJBs can be deployed, and use a set of services such
as distributed transactions, security, life cycle management, and database
connectivity. IBM WebSphere Application Server Network Deployment V6.x
provides another important service for EJBs: workload management (WLM).

We discuss the following topics in this chapter:

� Enabling EJB workload management
� EJB types and workload management
� EJB bootstrapping
� How EJBs participate in workload management
� EJB workload management routing policy
� EJB high availability and failover

7

Note: We have set up an identical copy of the ITSO sample topology
described in Chapter 8, “Implementing the sample topology” on page 387 for
this chapter.

This was done to be more independent while testing the failover scenarios,
etc. We are using an identical environment but with different names (Web3,
Web4a, and Web4b as the members of the WEBcluster and Ejb3, Ejb4a, and
Ejb4b for the members of the EJBcluster) throughout this chapter.

© Copyright IBM Corp. 2005. All rights reserved. 341

7.1 Enabling EJB workload management
EJB workload management and high availability are achieved by a combination
of WebSphere server cluster support and the WebSphere ORB (Object Request
Broker) workload management (WLM) plug-in. This feature is provided by IBM
WebSphere Application Server Network Deployment V6.x and is not available in
WebSphere Application Server V6 or WebSphere Application Server - Express
V6, since these are single server environments.

In IBM WebSphere Application Server Network Deployment V6, workload
management for EJBs is enabled automatically when a cluster is created. No
special configuration is needed to enable EJB WLM on the server. The WLM
plug-in in the ORB takes the responsibility of dispatching the load among the
application servers (cluster members) of the cluster.

Figure 7-1 shows how workload management is handled by IBM WebSphere
Application Server Network Deployment V6.x.

Figure 7-1 IBM WebSphere Application Server V6 EJB workload management

Cell

Deployment Manager

EJB
Container

Application Server 1/Cluster 1

Node Agent

Host1

EJB
Container

Application Server 2/Cluster 1

Node Agent

EJB
Container

Application Server 3/Cluster 1

Node Agent

Application
Database

Cluster 1

Entity
Bean 1

Entity
Bean 1

Host2

Entity
Bean 1

Host3

EJB
Client WLM

Plug-in

ORB

342 WebSphere Application Server V6 Scalability and Performance Handbook

IBM WebSphere Application Server Network Deployment V6.x uses the concept
of cell, cluster, and cluster members, as described in 1.3.3, “Workload
management using WebSphere clustering” on page 19 to identify which
application servers participate in workload management. Requests from clients
are distributed among the cluster members’ EJB containers within the cluster.

The following types of EJB clients can participate in EJB WLM automatically:

� Clients in the same application server (servlets, JSPs, EJBs)
� Clients in a different application server (servlets, JSPs, EJBs)
� Java applications running within a WebSphere client container
� Stand-alone Java applications using the WebSphere-supplied Java Runtime

Environment (JRE)

7.2 EJB types and workload management
The workload management service provides load balancing and high availability
support for the following types of EJBs:

� Homes of entity or session beans
� Instances of entity beans
� Instances of stateless session beans

As shown in Figure 7-2, the only type of EJB references not subject to load
distribution through EJB WLM are stateful session bean instances. See 7.2.2,
“Stateful session beans” on page 344 for details.

Figure 7-2 Enterprise beans that participate in workload management

Note: The WebSphere-supplied Java Runtime Environment (JRE) is required
for any remote Java clients because of WLM requirements for the WebSphere
WLM-aware ORB.

Enterprise
JavaBeans

Entity
Beans

Bean
Managed

Persistence

Session
Beans

Stateless StatefulContainer
Managed

Persistence

 Chapter 7. EJB workload management 343

7.2.1 Stateless session beans
By definition, a stateless session bean maintains no state information. Each
client request directed to a stateless session bean is independent of the previous
requests that were directed to the bean. The EJB container maintains a pool of
instances of stateless session beans, and provides an arbitrary instance of the
appropriate stateless session bean when a client request is received. Requests
can be handled by any stateless session bean instance in any cluster member of
a cluster, regardless of whether the bean instance handled the previous client
requests.

Workload management can be applied to the Home object and the bean instance
of a given stateless session bean. Therefore, the stateless session bean is a
perfect programming model when constructing a well-balanced and highly
available enterprise application.

7.2.2 Stateful session beans
A stateful session bean is used to capture state information that must be shared
across multiple consecutive client requests that are part of a logical sequence of
operations. The client must obtain an EJB object reference to a stateful session
bean to ensure that it is always accessing the same instance of the bean.

WebSphere Application Server currently supports the clustering of stateful
session bean home objects among multiple application servers. However, it does
not support the clustering of a specific instance of a stateful session bean. Each
instance of a particular stateful session bean can exist in just one application
server and can be accessed only by directing requests to that particular
application server. State information for a stateful session bean cannot be
maintained across multiple application server cluster members. Thus, stateful
session bean instances cannot participate in WebSphere workload
management.

One significant improvement introduced in WebSphere Application Server V6 is
the failover support for stateful session beans, which means that the state
information maintained by a stateful session bean can survive various types of
failures now. This is achieved by utilizing the functions of the Data Replication
Service (DRS) and server workload management (WLM). More details on this
topic can be found in 7.6, “EJB high availability and failover” on page 371.

344 WebSphere Application Server V6 Scalability and Performance Handbook

7.2.3 Entity beans
An entity bean represents persistent data. Most external clients access entity
beans by using session beans, but it is possible for an external client to access
an entity bean directly. The information contained in an entity bean is not
associated with a session or with the handling of one client request or series of
client requests. However, it is common for a client to make a succession of
requests targeted at the same entity bean instance. It is also possible for more
than one client to independently access the same entity bean instance within a
short time interval. The state of an entity bean must therefore be kept consistent
across multiple client requests.

For entity beans, the concept of a session is replaced by the concept of a
transaction. An entity bean is instantiated in a container for the duration of the
client transaction in which it participates. All subsequent accesses to that entity
bean within the context of that transaction are performed against that instance of
the bean in that particular container. The container needs to maintain state
information only within the context of that transaction. The workload
management service uses the concept of transaction affinity (as defined in
7.5.4, “Transaction affinity” on page 370) to direct client requests. After an EJB
server entity bean is selected, client requests are directed towards it for the
duration of the transaction.

Between transactions, the state of the entity bean can be cached. The
WebSphere V6.x EJB container supports Option A, Option B, and Option C
caching:

� Option A caching

WebSphere Application Server assumes that the entity bean is used within a
single container. Clients of that bean must direct their requests to the bean
instance within that container. The entity bean has exclusive access to the
underlying database, which means that the bean cannot be clustered or
participate in workload management if Option A caching is used.

� Option B caching

The bean instance remains active (so it is not guaranteed to be made passive
at the end of each transaction), but it is always reloaded from the database at
the start of each transaction. A client can attempt to access the bean and

Note: Even though stateful session beans are not workload-managed
themselves, a certain level of WLM can be achieved when the homes are
evenly distributed. It is only after the bean is created that everything will be
performed on the same cluster member.

 Chapter 7. EJB workload management 345

start a new transaction on any container that has been configured to host that
bean.

� Option C caching (default)

The entity bean is always reloaded from the database at the start of each
transaction and passivated at the end of each transaction. A client can
attempt to access the bean and start a new transaction on any container that
has been configured to host that bean.

Entity beans can participate in workload management as long as the server
reloads the data into the bean at the start of each transaction, assuming that
transactional affinity is in place. Guaranteed passivation at the end of each
transaction is not a requirement for a bean to participate in workload
management. Hence, Option B and Option C caching are both compatible with
workload management, but Option A caching is not.

Table 7-1 provides a summary of the EJB caching options.

Table 7-1 EJB caching options

Table 7-2 summarizes the workload management capability of different types of
EJBs:

Table 7-2 Summary of EJB types and WLM

Option Activate at must be set to Load at must be set to

A Once Activation

B Once At start of transaction

C (default) At start of transaction At start of transaction

EJB types Component WLM-capable

Entity bean (Option A) Home Yes

CMP bean instance No

BMP bean instance No

Entity bean (Option B,C) Home Yes

CMP bean instance Yes

BMP bean instance Yes

Message-driven bean Bean instance Yes

346 WebSphere Application Server V6 Scalability and Performance Handbook

7.3 EJB bootstrapping
In order to access EJBs deployed to WebSphere Application Server V6, the
client, regardless of whether it is local or remote, must first obtain a reference to
objects related to an application, such as a reference to an Enterprise JavaBean
(EJB) home object. This process is called EJB bootstrapping. The bootstrapping
service is provided through J2EE Naming that is implemented via WebSphere
CORBA CosNaming.

EJB home objects are bound into a hierarchical structure, referred to as a name
space. An InitialContext is used to access objects in the name space. To obtain
an InititalContext, a bootstrap server and port need to be supplied. If these are
not supplied, then default values are used specific to the client type and its
environment.

InitialContext requests participate in workload management when the provider
URL is a clustered resource (cluster member) and they do not when they are not
a clustered resource.

More information about naming and name spaces can be found in the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451. Chapter 13 explains the concept in detail.

7.3.1 Bootstrapping within WebSphere containers
The boostrapping process varies in looking up an object depending on whether
or not the application is running in a WebSphere container. This section
describes some methods and best practices of performing a JNDI lookup for EJB
clients running within a WebSphere container environment.

Performing a lookup in an EJB or Web container in the same
cell

When an application that is running within an EJB or Web container wants to
perform a lookup of an EJB in the same cell, then the best practice is to use an

Session Bean Home Yes

Stateless bean instance Yes

Stateful bean instance No

EJB types Component WLM-capable

 Chapter 7. EJB workload management 347

EJB reference in the application code and an InitialContext object with no
parameters.

An EJB reference is a method of delegating the JNDI name resolution of an EJB
from the application to the deployment descriptor. Using the prefix
java:comp/env/ before the JNDI name informs the container that this particular
JNDI lookup resolves to a reference specified in the deployment descriptor. This
indirect lookup removes the reliance on hard-coded JNDI names in the
application code or reliance on external properties files.

Only when running in either a Web, EJB, or J2EE application client container can
references be used since it is the job of the container to resolve those references
using the deployment descriptors.

The binding of an EJB reference to a real JNDI name is specified in the
deployment descriptor and can be altered during or after deployment using the
WebSphere Administrative Console.

The InitialContext object used to perform the lookup does not need any
parameters if the target EJB is in the same cell. Leaving the InitialContext object
empty means that the local application server’s naming service in which the
client is running will be used for lookups. This is because all the name spaces
throughout the cell are linked, so a fully qualified JNDI name will locate the EJB
home.

If a lookup is performed from a Web or EJB container to an EJB that is in another
process in the same cell, then the JNDI name needs to be either fully qualified
with the node and server that contains the EJB or, if the EJB is on a clustered
server, a JNDI name with the cluster name may be used. This means the JNDI
name for ejb/myEJB can be one of the following:

� cell/nodes/Node1/servers/Server1/ejb/MyEJB
� cell/clusters/MyCluster/ejb/MyEJB

Example 7-1 shows a lookup of an EJB home when the client is running in an
EJB or Web container that is looking up an EJB in the same cell. The EJB
reference java:comp/env/BeenThere has been set to resolve to
cell/clusters/EJBcluster/BeenThere in the EJB deployment descriptor.

Example 7-1 Lookup of an EJB home

// Get the initial context
import java.util.Hashtable;
import javax.naming.Context;
import javax.naming.InitialContext;

// Bootstrapping to get the InitialContext

348 WebSphere Application Server V6 Scalability and Performance Handbook

Context initialContext = new InitialContext();

// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome =
initialContext.lookup("java:comp/env/BeenThere");

beenThereHome = (BeenThereHome)javax.rmi.PortableRemoteObject.narrow(
(org.omg.CORBA.Object) ejbHome, BeenThereHome.class);

}
catch (NamingException ne) { // Error getting the home interface

...
}

From the sample code, the bootstrapping process of getting the JNDI
InitialContext does not require the bootstrap server information, like server name
and port number. Delegating the details of both the JNDI name and the
InitialContext location to the container makes the application code much more
portable among different environments.

“Server cluster with fault-tolerant initial context” on page 354 includes a
discussion about fault tolerant name lookups; this does not apply here. If the
local naming service is unavailable then the application server is probably not
running.

Mapping EJB references to enterprise beans
With IBM WebSphere Application Server Network Deployment V6.x, you can
bind the EJB references to enterprise beans during or after application
deployment. System administrators can bind EJB references specified by the
application developer to a required EJB home in a target operational environment
by setting the JNDI name value using the Administrative Console as follows:

1. Select your application by clicking Applications -> Enterprise Applications
-> <application_name>.

2. Select Map EJB references to beans from the Additional Properties section.

 Chapter 7. EJB workload management 349

Figure 7-3 Map EJB references to beans

3. Enter the JNDI name of your Enterprise Bean(s) in the JNDI Name column as
shown in Figure 7-4.

Figure 7-4 Map EJB references to enterprise beans - Enter JNDI name

4. Stop and restart all application server(s) where your application is installed.

Note: Mapping of EJB references to enterprise beans can also be performed
at deployment time of your application.

350 WebSphere Application Server V6 Scalability and Performance Handbook

Performing a lookup in an EJB/Web container outside the cell
The process is slightly different when performing a JNDI lookup from an EJB or
Web container for an EJB that is not within the same cell. EJB references can still
be used, but the local name server is not able to locate the EJB home. In this
situation, a provider URL is needed when bootstrapping and creating the
InitialContext object that points to the name server that contains the EJB naming
information. This makes this scenario fall somewhere between a J2EE
application client container and a stand alone client. EJB references can be used
but the container cannot be relied on to locate a name server to find the EJB.

Performing a lookup in a WebSphere client container
The J2EE application client container provides similar facilities to an EJB or Web
container in terms of naming. The client container performs EJB reference
lookups so the code in Example 7-1 on page 348 can also be used in this case. It
uses the application clients deployment descriptor to do the binding of a
reference to a real JNDI name.

As the calling code is actually running outside of an application server process, it
still needs to be able to resolve the InitialContext object to the correct location to
look up the EJB. Using the J2EE application client container removes the need to
hard-code the location of the application server that is providing the name
service. The code in Example 7-1 on page 348 does a call without passing any
parameters to the InitialContext. When running in the J2EE application client
container, this is resolved to the JNDI name server that is specified when
launching the client container. For example, using the command:

launchclient ClientApp.ear -CCBootstrapHost=app1
-CCBootstrapPort=2809

will launch the J2EE client contained within the EAR file. When an InitialContext
object is created with no parameters, the J2EE application client container
resolves this to the name service running on app1 on port 2809.

This means that although the code is identical as for running in an EJB or Web
container, the actual resolution of the correct name service relies on parameters
passed to the J2EE application client container at initialization.

When running in this container, it is important that the client be able to resolve
the process where the name server is running. If it is unable to do this then the
client will fail to initialize. To get around this issue, it is possible to use a corbaloc
provider URL to specify multiple locations for name servers that can be used to
perform the JNDI lookup. This alternative command can be used:

launchclient ClientApp.ear
-CCproviderURL=corbaloc::app1:9813,:app2:9814

 Chapter 7. EJB workload management 351

When it comes to performing the InitialContext lookup, the container has a choice
of name servers, either the application server on app1 listening on port 9813 or
the application server on app2 listening on port 9814.

This list of locations is not processed in any particular order so there is no way to
guarantee which server will be used, but keep in mind that this is just for looking
up the EJB home object. Once that is obtained, normal EJB workload
management decides which server in a cluster should actually be used. Should
one of these name servers fail to respond then the other will be used, removing
the single point of failure.

If the target EJB is running in a cluster then this is the recommended method of
looking up EJB homes from a J2EE application client container as it provides
failover. When populating this list, remember that whichever name server you
point the client to has to be able to resolve the JNDI name the EJB reference is
bound to. The possible options for fully qualifying the JNDI name are discussed
at the end of “Performing a lookup in an EJB or Web container in the same cell”
on page 347.

7.3.2 Bootstrapping outside of a J2EE container
Applications running outside of a container cannot use a naming reference like
java:comp/env to look up names because only a J2EE container can configure
the java:name space for an application. Instead, an application of this type must
look up the object directly from the name server. Also, the stand-alone client
cannot rely on a container to resolve the location of the name server as it is
running outside of a container. Therefore, stand-alone Java clients have specific
bootstrapping requirements; normally, the bootstrap server location needs to be
specified in the application code programmatically.

Because the location of the name server and the JNDI name of the EJB are
environment-specific, the stand-alone client should obtain the necessary values
to pass to the InitialContext from an external resource, like a properties file.

In the following sections, we show three examples of JNDI lookups to application
servers running the target EJB. These examples do not use a properties file. The
samples demonstrate three scenarios where a stand-alone Java client
bootstraps to a:

� Single server
� Server cluster
� Server cluster with fault-tolerant initial context

Single server
Example 7-2 on page 353 shows the lookup of an EJB home that is running in
the single server, Server1, configured in the node app1. In this example, there is

352 WebSphere Application Server V6 Scalability and Performance Handbook

only one server so there is no possibility of specifying multiple bootstrap servers.
The name server is running on the same application server as the target EJB, so
the JNDI name does not need to be fully qualified.

Example 7-2 Single server - lookup EJB home

// Get the initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc::app1:2809");
Context initialContext = new InitialContext(env);
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup("BeenThere");
beenThereHome = (BeenThereHome)javax.rmi.PortableRemoteObject.narrow(

 (org.omg.CORBA.Object) ejbHome, BeenThereHome.class);
}
catch (NamingException ne) { // Error getting the home interface
 ...
}

Server cluster
Example 7-3 shows the lookup of an EJB home that is running in a cluster called
EJBcluster. The name can be resolved if any one of the cluster members is
running. As this is a stand-alone client, the location of the name service still
needs to be specified.

Example 7-3 Server cluster - lookup EJB home

// Get the initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc::app1:2809");
Context initialContext = new InitialContext(env);
// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome = initialContext.lookup(
 "cell/clusters/EJBcluster/BeenThere");

beenThereHome = (BeenThereHome)javax.rmi.PortableRemoteObject.narrow(
 (org.omg.CORBA.Object) ejbHome, BeenThereHome.class);
}
catch (NamingException e) { // Error getting the home interface
 ...

 Chapter 7. EJB workload management 353

Server cluster with fault-tolerant initial context
In the previous example, the EJB is running on clustered servers but still relies on
one server for the bootstrapping process. Example 7-4 shows how to obtain the
initial context via a fault-tolerant provider URL which has boostrapping
information for two server cluster members:

Example 7-4 Cluster - lookup EJB home via fault-tolerant provider URL & specify path

// Get the initial context
Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
env.put(Context.PROVIDER_URL, "corbaloc::app1:9811,:app2:9812");
Context initialContext = new InitialContext(env);

// Look up the home interface using the JNDI name
try {

java.lang.Object ejbHome =
initialContext.lookup("cell/clusters/EJBcluster/BeenThere");

This is fault tolerant, so if one process goes down, another can be used as the
naming provider, and the cluster can be accessed via the appropriate cell-based
path in the lookup.

In the real world, application developers can further improve high availability and
the workload management service for the stand-alone EJB client by adding HA
and WLM logic to the above sample code. For example, developers can provide
the code to dynamically control which bootstrap server should be used for the
current client thread, controlling when to use the second bootstrap server, either
through a round robin or random algorithm.

7.4 How EJBs participate in workload management
In this section, we examine how EJBs participate in workload management
through the following stages:

� Initial request
� Subsequent requests
� Cluster run state changes

354 WebSphere Application Server V6 Scalability and Performance Handbook

7.4.1 Initial request
When accessing an EJB, there are two groups of clients: cluster aware and
cluster unaware. Cluster aware clients are those that are using an IBM ORB and
therefore have access to the WLM information about WebSphere Application
Server clusters. For more information about cluster aware and cluster unaware
clients, see 7.5, “EJB workload management routing policy” on page 358.

These steps describe what happens when a cluster aware client accesses an
EJB:

1. First, the client has to retrieve the initial context during the bootstrap process.
This varies between client types as discussed in 7.3.1, “Bootstrapping within
WebSphere containers” on page 347.

2. Next, the client needs to look up the EJB home based on the JNDI name, for
example:

Object home = initContext.lookup("java:comp/env/BeenThere");
BeenThereHome beentherehome =

(BeenThereHome) narrow(home, BeenThereHome.class);

3. The client needs to create or retrieve an EJB object, using the create method
or finders of the home interface, for example:

BeenThere beenThere = beentherehome.create();

4. Once the EJB object has been created, you can invoke methods from the
remote interface, for example:

Hashtable envInfo = beenThere.getRuntimeEnvInfo();

We call these four steps the initial request from the EJB client. Let us see in detail
what is happening from a workload management’s point of view, using Figure 7-5
on page 356:

1. The new InitialContext request goes through the ORB (Object Request
Broker). This returns a JNDI context object which has the information of the
server naming service.

Note: This example uses an EJB reference, java:comp/env/BeenThere. As
discussed in “Performing a lookup in an EJB or Web container in the same
cell” on page 347, this EJB reference must be bound to the fully qualified
JNDI name of the deployed EJB, for example:

cell/clusters/EJBcluster/BeenThere

Using EJB references would not be possible in a stand-alone EJB client
since it is not running in a container.

 Chapter 7. EJB workload management 355

2. The lookup on the context returns a home object of the BeenThere bean. This
is an indirect IOR (Interoperable Object Reference), that is, it points to the
Location Service Daemon (LSD) on the local Node Agent.

3. The first request goes to the LSD and the LSD selects one of the cluster
members by using the WLM plug-in in the LSD.

4. The LSD returns a direct IOR to the specific cluster member.

5. The request is forwarded to the cluster member that the LSD selected.

6. Upon successful completion of the request, the response contains the cluster
configuration information. The client WLM plug-in stores the cluster
configuration information and uses it for subsequent requests.

Figure 7-5 EJB workload management

7.4.2 Subsequent requests
Now let us look at what happens with subsequent EJB requests:

1. Subsequent requests from the client to a remote method go through the ORB
as well.

2. The ORB asks the WLM plug-in for the IOR of the server in order to process
the request. Generally, the workload decision is made here.

WLM
Info + IOR

Client JVM Process

4 IOR for EJB Server & WLM Context

ORB and WLM Plug-in

6 EJB Method Result &
Server Routing List

1 Initial Request 2 Indirect IOR

3 Direct IOR

Server Cluster

AppServer2

EJB
Container
Server 2

Node Agent

LSD

AppServer3

Name
Service

7 Additional
EJB Requests

AppServer1

EJB
Container
Server 1

1 EJB Lookup

EJB
Container
Server 3

7

5 EJB Method
Request

356 WebSphere Application Server V6 Scalability and Performance Handbook

3. Based on the workload management policy, process affinity, and transaction
affinity (see 7.5.1, “Server weighted round robin” on page 359), the WLM
plug-in returns the IOR of the next target.

4. The ORB invokes the remote method on the selected server.

7.4.3 Cluster run state changes
In addition to the normal EJB request, let us take a look at how the WLM plug-in
is informed of changes to the cluster configuration and dynamically propagates
the change to WLM-aware clients:

1. Changes are made to the cluster configuration, such as adding and starting a
fourth cluster member to the sample configuration.

2. The Deployment Manager pushes the changes to the Node Agents which in
turn push those changes to all cluster members.

3. Meanwhile, the EJB client is still performing requests on the cluster.

4. With each request for a remote component, information about the cluster is
returned in the response from the cluster member.

If the cluster has been modified since the last request from this client, the
WLM plug-in updates its cluster data using the new information returned in
the response.

5. The EJB client makes another method call to the remote interface.

6. The request handling ORB asks the WLM plug-in for the IOR of the server to
contact.

7. The WLM plug-in returns the IOR of the next target, based on the workload
management policy, process affinity, and transaction affinity (see 7.5.1,
“Server weighted round robin” on page 359), then the request can be
processed by the ORB.

Each Node Agent monitors the availability of the application servers running on
its node. The Node Agent knows if an application server is still running by pinging
it intermittently. If an application server fails then the Node Agent no longer
receives responses on its ping messages and the Node Agent notifies the

Important: A change in the selection policy does not cause the cluster
information to be sent to a client in response to a request. The WLM plug-in
will continue using the selection policy defined at the first request. If the cluster
topology or the number of active cluster members changes, the WLM plug-in
will get the new selection policy as part of the new cluster configuration in the
response.

 Chapter 7. EJB workload management 357

Deployment Manager of the run state change. This information is then pushed
out as was described in step 2 on page 357.

If a complete failure of a node occurs, then the Deployment Manager itself will
not receive responses from its ping to the Node Agent and the clusters’
configuration will be updated.

7.5 EJB workload management routing policy
An EJB server routing policy defines how clients (such as servlets, stand-alone
Java clients, or other EJBs) choose among EJB cluster members (instances).
The server WLM relies on the routing policy to load balance or failover the client
requests to available servers. The WebSphere workload management system
provides a set of fairly complex routing policies capable of handling almost all
kinds of workload balancing and failover requirements. WebSphere EJB
workload management offers the following selection policies:

� Server weighted round robin
� Prefer local
� Process affinity
� Transaction affinity

We describe each routing policy in detail and these policies’ relationships with
the others in the following discussion. For each one of them, we explain the
behavior of the EJB workload management under this selection policy and how
to configure this type of routing policy in WebSphere.

We use the WebSphere sample application BeenThere to better demonstrate the
EJB workload management behavior.

BeenThere is composed of a servlet and a stateless session EJB. The purpose
of BeenThere is to collect information about the execution environment. The
servlet retrieves information from the Web container, and the EJB obtains

Important: One significant improvement in WebSphere Application Server V6
is that the Deployment Manager is no longer a single point of failure (SPOF)
for WLM routing as in WebSphere V5. With the new High Availability Manager
(HAMgr), a failure of the Deployment Manager triggers the HA Coordinator,
which carries the WLM routing information, to fail over to any other server in
the same HA core group, based on the defined HA policy. Thus, the WLM
routing is a guaranteed service that is always available to the client even when
a Deployment Manager failure occurs. This new HA management is discussed
in Chapter 9, “WebSphere HAManager” on page 465.

358 WebSphere Application Server V6 Scalability and Performance Handbook

information from the EJB container. The information retrieved is the server name,
Web or EJB container name, and Java process ID.

7.5.1 Server weighted round robin
The server weighted round robin routing selects the next currently available
cluster member based on a specific round robin algorithm. The policy ensures a
distribution based on the set of server weights that have been assigned to the
members of a cluster. For example, if all servers in the cluster have the same
weight, the expected distribution for the cluster would be that all servers receive
an equal number of requests. Otherwise, the distribution mechanism sends more
requests to the higher weight value servers than the lower weight value servers.
The policy ensures the desired distribution, based on the weights assigned to the
cluster members. Weighted round robin policy greatly benefits an environment
that has unbalanced hardware.

The server weight value defaults to 2 for each member of the cluster and is
maintained in the cluster routing table.

If a particular EJB server instance is stopped or otherwise unavailable, that
instance is skipped (no attempt is made to select it) until it can be verified as
being back in service.

The ORB WLM plug-in in the EJB client maintains a routing table for each server
cluster. The routing table is re-calculated for every new request coming in. There
are no additional requests to an application server once its outstanding request
ratio has reached its server weight value, but there are exceptions to this rule:

� Transaction affinity

Within a transaction, the first time an EJB server is chosen, the prevailing
selection policy for the cluster member is applied. After the EJB server is
selected, it remains bound for the duration of the transaction.

Tip: When setting the server weight values for the cluster members, you
should utilize low values to avoid load variations.

For example, you would be better off setting server weights to 2 and 5 versus
8 and 20 so that the refresh will occur more often and thus the server with the
weight of 8 will not have to sit idle while 12 requests go to the server with a
weight of 20. This way, it only sits idle for three requests instead of 12
requests.

Valid values for the weights range from 0 to 20.

 Chapter 7. EJB workload management 359

� Process affinity

This means that the EJB client and server are configured in the same
application server. For example, the EJB container and Web container share
the same application server and a servlet invokes an EJB, then the Web
container never routes EJB requests to a container in another application
server.

Let us take a close look at how server weighted round robin works in WebSphere
Application Server V6. A server cluster has two cluster members as illustrated in
Figure 7-6.

Figure 7-6 EJB WLM routing table for weighted round robin

Cluster member Server1 has a weight value of 4, another member, Server2, is
weighted 1. After the bootstrapping process, the EJB client of this cluster gets the
server clustering information, in particular the routing weight for each cluster
member. Then, the ORB WLM plug-in creates and caches a WLM routing table
reflecting the weight value of all available cluster members. In our example, this
means 4 and 1 for Server1 and Server2 respectively. The selection decision of
which cluster member to send the request to is based on the value provided by
this table.

Note: Process affinity applies to servlet and EJB clients only. It does not
affect stand-alone Java clients, because their EJB requests come from
outside of the application server process. More on Transaction and
Process affinity can be found in 7.5.3, “Process affinity” on page 370 and
7.5.4, “Transaction affinity” on page 370.

Server1

Weight = 4

Server2

Weight = 1

ORB

WLM
Plug-in

EJB
Client

Routing Table
Server1 Server2

4 1

360 WebSphere Application Server V6 Scalability and Performance Handbook

Table 7-3 describes how the routing table dynamically controls the client request
workload management:

Table 7-3 Server weighted round robin routing table

1. Before the EJB client makes its first request, the routing table reflects the
server weights: 4 and 1.

2. The first EJB request is routed to Server1 because of its higher weighted
value. After this request, the weight for Server1 is decreased by 1 to 3 in the
routing table; Server2 still has a weight of 1.

3. The second request goes round robin to Server2 and finds that its weight is
greater than 0. Server2 is picked for this request, consequently, its weight is
decreased to 0 after the second request.

4. After the third request, which was sent to Server1, the routing weights
become 2 and 0.

5. Now, since Server2 has a weight of 0, all further requests are routed to
Server1 until Server1’s weight value also reaches 0 (for exceptions to this
rule, please see the Note below).

6. Finally, the routing table has values of 0 and 0 for both servers. Now, the reset
occurs and the initial weights are added back. Subsequent requests follow the
same pattern to provide the EJB client a flexible workload management.

After request Server1 weight Server2 weight

0 requests (initial state) 4 1

1. request 3 1

2. request 3 0

3. request 2 0

4. request 1 0

5. request 0 0

Reset: 4 1

 Chapter 7. EJB workload management 361

Configuring server weighted round robin
Server weights are an attribute of the cluster, not the cluster member. They are
associated with the members of a cluster and they are only meaningful when set
on the cluster.

To set the EJB workload management server weights for your cluster members:

1. Locate the cluster member by selecting Servers -> Clusters ->
<cluster_name> -> Cluster members -> <member_name> in the
WebSphere Administrative Console.

2. On the Configuration tab, enter an appropriate value into the Weight field, as
shown in Figure 7-7 on page 363.

3. Click Apply or OK and save the configuration changes.

4. Stop and start the cluster member(s) whose weight you have changed.

Notes:

� The routing table is decremented on each new request. No new requests
are sent to an application server once its routing entry reaches zero or
less, except when overridden by:

– Affinity (Transaction, HTTPSession)
– In Process (handled by ORB)
– Prefer Local

� The original weights are added back even if a server has a weight below
zero (for example because of transaction or process affinity). This might
result in negative or zero weights for a server even after the reset. Please
note that this behavior is different from that of the plug-in WLM (as
described in 6.6.1, “Processing requests” on page 264) where the reset
always results in positive weights because the plug-in adds multiples of the
original weights if needed.

� WebSphere Application Server V6 introduces a new feature called
“fairness balancing” for EJB WLM. For example, weights of 2 and 7 will
result in a “a-bbbb-a-bbb” distribution rather than “a-b-a-bbbbbb”. This
further reduces the possibility of load variations. However, using low weight
values (for example 4 and 1 instead of 12 and 3) is still recommended.

362 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 7-7 Workload management configuration weight value

Runtime changes
To make a change to a cluster's server weights so that only the current running
system is affected, that is, so that the weights will not be saved to the cluster's
configuration in the configuration repository, do the following:

1. Locate the cluster member by clicking Servers -> Clusters ->
<cluster_name> -> Cluster members -> <member_name> in the
WebSphere Administrative Console.

2. Select the Runtime tab and enter the right value into the Weight field.

3. Click Apply or OK.

The changes become active as soon as you click Apply or OK. Restarting the
cluster or application server reloads the values from the configuration.

Example: WLM behavior using server weighted round robin
Now we use the BeenThere application to demonstrate the WLM behavior of
server weighted round robin.

Tip: If you do not see the Runtime tab, your server is down.

 Chapter 7. EJB workload management 363

We use the topology shown in Figure 7-8 to demonstrate the WLM policies. For
performance reasons, this topology is not recommended for use in a production
environment. We use this configuration only to show the various EJB workload
management features.

Figure 7-8 Sample topology for EJB workload management policies

Table 7-4 lists the cluster members weight values used in our configuration:

Table 7-4 Weight values used for our examples

Assuming a request has no affinity, the server weighted round robin routing will
select the next currently available cluster member, based on the weights of the
cluster members.

Cluster member Weight

EJB3 2

EJB4a 3

EJB4b 3

Node: app4Node

EJB
Container

BeenThere
Stateless

Application Server
EJB4b/EJBcluster

EJB
Container

BeenThere
Stateless

Application Server
EJB4a/EJBcluster

Web
Container

BeenThere
Servlet

Application Server Web4

J2EE Client

Node: app3Node

EJB
Container

BeenThere
Stateless

Application Server
EJB3/EJBcluster

EJBcluster

Application
Database

BeenThere
Entity

BeenThere
Entity

BeenThere
Entity

364 WebSphere Application Server V6 Scalability and Performance Handbook

For example, in Table 7-4 on page 364, the cluster weights describe a 2/8, 3/8,
3/8 request distribution. This means that if there are eight requests sent from a
client, EJB3 will get two of the requests, while EJB4b and EJB4a each get three
requests. As you can see in Figure 7-9, the EJB requests are distributed across
all available cluster members in a repetitive order until the value of the lower
weighted cluster member EJB3 reaches zero, at which point EJB4b and EJB4a
receive an extra request each. Remember, both EJB4a and EJB4b have the
same server weight value of 3, while EJB3 has a server weight value of 2. After
eight requests, WLM plug-in resets the routing table, it is back to 2 - 3 - 3. The
routing cycle starts all over again based on the same pattern.

Figure 7-9 Web client calling EJBs - round robin server selection

Important: Whatever the server selection policy, process affinity and
transaction affinity always override the selection policy.

 Chapter 7. EJB workload management 365

7.5.2 Prefer local
Besides the server weighted round robin routing, WebSphere Application Server
V6 provides another WLM routing policy: Prefer local.

This policy has a global scope for a given cluster. Once the Prefer local policy is
turned on, it is applied for every cluster member in the cluster. Similarly, when
you turn it off, it is off for every cluster member in your cluster.

With the Prefer local policy, the selection made by the WLM plug-in not only
depends on the running cluster members and their weight, but also on the node
where the request comes from. The WLM plug-in will only select cluster
members on the same node as the client, unless all local cluster members are
unavailable.

The advantage of the Prefer local policy is that there is no network
communication between the client and the EJB, so depending on the chosen
topology, this policy can significantly improve the overall performance.

The client is the Java virtual machine (JVM) in which the code calling the EJB is
running. This client might be a WebSphere process such as an application server
running a Web container, or an application server running an EJB container.

Prefer local results in the following behaviors:

� A servlet calls an EJB: the request goes to the EJB container running on the
same system (node).

� EJB1 is calling EJB2: the request goes to the same EJB container if EJB2 can
be found (see 7.5.3, “Process affinity” on page 370), or to another EJB
container running on the same node.

� In the case of a Java program running on the same machine as WebSphere
and using the WebSphere JRE and its ORB, the Prefer local policy will
dispatch requests among EJB containers running on the same machine. EJB
WLM requires the WebSphere ORB and its WLM plug-in. If non-WebSphere
ORBs are used, then the Java client will not be able to participate in EJB
WLM.

The client accessing an EJB may also be a Java virtual machine not running in
WebSphere, such as a J2EE client application, or a stand-alone Java program
accessing EJBs. For a remote J2EE client application, the Prefer local policy has
no influence on the request distribution because the client runs on a remote
workstation.

If there is no cluster member available on the local system (because of a failure,
or because of the topology), the request will be dispatched to available cluster

366 WebSphere Application Server V6 Scalability and Performance Handbook

members following the server weighted round robin routing policy, as described
in 7.5.1, “Server weighted round robin” on page 359.

The selection of the Prefer local option should be based on topology and
pre-production test results. Naturally, the local host call will be quicker, and if you
can put your clients (usually Web containers) on the same machines as your
servers, the Prefer local option is a good choice. If you have clients on a subset
of your machines, then you should analyze the load distribution, since client
requests come from remote machines as well as from the local machine.

Configuring the Prefer local routing policy
To activate the EJB workload management Prefer local option for a cluster:

1. Select the cluster by clicking Servers -> Clusters -> <cluster_name> in the
WebSphere Administrative Console.

2. Check the Prefer local box on the Configuration tab as shown in Figure 7-10.

3. Click Apply or OK and save the configuration changes.

4. Stop and start the changed cluster member(s) to activate Prefer local in their
configuration.

Figure 7-10 Workload management configuration Prefer local option

 Chapter 7. EJB workload management 367

Runtime changes
To activate the EJB workload management Prefer local option so that it only
affects the currently running system, that is, the Prefer local activation is not
saved to the cluster configuration in the configuration repository, do the following:

1. Select the cluster by clicking Servers -> Clusters -> <cluster_name> in the
WebSphere Administrative Console.

2. Select the Runtime tab.

3. Check the Prefer local box and click Apply or OK.

The change takes effect immediately.

Example: WLM behavior using Prefer local
We again use the BeenThere application to demonstrate the EJB workload
management behavior under the Prefer local routing policy.

As mentioned previously, in the case of a Java program running on the same
machine as WebSphere and using the WebSphere JRE and its ORB, the Prefer
local policy will dispatch requests among EJB containers running on the same
node. EJB WLM requires the WebSphere ORB and its WLM plug-in; clients
using non-WebSphere ORBs cannot participate in EJB WLM.

Our requests were sent to node app4Node, which hosts the Web application
(Web4a or Web4b) as well as EJB4a and EJB4b. As you can see in Figure 7-11
on page 369, EJB requests are distributed across the available cluster members
on the local node, app4Node, in a repetitive order. Remember, both EJB4a and
EJB4b have the same server weight value of 3.

Important: Whatever the server selection policy, process affinity and
transaction affinity always override the selection policy.

368 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 7-11 Web client calling EJBs - Prefer local policy enabled

As you can see, the behavior is different than for the server weighted round robin
routing shown in Figure 7-9 on page 365. The client request never routed to
cluster member EJB3, which is deployed to app3Node. The Prefer local policy
guarantees that the request is routed to the cluster members on the same node.

 Chapter 7. EJB workload management 369

7.5.3 Process affinity
Regardless of the workload management server selection policy, if an EJB is
available in the same cluster member as the client, all requests coming from that
client are directed to the EJB in the same JVM process. This is called process
affinity, because all requests are in-process requests. The advantage of process
affinity is that there is no need for serialization for method calls. Parameters can
be passed by value without any serialization costs, since all method calls are
performed within the same Java Virtual Machine, in the same memory space.

To take advantage of process affinity, the client can only be a servlet or an EJB.
In the case of a servlet, process affinity is only possible if the Web container
running the servlet is in the same application server as the EJB container. In the
case of an EJB (a stateless session bean acting as a facade, for instance, as
recommended by EJB development best practices), process affinity occurs when
the called EJB is in the same EJB container as the calling EJB. With IBM
WebSphere Application Server Network Deployment V6, you can only have one
EJB container per application server.

7.5.4 Transaction affinity
When several requests to EJB methods occur in the scope of the same
transaction (a user-managed transaction or a container-managed transaction),
all requests will go to the same cluster member, if possible. As soon as the WLM
plug-in notices that a transaction is started, it stops dispatching the requests to
different cluster members. All requests within the scope of this transaction are
sent to the same cluster member.

Note: Process affinity overwrites the Prefer local policy. See 7.5.2, “Prefer
local” on page 366 for more information about this policy.

Note: Transaction affinity overwrites all other server selection policies.

370 WebSphere Application Server V6 Scalability and Performance Handbook

7.6 EJB high availability and failover
Many J2EE applications rely on Enterprise JavaBeans (EJBs) to implement key
business logic. Therefore, providing a resilient and highly available EJB runtime
system is a critical task for any EJB container provider. WebSphere Application
Server V6 satisfies this requirement for EJB applications by providing an
advanced high availability (HA) solution which guarantees that EJB requests can
be serviced continuously even during various types of failures.

The EJB HA solution is not an isolated implementation; instead, it is part of a
broader scope of HA solutions provided by WebSphere as core services to
almost all kinds of J2EE components running in WebSphere. Please refer to
Chapter 9, “WebSphere HAManager” on page 465 for details.

When an EJB client makes calls from within the WebSphere container, client
container or outside of a container, the request is handled by the EJB container
in one of the cluster members. If that cluster member fails, the client request is
automatically redirected to another available server. In IBM WebSphere
Application Server Network Deployment V6, the EJB HA is achieved by a
combination of three WebSphere services: the HAManager, the EJB server
cluster and EJB workload management (WLM).

7.6.1 EJB client redundancy and bootstrap failover support
When planning an EJB HA solution, not only is EJB server redundancy needed,
but EJB client failover and redundancy should also be considered. EJB client
redundancy refers to the automatic failover capability for an EJB request
originator. In other words, an end user that initiated an EJB request can recover
from the failure of a particular EJB client instance.

The first task for any EJB client is to look up the home of the bean (except MDB).
The following two scenarios need to be considered:

� EJB requests coming from a clustered environment

Examples could be Web clients from Web containers that are
workload-managed, EJB clients from another EJB container server cluster, or
EJB clients from their own server cluster. In this case, EJB clients can use
their own server to bootstrap with the default provider URL. If the bootstrap
fails, the EJB client fails. This failure should be handled by the previous
server, for example the Web server plug-in. Another version of the same
client in a different container may bootstrap from its server successfully. By
using client redundancy, EJB failover and high availability can be achieved.

 Chapter 7. EJB workload management 371

� EJB requests coming from a non-clustered environment

Examples could be a Java client, J2EE client, C++ client, or third-party ORB
client. In this case, if the client is bootstrapping to only one server, the client
fails if the server fails, since the client is not redundant. You should bootstrap
the client to as many bootstrap servers as possible. This can be achieved by
using the bootstrapping workload management as discussed in 7.3, “EJB
bootstrapping” on page 347.

Example 7-5 Lookup with more than one bootstrap server

prop.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
prop.put(Context.PROVIDER_URL, "corbaloc::host1:9810,:host2:9810");
Context initialContext = new InitialContext(prop);

try { java.lang.Object myHome = initialContext.lookup("MyEJB");

From the above example, the EJB client has the information for two bootstrap
servers. Therefore, if the request to server host1 fails, the bootstrap engine will
automatically redirect the bootstrap request to the server on host2.

WebSphere Application Server V6 uses the CORBA CosNaming as a naming
solution. It is often convenient to use multiple bootstrap addresses for automatic
retries. Every WebSphere server process contains a naming service, and the
client application can bootstrap to any combination of servers. It is a good
practice to bootstrap to the servers in a cluster since the InitialContext is
workload-managed and you can use the simple name in the lookup. The other
option is to get the InitialContext directly from the Node Agent using the default
port (usually 2809) and use the fully qualified name in the lookup. This option,
however, is not recommended, because the Node Agent is not
workload-managed and has no failover capability.

For J2EE clients, you can specify a bootstrap host and port in the launch
command line, and try different hosts/ports if you do not succeed when using the
default URL provider.

Once the EJB home is sucessfully looked up, the naming server returns an
indirect IOR, LSD, and routing table, and the WLM plug-in redirects the client to
one of the clustered EJB containers.

7.6.2 EJB container redundancy and EJB WLM failover support
High availability of the EJB container is achieved using a combination of the
WebSphere server cluster support and workload management plug-in to the
WebSphere ORB.

372 WebSphere Application Server V6 Scalability and Performance Handbook

Redundant server topology for EJB failover support
As shown in Figure 7-12, horizontal and vertical scaling is used for application
server redundancy to tolerate possible process and machine failures.

Figure 7-12 WebSphere EJB container failover

The mechanisms for routing workload-managed EJB requests to multiple cluster
members are handled on the client side of the application. In WebSphere
Application Server V6, this functionality is supplied by a workload management
plug-in to the client ORB and the routing table in the LSD hosted in the Node
Agent. The WLM failover support for EJBs is to maintain the routing table and to
modify the client ORB to redirect traffic in case of a server failure.

The following is a list of possible failures for WebSphere processes:

� Expected server process failures, for example, stopping the server.

� Unexpected server process failures, for example, the server JVM crashes.

� Server network problems, for example, a network cable is disconnected or a
router is broken.

� Machine problems, for example, a system shutdown, operating system
crashes, or power failures.

� Overloading of EJB clients, for example, a denial of service attack, where the
system is not robust enough to handle a large number of clients, or the server
weight is inappropriate.

Master
Data

EJB
Container

EJB
Container

Tran.
Log

Admin
Data

EJB
Container

EJB
Container

Tran.
Log

Admin
Data

Incoming
Request

Deployment
Manager

Application
Database

EJB
Container Node Agent

EJB
Container Node Agent

 Chapter 7. EJB workload management 373

7.6.3 EJB failover behavior
For a specific WebSphere environment, the following three types of servers can
fail:

� Deployment Manager
� Node Agent
� WebSphere Application Server cluster member

Deployment Manager failure
The Deployment Manager provides runtime support for WLM services, which is
the key to a successful EJB failover. If the Deployment Manager fails, the WLM
information can no longer be propagated to associated cluster members and
EJB clients. This used to be a major concern in WebSphere Application Server
V5.x because it presented a single point of failure (SPOF) for EJB workload
management.

In IBM WebSphere Application Server Network Deployment V6, this limitation
has been eliminated by the introduction of the WebSphere High Availability
service. A new WebSphere component, the HAManager, is responsible for
running key services like WLM on all available servers rather than on a single
dedicated Deployment Manager. Once a Deployment Manager failure is
detected, the HAManager quickly delegates the WLM service to another
available server, such as one of the Node Agents or application servers. This
provides continuous service for EJB workload management. Therefore, the
Deployment Manager is no longer a SPOF for EJB workload management, which
is a significant improvement for WebSphere high availability.

Please refer to Chapter 9, “WebSphere HAManager” on page 465 for more
information about the HAManager functionality.

Node Agent failure
The Node Agent provides several important services to the Deployment
Manager, application servers, and application clients. Among these services, we
are most interested in the Location Service Daemon (LSD) service which is used
by EJB workload management to provide the WLM routing information to clients.

If a Node Agent failure occurs after the routing table is available on the client, the
WLM-enabled client code does not need to go to the LSD to determine to which
server the request should be routed. The WLM-aware client code handles the
routing decisions.

However, if the failure occurs before the first client request can retrieve the WLM
information, then WLM depends on the LSD request to fail over to another LSD.
Since there is no automatic failover of this service (or the Node Agent) in

374 WebSphere Application Server V6 Scalability and Performance Handbook

WebSphere V6, the developer should make sure that the client has several
options (servers) to retrieve the WLM information. See 7.3.2, “Bootstrapping
outside of a J2EE container” on page 352 for information about how this can be
achieved.

Cluster member failure
If the failure occurs on the first initial request where the routing table information
is not yet available, a COMM_FAILURE exception is returned and the ORB
recognizes that it has an indirect IOR available and resends the request to the
LSD to determine another server to route to. If the failure occurs after the client
retrieves the routing table information, the WLM client handles the
COMM_FAILURE. The server is removed from the list of selectable servers and
the routing algorithm is used to select a different server to route the request to.

Consider the following sequence of a client making a request to the EJB
container of an application server:

1. For the initial client request, no server cluster and routing information is
available in the WLM client's runtime process. The request is therefore
directed to the LSD that is hosted on a Node Agent to obtain routing
information. If the LSD connection fails, the request is redirected to an
alternative LSD if specified in the provider URL. If this is not the first request,
the WLM client already has routing information for WLM-aware clients. For
future requests from the client, if there is a mismatch of the WLM client's
routing information with what is on a server's, new routing information is
added to the response (as service context). However, for WLM-unaware
clients, the LSD always routes requests to available servers.

2. After getting the InitialContext, the client does a lookup to the EJB's home
object (an indirect IOR to the home object). If a failure occurs at this time, the
WLM code transparently redirects this request to another server in the cluster
that is capable of obtaining the bean's home object.

3. A server becomes unusable during the life cycle of the request:

– If the request has strong affinity, there cannot be a failover of the request.
The request fails if the original server becomes unavailable. The client
must perform recovery logic and resubmit the request.

– If the request is to an overloaded server, its unresponsiveness makes it
seem as though the server is stopped, which may lead to a time-out.
Under these circumstances, it may be helpful to change the server weight
and/or tune the ORB and pool properties:

• com.ibm.CORBA.RequestTimeout
• com.ibm.CORBA.RequestRetriesCount
• com.ibm.CORBA.RequestRetriesDelay
• com.ibm.CORBA.LocateRequestTimeout

 Chapter 7. EJB workload management 375

These properties can be changed using the command line or the
Administrative Console.

– If a machine becomes unreachable (network and/or individual machine
errors) before a connection to a server has been established, the
operating system TCP/IP keep-alive time-out dominates the behavior of
the system's response to a request. This is because a client waits for the
OS-specific, keep-alive time-out before a failure is detected. See
“Connection Timeout setting” on page 335 for additional information.

– If a connection is already established to a server,
com.ibm.CORBA.RequestTimeout is used (the default value is 180
seconds), and a client waits this length of time before a failure is
announced. The default value should only be modified if an application is
experiencing time-outs repeatedly. Great care must be taken to tune it
properly. If the value is set too high, failover may become very slow; if it is
set too low, requests may time out before the server has a chance to
respond.

The two most critical factors affecting the choice of a time-out value are
the amount of time to process a request and the network latency between
the client and server. The time to process a request, in turn, depends on
the application and the load on the server. The network latency depends
on the location of the client. For example, those running within the same
LAN as a server may use a smaller time-out value to provide faster
failover. If the client is a process inside of a WebSphere Application Server
(the client is a servlet), this property can be modified by editing the request
time-out field on the Object Request Broker property panel. If the client is
a Java client, the property can be specified as a runtime option on the
Java command line, for example:

java -Dcom.ibm.CORBA.RequestTimeout=<seconds> MyClient

– A failed server is marked unusable, and a JMX notification is sent. The
routing table is updated. WLM-aware clients are updated during
request/response flows. Future requests will not route requests to this
cluster member until new cluster information is received (for example, after
the server process is restarted), or until the expiration of the
com.ibm.websphere.wlm.unusable.interval. This property is set in
seconds. The default value is 300 seconds. This property can be set by
specifying -Dcom.ibm.websphere.wlm.unusable.interval=<seconds> as a
command-line argument for the client process.

EJB failover depends on whether or not this type of EJB can be
workload-managed by the container. Basically, WebSphere Application Server
provides HA and failover support for all WLM-capable EJB types. The
WLM-capable EJB types are listed in 7.2, “EJB types and workload

376 WebSphere Application Server V6 Scalability and Performance Handbook

management” on page 343. Based on that, Table 7-5 summarizes the failover
capability for the various EJB types.

Table 7-5 Summary of EJB types and failover support

Stateful session beans are an exception to the fact that the failover capability of
EJBs depends on the WLM capability of that EJB type (compare Table 7-1 on
page 346). The failover of stateful session beans is a new feature in IBM
WebSphere Application Server Network Deployment V6. See “Stateful session
bean failover support” on page 377 for more information. Therefore, IBM
WebSphere Application Server Network Deployment V6 supports the failover for
almost all types of Enterprise JavaBeans.

Stateless session bean failover support
The EJB container maintains a pool of instances of stateless session beans and
provides an arbitrary instance of the appropriate stateless session bean when a
client request is received. Requests can be handled by any stateless session
bean instance in any cluster member, regardless of whether the bean instance
handled the previous client requests. If an EJB cluster member fails, the client
request can be redirected to the same stateless EJB deployed under another
WebSphere Application Server cluster member, based on the WLM routing
policy.

Stateful session bean failover support
IBM WebSphere Application Server Network Deployment V6 supports stateful
session bean failover in the event of unexpected server failures. This is achieved
by using WebSphere Data Replication Service (DRS) and Workload

EJB types Component Failover capable

Entity bean (Option A) Home Yes

CMP bean instance No

BMP bean instance No

Entity bean (Option B,C) Home Yes

CMP bean instance Yes

BMP bean instance Yes

Session Bean Home Yes

Stateless bean instance Yes

Stateful bean instance Yes

 Chapter 7. EJB workload management 377

Management (WLM) functions. For more details about DRS, see 6.8.7,
“Understanding DRS (Data Replication Services)” on page 297.

Unlike the failover support for stateless session beans, the highly available
stateful session bean does not utilize a redundant array of stateful session bean
instances, but rather replicates its state in a highly available manner such that
when an instance fails, the state can be recovered and a new instance can take
the failed instance’s place. The state replication of a stateful session bean to
another instance is handled by DRS.

Stateful session bean failover is provided by WebSphere as a runtime feature.
You can use the WebSphere Administrative Console to enable or disable the
failover support. Depending on the scope of the failover target, you can enable or
disable the stateful session failover at the following three levels:

� EJB container
� Enterprise application
� EJB module

This feature provides great flexibility to end users under different conditions, for
example:

� If you want to enable failover for all applications except for a single
application, enable failover at the EJB container level and override the setting
at the application level to disable failover for the single application.

� If you want to enable failover for a single installed application, disable failover
at the EJB container level and then override the setting at the application level
to enable failover for the single application.

� If you want to enable failover for all applications except for a single module of
an application, enable failover at the EJB container level, then override the
setting at the module application level to disable failover for the single module.

� If you want to enable failover for a single installed EJB module, disable failover
at the EJB container level and then override the setting at the EJB module
level to enable failover for the single EJB module.

Now, let’s look at how to enable the failover support for stateful session beans at
the three different levels.

Enabling/disabling stateful session bean failover at the EJB
container level

1. In the Administrative Console, select Servers -> Application servers ->
<AppServer_Name>.

2. Expand EJB Container Settings then select EJB container.

378 WebSphere Application Server V6 Scalability and Performance Handbook

3. Select the Enable stateful session bean failover using
memory-to-memory replication checkbox. See Figure 7-13.

This checkbox is disabled until you define a replication domain. The selection
has a hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a panel where you can create
one. If at least one domain is configured, the link takes you to a panel where
you can select the replication settings to be used by the EJB container.

4. Click OK and save your changes.

Figure 7-13 Configure stateful session bean failover at EJB container level

Enabling/disabling stateful session bean failover at the application
level

1. In the Administrative Console, select Applications -> Enterprise
Applications -> <Application_name>.

2. Select Stateful session bean failover settings from the Additional
Properties.

3. Select the Enable stateful session bean failover using memory to
memory replication checkbox. This enables failover for all stateful session

 Chapter 7. EJB workload management 379

beans in this application. If you want to disable the failover, clear this
checkbox.

4. Define the Replication settings. You have the choice between two radio
buttons (refer to Figure 7-14 on page 381):

– Use replication settings from EJB container

If you select this button, any replication settings defined for this application
are ignored, that is, you do not overwrite the EJB container settings.

– Use application replication settings

Selecting this button overrides the EJB container settings. This button is
disabled until you define a replication domain. The selection has a
hyperlink to help you configure the replication settings. If no replication
domains are configured, the link takes you to a panel where you can
create one. If at least one domain is configured, the link takes you to a
panel where you can select the replication settings to be used by the
application.

5. Click OK and save your changes.

Important: When selecting the first radio button (Use replication settings
from EJB container), then memory-to-memory replication must be
configured at the EJB container level. Otherwise, the settings on this panel
are ignored by the EJB container during server startup and the EJB
container will log a message indicating that stateful session bean failover is
not enabled for this application.

380 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 7-14 Configure stateful session bean failover at application level

Enabling/disabling stateful session bean failover at the EJB module
level

1. In the Administrative Console, select Applications -> Enterprise
Applications -> <Application_name>.

2. Under Related Items, select EJB Modules.

3. Select the .jar file you want to work with.

4. Select Stateful session bean failover settings.

5. Select Enable stateful session bean failover using memory to memory
replication.

6. Define the Replication settings as shown in Figure 7-15 on page 382. You
have the choice between two radio buttons:

– Use application or EJB container replication settings

If you select this button, any replication settings defined for this EJB
module are ignored.

 Chapter 7. EJB workload management 381

– Use EJB module replication settings

Selecting this button overrides the replication settings for the EJB
container and application. This button is disabled until a replication domain
is defined. The selection has a hyperlink to help configure the replication
settings. If no replication domains are configured, the link takes you to a
panel where one can be created. If at least one domain is configured, the
link takes you to a panel where you can select the replication settings to
be used by the EJB container.

7. Select OK and save your changes.

Figure 7-15 Configure stateful session bean failover at EJB module level

Important: If you use the first radio button (Use application or EJB
container replication settings), then memory-to-memory replication must
be configured at the EJB container level. Otherwise, the settings on this
panel are ignored by the EJB container during server startup and the EJB
container will log a message indicating that stateful session bean failover is
not enabled for this application.

382 WebSphere Application Server V6 Scalability and Performance Handbook

Stateful session bean failover best practices
When designing and applying the failover support for stateful session beans on
your applications, you should consider the following best practices:

� If the stateful session bean is still associated with an active transaction or
activity session when the failure occurs, the container cannot execute the
failover for this stateful session bean. To avoid this possibility, you should write
your application to configure stateful session beans to use container
managed transactions (CMT) rather than Bean Managed Transactions (BMT).

� If you desire immediate failover, and your application creates either an HTTP
session or a stateful session bean that stores a reference to another stateful
session bean, then the administrator must ensure that the HTTP session and
stateful session bean are configured to use the same DRS replication
domain.

� Do not use a local and a remote reference to the same stateful session bean.
Normally, a stateful session bean instance with a given primary key can only
exist on a single server at any given moment in time. Failover may cause the
bean to be moved from one server to another, but it never exists on more than
one server at a time. However, there are some unlikely scenarios that can
result in the same bean instance (same primary key) existing on more than
one server concurrently. When that happens, each copy of the bean is
unaware of the other and no synchronization occurs between the two
instances to ensure they have the same state data. Thus, your application
receives unpredictable results.

Entity bean failover support
An entity bean represents persistent data. It is common for a client to make a
succession of requests targeted at the same entity bean instance. It is also
possible for more than one client to independently access the same entity bean
instance concurrently. The state of an entity bean must be kept consistent across
multiple client requests.

Within a transaction, the WLM ensures that the client is routed to the same
server based on the transaction affinity policy. Between transactions, the state of
the entity bean can be cached. WebSphere V6 supports Option A, Option B, and
Option C caching.

Entity beans can be workload-managed if they are loaded from the database at
the start of each transaction. By providing either Option B caching or Option C
caching (the default), entity beans can participate in WLM. These two caching

Important: To avoid this situation, remember that with failover enabled,
your application should never use both local (EJBLocalObject) and remote
(EJBObject) references to the same stateful session bean instance.

 Chapter 7. EJB workload management 383

options ensure that the entity bean is always reloaded from the database at the
start of each transaction.

See 7.2.3, “Entity beans” on page 345 for a detailed description of the three
caching options.

Please note that WebSphere V6 also supports optimistic concurrency control,
where the cached data is checked and a collision is detected during the commit
stage. Loading data from the database may not be required at transaction start if
the application design is in place to stamp cached entity beans.

There are a lot of data and process interactions inside and outside of EJB
containers. It is important that one client's failure in an EJB container not impact
other clients. It is also important for the underlying data to be kept in a consistent
way. According to data availability and local data currency, WLM and failover are
not supported where fault isolation and data integrity can be broken.

Note: For more information about WebSphere Application Server behavior
regarding optimistic concurrent control, please go to the InfoCenter and
search for “concurrency control.”

384 WebSphere Application Server V6 Scalability and Performance Handbook

Part 3 Implementing
the solution

Part 3

© Copyright IBM Corp. 2005. All rights reserved. 385

386 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 8. Implementing the sample
topology

This chapter provides instructions on how to implement our sample topology.
This sample topology is used to demonstrate the WebSphere Application Server
V6 scalability, workload management, and high availability features.

We also describe how to install and configure the J2EE applications BeenThere
and Trade 6.

The chapter contains the following relevant sections:

� “Installation summary” on page 392
� “Installing and configuring WebSphere Edge Components” on page 393
� “Installing WebSphere and configuring clusters” on page 395
� “Installing and configuring IBM HTTP Server 6.0” on page 416
� “Installing and configuring BeenThere” on page 426
� “Installing and configuring Trade 6” on page 436

8

Tip: You can go directly to the various sections of this chapter if you do not
plan to implement the entire scenario. For example, go to 8.5, “Installing
WebSphere and configuring clusters” on page 395 if you do not plan to
implement the Caching Proxy and/or Load Balancer but only want to use a
cluster to run BeenThere or Trade 6 applications.

© Copyright IBM Corp. 2005. All rights reserved. 387

8.1 Overview
This section gives you a quick overview of our sample topology. This includes the
software needed, a description of our sample topology, and the applications
installed in our test environment.

8.2 Software products
We are using Windows 2000 and AIX 5.2 in our test environment. The following
versions of these operating systems are used:

� Microsoft Windows 2000 Server with Service Pack 4
� IBM AIX 5.2 Maintenance Level 2 with 32 bit (unix_up) kernel

The following IBM software is used for the WebSphere implementation:

� IBM WebSphere Edge Components V6.0
� IBM JDK 1.4.2
� IBM HTTP Server 6.0
� IBM WebSphere Application Server Network Deployment V6
� IBM DB2 UDB V8.2

More information about the minimum hardware and software requirements for
WebSphere and DB2 UDB can be found at:

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html

8.2.1 The sample topology
Our sample topology on the Windows 2000/AIX platform demonstrates the
following key features:

� Use of WebSphere Edge components for caching and Web server load
distribution.

� Web container workload management with WebSphere clusters, both
horizontally and vertically (for handling servlet requests).

Important: This chapter covers both the AIX platform and the Windows 2000
platform. We describe the implementation of the sample topology on the
Windows 2000 platform. However, most steps are exactly the same on both
platforms. If there are platform differences, we emphasize this.

388 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/data/db2/udb/sysreqs.html

� EJB container workload management, both horizontally and vertically.

Figure 8-1 on page 390 illustrates the sample topology:

� A cluster of two Web servers hosts cluster.itso.ibm.com running the Load
Balancer function, anticipated by a Caching Proxy, both from WebSphere
Edge Components.

� A dedicated Deployment Manager machine managing the WebSphere
Application Server cell, running IBM WebSphere Application Server Network
Deployment V6.

� Within this cell, we have a WebSphere cluster with various application server
processes. IBM WebSphere Application Server Network Deployment V6 is
installed on both machines.

� A dedicated database server running IBM DB2 UDB V8.2.

Important: While this chapter describes how to configure a split JVM topology
with the Web containers and EJB containers running in separate application
servers, this is done so only for informational and demonstration purposes.

Recall from the note in 3.3, “Strategies for scalability” on page 74 that a
negative performance impact will likely result when an application is deployed
in this fashion. Better performance, scalability and failover is achieved when
the Web components for an application are deployed in the same application
server as the EJB components.

 Chapter 8. Implementing the sample topology 389

Figure 8-1 The sample topology

Table 8-1 shows the names, functions, locations, and IP addresses of our
systems. All machines are part of the same network. However, we choose
different IP address ranges to distinguish between the DMZ network, the
application network, and the back-end network. In a real production site, these
networks would certainly be isolated with firewalls.

Table 8-1 Machines in the sample topology

Admin Console

 App2Node

 App1Node

Node Agent

Deployment Manager

App
Data

Database
Server 1

DB

DM

Backend Network
(10.20.30.0/24)

D
B

2
C

lie
nt

D
B

2
C

lie
nt

Application Network
(10.20.20.0/24)

 Cluster
cluster.itso.ibm.com

DMZ Network
(10.20.10.0/24)

Client Network
(10.20.0.0/24)

EJB
Cont.

EJB2b

Web
Cont.

Web2b

EJB
Cont.

EJB1

Web
Cont.

Web1

EJB
Cont.

EJB2a

Web
Cont.

Web2a

Client

IBM HTTP
Server

HTTP1

IBM HTTP
Server

HTTP2

Plug-in

Plug-incproxy
 C

ac
hi

ng
 P

ro
xy

B

ac
ku

p
 C

ac
hi

ng
 P

ro
xy

lb2

 L
oa

d
B

al
an

ce
r

Ba
ck

up
 L

oa
d

B
al

an
ce

r f
or

H

TT
P

 S
er

ve
rs

 L
oa

d
Ba

la
nc

er

B
ac

ku
p

lb1

 L
oa

d
B

al
an

ce
r f

or

C
ac

hi
ng

 P
ro

xy

Client

Node Agent

 Application Server Clusters

Name Network IP address Subnet mask Function

cproxy DMZ Network 10.20.10.101 255.255.0.0 Caching Proxy

lb DMZ Network 10.20.10.102 255.255.0.0 Load Balancer

http1 DMZ Network 10.20.10.103 255.255.0.0 Web Server 1

390 WebSphere Application Server V6 Scalability and Performance Handbook

Table 8-2, shows the properties of our Web server cluster.

Table 8-2 Cluster in the sample topology

Please notice that these tables show only short names for host names. In our
sample topology, all host names belong to the itso.ibm.com domain. So, for
example, the dm machine is also known as dm.itso.ibm.com.

8.2.2 Applications used in our sample topology
We have used two sample applications in our environment.

BeenThere
BeenThere is a simple, lightweight J2EE application. It is very useful for
demonstrating workload management because it shows you which application
server responded to a request. For more information about BeenThere, see 8.7,
“Installing and configuring BeenThere” on page 426.

Trade 6.0.1
The IBM Trade Performance Benchmark Sample for WebSphere Application
Server (called Trade 6 throughout this book) is the fourth generation of the
WebSphere end-to-end benchmark and performance sample application.

The Trade benchmark is designed and developed to cover the significantly
expanding programming model and performance technologies associated with
WebSphere Application Server.

This provides a real-world workload driving WebSphere Application Server V6
implementation of J2EE 1.4 and Web Services, including key WebSphere
performance components and features.

http2 DMZ Network 10.20.10.104 255.255.0.0 Web Server 2

dm Application Network 10.20.20.100 255.255.0.0 Deployment Manager

app1 Application Network 10.20.20.103 255.255.0.0 Application servers system 1

app2 Application Network 10.20.20.104 255.255.0.0 Application servers system 2

db Back-end Network 10.20.30.100 255.255.0.0 Database server

Name Network IP address Subnet mask Function

Name Network IP address Subnet mask Function

cluster DMZ Network 10.20.10.100 255.0.0.0 Web server cluster

 Chapter 8. Implementing the sample topology 391

Trade 6's new design spans J2EE 1.4, including the EJB 2.1 component
architecture, message-driven beans, transactions (one-phase, two-phase
commit) and Web services (SOAP, WSDL, UDDI). Trade 6 also highlights key
WebSphere performance components such as dynamic caching and
WebSphere Edge Components. For more information about Trade 6, see 8.8,
“Installing and configuring Trade 6” on page 436.

8.3 Installation summary
Table 8-3 summarizes the installation procedure. These steps need to be carried
out before proceeding with the rest of this chapter. In general, we do not describe
how to install each individual component, but rather we explain how to configure
the software that is already installed.

Table 8-3 Installation summary

Important: Throughout this chapter , we are using the default application
install directories. If you are not using these defaults, make sure to make the
proper changes to the instructions provided here.

Tip: Instead of accepting the default installation directory for WebSphere
Application Server V6 on the Windows 2000 platform (C:\Program
Files\WebSphere\AppServer), we suggest that you install WebSphere in a
path that does not have any spaces or other special characters. For example,
this could be C:\WebSphere\AppServer.

Step number Action System

1 Install IBM DB2 UDB V8.2 server db

2 Install IBM DB2 V8.2 client app1, app2

3 Catalog DB2 node on clients app1, app2

4 Install IBM WebSphere Application Server Network
Deployment V6 (Deployment Manager profile)

dm

5 Install IBM WebSphere Application Server Network
Deployment V6 (Managed Node, custom profile)

app1, app2

6 Install IBM HTTP Server 6.0 and WebSphere
Application Server V6 plug-in.

http1, http2

7 Install IBM WebSphere Edge Components V6.0 cproxy, lb

392 WebSphere Application Server V6 Scalability and Performance Handbook

There are several resources regarding the installation of these products. You can
also find some information in other chapters of this book:

1. IBM DB2 UDB V8.2 client

Check section 8.8, “Installing and configuring Trade 6” on page 436 for some
instructions on configuring the system to access a remote DB2 server.

2. IBM WebSphere Application Server Network Deployment V6 profiles

Please refer to WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451.

You can also check section 8.5, “Installing WebSphere and configuring
clusters” on page 395 for a brief description.

3. IBM HTTP Server 6.0 and WebSphere Application Server V6 plug-in

A brief description of the installation of both is found in 8.6, “Installing and
configuring IBM HTTP Server 6.0” on page 416.

4. IBM WebSphere Edge Components V6.0

See Chapter 5, “Using IBM WebSphere Edge Components” on page 127 for
a description of the installation and configuration of both the Load Balancer
and Caching Proxy products.

8.4 Installing and configuring WebSphere Edge
Components

We are using both the Caching Proxy and the Load Balancer function of
WebSphere Edge Components in our sample topology. Refer to Figure 8-2 on
page 394 to see how we have implemented them in our sample topology.

 Chapter 8. Implementing the sample topology 393

Figure 8-2 Caching Proxy and Load Balancer in the sample topology

8.4.1 Configuring the Caching Proxy
The WebSphere Edge Components V6.0 contains a Caching Proxy feature
which allows you to cache often requested documents, thus cutting down the
response time.

We have provided step-by-step instructions on how to install and configure the
Caching Proxy for our sample topology in 5.6, “Caching Proxy installation” on
page 204 and 5.7, “Caching Proxy configuration” on page 212. Therefore, refer to
these sections if you wish to set up the Caching Proxy.

8.4.2 Configuring the Load Balancer
The Load Balancer function from the WebSphere Edge Components allows you
to implement load balancing for HTTP requests among two or more Web
servers. In our sample topology, we defined a cluster named cluster.itso.ibm.com
with IP address 10.20.10.100. This is also illustrated in Figure 8-2.

You can find detailed instructions on how to install and configure the Load
Balancer in 5.1, “Load Balancer installation” on page 128 and 5.2, “Load
Balancer configuration: basic scenario” on page 135.

In short, the configuration steps needed are:

1. The Load Balancer must be configured so that it recognizes the Web server
cluster (in our sample topology, the address “cluster.itso.ibm.com“) and its
members (the Web servers http1 and http2). This configuration step is
detailed in 5.2.1, “Configuring the Load Balancer cluster” on page 136.

HTTP Server

http1: 10.20.10.103

HTTP Server

http2: 10.20.10.104

Cluster: 10.20.10.100

Load BalancerWeb
Client

Caching
Proxy

cproxy: 10.20.10.101 lb: 10.20.10.102

394 WebSphere Application Server V6 Scalability and Performance Handbook

2. The Web servers (and their machines) must be properly configured so that
they can work with the cluster defined by Load Balancer. See 5.2.2,
“Configuring the balanced servers” on page 148.

Load Balancer high availability scenario
Refer to 5.3, “Load Balancer: high availability scenario” on page 162 if you also
wish to configure a backup Load Balancer for high availability.

8.4.3 Checking the Load Balancer and Caching Proxy configurations
It might be a good idea to check whether everything you configured until now is
working. To do so, open a browser and go to the URL:

http://cluster.itso.ibm.com/

This test shows you whether the Load Balancer can contact its Web server
cluster.

The next test proves that you can reach the Web server cluster through the
Caching Proxy. Configure the browser to use cproxy.itso.ibm.com with port 80 as
your connection proxy and try to connect to the same URL again:

http://cluster.itso.ibm.com/

In both cases, you should see the main page of one of the HTTP servers.

8.5 Installing WebSphere and configuring clusters
This section explains how to configure the WebSphere clusters of the sample
topology. In our sample environment, the application is separated into two
clusters: one that houses the Web containers, and one that houses the EJB
containers. The Web container cluster contains all the servlets and JSP content
used to provide presentation services to the application. The EJB cluster houses
all the business logic and Enterprise beans that access data services when
needed. In addition, we want to provide session failover and thus need to
configure persistent session management.

8.5.1 Introduction
Before you can configure the clusters and the session management, you have to
make sure that the IBM WebSphere Application Server Network Deployment V6
software is installed on the Deployment Manager machine (dm) and on both
application server machines (app1 and app2).

 Chapter 8. Implementing the sample topology 395

Make sure that you choose to install the Application Server Samples. This
includes the BeenThere application which we will install later into our topology. If
you prefer not to install the Application Server Samples, then you need to
download BeenThere separately from the redbook repository (see Appendix B,
“Additional material” on page 1037 for download instructions).

IBM WebSphere Application Server Network Deployment V6 installation has
been greatly simplified. The same software is installed on every WebSphere
node, upon which one or more profiles are then configured. Thus, after the
WebSphere V6 installation, you first configure a Deployment Manager profile on
the Deployment Manager machine. As soon as the Deployment Manager is up
and running, you can configure the managed node custom profiles on the
Application Server nodes.

8.5.2 Deployment Manager installation and profile creation
Starting IBM WebSphere Application Server Network Deployment V6 installation
opens the launchpad shown in Figure 8-3.

Figure 8-3 WebSphere installation launchpad

The launchpad allows you to install the WebSphere software (as well as the IBM
HTTP server and Web Server plug-ins). Some information is asked for (such as
the installation path) before the installation process is completed.

396 WebSphere Application Server V6 Scalability and Performance Handbook

At this point, the user is prompted to run the Profile Creation Wizard, as shown in
Figure 8-4. Make sure the checkbox Launch the Profile creation wizard is
checked and click Next.

Figure 8-4 Launching the Profile Creation Wizard

Choose the correct profile type for the node you are installing. Naturally, on the
Deployment Manager machine, you select the Deployment Manager profile and
click Next, as shown in Figure 8-5 on page 398.

Note: After a successful installation, the Profile Creation Wizard can be found
in the <WAS_HOME>/bin/ProfileCreator directory.

 Chapter 8. Implementing the sample topology 397

Figure 8-5 Choosing the Deployment Manager profile

The wizard then asks for the profile name, as shown in Figure 8-6. Enter dm and
click Next (dm becomes the default and unique profile on this node).

Figure 8-6 Entering the profile name

In the next window, accept the default profile directory suggested
(“<WAS_HOME>/profiles/dm”) and click Next. This brings you to the point where
names are asked for the node, host and cell. Fill them in as shown in Figure 8-7
on page 399 and click Next.

398 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-7 Naming cell, host and node

Finally, you are presented with a list of TCP/IP ports that will be used by the
Deployment Manager, as detailed in Figure 8-8. Check them for any possible
conflicts with previously installed software, then click Next.

Figure 8-8 Deployment Manager allocated TCP/IP ports

 Chapter 8. Implementing the sample topology 399

Windows users can decide in the following window whether the Deployment
Manager should be registered as a Windows Service. This is normally
recommended, for example to make sure that the Deployment Manager is
automatically started after a system restart. If you decide not to register the
Deployment Manager as a Windows Service during installation, you can always
do it later using the WASService.exe command-line utility.

Click Next several times until the profile installation begins.

After the installation has ended successfully, use Windows Services or open an
OS command prompt and start the Deployment Manager:

<WAS_HOME>\bin\startManager.bat (Windows)

or

<WAS_HOME>/bin/startManager.sh (AIX, Linux, etc.)

You are now ready to install and configure the IBM WebSphere Application
Server Network Deployment V6 code on the other nodes.

8.5.3 Application server nodes installation (federated nodes)
After configuring the Deployment Manager machine, the next step is to install
and configure the app1 and app2 nodes. Both will be federated (managed)
nodes of the cell, hosting several application servers.

Install IBM WebSphere Application Server Network Deployment V6 on these
nodes in exactly the same way you did on the Deployment Manager machine,
except that this time you choose a different profile. In our case, we need a custom
profile. This profile choice creates an empty node (without servers and
applications) that will be federated to an already running Deployment Manager.

1. In the Profile creation wizard, choose Create a custom profile (as shown in
Figure 8-9 on page 401) and click Next.

Important: The default Administrative Console HTTP port is now 9060 (no
longer 9090).

400 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-9 Creating a custom profile

2. You must enter the Deployment Manager data, in our case the host name
dm.itso.ibm.com (or just dm) and the default SOAP port 8879 as seen in
Figure 8-10.

Figure 8-10 Federation data for the managed node

 Chapter 8. Implementing the sample topology 401

3. Click Next. On the next panel, enter the profile name which is either app1 or
app2, depending on the machine you are currently installing; then click Next.

4. On the next panel, accept the default profile directory and click Next once
again.

5. In the Node and host names window, enter app1Node or app2Node as the Node
name and fill in the proper Hostname (see Figure 8-11). Click Next.

Figure 8-11 Node and host name of the federated node

6. The last panel shows you the suggested TCP/IP ports for this node. Verify
them for conflicts (there are usually none since WebSphere checks for used
ports) and click Next. The profile creation might run for several minutes. Click
Finish.

8.5.4 Verifying the profiles
The configuration of the cell should now look similar to the one shown in
Figure 8-12 on page 403.

To verify this, log on to the WebSphere Administrative Console and select
System administration -> Cell. Select the Local Topology tab and expand
dmCell. There should be a Deployment Manager node (dmNode) and two
application server nodes (app1Node and app2Node).

Please note that so far there are no application servers configured and no
applications deployed but a nodeagent is present on both app1Node and

402 WebSphere Application Server V6 Scalability and Performance Handbook

app2Node. So the next step is to create the application server clusters (and their
members) in the cell.

Figure 8-12 The dmCell cell base configuration (no clusters or servers configured)

After verifying this base configuration, you are now ready to start configuring the
ITSO sample topology as detailed in Figure 8-1 on page 390.

A high-level description of the procedure for creating the server clusters and its
cluster members follows (for details, see 8.5.5, “Creating the Web container
cluster” on page 404 and 8.5.6, “Creating the EJB cluster” on page 407):

1. Create the first cluster by using the WebSphere Administrative Console.

Create only the first member of the cluster during cluster creation.

 Chapter 8. Implementing the sample topology 403

2. Configure this first member exactly as you need it.

3. Create the other cluster members.

4. Repeat steps 1 on page 403 to 3 to create the second cluster.

5. Install the enterprise application into the cell. Specify module mappings to
place the Web and EJB modules into the appropriate clusters and Web
servers.

8.5.5 Creating the Web container cluster
First, we describe how to create the Web cluster, which we decided to call
WEBcluster. As mentioned before, this cluster will be used to provide workload
balancing and failover for servlets and JSPs. Our cluster consists of three
application servers on two different nodes: Web1 on app1Node and Web2a and
Web2b on app2Node.

Creating a cluster consists of three steps:

1. Step 1 allows you to enter basic cluster information.
2. Step 2 is to define the cluster members.
3. Step 3 summarizes the information you entered previously.

To create a new cluster:

1. Log on to the WebSphere Administrative Console and select Servers ->
Clusters. In the right pane, a list of clusters defined within the cell is shown.
This list should be empty for a recently installed IBM WebSphere Application
Server Network Deployment V6 cell.

2. Click New to create your first cluster. This launches the window for Step 1 of
the Create a new cluster process as shown in Figure 8-13 on page 405.

Tip: As a general rule, a cluster’s first member becomes the template for
the creation of all other members in the cluster. With this in mind, you might
wish to finish the cluster creation, configure its first member as desired and
then add additional members to the cluster. If you define all cluster
members at once during cluster creation, then any particular configuration
settings have to be chosen individually for each server afterwards.

Note: You can also use a server template when creating a cluster’s first
member. Server templates exist since WebSphere Application Server V5.0
and are used to duplicate an existing application server definition. This
definition can be used when creating new application servers with the
same configuration.

404 WebSphere Application Server V6 Scalability and Performance Handbook

.

Figure 8-13 Creating a new cluster, Step 1: Enter Basic Cluster Information

3. Enter the basic cluster information:

a. Enter WEBcluster for the mandatory Cluster name field.

b. Uncheck the Prefer local checkbox. Selecting Prefer local indicates that
EJBs running on the local node should be routed requests to first if the
local EJB container is available.

c. Check the box Create a replication domain for this cluster. This
replication domain will be used later when we enable memory-to-memory
replication of HTTP session data (for more information about this topic,
please see 6.8.7, “Understanding DRS (Data Replication Services)” on
page 297). Click Next to continue.

This brings up the Step 2 window shown in Figure 8-14 on page 406, which
allows you to create new application servers to be added to the cluster.

Important: We chose to disable the Prefer Local option in order to
demonstrate the workload management features of IBM WebSphere
Application Server Network Deployment V6. However, we recommend
that this optimization be enabled in a performance-tuned environment.

 Chapter 8. Implementing the sample topology 405

Figure 8-14 Creating a new cluster, Step 2: Create cluster members

4. To create the three clustered application servers:

a. Enter Web1 as the name for the first new member.

b. Select app1Node from the Select node pull-down.

c. Accept the defaults for all other options and click Apply to continue.

Note: We decided to use the default template for all our cluster
members rather than changing the configuration of the first application
server and then using it as a template for the other members.

The only setting we are changing afterwards is the session
management configuration. If you prefer, you can now create only the
first member, then go to 8.5.8, “Configure distributed session
management” on page 411 and configure the session management for
Web1. Then come back to the cluster configuration and add additional
members - based on the changed Web1 configuration.

406 WebSphere Application Server V6 Scalability and Performance Handbook

d. Repeat steps a on page 406 to c on page 406, add a second application
server called Web2a but this time on app2Node (do not click Next until all
members have been added).

e. Again, using the same procedure, add a third application server called
Web2b on app2Node.

f. After adding the three members, click Next to continue.

5. Check the summary (see Figure 8-15) and click Finish to create the cluster.

Figure 8-15 Creating a new cluster, Step 3: Summary

6. After completing these steps, the WebSphere Administrative Console warns
that changes have been made to the local configuration. Click Save in order
to save the changes to the master configuration. Select the Synchronize
changes with Nodes check box to make sure the changes are synchronized
to all nodes in the cell. Click Save once again.

8.5.6 Creating the EJB cluster
We continue by creating the EJB cluster, which we shall refer to as EJBcluster.
This cluster will be used to serve Enterprise beans that access data services
when needed, as well as house all the business logic. The EJB cluster also

 Chapter 8. Implementing the sample topology 407

consists of three application servers on two different nodes: Ejb1 on app1Node
and Ejb2a and Ejb2b on app2Node.

1. Log on to the WebSphere Administrative Console (if not logged on already)
and select Servers -> Clusters. In the right pane, the list of clusters defined
for the cell is shown. This time, the WEBcluster should be listed here.
Naturally, the second cluster is also created by clicking New.

2. Enter the basic cluster information about the Step 1 window of the Create a
new cluster process:

a. Enter EJBcluster as the Cluster name.

b. Again, uncheck the Prefer local checkbox.

c. Accept the default for the other option and click Next to launch the Step 2
window.

3. On the Create cluster members window:

a. Enter Ejb1 for the name of the first cluster member.

b. Choose app1Node from the Select node pull-down.

c. Accept the defaults for all other options and click Apply to continue.

d. Using the same procedure, add another cluster member called Ejb2a on
app2Node.

e. Finally, add a third cluster member called Ejb2b also on app2Node.

Note: When configuring the EJBcluster members, you might notice that
you can now select an existing application server as the template for the
new cluster members (for example Web1 or Web2a/b). See
Figure 8-16. When configuring the WEBcluster you could only select
the default template as no other application servers existed in the cell
yet.

408 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-16 Server template selection

After adding these three clustered servers, the WebSphere Administrative
Console should look as illustrated in Figure 8-17 on page 410.

 Chapter 8. Implementing the sample topology 409

Figure 8-17 Create EJBcluster with 3 members

4. Click Next to continue, then check the summary and click Finish to create the
EJBcluster.

5. After completing these steps, the console once again warns that changes
have been made to the local configuration. Click Save in order to save the
changes to the master configuration and do not forget to synchronize with the
cell’s nodes.

8.5.7 Verifying the cluster topology
Now it is time to verify the cluster topology. Using the WebSphere Administrative
Console, click Servers -> Cluster topology. After expanding all items in the right
pane, the cluster topology looks as shown in Figure 8-18 on page 411.

410 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-18 The cluster topology

The next step is to configure the WEBcluster servers to support distributed HTTP
sessions.

8.5.8 Configure distributed session management
As you know, WebSphere Application Server V6 supports distributed session
management in two ways:

� Database session persistence, where sessions are stored in a defined
database.

� Memory-to-memory session replication, where sessions are replicated to one
or more application server instances.

For more information about distributed session management, see “Session
persistence considerations” on page 78 and refer to Chapter 6, “Plug-in workload
management and failover” on page 227, especially to “Session management
configuration” on page 287.

For our sample topology, we decided to use memory-to-memory replication. The
following section shows you how to configure this function.

 Chapter 8. Implementing the sample topology 411

When creating our WEBcluster, we also created a replication domain. Thus, the
first thing to do is to verify that the replication domain has indeed been created:

1. Log on to the WebSphere Administrative Console and select Environment ->
Replication domains. You should see the replication domain WEBcluster in
the list.

2. Click the WEBcluster replication domain. The replication domain
configuration properties appear as shown in Figure 8-19.

Figure 8-19 Replication domain configuration

The default setting is ok for us (a single replica for each HTTP session), so
nothing needs to be changed.

The following instructions need to be repeated for each application server in the
WEBcluster (Web1, Web2a, and Web2b). Please remember that normally it is
recommended that you create a single member first, configure it further and only
then create the additional cluster members so that these will have the same

Note: If you did not create the replication domain along with the cluster, you
can create a new one now.

412 WebSphere Application Server V6 Scalability and Performance Handbook

settings. In our case, this approach would have avoided that we have to change
the three different members individually now.

1. Using the WebSphere Administrative Console, select Servers -> Application
servers and select the Web1 application server.

2. Expand Web Container Settings and select Session management.

3. On the next window, in the Additional Properties section, select Distributed
environment settings. The panel shown in Figure 8-20 is displayed.

Figure 8-20 Select Memory-to-memory replication

4. Check the Memory-to-memory replication radio button. This automatically
opens the next panel where additional settings can be configured. See
Figure 8-21 on page 414.

 Chapter 8. Implementing the sample topology 413

Figure 8-21 Configuring memory-to-memory session replication

5. Select WEBcluster as the Replication domain and ensure the Replication
mode is set to Both client and server. Click Apply.

Important: In a cluster whose members have enabled memory-to-memory
session replication, sessions are replicated to other servers in the cluster
that participate in the same replication domain. There can be as many
session replicas as you want (see Figure 8-19 on page 412), the default
being a single replica for each session.

When the Single replica option is chosen, one single server in the
replication domain is selected during session creation, and all updates to
the session are only replicated to that single server.

If the Entire Domain option is chosen each application server will replicate
session data to all other replication domain members - this should be
regarded as the most robust choice for memory-to-memory replication.
However, performance could be affected by this (if you have many
application servers) and you should consider this choice carefully. Using
fewer replicas (you can specify the number of replicas in the replication
domain) or database persistence might be the better choice for your
production environment.

414 WebSphere Application Server V6 Scalability and Performance Handbook

6. Click the Distributed Environment Settings link at the top of the window and
select Custom tuning parameters (under Additional Properties).

7. Select Low (optimize for failover) as the Tuning level and click Apply. See
Figure 8-22. This ensures an update of all session data of a particular session
before the servlet engine finishes its request.

Figure 8-22 Tune the distributed session management

8. Click Save to save the changes to the master configuration.

9. Repeat step 1 on page 413 to step 8 for all other cluster members.

8.5.9 Starting the clusters
It is now time to start the newly created clusters via Servers -> Clusters. Select
both clusters and click the Start button. Use the Refresh icon to verify the status.

Note: In case you did not create all cluster members at cluster creation
time (8.5.5, “Creating the Web container cluster” on page 404) but chose to
use the “Configure one member -> change it -> add additional members”
approach, you must now go back to your cluster configuration and add
Web2a and Web2b using Web1 as the server template.

 Chapter 8. Implementing the sample topology 415

8.6 Installing and configuring IBM HTTP Server 6.0
In this section we cover the IBM HTTP Server 6.0 and WebSphere plug-in
installation and configuration.

8.6.1 IBM HTTP Server 6.0 installation
IBM HTTP Server 6.0 installation is quite easy. It can be started from the same
launchpad as is used to run WebSphere V6 installations, as shown in
Figure 8-23:

Figure 8-23 Launchpad: IBM HTTP Server installation

You should write down the installation path and ports that you enter (or accept)
during IBM HTTP Server 6.0 installation. These are needed later when you
configure Web servers in the WebSphere cell. Please remember that IBM HTTP
Server 6.0 consists of a Web server (which defaults to port 80) and an
Administration server (defaults to port 8008).

Tip: You can click the icon to select all objects in a view (here all clusters).

416 WebSphere Application Server V6 Scalability and Performance Handbook

IBM HTTP Server Administration server login/password
After IBM HTTP Server 6.0 installation you should set the administrative login
user and password for the Administration server. These are required later.

To set a new administrative userid (and its password) you must use the htpasswd
command. For a Windows machine use this command:

C:\IHS\bin\htpasswd.exe -b -c C:\IHS\conf\admin.passwd <userid> <password>

And for an AIX machine:

/usr/IHS/bin/htpasswd -b -c /usr/IHS/conf/admin.passwd <userid> <password>

8.6.2 WebSphere plug-in installation
From the last step of the IBM HTTP Server 6.0 installation you can launch the
WebSphere Application Server - Plugin installation (you can call it also
separately using the launchpad). This is a quick and easy installation that can be
be resumed to a few simple steps:

1. Web server choice: You must select which Web server you are using as the
plug-in differs for the various Web servers (see Figure 8-24 on page 418).

Tip: When dealing with distributed and portable software it is always a good
idea to avoid directory names with spaces. Instead of accepting the default
directory for IHS (C:\Program Files\IBM HTTP Server), you may wish install it
in C:\IHS.

 Chapter 8. Implementing the sample topology 417

Figure 8-24 Web server choice for plug-in installation

2. Scenario choice: You must select whether the Web server runs on a
WebSphere node (in other words, a machine that runs a Node Agent) or not.
The options presented are local (WebSphere node) or remote, as shown in
Figure 8-25 on page 419.

In our sample topology, both Web servers are remote.

418 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-25 Scenario choice for plug-in installation

3. Installation path: Enter the desired installation path for the WebSphere
plug-in.

4. Path to configuration files/Web server port: Enter the location of the IBM
HTTP Server 6.0 configuration file (this must be
<IHS_HOME>/conf/httpd.conf) and the HTTP port (most likely port 80).

5. Web server definition name: Enter the name you plan to use when defining
this Web server in the cell (we used the names http1 and http2 for the Web
servers in our sample topology).

6. Plug-in configuration file location: Accept the default path suggested.

7. Application Server location: Enter the name of one of your application
servers.

This application server name will be used in priming the default plug-in
configuration file for the Web server. This gives you the best possible
“out-of-the-box” experience. Immediately after the installation the plug-in
starts routing the default applications. Additional custom applications can
then be added later but require the regeneration and propagation of the
plug-in.

Tip: The WebSphere plug-in can be installed in C:\WebSphere\Plugins
instead of the default path C:\Program Files\IBM\WebSphere\Plugins to
avoid using spaces.

 Chapter 8. Implementing the sample topology 419

You must install IBM HTTP Server and the WebSphere plug-in on both http1 and
http2 machines, according to our sample topology.

All further Web server configuration is done through the WebSphere
Administrative Console (Web server and plug-in settings). The IBM HTTP Server
Administration server does not provide a separate HTML Administrative
Console.

To start the IBM HTTP Server and its Administration server on a Windows
machine you can use the Control Panel/Services utility.

To start the IBM HTTP Server on AIX use the following command (we assume
the install path is /usr/IHS):

/usr/IHS/bin/apachectl start

And to start the Administration server:

/usr/IHS/bin/adminctl start

After the WebSphere plug-in installation completed, you can verify the IBM HTTP
Server configuration file (<IHS_HOME>/conf/httpd.conf) for the plug-in module
load command (these lines are normally at the very end of the file):

LoadModule was_ap20_module "C:\WebSphere\Plugins\bin\mod_was_ap20_http.dll"
WebSpherePluginConfig "C:\WebSphere\Plugins\config\http1\plugin-cfg.xml"

The first line loads the WebSphere plug-in (it is physically a dynamic library); the
second line specifies the plug-in configuration file location (please notice that the
Web server name (here http1) is part of this path).

8.6.3 Configuring Web servers in the cell
Web servers (whether managed or not) are now conceptually a part of the cell
topology. Since WebSphere Application Server V6, installed applications are to
be targeted to Web servers as well as to application servers (or clusters), as
discussed in 6.4, “Web server topologies” on page 244, so the Web server
definition is quite important.

Managed or unmanaged nodes
Before adding an already installed Web server to the cell you must make sure
that its node is registered in the cell. If this Web server runs on a machine that

Note: In case you cannot start the HTTP Server as a Windows Service, it may
be helpful to run <IHS_HOME>\bin\Apache instead, which may provide
additional information if an error occurs.

420 WebSphere Application Server V6 Scalability and Performance Handbook

also runs a Node Agent process then it is a managed Web server (running on a
managed node). If this Web server runs on an isolated machine (without a Node
Agent), then we are talking about an unmanaged Web server (running on an
unmanaged node). More on this subject can be found in 6.4, “Web server
topologies” on page 244.

Unmanaged nodes must be added to the cell using the WebSphere
Administrative Console prior to configuring its Web servers. Managed nodes are
already defined (or else there would be no Node Agent on them). Both Web
servers in the sample topology (http1 and http2) are unmanaged, running on the
unmanaged nodes http1Node and http2Node.

Therefore, the steps to configure the Web servers in our topology are:

1. Configure the unmanaged nodes

2. Create the Web server definitions

Configure unmanaged node(s)
To create the unmanaged nodes for the sample topology, you must follow these
steps:

1. Select System administration -> Nodes -> Add Node. This launches the
panel shown in Figure 8-26 on page 422:

 Chapter 8. Implementing the sample topology 421

Figure 8-26 Configuring an unmanaged node

2. Select Unmanaged node and click Next.

3. In the next window, enter the new node name (http1Node), its host name (in
our case, http1.itso.ibm.com, or just http1) and the OS platform it runs on, as
seen in Figure 8-27 on page 423:

422 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-27 Entering unmanaged node information

4. Click Ok.

5. Repeat steps 1 on page 421 to 4 to configure the http2Node.

6. Save and synchronize the changes.

Create Web server definitions
To add a Web server to the cell topology, follow these steps:

1. Select Servers -> Web servers and click New. This opens the panel shown
in Figure 8-28 on page 424 (Step 1 - Select a node).

 Chapter 8. Implementing the sample topology 423

Figure 8-28 Adding a Web server to the cell topology

2. Select the appropriate node (http1Node) and enter the server name http1.
The server name is a WebSphere object name, not a host name - the host
name is implied when you pick the node. Click Next.

3. On the next window (Figure 8-29 on page 425, Step 2) you must enter several
Web server properties, like its type (IHS, Apache, IIS etc.), port, installation
path and plug-in installation path. Please notice that the Service name field is
important on Windows machines for starting and stopping the Web server
from the WebSphere Administrative Console (on a managed node or when
using IBM HTTP Server). Fill in all relevant fields and click Next.

424 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-29 Entering Web server properties

4. On the next window (still Step 2) you have to enter the administration
properties, such as User ID and Password, for the Web server. Click Next.

Figure 8-30 Administration properties for the Web server

 Chapter 8. Implementing the sample topology 425

5. On the next window (Step 3) you simply select The IHS WebServer
Template and click Next.

6. Finally, on the last window (Step 4) verify the summary and click Finish.

7. Save your changes and synchronize with the nodes.

8. Repeat steps 1 on page 423 to 7 to create the http2 Web server definition on
node http2Node.

8.6.4 Testing Web server configurations
You should now be able to start and stop managed Web servers and IBM HTTP
Server unmanaged servers from the Servers -> Web servers pane. Please
remember that IBM HTTP Server unmanaged servers are a special case that
offer the same administrative features as managed servers.

Now that our Load Balancer, Caching Proxy, Web servers, and application
servers are up and running, we can install our two sample applications
(BeenThere and Trade 6) into the sample topology.

8.7 Installing and configuring BeenThere
The BeenThere application can be used to actually see workload management
(WLM) of HTTP requests and of Enterprise JavaBean (EJB) requests.
BeenThere consists of the BeenThere servlet, which is used to demonstrate to
which application server in a cluster an HTTP request was dispatched and of the
BeenThere stateless session EJB used to demonstrate to which application
server in a cluster an EJB request was dispatched.

BeenThere is one of the Application Server Samples than can optionally be
installed with IBM WebSphere Application Server Network Deployment V6. If you
installed the application samples, then you find BeenThere in the following
directory:

<WAS_ND_install_root>/samples/lib/BeenThere

Documentation for BeenThere is found at

<WAS_ND_install_root>/samples/readme_BeenThere.html

In addition, we have placed the BeenThere code into the additional materials
repository of this redbook. Refer to Appendix B, “Additional material” on
page 1037 for instructions on how to obtain it.

Important: User ID and Password are case-sensitive.

426 WebSphere Application Server V6 Scalability and Performance Handbook

The BeenThere Enterprise Application Resource (.ear) file is all we need.

8.7.1 BeenThere installation summary
The following actions have to be performed in order to set up and install
BeenThere:

� Install the application
� Regenerate the Web server plug-in (plugin-cfg.xml)
� Check server’s configuration
� Restart the servers

8.7.2 Install BeenThere
To install and deploy the BeenThere Enterprise Application Archive file, follow
these steps:

1. Log on to the WebSphere Administrative Console and click Applications ->
Install New Application.

2. The Preparing for the application installation window appears as shown in
Figure 8-31 on page 428.

a. Here you can specify the EAR/WAR/JAR module to upload and install.

By default, the BeenThere.ear file is found in
<WAS_ND_install_root>/samples/lib/BeenThere.

Click the Browse button to specify the location of the file, select it and click
Next to continue.

Note: The .ear file can reside on any node in the cell or on the local
workstation running the WebSphere Administrative Console.
Depending on where you stored it, use the Browse button next to the
Local file system or Remote file system selection.

 Chapter 8. Implementing the sample topology 427

Figure 8-31 Specify the location of the BeenThere ear file

b. The next window allows you to define mappings and bindings. We do not
need to change anything here, so click Next to accept all defaults.

c. The next panel shows warnings regarding the policy file included in the
EAR. Since we have not enabled Java 2 security in our cell you can ignore
it and click Continue.

3. The upcoming window shows the first of several steps in the Install New
Application process.

a. Select to Deploy enterprise beans during the installation.

b. Make sure the Application name BeenThere is correct as shown in
Figure 8-32 on page 429 and click Next.

428 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-32 Install New Application - Installation options

c. On the next step (Map modules to servers) you must map the application’s
modules to the proper servers. Remember that we want to run Web
modules on the WEBcluster and EJBs on the EJBcluster. In addition, the
Web modules must also be mapped to the Web servers. You can map a
module by checking it, selecting the application or Web server(s) from the
Clusters and Servers list and clicking Apply. For our scenario:

i. Select the BeenThere WAR Module, then the WEBcluster and the
Web servers http1 and http2 and click Apply.

ii. Select the BeenThere EJB Module and the EJBcluster and click
Apply.

The final mapping can be seen in Figure 8-33 on page 430. Click Next.

 Chapter 8. Implementing the sample topology 429

Figure 8-33 Install New Application - Map modules to servers

d. Accept the defaults on the Provide options to perform the EJB Deploy
panel and click Next.

e. Accept the EJB JNDI name supplied in Step 4 (Provide JNDI Names for
Beans) and click Next to reach Step 5 (Map EJB references to beans).

f. In this step you must configure an existing EJB reference in the Web
module to the BeenThereBean EJB.

Instead of using just the EJB’s short JNDI name (as was the case in Step
4 of the installation process) you must enter the fully qualified JNDI name
of cell/clusters/EJBcluster/BeenThere. This is shown in Figure 8-34.

Figure 8-34 Install New Application - Map EJB references to beans

g. Click Next to reach Step 6 (Map virtual hosts for Web modules). Accept
the default virtual host (default_host) and click Next.

h. Step 7 (Map security roles to users/groups) and Step 8 (Ensure all
unprotected...) are unnecessary for our configuration, since security is not
enabled. Therefore, accept the defaults for both and click Next.

430 WebSphere Application Server V6 Scalability and Performance Handbook

i. The last step shows the installation summary. Review it and click Finish to
perform the installation. An example of the installation log can be seen in
Figure 8-35.

Figure 8-35 Install New Application process - log of actual installation

4. Click Save to Master Configuration to save your changes (and do not forget
to check the Synchronize changes with Nodes option).

8.7.3 Regenerate Web server plug-in
After installing BeenThere, you may need to regenerate the Web servers plug-in
configuration files. The plug-in configuration files can also be generated and
propagated automatically, if the Web servers’ configuration is set up to do so
(see 6.5.2, “Generation of the plug-in configuration file” on page 258 for
information about this setting).

To manually update and propagate the plug-in file, log on to the WebSphere
Administrative Console and select Servers -> Web servers, check both http1
and http2 Web servers and click the Generate Plug-in button.

Alternatively you can regenerate a Web server plug-in from the command line on
the Deployment Manager machine using the GenPluginCfg script:

GenPluginCfg.bat -cell.name dmCell -node.name http1Node -webserver.name
http1

 Chapter 8. Implementing the sample topology 431

After the operation completes, the plugin-cfg.xml contains the latest
configuration. This file is stored on the Deployment Manager node and then
propagated (or copied manually) to the Web server nodes. The plug-in
configuration file location on the Deployment Manager node is:

<WAS_HOME>/profiles/<dmProfileName>/config/cells/<cellName>/nodes/
<nodeName>/servers/<serverName>/plugin-cfg.xml

Now check both Web servers again and click the Propagate Plug-in button to
update the plug-in configuration file on both Web servers.

If propagation of the plug-in file is not possible, you need to copy it manually to
the Web servers. The destination path on the Web servers is:

<PLUGIN_HOME>/config/<serverName>/plugin-cfg.xml

8.7.4 Configuring WEBcluster members for BeenThere
The clusters have already been started but you now need to start the BeenThere
application. Go to Applications -> Enterprise Applications, select BeenThere
and click Start. Then open the BeenThere start page using

http://<Web_Server_Name>/wlm/BeenThere

When you first open BeenThere you will notice the error message shown in
Figure 8-36 on page 433:

Important: The propagation only works for Web servers on managed nodes
or for the IBM HTTP Server 6.0, as explained in 6.5.3, “Propagation of the
plug-in file” on page 262.

432 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-36 BeenThere MBean error message

The BeenThere application requires a rather unusual (but in this case very
useful) server configuration in order to display some WebSphere internal data.

Open the WebSphere Administrative Console and select Servers ->
Application servers -> Web1 -> Administration -> Administration Services
-> Custom Properties. Click New and add the following custom property:

com.ibm.websphere.management.enableConfigMBean

Enter true as the Value. Click OK. Your console should now look like Figure 8-37
on page 434.

Repeat this procedure for all other members of the WEBcluster (Web2a and
Web2b).

 Chapter 8. Implementing the sample topology 433

Figure 8-37 Adjusting servers for the BeenThere special requirement

While still logged on to the WebSphere Administrative Console, click Servers ->
Clusters and Stop the cluster called WEBcluster. Once all its members have
stopped, select the cluster again and click Start. Start the EJBcluster if it is not
already started.

8.7.5 Verifying BeenThere
The last step is to verify that BeenThere is working correctly. Follow these steps
to verify the configuration:

1. Open the BeenThere start page. Point your browser to the following URL:

http://<your_caching_proxy>/wlm/BeenThere

In our environment:

http://cproxy.itso.ibm.com/wlm/BeenThere

Note: There should be no need to restart any other servers other than the
WEBcluster members.

434 WebSphere Application Server V6 Scalability and Performance Handbook

2. If you keep reloading the page you should see that all WEBcluster members
are round-robin chosen by the plug-in workload management (see
Figure 8-38). As this application does not use sessions, this is the expected
behavior.

Figure 8-38 BeenThere plug-in workload management

Notes:

� cproxy.itso.ibm.com resolves to the IP address of our Caching Proxy
(10.20.10.101). The caching proxy then points to the Web server cluster
(10.20.10.100) associated with the Load Balancer machine
(10.20.10.101).

� You can also bypass the Caching Proxy and directly use one of the Web
servers (http1 or http2) in the URL.

� If you encounter problems accessing BeenThere through your Web
server or Caching Proxy, try to access BeenThere directly via your
application server’s WebContainer Inbound Chain using:

http://<your_app_server>:9080/wlm/BeenThere

In our environment, the URL is:

http://app1.itso.ibm.com:9080/wlm/BeenThere

The port number depends on your configuration.

 Chapter 8. Implementing the sample topology 435

3. Enter 6 for the number of Bean invocations and click Run.

The result should look like Figure 8-39. As you can see, the six EJB requests
have been workload-managed across the EJB cluster members on both
application server nodes app1Node and app2Node. This demonstrates EJB
weighted round robin workload management.

Each time you click the Run button there is only one request to the Web
cluster. The application logic itself invokes the EJB sample method as many
times as you asked.

Figure 8-39 BeenThere demonstrating EJB workload management

You can now play around with the BeenThere application and with the cluster
configuration. Using the BeenThere application you can see some run-time
statistics and inspect the cluster member weights. Additional things to test are for
example:

� Stopping cluster members to see how the remaining members serve the
requests.

� Change application server weights to see how many requests are served by
each member.

8.8 Installing and configuring Trade 6
We now describe how to install and configure the IBM Trade Performance
Benchmark Sample for WebSphere Application Server (called Trade 6
throughout this book) into the ITSO sample topology (shown in Figure 8-1 on

436 WebSphere Application Server V6 Scalability and Performance Handbook

page 390). Compared to the lightweight BeenThere application, Trade 6 is much
more complex.

Trade 6 is the fourth generation of the WebSphere end-to-end benchmark and
performance sample application. The Trade benchmark is designed and
developed to cover the significantly expanding programming model and
performance technologies associated with WebSphere Application Server. This
application provides a real-world workload, enabling performance research and
verification test of the JavaTM 2 Platform, Enterprise Edition (J2EETM) 1.4
implementation in WebSphere Application Server, including key performance
components and features.

Overall, the Trade application is primarily used for performance research on a
wide range of software components and platforms. This latest revision of Trade
builds off of Trade 3, by moving from the J2EE 1.3 programming model to the
J2EE 1.4 model that is supported by WebSphere Application Server V6.0.
Trade 6 adds DistributedMapbased data caching in addition to the command
bean caching that is used in Trade 3. Otherwise, the implementation and
workflow of the Trade application remains unchanged.

Trade’s new design enables performance research on J2EE 1.4 including the
new Enterprise JavaBeansTM (EJBTM) 2.1 component architecture,
message-driven beans, transactions (1-phase, 2-phase commit) and Web
services (SOAP, WSDL, JAX-RPC, enterprise Web services). Trade 6 also drives
key WebSphere Application Server performance components such as dynamic
caching, WebSphere Edge Server, and EJB caching.

For details on how Trade 6 exploits all of these functions, please read the
document tradeTech.pdf which can be found inside the installation package.

Trade 6 demonstrates several new features in WebSphere V6. All
Trade-versions are WebSphere-version dependent, so Trade 6 will only work
with WebSphere Application Server V6.

Trade 6.0.1 installation summary
The following actions have to be performed in order to set up and install Trade 6:

� Download the Trade 6.0.1 installation package

Note: The most common configurations for Trade 6 are single server and
horizontal clustering scenarios.

For our sample topology, we are using a split-JVM topology which at the same
time uses horizontal and vertical clustering. As mentioned earlier, the
split-JVM topology is not the best from a performance point of view.

 Chapter 8. Implementing the sample topology 437

� Set up and configure tradedb database
� Configure the WebSphere cell
� Install the application
� Regenerate the Web server plug-in (plugin-cfg.xml)
� Restart servers

8.8.1 Download the Trade 6.0.1 installation package
You can download the Trade 6.0.1 installation package from the following Web
site:

http://www.ibm.com/software/webservers/appserv/was/performance.html

After downloading the file tradeInstall.zip, unzip the package somewhere on
the Deployment Manager machine. A directory called tradeInstall is created. This
directory contains all Trade 6 files.

8.8.2 Set up and configure tradedb database
Trade 6 uses a database to store its data. We assume the use of DB2/UDB V8.2
here (you could also use an Oracle database).

You have to create a DB2 database called “tradedb” on the database server and
DB2 client access must be set up on each application server node.

DB2 Server
We are using the default DB2 instance on the server (db2inst1).

1. In a Windows environment, log on to the database server as the DB2
administrator and start a DB2 shell using the db2cmd command.

2. Copy the file Table.ddl from the Trade 6 install directory to the DB2 server.
Then execute the following DB2 commands to create the tradedb database:

db2 create db tradedb
db2 connect to tradedb
db2 -tvf Table.ddl
db2 disconnect all
db2 update db config for tradedb using logfilsiz 1000

Note: At the time of writing this redbook, Trade 6 was not yet available for
download. It is expected soon. Please monitor this page for availability.

AIX: On AIX, first switch to user db2inst1:

su - db2inst1

438 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/was/performance.html

db2 update db cfg for tradedb using maxappls 100
db2stop force
db2start

DB2 clients
Because Trade 6 uses the DB2 universal JDBC Type 4 driver, it is not necessary
to configure the DB2 clients on the application server systems any more (as was
needed for previous versions of Trade). If however, for some reason, you have
problems accessing the database, following these steps should solve your
connection problems.

1. Log on to each of the application server machines (app1, app2, and the
Deployment Manager system also) as the DB2 instance owner and start a
db2 shell.

2. Using this shell, you can now catalog the remote database server db (thus
creating a local node representing it) using the command:

db2 catalog tcpip node <your_local_node> remote <db2_server_hostname>
server <port_from_the_services_file_on_your_OS_(50000)>

So in our case, the correct command is:

db2 catalog tcpip node db remote db server 50000

3. Next you have to catalog the remote database tradedb:

db2 catalog database tradedb as tradedb at node <your_local_node>

So in our case, the correct command is:

db2 catalog database tradedb as tradedb at node db

4. Verify the database connectivity from the DB2 client machines (app1, app2
and dm):

db2 connect to tradedb user <db_user> using <password>

In our case, the following command results in displaying the information
shown in Example 8-1 on page 440:

db2 connect to tradedb user db2inst1 using <password>

Tip: If for some reason your commands do not work, please try them with the
double quotation mark, for example:

db2 “connect to tradedb user <db_user> using <password>”

Note: Please note that the host name (db) must be resolvable on the DB2
client machine.

 Chapter 8. Implementing the sample topology 439

Example 8-1 Database connectivity from DB2 clients to DB2 server

Database Connection Information

Database server = DB2/NT 8.2.0
SQL authorization ID = DB2INST1
Local database alias = TRADEDB

8.8.3 Configure the WebSphere cell
In order to prepare your J2EE environment to run Trade 6, you have to create
several resources (like JDBC and JMS resources). For example, on each
application server node there must exist a JDBC data source that points to the
database tradedb you just created.

The configuration steps can be performed using the WebSphere Administrative
Console, but they would take a lot of time. Fortunately, however, Trade 6 comes
with a .jacl script that can be used to configure and install Trade 6 in a clustered
environment. We are using these script files.

1. Open up an OS command prompt on the Deployment Manager machine and
go to the Trade 6 code directory.

2. Run the following command:

<WAS_HOME>\wsadmin -f trade.jacl configure

In Example 8-2 on page 441 you can see an installation walkthrough for the
Windows environment (using the configure option). To make it easier to read,
input that the user has to provide, has been bolded.

Tip: In case you are not familiar with Tcl scripting and .jacl files, you can learn
more at http://sourceforge.net/projects/tcljava.

AIX: On AIX, perform the following steps to run the script:

1. Log on as root user

2. Now run the following command:

<WAS_HOME>/wsadmin.sh -f trade.jacl configure

440 WebSphere Application Server V6 Scalability and Performance Handbook

http://sourceforge.net/projects/tcljava

Example 8-2 Trade 6 installation (configure option)

--
 Trade Install/Configuration Script

 Operation: configure
 Silent: false
--

Global security is (or will be) enabled (true|false) [false]:

Is this a cluster installation (yes|no) [no]:
yes

 Collecting Cluster and Cluster Member Info

 Note: Before proceeding, all nodes intended for
 use in this cluster must be federated with the
 deployment manager using the addNode command!
 To ensure that this process goes smoothly, it
 is also important to verify that each node can
 ping the other cluster nodes based on the host
 names configured within the WebSphere profile
 creation tool.

Have all nodes been federated and network connectivity
verified? (yes|no) [yes]:

Please enter the cluster name [TradeCluster]:
EJBcluster

Available Nodes:
 app1Node
 app2Node
 dmNode

http1Node

Important: Due to the design of the Trade application, it is important to
configure the resources on the EJBcluster and not on the WEBcluster. This is
important because the messaging resources, such as the messaging engines,
MDBs, and JMS queues and topics, are predominantly accessed from the
EJB container. The Web components can be mapped to the WEBcluster and
the Web servers later during application installation, so this is not an issue.

 Chapter 8. Implementing the sample topology 441

http2Node

Select the desired node [app1Node]:

Please enter the cluster member name [TradeServer1]:
Ejb1

Current Cluster Nodes and Members:
 app1Node - Ejb1

Add more cluster members (yes|no) [yes]:

Available Nodes:
 app1Node
 app2Node
 dmNode

http1Node
http2Node

Select the desired node [app1Node]:
app2Node

Please enter the cluster member name [TradeServer2]:
Ejb2a

Current Cluster Nodes and Members:
 app1Node - Ejb1
 app2Node - Ejb2a

Add more cluster members (yes|no) [yes]:

Available Nodes:
 app1Node
 app2Node
 dmNode

http1Node
http2Node

Select the desired node [app1Node]:
app2Node

Please enter the cluster member name [TradeServer3]:
Ejb2b

Current Cluster Nodes and Members:
 app1Node - Ejb1

442 WebSphere Application Server V6 Scalability and Performance Handbook

 app2Node - Ejb2a
 app2Node - Ejb2b

Add more cluster members (yes|no) [yes]:
no

Cluster information obtained...
--
 Collecting Database/Datasource Information
--

Select the backend database type (db2|oracle) [db2]:

NOTE: wsadmin requires ";" for delimiting the database
driver path regardless of platform!

Please enter the database driver path
[c:/sqllib/java/db2jcc.jar;c:/sqllib/java/
db2jcc_license_cu.jar;c:/sqllib/java/db2jcc_license_cisuz.jar]:
${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db
2jcc_license_cu.jar

Please enter the database name [tradedb]:

Please enter the DB2 database hostname [localhost]:
db

Please enter the DB2 database port number [50000]:

Please enter the database username [db2admin]:
db2admin

Please enter the database password [password]:

--
 Configuring Cluster and Cluster Members
 Scope: dmCell(cells/dmCell|cell.xml#Cell_1)
--

Creating Cluster EJBcluster...
EJBcluster already exists!

Creating Cluster Member Ejb1...
Ejb1 already exists!

 Chapter 8. Implementing the sample topology 443

Enabling SIB Service on Ejb1...
SIB Service enabled successfully!

Creating Cluster Member Ejb2a...
Ejb2a already exists!

Enabling SIB Service on Ejb2a...
SIB Service enabled successfully!

Creating Cluster Member Ejb2b...
Ejb2b already exists!

Enabling SIB Service on Ejb2b...
SIB Service enabled successfully!

--
 Cluster Configuration Completed!!!
--

--
 Configuring JDBC/Datasource Resources
 Scope: dmCell(cells/dmCell|cell.xml#Cell_1)
--

Creating JAAS AuthData TradeDataSourceAuthData...
 Alias Name: TradeDataSourceAuthData
 User: db2admin
 Password: ********
TradeDataSourceAuthData created successfully!

Creating JDBC Provider DB2 Universal JDBC Driver Provider (XA)...
 Provider Name: DB2 Universal JDBC Driver Provider (XA)
 Implementation Class: com.ibm.db2.jcc.DB2XADataSource
 XA enabled: true
DB2 Universal JDBC Driver Provider (XA) created successfully!

Creating DataSource TradeDataSource...
 Datasource Name: TradeDataSource
 JNDI Name: jdbc/TradeDataSource
 Statement Cache Size: 60
 Database Name: tradedb
 JDBC Driver Type: 4
 Hostname: db
 Port Number: 50000

 Creating Datasource properties...
 Creating Connection Pool using defaults...
 Creating Connection Factory...
TradeDataSource created successfully!

444 WebSphere Application Server V6 Scalability and Performance Handbook

Creating JDBC Provider DB2 Universal JDBC Driver Provider...
 Provider Name: DB2 Universal JDBC Driver Provider
 Implementation Class: com.ibm.db2.jcc.DB2ConnectionPoolDataSource
 XA enabled: false
DB2 Universal JDBC Driver Provider created successfully!

Creating DataSource MEDataSource...
 Datasource Name: MEDataSource
 JNDI Name: jdbc/MEDataSource
 Statement Cache Size: 60
 Database Name: tradedb
 JDBC Driver Type: 4
 Hostname: db
 Port Number: 50000

 Creating Datasource properties...
 Creating Connection Pool using defaults...
 Creating Connection Factory...
MEDataSource created successfully!

--
 JDBC Resource Configuration Completed!!!
--

--
 Configuring JMS Resources
 Scope: dmCell(cells/dmCell|cell.xml#Cell_1)
--

Creating JAAS AuthData TradeOSUserIDAuthData...
 Alias Name: TradeOSUserIDAuthData
 User: LocalOSUserID
 Password: password
TradeOSUserIDAuthData created successfully!

Creating SIBus EJBcluster...
EJBcluster created successfully!

Adding SIBus member EJBcluster...
 Default DataSource: false
 Datasource JNDI Name: jdbc/MEDataSource
SIBus member added successfully!

Creating SIB Messaging Engine...
 Bus Name: EJBcluster
 Default DataSource: false
 Datasource JNDI Name: jdbc/MEDataSource
 Cluster Name: EJBcluster

 Chapter 8. Implementing the sample topology 445

 created successfully!

Creating SIB Messaging Engine...
 Bus Name: EJBcluster
 Default DataSource: false
 Datasource JNDI Name: jdbc/MEDataSource
 Cluster Name: EJBcluster
 created successfully!

Creating OneOfNPolicy Policy for ME0...
 Alive Period(s): 30
 Server Name: Ejb1
 ME Name: EJBcluster.000-EJBcluster
Policy for ME0 created successfully!

Modifying ME DataStore parameters...
 ME Name: EJBcluster.000-EJBcluster
 AuthAlias: TradeDataSourceAuthData
 Schema Name: IBMME0
EJBcluster.000-EJBcluster data store modified successfully!

Creating OneOfNPolicy Policy for ME1...
 Alive Period(s): 30
 Server Name: Ejb2a
 ME Name: EJBcluster.001-EJBcluster
Policy for ME1 created successfully!

Modifying ME DataStore parameters...
 ME Name: EJBcluster.001-EJBcluster
 AuthAlias: TradeDataSourceAuthData
 Schema Name: IBMME1
EJBcluster.001-EJBcluster data store modified successfully!

Creating OneOfNPolicy Policy for ME2...
 Alive Period(s): 30
 Server Name: Ejb2b
 ME Name: EJBcluster.002-EJBcluster
Policy for ME2 created successfully!

Modifying ME DataStore parameters...
 ME Name: EJBcluster.002-EJBcluster
 AuthAlias: TradeDataSourceAuthData
 Schema Name: IBMME2
EJBcluster.002-EJBcluster data store modified successfully!

Creating SIB Destination TradeBrokerJSD...
 Destination Name: TradeBrokerJSD
 Destination Type: Queue
 Reliability: EXPRESS_NONPERSISTENT

446 WebSphere Application Server V6 Scalability and Performance Handbook

 Cluster Name: EJBcluster
TradeBrokerJSD created successfully!

Creating SIB Destination Trade.Topic.Space...
 Destination Name: Trade.Topic.Space
 Destination Type: TopicSpace
 Reliability: EXPRESS_NONPERSISTENT
Trade.Topic.Space created successfully!

Creating JMS Queue Connection Factory TradeBrokerQCF...
 Connection Factory Name: TradeBrokerQCF
 Connection Factory Type: Queue
 JNDI Name: jms/TradeBrokerQCF
TradeBrokerQCF created successfully!

Creating JMS Topic Connection Factory TradeStreamerTCF...
 Connection Factory Name: TradeStreamerTCF
 Connection Factory Type: Topic
 JNDI Name: jms/TradeStreamerTCF
TradeStreamerTCF created successfully!

Creating JMS Queue TradeBrokerQueue...
 Queue Name: TradeBrokerQueue
 JNDI Name: jms/TradeBrokerQueue
 SIB Destination: TradeBrokerJSD
 Delivery Mode: NonPersistent
TradeBrokerQueue created successfully!

Creating JMS Topic TradeStreamerTopic...
 Topic Name: TradeStreamerTopic
 JNDI Name: jms/TradeStreamerTopic
 Topic Space: Trade.Topic.Space
 Delivery Mode: NonPersistent
TradeStreamerTopic created successfully!

Creating MDB Activation Spec TradeBrokerMDB...
 MDB Activation Spec Name: TradeBrokerMDB
 JNDI Name: eis/TradeBrokerMDB
 JMS Destination JNDI Name: jms/TradeBrokerQueue
 Destination Type: javax.jms.Queue
TradeBrokerMDB created successfully!

Creating MDB Activation Spec TradeStreamerMDB...
 MDB Activation Spec Name: TradeStreamerMDB
 JNDI Name: eis/TradeStreamerMDB
 JMS Destination JNDI Name: jms/TradeStreamerTopic
 Destination Type: javax.jms.Topic
TradeStreamerMDB created successfully!

 Chapter 8. Implementing the sample topology 447

--
 JMS Resource Configuration Completed!!!
--

Saving...

Saving config...

Well, that was long. Therefore, we now explain the individual steps taken by this
script:

� Collecting Cluster and cluster member Info

As the first task, the script collects all data regarding the desired topology
(cluster, nodes and cluster members). As shown in the walkthrough, you must
enter our sample topology configuration for the cluster EJBcluster.

� Collecting database/datasource Information

The script now collects information regarding the database connection. You
must supply the same data as when configuring (and testing) the DB2 client
on each node. One thing that deserves special attention is the use of a
WebSphere variable (DB2UNIVERSAL_JDBC_DRIVER_PATH) on the path to DB2
java libraries (JARs).

Important: Because we have used a variable for the JDBC driver path, we
now need to set the value for this variable according to our DB2 client
installation. Go to Environment -> WebSphere Variables. Click
DB2UNIVERSAL_JDBC_DRIVER_PATH and enter the path to your
SQLLIB/java directory, for example C:/Program Files/IBM/SQLLIB/java. You
need to set this value for each node individually or you can use a cell wide
variable if the path is identical on all nodes.

To use a cell wide variable, you must delete any existing
DB2UNIVERSAL_JDBC_DRIVER_PATH variable (which, by default, exists
but contains no value) on the nodes. If the variable exists at the node level, the
cell wide variable will not be used and you will not be able to connect to the
database if there is no or a wrong value provided in the node level variable.

Attention: As you will see, the script creates cell wide datasource
definitions. That is why the use of WebSphere variables is the only way that
cell-level JDBC data providers can work in a heterogeneous environment.

You can define a default cell-level value for the variable used here (like
“C:\SQLLIB\java“), and override it with a different value (like
“/home/db2inst1/sqllib/java“) at node level when necessary.

448 WebSphere Application Server V6 Scalability and Performance Handbook

� Configuring the cluster and cluster members

Here the script tries to create the cluster and its members (if they are not
already created). The script also enables the Service Integration Bus service
at server startup.

� Configuring JDBC/datasource resources

Now the script creates the J2C authentication entry
(TradeDataSourceAuthData) which is needed when security is enabled, the
JDBC providers and their data sources. There is one non-XA data source
(“MEDataSource“, to be used by the messaging engines) and one XA data
source (“TradeDataSource“, to be used by the application).

� Configuring JMS resources

Here he script creates the required J2C authentication entry
(TradeOSUserIDAuthData), creates a bus (also named EJBcluster) and sets
the EJBcluster cluster as its member.

Then the script creates two additional messaging engines (one was created
automatically). Each ME gets its own schema name (in other words, each ME
will have its own set of tables in the database) and a policy that locks it in a
single server.

Finally the script creates several messaging-related resources, such as bus
destinations, JMS queues/topics (and connection factories), and JMS
activation specification for the MDBs (message-driven beans).

� Saving configuration

The final step is that all changes are saved into the cell’s master
configuration.

Note: In WebSphere Application Server V6, a ME is an in-process service
running within an Application Server. HAManager’s default behavior makes
every ME able to “float” between a list of servers (you can even state the
preferred ones). So you could have a single ME that automatically starts up
on a different cluster member whenever its hosting server is no longer
available. The best performance, though, is obtained by having an ME in
every server. The mentioned policies restrain the ME’s ability to start up on
another server.

 Chapter 8. Implementing the sample topology 449

8.8.4 Install Trade 6 from the WebSphere Administrative Console
You are now ready to install the Trade 6 Enterprise Application Archive. We could
install Trade 6 by using the script again (this time with the install option). Instead,
we shall do it using the WebSphere Administrative Console.

1. Log on to the WebSphere Administrative Console and click Applications ->
Install New Application. The Preparing for the application installation
window is displayed (compare to the BeenThere installation, Figure 8-31 on
page 428).

a. First you have to specify the EAR/WAR/JAR module to upload and install.
Select Browse to specify the location of the Trade.ear file, select it, and
click Next to continue.

b. On the next window you can define mappings and bindings. We do not
need to change anything here, so click Next to accept all defaults.

c. Click the Continue button on the Application Security Warnings window.

2. The upcoming window shows the first of 12 steps in the Install New
Application process.

a. On the Step 1 window (Select installation options), make sure the Deploy
enterprise beans check box is selected. Please note that the Application
Name Trade has been filled in automatically. Click Next.

Note: The reason for installing Trade6.ear using the Administrative Console
rather than the .jacl script is our split-JVM environment. Using the
Administrative Console allows you to deploy the Web components to the
WEBcluster and the EJBs to the EJBcluster during the installation. The
alternative is to install the application using the script and then change the
mappings to the clusters and the EJB references afterwards.

If you do not use such an environment, you can easily use the .jacl script for
the install process. In fact, you can then actually configure the environment
and install the application at the same time - in one call of the script.

See 8.8.6, “Install Trade 6 using the installation script” on page 453 for
information about how to use the script for the install process.

Note: The .ear file can reside on any managed node in the cell or on
the local workstation running the WebSphere Administrative Console.
Depending on where you stored it, click the Browse button next to the
Local file system or Server file system path.

450 WebSphere Application Server V6 Scalability and Performance Handbook

b. On the Step 2 window (Map modules to servers) change the default
mapping so that the EJB module (TradeEJBs) is mapped to EJBcluster
and the Web module is mapped to WEBcluster as well as to both Web
servers (just like you did during the BeenThere installation, see
Figure 8-33 on page 430). Click Next.

c. On the Step 3 window (Provide options to perform the EJB Deploy) you
should change the Database type to the version you are using (in our case
to DB2UDB_V82).

d. Click Step 9 (Map EJB references to beans). A window similar to
Figure 8-40 on page 452 is shown.

i. Change the JNDI name of the ejb/Trade reference binding in the
TradeWeb module to its fully qualified JNDI name:

cell/clusters/<EJB_Cluster_Name>/ejb/TradeEJB

In our environment, the correct fully qualified JNDI name is:

cell/clusters/EJBcluster/ejb/TradeEJB

ii. Change the JNDI name of ejb/Quote reference binding in the
TradeWeb module to its fully qualified JNDI name:

cell/clusters/<EJB_Cluster_Name>/ejb/QuoteEJB

In our environment, the correct fully qualified JNDI name is:

cell/clusters/EJBcluster/ejb/QuoteEJB

 Chapter 8. Implementing the sample topology 451

Figure 8-40 Provide fully qualified JNDI names for the TradeWeb module level

e. Click Step 12 (Summary). Review the options and click Finish to perform
the installation (see Figure 8-41 on page 453). This can take a few
minutes.

452 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 8-41 Summary for installing the Trade 6 application

3. Finally, after the installation has completed, save your changes to the master
configuration and synchronize with the nodes.

8.8.5 Regenerate Web server plug-in and start servers
After installing Trade 6 you may need to regenerate and propagate (or copy) the
Web servers’ plug-in configuration files. The procedure is the same as shown in
“Regenerate Web server plug-in” on page 431.

After the regeneration and propagation of the plug-in is finished, you have to
restart the clusters (WEBcluster and EJBcluster).

8.8.6 Install Trade 6 using the installation script
You can alternatively use the installation script that comes with Trade 6 to
configure and install it into a cluster. However, this installation script installs
Trade6 EAR into a non-split-JVM environment (which is recommended anyway
for performance reasons).

 Chapter 8. Implementing the sample topology 453

If you want to use the install script for Web and EJB containers in different
clusters, then you need to manually change the mappings after installation. This
is explained in step 6 on page 457.

To perform the installation and configuration using the trade.jacl script follow
these steps:

1. Open an OS command prompt on the Deployment Manager node and go to
the directory where the tradeInstall.zip files were extracted to (for example
“C:\tradeInstall” or “/tmp/tradeInstall“).

2. Run the WebSphere Application Server Network Deployment setupCmdLine
script to setup your shell environment.

C:\tradeInstall>C:\WebSphere\AppServer\bin\setupCmdLine.bat

3. Make sure the Deployment Manager is running. If not, you can start it using
the startManager script:

C:\tradeInstall>C:\WebSphere\AppServer\bin\startManager.bat

4. You have two choices:

a. Launching the script without specifying an option or using the all option,
which configures and installs Trade 6 at the same time.

C:\tradeInstall>C:\WebSphere\Appserver\bin\wsadmin.bat -f trade.jacl
all

b. Alternatively, if you have already configured the environment previously
using the script with the configure option, then you can now only install
the code by specifying the install option.

C:\tradeInstall>C:\WebSphere\AppServer\bin\wsadmin.bat -f trade.jacl
install

AIX: On AIX, do the following:

/tmp/tradeInstall # /usr/WebSphere/AppServer/bin/setupCmdLine.sh

AIX: On AIX, do the following:

/tmp/tradeInstall # /usr/WebSphere/AppServer/bin/startManager.sh

AIX: On AIX, use the following command:

/tmp/tradeInstall # /usr/WebSphere/AppServer/bin/wsadmin.sh -f
trade.jacl install (or all)

454 WebSphere Application Server V6 Scalability and Performance Handbook

In either case, a dialog launches where you need to enter several settings.
When using the all option, then you need to enter all the values as described
in 8.8.3, “Configure the WebSphere cell” on page 440.

For the install-only process, the following values are needed:

a. Is this a cluster installation: yes

b. Enter the cluster name: EJBcluster

c. Enter the database type: db2

5. Wait until the script ends (it takes some time, especially for the EJB
deployment). An example of trade.jacl script execution (with the install
option) can be seen in Example 8-3:

Example 8-3 Trade 6 installation (install option)

--
 Trade Install/Configuration Script

 Operation: install
 Silent: false
--

--
 Installing Trade
--

Is this a cluster installation (yes|no) [no]:
yes

Have all nodes been federated and network connectivity
verified? (yes|no) [yes]:

Please enter the cluster name [TradeCluster]:
EJBcluster
.....
.....
Select the backend database type (db2|oracle) [db2]:

Installing application {Trade}...
 Application Name: Trade
 Ear file: trade.ear
 Target Cluster: EJBcluster
 Deploy EJB: true
 Deploy WebServices: true
 Use default bindings: true
 Use Ear MetaData: true

 Chapter 8. Implementing the sample topology 455

 Deployed DB Type: DB2UDB_V82
Starting application install...
WASX7327I: Contents of was.policy file:
 grant codeBase "file:${application}" {
 permission java.security.AllPermission;
};
Retrieving document at 'file:......./TradeServices.wsdl'.
ADMA5016I: Installation of Trade started.
ADMA5058I: Application and module versions validated with versions of
deployment targets.
ADMA5018I: The EJBDeploy command is running on enterprise archive (EAR) file
C:\..........\app5808.ear.
Starting workbench.
Creating the project.
Building: /tradeEJB
Deploying jar tradeEJB
Creating Top Down Map
Generating deployment code
Refreshing: /tradeEJB/ejbModule.
Building: /tradeEJB
Invoking RMIC.
Generating DDL
Generating DDL
Writing output file
Shutting down workbench.
EJBDeploy complete.
0 Errors, 0 Warnings, 0 Informational Messages
ADMA5007I: The EJBDeploy command completed on
C:\.........\app_fff1dabc32\dpl\dpl_Trade.ear
WSWS0041I: Web services deploy task completed successfully.
ADMA5005I: The application Trade is configured in the WebSphere Application
Server repository.
ADMA5053I: The library references for the installed optional package are
created.
ADMA5005I: The application Trade is configured in the WebSphere Application
Server repository.
ADMA5001I: The application binaries are saved in
C:\WebSphere\AppServer/profiles/dm\wstemp\Scriptfff1d6f38a\workspace\cells\dmCe
ll\applications\Trade.ear\Trade.ear
ADMA5005I: The application Trade is configured in the WebSphere Application
Server repository.
SECJ0400I: Successfuly updated the application Trade with the
appContextIDForSecurity information.
ADMA5011I: The cleanup of the temp directory for application Trade is complete.
ADMA5013I: Application Trade installed successfully.
Install completed successfully!

--
 Trade Installation Completed!!!

456 WebSphere Application Server V6 Scalability and Performance Handbook

--

Saving...

Saving config...

6. As we are using a split-JVM environment, we must now correct the
application server mappings so that the EJBs are deployed onto the
EJBcluster and the Web module is mapped to the Web servers also. Open
the WebSphere Administrative Console and select Applications ->
Enterprise Applications -> trade -> Map modules to servers and do the
proper mappings.

7. Correct the EJB references in the Web modules, as explained in step 2d on
page 451.

8. Save and synchronize the changes, regenerate the plug-in files and
propagate/copy them.

9. Verify that both clusters (WEBcluster and EJBcluster) as well as the Trade 6
application are started.

8.8.7 Working with Trade 6
The last step is to verify the Trade 6 installation. First you should test if Trade 6
runs on your application server without using the entire topology, that is
connecting directly to the WebContainer Inbound Chain of one of your
application servers.

Open the Trade 6 start page using the following URL (the port number depends
on your configuration):

http://<host_name>:9080/trade

In our environment, the URL is:

http://app1.itso.ibm.com:9080/trade

If this works, then in a second step you should test using one of the Web servers,
for example:

http://http1.itso.ibm.com/trade

If this works, then you can test the whole topology, that is, through the Caching
Proxy, Load Balancer, and Web server cluster using:

Tip: The Trade 6 configure option did many changes to the environment, so it
is a good idea to check the JVM log files for unusual error messages.

 Chapter 8. Implementing the sample topology 457

http://<your_caching_proxy>/trade

In our environment, the URL is:

http://cproxy.itso.ibm.com/trade/

All of these URLs display the Trade 6 index page as shown in Figure 8-42.

Figure 8-42 Trade 6 index page

Before you can start using the Trade 6 application, you first have to populate the
database:

1. Click the Configuration link on the left-hand side of the Trade 6 index page.

2. In the Configuration utilities window, click (Re-)populate Trade Database.
Wait until the database population has been completed.

Note: cproxy.itso.ibm.com resolves to the IP address of our caching proxy
(10.20.10.101). The caching proxy then points to the Web server cluster
(10.20.10.100) associated with the Load Balancer machine (10.20.10.101).

458 WebSphere Application Server V6 Scalability and Performance Handbook

3. Before closing the window, review the default Trade 6 configuration and click
the Update Config button.

4. After populating the database, run the following DB2 commands to update
DB2 statistics:

db2 connect to tradedb user <db_user> using <password>
db2 reorgchk update statistics

5. Click the Go Trade! link on the left-hand side of the Trade 6 index page. You
are forwarded to the Trade 6 login page shown in Figure 8-43.

6. Click the Log in button and start to use Trade 6.

Figure 8-43 Trade 6 Login page

Note: It is very important that you run these commands.

 Chapter 8. Implementing the sample topology 459

8.8.8 Verify failover with Trade 6
Now that you have Trade 6 up and running, verify WebSphere’s failover
functionality. The following outlines a scenario you could use to do so. Before you
begin, ensure that all servers are started.

1. Log into Trade 6.

2. On one of the WEBcluster servers (Web1, Web2b, or Web2a) a session has
been created. Stop two of the Web servers, for example Web1 and Web2b.

3. Continue using Trade 6, this will force Web2a to handle all your application
requests. You are now certain that your session lives in the Web2a server.

4. To verify WebSphere failover, you can now restart another Web server of the
WEBcluster, for example Web1. After this server has been restarted, you
must then stop Web2a.

5. After it has stopped, continue using Trade 6, your session will still exist and
you can continue using Trade 6 without any interruptions.

This proves that session persistence is working on the WEBcluster. Another
scenario could be to stop one or more EJBcluster application servers, or you
could try shutting down an entire node.

8.8.9 Volume testing Trade 6
In order to test the throughput and scalability of a particular application or
hardware architecture, you need to simulate a high workload. There are a
number of tools available for this purpose. Some are available for free and some
are not. Refer to 17.3, “Tools of the trade” on page 945 for instructions on how to
do this.

8.8.10 Uninstalling Trade 6
Trade 6 can always be uninstalled like any other enterprise application. However,
if you wish to undo all settings made by the trade.jacl script you need to perform
these additional steps after removing the application:

1. Write down all schema names used for each of the three messaging engines
(you will have to drop all their tables after all following steps). Select Service
integration -> Buses -> EJBcluster -> Messaging engines. For each
messaging engine, click its link, select Additional Properties -> Data store
and write down the value of the Schema name field (the values should be
IBMME0, IBMME1 and IBMME2).

2. Remove the bus named EJBcluster (select Service integration -> Buses,
check the WEBcluster bus and click Delete).

460 WebSphere Application Server V6 Scalability and Performance Handbook

3. Remove the data sources:

a. First, select Resources -> JDBC Providers, choose the dmCell scope
(by removing the Node name) and click Apply. Now select DB2 Universal
JDBC Driver Provider -> Data sources, select the MEDataSource data
source and click Delete.

b. Now select Resources -> JDBC Providers -> DB2 Universal JDBC
Driver Provider (XA) -> Data sources, check TradeDataSource and
click Delete.

c. You can also delete the J2C authentication data entry by selecting
Security -> Global security -> JAAS Configuration -> J2C
Authentication data, checking both the TradeDataSourceAuthData and
TradeOSUserIDAuthData entries and clicking Delete. There is no need to
remove the JDBC providers.

4. Remove JMS resources. Select Resources -> JMS Providers -> Default
messaging. This is the Default messaging provider page. Make sure you are
at dmCell scope before proceeding.

a. Select JMS queue connection factory under Connection Factories,
check the TradeBrokerQCF connection factory and click Delete.

b. Go back to the Default messaging provider page, select JMS topic
connection factory from the Connection Factories, check the
TradeStreamerTCF connection factory and click Delete.

c. Go back to the Default messaging provider page, under Destinations
select JMS queue, check the TradeBrokerQueue queue and click Delete.

d. Go back to the Default messaging provider page, select JMS topic from
the Destinations, check the TradeStreamerTopic topic and click Delete.

e. Go back to the Default messaging provider page, select JMS activation
specification from the Activation Specifications, check both the
TradeBrokerMDB and TradeStreamerMDB entries and click Delete.

5. Remove the core group policies. Select Servers -> Core groups -> Core
group settings -> DefaultCoreGroup -> Policies, check all three Policy for
MEx policies and click Delete.

6. Finally, save and synchronize the changes. It is a good idea to restart both
clusters (WEBcluster and EJBcluster) and the Deployment Manager.

7. No it is not over yet. The last step is to drop all tables that were created for the
messaging engines. The schemas created on the database were IBMME0,
IBMME1 and IBMME2. Connect to the tradedb database and execute the db2
commands shown in Example 8-4 on page 462.

It is important that you drop all tables listed, and repeat this for each schema.

 Chapter 8. Implementing the sample topology 461

Example 8-4 Dropping all tables from ME schemas

C:\SQLLIB\BIN>db2 connect to tradedb user administrator
Enter current password for administrator:

 Database Connection Information

 Database server = DB2/NT 8.2.0
 SQL authorization ID = ADMINIST...
 Local database alias = TRADEDB

C:\SQLLIB\BIN>db2 list tables for schema ibmme0

Table/View Schema (...)
------------------------------- ---------------
SIB000 IBMME0
SIB001 IBMME0
SIB002 IBMME0
SIBCLASSMAP IBMME0
SIBKEYS IBMME0
SIBLISTING IBMME0
SIBOWNER IBMME0
SIBXACTS IBMME0

 8 record(s) selected.

C:\SQLLIB\BIN>db2 drop table ibmme0.sib000

Attention: It is very important to drop these tables from the database, or else
whenever you run the trade.jacl configure script again, the MEs created will
always fail during instantiation (their UUID will conflict with whatever was left
from the previous installation in the database).

More information can be found in the WebSphere Application Server V6
InfoCenter. Search for the sections “Tips for troubleshooting messaging
engines“ or “Problems when re-creating a Service Integration Bus“.

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Lots of information about buses, messaging engines, and data stores can be
found in Chapters 10 and 11 of the redbook WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

462 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Part 4 High availability
and caching

Part 4

© Copyright IBM Corp. 2005. All rights reserved. 463

464 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 9. WebSphere HAManager

IBM WebSphere Application Server Network Deployment V6 introduces a new
feature called High Availability Manager (HAManager) that enhances the
availability of WebSphere singleton services like transaction or messaging
services and provides an extremely fast native message transport that is
leveraged by DRS for both HTTP session replication and stateful session bean
failover. It can leverage the latest storage technologies to provide fast recovery
time of two-phase transactions. In addition, it adds the possibility of hot standby
support to high availability solutions using conventional failover middleware such
as IBM HACMP or Tivoli System Automation. We discuss various HA scenarios
in this chapter.

9

Note: There is a major change in this redbook compared to the previous
version (IBM WebSphere V5.1 Performance, Scalability, and High Availability,
WebSphere Handbook Series, SG24-6198-01): we have removed the high
availability section of the book and moved it into a new redbook entitled
IBM WebSphere Application Server Network Deployment V6: High availability
solutions, SG24-6688. Therefore, you will find information regarding the new
High Availability Manager in this book but no explanation as to how to make
WebSphere objects highly available using external clustering software, such
as IBM HACMP and Tivoli System Automation. For this kind of information,
please refer to the aforementioned redbook.

© Copyright IBM Corp. 2005. All rights reserved. 465

9.1 Introduction
IBM WebSphere Application Server Network Deployment V6 comes with a new
feature: High Availability Manager, commonly called HAManager, to enhance the
availability of singleton services in WebSphere as well as provide group services
and group messaging capabilities to WebSphere internal components. These
singleton services include:

� Transaction service (Transaction log recovery)
� Messaging service (Messaging engine restarting)

The HAManager runs as a service within each application server process
(Deployment Manager, Node Agents, or application servers) that monitors the
health of WebSphere clusters. In the event of a server failure, the HAManager
will failover any singleton services that were running on the server that just failed.
Examples of such services would include the recovery of any in-flight
transactions and/or restarting any messaging engines that were running there.
As depicted in Figure 9-1 on page 466, each application server process runs a
HAManager component and shares information through the underlying
communication infrastructure Distribution and Consistency Services (DCS) such
that no single point of failure will exist in the topology. Every member in a
WebSphere cluster knows where singleton services are running.

Figure 9-1 Architecture of a single core group configuration

Application
Server 1

DCS Services

HAManager

Application
Server 2

DCS Services

HAManager

Application
Server 3

DCS Services

HAManager

DCS Traffic

Application
Server 4

DCS Services

HAManager

Application
Server 5

DCS Services

HAManager

Application
Server 6

DCS Services

HAManager

Core Group

466 WebSphere Application Server V6 Scalability and Performance Handbook

WebSphere V6 uses a peer-to-peer hot failover model that dramatically improves
recovery time. By leveraging Network Attached Storage technology, WebSphere
clusters can be made highly available with a simpler setup. No external high
availability software is required.

9.2 Core group
A core group is a high availability domain within a cell. It serves as a physical
grouping of JVMs in a cell that are candidates to host singleton services. It can
contain stand-alone servers, cluster members, Node Agents or the Deployment
Manager, each of these run in a JVM. See Figure 9-2 on page 467.

Figure 9-2 Conceptual diagram of a core group

Each JVM process can only be a member of one core group. Naturally, cluster
members must belong to the same core group. At runtime, the core group and
policy configurations are matched together to form high availability groups. For

Note: Deployment Managers and Node Agents cannot be made highly
available with HAManager. Refer to the redbook WebSphere Application
Server Network Deployment V6: High availability solutions, SG24-6688 for
information about how to achieve this.

Default Core Group for Cell

Application
Server

Application
Server

Application
Server

Deployment
Manager

Node Agent Node Agent

HA Manager

HA Manager

HA Manager HA Manager

HA Manager

HA Manager

Cell

 Chapter 9. WebSphere HAManager 467

more information about policies and high availability groups, see 9.2.4, “Core
group policy” on page 474 and 9.3, “High availability group” on page 479.

A set of JVMs can work together as a group to host a highly available service. All
JVMs with the potential to host the service join the group when they start. If the
singleton is scoped to a WebSphere cluster, such as a Transaction Manager or a
messaging engine, then all members of the cluster are part of such a group of
JVMs that can host the service. WLM information for clusters is available to all
members of the core group in a peer-to-peer fashion.

A core group cannot extend beyond a cell, or overlap with other core groups.
Core groups in the same cell or from different cells, however, can be federated to
share WLM information using the core group bridge service. In a large-scale
implementation with clusters spanning multiple geographies, you can use a
variety of transport types for different core groups and link them together with the
core group bridge service to form flexible topologies. The most important thing is
that all JVMs in a core group must be able to open a connection and send
heartbeat messages to each other.

9.2.1 Core group coordinator
After the membership of the core group stabilizes at runtime, certain members
are elected to act as coordinators for the core group. A core group coordinator is
responsible for managing the high availability groups within a core group. The
following aspects are managed by the core group coordinator:

� Maintaining all group information including the group name, group members
and the policy of the group.

� Keeping track of the states of group members as they start, stop, or fail and
communicating that to every member.

� Assigning singleton services to group members and handling failover of
services based on core group policies.

Preferred coordinator servers
By default, the HAManager elects the lexically lowest named group member to
be the coordinator. Since being a coordinator takes up additional resources in
the JVM, you may wish to override the default election mechanism by providing

Tip: If your node is installed on a server with IBM HACMP or Tivoli System
Automation, you may wish to use the persistent node IP label as the host
address for your node because this IP alias is available at boot time whether a
HACMP cluster is online or not, and it is also not prone to physical network
adapter failures.

468 WebSphere Application Server V6 Scalability and Performance Handbook

your own list of preferred coordinator servers in the WebSphere Administrative
Console. You can do this by selecting Servers -> Core groups -> Core group
settings -> <core_group_name> -> Preferred coordinator servers.
Specifying just one server in the list does not make it a single point of failure. The
HAManager simply gives the server a higher priority over others in the core
group instead of giving it an exclusive right to be a coordinator. Consider the
following when deciding which JVMs should become preferred coordinators:

� Find a JVM with enough memory

Being a coordinator, a JVM needs extra memory for the group and status
information mentioned earlier. For core groups of moderate size, the memory
footprint is small. You can enable verbose garbage collection to monitor the
heap usage of the JVM running as the coordinator and to determine whether
the JVM heap size needs to be increased or more coordinators are needed.

� Do not put the coordinator in a JVM that is under a constant heavy load

A coordinator needs CPU cycles available to react quickly to core group
events, for example, when one of the core group servers crashes, the
coordinator needs to update the status of that server and to communicate the
event to all group members. Any heavily loaded system will prevent the
HAManager from functioning properly and thus jeopardize your WebSphere
high availability environment. A heavily loaded system is not one that is
running at 100% of its capacity, but one that is running a much heavier
workload than it can handle. Under such load, a system will be unable to
schedule the tasks required for a coordinator in a reasonable amount of time.
For example, if an alarm was scheduled to run every two seconds, such a
system would have the alarm firing but not being processed for maybe 20
seconds. Clearly, this severely disrupts the normal processing of the HA
services. The HAManager displays a warning message (HMGR0152) when it
detects these types of scheduling delays. If this message is observed then
you need to take action to prevent the circumstances causing this problem.
That may include stopping paging, retuning the thread pools to a more
reasonable level for the number of CPUs in the system or using more or faster
hardware for the application. The usual causes for this problem are either:

– Swapping

– The server is configured to use a very large number of threads for when
compared with the number of CPUs on the system.

– Other processes or JVMs on the system are causing thread scheduling
delays (that is, the total number of active busy threads on the system is too
high for it).

These symptoms typically impact everything on the system.

� Use a JVM that is not often started or stopped

 Chapter 9. WebSphere HAManager 469

When a preferred coordinator server is stopped then a small amount of CPU
will be used on all machines in the core group to recover the coordinator
state. This typically takes well under a second. If the server is later restarted
then the same process is repeated as the new coordinator recovers the state.

Using multiple coordinators can reduce the rebuild time by spreading the
rebuild and steady state coordinator CPU/memory load over multiple
computers. However, the amount is CPU required in steady state is practically
zero and the rebuild CPU is also minimal in almost all scenarios. The only
scenarios where the rebuild times would increase beyond subsecond times
are when there is a very large number of JVMs in the core group as well as a
very large number of clustered applications or JMS destinations. Very large
means tens of thousands.

To explain the election of coordinators, let’s look at an example configuration with
a core group consisting of the following JVMs in lexical order:

� app1Node/Ejb1
� app1Node/Web1
� app1Node/nodeagent
� app2Node/Ejb2a
� app2Node/Ejb2b
� app2Node/Web2a
� app2Node/Web2b
� app2Node/nodeagent
� dmNode/dmgr

Possible configurations of preferred coordinator servers and election results are:

Table 9-1 Example configurations and results of preferred coordinator servers

Number of
coordinators

Preferred
coordinator
servers

Inactive group
members

Elected coordinators

1 nil nil app1Node/Ejb1

1 app1Node/Ejb1 app1Node/Ejb1 app1Node/Web1

2 app1Node/Ejb1 nil app1Node/Ejb1,
app1Node/Web1

2 dmNode/dmgr,
app1Node/Ejb1

nil dmNode/dmgr,
app1Node/Ejb1

2 app1Node/Ejb1,
dmNode/dmgr

nil app1Node/Ejb1,
dmNode/dmgr

2 app1Node/Ejb1,
app1Node/Web1

app1Node/Ejb1 app1Node/Web1,
app1Node/nodeagent

470 WebSphere Application Server V6 Scalability and Performance Handbook

As JVMs take up the role of a coordinator during a view change, a message is
written to the SystemOut.log file as seen in Example 9-1.

Example 9-1 Message for a JVM becoming an active coordinator

[10/27/04 17:24:46:234 EDT] 00000013 CoordinatorIm I HMGR0206I: The
Coordinator is an Active Coordinator for core group DefaultCoreGroup.

For JVMs that do not become coordinators, the message in Example 9-2 is
displayed.

Example 9-2 Message for a JVM joining a view not as a coordinator

[10/27/04 18:49:03:016 EDT] 0000000a CoordinatorIm I HMGR0228I: The
Coordinator is not an Active Coordinator for core group DefaultCoreGroup.

The preferred coordinator list can be dynamically changed. If there is a newly
elected coordinator, a message as in Example 9-3 on page 471 is written to the
SystemOut.log.

Example 9-3 Message for an active coordinator retiring from the role

[10/27/04 17:28:51:766 EDT] 00000013 CoordinatorIm I HMGR0207I: The
Coordinator was previously an Active Coordinator for core group
DefaultCoreGroup but has lost leadership.

Coordinator failure
When a JVM process with the active coordinator is no longer active (because it is
stopped or crashes), the HAManager elects the first inactive server in the
preferred coordinator servers list. If there is none available, it will simply elect the
lexically lowest named inactive server. If there are fewer JVMs running than the
number of coordinators in the core group settings, then all running JVMs are
used as coordinators.

The newly elected coordinator initiates a state rebuild, sending a message to all
JVMs in the core group to report their states. This is the most CPU-intensive
operation of a coordinator. Multicast is the ideal transport type for this operation.
See “Multicast” on page 478 for more information.

How many coordinators do I need?
Most medium-scale core groups only need one coordinator. The following are
possible reasons for increasing the number of coordinators:

� Heavy heap usage found in the verbose garbage collection log of the JVM
acting as the active coordinator.

 Chapter 9. WebSphere HAManager 471

� High CPU usage when a newly elected coordinator becomes active.

Both of these conditions are only a problem under the following circumstances:

� There are thousands of WebSphere clusters deployed in the core group.

� There are thousands of JMS destinations deployed in the core group.

� A WebSphere Extended Deployment application using partitioning is having
more than 5000 partitions.

For 99% of customers, it won’t be necessary to use more than a single
coordinator. Normally, you’ll use a preferred server to pin the coordinator to a
server that doesn't start/stop typically but if that server fails then the coordinator
will move to the lexically lowest JVM.

9.2.2 Transport buffer
The underlying message transport of HAManager is a reliable publish/subscribe
messaging service, known as Distribution and Consistency Services (DCS). A
buffer is created to hold unprocessed incoming messages and outgoing
messages that have not been acknowledged.

The default memory size is 10MB with the rationale to reduce memory footprint.
As the buffer is shared with DRS for HTTP session replication and stateful
session bean state replication, you may wish to increase the buffer size if your
WebSphere environment has high replication demands. When an application
server is running low on the transport buffer, a HMGR0503I message is
displayed in the SystemOut.log of the JVM logs. This is not an error message. It
is simply an informational message that indicates a congestion event has
occurred in the transport buffer. The messages that are not sent during the
congestion are retried later or they will be sent as a batch to make use of the
transport buffer more efficiently.

Congestion should normally only occur when doing a lot of session replication or
when a large core group is started by simultaneously starting all members.
Congestion can be reduced by tuning the buffer size.

The ideal setting is very dependant on load but during some internal
benchmarks, we used buffer sizes of 80MB for a cluster that was processing
20,000 HTTP requests per second and each request resulted in 10k of session
state to replicate. This is an extreme that very few customers would see in
practice but gives an idea of the scale of things.

472 WebSphere Application Server V6 Scalability and Performance Handbook

Example 9-4 Informational message when the transport buffer is running low

HMGR0503I: The message path of the internal data stack named <data stack name>
is highly congested.

To change the transport buffer size, open the WebSphere Administrative
Console and click Servers -> Application server -> <AppServer_Name> ->
Core group service (under Additional Properties). See Figure 9-3 on page 473
for the configuration panel.

Figure 9-3 Change the transport buffer size of an application server

Important: The replication function was heavily tuned for the 6.0.2 release of
WebSphere and we recommend at least that level to customers with heavy
HTTP session replication needs.

Important: This setting is per application server. You need to perform this
change for all the application servers in the core group.

 Chapter 9. WebSphere HAManager 473

9.2.3 Distribution and Consistency Services
Distribution and Consistency Services (DCS) provide the underlying group
services framework for the HAManager such that each application server
process knows the health and status of JVMs and singleton services. It basically
provides view synchronous services to the HAManager. DCS itself uses RMM as
its reliable pub/sub message framework. RMM is an ultra high speed
publish/subscribe system that WebSphere uses internally for its core group
communication fabric as well as for DRS traffic.

9.2.4 Core group policy
A core group policy determines how many and which members of a high
availability group are activated to accept work at any point of time. Each service
or group can have its own policy. A single policy manages a set of high
availability groups (HA groups) using a matching algorithm. A high availability
group must be managed by exactly one policy. For more information about HA
groups please refer to 9.3, “High availability group” on page 479.

Policies can be added, deleted or edited while the core group is running. These
changes take effect immediately. There is no need to restart any JVMs in the
core group for a policy change to take effect.

To create or edit a core group policy, click Servers -> Core groups -> Core
group settings -> <core_group_name> -> Policies -> New or
<existing_policy>. The panel in Figure 9-4 is shown.

474 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 9-4 Editing or creating a core group policy

There are five types of core group policies available:

� All active policy
� M of N policy
� No operation policy
� One of N policy
� Static policy

We describe the more common policies in detail below.

One of N Policy
Only one server activates the singleton service at a time under this policy. If a
failure occurs, the HAManager will start the service on another server. Make sure
that all external resources are available to all high availability group members at
all times when using this policy. For example, if database access is required for
messaging, all members should have the remote database catalogued. If there
are transaction logs, they should be put on a Network Access Storage (NAS) that
is available to all members. This is the recommended policy for systems that
require automatic failovers and do not use external high availability software.

 Chapter 9. WebSphere HAManager 475

The one-of-N policy has the following additional options to cater for different
usage scenarios:

� Preferred servers

You can specify an ordered list of servers that the HAManager observes when
choosing where to run a singleton service.

� Quorum

Leave this checkbox unchecked.

This option is only needed for WebSphere Extended Deployment customers
using partitioning and using hardware to enforce quorums. If you are however
using WebSphere Partition Facility and the appropriate hardware, then please
contact IBM support to help you configuring this setting correctly.

� Fail back

When enabled, a singleton service will be moved to a preferred server when
one becomes available. One example usage is the Transaction Manager.
When the failing server with the Transaction Manager becomes online again,
it should re-acquire the Transaction Manager service as Transaction Manager
failover only caters for recovery processing.

� Preferred servers only

This option makes a singleton service to run exclusively on servers in the
preferred servers list.

Two default one-of-N policies are defined for the DefaultCoreGroup: Clustered
TM Policy for the high availability of a Transaction Manager and Default SIBus
Policy for protecting the Service Integration Bus (messaging) services.

No operation policy
Using this policy, the HAManager never activates a singleton service on its own.
It is primarily intended to be used with an external clustering software, such as
the IBM HACMP. The software controls where to activate a singleton service by
invoking operations on the HAManager MBean.

Typically, this mode is used when overall system infrastructure dictates the
singleton service to have dependencies on resources managed outside
WebSphere. For example, Transaction Manager logs may be placed on a
Journaled File System (JFS) that is present on a SAN disk. Only one server can
mount a JFS file system at a time, even though it is on a shared disk.

Important: The default policies should never be edited, changed or deleted.
They can be overridden by new policies that have a more specific matchset.

476 WebSphere Application Server V6 Scalability and Performance Handbook

Recovery time is significantly reduced than the cold standby model in previous
versions of WebSphere Application Server since all JVMs are running before a
failover event. The expensive JVM startup time is avoided during the critical
failover time.

Static
This policy should be used when you want the singleton service to run on a
specific high availability group member. If the member is not online, the singleton
service will not be running. The singleton service will not automatically failover.
Manual intervention is required. The fixed member can be changed on the fly
without restarting WebSphere. This option is useful when failover is undesirable.
If the server then fails, the service can be moved to another server by updating
the server name on the policy and saving it.

9.2.5 Match criteria
Every singleton service is managed by a high availability group to which a policy
is assigned at runtime. The assignment is done by comparing the match criteria
of the set of available policies against the properties of the high availability
groups. The policy with the strongest match will be assigned to the HA group.
You can edit a policy by clicking Servers -> Core groups -> Core group
settings -> New or <existing_core_group_name> -> Policies -> New or
<existing_policy_name> -> Match Criteria.

Refer to Table 9-2 on page 477 and Table 9-3 on page 477 for match criteria
name/value pairs of messaging engines and Transaction Managers:

Table 9-2 Match criteria for messaging engines

Table 9-3 Match criteria for Transaction Managers

Name Value Match targets

type WSAF_SIB All messaging engines

WSAF_SIB_MESSAGING_ENGINE Name of your
messaging engine

One particular
messaging engine

WSAF_SIB_BUS Name of your bus All messaging engines
in a bus

IBM_hc Name of your cluster All messaging engines
in a cluster

Name Value Match targets

type WAS_TRANSACTIONS All Transaction Managers

 Chapter 9. WebSphere HAManager 477

9.2.6 Transport type
A transport type is the type of network communication a core group uses to
communicate to its members. There are three types of transports available:

� Multicast
� Unicast
� Channel Framework

No matter which transport type is used, there is always a socket between each
pair of JVMs for point-to-point messages and failure detection. For example, if
you have a total of eight JVMs in your core group, then every JVM will have
seven sockets to others.

Multicast
Multicast is a high performance protocol and the HAManager is designed to
perform best in the multicast mode especially when using very large core groups.
Typical scenarios for multicast are:

� There are over 70 JVMs in the core group
� Many JVMs are created on a small number of large SMPs

Publishing a message in this mode is efficient as the publish only has to transmit
once. Only a fixed number of threads is used independent of the number of JVMs
in a core group. However, consider the following factors to decide if multicast is
suitable for your environment:

� Multicast typically requires all JVMs in the core group to be on the same
subnet (TTL can be tuned, please contact IBM support for details).

� All members in a core group receive multicast messages. JVMs waste CPU
cycles on discarding messages that are not intended for them.

Unicast
Communications between JVMs are performed via the direct TCP sockets
between each pair of JVMs under this transport mode. The unicast mode has the
following advantages and disadvantages:

� Unicast is WAN friendly. There is no limitation to localize JVMs on a single
subnet.

IBM_hc Cluster name All Transaction Managers in a cluster

GN_PS Home server name One particular Transaction Manager

Name Value Match targets

478 WebSphere Application Server V6 Scalability and Performance Handbook

� Publishing a message which is intended only for a small number of servers is
more effective than multicast. Servers that have no interest in the message
will not waste CPU cycles on discarding messages.

� Only a fixed number of threads are used regardless of the number of JVMs.

� Publishing a message to a large number of servers is more expensive
considering each message is sent once per destination JVM.

Channel Framework
This default transport mode has similar pros and cons as unicast. It is more
flexible than unicast in the sense that a core group in this transport is associated
with a channel chain, and a chain can use HTTP tunneling, SSL or HTTPS. The
performance of channel framework is around 50% less than unicast for tasks
such as HTTP session replication. It is a trade-off option between performance
and flexibility for different environments. SSL and HTTP tunneling are only
available using the channel framework transport.

If the transport type in a core group is changed, all JVMs in that group must be
restarted. The following is the recommended procedure for changing the
transport type:

1. Stop all cluster members and Node Agents in the core group.

2. Modify the transport type using the WebSphere Administrative Console by
clicking Servers -> Core groups -> Core group settings ->
<core_group_name>.

3. Change the Transport type setting on the Configuration tab.

4. Perform a manual synchronization using the command line utility syncNode.

5. Start all Node Agents.

6. Start all cluster members and application servers.

9.3 High availability group
High availability groups are dynamic components created from a core group.
Each group represents a highly available singleton service. The active members
in a group are ready to host the service at any time. See Figure 9-5.

 Chapter 9. WebSphere HAManager 479

Figure 9-5 High availability group for a Transaction Manager

To view a list of high availability groups, click Servers -> Core groups -> Core
group settings -> <core_group_name>. Then select the Runtime tab. Specify
a match criterion for a list of specific high availability group(s) or an asterisk (*) as
a wildcard to get a complete list of groups. For example, specifying
type=WAS_TRANSACTIONS results in a list of Transaction Manager high
availability groups. See Figure 9-6 on page 480.

Figure 9-6 Find high availability groups for Transaction Managers

Transaction
Manager

Application
Server

Transaction
Manager

Application
Server

Transaction
Manager

Application
Server

HA Group for Transaction Manager
Clustered TM Policy

Deployment
Manager

EJB Cluster

Default Core Group for Cell

480 WebSphere Application Server V6 Scalability and Performance Handbook

When you click Show groups, a list of high availability groups that match the
criteria you specified is displayed as shown in Figure 9-7 on page 481. Each high
availability group is displayed along with its associated policy.

Figure 9-7 Listing high availability groups of Transaction Managers

Select any high availability group and a list of group members is displayed as
shown in Figure 9-8 on page 482. Only running JVMs are displayed in the group
member list. From here you can manage the group members by activating,
deactivating, enabling or disabling them.

 Chapter 9. WebSphere HAManager 481

Figure 9-8 Managing a high availability group

9.4 Discovery of core group members
A JVM that is starting in a core group goes through three stages before joining
the group:

1. Not connected

The JVM has not established network connectivity with other group members.
It will send a single announcement message if the multicast transport mode is
used. Or it will send a message to each member of the group if unicast is
used. It sends multiple messages in unicast because it doesn't know which
other members are started.

2. Connected

The JVM has already opened a stream to all current members of the installed
view. The coordinator will consider this JVM as a candidate to join the view. A
view is the set of online JVMs ready for running singleton services.

3. In a view

The JVM is a full participant in a core group at this stage. The view is updated
and installed in all members.

When a new view is installed, message HMGR0218I is displayed in the
SystemOut.log file of each JVM in the group indicating how many JVMs are
currently a member of the view.

482 WebSphere Application Server V6 Scalability and Performance Handbook

Example 9-5 Message HMGR0218I for a new view being installed

[10/27/04 18:52:20:781 EDT] 00000011 CoordinatorIm I HMGR0218I: A new core
group view has been installed. The view identifier is
(16:0.dmCell\app1Node\Ejb1). The number of members in the new view is 5.

JVMs in the current view constantly try to discover others that are not in the view.
Each in-view JVM periodically tries to open sockets to JVMs that are not in the
current view. This process continues until all JVMs in the core group are in the
view.

9.5 Failure Detection
The HAManager monitors JVMs of core group members and initiates failover
when necessary. It uses two methods to detect a process failure:

� Active failure detection
� TCP KEEP_ALIVE

9.5.1 Active failure detection
A JVM is marked as failed if its heartbeat signals to its core group peers are lost
for a specified interval. The DCS sends heartbeats between every JVM pair in a
view. With the default settings, heartbeats are sent every 10 seconds and 20
heartbeat signals must be lost before a JVM is raised as a suspect and a failover
is initiated. The default failure detection time is therefore 200 seconds.

This setting is very high and should be modified by most customers in a
production environment. A setting of 10-30 seconds is normally recommended
for a well tuned cell.

When a JVM failure is detected, it is “suspected” by others in the view. This can
be seen in the SystemOut.log shown in Example 9-6 on page 494. The new view

Attention: When running a large number of JVMs on a single box, the
FIN_WAIT parameter of the operating system may need to be tuned down to
prevent running out of ephemeral ports. Please consult your OS
documentation for details.

Note: Settings as low as 6 seconds are possible but typically only used with
WebSphere Extended Deployment WPF applications. Please contact IBM
support or services if there is a need to tune these settings below the
recommended range.

 Chapter 9. WebSphere HAManager 483

installation in this case is fast in order to achieve fast recovery. New view
installations are slower for new views generated from JVM startups. Otherwise,
there would be frequent view installations when several JVMs are started
together.

Heartbeat delivery can be delayed due to a number of commonly-seen system
problems:

� Swapping

When a system is swapping, the JVM could get paged and heartbeat signals
are not sent or received in time.

� Thread scheduling thrashing

Java is not a real time environment. When there are a lot of runnable threads
accumulated in a system, each thread will suffer a long delay before getting
scheduled. Threads of a JVM may not get scheduled to process heartbeat
signals in a timely fashion. This thread scheduling problem also impacts the
applications on that system as their response times will also be unacceptable.
Therefore, systems must be tuned to avoid CPU starving or heavy paging.

Any of the above problems can cause instability in your high availability
environment. After tuning the system not to suffer from swapping or thread
thrashing, the heartbeat interval can be lowered to increase the sensitivity of
failure detection.

Use the core group custom properties listed in Table 9-4 to change the heartbeat
frequency:

Table 9-4 Changing the frequency of active failure detection

Heartbeating is always enabled regardless of the message transport type for the
HAManager.

9.5.2 TCP KEEP_ALIVE
If a socket between two peers is closed then the side receiving the closed socket
exception will signal its peers that the other JVM is to be regarded as failed. This

Name Description Default
value

IBM_CS_FD_PERIOD_SECS This is the interval between
heartbeats in seconds.

10

IBM_CS_FD_CONSECUTIVE_MISSED This is the number of
missed heartbeats to mark
a server as a suspect.

20

484 WebSphere Application Server V6 Scalability and Performance Handbook

means that if a JVM panics or exits then the failure is detected as quickly as the
TCP implementation allows. If the failure is because of a power failure or a
network failure then the socket will be closed after the period defined by the
KEEP_ALIVE interval of the operating system. This is normally a long time and
should be tuned to more realistic values in any WebSphere system. A long
KEEP_ALIVE interval can cause many undesirable behaviors in a highly
available WebSphere environment when systems fail (including database
systems).

This failure detection method is however less prone to CPU/memory starvation
from swapping or thrashing. Both failure detectors together offer a very reliable
mechanism of failure detection.

9.6 JMS high availability
WebSphere Application Server V6 includes a pure Java implementation of JMS
messaging engines. Given each application server has database connectivity to
the database server for persistent messages, the messaging service can be
protected by a one-of-N policy. For details on JMS high availability and
configuration options, please refer to Chapter 12, “Using and optimizing the
default messaging provider” on page 643.

9.7 Transaction Manager high availability
The WebSphere transaction service writes to its transaction logs when
WebSphere handles global transactions that involve two or more resources.
Transaction logs are stored on disk and are used for recovering in-flight
transactions from system crashes or process failures. As the transactions are
recovered, any database locks related to the transactions will be released. If the
recovery is somehow delayed, not only the transactions cannot be completed,
database access may be impaired due to unreleased locks.

As depicted in Figure 9-9 on page 486, as two application servers perform
two-phase commit (2PC) transactions, they place table/row locks in the
database, depending on the configuration of lock granularity.

Attention: The TCP KEEP_ALIVE value is a network setting of your operating
system. Changing its value may have side-effects to other processes running
in your system. Refer to “Connection Timeout setting” on page 335 for details
on how to overwrite this value in a WebSphere environment.

 Chapter 9. WebSphere HAManager 485

Figure 9-9 Two phase commit transactions and database locking

In the event of a server failure, the transaction service of the failed application
server is out of service. Also, the in-flight transactions that have not be committed
may leave locks in the database, which will block the surviving server from
gaining access to locked records.

Figure 9-10 Server failure during an in-flight transaction

H A D a t a b a s eH A D a t a b a s e

D a t a b a s e L o c k sD a t a b a s e L o c k s

E J B
2 a

E J B
2 b

E J B
2 a

E J B 2 aE J B 2 a
T r a n s a c t io nT r a n s a c t io n

L o gL o g

A p p l i c a t io n S e r v e r

E J B 2 a

T r a n s a c t io n
S e r v ic e

E J B 2 bE J B 2 b
T r a n s a c t io nT r a n s a c t io n

L o gL o g

A p p l i c a t io n S e r v e r

E J B 2 b

T r a n s a c t i o n
S e r v ic e

H A D a t a b a s eH A D a t a b a s e

D a t a b a s e L o c k sD a t a b a s e L o c k s

E J B
2 a

E J B
2 b

E J B
2 a

E J B 2 aE J B 2 a
T r a n s a c t io nT r a n s a c t io n

L o gL o g

A p p l ic a t io n S e r v e r

E J B 2 a

T r a n s a c t io n
S e r v ic e

E J B 2 bE J B 2 b
T r a n s a c t io nT r a n s a c t io n

L o gL o g

A p p l ic a t io n S e r v e r

E J B 2 b

T r a n s a c t io n
S e r v ic e

486 WebSphere Application Server V6 Scalability and Performance Handbook

The only way to complete the transactions and release the locks is to restart the
failed server, or start the application server process in another box that has
access to the transaction logs.

Figure 9-11 Recovery of failed transactions

Using the new HAManager, a recovery process will be started in other members
of the cluster. The in-flight transactions are committed and locks released. We
describe this configuration in detail in the next sections.

9.7.1 Transaction Manager HA of previous versions of WebSphere
In previous versions of WebSphere Application Server, transaction log recovery
could only be achieved by restarting an application server which leads to slow
recovery time from a failure. This is known as a cold failover as the backup server
needs to start an application server process during a failover. WebSphere also
requires IP failover for transaction log recovery in older versions of WebSphere.
Figure 9-12 on page 488 depicts a typical HA setup with previous versions of
WebSphere Application Server:

H A D a ta b a s eH A D a ta b a s e

D a ta b a s e L o c k sD a ta b a s e L o c k s
.

E J B
2 b

E J B 2 aE J B 2 a
Tra n s a c tio nT ra n s a c t io n

L o gL o g

A p p lic a t io n S e rve r

E J B 2 a

Tra n s a c t io n
S e rv ic e

E J B 2 bE J B 2 b
T ra n s a c tio nT ra n s a c tio n

L o gL o g

A p p lic a tio n S e rve r

E J B 2 b

R e c o ve ry
P ro c e s s
E J B 2 a

T ra n s a c t io n
S e rv ic e

N A S

 Chapter 9. WebSphere HAManager 487

Figure 9-12 Traditional Transaction Manager high availability setup

A shared drive is attached to both servers using SSA/SAN fabric. It holds the
configuration repository, log files, transaction logs and the WebSphere
Application Server binaries as well. Both servers have their own IP addresses,
and share a virtual IP address through which clients can access the application
server. An external HA software, such as IBM HACMP or Tivoli System
Automation, is used to manage the resource group of the virtual IP address,
shared disk and its file systems, and scripts to start/stop the WebSphere
Application Server process.

If the active server crashes or fails, the HA software moves the resource group to
the backup server. It involves assigning and mounting the shared drive on the
backup server, assigning the virtual IP address and then starting the WebSphere
Application Server process. Although this is a proven solution, it has a number of
disadvantages:

� Recovery time is slow. The application server process can only be started
during a failover to recover the transaction logs and resolve any in-doubt
transactions. This can potentially take more than five minutes due to JVM
start times.

� There is a single virtual IP address to be failed over, which leads to a
limitation of having both servers on the same subnet. This is not desirable

Server 2

HAHA
DatabaseDatabase

Transaction Transaction
Logs and Logs and
other Filesother Files

Application Server
Process

Transaction
Manager

Database
Client

External HA
Software

SSA/
SCSI/
iSCSI/

FC

Secondary N/W
for Heartbeat

Application Server
Process

Transaction
Manager

Server 1

Database
Client

External HA
Software

Network
Boot IP 1 Service IP Boot IP 2

488 WebSphere Application Server V6 Scalability and Performance Handbook

when you want to have your application servers physically located at different
sites for a high level of resilience.

� The configuration of this HA solution is highly complex. Additional HA
software is necessary. And there are timing and dependency issues in
starting components in the resource group.

However, there are scenarios where an external solution is still best. For
example, if you want to keep a messaging engine collocated with a DB2
database and HACMP is being used to manage the database availability. In this
case, HACMP must also be used to tell the HAManager on which machine to run
the messaging engine.

By leveraging latest storage technologies, WebSphere Application Server V6
offers a much simpler HA configuration. The newly introduced peer-to-peer
hot-failover model allows transaction recovery to be performed in a much shorter
time. While the new version can still work along side with external HA software,
IBM WebSphere Application Server Network Deployment V6 itself can be a
Transaction Manager HA solution with the right environment. Refer to 9.7.2,
“Hot-failover of Transaction Manager using shared file system” on page 489 for
details.

9.7.2 Hot-failover of Transaction Manager using shared file system
This is the simplest of all Transaction Manager HA setups. It requires all cluster
members to have access to a shared file system on NAS or SAN, where the
transaction logs are stored, see Figure 9-13 on page 490.

Normally, every cluster member runs its own Transaction Manager. When a
failover occurs, another cluster member will be nominated to perform recovery
processing for the failed peer according to the Clustered TM Policy of the core
group. The recovery process completes in-doubt transactions, releases any locks
in the back-end database and then releases the transaction logs. No new work
will be performed beyond recovery processing. The Transaction Manager will fail
back when the failed server is restarted.

 Chapter 9. WebSphere HAManager 489

Figure 9-13 Network Deployment V6 transaction service high availability using NAS

Environment
The shared file system must support automatic lock recovery in order to make
the peer-to-peer (one-of-N) recovery model work. File system locking is
obviously vital to prevent corruption of the transaction log files. Lock recovery is
necessary to ensure peer cluster members can access the transaction logs once
held by the failed member.

The following file system types are supported when the one-of-N policy is used:

� Network File System (NFS) version 4
� Windows Common Internet File System (CIFS)
� IBM TotalStorage® SAN File System

Important: All shared file systems that are compatible with WebSphere 6.0
currently use lock leasing. The lock lease times should be tuned to an
acceptable time. Most default lock lease times are around the 45 second
mark.

While the HAManager can be tuned to fail over in 10 seconds, this won't help
if the lock lease time is 45 seconds as the locks won't free up until 45 seconds.
We recommend lock lease times of 10 seconds and setting the HAManager
failure detection time to just over this or 12 seconds (2 second heart beats,
6 missed heartbeats means suspect).

App lica tion
Server 1

Transaction
S erv ice

N FS v4

A pp lica tion
S erver 2

Transac tion
Serv ice

N FS v4

.

G igab it E thernet S w itch

H A N A S

server 1
transaction

logs

server 2
transaction

logs

490 WebSphere Application Server V6 Scalability and Performance Handbook

Basically, any shared filesystem with the following characteristics should work:

� Flush means all changes to the file are written to persistence store (physical
disks or NVRAM on a SAN server).

� File locks use a leasing mechanism to allow locks held by failed machines to
be released in a reasonable amount of time without requiring the failed server
to restart.

Please note that although a shared filesystem that complies to the above
characteristics should work, IBM only supports configurations that it has tested
as working (see the list of supported file systems above).

For more information about IBM NAS and SAN technologies, please go to IBM
TotalStorage homepage at

http://www.storage.ibm.com

The Network Attached Storage (NAS) and all the cluster members are connected
together in a network. There is no limitation on placing servers on the same
subnet as long as they can make connections to each other.

All cluster members must be running WebSphere Application Server V6 or later.
Peer recovery processing does not work with V5 cluster members.

Configuration
Follow these steps to make the Transaction Manager highly available:

1. Install WebSphere Application Server V6 on all nodes. It is not necessary to
have the WebSphere Application Server binaries on the shared file system.

2. Create a cluster and add cluster members (on the different nodes). Refer to
Chapter 8, “Implementing the sample topology” on page 387 for details.

3. Enable the cluster to enforce high availability for transaction logs.

High availability for persistent service is a cluster setting. Click Servers ->
Clusters -> <cluster_name>. Select the Enable high availability for
persistent services checkbox on the Configuration tab shown in Figure 9-14
on page 492.

Restriction: NFS version 3 or earlier is not supported as a shared file system
when the one-of-N policy is used.

Use the static or no operation policy if your system does not support NFS
version 4 or CIFS.

AIX 5.2 supports NFS version 3 while AIX 5.3 supports NFS version 4.

 Chapter 9. WebSphere HAManager 491

http://www.storage.ibm.com

Figure 9-14 Enable high availability for the transaction service of a cluster

4. Stop the cluster.

5. Change the transaction log directories of all cluster members.

Click Servers -> Application servers -> <AppServer_Name> -> Container
Services -> Transaction Service. Enter the transaction logs location on the
NFS mount point of the cluster member into the Transaction log directory
field.

Tips:

� It is recommended that you use the hard option in the NFS mount
command mount -o hard to avoid data corruption.

� We recommend the same settings that a database would use if it used
the shared file system. Most NAS vendors document recommended
settings for this environment. Settings that work for a database such as
DB2 or Oracle will also work for WebSphere 6.0 transaction logs.

492 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 9-15 Change the transaction log directory of a cluster member

6. Copy the existing transaction logs to the shared file system. Make sure the
location and file permissions are correct.

7. Save and synchronize the configuration.

8. Start the cluster.

The Transaction Manager is highly available after the cluster restart. To verify
how many high availability groups are backing up the singleton service, follow the
steps in 9.3, “High availability group” on page 479.

 Chapter 9. WebSphere HAManager 493

Failover test
Now we perform a simple simulation of a JVM crash of application server Ejb2a,
and server Ejb2b performs the peer recovery of transaction logs for Ejb2a.

When looking at the log in Example 9-6 you will notice an application server
named Ejb1 which is an application server in our sample topology. Although it
has been disabled in our HA setup, it is still used in the view name as it has the
lexically lowest name in the cluster.

Both application servers are up and running. We issue the AIX command
kill -9 <pid_of_Ejb2a> to the application server process to terminate the
process. The Ejb2b application server immediately detects the event from the
closed socket connection and raises Ejb2a as a suspect. A new view is
immediately installed to reflect the change. Then a recovery process is started in
the Ejb2b JVM to recover the transaction logs of Ejb2a. The recovery process is
complete around three seconds after the server is killed. This is a big
improvement when compared with the minutes required by previous versions of
WebSphere. Please see Example 9-6 for the details.

Example 9-6 SystemOut.log of Ejb2b after terminating Ejb2a

[11/8/04 15:34:26:489 EST] 00000017 RmmPtpGroup W DCSV1111W: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is dmCell\app2Node\Ejb2a. DCS logical channel is View|Ptp.
[11/8/04 15:34:26:547 EST] 00000017 DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is dmCell\app2Node\Ejb2a. DCS logical channel is Connected|Ptp.
[11/8/04 15:34:26:694 EST] 00000017 RmmPtpGroup W DCSV1111W: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: Suspected
another member because the outgoing connection from the other member was

Important: We have disabled the Ejb1 server during these tests only because
of the specifics of our setup. Our Ejb1 server runs on Windows while Ejb2a
and Ejb2b run on AIX. In our sample topology, we only have a shared file
system on AIX, which cannot be accessed by the Windows server. Therefore,
we could not include Ejb1 for the Transaction Manager tests.

It is important that you understand that application servers on Windows and
AIX can indeed coexist in a transaction manger HA scenario if all systems of
the environment have access to the shared disk. But, the principal issue is that
the directory names are very different between Windows and UNIX. A UNIX
machine will not understand a Windows file name and vice versa. Clever use
of WebSphere environment variables can be used to allow this but it's an
unusual scenario.

494 WebSphere Application Server V6 Scalability and Performance Handbook

closed. Suspected members is dmCell\app2Node\Ejb2a. DCS logical channel is
View|Ptp.
[11/8/04 15:34:26:886 EST] 00000017 DiscoveryRmmP W DCSV1111W: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: Suspected
another member because the outgoing connection from the other member was
closed. Suspected members is dmCell\app2Node\Ejb2a. DCS logical channel is
Connected|Ptp.
[11/8/04 15:34:27:344 EST] 00000017 DiscoveryServ W DCSV1111W: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: Suspected another member
because the outgoing connection from the other member was closed. Suspected
members is dmCell\app2Node\Ejb2a. DCS logical channel is Discovery|Ptp.
[11/8/04 15:34:27:831 EST] 00000017 VSync I DCSV2004I: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: The synchronization procedure
completed successfully. The View Identifier is (139:0.dmCell\app1Node\Ejb1).
The internal details are [0 0 0 0 0 0 0 0 0].
[11/8/04 15:34:28:151 EST] 00000017 VSync I DCSV2004I: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: The
synchronization procedure completed successfully. The View Identifier is
(110:0.dmCell\app1Node\Ejb1). The internal details are [0 0 0 0 0 0].
[11/8/04 15:34:28:300 EST] 00000019 CoordinatorIm I HMGR0228I: The
Coordinator is not an Active Coordinator for core group DefaultCoreGroup.
[11/8/04 15:34:28:425 EST] 00000019 CoordinatorIm I HMGR0218I: A new core
group view has been installed. The view identifier is
(140:0.dmCell\app1Node\Ejb1). The number of members in the new view is 8.
[11/8/04 15:34:28:448 EST] 00000019 CoreGroupMemb I DCSV8050I: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: New view installed,
identifier (140:0.dmCell\app1Node\Ejb1), view size is 8 (AV=8, CD=8, CN=8,
DF=11)
[11/8/04 15:34:28:701 EST] 00000017 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup at Member dmCell\app2Node\Ejb2b: Confirmed all new view
members in view identifier (140:0.dmCell\app1Node\Ejb1). View channel type is
View|Ptp.
[11/8/04 15:34:29:297 EST] 00000049 RecoveryDirec A WTRN0100E: Performing
recovery processing for a peer WebSphere server (FileFailureScope:
dmCell\app2Node\Ejb2a [-1788920684])
[11/8/04 15:34:29:324 EST] 00000049 RecoveryDirec A WTRN0100E: All persistant
services have been directed to perform recovery processing for a peer WebSphere
server (FileFailureScope: dmCell\app2Node\Ejb2a [-1788920684])
[11/8/04 15:34:29:601 EST] 00000049 RecoveryDirec A WTRN0100E: All persistant
services have been directed to perform recovery processing for a peer WebSphere
server (FileFailureScope: dmCell\app2Node\Ejb2a [-1788920684])
[11/8/04 15:34:29:771 EST] 0000004a RecoveryManag A WTRN0028I: Transaction
service recovering 0 transactions.
[11/8/04 15:34:29:668 EST] 0000001c DataStackMemb I DCSV8050I: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: New view
installed, identifier (111:0.dmCell\app1Node\Ejb1), view size is 5 (AV=5, CD=5,
CN=5, DF=6)

 Chapter 9. WebSphere HAManager 495

[11/8/04 15:34:29:895 EST] 0000001c RoleMember I DCSV8052I: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: Defined set
changed. Removed: [dmCell\app2Node\Ejb2a].
[11/8/04 15:34:31:500 EST] 00000019 HAManagerImpl I HMGR0123I: A GroupUpdate
message was received for a group that does not exist. The group name is
drs_agent_id=Ejb2a\baseCache\001663\1,drs_inst_id=1100098001663,drs_inst_name=b
aseCache,drs_mode=0,policy=DefaultNOOPPolicy.
[11/8/04 15:34:31:561 EST] 00000017 ViewReceiver I DCSV1033I: DCS Stack
DefaultCoreGroup.DynamicCache at Member dmCell\app2Node\Ejb2b: Confirmed all
new view members in view identifier (111:0.dmCell\app1Node\Ejb1). View channel
type is View|Ptp.
......

9.7.3 Hot-failover of transaction logs using external HA software
Some customers may wish to use file systems that only allow one box to mount
at a time, for example Journal File System (JFS) of AIX, to store WebSphere
transaction logs. External clustering software is necessary to make such a
WebSphere solution highly available. The external HA software will perform
detection and controls the allocation of shared resources like shared file systems
and IP addresses.

Unlike in previous versions, the WebSphere application server process will not
be started using the HA software. Instead, the process starts as a daemon at
boot time and restarts upon crashes. The HA software will coordinate the
dependency of shared file systems and the Transaction Manager. The proper
startup procedures would be:

1. Mount the file system for transaction logs
2. Activate the Transaction Manager

Configuration
Follow the configuration steps in “Configuration” on page 491. Make sure the
shared file systems are mounted on their respective hosts before copying the
transaction logs.

1. Stop the cluster.

Tip: In AIX, use the command kill -9 <pid_of_JVM_process> to simulate a
JVM crash. The kill -9 <pid> command issues a SIGKILL signal to
immediately terminate a process, while the kill <pid> command by default
sends a SIGTERM signal to normally stop a process.

496 WebSphere Application Server V6 Scalability and Performance Handbook

2. Create a policy to override the default Clustered TM Policy for Transaction
Managers. Click Servers -> Core groups -> Core group settings ->
<core_group_name> -> Policies -> New.

a. From the drop-down list, select No operation policy and click Next. See
Figure 9-16.

Figure 9-16 Create a No operation policy for Transaction Managers - select type

b. Fill in the name and description as depicted in Figure 9-17 on page 498,
then click OK. A warning regarding match criteria is issued, therefore we
define the match criteria next.

 Chapter 9. WebSphere HAManager 497

Figure 9-17 Create a No operation policy for Transaction Managers - define properties

3. Click Match criteria -> New to create a match set for Transaction Managers
in a cluster. Enter IBM_hc as the Name and your cluster name as the Value.
Click OK. See Figure 9-18.

Figure 9-18 Creating a match set for Transaction Managers in the EJBcluster

498 WebSphere Application Server V6 Scalability and Performance Handbook

4. Save and synchronize all nodes.

5. Instead of starting the cluster using the WebSphere Administrative Console,
start the application servers as a daemon or service. Notice that the
application server will pause to wait until the Transaction Manager is ready
before displaying the ready for e-business message. It will continue to hang
until the Transaction Manager is started by the external HA software.

That is all that needs to be done on the WebSphere side. Now you need to
configure your HA software and set up resource groups. There should be one
resource group for each Transaction Manager. Every resource group has its
associated physical disks and their file systems, and scripts to start/stop an
application. In our case, we need scripts to activate/deactivate Transaction
Manager high availability group members via the HAManager JMX interface.
This can be done using a wsadmin script or a Java admin client which calls the
HAManager MBean to activate/deactivate a particular high availability group
member. Step-by-step details of HA software configurations are outside the
scope of this book.

 Chapter 9. WebSphere HAManager 499

500 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 10. Dynamic caching

Server-side caching techniques have long been used to improve Internet
performance of Web applications. In general, caching improves response time
and reduces system load. Until recently, caching has been limited to static
content, which is content that rarely changes. However, performance
improvements are greatest when dynamic content is also cached. Dynamic
content is content that changes frequently, or data that is personalized. Caching
dynamic content requires proactive and effective invalidation mechanisms, such
as event-based invalidation, to ensure the freshness of the content.
Implementing a cost effective caching technology for dynamic content is
essential for the scalability of today’s dynamic, data-intensive, e-business
infrastructures.

This chapter covers the following topics:

� “Introduction” on page 502
� “Using WebSphere dynamic cache service” on page 515
� “WebSphere dynamic caching scenarios” on page 528
� “WebSphere external caching scenarios” on page 558
� “Conclusion” on page 609
� “Benchmarking Trade 3” on page 611

10

© Copyright IBM Corp. 2005. All rights reserved. 501

10.1 Introduction
Performance became a term frequently used during every WebSphere
Application Server project and caching became a key technology to reduce cost
and improve the response time.

This chapter introduces the dynamic cache service provided by WebSphere
Application Server V6. We explain how and when caching can be used to
improve the performance of WebSphere Application Server solutions.

In most cases, enabling caching is a task performed during application
deployment, though in same cases the application developers need to perform
specific customization, which are required by the caching framework. For
example, when it comes to more granular caching techniques, such as command
caching, application developers have to develop the code according to
WebSphere caching specifications. We address such customization in
“Command caching” on page 540.

10.1.1 WWW caching services
First, there are two basic types of content from the caching point of view:

� Static content

Static content does not change over long periods of time. The content type
can be HTML, JSP rendering less dynamic data, GIF, JPG, etc.

Static content is characterized by content that is not generated on the fly and
has fairly predictable expiration values. Such content typically resides on the
file system of the Web server or application server and is served unchanged
to the client. To a large extent such content can be declared to be cacheable
and have expiration values associated with it. From the perspective of the

Important: What we are describing in this chapter is the administrative aspect
of configuring dynamic caching which happens during application deployment.
However, caching is something that needs to be taken into account during
application architecture, design and development to be really effective. An
application design that does not incorporate caching needs is often difficult to
configure caching policies for. This chapter does not go into detail on the
design and architecture of the application to make it suitable for caching.

Note: JSP rendering less dynamic data is considered to be static content
from the caching point of view. When JSP is rendered, static HTML code is
generated and this is cached.

502 WebSphere Application Server V6 Scalability and Performance Handbook

Proxy server, the standard HTTP headers associated with such content
describe how long this content is valid, Furthernore, any intermediary and
certainly the client is free to cache such content locally.

In general, when it comes to caching, only public content is cached at any of
the intermediaries unless the intermediary performs authentication and
authorization of content. WebSphere Application Server on the other hand,
can cache private content because any authentication and authorization of
the resource happens prior to fetching content from the cache.

� Dynamic content

Dynamic content includes frequently updated content (such as exchange
rates), as well as personalized and customized content. Although it is
changing content, at the same time it must be stable over a long enough time
for meaningful reuse to occur. However, if some content is very frequently
accessed, such as requests for pricing information of a popular stock, then
even a short time of stability may be long enough to benefit from caching.

Secondly, it is important to understand that caching goes beyond an applications’
own infrastructure. For example, there are many cache instances currently
deployed on the Internet. Figure 10-1 outlines the different tiers of caching for
Web applications.

Figure 10-1 Content caching on the internet

Cache

HTTP Server

Cache

DB

 Clients Clients

Cache Client Caching
Services

ISP

Cache

ISP

Cache

 Internet

 Clients

LB

Proxy Cache

Cache

Proxy Cache

Cache

LB

HTTP Server WAS

Cache

WAS

 DMZ
Application

Zone
DB

 Zone

Content Delivery
Services

External Caching
Services

Dynamic Caching
Services

Cache

ISP

ISP

ISP

 Chapter 10. Dynamic caching 503

The content caching tiers are:

� Client caching services

These services can be provided by any kind of Web browsers. Web browsers
can store received content locally on the client device. Unfortunately, very
often you will experience that interpretations of HTTP cache directives are
browser dependent.

� Internet content delivery services

These services provide the replication and caching infrastructure on the
Internet. The infrastructure is based on standard concepts, protocols and
taxonomy. The main actors are Internet Services Providers (ISP) and Content
Delivery Network (CDN) service providers, such as Akamai
(http://www.akamai.com), or Speedera (http://www.speedera.com).

The physical infrastructure is built using cache appliances such as Network
Appliance (http://www.netapp.com), Blue Coat (http://www.bluecoat.com),
or Cisco Cache Engine (http://www.cisco.com).

These services can also support the dynamic composition of page fragments
in the network using a standard called Edge Side Includes (ESI,
http://www.esi.org). “WebSphere external caching scenarios” on page 558
explains how WebSphere Application Server V6 supports ESI.

� External caching services

These services provide front-end caching of both static and dynamic pages.
The technical component can be the Caching Proxy, part of WebSphere Edge
Components, IBM HTTP Server, or the Web server plug-in. All of them can
intercept requests from a client, retrieve the requested information from
content-hosting machines, and deliver that information back to the client. In
addition, they can store cacheable content in a local cache (memory and/or
disk) before delivering it to the requestor. This enables the external caches to
satisfy subsequent requests for the same content by delivering it directly from
the local cache, which is much quicker than retrieving it again from the
content host.

These services provide both whole page and fragment caching; and again the
dynamic composition of page fragments is based on ESI.

We further discuss external caching services in “WebSphere external caching
scenarios” on page 558.

� Dynamic caching services

These services provide the caching of servlets, JSPs, commands, or Web
services. They work within an application servers’ Java Virtual Machine (JVM)
by intercepting calls to cacheable objects.

504 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.akamai.com
http://www.speedera.com
http://www.netapp.com
http://www.bluecoat.com
http://www.cisco.com
http://www.esi.org

“WebSphere dynamic caching scenarios” on page 528 focuses on these
dynamic caching services.

This chapter is focused on the dynamic caching services and their integration
with external cache services.

In most cases only a combination of dynamic and external services can power
high volume Web sites to achieve the required level of scalability and
performance. When implementing such a combination, the impact on data
integrity and accuracy needs to be also considered. For example, if you have a
WebSphere Commerce implementation and you use WebSphere Edge
Components to cache product pages, it can take some time until the WebSphere
Edge Components cache is synchronized with updates to the product database
used by WebSphere Commerce. This time can be as long as the time-to-live
parameter set for the product pages.

The question to be asked is, how can you make sure that all these different
caching services will support your specific application? The answer to this
question is to use standard protocols, such as HTTP/1.1 and ESI/1.0.

Traditional HTTP caching is mostly used in cases where the whole page is
cacheable and does not contain personalized content. On the other hand, ESI
allows caching to operate on the level of fragments rather than whole pages.

HTTP/1.1 provides basic cache mechanisms in the form of implicit directives to
caches. It also allows the use of explicit directives for the HTTP cache called
“Cache - Control”. The Cache-Control header allows a client or server to transmit
a variety of directives in either requests or responses. These directives typically
override the default caching algorithms.

Detailed information about the HTTP/1.1 caching directives are included in
RFC 2616 (http://www.faqs.org/rfcs/rfc2616.html). Additionally, RFC 3143
lists known HTTP Proxy Caching problems
(http://www.faqs.org/rfcs/rfc3143.html).

Note: An additional level of caching, which is not described in this chapter, is
database caching. There are a number of products available for database
caching, for example DB2 DBCache, TimesTen, Oracle 9i IAS - Relational
Cache, Versant's enJin.

For more information about database caching, refer to this Web site:

http://www.almaden.ibm.com/u/mohan/

Here you will find a link to the presentation "Caching Technologies for Web
Applications."

 Chapter 10. Dynamic caching 505

http://www.almaden.ibm.com/u/mohan/
http://www.faqs.org/rfcs/rfc2616.html
http://www.faqs.org/rfcs/rfc3143.html

10.1.2 Fragment caching
Most dynamic Web pages consist of multiple smaller and simpler page
fragments. Some fragments are static (such as headers and footers), while
others are dynamic (such as fragments containing stock quotes or sport scores).
Breaking a page into fragments or components makes effective caching possible
for any page, even a highly dynamic page.

These are the main goals of fragment caching:

� Achieve benefits of caching for personalized pages.

� Reduce cache storage requirements, by sharing common fragments among
multiple pages which helps maximize fragment reusability.

� Move cache into the network to multiply above benefits.

Figure 10-2 Page fragments

FRAGMENT

FRAGMENT

FRAGMENT

FRAGMENT

FRAGMENT

FRAGMENT

506 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-2 on page 506 shows that when a page is broken down into fragments
based on reusability and cacheability, some or all of the fragments (for example,
headers, footers, and navigation bars for all users; market summary for user
groups) may become reusable and cacheable for a larger audience. Only
fragments that are not cacheable need to be fetched from the back-end, thereby
reducing server-side workload and improving performance. Even a very short
time of caching can improve performance, for example if you can cache the
Market Summary information just for 10 seconds, it can make a big difference
during peak hours.

Web pages should be fragmented to cache dynamic content effectively within the
enterprise infrastructure and at the content distribution network. However, in
some cases, even caching the most granular, final formatted fragment is not
sufficient. Under such circumstances, caching at the raw data level is the next
granular technique that can be used (see 10.5.3, “Command caching” on
page 540).

Web page design also plays an important role in determining where dynamic
data is cached. One example is personalized pages. Although personalized,
these pages contain user specific, nonuser-specific, locale sensitive, secure, non
security sensitive dynamic data. To maximize the benefit of caching dynamic
content, these types of pages should be fragmented as finely as possible. They
can be cached independently at different locations. For example, the
nonuser-specific, non security sensitive fragments or components are generally
useful to many users, and thus can be cached in a more public space and closer
to the users. The security sensitive data should be cached behind the enterprise
firewall, yet as close to the edge of the enterprise as possible.

10.1.3 Dynamic caching scenarios
The key issue with caching dynamic content is to determine what should be
cached, where caching should take place, and how to invalidate cached data.

In a multi-tier e-business environment, the WebSphere Dynamic Cache service
can be activated at the business logic and/or presentation layer. It can also
control external caches on servers, such as WebSphere Caching Proxy or IBM
HTTP Server. When external caching is enabled, the cache matches pages with
their universal resource identifiers (URIs) and exports matching pages to the
external cache. The contents can then be served from the external cache instead
of the application server, which saves resources and improves performance.

To simulate real production systems, we explain the following scenarios:

� WebSphere Dynamic Cache

– At the presentation logic layer (servlet/JSP resulting caching)

 Chapter 10. Dynamic caching 507

– At the business logic layer (command caching)

� WebSphere external caching

– Using Web server plug-in with ESI
– Using IBM HTTP Server with FRCA
– Using WebSphere Caching Proxy

Caching of Web services and Web services client caching is covered in
Chapter 24, “Web services caching” of the redbook WebSphere Version 6 Web
Services Handbook Development and Deployment, SG24-6461.

We do not focus directly on the caching techniques used by Content Delivery
Networks, but we explain the IBM Web server plug-in, which has ESI surrogate
capabilities.

Please refer to Figure 10-3 for a graphical representation of these options.

Figure 10-3 Dynamic caching options

When you design the caching solution for your application, you may want to
combine different caching techniques. For example you may use a combination
of dynamic caching and Web server plug-in caching, or a dynamic caching and
WebSphere Caching Proxy combination. This chapter provides you with
information that helps you to design your individual caching solution.

We are using the redbook’s WebSphere Application Server infrastructure, which
is described in detail in Chapter 8, “Implementing the sample topology” on
page 387, for our scenarios. We use the WebSphere Performance Benchmark
sample application Trade 6, because apart from other significant features, Trade
6 supports key WebSphere components such as dynamic caching.

Application
Server

C
ac

hi
ng

 P
ro

xy

Caching
Proxy
Cache

Dynamic
cache
service

HTTP
Server

Plug-in
ESI

Cache

FRCA
Cache

508 WebSphere Application Server V6 Scalability and Performance Handbook

As you can see in Figure 10-4 we can use caching services at different tiers of
the application infrastructure. Our scenarios explain the appropriate caching
techniques for the different tiers.

Figure 10-4 Redbook caching infrastructure

10.2 What is new in WebSphere V6 dynamic caching
IBM WebSphere Application Server V6 includes some new features,
enhancements and modifications in the dynamic cache service. These are:

10.2.1 Dynamic Content Provider interface
A cacheable servlet or JSP file might contain a state in the response that does
not belong to the fragment for that servlet or JSP. When the state changes, the
cached servlet or JSP is not valid for caching.

Dynamic Content Provider (DCP) allows the developer to use its interface and
add user exits to the servlet response object.

When the servlet response is generated, DCP is called to provide the output of
the dynamic content of that fragment.

10.2.2 Cache instances
Cache instances provide additional locations where the dynamic cache service
can store, retrieve and share data.

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Web1
Cache

Caching
Proxy DB

Proxy
Cache

HTTP1
Cache

Plug-in
Cache

Web2a
Cache

Web2b
Cache

HTTP2
Cache

Plug-in
Cache

Load
Balancer

HTTP1

APP2HTTP2

APP1

 Chapter 10. Dynamic caching 509

Each cache instance is independent from each other, and it is not affected by
other cache instances.

Applications running on an application server can access cache instances on
other application servers as long as they are part of the same replication domain.

WebSphere Application Server V5.1 Dynamic Cache provided a feature called
cache instance. In V6, this feature was extended and now it provides two types
of cache instances: servlet cache instance and object cache instance.

The servlet cache instance can store servlets, JSPs, Struts, Tiles, command
objects and SOAP requests. It allows applications like WebSphere Portal Server
and WebSphere Commerce to store data in separate caches.

The object cache instance is used to store, distribute and share Java objects.
The following APIs are provided so the applications can interact with the object
cache instances:

� DistributedObjectCache
� DistributedMap

The DistributedMap and DistributedObjectCache interfaces are simple interfaces
for the dynamic cache. Using these interfaces, J2EE applications and system
components can cache and share Java objects by storing a reference to the
object in the cache. The default dynamic cache instance is created if the dynamic
cache service is enabled in the Administrative Console. This default instance is
bound to the global Java Naming and Directory Interface (JNDI) namespace
using the name services/cache/distributedmap.

For more information about DistributedMap and DistributedObjectCache please
refer to the WebSphere InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.
websphere.nd.doc/info/ae/ae/tdyn_distmap.html

10.2.3 Caching Struts and Tiles applications
In WebSphere V6, the servlet and JSP caching was enhanced to allow for easy
Struts and Tiles caching.

Struts is an open source framework for building Web applications that are based
on the model-view-controller (MVC) architecture. The Struts framework provides

Tip: If you are not using command caching yet but want to start using it, then it
is recommended that you use the DistributedMap API rather than command
caching as described in 10.5.3, “Command caching” on page 540.

510 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tdyn_distmap.html

its own controller component and integrates with other technologies to provide
the model and the view. The primary focus of this framework is to provide a
control layer for the Web application, reducing both construction time and
maintenance costs.

The Tiles framework builds on the jsp:include feature and comes bundled with
the Struts Web application framework. This framework helps to reduce the
duplication between JavaServer Pages (JSP) files as well as make layouts
flexible and easy to maintain. The Tiles structure provides a full-featured, robust
framework for assembling presentation pages from component parts.

For more information about Struts and Tiles caching, please refer to 10.5.2,
“Struts and Tiles caching” on page 537.

10.2.4 Cache replication
Cache replication allows cached objects to be shared across multiple servers in
a cluster.

WebSphere Application Server V5.1 already provided this feature, but all
instances shared the same settings. In WebSphere Application Server V6 the
replication settings are configured per instance. For more information refer to
10.2.4, “Cache replication” on page 511.

10.3 The cachespec.xml configuration file
WebSphere dynamic caching service policies are defined in the cachespec.xml
file. This file defines, for example, which objects to cache (the <cache-entry>)
and where (for example in the dynamic cache service of the application server
itself or in an external cache). Dependencies between objects can also be
defined as well as timeouts and invalidation.

The cache parses the cachespec.xml file when the server starts and also
dynamically when the file is changed, and extracts a set of configuration
parameters from each <cache-entry> element. The <cache-entry> elements
can be inside the root <cache> element or inside a <cache-instance> element.
Cache entries that are in the <root> element are cached with the default cache
instance. Cache entries that are in the <cache-instance> element are cached in
that particular cache instance. Different cacheable objects have different <class>
elements. You can define the specific object a cache policy refers to using the
<name> element.

 Chapter 10. Dynamic caching 511

Location
It is recommended that you store the cachespec.xml file with the deployment
module. You could also place a global cachespec.xml file in the application
server properties directory.

The cachespec.dtd file is available in the application server properties directory.
The cachespec.dtd file defines the legal structure and the elements that can be
in your cachespec.xml file.

10.3.1 cachespec.xml elements
This section highlights only some important cachespec.xml elements. For a
complete list and more detailed information please refer to the WebSphere
InfoCenter article "cachespec.xml file" at

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.
websphere.nd.doc/info/ae/ae/rdyn_cachespec.html

<cache>
The root element of the cachespec.xml file is <cache> and contains
<cache-instance> and <cache-entry> elements. The <cache-entry> elements
can also be placed inside of <cache-instance> elements to make that cache
entry part of a cache instance other than the default cache instance.

<cache-instance>
The name attribute is the Java Naming and Directory Interface (JNDI) name of
the cache instance that is set in the Administrative Console or using wsadmin
while creating/editing a cache-instance.

<cache-entry>
Each cache entry must specify certain basic information that the dynamic cache
uses to process that entry. The <cache-entry> elements in cachespec.xml can
include the following elements: class, name, sharing-policy, property, and
cache-id.

<class>
This element is required and specifies how the application server interprets the
remaining cache policy definition. The value servlet refers to servlets and
JavaServer Pages (JSP) files that are deployed in the WebSphere Application
Server servlet engine. The value command refers to classes using the WebSphere
command programming model. The value static means files that contain static
content. The webservice class extends the servlet with special component types

512 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/rdyn_cachespec.html

for Web services requests. The value JAXRPCClient is used to define a cache
entry for the Web services client cache.

Here are some examples of the usage of the class element:

� <class>command</class>
� <class>servlet</class>
� <class>webservice</class>

<name>
Specifies a cacheable object. Some guidelines for the name element are:

� For servlets and JSP files as well as for static files, if the cachespec.xml file is
stored with the application, this element can be relative to the specific Web
application context root. If cachespec.xml is stored in the application servers's
properties directory, then the full URI of the JSP file, servlet, or static file must
be specified.

For a Web application with a context root, the cache policy for files using the
static class must be specified in the Web application, and not in the
properties directory. As mentioned earlier, the recommended location is in the
Web application and not in the properties directory.

� For commands, this element must include the package name, if any, and
class name, including a trailing .class of the configured object.

You can specify multiple <name> elements within a <cache-entry> if you have
different mappings that refer to the same servlet. Here are some examples on
how to use the <name> element:

� <name>com.mycompany.MyCommand.class</name>
� <name>default_host:/servlet/snoop</name>
� <name>com.mycompany.beans.MyJavaBean</name>
� <name>mywebapp/myjsp.jsp</name>
� <name>mywebapp/myLogo.gif</name>

<sharing-policy>
This is an important setting when working in a clustered environment and using
cache replication. The value of this element determines the sharing
characteristics of cache entries. The default value is not-shared and is the value
assumed when the <sharing-policy> element is not specified. Possible values
are:

� not-shared
� shared-push
� shared-pull
� shared-push-pull

 Chapter 10. Dynamic caching 513

Usage example: <sharing-policy>shared-push-pull</sharing-policy>.

For single server environments, the only valid value is not-shared.

For more information about cache replication and the meaning of these values
please see “Cache replication” on page 547.

<property>
You can set optional properties on a cacheable object, such as a description of
the configured servlet. The class determines valid properties of the cache entry.

Usage example: <property name="key">value</property>

where key is the name of the property for this cache entry element, and value is
the corresponding value. Important properties (keys) for our sample scenario and
the tests in this chapter are:

� EdgeCacheable

This value is valid for servlet/JSP caching and can be set to true or false. The
default is false. If the property is true, then the servlet or JSP file is externally
requested from an Edge Side Includes processor. Whether or not the servlet
or JSP file is cacheable depends on the rest of the cache specification.

� ExternalCache

The value specifies the external cache name. The external cache name
needs to match the external cache group name. This key is only valid for
servlet/JSP caching. See 10.6, “WebSphere external caching scenarios” on
page 558 for more information.

<cache-id>
To cache an object, the application server must know how to generate a unique
ID for different invocations of that object. These IDs are built either from
user-written custom Java code or from rules defined in the cache policy of each
cache entry. Each cache entry can have multiple cache ID rules that are
executed in order until either:

� A rule returns a non-empty cache ID, or
� No more rules are left to execute

If none of the cache ID generation rules produce a valid cache ID, the object is
not cached.

Each <cache-id> element defines a rule for caching an object and is composed
of the sub-elements component, timeout, inactivity, priority, property,
idgenerator, and metadatagenerator.

514 WebSphere Application Server V6 Scalability and Performance Handbook

10.3.2 Dynamic Cache Policy Editor
The Dynamic Cache Policy Editor is a tool that helps creating and editing the
dynamic cache policies file cachespec.xml. This tool validates cache policies
against its XML schema, provides assistance in completing content and restricts
changes that are invalid during runtime. It also includes a tool that analyses
servlets and JSPs, generates the cache policies for them, and adds those
policies to the cache policy file.

The Dynamic Cache Policy Editor is provided as an Eclipse plug-in and plugs
into WebSphere Studio Application Developer V5.1.0 and higher or Application
Server Toolkit (AST) V5.1.0 and higher.

It can be downloaded from:

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

Please refer to 10.7, “Using the Dynamic Cache Policy Editor” on page 586 for
details on how to install and use the Cache Policy Editor.

The next sections explain some cachespec.xml entries needed for the various
caching scenarios explained in this chapter. You can either create these entries
manually using any editor or refer to 10.7.3, “Examples: Creating cachespec.xml
entries with the Dynamic Cache Policy Editor” on page 592 where we discuss
how to create some of those examples using the Dynamic Cache Policy Editor.

10.4 Using WebSphere dynamic cache service
Before we dive into the different scenarios, we explain the following general
configuration tasks:

� Installing Dynamic Cache Monitor
� Enabling and configuring WebSphere dynamic cache service

Restriction: At the time of writing this redbook, the Dynamic Cache Policy
Editor could not be used with Rational Application Developer V6 or AST V6.

As it is not expected that the GUI changes much once available for the V6
tools, we decided to include this section to show the functionality of the tool.
All screenshots and descriptions are based on the available version plugged
into AST V5.1.

Please check the download site for new versions of the product.

 Chapter 10. Dynamic caching 515

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

10.4.1 Installing Dynamic Cache Monitor
The Dynamic Cache Monitor (Cache monitor) is an installable Web application
that displays simple cache statistics, cache entries and cache policy information.
The CacheMonitor.ear file is available in the <WAS_HOME>/installableApps. For
security reasons, you should not use the same host and port as used for your
application. Therefore, you first need to create virtual hosts and host aliases for
the Cache monitor application:

1. Create a new virtual host called “cache_monitor”. Click Environment ->
Virtual Hosts -> New in the Administrative Console. Enter cache_monitor
into the Name field and click Apply.

2. Create a new host alias (verify which port numbers are available on your
system first) for the cache_monitor host:

a. Click cache_monitor.

b. Click Host Aliases in the Additional Properties pane. Click New.

c. Enter a * (asterisk) into the Host Name field and add <port_number> (for
example 9070).

3. Click OK and save your configuration.

4. Add a new WebContainer Inbound Chain to your application server(s):

a. Click Servers -> Application servers -> <AppServer_Name> -> Web
Container Settings -> Web container transport chains. Click New.

b. Enter CacheMonitor for the Transport chain name and click Next.

c. Enter * for the Host and <port_number> (for example, 9070) for the Port.
We also used the port number in the Port name field.

d. Click Next, check the summary of the settings, click Finish and save your
configuration.

5. This needs to be done for each application server in the environment. In our
scenario we are using three clustered application servers: Web2a and Web2b
reside on the same machine, so we need different ports for these two
application servers. Web1 resides on a different machine, so we can use the
same port number as was used for Web2a. Our configuration is as follows:

– Port 9070 for Web1 and Web2a
– Port 9071 for Web2b

Repeat step 4 for each application server in your cluster.

If you have a similar scenario, you also need to add all ports configured in this
step to the cache_monitor virtual host that was created in step 2.

We are also using a separate cluster for our EJB containers. We do not need
this configuration in the application servers that belong to the EJBcluster.

516 WebSphere Application Server V6 Scalability and Performance Handbook

Now that these preliminary tasks are done, you can install the Cache monitor
application. Here is how to do this:

1. Open the Administrative Console and verify whether the Cache monitor is
already installed. To do so, click Applications -> Enterprise Applications.
See Figure 10-5. If CacheMonitor is not displayed in this list, click Install.

Figure 10-5 Installed Enterprise Applications

2. On the Preparing for the application installation panel (Figure 10-6), browse
to the <WAS_HOME>/installableApps Server path and select the
CacheMonitor.ear file. Click OK, then click Next.

Figure 10-6 Cache monitor installation - Select CacheMonitor.ear

3. On the next panel, enter cache_monitor for the Virtual Host (see Figure 10-7
on page 518). Click Next.

 Chapter 10. Dynamic caching 517

Figure 10-7 Select Virtual Host - cache_monitor

4. On the Application Security Warnings pane, click Continue. Accept the
default options on the next panel (Step 1) and click Next once again. See
Figure 10-8 on page 519.

518 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-8 Cache monitor installation - Installation options

5. Step 2 - Map modules to servers (Figure 10-9 on page 520).

On this panel, you need to select your application server and the Dynamic
Cache Monitor Module. Click Apply, then click Next. You do not need to
include the Web servers, select only the Web container cluster.

 Chapter 10. Dynamic caching 519

Figure 10-9 Cache monitor installation - Map modules to application servers

6. Step 3- Map virtual hosts for Web modules (Figure 10-10).

We have created a virtual host called “cache_monitor” in step 1 on page 516
which we are now referring to.

Check Dynamic Cache Monitor and select the cache_monitor Virtual host
from the pull-down menu. Then click Next.

Figure 10-10 Cache monitor installation - Map virtual hosts for Web modules

7. Step 4 - Map security roles to users/group (Figure 10-11 on page 521).

520 WebSphere Application Server V6 Scalability and Performance Handbook

Select All Authenticated, then click Next once more. Please note that this
installation panel is only important if you have security enabled for your
application servers.

Figure 10-11 Cache monitor installation - Map security roles to users/groups

8. Confirm the installation on the Summary window as shown in Figure 10-12 on
page 522, click Finish and Save your changes to the master configuration.

 Chapter 10. Dynamic caching 521

Figure 10-12 Cache monitor installation - Summary

9. Restart your application server(s) - the WEBcluster in our scenario.

You can access the Cache monitor using a Web browser and the URL

http://<your_appserver_hostname>:<cache_monitor_port_number>/cachemonitor

We are using these URLs:

� http://app1.itso.ibm.com:9070/cachemonitor/ for Web1
� http://app2.itso.ibm.com:9070/cachemonitor/ for Web2a
� http://app2.itso.ibm.com:9071/cachemonitor/ for Web2b

If your application server is configured for global security, you need to provide a
valid user ID and password after invoking the above URL.

Note: The Summary pane in Figure 10-12 shows an warning related to the
fact that we did not associate the application with any Web server. In the
case of Cache Monitor, this is the proper way to do it, as we will not use the
Web server(s) to access it.

522 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-13 shows the Cache Monitor start page which allows access to the
cache statistics and some configurable parameters. These are configured in the
Administrative Console (see “Enabling dynamic cache service” on page 524).

WebSphere Application Server V6 allows you to create several cache instances,
so the new version of the Cache Monitor application includes a pull-down box
that allows you to select a specific instance.

Figure 10-13 WebSphere Cache monitor start page

We explain some functionality of the Cache monitor as we work on our sample
scenarios, but please use the WebSphere InfoCenter to fully understand all
functionality. The WebSphere Information Center is available at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

The ESI processor's cache is also monitored through the Dynamic Cache
Monitor application. In order for the ESI processor's cache to be visible in the
Cache monitor, the DynaCacheEsi application must be installed and the
esiInvalidationMonitor property must be set to true in the plugin-cfg.xml file.
See “External caching by Web server plug-in” on page 566 for more information
about the ESI processor.

 Chapter 10. Dynamic caching 523

http://www.ibm.com/software/webservers/appserv/infocenter.html

10.4.2 Enabling dynamic cache service
The dynamic cache service is an in-memory cache system that has disk offload
capability. Its caching behavior is defined in an XML file named cachespec.xml. A
graphical user interface (GUI) tool for building the cache policy file is available,
we describe it in detail in 10.3.2, “Dynamic Cache Policy Editor” on page 515.

Unique ID strings distinguish unique entries in WebSphere Application Server’s
dynamic content caching solution. These ID strings can be defined declaratively
with the XML configuration file or programmatically by the user’s Java program.
Please refer to the WebSphere InfoCenter for more information about this.

WebSphere Application Server dynamic cache service can control external
caches. Different groups of external caches can be defined, each with its own set
of member caches. The interface between WebSphere Application Server and
the external cache is the External Cache Adapter provided by WebSphere
Application Server. We elaborate more on this topic in “WebSphere external
caching scenarios” on page 558.

The dynamic cache service includes an alternative feature named disk offload,
which stores the overflow cache entries on disk for potential future access. This
feature removes the dynamic cache memory constraints experienced in older
WebSphere Application Server versions (this was already available in
WebSphere V5).

To enable dynamic caching for an application server, follow these steps:

1. Open WebSphere Administrative Console.

2. Click Servers -> Application servers in the navigation tree.

3. Select your application server.

4. In the Container Settings pane, select Container Services -> Dynamic
Cache Service.

5. Select Enable service at server startup in the Startup state field. This
setting should be enabled by default.

6. Click Apply or OK.

All changes made to the dynamic cache service properties take effect after
restarting the server.

Figure 10-14 on page 525 shows the configuration panel of the dynamic cache
service in the Administrative Console.

This panel allows you to also configure the disk offload (see “Configure disk
offload” on page 526) and cache replication options. We discuss cache
replication in 10.5.4, “Cache replication” on page 547.

524 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-14 Enabling dynamic caching in Administrative Console

Configure cache size
As mentioned before, WebSphere Application Server uses JVM memory to store
cached objects. Therefore, it is important to know how much memory can be
allocated for the cache and based on this information you can set the cache size
to the proper value. You need to be able to estimate the total size of objects
which can be cached during peak hours. Also, your application designer needs to
understand the performance implication of heavy pages.

Tip: If you need to determine the amount of memory needed by the
application for caching, you can use a profiling tool such as the one provided
with Rational Application Developer. Or you could use Page Detailer to
analyze the size of generated pages. See Chapter 15, “Development-side
performance and analysis tools” on page 839 for details on these tools.

 Chapter 10. Dynamic caching 525

Configure disk offload
If the estimated total size of all cached objects is bigger than the available
memory, you can enable the disk offload option. You then need to configure
priorities for the cached objects in the cachespec.xml file. Priority weighting is
used in conjunction with the least recently used (LRU) algorithm. Based on this
algorithm it is decided which entries are moved from memory to disk if the cache
runs out of storage space.

If you decide to use the disk offload option, you need to also configure your file
system for fast I/O access. Depending on your hardware and software you can
use various disk striping or caching techniques.

Disk offload is configured on the same panel where you enable the dynamic
cache service. Refer to 10.4.2, “Enabling dynamic cache service” on page 524
for how to access this panel and Figure 10-14 on page 525 to see how it looks
like. These three settings are related to the disk offload configuration:

� Enable disk offload

Specifies whether disk offload is enabled. If a cache entry that was moved to
disk is needed again, it is moved back to memory from the file system.

� Offload location

Specifies the location on the disk to save cache entries when disk offload is
enabled.

If disk offload location is not specified, the default location,
$install_root/temp/node/servername/_dynacache/cacheJNDIname is used. If
a disk offload location is specified, the node, server name, and cache
instance name are appended. For example, $install_root/diskoffload
generates the location as
$install_root/diskoffload/node/servername/cacheJNDIname.

This value is ignored if disk offload is not enabled.

� Flush to disk

Specifies if in-memory cached objects are saved to disk when the server is
stopped. This value is ignored if Enable disk offload is not selected.

Tuning the disk cache
There are several custom properties for the JVM available to tune the disk cache.
All custom properties can be set as follows:

1. In the Administrative Console by selecting Servers -> Application servers ->
<AppServer_Name> -> Java and Process Management -> Process
Definition -> Java Virtual Machine -> Custom Properties -> New.

2. Enter the Name of the custom property.

526 WebSphere Application Server V6 Scalability and Performance Handbook

3. Enter a valid value for the custom property.

4. Save your changes and restart the application server.

There are three custom properties available. The first one is related to the disk
cache cleanup time, the other two properties are related to tuning the delay
offload function:

� Tune the disk cache cleanup time using the
com.ibm.ws.cache.CacheConfig.htodCleanupFrequency custom property.

This property defines the amount of time between disk cache cleanups. By
default, the disk cache cleanup is scheduled to run at midnight to remove
expired cache entries and cache entries that have not been accessed in the
past 24 hours. However, if you have thousands of cache entries that might
expire within one or two hours, the files that are in the disk cache can grow
large and become unmanageable.

Use com.ibm.ws.cache.CacheConfig.htodCleanupFrequency to change the
time interval between disk cache cleanups. The value is set in minutes, that
is, a value of 60 means 60 minutes between each disk cache cleanup. The
default is 0 which means that the disk cache cleanup occurs at midnight every
24 hours.

� Tune the delay offload function using the
com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit and
com.ibm.ws.cache.CacheConfig.htodDelayOffload custom properties.

The delay offload function uses extra memory buffers for dependency IDs and
templates to delay the disk offload and minimize the input and output
operations. However, if most of your cache IDs are longer than 100 bytes, the
delay offload function might use too much memory. Use any combination of
the following properties to tune your configuration:

– To increase or decrease the in-memory limit, use
com.ibm.ws.cache.CacheConfig.htodDelayOffloadEntriesLimit.

This custom property specifies the number of different cache IDs that can
be saved in memory for the dependency ID and template buffers. Consider
increasing this value if you have a lot of memory in your server and you
want to increase the performance of your disk cache. The default value is
1000 which means that each dependency ID or template ID can have up
to 1000 different cache IDs in memory. Specify a value suitable for your
environment, but it must be a number higher than 100 as this is the
minimum setting allowed.

 Chapter 10. Dynamic caching 527

– To disable the disk cache delay offload function, use
com.ibm.ws.cache.CacheConfig.htodDelayOffload.

This custom property specifies if extra memory buffers are used in
memory for dependency IDs and templates to delay disk offload and to
minimize input and output operations to the disk.

The default value is true which means enabled.

Consider disabling it if your cache IDs are larger than 100 bytes because
this option might use too much memory when it buffers your data. If you
set this property to false, all the cache entries are copied to disk
immediately after they are removed from the memory cache.

10.5 WebSphere dynamic caching scenarios
These are the objectives for our dynamic caching scenarios:

� Describe and test servlet/JSP caching (see 10.5.1, “Servlet/JSP result
caching” on page 529).

� Describe cache policies for Struts and Tiles caching (see 10.5.2, “Struts and
Tiles caching” on page 537).

� Configure and test command caching (see 10.5.3, “Command caching” on
page 540).

� Configure and test cache replication (see 10.5.4, “Cache replication” on
page 547).

� Explore cache object invalidation (see 10.5.5, “Cache invalidation” on
page 556).

� Explain troubleshooting steps (see 10.5.6, “Troubleshooting the dynamic
cache service” on page 557).

Caching of Web services and Web services client caching is covered in
Chapter 24, “Web services caching” of the redbook WebSphere Version 6 Web
Services Handbook Development and Deployment, SG24-6461.

These scenarios explore caching in the application tier as shown in Figure 10-15
on page 529. Refer to 10.6, “WebSphere external caching scenarios” on
page 558 for scenarios that explore caching in components out of the application
tier.

528 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-15 Redbook sample dynamic caching infrastructure

10.5.1 Servlet/JSP result caching
Servlet/JSP result caching intercepts calls to a servlet's service method, and
checks whether the invocation can be served from cache. If the request cannot
be served from cache, the servlet is invoked to generate the output that will be
cached. The resulting cache entry contains the output and/or the side effects of
the invocation, like calls to other servlets or JSP files. Figure 10-16 on page 530
shows all steps if the output is not cached. If the output is cached, then steps 6, 7
and 8 are skipped.

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Web1
Cache

DB

Web2a
Cache

Web2b
Cache

HTTP1

APP2

Load
Balancer

APP1

HTTP2

 Chapter 10. Dynamic caching 529

Figure 10-16 Servlet/JSP result caching - infrastructure view

Figure 10-17 gives a closer granularity look on steps 4 and 5. You can see that
consequent requests are served only by the Web container, without involving the
EJB container (steps 5 to 9).

Figure 10-17 Server/JSP result caching - application server view

Servlet/JSP result caching can be based on:

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Web1
Cache

Web2a
Cache

Web2b
Cache

APP2

Load
Balancer

HTTP2

1
2

10

DB

HTTP1
9

7

6
3

APP1

4 8
Cache Miss (1,2,3,4,5,6,7,8,9,10)

Cache Hit (1,2,3,4,5,9,10)

5

Application
Database

Cache
Dynamic
Cache

Services

Application Server

Web Container EJB Container

1
11

102

Embedded
HTTP Server

3 4 9

Servlet Engine

5
8 7

6

530 WebSphere Application Server V6 Scalability and Performance Handbook

� Request parameters and attributes
� The URI used to invoke the servlet or JSP
� Session information
� Cookies
� Pathinfo and servlet path
� Http header and Request method

Servlet/JSP result caching can be used to cache both whole pages or fragments.
This concept is explained in Figure 10-18.

Figure 10-18 Servlet/JSP result caching - fragmentation

Configuration steps
1. Enabling servlet and JSP result caching.

To enable servlet caching, you must enable the dynamic cache service for the
Web container by performing these steps:

a. Open the Administrative Console.

b. Click Servers - > Application servers in the console navigation tree.

c. Select your application server.

d. Select Web Container Settings -> Web container.

e. Select the Enable servlet caching check box as shown in Figure 10-14
on page 525.

f. Click Apply or OK.

This needs to be done for all application servers. All changes made to the
Web container properties take effect after restarting the server.

Composite Page
WebSphere Application

ServerA.jsp

Example Source for A.jsp
...
<jsp:include page="B.jsp"/>
<jsp:include page="C.jsp"/>
<jsp:include page="D.jsp"/>

B.jsp

C.jsp D.jsp A.jsp Request
A.jsp
Include B
Include C
Include D

D.jsp

C.jspB.jsp

Cache

 Chapter 10. Dynamic caching 531

Figure 10-19 Enabling servlet caching

2. Configure cachespec.xml.

In the runtime environment, the cache parses the cachespec.xml file on
startup and dynamically whenever the file is modified. The cache extracts
from each <cache-entry> element a set of configuration parameters. Every
time a new servlet or other cacheable object initializes, the cache attempts to
match each of the different <cache-entry> elements, to find the configuration
information for that object. Different cacheable objects have different <class>
elements. You can define the specific object a cache policy refers to using the
<name> element.

As mentioned before, we are using Trade 6 for this scenario. The
cachespec.xml file for Trade 6 can be found inside the WEB-INF directory of
the Web module found in

<WAS_HOME>/profiles/<DM_profile>/config/cells/<cell_name>/applications/
Trade.ear/deployments/Trade/tradeWeb.war/WEB-INF

Do not change this file manually in this directory because your changes may
be overwritten by a synchronization from the Deployment Manager. Refer to
“Distributing the cachespec.xml file” on page 536 for instructions on how to
update a changed cachespec.xml file in the Deployment Manager’s repository
and synchronize it to the application servers.

Refer to the WebSphere InfoCenter for a detailed description of
cachespec.xml file elements. The InfoCenter can be found at

http://www.ibm.com/software/webservers/appserv/infocenter.html

532 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/infocenter.html

Creating and editing Trade 6 cachespec.xml file
This section explains the cache entries for the Trade 6 home servlet (see
Figure 10-4 on page 509). This page contains the following cacheable fragments
(formatted or non-formatted):

� Home servlet - Uses tradehome.jsp to format an output
� marketSummary.jsp - tradehome.jsp includes marketSummary.jsp
� Market summary command
� Account command
� Closed order command
� Holdings command

For the purpose of demonstrating servlet and JSP result caching we create a
new cachespec.xml file which contains only the home servlet and market
summary JSP cache entries. This new cachespec.xml will later be extended to
include command caching. If you are not interested in the details of how the
entries need to be added to cachespec.xml, you can use the cachespec.xml file
that comes with Trade 6 and go directly to the testing sections (“Testing home
servlet and market summary JSP” on page 536 and “Testing command caching”
on page 546 respectively).

1. Create first the basic structure of the XML file, which is shown in
Example 10-1.

Example 10-1 cachespec.xml file first tags

<?xml version="1.0"?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>
</cache>

2. The elements we add to the basic structure need to be located between the
<cache> and the </cache> tags.

The first element we add is the cache-entry element for the home servlet. In
this case, the servlet's URI is "/app" so this will be our cache-entry's name
element. Also, since this cache-entry is a servlet, the cache-entry class is
"servlet." See Example 10-2 on page 534.

 Chapter 10. Dynamic caching 533

Example 10-2 Cache entry for home servlet

<?xml version="1.0"?>
<!DOCTYPE cache SYSTEM "cachespec.dtd">
<cache>

<cache-entry>
 <class>servlet</class>
 <name>/app</name>

</cache-entry>
</cache>

3. Example 10-3 shows a definition of cache ID generation rules. The home
servlet can be cached only when action=home and the servlet engine can
retrieve the “JSESSIONID” cookie value (a user needs to be logged in).
Therefore, one component of the cache ID will be the parameter "action"
when the value equals "home”. The second parameter will be JSESSIONID
which equals to the valid user session ID. The URI for this servlet is
/app?action=home.

Example 10-3 shows the complete <cache-entry> for the home servlet, and
the entries in bold are the ones that represent the new cache ID generation
rules that need to be added to the home servlet cache entry.

Example 10-3 Cache ID for home servlet

<cache-entry>
 <class>servlet</class>
 <name>/app</name>

<cache-id>
<component id="action" type="parameter">

<value>home</value>
<required>true</required>

</component>
<component id="JSESSIONID" type="cookie">

<required>true</required>
</component>

</cache-id>
</cache-entry>

4. Two dependency IDs are specified for the home servlet: Account_UserID and
Holdings_UserID. Both IDs are used to identify user accounts by the UserID.
The home servlet is session dependent and Account_UserID is used to
invalidate the home servlet when either LoginCommand or LogoutCommand
are invoked. Additionally, Holdings_UserID is used by

Note: In the next steps we do not show the whole cachespec.xml file, only
the entries to be added or changed.

534 WebSphere Application Server V6 Scalability and Performance Handbook

OrderCompletedCommand to invalidate the home servlet upon the order
completion. Example 10-4 shows the new <dependency-id> entries, and they
must be placed after the last </cache-id> tag and before the </cache-entry>
tag of the home servlet shown in Example 10-3 on page 534. See also
“Cache replication testing” on page 554.

Example 10-4 Dependency IDs for home servlet

<dependency-id>Account_UserID
 <component id="action" type="parameter" ignore-value="true">

<value>home</value>
<required>true</required>

</component>
<component id="uidBean" type="session">

<required>true</required>
</component>

</dependency-id>
<dependency-id>Holdings_UserID

 <component id="action" type="parameter" ignore-value="true">
<value>home</value>
<required>true</required>

</component>
<component id="uidBean" type="session">

<required>true</required>
</component>

</dependency-id>

5. A new cache entry is defined for the marketSummary.jsp, which is included by
tradehome.jsp, which formats output from the home servlet command. The
marketSummary.jsp can be invalidated based on time value (time-driven) or
based on the update of data, which are rendered by marketSummary.jsp
(event-driven). The ResetTradeCommand invalidates marketSummary.jsp
using MarketSummary dependency ID.

Example 10-5 shows the new entry for the marketSummary.jsp, and it must
be placed after the </cache-entry> of the home servlet.

Example 10-5 Cache entry for marketSummary.jsp

<cache-entry>
<class>servlet</class>
<name>/marketSummary.jsp</name>
<cache-id>

<priority>3</priority>
<timeout>180</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

 Chapter 10. Dynamic caching 535

</cache-entry>

Distributing the cachespec.xml file
The Trade 6 application is shipped with a cachespec.xml file. The following steps
describe how to update this file in the Deployment Manager’s repository and
synchronize it to the application servers using the WebSphere Administrative
Console.

1. Click Applications -> Enterprise Applications. Select Trade and click the
Update button.

2. In the Application update options pane, select Single file.

3. Enter tradeWeb.war/WEB-INF/cachespec.xml in the Relative path to file
field, and locate the cachespec.xml you edited using the Local file system or
the Remote file system options. See Figure 10-20.

Figure 10-20 Updating the cachespec.xml file

4. Click Next, click OK and save the configuration.

5. Restart the Trade application.

Testing home servlet and market summary JSP
1. Log into the Trade 6 application, for example using

http://app1.itso.ibm.com:9080/trade

2. Open the Cache monitor using

http://app1.itso.ibm.com:9070/cachemonitor

536 WebSphere Application Server V6 Scalability and Performance Handbook

3. After you log into the Trade 6 application, you can see that one entry was
added to the cache.

4. Click the Home link in the Trade 6 application and use the Cache monitor to
verify that both home servlet and marketSummary.jsp are cached. If caching
works properly, you can see that new cache entries were added
(Figure 10-21).

Figure 10-21 Servlet/JSP result caching statistics

Home servlet and marketSummary.jsp are in the cache as shown in
Figure 10-22.

Figure 10-22 Servlet/JSP result caching statistics - Detailed view

All subsequent requests for these two entries will produce a cache hit as long as
the objects are valid.

10.5.2 Struts and Tiles caching
Struts and Tiles caching is an extension of servlet and JSP caching. Enabling
servlet caching using the Web container setting in the Administrative Console
automatically enables Struts and Tiles cache. In addition to enabling the servlet
cache, a cache policy is also required to cache a Struts or Tiles response.

 Chapter 10. Dynamic caching 537

Struts
The Struts framework provides the controller component in the MVC-style
application. This controller is a servlet called
org.apache.struts.action.ActionServlet.class. A servlet mapping of *.do is
added for this Struts ActionServlet servlet in the web.xml file of the application so
that every request for a Web address that ends with .do is processed. The
ActionServlet servlet uses the information in the struts-config.xml file to decide
which Struts action class is called to actually run the request for the specified
resource.

Only one cache policy is supported per servlet in releases prior to WebSphere
Application Server V6.0. But, in the case of Struts, every request URI ending in
.do maps to the same ActionServlet.class. Therefore, to cache Struts
responses, the cache policy has to be written for the ActionServlet servlet based
on its servlet path.

For example, consider two Struts actions: /HelloParam.do and /HelloAttr.do.
To cache their responses based on the id request parameter, and the arg
request attribute respectively, the cache policy for WebSphere V5.x must look as
shown in Example 10-6:

Example 10-6 Sample Cache policy for a Struts action in WebSphere V5.x

<cache-entry>
<class>servlet</class>
<name>org.apache.struts.action.ActionServlet.class</name>
<cache-id>

<component id="" type="servletpath">
 <value>/HelloParam.do</value>
</component>
<component id="id" type="parameter">
 <required>true</required>
</component>

</cache-id>
<cache-id>

<component id="" type="servletpath">
 <value>/HelloAttr.do</value>
</component>
<component id="arg" type="attribute">
 <required>true</required>
</component>

</cache-id>
</cache-entry>

However, in WebSphere Application Server V6.0 with the support for mapping
multiple cache policies for a single servlet, the previous cache policy can be
rewritten as shown in Example 10-7 on page 539:

538 WebSphere Application Server V6 Scalability and Performance Handbook

Example 10-7 Sample Cache policy for a Struts action in WebSphere V6

<cache-entry>
<class>servlet</class>
<name>/HelloParam.do</name>
<cache-id>
 <component id="id" type="parameter">

 <required>true</required>
 </component>
</cache-id>

</cache-entry>
<cache-entry>

<class>servlet</class>
<name>/HelloAttr.do</name>
<cache-id>
 <component id="arg" type="attribute">

 <required>true</required>
 </component>
</cache-id>

</cache-entry>

Tiles
Because the Tiles framework is built on the jsp:include tag, everything that
applies to JSP caching also applies to Tiles. Similar to the jsp:include case, the
fragments included using the tiles:insert tag are cached correctly only if the
flush attribute is set to true. The only extra feature in tiles caching is caching
based on the tiles attribute. For example, consider the layout.jsp template in
Example 10-8:

Example 10-8 Tiles: Define template for layout.jsp

<html>
<body>
 <%String categoryId =
request.getParameter("categoryId")+"test";%>

<tiles:insert attribute="header">
<tiles:put name="categoryId" value="<%= categoryId %>" />

</tiles:insert>
<TD width="70%" valign="top"><tiles:insert attribute="body"/></TD>
<TR>
<TD colspan="2"><tiles:insert attribute="footer"/></TD>
</TR>

</body>
</html>

The nested tiles:put tag is used to specify the attribute of the inserted tile. In
this template, a tile attribute of categoryId is defined and is passed on to the tile

 Chapter 10. Dynamic caching 539

that is inserted in the placeholder for the header. If this layout.jsp file is inserted
into a JSP file, as shown in Example 10-9, the tile attribute of categoryId is
passed on to the header.jsp file. The header.jsp file can use the
<tiles:useAttribute> tag to retrieve the value of categoryId.

Example 10-9 Tiles: Insert header.jsp into layout.jsp

<html>
<body>
<tiles:insert page="/layout.jsp?categoryId=1002" flush="true">

<tiles:put name="header" value="/header.jsp" />
<tiles:put name="body" value="/body.jsp" />
<tiles:put name="footer" value="/footer.jsp" />

</tiles:insert>
</body>
</html>

To cache the header.jsp file based on the value of the categoryId attribute, the
cache policy shown in Example 10-10 can be used:

Example 10-10 Tiles caching: Cache policy for header.jsp

<cache-entry>
<class>servlet</class>
<name>/header.jsp</name>
<cache-id>
 <component id="categoryId" type="tiles_attribute">

 <required>true</required>
 </component>
</cache-id>

</cache-entry>

Other than the difference discussed here, Struts and Tiles caching is very similar
to servlet and JSP file caching.

For additional information about how to configure caching for Struts and Tiles,
please refer to the InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.
websphere.nd.doc/info/ae/ae/tdyn_strutstiles.html

10.5.3 Command caching
The Command Cache introduces the next level of granularity to dynamic content
caching. Its primary goal is to serve the object's content from cache and thus
minimize the execution of remote messages, such as back-end database JDBC
calls, or calls to access data at remote non-database servers.

540 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/tdyn_strutstiles.html

Generally, the Command Cache is used to cache dynamic data that requires
back-end data retrieval or additional computation or manipulation. The command
cache forms a good synergy with the servlet/JSP result cache, because, in some
cases, even caching the most granular, final formatted fragment is not sufficient.
For example, Trade 6’s home page (Figure 10-2 on page 506) consists of two
sets of information: “Account summary” that is highly personalized, and “Market
summary” that is generalized information and usable by many users. “Account
summary” is highly user sensitive and stored at the back-end server. In this case,
it is not effective to cache the final formatted fragment, but rather use command
caching.

The Command Cache is caching at the Java application level. To use Command
Cache, user applications need to use the caching capabilities of the WebSphere
Command Framework API. The WebSphere Command Framework is based on
the Command Design Pattern widely used in Java programming paradigms.
Typically, these applications use “setters” to set the command’s input states, one
or more execute methods, and “getters” to retrieve the results. The results can be
either formatted or raw data.

The Command Cache intercepts the execute method call of a command written
for Command Cache and checks whether the command object can be served
from the cache. If the command object does not exist in the cache, the logic in
the execute method is performed and the resulting object is cached.

The caching behavior of Command Cache is defined declaratively with the XML
cache policy file, which describes whether and how a command should be
cached. Command Cache can be used at the presentation and/or business logic
layer in multi-tier environments.

The Command Cache is easy to use. For existing applications that follow a
Model, View, and Controller (MVC) design pattern, Command Cache can be
implemented with minimal impact to existing code.

Enabling command caching
Cacheable commands are stored in the cache for re-use with a similar
mechanism as used for servlets and Java Server Pages (JSP) files. However, in
this case, the unique cache IDs are generated based on methods and fields
present in the command as input parameters.

1. Developers need to implement the following steps during commands
development:

a. Create a command and define an interface.

The Command interface specifies the most basic aspects of a command.

 Chapter 10. Dynamic caching 541

You must define the interface that extends one or more of the interfaces in
the command package. The command package consists of three
interfaces:

• TargetableCommand
• CompensableCommand
• CacheableCommand

In practice, most commands implement the TargetableCommand interface,
which allows the command to execute remotely. The code structure of a
command interface for a targetable command is shown in Example 10-11:

Example 10-11 TargetableCommand interface

...
import com.ibm.websphere.command.*;
public interface MyCommand extends TargetableCommand {
 // Declare application methods here
}

b. Provide an implementation class for the interface.

Write a class that extends the CacheableCommandImpl class and
implements your command interface. This class contains the code for the
methods in your interface, the methods inherited from extended interfaces
like the CacheableCommand interface, and the required or abstract methods
in the CacheableCommandImpl class.

You can also override the default implementations of other methods
provided in the CacheableCommandImpl class.

2. cachespec.xml must be configured.

The Trade 6 home page uses the following commands that can be cached:

– Market summary command
– Account command
– Closed order command
– Holdings command

The MarketSummaryCommand is cached and invalidated on a timeout or by
ResetTradeCommand, which uses the MarketSummary dependency ID as shown
in Example 10-12.

Example 10-12 Cache entry for MarketSummaryCommand

Note: Add the entries listed in the command caching examples below after
the </cache-entry> for the marketSummary.jsp shown in Example 10-5 on
page 535.

542 WebSphere Application Server V6 Scalability and Performance Handbook

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.MarketSummaryCommand</name>
<cache-id>

<priority>3</priority>
<timeout>10</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

</cache-entry>

The AccountCommand is used to cache a user’s account information.
AccountCommands are invalidated for each individual user when that users’
account information, such as their account balance, are updated by a trading
operation.

This is shown in Example 10-13:

Example 10-13 Cache entry for AccountCommand

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.AccountCommand</name>
<cache-id>

<component type="method" id="getUserID">
<required>true</required>

</component>
<priority>3</priority>

</cache-id>
<dependency-id>Account_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</dependency-id>
<dependency-id>AllUsers
</dependency-id>

</cache-entry>

The OrderCompletedCommand signifies that a buy or a sell order has completed
for an individual user. When an order completes, a user’s holdings and
account balance have been modified. This invalidates the AccountCommand,
HoldingsCommand and OrdersCommand for that user.

Also, it signifies that an order is completed, therefore, on the next request, the
ClosedOrderCommand should run to alert the user of any completed orders.
The cache-entry for the OrderCompletedCommand performs these
invalidations for an individual user on order completion.

 Chapter 10. Dynamic caching 543

Example 10-14 Cache entry for OrderCompletedCommand

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.OrderCompletedCommand</name>
<invalidation>Account_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>
<invalidation>Holdings_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>
<invalidation>Orders_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>
<invalidation>ClosedOrders_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>

</cache-entry>

The HoldingsCommand is used to cache a users’ stock holdings information.
HoldingsCommands are invalidated for each individual user when that user’s
holdings change due to an OrderCompletedCommand. It uses the
Holdings_UserID dependency ID to identify user Accounts by the userID. It
also uses the AllUsers dependency ID to identify all user Accounts for
commands which invalidate all Account Holdings cache entries. Refer to
Example 10-15.

Example 10-15 Cache entry for HoldingsCommand

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.HoldingsCommand</name>
<cache-id>

<component type="method" id="getUserID">
<required>true</required>

</component>
<priority>3</priority>

</cache-id>
<dependency-id>Holdings_UserID

544 WebSphere Application Server V6 Scalability and Performance Handbook

<component id="getUserID" type="method">
<required>true</required>

</component>
</dependency-id>
<dependency-id>AllUsers
</dependency-id>

</cache-entry>

Update cachespec.xml file
To make sure that the changes you just made to cachespec.xml for the command
caching are used by the application, you now need to update and restart Trade 6
once again as described in “Distributing the cachespec.xml file” on page 536.

Enable command caching in Trade 6
Due to a change in the Trade 6 application (compared to the previous Trade3.1
version), we need to enable it to cache commands. This is needed only for
command caching and DistributedMap caching. All other component caching is
available by default.

1. Access the Trade 6 home page by connecting to the first application server (in
our scenario, our first application server is Web1 on server
app1.itso.ibm.com, which listens for connections on port 9080):

http://app1.itso.ibm.com:9080/trade/

2. On the Trade main page, click the Configuration link (above the Go Trade!
link).

3. In the Configuration utilities page, click the Configure Trade run-time
parameters link.

4. In the Trade Configuration page, scroll down to the Caching Type options,
select Command Caching (see Figure 10-23 on page 546), and click the
Update Config button at the bottom of the page.

 Chapter 10. Dynamic caching 545

Figure 10-23 Enabling command caching in Trade 6

5. Repeat steps 1 on page 545 through 4 on page 545 for the other application
servers in your cluster.

Testing command caching
We test the four commands included in the home page fragments, plus the home
servlet and marketSummary.jsp:

1. Log into the Trade 6 application:

http://app1.itso.ibm.com:9080/trade/

2. Open the Cache monitor:

http://app1.itso.ibm.com:9070/cachemonitor

3. Clear the cache by clicking the Clear Cache button.

4. Click the Home link in the Trade 6 application and use the Cache monitor to
verify that several commands, one servlet and one JSP are cached. If the

Note: In order to enable command caching for Trade 6 we changed a runtime
option. If you restart the Trade application or an application server, you also
need to repeat the steps to enable it again.

546 WebSphere Application Server V6 Scalability and Performance Handbook

caching works, you can see up to six cache entries as shown in Figure 10-24
and Figure 10-25.

Figure 10-24 Command caching - Used Entries

Figure 10-25 Command caching - Cached entries

10.5.4 Cache replication
The cache replication mechanism allows data to be generated once and then be
copied or replicated to other servers in the cluster, thus saving execution time
and resources. Caching in a cluster has additional concerns. In particular, the

 Chapter 10. Dynamic caching 547

same data could be required and hence be generated in multiple places. Also,
the access to resources needed to generate the cached data can be restricted,
preventing access to the data.

Cache replication also aids in cache consistency. If the cache entry is invalidated
from one server, the invalidation is propagated to all servers.

We continue to work with the redbook sample infrastructure, now configured for
cache replication (Figure 10-26).

Figure 10-26 Redbook caching replication infrastructure

Enable cache replication
The configuration specific to replication of data can exist as part of the Web
container dynamic cache configuration accessible through the Administrative
Console, or on a per cache entry basis through the cachespec.xml file. This
includes the option to configure cache replication at the Web container level, but
disabling it for a specific cache entry.

These configuration steps assume that there is already an internal replication
domain defined on your system. If this is not true for your environment, then you
first need to create these objects.

We recommend creating an exclusive replication domain for the dynamic caching
service.

To create a replication domain you need to follow these steps:

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

DB

WEB2

APP1

Load
Balancer

APP2

WEB1

Server2
Cache

Server1
Cache

Server3
Cache

Cache Replication
Push/Pull/Push and Pull

548 WebSphere Application Server V6 Scalability and Performance Handbook

1. Click Environment -> Replication domains -> New in the WebSphere
Administrative Console navigation tree.

2. Enter DynamicCache in the Name field and select Entire Domain in the
Number of replicas pane as shown in Figure 10-27.

3. Click OK and save the configuration.

Figure 10-27 Creating a replication domain

Refer to 6.8.7, “Understanding DRS (Data Replication Services)” on page 297
and the redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451, for more information about replication
domains.

To enable cache replication you need to follow these steps:

Important: Do not use the default value of Single replica for the Number of
replicas field when creating a Dynamic Cache replication domain. Only
replication domains created with the option Entire Domain will be
selectable when configuring cache replication.

 Chapter 10. Dynamic caching 549

1. Click Servers -> Application servers in the WebSphere Administrative
Console navigation tree.

2. Select your application server.

3. Select Container Services -> Dynamic Cache Service.

4. Check the Enable cache replication check box.

5. For the Full group replication domain, select DynamicCache, which is the
replication domain that was created for the dynamic cache service.

6. Select a replication type and enter a value (in seconds) for the Push
frequency (a value of 0 means that the content is immediately pushed to other
servers in the replication domain). Refer to “Cache replication settings” on
page 550 for more information about these options. See Figure 10-28.

Figure 10-28 Cache replication settings

7. Click OK.

8. Repeat steps 1 through 7 for each application server that is part of the
DynamicCache replication domain.

9. Save the configuration and restart the application server(s). All changes
made to the dynamic cache service properties take effect after restarting the
server.

Cache replication settings
The cache replication configuration in WebSphere Application Server V6 allows
you to choose a replication type and the push frequency.

Cache replication type
The available cache replication types are:

� Both push and pull

In Both push and pull replication type, cache entries are shared between
application servers on demand. When an application server generates a

550 WebSphere Application Server V6 Scalability and Performance Handbook

cache entry, it broadcasts the cache ID of the created entry to all cooperating
application servers. Each server then knows whether an entry exists for any
given cache ID and for a given request for that entry, the application server
knows whether to generate the entry (if no cache ID has been broadcasted for
the request) or pull it from the generating application server. These entries
cannot store non-serializable data.

In the scenario shown in Figure 10-29, the application server Web2a serves
the cacheable/shareable object. It stores it in the Web2a cache. In addition, it
also acts as a broker and sends a cache ID to the other servers in the cluster
(steps An). When Web2b receives a request for this published cache ID, it
uses the cache ID to retrieve the object from the Web2a cache (steps Bn).

Figure 10-29 Pull and Push cache replication

An advantage of the Both push and pull replication type is that the content is
distributed on demand. This has a positive effect on the total number of
objects in the cache.

A small disadvantage is that retrieving the content from the remote cache can
take longer comparing to the local cache. However, under normal
circumstances it is significantly faster than re-generating the content.

� Push only

In Push only replication type, the cache ID and cache content are
automatically distributed to the dynamic caches in other application servers or
cooperating JVMs. Each cache has a copy of the entry at the time it is
created. These entries cannot store non-serializable data.

app1Node

Cache
#2

app2Node

A3

A1

Web1

Web2a Web2b

A2
B2
B3

Cache
#3

Cache
#1

A2

B4 B1

Description
Only cache IDs are replicated to the cluster
Content is replicated on demand
Invalidations are replicated immediately

 Chapter 10. Dynamic caching 551

In the scenario shown in Figure 10-30, Web2a serves the
cacheable/shareable object. It stores it in the Web2a cache and it also acts as
a broker and sends the cache ID and the content to other servers in the
cluster (steps An). When Web2b receives a request for this cache ID, it
retrieves the object from its own cache (steps Bn).

Figure 10-30 Push only cache replication

An advantage of the Push only option is that all caches are synchronized, so
even if Web2a crashes, Web2b and Web1 do not need to regenerate the
object again.

However, in the case when the total size of cached object s is very high,
synchronizing all objects can have a performance impact.

� Not Shared

In Not Shared replication type, cache entries are not shared among different
application servers.

Note: To summarize the sharing policy, it is important to understand that the
Push only replication type is good for workloads with a high probability of other
clusters handling cache hits while Both push and pull replication type is good
for unknown or variable probability of cross-cluster cache hits.

app1Node

Cache
#2

app2Node

A3

A1

Web1

Web2a Web2b

A2 Cache
#3

Cache
#1

A2

B2 B1

Description
All cache IDs and content are
replicated to the cluster instantly
or in batch
Invalidations are replicated immediately

552 WebSphere Application Server V6 Scalability and Performance Handbook

Push frequency
Specifies the time in seconds to wait before pushing new or modified cache
entries to other servers. A value of 0 (zero) means send the cache entries
immediately, and this is the default value.

This option is used by the dynamic cache service to provide a batch update
option. Specifically, for the Push only or Both push and pull options, the dynamic
cache broadcasts the update asynchronously, based on a timed interval rather
than sending them immediately. However, invalidations are always sent
immediately. Distribution of invalidations addresses the issue of stale data
residing in a cluster.

Setting this property to a value greater than 0 (zero) causes a "batch" push of all
cache entries that are created or modified during the time period.

Configure cachespec.xml file for cache replication
The global replication configuration specified in the previous section applies for
all caching objects unless the cachespec.xml configuration specifies otherwise.
Every entry in cachespec.xml can use the <sharing-policy> element, with the
values specified below. If the <sharing-policy> element is not present, the
global settings are used.

The sharing policy on the cache entry level can have the same values as can be
defined on the global level:

� not-shared
� shared-push
� shared push-pull

Example 10-16 shows the marketSummary.jsp entry in cachespec.xml. This JSP
will be cached and replicated based on the global settings because the
<sharing-policy> element has not been specified.

Example 10-16 Replication setting for marketSummary.jsp

<cache-entry>
<class>servlet</class>
<name>/marketSummary.jsp</name>
<cache-id>

<priority>3</priority>
<timeout>180</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

</cache-entry>

 Chapter 10. Dynamic caching 553

Example 10-17 contains an entry for MarketSummaryComand. This command will
not be replicated, because the sharing-policy element value explicitly specifies
that this object cannot be shared among different application servers. This is the
same for the other commands too.

Example 10-17 Replication setting for MarketSummaryCommand

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.MarketSummaryCommand</name>
<cache-id>

<priority>3</priority>
<timeout>10</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

</cache-entry>

Cache replication testing
We now test the configured replication type Push only. In case you restarted
Trade 6 since your last test, you must change the Trade runtime configuration
and enable Command Caching on all application servers.

1. Access the Trade 6 application using the first application server:

http://app1.itso.ibm.com:9080/trade/

Log in and use Trade for a while (buy, sell and check your portfolio).

2. Access the Cache Monitor running on the same application server:

http://app1.itso.ibm.com:9070/cachemonitor/

3. In the Cache Monitor application, click the Cache Contents link. Our result is
shown in Figure 10-31 on page 555.

Note: Even though this entry is not shared, in a replicated environment
invalidations are still sent.

554 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-31 Cache contents of the target application server

You should see a servlet (the home servlet), a JSP (marketSummary.jsp) and
several commands (depending on the tasks you performed in Trade). As
mentioned in “Configure cachespec.xml file for cache replication” on
page 553, all four commands are configured as not-shared, which means that
they are not replicated to other application servers in the replication domain.

4. In order to check which data was replicated, access the Cache Monitor on the
next application server:

http://app2.itso.ibm.com:9070/cachemonitor/

5. In the Cache Monitor application, click the Cache Contents link. This time the
entries shown are the ones that were replicated from the first application
server, see Figure 10-32. Note that only the shareable elements are in this
cache.

Figure 10-32 Cache contents of the replicated application server

 Chapter 10. Dynamic caching 555

10.5.5 Cache invalidation
The difference between caching static and dynamic content is the requirement
for proactive and effective invalidation mechanisms to ensure the freshness of
content. The time-based invalidation alone is no longer adequate for dynamic
cache invalidation.

The dynamic cache service provides event-based and time-based invalidation
techniques. WebSphere Application Server V6 offers access to programmatic
cache and invalidation techniques. Invalidation policies can be defined with XML
cache policy files. Invalidation policies allow triggering events to invalidate cache
entries without the need to write explicit code. More complex invalidation
scenarios may require code, which invokes the invalidation API.

Example 10-18 shows the invalidation policy, which invalidates cache entries for
groups of objects using the same Account_UserID dependency ID. For example,
home servlet and all commands invoked by home servlet are invalidated when
the user logs out from the application.

Example 10-18 Invalidation policy defined in the logout command

<cache-entry>
<class>command</class>
<sharing-policy>not-shared</sharing-policy>
<name>com.ibm.websphere.samples.trade.command.LogoutCommand</name>
<invalidation>Account_UserID

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>
<invalidation>Holdings_UserID1

<component id="getUserID" type="method">
<required>true</required>

</component>
</invalidation>

</cache-entry>

An example for time based invalidation can be seen in Example 10-5 on
page 535, where marketSummary.jsp has a timeout value of 180 seconds.

Note: In order to use caching safely, you need to make sure that you configure
invalidation properly. To do this, you must be familiar with the specifications of
the cachespec.xml file and the way how invalidation is handled in your
application’s code. This chapter provides you with one example, but please
refer to the WebSphere InfoCenter for more detailed information about the
cachespec.xml file.

556 WebSphere Application Server V6 Scalability and Performance Handbook

If you use cache replication, please note that invalidations are always sent
immediately regardless of the share type defined in cachespec.xml or the
replication type selected in the Dynamic Cache Services settings.

10.5.6 Troubleshooting the dynamic cache service
In case you are experiencing problems related to the WebSphere Dynamic
Cache service, you should follow these steps to resolve your problem:

1. Use the Cache monitor to test.

2. Verify cachespec.xml file.

3. Review the JVM logs for your application server. Messages prefaced with
DYNA result from dynamic cache service operations.

a. View the JVM logs for your application server. Each server has its own
JVM log file. For example, if your server is named Web1, the JVM log is
located in the subdirectory <install_root>/logs/Web1/.

Alternatively, you can use the Administrative Console to review the JVM
logs, click Troubleshooting -> Logs and Trace -> <AppServer_Name>
-> JVM Logs -> Runtime tab -> View.

b. Find any messages prefaced with DYNA in the JVM logs, and write down
the message IDs. A sample message having the message ID DYNA0030E
follows:

DYNA0030E: "property" element is missing required attribute "name".

c. Find the message for each message ID in the WebSphere Application
Server InfoCenter. In the InfoCenter navigation tree, click
<product_name> -> Reference -> Troubleshooter -> Messages ->
DYNA to view dynamic cache service messages.

d. Try the solutions stated under User Response in the DYNA messages.

4. Enable tracing on the application server for com.ibm.ws.cache.*. To enable it,
click Troubleshooting -> Logs and Trace -> <AppServer_Name> ->
Diagnostic Trace in the WebSphere Administrative Console. Click the
Configuration tab, click the Enable Log checkbox and click OK.

Click Troubleshooting -> Logs and Trace -> <AppServer_Name> ->
Change Log Detail Levels, click the Configuration tab and add the trace
string com.ibm.ws.cache.*=all. Separate entries with a colon (:). See
Figure 10-33 on page 558.

 Chapter 10. Dynamic caching 557

Figure 10-33 Turning on cache trace

Note that *=info is the default value, so we recommend keeping it in the
configuration.

If you experience problems with cache replication, then you need to enable
the trace for com.ibm.ws.drs.*.

You need to restart the server and monitor the trace file.

10.6 WebSphere external caching scenarios
The objectives of our external caching scenarios are:

� Describe the external caching options
� Configure and test external caching options
� Explore cache invalidation

We use the following external caches, which can be controlled by the
WebSphere dynamic cache service:

� Web server plug-in

In addition to the well known Web server plug-in functionalities (such as
failover and load balancing), the Web server plug-in is integrated with the
WebSphere Dynamic Cache to provide in-memory caching of servlets and

558 WebSphere Application Server V6 Scalability and Performance Handbook

JSP pages. It uses the ESI fragment assembly, which further enhances this
caching ability with on-the-fly reassembly of JSP pages.

� IBM HTTP Server’s high-speed cache

This cache is referred to as the Fast Response Cache Accelerator (FRCA) to
cache whole pages and fragments.

� Edge Components of IBM WebSphere Application Server Network
Deployment V6

The Edge Components can also be configured as WebSphere Application
Server’s external cache for whole page caching. In this case, the dynamic
cache service can be enabled to match pages with their universal resource
identifiers (URIs) and export matching pages to the external cache
(Figure 10-34). The contents can then be served from the external cache
instead of the application server to significantly save resources and improve
performance.

Figure 10-34 and Figure 10-35 on page 560 show two examples of exporting a
dynamic cache page from the WebSphere Application Server to the external
cache.

The first example (Figure 10-34) shows caching of whole pages, where page
A.jsp consists of three fragments. These three JSPs are included at compilation
time. The event-driven invalidation causes the invalidation of A.jsp from the
external cache as a result of any update to B.jsp, C.jsp, or D.jsp.

Figure 10-34 Whole page external caching

The second example (Figure 10-35 on page 560) shows caching of a whole page
and its’ fragments using Edge Side Include (ESI). In this case, if a fragment (for

External Cache WebSphere Application
Server

A.jsp Request
A.jsp
<jsp: include> B
<jsp: include> C
<jsp: include> D

Cache

D.jsp

C.jspB.jsp

Cache

D.jsp

C.jsp

B.jsp

A.jsp

cachespec.xml

Event-Driven Invalidation

If B is invalidated by the application server, A is also invalidated.

 Chapter 10. Dynamic caching 559

example B.jsp) is invalidated by event-driven or time-driven invalidation, then the
page A.jsp is not invalidated and ESI will tell the cache server to fetch only the
invalidated fragment (B.jsp) from the application server. Then, the external cache
using the ESI processor assembles a new page A.jsp which consists of the old
fragments C.jsp and D.jsp and the new fragment B.jsp.

Figure 10-35 Fragment external caching

For example, the Trade 6 home servlet contains the fragment
marketSummary.jsp. If we invalidate marketSummary.jsp, only this JSP will be
regenerated upon the next request for the home servlet.

Any servlet and JSP file content that is private, requires authentication, or uses
SSL should not be cached externally. The authentication required for those
servlet or JSP file fragments cannot be performed on the external cache. A
suitable timeout value should be specified if the content is likely to become stale.

10.6.1 WebSphere External Cache configuration
While working on our scenarios we need to perform a few configurations. We
explain these configuration steps in this section at the generic level and refer
back to this section from each scenario.

Installing the DynaCacheEsi application
First we need to install the DynaCacheEsi application that is needed for ESI
caching (and invalidation) in the Web server plug-in. Here is how to do this:

External Cache with
ESI Processor

WebSphere Application
Server

A.jsp Request A.jsp
<esi: include> B
<esi: include> C
<esi: include> D

Cache

D.jsp

C.jspB.jsp

Cache

D.jsp

C.jsp

B.jsp

A.jsp

cachespec.xml

Event-Driven Invalidation

If B is invalidated by the application server, only the B fragment of A is
invalidated and regenerated upon the next request for A.

560 WebSphere Application Server V6 Scalability and Performance Handbook

1. Open the Administrative Console and verify whether the DynaCacheEsi
application is already installed. To do so, click Applications -> Enterprise
Applications. See Figure 10-5 on page 517. If DynaCacheEsi is not
displayed in this list, click Install.

2. On the Preparing for the application installation panel (Figure 10-6 on
page 517), browse to the <WAS_HOME>/installableApps Server path, select
the DynaCacheEsi.ear file. Click OK, then click Next.

Figure 10-36 DynaCacheEsi installation - Select DynaCacheEsi.ear

3. On the next panel, enter default_host for the Virtual Host. This application
needs to be installed using the same virtual host as the Trade 6 application.
Click Next -> Continue.

Figure 10-37 Select Virtual Host - default_host

4. On the Application Security Warnings pane, click Continue. Accept the
default options on the next panel (Step 1) and click Next once again. See
Figure 10-8 on page 519.

 Chapter 10. Dynamic caching 561

Figure 10-38 DynaCacheEsi installation - Installation options

5. Step 2 - Map modules to application servers (Figure 10-9 on page 520).

On this panel, you need to select your application server cluster (in our
scenario, we selected WEBcluster) and the Web servers, and click the
checkbox in the Select column for the DynaCacheEsi Module. Click Apply,
then click Next.

562 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-39 DynaCacheEsi installation - Map modules to application servers

6. Step 3- Map virtual hosts for Web modules (Figure 10-10 on page 520).

Check DynaCacheEsi and select the default_host Virtual Host from the
pull-down menu. Then click Next.

Figure 10-40 DynaCacheEsi installation - Map virtual hosts for Web modules

7. Confirm the installation on the Summary window as shown in Figure 10-12 on
page 522, click Finish and Save your changes to the master configuration.

 Chapter 10. Dynamic caching 563

Figure 10-41 DynaCacheEsi installation - Summary

External cache group settings
You need to define an external cache group controlled by WebSphere
Application Server. To do so:

1. Start the WebSphere Administrative Console and click Servers ->
Application servers.

2. Select your application server from the list.

3. Select Container Services -> Dynamic Cache Service.

4. Select External Cache Groups from the Additional Properties pane.

This panel (shown in Figure 10-42 on page 565) allows you to create, delete
or update an existing External Cache Group.

5. Click New. This launches the Configuration window where you can specify the
name of the external cache group.

We need to create three different external cache groups for our scenarios:

– AFPA - which is the adapter used for the Fast Response Cache
Accelerator

Note: The external cache group name needs to match the externalcache
property defined for servlets or JSPs in the cachespec.xml file.

564 WebSphere Application Server V6 Scalability and Performance Handbook

– EsiInvalidator - used for the Web server plug-in. Normally, the
EsiInvalidator external cache group exists by default.

– ITSO-APPSERV - used for the Caching Proxy

At this point, you only need to create the three entries, you do not need to
configure them yet. We will explain them in more details in the next sections.

Figure 10-42 External Cache Groups

When external caching is enabled, the cache matches pages with its URIs and
pushes matching pages to the external cache. The entries can then be served
from the external cache instead of the application server.

External cache group member settings
Once you have created the three external groups, you need to configure the
specific caches that are members of each cache group.

1. Open the Administrative Console and click Servers -> Application servers.

2. Select your application server.

Tip: In a production environment, you need to create the external cache
groups on all application servers that are serving the cached application.
To simply test the function and to learn how to set it up in our test scenario,
it is sufficient to create and configure them on two application servers, for
example, on Web1 and Web2a and to stop additional application servers
that are not configured properly.

 Chapter 10. Dynamic caching 565

3. Select Container Services -> Dynamic Cache Service, then External
cache groups.

4. Click <external_cache_group_name> followed by External cache group
members from the Additional Properties.

5. Click New to launch the Configuration panel.

There are two values that you need to specify on the Configuration panel:

– Address

Specifies a configuration string used by the external cache adapter bean
to connect to the external cache.

– Adapter bean name

Specifies an adapter bean specific for the external cache member.

You can configure three different types of external cache group members.

� Fast Response Cache Accelerator (called AFPA in our example):

– Address: Port (port on which AFPA listens)

– Adapter Bean Name: com.ibm.ws.cache.servlet.Afpa

� ESI (called EsiInvalidator in our scenario):

– Address: Hostname (and possibly port number)

– Adapter Bean Name:
com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

� WTE - Caching Proxy (called ITSO-APPSERV in our example):

– Address: hostname:port (hostname and port on which WTE is listening)

– Adapter Bean Name: com.ibm.websphere.edge.dynacache.WteAdapter

10.6.2 External caching by Web server plug-in
WebSphere Application Server leverages the Edge Side Includes (ESI)
specification to enable caching and assembly of distributed fragments.

Edge Side Includes is a simple mark-up language used to define Web page
fragments for dynamic assembly of a Web page at the edge of network. ESI is an
open standard specification supported by Akamai and leaders in the Application
Server, Content Management Systems, and Content Delivery Networks markets.

With the Distributed Fragment Caching and Assembly Support, WebSphere
Application Server customers can defer page assembly to any ESI compliant
surrogate server, such as Akamai EdgeSuite service. This may result in a

566 WebSphere Application Server V6 Scalability and Performance Handbook

significant performance advantage if fragments can be cached and reused at the
surrogate.

WebSphere Application Server provides distributed fragment caching and
assembly support through the Web server plug-in. WebSphere Application
Server uses the Web server plug-in to communicate with the HTTP Server. This
plug-in has the ability to cache whole pages or fragments. Additionally, it can
dynamically assemble Web pages containing ESI <esi:include> tags. Any
server with WebSphere HTTP plug-in support can gain the benefits provided by
the WebSphere Application Server dynamic cache service. Figure 10-43 show
the infrastructure topology we used for this scenario. As you can see here, the
edge cache resides on the Web server machines:

Figure 10-43 ITSO Web server plug-in infrastructure

With dynamic cache service’s external cache control, distributed fragment
caching and assembly support, dynamic content can be exported, cached, and
assembled at the most optimal location, closer to the end user. More important,
WebSphere Application Server can maintain control of the external cache
through its Invalidation Support to ensure the freshness of cached content. As a
result, WebSphere Application Server customers are equipped to create and
serve highly dynamic Web pages without jeopardizing page performance and
user experiences.

In “Edge Side Includes” on page 614 we provide some existing ESI benchmarks
for the Trade 3 application.

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Server2
Cache

DB

Server1
Cache

Server3
Cache

Load
Balancer

APP1

APP2

Plug-in
Cache

Plug-in
Cache

WEB2

WEB1

 Chapter 10. Dynamic caching 567

ESI Processor
The cache implemented by the ESI processor is an in-memory cache, not a disk
cache. Therefore, the cache entries are not saved when the Web server is
restarted.

The basic operation of the ESI processor is as follows: When a request is
received by the Web server plug-in, it is sent to the ESI processor, unless the ESI
processor is disabled. It is enabled by default. If a cache miss occurs, a
Surrogate-Capabilities header is added to the request by the plug-in and the
request is forwarded to the WebSphere Application Server. If the dynamic servlet
cache is enabled in the application server, and the response is edge cacheable,
the application server returns a Surrogate-Control header in response to the
WebSphere Application Server plug-in.

The value of the Surrogate-Control response header contains the list of rules
that are used by the ESI processor in order to generate the cache ID. The
response is then stored in the ESI cache, using the cache ID as the key. For each
ESI include tag in the body of the response, a new request is processed such
that each nested include results in either a cache hit or another request
forwarded to the application server. When all nested includes have been
processed, the page is assembled and returned to the client.

Configuration steps
1. Configure the external cache group on the application servers (in our case for

the WEBcluster servers). Follow the steps outlined in “WebSphere External
Cache configuration” on page 560 and create an external cache group named
“EsiInvalidator” if it is not there by default. Then add a member with these
parameters:

– Address: localhost

– Adapter bean name:
com.ibm.websphere.servlet.cache.ESIInvalidatorServlet

Figure 10-44 EsiInvalidator external group settings

568 WebSphere Application Server V6 Scalability and Performance Handbook

2. Configure the ESI processor.

The ESI processor configuration is located in the WebSphere Web server
plug-in configuration file (plugin-cfg.xml). Example 10-19 shows the ESI
configuration options (they are usually located at the beginning of the file).

Example 10-19 ESI configuration options in plugin-cfg.xml file

<Property Name="ESIEnable" Value="true"/>
<Property Name="ESIMaxCacheSize" Value="1024"/>
<Property Name="ESIInvalidationMonitor" Value="false"/>

The esiMaxCacheSize specifies the maximum size of the cache in 1 KB units.
The default maximum size of the cache is 1 MB. If the cache is full, the first
entry to be evicted from the cache is the entry that is closest to expiration.

The esiInvalidationMonitor parameter specifies whether or not the ESI
processor should receive invalidations from the application server.

3. In order to enable an application server to send an explicit invalidation, the
esiInvalidationMonitor property from Example 10-19 must be set to true
and the DynaCacheEsi application must be installed on the application server
(refer to “Installing the DynaCacheEsi application” on page 560).

If the esiInvalidationMonitor property is set to true but the DynaCacheEsi
application is not installed, then errors will occur in the Web server plug-in and
the request will fail.

In order to configure it, open the WebSphere Administrative Console and click
Web servers -> <WebServer_Name> -> Plug-in properties -> Caching.
The Enable Edge Side Include (ESI) processing to cache the responses is
enabled by default. Select the Enable invalidation monitor to receive
notifications checkbox and click OK, as shown in Figure 10-45 on page 570.

Repeat this step for all Web servers that provide access to the application
server cluster.

Note: In our tests, the EsiInvalidator was already created in all application
servers, containing the member localhost, as shown in Figure 10-44. In this
case, you can keep the original configuration.

 Chapter 10. Dynamic caching 569

Figure 10-45 Enabling Edge Side Includes

Save the configuration, regenerate and redistribute the plug-in configuration
file if it is not configured to be regenerated and distributed automatically.

4. Add a cache policy in the cachespec.xml file for the servlet or JSP file you
want to be cached in the edge cache. To do so, Add <property
name="EdgeCacheable">true</property> for those entries, as shown in
Example 10-20 for marketSummary.jsp. This property is set as needed in the
default cachespec.xml for Trade 6.

Example 10-20 Edge cacheable property for marketSummary.jsp

<cache-entry>
<class>servlet</class>
<name>/marketSummary.jsp</name>
<property name="EdgeCacheable">true</property>
<cache-id>

<priority>3</priority>
<timeout>180</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

</cache-entry>

5. When WebSphere Application Server is used to serve static data, such as
images and HTML on the application server, the URLs are also cached in the
ESI processor. This data has a default timeout of 300 seconds. You can
change the timeout value by adding the property

570 WebSphere Application Server V6 Scalability and Performance Handbook

com.ibm.servlet.file.esi.timeOut to your JVM's command-line
parameters.

Testing ESI external caching
Follow these steps to test dynamic caching in the Web server plug-in:

1. Stop and start your Web server(s). We noticed that simply reloading the
plugin-cfg.xml file is not enough and a real stop and start of the Web server(s)
is necessary.

2. Start the DynaCacheEsi application if not done so already.

3. Go Trade, for example using:

http://cproxy.itso.ibm.com/trade
http://cluster.itso.ibm.com/trade
http://http1.itso.ibm.com/trade

In order to test the Web server plug-in dynamic caching configuration, the
most important thing is that you access the application through the plug-in (in
our case through the caching proxy, or the cluster, or on a Web server) and
not directly on the application server.

Execute a few tasks in Trade.

4. Monitor the ESI cache as outlined below.

ESI cache monitoring
The ESI processor's cache is monitored through the Dynamic Cache Monitor
application. In order for ESI processor's cache to be visible in the Cache monitor,
the DynaCacheEsi application must be installed and the
esiInvalidationMonitor property must be set to true in the plugin-cfg.xml file.

Open the Dynamic Cache Monitor application. During our tests we found that the
Edge statistics are only displayed in one of the Cache Monitor applications on
one of the application servers so you might need to verify which one is the
correct one.

To get this statistic you need to select Edge Statistics in the Cache monitor
navigation bar.

The Edge Statistics could be confused with the Caching Proxy statistics, which is
part of IBM Edge Components. However, the term Edge statistics in this case
relates to the ESI cache statistics. The ESI cache statistics are shown in
Figure 10-46 on page 572.

If you do not see Edge Statistics right away, try clicking the Refresh Statistics
button.

 Chapter 10. Dynamic caching 571

Figure 10-46 ESI statistics (Edge statistics)

The following information is available:

� ESI Processes: This is the number of processes configured as edge caches.

� Number of Edge Cached Entries: This is the number of entries currently
cached on all edge servers and processes.

� Cache Hits: This is the number of requests that match entries on edge
servers.

� Cache Misses By URL: A cache policy does not exist on the edge server for
the requested template.

Note that the initial ESI request for a template that has a cache policy on a
WebSphere Application Server results in a miss. Every request for a template
that does not have a cache policy on the WebSphere Application Server will
result in a miss by URL on the Edge server.

� Cache Misses By Cache ID: In this case, the cache policy for the requested
template exists on the edge server. The cache ID is created (based on the ID
rules and the request attributes), but the cache entry for this ID does not exist.

Note, that if the policy exists on the edge server for the requested template,
but a cache ID match is not found, the request is not treated as a cache miss.

� Cache Time Outs: The number of entries removed from the edge cache,
based on the timeout value.

572 WebSphere Application Server V6 Scalability and Performance Handbook

� Evictions: The number of entries removed from the edge cache, due to
invalidations received from WebSphere Application Server.

If you click the Contents button, you can see the edge content for all processes
or for a selected process number. You can see an example in Figure 10-47.

Figure 10-47 Edge cache content

The Cache Policies link shows the current cache policies, so you can make sure
the cachespec.xml configuration is correct. The cache policies are always
available in the Cache Monitor application, this information is not dependent on
ESI caching.

 Chapter 10. Dynamic caching 573

Figure 10-48 Current cache policies pane

Cache invalidation
There are three methods by which entries are removed from the ESI cache:

1. An entry's expiration timeout could fire.

2. An entry may be purged to make room for newer entries.

3. The application server could send an explicit invalidation for a group of
entries.

10.6.3 External caching on the IBM HTTP Server

WebSphere Application Server fragment cache can use the IBM HTTP Server as
an external cache. We explain the appropriate configuration in this section.

The FRCA cache resides on the Web server node as shown in Figure 10-49 on
page 575.

Restriction: The Fast Response Cache Accelerator (FRCA) is available for
both Windows NT and Windows 2000 operating systems and AIX platforms.
However, enabling FRCA cache for caching servlets and JSP files is only
available on the Windows operating systems.

574 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-49 ITSO IBM HTTP Server infrastructure

Configuration steps
1. Configure the external cache group on the application servers (in our case

Web1, Web2a, and Web2b). Follow the steps outlined in “WebSphere
External Cache configuration” on page 560 and create an external cache
group called “AFPA”. Then add a member with these parameters:

– Address: port

– Adapter bean name: com.ibm.ws.cache.servlet.Afpa

The port that you need to provide in the Address field is a port number that is
available in the application server machine that will be used for
communication between the AFPA component and the application server.
See Figure 10-50 on page 576.

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Web1
Cache

DB

Web2a
Cache

Web2b
Cache

Load
Balancer

APP2

APP1

HTTP2
Cache

HTTP1
Cache

HTTP1

HTTP2

 Chapter 10. Dynamic caching 575

Figure 10-50 APFA external cache group member

Repeat this step for each application server. Make sure that you do not use
the same port when the application servers are running in the same machine.

In our scenario, we used the following ports:

– Web1: port 9000
– Web2a: port 9000
– Web2b: port 9001

2. Add a cache policy to the cachespec.xml file for the servlet or JSP file you
want to cache. In our example we added
<property name="ExternalCache">AFPA</property>
for all entries that should be cached by FRCA.

Example 10-21 Cache entry for marketSummary.jsp

<cache-entry>
<class>servlet</class>
<name>/marketSummary.jsp</name>
<property name="ExternalCache">AFPA</property>
<cache-id>

<priority>3</priority>
<timeout>180</timeout>

</cache-id>
<dependency-id>MarketSummary
</dependency-id>

</cache-entry>

3. Update the Trade 6 application with the new cachespec.xml (refer to
“Distributing the cachespec.xml file” on page 536).

576 WebSphere Application Server V6 Scalability and Performance Handbook

4. Edit the IBM HTTP Server configuration file. You can use the WebSphere
Administrative Console. Click Servers -> Web servers ->
<WebServer_Name> -> Configuration File.

By default, the httpd.conf file already has an entry to load the AFPA module,
but it is commented out, as shown in Example 10-22.

Example 10-22 Original AFPA configuration in the httpd.conf file

#LoadModule ibm_afpa_module modules/mod_afpa_cache.so
<IfModule mod_afpa_cache.c>
 AfpaEnable
 AfpaCache on
 AfpaPort 80
 AfpaLogFile "C:/WebSphere/IBM HTTP Server/logs/afpalog" V-ECLF
</IfModule>

Locate the lines shown in Example 10-22 and edit them according to the
configuration shown in Example 10-23. Remove the /IfModule lines. Restart
the Web servers after editing the configuration file.

Example 10-23 AFPA adapter configuration in httpd.conf file

LoadModule ibm_afpa_module modules/mod_afpa_cache.so
LoadModule afpaplugin_20_module "C:/WebSphere/Plugins/bin/afpaplugin_20.dll"
AfpaEnable
AfpaCache on
AfpaPort 80
AfpaLogFile "C:/IHS/logs/afpalog" V-ECLF
AfpaPluginHost app1:9000
AfpaPluginHost app2:9000
AfpaPluginHost app2:9001

AfpaPluginHost WAS_Hostname:port specifies the host name and port of the
application server. These are the same values that you have specified in the
Address field when configuring the external cache group member (step 1 on
page 575).

The LoadModule directive loads the IBM HTTP Server plug-in that connects
the Fast Response Cache Accelerator to the WebSphere Application Server
fragment cache.

– If multiple IBM HTTP Servers are routing requests to a single application
server, add the directives from Example 10-23 to the httpd.conf file of each
of these IBM HTTP Servers.

– If one IBM HTTP Server is routing requests to a cluster of application
servers, add the AfpaPluginHost WAS_Hostname:port directive to the
httpd.conf file for each application server in the cluster. For example, if
there are three application servers in the cluster (Web1, Web2a, Web2b)

 Chapter 10. Dynamic caching 577

add an AfpaPluginHost directive for each application server as shown in
Example 10-24). The ports are the same that we configured in step 1 on
page 575.

Example 10-24 AFPA adapter configuration in httpd.conf file for application server cluster

AfpaPluginHost app1:9000
AfpaPluginHost app2:9000
AfpaPluginHost app2:9001

Do not forget to restart the Web servers after the httpd.conf file is changed.

Cache monitoring
You can monitor the FRCA cache log file. The location of this log file is also
configured in the httpd.conf file (AfpaLogFile directive - see Example 10-23 on
page 577).

10.6.4 External caching on the Caching Proxy
The dynamic caching function enables the Caching Proxy to cache dynamically
generated content in the form of responses from JSPs and servlets generated by
IBM WebSphere Application Server. A Caching Proxy adapter module is used at
the application server to modify the responses, so that they can be cached at the
proxy server in addition to being cached in the application server’s dynamic
cache. With this feature, dynamically generated content can be cached at the
entry point to the network, avoiding repeated requests to the application server,
when the same content is requested by multiple clients.

However, the Caching Proxy can only cache full pages, not fragments, and all
subcomponents of that page must also be cacheable. Also, secure content
requiring authorization is not cached externally at the proxy server.

Attention: Please notice that we found only one page in Trade 6 that adheres
to this rule. This page is register.jsp. Therefore, it does not make much sense
to use this dynamic caching scenario with Trade 6.

However, your application might be totally different and could benefit greatly
from caching dynamic pages in the Caching Proxy.

578 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-51 ITSO Caching Proxy infrastructure

The caches on the Caching Proxy and the WebSphere Application Server(s) are
synchronized when a new result is generated or a cache object expires. Cached
dynamic pages do not expire in the same way that regular files do. They can be
invalidated by the application server that generated them.

Configuration steps
1. Configure the external cache group on the application servers (in our case

Web1, Web2a and Web2b). Follow the steps outlined in “WebSphere External
Cache configuration” on page 560 and create an external cache group. Then
add a member with these parameters:

– Address: hostname:port

– Adapter bean name: com.ibm.websphere.edge.dynacache.WteAdapter

We have created a cache group called ITSO-APPSERV (Figure 10-42 on
page 565) and added our Caching Proxy server to this group (see
Figure 10-52 on page 580).

ITSO
Network

 DMZ Network
Application

Network
DB

 Network

Web1
Cache

Caching
Proxy DB

Proxy
Cache

Web2a
Cache

Web2b
Cache

Load
Balancer

HTTP1

APP2HTTP2

APP1

 Chapter 10. Dynamic caching 579

Figure 10-52 ITSO-APPSERV external cache group member setting

2. Edit the dynaedge-cfg.xml file, and add the external group statement as
shown in Example 10-25. There is a sample provided with the product in the
<WebSphere_install_root>/properties directory, but this is not used by the
application servers. Make sure you copy the sample or create a new
dynaedge-cfg.xml file in the <install_root>/profiles/<profile_name>/properties
directory of each node. The user and userPasswd correspond to the
administrator user of the Caching Proxy as defined in 5.7.1, “Using the
Caching Proxy configuration wizard” on page 213.

Example 10-25 dynaedge-cfg.xml file

<?xml version="1.0"?>
<EdgeServerCfg CacheManager="ITSO-APPSERV">
 <EdgeServer
 endpoint = "http://cproxy.itso.ibm.com:80"
 user = "admin"
 userPasswd = "admin"
 invalidation-url = "/WES_External_Adapter"
 URI-type= "absolute"
 />
</EdgeServerCfg>

3. Add a cache policy to the cachespec.xml file for the servlet or JSP file you
want to cache. Add <property name="ExternalCache">ITSO-APPSERV
</property> for all entries which should be cached by the proxy cache server.

Example 10-26 Cache entry for register.jsp

<cache-entry>
<class>servlet</class>
<name>/register.jsp</name>

580 WebSphere Application Server V6 Scalability and Performance Handbook

<property name="EdgeCacheable">true</property>
<property name="ExternalCache">ITSO-APPSERV</property>
<cache-id>

<timeout>180</timeout>
</cache-id>

 </cache-entry>

4. Configure dynamic caching at the Caching Proxy server.

The configuration changes are done in the caching proxy configuration file
ibmproxy.conf. This file is stored in the
<caching_proxy_install_root>/etc/en_US directory.

– Set the Service directive to enable the dynamic caching plug-in as shown
in Example 10-27. The directive is already in the file, but it is commented
out so simply remove the comment indicator. Note that each directive must
appear on a single line in the proxy configuration file.

Example 10-27 Service directive

===== JSP Plug-in =====
Service /WES_External_Adapter
/opt/ibm/edge/cp/lib/plugins/dynacache/libdyna_plugin.o:exec_dynacmd

– Set the ExternalCacheManager directive to specify file sources. Each
Caching Proxy must also be configured to recognize the source of the
dynamically generated files. See Example 10-28. You need to add an
ExternalCacheManager directive to the ibmproxy.conf file for each
application server that caches dynamically generated content at this proxy
server. This directive specifies a WebSphere Application Server or the
cluster of application servers that caches results at the proxy, and sets a
maximum expiration time for content from that server/cluster.

Example 10-28 ExternalCacheManager directive

#ExternalCacheManager directive:
ExternalCacheManager ITSO-APPSERV 20 minutes

– Next you need to add a CacheQueries directive to enable cache responses
for requests that contain a question mark (?), for example
/trade/app?action=home. See Example 10-29.

Example 10-29 CacheQueries directive

#CacheQueries directive:
CacheQueries ALWAYS http://cproxy.itso.ibm.com/*

– Set the CacheTimeMargin, which specifies the minimum expiration time;
files with expiration times below this minimum are not cached. Because

 Chapter 10. Dynamic caching 581

query responses sometimes have very short expiration times, setting this
directive to a lower setting allows more query responses to be cached.
See Example 10-30.

Example 10-30 CacheTimeMargin directive

CacheTimeMargin directive:
CacheTimeMargin 1 minutes

5. Restart the Caching Proxy and application servers.

After restarting the application servers, check the log file
<install_root>/profiles/<profile_name>/logs/edge/logs/dynaedge-<date>.log
to verify that your dynamic cache adapter was initialized properly. See
Example 10-31.

Example 10-31 Dynamic cache adapter log entry

Nov 2, 2004 1:58:09 PM: Using file
/usr/WebSphere/AppServer/profiles/app2/properties/dynaedge-cfg.xml to intialize
Edge Server configurations.

For more information about configuring dynamic caching in the Caching Proxy,
refer to the Caching Proxy Administration Guide Version 6.0, GC31-6857.

Caching Proxy monitoring
There is no GUI interface available for monitoring the cache content on the
Caching Proxy server. Therefore, you need to look at some log files to
understand what is cached and what is not.

The filenames and location are specified in the ibmproxy.conf file. The default
location is the <caching_proxy_install_root>/server_root/logs/ directory. The
relevant log files are:

� Proxy access log

It is used for logging proxy requests. It is defined by the directive
ProxyAccessLog in ibmproxy.conf.

The default filename is proxy.<date_stamp>.<sequence>.

� Cache access log

It is used for logging hits on proxy cache. It is defined by the directive
CacheAccessLog in ibmproxy.conf.

The default filename is cache.<date_stamp>.<sequence>.

582 WebSphere Application Server V6 Scalability and Performance Handbook

During our tests, we monitored these files in order to identify the components
that were sent to the back-end servers and the components that were delivered
from the cache.

For our first access to the Trade 6 application through the Caching Proxy server
we accessed the main page, clicked the Go Trade! link and selected the
Register with Trade link. This resulted in the following entries in the proxy log
file:

Example 10-32 Entries in the proxy log file

10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET /trade/ HTTP/1.1" 200 688
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET /trade/leftMenu.html
HTTP/1.1" 200 1501
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET /trade/contentHome.html
HTTP/1.1" 200 2534
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET /trade/style.css HTTP/1.1"
200 98
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET
/trade/images/tradeTopology.gif HTTP/1.1" 200 30524
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET /trade/images/tradeLogo.gif
HTTP/1.1" 200 3346
10.20.10.151 - - [05/Nov/2004:12:29:25 -0500] "GET
/trade/images/WEBSPHERE_18P_UNIX.GIF HTTP/1.1" 200 596
10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET /trade/topBanner.html
HTTP/1.1" 200 1484
10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET /trade/images/lanim.gif
HTTP/1.1" 200 1262
10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET /trade/images/topline.jpg
HTTP/1.1" 200 645
10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET
/trade/images/IBMBackGround1.gif HTTP/1.1" 200 43
10.20.10.151 - - [05/Nov/2004:12:29:51 -0500] "GET /trade/app HTTP/1.1" 200
2935
10.20.10.151 - - [05/Nov/2004:12:29:52 -0500] "GET /trade/register.jsp
HTTP/1.1" 200 4115

When we accessed those links for the second time, most entries were added to
the cache log file, indicating that they were delivered from the cache. This is
shown in Example 10-33.

Example 10-33 Entries in the cache log file

10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET /trade/images/tradeLogo.gif
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:29:26 -0500] "GET
/trade/images/WEBSPHERE_18P_UNIX.GIF HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:29:51 -0500] "GET /trade/style.css HTTP/1.1"
304 0

 Chapter 10. Dynamic caching 583

10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/ HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/topBanner.html
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/leftMenu.html
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/contentHome.html
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/images/lanim.gif
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/images/topline.jpg
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET
/trade/images/tradeTopology.gif HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/images/tradeLogo.gif
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET
/trade/images/WEBSPHERE_18P_UNIX.GIF HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/style.css HTTP/1.1"
304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET
/trade/images/IBMBackGround1.gif HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:57 -0500] "GET /trade/images/tradeLogo.gif
HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:58 -0500] "GET
/trade/images/WEBSPHERE_18P_UNIX.GIF HTTP/1.1" 304 0
10.20.10.151 - - [05/Nov/2004:12:30:59 -0500] "GET /trade/style.css HTTP/1.1"
304 0
10.20.10.151 - - [05/Nov/2004:12:31:01 -0500] "GET /trade/register.jsp
HTTP/1.1" 304 0

Deleting Caching Proxy cache content
You have two options to delete the Caching Proxy cache:

� If you are running with a memory cache only, then the only way to purge the
cache is to restart the process.

� If you are running with a raw disk cache, then you can use the htcformat
command to reformat the cache device.

Caching Proxy troubleshooting
You can enable tracing for the Caching Proxy. To do this, you need to specify the
log file for tracing in the ibmproxy.conf file as shown in Example 10-34.

Example 10-34 Tracing log file

#log file directives
TraceLog /opt/ibm/edge/cp/server_root/logs/trace

584 WebSphere Application Server V6 Scalability and Performance Handbook

Also, you can enable tracing on the application server for
com.ibm.websphere.edge.*, which is the package containing the external cache
adapters. To do this, click Troubleshooting -> Logs and Trace ->
<AppServer_Name> -> Diagnostic Trace in the WebSphere Administrative
Console. Click the Configuration tab, click the Enable Log checkbox and click
OK.

Click Troubleshooting -> Logs and Trace -> <AppServer_Name> -> Change
Log Detail Levels, click the Configuration tab and enter the trace string
com.ibm.websphere.edge.*=all. Click Apply or OK and restart your application
server(s).

Note that *=info is the default value, so we recommend keeping it in the
configuration.

An example of this window is shown in Figure 10-53.

Figure 10-53 Setting up the trace string for Caching Proxy

External cache invalidation
The responsibility for synchronizing the dynamic cache of external caches and
the WebSphere Application Server is shared by both systems. For example, a
public Web page dynamically created and cached at the application server using
Servlet/JSP result caching can be exported by the application server and cached
by the external cache server, which can serve the application's execution results
repeatedly to many different users until notified that the page is invalid.

 Chapter 10. Dynamic caching 585

The content in the external cache is valid until:

� The proxy server removes an entry because the cache is congested.

� Or the default timeout set by the Caching Proxy's configuration file expires.

� Or the Caching Proxy receives an Invalidate message directing it to purge the
content from its cache. Invalidate messages originate at the WebSphere
Application Server that owns the content and are propagated to each
configured Caching Proxy.

10.7 Using the Dynamic Cache Policy Editor
As mentioned earlier, the Dynamic Cache Policy Editor is provided as an Eclipse
plug-in and plugs into WebSphere Studio Application Developer V5.1.0 and
higher or Application Server Toolkit (AST) V5.1.0 and higher and can be
downloaded from:

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

10.7.1 Dynamic Cache Policy Editor installation
The installation procedure for the Dynamic Cache Policy Editor is similar to any
Eclipse plug-in installation. We used AST for our examples but the same
procedure applies for WebSphere Studio Application Developer and should also
be identical for Rational Application Developer once supported.

1. Close AST before continuing.

2. Open the file you downloaded from the alphaWorks® site
(com.ibm.etools.cpe_5.1.0.1.zip) with a zip extraction software and extract it
to the directory <tool_install_path>\eclipse\plugins, where <tool_install_path>
is the installation path of AST. In our scenario, we extracted it to C:\Program
Files\IBM\WebSphere\AST\eclipse\plugins.

The files are extracted to a directory named com.ibm.etools.cpe_5.1.0.1, as
shown in Figure 10-54 on page 587.

Restriction: At the time of writing this redbook, the Dynamic Cache Policy
Editor could not be used with Rational Application Developer V6 or AST V6.

As it is not expected that the GUI changes much once available for Rational
Application Developer V6 or AST V6, we decided to include this section to
show the functionality of the tool. All screenshots and descriptions are based
on the available Dynamic Cache Policy Editor version plugged into AST V5.1.

Please check the download site for new versions of the product.

586 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

Figure 10-54 Directory containing the Dynamic Cache Policy Editor files

3. Open AST.

4. Locate a Web module inside your application, and select it. In the menu, click
File -> New -> Other...

5. In the New window, select Web in the left pane. In the right pane you can see
the new option that was added, which is Cache Policy File, as shown in
Figure 10-55.

Figure 10-55 Cache Policy File option

 Chapter 10. Dynamic caching 587

6. In the New cache policy file window, you can select whether you want
Dynamic Cache Policy Editor to create and populate the cachespec.xml file
with policies for the servlets and JSPs in your application, or it can create an
empty file, so you can populate it yourself. Select the proper option, and click
Finish, as shown in Figure 10-56.

Figure 10-56 Creating a policy file

Check for the new cache policy file inside the Web application, in the WEB-INF
directory, as shown in Figure 10-57 on page 589.

Note: If you select a component that is not a Web application and you try
to create a cache policy file using the Dynamic Cache Policy Editor, you will
see an error message informing that the WEB-INF directory was not found
or, in some situations, the Finish button does not work. Therefore, make
sure you select a Web application before trying to create the cache policy
file.

588 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-57 Cache policy file created by the wizard

The Cache Policy Editor is automatically opened after the file creation has
finished. Whenever you need to open it, double-click the cachespec.xml file.
The Cache Policy Editor is shown in Figure 10-58.

Figure 10-58 Cache Policy Editor overview pane

The Cache Policy Editor provides four pages: Overview (default), Cache Policies,
Groups and Source. It provides wizards for most tasks, and the source editor
provides content completion and content validation.

 Chapter 10. Dynamic caching 589

It also shows messages in the Workbench Tasks view and updates the Outline
view, showing the structure of the cache policies file, as shown in Figure 10-59.

Figure 10-59 Outline view for the cache policies

10.7.2 Creating cache policy entries
If you choose to create an empty cache policy file, you can add elements to it by
using context menu options of the Dynamic Cache Policy Editor.

You can create policies for all servlets and JSPs at once by right-clicking the Web
application (tradeWeb in our example) and selecting Generate Cache Policies,
as shown in Figure 10-60 on page 591.

590 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-60 Generate Cache Policies menu option

You can also create policies for specific elements, by right-clicking them and
selecting Create Cache Policy, as shown in Figure 10-61 on page 592.

 Chapter 10. Dynamic caching 591

Figure 10-61 Creating a policy for a selected element

10.7.3 Examples: Creating cachespec.xml entries with the Dynamic
Cache Policy Editor

In this section we explain how to create cachespec.xml entries for the home
servlet, MarketSummaryCommand (which contains a dependency entry) and
UpdateQuotePriceCommand (which contains an invalidation entry), as used in
our examples in 10.5, “WebSphere dynamic caching scenarios” on page 528 and
10.6, “WebSphere external caching scenarios” on page 558.

For more information about the Dynamic Cache Policy Editor, refer to 10.3.2,
“Dynamic Cache Policy Editor” on page 515.

Create an entry for home servlet
The following steps describe how to create an entry for the home servlet, similar
to the one described in “Creating and editing Trade 6 cachespec.xml file” on
page 533.

592 WebSphere Application Server V6 Scalability and Performance Handbook

1. Follow the instructions on 10.7, “Using the Dynamic Cache Policy Editor” on
page 586 to create a blank cachespec.xml file. Note that in our examples we
use Application Server Toolkit (AST).

2. Double-click the file cachespec.xml to open the Cache Policy Editor.

3. In the Cache Policy Editor, click the Cache Policies tab at the bottom of the
Cache Policy Editor pane.

4. In the Cache Policies pane, click the Add Cache Policy button, as shown in
Figure 10-62.

Figure 10-62 Cache Policies pane

5. In the Add a Cache Policy window, enter /app for the Resource name, select
servlet in the Class field and select shared-push in the Replication field, as
shown in Figure 10-63 on page 594.

 Chapter 10. Dynamic caching 593

Figure 10-63 Adding a cache policy entry

6. Click the Add... button beside the Cache ID rules list box. In the Add a Cache
ID rule window, enter Example1 in the Display name field, and click the Add...
button beside the Components list box, as shown in Figure 10-64 on
page 595.

594 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-64 Adding a cache ID rule

7. In the Add a Component to a Cache ID Rule window, select parameter in the
Type field, enter action in the Name/ID field, click the Required checkbox
and click Finish.

 Chapter 10. Dynamic caching 595

Figure 10-65 Adding the first component to the cache ID rule

8. Back to the Add a Cache ID rule window, click the button Add... again. In the
Add a Component to a Cache ID Rule window, select cookie in the Type field,
enter JSESSIONID in the Name/ID field, click the Required checkbox and
click Finish.

596 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-66 Adding the second component to the cache ID rule

9. Click Finish twice to close both windows.

An entry for the home servlet (/app) is added to the Cache Policies list box, as
shown in Figure 10-67 on page 598.

 Chapter 10. Dynamic caching 597

Figure 10-67 Cache policy for the home servlet

The XML source code generated by those steps is shown in Example 10-35.

Example 10-35 Entry created for the servlet home in the cachespec.xml file

<cache-entry>
<class>
servlet</class>
<cache-id>

<display-name>Example1</display-name>
<component id="action" type="parameter" ignore-value="false">

<required>
true</required>

</component>
<component id="JSESSIONID" type="cookie" ignore-value="false">

<required>
true</required>

</component>
<timeout>
0</timeout>
<priority>
1</priority>
<property name="edgeCacheable">
false</property>

</cache-id>
<name>
/app</name>
<sharing-policy>
shared-push</sharing-policy>
<property name="edgeCacheable">

598 WebSphere Application Server V6 Scalability and Performance Handbook

false</property>
<property name="description">
</property>
<property name="externalCache">
</property>
<property name="alternate_url">
</property>
<property name="consume-subfragments">
</property>
<property name="persist-to-disk">
</property>
<property name="save-attributes">
</property>
<property name="store-cookies">
</property>

</cache-entry>

Create an entry for MarketSummaryCommand
The following example describes how to create a cache entry for
MarketSummaryCommand. Refer to 10.5.3, “Command caching” on page 540
for more information.

1. In the Cache Policies pane of the Cache Policy Editor window, click the Add
Cache Policy button (refer to steps 1 on page 593 through 4 on page 593).

2. In the Add a Cache Policy window, enter
com.ibm.websphere.samples.trade.command.MarketSummaryCommand in the
Resource name field, select command in the Class field and click the Add...
button.

Important: When using the wizard, even if you do not select an option or do
not enter a value into a field, default values are generated in the
cachespec.xml.

Therefore, we recommend you check the final cachespec.xml file by clicking
the Source pane in the Cache Policy Editor and eliminate any unwanted fields.

 Chapter 10. Dynamic caching 599

Figure 10-68 Adding a cache policy for MarketSummaryCommand

3. Enter Example2 in the Display name field, enter 10 in the Timeout field and
enter 3 in the priority field. Click Finish.

600 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-69 Adding a new cache ID rule

4. Click Finish again to close the Add a Cache Policy window.

5. In order to create the dependency ID entry for this cache policy, select the
Groups tab in the Cache Policy Editor Window and click the Add Group...
button below the Groups pane.

6. Enter MarketSummary in the Name field, and click the Add... button beside the
Members list box, as shown in Figure 10-70 on page 602.

 Chapter 10. Dynamic caching 601

Figure 10-70 Adding the MarketSummary group policy

7. In the Add a Membership Rule, select the marketSummaryCommand entry in
the Policy field and click Finish twice.

602 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-71 Adding a member of the MarketSummary group policy

The XML source code generated by those steps is shown in Example 10-36.

Example 10-36

<cache-entry>
<class>
command</class>
<cache-id>

<display-name>Example2</display-name>
<timeout>
10</timeout>
<priority>
3</priority>

</cache-id>
<name>
com.ibm.websphere.samples.trade.command.MarketSummaryCommand</name>
<sharing-policy>
not-shared</sharing-policy>
<dependency-id>
MarketSummary</dependency-id>

</cache-entry>
<group name="MarketSummary">

<description></description>

 Chapter 10. Dynamic caching 603

</group>

Create an entry for UpdateQuotePriceCommand
The following example describes how to create a cache entry for
UpdateQuotePriceCommand, which contains an invalidation entry.

1. In the Cache Policies pane of the Cache Policy Editor window, click the Add
Cache Policy button (refer to steps 1 on page 593 through 4 on page 593).

2. In the Add a Cache Policy window, enter
com.ibm.websphere.samples.trade.command.UpdateQuotePriceCommand in
the Resource name field, select command in the Class field and click the
Add... button.

3. Enter Example3 in the Display name field and click Finish.

4. Click Finish again to close the Add a Cache Policy window.

5. In order to create the invalidation entry for this cache policy, select the Groups
tab in the Cache Policy Editor Window and click the Add Group... button
below the Groups pane.

6. Enter Quote_Symbol in the Name field, and click the Add... button beside the
Invalidators list box, as shown in Figure 10-72 on page 605.

604 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-72 Adding the Quote_Symbol group policy

7. In the Add an Invalidation Rule, select the UpdateQuotePriceCommand entry
in the Policy field and click Add..., as shown in Figure 10-73 on page 606.

 Chapter 10. Dynamic caching 605

Figure 10-73 Adding an invalidation rule

8. In the Add a Component to a Group Invalidator Rule window, select method
in the Type field, enter getSymbol in the ID field and click the Required
checkbox.

606 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-74 Adding a component to the group invalidator rule

9. Click Finish three times.

The XML source code generated by those steps is shown in Example 10-36 on
page 603.

Example 10-37

<cache-entry>
<class>
command</class>
<cache-id>

<display-name>Example3</display-name>
<timeout>
0</timeout>
<priority>

 Chapter 10. Dynamic caching 607

1</priority>
</cache-id>
<name>
com.ibm.websphere.samples.trade.command.UpdateQuotePriceCommand</name>
<sharing-policy>
not-shared</sharing-policy>
<property name="description">
</property>
<property name="externalCache">
</property>
<property name="alternate_url">
</property>
<property name="consume-subfragments">
</property>
<property name="edgeCacheable">
</property>
<property name="persist-to-disk">
</property>
<property name="save-attributes">
</property>
<property name="store-cookies">
</property>
<invalidation>
Quote_Symbol<component id="getSymbol" type="method"

ignore-value="false">
<required>
true</required>

</component></invalidation>
</cache-entry>
<group name="Quote_Symbol">

<description></description>
</group>

The Outline view shows the structure of our current cachespec.xml file, as shown
in Figure 10-75 on page 609.

608 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-75 Outline view of the cachespec.xml file contents

10.8 Conclusion
As more e-business sites seek to retain customers by serving personalized
content, they face potential server-side bottlenecks, slow user response time,
and increasing infrastructure costs. The WebSphere Application Server dynamic
cache service can solve these critical challenges. Caching dynamic content that
needs back-end requests or CPU-intensive computations can reduce server-side
bottlenecks and maximize system resources, thus boosting performance and
reducing infrastructure costs.

The WebSphere Application Server dynamic cache service is easy to use and
readily available. You can benefit from using the available comprehensive
functions for caching dynamic content. The Servlet/JSP result cache and
command cache make the caching of dynamic content possible - at various
levels of granularity for the highest possible cache hits. The replication and
invalidation support facilitates caches that can be shared, replicated, and
synchronized in multi-tier or multi server environments. The Edge of Network
Caching Support, with its external caches and fragment support, generates a
virtual extension of application server caches into the network.

The WebSphere Application Server dynamic cache service combined with an
appropriate external cache, such as WebSphere Edge Server or IBM HTTP
Server, can power high volume sites with intensive dynamic content to achieve
the highest level of scalability and performance.

 Chapter 10. Dynamic caching 609

The last information in this chapter is a short recapitulation of the caching
technologies available for WebSphere Application Server solutions. Refer to
Table 10-1.

Table 10-1 Caching techniques

Despite the fact that we did not focus on static content caching, Table 10-2
provides an overview of static content caching technologies:

Table 10-2 Static caching

Middleware What is cached Memory or file
system

Dynamic
Caching

WebSphere
Application Server

Results from JSPs
Servlets

Both

Fast Response
Cache
Acceleratora

a. The Fast Response Cache Accelerator (FRCA) is available for both
Windows NT and Windows 2000 operating systems and AIX platforms. However,
enabling FRCA cache for caching servlets and JSP files is only available on the
Windows operating systems.

IBM HTTP Server Results from
JSP
Servlets

V1.3 - Memory
V2.0 - Bothb

b. IHS 2.0 provides a module called mod_mem_cache, which supports a memory
cache and a file descriptor cache.

Web server
plug-in

WebSphere
Application Server -
ESI processor

Results from
JSP
Servlets

Memory

Caching Proxy WebSphere Edge
Components

Results from
JSP
Servlets

Both

Middleware Memory or file system

Fast Response Cache
Accelerator

IBM HTTP Server V1.3 - Memory
V2.0 - Both

Web server plug-in WebSphere Application
Server - ESI processor

Memory

Caching Proxy WebSphere Edge
Components

Both

610 WebSphere Application Server V6 Scalability and Performance Handbook

10.9 Benchmarking Trade 3
This section is based on WebSphere V5.1 benchmarks using Trade 3 but it gives
you a good impression of what performance benefits you can gain with dynamic
caching. Please remember that all results depend on the underlying application -
the more cacheable content, the bigger the performance gains.

There is no complete testing scenario available for WebSphere V6 and Trade 6
yet but the first benchmarks done with WebSphere V6 and Trade 6 have shown
even better results than with the previous versions. One important thing to note is
that DistributedMap caching performs better than command caching.

10.9.1 Dynamic caching

During this test the system was stressed in these four scenarios:

� No caching (see Figure 10-76 on page 612).

� Enabled command caching (see Figure 10-77 on page 612).

� Enabled servlet and JSP result caching (see Figure 10-78 on page 613).

� Enabled Edge Side Include caching (see Figure 10-78 on page 613).

The test targeted both read and update operations as follows:

� Read (75%)

– quote
– portfolio
– home
– account

� Update (25%)

– buy
– sell
– login/logout
– register

As you can see in these figures, the command caching increased the
performance 2.7 times, plus Servlet/JSP caching = 2.9 times and when edge
caching was enabled, the performance was increased 4 times.

Note: This section is extracted from the existing testing scenario for dynamic
caching of Trade 3.1.

 Chapter 10. Dynamic caching 611

Figure 10-76 System performance without caching

Figure 10-77 System performance with command caching

Applying Dynamic Caching to Trade 3
Edge Presentation Business Logic DB

Register

Buy

Sell

Login/out

home

IBM Software Group | WebSphere software

No Caching

Command

Servlet/JSP

Edge

1X 2X 3X 4X

1x

Without caching all requests
flow to database tier

account

quote

portfolio

WebSphere Performance

Applying Dynamic Caching to Trade 3
Edge Presentation Business Logic DB

Register

Buy

Sell

Login/out

home

quote

quote

portfolio

account

WebSphere Performance

IBM Software Group | WebSphere software

No Caching

Command

Servlet/JSP

Edge

1X 2X 3X 4X

1x

2.7x

With command caching,
some requests are cached at the

Business Logic Tier.

account

612 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-78 System performance with servlet and JSP caching

Figure 10-79 System performance with ESI processor caching

Applying Dynamic Caching to Trade 3
Edge Presentation Business Logic DB

Register

Buy

Sell

Login/outaccount

home

quote

quote

portfolio

quote

quote

portfolio

account

WebSphere Performance

IBM Software Group | WebSphere software

No Caching

Command

Servlet/JSP

Edge

1X 2X 3X 4X

1x

2.9x

2.7x

With servlet and JSP fragment
caching, resulting HTML fragments
are cached via the Web Container

account

Applying Dynamic Caching to Trade 3
Edge Presentation Business Logic DB

Register
quote Buy

Sell

Login/out

portfolio

account

home
quote

quote

quote

portfolio

quote

quote

portfolio

account

WebSphere Performance

IBM Software Group | WebSphere software

No Caching

Command

Servlet/JSP

Edge

1X 2X 3X 4X

1x

2.9x

4x

2.7x

HTML fragments are cached in
the Edge Server using Edge

Side Includes (ESI)

 Chapter 10. Dynamic caching 613

10.9.2 Edge Side Includes

Performance
First, a threaded Web server is preferred over a strictly process-based Web
server for two reasons:

1. Since there is a separate instance of the ESI processor's cache for each
process, a threaded Web server with fewer processes allows a higher degree
of cache sharing, and thus a higher cache hit ratio, lower memory
consumption, and increased performance.

2. If ESIInvalidationMonitor is set to true (that is, if invalidations flow back to
the ESI processor), then a long-running connection is maintained from each
process to the ESIInvalidatorServlet in each application server cluster.
Furthermore, each of these connections uses a thread in the application
server to manage the connection. Therefore, a threaded Web server uses far
fewer connections to the back-end application server, and far fewer threads to
manage these connections.

Figure 10-80 on page 615 shows a performance comparison of Trade3 on
Windows with:

� No caching
� Servlet and command caching, but no ESI caching
� Servlet, command, and ESI caching

Note: This section is extracted from the existing WebSphere Application
Server Network Deployment 5.0 performance test. It discusses ESI
performance considerations and a performance comparison for Trade3.

Warning: It was noted from our testing of Trade3 on RedHat Linux Advanced
Server 2.1 that more than 100 threads per process had adverse affects. In
particular, the cost of using pthread_mutex locks (as is used by the ESI
processor) with a large number of threads introduced a CPU bottleneck. By
configuring IHS 2.0 to have 100 threads per process, pthread_mutex
contention was minimized and the CPU utilization was maximized. The
optimal thread-to-process ratio may differ for your application and will depend
upon the cost of computing the data to be cached.

614 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 10-80 Benefits of caching

Figure 10-80 shows that servlet and command caching boost performance
approximately 250%. ESI boosts the performance another 38% with a 90%
read-to-update ratio for Trade3.

Best Practices
This section contains a set of best practices for making your application's
fragments "edge cacheable" (that is, cacheable on the "edge" by the ESI
processor in the WebSphere Web server plug-in).

� Modify the MVC (Model-View-Controller) design practices to isolate work into
individual fragments. For example, the Trade3 home page provides
personalized account information for an individual user as well as generic
market summary data. To efficiently edge cache this output, the page is
broken into two fragments. The personalized data is in tradeHome.jsp which
is cached for each individual user, whereas the market summary page is
cached as a single instance and shared by all users. To take advantage of
edge caching, the work to produce the data for each page must be done in
the page itself verses in a single controller servlet which does all of the work.

 Chapter 10. Dynamic caching 615

� Further fragment pages when necessary. For example, the Trade3 quotes
page provides quotes for an arbitrary list of stocks entered by the user. The
page provides an HTML table with each row containing the price and other
information for an individual stock. To take advantage of edge caching, a
single JSP fragment page is created for the rows in the Quote.jsp page. This
new page, displayQuote.jsp, computes the current information for a given
stock symbol. This allows all stocks to be individually cached at the edge. The
ESI processor will assemble the page fragments corresponding to each
individual stock row to create the full table.

� Unlike the dynamic cache service which runs within the WebSphere
application server, the ESI processor does not have access to user HTTP
session data to uniquely identify page fragments. The application must be
designed such that page fragments can be uniquely identified using request
parameters on the URL, HTTP form data or HTTP cookies in the request. In a
JSP include, parameters should be included in the URL as query parameters
instead of as JSP parameter tags, thus allowing the ESI processor visibility to
these values as query parameters.

� Consideration should be given as to how expensive a given fragment is to
compute. Fragments which are expensive to compute provide the best
candidates for edge caching and can provide significant performance
benefits. The cache entry sizes for Dynamic Caching and the ESI processor
should be large enough to accommodate these expensive fragments. Also,
the priority (or the time-to-live value) of these fragments should be raised to
ensure less expensive fragments are removed from the cache first.

� Another important consideration for edge caching is the update rate of a
page. Invalidation of cached fragments is a relatively expensive operation.
Therefore, very dynamic fragments which are invalidated often may not
benefit from caching, and may actually hurt performance. Most Web
application pages, however, are quasi-static and thus can benefit greatly from
Dynamic Caching and edge caching in WebSphere.

10.10 Reference
For additional information, see the following documents.

� WebSphere Dynamic Cache: Improving J2EE application performance

http://www.research.ibm.com/journal/sj/432/bakalova.pdf

Note: Although these documents are based on WebSphere V5.x, they explain
the dynamic caching concept very well and thus are also helpful for a
WebSphere V6 environment.

616 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.research.ibm.com/journal/sj/432/bakalova.pdf

� IBM WebSphere Developer Technical Journal: Static and dynamic caching in
WebSphere Application Server V5

http://www.ibm.com/developerworks/websphere/techjournal/0405_hines/0405_
hines.html

� Exploiting Dynamic Caching in WebSphere Application Server 5.0, Part 1

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Cont
entID=3623&publicationid=19&PageView=Search&channel=2

� Exploiting Dynamic Caching in WebSphere Application Server 5.0, Part 2

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Cont
entID=4409&publicationid=19&PageView=Search&channel=2

 Chapter 10. Dynamic caching 617

http://www.ibm.com/developerworks/websphere/techjournal/0405_hines/0405_hines.html
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=3623&publicationid=19&PageView=Search&channel=2
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=4409&publicationid=19&PageView=Search&channel=2

618 WebSphere Application Server V6 Scalability and Performance Handbook

Part 5 Messaging

Part 5

© Copyright IBM Corp. 2005. All rights reserved. 619

620 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 11. Using asynchronous
messaging for scalability
and performance

The Java Messaging Service (JMS) has become very important in developing
J2EE applications. It is used by disparate components within an IT environment
to communicate both synchronously and asynchronously and also as a
communication mechanism between two parts of the same J2EE application.

The specification for a J2EE 1.4 application server does not specify how
messages should be represented or transported, but it does strictly specify the
interface to the underlying messaging provider. JMS is the standard interface
which a Java application uses to access a J2EE 1.4 compliant messaging
provider. Every messaging provider in IBM WebSphere Application Server V6 -
the default messaging provider, IBM WebSphere MQ, and the V5 default
messaging provider - supports the JMS 1.1 API.

11

© Copyright IBM Corp. 2005. All rights reserved. 621

11.1 Introduction
This chapter covers the use of JMS from the perspective of scalability and
performance. It will take the reader through an introduction to JMS 1.1,
components and workflow of asynchronous messaging for large applications,
and optimized JMS code development.

Although some fundamental concepts are reviewed, some sections of this
chapter assume a previous understanding of JMS messaging.

11.2 Basic use of the JMS API
This section provides an introduction to using the JMS 1.1 API to access a
J2EE 1.4 compliant message provider. It does not cover architectures for using
JMS within applications. For an overview of the architecture of the Java
Messaging Service, see:

http://www.theserverside.com/articles/article.tss?l=JMSArchitecture

11.2.1 The unified programming interface
JMS 1.1 provides a programming interface which combines the JMS 1.0.2b
programming interface for point-to-point messaging (using queues) and
publish-subscribe messaging (using topics):

Table 11-1 JMS 1.1 API

The unified API is recommended for new applications; however, JMS 1.1
supports the point-to-point and publish-subscribe API for backwards compatibility
with legacy applications.

Unified or parent API Point-to-point Publish-subscribe

ConnectionFactory (CF) QueueConnectionFactory
(QCF)

TopicConnectionFactory
(TCF)

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueBrowser/QueueReceiver TopicSubscriber

622 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.theserverside.com/articles/article.tss?l=JMSArchitecture

Example code
The code snippet in Example 11-1 steps through the use of the unified JMS API
for message production.

Example 11-1 JMS 1.1 code snippet

[0] try {
[1]
[2] InitialContext context = new InitialContext();
[3]
[4] ConnectionFactory connFactory = (ConnectionFactory)
[5] context.lookup("java:comp/env/jms/MyConnectionFactory");
[6]
[7] Connection conn = connFactory.createConnection();
[8]
[9] boolean isTransacted = false;
[10] Session sess = conn.createSession(isTransacted, Session.AUTO_ACKNOWLEDGE);
[11]
[12] Destination des = (Destination) context.lookup("java:comp/env/jms/textQ");
[13]
[14] MessageProducer producer = sess.createProducer(des);
[15]
[16] TextMessage message = sess.createTextMessage("Hello World from WebSphere 6!");
[17] producer.send(message);
[18]
[19] } catch(NamingException ne) {
[20]
[21] logger.error(“Naming error in MyServlet before sending Hello World”, ne);
[22]
[23] } catch(JMSException jmse) {
[24]
[25] logger.error(“Error associated with sending Hello World in MyServlet”, jmse);
[26] Exception linked = jmse.getLinkedException();
[27]
[28] if(linked != null) {
[29] logger.error(“Error linked to JMS Exception in MyServlet”, linked);
[30] }
[31] }

Important: The try-catch block in this code sample does not close JMS
resources. It is written under the assumption that the resources are still
needed and does not include a finally block to close any unneeded resources.
Refer to 11.4.4, “Freeing JMS object resources” on page 641 for more
information.

 Chapter 11. Using asynchronous messaging for scalability and performance 623

A walkthrough of the code with references to the line numbers follows:

1. [Line 2] An initial context is created to look up references to JMS administered
objects such as a connection factory or destination. The default context is
used, which is the context of the environment the code is in during runtime,
for example, the JNDI namespace tree for an application server.

2. [Lines 4-5] A known J2EE context reference
(“java:comp/env/jms/MyConnectionFactory”) is used to retrieve a Java
reference to an administered object. In this case, the administered object is
the corresponding connection factory associated with the desired messaging
provider. This context reference resolves to a JNDI name specified outside of
the code. The JNDI name can be changed within the Administrative Console
in the event that the administered object changes providing a level of
indirection.

3. [Line 7] The factory is used to create a JMS connection to the messaging
provider.

4. [Lines 9-10] A session is created from the connection which is not transacted.
Automatic acknowledgement of received messages is enabled (this argument
is ignored if the session is transacted).

5. [Line 12] A J2EE context lookup is used to retrieve a Java reference to the
textQ administered object which is casted as a javax.jms.Destination even
though it is more specifically a javax.jms.Queue in the JMS provider. This
allows for the same API to be used for both publish/subscribe and
point-to-point.

6. [Line 14] A producer is created for the destination.

7. [Lines 16-17] A JMS text message is created and sent.

For a complete discussion of using the JMS 1.1 API, refer to section 10.2, “Java
Message Service” of the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451).

A reference for the changes since JMS 1.0.2b is found in the developerWorks®
article “JMS 1.1 simplifies messaging with unified domains,” found at:

http://www.ibm.com/developerworks/java/library/j-jms11/

Note: Support for looking up resources directly by using the JNDI
namespace is deprecated in WebSphere Application Server V6. This is
where a lookup string without the “java:comp/env/” prefix is used and
treated as a JNDI name.

624 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/java/library/j-jms11/

11.2.2 Consuming JMS messages
When an application is written to access an asynchronous messaging system
through JMS, it is typically in one of two ways:

� Generic JMS usage

Using the JMS API to send and receive messages. The application relies on
WebSphere Application Server to locate the relevant messaging system and
to handle the connections to it. What the application does with sending and
receiving the messages is entirely up to the application developer within the
bounds of the JMS API. For example, a javax.jms.MessageConsumer may be
used to poll a JMS destination manually.

� JMS and message-driven beans (MDB)

A message-driven been is an Enterprise JavaBean (EJB) which has the
ability to consume asynchronous messages. It may consume a message
received from a message listener or the JMS resource adapter. For a
complete discussion of developing message-driven beans, see section 10.4,
“Message-driven beans” of the redbook WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451.

Using the JMS API directly with a message consumer to poll destinations is not
recommended over using message-driven beans. The introduction of
message-driven beans in J2EE 1.3 provided a standard for application servers to
reduce the complexity in consuming messaging associated with manually polling
with a MessageConsumer.

11.3 Choosing what format to use within JMS messages
The choice of physical format within a JMS message is a key decision in
architecting a messaging solution. In small messaging applications, using the
various JMS message types (BytesMessage, TextMessage, StreamMessage,
MapMessage, or ObjectMessage) can be sufficient. It is often the case in
enterprise solutions for a javax.jms.BytesMessage or javax.jms.TextMessage to
be used in addition to physical formatting in order to facilitate more complex data
structures.

Note: If you are familiar with the use of the javax.jms.MessageListener
interface, the use of the setMessageListener and getMessageListener
methods for javax.jms.MessageConsumer are no longer supported in J2EE
Web or EJB containers. However, they are supported within Client containers.

 Chapter 11. Using asynchronous messaging for scalability and performance 625

The effect of an efficient physical format is not vital for performance; however,
small gains can be achieved with efficient and effective message representation.
The subject is covered here for completeness.

The following physical formats are the most common:

� XML

This is the most common message representation. It is an open standard
which can be used by many modern platforms and enterprise systems. XML
can be mapped to nearly any data representation using XSLT. It is popular for
its ability to represent data in a format which both computer systems and
people can read with standard tools.

However, there is a trade-off in additional payload associated with XML. It is
text based with verbose, tagged formatting which is not an efficient physical
format.

� Tagged delimited

A tagged delimited physical format uses a delimiter such as a colon to
separate text fields. A tag, which is often a keyword, is used to identify the
type of data a field contains. An example of a tagged delimited physical format
is SWIFT which has been used in many large-scale enterprise applications.

� Record-oriented

A record-oriented physical format contains different types of fields with
variable length. For example, a message may include an integer spanning two
bytes and a string spanning 24 bytes. A struct in C is an example of a
record-oriented physical format. A record-oriented message can provide the
most efficient message, but comes at the cost of readability, maintainability,
and inter-operability.

For a complete discussion of message formatting see the book Enterprise
Messaging Using JMS and IBM WebSphere by Kareem Yusuf, Ph.D.. An excerpt
on physical message formatting is available online at:

http://www.phptr.com/articles/article.asp?p=170722

Important: The size of a message body is also a performance consideration.
A modest gain in performance may be gained from reducing the size of a
heavily used JMS message in an application. In general, a series of small
messages each with a specific purpose can perform better then a single
verbose message. JMS 1.1 added BytesMessage.getBodyLength() which may
prove useful in logging message payloads.

626 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.phptr.com/articles/article.asp?p=170722

11.4 Managing workload for asynchronous messaging
In 11.2, “Basic use of the JMS API” on page 622 we saw how the JMS
components are used. This only showed a single request, where in reality there
would be many simultaneous requests. A Java application server’s ability to
handle multiple threads of work allows an application to perform well when the
workload requires dealing with simultaneous requests. In a Web application,
simultaneous user requests are serviced by Web container threads. If the Web
application makes use of JMS, then JMS components corresponding to the local
messaging provider will also be required to handle simultaneous requests.

For the receiving application using MDBs to consume the workload, it may also
be optimal to have messages processed in parallel.

All the workload that arrives, either for MDBs or a MessageConsumer, needs to
be efficiently handled within the bounds of the physical resources available to the
application server and the underlying messaging system (and also any back end
applications accessed through messaging).

There are administrative settings associated with each JMS messaging provider
that allow controls to be placed on the workload, allowing a balance to be
reached while providing the best throughput and response times for the physical
hardware the application is running on.

11.4.1 Basic workload patterns
The way in which work arrives at the application server determines how many
simultaneous JMS requests will be handled. Knowing the high level workflow of
asynchronous messaging can be very helpful in administering applications with
performance and scalability in mind.

Workload from Web or EJB container
When requests come from the Web or EJB container it is the number of threads
in these containers that is controlling the upper limit for the number of
simultaneous accesses to the JMS resources. This is assuming that the Web
and EJB container thread pools have not been configured to allow growth
beyond the maximum pool size specified.

Important: As the demand for artifacts in the Web and EJB container which
produce JMS messages increases, the number of JMS connections and
sessions needed increases.

 Chapter 11. Using asynchronous messaging for scalability and performance 627

When using the default messaging provider, the WebSphere MQ provider, or a
generic provider which has maximum settings for JMS resource related pools, it
is important to fine tune such settings for optimal performance.

Figure 11-1 and Figure 11-2 on page 629 show a typical way in which requests
might flow from an application. They illustrate the flow for WebSphere MQ and
the default messaging provider respectively. In this example all access to the
connection factory is through the EJB container and messages are only placed
on the destination. On each set of requests denoted by the arrows, is a tag that
represents the controlling factor on how many simultaneous requests can reach
that particular resource.

Figure 11-1 Request flow of EJB container accessing MQ JMS destinations

Session pool

EJB Container

Session pool

Web Container

CF

Requests from HTTP
Server

Requests from external
EJB Client

Connection
pool

Max Web container threads Max ORB threads

Max sessions

Destination
Connection

Destination
Connection

Max connections

WebSphere
MQ

628 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 11-2 Request flow of EJB container accessing default provider destinations

As requests arrive, a proportion of them require use of JMS resources. There
has to be enough of these resources available to handle all the requests. If there
are not enough JMS resources available, then requests will have to wait for them
to become free. This could lead to time-outs and re-submission of requests.

Ideally, each request should only ever require the use of one JMS connection
and one session at any time. Programming in this manner avoids deadlock
situations. JMS 1.1 has made this even easier with the ability to access multiple
types of destinations from the same session. As stated in the J2EE 1.4
specification, it is recommended that no more than one session be created per
JMS connection.

Note: If a JMS connection is not available and the JMS client is blocked, this
blocks the corresponding EJB or Web container thread that is processing the
request causing a subsequent lack of resources to process HTTP and EJB
requests. This should be avoided at all costs by allocating enough resources
on the messaging tier to handle the expected volume of request with an
additional safety buffer.

EJB ContainerWeb Container

Requests from HTTP
Server

Requests from external
EJB Client

Max Web container threads Max ORB threads

JMS resource
adapter

Messaging
Enging

connection pool

Connection Factory

Bus
Messaging Engine

Creation of JMS
Connections & Sessions

Max
connections

 Chapter 11. Using asynchronous messaging for scalability and performance 629

Both the WebSphere MQ provider and the default messaging provider implement
pooling mechanisms to facilitate management of JMS resources. The MQ JMS
provider has maximum JMS session and connection pool settings in its
connection factory settings. The Connection pool and Session pools for
WebSphere MQ can be found in the WebSphere Administrative Console under
Resources -> JMS Providers -> WebSphere MQ -> WebSphere MQ
connection factories. The appropriate links are then found in the Additional
Properties pane. See Figure 11-3 and Figure 11-4.

Figure 11-3 MQ JMS provider maximum connection pool setting

Figure 11-4 MQ JMS provider maximum connection pool setting

630 WebSphere Application Server V6 Scalability and Performance Handbook

The pooling mechanism for the default messaging provider is different from that
for the WebSphere MQ JMS implementation (or the V5 default provider
implementation). For WebSphere MQ JMS, the application server provides a
proxy to the JMS provider's objects enabling it to provide security and
transactional integration. The application server also uses this additional layer of
indirection to implement pooling of the provider's JMS connection and session
objects.

In contrast, the default messaging provider is implemented as a J2EE Connector
Architecture (JCA) resource adapter. The provider therefore uses the JCA
interfaces to access the services provided by the application server. The
application then accesses the provider's JMS objects directly and the provider
pools a lower level connection to the messaging engine. This messaging engine
connection is retrieved from the pool when a JMS connection is created and then
associated with the first JMS session created from that connection. Subsequent
JMS sessions will retrieve their own messaging engine connection from the pool.
The messaging engine connection is returned to the pool when the JMS session,
method, or current transaction (assuming a resource sharing scope of Shareable
is configured) is closed.

The details of the underlying default messaging provider’s JMS implementation
are beyond the scope of this discussion - what is important for an administrator or
architect is that balancing the maximum connection pool setting is important for
performance and scalability. In WebSphere Application Server version 6.0.0.1
this setting can be found under Resources -> Resource Adapters -> SIB JMS
Resource Adapter -> J2C connection factories ->
<connection_factory_name> -> Connection pool properties. See
Figure 11-5 on page 632.

Important: Every MQ JMS connection has its own pool of session objects.
This means that if the connection pool has a maximum of 5 and the session
pool has a maximum of 10, providing the application is written to do this, there
can be up to 50 Sessions open, 10 on each of the connections.

Tip: Upcoming versions of WebSphere V6 might provide this setting under
Resources -> JMS Providers -> Default messaging -> JMS connection
factory.

 Chapter 11. Using asynchronous messaging for scalability and performance 631

Figure 11-5 Default messaging provider maximum connection pool setting

More information about settings that can affect performance can be found in
12.6, “Choosing optimal configuration settings” on page 663 for the default
messaging provider and 13.3, “Choosing optimal configuration settings” on
page 708 for the WebSphere MQ provider. For information about monitoring
these values in real time see 12.10, “Monitoring performance with Tivoli
Performance Viewer” on page 693 for the default messaging provider and 13.6,
“Monitoring performance with Tivoli Performance Viewer” on page 765 for the
WebSphere MQ provider.

Workload from messaging system (MDB)
In this pattern, the workload is generated by messages to be consumed by
message-driven beans. This means that the amount of workload that comes into
the application server is directly associated with how many messages can be
consumed by MDBs concurrently. Since the mechanism for consuming JMS
messages using MDBs is different for the default messaging provider and the
WebSphere MQ provider they are covered separately.

WebSphere MQ JMS provider
Figure 11-6 on page 633 illustrates the workflow of consuming messages with
the MQ JMS provider. A message listener service monitors destinations and
passes new messages to the corresponding message-driven bean. The relevant
settings to be considered in tuning performance for message consumption are:

� Maximum sessions in session pool on connection factory

632 WebSphere Application Server V6 Scalability and Performance Handbook

� Maximum connections in connection pool on connection factory

� Maximum sessions on listener port (JMS server sessions are part of the
application server facilities, not JMS sessions)

� Maximum threads on message listener service

� Maximum EJB container pool size

Figure 11-6 Request flow when using MDBs for the MQ JMS provider

If the maximum sessions for a listener port is set to 5, then there can be up to five
sessions working in parallel to process messages on the message destination.
The default for this value is 1 which would in effect make messages be
processed in a serial fashion. Setting it to any more than 1 means that the order
that messages get processed in cannot be guaranteed.

Important: Tuning these settings is dependant on knowing the number of
listener ports defined in an application server and the optimal maximum for
sessions on each listener port.

Session pool

EJB container
- MDBs

QCF

Connection
pool

Max sessions in session poolMax connections

Max sessions on listener
port

Max threads

Message listener service

Destination
Connection

WebSphere
MQ

Max MDB
Instance
Pool Size

Message Listener Port

 Chapter 11. Using asynchronous messaging for scalability and performance 633

As this setting governs how much simultaneous activity will occur in the
application server it also governs how much of the other resources will be
needed. When a listener port session is in use it needs:

� One message listener service thread

� One Connection (a listener port uses one Connection regardless of the
number of listener port sessions)

� One Session

Choosing the correct number of listener port sessions to handle the messages
as they arrive defines all the other parameters.

Ideally, the number of sessions on a listener port must be sufficient to handle the
peak load of messages arriving on the message destination. This would have to
be balanced against the system resources and all the other processing that is
going on in the application server.

The minimum and maximum amount of MDB instances in the EJB container that

run at a single point in time (referred to in Figure 11-6 on page 633) can be
configured with the com.ibm.websphere.ejbcontainer.poolSize system

Explanation: Three listener port sessions are working off one message
destination with three messages on it, each session picks up a message.
There is a chance that session 2 could finish first, before sessions 1 and 3
have completed. This would mean message 2 is processed before
message 1.

Transaction rollback would also cause messages to be processed in a
different order. Same scenario, but this time message 2 is rolled back. It is put
back on the destination, and so could end up being processed after
message 3 has completed. If you have maximum sessions set to 1, then
message 3 won't be processed until message 2 has been successfully
processed.

Important: A listener port will use one Connection object regardless of the
number of listener port sessions, and that object remains in use as long as the
listener port is started.

A listener port session, once established will hold on to all the resources it
needs until it is finished. This means it will be using up a Session and a
message listener service thread.

634 WebSphere Application Server V6 Scalability and Performance Handbook

property. For more information, search for “EJB container system properties” in
the WebSphere Application Server V6 Information Center:

http://www.ibm.com/software/webservers/appserv/infocenter.html

For more information about settings related to the WebSphere MQ provider, such
as configuring connection factories, see 13.3, “Choosing optimal configuration
settings” on page 708.

Information about monitoring the WebSphere MQ provider can be found in 13.6,
“Monitoring performance with Tivoli Performance Viewer” on page 765.

Default messaging provider
Figure 11-7 on page 636 illustrates the workflow of consuming messages with
the default messaging provider. A JMS resource adapter monitors destinations
and passes new messages to the corresponding message-driven bean. The
relevant settings to be considered in tuning performance for message
consumption are:

� Maximum batch size for the JMS activation specification

� Maximum concurrent endpoints for the JMS activation specification

� Maximum EJB container pool size

 Chapter 11. Using asynchronous messaging for scalability and performance 635

http://www.ibm.com/software/webservers/appserv/infocenter.html

Figure 11-7 Request flow when using MDBs for the default messaging provider

If this picture looks unfamiliar, a full discussion of these components can be
found in sections 10.3 and 10.4 of the redbook WebSphere Application Server
V6 System Management and Configuration Handbook, SG24-6451.

The workflow is somewhat simplified for the default messaging provider
compared to the MQ JMS provider. However, there are still settings which control
how much concurrent activity is allowed when messages are consumed.

The batch size configures the maximum number of messages in a single batch
delivered serially to a single message-driven bean instance. Batching of
messages can improve performance particularly when used with Acknowledge

Note: The activation specification does not pass messages to MDBs or poll
destinations. It is a collection of settings for the JMS resource adapter
exposed in the Administrative Console which configure the adapter to perform
asynchronous message delivery to a message endpoint.

EJB Container - MDBsWeb Container

JMS resource
adapter Activation

Specifcation

Bus
Messaging Engine

Max MDB Instance Pool Size

Maximum Concurrent Endpoints

Maximum Batch Size

636 WebSphere Application Server V6 Scalability and Performance Handbook

mode set to Duplicates-ok auto-acknowledge. If message ordering must be
retained across failed deliveries, set the batch size to 1 (default).

Increasing the number of concurrent endpoints can improve performance but can
increase the number of threads that are in use at any one time. If message
ordering must be retained across failed deliveries, set the maximum concurrent
endpoints to 1 (default is 10).

The minimum and maximum amount of MDB instances in the EJB container that
run at a single point in time (referred to in Figure 11-7 on page 636) can be
configured with the com.ibm.websphere.ejbcontainer.poolSize system
property. For more information, search for “EJB container system properties” in
the WebSphere Application Server V6 Information Center:

http://www.ibm.com/software/webservers/appserv/infocenter.html

Ideally, the number of concurrent endpoints and the EJB container pool must be
sufficient to handle the peak load of messages arriving on the message
destination. This needs to be balanced against the system resources and all the
other processing that is going on in the application server. Information about how
to monitor these settings is found in 12.10, “Monitoring performance with Tivoli
Performance Viewer” on page 693.

More information about workload considerations for the default messaging
provider is covered in 12.5, “Clustering, high availability and workload
management” on page 656.

More information about configuring the default messaging provider for
performance can be found in 12.6, “Choosing optimal configuration settings” on
page 663.

11.4.2 Selectors
A selector acts as a filter when waiting to receive a message. If a selector has
been specified on the receive action then only messages that match criteria in
that selector will be returned. A selector can be setup on MDBs and also coded
in generic JMS when doing a receive.

Selectors in JMS point-to-point messages
The WebSphere MQ queue manager does not support filtering by content. So to
implement JMS selectors in point-to-point, MQ JMS will browse a message,
parse it, compare it with the selector and then either retrieve it if there is a match
or browse the next message. This is termed client-side selection, and has a
performance cost as each message must be retrieved to the client to be
browsed.

 Chapter 11. Using asynchronous messaging for scalability and performance 637

http://www.ibm.com/software/webservers/appserv/infocenter.html

WebSphere MQ does allow filtering by certain fields with certain formats in the
MQ header which accompanies all messages. Two such fields are available to
the JMS API:

� Message ID
� Correlation ID

When selecting on these fields, in the particular case of equality testing, the MQ
JMS code is able to avoid the browse-parse-get loop and simply do a
get-by-messageId or get-by-correlationId. This optimization is termed
server-side selection as the messages are no longer retrieved to the client first to
attempt to match the selector, instead this is done on the server. This only
applies if the selector is a simple one, so for example no use of AND or OR with
another field in the selector string. Using the server-side selection makes the
matching process run faster.

The server side selection will only work if the values for message ID or
correlation ID match the messaging provider’s JMS format.

Message ID
A message ID is generated by the JMS provider and has to conform to the JMS
specification of:

ID:nnnnn

where nnnnn is a provider specific value. For WebSphere MQ the message ID is
a 48 character hexadecimal value and will look like:

ID:414d51205741535f617070315f6a6d73b9f1cc3f2000071c

As it is generated, writing a selector that uses the message ID field will use
server-side selection.

Correlation ID
The correlation ID is not generated by the JMS provider and is left to the
programmer to set. To take advantage of server-side selection the correlation ID
needs to be set to the correct format so that WebSphere MQ will recognize it and
bypass the costly browse-parse-get loop. There are two ways to do this:

� Set the correlation ID to the message ID

Important: This is not the case for the default messaging provider. The default
provider can access properties in an encapsulated message because its
messages are formatted using the Service Data Object (SDO) framework.
Thus, selectors on user specified properties do not require parsing the entire
message payload.

638 WebSphere Application Server V6 Scalability and Performance Handbook

The message ID is already in the correct format as it is generated. Using this
saves having to construct a correlation ID of the correct format and is the
recommended method.

� Manually construct the correlation ID to the correct format

This means making a String that is 48 hexadecimal characters. If you wish to
use a String that is readable and then convert that into hexadecimal then that
String needs to be 24 characters long.

Example
One common activity which uses a selector is within one application thread, send
a request message and wait for the reply message. The reply message is
identifiable on the incoming destination by an identifying field, in this example the
correlation ID field. Finding the correct message is then a case of using a
selector that will match on that correlation ID.

The code to do this would look something like the code fragment in
Example 11-2.

Example 11-2 Example receive using a selector string for correlation ID

Session sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
String messageSelector = "JMSCorrelationID = '"+correlid+"'";
MessageConsumer consumer;
consumer= sess.createConsumer(myDestination, messageSelector);
TextMessage message = (TextMessage) consumer.receive();
String s = message.getText();

This code will only do a server-side selection if the field correlid is encoded in
the correct format. The most common approach is for the receiving application to
copy the message ID of the request into the correlation ID. This can be done with
the setJMSCorrelationID method for a javax.jms.Message.

MDBs and selectors
The selector for an MDB is set in the EJB deployment descriptor. Unlike the
previous discussion of generic JMS and selectors, the selection process is done
by the application server and messaging provider not by the code written by the
J2EE application developer. The message is automatically delivered when a
match according to the selector is found.

Keeping the depth of the queue (number of messages on a queue) to a minimum
always increases the speed of using message selectors as there are less
messages which participate in the selection mechanism. When using MDBs with
message selectors in point-to-point, you should always make sure to have all
messages that arrive on a destination dealt with.

 Chapter 11. Using asynchronous messaging for scalability and performance 639

Any messages that do not match the selection criteria for the MDBs
corresponding to that destination, will be left sitting on the queue. Over time they
could build up and slow down the selection process. To avoid this, either make
sure that the MDBs that use selectors on a message destination, cover all
possibilities for arriving messages, or use one of the configuration options to
remove the unselected messages.

Depending on your application, it might be possible to specify an expiration for
messages on the destination.

If WebSphere MQ is the provider, an alternative to handling all cases in the
application code is to disable message retention. The message listener service
will check all the selector strings of its MDBs against each message that arrives.
If it does not find a match then the default is for this message to be returned to
the destination. This should not be used for applications that cannot tolerate
message loss of any kind.

This setting is configurable in the Administrative Console for a connection factory
under the WebSphere MQ JMS provider.

To disable message retention, uncheck the box next to Enable message
retention then save the configuration. See Figure 11-8.

Figure 11-8 Disable message retention on an MQ connection factory

640 WebSphere Application Server V6 Scalability and Performance Handbook

11.4.3 Application defined persistence

Using persistence on a message destination should only be used when needed if
performance is a requirement. WebSphere MQ and the default messaging
provider have the option to leave destination persistence decisions at the
application level by setting the persistence for a queue or topic as APPLICATION
DEFINED.

The javax.jms.MessageProducer interface includes setDeliveryMode() which
can be used to set a persistent or non-persistent delivery mode.

11.4.4 Freeing JMS object resources
When using JDBC to access a database it is a best practice to make sure that all
objects are closed after their use - even when exceptions occurs. The same
applies when using JMS. Figure 11-3 shows an example of how the finally block
after a try-catch should be coded after a JMS connection is no longer needed.

The close method for javax.jms.Connection triggers a close for all JMS objects
below it in the hierarchy. For example, closing a QueueConnection (a subinterface
of Connection) will close a QueueSender or QueueSession created under that
connection. Closing the highest object in the JMS hierarchy which is no longer
needed is recommended.

Example 11-3 Sample finally block for a piece of code that sends a message

Important: This setting changes the behavior for all parts of the application
that are accessing a destination on the WebSphere MQ provider through this
connection factory. Use this setting only when you are confident that it will not
affect any other part of the application. Also, each destination can only have
one process that is using selectors on it through this connection factory. If
there is more than one process, for example the message listener service and
a MessageConsumer running in a Web container thread, then there is a
danger that messages will be lost.

Important: It is not recommended that you make decisions regarding
persistence at the application code level. Persistence can be configured in the
Administrative Console independent of the code facilitating maintainability and
reuseability. The subject is covered here only for completeness.

Important: By default, persistence is turned on for a message producer.

 Chapter 11. Using asynchronous messaging for scalability and performance 641

finally {
// Close JMS Connection
try {

if (connection != null) {
connection.close();
connection = null;

}
} catch (JMSException jmse) {

logger.error(“Connection close() failed within MyServlet”, jmse);
if(jmse.getLinkedException() != null)

logger.error(“linked cause for error”, jmse.getLinkedException());
}

}

642 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 12. Using and optimizing the
default messaging provider

In WebSphere Application Server V6, the embedded messaging server from
WebSphere Application Server V5.x was replaced by the default messaging
provider, which is supported by the Service Integration Bus, a new component of
WebSphere Application Server V6.

Throughput testing of the default messaging provider has yielded unmatched
results compared to WebSphere MQ and the V5.x embedded messaging server
in a subset of possible configurations. If maximum throughput is desired and low
message reliability is acceptable, using the default messaging provider may be
the optimal choice for performance.

This chapter describes how the various components of the default messaging
provider interact, including bus members and messaging engines. It takes you
through manually configuring the necessary JMS components for the Trade 6
application and demonstrate running Trade 6 on the default messaging provider
architecture.

For information about IBM WebSphere MQ as a messaging provider for
WebSphere Application Server V6, see Chapter 13, “Understanding and
optimizing the use of WebSphere MQ” on page 697.

12

© Copyright IBM Corp. 2005. All rights reserved. 643

12.1 Introduction
Performance and stability of an application using JMS are largely governed by:

� Efficient and safe application usage of JMS

� The most efficient messaging and application server topology, but also one
that provides adequate failure handling

� Optimal configuration settings of each individual application server and its
resources

Stability is also important for maintaining performance; the application will need
to be able to cope with failures in a graceful manner. If it is unable to do this then
performance will degrade and the service provided by the application becomes
unacceptable.

It is the aim of this chapter to provide the reader with enough information to cover
these areas, either through discussion or by identifying other documents that
already cover a particular area.

This chapter is structured so that each section builds on the knowledge from
previous sections. It starts with taking a look at what happens when you use the
default messaging provider in your application. This is so that the following
sections can use this to help build the larger picture of the implications of making
configuration changes within a default messaging provider setup.

While some terminology and concepts are described within this chapter in
completeness, others might require a previous understanding of the technology
behind the default messaging provider. If you are new to JMS, then you should
first look at chapter 10, “Asynchronous messaging”, of the redbook WebSphere
Application Server V6 System Management and Configuration Handbook,
SG24-6451.

Also, the Trade 6 application is used in our examples, so familiarity with this
application allows you to better understand what is being described. Some
information about how Trade 6 uses JMS can be found in 12.8.1, “What does
Trade 6 use the default messaging provider for?” on page 673. Also, refer to the
document tradeTech.pdf coming with the Trade 6 download package. Trade 6 can
be downloaded from:

http://www.ibm.com/software/webservers/appserv/performance.html

Note: At the time of writing this redbook, Trade 6 was not yet available for
download. It is expected soon. Please monitor this page for availability.

644 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/performance.html

12.2 Introduction to the Service Integration Bus and the
default messaging provider

This section gives you a brief introduction on the concepts and architecture of the
Service Integration Bus and the default messaging provider in WebSphere
Application Server V6. For detailed information, please refer to Chapters 10,
“Asynchronous messaging” and 11, “Default messaging provider” in the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451.

The Service Integration Bus provides a managed communications framework
which supports a variety of message distribution models, reliability options and
network topologies. It provides support for both message-based applications and
service oriented architectures.

The Service Integration Bus acts as the default messaging provider for
WebSphere Application Server V6.

By using a messaging bus, which is a cell wide resource rather than a single
messaging hub like the WebSphere Application Server v5.x embedded JMS
Server, clients are isolated from the actual topology/implementation details to the
underlying messaging provider. For example, a client application running on a
server which is a bus member, does not need to know a host name to connect to
the messaging provider or any particular destination. Thus, the topology of the
bus can be changed by an administrator without changing the clients.

12.2.1 Bus or Service Integration Bus
A bus or Service Integration Bus is a component of WebSphere Application
Server V6 that supports applications using message-based and service-oriented
architectures.

A WebSphere cell can contain any number of buses. To be of any use, each bus
should contain one or more bus members. The exact decision as to how many
buses and bus members you have depends on your messaging needs and cell
topology. Some systems may require only a single bus with a single bus member,
where other systems may require or benefit from a more complex messaging
topology.

Note: Hereafter, the Service Integration Bus is referred to as the bus or
messaging bus.

 Chapter 12. Using and optimizing the default messaging provider 645

Benefits of multiple messaging engine busses include:

� Improved scalability by spreading messaging workload across multiple
servers.

� Performance enhancements from situating messaging destinations close to
message producing or consuming applications.

� Improved availability by removing single points of failure.

The ability to have multiple buses within a single cell can be beneficial. It enables
completely separate messaging systems to be used for different purposes, such
as having test and production systems where destination names need to be the
same, or the separation of messaging applications which have no need to
communicate with each other.

12.2.2 Bus members and messaging engines
When you add an application server to a bus, a messaging engine is created on
the server. A messaging engine is part of the server that manages messages
and messaging connections for a particular bus. A server might be a member of
more than one bus, in which case the server will have one messaging engine for
each bus that it is a member of.

When clients connect to a bus, they will be connected to it through a messaging
engine.

When you add a server cluster to a bus, a messaging engine will also be defined,
however, unlike a J2EE application, the messaging engine will not be active on
all servers within the cluster at the same time, it will only be active on one of
them. If, for any reason, the messaging engine, or the server it is running on,
should fail, the messaging engine will be restarted on another available server in
the cluster. See 12.5, “Clustering, high availability and workload management”
on page 656 for more details.

Messaging engines are created for you by the bus and have generated names.
These names follow a strict format, as follows:

� For a bus member that is a server, the messaging engine name has the
format <nodeName>.<serverName>-<busName>.

� For a bus member that is a cluster, the messaging engines names have the
format <clusterName>.XXX-<busName>. Where XXX is a number from 000
upwards. This value will be the lowest number available that does not conflict
with existing numbers.

646 WebSphere Application Server V6 Scalability and Performance Handbook

12.2.3 Destinations
Bus destinations are logical addresses within a bus to which applications can
attach as message producers or message consumers.

There are four different types of destinations:

� Queue

A queue is a destination which is configured for point-to-point messaging.
While a queue is a bus wide resource, a queue will have a queue point,
created when the queue is defined, which is associated with a single bus
member. This bus member is responsible for hardening (writing to disk) any
messages that need to be persisted. It is beneficial, for performance reasons,
to have message consumers such as message-driven beans running in the
same application server as the queue point for a queue being consumed
from.

� Topic space destinations for publish/subscribe messaging

A topic space is a destination which can be used for publish and subscribe
messaging. A topic space is also a bus wide resource but, unlike a queue,
has no association with any particular bus member. Within a topic space,
clients can publish to any named topic, for example news/sports/golf.
Clients can subscribe to named topics, or use a wildcard to select a group of
topics such as news/sports/*.

� Alias destinations act as an alias to another destination

For example, a queue named a may be accessed by using an alias
destination named b. These also provide a mechanism for overriding default
values, such as default reliability and security, for clients accessing a
particular destination through the alias.

� Foreign destinations

Foreign destinations are a way of overriding foreign bus default values for
particular destinations on a foreign bus.

12.2.4 JMS activation specification
When a message-driven bean (MDB) is deployed as a Java Connector
Architecture (JCA) 1.5 resource as a listener on the default JMS messaging
provider, it needs a JMS activation specification providing the necessary

Note: Although loosely related, a bus destination is not a
javax.jms.Destination, the JMS interface which JMS queue and topic
objects implement.

 Chapter 12. Using and optimizing the default messaging provider 647

configuration information to receive messages. The configuration includes the
name of the bus and the JNDI name of the JMS destination.

One or more message-driven beans can be associated with a JMS activation
specification.

For more information about how to configure a JMS activation specification,
please refer to the WebSphere Application Server V6 InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Refer to the Java Connector Architecture (JCA) 1.5 documentation for more
information about activation specification and resource adapters at

http://java.sun.com/j2ee/connector/download.html

12.2.5 Message reliability
Messages on the bus have a property called reliability which defines how the
messages will be delivered. There are five levels of reliability, as detailed in
Table 12-1.

Table 12-1 Message reliability

Reliability should be chosen according to your messaging needs, more reliable
messages will perform less well than less reliable messages.

The exact reliability of any particular message is configured in a number of ways:

Reliability

Best Effort nonpersistent Messages are discarded when a messaging engine is
stopped, or if it fails. Messages may also be discarded if a
connection used to send them becomes unavailable or as
a result of constrained system resources. Messages
delivered asynchronously to non-transactional
MessageListeners or message-driven beans will not be
redelivered if an exception is thrown.

Express nonpersistent Messages are discarded when a messaging engine is
stopped or if it fails. Messages may also be discarded if a
connection used to send them becomes unavailable.

Reliable nonpersistent Messages are discarded when a messaging engine is
stopped or if it fails.

Reliable persistent Messages may be discarded if a messaging engine fails,
but not when it is stopped.

Assured persistent Messages are never discarded.

Least Reliable

Most Reliable

648 WebSphere Application Server V6 Scalability and Performance Handbook

http://java.sun.com/j2ee/connector/download.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

1. The delivery mode of the JMS MessageProducer can be set programatically
by the JMS client to PERSISTENT or NON_PERSISTENT.

This will be overridden by:

2. The optional deliveryMode parameter on the JMS MessageProducer.send()
method.

This will be overridden by:

3. The default messaging provider JMS destination resource which can specify
whether the delivery mode can be specified by the JMS application or
whether the persistence will be set to persistent or nonpersistent.

This will be overridden by:

4. The bus destination which can be configured to disallow message producers
to override the default message reliability that is set on the bus destination.
The default is for a bus destination to allow message producers to override
the default reliability.

The default messaging provider JMS connection factory used by the JMS
application to connect to the bus provides the mapping of the
PERSISTENT/NON_PERSISTENT delivery mode option in JMS into the various levels
of reliability provided by the bus. The Quality of Service properties on the
connection factory allow you to specify the desired mapping of JMS PERSISTENT
messages and JMS NON_PERSISTENT messages to the reliability provided by the
bus. It is also possible to specify that the default reliability of the bus destination
should be used by selecting “As bus destination”.

12.2.6 Data stores
Every messaging engine has a data store. A data store is a set of database
tables that are exclusively accessed by a messaging engine and used to harden
(write to disk) messages that need to be persisted. They are accessed using a
JDBC data source, the JNDI name of which must be configured in the messaging
engine.

A messaging engine prevents other messaging engines from accessing the
same data by storing a unique identifier (UUID) in the database.

12.3 Components used in a default messaging provider
configuration

This section helps you to understand exactly what components are involved
when using the default messaging provider to access a messaging system.

 Chapter 12. Using and optimizing the default messaging provider 649

When an application is written to access an asynchronous messaging system
through JMS, it is typically in one of two ways:

� Using the JMS API to send and receive messages

The application relies on WebSphere Application Server to locate the relevant
messaging system and to handle the connections to it. What the application
does with sending and receiving the messages is entirely down to the
application developer within the bounds of the JMS API.

� Message-driven beans (MDB)

The application relies on WebSphere Application Server to monitor the
underlying messaging system and pass any new messages to an instance of
a purpose built MDB that will handle the message.

12.3.1 JMS component diagram for sending a message
Putting a message onto a message destination using JMS requires a number of
components. Figure 12-1 on page 651 depicts how the ServletToDestination
servlet places a message on a topic or queue. The code is written to work with
either the point-to-point or publish/subscribe model using the unified JMS API.
For an introduction to the unified JMS 1.1 API see 11.2, “Basic use of the JMS
API” on page 622 which provides a complementary reference.

For this example, the following are needed:

� JNDI Naming service

Described in detail in chapter 13 of the WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451 redbook.

� Connection Factory (CF)

Encapsulates the settings necessary to connect to a messaging system.

� Destination

A reference to the destination.

� A message queue or topic

The actual destination where messages are held in the messaging engine
until removed by an application.

650 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 12-1 Component interactions to send a message using JMS 1.1 API

1. The servlet is invoked by the user and the doGet method is called by the Web
container.

2. The application needs to locate the correct destination to place the message
on. The JNDI namespace is used to house a link to the Java objects that will
perform communication with the messaging system. The
ServletToDestination servlet uses resource references within the code. These
are linked at application deployment time to the JNDI entries that can be used
to communicate with the messaging system.

Messaging Engine

8

jms/MyCF

jms/Destination1

JNDI Entry

JNDI Naming Service

Resource
References

java:comp/env/
jms/Des

java:comp/env/
jms/CF

2

4

JCA Resource
Adapter

Connection Factory
JNDI Name: jms/MyCF

Connection Connection

Web Container (ServletToDestination)
...............
InitialContext context = new InitialContext();
connFactory = (ConnectionFactory)
 context.lookup
 ("java:comp/env/jms/CF");

destination = (Destination)
 context.lookup
 ("java:comp/env/jms/Des");

conn = connFactory.createConnection();

Session sess = conn.createSession
(false, Session.AUTO_ACKNOWLEDGE);

MessageProducer producer =
sess.createProducer(destination);

TextMessage message =
sess.createTextMessage("Hello World!");

producer.send(message);
conn.close();
................

Application Server

1

Service Integration Bus

3

5

5

6

6

8

Connection

7

SessionSession

6

SessionSession SessionSession

7

5

 Chapter 12. Using and optimizing the default messaging provider 651

3. The code performs a JNDI lookup (1) for the connection factory using the
resource reference.

4. The resource reference is matched to the JNDI entry that contains the
connection factory(2). The connection factory (java:comp/env/jms/CF) object
is returned, it will be used to get a connection to the messaging engine that is
responsible for the target destination.

5. A second JNDI lookup is performed (3) and resolved to the correct JNDI entry
(4). This time it is for the destination, this will be used to locate the required
destination from the messaging engine.

6. To be able to communicate with the queue in the messaging system, the
application must first create a connection (5) from the ConnectionFactory
object. This request to create a new JMS connection will result in the JCA
resource adapter creating (or obtaining from the pool) a managed connection
to the messaging engine.

7. A session object is created from the connection (6). The managed connection
from the connection is then associated with the session. When the session is
closed the managed connection is returned to the pool. See “Workload from
Web or EJB container” on page 627 for more information about pooling.

8. With a connection now established to the messaging system through the
session object, the application now specifies what sort of action is going to be
performed, in this case it is to send a message (7). The destination definition
that was taken from the JNDI name service is passed to the session object
and this gives the messaging engine information for the specific destination
on to which the message will be placed.

9. The message is constructed and sent to the message destination(8).

This is just a basic example of how JMS might be used within an application.
However, it demonstrates the number of components that are used to send a
message with the default messaging provider. The configuration of these
components can be crucial in making sure that the application performs fast
enough for requirements.

12.3.2 Bus and message-driven beans
Using message-driven beans with the default messaging provider incorporates
further components because the application server is now responsible for
delivering the message to the application.

Message-driven beans (MDBs) attached to destinations in the bus are attached
by means of the bus JCA resource adapter for JMS, an activation specification
which defines the settings for the adapter, and a JMS destination. The resource

652 WebSphere Application Server V6 Scalability and Performance Handbook

adapter is responsible for connecting to the bus and delivering messages to the
MDB.

As an example, the Servlet2MDBQueue servlet, which can be found in the
Trade 6 application, places a message on a queue associated with the JNDI
name jms/TradeBrokerQueue. Within the default configuration that comes with
Trade 6, an activation specification “eis/TradeBrokerMDB” has been defined that
configures the bus resource adapter to monitor the queue. Any messages that
arrive on the queue are passed to the TradeBrokerMDB to be processed. This
process is shown in Figure 12-2 on page 654.

For this example, the following are used:

� The components listed in “JMS component diagram for sending a message”
on page 650:

– JNDI name service
– Connection factory (CF)
– Destination
– A message queue

� Message-driven bean (MDB)

When a message arrives on a queue that is being monitored by a
corresponding resource adapter, the onMessage method of its associated
MDB is called and the MDB will consume that message.

� Activation specification

Each MDB using the default messaging provider is associated with an
activation specification which contains the configuration for the JMS resource
adapter to invoke the MDB when the message arrives.

 Chapter 12. Using and optimizing the default messaging provider 653

Figure 12-2 Component interactions receiving a message from a queue using a MDB

1. The MDB is associated with the activation specification that is in turn
associated with the correct queue. Upon initialization the JCA runtime
performs a JNDI lookup (1) for the activation specification. The activation
specification is returned, it will be used to get a connection to the messaging
engine that is responsible for the target queue.

2. The JCA runtime also performs a JNDI lookup for the queue destination (2)
that the activation specification has been configured with. This will be used to
locate the required queue from the messaging engine.

3. The JCA runtime provides the activation specification to the JMS resource
adapter which then connects to the messaging engine (3). Any messages
arriving on the message queue will be picked up one ore more at a time
(depending on the batch size) and processed by the correct MDB.

4. A message arrives (4) on the queue.

Messaging Engine

eis/TradeBrokerMDB

jms/TradeBrokerQueue

JNDI Entry

JNDI Naming Service

JMS Resource Adapter

EJB Container (TradeBrokerMDB)

Application Server Running Trade6

Service Integration Bus

4

public void onMessage(Message message) {
 try {

............

JCA Runtime

Activation Specification

1

2

35

3

3

6

654 WebSphere Application Server V6 Scalability and Performance Handbook

5. As the resource adapter is ready to accept messages, it will take delivery of
the message off the queue (5). The resource adapter then passes the
message on to an instance of the MDB that it is associated with. The
onMessage method is called on the MDB passing it the message.

12.4 Component relationships
Compared to WebSphere MQ, the component relationships in the default
messaging provider are greatly simplified (see 13.2, “MQ JMS component
relationships” on page 705). The JMS resource adapter has replaced all
components related to the message listener service. Pooling related to JMS
connections and sessions has been consolidated to one JCA connection pool
which pools connections to the messaging engine. Figure 12-3 illustrates the
component relationships for the default messaging provider.

Figure 12-3 Component relationship diagram

For Web and EJB container workloads, high volume JMS use means using more
JMS connections and sessions, whether it is workload using the publish and
subscribe or point-to-point model. Refer to 11.4.1, “Basic workload patterns” on
page 627 for more information. This requires more JCA connections to the
messaging engine in the resource adapter. Also, heavy workflow inbound to an
application can strain the amount of concurrent JMS endpoints corresponding to
the consuming message-driven bean.

Message
Driven Bean

Instance

JMS Session

Outbound
Communication

Resource Adapter

Pooled
Messaging

Engine
Connection

Messaging
Engine

Connection

Messaging
Engine

Inbound
Communication

1 1 1

1

*

1* 1

 Chapter 12. Using and optimizing the default messaging provider 655

These relationships should be considered when tuning an application for
performance. 12.10, “Monitoring performance with Tivoli Performance Viewer” on
page 693 should be referred to when tuning for performance.

12.5 Clustering, high availability and workload
management

The bus provides high availability and workload management for messaging. It is
worth noting however, that bus messaging engines do not follow the same
clustering model that J2EE applications do in WebSphere Application Server
clusters.

A J2EE application (such as an EJB or servlet) that is installed on a cluster of
application servers runs on all active application servers in the cluster
simultaneously. Thus, workload management is provided for the application. If
one of the servers fails then the application will still be available on the other
servers which provides high availability for the application.

12.5.1 Cluster bus members for high availability
When an application server cluster is added to a bus as a cluster bus member,
the messaging engine defined will be highly available. The messaging engine
becomes active on only one server within the cluster. Should the messaging
engine fail, or the server it is running on fail or be stopped, then the messaging
engine will automatically be started on another server in the cluster if one is
available.

Since the messaging engine is only available on one server within the cluster,
there is no workload management of the messaging function provided by the
cluster bus member.

By default, the messaging engine will start on the first available server in a
cluster. If you wish to ensure that the messaging engine runs on one particular
server in the cluster, for example if you have one primary server and one backup
server, or if you wish the messaging engine to only run on a small group of
servers within the cluster, then you must specifically configure this. See 12.5.5,
“Preferred servers and core group policies” on page 660 for details on
configuring preferred servers.

656 WebSphere Application Server V6 Scalability and Performance Handbook

12.5.2 Cluster bus members for workload management
To achieve greater throughput of messages, it is beneficial to spread the
messaging load across multiple servers, and optionally across multiple hosts.
You can achieve this, while maintaining a simple destination model, with a cluster
of messaging engines, each of which has a preference to run on a separate
server in the cluster.

Once a server cluster has been added to a bus, that cluster is a cluster bus
member. As mentioned earlier, a cluster bus member automatically gets one
messaging engine defined on it, but it may optionally have additional messaging
engines added to it. These messaging engines can be configured to prefer to run
on separate servers within the cluster. This enables a messaging engine to run in
every server in the cluster, providing every application in the cluster with a
messaging engine for local access to the bus. Local access to the bus is always
better for messaging performance, especially in the case of queues where the
queue is assigned to the bus member being accessed.

When a queue is assigned to a cluster bus member, the queue will be partitioned
across all messaging engines in the cluster.

12.5.3 Partitioned queues
A queue is partitioned automatically for you when a queue destination is
assigned to a cluster bus member.

Every messaging engine within the cluster owns a partition of that queue and will
be responsible for managing messages assigned to the partition. Every message
sent to the queue will be assigned to exactly one of the partitions.

Local partitions
When a JMS client that is attempting to access a partitioned queue is connected
to a messaging engine that hosts one of those partitions (a messaging engine in
the cluster) then the client will only be able to access that “local” partition of the
queue for both consuming and producing messages.

Note: The only instance where messages will not be sent to the local partition
is when that local partition is full and other partitions of the queue are not. In
this case, messages will be routed to a non-full remote partition.

Clients will only attempt to consume from the local partition, even if there are
no messages in the local partition and there are messages available on other
partitions.

 Chapter 12. Using and optimizing the default messaging provider 657

Remote partitions
If the JMS client is connected to a messaging engine that does not host a
partition of the destination (a messaging engine in the same bus that is not in the
cluster), then each session that client creates will connect to one “remote”
partition for the purposes of consuming messages. Each session created will be
workload-managed with respect to which remote partition it connects for
consuming messages.

Messages sent to a remote partitioned destination will be workload-managed
across the individual partitions on a per-message basis regardless of the
session.

Important: It is worth noting that cluster bus members and partitioned queues
alone will not give better throughput of messages. The applications that are
producing and consuming the messages must be configured to make use of
the support provided by the bus.

� Message producers must be configured to ensure that messages they
produce will be workload-managed onto different partitions of a partitioned
queue. There are several ways of doing this, including:

– Message producers (JMS clients) connecting directly into the cluster,
though this has some restrictions in version 6.0, see “JMS clients
connecting into a cluster of messaging engines” on page 659.

– Message producers connecting to messaging engines that are not part
of the cluster. This requires servers outside of the cluster to be available
and added to the bus.

– Message production by an EJB/servlet installed on the cluster.
Workload management of the calls to the EJB/servlet will workload
manage the message production across the cluster as the EJB/servlet
will connect to the messaging engine running in the same server.
Messages produced by the EJB/servlet will then be routed to the local
partition of the queue.

� Message consumers must be configured to connect to each partition of a
partitioned queue to consume messages. If any partitions do not have
consumers then the messages sent to that partition may never be
consumed.

The simplest, and recommended way of configuring consumers to every
partiton of a partitioned queue is by installing a message-driven bean on
the cluster.

658 WebSphere Application Server V6 Scalability and Performance Handbook

12.5.4 JMS clients connecting into a cluster of messaging engines
JMS clients outside of a cluster can connect directly into a workload-managed
cluster of messaging engines under the following three conditions:

1. The cluster is a bus member.
2. One messaging engine is added for each server in the cluster.
3. The policy to tie each messaging engine to a server is one-to-one.

The workload management is highly dependent on the application code. For
example, if the application creates one javax.jms.Connection and uses it
throughout its life span, the first messaging engine it connects to always receives
the messaging load for the application server it is running on (assuming it is the
only messaging application on the server). On the other hand, if the application
creates a new JMS connection for each of its threads or for each incoming HTTP
request, then the workload is balanced at a lower level and is far more dynamic.

JMS clients connecting in this way still use the connection rules described in
section 10.7, “Connecting to a service integration bus” of the redbook
WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451, however there is an undesirable side effect of these
rules when the servers in the cluster are used as the provider endpoints for the
connection factory. Consider the following example.

A JMS client connects into a cluster of servers A, B and C. The connection
factory is configured with provider endpoints of A, B, C. This allows the client to
bootstrap to any of the three servers in the cluster. Following the connection
rules, the connection factory will bootstrap to the first server in the provider
endpoints list, A. Server A has a local messaging engine, so the messaging
engine on Server A will be chosen as the preferred connection point for the
client.

Since the connection always tries the first entry in the provider endpoints list first,
every client connecting directly into the cluster is thus connected to the
messaging engine in server A. This is naturally not very good for workload
management of messaging. There are two methods that can be used to
overcome this:

� Enable a bus service located on a server outside of the cluster. Configure the
provider endpoints to point to this bus service. If there is no messaging
engine local to this bus service then the client connections will be
workload-managed around all of the messaging engines in the bus.

If you only have messaging engines in the cluster no further configuration is
required. If there are other non-cluster bus members and you only wish the
clients to connect directly to the messaging engines in the cluster then you
must also configure a target group on your connection factory. See “Target

 Chapter 12. Using and optimizing the default messaging provider 659

groups” in section 10.7.2 of the redbook WebSphere Application Server V6
System Management and Configuration Handbook, SG24-6451 for more
information.

� Provide different clients with differently configured connection factories, each
of which has a different provider endpoint in the first position on the list.

12.5.5 Preferred servers and core group policies
To configure a messaging engine to prefer a server or group of servers you must
configure a core group policy. A core group policy is used to identify server
components, and define how they will behave within a cell or cluster. For more
information about core groups and core group policies, please refer to Chapter 9,
“WebSphere HAManager” on page 465 and chapter 11 “Default messaging
provider” of WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451.

Policy type
For bus messaging engines, a policy type of One of N should be used. This
means that while the messaging engine may be defined on every server in the
cluster, WebSphere’s HAManager ensures that it is only active on one of the
servers in the group, and will always be active on one of the servers as long as
one is available.

Match Criteria
The match criteria of a core group policy enables the HAManager to decide what
server components match the policy and therefore should be managed
according to the policy. There are two match criteria that are used to match a
messaging engine:

� type=WSAF_SIB. This matches any messaging engine.

� WSAF_SIB_MESSAGING_ENGINE=<messaging_engine_name>. This matches the
messaging engine of the name provided.

Preferred servers
The preferred servers defined in a policy allow you to list a group of servers that
the messaging engine will prefer to run on. The higher up in the list of preferred
servers a particular server is, the more preferred it is. For a messaging engine
that is part of a cluster bus member you should only select preferred servers that

Note: In order to override the default policy, type=WSAF_SIB, at least two
match criteria are needed.

660 WebSphere Application Server V6 Scalability and Performance Handbook

are actually part of the cluster. The messaging engines are only defined in the
cluster and cannot be run on any servers outside of the cluster.

Fail back and Preferred servers only
These two options have a considerable effect on how a particular policy will
make a messaging engine behave in a cluster.

Fail back
If Fail back is selected, when a more preferred server becomes available then
the messaging engine will be deactivated where it is currently running and
activated on the more preferred server.

Enabling Fail back ensures that a messaging engine always runs on the most
preferred server that is available. This is usually desirable since there should be
a good reason for configuring a preferred server in the first place.

If you do not enable Fail back, then once a messaging engine has started, it will
not move to a more preferred server should one become available.

Preferred servers only
If Preferred servers only is selected then the messaging engine is only allowed to
be active on servers in the policy’s preferred servers list. If Preferred servers only
is not selected, all servers in the cluster that are not in the list will also be able to
have the messaging engine active on it, but they will be selected only if none of
the preferred servers are available.

You should be very careful when selecting Preferred servers only because it is
possible to reduce or remove the high availability of a messaging engine and of
the partitions of queues that the messaging engine owns. If none of the preferred
servers is available then the messaging engine will not be active anywhere which
means that the partitions of any queues owned by that messaging engine will
also be unavailable.

Any messages currently on those partitions will be unavailable and cannot be
consumed until one of the preferred servers has become available and the
messaging engine has been activated.

Large clusters
If you have a medium or large cluster of servers (for example five or more)
configured with messaging engines then we recommend a special configuration
of preferred servers.

 Chapter 12. Using and optimizing the default messaging provider 661

With a large number of messaging engines defined on a cluster, it would be
undesirable to have all of the messaging engines starting up on the first server in
the cluster to be started, and so we suggest the following configuration:

� Each messaging engine should be configured with Fail back and Preferred
servers only enabled.

� A group of preferred servers should be configured that is a sub-set of all of the
servers in the cluster.

This subset must be large enough to provide sufficient failover capabilities for
the messaging engine, at least two or three servers. Each messaging engine
should be configured with a different sub-set of servers, with each messaging
engine having a unique most preferred server. An example is shown in
Figure 12-4.

Figure 12-4 Configuring large clusters of messaging engines

Server 1 Server 2 Server 3

Cluster
Server 4 Server 5

Messaging Engine 000

Messaging Engine 001

Messaging Engine 002

Messaging Engine 003Messaging
Engine 003

Messaging
Engine 004

Messaging Engine 004

662 WebSphere Application Server V6 Scalability and Performance Handbook

12.6 Choosing optimal configuration settings
This section is a list of guidelines and settings that can help in finding the all
important starting point for performance tuning an application. It is intended to
help add some reason in choosing specific settings.

The configuration settings discussed in this section are:

� Important connection factory settings
� Setting up default messaging provider connection pools
� Important JMS activation specification settings

12.6.1 Important connection factory settings

There are several settings for the connection factory that could affect the
performance:

� Target and Target type
� Target significance
� Connection proximity
� Non persistent and persistent message reliability
� Read ahead
� Share data source with CMP

Target and Target type
You can specify that the connection factory uses a subset of messaging engines
on the bus with the target setting. The type of the target is specified in Target type
and can be one of the followings:

� Bus member name
� Custom messaging engine group name
� Messaging engine name

If these settings are left unspecified, the default behavior is to connect to a local
messaging engine whenever possible and to load balance connections to foreign
messaging engines if no local engine is available. This is the recommended
configuration. Thus, if you need the connection factory to use a specific member
of the bus, you may want to override the default behavior by specifying these
settings.

Important: Each application will operate differently in the way it uses the JMS
components. Any values mentioned in this section should not be treated as a
generic optimal value.

 Chapter 12. Using and optimizing the default messaging provider 663

Target significance
This property specifies the significance of the target group with the following two
choices:

� Preferred

It is preferred that a messaging engine be selected from the target group. A
messaging engine in the target group is selected if one is available. If a
messaging engine is not available in the target group, a messaging engine
outside the target group is selected if available in the same bus.

� Required

It is required that a messaging engine be selected from the target group. A
messaging engine in the target group is selected if one is available. If a
messaging engine is not available in the target group, the connection process
fails.

Connection proximity
Only messaging engines that are within the selected proximity setting can be
chosen for applications to connect to.

For an application running in an application server, this property defines how
close messaging engines must be to the application server. For an application
running outside an application server, this property defines how close messaging
engines must be to the bootstrap server.

When searching for the most suitable messaging engine a closer messaging
engine is always selected ahead of a more remote messaging engine.

� Bus

Connections can be made to messaging engines in the same bus.

A suitable messaging engine in the same server is selected ahead of a
suitable messaging engine in the same host, and in turn ahead of a suitable
messaging engine in another host.

� Cluster

Connections can be made to messaging engines in the same server cluster. If
the application is not running in a clustered server, or the bootstrap server is
not in a cluster, then there are no suitable messaging engines.

A suitable messaging engine in the same server is selected ahead of a
suitable messaging engine in the same host, and in turn ahead of a suitable
messaging engine in another host.

664 WebSphere Application Server V6 Scalability and Performance Handbook

� Host

Connections can be made to messaging engines in the same host. A suitable
messaging engine in the same server is selected ahead of a suitable
messaging engine in the same host.

� Server

Connections can be made to messaging engines in the same application
server.

Non persistent and persistent message reliability
The reliability for both non persistent and persistent messages can be specified
as follows:

� None

Use the delivery option configured for the bus destination.

� Best effort non persistent

Messages are discarded when a messaging engine stops or fails. Messages
may also be discarded if a connection used to send them becomes
unavailable as a result of constrained system resources.

� Express non persistent

Messages are discarded when a messaging engine stops or fails. Messages
may also be discarded if a connection used to send them becomes
unavailable.

� Reliable non persistent

Messages are discarded when a messaging engine stops or fails.

� Reliable persistent

Messages may be discarded when a messaging engine fails.

� Assured persistent

Messages are not discarded.

� As bus destination

Use the delivery option configured for the bus destination.

As mentioned in 12.2.5, “Message reliability” on page 648, the higher the
reliability level you choose, the lower the performance will be.

Read ahead
Read ahead is an optimization technique used by the default messaging provider
to reduce the time taken to satisfy requests from message consumers. It works
by preemptively assigning messages to consumers.

 Chapter 12. Using and optimizing the default messaging provider 665

Messages that are assigned to a consumer are locked on the server and sent to
a proxy destination on the client, prior to the message consumer requesting
them, the locked messages cannot be consumed by any other consumers for
that destination.

Messages that are assigned to a consumer, but not consumed before that
consumer is closed, are subsequently unlocked on the server and then available
for receipt by other consumers.

By default this is enabled only for non-durable topic consumers and durable
subscribers in a non-clustered environment. You can override this property for
individual JMS destinations by setting the Read ahead property on the JMS
destination. An example of when you may want to consider overriding the
settings is when you know there is only a single consumer for a queue.

Share data source with CMP
Messaging engines store persistent data in a database, using a JDBC data
source to interact with that database. Some JMS applications also store
persistent data in a database, for example if the application uses entity
Enterprise JavaBeans (EJBs). Typically, such applications use two-phase commit
transactions to coordinate updates to the JMS and JDBC resources involved.

Share data source with CMP allows sharing of connections between JMS and
Container Managed Persistence (CMP) entity EJBs. This has been estimated as
a potential performance improvement of 15% for overall messaging throughput,
but can only be used for entity beans running in the application server that
contains the messaging engine.

Using this setting, the applications can be configured to share the JDBC
connection used by a messaging engine, which enables the applications to use
one-phase commit transactions and improve the performance of the
applications.

You can benefit from the one-phase commit optimization in the following
circumstances:

� Your application must use the assured persistent reliability attribute for its
JMS messages.

� Your application must use CMP entity beans that are bound to the same
JDBC data source that the messaging engine uses for its data store.

You cannot benefit from the one-phase commit optimization in the following
circumstances:

� If your application uses a reliability attribute other than assured persistent for
its JMS messages.

666 WebSphere Application Server V6 Scalability and Performance Handbook

� If your application uses BMP entity beans or JDBC clients.

For a more complete discussion of sharing database connections between
messaging and CMP see the WebSphere InfoCenter article “Sharing
connections to benefit from one-phase commit optimization”.

Administering durable subscriptions
Durable subscriptions created by message-driven beans are not removed
automatically by the application server - the decision to remove unneeded
subscriptions is done manually via the Administrative Console. This is covered in
the WebSphere InfoCenter. Search for “Administering durable subscriptions”.

12.6.2 Setting up default messaging provider connection pools
The connection factory for the default messaging provider is managed by the bus
JMS resource adapter. The pool settings for the messaging engine connections
will affect the performance for JMS clients. You can configure these settings:

� Connection timeout
� Maximum connections
� Minimum connections
� Reap time
� Unused timeout
� Aged timeout
� Purge policy

To configure the connection pools settings, click Resources -> Resource
Adapters in the console navigation tree, then click SIB JMS Resource Adapter
-> J2C connection factories -> <connection_factory_name>. The pool
settings are found under the Connection pool properties link.

Connection timeout
This value indicates the number of seconds a request for a connection waits
when there are no connections available in the free pool and no new connections
can be created before a ConnectionWaitTimeoutException is thrown, usually
because the maximum value of connections in the particular connection pool has
been reached.

Note: These are not JMS connections (javax.jms.Connection), but rather
connections between JMS clients and the messaging engine.

Note: ConnectionWaitTimeoutException is not the exception the application
will get, but is usually a linked exception to the JMSException.

 Chapter 12. Using and optimizing the default messaging provider 667

For example, if Connection timeout is set to 300, and the maximum number of
connections are all in use, the pool manager waits for 300 seconds for a physical
connection to become available. If a physical connection is not available within
this time, the pool manager initiates a ConnectionWaitTimeout exception. It
usually does not make sense to retry the getConnection() method; if a longer
wait time is required you should increase the Connection timeout setting value. If
a ConnectionWaitTimeout exception is caught by the application, the
administrator should review the expected connection pool usage of the
application and tune the connection pool and database accordingly.

If the Connection timeout is set to 0, the pool manager waits as long as
necessary until a connection becomes available. This happens when the
application completes a transaction and returns a connection to the pool, or
when the number of connections falls below the value of Maximum connections,
allowing a new physical connection to be created.

If Maximum connections is set to 0, which enables an infinite number of physical
connections, then the Connection timeout value is ignored.

Maximum connections
This value specifies the maximum number of physical connections that you can
create in this pool.

These are the physical connections to the message destination in the default
messaging provider. Once this number is reached, no new physical connections
are created and the requester waits until a physical connection that is currently in
use returns to the pool, or a ConnectionWaitTimeout exception is issued.

For example, if the Maximum connections value is set to 5, and there are five
physical connections in use, the pool manager waits for the amount of time
specified in the Connection timeout field for a physical connection to become
free.

If Maximum connections is set to 0, the connection pool is allowed to grow
infinitely. This also has the side effect of causing the Connection timeout value to
be ignored.

You can use the Tivoli Performance Viewer to find the optimal number of
connections in a pool. If the number of concurrent waiters is greater than 0, but
the CPU load is not close to 100%, consider increasing the connection pool size.
If the PercentUsed value is consistently low under normal workload, consider
decreasing the number of connections in the pool.

Minimum connections
This value specifies the minimum number of physical connections to maintain.

668 WebSphere Application Server V6 Scalability and Performance Handbook

If the size of the connection pool is at or below the minimum connection pool
size, the Unused Timeout thread does not discard physical connections.
However, the pool does not create connections solely to ensure that the
minimum connection pool size is maintained. Also, if you set a value for Aged
Timeout, connections with an expired age are discarded, regardless of the
minimum pool size setting.

For example if the Minimum connections value is set to 3, and one physical
connection is created, the Unused timeout thread does not discard that
connection. By the same token, the thread does not automatically create two
additional physical connections to reach the Minimum connections setting.

Reap time
This value specifies the interval, in seconds, between runs of the pool
maintenance thread.

For example, if Reap time is set to 60, the pool maintenance thread runs every
60 seconds. The Reap time interval affects the accuracy of the Unused timeout
and Aged timeout settings. The smaller the interval, the greater the accuracy. If
the pool maintenance thread is enabled, set the Reap time value less than the
values of Unused timeout and Aged timeout. When the pool maintenance thread
runs, it discards any connections remaining unused for longer than the time value
specified in Unused timeout, until it reaches the number of connections specified
in Minimum connections. The pool maintenance thread also discards any
connections that remain active longer than the time value specified in Aged
timeout.

The Reap time interval also affects performance. Smaller intervals mean that the
pool maintenance thread runs more often and degrades performance.

To disable the pool maintenance thread set Reap time to 0, or set both Unused
timeout and Aged timeout to 0. However, the recommended way to disable the
pool maintenance thread is to set Reap time to 0, in which case Unused timeout
and Aged timeout are ignored. However, if Unused timeout and Aged timeout are
set to 0, the pool maintenance thread runs, but only physical connections which
timeout due to non-zero timeout values are discarded.

Unused timeout
This value specifies the interval in seconds after which an unused or idle
connection is discarded. This can only happen to connections in the pool that are
free or not currently associated with a JMS resource.

You should set the Unused timeout value higher than the Reap timeout value for
optimal performance. Unused physical connections are only discarded if the
current number of connections exceeds the Minimum connections setting. For

 Chapter 12. Using and optimizing the default messaging provider 669

example, if the Unused timeout value is set to 120, and the pool maintenance
thread is enabled (Reap time is not 0), any physical connection that remains
unused for two minutes is discarded. Note that accuracy of this timeout, as well
as performance, is affected by the Reap time value. See Reap time for more
information.

Aged timeout
This value specifies the interval in seconds before a physical connection is
discarded. This is the total age of the connection from when it was created, not
just the time since it was last used.

Setting Aged timeout to 0 supports active physical connections remaining in the
pool indefinitely. Set the Aged timeout value higher than the Reap timeout value
for optimal performance. For example, if the Aged timeout value is set to 1200,
and the Reap time value is not 0, any physical connection that remains in
existence for 1200 seconds (20 minutes) is discarded from the pool. Note that
accuracy of this timeout, as well as performance, are affected by the Reap time
value. See Reap time for more information.

Purge policy
This setting specifies how to purge connections when a stale connection or fatal
connection error is detected. Valid values are EntirePool and
FailingConnectionOnly.

12.6.3 Important JMS activation specification settings
There are several JMS activation specification settings that can affect the
performance.

Maximum batch size
The maximum number of messages received from the messaging engine in a
single batch.

The maximum number of messages in a single batch delivered serially to a
single message-driven bean instance. Batching of messages can improve
performance particularly when used with Acknowledge mode set to
Duplicates-ok auto-acknowledge. If message ordering must be retained across
failed deliveries, set the batch size to 1.

Maximum concurrent endpoints
The maximum number of endpoints to which messages are delivered
concurrently.

670 WebSphere Application Server V6 Scalability and Performance Handbook

Increasing this number can improve performance but can also increase the
number of threads that are in use at any one time. If message ordering must be
retained across failed deliveries, set the maximum concurrent endpoints to 1.

12.7 Failure to process a message
The JMS resource adapter retrieves the messages from the message queue and
passes them to the MDB. If there is an error in processing a message then the
MDB will rollback and the JMS resource adapter returns that message to the
queue. Of course, once back on the queue this message will be picked up again
by the JMS resource adapter and a never ending cycle could occur.

There are two settings that can stop this occurring:

� Maximum failed deliveries

On each messaging destination (topic or queue) it is possible to configure the
maximum failed deliveries setting. The default value is 5.

� Exception destination

When the maximum failed deliveries is reached, the message will be
forwarded to the destination configured as the Exception destination. By
default, the failed message is forwarded to the system exception destination
of the messaging engine that discovered the problem:
_SYSTEM.Exception.Destination.<engine_name> but you can also specify
another queue on the same bus or a foreign bus.

To configure these two settings select Service integration -> Buses ->
<bus_name> -> Destinations -> <queue_name>. See Figure 12-5.

Figure 12-5 Maximum failed deliveries and Exception destination settings for a
messaging destination

It is possible to change the maximum retries to a higher number to give the
message a chance to succeed. For example, if the message was being used to
update a database but access to the database timed out then retrying, more
retries might eventually work.

 Chapter 12. Using and optimizing the default messaging provider 671

12.8 Usage scenarios: Trade 6 and the default
messaging provider

A lot of the settings we discussed have topology specific benefits. Functionality
and configuration are a lot more significant when designing a messaging and
application server topology for more than traditional Web and EJB based
applications. With those it is the performance and scalability requirements that
often force the choice of topology.

When using JMS, there is not one topology at the top of the food chain that will
suit all situations. Using point-to-point, publish/subscribe, MDBs, different
messaging products, and combinations of these will all drive a need to have a
specific topology to match a specific application and its non-functional
requirements.

The choice of topology will depend on the correct balance of non-functional
requirements of performance, security, scalability, maintenance, reliability,
availability and cost, as well as providing a topology that can give the required
function.

The example application that has been used throughout this book is Trade 6.
Trade 6 has specific requirements for its use of JMS. Trade 6 uses JMS as an
asynchronous communication mechanism between two parts of the application.
This means that for Trade 6 there is no need to communicate with a back-end
system and so a lot of the more complicated topologies do not suit it.

However, this chapter is supposed to be helping you understand JMS, so for the
purposes of this section, two scenarios are described using Trade 6 with slightly
different requirements for functionality and other criteria. The front end sections
of the topology (Web traffic) are not discussed but it is possible to overlay the
sample topology in Chapter 8, “Implementing the sample topology” on page 387.

This section is intended to help you use some of the configuration options
described in this chapter in working examples. It should also help you begin to
understand the thought process in deciding on the best topology for your
application. It will not describe all possible topologies, and there are many other
topologies. To find out more on choosing a topology take a look at the document
JMS Topologies and Configurations with WebSphere Application Server and
WebSphere Studio Version 5 available at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barci
a/barcia.html

Note: This document is currently being updated for WebSphere V6 and will
become available on developerWorks in the near future.

672 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barcia/barcia.html

12.8.1 What does Trade 6 use the default messaging provider for?
Before continuing to the examples, it is important that the functional
requirements for JMS in Trade 6 be clear.

Trade 6 integrates both queue based and publish/subscribe MDBs.

Point-to-point
The queue based TradeBrokerMDB asynchronously processes stock purchase
and sell requests. In the Trade 6 configuration, if the Order Process mode is set
to Asynchronous_1-Phase or Asynchronous_2-Phase then instead of an order for
some stock being processed immediately, it is handled asynchronously. Upon
buying some stock an order is opened in the Trade database and a message
sent to a queue. The application then immediately returns to the client. In the
background the message is picked up by the TradeBrokerMDB and processed,
updating the records in the database to set the order to be completed. The next
time the client returns to the Web site, they receive a notification that the order
completed successfully.

This is using JMS for asynchronous communication within the application. Some
important points to note on the influence the functionality has on the topology
are:

� To use the default messaging provider for Trade 6, you need to configure the
data store for the messaging engine(s).

� Any cluster member can process the order messages as they update the
database. This means that if the client is on TradeServer1 and the message
is processed by TradeServer2, the client still receives the notification. This is
asynchronous communication with no need for affinity.

� The application code is the same whether you are using the default
messaging provider or WebSphere MQ queue managers.

Publish/subscribe
The pub/sub based TradeStreamerMDB subscribes to a message topic called
TradeStreamerTopic. Quote data for individual stocks is published to this topic as
prices change, providing a real-time streaming quote feature in Trade 6. The
prices change every time some stock is bought or sold.

Some important points to note on the influence the functionality has on the
topology are:

� If the Trade 6 application is clustered, then each application server needs to
get the publications on price changes. If this does not occur then the prices
will not be kept in synchronization across the cluster. With the default

 Chapter 12. Using and optimizing the default messaging provider 673

messaging provider, every subscriber receives the message no matter where
the messaging engines are located.

� By default, the MDB is using non-durable subscriptions. This avoids any
restrictions imposed from using durable subscriptions.

Now that we understand how Trade 6 uses JMS we move on to apply some of
the guidelines described in this chapter and create some topologies.

12.8.2 Example 1: One messaging engine on the bus

To make this example realistic some basic non-functional requirements have
been set. These requirements need to be specified as it is important to recognize
that this example topology is not the best topology to use when using the default
messaging provider, nor is it the best one for Trade 6. It is one of many that could
provide what is needed. Each topology benefits certain criteria and needs to be
chosen based on those as well as function.

The requirements are:

� Performance is important and availability is not a requirement. It is acceptable
to have an outage. However, when the system is available it must perform to
a high standard.

� Hardware restriction. The cost of the hardware for this application needs to be
kept to a minimum.

There would normally be many other influences in choosing the topology, such
as workload patterns, but this is just to give some real world justification for this
example. The selected topology is shown in Figure 12-6 on page 675.

674 WebSphere Application Server V6 Scalability and Performance Handbook

Example 1: Default messaging provider topology

Figure 12-6 Example 1 topology for Trade 6 and default messaging provider

Key points about this topology:

� It is low cost. Only two physical machines are needed, one node can even be
on the same machine as the Deployment Manager.

� The preferred server for the messaging engine is TradeServer1. The
messaging engine starts on the TradeServer1 application server, however the
policy configuration in this example does not require that the messaging
engine run on TradeServer1 whenever possible. For example, if TradeServer1
fails and the messaging engine fails over to TradeServer2, it will stay on
TradeServer2 even when TradeServer1 becomes available again.

� There are several possible points of failure in this topology. The messaging
engine fails if the connection to the data store is broken, the data store stops,
or the database fails. Additionally, the preferred application server for the
messaging engine is a point of failure. However, if the preferred server fails,
any running transactions are rolled back and the messaging engine attempts
to start on TradeServer2.

� Only one server will consume messages. Although the Web container of each
server produces messages, only the EJB container of the server local to the
messaging engine (TradeServer1) consumes messages. Messages that

Node Agent

 App 3Node

 App 4Node

 Application Server Cluster

TradeServer1

Node Agent

TradeServer2

Trade6

Trade6

Queues

Topic

Queues

Topic

Bus

Messaging
Engine

TradeBrokerQueue

TradeStreamTopic

Data Store

Database

 Chapter 12. Using and optimizing the default messaging provider 675

arrive on a local queue partition are always consumed by the local application
server. If consumption of JMS messages by both EJB containers is required,
the topology of one messaging engine per application server is recommended
(as described in “Example 2: One messaging engine per server” on
page 686). Additionally, the Web container layer and EJB container layer can
be split into separate clusters (requiring two additional application servers). In
this case, since the messages are all remote to the EJB cluster, the
consumption of messages will be load balanced.

This topology is fairly straight forward to configure because the Trade 6 example
comes with a script that can do most of the work for you. This setup however is
not the same as what is described in Chapter 8, “Implementing the sample
topology” on page 387.

It involves:

1. Setting up the WebSphere Application Server cluster
2. Configuring all the JDBC and JMS resources
3. Installing the application
4. Testing the application

It is assumed that a WebSphere Application Server cell with the Deployment
Manager on app3 is installed and configured. There are two application server
profiles in the cell, one resides on app3 and the other one resides on app4. The
nodes app3 and app4 should be federated into the cell. Once this has been done
you are ready to carry on.

Example 1: Scripted installation and configuration
The Trade 6 package comes with a wsadmin script called trade.jacl that allows
you to install the application and it also automatically sets up all required
resources such as DB2/Oracle data sources and JMS resources. Installing
Trade 6 is covered in further detail in section 8.8, “Installing and configuring
Trade 6” on page 436.

Note: The separation of Web and EJB containers is not recommended for
performance and scalability.

Note: Trade 6 can be set up with Oracle and DB2 as the underlying database.
There are different requirements for the different databases and data source
configuration. For example, if you use a remote IBM DB2 UDB 8.2 and DB2
Legacy CLI-based Type 2 JDBC driver, then you need to install and configure
the IBM DB2 UDB Client 8.2 on the application server machine (but Trade 6
uses by default the DB2 universal JDBC Type 4 driver so you do not need to
setup DB2 clients).

676 WebSphere Application Server V6 Scalability and Performance Handbook

The command to start the configuration script is:

wsadmin -f trade.jacl [configure|install|all]

Be sure to run setupCmdLine.bat first from the bin directory of your WebSphere
installation. By default, the “all” mode is assumed which creates both the
configuration of resources and the installation of the application.

To simply create the cluster and install the necessary JDBC/JMS resources
without installing the application, append the "configure" option to the command.
To install the application without creating the resources, append the "install"
option to the command.

If installation of the application through the Administrative Console is preferred,
run the script in “configure” mode first, then install the application manually.

Before starting the configuration script, you should make sure that the
Deployment Manager has been started and all the required nodes have been
federated successfully.

After the script is started, you just need to follow the directions and answer the
questions as follows:

1. Specify whether global security is enabled in your environment (it is not
enabled by default).

--
 Trade Install/Configuration Script

 Operation: all
 Silent: false
--

Global security is (or will be) enabled (true|false) [false]:

2. Answer yes to install the trade application on a cluster.

Is this a cluster installation (yes|no) [no]:

3. Answer yes after you have confirmed that the following requirements have
been met.

 Collecting Cluster and Cluster Member Info

 Note: Before proceeding, all nodes intended for
 use in this cluster must be federated with the
 deployment manager using the addNode command!
 To ensure that this process goes smoothly, it
 is also important to verify that each node can
 ping the other cluster nodes based on the host

 Chapter 12. Using and optimizing the default messaging provider 677

 names configured within the WebSphere profile
 creation tool.

Have all nodes been federated and network connectivity
verified? (yes|no) [yes]:

4. Specify the cluster name here. Examples 1 and 2 use the default name
“TradeCluster” and refer to the Trade 6 cluster using this name.

Please enter the cluster name [TradeCluster]:

5. Select the nodes to be added to the cluster. Make sure you enter the name of
an application server node, such as app3Node, and not the Deployment
Manager node from the list of available nodes.

Available Nodes:
 app3Node
 app4Node
 dmJMSNode

Select the desired node [app3Node]:
app3Node

6. Enter the name of the cluster member server on the node selected in step 5.

Please enter the cluster member name [TradeServer1]:

Current Cluster Nodes and Members:
 app3Node - TradeServer1

7. Answer yes if you need to repeat steps 5 and 6 to add additional cluster
members.

Add more cluster members (yes|no) [yes]:

8. After specifying the configuration for the cluster and member servers, you
need to enter the information for the datasource, db2 is used in our example.

--
 Collecting Database/Datasource Information
--

Select the backend database type (db2|oracle) [db2]:

NOTE: wsadmin requires ";" for delimiting the database
driver path regardless of platform!

Please enter the database driver path
[c:/sqllib/java/db2jcc.jar;c:/sqllib/java/db2jcc_license_cu.jar;c:/sqlli
b/java/db2jcc_licens
e_cisuz.jar]:

678 WebSphere Application Server V6 Scalability and Performance Handbook

${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${DB2UNIVERSAL_JDBC_DRIVER_P
ATH}/db2jcc_license_cu.jar

Please enter the database name [tradedb]:

Please enter the DB2 database hostname [localhost]:

Please enter the DB2 database port number [50000]:

Please enter the database username [db2admin]:

Please enter the database password [password]:

9. Once the above required information is entered, the script starts to set up the
environment for the application automatically.

Note that you do not have to specify any configuration information for the
default messaging provider because the script takes the default values and
sets up JMS resources as follows:

--
 Configuring JMS Resources
 Scope: TradeCell(cells/TradeCell|cell.xml#Cell_1)
--

Creating JAAS AuthData TradeOSUserIDAuthData...
 Alias Name: TradeOSUserIDAuthData
 User: LocalOSUserID
 Password: password
TradeOSUserIDAuthData created successfully!

Creating SIBus TradeCluster...
TradeCluster created successfully!

Adding SIBus member TradeCluster...
 Default DataSource: false
 Datasource JNDI Name: jdbc/MEDataSource
SIBus member added successfully!

Creating SIB Messaging Engine...
 Bus Name: TradeCluster
 Default DataSource: false
 Datasource JNDI Name: jdbc/MEDataSource
 Cluster Name: TradeCluster
 created successfully!

Creating OneOfNPolicy Policy for ME0...
 Alive Period(s): 30
 Server Name: TradeServer1

 Chapter 12. Using and optimizing the default messaging provider 679

 ME Name: TradeCluster.000-TradeCluster
Policy for ME0 created successfully!

Modifying ME DataStore parameters...
 ME Name: TradeCluster.000-TradeCluster
 AuthAlias: TradeDataSourceAuthData
 Schema Name: IBMME0
TradeCluster.000-TradeCluster data store modified succes

Creating OneOfNPolicy Policy for ME1...
 Alive Period(s): 30
 Server Name: TradeServer2
 ME Name: TradeCluster.001-TradeCluster
Policy for ME1 created successfully!

Modifying ME DataStore parameters...
 ME Name: TradeCluster.001-TradeCluster
 AuthAlias: TradeDataSourceAuthData
 Schema Name: IBMME1
TradeCluster.001-TradeCluster data store modified succes

Creating SIB Destination TradeBrokerJSD...
 Destination Name: TradeBrokerJSD
 Destination Type: Queue
 Reliability: EXPRESS_NONPERSISTENT
 Cluster Name: TradeCluster
TradeBrokerJSD created successfully!

Creating SIB Destination Trade.Topic.Space...
 Destination Name: Trade.Topic.Space
 Destination Type: TopicSpace
 Reliability: EXPRESS_NONPERSISTENT
Trade.Topic.Space created successfully!

Creating JMS Queue Connection Factory TradeBrokerQCF...
 Connection Factory Name: TradeBrokerQCF
 Connection Factory Type: Queue
 JNDI Name: jms/TradeBrokerQCF
TradeBrokerQCF created successfully!

Creating JMS Topic Connection Factory TradeStreamerTCF..
 Connection Factory Name: TradeStreamerTCF
 Connection Factory Type: Topic
 JNDI Name: jms/TradeStreamerTCF
TradeStreamerTCF created successfully!

Creating JMS Queue TradeBrokerQueue...
 Queue Name: TradeBrokerQueue
 JNDI Name: jms/TradeBrokerQueue

680 WebSphere Application Server V6 Scalability and Performance Handbook

 SIB Destination: TradeBrokerJSD
 Delivery Mode: NonPersistent
TradeBrokerQueue created successfully!

Creating JMS Topic TradeStreamerTopic...
 Topic Name: TradeStreamerTopic
 JNDI Name: jms/TradeStreamerTopic
 Topic Space: Trade.Topic.Space
 Delivery Mode: NonPersistent
TradeStreamerTopic created successfully!

Creating MDB Activation Spec TradeBrokerMDB...
 MDB Activation Spec Name: TradeBrokerMDB
 JNDI Name: eis/TradeBrokerMDB
 JMS Destination JNDI Name: jms/TradeBrokerQueue
 Destination Type: javax.jms.Queue
TradeBrokerMDB created successfully!

Creating MDB Activation Spec TradeStreamerMDB...
 MDB Activation Spec Name: TradeStreamerMDB
 JNDI Name: eis/TradeStreamerMDB
 JMS Destination JNDI Name: jms/TradeStreamerTopic
 Destination Type: javax.jms.Topic
TradeStreamerMDB created successfully!
--
 JMS Resource Configuration Completed!!!
--

10.The Trade 6 application is installed successfully when the following message
is displayed. However, this does not guarantee that the entire script has been
successful. Be sure to review each step of the output carefully for errors.

ADMA5013I: Application trade installed successfully.
Install completed successfully!

--
 Trade Installation Completed!!!
--

Saving...

Saving config...

Tip: You may have noticed that the messaging engines are named
TradeCluster.xxx-TradeCluster. The format for a messaging engine name is
<cluster_name.xxx-bus_name> indicating that in this example the cluster
name is the same as the bus name. You may want to employ a more
meaningful bus name in a production environment.

 Chapter 12. Using and optimizing the default messaging provider 681

Example 1: Additional configuration
The following steps are necessary to further configure Trade 6 for this example:

1. The Trade 6 wsadmin script creates one messaging engine per application
server. Remove the messaging engine corresponding to TradeServer2 in the
Administrative Console under Service Integration -> Buses -> TradeCluster
-> Bus members -> Messaging engines.

2. Remove the policy for ME1 under Servers -> Core groups -> Core group
settings -> DefaultCoreGroup -> Policies.

3. Select Policy for ME0 and uncheck Fail back and Preferred servers only.
Using this configuration the messaging engine can be started on application
server TradeServer2 in the event of a failure. Fail back enabled moves the
messaging engine back to its preferred server whenever possible. The
example 1 configuration assumes that running a messaging engine on
TradeServer2 is acceptable even when both servers are available.

Important: By default, the Trade 6 installation script installs one messaging
engine per application server rather then a single messaging engine for the
cluster. This example changes the Trade 6 default configuration manually
using the Administrative Console.

682 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 12-7 Policy for messaging engine in example 1

4. Next, start the cluster and populate the Trade 6 database (this is the
application database which has a different schema from the messaging
engine data stores). The main page for Trade 6 can be accessed from an
HTTP or application server address:

http://<server_name>:<port>/trade/

On the main page, select Configuration -> (Re)-populate Trade Database.

Note: If the database population fails, you may need to declare
${DB2UNIVERSAL_JDBC_DRIVER_PATH} at the node scope level under
Environment -> WebSphere Variables in the Administrative Console.
Additionally, you may want to test the database connection under
Resources -> JDBC Providers -> DB2 Universal JDBC Driver Provider
(XA) -> Data sources.

 Chapter 12. Using and optimizing the default messaging provider 683

5. By default, Trade 6 uses a synchronous order processing mechanism on each
server. The Trade 6 configuration can be changed to use MDBs and JMS. For
each application server go to:

http://<application_server_name>:<port>/trade/config

and change the following configuration parameters:

– Order processing mode = Asynchronous_2-Phase
– Enable Operational Trace = True
– Enable Full Trace = True

Click Update config to complete the changes.

Verifying the example 1 messaging configuration
This section walks through the different components configured for the default
messaging provider after installation and configuration is complete:

1. The queue connection factory, topic connection factory, TradeBrokerQueue
definition, TradeStreamTopic definition, and activation specification for Trade 6
can be inspected under Resources -> JMS Providers -> Default
messaging. Be sure the scope is at the cell level.

2. Bus members (in this case the only bus member relevant to this example is
the TradeCluster), messaging engines, and bus destinations can be inspected
under Service integration -> Buses -> TradeCluster.

3. Verify that the messaging engine is started. The data store settings for the
messaging engine under Service integration -> Buses -> TradeCluster ->
Messaging engines -> TradeCluster.000-TradeCluster -> Data store
should also be inspected. Notice that the schema name for the data store is
IBMME0. That means that you need to set up the database correspondingly.
In Oracle, you need to create a user account. For this example, create a user
account called IBMME0. In DB2, the user needs the right to create a new
schema called IBMME0, otherwise you need to create a new user also.

Note: The Trade 6 runtime parameters are not persisted. Thus, if you
restart the Trade 6 application, you need to set them again.

Note: Connectivity to the datastore can be tested in the Administrative
Console under Resources -> JDBC providers -> DB2 Universal JDBC
Driver Provider -> Data sources -> MEDataSource. Be sure you are at
the cell scope when selecting the driver provider.

684 WebSphere Application Server V6 Scalability and Performance Handbook

Testing the example 1 configuration
You can test the asynchronous messaging of Trade 6 by purchasing 100 shares
of stock s:0 while accessing the Trade 6 Web site from the TradeServer1 Web
container.

The trace log found in the profiles/logs/<application_server_name> directory
on the TradeServer1 system provides insight into the workflow of the messaging
configuration. As shown in Example 12-1, you can verify that the TradeBrokerMDB
on the application server local to the messaging engine receives and processes
the order whether you access Trade 6 from the Web container of TradeServer1 or
TradeServer2.

Example 12-1 trace.log snippet verifying order processing

[2/15/05 11:02:24:711 CET] 00000018 SystemOut O TradeLog:Tue Feb 15
11:02:24 CET 2005------

[2/15/05 11:02:24:711 CET] 00000018 SystemOut O TradeBroker:onMessage --
received message -->neworder: orderID=9000 runtimeMode=EJB
twoPhase=truecommand-->neworder<-- threadID=Thread[Default : 2,5,main]

[2/15/05 11:02:24:711 CET] 00000018 SystemOut O TradeLog:Tue Feb 15
11:02:24 CET 2005------

[2/15/05 11:02:24:711 CET] 00000018 SystemOut O TradeBrokerMDB:onMessage
- completing order 9000 twoPhase=true direct=false threadID=Thread[Default :
2,5,main]

As shown in Example 12-2, both server trace logs should show an update in the
price of stock s:0 via the TradeStreamerMDB since they are both subscribed to the
TradeStreamerTopic.

Example 12-2 trace.log snippet verifying a stock price update

[2/15/05 11:01:20:889 CET] 00000016 SystemOut O TradeLog:Tue Feb 15
11:01:20 CET 2005------

Attention: The consumption of messages by TadeBrokerMDB is only done on
the server local to the messaging engine which is TradeServer1 in this
example (unless the messaging engine is moved due to a failure). This means
the server local to the messaging engine will take on 100% of the message
consumption load for stock sales and purchases. See 12.5, “Clustering, high
availability and workload management” on page 656 for more information.
Example 2 configures one messaging engine per application server which can
facilitate balanced workload for message consumption.

 Chapter 12. Using and optimizing the default messaging provider 685

[2/15/05 11:01:20:889 CET] 00000016 SystemOut O TradeStreamer:onMessage
-- received message -->Update Stock price for s:0 old price = 39.50 new price =
56.09command-->updateQuote<-- threadID=Thread[Default : 0,5,main]

12.8.3 Example 2: One messaging engine per server
In this example, Trade 6 uses one messaging engine per server. The messaging
engine policies are setup such that each messaging engine receives JMS
messages from its corresponding application server. Unlike example 1, there is
no longer a single point of failure and possible bottleneck associated with a
single messaging engine on the bus. Thus, example 2 facilitates performance
and scalability.

To make this example realistic some basic non-functional requirements have
been set.

The requirements are:

� Performance is more important than availability. The application does not
have to be available for use continuously. Outages occurring will be tolerated.
However, when the system is available it must perform according to a high
standard.

� Hardware restriction. The cost of the hardware for this application needs to be
kept to a minimum.

The selected topology is shown in Figure 12-8 on page 687.

686 WebSphere Application Server V6 Scalability and Performance Handbook

Example 2: Default messaging provider topology

Figure 12-8 Example 2 topology for Trade 6 and default messaging provider

Key points about this topology:

� This topology uses two application servers; however, setting up more
application servers as members of the cluster with their respective messaging
engines should be straight forward after reviewing this example.

� Messaging workload is spread across the messaging engines. The
TradeBrokerQueue is defined on the bus with the cluster as a single bus
member, so the queue is partitioned between the messaging engine on each
server, for more information about partitioned queues, please refer to 12.5.3,
“Partitioned queues” on page 657.

� As mentioned in “Data stores” on page 649, each messaging engine uses its
own data store (schema), but normally on the same database. A complete
failure of the database affects both messaging engines. However, a failure of
a single data store (for example due to its port being blocked) affects only the
dependent messaging engine since subsequent messages are directed to the
other messaging engine. Failure of one of the messaging engines is

Node Agent

 App 3Node

 App 4Node

 Application Server Cluster

TradeServer1

Node Agent

TradeServer2

Trade6

Trade6

Messaging
Engine 1

TradeBrokerQueue

Queues

Topic

Queues

Topic

TradeBrokerQueue

TradeStreamTopic

Messaging
Engine 2

TradeStreamTopic

Bus

Data Store1

Data Store2

Database

 Chapter 12. Using and optimizing the default messaging provider 687

sustainable since the remaining messaging engine would process all
incoming messages while a restart is attempted.

� There is a one-to-one relationship with the load on an application server and
its assigned messaging engine. If a high load is incurred on a particular
application server, then, in general, you can also expect a high load on its
respective messaging engine and EJB container. This is because the default
behavior of the SIB JMS Resource Adapter is to connect to a local messaging
engine whenever possible to increase performance.

For example, when a message is produced in the Web container of
TradeServer1 it is put on the local partitioned queue which is on Messaging
Engine 1 or TradeCluster.000-TradeCluster. The message is then consumed
by a MDB, such as TradeBrokerMDB, by the EJB container of TradeServer1.
The behavior of using a local messaging engine when producing a message
and the local application server when consuming a message is the default
and recommended behavior of an application running on a cluster which is a
member of the bus. See 12.5.4, “JMS clients connecting into a cluster of
messaging engines” on page 659.

This topology can be setup using the Trade 6 script similar to example 1. This
setup is similar but not the same as the setup described in Chapter 8,
“Implementing the sample topology” on page 387.

It involves:

1. Setting up the WebSphere Application Server cluster
2. Configuring all the JDBC and JMS resources
3. Installing the application
4. Testing the application

It is assumed that a WebSphere Application Server cell with the Deployment
Manager on node app3 is installed and configured. There are two application
server profiles in the cell, one resides on app3 and the other one resides on

Note: Although there is a one-to-one relationship between workload for
messaging engines and respective application servers for Trade 6, this is
not the case for all applications. For example, an application using the
example 2 topology could create a single javax.jms.Connection and use it
for all message production, in effect using the same SIB JMS Resource
Adapter connection to one of the messaging engines. In this case, the
same messaging engine is used for 100% of message production and
consumption. Additionally, only the EJB container of one application server
is used in message consumption. This is not recommended as the
remaining messaging engine is not utilized properly. See 12.5, “Clustering,
high availability and workload management” on page 656.

688 WebSphere Application Server V6 Scalability and Performance Handbook

app4. The nodes app3 and app4 should be federated into the cell. Once this has
been done you are ready to carry on.

Example 2: Scripted installation and configuration
The installation of Trade 6 for example 2 should be done exactly as described for
example 1. See “Example 1: Scripted installation and configuration” on
page 676.

Example 2: Additional configuration
The following steps should be used to further configure Trade 6 for this example:

1. Next, start the application and populate the Trade 6 database (this is the
application database which has a different schema from the messaging
engine data stores). The main page for Trade 6 can be accessed from an
HTTP or application server from:

http://<server_name>:<port>/trade/

In the main page, select Configuration -> (Re)-populate Trade Database.

2. By default, Trade 6 uses a synchronous order processing mechanism on each
server. The Trade 6 run-time configuration can be changed to use MDBs and
JMS. For each application server go to:

http://<application_server_name>:<port>/trade/config

and change the following configuration parameters:

– Order processing mode = Asynchronous_2-Phase
– Enable Operational Trace = True
– Enable Full Trace = True

Click Update config to complete the changes.

Note: Trade 6 can be set up with Oracle and DB2 as the underlying database.
There are different requirements for the different databases and data source
configuration. For example, if you use a remote IBM DB2 UDB 8.2 and DB2
Legacy CLI-based Type 2 JDBC driver, then you need to install and configure
the IBM DB2 UDB Client 8.2 on the application server machine.

Note: If the database population fails you may need to declare
${DB2UNIVERSAL_JDBC_DRIVER_PATH} at the node scope level under
Environment -> WebSphere Variables in the Administrative Console.
Additionally, you may want to test the database connection under
Resources -> JDBC Providers -> DB2 Universal JDBC Driver Provider
(XA) -> Data sources.

 Chapter 12. Using and optimizing the default messaging provider 689

Verifying the example 2 messaging configuration
This section walks through the different components configured for the default
messaging provider after installation and configuration is complete:

1. The queue connection factory, topic connection factory, TradeBrokerQueue
definition, TradeStreamerTopic definition, and activation specification for
Trade 6 can be inspected under Resources -> JMS Providers -> Default
messaging. Be sure the cell scope is at the cell level.

2. The bus members (in this case the only bus member relevant to this example
is the TradeCluster), messaging engines, and bus destinations can be
inspected under Service integration -> Buses -> TradeCluster.

3. Verify that both messaging engines are started. The data store settings of
each messaging engine under Service integration -> Buses ->
TradeCluster -> Messaging engines -> TradeCluster.000-TradeCluster ->
Data store in the Administrative Console should also be inspected. Notice
that the schema name for each data store as defined by the Trade 6 wsadmin
script is different (IBMME0, IBMME1, and so on). That means that you need
to set up the database correspondingly. In Oracle, to have different schemas,
you need to create different user accounts. For this example, create user
accounts called IBMME0, IBMME1, and so on. In DB2, as long as the user
has the right to create a new schema, multiple schemas can be created.

4. The policies for the messaging engines can be found under Servers -> Core
groups -> Core group settings -> DefaultCoreGroup -> Policies. Notice
that Preferred servers only is selected and one distinct application server is
included in the match criteria for each messaging engine. For more
information about policies and match criteria see section 12.5.5, “Preferred
servers and core group policies” on page 660.

Testing the example 2 configuration
Reviewing the trace logs for example 2 can be done exactly as described in
“Testing the example 1 configuration” on page 685.

It should be observed that the consumption of a message in this example is
always on the application server which produced the message unlike the
example 1 configuration where only one application server consumes messages.
Thus, if you access Trade 6 from the Web container of TradeServer2 and make
an order, the order message should be produced and consumed from
TradeServer2.

690 WebSphere Application Server V6 Scalability and Performance Handbook

12.9 Workload management example using BeenThere

BeenThere is a sample J2EE application which facilitates monitoring of workload
management among application servers and is one of the sample applications
provided with WebSphere V6. However, there is a version of BeenThere
available that has been updated to use the default messaging provider and the
bus for WebSphere Application Server V6.0. Extensive documentation and the
updated BeenThere.ear is provided in the repository for this redbook. Refer to
Appendix B, “Additional material” on page 1037 for information about how to
obtain the modified EAR file.

BeenThere displays workload at the application server level, thus using two
clusters to separate the Web and EJB containers is recommended so inspection
of which EJB container consumes workload is clear. The documentation provides
step-by-step directions for this configuration.

Even though the containers are split (which can adversely affect performance), a
Web container always has its messages consumed by the same EJB container
(unless there is a messaging engine failure), because the BeenThere code is
written to use the same JMS connection for subsequent message production.

Thus, a Web container running BeenThere uses the same messaging engine it
initially connects to throughout the application’s lifespan. The connections to
messaging engines are workload balanced in the sense that each Web
container, or server in the Web container cluster, connects to a different
messaging engine in the EJB cluster. For workload balancing to occur respective
to HTTP requests, an application needs to create a new JMS connection for each
HTTP request. See 12.5.4, “JMS clients connecting into a cluster of messaging
engines” on page 659.

12.9.1 Taking advantage of the BeenThere documentation
The documentation provided with the modified BeenThere version includes a
step-by-step guide for installing the application and configuring resources. It is
recommended that the documented topology be setup before attempting to use
any of the possible topologies described in the next section. Figure 12-9 on
page 692 illustrates the documented configuration for BeenThere.

 Chapter 12. Using and optimizing the default messaging provider 691

Figure 12-9 BeenThere documented topology

To access the documentation:

1. Download BeenThereDocumentation.zip from the redbook repository.

2. Unzip all files and folders. Be sure file paths and folders are preserved.

3. Open index.html.

4. Select Configure and run.

12.9.2 Possible topologies to use with BeenThere
When architecting an enterprise solution, it is often useful to test the messaging
topology, cell topology, network security configuration, and any other
environment related decisions with a simple application before testing or even
designing a new enterprise messaging application. BeenThere is an ideal
application for this task as its sole purpose is to analyze workload on Web and
EJB containers.

It also may be used to learn about possible topologies and the default messaging
provider in general. Here are some topologies to try for workload analysis with
BeenThere:

� One messaging engine per EJB application server cluster setup such that
only preferred servers are used.

This is the topology configured in the BeenThere documentation. Be sure to
stop additional messaging engines in the Administrative Console and inspect
what EJB cluster member picks up the missing engine’s workload.

app2EJBServer2 Node Agent

1

3

MyWebCluster MyEJBCluster

app1

dm

dbData
Store

EJBServer1 Node Agent1

3

WebServer2

WebServer1

HTTP
Request

Web

IBM HTTP
Server

Plug-in

Deployment Manager

3

1

692 WebSphere Application Server V6 Scalability and Performance Handbook

� One messaging engine per EJB application server cluster setup such that
non-preferred servers can be used.

This topology only requires a single change from the documented
configuration. Uncheck Preferred servers only in the Administrative Console
under Servers -> Core groups -> Core group settings ->
DefaultCoreGroup -> Policies -> MyEJBServerX ME Policy for each
messaging engine. Stopping application servers is insightful in this topology,
because the messaging engines can restart on non-preferred servers.

� One messaging engine per application server.

This topology adds messaging engines to the Web cluster. If the messaging
stores are also local to each application server, this facilitates high
performance as all messaging requests from a Web container can be handled
locally. This requires repeating steps 12, “Adding a messaging engine to a
cluster bus member” and 13, “Creating a Core Group Policy for a messaging
engine” in the BeenThere documentation for each application server in the
Web cluster. The important observation to make with this topology is that the
EJB cluster will go unused for message consumption since, by default, local
messaging engines are always used when possible. This default behavior
can be changed by altering the Target, Target type, and Target significance
settings in the connection factory. See 12.6.1, “Important connection factory
settings” on page 663.

12.10 Monitoring performance with Tivoli Performance
Viewer

This section assumes an understanding of how Tivoli Performance Viewer
works. If you need to learn more first then go to Chapter 14, “Server-side
performance and analysis tools” on page 769.

The performance monitoring service within each application server provides
statistics on the following areas for applications using the default messaging
provider:

� SIB service Performance Module

The SIB service Performance Module provides various counters to monitor
the performance of the default messaging provider components, such as
message destinations and store management in messaging engines. For
example, the following counters are found under Performance Modules ->
SIB Service -> SIB Messaging Engines ->
<cluster_name.xxx-bus_name> -> Destinations -> Queues:

 Chapter 12. Using and optimizing the default messaging provider 693

– Available Message Count

The number of messages available for a queue for consumption. If this
number is close to the destination high messages value then review the
high messages value.

– Total Messages Produced

The total number of messages produced to this queue, for the lifetime of
this messaging engine.

– Total Messages Consumed

The total number of messages consumed from this queue, for the lifetime
of this messaging engine.

For a complete list and description of available counters related to messaging
and the bus, please look at the InfoCenter article “System Integration Bus
(SIB) and Messaging counters”.

� Enterprise bean Performance Module

The enterprise bean module provides the counters to monitor the behaviors
of enterprise beans. In applications involving MDBs, the average response
time of method onMessage is a key counter. There are several other counters
related to MDBs, specifically:

– MessageCount

The number of messages delivered to the bean onMessage method.

– MessageBackoutCount

The number of messages that failed to be delivered to the bean onMessage
method.

– WaitTime

The average time to obtain a ServerSession from the pool.

– ServerSessionPoolUsage

The percentage of the server session pool in use.

� JCA Connection Pools Performance Module

The counters related to the connections for the default messaging provider
are listed under Performance Modules -> JCA Connection Pools. You
should monitor the following three counters:

– CreateCount

The total number of managed connections created.

– CloseCount

The total number of managed connections destroyed.

694 WebSphere Application Server V6 Scalability and Performance Handbook

– AllocateCount

The total number of times that a managed connection is allocated to a
client (the total is maintained across the pool, not per connection).

Figure 12-10 JCA Connection Pool counters

For more information about monitoring counters available to the Tivoli
Performance Viewer, please refer to 14.2.1, “Performance data classification” on
page 773 or read the topic “PMI data organization” in the IBM WebSphere
Application Server V6 InfoCenter which can be found at:

http://www.ibm.com/software/webservers/appserv/infocenter

 Chapter 12. Using and optimizing the default messaging provider 695

http://www.ibm.com/software/webservers/appserv/infocenter

696 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 13. Understanding and
optimizing the use of
WebSphere MQ

WebSphere MQ is a market share leader in message-oriented middleware. It is
implemented on numerous platforms and supports communication across nearly
every popular network protocol. WebSphere MQ supports messaging for both
JMS and non-JMS applications with a native API that supports all major
programming languages. WebSphere MQ is used for mission critical industrial
strength applications spanning every business sector.

This chapter describes how the various components of the WebSphere MQ
provider interact for a JMS application and discusses optimal configuration. It
takes the reader through manually configuring messaging components for the
Trade 6 application and demonstrates two example topologies using Trade 6 with
WebSphere MQ and WebSphere Business Integration Event Broker.

For a discussion of the default messaging provider, which is very efficient as a
local messaging provider on the same node as an application, see Chapter 12,
“Using and optimizing the default messaging provider” on page 643.

13

© Copyright IBM Corp. 2005. All rights reserved. 697

13.1 Introduction
Performance and stability of an application using JMS are largely governed by:

� Efficient and safe application usage of JMS

� The most efficient messaging and application server topology, but also one
that provides adequate failure handling

� Optimal configuration settings of each individual application server and its
resources

Stability is also important for maintaining performance, the application will need
to be able to cope with failures in a graceful manner. If it is unable to do this then
performance will degrade and the service provided by the application becomes
unacceptable.

It is the aim of this chapter to provide the reader with enough information to cover
these areas, either through discussion or by identifying other documents that
already cover a particular area.

This chapter is structured so that each section builds on the knowledge from
previous sections. It starts with taking a look at what happens when you use JMS
in your application. This is so that the following sections can use this to help build
the larger picture of the implications of making configuration changes within a
JMS setup.

While some terminology and concepts are described within this chapter in
completeness, others might require a previous understanding of the technology
behind JMS. If you are new to JMS, then you should first look at chapter 10,
“Asynchronous messaging” in the WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451 and at Chapter 11,
“Using asynchronous messaging for scalability and performance” on page 621.

Also, the Trade 6 application is used in our example, so familiarity with this
application allows you to better understand what is being described. For more
information see the documentation that comes with the download package and
13.5.1, “What does Trade 6 use JMS for?” on page 730.

Trade 6 can be downloaded from:

http://www.ibm.com/software/webservers/appserv/performance.html

Note: At the time of writing this redbook, Trade 6 was not yet available for
download. It is expected soon. Please monitor this page for availability.

698 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/appserv/performance.html

13.1.1 JMS component diagram for sending a message
Putting a message onto a message destination using JMS requires a number of
components. Figure 13-1 on page 700 depicts how the ServletToDestination
servlet places a message on a destination. Since the JMS 1.1 unified API is
used, the same code can be used to put a message on a topic. For an
introduction to the unified JMS 1.1 API, 11.2, “Basic use of the JMS API” on
page 622 provides a complementary reference.

For this example, the following are needed:

� JNDI Name service

Described in detail in Chapter 13 of the redbook WebSphere Application
Server V6 System Management and Configuration Handbook, SG24-6451.

� Connection Factory (CF)

Encapsulates the settings necessary to connect to a messaging system.

� Destination

A reference to the messaging destination (topic or queue).

� Queue manager

A queue manager is a WebSphere MQ term. It refers to the component that is
responsible for looking after a number of queues within one install of
WebSphere MQ server.

� A message destination

The actual queue or topic where messages are held until removed by an
application.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 699

Figure 13-1 Component interactions to send a message using JMS

1. The servlet is invoked by the user and the doGet method is called by the Web
container.

2. The application needs to locate the correct destination to place the message
on. The JNDI namespace is used to house a link to the Java objects that will
perform communication with the messaging system. The
ServletToDestination servlet uses resource references within the code. These
are linked at application deployment time to the JNDI entries that can be used
to communicate with the messaging system.

Queue Manager

8

jms/MyCF

jms/Destination1

JNDI Entry

JNDI Naming Service

Resource
References

java:comp/env/
jms/Des

java:comp/env/
jms/CF

2

4

JMS Resources

Queue Connection Factory
JNDI Name: jms/MyCF

Connection Pool

Connection Connection

Session Pool

Web Container (ServletToDestination)
............

InitialContext context = new InitialContext();
connFactory =
 (ConnectionFactory)

context.lookup("java:comp/env/jms/MyCF");

destination =
 (Destination)
 context.lookup("java:comp/env/jms/Des");

conn = connFactory.createConnection();

Session sess = conn.createSession(false,
Session.AUTO_ACKNOWLEDGE);

MessageProducer producer =
sess.createProducer(destination);

TextMessage message =
sess.createTextMessage("Hello World!");

producer.send(message);
sess.close();

.............

Application Server

1

WebSphere MQ

3

5

5

6

6

8

5

Connection

7

7

SessionSession

6

Session Pool

SessionSession

Session Pool

SessionSession

700 WebSphere Application Server V6 Scalability and Performance Handbook

3. The code performs a JNDI lookup (1) for the connection factory using the
resource reference.

4. The resource reference is matched to the JNDI entry that contains the
connection factory(2). The connection factory (CF) object is returned, it will be
used to get a connection to the MQ queue manager that is responsible for the
target destination.

5. A second JNDI lookup is performed (3) and resolved to the correct JNDI entry
(4). This time it is for the destination, this will be used to locate the required
queue from the queue manager.

6. To be able to communicate with the queue in the messaging system, the
application must first create a connection (5) from the CF object. WebSphere
Application Server maintains a pool of connection objects per CF for use by
any application in the application server. This request to create a new
connection will obtain an existing connection from this pool if there are any
available, otherwise one will be created and added to the pool.

7. When using WebSphere MQ as the underlying messaging system, the
creation of the connection will attempt a physical connection with the queue
manager (5) to verify that it is available.

8. The next step is to create a session object using the createSession method
(6). This is the step where a physical connection will be established to the
queue manager which will eventually be used to transmit the message to the
queue. WebSphere Application Server maintains a pool of session objects for
each established connection on the connection factory. This request to create
a new session will obtain an existing session from this pool if there are any
available, otherwise one will be created and added to the pool.

9. With a connection now established to the messaging system through the
session object, the application now specifies what sort of action is going to be
performed; in this case, it is to send a message (7). The destination definition
that was taken from the JNDI Name service is passed to the session object
and this tells the queue manager the specific queue on to which the message
will be placed.

10.The message is constructed and sent to the message queue (8).

This is just a basic example of how JMS might be used within an application.
However, it demonstrates the number of components that are used just to send a
message. The configuration of these components can be crucial in making sure
that the application performs fast enough for requirements.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 701

13.1.2 JMS and message-driven beans
Using message-driven beans incorporates further components since the
application server is now responsible for delivering the message to the
application.

For example, the PingServletToMDBQueue servlet, which is available in the
Trade 6 sample application, places a message on a queue associated with the
JNDI name jms/TradeBrokerQueue. Within the default configuration that comes
with Trade 6, a listener port has been defined that monitors this queue. Any
messages that arrive on the queue are passed to the TradeBrokerMDB that then
processes them. This process is shown in Figure 13-2 on page 703.

For this example, the following are used:

� Components similar to those in 13.1.1, “JMS component diagram for sending
a message” on page 699:

– JNDI Name service
– Queue connection factory (QCF)
– Queue destination
– Queue manager
– A message queue

� Message listener service

The process within each WebSphere Application Server that is responsible
for all its listener ports.

� Listener port

A listener port is WebSphere Application Server’s method of linking an MDB
with the correct connection factory and destination. The information in a
listener port definition is used to monitor a message queue. The JMS provider
will then pass any messages that arrive on the queue to the MDB that is
associated with the listener port.

� Message-driven bean (MDB)

When a message arrives on a queue that is being monitored by a listener
port, the onMessage method of its associated MDB is called and the MDB will
consume that message.

Note: This example uses the backwards compatibility of JMS 1.1 with JMS
1.0.2b. Thus, it does not use the unified API.

702 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-2 Component interactions to receive a message from a queue using a message-driven bean

To fully understand what is happening here, this example needs to be taken from
the initialization point of the listener port, rather than when a message arrives. A
listener port can be started and stopped independently of the application server
that it is running on, so this process has specifically to do with the initialization of
the listener port rather than the initialization of the application server. By default,
the initial state of a listener port is started.

Also, Figure 13-2 does not show the detail of what is occurring inside of the
message listener service. There can be multiple threads of work running inside

Queue Manager

jms/TradeBrokerQCF

jms/TradeBrokerQueue

JNDI Entry

JNDI Naming Service

JMS Resources

Queue Connection Factory
JNDI Name: jms/TradeBrokerQCF

Connection Pool

Connection Connection

EJB Container (TradeBrokerMDB)

Application Server Running Trade6

WebSphere MQ 3

5

public void onMessage(Message message) {
 try {

............

Message Listener service

Listener Port - tradeport

1

2

3

3

4

7

4

Session Pool

SessionSession

Session Pool

SessionSession

Session Pool

SessionSession

6

6
6

Connection

4

4

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 703

of the message listener service but this is not depicted; this example assumes
that there is one message listener service thread that is being used by the
listener port: TradePort.

1. The MDB is associated with a listener port that is in turn associated with the
correct queue. Upon initialization, the listener port performs a JNDI lookup (1)
for the QCF that is specified in the listener port configuration. The QCF object
is returned, it is used to get a connection to the queue manager that is
responsible for the target queue.

2. The listener port does a JNDI lookup for the queue destination (2) that it has
been configured with. This is used to locate the required queue from the
queue manager.

3. Using the QCF, the listener port connects to the queue manager through a
QueueConnection (3). WebSphere Application Server maintains a pool of
QueueConnection objects per QCF for use by any application in the
application server. This request to create a new QueueConnection will obtain
an existing QueueConnection from this pool if there are any available,
otherwise one will be created and added to the pool.

While the listener port is running, the QueueConnection it uses is available to
any other application or listener port running with the application server. It is
only when the listener port is stopped that the QueueConnection is returned
to the connection pool on the QCF. Please read 11.4, “Managing workload for
asynchronous messaging” on page 627 to understand more about the
implications of this. This is also discussed briefly in “MQ JMS component
relationships” on page 705.

4. The listener port uses the QueueConnection it has created to create a
connectionConsumer object. The MQ JMS provider does the listening for
messages so the provider uses the connectionConsumer to ask for listener
port sessions to handle incoming messages. A listener port session can be
thought of as one running thread of the listener port. It is the listener port
session that calls the MDB passing it the message. Upon startup of the
listener port, one listener port session is run. At the point a listener port
session is created, a QueueSession (4) is established to point at the queue
the listener port is responsible for.

For ease of understanding there is only one listener port session and
therefore one QueueSession object in use in our example. For more
information about changing the maximum number of sessions see 11.4,
“Managing workload for asynchronous messaging” on page 627 and “MQ
JMS component relationships” on page 705.

This is the stage where a physical connection will be established to the queue
manager which is used to monitor for the arrival of messages on the queue.
WebSphere Application Server maintains a pool of QueueSession objects for
each established QueueConnection. Each request to create a new

704 WebSphere Application Server V6 Scalability and Performance Handbook

QueueSession obtains an existing QueueSession from this pool if there are
any available, otherwise one is created and added to the pool.

5. The QueueSession is established and is pointing at the correct queue. The
listener port is initialized. Any messages arriving on the message queue are
picked up, one at a time, and processed by the correct MDB.

6. A message arrives (5) on the queue.

7. As the listener port is ready to accept messages, it takes the delivered
message off the queue (6). The listener port will then pass the message on to
an instance of the MDB that it is associated with. The onMessage method is
called on the MDB (7) passing it the message.

Using MDBs requires an understanding of many different areas. The application
can be designed to use MDBs, but the way in which those MDBs behave can be
significantly affected by the way in which its controlling components are
configured - the message listener service and listener ports. Those are in turn
affected by the underlying communication mechanisms to reach the MQ JMS
provider, for example the number of connections and sessions available in a
connection factory.

13.2 MQ JMS component relationships
The more locations in an application that use JMS, the harder it is to optimally
configure all the JMS components. There are many relationships and
dependencies between the components, some of which have already been
discussed above. When configuring a component in the JMS infrastructure of the
WebSphere MQ provider it is essential that you understand what resources will
be needed to make it work. When changing certain parameters the requirements
the change places on the rest of the components is not always obvious.

13.2.1 Component relationships when using MDBs
This is especially the case when using MDBs. Figure 13-3 on page 706 shows
how all the JMS components are linked together to allow an MDB to work when
receiving point-to-point messages via a connection factory. This can be used to
help map out the impact of making changes to the configuration.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 705

Figure 13-3 Relationships between JMS components for MDB

To read this diagram, select the component you want to understand more about
and then read the connectors going from it to the other components. For example
1 session object can have 0 or 1 Listener port sessions associated with it, it will
also have 1 physical queue manager connection associated with it.

Table 13-1 on page 707 and Table 13-2 on page 708 will help in interpreting
Figure 13-3. Table 13-1 on page 707 describes how to interpret individual
relationships.

1

Message
Driven Bean

Instance

Destination
Connection

Listener Port
Session1 1 1

0 .. 1

1

0 .. 1

1

1

1

1

1

1

*

1

*

*

*

*
0 .. 1

1

WebSphere
Application Server

WebSphere MQ

Listener Port

Message
Listener Service

Thread

Message
Listener
Service

MQ Queue
Manager

Connection

*

Connection
Factory Session

0 .. 1

706 WebSphere Application Server V6 Scalability and Performance Handbook

Table 13-1 Diagram key for Figure 13-3 on page 706

Some of the boxes on the diagram represent configurable components that can
be altered, changing the number of them that exist. These relationships become
important when configuration changes are made as each change could have an
effect on other components. Table 13-2 on page 708 shows some examples of
using Figure 13-3 on page 706 to help in finding side effects.

Relationship Meaning

1 to 1 Where the relationship is 1 to 1 meaning that for the first component
to operate there has to be one of the second component available.
Example:
A listener port session requires a message listener thread. A
message listener thread is always associated with a listener port
session.

1 to 0 .. 1 Where the relationship is 1 to 0 .. 1 meaning that the first component
can optionally be associated with the second component.
Example:
One session can have 0 or 1 listener port sessions associated with
it.

0 .. 1 to 1 Reads the same as 1 to 1. See 1 to 1.

1 to * 1 to * means that component one has many instances of component
two associated with it. On this diagram a 1 to * is showing control.
Component one is in charge of multiple component two’s.
Example:
The message listener service has many message listener threads.

* to 1 Reads the same as 1 to *, except that when it is a * to 1 relationship
it is showing a child - parent relationship.
Example:
One session is managed by one connection.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 707

Table 13-2 Example linked relationships for JMS components

13.3 Choosing optimal configuration settings
This section is a list of guidelines and settings that can help in finding the all
important starting point for performance tuning an application.

13.3.1 Creation of the MQ provider objects at the correct scope
If your WebSphere Application Server application is going to be clustered across
multiple application servers then the MQ queue manager has to be set up so that
message sending and receiving works correctly in that cluster.

Scenario Requirements

Increase the number of
sessions by one

As there is only a single 1 to 1 relationship for a session the
only requirements to be able to do this are to make sure
there are enough queue manager connections available.
Remember though, by increasing the number of sessions
in the session pool by one, it is affecting all the session
pools for all the connections established from that
connection factory. So it will in fact allow connections * 1
more sessions, not just one more session.
The setting for the maximum sessions in the session pool
will be determined by the connection that needs the most
sessions.

Increase listener port
sessions by one

Reading the diagram shows that a listener port session is
reliant on a session and a message listener thread. This
means that there needs to be enough of these available for
it to be increased. Increasing the message listener threads
has no impact on any other component, except that there
need to be enough message listener threads for all listener
port sessions. Increasing the sessions is described above.

Add a new listener port
with one listener port
session

To do this there needs to be enough message listener
threads, connections and sessions available. Increasing
the number of sessions will not be necessary as this new
connection has its own pool of sessions, which has at least
one in the pool.

Important: Each application operates differently depending on the way it uses
JMS components. Any values mentioned in this section should not be treated
as a generic optimal value.

708 WebSphere Application Server V6 Scalability and Performance Handbook

There are many different topologies that can be configured for messaging
systems. A detailed discussion of these topologies can be found at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barci
a/barcia.html

This paper discusses some of the choices available to the infrastructure designer
in choosing the optimal topology for an application to use. 13.5.2, “Clustered
Trade 6 with WebSphere MQ and WebSphere Business Integration Event
Broker” on page 732 demonstrates a topology that could be used in a production
environment and some reasons for choosing it.

Before going into configuring pool sizes and other connection factory settings it is
important that the scope level be correct. As shown in Figure 13-4 on page 710,
WebSphere Application Server V6 offers five levels of scope when defining a
resource that affects its visibility to applications:

� Cell

If a resource is defined at cell level then it will be visible to all nodes and
application servers within that cell.

� Node

A resource defined at node level is only visible to that node and any
application servers residing on that node.

� Cluster

Resources defined at the cluster level are visible only to servers on the
named cluster. This is a new feature in WebSphere Application Server V6.0,
so all cluster members must be at least at version 6.0 to use the cluster
scope.

� Server

Resources at server level are only visible to that application server and
nowhere else.

� Application

This is another new scope level in WebSphere Application Server V6. It limits
the visibility to the named application. Note that application scope resources
cannot be configured from the Administrative Console. You must use the
Application Server Toolkit (AST) or the wsadmin tool to view or modify the
application scope resource configuration. Resource factories that are defined

Note: This document is currently being updated for WebSphere V6 and will
become available on developerWorks in the near future.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 709

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barcia/barcia.html

within the application scope are only available for use by this application. The
application scope overrides all other scopes.

Figure 13-4 The scope level setting

Depending on the underlying messaging system topology it might be necessary
to use the scope level setting to match up application servers with the correct
messaging destinations and queue managers.

Defining a connection factory at the cell level means that all applications running
in the cell can see this resource. When the connection factory is defined, it is the
specified JNDI name that will be used by the application to find the connection
factory. If the connection factory is defined at the cell level then that connection
factory will be bound to that JNDI name in all processes started in the cell.
Consequently any call to that JNDI name will link to the same connection factory
and therefore to the underlying messaging component that is associated with
that connection factory.

When using the WebSphere MQ provider, any part of an application using this
connection factory, in any server in the WebSphere Application Server cluster,

710 WebSphere Application Server V6 Scalability and Performance Handbook

would be accessing the same queue manager as is shown in Figure 13-5 on
page 711.

Setting the scope level correctly not only affects how the application interacts
with the messaging system but it also defines how many connection factories
and TCFs you have to create and administer. If there are four nodes in your cell
and the underlying topology requires that each node accesses a different queue
manager, then that is going to be four connection factories created at node level.

More information and some examples on configuring connection factories at
different scope levels to match the messaging topology can be found in 13.5,
“Example JMS topologies and scenarios” on page 729.

Figure 13-5 Define a resource at cell level

13.3.2 Important MQ JMS component settings
In addition to connection pool and session pool settings on a connection factory
(see “Setting up the connection factory pools” on page 724) there are a number
of settings that can affect performance. The settings will only work with the
correct combination of messaging topology and application usage of JMS. This is
specified under each heading.

app2 node

WebSphere Application Server cell

app1 node

 WebSphere MQ

Queue
Manager

Cluster

TradeApplicationServer1

JNDI -
jms/TradeBrokerQCF

TradeApplicationServer1

JNDI -
jms/TradeBrokerQCF

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 711

Transport Type - BINDINGS or CLIENT
This setting determines the method the application server uses to communicate
with the queue manager.

� Component: Connection factory

� Applies to specific messaging topologies: Yes

� Requires specific usage of JMS in application: No

� Location of setting:

Resources -> JMS Providers -> WebSphere MQ -> WebSphere MQ
connection factories -> <ConnectionFactory_Name> -> Transport type
field

If the queue manager is running on the same physical machine as the application
server, then it is possible to set the transport type to BINDINGS. If the queue
manager is on a remote machine then CLIENT has to be used. This could also
affect whether transaction support is provided to MQ. To enable XA support, the
queue manager must either be accessed using BINDINGS (and therefore local)
or accessed using CLIENT and the specific XA enabled MQ client must be
installed on the application server machine.

Using the BINDINGS transport type removes some of the overhead of remote
access and is generally faster as it does not have to perform as many actions to
access the queue manager.

Persistent Messages
Message persistence means that if a MQ queue manager fails, all the messages
it holds will be recoverable as they are written to disk.

� Component: Queue destination and Topic destination

� Applies to specific messaging topologies: Yes

� Requires specific usage of JMS in application: Yes

� Location of setting: Varies - see text.

The configuration of whether a message should be persisted is configurable at
three levels:

� Application level - in the application code

When using a javax.jms.MessageProducer it is possible to specify whether
messages should be persistent. This is done using the setDeliveryMode()
method which accepts values of either:

– DeliveryMode.NON_PERSISTENT

– DeliveryMode.PERSISTENT

712 WebSphere Application Server V6 Scalability and Performance Handbook

When creating a message producer, if setDeliveryMode is not used then the
default is DeliveryMode.PERSISTENT.

� Queue destination and topic destination settings

Within these objects it is possible to define the persistence. Possible values
for persistence are:

– APPLICATION DEFINED

– PERSISTENT

– NON PERSISTENT

– QUEUE DEFINED (only on the WebSphere MQ JMS provider objects)

� Queue definition in queue manager

For WebSphere MQ it is possible to set the Default Persistence.

Even though you can configure the persistence at each level there are some
rules that govern which setting will take precedence:

� Setting the value on the WebSphere MQ queue is only the default persistence
setting. It is overridden by the setting on the JMS queue and topic
destinations.

� Any value set in the application code will be overridden by the settings on the
queue or topic destination unless they are configured as APPLICATION
DEFINED, in which case the value in the application will be used.

� Defining PERSISTENT and NON PERSISTENT on the queue and topic
definitions is the only way to accurately know from looking at the WebSphere
Application Server configuration whether persistence will occur.

� If you are using WebSphere MQ (as opposed to the default messaging
provider) then you can configure the queue or topic destination to take the
default value specified on the queue. This is done using QUEUE DEFINED.

As more messages are stored on disk, a reduction in performance of message
processing occurs. Persistence should only be used when the topology in use
demands it. For example, if you decide to use one queue manager and have it
made highly available using some HA software like HACMP, then you will need to
have persistent messaging turned on to make this work.

Alternatively, if you have an architecture whereby messages are sent and
received in a synchronous fashion, then it might be the case that the client code
only waits for a certain amount of time before re-sending the message. In this
instance the topology contains more than one active queue manager and
persistent messages are not required since failures can be resent.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 713

It is not straight forward to decide whether persistence is needed and for this
reason it is much better that it not be part of the considerations for a developer. It
is recommended that persistence is not specified by the application and is left to
the definition of the queue or topic destination so that it is obvious to the
administrator whether messages will be persisted.

XA enabled resources
XA support extends transaction support as it allows WebSphere Application
Server to coordinate a transaction over many back end resources, committing
the results to those resources only when all the work in the transaction has been
completed.

� Component: Connection factory

� Applies to specific messaging topologies: Yes

� Requires specific usage of JMS in application: No

� Location of setting:

Resources -> JMS Providers -> WebSphere MQ -> WebSphere MQ
connection factories -> <ConnectionFactory_Name> -> XA enabled
checkbox

Two-phase commit can only operate with XA enabled resources and this setting
specifies this.

By default, XA support is enabled when creating a connection factory. With XA
enabled more work has to be done to complete the transaction. It is an expensive
overhead if there is no use of two-phase commit in your application and should
be disabled in this case. Turning this off does not change behavior of a
transaction, if XA enabled is set to false and the application tries to enlist more
than one resource in the transaction, then an exception will be thrown.

If your application does need to use an XA enabled connection factory then you
should establish whether it is needed for all interactions with the messaging
system. If it is only needed for a small section of the application requests then it
is recommended that two connection factory objects are created, one with XA

Attention: When a queue or topic destination is defined the default is
APPLICATION DEFINED. As the default for creating a new MessageProducer
object in the code is to have messages persisted, the overall defaults for
setting up a queue destination are that the message will be persisted. If you
do not need messages to be persisted then you need to change the
APPLICATION DEFINED to NON PERSISTENT on the queue or topic
destination.

714 WebSphere Application Server V6 Scalability and Performance Handbook

enabled and one without. This should then make the parts of the application that
do not need XA run faster.

Client ID and Enable Clone support for publish/subscribe
The enable clone support setting is specifically for durable subscription based
publish/subscribe messaging on the WebSphere products. Enable clone support
permits listener ports defined with the same connection factory to share a
durable subscription. This allows, for example, a MDB in an application deployed
to a cluster to share a durable subscription such that each message is only sent
to one MDB instance in the whole cluster.

� Component: Connection factory

� Applies to specific messaging topologies: Yes

� Requires specific usage of JMS in application: No

� Location of settings:

Resources -> JMS Providers -> WebSphere MQ -> WebSphere MQ
connection factories -> <ConnectionFactory_Name> -> Enable clone
support checkbox

When using publish/subscribe there are two ways in which client subscriptions
can be handled, durable and non-durable. If a client subscribes to a topic using a
non-durable subscription and then is terminated or loses network connectivity, it
will not receive any future publications until it is started again. Any publications
occurring while the client is unavailable will be lost.

Durable subscriptions mean that a clients subscription lives past the termination
or loss of communication of that client. While the client is unavailable, the broker
keeps a copy of any published messages requested in the clients durable
subscription. When the client starts back up again the messages are then
received by the client.

There are different rules for how to create a durable and non-durable
subscription, because of the persistence needed for a durable subscription.

Important: As a durable subscription lives past the termination of the
application client, the only way to remove the durable subscription is to
deregister it from the broker. If you are using a durable subscription on an
MDB then the durable subscription is only removed when the application is
removed from WebSphere Application Server, and only then when that
application server is restarted so that it can tell the broker of the subscription
change.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 715

A non-durable subscription works in a similar way to listening on a destination for
a message to arrive. In the case of a message-driven bean, WebSphere
Application Server uses a listener port to create the necessary JMS objects to
point to the required topic. If any of those objects are closed or the link with the
message broker is lost then the subscription is also lost. From the broker’s
perspective it recognizes a distinct subscription by the MessageConsumer that has
been used. Each communication channel opened to the broker is a new
subscription from a new client.

A durable subscription cannot be identified by the connection to the message
broker as once it is closed or lost, so would be the subscription. Instead, the
broker recognizes the subscription based on the ID of the durable subscription.
This ID is based on a set of parameters which form a unique reference. If the
client should stop, then when it is started again it will be recognizable to the
broker by the fact that it has the same ID.

If a client, in particular an MDB with a durable subscription, wishes to subscribe,
it needs to have a unique durable subscription ID. This ID is created using the:

� J2EE name of the MDB

� The client ID setting on the connection factory assigned to that MDBs listener
port

Problems start to occur if the application is clustered. If there is only one
installation of the application running, then this MDB’s subscription remains
unique for this broker. But if another copy of the application is started up pointing
at the same connection factory then the subscription is no longer unique on the
broker. The second MDB will not function as expected.

For this reason, when clustering an application you need to carefully choose how
many connection factories serve your MDBs and the settings on those factories.

Two different types of behavior with a durable subscription and MDBs are
possible:

� The application is installed in a cluster. All the MDB listener ports are
configured to point at one connection factory, which is defined at the lowest
scope that allows all your application servers to view it. This will be either cell
or node depending on your topology. This connection factory has Enable
clone support checked and a Client ID specified.

When all the servers in your cluster are started, the MDBs and their listener
ports start successfully. When a message is published only one of the MDBs
will get the message, so only one of the cluster members will receive the
information within the message.

716 WebSphere Application Server V6 Scalability and Performance Handbook

This is because the broker only sees one subscription as the client ID on the
connection factory and the name of the MDB are the same for each
application server. It is at this point that the Enable clone support setting
needs to be used. The JMS specification states that there can only be a
single subscriber for a particular durable subscription at any one time.
Enabling clone support allows all the MDBs to successfully start even though
they all have the same client ID for the durable subscription. Without this
setting turned on, only one of the MDBs will work properly. With Enable clone
support turned on, the JMS provider will then pass a publication to any one of
the MDBs.

Whichever of the listener port sessions is available first will receive the
message. This is like one grouped line of customers waiting to be served by a
number of cashiers, where the line of customers is the topic publication
messages and the cashiers are the listener ports. There are four cashiers
working, each dealing with a customer, when one of them finishes their work
the next customer in the line goes to that cashier. If a line never forms then
the cashiers will not be busy and so the next customer to arrive could go to
any of them. This method of distributing the workload means there is no
algorithm that can be applied to understand which cluster member will get any
given message.

This behavior occurs because the broker sees one subscription. When a
message is published that matches this subscription, the MQ JMS classes
take the message and then pass it to whichever of the listener ports is
available first to process the message. This behavior occurs because Enable
clone support has been specified, it is telling the MQ JMS provider to allow
multiple MDBs (one in each clone), but only use one at a time.

� The application is installed in a cluster. Each MDB listener port that is defined
has its own connection factory, which is defined at the server scope. Each
connection factory does not need clone support checked, but does need a
client ID specified. The client ID field must be a unique value among all the
connection factories defined to use the same broker.

When all the servers in your cluster are started, the MDBs and their listener
ports will start successfully. When a message is published, all of the MDBs
will get the message, so all of the cluster members will receive a copy of the
message. This behavior occurs because the broker sees multiple
subscriptions, one for each application server.

Note: This scenario means that all MDBs use the same communication
mechanism to reach the message broker.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 717

Conclusion: If you are using durable subscriptions in a clustered environment
then it is essential that the correct behavior is created through the configuration
of your MQ JMS components.

13.3.3 The listener service and listener ports
11.4.1, “Basic workload patterns” on page 627 and “Component relationships
when using MDBs” on page 705 have already discussed the way in which
workload arrives via the messaging system and the relationships between each
of the settings for the message listener service. This section provides details
about specific settings that can help to optimize the message listener service and
MDBs.

Message listener port maximum sessions
When using MDBs within an application it is recommended that advantage is
taken of the ability to process messages simultaneously. This is done by
increasing the maximum number of sessions on any listener ports that are
configured. By default, Maximum sessions is set to 1.

� Component: Message listener

� Applies to specific messaging topologies: No - as long as MDBs are used

� Requires specific usage of JMS in application: Yes

� Location of setting:

Servers -> Application servers -> <AppServer_Name> -> Messaging ->
Message Listener Service -> Listener Ports -> <ListenerPort_Name> ->
Maximum sessions field

Deciding on the value for this field involves performance testing as there are a
number of factors that determine its optimal value. There are two factors to
consider:

� Time to complete onMessage method of MDB

The time that it takes to process a message off the message queue can be
used to determine how long resources are in use. When a message is passed
to an onMessage method of an MDB there is one listener port session, one
session and one listener service thread in use. All of these resources are
locked while that message is being processed. The shorter the service time of
the onMessage method, the less time the resources are locked and are free to
process another message.

The average time it takes for the onMessage to complete on an MDB can be
found using the Tivoli Performance Viewer. See “Monitoring performance with
Tivoli Performance Viewer” on page 765. To be accurate, this average time

718 WebSphere Application Server V6 Scalability and Performance Handbook

must be measured when a realistic application workload is being tested in a
realistic production environment.

� Peak workload arrival rate

The advantage of having multiple sessions is that up to x messages from the
destination may be processed simultaneously, where x is the total number of
listener port sessions. The peak workload will affect the value for the number
of maximum sessions.

In a system where the time between each message arriving is more than the
time it takes to process one message, adding more message listener
sessions is not going to give any performance improvement as there will be
no messages waiting on the queue.

However, if the messages cannot be processed faster than the arrival rate
then there is scope for increasing the maximum sessions value to prevent a
backlog of messages occurring.

Understanding the peak and average workload arrival rates are essential in
configuring the optimal value for maximum sessions for your application running
in your environment.

If possible, come up with an estimate of the maximum number of messages that
will arrive on the message queue over a given amount of time that makes sense
in your application (second, minute, etc.).

As with all performance tuning, the correct balance between efficient usage of
system resources and maximizing throughput needs to be reached. If the
workload does arrive faster than messages can be processed then increasing
the maximum number of sessions on a listener port will only increase
performance if there is spare resource available on the physical server to perform
the simultaneous processing of messages.

It is always worth monitoring the number of sessions in use on a listener port. If a
test shows that setting the Maximum sessions to 10 did not perform any faster
than Maximum sessions set to 5, then use Tivoli Performance Viewer to check
that all 10 sessions were actually in use. It might be the case that not enough
workload is arriving to push the system to use all 10 sessions, in which case look
at the frequency that the message sender is capable of placing messages on the
queue.

Important: The total processing time for a message includes not only how
long the message takes to be processed once it has been delivered to the
MDB but also the time it takes waiting to be processed. Only the time that it
spends waiting can be optimized by changing the maximum number of
sessions.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 719

There is, however, a limit in gains when increasing the number of maximum
sessions that does not have to do with hardware restrictions. This is because
there is only one queue reader thread per queue per JVM. This is the thread that
is farming out work to the sessions. So as you increase maximum sessions, the
queue reader thread receives a higher load.

The messaging system topology and WebSphere Application Server topology
make a difference on how the peak workload arrival rate is measured and how
long a message takes to process. The topology used in “Clustered Trade 6 with
WebSphere MQ and WebSphere Business Integration Event Broker” on
page 732 has two application servers pointing at the same message queue for
redundancy purposes. This means that the message queue is not solely
accessed by one message listener service.

While the time to complete the message and the workload arrival rate have a
significant impact on how many sessions should listen for messages, they are not
the only settings, and are in themselves affected by a great number of other
factors. The only reliable way to determine the appropriate number of maximum
sessions on a listener port is through thorough performance testing and tuning.

One final point to reemphasize is that increasing the maximum number of
sessions on a listener port requires increasing other values too, check
“Component relationships when using MDBs” on page 705 to find out what else
needs to be tuned.

Maximum messages
This setting controls the maximum number of messages that the listener can
process in one session.

� Component: Message listener

� Applies to specific messaging topologies: No

� Requires specific usage of JMS in application: Yes

� Location of setting:

Tip: Having trouble getting the Maximum sessions value to increase above 1
in tests? Your messages are probably being processed faster than the next
one is arriving. One way to simulate the peak workload arriving at the
message queue is to stop the message listener port in the Administrative
Console, but continue to forward messages to the message queue. This will
fill up the queue with messages. Once the number of messages on the queue
has reached the desired amount, start the message listener port up again.

720 WebSphere Application Server V6 Scalability and Performance Handbook

Servers -> Application servers -> <AppServer_Name> -> Messaging ->
Message Listener Service -> Listener Ports -> <ListenerPort_Name> ->
Maximum messages field

The MQ JMS based provider handles the starting of the MDBs transaction
differently than other JMS providers.

When the MQ JMS provider receives one or more messages it retrieves a
listener port session, gets the JMS session from it and passes the message to
that session. The JMS provider then calls start on the listener port session which
passes the MDB reference to the JMS session, spins off a new message listener
thread and calls run on the JMS session. The MQ JMS provider then delivers the
message to the onMessage method of the MDB.

Changing the value of Maximum messages increases the number of messages
delivered per transaction. However, this setting might not have an obvious impact
on performance, and it changes the way in which those messages are handled:

� If one message in the batch fails processing with an exception, the entire
batch of messages is put back on the queue for processing.

� Any resource lock held by any of the interactions for the individual messages
are held for the duration of the entire batch.

� Depending on the amount of processing that messages need, and if XA
transactions are being used, setting a value greater than 1 could cause the
transaction to time out.

The performance improvement will not be obvious when changing this setting as
messages will not necessarily be processed faster. The correct ratio between
Maximum messages and Maximum sessions would need to be reached.

For example, if there are 10 messages on a queue and the Maximum sessions is
set to 5, Maximum messages is set to 1, then 5 messages at a time will be
processed (assuming enough physical resources). If Maximum messages is set
to 5 and Maximum sessions remains at 5, then 5 messages will go to the first
session and 5 messages will go to the second session. This means that only 2
messages will be processed at the same time.

The workload will impact how effective changing the maximum messages setting
will be. In our example, if the number of messages is increased to 50 or more
then you should start to see some benefit of the reduced overhead of creating
transactions.

Message listener service thread pool
Each listener port defined on an application server’s message listener service
will have a maximum number of sessions that it can process at the same time.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 721

Each session requires one message listener thread to be able to operate. The
listener service thread pool must have enough threads available at any one time
to allow all the listener ports sessions defined under it to start. This means that if
there are four listener ports defined, and between them the maximum sessions
settings add up to 20, then the maximum size for the thread pool should be no
less than 20.

� Component: Message listener

� Applies to specific messaging topologies: No - as long as using MDBs

� Requires specific usage of JMS in application: No

� Location of setting:

Servers -> Application servers -> <AppServer_Name> -> Messaging ->
Message Listener Service -> Thread Pool

The minimum size and thread inactivity time-out should be used together to
balance how much JVM resource and heap is taken up by the inactive threads
versus the performance impact of having to start up new threads. Depending on
your priorities this could mean setting the minimum size to the same as the
maximum size to remove the overhead of creating threads. It could mean setting
it to 1 and using a large inactivity time-out so that the thread pool does not use
system resources until threads are needed, but during a busy time the overhead
of the threads being created only impacts the first messages to arrive.

Underlying MQ JMS connection pooling
JMS connections and sessions are pooled at the Java layer by WebSphere
Application Server. At a lower level the MQ JMS classes also pool the physical
connections to the MQ queue manager. This pooling is done automatically by the
MQ JMS classes when accessing WebSphere MQ. It is possible to change two
of the parameters that control the cleanup of idle connections in this pool should
you need to.

There is no association between the MQ JMS connection pool and the
connection factory connection or session pool. This lower level connection pool is
used by the MQ JMS classes when needed.

MQJMS.POOLING.TIMEOUT
By default, the MQ JMS pooling will maintain each established idle connection to
the queue manager for five minutes. Change this value to specify a different
lifetime for an idle connection. The value should be entered in milliseconds.

MQJMS.POOLING.THRESHOLD
The MQ JMS connection pooling is also controlled by the number of idle
connections in it. If the number of idle/unused connections reaches the default of

722 WebSphere Application Server V6 Scalability and Performance Handbook

10 connections then any other connection becoming idle will be destroyed. This
is basically the minimum size for the pool. Changing this value will allow you to
control how many established connections can survive for the time-out setting
above.

Use these two settings to control how many low level connections are available in
the pool and how long they will survive if they continue to not be used. Follow
these steps to use these two values.

1. Go to Servers -> Application servers -> <AppServer_Name> ->
Messaging -> Message Listener Service -> Custom Properties

2. Click the New button.

3. For name specify either:

– MQJMS.POOLING.THRESHOLD

– MQJMS.POOLING.TIMEOUT

4. Enter the value you wish to use, and an optional description. Remember the
time-out is in milliseconds.

5. Click OK and save your configuration. The settings will come into operation
the next time the application server is restarted.

Use a separate connection factory for MDBs
Each MDB’s listener port is associated with a connection factory. The connection
factory objects hold the connection and session pools for accessing the
messaging system. When configuring the sizes of these pools there always have
to be enough sessions and connections available to allow all parts of the
application to access the messaging system at peak load. The more variants
there are in working out this peak load the harder it is to get the correct figures for
the size of the pools.

The number of connections and sessions that are needed by each listener port
on an application server can be calculated. The number of connections and
sessions used by the Web and EJB container cannot be calculated in the same
way as it is reliant on the type and spread of workload, which can vary
considerably. Only a percentage of requests that arrive at the Web or EJB
container will need to use JMS, unlike the listener port where 100% of requests
(messages) need to use JMS.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 723

Creating a separate connection factory definition that will only be used by MDBs
means that:

� There will always be enough resources available in the connection and
session pool to run the listener ports that push work to the MDBs. This is
regardless of whether the Web or EJB container are experiencing heavy load.

� There is one less variable to consider when setting up the connection and
session pools for the Web and EJB traffic.

� When monitoring performance it is obvious which connections and sessions
are in use by listener ports. In Tivoli Performance Viewer, objects are shown
by the name of the connection factory they use.

For each connection factory associated with a listener port:

� Set the minimum connection pool size to 1 and the maximum connection pool
size to 2. The listener port will only need one connection; setting the
maximum to 2 is just a precaution.

Assuming the MDB application code is using the same connection factory as
the listener port, if the MDBs themselves perform or call code that needs to
put a message on a destination using the same connection, do not use these
settings. The details of your application determine how many more
connections are needed to handle the sending of the message from within the
MDB’s transaction.

� Set the maximum session pool size to the same value as Maximum sessions
in the Listener port configuration.

Once again, if the MDB or code it calls puts a message on a message
destination using the same connection factory, then more sessions might be
needed than this.

Failure behavior settings
There are a number of settings that define how the listener service and listener
port operate in the event of a failure. Optimizing these settings will have an
impact on performance in the event of a failure. Go to “JMS Listener port failure
behavior” on page 726 for information.

13.3.4 Setting up the connection factory pools
When using JMS, the connection and session pools are the link between the
application and the messaging system. There need to be enough connections
and sessions available in each connection factory to satisfy the needs of the
peak workload.

� Component: Connection factory

724 WebSphere Application Server V6 Scalability and Performance Handbook

� Location of settings:

Resources -> JMS Providers -> WebSphere MQ -> WebSphere MQ
connection factories -> <ConnectionFactory_Name> -> Connection pool
(from the Additional Properties pane)

Each connection factory will have a different anticipated workload, so it will need
configuring to match that workload. Finding the optimum value for the minimum
and maximum connections and sessions in the pools can only be achieved
through performance testing and tuning.

However, it is possible to help in finding the correct starting place for maximum
pool sizes to use in the performance testing. It is how the connection factory is
going to be used that will help in deciding what the size the pools should be.
Consider the areas listed below when setting up the connection and session
pools:

� What is the intended usage of the connection factory?

– MDB Listener port
– XA enabled resources
– Generic JMS

� Are there going to be different connection factory objects for each of the
above?

If so then adjust the size of the pools accordingly (minimum and maximum
connections for each pool).

� For generic JMS, what is the relationship between connections and sessions?

See “MQ JMS component relationships” on page 705. Remember that each
connection has its own pool of sessions, but each session pool is globally
configured on the connection factory.

� How many Web and EJB threads are there defined in the application server?

The Web and EJB containers maximum thread pool sizes act as the
controlling mechanism for how many threads could be trying to use the
connection factory. Whenever the number of threads is increased or
decreased, consider changing the connection and session pool sizes as well.
See “MQ JMS component relationships” on page 705 for more information.

13.3.5 More information
For more information about configuration settings that affect JMS performance,
including some WebSphere MQ specific settings, refer to the WebSphere
Application Server 6 InfoCenter:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 725

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Search for “Tuning service integration messaging” in the InfoCenter.

Also take a look at the supportpacs available about JMS performance with
WebSphere MQ:

http://www.ibm.com/software/integration/support/supportpacs/product.html

13.4 JMS Listener port failure behavior
Within WebSphere Application Server, the listener port is the component on the
message listener service that links a message-driven bean to a connection
factory and destination, and therefore to the underlying messaging system.

There are two scenarios that need to be catered for when configuring the listener
port and message listener service.

13.4.1 Failure in the listener port
If a listener port should fail to start, or lose its connections to the MQ queue
manager then it is possible to make it retry. There are two settings at the
message listener service that govern how many times restarting a listener port
should be attempted and how long the interval should be in between.

These two settings are:

� MAX.RECOVERY.RETRIES

Use this to specify the number of attempts to start the listener port. The
default for this setting is 5 attempts.

� RECOVERY.RETRY.INTERVAL

This setting sets the time interval between the retries. The default for this
value is 60 seconds.

If these settings are not changed then the listener port will attempt to start once
every 60 seconds over 5 minutes. If the listener port has been unable to start in
this time then it will not be started, unless done manually.

Change these values to provide an adequate amount of retries so that your
application can recover. For example, if you are using hardware or operating
system level clustering to provide fail over, then these settings need to be
configured to keep retrying for the period it typically takes for fail over to occur. In
this way the failure of the queue manager will be masked as a blip in throughput
rather than the listener port stopping completely.

Follow these steps to use these two values:

726 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/integration/support/supportpacs/product.html

1. Go to Servers -> Application servers -> <AppServer_Name> ->
Messaging -> Message Listener Service -> Custom Properties

2. Click the New button.

3. For name specify either:

– MAX.RECOVERY.RETRIES
– RECOVERY.RETRY.INTERVAL

4. Enter the value you wish to use, and an optional description. Remember the
retry interval is in seconds.

5. Click OK and save your configuration. Once completed it will look similar to
Figure 13-6 on page 727.

The settings come into operation the next time the application server is restarted.

.

Figure 13-6 The listener port retry settings

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 727

13.4.2 Failure to process a message
The listener port will retrieve the messages from the message queue and pass
them to the MDB. If there is an error in processing a message then the MDB will
rollback and the message listener port will return that message to the queue. Of
course, once back on the queue this message will be picked up again by the
listener port and a never ending cycle could occur.

There are some settings that can stop this occurring. On each listener port it is
possible to configure the maximum retries setting. By default this setting is set
to 0, which means if the processing of one message fails then the listener port
will stop. This is good for stopping the message from getting stuck in a never
ending loop but it also means that all the other messages waiting on the queue
will not get picked up.

It is possible to change the maximum retries to a higher number and then this
might give the message a chance to succeed. For example, if the message was
being used to update a database but access to the database timed out then
retrying might eventually work.

Even changing the maximum retries to a higher number might still result in the
listener port stopping.

There is a way to stop this behavior occurring and that is through the use of
backout queues on WebSphere MQ. Within the configuration of a queue in
WebSphere MQ, it is possible to set a backout queue and backout threshold. The
backout threshold works in the same way as the listener ports maximum retries.
It counts the number of attempts at delivering a message. Upon reaching the
backout threshold number of retries, the message is taken from the queue and
placed on the queue specified in the backout queue.

These settings for the queue can be set using the MQ Explorer GUI as shown in
Figure 13-7 or using the command line.

Attention: This behavior is slightly different for connections to a message
broker. When the JMS provider code attempts a connection to the message
broker for publish/subscribe messaging, if there is a problem getting a
response from the broker then it will wait for three minutes before timing out.
This means that if a listener port is trying to start or restart there will be an
additional timeout value added on between retries to the retry interval. This
message broker connection timeout is not configurable from within
WebSphere Application Server.

728 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-7 The backout queue settings for a message queue.

Make sure to set the Harden Get Backout field to Hardened so that an accurate
count of message deliveries is kept.

This now means that the listener port stopping can be avoided by making the
backout queue threshold lower than maximum retries. If the maximum retries is
set to 3 on the listener port and the backout threshold set to 2, then the message
will only ever get delivered twice and so not trigger the setting on the listener
port. The message will be placed in the backout queue and perhaps another part
of the application can be used to handle the backout queue.

The failed message will be handled and the message listener can continue to
run. However, if for example, the MDB is trying to use a database that is down,
then all of the messages are routed to the dead letter queue.

13.5 Example JMS topologies and scenarios
A lot of the settings that have been discussed have topology specific benefits.
Functionality and configuration are a lot more significant when designing a
messaging and application server topology for more than traditional Web and
EJB based applications. In these cases it is the performance and scalability
requirements that often force the choice of topology.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 729

When using JMS, there is not one topology at the top of the food chain that will
suit all situations. Using point-to-point, publish/subscribe, MDBs, different
messaging products, and combinations of these will all drive a need to have a
specific topology to match a specific application and its non-functional
requirements.

The choice of topology will depend on the correct balance of non-functional
requirements of performance, security, scalability, maintenance, reliability,
availability and cost, as well as providing a topology that can give the required
function.

The example application that has been used throughout this book is Trade 6.
Trade 6 has specific requirements for its use of JMS. Trade 6 uses JMS as an
asynchronous communication mechanism between two parts of the application.
This means that for Trade 6 there is no need to communicate with a back-end
system and so a lot of the more complicated topologies do not suit it.

However, this chapter is supposed to be helping you understand WebSphere
MQ, so for the purposes of this section, we describe a scenario using Trade 6
with requirements for functionality and other criteria. The front end sections of the
topology (Web traffic) are not discussed but it is possible to overlay the sample
topology in Chapter 8, “Implementing the sample topology” on page 387.

This section is intended to help you use some of the configuration options
described in this chapter in working examples. It should also help you begin to
understand the thought process in deciding on the best topology for your
application. It will not describe all possible topologies, and there are many other
topologies. To find out more on choosing a topology take a look at the document
JMS Topologies and Configurations with WebSphere Application Server and
WebSphere Studio Version 5 available at:

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barci
a/barcia.html

13.5.1 What does Trade 6 use JMS for?
Before continuing to the examples it is important that the functional requirements
for JMS in Trade 6 be clear.

Trade 6 integrates both point-to-point and publish/subscribe MDBs.

Note: This document is currently being updated for WebSphere V6 and will
become available on developerWorks in the near future.

730 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barcia/barcia.html

Point-to-point
The queue based TradeBrokerMDB asynchronously processes stock purchase
and sell requests. In the Trade 6 configuration, if the Order Process mode is set
to Asynchronous_1-Phase or Asynchronous_2-Phase then instead of an order for
some stock being processed immediately, it is handled asynchronously. Upon
buying some stock an order is opened in the Trade database and a message
sent to a queue. The application then immediately returns to the client. In the
background the message is picked up by the TradeBrokerMDB and processed,
updating the records in the database to set the order to completed. The next time
the client returns to the Web site, they receive a notification that the order
completed successfully.

This is using JMS for asynchronous communication within the application. Some
important points to note on the influence the functionality has on the topology
are:

� The topology required for this part of Trade 6 does not require communication
with any back-end systems.

� Any cluster member can process the order messages as they update the
database. This means that if the client is on TradeServer1 and the message is
processed by TradeServer2, the client still receives the notification. This is
asynchronous communication with no need for affinity.

� Having one or more WebSphere MQ queue managers will not affect the
functionality of the application, nor will using messaging clients.

Publish/Subscribe
TradeStreamerMDB subscribes to a message topic called TradeStreamerTopic.
Quote data for individual stocks is published to this topic as prices change,
providing a real-time streaming quote feature in Trade 6. The prices change
every time some stock is bought or sold.

Some important points to note on the influence the functionality has on the
topology are:

� If the Trade 6 application is clustered, then each application server needs to
get the publications on price changes. If this does not occur then the prices
will not be kept in synchronization across the cluster. This means having only
one message broker doing the work (or a cluster of message brokers).

� By default, the MDB is using non-durable subscriptions. This avoids any
restrictions imposed from using durable subscriptions. See “Client ID and
Enable Clone support for publish/subscribe” on page 715 for more
information.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 731

Now that we understand how Trade 6 needs to use JMS we move on to apply
some of the guidelines described in this chapter and create some topologies.

13.5.2 Clustered Trade 6 with WebSphere MQ and WebSphere
Business Integration Event Broker

The main purpose of this example is to show how WebSphere Application
Server, WebSphere MQ and WebSphere Business Integration Event Broker can
be used to create a scalable infrastructure. This is to be done through the use of
both WebSphere Application Server clustering and WebSphere MQ clustering.
This section is aimed at WebSphere Application Server users who have had
minimal exposure to WebSphere MQ and WebSphere Business Integration
Event Broker.

To make this scenario more realistic some requirements have been set:

� A new functional requirement has been requested. When stock is bought or
sold it needs to be processed by a back-end system first. A response
message will then be generated by the back-end and the Trade 6 database
will be updated as normal.

The reason this new requirement has been specified is because WebSphere
MQ clustering only workload manages the sending of messages to remote
clustered queues. If the back-end processing is not needed then WebSphere
MQ clustering does not aid asynchronous communication between two parts
of the same application.

This is explained further in “Initial WebSphere MQ configuration” on
page 736.

� Performance, reliability, and availability are of equal importance. The system
must perform well, have minimal outages, and should an outage occur it
needs to be able to recover.

� The application must link into an existing messaging system which is based
on WebSphere MQ.

There would normally be other factors that influence the choice of topology, but
this should be enough to justify the following topology.

732 WebSphere Application Server V6 Scalability and Performance Handbook

The chosen WebSphere MQ clustering topology

Figure 13-8 Example topology for WebSphere MQ and Event Broker for Trade 6 scenario

This topology has been chosen because:

� It provides workload management.

There are four servers in the application server cluster that have workload
distributed to them, both from the Web facing side and from the messaging
side. The queue managers also have their workload managed when requests
are returned from the back end system. Finally, although not specified on the
diagram, there is potential for the broker to be workload-managed as well.

� It has been designed for high availability and reliability of WebSphere
Application Server.

Four application servers are used to cover the chance of an application server
failing. In this topology, messages arriving from the back end are
workload-managed between any available queue manager. If TRADEQM1
and TRADEQM2 are both up then response messages will continue to arrive

TRADEQM2

Node Agent

 App 1

 App 2

 Application Server Cluster

Trade6

TradeServer2

TradeServer1

Node Agent

TradeServer3

TradeServer4

Trade6

Trade6

Trade6

Broker

Configuration
Manager

WebSphere Business
Integration Event Broker

Event
Broker
Data

 WebSphere MQ Cluster

Link to Pub/Sub
Queues

Link to Send
Queue

Receive
Queue

TRADEQM1

Link to Pub/Sub
Queues

Link to Send
Queue

Receive
Queue

Queues

Topic

Queues

Topic

Queues

Topic

Queues

Topic

WBRK_QM

Link to Receive
Queues

Send
Queue

Pub/Sub
Queues

Back end
Processing

Operating system based clustering of message
broker, database and queue manager

Machine 1

Machine 2

Machine 3

Machine 4

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 733

at both. If TradeServer1 was stopped and TradeServer2 did not exist then
messages would continue to arrive at TRADEQM1 but would not get
processed.

This is overcome in this example by having one application server on each
node pointing at the remote queue manager. Should TradeServer1 stop, any
arriving messages will be picked up by the MDB running on TradeServer2.

There is still the issue that should TRADEQM1 or TRADEQM2 stop then two
of the four application servers will not be able to process order requests that
will still be coming in from the front end. This failure in sending of messages
can be avoided by changing the Trade 6 code to have two connection
factories to try, a primary and a backup. Upon sending a message if the first
connection factory fails to respond then the second could be used. This code
change will not be made for this example.

� It has been designed for high availability and reliability of WebSphere MQ.

In this topology, the WebSphere MQ infrastructure uses clustering to provide
failover and workload management. This prevents the queue managers
becoming a single point of failure for messages arriving from the back end
system. See “Initial WebSphere MQ configuration” on page 736.

� It has been designed for high availability and reliability for WebSphere
Business Integration Event Broker.

WebSphere Business Integration Event Broker and its supporting software of
a WebSphere MQ queue manager and DB2, are made highly available
through the use of operating system level clustering software, for example
HACMP for AIX. The setup of these products on various types of clustering
software is out of the scope of this book. Please refer to the redbook
WebSphere Application Server Network Deployment V6: High availability
solutions, SG24-6688 for more information about this topic.

In this topology there is a reliance on the queue managers TRADEQM1 and
TRADEQM2 being available for pub/sub messages to be delivered. The
application servers use the two local queue managers as routing mechanisms
to reach the message broker.

� Through use of durable subscriptions, published messages are delivered
regardless of the state of the client at publish time.

If the MDB in Trade 6 remains using a non-durable subscription as it is
currently set, then the subscription to the broker is based on the connection
the MDB listener has acquired to its local queue manager. If that connection
is broken then the MDB loses its subscription. As this system needs to be
reliable and recoverable from failure, a durable subscription needs to be used
and the infrastructure setup accordingly. A durable subscription will live past
any failure to communicate with the client, storing undeliverable messages
until the client comes back online.

734 WebSphere Application Server V6 Scalability and Performance Handbook

� It provides a topology that fits the functional requirements and allows
communication with other WebSphere MQ queue managers outside of the
WebSphere Application Server cell.

The back-end application has been included into the additional materials
repository of this redbook. Refer to Appendix B, “Additional material” on
page 1037 for download instructions. It is a very simple EAR file called
Trade6Redirector.ear, that contains one MDB. This MDB listens for arriving
messages on one queue, picks up the messages and puts them back on the
response queue. Basic instructions for installing it are included in the EAR file
package.

The following steps for WebSphere MQ and WebSphere Business Integration
Event Broker have been designed to be the easiest method of getting a skilled
WebSphere Application Server architect or administrator up and running.
However, they might not be the most efficient method to complete the tasks
needed under every networking and hardware environment.

Software
The following software was used to perform this example. The steps in this
example are for setting this up on a Microsoft Windows platform. It is assumed
that before carrying on with these steps, the following software is installed:

Machine 1
� IBM WebSphere Application Server Network Deployment V6
� IBM WebSphere MQ 5.3 + fixpack 9
� IBM DB2 UDB Client version 8.2 (optional)

Machine 2
� IBM WebSphere Application Server Network Deployment V6
� IBM WebSphere MQ 5.3 + fixpack 9
� IBM DB2 UDB Client version 8 (optional)

Machine 3
� IBM DB2 UDB version 8.2
� IBM WebSphere MQ 5.3 + fixpack 9
� IBM WebSphere Business Integration Event Broker 5.0 + fixpack 4
� WebSphere Application Server - Express V6 or Network Deployment. This is

to run the back end application.

Important: This is not the best topology for all applications in all cases.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 735

When installing DB2, WebSphere MQ and WebSphere Business Integration
Event Broker accepting the defaults should be enough for this example to work.
Where any of the products require fixpacks it is recommended that the fixpacks
be applied before starting up the products.

Figure 13-9 Selecting Java Messaging during WebSphere MQ install wizard

Machine 4
Is not covered in the setup.

It is assumed that WebSphere Application Server nodes app1 and app2 are
federated into the cell.

Initial WebSphere MQ configuration
In this example the WebSphere MQ configuration underpins both how
WebSphere Application Server and WebSphere Business Integration Event
Broker operate. WebSphere MQ clustering facilities are used for workload
management of messages, fail over and for ease of system administration.

Important: When installing WebSphere MQ, be sure the Java Messaging
component is selected for installation as shown in Figure 13-9. You may need
to select Custom instead of a typical installation.

736 WebSphere Application Server V6 Scalability and Performance Handbook

A cluster is a group of queue managers set up in such a way that the queue
managers can communicate directly with one another without the need for
complex configuration. In addition to the WebSphere MQ manuals there is some
good information about configuring WebSphere MQ clusters in chapters 8 and 12
of the redbook Patterns: Self-Service Application Solutions Using WebSphere
V5.0, SG24-6591.

Figure 13-10 shows the queues that need to be configured for this example to
work.

Figure 13-10 The queues in the WebSphere MQ cluster

The way in which MQ clustering works is to first join a number of queue
managers together into a cluster (using commands or the GUI). This now means
that each queue manager knows about any queue that has been configured as
clustered. For example, WBRK_QM has a queue called TRADE_MAINFRAME
defined under it and set as shared in the cluster. From TRADEQM1’s perspective
it can now see that there is a queue in the cluster called TRADE_MAINFRAME
and it lives on WBRK_QM. Any client connecting to TRADEQM1 can simply
specify that it wishes to place a message on TRADE_MAINFRAME and the
WebSphere MQ cluster does the work of getting the message to WBRK_QM.

This is also how workload management occurs. WebSphere MQ clustering will
only workload manage messages when there is more than one remote
destination for the message. If a client connects to WBRK_QM to place a
message on TRADE_RESPONSE then WBRK_QM can see two
TRADE_RESPONSE queues, one on TRADEQM1 and one on TRADEQM2.

 WebSphere MQ Cluster

TRADEQM1

TRADE_RESPONSE

WBRK_QM

Pub/Sub
Queues

TRADE_RESPONSE

TRADE_MAINFRAME

TRADEQM2

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 737

The workload management of WebSphere MQ will decide which queue to use.
Should one of the queue managers not be available then the message will not be
routed there, providing fail over too.

However, if a client connects to TRADEQM1 to place a message on
TRADE_RESPONSE then that message will not get workload-managed and will
go to the local queue on TRADEQM1 even though two queues with the name
TRADE_RESPONSE are visible. (An exception to this is if the client specifies a
different queue manager for the location of the queue, but this will still not be
workload-managed).

Also, once a message is delivered to a queue manager that is the end of its
journey until a client picks it up, even if a failure results in that queue manager. In
a cluster there is no central repository of messages, a message either exists on
the sending queue manager or the receiving queue manager.

Hopefully from this explanation you can now see why it was necessary to include
the back-end process. Without the back-end process in this example no workload
management or fail over of point-to-point messages would occur and so using
WebSphere MQ clustering would not be valid for this application. If the only
queue managers that existed were TRADEQM1 and TRADEQM2 then there is
no need for WebSphere MQ clustering beyond configuration management.

Create queue manager on machine 1
Follow these steps to setup WebSphere MQ for use in this example:

1. Open the WebSphere MQ Explorer.

2. Right-click the Queue Managers folder in the IBM WebSphere MQ Explorer
and select New -> Queue Manager from the pop-up menu.

3. In Step 1 of the wizard, shown in Figure 13-11 on page 739, set the Queue
Manager name to TRADEQM1 and make sure to specify the Dead Letter
Queue of SYSTEM.DEAD.LETTER.QUEUE.

738 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-11 Create a new queue manager in WebSphere MQ

4. Click Next. Accept the defaults and click Next again.

5. On page three of the wizard make sure to check the box next to Create
Server connection Channel to allow remote administration of the queue
manager over TCP/IP. Click Next.

6. On page four of the wizard make sure to enter an unused Port Number for
the queue managers listener. When creating this example, the Port number
1415 was used. Click Finish.

7. The queue manager will be created and started.

8. When using pub/sub and JMS there are a number of extra queues that are
needed for it to work. To define these queues first open a Windows command
prompt.

9. Go to the directory <MQ_Install_root>\bin. For example to
c:\Program Files\IBM\WebSphere MQ\bin.

10.Run the command runmqsc TRADEQM1 < MQJMS_PSQ.mqsc

This creates all necessary JMS queues needed for publish/subscribe.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 739

Create queue manager on machine 2
Repeat the steps from “Create queue manager on machine 1” on page 738 for
machine 2, changing the queue manager name to TRADEQM2 and
remembering to choose a unique port for the listener.

Create cluster
To make the steps simpler the creation of the queue manager on machine 3 will
be handled later by the setup of WebSphere Business Integration Event Broker.
So the next step is to configure the cluster.

1. On machine 1, open the WebSphere MQ Explorer.

2. Right-click the Clusters folder and select New -> Cluster.

3. This brings up a wizard to take you through the steps for configuring the
cluster. Click Next when you have read the first page.

4. Enter TRADE6 as the cluster name. Click Next.

5. On the third panel select the local queue manager TRADEQM1 from the
options. Click Next.

6. For the secondary repository queue manager setup the fields as shown in
Figure 13-12 on page 741. Select Remote, enter the queue manager name
TRADEQM2 and the host name and port of the queue manager. Click Next.

Note: In some versions of MQ, the bin directory is under
<MQ_Install_root>\Java\bin. Also, if the MQJMS_PSQ.mqsc file is
missing, you may need to search for it on your CD or install image and
copy it. For our install image, it was located in \MSI\Program
Files\IBM\WebSphere MQ\Java\bin.

740 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-12 Setup second repository queue manager

7. Accept all other defaults in the wizard for channel names, verifying that the
host names and ports are valid and click Finish to create the cluster.

Create TRADE6_RESPONSE queue on TRADEQM1
1. Now that the cluster has been created, the queues can be defined. Open the

MQ Explorer and expand the TRADEQM1 folder.

2. Right-click Queues and select New -> Local Queue.

3. On the General tab of the window that appears enter:

– Queue name of TRADE6_REPSONSE

– Default persistence of Persistent

4. Change to the Cluster tab. In here select that the queue should be Shared in
cluster and enter TRADE6 as the Cluster name. For Default Bind select Not
Fixed. See Figure 13-13 on page 742.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 741

Figure 13-13 Cluster panel of creating a new queue

5. Click OK to create the queue.

Under Clusters -> TRADE6 -> Queue Managers in Cluster -> TRADEQM2 ->
Queues you should now see that a new clustered queue is visible on
TRADEQM1.

Create TRADE6_RESPONSE queue on TRADEQM2
Repeat the steps you just did in “Create TRADE6_RESPONSE queue on
TRADEQM1” on page 741 but define the queue on TRADEQM2.

Once this step is complete the main part of the WebSphere MQ configuration is
finished.

WebSphere Business Integration Event Broker Configuration
WebSphere Business Integration Event Broker needs DB2 and WebSphere MQ
to be installed and running for it to operate. It uses configuration and runtime
information stored in DB2 databases, together with queues running in
WebSphere MQ, to function as a message broker. The product itself is made of
three main components:

742 WebSphere Application Server V6 Scalability and Performance Handbook

� Configuration manager
� Message broker
� Message Brokers Toolkit

These steps outline what needs to be done to get a simple publish/subscribe
broker up and running. This is a very quick run through the steps needed,
offering minimal explanation. For more information refer to the documentation for
WebSphere Business Integration Event Broker.

1. Start DB2 on machine 3.

2. When WebSphere Business Integration Event Broker is installed, it may
default to having no licenses available so a broker cannot be started. This
count needs to be altered to the number of CPUs that machine 3 has and
which are licensed. Open a command prompt and run the command:

<Event_Broker_Install_root>\bin\mqsisetcapacity -c X

Where, X is the number of CPUs.

3. Launch the Message Brokers Toolkit by going to Start -> Programs -> IBM
WebSphere Business Integration Event Brokers -> Message Brokers
Toolkit.

4. The toolkit is an eclipse based set of tools which may look familiar. When it
opens you are presented with the Welcome screen. (If this does not appear
go to the menu option Help -> Welcome).

5. On the Welcome screen there is the option to Create a default
configuration. Select this option as shown in Figure 13-14.

Figure 13-14 The Message Brokers Toolkit

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 743

6. On the first page make sure to use the user name and password that DB2 is
installed and running under as this make installation easier. Click Next when
done.

7. On the next page, accept the defaults for the queue manager configuration.
Make sure to specify a port number that is not used. In this example, as with
the other queue managers, the port number chosen was 1415. Click Next.

8. The wizard will then take you through the names of the broker and
configuration managers, and their databases, accept the defaults.

9. On the final page click Finish to begin the process of creating all the
components and starting them up. This may take a while.

10.When everything has been created and started, a success message is
displayed and you are returned to the Message Broker Toolkit.

11.In the Broker Administration perspective, in the bottom left view there should
now be an active connection shown to the message broker. There will also be
an alert message that the default Execution Group is not running. This is
shown in Figure 13-15.

Figure 13-15 Connection to the broker

Note: During this process if anything fails then experience has shown that
after fixing the problem it is still best to delete the parts that succeeded
before re-running the wizard such as the database tables and the project in
the broker workbench. Be sure you are logged in to the operating system
with the user defined in the wizard. In our configuration this was db2admin.

744 WebSphere Application Server V6 Scalability and Performance Handbook

An execution group is the term used by Event Broker to group a series of
message flows. A message flow is a process that describes the steps a
message goes through within the broker, including the point at which it
arrives. The default execution group is not running because it does not have
any message flows deployed to it. A message flow is needed so that Trade 6
can use the broker. There is a sample message flow that will do for the
purposes of this example. It will also reduce the number of steps needed to
get the broker up and running.

12.Go to the menu option Help -> Cheat sheets -> Preparing samples for first
use. A new window will open with the Message Brokers Toolkit.

13.We have just completed step 1, so go straight to step 2 which imports the
sample into the workbench. Click the green arrow to run the Introduction, the
blue arrow to skip step 1 and the green arrow to run step 2.

14.You are presented with a new window, select the Soccer Results Sample
and click Finish.

15.Run step 3 in the Cheat sheet, creating the runtime resources. Again a
window will open, select Soccer Results Sample and click Next.

16.The next panel shows the names of the queues that will be created. Select
WBRK_QM as the queue manager and click Finish. You should receive a
message that the create sample queues completed successfully.

17.Run the final step to deploy the soccer results message flow. After selecting
the Soccer Results Message Flow and pressing OK you will be presented
with options detailing which broker to publish the message flow to. Accept the
defaults and click Next, then Next again.

18.Finally you will get to a page asking for the execution group. Enter the
Execution Group of Trade and click Next.

19.On the last page of this client window check the box next to Soccer
Messageflows and click Finish. If an error appears saying that the server
cannot be started, just click OK.

20.Close the Cheat sheet window.

21.All that is left to do now is to start the message flow. In the Broker
Administration window, under the Broker Administration Navigator, expand
Message Flows -> Soccer Messageflows -> (default). Right-click
SoccerPublish.msgflow and select Run on Server as is shown in
Figure 13-16 on page 746.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 745

Figure 13-16 Running the soccer sample

22.After pressing Finish in the window that appears, you will see that the Trade
execution group in the Domains view will start running. The Message Broker
is now configured and ready for use. If you still have an alert for the default
execution group, ignore it. The Trade execution group will be used for this
example.

Trade6Redirector Installation
To complete the setup of machine 3 install the Trade6Redirector.ear file on the
stand-alone application server. Trade6Redirector.zip can be found in the redbook
repository. See Appendix B, “Additional material” on page 1037 for information
about how to download Trade6Redirector.zip. The zip file contains a text
document with installation directions.

Complete WebSphere MQ configuration for WBRK_QM
The queue manager WBRK_QM still needs to be added to the cluster and some
queues defined on it. Follow these steps to complete this:

1. Open a Windows command prompt on machine 3.

2. Go to the directory <MQ_Install_root>\bin. For example:
c:\Program Files\IBM\WebSphere MQ\bin.

Important: At a later stage, for instance after a reboot, you will need to use
the commands mqsistart configmgr and mqsistart WBRK_BROKER from the
command line to get the Broker running. This should be done after DB2 has
been started.

Alternatively you can start the respective services.

746 WebSphere Application Server V6 Scalability and Performance Handbook

3. Run the command runmqsc WBRK_QM < MQJMS_PSQ.mqsc

This will create all of the necessary JMS queues needed for
publish/subscribe.

4. Open the WebSphere MQ explorer.

5. Find WBRK_QM and right-click it. Select All Tasks -> Join Cluster....

6. In the new window that appears click Next.

7. When prompted enter the name of the cluster which is TRADE6. Click Next.

8. The next page will ask for details of the location of a repository queue
manager. Select Remote and then enter the queue manager name
TRADEQM1 and the connection name of machine1 plus the port, for
example machine1(1415). Click Next.

9. Upon successful communication with the remote queue manager the prompt
will ask for details about the channels to link the queue managers. Accept the
defaults and eventually click Finish.

WBRK_QM has now been added to the cluster. To verify this, take a look at
the list of its queues, it should contain references to the TRADE_RESPONSE
queues on the other queue managers.

10.Now that the cluster has been created the last queue can be defined. Open
the MQ Explorer and expand the WBRK_QM folder.

11.Right-click Queues and select New -> Local Queue.

12.On the General tab of the window that appears enter:

– Queue name of TRADE_MAINFRAME
– Default persistence of Persistent

13.Change to the Cluster tab. In here select that the queue should be Shared in
cluster and enter TRADE6 as the cluster name. For Default Bind select Not
fixed.

14.Click OK to create the queue.

This completes the setup for WebSphere MQ, there are request and response
queues setup for point-to-point. The application servers will communicate with
the broker through the WebSphere MQ cluster facilities. When defining the
connection factories later, the name of the queue manager that the broker
resides on will be used as well as the local queue manager. This allows
messages to be automatically routed to the broker’s queues.

WebSphere Application Server configuration
Now that the underlying messaging system has been constructed, the
components within WebSphere Application Server can be put together to provide
the complete platform for Trade 6 to run on.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 747

There are four application servers that are going to be deployed. Each of them
uses the messaging system in a slightly different way to reduce single points of
failure in the topology. This means effective use of the scope setting for each
connection factory, queue and topic. While running through these steps keep in
mind the overall picture as this is a complicated configuration. Figure 13-17
shows what JMS provider objects need to be configured to get this topology to
work. It should also be noted that we use a unified naming scheme and unified
connection factories wherever possible.

Figure 13-17 Usage of JMS provider objects in sample topology

TradeApplicationServer1

TradeBrokerLPCF

P to P
In Application

Pub/Sub
In Application

Trade Topic
Listener Port

Trade Listener
Port

TradeStreamerLPCF

TradeStreamerCF

TradeBrokerCF

TRADEQM2

Link to Pub/Sub
Queues

Link to Send
Queue

Receive
Queue

TRADEQM1

Link to Pub/Sub
Queues

Link to Send
Queue

Receive
Queue

Server Scope Defined

TradeBrokerQueue

TradeStreamerTopic

Cell Scope Defined
TradeBrokerResponseQ

TradeApplicationServer2

TradeBrokerLPCF

P to P
In Application

Pub/Sub
In Application

Trade Topic
Listener Port

Trade Listener
Port

TradeStreamerLPCF

TradeStreamerCF

TradeBrokerCF

Server Scope Defined

TradeBrokerQueue

TradeStreamerTopic

Cell Scope Defined
TradeBrokerResponseQ

TradeApplicationServer3

TradeBrokerLPCF

P to P
In Application

Pub/Sub
In Application

Trade Topic
Listener Port

Trade Listener
Port

TradeStreamerLPCF

TradeStreamerCF

TradeBrokerCF

Server Scope Defined

TradeBrokerQueue

TradeStreamerTopic

Cell Scope Defined
TradeBrokerResponseQ

TradeApplicationServer4

TradeBrokerLPCF

P to P
In Application

Pub/Sub
In Application

Trade Topic
Listener Port

Trade Listener
Port

TradeStreamerLPCF

TradeStreamerCF

TradeBrokerCF

Server Scope Defined

TradeBrokerQueue

TradeStreamerTopic

Cell Scope Defined
TradeBrokerResponseQ

748 WebSphere Application Server V6 Scalability and Performance Handbook

Setup Trade 6: Part 1 - Cluster creation and JDBC resources
The creation of the cluster will be done in two stages - creating the cluster with
the first server and then adding new cluster members later on. The advantage of
this is that all resources defined at server scope will be copied over to the new
servers.

Trade 6 needs access to a database to work. There is a script that comes with
Trade 6 called trade.jacl which helps to setup the Trade 6 database. The script
is designed to setup JMS resources for the default messaging provider as well,
so there will be resources installed which are not relevant for this scenario and
can be removed using the Administrative Console after executing the script.

Use the following command to run the script:

<WebSphere_Path>\bin\wsadmin -f trade.jacl configure

Be sure to run setupCmdLine.bat first from the bin directory of your WebSphere
installation. See 8.8, “Installing and configuring Trade 6” on page 436 for detailed
instructions.

The following example illustrates the settings that were selected during the
script’s execution under our environment which uses DB2 as the database. The
defaults are used when no choice is specified below the setting.

Example 13-1 Trade 6 script settings

Global security is (or will be) enabled (true|false) [false]:

Is this a cluster installation (yes|no) [no]:
yes

Have all nodes been federated and network connectivity
verified? (yes|no) [yes]:

Please enter the cluster name [TradeCluster]:

Select the desired node [app1Node]:

Please enter the cluster member name [TradeServer1]:

Add more cluster members (yes|no) [yes]:
no

Important: A database user name longer than 12 characters is not
recommended. If the user name is more than 12 characters, it cannot be used
as an authentication entry for WebSphere MQ connection factories.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 749

Select the backend database type (db2|oracle) [db2]:

Please enter the database driver path
[c:/sqllib/java/db2jcc.jar;c:/sqllib/java/db2jcc_license_cu.jar;c:/sqllib/java/
db2jcc_license_cisuz.jar]:
${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db2jcc.jar;${DB2UNIVERSAL_JDBC_DRIVER_PATH}/db
2jcc_license_cu.jar

Please enter the database name [tradedb]:

Please enter the DB2 database hostname [localhost]:
db

Please enter the DB2 database port number [50000]:

Please enter the database username [db2admin]:

Please enter the database password [password]:
password

You may want to test the database connection in the Administrative Console
under Resources -> JDBC Providers -> DB2 Universal JDBC Driver Provider
(XA) -> Data sources. Be sure to select the Cell scope level after selecting
JDBC Providers. If you receive an error in connecting to the database you may
probably need to set the DB2UNIVERSAL_JDBC_DRIVER_PATH variable under
Environment -> WebSphere Variables at the Node scope level.

Because Trade 6 uses the DB2 universal JDBC Type 4 driver, it is usually not
necessary to configure the DB2 clients on the application server systems any
more (as was needed for previous versions of Trade). If however, for some
reason, you have problems accessing the database, then you should follow the
steps outlined in “DB2 clients” on page 439 which should solve your connection
problems.

The script sets up a Java 2 connector authentication user name and password
for the database for which db2admin was used in Example 13-1 on page 749. It is
of particular interest because this authentication entry is used in this example for
database access and access to WebSphere MQ queue managers. The
authentication entry can be inspected using the Administrative Console under
Security -> Global security -> JAAS Configuration -> J2C Authentication
data -> TradeDataSourceAuthData.

Note: Be sure to check the entire output. Even if the last task is completed
successfully, you may need to scroll up to check that there were no previous
errors.

750 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-18 TradeDataSourceAuthData entry

Remove unnecessary resources
The trade.jacl script was written for the new default messaging provider in
WebSphere Application Server V6. Thus, it creates resources that are not used
in this example. These resources should be removed to avoid possible JNDI
name conflicts and to keep a clean environment. It is recommended that the
following steps be performed to remove the unused resources from the
environment:

1. Remove the following resources from the default messaging provider at the
cell scope level under Resources -> JMS Providers -> Default messaging.

– TradeBrokerQCF Queue Connection Factory

– TradeStreamerTCF Topic Connection Factory

– TradeBrokerQueue JMS queue

– TradeStreamerTopic JMS topic

– TradeBrokerMDB JMS activation specification

– TradeStreamerMDB JMS activation specification

2. Remove the TradeCluster bus from Service integration -> Buses.

3. Remove MEDataSource from Resources -> JDBC providers -> DB2
Universal JDBC Driver Provider -> Data sources.

4. Remove Policy for ME0 from Servers -> Core groups -> Core group
settings -> DefaultCoreGroup > Policies.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 751

Configure JMS resources: Part 1
The first task is to identify how many JMS components need to be defined within
the cell.

� Point-to-point connection factory

By looking at Figure 13-8 on page 733 it is possible to see that for
point-to-point messaging each of the application servers need to access the
WebSphere MQ cluster in a different way. This is because each possible
combination of two queue managers and two forms of communication needs
to be covered (CLIENT and BINDINGS). This is achieved by creating all the
relevant connection factory objects at the Server scope, making them visible
only to that server.

� Publish/subscribe connection factory

For publish/subscribe messaging, the MDB has a durable subscription. Each
application server needs to receive a copy of any published message so
connection factories cannot be shared. Four application servers means there
needs to be four durable subscriptions, each made unique by the client ID set
on the connection factory (as the MDB name is the same - cloned
application). This means defining the connection factory objects at the Server
scope level as well. More information about this can be found in “Client ID and
Enable Clone support for publish/subscribe” on page 715.

� Destinations

Finally the queue destination and topic destination contain no information that
is specific to a particular application server, so these can be configured at Cell
level.

Follow these steps below to create the necessary listener ports and JMS
provider objects on TradeServer1.

After completing these steps, TradeServer1 will be used as a template to create
the other servers and the final configuration changes will be made. This includes
configuring dedicated connection factories for the listener ports to use. This
allows for specific configuration of a connection factory for listener port usage
and makes defining the size of the connection and session pools simpler.

1. Open the WebSphere Administrative Console, expand Resources -> JMS
Providers and select WebSphere MQ.

2. Set the scope to Server TradeServer1 (on Node app1) and click Apply.

752 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-19 Set the scope level for app1, TradeServer1

3. Select WebSphere MQ connection factories.

4. Create two new connection factories using the information from Table 13-3
and Table 13-4. One is for use by the listener port. If a field is not specified
then use its default value.

Table 13-3 TradeBrokerCF

Table 13-4 TradeBrokerListenerPortCF

Field Value

Name TradeBrokerCF

JNDI name jms/TradeBrokerCF

Queue manager TRADEQM1

Transport type BINDINGS

Component-managed authentication alias TradeDataSourceAuthData

Container-managed authentication alias TradeDataSourceAuthData

XA enabled Checked (True)

Field Value

Name TradeBrokerListenerPortCF

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 753

5. Go back into TradeBrokerListenerPortCF by clicking
TradeBrokerListenerPortCF. Select Connection pool from the Additional
Properties pane.

6. Change Minimum connections to 1 and Maximum connections to 2. The
listener port will need only one connection. Click OK.

7. Select Session pools, again from the Additional Properties.

8. Change Minimum connections to 1 and Maximum connections to 5. The
listener port will only need at most 5 sessions as this will be defined by the
maximum sessions setting on the listener port. Click OK and then OK again.

9. Go back to the WebSphere MQ connection factories.

10.Create two new connections using the information in Table 13-5 on page 755
and Table 13-6 on page 755. These factories will be used for
publish/subscribe messaging and for the respective listener port. If a field is
not specified then use its default value.

JNDI name jms/TradeBrokerLPCF

Queue manager TRADEQM1

Transport type BINDINGS

Component-managed authentication alias TradeDataSourceAuthData

Container-managed authentication alias TradeDataSourceAuthData

Enable XA Checked (True)

Field Value

754 WebSphere Application Server V6 Scalability and Performance Handbook

Table 13-5 TradeStreamerListenerPortCF

Table 13-6 TradeStreamerCF

Field Value

Name TradeStreamerListenerPortCF

JNDI name jms/TradeStreamerLPCF

Transport Type BINDINGS

Component-managed authentication alias TradeDataSourceAuthData

Container-managed authentication alias TradeDataSourceAuthData

Queue manager TRADEQM1

Broker queue manager WBRK_QM

Broker publication queue SOCCER_PUBLICATION
This is the name of the queue that was
setup on WBRK_QM. It is being monitored
by the broker based on the sample
message flow.

Broker subscription queue SOCCER_SUBSCRIPTION

Broker version Advanced

Enable clone support Uncheck (False)
Although there is use of durable
subscriptions, this connection factory is
only being used by one application server
in the cluster and so there is no issue with
MDB listener ports starting up with the
same client IDs.

Client ID TradeServer1
This unique ID is what allows multiple
durable subscriptions on the same topic
from with in the server cluster. This needs
to be different for each server scope.

Enable XA Uncheck (False)
There is no requirement for 2PC on this
object.

Field Value

Name TradeStreamerCF

JNDI name jms/TradeStreamerCF

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 755

11.Setup the connection and session pools for this resource by repeating steps 5
on page 754 to 8 on page 754 but for TradeStreamerListenerPortCF this
time.

12.Next go back to WebSphere MQ messaging provider. Reset the scope to
the Cell level. This is done by removing app1 and TradeServer1, then
pressing Apply.

13.Click WebSphere MQ queue destinations. Two queue destinations need to
be created, one that points to the send queue that will go to the back-end
process, Trade6Redirector, and one that points to the response queue that
will be used by the MDB.

14.Create two new queue destinations using the information from Table 13-7 on
page 757 and Table 13-8 on page 757. Where no value is given, use the
defaults.

Transport type BINDINGS

Component-managed authentication alias TradeDataSourceAuthData

Container-managed authentication alias TradeDataSourceAuthData

Queue manager TRADEQM1

Broker queue manager WBRK_QM

Broker publication queue SOCCER_PUBLICATION

Broker subscription queue SOCCER_SUBSCRIPTION

Broker version Advanced

Enable clone support Uncheck (False)

Client ID TradeServer1

Enable XA Uncheck (False).

Field Value

756 WebSphere Application Server V6 Scalability and Performance Handbook

Table 13-7 TradeBrokerQueue

Table 13-8 TradeBrokerResponseQueue

15.Go back to the WebSphere MQ messaging provider and click WebSphere
MQ topic destinations.

16.Create a new topic destination using the information from Table 13-9.

Table 13-9 TradeStreamerTopic

17.Now we need to create the listener ports. Go to Servers -> Application
servers -> TradeServer1 -> Messaging -> Message Listener Service ->
Listener Ports.

18.Two listener ports are needed, one for point-to-point and one for
publish/subscribe. Create two new listener ports using the information from
Table 13-10 on page 758 and Table 13-11 on page 758. Where no value is
given for a field use the default.

Field Value

Name TradeBrokerQueue

JNDI name jms/TradeBrokerQueue

Persistence PERSISTENT

Base queue name TRADE_MAINFRAME

Field Value

Name TradeBrokerResponseQueue

JNDI name jms/TradeBrokerResponseQueue

Persistence PERSISTENT

Base queue name TRADE6_RESPONSE

Field Value

Name TradeStreamerTopic

JNDI name jms/TradeStreamerTopic

Persistence PERSISTENT

Base topic name TradeStreamerTopic

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 757

Table 13-10 tradeport

Table 13-11 tradetopicport

19.Save the configuration.

20.The install path for IBM WebSphere MQ needs to be set if it is not set already.
Go to Environment -> WebSphere Variables. Change the scope to the
app1 Node and then set the MQ_INSTALL_ROOT variable. Do the same for
app2.

21.TradeServer1 is now set up and ready to run.

22.At this point it is recommended that you test the configuration on one server
following the directions in “Configuring and installing the application” on
page 762. Only TradeServer1 is configured at this stage but it is enough to
verify that the messaging system is working and resolve any errors before the
entire topology is setup.

Trade 6 configuration: Part 2 - Setup additional cluster members
It is now time to create the other three servers. TradeServer1 will now be used as
a template, reducing the effort to setup all the JMS resources.

1. In the WebSphere Administrative Console go to Servers -> Clusters ->
TradeCluster -> Cluster members -> New.

2. Enter the name TradeServer2, select app1 as the node. Make sure that
Generate Unique HTTP Ports is checked, then click Apply.

Field Value

Name tradeport

Connection factory JNDI name jms/TradeBrokerLPCF

Destination JNDI name jms/TradeBrokerResponseQueue

Maximum sessions 5

Maximum retries 10

Field Value

Name tradetopicport

Connection factory JNDI Name jms/TradeStreamerLPCF

Destination JNDI name jms/TradeStreamerTopic

Maximum sessions 1

Maximum retries 10

758 WebSphere Application Server V6 Scalability and Performance Handbook

3. Repeat this for servers TradeServer3 and TradeServer4 which need to be
created on app2.

4. Once all the servers are in the list click Next and then Finish.

5. Each of the new application servers needs its Web container transport ports
added to the default_host virtual host before they can accept requests. To find
the port numbers, go to Servers -> Application servers ->
<AppServer_Name> -> Web Container Settings -> Web container
transport chains. Verify the port number for WCInboundDefault.

Go to each application server in turn and write down the ports.

Then go to Environment -> Virtual Hosts -> default_host -> Host Aliases.
Add the ports if they are not listed.

Configure JMS resources: Part 2 - Adjust JMS settings for new
cluster members

The final step in this setup is to change the connection factories for
TradeServer2, TradeServer3, and TradeServer4 to point to the correct queue
manager using the correct transport type. As TradeServer1 was used as a
template for creating these new application servers, all of its resources have
come across as well. The listener ports should be left unchanged. Only the
connection factory settings need to be changed.

1. In the scope of app1/TradeServer2 on the WebSphere MQ messaging
provider change the fields outlined in Table 13-12 to Table 13-15 on
page 760 for each connection factory:

Table 13-12 TradeBrokerCF

Table 13-13 TradeBrokerListenerPortCF

Field Value

Name TradeBrokerCF

Queue Manager TRADEQM2

Transport Type CLIENT

Host <machine2>

Port 1415

Field Value

Name TradeBrokerListenerPortCF

Queue Manager TRADEQM2

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 759

Table 13-14 TradeStreamerCF

Table 13-15 TradeStreamerListenPortCF

2. In the scope of app2/TradeServer3 for the WebSphere MQ Provider change
the fields shown in Table 13-16 to Table 13-19 on page 761 for each
connection factory:

Table 13-16 TradeBrokerCF

Table 13-17 TradeBrokerListenerPortCF

Transport Type CLIENT

Host <machine2>

Port 1415

Field Value

Name TradeStreamerCF

Client ID TradeServer2

Field Value

Name TradeStreamerListenerPortCF

Client ID TradeServer2

Field Value

Name TradeBrokerCF

Queue Manager TRADEQM1

Transport Type CLIENT

Host <machine1>

Port 1415

Field Value

Name TradeBrokerListenerPortCF

Queue Manager TRADEQM1

Transport Type CLIENT

Host <machine1>

Field Value

760 WebSphere Application Server V6 Scalability and Performance Handbook

Table 13-18 TradeStreamerCF

Table 13-19 TradeStreamerListenerPortCF

3. In the scope of app2/TradeServer4 for the WebSphere MQ messaging
provider change the fields outlined in Table 13-20 to Table 13-23 on
page 762 for each connection factory:

Table 13-20 TradeBrokerCF

Table 13-21 TradeBrokerListenerPortCF

Table 13-22 TradeStreamerCF

Port 1415

Field Value

Name TradeStreamerCF

Queue Manager TRADEQM2

Client ID TradeServer3

Field Value

Name TradeStreamerListenerPortCF

Queue Manager TRADEQM2

Client ID TradeServer3

Field Value

Name TradeBrokerCF

Queue Manager TRADEQM2

Transport Type BINDINGS

Field Value

Name TradeBrokerListenerPortCF

Queue Manager TRADEQM2

Transport Type BINDINGS

Field Value

Name TradeStreamerCF

Field Value

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 761

Table 13-23 TradeStreamerListenerPortCF

4. If not already defined, you may need to set the
DB2UNIVERSAL_JDBC_DRIVER_PATH variable under Environment ->
WebSphere Variables at the node scope for app1 and app2 respectively.

After saving the configuration, the JMS resources are setup for the application.

Configuring and installing the application
Trade 6 is setup to use non-durable message-driven beans by default. In order to
change this, the deployment descriptors for the message-driven beans need to
be changed slightly.

Using IBM Rational Application Developer V6 or the Application Server Toolkit
V6, import the trade.ear file and switch to the J2EE perspective. Expand EJB
Projects -> tradeEJB. Double-click Deployment Descriptor: TradeEJBs.
Select the Bean tab. Select TradeStreamerMDB from the Bean list. In the
Activity Configuration panel on the right hand side click Add.... The window
shown in Figure 13-20 on page 763 should appear. Enter a Name of
subscriptionDurability and a Value of Durable. Click Finish, save your
changes and export the modified Trade6 ear.

Queue Manager TRADEQM2

Client ID TradeServer4

Field Value

Name TradeStreamerListenerPortCF

Queue Manager TRADEQM2

Client ID TradeServer4

Field Value

762 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 13-20 Modifying trade.ear for a durable subscription

Follow these steps to use the WebSphere Administrative Console to install the
modified Trade 6 EAR file:

1. Select Applications -> Install New Application. Specify the modified
Trade 6 EAR created above and click Next or Continue until the Step 2: Map
modules to servers panel is displayed.

2. On the Step 2 panel, verify that the application is mapped to the correct
cluster and map it also to your Web server(s), if you want to access the
application through the HTTP server(s). Click Next.

3. On the Step 3: Provide options to perform the EJB Deploy panel select the
database type according to your environment and click Next.

4. Change the Bindings for TradeBrokerMDB to Listener Port and enter the
Name tradeport.

Do the same for TradeStreamerMDB, using the Name tradetopicport and
click Next.

5. Accept the defaults until Step 10: Map resource references to resources. Click
Continue if you receive Application Resource Warnings.

Change the TradeBroker and TradeStreamer connection factory JNDI names
to reflect the unified connection factory naming we have used thus far:

– Change jms/TradeBrokerQCF to jms/TradeBrokerCF for both the
TradeEJBs and TradeWeb modules.

– Change jms/TradeStreamerTCF to jms/TradeStreamerCF for both the
TradeEJBs and TradeWeb modules.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 763

6. Accept the defaults for the remainder of the installation.

Testing the application
The queue managers and message brokers should already be started. If you
receive any errors when starting up the application servers verify that the
WebSphere MQ cluster is working by looking at the channel and listener status in
the WebSphere MQ Explorer. Also, do not forget to start the Trade6Redirector
application to do the back-end processing.

The Trade 6 application defaults to using Synchronous as the order process
mechanism on each server. For this reason change the Trade 6 configuration on
each of the servers. For each server go to

http://<server_host>:908X/trade/config

and change the following configuration parameters:

� Order processing mode = Asynchronous_2-Phase
� Enable Operational Trace = True
� Enable Full Trace = True

Click Update config to complete.

Trade 6 is now up and running. There are many aspects of the fail over to try out.
Here are a couple of tests to start off with:

� Run the Web primitives PingServletToMDBQueue and PingServletToMDBTopic.
Check the SystemOut.log of the servers to verify the message has been
delivered.

� Stop the listener ports on the servers in the Servers -> Application servers
-> <TradeServerX> -> Messaging -> Message Listener Service ->
Listener Ports menu. Log in to Trade 6 and place some orders. The orders
will not be completed as the MDBs are stopped. Use the WebSphere MQ
Explorer to observe workload management delivering the messages to the
queues. Start the listener ports back up again and on the next visit you should
receive a notification that the orders were completed.

� Stop the listener ports on one of the servers. Place some orders in Trade 6.
All the started servers will receive the updated stock price in their logs except
the stopped server. Start its message listener service back up and all the
publications it missed will be delivered.

764 WebSphere Application Server V6 Scalability and Performance Handbook

13.6 Monitoring performance with Tivoli Performance
Viewer

This section assumes an understanding of how Tivoli Performance Viewer works.
If you need to learn more first then go to Chapter 14, “Server-side performance
and analysis tools” on page 769.

The Performance Monitoring service within each application server provides
statistics relevant to WebSphere MQ in the following performance modules:

� MDB executions including average response time of onMessage method
� Usage of JCA Connection Pools
� Message listener threads

The available counters when using Trade 6 are shown in Figure 13-21 on
page 766. Make sure the appropriate counters are enabled in the PMI Custom
settings (Monitoring and Tuning -> Performance Monitoring Infrastructure
(PMI) -> <AppServer_Name> -> Custom or Tivoli Performance Viewer cannot
display them.

To display them, go to Monitoring and Tuning -> Performance Viewer ->
Current Activity -> <AppServer_Name> -> Performance Modules.

Normally one or two values are inspected at a time for a running application.
Figure 13-21 on page 766 has over a dozen values selected, but it is more
practical to review a few related values at a time. For example, you may want to
inspect the size of JCA Connection Pools associated with all the JMS connection
factories an application uses.

For more information about the Tivoli Performance Viewer, please refer to 14.3,
“Using Tivoli Performance Viewer” on page 790.

 Chapter 13. Understanding and optimizing the use of WebSphere MQ 765

Figure 13-21 Counters for monitoring WebSphere MQ

13.6.1 What do the counters under JCA Connection Pools mean?
A JCA resource adapter is associated with WebSphere MQ. The underlying
implementations of javax.jms.Session and javax.jms.Connection are
associated with a resource adapter in WebSphere Application Server V6.

The implementation details are beyond the scope of this redbook. However, what
is important to know as an architect or administrator is that if these pools are
overstrained, WebSphere MQ connection factory session pools, connection
pools, the message listener service, or the application itself may need to be
tuned to alleviate a high messaging load. Thus, monitoring the JCA Connection
Pools is in effect monitoring connections to the WebSphere MQ messaging
provider.

For more information about the JCA resource adapters see 10.3, “Messaging in
the J2EE Connector Architecture” in WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451.

766 WebSphere Application Server V6 Scalability and Performance Handbook

Part 6 Performance
monitoring,
tuning, and
coding
practices

Part 6

© Copyright IBM Corp. 2005. All rights reserved. 767

768 WebSphere Application Server V6 Scalability and Performance Handbook

Chapter 14. Server-side performance
and analysis tools

In a production environment, performance and availability of Web applications
are critical. In this chapter, we describe how a production environment should be
monitored, the types of data available for monitoring, the tools available within
WebSphere Application Server to display that data, and tools included to provide
guidance on how to optimize performance.

This chapter discusses the following topics:

� The dimensions of monitoring
� Performance Monitoring Infrastructure
� Using Tivoli Performance Viewer
� Other performance monitoring and management solutions
� Developing your own monitoring application
� Request Metrics
� Performance Advisors
� Dynamic Cache Monitor
� Monitoring the IBM HTTP Server
� Log Analyzer
� Application management

14

© Copyright IBM Corp. 2005. All rights reserved. 769

14.1 The dimensions of monitoring

Performance problems can be encountered almost anywhere. The problem can
be network and hardware related, back-end system related; it can be actual
product bugs, or quite often, application design issues.

Understanding the flow used to diagnose a problem helps to establish the
monitoring that should be in place for your site to detect and correct performance
problems. The first dimension is the "end-user view,” the black box view of your
Web site. This is an external perspective of how the overall Web site is
performing from an end user’s point of view and identifies how long the response
time is for an end user. From this black box perspective, it is important to
understand the load and response time on your site. To monitor at this level,
many industry monitoring tools allow you to inject and monitor synthetic
transactions, helping you identify when your Web site experiences a problem.

The second step is to understand the basic health of all the systems and network
that make an end user request. This is the "external" view, which typically
leverages tools and utilities provided with the systems and applications running.
In this stage, it is of fundamental importance to understand the health of every
system involved - including Web servers, application servers, databases,
back-end systems, etc. If any of the systems has a problem, it may have a
rippling effect and cause the "servlet is slow" problem.

This dimension corresponds to the "what resource is constrained" portion of the
problem diagnosis. To monitor at this level, WebSphere provides PMI
instrumentation and the Tivoli Performance Viewer as a starting point. There are
also several industry tools built using PMI instrumentation that provide 24x7
monitoring capabilities.

The third dimension is the application view. This dimension actually understands
the application code that is satisfying the end user request. This dimension
understands that there are specific servlets that are accessing session beans, to
entity CMP beans, to a specific database, etc. This dimension typically comes
into play in the in-depth internal understanding of who is using the resource.
Typically at this stage, some type of time trace through the application, or thread
analysis under load conditions techniques are deployed to isolate areas of the
application, and particular interactions with back-end systems or databases that
are especially slow under load. WebSphere provides the Request Metrics
technology as a starting point. In many cases, you start moving into using a lot of
the development tools provided, such as IBM Rational Application Developer
V6.0.

770 WebSphere Application Server V6 Scalability and Performance Handbook

14.1.1 Overview: Collecting and displaying application server data
Table 14-1 shows the types of data that can be collected, the required actions to
collect it, and how to view it.

Table 14-1 Performance data collection and viewing

14.2 Performance Monitoring Infrastructure
The second stage of monitoring as described in 14.1, “The dimensions of
monitoring” on page 770 was understanding the basic health of all the systems
and network that make up an end user request. For the WebSphere
environment, we provide the Performance Monitoring Infrastructure APIs to
capture performance data with minimal performance impact to incorporate that
data into an overall monitoring solution.

The Performance Monitoring Infrastructure (PMI) provides a set of APIs to
obtain performance data for system resources, WebSphere Application Server
queues, and actual customer application code.

Type of data Steps/methods of configuration Viewed with

Performance Monitoring
Infrastructure service
provides performance
data for system resources,
WebSphere Application
Server, and a customer's
application across all
transactions. (PMI also
includes JVMPI data.)

1. Set at application server level
and Node Agent:

– Administrative Console
(define the monitored
statistic set, such as Basic)

– wsadmin

2. Configure instrumentation
level:

– Tivoli Performance Viewer:
select Monitoring and
Tuning -> Performance
Viewer -> Current Activity
-> <AppServer_Name>

– wsadmin

� Tivoli
Performance
Viewer

� Monitoring
tools using
interfaces such
as JMX or
Performance
Servlet

Request Metrics provides
response time data for
each individual transaction
such as time spent in the
Web server, Web
container, EJB container,
JMS processing, and the
back-end database.

Set at cell level in:
– Administrative Console
– wsadmin

� System.out
log file

� http_plugin.log
file

� Monitoring
tools using the
ARM interface

 Chapter 14. Server-side performance and analysis tools 771

PMI uses a client-server architecture. The server collects performance data in
memory within the WebSphere Application Server. This data consists of counters
such as servlet response time and data connection pool usage. A client can then
retrieve that data using a Web client, a Java client, or a Java Management
Extension (JMX) client. A client is an application that retrieves performance data
from one or more servers and processes the data. Clients can include:

� Graphical user interfaces (GUIs) that display performance data in real time.

� Applications that monitor performance data and trigger different events
according to the current values of the data.

� Any other application that needs to receive and process performance data.

PMI complies with the Performance Data Framework of the J2EE Management
Specification. It is composed of components for collecting performance data on
the application server side and components for communicating between runtime
components and between the clients and servers. The primary PMI components
and related Management Beans (MBeans) are illustrated in Figure 14-1.

Figure 14-1 Performance monitoring components

1. The Tivoli Performance Viewer contacts the administrative service of the
Deployment Manager (1) to get a list of nodes, servers and MBeans for the
entire cell.

Java
Client

J2EE
Classes

Node

App Server

perf
Servlet

PMI
Classes

Node Agent

HTTP

App Server

Node Agent

PMI MBean

PMI Service

PMI Conn Pool Module

PMI Modules

PMI Bean Module

App Server MBean

WCS Module MBean

Admin Service

EDB Module MBean

Node

App Server

Node Agent

PMI MBean

PMI Service

PMI Conn Pool Module

PMI Modules

PMI Bean Module

WCS Module MBean

Admin Service

EDB Module MBean

Node

App Server

Node Agent

Perf
MBean

PMI Service

PMI Conn Pool Module

PMI Bean Module

Admin Service

Deployment Manager

Admin Service

SOAP or
RMI/IIOP

J2EE
Classes

JMX

SOAP or
RMI/IIOP

Web
Client

PMI ModulesPMI ModulesPMI Modules

EJB Module MBean

WCS Module MBeanWCS Module MBeanJMX MBeans

App Server MBean

2

3

4
1

SOAP or
RMI/IIOP

Java
Client

PMI
Classes

Tivoli
Performance

Viewer

PMI
Classes

772 WebSphere Application Server V6 Scalability and Performance Handbook

2. The PMI service in the application servers, consisting of PMI modules for
collecting performance data and methods for instrumenting and retrieving the
data from the runtime components.

3. PerfMBean, a JMX management bean used to extract performance data from
the PMI modules.

4. Extensions of the standard JMX MBeans (used for managing components
and settings) to support management of performance data. This enables the
retrieval of performance data via JMX. See 3.2, “Java Management
Extensions (JMX)” in the redbook WebSphere Application Server V6 System
Management and Configuration Handbook, SG24-6451, for a description of
the JMX framework.

The J2EE classes and PMI classes can use either the RMI over IIOP or SOAP
protocol to communicate with the administrative service. In a single-server
environment, the classes connect to the administrative service of each individual
application server in order to collect performance data. In a Network Deployment
environment, the client connects to the Deployment Manager to retrieve a list of
nodes, servers and MBeans in the cell. Performance data retrieval is
subsequently performed in the same way for the two environments.

Each piece of performance data has two components: a static component and a
dynamic component. The dynamic component consists of a name and an ID to
identify the data, as well as other descriptive attributes that assist the client in
processing and displaying the data. The dynamic component consists of
information that changes over time, such as the current value of a counter and
the time stamp associated with that value.

14.2.1 Performance data classification
PMI provides several different metrics. Each of these metrics is classified into
one of the following five types to provide some standardization within the
infrastructure. This classification is based on J2EE management specifications
and is important to understand when developing a monitoring tool.

� Count statistic: Specifies standard count measurements. It consists of a
single numeric value and is used to represent data such as counts and sizes.
Examples of count statistics include number of times beans were created,
number of calls retrieving an object from the pool, and used memory in the
JVM runtime.

� Boundary statistic: Specifies standard measurements of the upper and
lower limits of the value of an attribute. This classification is currently not
being used by PMI.

� Range statistic: Specifies standard measurements of the lowest and highest
values an attribute has held as well as its current value. These values can be

 Chapter 14. Server-side performance and analysis tools 773

used for obtaining the number of concurrent invocations to a call method,
average number of threads in a pool, or the number of requests that are
concurrently processed by the ORB.

� Bounded range statistic: Extends the Range statistic and Boundary statistic
interfaces and provides standard measurements of a range that has fixed
limits. Examples of use of the Bounded range statistic interface are the
number of free connections in the J2C pool, total memory in JVM runtime,
and average number of threads in pool.

� Time statistic: Specifies standard timing measurements for a given
operation. Examples of time statistics are average response time in
milliseconds on the bean methods (home, remote, local) and average
connection time in milliseconds until a connection is granted.

14.2.2 Performance data hierarchy
Performance data is provided in a centralized hierarchy of the following objects to
help provide some logical ordering:

� Node: A node represents a physical machine in the WebSphere cell. This is
where the Node Agent resides in a Deployment Manager environment.

� Server: A server is a functional unit that provides services to the clients over
a network. No performance data is collected for the server itself.

� Module: A module represents a resource category for which performance
data is collected. As an example, these are Enterprise JavaBeans, database
connection pools, J2C connectors, JVM runtime, Object Request Broker,
relational resource adapter, servlet session manager, thread pools,
Transaction Manager, and Web applications.

� Submodule: A submodule represents a fine granularity resource category
under the module. Submodules themselves can contain submodules. An
example of a submodule is the ORB thread pool, which is a fine granularity
resource category under the thread pool module.

� Counter: A counter is a data type used to hold performance information for
analysis. Examples of counters include the number of active enterprise beans
and the time spent responding to a servlet request.

Each resource category (module) has a related set of counters. The counters
contain values for performance data that can have an impact on system
performance.

Modules can have instances, which are single instantiations of an object of a
class. Counters can be assigned to any number of modules and instances.
Figure 14-2 on page 775 shows how this looks like in Tivoli Performance Viewer.

774 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 14-2 Tivoli Performance Viewer - performance data selection

Figure 14-3 on page 776 shows the counter Avg Method RT enabled to both the
enterprise beans module and the methods of the Container1.Bean1 instance. It
also shows a hierarchy of data collections that are organized for reporting to the
Tivoli Performance Viewer.

 Chapter 14. Server-side performance and analysis tools 775

Figure 14-3 Example performance group hierarchy

A subset of counters is available based on the monitoring level chosen for the
particular module or instance. Counters are enabled at the module level and can
be enabled or disabled for elements within the module. For example, in the
figure, if the Module Enterprise Beans module is enabled, its Avg Method RT
counter is enabled by default. However, you can then disable the Avg Method RT
counter for the Methods Beans1.methods and the aggregate response time
reported for the whole Enterprise Beans module will no longer include Methods
Bean1.methods data.

Performance data organization
PMI data is provided to clients in a hierarchical structure and organized into
modules (resource categories) based on runtime components. Each module has
a configuration file in XML format that determines its organization. It specifies
unique identifiers for each performance data item per module. A client can use

Tivoli Performance
Viewer NodePMI JMX

 Client

Server

Avg Method RT

Num DestroysGets FoundNum Circles

Module
Enterprise

Beans

Container2.Bean1 Container2.Bean2Container1.Bean1

Counters

Instance

Avg Method RTMethod Calls

Methods
Bean1.methods

776 WebSphere Application Server V6 Scalability and Performance Handbook

this unique identifier to fetch the performance data’s static and dynamic
information.

Performance data is collected for each of the following modules (resource
categories). Note that the modules denoted with an asterisk (*) are new since
WebSphere Application Server V6:

� Enterprise Beans

Reports load values, response times, and life cycle activities for EJBs.
Examples include the average number of active beans and the number of
times bean data is loaded or written to the database. It also reports
information about the size and the usage of a cache of bean objects (EJB
object pool).

� JDBC Connection Pools

Reports usage information about connection pools for a database. Examples
are the average size of the connection pool, the average number of threads
waiting for a connection, the average waiting time in milliseconds for a
connection and the average time a connection was in use.

� JCA Connection Pools

Reports usage information about the J2EE Connector Architecture that
enables EJBs to connect and interact with procedural back-end systems such
as CICS® and IMS™. Examples are the number of managed connections
(physical connections) and the total number of connections (connection
handles).

� JVM Runtime

Reports memory used by a process as reported by the JVM. Examples are
the total memory available and the amount of free memory for the JVM. In
addition, all performance data that was previously collected in the JVMPI
module are now being collected here. Examples are number of garbage
collection calls, number of times a thread waits for a lock, and total number of
objects allocated in the heap. See 14.2.6, “Using JVMPI facility for PMI
statistics” on page 786 for a description of the JVMPI facility.

� ORB

Reports usage information about the Object Request Broker that enables
remote clients to instantiate and look up objects in the application server JVM.
Examples are lookup time for a object reference before method dispatch, total
number of requests sent to the ORB, and the time it takes for a registered
portable interceptor to run.

 Chapter 14. Server-side performance and analysis tools 777

� Servlet Session Manager

Reports usage information for HTTP sessions. Examples include the total
number of sessions being accessed, the average session life time in
milliseconds, and the time taken for writing session data to the persistent
store.

� Thread Pools

Reports information about the pool of ORB threads that an application server
uses to process remote methods and the Web container pools that are used
to process HTTP requests coming into the application server. Examples
include the average pool size, the number of threads created and destroyed,
and the number of concurrently active threads.

� Transaction Manager

Reports transaction information for the container. Examples include the
average number of concurrently active transactions (local and global), the
average duration of transactions, and the number of transactions committed,
rolled back, and timed out.

� Web Applications

Reports load information for the selected Web application and the installed
servlets. Examples are the number of loaded servlets, the number of servlet
reloads, the total requests that a servlet has processed, and the response
time in milliseconds for servlet requests.

� Web services Gateway

Reports usage information from the Web services gateway facility. An
example of performance data collected is number of synchronous and
asynchronous requests and responses.

� System Data

Reports system level metrics for a node. In WebSphere Application Server
(and in the Express edition), this information is available in the application
server. In a Network Deployment configuration this information resides in the
Node Agent. Examples include CPU utilization and free memory available.

� Workload Management (WLM)

Reports information about enterprise bean workload management. Examples
include number of WLM clients serviced, server response time, and number
of concurrent requests.

� Dynamic Caching

Reports usage information from the dynamic cache service. Examples
include number of client requests, cache misses, and cache hits on disk.

778 WebSphere Application Server V6 Scalability and Performance Handbook

� Web services

Reports information for Web services. Examples include number of loaded
Web services, number of requests delivered and processed, request
response time, and average size of requests.

� Alarm Manager

Reports information for the Alarm Manager. Examples include the number of
alarms cancelled by the application, number of alarms firing per second, or
the number of alarms fired.

� Object Pool

Reports information for Object Pools. Examples include the total number of
objects created, number of objects requested from the pool, number of
objects returned to the pool, and average number of idle object instances in
the pool.

� Schedulers

Reports information for the Scheduler service. Examples include the number
of tasks that failed to execute, the number of tasks executed successfully,
number of tasks executed per second, and many more.

� DCS Statistics*

Reports information for the Distribution and Consistence Services (DCS)
messages. Examples include the amount of time needed for the
synchronization procedure to complete, the number of messages received by
the stack, or the incoming message size.

� System Integration Bus Service*

Reports information for System Integration Bus service. Examples include the
messaging engines and bus communications.

� HAManager*

Reports information for high availability. Examples include the number of local
groups and the group state rebuild time.

14.2.3 Performance data counters
Each resource category (module) has its own set of performance data counters.

A complete list of all performance data counters for each resource category is
included in the WebSphere Application Server V6 InfoCenter article “PMI data
organization.” Look at the Sub-topics section at the end of this article. There is a
separate table for each resource category. As an example, the ORB counters are
shown in Table 14-2 on page 780.

 Chapter 14. Server-side performance and analysis tools 779

Table 14-2 Counter information for ORB service in PMI

In Table 14-2:

� Version refers to the version of WebSphere Application Server when the
counter was introduced into the PMI framework.

� Granularity refers to the unit to which data collection is applied for that
counter.

� Type refers to the performance data classification as described in 14.2.1,
“Performance data classification” on page 773.

14.2.4 PMI predefined statistic sets
In IBM WebSphere Application Server V6, PMI provides four predefined statistic
sets that can be used to enable a set of statistics. These four predefined statistic
sets are:

� None
� Basic
� Extended
� All

You can also use the Custom setting to define your own statistic set. Table 14-3
on page 781 provides the details on these options.

Name Description Ver-
sion

Granularity Type

reference
LookupTime

The time (in milliseconds) to look up
an object reference before method
dispatch can be carried out

5.0 ORB Time
Statistic

numRequest The total number of requests sent to
the ORB

5.0 ORB Count
Statistic

concurrent
Requests

The number of requests that are
concurrently processed by the ORB

5.0 ORB Range
Statistic

processing
Time

The time (in milliseconds) it takes a
registered portable interceptor to run

5.0 per
interceptor

Time
Statistic

780 WebSphere Application Server V6 Scalability and Performance Handbook

Table 14-3 Predefined statistic sets

In WebSphere Application Server V5, the statistics were enabled based on a
monitoring/instrumentation level. The levels were None, Low, Medium, High and
Max {N, L, M, H, X}.

In WebSphere Application Server V6 these instrumentation levels are no longer
used. Instead, it introduces a more fine-grained control to enable/disable
statistics individually under the Custom statistic set. For example, the counters
under the “Enterprise Beans” module can be enabled and disabled as shown in
Figure 14-4

Figure 14-4 Custom statistic set

Statistic set Description

None All statistics are disabled.

Basic Statistics specified in J2EE 1.4, as well as top statistics like CPU
usage and live HTTP sessions are enabled. This set is enabled by
default and provides basic performance data about runtime and
application components.

Extended Basic set plus key statistics from various WebSphere Application
Server components like WLM and Dynamic caching are enabled.
This set provides detailed performance data about various runtime
and application components.

All All statistics are enabled.

Custom Enable or disable statistics individually.

Important: Data collection can affect performance of the application server.
The impact depends on the number and type of counters enabled. Therefore,
it is recommended that you enable only those counters that are needed when
monitoring a specific scenario.

 Chapter 14. Server-side performance and analysis tools 781

Sequential counter update
In order to minimize the monitoring overhead, the updates to CountStatistic,
AverageStatistic, and TimeStatistic are not synchronized. Since these statistic
types track total and average, the extra accuracy is generally not worth the
performance cost.

The RangeStatistic and BoundedRangeStatistic are very sensitive, therefore,
they are always synchronized.

If needed, updates to all statistic types can be synchronized by checking the Use
sequential counter updates check box in the PMI General Properties. This is
equivalent to setting the instrumentation level to Max in WebSphere Application
Server V5.x.

For details on how to configure the Sequential counter update, see 14.2.5,
“Enabling the PMI service” on page 782 below.

14.2.5 Enabling the PMI service
In order to monitor a resource with Tivoli Performance Viewer or any JMX client,
the PMI service of the application server associated with that resource has to be
enabled. The PMI service can be enabled from the Performance Monitoring
Service configuration pane in the Administrative Console or by using the wsadmin
command interface. When running WebSphere Application Server Network
Deployment, be sure to enable the PMI service in both the application server and
in the Node Agent through the Administrative Console or wsadmin.

Using Administrative Console to enable or change the PMI
service for the application server

In WebSphere Application Server V6, PMI is enabled by default - using the Basic
statistics set. In order to enable, disable, or change the PMI service settings from
the Administrative Console, follow these steps:

1. Click Servers -> Application servers.

2. Select your application server (for example Web1) from the list of application
servers in the workspace.

3. Select Performance Monitoring Infrastructure (PMI). The configuration
panel is shown in Figure 14-5 on page 784.

782 WebSphere Application Server V6 Scalability and Performance Handbook

4. To enable the PMI service for this application server, select the Enable
Performance Monitoring Infrastructure (PMI) check box.

5. Optionally, select the check box Use sequential counter updates to enable
precise statistic updates (see “Sequential counter update” on page 782 for
information about this configuration option).

6. Make sure you choose the statistic set that needs to be monitored. The
default is Basic.

7. Instead of selecting a predefined statistic set, you can also select Custom to
selectively enable or disable statistics for fine-grained control. Choose a
component from the left side tree. This brings up a table with all counters
related to that component on the right hand side of the window. Select the
individual statistics that you want to monitor and click Enable.

8. Save your configuration.

If PMI was already enabled and you are only changing settings on the
Custom -> Runtime tab, then you do not need to restart your application
server. If you however enable or disable PMI, change the Use sequential
counter updates setting, or change values on the Custom -> Configuration
tab, then the application server needs to be restarted for the change(s) to take
effect.

Note: Alternatively, you can select Monitoring and Tuning ->
Performance Monitoring Infrastructure (PMI) -> <AppServer_Name> in
the Administrative Console. This brings you to the same configuration
panel.

Note: When selecting Custom statistics, there is a Runtime and a
Configuration tab available. Only selections done on the Configuration tab
survive an application server restart. Changes on the Runtime tab are
enabled immediately and can be monitored right away in Tivoli
Performance Viewer.

 Chapter 14. Server-side performance and analysis tools 783

Figure 14-5 Using Administrative Console to enable the PMI service

Using Administrative Console to enable or change the PMI
service for the Node Agent

In a Network Deployment environment, you need to enable the PMI service also
for the Node Agent(s). In WebSphere Application Server V6, PMI is also enabled
by default for the Node Agents. Follow these steps to change the settings:

1. Open the Administrative Console and select System administration -> Node
agents from the navigation tree.

2. Select nodeagent. Make sure you select the Node Agent on the node you
wish to monitor.

3. Select Performance Monitoring Infrastructure (PMI) from the Additional
Properties.

784 WebSphere Application Server V6 Scalability and Performance Handbook

4. Select or deselect the Enable Performance Monitoring Infrastructure
(PMI) check box.

5. Optionally, select the check box Use sequential counter updates to enable
precise statistic update.

6. Choose the appropriate statistic set or select Custom to enable or disable
individual statistics.

7. Click Apply or OK.

8. Save your configuration changes. Again, a restart of the Node Agent is not
needed when changing only settings on the Custom -> Runtime tab.

Using wsadmin to enable the PMI service
In order to configure the PMI service of a specific application server, a reference
to the PMI service configuration object of that application server is needed. All
PMI service configuration objects can be listed using the wsadmin list
PMIService command.

Figure 14-6 Using wsadmin to list the PMI service configuration objects

C:\WebSphere\AppServer\bin>wsadmin
WASX7209I: Connected to process "dmgr" on node dmNode using SOAP connector;
The type of process is: DeploymentManager
WASX7029I: For help, enter: "$Help help"
wsadmin>$AdminConfig list PMIService
(cells/dmCell/nodes/app1Node/servers/Advisor1|server.xml#PMIService_11079555
53254)
(cells/dmCell/nodes/app1Node/servers/Ejb1|server.xml#PMIService_110805115791
9)
(cells/dmCell/nodes/app1Node/servers/Web1|server.xml#PMIService_110805072268
3)
(cells/dmCell/nodes/app1Node/servers/nodeagent|server.xml#PMIService_1107435
526812)
(cells/dmCell/nodes/app2Node/servers/Ejb2a|server.xml#PMIService_11080511601
12)
(cells/dmCell/nodes/app2Node/servers/Ejb2b|server.xml#PMIService_11080511618
04)
(cells/dmCell/nodes/app2Node/servers/Web2a|server.xml#PMIService_11080509957
56)
(cells/dmCell/nodes/app2Node/servers/Web2b|server.xml#PMIService_11080509969
37)
(cells/dmCell/nodes/app2Node/servers/nodeagent|server.xml#PMIService_1108047
186422)
(cells/dmCell/nodes/dmNode/servers/dmgr|server.xml#PMIService_1)
wsadmin>

 Chapter 14. Server-side performance and analysis tools 785

Each line of output contains the PMIService configuration ID that can be used for
referencing the PMIService component of a specific application server.

To enable performance data monitoring, use the wsadmin modify command with
your specific PMI service configuration ID:

wsadmin>$AdminConfig modify (cells/dmCell/nodes/app2Node/servers/Ejb2a|
server.xml#PMIService_1108051160112) {{enable true}}

Please note that this and all following wsadmin commands need to be written on
one line, without any line breaks.

The configuration needs to be saved before restarting the application server. Use
the wsadmin save command to save the configuration:

wsadmin> $AdminConfig save

To restart the application server, use these wsadmin commands (in a
single-server environment, do not specify the node in the startServer
command):

wsadmin>$AdminControl stopServer Ejb2a
WASX7337I: Invoked stop for server "Ejb2a" Waiting for stop completion.
WASX7264I: Stop completed for server "Ejb2a" on node "app2Node"
wsadmin>$AdminControl startServer {Ejb2a} {app2Node}
WASX7262I: Start completed for server "Ejb2a" on node "app2Node"

To disable performance data collection, use the wsadmin modify command (save
the configuration and restart the application server for the change to take effect):

wsadmin>$AdminConfig modify (cells/dmCell/nodes/app2Node/servers/Ejb2a|
server.xml#PMIService_1108051160112) {{enable false}}

14.2.6 Using JVMPI facility for PMI statistics
The Java Virtual Machine Profiler Interface (JVMPI) is a facility of the JVM used
to enable a more comprehensive performance analysis. By enabling the JVMPI
interface, the Performance Monitoring Infrastructure can provide more additional
performance data such as statistics on garbage collection.

JVMPI is a two-way function call interface between the JVM and an in-process
profiler agent. The JVM notifies the profiler agent of various events, such as heap
allocations and thread starts. The profiler agent can activate or inactivate specific
event notifications, based on the needs of the profiler.

All JVMPI performance data is collected by the JVM module, but JVMPI needs to
be enabled for the module to update its counters.

The JVMPI facility is available on the Windows, UNIX, and Linux platforms.

786 WebSphere Application Server V6 Scalability and Performance Handbook

Performance data provided by JVMPI
Below are the statistics that PMI provides through the use of JVMPI:

� Garbage collector

– Number of garbage collection calls
– Average time in milliseconds between garbage collection calls
– Average duration in milliseconds of a garbage collection call

� Monitor

– Number of times that a thread waits for a lock
– Average time that a thread waits for a lock

� Object

– Number of objects allocated
– Number of objects freed from heap
– Number of objects moved in heap

� Thread

– Number of threads started
– Number of threads died

Enabling JVMPI from the Administrative Console
To enable JVMPI reporting for each individual application server or Node Agent,
do the following in the WebSphere Administrative Console:

1. Select Servers -> Application servers or System administration -> Node
agents in the console navigation tree (depending on the JVM you would like
to profile).

2. Select the application server or Node Agent from the list of application servers
or Node Agents for which JVMPI needs to be enabled.

3. Extend Java and Process Management under Server Infrastructure.

4. Click Process Definition.

5. Click Java Virtual Machine in the Additional Properties.

6. Type -XrunpmiJvmpiProfiler into the Generic JVM arguments field as shown
in Figure 14-7 on page 788. Add this entry before or after any existing
arguments in case you have other arguments already.

Important: Please be aware that enabling JVMPI introduces a significant
overhead on your environment. Therefore, enable JVMPI only when these
metrics are needed and do not forget to disable it once you have finished your
tests or problem determination.

 Chapter 14. Server-side performance and analysis tools 787

Figure 14-7 Enabling JVMPI

7.Click Apply or OK, then Save your changes in the WebSphere configuration.

8. Start the application server or Node Agent, or restart the application server or
Node Agent if it is currently running.

9. In addition to enabling JVMPI for the application servers and Node Agents,
you need to make sure that PMI is enabled with the right settings. Go to
Monitoring and Tuning -> Performance Monitoring Infrastructure (PMI)
-> <AppServer_Name> -> Custom.

For the Node Agents, go to System administration -> Node agents ->
<nodeagent> -> Performance Monitoring Infrastructure (PMI) -> Custom.

Expand JVM Runtime and select the module(s) (Garbage Collection, Object,
Thread, Monitor) that you wish to enable counters for. Select the appropriate
counters from the table in the right hand pane.

Important: Node Agents and application servers collect data in the JVMPI
counters of the JVM module regardless of having the command-line argument
specified. Be aware that collected data is not reliable until the
-XrunpmiJvmpiProfiler argument is specified.

788 WebSphere Application Server V6 Scalability and Performance Handbook

Enabling JVMPI with the command line interface
To enable JVMPI profiling using the wsadmin command interface, perform these
steps:

1. Start wsadmin.

2. Enter the following command at the prompt:

wsadmin>$AdminConfig modify (cells/dmCell/nodes/app1Node/servers/Web1|
server.xml#JavaVirtualMachine_1108050722693) {{genericJvmArguments
-XrunpmiJvmpiProfiler}}

3. Save the configuration ($AdminConfig save) and start the application server
or Node Agent, or restart the application server or Node Agent if it was
already running for the change to take effect.

Figure 14-8 shows a Tivoli Performance Viewer output with JVMPI enabled.
More information about the Tivoli Performance Viewer is found in 14.3, “Using
Tivoli Performance Viewer” on page 790.

Figure 14-8 Tivoli Performance Viewer: JVM module with JVMPI enabled

Tip: To find the available JVMs in your cell, just type $AdminConfig list
JavaVirtualMachine.

 Chapter 14. Server-side performance and analysis tools 789

Disabling JVMPI profiling
To disable the JVMPI profiling using the Administrative Console:

1. Follow the steps described in “Enabling JVMPI from the Administrative
Console” on page 787 to get to the JVM properties for the server or Node
Agent.

2. Remove the JVM command line argument -XrunpmiJvmpiProfiler.

3. Save your changes and restart your application server or Node Agent.

To disable the JVMPI profiling using wsadmin:

1. Use the wsadmin command shown in “Enabling JVMPI with the command line
interface” on page 789, but change the genericJvmArguments to read:

{{genericJvmArguments {}}}

2. Save the configuration and restart your application server or Node Agent.

14.2.7 Summary
Performance monitoring is an activity in which you collect and analyze data about
the performance of your applications and their environment. We have just
discussed the Performance Monitoring Infrastructure that provides the APIs to
collect that performance data. This performance data can be monitored and
analyzed with:

� Tivoli Performance Viewer (formerly known as Resource Analyzer), which is
included in WebSphere Application Server.

� Other IBM Tivoli monitoring tools sold separately.

� User developed monitoring tools.

� Third party monitoring tools.

14.3 Using Tivoli Performance Viewer
Tivoli Performance Viewer is a real-time monitoring tool that displays PMI data.
This tool ships as part of WebSphere Application Server. The tool was formerly
known as Resource Analyzer, but was renamed for the WebSphere Application
Server V5 release.

In WebSphere Application Server V6, Tivoli Performance Viewer is fully
integrated into the Administrative Console, the stand-alone thick Tivoli
Performance Viewer Java client is no longer supported.

790 WebSphere Application Server V6 Scalability and Performance Handbook

This tool provides summary reports of key performance data and allows the user
to view the data in tabular form or in graphical form. It can also record the
information it collects and replay it in a log file.

14.3.1 About Tivoli Performance Viewer
The Tivoli Performance Viewer (TPV) retrieves performance data by periodically
polling the PMI service of the application server(s) being monitored. There is a
TPV interface running within the Deployment Manager which retrieves data from
the TPV engine running within the Node Agents. The TPV engine collects active
PMI metrics and transforms the data to display either current value, change of
value over previous point, or change of value since buffer reset.

The Node Agents are responsible for querying PMI data from the application
servers in the node. In addition, the Node Agents in a Network Deployment
environment also hosts a PMI service for monitoring the running state of the
physical machine.

To minimize the performance impact, Tivoli Performance Viewer polls the server
with the PMI data at an interval set by the user (the default is 30 seconds). The
Tivoli Performance Viewer’s GUI provides controls that enable you to choose the
particular resources and counters to include in the view. There are table and
chart views available. You can also store retrieved data in a log file while viewing
the data. This log file can later be used for replaying the scenario. The log file can
have two different formats, the preferred format is XML.

Figure 14-9 on page 792 shows a high-level overview of how the Tivoli
Performance Viewer collects data:

1. The Deployment Manager contacts the Tivoli Performance Viewer Engine
(TPV Engine) in the Node Agent to retrieve data.

2. The TPV Engine in the Node Agent pulls PMI data from the application
servers on the appropriate node.

 Chapter 14. Server-side performance and analysis tools 791

Figure 14-9 Tivoli Performance Viewer infrastructure overview

14.3.2 What can Tivoli Performance Viewer do?
The Tivoli Performance Viewer provides access to a wide range of performance
data for three kinds of resources:

� Application resources (for example, servlet response time and EJB response
time).

� WebSphere runtime resources (for example, application server thread pools
and database connection pools).

� System resources (for example, CPU utilization).

Performance data includes simple counters, statistical data (such as the
response time for each method invocation of an enterprise bean), and load data
(such as the average size of a database connection pool during a specified time
interval). This data is reported for individual resources and aggregated for
multiple resources. See 14.2, “Performance Monitoring Infrastructure” on
page 771 for more details about performance data organization.

Tivoli Performance
Viewer in

Administrative Console

TPV Interface

Deployment Manager

PMI

Perf Data

Application Server

PMI

Perf Data

Application Server

PMI

Perf Data

Application Server

Node Agent

TPV Engine

Perf Data

Log File

JMX

JMX

792 WebSphere Application Server V6 Scalability and Performance Handbook

Tivoli Performance Viewer functionality
Depending on which aspects of performance are being measured, you can use
the Tivoli Performance Viewer to accomplish the following tasks:

� View data in real time or view historical data from log files.

� View data in chart form, allowing comparisons of one or more statistical
values for multiple resources on the same chart. In addition, different units of
measurement can be scaled to enable meaningful graphic displays.

� TPV actually allows a user to compare statistical values for multiple resources
on the same chart.

� Record current performance data in a log and replay performance data from
previous sessions.

� Compare data for a single resource to an aggregate (group) of resources on a
single node.

Given all this data, the Tivoli Performance Viewer can be used to do the following
types of analysis:

� Monitor real-time performance, such as response times for servlet requests or
enterprise bean methods.

� Detect trends by analyzing logs of data over short periods of time.

� Determine the efficiency of a configuration of resources (such as the amount
of allocated memory, the size of database connection pools, and the size of a
cache for enterprise bean objects).

� Gauge the load on application servers and the average response time for
clients.

14.3.3 Starting Tivoli Performance Viewer
To use Tivoli Performance Viewer in WebSphere Application Server V6:

1. Open the Administrative Console, click Monitoring and Tuning ->
Performance Viewer -> Current Activity in the console navigation tree. The
list of application servers and their Collection Status is displayed.

2. Start monitoring the current activity of a server in either of two ways:

a. Click the name of the server whose activity you want to monitor.

b. Select the check box for the server whose activity you want to monitor, and
click Start Monitoring.To start monitoring multiple servers at the same
time, select the appropriate servers and click Start Monitoring.

3. A Tivoli Performance Viewer console panel is displayed, providing a
navigation tree on the left and a view of real-time data on the current
performance activity of the server on the right.

 Chapter 14. Server-side performance and analysis tools 793

4. From the navigation tree, select the type of data or server activity that you
want to view, the options are listed in Table 14-4.

5. To stop Tivoli Performance Viewer, in the Tivoli Performance Viewer page,
check the server that is being monitored, and click Stop Monitoring. Or Tivoli
Performance Viewer automatically stops monitoring a server when it detects a
long period of inactivity.

Table 14-4 Tivoli Performance Viewer options

14.3.4 Configuring Tivoli Performance Viewer
The activity monitoring of Tivoli Performance Viewer can be configured on a
per-user basis. Any changes made to Tivoli Performance Viewer settings are
only for the server being monitored and only affect the user viewing the data.

Configuration for Tivoli Performance Viewer includes user settings and log
settings, which directly affect the performance of the application server.

1. User settings

User settings include the refresh rate and buffer size for data collection, also
the format options for viewing the data. The detail for these settings are listed
in Table 14-5 on page 795

Option Description

Advisor Use the Performance Advisor to examine various data while your
application is running. The Performance Advisor provides advice to
help tune systems for optimal performance and gives
recommendations on inefficient settings by using collected PMI data.

Settings Configure user and logging settings for Tivoli Performance Viewer.
These settings can affect the performance of your application server.

Summary
Reports

View summary reports on servlets, enterprise beans (EJBs), EJB
methods, connections pools and thread pools in WebSphere
Application Server.

Performance
Modules

View performance modules that provide graphics and charts of
various performance data on system resources such as CPU
utilization, on WebSphere pools and queues such as database
connection pools, and on customer application data such as servlet
response time.

794 WebSphere Application Server V6 Scalability and Performance Handbook

Table 14-5 Tivoli Performance Viewer User settings

2. Log settings

The log settings control what happens when Start Logging is clicked, for
example, in a summary report on the performance of a servlet, enterprise
bean (EJB), EJB method, connection pool or thread pool. The details for the
log settings are found in Table 14-6 on page 796.

Refresh Rate Specifies how frequently Tivoli Performance Viewer collects
performance data for a server from the Performance Monitoring
Infrastructure (PMI) service provided by that server. The default is 30
seconds. To collect performance data for the server more frequently,
set the refresh rate to a smaller number. To collect performance data
less frequently, set the refresh rate to a larger number. The allowed
range is 5 to 500 seconds.

Buffer Size Specifies the amount of data to be stored for a server. Data displayed
in Tivoli Performance Viewer is stored in a short in-memory buffer.
After the buffer is full, each time a new entry is retrieved the oldest
entry is discarded. The default buffer size is 40. Allowed values are
10, 20, 30, 40, 50, 60, 70, 80, 90 and 100. The larger the buffer size,
the more memory is consumed. Thus, specify a buffer size that allows
you to capture enough monitoring data for analysis without wasting
memory by storing unneeded data.

View Data As Specifies how counter values are displayed. Viewing options include
the following:

� Raw Value

Displays the absolute value. If the counter represents load data,
such as the average number of connections in a database pool,
then Tivoli Performance Viewer displays the current value
followed by the average. For example, 18 (avg:5).

� Change in Value

Displays the change in the current value from the previous value.

� Rate of Change

Displays the ratio change/(T1 - T2), where change is the change
in the current value from the previous value, T1 is the time when
the current value was retrieved, and T2 is the time when the
previous value was retrieved.

 Chapter 14. Server-side performance and analysis tools 795

Table 14-6 Tivoli Performance Viewer Log settings

14.3.5 Tivoli Performance Viewer summary reports
The Tivoli Performance Viewer provides five different summary reports that make
important data quickly and easily accessible to help you find performance
bottlenecks in your applications and modules.

1. Servlets report

The servlet summary lists all servlets that are running in the current
application server. Use the servlet summary view to quickly find the most time
intensive servlets and the applications that use them, and to determine which
servlets are invoked most often. You can sort the summary table by any of the
columns.

2. Enterprise beans report

The Enterprise JavaBeans (EJB) summary lists all enterprise beans running
in the server, the amount of time spent in their methods, the number of EJB
invocations, and the total time spent in each enterprise bean.

Duration Specifies the length of time, in minutes, that logging continues, unless
Stop Logging is clicked first. (Tivoli Performance Viewer is not
intended as a full-time logging solution)

Maximum
File Size

Specifies the maximum size, in megabytes, of a single file. Note that
Tivoli Performance Viewer automatically zips log files to save space
and this parameter controls the pre-zipped file size and not the
post-zipped, which is smaller.

Maximum
Number of
Historical
Files

Specifies the number of files Tivoli Performance Viewer writes before
stopping. If Tivoli Performance Viewer reaches the maximum file size
before the logging duration ends, it continues logging in another file,
up to the maximum.

File Name Specifies the name of the log file. The server name and the time at
which the log is started is appended to the log name to help users
identifying a log file. The log files are located under the
<WAS_INSTALL_ROOT>/profiles/<profile_Name>/logs directory.

Log Output
Format

Specifies whether TPV writes log files as XML or in a binary format.
Binary format provides a smaller log file when uncompressed.

Tips:

� Sort by Avg Response Time to find the slowest servlet or JSP.
� Sort by Total Requests to find the servlet or JSP used the most.
� Sort by Total Time to find the most costly servlet or JSP.

796 WebSphere Application Server V6 Scalability and Performance Handbook

total_time = number_of_invocations * time_in_methods

Sort the various columns to find the most expensive enterprise bean. Also, if
the PMI counters are enabled for individual EJB methods, there is a check
box next to the EJB name that you can select to see statistics for each of the
methods.

3. EJB Methods report

The EJB method summary shows statistics for each EJB method. Use the
EJB method summary to find the most costly methods of your enterprise
beans.

4. Connection Pools report

The connection pool summary lists all data source connections that are
defined in the application server and shows their usage over time.

5. Thread pools report

The thread pool summary shows the usage of all thread pools in the
application server over time.

Tips:

� Sort by Avg Response Time to find the slowest enterprise bean.
� Sort by Method Calls to find the enterprise bean used the most.
� Sort by Total Time to find the most costly enterprise bean.

Tips:

� Sort by Avg Response Time to find the slowest EJB method.
� Sort by Method Calls to find the EJB method used the most.
� Sort by Total Time to find the most costly EJB method.

Tip: When the application is experiencing normal to heavy usage, the
pools used by that application should be nearly fully utilized. Low utilization
means that resources are being wasted by maintaining connections or
threads that are never used. Consider the order in which work progresses
through the various pools. If the resources near the end of the pipeline are
underutilized, it might mean that resources near the front are constrained
or that more resources than necessary are allocated near the end of the
pipeline.

 Chapter 14. Server-side performance and analysis tools 797

The default monitoring level (Basic) enables all reports except the report on EJB
methods. To enable the EJB method summary report, configure PMI service to
use a set of statistics that includes EJB method metrics (All or Custom).

14.3.6 Displaying by performance modules
To display performance data by module, extend Performance Modules and
check the modules to be monitored. Note that the modules need to be enabled in
the corresponding PMI service before they can be checked for monitoring.

By default the Performance Module's data is displayed in a graphic chart in the
right pane. To view the data as a table, click View Table, as shown in
Figure 14-10 on page 799. This button changes depending on the view you are
in, that is, when you are in the chart view, you can change to the table view and
vice versa.

Tip: When the application is experiencing normal to heavy usage, the
pools used by that application should be nearly fully utilized. Low utilization
means that resources are being wasted by maintaining connections or
threads that are never used. Consider the order in which work progresses
through the various pools. If the resources near the end of the pipeline are
underutilized, it might mean that resources near the front are constrained
or that more resources than necessary are allocated near the end of the
pipeline.

798 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 14-10 Tivoli Performance Viewer - Chart view

Refreshing data
The performance data is refreshed in the following situations:

1. The refresh rate configured in user settings trigger the refreshing.

2. A new performance module is checked in the left pane.

3. A new counter is selected in the pane at the bottom.

In WebSphere V6.0.2 the refresh will be non-disruptive so that TPV displays the
new data (table and/or graph) without reloading the whole page.

Restriction: Using the GA code of WebSphere V6 we noticed that the
automatic refresh works in Internet Explorer but it might not work in other
browsers, for example, Mozilla.

 Chapter 14. Server-side performance and analysis tools 799

Displaying multiple counters
To analyze the performance data captured by Tivoli Performance Viewer, it is
often necessary to view counters from multiple modules. To select multiple
counters in one chart or table, scroll down to the bottom pane and check the
counters to be monitored as shown in Figure 14-11. The chart or table is
refreshed once the counters are selected.

Figure 14-11 Select multiple counters

Recording in a log file
Tivoli Performance Viewer provides an easy way to store real-time data for
system resources, WebSphere pools and queues, and applications in log files for
later retrieval. You can start and stop logging while viewing current activity for a
server, and later replay and analyze the data. The log files are recorded as
serialized Java objects or as an XML document.

The steps for recording a log file:

1. Follow the instructions in 14.3.4, “Configuring Tivoli Performance Viewer” on
page 794 to set up your logging settings as desired.

2. Click Start Logging while viewing summary reports or Performance Modules.

3. When finished, click Stop Logging.

Logging stops when the logging duration expires, Stop Logging is clicked, or the
file size and number limits are reached.

800 WebSphere Application Server V6 Scalability and Performance Handbook

By default, the log files are stored in the
<WAS_ROOT>/profiles/<profile_name>/logs/tpv directory on the node on which
the server is running. Tivoli Performance Viewer automatically compresses the
log file when it finishes to save space. At this point, there must be only a single
log file in each .zip file and it must have the same name as the .zip file.

Replaying a log file
The log files can be replayed using the Tivoli Performance Viewer. To replay a
log file, do the following:

1. Select Monitoring and Tuning -> Performance Viewer -> View Logs in the
Administrative Console navigation tree.

2. Select a log file to view using either of the following options:

– Explicit Path to Log File

Choose a log file from the machine on which the browser is currently
running. Use this option if you have created a log file and transferred it to
your system. Click Browse to search and upload a log file on the local
machine.

– Server File

Specify the path of a log file on the server. In a Network Deployment
environment, click the Browse button to browse the various nodes and
find the log file to view.

3. Click View Log, the log is displayed with log control buttons at the top of the
view.

4. Adjust the log view as needed. The buttons available for adjusting the view
are described in Table 14-7. By default, the data replays at the Refresh Rate
specified in the user settings. You can choose one of the Fast Forward modes
to play data at a rate faster than the refresh rate.

Table 14-7 Log Viewer buttons

5. After a log has been loaded and viewed, return to the View Logs panel to see
a list of previously loaded logs. You can select a log for viewing from the list or
browse for other logs.

Rewind Returns to the beginning of the log file.

Stop Stops the log at its current location.

Play Begins playing the log from its current location.

Fast Forward Loads the next data point every three seconds.

Jump Forward Loads ten data points every three seconds.

 Chapter 14. Server-side performance and analysis tools 801

While replaying the log, you can select/deselect Performance Modules in the
navigation tree in the left pane or select multiple counters in the bottom pane.

Clearing values from tables and charts
You can clear the values from tables or charts in the Performance Module view at
any point by clicking the Clear Buffer button at the bottom of the pane. You can
then begin populating the table or chart with new data.

Clear Buffer removes PMI data from the table or chart and subsequently only
data with a timestamp newer than the time at which the button was clicked is
displayed.

Resetting counters to zero
To reset the start time for calculating aggregate data, do the following:

1. Ensure that one or more modules is selected under Performance Modules in
the Tivoli Performance Viewer navigation tree.

2. Click the Reset to Zero button beneath the chart or table.

Some counters report relative values based on how much the value has changed
since the counter was enabled. Reset to Zero resets those counters so that they
report changes in values since the reset operation. Counters based on absolute
values cannot be reset and are not affected by clicking Reset to Zero.

Viewing and modifying chart data
When selected counters are using measurement units that are not proportionally
similar, the scaling factor can be set manually to allow a more meaningful display.
The following sections explain how you can manually change the scaling factor
for the chart view.

Scaling the chart display manually
To manually change the scale of a counter:

1. Place the cursor into the Scale field of the counter selection pane (beneath
the graph) for the counter you want to modify.

2. Enter the desired scale value for the counter and click the Update button.

The chart view is updated immediately to reflect the change in the scaling factor.

Tip: You can enter values for various counters before clicking Update to
change the scale value for several counters at once.

802 WebSphere Application Server V6 Scalability and Performance Handbook

The possible values for the Scale field range from 0 to 100 and show the
following relationships:

< 1 Scaling reduces the value. For example, a scale of 0.5 means that the
data points for the variable are reduced to half of their actual values.

= 1 The value is not scaled. This is the default.

> 1 Scaling increases the value. For example, a scale of 1.5 means that the
data points for the variable are increased to one and one-half times
their actual values.

Scaling only applies to the graphed values and has no effect on the data
displayed when viewing it in table form.

Refer to 14.3.4, “Configuring Tivoli Performance Viewer” on page 794 for more
information about how to configure Tivoli Performance Viewer.

14.3.7 Getting online help
WebSphere Tivoli Performance Viewer provides on-screen links to appropriated
sections in the WebSphere InfoCenter on most panels. Simply click More
information about this page.

You can also go directly to the WebSphere InfoCenter and search for Tivoli
Performance Viewer. The InfoCenter is available at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

14.4 Other performance monitoring and management
solutions

In addition to the tools covered in the previous sections of this chapter, IBM and
third-party vendors offer additional performance monitoring and management
tools. However, these tools have to be purchased separately.

For example, Tivoli offers IBM Tivoli Monitoring for Web Infrastructure and IBM
Tivoli Monitoring for Transaction Performance. For more information, see:

http://www.ibm.com/software/tivoli/products/monitor-web/
http://www.ibm.com/software/tivoli/products/monitor-transaction/

A basic introduction into Tivoli Monitoring for Transaction Performance can be
found in 14.11.1, “Tivoli Monitoring for Transaction Performance V5.3 (TMTP)” on
page 831.

 Chapter 14. Server-side performance and analysis tools 803

http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/tivoli/products/monitor-web/
http://www.ibm.com/software/tivoli/products/monitor-transaction/

Also, several other companies provide performance monitoring, problem
determination, and management solutions that can be used with WebSphere
Application Server. These products use WebSphere Application Server
interfaces, including Performance Monitoring Infrastructure (PMI), Java
Management Extensions (JMX), and Request Metrics Application Response
Measurement (ARM).

Use the following URL to find a list of IBM Business Partners that offer
performance monitoring tools compliant with WebSphere Application Server:

http://www.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_b
psolutions.html

14.5 Developing your own monitoring application

If for some reason you would like to develop your own monitoring application, the
PMI offers three interfaces for you:

� The Java Management Extension (JMX) interface

The JMX interface is accessible through the AdminClient tool. This is the
recommended interface for V6.

� A servlet interface

The servlet interface is perhaps the simplest, requiring minimal programming,
as the output is XML.

� PMI client interface (deprecated)

The PMI client interface is a Java interface that works since Version 3.5.5, it
has been deprecated but is still supported in Version 6.0.

For detailed information about how to implement your own monitoring application
using one of these interfaces, refer to the WebSphere Application Server V6
InfoCenter. Search for “Developing your own monitoring applications”, this will list
the appropriate articles in the InfoCenter.

Important: Because the PMI client interface has been deprecated, it is not
recommended that you start using this interface now for new monitoring
applications. Use the JMX interface instead.

If you are already using a self-developed monitoring application that is based
on the PMI client API, then it is highly recommended that you rewrite the
application to use the JMX interface.

804 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html

14.6 Request Metrics
Request Metrics is a tool that allows you to track individual transactions,
recording the processing time in each of the major WebSphere Application
Server components. The information tracked may either be saved to log files for
later retrieval and analysis, be sent to ARM Agents, or both. Request Metrics is
different from PMI instrumentation in that PMI provides the aggregation and
averages across all the transactions (such as average servlet response time
across transaction A, B, and C), while Request Metrics provides response time
for each individual transaction (such as the servlet response time for
transaction A.)

As a transaction flows through the system, Request Metrics tracks on additional
information so that the log records from each component can be correlated,
building up a complete picture of that transaction. The result looks similar to the
following:

HTTP request /trade/scenario -----------------------------> 172 ms
Servlet/trade/scenario -------------------------- -> 130 ms

EJB TradeEJB.getAccountData --> 38 ms
JDBC select -> 7 ms

This transaction flow with associated response times can help users target
performance problem areas and debug resource constraint problems. For
example, the flow can help determine if a transaction is spending most of its time
in the Web server plug-in, the Web container, the enterprise bean container or
the back-end database. The response time collected for each level includes the
time spent at that level and the time spent in the lower levels. In the example
above, the response time for the servlet, which is 130 milliseconds, also includes
38 milliseconds from the EJB and JDBC. Therefore, 92 ms can be attributed to
the servlet process.

Request Metrics tracks the response time for a desired transaction. For example,
tools can inject synthetic transactions. Request Metrics can then track the
response time within the WebSphere environment for those transactions. A
synthetic transaction is one that is injected into the system by administrators in
order to proactively test the performance of the system. This information can help
administrators tune the performance of the Web site and take corrective actions
should they be needed. Thus, the information provided by Request Metrics might
be used as an alert mechanism to detect when the performance of a particular
request type goes beyond acceptable thresholds. The filtering mechanism within
Request Metrics may be used to focus on the specific synthetic transactions and
can help optimize performance in this scenario.

 Chapter 14. Server-side performance and analysis tools 805

Five types of filters are supported:

� Source IP filter
� URI filter
� EJB method name filter
� JMS filter
� Web Services filter

When filtering is enabled, only requests matching the filter generate Request
Metrics data, create log records, and/or call the ARM interfaces. This allows work
to be injected into a running system (specifically to generate trace information) to
evaluate the performance of specific types of requests in the context of normal
load, ignoring requests from other sources that might be hitting the system.

14.6.1 Enabling and configuring Request Metrics
Request Metrics are enabled and configured globally for all application servers in
the cell. For a single-server environment, the metrics are enabled and configured
for all application servers residing on the local node.

The Request Metrics component can be enabled, disabled, and configured at
runtime, without having to restart each individual application server in the cell.

To enable the Request Metrics using the Administrative Console, select
Monitoring and Tuning -> Request Metrics in the navigation tree, specify the
following values on the Request Metrics General Properties page (see
Figure 14-12 on page 808):

� Enable Request metrics

Select Enable Request metrics to turn on the Request Metrics feature.
When it is deselected, the Request Metrics function is disabled.

� Components to be instrumented

Select the components that are to be instrumented by Request Metrics. The
components include All, servlet, enterprise bean, Java Database Connectivity
(JDBC), Web services, Java Message Service (JMS), and asynchronous
beans. The default is to instrument all components.

� Trace level

Specify how much trace data is collected for a given transaction. Possible
values are:

– None

No metrics data is collected.

806 WebSphere Application Server V6 Scalability and Performance Handbook

– Hops

Generates instrumentation information on process boundaries. This
means, metrics data is collected when a request traverses a process
boundary, for example, from one application server JVM to another
application server JVM or from the application server to the DB (the JDBC
call).

– Performance_debug

In addition to data generated using the Hops level, Performance_debug
also generates one additional level of instrumentation data in an
application server (for example, from the Web container to the EJB
container).

– Debug

Provides detailed instrumentation data for all request levels, including
response times for all intra-process servlet and Enterprise JavaBeans
(EJB) calls.

� Standard logs

This setting generates Request Metrics trace record entries in the application
server log file (SystemOut.log). However, trace records for HTTP calls (that is
requests sent to the Web server) are written to the Web server plug-in log
(http_plugin.log).

� Application Response Measurement (ARM) agent

Optionally, select Application Response Measurement (ARM) agent to
enable Request Metrics to call an underlying Application Response
Measurement (ARM) agent.

To use this feature, you need to install an ARM agent from a provider. Ensure
that the native libraries of the ARM implementation are present in the library
path, and the ARM API Java archive file is present in the classpath.

� Agent Type

Here you can specify the ARM agent type. Supported types are ARM4 (any
ARM 4.0 compliant agent) and Tivoli_ARM (Tivoli ARM 2.0).

� ARM transaction factory implementation class name

Specifies the ARM transaction factory implementation class name in the
package that is supplied by the provider of the ARM agent.

Enter the name of the ARM transaction factory implementation class name
that is present in the ARM library into this field.

 Chapter 14. Server-side performance and analysis tools 807

Figure 14-12 Request Metrics configuration pane

As soon as Request Metrics are enabled and a trace level greater than None is
specified and saved to the WebSphere configuration, trace records are written to
the System.out JVM log for all application servers for any incoming Web or EJB
request.

A detailed description of the trace record format follows in 14.6.2, “Request
Metrics trace record format” on page 808.

14.6.2 Request Metrics trace record format
The trace records for Request Metrics data are written to two log files: the Web
server plug-in log file (http_plugin.log) and the application server log file

808 WebSphere Application Server V6 Scalability and Performance Handbook

(SystemOut.log). The default directory for SystemOut.log is
<WebSphere_install_root>\profiles\<profile_name>\logs. The default directory
for http_plugin.log is
<WebSphere_install_root>\Plugins\logs\<HTTP_server_name>. Users might,
however, specify these log file names and their locations.

In the Web server plug-in log file, the trace record format is:

PLUGIN:
parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
type=HTTP detail=some_detail_information elapsed=nnnn bytesIn=nnnn
bytesOut=nnnn

In the WebSphere Application Server log file, the trace record format is:

PMRM0003I:
parent:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn
- current:ver=n,ip=n.n.n.n,time=nnnnnnnnnn,pid=nnnn,reqid=nnnnnn,event=nnnn

type=TTT detail=some_detail_information elapsed=nnnn

The trace record format is composed of two correlators: a parent correlator and
current correlator. The parent correlator represents the upstream request and the
current correlator represents the current operation. If the parent and current
correlators are the same, then the record represents an operation that occurred
as it entered WebSphere Application Server.

To correlate trace records for a particular request, collect records with a message
ID of PMRM0003I from the appropriate application server log files and the
PLUGIN trace record from the Web server plug-in log file. Records are correlated
by matching current correlators to parent correlators. The logical tree can be
created by connecting the current correlators of parent trace records to the
parent correlators of child records. This tree shows the progression of the
request across the server cluster. Refer to the article “Why use request metrics?”
in the InfoCenter for an example of the transaction flow.

The parent correlator is denoted by the comma separating fields following the
keyword "parent:". Likewise, the current correlator is denoted by the comma
separating fields following "current:".

The fields of both parent and current correlators are listed in Table 14-8 on
page 810:

 Chapter 14. Server-side performance and analysis tools 809

Table 14-8 Request Metrics: Parent and current correlators

Following the parent and current correlators, is the metrics data for timed
operation (see Table 14-9):

Table 14-9 Request Metrics: Metrics data for timed operation

The type and detail fields are described in Table 14-10 on page 811.

Field Description

ver The version of the correlator. For convenience, it is duplicated in both the
parent and current correlators.

ip The IP address of the node of the application server that generated the
correlator.

pid The process ID of the application server that generated the correlator.

time The start time of the application server process that generated the
correlator.

reqid An ID assigned to the request by Request Metrics, unique to the application
server process.

event An event ID assigned to differentiate the actual trace events.

Field Description

type A code representing the type of operation being timed. Supported types
include URI, EJB, JDBC, WebServices, JMS, and AsyncBeans. (See the
description of each of these types in Table 14-10 below.)

detail Identifies the name of the operation being timed.

elapsed The measured elapsed time in <units> for this operation, which includes
all sub-operations called by this operation. The unit of elapsed time is
milliseconds.

bytesIn The number of bytes from the request received by the Web server plug-in.

bytesOut The number of bytes from the reply sent from the Web server plug-in to
the client.

810 WebSphere Application Server V6 Scalability and Performance Handbook

Table 14-10 Request Metrics: Type and data fields

Field Description

HTTP The Web server plug-in generates the trace record.
The detail is the name of the URI used to invoke the
request.

URI The trace record was generated by a Web
component. The URI is the name of the URI used to
invoke the request.

EJB The fully qualified package and method name of the
enterprise bean.

JDBC The values select, update, insert or delete for
prepared statements. For non-prepared statements,
the full statement can appear.

Web Services Provider The trace record was generated at the Web Services
server side. The details include the WSDL port name,
operation name, transport name, target name space,
and input message name in the following format:

wsprovider:<wsdlPortName>.<wsdlOperationName>?
transport=<transportName>&namespace=<targetNam
espace>&input=<inputMessageName>

Web Services Requestor The trace record was generated at the Web Services
client side. The details include the WSDL port name,
operation name, transport name, and parameter
name list in the following format:

wsrequestor:<wsdlPortName>.<wsdlOperationName>
?transport=<transportName>¶meters=<paramet
erNameList>

JMS The trace record was generated by a JMS MDB. The
details include the message destination name, topic
name if applicable, and method selector if applicable.

JMS_produceMessage The trace record was generated when sending a JMS
message. The details include the message
destination (queue or topic space) name and topic
name if applicable.

JMS_readMessage The trace record was generated when synchronously
reading a JMS message. The details include the
message destination (queue or topic space) name
and topic name if applicable.

 Chapter 14. Server-side performance and analysis tools 811

Examples of URI and EJB Request Metrics records are shown in Example 14-1
and Example 14-2 on page 812.

Example 14-1 URI Request Metrics

[11/29/03 9:46:31:578 EST] 7bca033b PmiRmArmWrapp I PMRM0003I:
parent:ver=1,ip=192.168.0.1,time=1016556185102,pid=884,reqid=4096,event=1
- current:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=4096,event=1
type=URI detail=/hitcount elapsed=60

Example 14-2 EJB (EJB is the child of the servlet request in the downstream process)

[11/29/03 9:00:16:812 EST] 6d23ff00 PmiRmArmWrapp I PMRM0003I:
parent:ver=1,ip=192.168.0.1,time=1016556186102,pid=884,reqid=4096,event=1
- current:ver=1,ip=192.168.0.2,time=1016556122505,pid=9321,reqid=8193,event=1
type=EJB detail=com.ibm.defaultapplication.IncrementBean.increment elapsed=10

14.6.3 Filters
Filters are important for producing only the output necessary for a given
monitoring task. A named URI, EJB, or client IP address can be specified and
only the needed metrics data is produced. The performance load added to the
containers by the Request Metrics component is reduced by adding more
restrictive filters.

For HTTP requests arriving at a Web container, it is possible to filter on the URI
and client IP address. For incoming requests to the EJB container, it is possible
to filter on the bean method name. All filters are listed and described here:

� Source IP address filters: Requests are filtered based on a known IP
address. You can specify a mask for an IP address using the asterisk (*). If
used, the asterisk must always be the last character of the mask, for example
127.0.0.*, 127.0.*, 127*.

� URI filters: Requests are filtered based on the URI of the incoming HTTP
request. The rules for pattern matching are the same as for matching source
IP address filters.

� Enterprise bean method name filters: Requests are filtered based on the
full name of the enterprise bean method. As with IP address and URI filters,

COMMONJ_WORK_POOLED The trace record was generated in AsyncBeans
work. The detail is the class name for the work.

COMMONJ_WORK_TIMER The trace record was generated in AsyncBeans
alarm. The detail is the class name for the alarm.

Field Description

812 WebSphere Application Server V6 Scalability and Performance Handbook

you can use the asterisk (*) to provide a mask. The asterisk must always be
the last character of a filter pattern.

� JMS filters: Requests are filtered based on the queue destination names and
topic destination names. You can specify the value as
destination=aaa:topic=bbb. The asterisk (*) can be specified as the last
character of each filter segment.

� Web Services filters: Requests are filtered based on the wsdl port, operation
and namespace. You can specify the value as
wsdlPort=aaa:op=bbb:nameSpace=ccc. The asterisk (*) can be specified as the
last character of each filter segment.

� Filter combinations: If both URI and source IP address filters are active,
then Request Metrics require a match for both filter types. If neither is active,
all requests are considered a match.

It is important to understand that filters are applied to requests as they enter the
application server from the client (at the Web or EJB container level). Depending
on defined filters, the request is either marked to have metrics generated or not
marked to mean that no Request Metrics records should be produced for the
duration of the request.

14.7 Performance Advisors
Understanding how to tune WebSphere applications is often difficult. With IBM
WebSphere Application Server V5.0.2, V5.1 and V6.0, the Performance Advisors
come to the rescue. There are two Performance Advisors that provide
suggestions to help tune systems for optimal performance. Both advisors use the
Performance Monitoring Infrastructure (PMI) data to suggest configuration
changes to the WebSphere thread pools, connection pools, prepared statement
cache, session cache, heap size, etc.

The two Performance Advisors are:

� Runtime Performance Advisor
� Performance Advisor in Tivoli Performance Viewer (TPV Advisor)

The first advisor, the Runtime Performance Advisor, which executes in the
application server process, is configured through the WebSphere Administrative
Console. Running in the application server's JVM, this advisor periodically
checks for inefficient settings, and issues recommendations as standard
WebSphere warning messages. These recommendations are displayed both as
warnings in the Administrative Console under WebSphere Runtime Messages
and as text in the SystemOut.log file. Enabling the Runtime Performance Advisor
has minimal system performance impact.

 Chapter 14. Server-side performance and analysis tools 813

The second, the TPV Advisor, runs in the Tivoli Performance Viewer (TPV) and is
also configured through the WebSphere Administrative Console. It provides
recommendations on inefficient settings at a specific point in time. The TPV
Advisor provides additional advice to the Runtime Performance Advisor. For
example, TPV also provides advice on setting the dynamic cache size, setting
the JVM heap size, and using the DB2 Performance Configuration Wizard.

Table 14-11 gives a summary of the two Performance Advisors.

Table 14-11 Performance Advisors summary

Figure 14-13 on page 815 shows the simplified architecture of the Performance
Advisors.

Runtime Performance Advisor Performance Advisor in Tivoli
Performance Viewer (TPV)

Location of
execution

Application server TPV in the Administrative Console

Location of
tool

Administrative Console TPV

Output SystemOut.log file and
WebSphere run-time messages in
the Administrative Console

TPV in the Administrative Console

Frequency
of operation

Every 10 seconds in background When you select to refresh in TPV

Types of
advice

� ORB service thread pools
� Web container thread pools
� Connection pool size
� Persisted session size and

time
� Prepared statement cache

size
� Session cache size

� ORB service thread pools
� Web container thread pools
� Connection pool size
� Persisted session size and

time
� Prepared statement cache

size
� Session cache size
� Dynamic cache size
� JVM heap size
� DB2 Performance

Configuration Wizard

Note: It is planned to add a new type of advise for the Runtime Performance
Advisor in WebSphere V6.0.2. This new advise will provide lightweight
memory leak detection.

814 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 14-13 Simplified Performance Advisors architecture

For more information about PMI and TPV, refer to 14.2, “Performance Monitoring
Infrastructure” on page 771 and 14.3, “Using Tivoli Performance Viewer” on
page 790.

14.7.1 Runtime Performance Advisor configuration settings
This section lists the various settings within the Administrative Console under the
Runtime Performance Advisor Configuration panel.

To view the Runtime Performance Advisor configuration page, click Servers ->
Application servers -> <AppServer_Name> -> Runtime Performance
Advisor Configuration.

Configuration tab
� Enable Runtime Performance Advisor

Specifies whether the Runtime Performance Advisor runs.

The Runtime Performance Advisor requires that the Performance Monitoring
Infrastructure (PMI) be enabled but it does not require that individual counters
are enabled. When a counter that is needed by the Runtime Performance
Advisor is not enabled, the Runtime Performance Advisor enables it
automatically. When disabling the Runtime Performance Advisor, you might
want to also disable PMI or the counters that Runtime Performance Advisor

Tivoli Performance Viewer in
Administrative Console

TPV GUI in Administrative
Console

TPV Advisor

PMI
DataBuffer

JMX
attribute of
perfMBean

AppServer log

SystemOut.log

WebSphere AppServer

PMI Service

Runtime
Performance

Advisor

Runtime Performance Viewer
Output in Administrative Console

 Chapter 14. Server-side performance and analysis tools 815

enabled. The following counters might be enabled by the Runtime
Performance Advisor:

– Thread Pools module: Pool Size and Active Threads

– JDBC Connection Pools module: Pool Size, Percent used, Prepared
Statement Discards

– Servlet Session Manager module: External Read Size, External Write
Size. External Read Time, External Write Time, No Room For New
Session

– System Data module: CPU Utilization and Free Memory

– JVM module: Free memory and Total memory

� Calculation Interval

PMI data is taken over an interval of time and averaged to provide advice. The
interval specifies the length of time over which data is taken for this advice.
Therefore, details within the advice messages will appear as averages over
this interval.

� Maximum warning sequence

The maximum warning sequence refers to the number of consecutive
warnings issued before the threshold is updated. For example, if the
maximum warning sequence is set to 3, then the advisor only sends three
warnings to indicate that the prepared statement cache is overflowing. After
that, a new alert is only issued if the rate of discards exceeds the new
threshold setting.

� Number of processors

Specifies the number of processors on the server.

Runtime tab
The four configuration settings from the Configuration tab are also available on
the Runtime tab.

In addition, there is a Restart button on this tab. Selecting Restart reinitializes
the Runtime Performance Advisor with the last information saved to disk.

Note that this action also resets the state of the Runtime Performance Advisor.
For example, the current warning count is reset to zero for each message.

14.7.2 Advice configuration settings
WebSphere Application Server also allows you to enable and disable advice in
the Advice configuration panel. Some advice applies only to certain
configurations, and can only be enabled for those configurations. For example,

816 WebSphere Application Server V6 Scalability and Performance Handbook

Unbounded ORB Service Thread Pool Advice is only relevant when the ORB
Service thread pool is unbounded, and can only be enabled when the ORB
thread pool is unbounded.

To view this configuration page, click Servers -> Application servers ->
<AppServer_Name> -> Runtime Performance Advisor Configuration ->
Advice configuration. Below is a description of the information found on this
panel.

Configuration tab
� Advice name

Specifies the advice that you can enable or disable.

� Advice applied to component

Specifies the WebSphere Application Server component to which the runtime
performance advice applies, for example, Web Container or Data Source.

� Advice status

Specifies whether the advice is stopped or started.

There are only two values - Started and Stopped. Started means that the
advice runs if the advice applies. Stopped means that the advice does not
run.

Runtime tab
� Advice name and Advice applied to component are identical to the

Configuration tab.

� Advice status

On the Runtime tab, the advice status has one of three values - Started,
Stopped or Unavailable. Started means that the advice is being applied.
Stopped means that the advice is not applied. Unavailable means that the
advice does not apply to the current configuration (such as Persisted Session
Size advice in a configuration without persistent sessions).

14.7.3 Using the Runtime Performance Advisor
In order to obtain advice, you must first enable the performance monitoring
service through the Administrative Console and restart the server. If running
Network Deployment, you must enable the PMI service on both the application
servers and on the Node Agent and restart the servers and Node Agent. In
WebSphere Application Server V6, PMI is enabled by default on the servers and
on the Node Agent(s).

 Chapter 14. Server-side performance and analysis tools 817

The Runtime Performance Advisor enables the appropriate monitoring counter
levels for all enabled advice. If there are specific counters that are not wanted,
disable the corresponding advice in the Runtime Performance Advisor panel, and
disable unwanted counters. See 14.2.5, “Enabling the PMI service” on page 782
for details. Then, do the following:

1. In the WebSphere Administrative Console select Servers -> Application
servers.

2. Click <AppServer_Name> -> Runtime Performance Advisor
Configuration.

3. On the Configuration tab select the Number of processors.

Selecting the appropriate settings for the system's configuration ensures
accurate performance advice.

4. Optionally, select the Calculation Interval and the Maximum warning
sequence.

5. Click Apply and Save your changes.

6. Select the Runtime tab and click Restart.

7. Simulate a production level load.

For load testing tools and how to perform the load testing, see 17.3, “Tools of
the trade” on page 945.

If you are using the Runtime Performance Advisor in a test environment, or
doing any other tuning for performance, simulate a realistic production load
for your application. The application should run this load without errors. This
simulation includes the number of concurrent users typical for peak periods,
and drives system resources, such as CPU and memory to the levels
expected during peak production periods. The Performance Advisor can
provide some type of advice only when the CPU utilization exceeds a
sufficiently high level. For example, advice on thread pool size is only issued if
there is a problem with it (which can usually only be detected when the
system is under load). Other types of advice, however, are always issued, for
example advice related to the Prepared statement cache or the Servlet
Session module.

8. Once a stable production level load is reached, select the check box to
Enable the Runtime Performance Advisor. This way, you will achieve the best
results for performance tuning. Click OK.

9. Select Warning in the Administrative Console under Troubleshooting ->
Runtime Messages or look at the SystemOut.log file, located in the
<install_root\logs\server_name> directory to view tuning advice. Some
messages are not issued immediately.

10.Change your application server configuration based on the received advice.

818 WebSphere Application Server V6 Scalability and Performance Handbook

Although the Performance Advisors attempt to distinguish between loaded
and idle conditions, misleading advice might be issued if the advisor is
enabled while the system is ramping up or down. This result is especially
likely when running short tests. Although the advice helps in most
configurations, there might be situations where the advice hinders
performance. Due to these conditions, advice is not guaranteed. Therefore,
test the environment with the updated configuration to ensure it functions and
performs as expected.

14.7.4 Runtime Performance Advisor output
After completing the configuration steps, the Advisor will then begin to report
recommendations into the SystemOut.log. Example 14-3 shows sample output
from the Advisor.

Example 14-3 Sample output from the Runtime Advisor

[6/11/04 15:20:42:484 EDT] 6a1d6f88 TraceResponse W TUNE0208W: Data source
jdbc/TradeDataSource does not seem to be in use. If the data source is used
occasionally, then decrease the number of connections in the pool, by setting

Important: As with any analysis and tuning, make sure that only one
parameter is changed, and then the results monitored. This provides an
effective method of backing out of the change if it proves detrimental to the
environment. Also, making multiple changes could result in undesired
results, because many options are dependent on other settings.

Tips for using the Runtime Performance Advisor:

� Enable PMI in the application server and in the Node Agent if running
Network Deployment.

� Be sure to configure the correct number of processors.

� Simulate a production level load.

– Ensure the application runs without exceptions/errors.

– Runtime Performance Advisor only provides advice when CPU
utilization is high.

� Once production load level is reached, enable the Runtime Performance
Advisor.

� Apply advice, restart the application server, and re-test.

� More details can be found in the WebSphere InfoCenter section “Using the
Runtime Performance Advisor”.

 Chapter 14. Server-side performance and analysis tools 819

minConnections to 0, and maxConnections to 3. If the data source is never used,
then delete the data source.
Additional explanatory data follows.
Pool utilization: 0%.
This alert has been issued 1 time(s) in a row. The threshold will be updated to
reduce the overhead of the analysis.
[6/11/04 15:24:54:953 EDT] 6a1d6f88 TraceResponse W TUNE0214W: The session
cache for Trade3#trade3Web.war is smaller than the average number of live
sessions. Increasing the session cache size to at least 1,300 may improve
performance.
Additional explanatory data follows.
Session cache size (the maximum in memory session count): 1,000.
Current live sessions: 1,300.
Average live sessions over the last sampling interval: 1,300.
This alert has been issued 1 time(s) in a row. The threshold will be updated to
reduce the overhead of the analysis.

In addition, the Runtime Advisor recommendations can also be displayed in the
Administrative Console through the WebSphere Runtime Messages. The
Runtime Advisor messages are displayed as warnings. Figure 14-14 shows a
sample of the output from the advisor.

Figure 14-14 Runtime Events display of Runtime Advisor output

Click the link for more details on the message; Figure 14-15 on page 821 is an
example of such a message.

820 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 14-15 Detail of Runtime Advisor message

As mentioned in 14.7.3, “Using the Runtime Performance Advisor” on page 817,
use these recommendations as input to change your configuration, restart the
application server(s), and re-test.

14.7.5 Using TPV Advisor
The Performance Advisor in Tivoli Performance Viewer (TPV) provides advice to
help tune systems for optimal performance and gives recommendations on
inefficient settings by using collected Performance Monitoring Infrastructure
(PMI) data. Advice is obtained by selecting the Advisor link in the TPV
navigation tree. See Figure 14-16 on page 822.

 Chapter 14. Server-side performance and analysis tools 821

Figure 14-16 Select Advisor in TPV

The Performance Advisor in TPV provides more extensive advice than the
Runtime Performance Advisor. For example, TPV provides also advice on setting
the dynamic cache size, setting the JVM heap size, and using the DB2
Performance Configuration Wizard.

In order to obtain advice, follow these steps:

1. Enable PMI data collection

Enable PMI data collection (as explained in “Enabling the PMI service” on
page 782) and select the Extended statistic set. The statistic set (also called
the monitoring level) determines which data counters are enabled. You can
select the statistics set dynamically on the Runtime tab, without restarting the
server. The monitoring level directly influences the type of advice you obtain.

The Performance Advisor in TPV normally uses the Extended monitoring
level but it can also use a few of the more expensive counters (to provide
additional advice) and provide advice on which counters can be enabled. For
example, advice for session size needs the PMI statistic set to All. Or, you can
use the PMI Custom monitoring level to enable the Servlet Session Manager
SessionObjectSize counter. The monitoring of the SessionSize PMI counter is
expensive and is therefore not in the Extended PMI statistic set.

2. In the Administrative Console, click Monitoring and Tuning -> Performance
Viewer -> Current Activity.

3. Simulate a production level load

Simulate a realistic production load for your application, if you use the
Performance Advisor in a test environment, or do any other performance
tuning. The application must run this load without errors. This simulation
includes numbers of concurrent users typical of peak periods, and drives
system resources, for example, CPU and memory to the levels that are

822 WebSphere Application Server V6 Scalability and Performance Handbook

expected during peak production periods. The Performance Advisor can
provide some type of advice only when the CPU utilization exceeds a
sufficiently high level. For example, advice on thread pool size is only issued if
there is a problem with it (which can usually only be detected when the
system is under load). Other types of advice, however, are always issued, for
example, advice related to the Prepared statement cache or the Servlet
Session module.

4. Start logging for Tivoli Performance Viewer (refer to “Recording in a log file”
on page 800).

5. Click Advisor in the Tivoli Performance Viewer navigation tree. Tuning advice
appears in the advice table shown in Figure 14-17. Click Refresh All Advice
on top of the advice table to recalculate the advice based on the current data
in the buffer. Since PMI data is taken over an interval of time and averaged to
provide advice, details within the advice message appear as averages.

Figure 14-17 Tivoli Performance Viewer Advisor table

6. Change your application server configuration based on the advice. Because
Tivoli Performance Viewer refreshes advice at a single instant in time, take
the advice from the peak load time.

As mentioned before, the Performance Advisors attempt to distinguish
between loaded and idle conditions, misleading advice might be issued if the
advisor is enabled while the system is ramping up or down. This result is
especially likely when running short tests. Although the advice helps in most
configurations, there might be situations where the advice hinders
performance. Because of these conditions, advice is not guaranteed.
Therefore, test the environment with the updated configuration to ensure it
functions and performs well.

Over a period of time the advisor might issue differing advice. The differing
advice is due to load fluctuations and run-time state. When differing advice is
received, you need to look at all advice and the time period over which they

 Chapter 14. Server-side performance and analysis tools 823

were issued. You must take advice during the time that most closely
represents the peak production load.

Performance tuning is an iterative process. After applying advice, simulate a
production load, update the server configuration based on the advice, and
retest for improved performance. This procedure is continued until optimal
performance is achieved.

14.7.6 TPV Advisor output
As the TPV Advisor executes, output is displayed in the Tivoli Performance
Viewer panel. Figure 14-18 on page 825 shows an example of this output.

Important: As we already stated, make sure that only one parameter is
changed and then the results monitored. This provides an effective method
of backing out of the change if it proves detrimental to the environment.
Also, making multiple changes could result in undesired results, because
many options are dependent on other settings.

824 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 14-18 TPV Advisor output

To see the details of a specific advisor message, click the message in the advisor
table. You can view the details of the message including the Message, Severity,
Description, User Action and Detail. Figure 14-19 on page 826 provides an
example.

 Chapter 14. Server-side performance and analysis tools 825

Figure 14-19 Tivoli Performance Viewer Advisor detail message

14.8 Dynamic Cache Monitor
J2EE applications have high read/write ratios and can tolerate small degrees of
latency in the currency of their data. WebSphere Application Server consolidates
several caching activities, including servlets, Web services, and WebSphere
commands into one service called the dynamic cache. These caching activities
work together to improve application performance, and share many configuration
parameters, which are set in an application server's dynamic cache service.

Therefore, the dynamic cache opens a field for significant gains in server
response time, throughput, and scalability. You can use the dynamic cache to
improve the performance of servlet and JSP files by serving requests from an
in-memory cache. Cache entries contain servlet output, results of servlet
execution, and metadata.

The Dynamic Cache Monitor is an installable Web application that displays
simple cache statistics, cache entries and cache policy information. For detailed
information, see Chapter 10, “Dynamic caching” on page 501.

14.9 Monitoring the IBM HTTP Server
The IBM HTTP Server server-status page is available on all supported IBM
HTTP Server platforms. It shows performance data on a Web page in HTML
format.

Perform the following steps to activate the server-status page:

1. Open the IBM HTTP Server file httpd.conf in an editor.

826 WebSphere Application Server V6 Scalability and Performance Handbook

2. Remove the comment character “#” from the following lines:

#LoadModule status_module modules/mod_status.so

#<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .example.com
#</Location>

3. Customize the “.example.com” in the sample configuration to match your
source workstation reverse DNS entry so you’re allowed to access the page.
In our example this must be changed to:

Allow from .itso.ibm.com

4. Save the changes and restart the IBM HTTP Server.

5. Open the URL http://<yourhost>/server-status in a Web browser, and
click Refresh to update the status.

If your browser supports refresh, you can also use the URL
http://<yourhost>/server-status?refresh=5 to refresh every 5 seconds.
As shown in Figure 14-20 on page 828, you can see (along with additional
information) the number of requests currently being processed, and the
number of idle servers.

 Chapter 14. Server-side performance and analysis tools 827

Figure 14-20 IBM HTTP Server status page

14.10 Log Analyzer
The Log Analyzer is a GUI tool that allows the user to view any logs generated
with the loganalyzer TraceFormat, such as the IBM service log file and other
traces using this format. It can take one or more service logs or trace logs, merge
all the data, and display the entries in sequence.

Log Analyzer is shipped with an XML database, the symptom database, which
contains entries for common problems, reasons for the errors, and recovery
steps. The Log Analyzer compares every error record in the log file to the internal
set of known problems in the symptom database and displays all the matches.

828 WebSphere Application Server V6 Scalability and Performance Handbook

This allows the user to get error message explanations and information such as
why the error occurred and how to recover from it. Figure 14-21 shows the
conceptual model of Log Analyzer.

Figure 14-21 Conceptual model of Log Analyzer

For a detailed description about how to use Log Analyzer, refer to Section 9.5 of
the redbook WebSphere Application Server V6 System Management and
Configuration Handbook, SG24-6451.

14.11 Application management
The tooling supplied with the IBM WebSphere Application Server products
provides facilities to monitor the applications you deploy on it, but they provide no
cross-platform or cross-enterprise view of all your deployed applications. This is
where application management tools come into play. They provide a
transactional view over multiple servers and platforms throughout the enterprise.

 Chapter 14. Server-side performance and analysis tools 829

Figure 14-22 Application management composition

Application management tools contain functionality to do problem determination
and performance management for your applications, as shown in Figure 14-22.

These products are not supposed to replace any of the following tools:

� Source code profiling
� Systems management framework
� System resource management

Figure 14-23 Tivoli application management offerings

As depicted in Figure 14-23 the problem and resolution process can be split into
the following steps:

1. Identify and prioritize
2. Isolate and assign
3. Diagnose
4. Fix

Application
Problem

Determination

Application
Performance
Management

+ Application
Management=

Problem Resolution
Process

Identify and
Prioritize

Fix

Diagnose

Isolate and
Assign

Tivoli Offerings

Tivoli Monitoring for Transaction Performance (TMTP)

Capabilities
End-to-end transaction performance
monitoring
Transaction response time decomposition

Audience
1st Level Support
Operations
Application Help Desk

WebSphere Studio Application Monitor (WSAM)
Capabilities

Transaction/sub-transaction based resource
analysis: memory, resource usage, bottleneck
analysis, lock contention analysis, etc.
Automation and expert advice
Command, control and automation capability
Visual and data integration; console integration

Audience
2nd & 3rd Level Support
Application Support
WebSphere/WebLogic tech support
WebSphere/WebLogic administrators

830 WebSphere Application Server V6 Scalability and Performance Handbook

These steps are supported by two Tivoli products that deliver application
management functionality to a specific group of users:

� Tivoli Monitoring for Transaction Performance (TMTP)

Used by 1st level support, operations, and application helpdesks to isolate
and identify performance problems through many technologies and across
multiple servers.

� WebSphere Studio Application Monitor (WSAM)

Used by SMEs (Subject Matter Experts) to drill down into J2EE applications
to find the source of an application performance problem.

The application management products WebSphere Studio Application Monitor
and TMTP have the following unique capabilities:

� No manual instrumentation or application reengineering required

� Real-time problem determination with extensive drilldown capabilities

� Instance-level data capture correlates specific transactions with an end user
experience

� Pinpoint problems that are masked with only aggregated data

14.11.1 Tivoli Monitoring for Transaction Performance V5.3 (TMTP)

To start out with application management, you need a tool that provides you with
the most insights about your environment. Today, these environments usually do
not reside on a single machine or span only a single application server.
Therefore, Tivoli Monitoring for Transaction Performance is able to track
transactions over multiple machines and multiple application servers.

In addition, it is also capable of finding potential network problems and include
network latency in transaction decomposition.

For prerequisite information, please refer to the InfoCenter at:

http://publib.boulder.ibm.com/infocenter/tiv3help/topic/com.ibm.itmtp.doc/t
pimst14.htm

Important: This section is based on Tivoli Monitoring for Transaction
Performance V5.3 supporting WebSphere Application Server V5.1. At the time
of writing this redbook, WebSphere V6 was not yet supported.

 Chapter 14. Server-side performance and analysis tools 831

http://publib.boulder.ibm.com/infocenter/tiv3help/topic/com.ibm.itmtp.doc/tpimst14.htm
http://publib.boulder.ibm.com/infocenter/tiv3help/topic/com.ibm.itmtp.doc/tpimst14.htm

Tivoli Monitoring for Transaction Performance can monitor applications in two
ways:

� Passive monitoring
� Active monitoring

Passive monitoring
This monitoring mode measures real client transactions and uses them for
analysis. Tivoli Monitoring for Transaction Performance has the following passive
monitoring capabilities:

� ARM instrumentation of servers (Web, application, in-house or third-party)

In this mode TMTP shows the transactions within ARM enabled applications
and tracks them through the various components and composite parts.

� High-level decomposition using a reverse proxy

In this mode TMTP is able to measure end-to-end response times including
user-display times in the browser by acting as a reverse proxy. This measures
the real user-experience and not only the response time of the server
components.

Active monitoring
During active monitoring Tivoli Monitoring for Transaction Performance replays
recorded user transactions on the infrastructure. During this replay the response
times throughout the infrastructure are measured and compared to thresholds.

In addition to testing the infrastructure with pre-defined use-cases this can also
be used to test the same use-cases from multiple locations throughout the
corporate network or throughout the Internet.

Tivoli Monitoring for Transaction Performance has the capability to replay
transactions by using any of the following methods:

� URL-record and playback using Synthetic Transaction Investigator

� Windows client-record and playback using Rational Robot GUI scripts

� Protocol record and playback using Rational Robot VU scripts

Request decomposition
During request decomposition support staff can find problems in parts of the
infrastructure or application components. Tivoli Monitoring for Transaction
Performance provides a graphical view of the transaction as it is processed
throughout the infrastructure and provides timing information for all
sub-components of the transaction. TMTPs discovery capabilities allow you to
exactly see which application modules (EJBs, Servlets, JSPs, etc.) are called.

832 WebSphere Application Server V6 Scalability and Performance Handbook

V5.3 also collects detailed transaction information from DB2 V8.2 when
accessed via JDBC.

You can see an example from the pet store sample shop in Figure 14-24. It
shows a cart request coming into the J2EE infrastructure to a servlet. The servlet
then displays the output by forwarding the request to a JSP. Both of these
components use JDBC to connect to the back-end datastore.

The red triangle above the request URI object shows that this transaction was
above the threshold set by the administrator.

Figure 14-24 TMTP pet store sample request decomposition

This simple example already shows the power of Tivoli Monitoring for Transaction
Performance applied to a sample application.

Integration points
Tivoli Monitoring for Transaction Performance integrates with the following IBM
products:

� Tivoli Intelligent Orchestrator
� IBM Business Workload Manager
� Event Integration (TEC, SNMP, e-mail, command scripts)
� Tivoli Web Health Console
� Tivoli Data Warehouse (18 Crystal reports included with TMTP)

14.11.2 WebSphere Studio Application Monitor V3.1 (WSAM)
The capabilities provided by the Tivoli Monitoring products and the WebSphere
tooling still lack functionality vital for subject matter experts in L2 or L3 operations
support groups.

Tip: The latest version of Tivoli Monitoring for Transaction Performance now
also supports Web services transaction decomposition.

 Chapter 14. Server-side performance and analysis tools 833

One of the products that was designed to address the needs of these operations
groups was developed by Cyanea, which was acquired by IBM, and becomes
part of the Tivoli brand.

WebSphere Studio Application Monitor monitors applications running on
WebSphere and WebLogic and presents a correlated view of composite, mixed
workload transactions from J2EE to CICS, IMS, and WebSphere MQ back ends.

For prerequisite information, please refer to the IBM Web site at

http://www.ibm.com/software/awdtools/studioapplicationmonitor/sysreq/

The key focus areas include:

� Application hung/slow conditions

� Intermittent application faults

� Application memory leaks

� Alert generation for specific application events

� Deployment resource estimation from an application perspective

� “Composite” application transaction profiling (for example, J2EE-J2EE or
J2EE-mainframe)

Architecture and design
WebSphere Studio Application Monitor is made up of multiple components
connected across TCP/IP networks. It has a loosely coupled structure with
discrete components, many of which can be started up and brought down
independently of one another. This means that the product is very scalable,
potentially supporting thousands of networked servers through single or multiple
operational points of control. Figure 14-25 on page 835 illustrates WebSphere
Studio Application Monitor’s topology, identifying the major components and
where they reside.

834 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/software/awdtools/studioapplicationmonitor/sysreq/

Figure 14-25 WebSphere Studio Application Monitor architecture

There are three principal parts to WebSphere Studio Application Monitor: a
managing server which must reside on a distributed platform or on a zLinux
system, distributed data collectors, and z/OS® data collectors. The managing
server houses a relational database like DB2 UDB, an instance of WebSphere
Application Server running the WebSphere Studio Application Monitor console
application, and Java-based overseer components that control the managing
server itself and the storage of monitoring data. As might be expected, very
I/O-intensive operations go on in the managing server. Moving these processes
to the managing server means that they do impact the performance of the
monitored servers or their platforms.

The data collectors are built for dexterity and speed. They unleash probes that
gather up monitoring data about applications running in J2EE servers or in
legacy systems like CICS or IMS. Each data collector is written to take advantage
of speedy and efficient services available on the host operating system.

Note: As mentioned, the managing server requires an underlying WebSphere
Application Server as it runs as an application on that application server
instance. Currently, the managing server requires an underlying WebSphere
V5.1 server but the data collectors are able to monitor WebSphere V6 servers.
The managing server software includes a Websphere Application Server V5.1
license.

 Chapter 14. Server-side performance and analysis tools 835

Once at the managing server, the monitoring data is prepared for real-time
displays within the monitoring console and is inserted into the WebSphere Studio
Application Monitor data repository. These are very resource-intensive
operations; moving them to a stand-alone distributed server (or servers) isolates
them from other enterprise activities, thus reducing WebSphere Studio
Application Monitor’s footprints in the monitored systems. This design also helps
keep WebSphere Studio Application Monitor’s processing overhead at levels low
enough for 24x7 production system monitoring.

Key features
WebSphere Studio Application Monitor provides the following key features:

� System Resources

– Displays summary information for the system resources on the selected
application server

– JVM CPU Usage, JVM Memory Usage, EJB Coverage, EJB Activity,
Transactions Initiated and JSP/Servlet Activity and Coverage among the
hundreds of captured metrics

� Trap and Alert Management

A trap can be set with a threshold on a specific system or application level
event or behavior. When the system meets the criteria of the trap, the action
(alert) occurs.

� Software Consistency Check

Detects software mismatches in “cloned” runtime environments and supports
environmental and application level detection.

� Account and Server Group Management

– A “server group” consists of a user-defined collection of servers.

– Accounts may be associated with specific groups.

– Access to data and operations of the group can be restricted.

� Monitoring On Demand

– Monitoring scope and granularity of information returned may be changed
without restarting either the applications or the application servers.

– No need to pinpoint specific classes or methods in advance; there is no
need to designate what needs to be monitored.

– Three discreet monitoring levels available.

For more details please refer to “Monitoring on Demand” on page 837.

� Memory Analysis

836 WebSphere Application Server V6 Scalability and Performance Handbook

– In-depth analysis of metrics including JVM memory utilization, Garbage
Collection (GC) frequency, time spent in GC and heap contents.

– Memory leak detection and analysis broken down by Java class.

� WebSphere Studio Application Monitor Portal Monitoring

– Deep insight into portal environments throughout development and
deployment life cycle.

– Manage and monitor key portal performance indicators in production.

– Full correlation of J2EE portlets and legacy transactional environments
with CICS and IMS.

Monitoring on Demand
This unique feature of WebSphere Studio Application Monitor does not only allow
you to perform changes of monitoring scope and granularity during production
without restarting either the applications or the application servers, but also
makes it possible to automatically change these levels without human
intervention.

Features/Information available at different monitoring levels:

� Common to all Levels

– Availability management
– System resources

� L1: Request

– CPU information
– Elapsed time

� L2: Component (JDBC/SQL, EJB, CICS, RMI)

– L1 information for component

� L3: Java Method (Entry/Exit)

– L2 information for Java methods

Integration points
WebSphere Studio Application Monitor integrates into an existing Tivoli or BMC
Patrol monitoring infrastructure by sending SNMP traps of events monitored to
the responsible operations groups.

Note: Certain traps and alerts need L3 to capture method trace.

 Chapter 14. Server-side performance and analysis tools 837

14.12 Reference
For more information about the topics covered in this chapter, refer to:

� e-Pro mag.com - Ruth Willenborg: Monitoring Performance with WebSphere:

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Cont
entID=1492&publicationid=13&PageView=Search&channel=2

� IBM WebSphere Developer Technical Journal: Writing PMI applications using
the JMX interface:

http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_q
iao.html

� WebSphere Performance Diagnostics - Going beyond the Metrics:

http://www.sys-con.com/websphere/article.cfm?id=207

� WebSphere Studio Application Monitor (WSAM) Redbooks:

– Planning for the Installation and Rollout of WebSphere Studio Application
Monitor 3.1, SG24-7072

– Installing WebSphere Studio Application Monitor V3.1, SG24-6491

� Tivoli Monitoring for Transaction Performance V5.3 (TMTP) redbook:

End-to-End e-business Transaction Management Made Easy, SG24-6080

838 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=1492&publicationid=13&PageView=Search&channel=2
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html
http://www.sys-con.com/websphere/article.cfm?id=207

Chapter 15. Development-side
performance and analysis
tools

This chapter discusses tools for development-side measuring and performance
analysis WebSphere applications.

In particular, we discuss the following:

� The profiling tools incorporated into IBM Rational Application Developer V6.0,
called the Profiler throughout this chapter.

� IBM Page Detailer, which is available as a separate product.

15

© Copyright IBM Corp. 2005. All rights reserved. 839

15.1 Introduction
Performance of an application must be a focus area throughout the project cycle.
Traditionally, performance testing has occurred late in the cycle, towards the end
of the testing phase, or as part of the deployment process. This does not leave
much time to identify and fix any performance issues, particularly if significant
architecture changes are required. It is much more difficult and time consuming
to improve performance in the later phases of the project cycle than to ensure the
application performs adequately from the beginning. To support this, IBM
Rational Application Developer V6 includes facilities for profiling and measuring
performance of Web applications. These tools can be used during the coding
phase of the development cycle to identify problems earlier.

Two of the tools that are available to measure and analyze performance are the
profiling tools (Profiler) which are part of IBM Rational Application Developer
V6, and Page Detailer, which is downloadable from IBM alphaWorks at:

http://www.alphaworks.ibm.com/tech/pagedetailer

The profiling tools help with the analysis of the runtime behavior of aspects of the
application, such as execution time and flows and memory usage. The Page
Detailer provides information about the client experience when accessing the
application, such as response times. See 15.2, “The Profiler (profiling tools)” on
page 840 and 15.3, “IBM Page Detailer” on page 886 for details on these
products.

The application we have been using to demonstrate the Profiler is the Trade 6
sample application. See 8.8, “Installing and configuring Trade 6” on page 436 for
more information about Trade 6.

This chapter gives you basic information about the Profiler. If you need detailed
information about the IBM Rational Application Developer V6, then you should
read the Rational Application Developer V6 Programming Guide, SG24-6449.

15.2 The Profiler (profiling tools)
The objective of profiling is to assist developers recognize and isolate a variety of
performance problems before the deployment of their application into a
production environment. Traditionally, performance profiling is done once an
application is getting close to deployment or when it has already been deployed.
Using the profiling tools in IBM Rational Application Developer V6 allows the
developer to move this analysis to a much earlier phase in the development
cycle, therefore giving you more time to modify your application or architecture
based on any problems detected.

840 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.alphaworks.ibm.com/tech/pagedetailer

The types of problems that the IBM Rational Application Developer V6 profiling
tools can assist in detecting include:

� Memory leaks
� Performance bottlenecks
� Excessive object creation
� System resource limits

The profiling tools can be used to gather performance information about
applications that are running:

� Inside an application server, such as WebSphere Application Server
� As a stand-alone Java application
� On the same machine as IBM Rational Application Developer V6
� On a remote machine from IBM Rational Application Developer V6
� In multiple JVMs

15.2.1 What’s new with profiling
IBM Rational Application Developer V6 has introduced additional features into
profiling to assist the developer to perform improved profiling analysis of their
code. These can be classified in a number of distinct areas:

� Memory analysis
� Thread analysis
� Execution time analysis
� Code coverage
� Probekit

Memory analysis
The memory analysis capability in IBM Rational Application Developer V6 has
been enhanced with the addition of new views described in Table 15-1, and new
capabilities found in Table 15-2 on page 842.

Table 15-1 New Memory Analysis views

View Name Description

Leak Candidates view A tabular view to assist the developer in
identifying the most likely objects
responsible for leaking memory.

Object Reference Graph view A graphical view that shows the referential
relationship of objects in a graph
highlighting the allocation path of leak
candidates.

 Chapter 15. Development-side performance and analysis tools 841

Table 15-2 New Memory Analysis capabilities

Thread analysis
The thread analysis capability in IBM Rational Application Developer V6 offers
the view listed in Table 15-3.

Table 15-3 New Thread Analysis views

Execution time analysis
The execution time analysis has been enhanced with the addition of views
described in Table 15-4.

Table 15-4 New Execution time analysis views

Code coverage
Code coverage is a new capability in IBM Rational Application Developer V6.0. It
is used to detect areas of code that have not been executed in a particular
scenario that is tested. This capability is a useful analysis tool to integrate with

Capability Description

Memory Leak Analysis - Manual Allows at the discretion of the developer to
capture memory heap dumps after
application warm-up. That is, when
classes are loaded and initialized.

Memory Leak Analysis - Automatic Provides timed memory heap dumps at
specified intervals while the Java
application is running.

View Name Description

Thread view A graphical view of all threads available,
their state and which thread is holding
locks. It assists in identifying thread
contentions.

View Name Description

Performance Call Graph view A graphical view focusing on data that
indicates potential performance problems
including statistical information.

Method Details view A view that provides complete
performance data for the currently
displayed method, including information
about its callers and descendants.

842 WebSphere Application Server V6 Scalability and Performance Handbook

component test scenarios and can be used to assist in identifying test cases that
may be missing from a particular test suite or code that is redundant.

New views associated with this capability are shown in Table 15-5.

Table 15-5 New views associated with code coverage

Probekit
The probekit is a new capability that has been introduced into IBM Rational
Application Developer V6.0. It is a scriptable byte-code instrumentation (BCI)
framework, to assist in profiling runtime problems by inserting Java code
fragments into an application. The framework is used to collect detailed runtime
information in a customized way.

A probekit file can contain one or more probes with each containing one or more
probe fragments. These probes can be specified when to be executed or on
which program they will be used. The probe fragments are a set of Java methods
that are merged with standard boilerplate code with a new Java class generated
and compiled. The functions generated from the probe fragments appear as
static methods of the generated probe class.

The probekit engine called the BCI engine is used to apply probe fragments by
inserting the calls into the target programs. The insertion process of the call
statements into the target methods is referred as instrumentation. The data items
requested by a probe fragment are passed as arguments (for example the
method name and arguments). The benefit of this approach is that the probe can
be inserted into a large number of methods with small overhead.

Probe fragments can be executed at the following points (see IBM Rational
Application Developer V6’s online help for a complete list):

View Name Description

Coverage Navigator A graphical view that shows coverage
levels of packages, classes and methods
and their coverage statistics.

Annotated Source Includes displays which:

� Have a copy of the code marked
indicated tested, untested and
partially tested lines.

� Shows at the class and method level a
pie chart with the line coverage
statistic.

Coverage Statistics A tabular view showing the coverage
statistics.

 Chapter 15. Development-side performance and analysis tools 843

� On method entry or exit
� At exception handler time
� Before every executable code when source code is available
� When specific methods are called, not inside the called method

Each of the probe fragments can access the following data:

� Package, class, and method name
� Method signature
� This object
� Arguments
� Return value
� The exception object that caused an exception handler exit to execute, or an

exception exit from the method

There are two major types of probes available to the user to create, as described
in Table 15-6.

Table 15-6 Types of probes available with Probekit

15.2.2 Profiling architecture
The profiling architecture that exists in IBM Rational Application Developer V6
has originated from the data collection engine feature provided by the open
source Eclipse Hyades project found at:

http://www.eclipse.org/hyades

Hyades provides the IBM Rational Agent Controller daemon a process for
enabling client applications to launch host processes and interact with agents
that exist within host processes. Figure 15-1 on page 845 depicts the profiling
architecture.

Type of Probe Description

Method Probe Probe can be inserted anywhere within the body of a method with the
class or jar files containing the target methods instrumented by the
BCI engine.

Callsite Probe Probe is inserted into the body of the method that calls the target
method. The class or jar files that call the target instrumented by the
BCI engine

844 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.eclipse.org/hyades

Figure 15-1 Profiling architecture of IBM Rational Application Developer V6

The definitions of the profiling architecture are as follows:

� Application process

The process that is executing the application consisting of the Java Virtual
Machine (JVM) and the profiling agent.

� Agent

The profiling component installed with the application that provides services
to the host process, and more importantly, provides a portal by which
application data can be forwarded to attached clients.

� Test client

A local or remote application that is the destination of host process data that
is externalized by an agent. A single client can be attached to many agents at
once but does not always have to be attached to an agent.

� IBM Rational Agent Controller

A daemon process that resides on each deployment host providing the
mechanism by which client applications can either launch new host
processes, or attach to agents coexisting within existing host processes.The
Agent Controller can only interact with host processes on the same node.

Deployment Hosts

JVMPI
Events

Controls

Java
Virtual

Machine

Java
Virtual

Machine

Eclipse Plug-ins

Test Client

JDK

Development Hosts

Application
Process

Agent

Application
Process

Agent

IBM Agent Controller

Service
Service

 Chapter 15. Development-side performance and analysis tools 845

� Deployment hosts

The host that an application has been deployed to and is being monitored by
a profiling agent.

� Development hosts

The host that runs an Eclipse compatible architecture such as IBM Rational
Application Developer V6 to receive profiling information and data for
analysis.

Each application process shown in Figure 15-1 on page 845, represents a JVM
that is executing a Java application that is being profiled. A profiler agent is
attached to each application to collect the appropriate runtime data for a
particular type of profiling analysis. This profiling agent is based on the Java
Virtual Machine Profiler Interface (JVMPI) architecture. More details on the
JVMPI specification can be found at:

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi

The data collected by the agent is then sent to the agent controller, which then
forwards this information to IBM Rational Application Developer V6 for analysis
and visualization.

There are two types of profiling agents available in IBM Rational Application
Developer V6:

� Java Profiling Agent
� J2EE Request Profiling Agent

See IBM Rational Agent Controller below for more information about these
agents.

15.2.3 IBM Rational Agent Controller
As mentioned before, the profiling tools work in conjunction with the IBM Rational
Agent Controller, which is a separately installable program from the IBM Rational
Application Developer V6 installation. Thus you need to make sure that the
Agent Controller has been installed on the host where you want to monitor the
process.

The Agent Controller is a daemon process that enables client applications to
launch host processes and interact with agents that coexist within host
processes. The Agent Controller interacts with the following components:

� Host process

The host process contains the application that is to be profiled. This can be a
stand-alone Java process or a WebSphere Application Server instance

846 WebSphere Application Server V6 Scalability and Performance Handbook

http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi

(including an instance running in an IBM Rational Application Developer V6
test environment). An Agent Controller must be executing on the same
machine as the host process.

� Agent

An agent is a reusable binary file that provides services to the host process,
and more importantly, provides a portal by which application data can be
forwarded to attached clients. A host process can have one or more agents
currently running within it.

– Java Profiling Agent

The Java Profiling Agent uses the Java Virtual Machine Profiler Interface
(JVMPI). The agent is a library that provides services to the host process
to capture and record the behavior of a Java application, and makes this
data available to attached clients. It is used for the collection of both
stand-alone Java applications as well as applications running on an
application server. Figure 15-1 on page 845 shows the use of the Java
Profiling Agent.

– J2EE Request Profiler

The J2EE Request Profiler is an agent that operates in a WebSphere
Application Server process. It collects runtime data relating to the
execution of the Web application, such as execution of EJBs and servlets,
by intercepting requests to the EJB or Web containers. Distributed
environments can be profiled by connecting to J2EE Request Profiler
agents running on different nodes.

The J2EE Request Profiler only provides a subset of the information
available from the Java Profiling Agent, since it only looks at the execution
of the enterprise components, and not at Java objects and methods that
are called from the EJBs and servlets. The J2EE Request Profiler does,
however, have the ability to combine data from more than one WebSphere
instance, allowing you to analyze and measure the behavior and
performance of a distributed application.

� Client

A client is a local or remote application that retrieves and displays data that is
collected by an agent. A single client can be attached to many agents at once,
and can connect to Agent Controllers on local or remote machines. All
communication between the client and agents occurs via the Agent
Controller. A profiler client is provided with IBM Rational Application
Developer V6. The profiling functionality in Rational Application Developer
can be accessed from the Profiling and Logging Perspective.

 Chapter 15. Development-side performance and analysis tools 847

In this chapter, we discuss the profiling of an application running on WebSphere
Application Server. Similar techniques can be used to profile applications running
in a Rational Application Developer test environment.

Before attempting to profile an application, ensure that the Agent Controller has
been started. In Windows this can be checked from the Services program.

15.2.4 Setting up for Profiling
The prerequisites to be performed for profiling are as follows:

� Install IBM Rational Application Developer V6 on the development host.

� Install IBM Rational Agent Controller on the deployment host or on the
development host if they are one and the same.

Enable Profiling in WebSphere Application Server
The default configuration of WebSphere Application Server V6 has the J2EE
Request Profiling agent generation of sequence diagrams disabled. Users
requiring this feature need to enable it by performing the following:

For a remote Application Server Instance:
To configure your remote application server for profiling, do the following:

1. In the Administrative Console select Servers -> Application servers ->
<AppServer_Name>.

2. Under the Server Infrastructure category choose Java and Process
Management-> Process Definition.

3. Select Java Virtual Machine from the Additional Properties pane. Enter
-XrunpiAgent -DPD_DT_ENABLED=true into the Generic JVM arguments
field and click OK.

4. Save the configuration and restart the server(s).

For an application server in the test environment:
To profile an application in IBM Rational Application Developer V6, the server in
the test environment must be started in profiling mode. From the Server or J2EE
Perspective, right-clicking the server displays a menu that includes the profiling
option. This is shown in Figure 15-2 on page 849. Another prerequisite is that
you have deployed the application to the server and configured any server

Note:

� The -XrunpiAgent parameter enables the Java Profiling Agent.
� The -DPD_DT_ENABLED=true parameter is for the J2EE Request Profiler.

848 WebSphere Application Server V6 Scalability and Performance Handbook

resources required. We suggest that you perform some basic testing of the
application in Rational Application Developer, prior to using the profiling tools, to
ensure that the application is operating correctly.

Figure 15-2 Starting a server in profiling mode

Once the server has been started, you have to configure profiling in IBM Rational
Application Developer V6.

Configure profiling in Rational Application Developer
The remainder of this procedure is the same for both local and remote profiling. A
window is displayed to select the Java process to attach to. The process ID is the
one for the WebSphere Application Server instance and it can be found in the
.pid file created in the server root, when the server is started.

1. In IBM Rational Application Developer V6, switch to the Profiling and
Logging perspective:

a. Select Window -> Open Perspective -> Other.

b. In the Select Perspective window, first select the Show all checkbox to
make the Profiling and Logging view available for selection.

 Chapter 15. Development-side performance and analysis tools 849

c. Select Profiling and Logging and click OK. Answer OK to the following
question regarding enablement of Profiling and Logging.

2. Attach to a Remote Java process for the server instance:

a. Select Run -> Profile.... In the following configuration window double-click
Attach - Java Process.

b. If desired, enter a name for your configuration. See Figure 15-3 on
page 851.

c. Enter the name of the host you want to perform profiling on into the Host
name or IP address field. If the Agent Profiler was installed with default
options, the port number should be correct. Click Add.

d. Click Test Connection to verify that the communication works. If the
connection fails, check if the Agent Controller is running on the target
server and if it is using the default port.

Tip: If you are using this functionality for the first time, maybe you won’t get
the choice “Attach - Java Process” in the Configurations pane. If this is the
case, do the following:

Select Window -> Preferences. Expand Profiling and Logging. Click
Hosts. Define the host you want to profile. Test the connection, then click
OK. Next select Run -> Profile once again and this time you should see
the Attach - Java Process selection.

850 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-3 Configuring the profiling host

3. Next select the Agents tab. There are two agents available: Java Profiling
Agent and J2EE Request Profiler.

To obtain detailed information about the runtime behavior of the application,
select the Java Profiling Agent option as shown in Figure 15-4 on page 852.
The J2EE Request Profiler will provide higher-level overview data about the
application. It is also possible to select both agents from this window.

Troubleshooting:

� If the Java Profiling Agent is missing, the -XrunpiAgent parameter is
missing in the generic JVM arguments.

� If the J2EE Request Profiler is not available check if
-DPD_DT_ENABLED=true has been set.

See “Enable Profiling in WebSphere Application Server” on page 848.

 Chapter 15. Development-side performance and analysis tools 851

Figure 15-4 Select the agents associated with the Java processes

4. Click the Profiling tab to obtain the window for specifying the profiling project,
the monitoring limits and the monitor for saving the profiler data.

a. On the Overview tab, the profiling sets can be defined. There are a
number of predefined filter sets available for analyzing execution time,
code coverage, finding memory leaks and so on. It is also possible to
define your own profiling sets.

Important: When studying the execution flow of an application, we
recommend that the J2EE Request Profiler be used.

On the other hand, to obtain detailed information related to instance sizes,
we suggest using the Java Profiling Agent with Select instance level
information checked (you need to Edit a profiling set to find this checkbox).

852 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-5 Profiling sets

b. Select the Limits tab to display the panel shown in Figure 15-6 on
page 854 where you can limit the amount of data collected by the Profiler.
It allows you to instruct the Profiler to stop profiling after a particular
number of method invocations, or after a specified time has elapsed.

Tips:

� If you want to profile Trade 6, it is important to define some
additional filter settings. This is because Trade 6 belongs to
com.ibm.* which is excluded from profiling by default. Therefore, on
the Overview tab, click Edit.... Click Next to display the filters. In the
Contents of selected filter set pane click Add....

Enter com.ibm.websphere.samples.trade.* into the Package or
Class filed, * into the Method Name filed and select INCLUDE from
the Rule drop-down box. Click Finish.

� The filters also need to be changed accordingly for profiling other
WebSphere sample applications.

 Chapter 15. Development-side performance and analysis tools 853

Figure 15-6 Limit the amount of data collected

c. Select the Destination tab. Here you have the ability to redirect output to a
file. This is especially useful in situations where the information generated
from the application being monitored exceeds the amount of memory that
IBM Rational Application Developer V6 has been allocated or that is
available on the system.

5. Click the Profile button to complete the procedure for attaching to the
(remote) Java process.

Start data collection
At this point, the Profiler is configured but not yet collecting data. To start
collecting data, select the appropriate agent in the Profiling Monitor pane, click
the right mouse button, and choose Start Monitoring from the menu as shown
in Figure 15-7 on page 855.

854 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-7 Start monitoring

Once monitoring has started, you are ready to start profiling the application.

Configuration settings for profiling
Note that the configuration settings for profiling can be accessed from the
Window -> Preferences menu of the Workbench. They can be found on the
Profiling and Logging page of the Preferences window as displayed in
Figure 15-8 on page 856:

� Ensure that the Enable profiling check box is selected.

� If the Show profiling tips check box is selected, tips will be displayed
periodically during your profiling session.

� The Default profiling project name can be changed if desired. This specifies
under which project in IBM Rational Application Developer V6 the profiling
data will be stored. Although the Agent Controller local port can be changed,
this is usually not necessary. The port specified here must be the same as in
the configuration for the Agent Controller. The default is 10002.

� Select Profiling and Logging -> Profiling for options to set default values for
the profiling filters and options. Here you can limit the amount of data to be
collected.

� Select Profiling and Logging -> Appearance to specify the format for the
different views and graphs, such as Execution Flow Graph, Thread view, and
UML2 Sequence Diagram. Here you can also specify the resources that will
appear in the Profiling Monitor window. As a minimum, the Processes,
Profiling agents and Logging agents should be selected (please note that

 Chapter 15. Development-side performance and analysis tools 855

checking a box in this panel actually hides the selection from the Profiling
Monitor view, therefore make sure that above selections are not checked).

� Select Profiling and Logging -> Hosts to specify a default list of hosts to be
used when profiling a remote application.

Figure 15-8 Preferences for profiling

15.2.5 Profiling an application
This section describes the tasks involved in profiling an application.

Testing methodology
There are a few different approaches that can be taken when profiling a Web
application. One approach is to profile individual pieces of functionality (possibly
as part of the unit test process as they are being developed). Alternatively, a
mixture of operations that represent typical user behavior could be executed,
either manually or using a load testing tool such as Rational Performance
Tester V6.1 or OpenSTA. Initially the testing can cover a broad range of
scenarios, and then as particular areas of functionality are identified, more
detailed profiling can be done for them. The Trade 6 application includes a
servlet “scenario” that simulates a set of users by executing a trade operation for
a random user on each invocation of the servlet. A similar servlet or client
program that exercises a broad range of application functionality may also be
useful for other applications.

856 WebSphere Application Server V6 Scalability and Performance Handbook

Using the Profiler
Once the Profiler has been configured, the application can be accessed via the
normal URL and the profiling data will be captured. In order for the captured data
to be displayed in the Profiling Perspective, right-click in the Profiling Monitor
view and select Refresh Views. This will update the data for all views, not just
the one that is currently displayed. Once the data has been displayed, the view
has to be refreshed again in order to display newly captured data.

15.2.6 Profiler views
As outlined in 15.3.1, “Overview” on page 886, there are a number of different
views that can be displayed in the Profiling Perspective. To open a new view,
right-click in the Profiling Monitor pane and select one of the options from the
Open With menu. Profiler views can also be displayed using the smarticons on
the tool bar. The Profiler menu and toolbar are shown in Figure 15-9.

Figure 15-9 Profiler view menus

The choice of views available and their content depends on the context menu of
the resource. You can make the resources visible either from Window ->
Preferences as explained in “Configuration settings for profiling” on page 855 or
from the perspective as shown in the Figure 15-10 on page 858.

 Chapter 15. Development-side performance and analysis tools 857

Figure 15-10 Selecting resources

Package Statistics table
The Package Statistics table displays the profiling data for the package with the
ability to drill down to the class level (see Figure 15-11 on page 859).

This information allows you to get a high-level view of which packages are most
frequently used, based on the frequency on which methods of classes belonging
to the package are called and the number of instances of these classes. It also
provides information about which packages use the most system resources in
terms of execution time of methods for classes defined in the package and the
memory used by object instances of the classes. It is possible to drill down to the
class level for a particular package by clicking the + symbol displayed on the left
of the package name. To reduce the amount of data being displayed, the output
can be filtered based on the package name. These filters can include * as a
wildcard character. The output can be sorted based on any of the displayed
columns by clicking the column name.

858 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-11 Package Statistics table

The information that is displayed is:

� Package
� Delta icon
� Total Instances
� Live Instances
� Collected
� Total Size
� Active Size
� Base Time (not displayed by default)
� Inherited Base Time (not displayed by default)
� Cumulative Time (not displayed by default)
� Inherited Cumulative Time (not displayed by default)
� Calls (not displayed by default)
� Inherited Calls (not displayed by default)

Class Statistics table
The Class Statistics table (Figure 15-12 on page 860 shows the Class Statistics
when using the Java Profiling Agent) displays data for the classes with an ability
to drill down to the method level.

The data in this view provides the next lower level of details, after the Package
Statistics. It shows which classes are most commonly used, the execution time
for methods and the size of the objects. This makes it easier to identify particular
classes that require further investigation.

 Chapter 15. Development-side performance and analysis tools 859

Figure 15-12 Class Statistics table - Java Profiling Agent

The information that is displayed is:

� Class Names
� Delta icon
� Package
� Total Instances
� Live Instances
� Collected
� Total Size
� Active Size
� Base Time (not displayed by default)
� Inherited Base Time (not displayed by default)
� Cumulative Time (not displayed by default)
� Inherited Cumulative Time (not displayed by default)
� Calls (not displayed by default)
� Inherited Calls (not displayed by default)

Note: Information related to instance sizes is available only if you open the
view with the Java Profiling Agent.

860 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-13 shows the Class Statistics view when using the J2EE Request
Profiler Agent:

Figure 15-13 Class Statistics table - J2EE Request Profiler

Method Statistics table
The Method Statistics table (see Figure 15-14 on page 862) allows you to view
profiling data about particular methods. This table is useful in identifying the time
consuming methods in an application.

It allows you to determine which particular methods are most frequently executed
and those that have the longest execution time. Once these methods have been
identified, effort can be focused on optimizing these methods. After making
changes, the application can be profiled again and differences in performance
measured. This optimization process is likely to be iterative, but the method
statistics allow you to approach this in a systematic and scientific way. However,
in order for the test results to be repeatable and valid comparisons made, the test
environment should be the same for each test. We suggest that all other
applications be closed, and that each individual test be run multiple times to
reduce the probability of getting spurious results.

It contains the following information:

� Method Names
� Class Names
� Delta icon

 Chapter 15. Development-side performance and analysis tools 861

� Package (not displayed by default)
� Base Time
� Average Base Time
� Cumulative Time
� Calls

Figure 15-14 Method Statistics table

Instance Statistics Table
The Instance Statistics Table allows you to view data about particular instances
of classes.The Instance Statistics Table contains the following information:

� Class Names
� Package
� Delta icon
� Total Instances
� Live Instances
� Collected (not displayed by default)
� Total Size
� Active Size
� Base Time (not displayed by default)
� Inherited Base Time (not displayed by default)
� Cumulative Time (not displayed by default)
� Inherited Cumulative Time (not displayed by default)
� Calls (not displayed by default)
� Inherited Calls (not displayed by default)

862 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-15 shows the Instance Statistics using the Java Profiling Agent.

Figure 15-15 Instance Statistics table - Java Profiling Agent

In this view, the Collected column displays the number of instances of the
selected package, class, or method, that were removed during garbage
collection.

From this table, it is possible to drill down to individual instances of particular
classes by clicking the + symbol displayed on the left of the Class Name. By
drilling down to individual instances, problems that may not be apparent just by
looking at average or total values may be identified.

For example, particular instances of classes may be abnormally large. If this
occurs, more details can be found by looking at the object references for the
instance. To display this, right-click the instance and select Show Object
References from the menu.

In general, determining why an object (including referenced objects) in Java
requires a large amount of memory can be difficult, because the size of the
object itself may be small, but there may be a set of references that eventually
lead to a large object. This is a powerful tool to aid in identifying the root cause of
excessive memory usage. As discussed in 16.6.1, “Memory” on page 930,
minimizing memory usage is one of the key mechanisms for improving the
performance of a Java application.

 Chapter 15. Development-side performance and analysis tools 863

Figure 15-16 shows the Instance Statistics table using the J2EE Request Profiler
Agent.

Figure 15-16 Instance Statistics table - J2EE Request Profiler

Object References Graph
The Object References Graph (Figure 15-17 on page 865) displays the
references from one object to another. To open the Object Reference Graph view,
right-click a profiling resource entry in the Profiling Monitor and select Open With
-> Object Reference Graph from the pop-up menu.

Analyzing the Object References can be extremely useful in optimizing the
memory utilization of your application. It contains a tree structure that you can
traverse to narrowing down to the source of memory leaks. By drilling down to
individual instances, problems that may not be apparent just by looking at
average or total values may be identified.

864 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-17 Object Reference Graph

Tips:

� You can choose to view the references to other objects or by other objects.

� You must take a dump of the heap by running Collect Object References
from the context menu of the active process before you display the
information in the Object References Graph. IBM Rational Application
Developer V6 can also automatically create heap dumps for you, just
choose the Memory Leak Analysis profiling set (see Figure 15-5 on
page 853).

� You can identify memory leaks in a particular unit of work by taking a dump
just before triggering your transaction and then again at the end of the
transaction. The objects that could not be collected between the two
dumps will be labelled as new objects.

 Chapter 15. Development-side performance and analysis tools 865

The Object Details view
The Object Details view displays detailed information about a specific object
shown in the Object Reference Graph. To open the Object Details view,
double-click a node in the Object Reference Graph, or right-click a node and
select Show Object Details from the pop-up menu.

The Object Details view consists of the following data display areas:

� Object Details: Information about the currently selected object.

� Highlighted Objects list: A list of objects that are currently highlighted in the
Object Reference Graph view. Double-click a list item to navigate to the object
in the Object Reference Graph view.

� Referer table: A list of immediate objects that reference the currently
selected object, and information about each referer.

� Referee table: A list of immediate objects referenced by the currently
selected object, and information about each referee.

Figure 15-18 Object details for the TradeBean

866 WebSphere Application Server V6 Scalability and Performance Handbook

Execution Flow view
The Execution Flow view visually displays the method calls performed by the
application being profiled. In order to reduce the amount of information being
displayed to a manageable level, we recommend that you use the J2EE Request
Profiler Agent for capturing data to be viewed in the Execution Flow view. The
Execution Flow view is another way of determining which methods are executed
most frequently, and hence are good candidates for optimization. An example of
the Execution Flow view is provided in Figure 15-19.

Figure 15-19 Execution Flow view

The information that is displayed pictorially in the Execution Flow view can also
be displayed in a hierarchical tabular form as shown in Figure 15-20 on
page 868. In some cases it may be easier to navigate through the data in this
view, because it is possible to expand and collapse particular parts of the
execution sequence. From this view, you can right-click a particular method
invocation to display the Method Invocation view for that method.

 Chapter 15. Development-side performance and analysis tools 867

Figure 15-20 Execution Flow table

Object and Class Interaction (Sequence Diagram) views
The Object Interaction and Class Interaction views (also labeled as UML2
Sequence Diagrams) allow analysis for program execution by displaying UML
(Unified Modelling Language) sequence diagrams.

Normally these diagrams are produced statically during the analysis or design
phase of a project, but IBM Rational Application Developer V6 allows you to
dynamically generate these diagrams to see how the program is really working,
rather than how it should be working.

These views provide another means of analyzing the execution of your
application, helping to focus your optimization efforts. The difference between
the Object and Class Interaction views is that the Object Interaction view displays
each individual instance of each class separately. An example of the Class
Interaction view can be seen in Figure 15-21 on page 869.

868 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-21 Class Interaction view

You can view the sequence of the execution flow from different levels of
abstraction, starting with class interactions, through interactions among threads,
or process interactions, up to hosts interactions across a network. The
importance of this multilevel data presentation becomes obvious for the
monitoring of e-business applications.

Depending on the application infrastructure, you may need to view the execution
flow on different levels of the monitoring hierarchy. For a local application, the
level of process or host may be adequate, but for a distributed application, the
monitor level, which provides a view of the execution across multiple hosts, could
be more appropriate. Viewing the execution of a distributed application from the
monitor level may reveal some points of interest which can direct application
developers to any of the lower level graphs to perform more detailed viewing or
analysis. For example, in the case of an application consisting of servlets and
enterprise beans that are distributed across a cluster of hosts, the preliminary
view of the host interactions may lead a software developer to view sequence

 Chapter 15. Development-side performance and analysis tools 869

diagrams of object interactions for specific processes. These diagrams will show
only selected data, representing part of the execution within an enterprise bean
or servlet container, on the level of corresponding business components.

To navigate the data acquisition hierarchy, you can use the Profiling Monitor view.
Each of the hierarchy levels of the profiling resources provides all the applicable
types of sequence diagrams.

The following types of diagrams are available:

� Class interactions

Class interaction diagrams can be used to view interactions of class methods
that participate in the execution of an application.

� Object interactions

Object interaction diagrams can be used to view interactions of object
methods that participate in the execution of an application.

� Thread interactions

Thread interaction diagrams can be used to view interactions of methods that
execute in different threads, which participate in the execution of an
application. See “Thread Interactions view” on page 872 for more information.

� Process interactions

Process interaction diagrams can be used to view interactions of methods
that execute in different processes, which participate in the execution of an
application. “Process Interaction view” on page 871 gives more details.

� Host interactions

Host interaction diagrams can be used to view interactions among methods
that execute on different hosts, which participate in the execution of a
distributed application. Host interaction diagrams provide the highest level of
abstraction in a sequence diagram presentation. The flow of interactions
presents the execution of these methods across machines. See Host
Interaction view below for more information.

Host Interaction view
The Host Interaction view is the highest possible level of diagram available. Use
this diagram to view interactions among methods that run on different hosts.

Important: The default filters for the Profiling Monitor perspective have to be
changed, otherwise the UML2 Host Interactions view cannot be selected. To
do this, disable the Hide Monitors filter by selecting in the upper right
corner of the Profiling Monitor pane.

870 WebSphere Application Server V6 Scalability and Performance Handbook

The Host Interaction view opens from the context menu of the DefaultMonitor
resource as shown in Figure 15-22.

Figure 15-22 Open Host Interaction view

Process Interaction view
Use the Process Interaction diagram to view the interactions among methods
that run in different processes of the same host. This view opens from the context
menu of the host as shown in Figure 15-23 on page 872.

Note: To select the Process Interaction view, the default filters also need to
be changed. Disable the Hide Hosts filter as explained in the previous Note.

 Chapter 15. Development-side performance and analysis tools 871

Figure 15-23 Open Process Interaction view

Thread Interactions view
Use the Thread Interaction diagram to view the interactions among methods that
execute in different threads of the same process. This view opens from the
context menu of the resource that represents a monitor, host, or a process. See
Figure 15-24 on page 873.

872 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-24 Thread Interactions view

15.2.7 Resolving performance bottlenecks - Execution time analysis
Profiling gives you insight into the performance characteristics of an application,
and its runtime behavior. Both helps you to get a better understanding of an
applications’ resource requirements and finding potential performance
bottlenecks.

This section explains how to use the Profiler to analyze the performance of a
WebSphere based J2EE application. The different steps needed to perform a
runtime analysis and to detect and resolve a performance bottleneck are shown
using a modified Trade 6 sample application. We provide an example of how to
use the Execution time analysis. If you are interested in an example of how to
use the code coverage analysis, see Chapter 24, “Profile applications” in
Rational Application Developer V6 Programming Guide, SG24-6449.

 Chapter 15. Development-side performance and analysis tools 873

Setting up the environment
Before you can start analyzing the performance of your application, some
prerequisites must be satisfied. First it is not recommended that you run the
tested application and IBM Rational Application Developer V6 on the same
machine because of the side effects when using shared hardware. Therefore,
running performance tests in the Rational Application Developer’s test
environment is also not an option. In the following scenario, two separate
machines are used, one client machine with all necessary test tools and a
separate WebSphere Application Server machine with the Trade 6 application.

Client machine prerequisites
� IBM Rational Application Developer V6 installed.

� Either a load testing tool or a test client (for example a browser for
Web-based applications).

� Availability of an automated test script or a step-by-step description of the test
scenario.

WebSphere Application Server machine prerequisites
� IBM Rational Agent Controller must be installed and should be running.

� Profiling on the WebSphere Application Server must be enabled (see “Enable
Profiling in WebSphere Application Server” on page 848).

� Application to be analyzed, in this example the modified Trade 6 application.
Please verify, that there are no other applications running neither on the
application server nor directly on the WebSphere system.

Connecting Rational Application Developer to WebSphere
Application Server

After verifying the test environment, we are now ready to start the performance
analysis of our sample application. In this part the steps to configure and
establish the connection for profiling the Trade 6 application on the remote
WebSphere Application Server are explained.

1. Start Rational Application Developer with an empty workspace.

2. Open the Profiling Perspective. Select Window -> Open Perspective ->
Other.

Note: If you want to follow the steps explained here, we recommend that you
first read the entire section, then import the Trade 6 application into your
workbench, make the appropriate changes to the source code as shown in
Example 15-1, then start with the testing.

874 WebSphere Application Server V6 Scalability and Performance Handbook

In the Select Perspective window, first select the Show all checkbox to make
the Profiling and Logging view available for selection.

3. Select Profiling and Logging and click OK. Answer OK to the following
question regarding enablement of Profiling and Logging.

4. Now a suitable profiling configuration has to be created:

a. Select Run -> Profile to open the profile management and configuration
window.

b. To profile a remote WebSphere Application Server V6, select Attach -
Java Process, make sure that the Profiling and Logging profile is
selected in the dropdown list in the right pane and click New. Alternatively
you can double-click Attach - Java Process.

c. Change the Name of the configuration to WAS6_Remote_Cfg, delete the
existing default host localhost and define the remote system you wish to
profile (and which has the IBM Agent Controller installed and running) as
the new Default Host. Test the connection, then select Apply to save the
changes. Figure 15-3 on page 851 is a reference for this task.

5. Switch to the Agents tab to select the available agents on the remote
machine.

Make sure that the application server is started. Starting the server causes
the respective embedded Profiling agents to be displayed. The Process ID
(PID) values indicated here correspond to the application server’s PID
allocated by the operating system at server startup.

Select both the J2EE Request Profiler and the Java Profiling Agent as
indicated in Figure 15-25.

Figure 15-25 Agent configuration

 Chapter 15. Development-side performance and analysis tools 875

6. Configure the profiling set.

The Java Profiling Agent was selected for the detailed analysis of the
WebSphere Application Server based application. On the Profiling tab, the
corresponding profiling sets can be selected. Select the Profiling tab.

Specifying profiling sets and creating profiling filters enables you to specify
the subset of information that you want to analyze. Profiling sets specify the
type of data to collect and filters ensure that only relevant details are
channeled out to the views. Using filters is especially useful when speed and
efficiency is critical: the less data there is, the less impact it has on the
system, and the faster it can be collected.

a. For our performance analysis of the modified Trade 6 application the
predefined Execution History - Full Performance Call Graph should be
selected (see Figure 15-26).

Figure 15-26 Select profiling set

b. Next the default filters for the Execution History set have to be changed to
enable profiling of our sample application. Usually it makes sense to filter
out all packages that start with com.ibm, but our sample Trade 6
application classes also start with this name. Therefore, select Edit to
change the Execution History profiling set. Click Next.

876 WebSphere Application Server V6 Scalability and Performance Handbook

c. On the following screen, choose the WebSphere J2EE filter set and
include the package com.ibm.websphere.samples.trade* which is used
by the application. See Figure 15-27. Click Finish.

The other profiling options (Limits, Destination) can remain unchanged.

Figure 15-27 Modify existing profiling set

7. Define application sources.

If the application sources are available, it is recommended that you add them
in the Source tab. This enables easy access to the sources during the
performance analysis.

a. First Import trade.ear into the workbench as a new project.

b. Next attach the source code: Go to the Source tab, uncheck Use default
source lookup path, then click Add Projects... as seen in Figure 15-28
on page 878 and select all projects (see Figure 15-29 on page 878).

Tip: Filters are applied top down. When adding new filters, make sure
that the order is correct.

 Chapter 15. Development-side performance and analysis tools 877

Figure 15-28 Adding a source

Figure 15-29 Selecting a project

878 WebSphere Application Server V6 Scalability and Performance Handbook

8. All necessary changes to the profile configuration are competed. Click Profile
to save the configuration and return to the Profiling perspective. Accept the
following information message that reminds you to start monitoring.

Start Monitoring
After the profiling configuration is completed, the monitoring of the modified
Trade 6 sample application can be started. To do this, right-click the profiling
agents and select Start Monitoring (see Figure 15-30). Make sure that
monitoring is activated for both agents - the state should change from
<attached> to <monitoring>.

Now use the WebSphere application, exercising the routine you want to
investigate for performance bottlenecks. The monitors collect and record the
performance data instantly.

Figure 15-30 Start Monitoring

Test scenario
While the IBM Rational Application Developer V6 profiling tools are running, the
following test scenario should be executed:

1. Load the Trade 6 Homepage: http://app1:9080/trade/

2. Select the Go Trade! link.

3. Log in (using default user).

4. Select the Account link.

5. Change to the Portfolio page.

6. Sell one symbol (randomly selected).

7. Go to Quotes/Trade.

8. Buy one symbol.

9. Logoff.

 Chapter 15. Development-side performance and analysis tools 879

After performing the scenario above, stop monitoring in the same way as starting
it (just click Pause Monitoring instead of Start Monitoring).

Analyzing Performance
The primary views for viewing and analyzing performance data are the
Performance Call Graph and the Method Details views. You can supplement
these with the Package Statistics, Class Statistics, Method Statistics, Method
Invocation, Method Invocation Table, Execution Flow, Execution Flow Table, and
the UML2 Sequence Diagram views.

J2EE Request Profiler
To analyze the application performance and detect performance bottlenecks, it is
recommended that you start with the Performance Call Graph of the J2EE
Request Profiler. It provides a high-level performance overview data about the
application.

Therefore, select the J2EE Request Profiler and choose Open With ->
Performance Call Graph (see Figure 15-31) from the context menu.

Figure 15-31 Open Performance Call Graph

For the modified Trade 6 sample, the call graph shown in Figure 15-32 on
page 881 is displayed:

880 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-32 Performance Call Graph for the Trade 6 test scenario

� The graph initially displays the 20 methods that are responsible for consuming
the largest amount of time as nodes.

� The lines between the nodes represent call paths. Thicker lines are used for
more expensive call paths. You can focus the call graph by right-clicking a
node and choosing a command from the pop-up menu.

� Identify a method that you suspect of consuming more time than it should.
Double-click the method to open the Method Details view.

Use the Performance Call Graph and the Method Details view together to
investigate the entire data set. The two views are synchronized whenever you
select a new method.

To examine the source code for a method, right-click it in either of these views
and select Open Source from the pop-up menu.

Once you had a detailed look at the Trade 6 performance graph shown above, it
is easy to realize, that the TradeBean.login() method is experiencing poor
execution times. To investigate the problem further, the Method Details view can
be used to analyze the TradeBean.login method.

 Chapter 15. Development-side performance and analysis tools 881

Right-click the TradeBean.login() method and select Show Method Details
from the context menu. The following details are available for the
TradeBean.login() method (see Figure 15-33):

Figure 15-33 Method Details for TradeBean.login()

The Method Details view displays data about a specific method and its
immediate callers and descendants.

The Method Details view consists of the following data display areas:

� Method Details: Information about the currently selected method.

� Highlighted Methods list: A list of methods that are currently highlighted in
the Performance Call Graph. Double-click a list item to display the method in
the Method Details view.

� Caller table: A list of immediate methods that call the method that is currently
displayed, and information about each caller.

� Callers pie chart: A chart showing the percentage of the method's
cumulative time that is attributed to invocations by each method in the Callers
table.

� Descendant table: A list of immediate methods that are called by the
method, and information about each descendant.

882 WebSphere Application Server V6 Scalability and Performance Handbook

� Descendants pie chart: A chart showing the percentage of the method's
cumulative time that is attributed to the cumulative time of each method in the
Descendants table.

When looking at the method descendants in detail, it is obvious that the
TradeBean.login() method consumes about 100% of the time that is needed for
the whole call.

So what is going on in this method?

One solution to figure this out, is, of course to look into the sources. To do this,
right-click the method and select Open Source from the context menu. But keep
in mind that until now just the J2EE Request Profiler was used. The J2EE
Request Profiler only displays J2EE Components like Enterprise JavaBeans,
servlets, and so on. All other calls to “pure” java objects are filtered out. This
makes sense, because the intention of the J2EE Request Profiler is to provide an
overview and not to go into all the details.

Java Profiling Agent
To get a more detailed insight on what is going on in this method and to find out if
other java objects are called that consume a huge amount of execution time, the
Java Profiling Agent is used.

To open the more detailed Performance Call Graph from the Java Profiling Agent,
right-click the agent in the Profiling Monitor and select Open With ->
Performance Call Graph. The java profiling Performance Call Graph for the
modified Trade 6 application unveils the reason for the long execution time - there
is a sleep() method called! See Figure 15-34.

Figure 15-34 Performance Call Graph from the Java Profiling agent

 Chapter 15. Development-side performance and analysis tools 883

Now let’s have a look at Example 15-1 which shows the source of the login()
method.

Example 15-1 login() method

public AccountDataBean login(String userID, String password)
throws FinderException, Exception {
LocalAccount account = ((LocalAccountProfile)
profileHome.findByPrimaryKeyForUpdate(userID)).getAccountForUpdate();

if (Log.doTrace())

Log.trace("TradeBean:login", userID, password);
account.login(password);
Thread.currentThread().sleep(10000);
AccountDataBean accountData = account.getDataBean();
if (Log.doTrace())

Log.trace("TradeBean:login(" + userID ") success" + accountData);
return accountData;

}

Resolve performance bottleneck
Remove the sleep() statement from the modified Trade 6 application, then verify
that the cumulative time for the TradeBean.login() method has been reduced
and this performance bottleneck has been resolved. One way to do this is to
repeat the test scenario. This way, you should see whether the login() method
still consumes as much time in the Performance Call Graph; it will not.

However, to demonstrate the capability of the Profiler, we are using a different
approach. Install the updated Trade 6 application on your WebSphere
Application Server and repeat the previous monitoring steps.

Verify that performance bottleneck is resolved
To analyze the data, the UML2 Object Interactions sequence diagram of the
J2EE Request Profiler is used.

Open the Object Interactions sequence diagram. Right-click the J2EE Request
Profiler agent and select Open With -> UML2 Object Interactions.

The Sequence Diagrams are used to find the poorly performing spots in the
application. To find these spots, look for the red squares in the bar on the left side
of the Sequence Diagram view. The intensity of the red color of the rectangles
corresponds to the amount of time elapsed between consecutive events in the
diagram. This means that the darker red a square is, the more time was
consumed by the particular event(s) at that point in the diagram.

884 WebSphere Application Server V6 Scalability and Performance Handbook

Use the search functionality of the sequence diagram views to find the
TradeBean.login() method. Select the Find smarticon in the upper right
corner of the Sequence Diagram view. In the Search window, enter *login* into
the Matching string field, select the Synchronous message checkbox for the
synchronous method call, and click Find.

The TradeBean.login() method will be highlighted in the sequence diagram
(see Figure 15-35).

Figure 15-35 UML Sequence Diagram for Trade 6

To verify the amount of time spent in the login method, move the mouse cursor
over the light red squares in the bar on the left side of the Sequence Diagram
view. It is definitely less than before - and the light red square also indicates that
this performance bottleneck has been resolved successfully.

Tip: If the red squares don't show up in your sequence diagram, use the Zoom
in the diagram smarticon in the upper right corner of the diagram.

 Chapter 15. Development-side performance and analysis tools 885

15.3 IBM Page Detailer
IBM Page Detailer is a browser-side tool to measure performance of a Web
application. While the Profiler discussed in the previous sections supports
analysis of the execution of the application on the server, the Page Detailer
collects most of its useful data at the socket level to reveal the performance
details of items in the Web page, from the client’s (browser’s) perspective. It is
also useful for measuring the incremental impact of changes in a Web
application.

Page Detailer allows you to look at how and when each item is loaded in a Web
page. Analyzing this data allows you to identify the areas where performance
could be improved. The user’s perception of performance is determined based
on the time to display pages, so measuring and analyzing this data will provide
insight into the user’s experience of your application.

15.3.1 Overview
IBM Page Detailer is a graphical tool that enables Web site developers and
editors to rapidly and accurately assess performance from the client's
perspective. IBM Page Detailer provides details about the manner in which Web
pages are delivered to Web browsers. These details include the timing, size, and
identity of each item in a page. This information can help Web developers,
designers, site operators and IT specialists to isolate problems and improve
performance and user satisfaction. Page Detailer can be used with any site that
your browser can access.

Page Detailer is a separately downloadable product that can be obtained from
IBM alphaWorks at:

http://www.alphaworks.ibm.com/tech/pagedetailer

There are two versions available:

� Evaluation version: This version is for free but does not support all features.

� Pro version: This version must be licensed for a small fee and contains the
following additional features:

– Full support for HTTPS (SSL) traffic
– Saving and restoration of captured data
– Ability to add/edit one's own notes for captured pages and items
– A find facility for working with text

The supported platforms for Page Detailer are Windows 2000 and Windows XP.

The Page Detailer can monitor all HTTP and HTTPS requests originating from
the machine where it is running. Thus it can be used to measure performance for

886 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.alphaworks.ibm.com/tech/pagedetailer

Web applications running either locally or remotely, on either WebSphere
Application Server or IBM Rational Application Developer V6.0 or any other Web
site or application. Hence the Page Detailer may be used at any time during the
project development cycle, from coding through to production support. Note that
when analyzing the performance of non-production environments, differences in
the production environment topology and configuration could result in differences
in the measured performance results.

IBM Page Detailer gathers the following information:

� Connection time
� Socks connection time and size
� SSL connection time and size
� Server response time and size
� Content delivery time and size
� Delays between transfers
� Request headers
� Post data
� Reply headers
� Content data
� Page totals, averages, minimums, and maximums

For each page that is accessed, a color-coded bar chart of the time taken to load
the page items will be generated. The length of a particular bar gives a good idea
of the relative time spent in loading that item, as compared to the whole page.
You will see that in some cases, items of a page may be loaded in parallel. This
will appear in the chart with bars that overlap. The information that is captured by
the Page Detailer includes page size as well as sizes of all other items loaded by
the browser.

Different colors in the bar indicate how the time was spent.

� Page Time (Purple)

The time taken to load all the components of a page.

� Host Name Resolution (Cyan)

The time spent to resolve the IP address of the host.

� Connection Attempt Failed (Brown)

The time taken to receive an error when a connection attempt is made.

� Connection Setup Time (Yellow)

The time taken to open a socket connection. If a SOCKS server is being
used, this is the time to open a socket connection from the browser to the
SOCKS server only.

 Chapter 15. Development-side performance and analysis tools 887

� Socks Connection Time (Red)

The time taken to open a connection from a SOCKS server to the remote site.

� SSL Connection Setup Time (Pink)

This is the time taken to negotiate an encrypted connection between the
browser and the remote site, once a normal socket connection has been
established.

� Server Response Time (Blue)

This is the time from the browser’s request to the receipt of the initial reply,
after all the communications setup has been completed. Large responses are
broken down into smaller components (packets). The server response time
only measures the time to receive the first one.

� Delivery Time (Green)

The time taken to receive all additional data that was not included in the initial
response.

An example of a chart produced with Page Detailer is provided in Figure 15-36.

Figure 15-36 Page Detailer Chart view

To obtain more detailed information about a particular HTTP request,
double-click the appropriate colored bar or the icon in the chart. This will display
a text viewer as shown in Figure 15-37 on page 889. It includes information
about timings, sizes, header, etc. You can add your own notes and save the file
for comparison. This feature is available only in the Pro version.

888 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 15-37 Page Detailer Events

In addition to the Chart view, it is also possible to view more details of all HTTP
requests using the Details view. This can be seen by selecting the Details tab at
the bottom of the window (see Figure 15-38).

Figure 15-38 Page Detailer Details view

 Chapter 15. Development-side performance and analysis tools 889

15.3.2 Important considerations
Some important considerations while taking measurements are as below:

� Impact of network delays

Many problems may not be evident when accessing a server on a local
network, but may become apparent when accessing the site remotely,
particularly when using a modem connection. On the other hand, you can
minimize the effect of external network delays by directly connecting on the
Server’s LAN. This will allow you to isolate the performance impact of a
change made to the Web page.

� Browser cache

Disabling browser cache helps in getting repeatable results. However you
could also check the performance from a user’s perspective by enabling the
browser cache and comparing both results.

� Packet loss

Packet loss can happen and get corrected in the underlying TCP/IP layers.
This is invisible to the Page Detailer. Packet loss manifests itself as
inconsistent time measurements in Page Detailer. You can take a series of
measurements at different times to factor it out.

15.3.3 Key factors
Some of the key factors that influence the time to load a Web page in a browser
are:

� Page size.

� Number, complexity, and size of items embedded in the page.

� Number of servers that need to be accessed to retrieve all elements, and their
location and network connectivity.

� Use of SSL (this introduces an extra overhead).

The Page Detailer will help you to identify when one of these problems is
affecting some or all of your application. It will also help to identify problems such
as broken links and server timeouts.

Some of the strategies that can be used to improve performance and resolve
problems you have identified include:

� Minimize the number of embedded objects. Avoid the excessive use of
images in particular. In cases where there is a standard header, footer, or side
menu on every screen, consider the use of frames so that common elements
do not have to be downloaded every time.

890 WebSphere Application Server V6 Scalability and Performance Handbook

� The browser will typically retrieve multiple items in parallel, in the order in
which they appear in the HTML page that it receives. Hence sequencing of
the items so that downloads for larger objects are started early can reduce
the total time required to display the page, and avoid the user having to wait
for a long time for the last element(s) to be retrieved.

� Ensure that caching is being used effectively. Often the same images are
used multiple times on the same page. If there are two references to the
same image in close proximity to each other in the HTML source, the browser
may encounter the second reference before the HTTP request that was
initiated to download the first reference has been completed. In this case the
browser may issue another request to retrieve the image again. This can be
avoided by pre-loading frequently used images multiple times early, or by
structuring the generated pages so that such URLs do not appear
consecutively.

� Minimize the use of SSL where possible. For example, some content such as
images may not need to be secured even though the application as a whole
needs to be secure.

� Try to avoid switching the user to an alias server name during the page load.
This will help the browser to reduce the look up time and possibly avoid a new
connection.

15.3.4 Tips for using Page Detailer
Here are a few helpful tips to analyze the performance data shown by Page
Detailer. A sample analysis, with comments, is shown in Figure 15-39 on
page 892.

 Chapter 15. Development-side performance and analysis tools 891

Figure 15-39 Page Detailer Sample Analysis

� A summary of above information and the meaning of each icon and color can
be obtained by using the menu View -> Legend. This displays the window
shown in Figure 15-40.

Figure 15-40 Page Detailer Legend

Page size 122.1 KB -- should
generally be <= 64K
Consider compressing HTML
files

53 items requested -- should
generally be <= 20
Considerable overhead to
request/respond/deliver
Consider consolidation of
items where possible

Inconsistent server
response time

 (0.2-2.0 seconds)
Objective is

 0.5 seconds

892 WebSphere Application Server V6 Scalability and Performance Handbook

� Use a separate browser instance to collect data from related Web pages in
one file. This allows for easy retrieval of performance data of related Web
pages for comparison. Please note that you can save your work only in the
Pro version of the Page Detailer.

� You can select the columns to display in the Details view from the context
menu (obtained by right-clicking). You can also choose to display the column
as a graph if it contains a numerical value.

� You can move the vertical bar and make room to add new columns on the left
hand side of the window as shown in the Figure 15-41 and Figure 15-42 on
page 894.

Figure 15-41 Moving the separator and adding a new column

 Chapter 15. Development-side performance and analysis tools 893

Figure 15-42 Column Definition

15.3.5 Reference
� The article “Design for Performance: Analysis of Download Times for Page

Elements Suggests Ways to Optimize” at:

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/pe
rform.html

� The Page Detailer Web site at IBM alphaWorks:

http://www.alphaworks.ibm.com/tech/pagedetailer

Tip: If it seems that Page Detailer is not collecting your browser interactions,
try to navigate a little bit slower (there’s a delay between the browser showing
the page and Page Detailer capturing its content). The other point you must be
aware of, is that Page Detailer installs itself configured for Microsoft Internet
Explorer and several versions of Netscape browsers. If you want to use
another browser, you need to check the documentation to find out, how to set
it up.

894 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/perform.html
http://www.alphaworks.ibm.com/tech/pagedetailer

Chapter 16. Application development:
best practices for
application design,
performance and scalability

This chapter discusses best practices for developing WebSphere Application
Server-based applications.

16

© Copyright IBM Corp. 2005. All rights reserved. 895

16.1 Introduction
This chapter discusses best practices for designing and developing
high-performance WebSphere Application Server based applications.

Before you start reading, you should be aware that the “best” in best practices is
situational. There are certain situations where design decisions that are contrary
to the “best” practices listed below are actually good. Just keep in mind that there
are always several different factors that lead to a specific design decision, so
being clear about the factors contributing to the decision is key.

We use the Model View Controller (MVC) paradigm as a basis for all design
guidelines, because this common architectural concept is used in nearly all
J2EE-based applications running on an application server. Figure 16-1 briefly
describes the MVC-architecture: the Web-tier controller receives each incoming
(HTTP) request and invokes the requested business logic operation in the
application model. Based on the results of the operation and state of the model,
the controller then selects the next view to display. Finally, the view renders the
contents of the model. It accesses enterprise data through the model and
specifies how that data should be presented. It is the view's responsibility to
maintain consistency in its presentation when the model changes.

The main advantage is the clear separation between the different design
concerns: data persistence, business logic, presentation and control. This means
that changes to the presentation (view) of the data are limited to this layer; the
other layers (business logic, control and data persistence) remain unaffected.
The same applies to changes in all other layers. Another advantage is that this
separation facilitates parallel application development.

Figure 16-1 Model View Controller architecture

Client Server

Request

Response

Browser

Model

Controller

View

Instantiate and
Control

Access

forward/
include

896 WebSphere Application Server V6 Scalability and Performance Handbook

Nevertheless, even with a good architecture, it is still possible to have a bad
design. Therefore, we outline several different design alternatives that are based
on this model. For each specific layer, we focus on existing design patterns,
rather than “reinventing the wheel,” but also cover new technologies that are
available in IBM WebSphere Application Server V6. Throughout this chapter, we
especially focus on performance-related aspects. In general, the best practices
should help you in designing a scalable, high-performing application that can
also be run on a highly available WebSphere cluster. In addition, we also cover
some techniques and strategies that will assist you in optimizing the performance
of your current application. However, they will not compensate for a poorly
designed or architected application.

There can be a number of reasons for a poor application design, with limited
scalability or several performance bottlenecks. These include a lack of focus on
performance during requirement analysis and application design, a limited
awareness of performance issues by the developers, or a desire to produce an
elegant, extremely flexible or highly object-oriented solution. It is important that
performance targets be set at the beginning of the project and communicated to
all team members involved in development. The implications of these targets on
development work should also be analyzed early in the development cycle and
made known. Please note that there is often a trade-off between
implementations that are elegant, flexible, easy to read and maintain, and those
that offer higher performance.

In general, it is a good idea to verify as soon as possible that the performance
expectations are met. In general, a load-performance test is a good way to find
possible architecture and design defects. So it might make sense to develop and
then load-test a prototype in a very early stage of the project, just to verify your
design decisions. Always keep in mind that design changes in a later phase of
the software life cycle are very, very expensive! Therefore, ongoing performance
testing activities should be undertaken throughout the whole project life cycle to
ensure that the performance requirements are met.

To optimize this specific testing of performance under simulated loads using a
tool such as Rational Performance Tester 6.1, OpenSTA, or Apache JMeter is
recommended. The tool can also provide insight as to where performance
optimization work should be targeted.

If your application is already in or near production and you notice performance
problems, the following chapter also contains useful information about, for
example, caching technologies or other performance optimizations IBM

Note: For more information about stress testing an application, refer to 17.1,
“Testing the performance of an application” on page 940.

 Chapter 16. Application development: best practices for application design, performance and scalability

WebSphere Application Server V6 offers to improve your application
performance, without changing the overall application design. In these cases,
profiling tools such as those included with IBM Rational Application Developer
V6.0 and described in Chapter 15, “Development-side performance and analysis
tools” on page 839, can also be extremely useful. These tools indicate which
parts of the code are most frequently used, and also where the majority of the
execution time is spent. Typically, the majority of the execution time will be spent
in a minority of the code, as suggested by the 80/20 rule: 80% of the execution
time will be spent on 20% of the code. In many cases, the ratio may be even
higher, such as 90/10 or more. Although it is important to be aware of best
practices when performing all development work, extra care should be taken to
optimize the most frequently used code sections.

More information about server-side tools for analyzing usage patterns of
components of an application such as servlets and EJBs can be found in
Chapter 14, “Server-side performance and analysis tools” on page 769.

16.2 Presentation layer
The presentation layer is responsible for rendering the view, meaning the
graphical representation of the user interface. In this section, we briefly discuss
several different approaches of generating the response that describes the user
interface, focusing on performance aspects.

Figure 16-2 Presentation layer

Presentation
Layer

Client Server

Request

Response

Browser

Model

Controller

View

Instantiate and
Control

Access

Presentation Layer

forward/
include

898 WebSphere Application Server V6 Scalability and Performance Handbook

16.2.1 JavaServer Pages
JavaServer Pages (JSP) technology is probably the best supported and best
known presentation technology for Web applications available. JSPs were
introduced to provide a clear separation between Java code of the application
and the view, meaning the layout of the output pages. With the rollout of custom
tag libraries, the JSTL, and the new JSP 2.0 features, it is becoming increasingly
easy to build JSPs that do not require any Java code. There is also broad tooling
support, including debugging support, for JSPs available in most of the
development environments like WebSphere Studio, that makes it much easier for
developers to work in a WYSIWYG way. There are several frameworks available,
such as Struts, that use JavaServer Pages as their base for rendering their view.

JavaServer Pages usually offer the best performance of all technologies
discussed in this part. Therefore, JavaServer Pages based frameworks should
be considered first when building high-volume Web sites. Simple Web
applications built on JSPs and servlets are faster than more complex frameworks
like Struts or JavaServer Faces which will be covered later, but these have other
significant advantages; for example, they simplify a good application design and
are easier to maintain.

Since servlets and JavaServer Pages (JSPs) can include Java code, many of the
issues discussed in other sections of this chapter are relevant to JSPs as well,
especially the best practices for servlets, which are covered in the controller
section of this chapter, 16.3, “Control” on page 907, and which are also
applicable for JSPs. However, there are some particular issues that need to be
considered when developing JSPs:

� Use composed JSPs to optimize caching and code re-use

JSPs that are composed of several other JSPs on one hand frequently use
the <jsp:include> tag and therefore offend the best practice listed below, but
on the other hand, the different components can easily be cached and
re-used. So the use of caching can reduce the performance disadvantages of
compositional JSPs, while facilitating the development of complex pages.
WebSphere Application Server provides a functionality called Dynamic
caching service to cache JSPs, thereby making it possible to have a master
JSP which includes multiple JSP components, each of which can be cached
using different cache criteria. For example, think of a complex portal page,
which contains a window to view stock quotes, another to view weather
information, and so on. The stock quote window can be cached for five
minutes, the weather report window for ten minutes, and so on.

� Minimize the use of the <jsp:include> tag (or try to cache JSP components
as mentioned in the previous list item about using composed JSPs)

Each included JSP is a separate servlet.

 Chapter 16. Application development: best practices for application design, performance and scalability

� Use <jsp:usebean> only to obtain existing objects

When a <jsp:usebean> tag is encountered and an existing Java bean object
with the appropriate name does not exist, a new one is created. This is done
by a call to Beans.instantiate(), which is an expensive operation because
the JVM checks the file system for a serialized bean. Hence, it is
recommended that the <jsp:usebean> tag only be used to obtain a reference
to an existing object, rather than for creating a new object. When referencing
a bean, you can use the following scopes:

– page: The bean is valid until the page sends the response to the user.

– request: The bean is valid from any JSP page processing the same
request. You can use the request object to access the bean.

– session: You can use the bean from any JSP page in the same session.

– application: The bean is valid in any JSP in the same application.

Use the page scope whenever possible:

<jsp:useBean id="trainBean" scope="page"/>

� Do not create HttpSessions in JSPs by default

In accordance with the Java 2 Enterprise Edition (J2EE) specification, when
executing a JSP, a session object is normally created implicitly if one does not
already exist. However, if the session is not required, creation can be avoided
by the use of the <%@ page session="false" %> directive.

� Do not use SingleThreadModel

Avoid the use of the SingleThreadModel for servlets, since it permits two
threads to execute concurrently in the servlet's service method. The servlet
container will handle SingleThreaded servlets either by synchronizing access
to a single instance of the servlet, or by maintaining a pool of servlet
instances and dispatching each new request to a free servlet. This reduced
concurrency can significantly reduce the throughput, and consequently
increase the response times experienced by users. If a servlet has shared
variables that need to be protected, it is preferable to do so using
synchronization of the relevant accesses. The SingleThreadModel is
effectively equivalent to synchronizing the servlet’s entire service() method.

� Use the servlet.init() method

The javax.servlet.Servlet.init() method can be used to perform
expensive operations that need to be performed once only, rather than using
the doGet() or doPost() methods of the servlet. By definition, the init()
method is thread-safe. The results of operations in the HttpServlet.init()
method can be cached safely in servlet instance variables, which become
read-only in the servlet service method. A typical use for this would be to
cache any JNDI lookups.

900 WebSphere Application Server V6 Scalability and Performance Handbook

� Use the HttpServlet destroy() method

As you used the init() method for expensive operations and to cache some
data as JNDI lookups, you should use the destroy() method to release these
resources to avoid memory leaks. This method gives you an opportunity to
clean up any resources that are being held (for example, memory, file
handles, threads) and make sure that any persistent state is synchronized
with the servlet's current state in memory.

For more information about JavaServer Pages, refer to the JavaServer Pages
2.0 Specification, found at:

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

16.2.2 Struts
Struts is perhaps the most widely known framework for building Web
applications, using the JSP approach as a foundation and enhancing it with a
powerful custom tag library that implements the concept and the advantages of a
Model-View-Controller based architecture. It is an open source framework that is
part of the Jakarta project, which is sponsored by the Apache Software
Foundation. Struts, like JavaServer Faces (see 16.2.3, “JavaServer Faces” on
page 903), is an attempt to apply the Model-View-Controller (MVC) architectural
pattern to Web application development. The Struts framework includes several
pieces which make up the controller component of its applications, such as a
central servlet (the ActionServlet) and developer-defined request handlers.
Struts comes with a JSP UI tag library which supports the view component of its
applications. The view of a Struts application may also make use of JSTL, XSLT,
and Tiles, among other technologies. The application model is made up of Java
beans, created by an application developer, which can make use of a variety of
technologies, such as JDBC or EJBs. Struts introduces the concept of actions,
which are used as request handlers when a special URI is used for form
submission. These actions are responsible for processing form data (beans),
possibly creating new form beans, and redirecting to a new JSP page. These
actions act as a developer-defined intermediary between the Struts ActionServlet
and the application model.

 Chapter 16. Application development: best practices for application design, performance and scalability

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

Figure 16-3 Struts architecture overview

In general, the Struts Framework has proven its performance and scalability. It is
widely used and it also enforces the Model-View-Controller architecture, which is
a big advantage compared to JSP-servlet based applications. Struts makes
heavy use of JSP tag libraries, which results in a small performance overhead.
This overhead can be easily reduced by using the dynamic caching framework of
IBM WebSphere Application Server V6, which now includes support for the
Struts framework, including tiles. For further information about this, see 16.2.5,
“Caching for the presentation layer” on page 907 and 10.2.3, “Caching Struts and
Tiles applications” on page 510.

For design and performance reasons, the following guidelines are
recommended:

� Choose JavaServer Pages instead of XSLT for rendering the view

If you decide to use the Struts framework, you should try to use JavaServer
Pages instead of XSLT to generate the user interface, whenever possible, for
performance reasons.

� Do not use form beans to transfer data to the business logic tier

Although it will generate a small performance overhead to copy the data into
a custom created data transfer object, you should not use the view-helper
class (form bean) to pass the data to the business logic. The use of form
beans for this purpose creates a dependency on the Struts framework that
you do not want to force into the Business Process layer. Therefore, try not to
use form beans for data transfer to provide a clean separation between the
layers and to avoid data conversion at the business logic layer. You might
also want to use reflection to easily copy the data between the two objects.

Presentation LayerClient Server

Request

Response

Browser

Model

JDBC, EJBs

Form
Bean

Controller

ActionServlet
Action

View

JSPs, UI Tags

902 WebSphere Application Server V6 Scalability and Performance Handbook

� Use servlet/controller best practices to implement action handlers

Actions are multi-threaded like servlets. They communicate with the model,
invoke business logic, and return the model objects to the view. Finally, they
perform tasks very much like controller servlets. Therefore, you need to follow
all of the best practices associated with servlets (see 16.3, “Control” on
page 907).

For more information about the Struts Framework, go to:

� “Struts, an open-source MVC implementation”

http://www.ibm.com/developerworks/ibm/library/j-struts/

� Struts home page

http://struts.apache.org/

16.2.3 JavaServer Faces
JavaServer Faces (JSF) technology is a server-side user interface component
framework for Java technology-based Web applications, which is now generally
available in WebSphere Application Server V6. One of the greatest advantages
of JavaServer Faces technology, compared to standard JavaServer Pages, is
that it offers a very clean separation between behavior and presentation.

Figure 16-4 JavaServer Faces architecture overview

This means that the look (rendering) of a User Interface (UI) component and its
feel (behavior) are now split up, which makes it possible to generate different

Presentation Layer
Client

JSF Web Application
Request

Response

Browser

JSF Libraries/Tags

Validators

Business
Logic

Managed JavaBeans

Events

Component
Tree

JSPs with JSF UI

XML Configuration FileFaces Servlet

Model

 Chapter 16. Application development: best practices for application design, performance and scalability

http://struts.apache.org/
http://www.ibm.com/developerworks/ibm/library/j-struts/

layouts (while implementing multiple renderers) for one and the same UI
component. You can therefore easily add support for multiple different clients to a
JavaServer Faces application. Another important goal of JavaServer Faces
technology is to deliver, compared to, for example, JavaServer Pages, a richer
and more responsive UI experience. JavaServer Faces components
automatically provide their own event handling, support client- and server-sided
validation and maintain their UI state on the server. Page navigation, data
conversion and internationalization support are also included in the JavaServer
Faces framework. This is done by adding a backing bean to each page of the
application. A backing bean is a Java bean that defines all properties and
methods from the associated UI components used on this page.

In general, the JSF Framework is very powerful and easy to use. One reason is
that the JSF’s reference implementation includes an extensive JSP tag library;
there is also very good tooling support from several different products, such as
IBM Rational Application Developer V6.0. Even though the reference
implementation demonstrates JSF with JSP, it is important to realize that JSF is
not exclusively tied to the JavaServer Pages technology.

Despite all the advantages of the new JavaServer Faces technology, there are
also a few drawbacks:

� JavaServer Faces is a relatively new technology, so it has not proven its
performance and stability in very large projects.

� First performance tests indicate that although the faces framework is more
powerful, it is just a little bit slower than JavaServer Pages or Struts, because
of its higher level of abstraction and the more complicated life cycle. When a
client makes a request for a page containing JSF UI components, the
JavaServer Faces implementation must perform several tasks, such as
validating the data input of all components in the view and converting input
data to types specified on the server side.

The performance and scalability of the JavaServer Faces Framework really
depends on the implementation of the UI components you are using. If, for
example, one UI component stores the state of thousands of table rows in its
backing bean and therefore takes one minute to render the view, you cannot
blame the JavaServer Faces architecture for this. So if you add custom UI
components to your application, always check if they are optimized for
performance and scale well.

� Control the amount of data that is stored in your backing beans.

JavaServer Faces implementations often provide very powerful UI
components that make it easy for you to display data from your back end on
the Web. Make sure that the amount of data that should be rendered does not
get too much. For example, do not misuse a UI component to fetch a whole
database table and store it in the backing bean, just to display some entries.

904 WebSphere Application Server V6 Scalability and Performance Handbook

This might work well for a small number of users, but neither scales well nor
satisfies performance expectations for a larger number of users.

For more information, please refer to the following sources:

� IBM Redbook WebSphere Studio 5.1.2 JavaServer Faces and Service Data
Objects, SG24-6361.

� Integrating Struts, Tiles, and JavaServer Faces document at:

http://www.ibm.com/developerworks/java/library/j-integrate/

16.2.4 XML/XSLT processing
With the help of the Extensible Stylesheet Language Transformation (XSLT),
which is a part of the XSL standard, you can easily transform any XML-based
document into another. In the presentation layer, this technology is usually used
to generate an XML-based document that is recognized by a browser, like HTML,
XHTML or other XML-based documents that can be understood by other client
devices such as handheld devices. To do this, XSLT first parses the source XML
document to determine which parts have to be transformed. The parts that
should be transferred, and the manner of transformation, are pre-defined in one
or more templates. So if a matching part is found, XSLT will transform this part of
the source document into the resulting XML document. All other parts that do not
match any of the templates remain unmodified and are simply copied into the
result.

Figure 16-5 Server-sided XSLT processing

In general, the XSLT transformation can take place either on the application
server or in a browser/client that supports XSLT. We only cover the server-side
XSLT processing, because XSLT processing on the client is not possible in most
cases due to security reasons, network traffic, or limited browser support. A valid

Browser Web Tier

HTML XSLT
Processor

XSLT Stylesheet

XML Data

Presentation
Data

Presentation Layer

Model

Server

 Chapter 16. Application development: best practices for application design, performance and scalability

http://www.ibm.com/developerworks/java/library/j-integrate/

compromise could be to implement a servlet that checks the client for an
XML-enabled browser and returns the XML directly to the client to get client-side
XSLT. Server-side XSLT is only done when the client is not XML-enabled.

Server-sided XSLT processing
The use of XML/XSLT processing on the application server to generate the view
of your application implies a lot of processing overhead and, from a performance
point of view, it is therefore only recommended in cases where you really have
multiple presentation output types that must be supported. Performance tests
done at IBM comparing the relative speed of XSL and JSP show that in most
cases, a JSP will be several times faster at producing the same HTML output as
an equivalent XSL transform, even when compiled XSL is used. While this is
often not an issue, in performance-critical situations, it can create problems.

This does not mean that you should never use XSL, but it might not be the
recommended way to generate the view for high volume Web sites. However,
there are certain cases, especially in the pervasive computing sector, where
XSLT might be the best/easiest solution for rendering the views. Here the power
and the abilities of using XSL to support multiple mobile devices countervail the
processing overhead by far. But this kind of requirement is most often the
exception rather than the rule. If you are using XSLT just for producing the HTML
rendering for each page, then this is overkill and will cause more problems for
your developers than it will solve.

If you decide to use XSLT processing on the server, you should use the following
best practices to minimize the performance impact:

� Use XSLTC, the compiled version of XSLT, whenever possible

XSLTC directly compiles the stylesheet into a Java class and is therefore the
much faster alternative. It is about three times faster than the XSLT
interpreter.

� Keep XSL stylesheets as simple as possible; use XML Data Transfer Objects

It is a common best practice to generate a value object to transfer the data
between the business logic layer and the presentation layer. The same
should be done using XSLT. The business logic should return a data transfer
object (or SDO) that contains the XML representation of the data needed in
the view. There is no need to have any complicated logic in the XSL
stylesheet to generate or collect the XML data that is needed for the view. The
generation of an XML data transfer object really simplifies the stylesheet
processing and greatly improves performance.

906 WebSphere Application Server V6 Scalability and Performance Handbook

16.2.5 Caching for the presentation layer
Server-side caching techniques have long been used to improve Internet
performance of Web applications. In general, caching improves response time
and reduces system load. Since the introduction of dynamic caching,
WebSphere Application Server is also able to cache dynamic content that
changes from time to time. Although dynamic caching can be added later to
nearly any Web-based application, because the programming model is
unaffected, it requires a proactive and effective invalidation mechanism to ensure
the freshness of the content. To maximize the performance improvement, it might
also make sense to decompose the pages into several small cachable units (see
JSP best practices in 16.2.1, “JavaServer Pages” on page 899). Therefore, you
should plan to integrate the IBM dynamic caching technology as soon as
possible in your development life cycle. Although JSP/servlet caching is an IBM
extension, and is not part of the current J2EE specification, the application
changes for invalidating cache entries are marginal. Therefore, the application is
still portable and compliant with the J2EE specification, but still benefits from the
performance optimizations provided by the dynamic cache. The cache policy
itself is specified declaratively and configuration is through XML deployment
descriptors.

IBM WebSphere Application Server V6 now provides support for the following
presentation technologies:

� JavaServer Pages/servlets
� Struts and Tiles

For further information about Dynamic Caching, look at Chapter 10, “Dynamic
caching” on page 501.

16.3 Control
Whatever the presentation technology, requests for domain state and behavior
will be done through a Controller object defined for the particular presentation
requirements.

 Chapter 16. Application development: best practices for application design, performance and scalability

Figure 16-6 Control

For Web-based application front ends, servlets are usually used to implement
this work. If you are using a framework, like Struts or JavaServer Faces,
controller objects based on Java servlets are already defined to handle the
incoming client requests. These frameworks provide a clean separation between
the presentation and the control objects so if you decide not to use one, you must
take care of this yourself.

For server-based applications that support “fat clients,” meaning clients that have
to be installed on every client machine, the implementation of the controller
object depends on the communication protocol that is used. If you are using
HTTP or HTTPS, for example SOAP/HTTP or SOAP/HTTPS, to communicate
with the application server, you might also want to use Java servlets to control
incoming requests. If RMI/IIOP or JMS is your preferred protocol to send
requests to the application server, Enterprise JavaBeans, more precisely EJB
session beans, are the best fit to handle incoming RMI/IIOP traffic or EJB
message-driven beans for JMS.

Irrespective of the technology that is used to control the incoming requests, the
following guidelines should be observed:

� Keep controller objects as simple as possible

The controller should neither contain any business logic, nor generate any
kind of presentation. Its purpose is just mediation between the presentation
and the business logic layer and conversion from one interface to another.

� Abstract Parent Class for all servlets

Consider creating an abstract parent class, using the template inheritance
pattern, for all your controller servlets (and Struts action handlers) to realize a

Presentation
Layer

Client Server

Request

Response

Browser

Model

Controller

View

Instantiate and
Control

Access

Redirect

Presentation Layer

908 WebSphere Application Server V6 Scalability and Performance Handbook

common behavior. This abstract class is a good place to put standard code
that you want executed in all servlets, such as tracing, logging or additional
security.

� Avoid the "killer" servlet

Use multiple servlets instead of one massive one. This avoids undue routing
logic and also allows you to configure J2EE security for individual servlets.
This guideline also simplifies maintenance and team development process.

16.3.1 Maintaining state: stateful session beans versus HTTP session

Because the protocols used for communication between the client and the
application server are usually based upon a request/response model and
therefore stateless, the application developer has to take care of the state
himself. For example, if a request is submitted from the browser to the
application server, the server will just receive the request, process it and send a
response back. After this transaction is complete, there is no way for the protocol
to hold state information about the transaction itself. Therefore, this state
information has to be stored either on the client or on the server. If you decide to
store this information on the application server, another problem arises, because
usually all resources are shared and pooled. Therefore, you never know which
servlet or session bean receives your next request to store the state there. The
following section compares the two most common approaches for storing
session data to maintain state on the server: stateful session beans and the
HTTP session.

In general, HTTP sessions might better fit your needs if you are building systems
that only require a Web front end.

Stateful session beans usually simplify application development if you have to
support an EJB client or you need a stateful object that is transactional aware.

HTTP session
In a Web application, state information relating to each client is typically stored in
an HTTP session, which is identified by some unique identifier that is associated
with an HTTP cookie. In an environment with a single application server, session
information can be stored in-memory by IBM WebSphere Application Server V6.

However, it is more common to use a clustered environment with multiple
application servers to provide scalability and improve fault tolerance. In this
scenario, session information needs to be made available for multiple or even all
cluster members. In WebSphere Application Server V4.x and earlier, this was
achieved using a session persistence database that was available to all clones in
a server group. In addition to this, a new mechanism for memory-to-memory
replication has been introduced in IBM WebSphere Application Server V5.0.

 Chapter 16. Application development: best practices for application design, performance and scalability

Please refer to 1.4, “Managing session state among servers” on page 24 and
“Session persistence considerations” on page 78 for more information about
session management, database session persistence and memory-to-memory
replication.

The following guidelines are important to ensure performance and scalability
while using HTTP sessions:

� Keep HTTP sessions small

HTTP sessions should only be used to store information about application
state; it is not a data cache! You should always try to minimize the amount of
data stored in the session. Since the session must be shared, it must be
serialized, which also involves serializing all objects that are reachable from
the session. Serialization in Java is an expensive operation. If persistent
sessions are used, the serialized session data must be stored in the database
(usually as a BLOB), which introduces further overhead. These operations of
storing/recovering state, which are based on object serialization, can be
improved by using Java externalization. Externalization may be up to 40%
faster than serialization. Nevertheless, in order to reduce the amount of data
stored in the session, avoid storing large, complex object graphs in it.
Sometimes, it may be beneficial to store objects in the session, although they
can be recreated or retrieved to avoid the overhead of doing so. In these
cases, consideration should be given to making these attributes transient. If
this is done, you have to ensure that the application code will handle the
transient attributes having null values. Alternatively, the readObject() method
of the object could be overwritten to recreate the transient data when the
object is deserialized. Again, Java externalization can be used to eliminate
introspection and improve performance.

� Always invalidate unused HTTP sessions

The session object can be garbage collected after it has been invalidated.
This can be done programmatically or after a predefined time-out period
during which the session was not accessed. To allow the memory used by the
session to be reclaimed as early as possible, it is best to explicitly invalidate
the session when finished with it rather than waiting for the time-out. This may
require the introduction of logout functionality into the application, and training
for the users to make use of this functionality rather than simply closing the
browser.

� Do not cache references to HTTP sessions

References to the session should always be obtained from the current servlet
context as required; they should not be cached by the application. This
ensures that the session objects can be reclaimed when the session is
invalidated. Another reason for doing this is that a session reference is not
guaranteed to be valid outside of the context of a specific server interaction.

910 WebSphere Application Server V6 Scalability and Performance Handbook

� Take care when using HTML frames

Special care must be taken when using HTML frames when each frame is
displaying a JSP belonging to a different Web application on the same server.
In this case, a session should only be created and accessed by one of the
pages. Otherwise, although a session will be created for each page, the same
cookie will be used to identify the session. This means that the cookie for
each newly created session overwrites the previous cookie, and only one of
the sessions will be accessible. The remaining sessions will be created but
will be inaccessible and thus will consume memory until the time-out interval
is reached. If the Web application was split into multiple applications in order
to improve scalability, consider combining all of the Web applications into a
single one, and using clustering to achieve the required scalability.

There are alternatives to the use of sessions, besides the stateful session beans,
that may be appropriate in some situations:

� Hidden form fields or cookies

In some cases, use of the session can be avoided by using hidden form fields
or cookies to store data. Note that there is a 4 KB limit on the total size of all
cookies for a particular site. Also, be aware that the use of hidden fields
increases the page size and the data can be seen by the user when viewing
the HTML source.

� Defer persistence of session data to the business logic

Data can also be persisted into a database by the business logic. By using
native data types instead of serialized BLOBs, it is often possible to achieve
better performance. It is also possible to read and write only the data that has
changed, rather than the entire data set as is normally the case with BLOBs.
The application must remove data when it is no longer required (after a
time-out period). This can be implemented by placing an object that
implements the HttpSessionBindingListener interface into the session, and
placing the clean up code in the valueUnBound() method.

Stateful session beans
Stateful session beans are, unlike stateless session beans, not shared among
multiple clients. In addition, stateful beans are not pooled. A stateful session
bean is dedicated to one client for the life cycle of the bean instance, the client
just needs to store the reference to it. This allows you to store the state in
instance variables of stateful session beans for the life of the instance.

The following guidelines apply to stateful session beans:

� Remove stateful session beans when finished

Instances of stateful session beans have affinity to specific clients. They
remain in the container until they are explicitly removed by the client, or

 Chapter 16. Application development: best practices for application design, performance and scalability

removed by the container when they time-out. Meanwhile, the container might
need to passivate inactive stateful session beans to disk. This is overhead for
the container and constitutes a performance hit to the application. If the
passivated session bean is subsequently required by the application, the
container activates it by restoring it from disk. By explicitly removing stateful
session beans when finished with them, applications decrease the need for
passivation and minimize container overhead. To remove a stateful session
bean, simply use:

mySessionBean.remove();

� Keep the size of stateful session beans as small as possible

For stateful session beans, nearly the same size restrictions than for HTTP
sessions apply. They should only be used to store the application state. If
stateful session beans are used in a clustered environment, the replication
service responsible for maintaining state across the cluster is based on the
same technology as memory-to-memory replication of persistent HTTP
sessions, therefore the same performance/size impacts are encountered.

16.4 Business logic layer
The previous sections covered different technologies and approaches to render
the user interfaces and control incoming requests. The following section focuses
on the most important part, the business logic.

The business logic layer is the core of the application, it implements the business
process model that describes how work is performed. It is usually the part that
needs most investment during the analysis and design project phases, because
it contains lots of knowledge about how a business operates. This layer is
responsible for processing the incoming data and generating the desired results.
In this tier are the business objects and all the business rules necessary to
perform the client operations. The business logic can be implemented using a lot
of different technologies, such as Enterprise JavaBeans, Service Data Objects or
JavaBeans. In addition to these technologies, this tier could be implemented
using Web services, or even invoking a third-party Web service.

While designing this part of the application, you should focus on extensibility and
providing a flexible and not too fine-grained interface, that can be reused by
other applications. As a design guideline for the business logic interface, you
should have a closer look at the service-oriented architecture (SOA). SOA is a
flexible architecture that unifies business processes by structuring large
applications into building blocks, or small modular functional units or services.
Such a framework isolates each service and exposes only the necessary
declared interfaces to other services. The SOA model isolates aspects of an
application so that, as technology changes, services (components) can be

912 WebSphere Application Server V6 Scalability and Performance Handbook

updated independently, limiting the impact of changes and updates to a
manageable scope. Managing change is an important benefit of leveraging
component architectures and models. If not managed well, change can result in
the degradation of a modern Web application into unwanted complexity. A
comprehensive design pattern can bring much needed structure to Web
application development.

Even if you do not see the need for integrating your business logic into other
applications today, this may change in the future. The service oriented approach
will simplify the integration and implementation of a Web-services interface. The
idea of separating your business logic into different services will also help you to
define the granularity of the business logic interface. For example the methods
getLongValue() and getIntValue() do not make sense for a business service,
whereas transferMoney(fromAccount, toAccount, lAmount) does. The granularity
of the interfaces also has a big impact on the overall performance of the solution,
if they are too fine-grained, the communication and transactional overhead
increases dramatically.

16.4.1 How to implement the interface to the business logic
As already mentioned, the implementation of the interface to the business logic
greatly affects performance, scalability, extensibility, and maintainability of the
whole application. Therefore, the design and the technologies used for this
interface should be carefully evaluated.

We discuss the different approaches and technologies to implement this
interface.

EJB session beans and message-driven beans
Enterprise JavaBeans (EJB), more precisely Session Beans and
message-driven beans, allow developers to focus on writing the business logic
necessary to support their applications without having to deal with the intricacies
of the underlying middleware. The EJB container provides crucial services such
as transactions, security, naming and lays the foundations for scalability.

The following possibilities, based on Enterprise JavaBeans, exist to access the
business logic layer for both a Web based application or a pure Java client
application or applet.

� Facade (see “Facade” on page 915)

– Session facade

Note: If you want to learn more about SOA, go to

http://www.ibm.com/developerworks/webservices/newto/index.html

 Chapter 16. Application development: best practices for application design, performance and scalability

http://www.ibm.com/developerworks/webservices/newto/index.html

– Message facade

� EJB Command Framework (see “EJB Command Framework” on page 917)

Before we cover each of these concepts in detail, here are some general
guidelines for using Enterprise JavaBeans:

Enterprise JavaBean guidelines:
� Cache EJB references

Since EJBs are able to be accessed remotely, obtaining a reference to an
EJB involves a lookup process. This can take a relatively long time, and
hence caching the references obtained can improve performance on
subsequent lookup operations. Obtaining an EJB reference typically involves
the following steps:

a. Obtain an InitialContext instance.

b. Obtain a reference to the home interface of a particular EJB by looking up
the EJB via the initial context object and performing a narrow operation.

c. Obtain a particular EJB instance by executing the appropriate finder or
create method from the EJB home instance.

The calls to obtain an InitialContext instance and lookup of an EJB Home
instance (steps a and b) are expensive, and performance can be improved by
caching these objects. References to EJB homes may become stale, and
hence it is best to wrap accesses to EJB home methods with code that
refreshes stale references.

� Reduce remote method calls

Since EJBs are intended to be accessible remotely, calls to EJB methods are
implemented as remote calls even if the EJB exists in a container that shares
the same JVM as the Web container, which introduces some overhead. In
some cases, the overhead can be reduced by implementing one of the
approaches outlined below.

One of the key mechanisms to reduce EJB overhead is to minimize the
number of remote calls. In general, a servlet should make a single EJB
method call to a session bean to perform an operation. If required, this EJB
method can call other methods as required to perform more complex
operations. All access to entity bean EJBs should be performed through
stateless session beans. Session beans should be used to implement the
business logic, while entity beans should be used for data storage and
retrieval.

IBM WebSphere Application Server V6 is compliant with the J2EE 1.4
specification, which mandates support for EJB 2.1. The concept of a local
interface has been introduced for EJB 2.0. If local interfaces are used, the
overhead of serializing the parameters and transmitting them via RMI/IIOP

914 WebSphere Application Server V6 Scalability and Performance Handbook

(Remote Method Invocation/Internet Inter-ORB Protocol) is avoided.
Parameters can be passed by reference instead of value, avoiding the need
to copy them. In EJB 2.0, an EJB can have a remote interface, local interface
or both, although typically a particular bean will have either a remote or a local
interface. Since entity bean EJBs are normally accessed from session beans,
in most cases they will only need local interfaces.

� Reduce the number of transactions

In addition to the overhead associated with remote method calls, transaction
management provided by the EJB container can also introduce overhead.
Accessing entity beans from session beans can limit the impact of this by
reducing the number of transactions. In the deployment descriptor for EJBs,
the transaction type can be specified. This can be one of five values:
NotSupported, Supports, Required, Requires New and Mandatory. Set the
transaction type to NotSupported if no transaction is required.

� Use setEntityContext() method to cache data

The setEntityContext() method is only called once, during the creation of
each bean. So you can use this method to cache any data for the life of the
bean. Use the corresponding unsetEntityContext() method to release any
resource that you are holding in the bean, otherwise you will have this
resource held forever.

For more information about this topic please refer to “Entity beans” on
page 924.

16.4.2 Facade
The intent of facades is to provide a simple and unified interface to the otherwise
complex business model that lies behind it. By doing so, the dependencies
between the model classes and its clients is reduced. Less dependencies means
more freedom to adapt to new requirements. In conjunction with this pattern, the
Business Delegate pattern and the (Data) Transfer Object pattern are two other
design patterns that are usually used within the business layer.

 Chapter 16. Application development: best practices for application design, performance and scalability

Figure 16-7 Overview of Facade including business delegate and Data Transfer Object

� Business delegate

The Business delegate represents the interface between the presentation
layer and the business layer. It decouples the presentation logic from the EJB
tier by providing a proxy to the EJB tier services. The delegate takes care of
lower level details, such as looking up remote objects and handling remote
exceptions.

� Data transfer object

Data transfer object (DTO) design pattern (refer to EJB Design Patterns, by
Floyd Marinescu), also known as value object and transfer object. The idea is
to limit inter-layer data sharing to serializable JavaBeans, thus avoiding
remote references. This DTO can be created by the session facade or by a
builder object (according to the builder design pattern) on its behalf, in case
the building process is too complicated or needs validation steps.

We briefly describe the two different kinds of implementing a facade as stateless
session beans or message-driven beans in the following section. In most cases
you will want to use both, because both of them have their own unique
advantages particularly with regards to performance and scalability.

The reasons for using a facade are the following:

� Simple, flexible and unified interface to the business logic

� Reduce unnecessary network and transactional overhead

� Reduce unwanted dependencies and coupling between the layers

Client

Browser

Business
Logic Layer

View

Control

Data
Access
Layer

1

6

DTO

458

2

Fa
ca

de

7

3

Model

Bu
si

ne
ss

D

el
eg

at
e

Controller

View

Presentation Layer

Server

916 WebSphere Application Server V6 Scalability and Performance Handbook

Session facade
If you are using the session facade, the business layer provides the services to
clients via stateless session beans. Each stateless session bean should at least
have a remote interface, which is needed to enable load-balancing and failover
at the business logic layer. Stateless session beans are transactional aware,
scale well and are pooled in the EJB container.

The session facade is a synchronous way of accessing the business logic and it
should be used whenever immediate feedback is required. This kind of feedback
is in general required for read operations. For writing or updating the business
model, it might make sense to have a look at the messaging facade.

Message facade
If you have a detailed look at your business logic, there may be some
transactions that can be run asynchronously, for example a rental car
reservation, where you get a confirmation by e-mail. In these cases, where an
asynchronous call is sufficient, a message facade can improve the performance
and scalability of your application a lot. The message facade is implemented with
message-driven beans that also offer full transaction support. The
message-driven bean is not accessible through a remote or local interface. The
only way for an EJB client to communicate with a message-driven bean is by
sending a JMS message. The container delegates the message to a suitable
message-driven bean instance to handle the invocation. So try to use a message
facade for write/update operations where you do not need immediate feedback.

16.4.3 EJB Command Framework
The EJB Command Framework also implements a kind of facade to provide a
separation between the different layers. In contrast to the session facade, where
each of the session beans or rather the business delegate interfaces need to be
defined the same way on the different layers, the EJB Command Framework just
provides a unique interface for all business logic processes. The business
process that should be called and its corresponding data is encapsulated in a
Java bean, called command bean. This command bean is the only parameter
that is needed by the EJB session or even message-driven bean, that
implements the facade to the business logic. Therefore, the interface to the
business layer always remains the same, even if new business logic is added.
There is no need to copy the regenerated EJB stubs or new remote interfaces
from the new session facade to the other layers. You just have to add and
implement the new command beans.

 Chapter 16. Application development: best practices for application design, performance and scalability

Figure 16-8 EJB Command Framework architectural overview

At first sight, the EJB Command Framework does not seem to have any
disadvantages - it provides a very flexible interface for a loose coupling between
the layers that even simplifies parallel development in large teams, it can be
accessed synchronously or asynchronously and it also provides good scalability.

But there are also a few drawbacks. First, it is difficult to define the right
granularity for the command beans. If there are too many of them, command
bean management may get hard and the session bean that has to process the
incoming beans gets more and more complex. In addition you also may want to
add different methods to the session bean, for example:

executeWithTransaction(CommandBean bean)

or

executeWithoutTransaction(CommandBean bean)

to change the transactional EJB settings for the commands. In addition, it is
difficult to implement a good and meaningful error handling for all kinds of
command beans.

Client

Browser

Presentation
Layer

Business
Logic Layer

View

Control

Data
Access
Layer

1

4
5 3

Model

View

2
Unique
Command Bean
Interface

CB

Controller Command
Server EJB

CB

Server

918 WebSphere Application Server V6 Scalability and Performance Handbook

16.4.4 Caching business logic
WebSphere Application Server is able to cache the results of business logic
calls. This is handled by the WebSphere command cache, which can cache the
return parameters of any Java method call including remote EJB calls. The
cache therefore significantly improves performance by reducing the number of
remote or local calls to the business logic. Just as the servlet/JSP caching
feature of the Dynamic Caching engine in WebSphere allows an HTML page to
remain fresh for a period of time, or until it is explicitly marked dirty by an API call,
a cached result from the business logic can also be held for a period of time or
until it is explicitly invalidated. However, it is important that you use Dynamic
Caching only when appropriate. It may consume more resources than it saves if
you cache the wrong business logic calls, for example, calls whose parameters
are rarely the same or that are not called again before the invalidation time fires.
In general, you should try to identify methods that could be cached as early as
possible to implement a appropriate caching strategy.

A good example for a cacheable business logic call is a getLatestNews(topic t)
call that returns the latest news for a specified topic. The news are possibly
stored in a database and updated every 15 or 30 minutes, but called frequently
during this time!

16.5 Data access layer
The purpose of the data access layer is to provide a flexible and portable data
programming model that separates the data access, which usually depends on
some kind of Enterprise Information System (EIS), from the data itself. In
addition, the data access layer decouples the application code from data access
code, to enable business logic reuse and simplify application maintenance.

There are different technologies available that simplify access to persistent
storage, such as Enterprise JavaBeans - Entity beans, Java Data Objects,
Service Data Objects, or the native JDBC technology that also provides
cross-DBMS connectivity to a wide range of relational databases. We explain the

Note: WebSphere Application Server ships a complete command framework,
which formalizes a solution to the above problem. The command facility is
implemented in the com.ibm.websphere.command Java package. To find more
information about the Command framework go to:

http://www.ibm.com/developerworks/websphere/registered/tutorials/0306_mcg
uinnes/mcguinnes.html

 Chapter 16. Application development: best practices for application design, performance and scalability

http://www.ibm.com/developerworks/websphere/registered/tutorials/0306_mcguinnes/mcguinnes.html
http://www.ibm.com/developerworks/websphere/registered/tutorials/0306_mcguinnes/mcguinnes.html

different persistence frameworks and technologies and look at their strengths
and weaknesses in the following sections.

16.5.1 Service Data Objects
Service Data Objects (SDO) is a data programming architecture that - in contrast
to all other technologies that are currently available - unifies data programming
across data source types. Using SDOs, application programmers can uniformly
access and manipulate data from heterogeneous data sources, including
relational databases, XML data sources, Web services, and Enterprise
Information Systems.

Figure 16-9 Flexibility of Service Data Objects

To realize this simple and unified way to handle data, Service Data Objects add a
new abstraction layer that is placed on top of existing data access frameworks
like EJBs, JDO, or direct JDBC data access. Therefore, Service Data Objects do
not replace existing frameworks, instead, they use them as data mediators under
the cover. In fact, Service Data Objects are becoming a standard way to
implement the Business Delegate and Data Transfer Object patterns.

SDO Architecture
The SDO architecture consists of the following three major components:

� Data object
� Data graph
� Data mediator

SDO DataGraph
Virtual
Data

Mediator
Service

Client

XML
Data

Source

Web
Service

JCA

RDBMS

920 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 16-10 SDO architecture

� Data object

The data object is designed to be an easy way for a Java programmer to
access, traverse, and update structured data. Data objects have a rich variety
of strongly and loosely-typed interfaces for querying and updating properties.
The implementation of the data object also handles data conversions if
needed. Data objects store the data using a disconnected, optimistic model,
meaning the data is available locally without an active connection to the EIS.
Therefore, the data object can be easily used to transfer data between the
different application layers. This enables a simple programming model
without sacrificing the dynamic model required by tools and frameworks. A
data object may also be a composite of other data objects.

� Data graph

SDO is based on the concept of disconnected data graphs. A data graph is a
collection of tree-structured or graph-structured data objects. Under the
disconnected data graphs architecture, a client retrieves a data graph from a
data source, mutates the data graph, then applies the data graph changes to
the data source. The data graph also contains some metadata about the data
object including change summary and metadata information. The metadata
API allows applications, tools, and frameworks to introspect the data model
for a data graph, enabling applications to handle data from heterogeneous
data sources in an uniform way.

� Data mediator

The task of connecting applications to data sources is performed by a data
mediator. Client applications query a data mediator and get a data graph in
response. Client applications send an updated data graph to a data mediator
to have the updates applied to the original data source. This architecture

Data
Source

Read

Data Graph

Data Object

Data Graph

Data Object

Data
Mediator Update

Presentation
Layer

Model

Server

 Chapter 16. Application development: best practices for application design, performance and scalability

allows applications to deal principally with data graphs and data objects,
providing a layer of abstraction between the business data and the data
source.

This means that mediators are components that provide access to a specific
data source type. For example, a Siebel mediator knows how to mediate
between changes made to an SDO and the necessary calls to the Siebel API
to persist changes to the underlying Siebel records.

In IBM WebSphere Application Server V6 the following Data Mediator
Services are currently available:

– Enterprise JavaBeans Data Mediator Service

The Enterprise JavaBeans (EJB) Data Mediator Service (DMS) is the
Service Data Objects (SDO) Java interface that, given a request in the
form of EJB queries, returns data as a DataGraph containing DataObjects
of various types. This differs from a normal EJB finder or ejbSelect
method, which also takes an EJB query but returns a collection of EJB
objects (all of the same type) or a collection of container managed
persistence (CMP) values.

– Java DataBase Connectivity Mediator Service

The Java Database Connectivity (JDBC) DMS is the SDO component that
connects to any database that supports JDBC connectivity. It provides the
mechanism to move data between a DataGraph and a database. A regular
JDBC call returns a result set in a tabular format. This format does not
directly correspond to the object-oriented data model of Java, and can
complicate navigation and update operations. When a client sends a
query for data through the JDBC DMS, the JDBC result set of tabular data
is transformed into a DataGraph composed of related DataObjects. This
enables clients to navigate through a graph to locate relevant data rather
than iterating through rows of a JDBC result set.

– And more to come...

Important: Update processing is not dependent on how the DataGraph
was originally retrieved. In other words it is possible to retrieve a
DataGraph directly from the data source but to have the deferred updates
applied through an EJB or vice versa.

Regardless of which update approach you use, an optimistic concurrency
control algorithm is used. Fields designated as consistency fields are read
during update to insure that the current value is still equal to the old value
of the field in the DataObject.

922 WebSphere Application Server V6 Scalability and Performance Handbook

Advantages
Service Data Objects have the following advantages:

� Uniform access to data across heterogeneous sources

As already mentioned, Service Data Objects can access data from a variety
of sources, including relational databases, custom data access layers, Web
services, XML data stores, JMS messages, and Enterprise Information
Systems.

� Becoming a standard way to implement the Business Delegate/DTO

Actually, Service Data Objects are basically Data Transfer Objects (DTOs).
The Data Mediator Services are part of the specification, but they are not a
standard yet. Thus, the Business Delegate with a DTO is the key pattern.

� Support for disconnected programming models

Many presentation frameworks, such as Struts or JavaServer Faces, use a
disconnected usage pattern of data access. They use some kind of data
transfer object, to pass application data between the layers. Service Data
Objects perfectly support this model, the disconnected data objects needed
are automatically generated and an optimistic concurrency model is used.

� Service Data Objects support both static and dynamic data APIs

Static data APIs are much easier to use and therefore preferred by application
programmers. In some cases however, static Java interfaces for data are not
sufficient, for example when it comes to dynamic queries where the shape of
the resulting data is not known.

� Good tooling support available for Service Data Objects

Although Service Data Objects are very flexible, development tools can easily
support them because they provide simple introspection APIs. In addition,
Service Data Objects can easily be integrated into existing presentation
frameworks.

Disadvantages
But there are also some disadvantages:

� Performance

Service Data Objects add another layer on top of existing persistence or data
access frameworks, which on one hand increases flexibility and simplifies
integration of heterogeneous data sources, but on the other hand adds some
performance overhead.

� Not part of J2EE Specification

 Chapter 16. Application development: best practices for application design, performance and scalability

Service Data Objects are not part of any J2EE Specification. IBM and BEA
Systems submitted a Java Specification Request - JSR 235 in
December 2003.

� New technology

Service Data Objects were introduced in WebSphere Application Server V5.1
as WebSphere Data Objects and are now available in WebSphere Application
Server V6 as Service Data Objects.

Relationship with other technologies
As mentioned earlier, SDO integrates with other data programming technologies
and can use them under the covers. Table 16-1 describes how SDO relates to
and integrates with some other data programming technologies:

Table 16-1 SDOs Integration capabilities

For more information about Service Data Objects:

� JSR 235: Service Data Objects

http://www.jcp.org/en/jsr/detail?id=235

� Introduction to Service Data Objects

http://www.ibm.com/developerworks/java/library/j-sdo/

16.5.2 Entity beans
Entity beans are server-side components that represent business objects stored
in a persistent storage mechanism. This means, they provide an object view of
transactional data in an underlying datastore that can be accessed from multiple,
either local or remote, clients.

Model API Data Source Query
Language

JDBC Rowset Connected Dynamic Relational SQL

JDBC Cached
Rowset

Disconnected Dynamic Relational SQL

Entity EJB Connected Static Relational/Any (with
CMP over anythinga)

a. IBM Extension - not part of the J2EE Specification

EJBQL

JDO Connected Static Relational, Object JDOQL

JCA Disconnected Dynamic Undefined Undefined

SDO Disconnected Both Any Any

924 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.jcp.org/en/jsr/detail?id=235
http://www.ibm.com/developerworks/java/library/j-sdo/

There are two different types of Entity beans available:

� Container Managed Persistence (CMP) entity beans

A Container Managed Persistence (CMP) bean is an entity bean for which the
container handles the interactions between the enterprise bean and the data
source. The container is responsible for synchronization of instance fields
with the persistent store. When you develop a Container Managed
Persistence bean, the application is insulated from the details of the
persistence mechanism.

� Bean Managed Persistence (BMP) entity beans

A Bean Managed Persistence (BMP) entity bean, is simply an entity EJB
where the developer manually implements the service methods to manage
persistence, most notably ejbLoad() to load the persistent state from the
backing store and ejbStore() to store it.

Container Managed versus Bean Managed Persistence
The decision to use Container Managed Persistence or Bean Managed
Persistence entity beans is usually easy. Whenever possible, you should prefer
CMP to BMP, because of the following reasons:

� Portability and flexibility

BMP entity beans contain hard-coded SQL statements that require not only a
specific database layout, but may also be dependent on the database vendor.
These hand-optimized SQL statements are difficult to port to another
relational database or database layout. CMP entity beans on the other hand
use an abstract persistence schema to specify the CMP and CMR fields in
the deployment descriptor. These fields are mapped to the relational
database fields during deployment. The deployment tool then generates the
database vendor-specific classes. These steps ensure a high degree of
flexibility and portability regardless of the used relational database schema or
vendor.

� Faster development

If CMP is used, nearly all bean code can be automatically generated using
actual development tools, such as IBM Rational Application Developer V6.
Therefore, developers can concentrate on writing the business logic and
assign the persistence and relationship management logic to the deployment
tool and the EJB container. If BMP is used, the developer is responsible for
loading and persisting the bean data itself.

� Performance

To write high-performance and scalable BMP entity beans, bean developers -
which are usually responsible for writing the business logic - must be highly
skilled in database programming as well. Unfortunately this is usually not the

 Chapter 16. Application development: best practices for application design, performance and scalability

case - this is the domain of database administrators, not of bean developers.
Another problem is that a higher level of optimization in the bean class
automatically increases the difficulty to port the bean to another database.
With CMP entity beans, the deployment tool can generate highly optimized
code for every specific data source. Usually the performance of CMP entity
beans is by far better than corresponding BMP entity beans. For further
performance increasement, IBM WebSphere Application Server V6 can also
generate deployed code that uses SQLJ stored procedures to access IBM
DB2 UDB.

� Automatic relationship management

Bean developers can define relationships to other CMP beans in the CMP
entity beans deployment descriptor. This includes cardinality, navigation, and
cascade delete which are automatically generated and maintained by the EJB
container. When BMP entity beans are used, relationship management,
including integrity checks and navigation, has to be implemented by the bean
developer.

Although CMP entity beans have overwhelming advantages over BMP entity
beans, there are also some drawbacks:

� Persistence is limited to relational databases

Even though there are some approaches to extent the persistence
mechanism to other than relational data sources, they are not yet available
and therefore the usage of CMP entity beans is currently limited to relational
databases. With BMP entity beans, access to non-relational data sources, for
example using a JCA adapter, is possible.

� Reduced control over database access

With BMP, the developer has complete control over the data access logic and
the persistence management of the entity bean. Therefore, the developer has
the ability to call vendor-specific functions or perform complex database joins
to realize huge persistence schemas. In some rare cases this high level of
data access control may be required.

General coding and design guidelines for EJB entity beans
While entity beans can reduce the amount of coding work required to access
persisted data, care must be taken with the use of entity beans to avoid
performance problems.

� Access entity beans from session beans

Avoid accessing EJB entity beans from client or servlet code. Instead, wrap
and access EJB entity beans in EJB session beans. This satisfies two
performance concerns:

926 WebSphere Application Server V6 Scalability and Performance Handbook

– When the client application accesses the entity bean directly, each getter
method is a remote call. A wrapping session bean can access the entity
bean locally and collect the data in a structure, which it returns by value.

– An entity bean synchronizes its state with its underlying data store at the
completion of each transaction. When the client application accesses the
entity bean directly, each getter method becomes a complete transaction.
A store and a load follow each method. When the session bean wraps the
entity bean to provide an outer transaction context, the entity bean
synchronizes its state when the outer session bean reaches a transaction
boundary.

� Avoid extremely fine-grained EJB models

Although local interfaces, introduced in EJB 2.0, make more fine-grained EJB
models possible, take care that you do not carry the granularity to excess.
Think of using dependent value classes as an alternative. They can increase
performance, because no separate call and no EJB relationship is needed.

� Do not use entity EJBs to read large amounts of data

Entity EJBs are best used for manipulating small amounts of data. Returning
large result sets from (default) EJB finders can be inefficient and it is often
better to use JDBC directly from a session bean for this.

� Beware of significant use of EJB inheritance

In cases where entity beans significantly use ejb-inheritance, care must be
taken to ensure that performance is adequate. If performance problems are
encountered, they can potentially be addressed by reducing the use of
inheritance in the model or by use of Bean Managed Persistence (BMP) in
preference to Container Managed Persistence (CMP). Another strategy is to
avoid turning each entity (table) into a single EJB - in some cases two or more
related entities can be represented by a single EJB.

� Use local interfaces

If the EJB client is located in the same Java Virtual Machine as the EJB, you
can take advantage of the local Interface. No network tasks are necessary
and the bean parameters are passed by reference. This increases
performance. So if you know that you will deploy your EJB clients in the same
JVM where the EJB itself is deployed you should use the local Interface.
Usually local Interfaces are used to access entity EJBs from the Facade.

� Use Caching options from EJB Container

The EJB container has three types of caching that can be performed for entity
beans between transactions. Selection of the appropriate option requires an
understanding of how the entity beans will be used, as there is a trade-off

 Chapter 16. Application development: best practices for application design, performance and scalability

between minimizing database reads and supporting Workload Management
(WLM).

For more information please go to “Entity EJBs - Bean cache” on page 992.

� Optimize EJB transaction and isolation level settings

In EJBs we have declarative transaction management. So the developer does
not need to take care of all the resources needed in the transaction, the
container does. Nevertheless the definition of the transaction attributes in the
deployment descriptor is an important task that can change application
behavior and performance dramatically.

In WebSphere Application Server V6 a new feature called Application
profiling is available that allows you to optimize transaction and isolation level
settings. This feature allows you to dynamically adjust the access intent
settings to the actual runtime requirements of the work currently performed.
Application profiling enables you to configure multiple access intent policies
on the same entity bean. It reflects the fact that different units of work have
different use patterns for enlisted entities and can require different kinds of
support from the server runtime environment. For more information see
“Isolation levels for EJBs” on page 995 and “Application Profiling” on
page 997.

Alternatives
� Java Data Objects (JDO)
� Session beans with direct access to back end

16.5.3 Java Data Objects
Java Data Objects (JDO), like Service Data Objects, have also been
standardized through the Java Community Process in May 2003. With JDO,
developers can easily access persistent data that can be stored in various types
of back ends, such as databases, file systems or other transaction processing
systems. Similar to Service Data Objects, Java Data Objects also provide a
common API to simplify and unify the data access. The main difference between
SDOs and JDOs however is that JDOs only solve the persistence issue, whereas
SDOs use a more general approach that also includes data representation and
data flow between the J2EE tiers. Compared to EJBs, most of the former
advantages of JDOs more or less disappeared with the introduction of local
interfaces (EJB 2.0). At the moment it is questionable if there will be further
investigation into JDO 2.0 by the Java Community Process, because of the fact
that it apparently overlaps with existing Java technologies and with other JSRs
that are already in progress (especially EJB 3.0). Nevertheless, at the moment
there are a lot of open source frameworks available that implement JDOs.

928 WebSphere Application Server V6 Scalability and Performance Handbook

Advantages
� Universal data access for different kinds of data sources.

� Transparent persistence layer, full transaction support - like CMP EJBs.

� Good performance- even for large amounts of data.

� Lightweight technology - JDO is based on Java objects.

There is no EJB container needed for the “entity beans” itself, but you might
want to implement the business logic using EJB session beans.

Disadvantages
� No built-in security (compared to EJBs).
� Not part of J2EE specification.
� Unsure future
� No built-in support for JDO in WebSphere Application Server.
� Limited tooling support available.

Alternatives
� Service Data Objects
� CMP entity beans

16.5.4 EJB session bean: direct access to back end
Reading large amounts of data with entity beans, for example just to display a
large scrollable list of data, implies a big performance overhead, because a lot of
transactional aware EJB objects are unnecessary instantiated from the EJB
container. Therefore, in domains where a set of objects exist whose state is
frequently read but very rarely updated, the usage of EJB entity beans might be
overkill. In these cases, a different approach using an EJB session bean that
directly accesses the back end, might be more advisable. Update operations are
also possible because EJB session beans support transactions that can be
automatically handled by the container.

Advantages of this approach
� High performance for large amounts of data
� Full transactional support
� Universal data access to all kinds of back ends

Most important disadvantages of this solution
� Limited portability - Implementation highly depends on data schema and

kind/type of back-end system

� Not very easy to use - missing tooling support

 Chapter 16. Application development: best practices for application design, performance and scalability

� No caching

Alternatives
� Service Data Objects using Java DataBase Connectivity Mediator Service
� Java Data Objects

16.6 Key factors for application performance
This part discusses factors that are critical for high-performance WebSphere
Application Server based applications. However, a prerequisite is to ensure that
your application has a good design and architecture. The techniques and
strategies outlined here will assist you in optimizing the performance of your
applications. However, they will not compensate for a poorly designed or
architected application. The best practices should be applied after verifying that
the basic design and architecture are appropriate for the application and
scalable. For application design guidelines, please start reading from the
beginning of this chapter.

16.6.1 Memory
A key factor in the performance of any Java application and hence any
WebSphere Application Server application is the use of memory. Unlike other
programming languages, Java does not require (or even allow) programmers to
explicitly allocate and reclaim memory. The Java Virtual Machine (JVM) runtime
environment allocates memory when a new object is created, and reclaims the
memory once there are no more references to the object. This reduces the
amount of coding required, as well as minimizing the potential for memory “leaks”
caused by the programmer forgetting to deallocate memory once it is no longer
required. Additionally, Java does not allow pointer arithmetic. Memory
deallocation is performed by a thread executing in the JVM called the garbage
collector (GC). The algorithm used for garbage collection is not specified in the
Java Virtual Machine specification and hence different JVM implementations
may use different garbage collection algorithms.

However, all of these algorithms require the sweeping of memory to identify
objects that are no longer referenced. Most also involve a compaction phase
where referenced objects are copied to a particular area of memory to reduce
fragmentation. More details about garbage collection can be found in “Improving
Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory” by Nagendra Nagarajayya and J. Steven Mayer
which is available at:

http://developers.sun.com/techtopics/mobility/midp/articles/garbage/

930 WebSphere Application Server V6 Scalability and Performance Handbook

http://developers.sun.com/techtopics/mobility/midp/articles/garbage/

An update to this article for JDK 1.4.1 is also available, it is found at:

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollecti
on2/

Although Java performs memory management automatically, programmers still
need to be aware of the impact of memory management on performance.
Creating an object consumes system resources, because the JVM must allocate
memory and initialize the object. Similarly reclaiming memory using the garbage
collector also uses resources, particularly CPU time. Garbage collection occurs
asynchronously when free memory reaches threshold values, and it cannot be
explicitly scheduled programmatically. A call to the System.gc() method will
request that the JVM performs garbage collection. However, this is not
guaranteed to happen immediately or within any specified time period.

Hence the key to minimizing the performance impact of memory management is
to minimize memory usage, particularly object creation and destruction. This can
be achieved by a number of means:

� Object creation

Do not create objects prematurely if there is a possibility that they will not be
needed. For example, if the object is only used in one path of an if statement,
then create the object inside that path rather that outside the if statement -
lazy initialization. If the same object can be reused inside a loop body, then
declare and instantiate it outside the loop rather than inside the loop, to avoid
creating and destroying a number of objects of the same class.

� Object pools

If objects of the same class are being repeatedly created and destroyed, it
can be beneficial to create an object pool that allows the objects to be reused.
Classes whose objects will be used in a pool need an initializer, so that
objects obtained from the pool have some known initial state. It is also
important to create a well-defined interface to the pool to allow control over
how it is used.

� Appropriate sizing for collections

Although the Java runtime environment will dynamically grow the size of
collections such as java.util.Vector or Java.util.Hashtable, it is more
efficient if they are appropriately sized when created. Each time the collection
size is increased, its size is doubled so when the collection reaches a stable

Note: IBM WebSphere Application Server V6 provides object pools for
pooling application defined objects or basic JDK types. It will benefit an
application which tries to squeeze every ounce of performance gain out of
the system.

 Chapter 16. Application development: best practices for application design, performance and scalability

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/

size it is likely that its actual size will be significantly greater than required.
The collection only contains references to objects rather than the objects
themselves, which minimizes the overallocation of memory due to this
behavior.

� Temporary objects

Developers should be aware that some methods such as toString()
methods can typically create a large number of temporary objects. Many of
the objects may be created in code that you do not write yourself, such as
library code that is called by the application.

� Use of static and final variables

When a value is used repeatedly and is known at compile time, it should be
declared with the static and final modifiers. This will ensure that it will be
substituted for the actual value by the compiler. If a value is used repeatedly
but can be determined only at runtime, it can be declared as static and
referenced elsewhere to ensure that only one object is created. Note that the
scope of static variables is limited to the JVM. Hence if the application is
cloned, care needs to be taken to ensure that static variables used in this way
are initialized to the same value in each JVM. A good way of achieving this is
the use of a singleton object. For example, an EJB initial context can be
cached with a singleton using the following code fragment:

Example 16-1 Use of the singleton pattern to cache EJB initial context references

public class EJBHelper {
private static javax.naming.InitialContext initialContext= null;

public javax.naming.InitialContext getInitialContext() {
if (initialContext = null) {

initialContext = new javax.naming.InitialContext();

return initialContext
}

}

� Object references

Although memory does not have to be explicitly deallocated, it is still possible
to effectively have “memory leaks” due to references to objects being retained
even though they are no longer required. These objects are commonly
referred to as loitering objects. Object references should be cleared once
they are no longer required, rather than waiting for the reference to be
implicitly removed when the variable is out of scope. This allows objects to be
reclaimed sooner. Care should be taken with objects in a collection,
particularly if the collection is being used as a type of cache. In this case,
some criteria for removing objects from the cache is required to avoid the

932 WebSphere Application Server V6 Scalability and Performance Handbook

memory usage constantly growing. Another common source of memory leaks
in Java is due to programmers not closing resources such as Java Database
Connectivity (JDBC), Java Message Service (JMS) and Java Connector
Architecture (JCA) resources when they are no longer required, particularly
under error conditions. More information about the use of JDBC resources is
provided in 16.6.4, “Database access” on page 935. It is also important that
static references be explicitly cleared when no longer required, because static
fields will never go out of scope. Since WebSphere Application Server
applications typically run for a long time, even a small memory leak can cause
the JVM to run out of free memory. An object that is referenced but no longer
required may in turn refer to other objects, so that a single object reference
can result in a large tree of objects which cannot be reclaimed. The profiling
tool available in IBM Rational Application Developer V6, which are described
in Chapter 15, “Development-side performance and analysis tools” on
page 839, can help to identify memory leaks. Other tools that can be used for
this purpose include Rational Purify®, Sitraka JProbe (by Quest Software),
and Borland OptimizeIt.

� Vertical clustering

Most current garbage collection implementations are partially single threaded
(during the heap compaction phase). This causes all other program threads
to stop, potentially increasing the response times experienced by users of the
application. The length of each garbage collection call is dependent on
numerous factors, including the heap size and number of objects in the heap.
Thus as the heap grows larger, garbage collection times can increase,
potentially causing erratic response times depending on whether a garbage
collection occurred during a particular interaction with the server. The effect of
this can be reduced by using vertical scaling and running multiple copies of
the application on the same hardware. Provided that the hardware is powerful
enough to support vertical scaling, this can provide two benefits: first, the JVM
for each member of the cluster will only require a smaller heap, and secondly,
it is likely that while one JVM is performing garbage collection, the other one
will be able to service client requests as the garbage collection cycles of the
JVMs are not synchronized in any way. However, any client requests that
have been directed by workload management to the JVM (doing garbage
collection) will be affected. Refer to 3.6, “Vertical scaling topology” on page 82
for more information about vertical clustering.

16.6.2 Synchronization
The mechanism by which access to shared resources by different threads is
controlled is called Synchronization. While the synchronization functionality in
Java is convenient and easy to use, it can introduce significant performance
overhead. When a block of code is synchronized, only a single thread can

 Chapter 16. Application development: best practices for application design, performance and scalability

execute it at any one time. There are two performance impacts of
synchronization:

� Managing the monitors, the objects internal to the JVM that are used to
control access to synchronized resources. Although they are not explicitly
accessed by programmers, there is an overhead due to the management of
the monitors by the JVM.

� Reduced concurrency, since threads have to wait for other threads to exit
from synchronized blocks of code.

Thus the use of synchronization should be minimized and limited to cases where
it is definitely necessary. It is also good practice to clearly document all
assumptions relating to synchronization, because they may not be obvious to
someone reading the design or code.

When using synchronization, it is best to use specific lock objects to synchronize
on. Synchronizing using the keyword can cause different methods to be
unnecessarily synchronized with each other, and hence reduce concurrency.
Note that synchronizing on an object has a greater overhead than calling a
synchronized method. However, synchronizing the method may result in
significantly greater amounts of code being synchronized, again reducing the
concurrency. So the trade-off between the synchronization overhead and
reduced concurrency needs to be evaluated on a case-by-case basis.

In addition to the explicit use of synchronization in application code,
synchronization may be used indirectly, as some of the commonly used core
Java functionality uses synchronization. Some particular examples are:

� The Java I/O libraries. It is best to minimize the use of System.out.println()
for this reason. Use of a multithreaded logging library as discussed in 16.6.3,
“Logging” on page 934 is suggested.

� Some of the Java collection classes, such as java.util.Hashtable and
java.util.Vector, are synchronized. If only a single thread is accessing the
data (or multiple threads are reading only), the synchronization overhead is
unnecessary. Many of the newer collections introduced in Java 1.2, such as
java.util.ArrayList are not synchronized and may provide better
performance. However, care needs to be taken when accessing them from
multiple threads.

16.6.3 Logging
As mentioned in 16.6.2, “Synchronization” on page 933, the Java I/O classes use
synchronization. Hence System.out.println() should not be used for logging
purposes. If a lot of output using stdout is generated by an application in a UNIX
environment, the overhead can be avoided by redirecting stdout to /dev/null in

934 WebSphere Application Server V6 Scalability and Performance Handbook

the production environment. However, a better approach is to use a
multithreaded logging library such as the WebSphere logging facilities or Log4J
(http://jakarta.apache.org/log4j/). In addition to providing better
performance due to their multithreaded implementations, these libraries allow
logging statements to be defined at a particular level, which can be dynamically
changed at runtime. Thus the amount of logging in production environments can
be reduced in comparison to development and test environments without
requiring code changes, improving the performance of the application. It is also
good practice to guard log statements so that the parameters are not evaluated if
the logging level is not on. The use of guard statements is shown in
Example 16-2.

Example 16-2 Use of guard statements for logging

if (Log.isLogging(Log.WARN) {
Log.log(LOG.WARN, “This is a warning”);

}

16.6.4 Database access
The Java Database Connectivity (JDBC) API provides a vendor-independent
mechanism to access relational databases from Java. However, obtaining and
closing a connection to a database can be a relatively expensive exercise, so the
concept of connection pools has been introduced. When a database operation is
to be performed, a connection can be obtained from the pool, which contains a
defined number of connections to the database that have already been
established. When the connection is closed, it is returned to the pool and made
available for reuse. Using connection pooling can significantly reduce the
overhead of obtaining a database connection. However, the connection pool is
accessed via a datasource. References to the datasource are obtained by
performing a lookup via the Java Naming and Directory Interface (JNDI). This
lookup is an expensive operation, so it is good practice to perform the lookup
once and cache the result for reuse.

JDBC resources should always be released once they are no longer required.
This includes java.sql.ResultSet, java.sql.Statement and
java.sql.Connection objects, which should be closed in that order. The code to
close the resources should be placed in a finally block to ensure that it is
executed even when an exception condition occurs. Failure to properly close
resources can cause memory leaks, and can cause slow response due to
threads having to wait for a connection to become available from the pool. Since
database connections in the pool are a limited resource, they should be returned
to the pool once they are no longer required.

 Chapter 16. Application development: best practices for application design, performance and scalability

http://jakarta.apache.org/log4j/

If an application repeatedly executes the same query, but with different input
parameters, then performance can be improved by using a
java.sql.PreparedStatement instead of java.sql.Statement.

Turning off auto commit for read only operations may also increase performance.

To avoid having to retrieve and process large amounts of data, sometimes it is
beneficial to use database stored procedures for implementing some of the
application logic. Alternatively, in some cases calls to the database can be
minimized by using a single statement that returns multiple result sets.

There are different types of JDBC drivers available, some written in pure Java
and others that are native. Although use of a native driver can reduce portability,
performance may be better with a native driver.

16.7 General coding issues
This section describes a variety of techniques to improve performance of
WebSphere applications, particularly through the efficient use of the core Java
functionality.

� Although strings are a simple and efficient data structure in many languages
such as C/C++, there is overhead associated with the use of strings
(java.lang.String) in Java. Java strings are immutable; once created their
value cannot be changed. Hence operations such as string concatenation (+)
involve the creation of new strings with the data copied from the original
strings, creating more work for the garbage collector as well. When
performing string manipulation operations, use of java.lang.StringBuffer as
an alternative to java.lang.String can improve performance.

� Although the reflection facilities in Java can be extremely useful and allow for
elegant implementations, reflection is an expensive operation that should not
be used indiscriminately. This is another case of where a trade-off between
performance and elegance of the solution needs to be made.

� Avoid creating excessively complicated class structures. There is a
performance overhead in loading and instantiating these classes.

� Avoid excessive and repeated casting. Once an object has been cast, assign
a variable of the correct type and reuse this reference.

� Use of “? : “, where the equivalent if blocks simply assign one value or
another, provides better performance for most JVMs.

� When iterating n items, iterating from n-1 to 0 instead of 1 to n is quicker for
most JVMs. See Example 16-3 on page 937.

936 WebSphere Application Server V6 Scalability and Performance Handbook

Example 16-3 Iterating through a loop n times

for (int=n-1;i>0;i--) {
// Do something in a loop.....

}

� Avoid repeatedly calling the same method within a loop if the result is the
same every time. Instead store the value in a variable prior to entering the
loop and use this stored value for each loop iteration.

� Use System.arraycopy() to copy the contents of one array to another, rather
than iterating across each array element and copying it individually.

� Where possible, declare methods with the final modifier if they will not be
overridden. Final methods can be optimized by the compiler by method
in-lining. The byte code of the method is included directly in the calling
method. This avoids the overhead of performing a method call.

� When reading and writing small amounts of data, use of the Java Buffered I/O
classes can significantly improve performance, by minimizing the number of
actual I/O calls that need to be made.

� Avoid the overuse of exceptions. Throwing and catching exceptions can be
expensive. Exceptions should be mainly used for (infrequent) error
conditions, not as a normal mechanism for control flow by the application.
Although throwing and catching exceptions should be minimized, checking for
them with the use of try {} catch{} blocks is not particularly expensive so this
can be used extensively if required. However, avoid catching an exception so
that it can be simply rethrown and caught again later. Catch the exception at
the level where it will be handled. Also beware of printing stack traces for
exceptions, because they can be quite large.

� It is best to avoid spawning of new threads. Spawned threads do not have
access to J2EE resources such as JNDI, security or transaction contexts.
Rather than spawning a thread to act as a server to receive incoming
messages, consider using message-driven beans (MDBs).

� In many applications, performance can be improved by performing some
caching of data by the application. Note that if this is done, consideration
must be given to periodically flushing the cache to avoid it growing
continuously. Also be careful with making assumptions about requests for a
client always being served by a particular application server instance. Even if
session affinity is used, in a failover situation, HTTP requests can be serviced
by a different application server instance, which may not have the cached
data. We recommend that the cache be implemented using a well-defined
interface, and that data that is not in the cache be retrieved again, transparent
to the rest of the application.

 Chapter 16. Application development: best practices for application design, performance and scalability

16.8 Reference
For more information, see the following:

� IBM developerWorks at:

http://www.ibm.com/developerworks/
http://www.software.ibm.com/wsdd/

� White paper “WebSphere Application Server Development Best Practices for
Performance and Scalability”, by Harvey W Gunther, 7 September 2000
found at:

http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf

� Java Performance Tuning Web site at:

http://www.javaperformancetuning.com/

� Stacy Joines, et.al., Performance Analysis for Java Web Sites,
Addison-Wesley, September 2002, ISBN 0201844540

Note: You can use the WebSphere Dynamic Cache service to intercept
calls to cacheable objects and store their output in a Dynamic Cache.
Refer to Chapter 10, “Dynamic caching” on page 501 for further
information about this topic or to the content related to dynamic caching in
the WebSphere InfoCenter at

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com
.ibm.websphere.base.doc/info/aes/ae/tdyn_dynamiccache.html

938 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/
http://www.software.ibm.com/wsdd/
http://www.ibm.com/software/webservers/appserv/ws_bestpractices.pdf
http://www.javaperformancetuning.com/
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tdyn_dynamiccache.html
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp?topic=/com.ibm.websphere.base.doc/info/aes/ae/tdyn_dynamiccache.html

Chapter 17. Performance tuning

This chapter discusses tuning an existing environment for performance. While it
does not provide specific tuning values, which would be unique to each
environment and application, this chapter provides a guide for testing application
servers and components of the total serving environment that should be
examined and potentially tuned to increase the performance of the application.

Before reading this chapter, please take the time to review Chapter 2,
“Infrastructure planning and design” on page 39.

This chapter consists of four main parts:

� “Testing the performance of an application” on page 940
� “Tools of the trade” on page 945
� “Performance monitoring guidelines” on page 965
� “Performance tuning guidelines” on page 975

17

© Copyright IBM Corp. 2005. All rights reserved. 939

17.1 Testing the performance of an application
Application performance testing is an important component of the software
deployment cycle. It becomes even more important with respect to Web
applications, since an end user’s tolerance for slow applications is generally
much lower than that of a captive internal audience. Performance testing has
been a subject of many products and white papers recently, and has spawned a
new IT industry dedicated to Web application testing.

17.1.1 Introduction to application performance testing
When performance testing a Web application, several requirements must be
determined either through interpretation of data from an existing application that
performs similar work, or from best-guess estimates. Those requirements are:

� Average request rate

What is the expected number of users who will access this application? This
is generally expressed in hits per month, day, hour, or minute, depending on
volumes. This should be re-evaluated regularly.

� Peak request rate

How many pages will need to be served per second? This also should be
re-evaluated regularly.

� Average concurrent users

What is the average number of users accessing the application at the same
time during regular usage hours? This should be planned for, expected, and
re-evaluated on a regular basis.

� Peak concurrent users

This is the maximum number of concurrent users that will visit your site during
peak time.

� Regular usage hours

This value defines your off-peak hours. This is required to simulate a realistic
workload.

� Peak usage hours

During this time, most of your traffic will happen and a performance
degradation would impact most of your users.

� Site abandonment rate

How long will a user stay on your page before he leaves the site or closes the
browser?

940 WebSphere Application Server V6 Scalability and Performance Handbook

The user base, especially for Web applications, is a difficult number to determine,
especially if this is an application that is performing a new function on a Web site.
Use existing Web server measurements to provide a “best-guess” number based
on current traffic patterns for the site. If capturing these numbers is not possible,
then the best option is to determine the breaking point for the application within
the intended deployment infrastructure. This provides the ability to monitor once
the application is live and to provide increased capacity prior to a negative user
response due to load.

When dealing specifically with applications running in WebSphere Application
Server, there are performance testing protocols that can be followed. A good
example of this can be found in the article “Performance Testing Protocol for
WebSphere Application Server-based Applications” by Alexandre Polozoff, found
at:

http://www.software.ibm.com/wsdd/techjournal/0211_polozoff/polozoff.html

One important point to remember is that performance tuning is more of an “art”
than a science. Don’t worry if you get the impression that you will not be able to
achieve your tuning goals if you believe you lack the “talent” for that art, because,
on the other hand, performance tuning should also be seen as an art that strictly
follows the recurring, monotonous trifold process of Testing - Evaluating - Tuning.
This process requires that you know your system, your environment and
application very well, that you know what you want to test, what goal(s) you want
to achieve, and also that you are familiar with the tools you are going to use for
load testing, all of which implies more of a solid handicraft than an artist’s
creative work. But having a bit of intuition and developing a feeling for your work
will most certainly help you in finding the best configuration. Finally, experience
will be your most valuable friend, so get to know different load testing tools on
various environments to gain comprehensive, in-depth knowledge.

It is important to keep in mind that it is impossible to make up for poor application
design or application code by tuning WebSphere. It is also important to
remember that performance tuning is an ongoing process. Continual reviews of
performance should be done to ensure that changes in load, application
behavior, and site behavior have not adversely impacted application
performance. Also, there are no hard rules for performance tuning. What may be
appropriate tuning for one application may not be appropriate for another. It is
more important to understand the concepts associated with tuning, and make
adjustments based on the understanding gained from those concepts.

Important: Integrate your developers into the performance tuning life cycle.
Doing this ensures that your application code is tuned before tuning
WebSphere, since the biggest impact on performance can be made by tuning
your application code.

 Chapter 17. Performance tuning 941

http://www.software.ibm.com/wsdd/techjournal/0211_polozoff/polozoff.html

17.2 Selecting testing tools
Deploying applications that perform and scale in an acceptable manner is not an
accidental occurrence. Producing high performance software requires that you
include several rounds of stress testing during the development cycle. You can
use one or more of the many open source or commercial stress testing tools to
automate the execution of your stress tests.

The primary purpose of stress testing tools is to discover under what conditions
your application's performance becomes unacceptable. You do this by changing
the application inputs to place a heavier and heavier load on the application and
measuring how performance changes with the variation in those inputs. This
activity is also called load testing. However, load testing usually describes a very
specific type of stress testing: increasing the number of users to stress test your
application.

The simplest way to stress test an application is to manually vary the inputs (for
example the number of clients, size of requests, frequency of requests, mix of
requests) and then chart how the performance varies. If you have many inputs,
or a large range of values over which to vary those inputs, you probably need an
automated stress testing tool. Moreover, you will want test automation to repeat
test runs following environmental or application-specific changes once you
uncover an issue.

If you are testing manually, it can be difficult to accurately reproduce an identical
set of tests across multiple test executions. When it comes to having multiple
users testing your application, it is almost impossible to run manual tests
consistently and it can be very difficult to scale up the number of users testing the
application.

Today, there is no generic, one-size-fits-all stress testing tool. Every application
differs in what inputs it takes and how it executes them. Java and
WebSphere-based Web applications generally receive requests from clients via
the HTTP protocol. There are many stress testing tools that can simulate user
activity over HTTP in a controlled and reproducible manner.

With so many stress testing tools available today, how can you choose the one
that is most appropriate for your application? Some of the points to consider
when evaluating stress testing tools include:

Important: We recommend making only one change at a time in between test
runs so the results are measurable.

942 WebSphere Application Server V6 Scalability and Performance Handbook

� Client interaction

The stress testing tool must be able to handle the features and protocols that
your application uses.

� Simulation of multiple clients

This is the most basic functionality of a stress testing tool.

� Scripted execution with the ability to edit scripts

If you cannot script the interaction between the client and the server, then you
cannot handle anything except the most simple client requests. The ability to
edit the scripts is essential; minor changes should not require you to go
through the process of re-generating a script.

� Session support

If a stress testing tool does not support sessions or cookies, it is not very
useful and may not be able to stress test Java and WebSphere applications.

� Configurable numbers of users

The stress testing tool should let you specify how many simulated users are
running each script or set of tasks, including allowing you to vary the number
of simulated users over time. Many stress testing tools enable you to start
with a small number of users and ramp up slowly to a higher numbers of
users.

� Reporting: success, errors, and failures

The tool you choose must have a defined way to identify a successful
interaction, as well as failure and error conditions. An error might be getting
no Web page back at all, whereas a failure might be getting the wrong data
back on the page.

� Page display and playback

A useful feature in many stress testing tools is the capability to inspect some
of the pages that are being sent to the simulated users or to replay entire test
scripts. You can then be confident that the stress test is functioning as you
expect.

� Exporting test results

After running a stress test, you may want to be able to analyze the test results
using various tools that are external to the stress testing tool, including
spreadsheets and custom analysis scripts. Most stress testing tools include
extensive built-in analysis functions, but being able to export the data gives
you more flexibility to analyze and catalog the data in arbitrary ways.

� Think time

Real-world users do not request one Web page immediately after another.
There are generally delays between viewing one Web page and the next. The

 Chapter 17. Performance tuning 943

term think time is the standard way of expressing the addition of a delay into a
test script to more realistically simulate user behavior. Many stress testing
tools support randomly generated think times based on a statistical
distribution.

� Variable data

Live users do not work with the same set of data on each interaction with your
application. During a stress test, this should also be true of your simulated
users. It is easier to make your simulated users appear to be working with
varied data if the stress testing tool supports data input from lists, files, or a
database.

� Script recording

Rather than writing scripts, it is much easier to manually run through a
session with your browser and have that session recorded for later editing.
Most stress testing tools include provisions for capturing manual interaction
with your application.

� Analysis tools

Measuring performance is only half the story. The other, and perhaps more
important, half of stress testing is analyzing the performance data. The type
of analysis tools and degree of detailed analysis you can perform depends
directly on what analysis tools are supported by the tool you select. Therefore,
evaluate this support in the tools you are considering carefully.

� Load distribution

Your deployed application may well need to support hundreds of concurrent
users once in production. How can you simulate this level of traffic in a stress
testing environment? A typical workstation running a stress testing tool will
likely begin bottlenecking once approximately 200 virtual users are running.
To simulate a greater number of users, you can distribute the stress testing
load across multiple workstations. Many of the available stress testing tools
support distribution of load and you will certainly want this feature for large
scale stress testing.

� Measuring server-side statistics

The basic stress testing tool measurement is client-based response times
from client/server interactions. However, you may also want to gather other
statistics, such as the CPU utilization or page faulting rates. With this
server-side data, you can then do useful things like view client response times
in the context of server load and throughput statistics.

944 WebSphere Application Server V6 Scalability and Performance Handbook

17.3 Tools of the trade
The following is an overview of a small array of load testing tools. It is by no
means complete, nor does it imply a recommendation or endorsement of these
tools. The most comprehensive performance testing tools are (in no special
order) Rational Performance Tester 6.1, Segue SilkPerformer, and Mercury
LoadRunner. These tools have a very broad and deep functionality but they are
also quite expensive, while for your special case some other (possibly
open-source licensable) tool might do the job as well. Sections 17.3.1,
“ApacheBench” on page 945 and 17.3.2, “OpenSTA” on page 948 give a brief
introduction to these two open-source load testing packages. 17.3.3, “Rational
Performance Tester” on page 956 gives an overview of this product and in 17.3.4,
“Other testing tools” on page 964, you will find a few links to additional
performance testing products and projects.

17.3.1 ApacheBench
ApacheBench (AB) is a very simple tool for quickly generating HTTP GET and
POST requests. It is part of the Apache HTTP Server and the IBM HTTP Server
powered by Apache. It is automatically installed with IBM HTTP Server and the
executable can be found in <IHS_HOME>\bin\ab. For a manual and list of
options, refer to:

http://httpd.apache.org/docs/programs/ab.html

ApacheBench was mainly designed as a benchmarking tool, and it is only usable
for very basic load testing because of several limitations:

� It has no functionality to record a browser click stream and requests have to
be specified on the command line.

� Although the HTTP POST method is supported, POST request data has to be
put into a file before the request is sent.

� There is no support for distributed load generation.

� It cannot be used for scripting of scenarios or testcases, and can test only one
URL at a time.

� It cannot retrieve cookie data from the response, although cookie information
can be specified on the command line, making session-aware performance
testing possible in a very limited way.

Note: If you are not using a Web server that includes ApacheBench, you can
always download the Apache HTTP Server source-code from the following
Web site and compile the AB utility yourself:

http://httpd.apache.org/download.cgi

 Chapter 17. Performance tuning 945

http://httpd.apache.org/docs/programs/ab.html
http://httpd.apache.org/download.cgi

� There is no ramp-up or ramp-down support; ApacheBench always starts at
the specified load.

The ramp-up period is the time before all virtual testers are active and the
ramp-down period is the time where all virtual testers that started during
ramp-up are stopped and are no longer generating load on the system
simultaneously. This is demonstrated in the graph in Figure 17-1.

Figure 17-1 Ramp-up and ramp-down period demonstration

� ApacheBench does not simulate users, but repeated concurrent requests.
This means that you have to use caution when specifying the number of
clients you want to test with.

Nevertheless, AB has several advantages. It is free, very easy and quick to use,
and there is no additional setup required since it is part of IBM HTTP Server. It
can be useful for very simple and ad hoc performance tests, where the goal is,
for example, to stress a Web server or application server to get a rough idea of
how many requests (of one kind) can be processed per second. Another use can
be to stress the application server, creating a multitude of HTTP sessions at a
time, while using Tivoli Performance Viewer to monitor the servers’ performance.
The example on page 948 shows a sample ApacheBench command to stress
test the Trade 6 Web primitive PingJSP.

Important: Be careful when selecting the URL you wish to test with AB. Since
you can only specify one URL at a time as the input parameter, make sure to
select the URL you really mean to test!

Time

Us
er

s

Measurement Interval

Us
er

s

ramp-up
ramp-down

946 WebSphere Application Server V6 Scalability and Performance Handbook

Sometimes, a Web page (in our example, the Trade 6 main URL
http://<your_host>/trade/) will provide a detailed display view which is
generated in two steps:

1. First, the browser retrieves the response from the server which only contains
a frameset or a redirect.

2. Then the browser creates additional requests to receive the actual content,
such as images and so forth.

ApacheBench is by no means a browser and does not know about framesets,
links, images, or dynamic content like Javascript; it will not follow any redirects or
even resolve simple HTML tags to retrieve images. This behavior will
certainly falsify your performance results if you are not careful. Following our
Trade 6 example, be sure to use a request URL that returns meaningful data (not
just redirects or framesets) from the application server.

For example, use:

� http://<your_host>/trade/PingJsp.jsp

� http://<your_host>/trade/scenario

Command line options
The most common and useful options for AB are the following:

-h Displays help and usage.

-n requests The (absolute) number of requests to perform for the
benchmarking session. The default is 1. Keep in mind that
AB does not implement think time! If you set the number
of requests too high then you will effectively perform a
denial-of-service attack on your server.

-c concurrency The number of simultaneous requests to perform (virtual
users). The default is 1, which means no concurrency.

-v level Used to set the verbosity level. Level 2 and higher will
print HTTP headers and the HTTP response body.

-A username:pass Used to supply basic authentication credentials to the
server.

-C name=value Add a cookie-header with name and value to the
requested object.

Note: The number of requests is not set per concurrent user. If you specify -n
20 and -c 10, each of the 10 virtual users will only perform two requests.

 Chapter 17. Performance tuning 947

As an example, the command for stress testing the Trade 6 primitive PingJSP
using ApacheBench is:

C:\IHS\bin> ab -g test -c 5 -n 50
"http://http1.itso.ibm.com/trade/PingJsp.jsp"

In this example, we perform 50 requests using five virtual users, that is, each of
the virtual users performs 10 requests.

The results of an ApacheBench stress test returns values such as:

� Time taken for tests
� Requests per second
� Time per request (mean)
� Time per request (mean, across all concurrent requests)
� Transfer rate (Kbytes/sec)
� Percentage of the requests served within a certain time

17.3.2 OpenSTA
Open System Testing Architecture (OpenSTA) is open source software licensed
under the GNU General Public License. This CORBA-based distributed software
testing architecture allows you to simulate the activity of hundreds to thousands
of virtual users and thus generate heavy loads on your (test) systems.

Using OpenSTA, you can gather information on response times and resource
utilization from all server systems included in the load test (such as Web servers,
application servers, database servers, etc.) and use it for analysis.

Feature overview
The name OpenSTA stands for a collection of tools that build on the distributed
architecture. These tools allow you to perform scripted HTTP load or stress tests
including performance measurements run from a single machine or distributed
and coordinated across many machines.

The software package can be obtained from http://opensta.org/. There is also
an excellent community site for additional information and documentation to be
found on http://portal.opensta.org/.

The source code can be obtained from:

http://opensta.sourceforge.net/

The current version is OpenSTA 1.4.2 and contains the following features:

� Intelligent script recording: automatic cookie-based session support in
recorded scripts

948 WebSphere Application Server V6 Scalability and Performance Handbook

http://opensta.org/
http://portal.opensta.org/
http://opensta.sourceforge.net/

� Script modeling in a BASIC like Script Control Language (SCL)

� Script debugging using single-step mode and breakpoints

� Modular test-suite creation

� Supported protocols: HTTP 1.0, HTTP 1.1, HTTPS

� Single machine based load generation

� Distributed load generating across multiple machines with one controller

� Support for controlling load generation over the Internet

� Extensive data collection and simple statistics graphs provided

� Collected data can be exported into comma separated text files

� Additional performance measurement data collected through Simple Network
Management Protocol (SNMP) and Windows NT performance monitor

� Tutorial, user’s guide and detailed online help available

� Online community and Web-based discussion forum; for details, see:

http://portal.opensta.org/

� Commercial support and services available

� Supported load generating platforms: Windows NT and Windows 2000

� Easy to use, but more powerful features require manual script modelling (for
example, form-based login)

Prerequisites and installation
We were using the current OpenSTA version 1.4.2 to test our sample topology
described in Chapter 8, “Implementing the sample topology” on page 387. The
listed requirements are for that version only. See the latest release notes and the
download package for the most up-to-date system requirements, found at:

http://www.opensta.org/download.html

Software requirements
� Windows 2000
� Windows NT with service pack 5
� Microsoft Data Access Components (MDAC) version 2.5 (minimum; this can

be obtained from http://microsoft.com/data/download.htm)

Supported Web browsers for script recording
� Microsoft Internet Explorer 4, 5, and 6
� Netscape Navigator 4.7

 Chapter 17. Performance tuning 949

http://portal.opensta.org/
http://www.opensta.org/download.html
http://microsoft.com/data/download.htm

Installation
Install OpenSTA by running the setup wizard and following on-screen directions.

The OpenSTA architecture
OpenSTA supplies a distributed software testing architecture based on CORBA,
which enables you to create and run tests across a network. For a detailed
overview of the architecture and its components, refer to the Getting Started
Guide and the User’s Guide in the documentation section of
http://opensta.org.

Figure 17-2 Overview of the OpenSTA distributed testing architecture

OpenSTA Name Server
The OpenSTA Name Server configuration utility is the component that allows you
to control your test environment. After installation, you will notice the OpenSTA
Name Server running, which is indicated by an icon in the Windows task bar. For
a distributed test, every load generating node has to have the OpenSTA Name
Server installed and configured to point to the controlling node, also called the
repository host.

OpenSTA Commander
The Commander is the graphical user interface that functions as the front end for
all test development and test coordination activity. This is the main component of
OpenSTA you need to run in order to perform load tests. In the left pane, it shows
a view of the OpenSTA repository, containing all defined tests, scripts and
collectors.

Note: Other browsers (for example, Opera, etc.) can be used for script
recording, but their proxy settings have to be configured manually instead of
being configured automatically by the OpenSTA Script Modeler.

Load Controller

OpenSTA
Commander

OpenSTA Name Server

Load Generator

OpenSTA Name Server

Load Generator

OpenSTA Name Server

Load Generator

Web
Application

Environment
OpenSTA
Repository

OpenSTA Name Server

OpenSTA
Script Modeler

950 WebSphere Application Server V6 Scalability and Performance Handbook

http://opensta.org

OpenSTA Script Modeler
The Script Modeler is the recording and script developing environment of
OpenSTA. It is launched through the Commander by double-clicking a script
name in the repository tree window.

Recording the Trade 6 script
With the Script Modeler, you can record and/or develop and refine your scripts.
They form the content of your tests and let you generate the desired Web activity
during a load test. They are stored in the repository from where they can be
included into multiple tests. Perform these steps to record a new script:

1. Create a new, empty script by selecting File -> New Script -> HTTP, or by
right-clicking the scripts node in the repository tree window and selecting
New Script -> HTTP from the pop-up menu. Enter the name TRADE6SCENARIO.

2. Launch the Script Modeler by double-clicking the previously created script.

3. Select Options -> Browsers and select the browser you want to capture with.

4. Select Capture -> Record or alternatively click the record icon (the red circle)
in the toolbar to start recording. The settings that allow automatic cookie
handling are enabled by default. Refer to the online help for details about
recording options.

5. After the browser window has launched, open the URL:

http://<host_name>/trade/scenario

In our case:

http://http1.itso.ibm.com/trade/scenario

Do not reload the page, because we only want to capture exactly one
request. When the page has loaded completely, either close the browser
window, or switch back to the Script Modeler and select Capture -> Stop
from the menu; both methods will terminate your recording session.

Note: OpenSTA provides a proxy gateway that intercepts all HTTP traffic
during recording. Script Modeler will automatically configure your browser’s
proxy setting to point to that gateway, and reset it to the previous values
after recording. By default, the proxy gateway uses port 81 on the local
host.

 Chapter 17. Performance tuning 951

5. Remove all references to cascading style sheets or image files from your
script, because we only want to simulate load using the servlet provided by
Trade 6 for this purpose.

6. Save your script and exit Script Modeler.

You have now created a simple user session in the Trade 6 application. An
excerpt from that script is shown in Example 17-1. You can now view, replay and
modify the recorded script inside Script Modeler. If you change the script
manually, use the compile icon on the toolbar to find syntax errors.

Example 17-1 An excerpt of the recorded OpenSTA script “TRADE6SCENARIO”

Start Timer T_TRADE6SCENARIO
PRIMARY GET URI "http://http1.itso.ibm.com/trade/scenario HTTP/1.0" ON 1&

HEADER DEFAULT_HEADERS&
,WITH {"Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms" &
"-excel, application/vnd.ms-powerpoint, application/msword, */*",&

"Accept-Language: en-us",&
"Connection: Keep-Alive"}

Load Response_Info Header on 1&
Into cookie_1_0&
,WITH "Set-Cookie,JSESSIONID"

WAIT 2494

DISCONNECT FROM 2

Tip: If you want to start your script with a certain page within your Web
application, you should first navigate to that page. The Script Modeler
window offers a Pause button on the toolbar which allows you to
temporarily stop recording. Follow these steps:

1. Open the browser window and launch your home page.
2. Click the Pause button.
3. Navigate to the page with which you want to start your script.
4. Resume recording by clicking the Pause button again.

Note: We are only removing the cascading style sheets and image files
because these are not relevant for our test scenario. This is because the
servlet that we are calling will generate load and simulate a test scenario
itself. This is a special case. If you want to simulate user behavior, you
usually do not want to perform this step!

952 WebSphere Application Server V6 Scalability and Performance Handbook

DISCONNECT FROM 1

SYNCHRONIZE REQUESTS

End Timer T_TRADE6SCENARIO

Randomizing request using variables
A randomization of the requests is quite easily achieved using variables. All you
need is the script editor and a little knowledge of the OpenSTA scripting
language. You could, for example, insert two variables (user and password
information) that are filled with different account data on each request, and build
a new HTTP GET string using those variables. The variable information can be
read by the scripting engine from a flat file, effectively simulating different,
concurrently active user sessions.

Additional Script Modeler features
Following is a selection of additional, very useful script modelling features:

� Custom timers: To evaluate the response time for business transactions,
manual timers can be inserted into the scripting code.

� Output stream parsing: Verification of the response header and body can be
done by manually parsing the output stream using the OpenSTA scripting
language.

Performance testing using the OpenSTA Commander
Using the Commander, you can define tests; each test can consist of one or
more task groups, which are sequences of test scripts. Each task group has to
contain at least one script. Once a script has been associated with a task group,
it is called a task.

Test execution settings like the number of iterations or the number of virtual users
(VU) can be specified per task group, while the number of iterations per task is
also configurable. This modular structure makes the scenario easy to implement,
where a user logs in first, then uses the Trade 6 application a configurable
number of times, and finally logs out (see Example 17-2 on page 954).

 Chapter 17. Performance tuning 953

Example 17-2 A exemplary modular test design in OpenSTA

Test Trade6 will be repeated 10 times, consisting of:
|
|--Task group Trade6_1: 50 VU

|--Task-1: T6_Login, repeat count: 1
|--Task-2: T6_Scenario-1, repeat count: 500
|--Task-3: T6_Scenario-2, repeat count: 250
|--Task-4: T6_Logout, repeat count: 1

To run a performance test using OpenSTA, perform these steps:

1. Create the test
2. Specify runtime parameters
3. Execute the test
4. View the results

Create a test
The first step is to create a new test and add the previously recorded script:

1. In the Commander window, select File -> New Test -> Tests and enter
TRADE6 as the name of the new test.

2. Drag the script TRADE6SCENARIO from the repository view on the left side
onto the Task1 column on the right side of the Commander window. This
creates a new task group called TRADE6_1.

Specify runtime parameters
The next step is to configure the number of iterations for the task and the number
of virtual users that will concurrently perform the scripted task. In this example,
we will use 40 virtual users performing 10 iterations of the TRADE6SCENARIO
task.

1. In Column Task1, select TRADE6SCENARIO. Change the iterations field to
10.

2. Click the field containing 1 in column VUs. Enter 40 for the Total number of
virtual users for this task group.

Additional OpenSTA Commander features
Collectors, which gather operating system performance data like CPU utilization,
network and disk I/O, etc., can be defined in the OpenSTA Commander. These
collectors will gather data during the test execution and can then be correlated
with the actual test results. The two supported collector schemes to gather data
from are:

� Performance data available from the Windows System Monitor (Windows
Management Instrumentation WMI)

954 WebSphere Application Server V6 Scalability and Performance Handbook

� Simple Network Management Protocol (SNMP) data from SNMP-enabled
hosts or devices

Execute a test
The final step is to start the test using the OpenSTA Commander; while it is
executing, the test’s progress and statistics can be viewed. First, you have to
change the monitoring interval to five seconds. That way, the statistics will be
updated every five seconds (in a real world scenario, the monitoring interval
should be set even higher so as to not influence the performance test by wasting
CPU and network resources used for collecting performance data).

1. Set the monitoring interval to five seconds:

a. Select the Monitoring tab.
b. Click the Tools symbol.
c. Set both Task Monitoring Interval and Sampling Frequency to 5.

2. To start the test, select Test -> Execute Test or click the green Play icon on
the toolbar. During the test, you can watch the progress and test statistics:

a. Switch to the monitoring view by selecting the Monitoring register.

b. Enable the Summary checkbox on the right side of the Commander
window to see the following current statistics:

• Active virtual users
• Test duration
• HTTP requests/second
• Number of successful/failed HTTP requests

Right-click inside the Summary window to select and deselect additional
statistics data.

The test will stop automatically after all 40 VUs have cycled through their
10 iterations of the TRADE6SCENARIO task.

View results
After the test has stopped and results data has been collected, switch to the
Results view tab to examine the test data and statistics. There you can view
different reports and even some graphs.

The most useful reports and graphs are:

� Test Summary, Audit Log, Report Log, and Test Error Log

� HTTP Data List (for debugging HTTP responses)

� HTTP Response Time (Average per Second) versus Number of Responses
Graph

 Chapter 17. Performance tuning 955

This graph displays the average response time for requests grouped by the
number of requests per second during a test run.

� HTTP Errors versus Active Users Graph

This graph displays the effect on performance measured by the number of
HTTP server errors returned as the number of active Virtual Users varies
during a test run.

� HTTP Responses versus Elapsed Time Graph

This graph displays the total number of HTTP responses per second during
the test execution.

� HTTP Response Time versus Elapsed Time Graph

This graph displays the average response time per second of all the requests
issued during the test run.

� Timer Values versus Active Users Graph

� Timer Values versus Elapsed Time Graph

OpenSTA Commander also provides two additional features to help you with
further data analysis:

� Exporting results data

This feature allows you to export every text-based report into a
comma-separated-values (CSV) file. Every graphics report can be exported
directly into Microsoft Excel, where you can perform additional statistical
calculations. Export the data by right-clicking inside the opened report
window; select Export and save the CSV-file or open it inside Excel.

� URL filtering the report data

This feature is available when right-clicking inside a graphics report and
selecting Filter URLs. For example, you can filter out any URLs so that only
the servlet request to /trade/scenario is left. Then the graph displays only
the response times for the actual dynamic content of your load test.

The most interesting reports are:

� HTTP Data List
� HTTP Response Time versus Elapsed Time
� HTTP Responses versus Elapsed Time

17.3.3 Rational Performance Tester
IBM Rational Performance Tester 6.1 (RPT 6.1) is a multi-user system
performance test product hosted in the Eclipse shell with a Java-based execution

956 WebSphere Application Server V6 Scalability and Performance Handbook

engine. The focus of IBM Rational Performance Tester 6.1 is multi-user testing of
Web applications.

IBM Rational Performance Tester 6.1 is being built from an entirely new code
base running in the Eclipse shell; its predecessor, IBM Rational Performance
Tester 6.0, is a Win32-based product whose primary components are Rational
Robot and Rational TestManager.

IBM Rational Performance Tester 6.1 provides major improvements in the areas
of ease-of-use and scalability.

This section gives you a short introduction to the functions of this product, in
particular how to record and run a performance test. We do not compare it
(feature-wise) to other products in this chapter, since the suitability of any of
these products depends highly on your requirements. For more information
about this product, please contact your IBM representative or go to the following
Web site:

http://www.ibm.com/software/awdtools/tester/performance/

This Eclipse-based version of Rational Performance Tester is available for
Windows and Linux (RedHat Enterprise Linux WS and SUSE Linux Enterprise
Server) platforms.

Good performance of multi-user Web applications is a necessity, not a luxury.
Even small performance deficiencies and scalability failures can slow business to
a halt or cause customers to take their business elsewhere. In order to capture
performance problems before deployment, software development and test teams
must proactively measure the ability of their applications to rapidly and
accurately support multiple, concurrent users. IBM Rational Performance Tester
was built to address this need.

IBM Rational Performance Tester is a load and performance testing solution for
teams concerned about the scalability of their Web-based applications.
Combining ease-of-use features with flexibility, Rational Performance Tester
simplifies the test creation, execution and data analysis to help teams ensure the
ability of their applications to accommodate required user loads before the
applications are deployed.

The steps to perform a simple load test with IBM Rational Performance Tester
are:

1. Record a Performance Test
2. Creating a Performance Schedule

Important: Content in this section is based on a Beta version of RPT 6.1.

 Chapter 17. Performance tuning 957

http://www.ibm.com/software/awdtools/tester/performance/

3. Run a Performance Schedule

Record a Performance Test
Before we can run any tests, we first have to create our test project in the
workspace and record a Performance Test case. To do this:

1. Open your IBM Rational Software Development Platform. After it has started,
it should look like the one in Figure 17-3.

Figure 17-3 Rational Software Development Platform workspace

2. Click File -> New -> Performance Test Project to create a new test project
called SAW404-Trade6 in your workspace and click Finish. See Figure 17-4
on page 959.

958 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 17-4 Create new performance test project wizard

3. Click Yes on the Create Performance Test dialog box to start recording your
test case.

Figure 17-5 Create new performance test inside your project

4. Enter Trade6Scenario as the name for your recording in the HTTP Proxy
Recorder dialog and click Finish.

Figure 17-6 Create new HTTP recording dialog

 Chapter 17. Performance tuning 959

5. The HTTP Recorder will now start up and when it finishes initializing, it brings
up an Internet Explorer window and displays an introduction page stating that
you should not record confidential data.

6. Enter http://http1.itso.ibm.com/trade/scenario into the address field and
press Enter. A page similar to the one in Figure 17-7 is displayed.

We have now finished recording and can start customizing the recorded
script.

Figure 17-7 Internet Explorer recording

7. Close Internet Explorer. This displays the recorded script inside your
workspace.

960 WebSphere Application Server V6 Scalability and Performance Handbook

8. We now remove all references to images and cascading style sheets, since
we only want to simulate load using the servlet provided by Trade 6 for this
purpose. Right-click the resource(s) in the Test Contents pane of the
Trade6Scenario view and click Remove.

9. Click File -> Save to save the changes made so far.

Creating a Performance Schedule
After setting up our project and recording a scenario, we can create a
Performance Schedule. In a Performance Schedule, we basically assemble
multiple scenarios with loops, delays, and other items to design a performance
workload that matches the scenario we want to simulate as closely as possible.

1. Click File -> New -> Performance Schedule to create a new test schedule
called Trade6Schedule in your workspace and click Finish. See Figure 17-8.

Figure 17-8 Create new Performance Schedule wizard

2. Right-click User Group 1, then click Insert -> Loop.

Important: We are only removing the cascading style sheets and image
files from this Performance Test because these are not relevant for our
example. This is because the servlet that we are calling itself generates
load and simulates a test scenario. This is a special case. If you want to
simulate real user behavior, you usually do not want to perform this step!

 Chapter 17. Performance tuning 961

3. Click Loop and set the Number of iterations to 50.

4. Right-click Loop -> Insert -> Test, select Trade6Scenario from the list and
click OK.

5. Click File -> Save to save the changes.

Run a Performance Schedule
Now that we have everything recorded and set up, we can start to run our tests.

1. Right-click Trade6Schedule, then click Run -> Performance Schedule.

2. The workspace now displays a Performance Summary Report similar to the
one in Figure 17-9 on page 963. This report is continuously updated during
the test until all virtual test users have finished executing.

Note: Loops let you repeat tests and run a test at a rate that you specify.

Important: As mentioned before, we have been using a Beta of the product
when writing this redbook; the released product includes additional tabs in the
report (in addition to Summary and Response versus Time). Please see the
RPT 6.1 online help topic “Evaluating Results” for details on these additional
tabs.

962 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 17-9 Performance Schedule summary report

One of the reports you can now look at to review the test results is the Response
versus Time report shown in Figure 17-10 on page 964 that plots the average
response time over time during your test execution.

 Chapter 17. Performance tuning 963

Figure 17-10 Rational Performance Tester Response versus Time graph

Please take the time now to look through the generated statistics and
performance reports.

17.3.4 Other testing tools
There are a myriad of open-source and commercial products and services
related to Web application testing. A search on Google for “Web application
testing” can yield in excess of two million hits. Below is a list of just some of the
commercial and free tools available. This list is by no means complete, and does
not imply an endorsement or recommendation of the tools. It is merely provided
as an alternative source of testing tools if ApacheBench, OpenSTA, or Rational
Performance Tester are not used.

� JMeter, Open Source software available from the Apache Software
Foundation at:

http://jakarta.apache.org/jmeter/

� TestMaker and TestNetwork, from PushToTest. See:

http://www.pushtotest.com/

964 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.pushtotest.com/
http://jakarta.apache.org/jmeter/

� Grinder. See:

http://grinder.sourceforge.net

� LoadRunner from Mercury Interactive. See:

http://www.mercury.com/us/products/performance-center/loadrunner/

� Segue SilkPerformer. See:

http://www.segue.com/products/load-stress-performance-testing/

� WebLOAD from Radview. See:

http://www.radview.com/products/WebLOAD.asp

� WebStone from Mindcraft. See:

http://www.mindcraft.com/webstone/

� OpenLoad from Opendemand Systems. See:

http://www.opendemand.com/openload/

17.4 Performance monitoring guidelines
Before tuning measures can be taken, there is one important question that has to
be answered first: “What part of the system shall I tune?”. Simple random tuning
acts will seldom provide the desired effect, and sometimes will even produce
worse results. This section discusses which components to examine first, and
gives a practical hotlist of the top ten monitors and which tools to use. Finally, it
makes a short excursion into performance analysis and load testing best
practices.

17.4.1 Top ten monitoring hotlist
If you experience performance problems, start using Tivoli Performance Viewer
and walk through the following top ten monitoring items checklist. It will help you
to more easily find those significant parts of your system where the most
performance impact can be gained by tuning. It cannot be stated often enough
that performance tuning is not a science, but an art, so do not expect miracles by
adjusting a few “knobs” inside WebSphere Application Server: every system and
every application behaves differently, and requires different tuning measures! But
the Performance Monitoring Infrastructure (PMI), Tivoli Performance Viewer and
the Performance Advisors will assist you on the way to achieving your goal: a
system configured for optimum performance.

Because of the sheer magnitude of monitors and tuning parameters, knowing
where to start, what to monitor and which component to tune first is hard. Follow
these top ten monitoring steps to check the most important counters and metrics

 Chapter 17. Performance tuning 965

http://grinder.sourceforge.net
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.segue.com/products/load-stress-performance-testing/
http://www.radview.com/products/WebLOAD.asp
http://www.mindcraft.com/webstone/
http://www.opendemand.com/openload/

of WebSphere Application Server. See Figure 17-11 for a graphical overview of
the most important resources to check. Consider the following:

� If you recognize something out of the ordinary, for example, an overutilized
thread pool or a JVM that spends 50% in garbage collection at peak load
time, then concentrate your tuning actions there first.

� Perform your examination when the system is under typical production level
load and make note of the observed values.

� Alternatively, save Tivoli Performance Viewer sessions to the file system,
where the monitoring data will be stored for recurring analysis.

� Keep in mind that one set of tuning parameters for one application will not
work the same way for another.

For tips and good starting points on which direction to tune a specific parameter,
refer to 17.5, “Performance tuning guidelines” on page 975 for respective tuning
measures related to this checklist.

Figure 17-11 Top ten monitoring items checklist

Note: For details about the various monitoring levels available, please refer to
14.2.4, “PMI predefined statistic sets” on page 780.

 8. CPU
 9. I/O
10. Paging

Servlets and EJBs
1. Average Response Time

2. Number of Requests (Transactions)

3. Live HTTP Sessions

4. Web Server Threads

5. Web and EJB Thread Pool(s) 6. Data Source Conn. Pool Size

7. Java Virtual
 Machine Memory

HTTP

JDBC

IIOP

Web Server Web Container EJB Container Data Source

 8. CPU
 9. I/O
10. Paging

DB

ORB 8. CPU
 9. I/O
10. Paging

HTTP

Clients

Network

966 WebSphere Application Server V6 Scalability and Performance Handbook

Servlets and Enterprise JavaBeans
1. Average response time

To find this value in the Tivoli Performance Viewer, click Performance
Modules -> Web Applications and look at the value named ServiceTime.

2. Number of requests (Transactions)

To find this value in the Tivoli Performance Viewer, click Performance
Modules -> Web Applications and look at the value named RequestCount.

3. Live number of HTTP Sessions

To find this value in the Tivoli Performance Viewer, click Performance
Modules -> Servlet Session Manager and look at the value named Live
Count.

Thread pools
4. Web server threads

See 14.9, “Monitoring the IBM HTTP Server” on page 826 for details on how
to enable this in IBM HTTP Server or Apache. For all other Web servers,
please refer to the manual of your Web server product.

5. Web container and EJB container thread pool

All WebSphere Application Server thread pools can be viewed in the Thread
Pools summary report described in 14.3.5, “Tivoli Performance Viewer
summary reports” on page 796.

Data sources
6. Datasource connection pool size

All datasource connection pools can be viewed in the Connection Pools
summary report described in 14.3.5, “Tivoli Performance Viewer summary
reports” on page 796.

Java Virtual Machine
7. Java Virtual Machine (JVM) memory, garbage collection statistics

Information provided about the JVM runtime depends on the debug settings
of the JVM and can be viewed in the Tivoli Performance Viewer in
Performance Modules -> JVM Runtime. For more information, please refer
to 14.2.6, “Using JVMPI facility for PMI statistics” on page 786.

System resources on Web, application, and Database servers
8. CPU utilization

9. Disk and network I/O

 Chapter 17. Performance tuning 967

10.Paging activity

Tivoli Performance Advisor
Use the Tivoli Performance Advisor in addition to Tivoli Performance Viewer.
Together, these tools will help you to tune your system, and the Tivoli
Performance Advisor will give you recommendations on inefficient settings.

View recommendations and data from the Performance Advisor by clicking
Advisor in the Tivoli Performance Viewer. For detailed instructions on how to use
the Performance Advisor, refer to 14.7, “Performance Advisors” on page 813.

Runtime Performance Advisor
The Runtime Performance Advisor service runs inside each application server
process and has to be enabled explicitly. It uses the same rules engine as Tivoli
Performance Advisor and will produce similar tuning recommendations. In
contrast to Performance Advisor in Tivoli Performance Viewer, the Runtime
Performance Advisor does not provide the full spectrum of advice types, but is
suited for long-term analysis. For a detailed explanation of how to use the
Runtime Performance Advisor, refer to 14.7, “Performance Advisors” on
page 813.

However, keep in mind that both Tivoli Performance Advisor and Runtime
Performance Advisor advice can only be accurate if your application runs with
production level load, and without exceptions and errors. This is best done by
running a performance test, where a production level load can be simulated in a
reproducible manner. Both advisors need the CPU utilization to be high to
provide good (and complete) advice, which is best accomplished during a load
and stress test. If this is not the case, resulting output may be misleading and
most certainly contradictory.

Hint: If TPA complains that the instrumentation level for the JVM is not
sufficient, be aware that you might also need to activate the JVMPI facility.
See 14.2.6, “Using JVMPI facility for PMI statistics” on page 786 for
instructions on how to enable JVMPI logging.

Be aware that enabling JVMPI puts additional overhead on your system.
Therefore, you should only enable it when needed and disable it after your
tests.

Tip: It is important to configure the correct number of processors in the
Runtime Performance Advisor configuration panel, otherwise the
recommendations can be inaccurate.

968 WebSphere Application Server V6 Scalability and Performance Handbook

17.4.2 Performance analysis
Web performance analysis describes the process of finding out how well your
system (a Web application or generally a Web site) performs, and pinpointing
performance problems caused by inadequate resource utilization, such as
memory leaks or over- or underutilized object pools, to name just a few. Once
you know the trouble spots of your system, you can take counter-measures to
reduce their impact by taking appropriate tuning actions.

Terminology
Performance analysis is a very comprehensive topic. It fills entire books and is
surely out of the scope of this book. We attempt to provide a short introduction to
that subject. Following is a concise definition of the three most important
concepts used in performance analysis literature:

� Load
� Throughput
� Response Time

Load
A Web site, and especially the application that is running behind it, typically
behaves and performs differently depending on the current load, that is, the
number of users that are concurrently using the Web site at a given point in time.
This includes clients who actively perform requests at a time, but also clients who
are currently reading a previously requested Web page. Peak load often refers to
the maximum number of concurrent users using the site at some point in time.

Response time
Response time refers to the timeframe from the time the client initiates a request
until it receives the response. Typically, the time taken to display the response
(usually the HTML data inside the browser window) is also accounted for in the
response time.

Throughput
A Web site can only handle a specific number of concurrent requests.
Throughput depends on that number and on the average time a request takes to
process; it is measured in requests/second. If the site can handle 100 concurrent
requests and the average response time is one second, the Web site’s
throughput is 100 requests per second.

Performance testing
To find out about the performance of your system in the first place, you have to
run a performance test to get an idea of how many users will be able to access
the site at the same time without noteworthy delays. Even at a later time, load
tests are most helpful to find out how much performance was gained by a

 Chapter 17. Performance tuning 969

specific tuning measure. After each tuning step, the load test has to be repeated
(10-15 iterations of it are not uncommon), until the system meets your
performance objectives. For performance assessment and tuning, the following
test requirements can be stated:

� The load expected on the system has to be defined.

That implies that you have to create a model of your expected real-world,
production level workload, based on your experience and knowledge of your
clients’ behavior. Using this representative model in combination with a stress
test tool, you will create as many testcases as needed, and combine them
into a testsuite that simulates the desired user behavior and performs the
necessary interactions with your site during a load test. In some cases, when
no good estimate of such a model can be given, even a crude approximation
is better than performing no load test at all, and it can always be refined for
future test cycles.

� The load test has to be repeatable.

Tuning without the ability to perform repeatable tests is very hard, because of
the lack of comparable performance data. To be repeatable, it is necessary to
restore the initial system state after each test iteration. Usually persistent
application or transaction data is stored in databases or back-end systems,
so that implies the following requirement:

A second, staging database and/or back-end system has to be used for
testing purposes. Changes to the data on that system will not have
consequences in the real world: meaning, the placing of a thousand orders in
an online shop during load testing will not activate the order fulfillment
process in the back end.

� Find the optimum load level.

The goal is to find the site’s saturation point. First, the system has to be driven
even over the point where performance begins to degrade. This is commonly
referred to as drawing the throughput curve (see Figure 17-12 on page 971).

Start a series of tests to plot the throughput curve. Begin testing with wide
open server queues (pools) to allow maximum concurrency in your system.
Record the throughput (average requests per second) and the response time
(average time for requests), increasing the concurrent user load after each
test. You will find the system’s saturation point in the diagram where the
throughput becomes constant (the maximum throughput point is reached),
but response time begins to grow proportionally with the user load.

Refer to 17.5.4, “Adjusting WebSphere Application Server system queues” on
page 977 for more information about the queuing network and “Determining
optimum queue sizes” on page 980 for detailed explanation of the steps on
drawing the throughput curve.

970 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 17-12 How to find the optimum load level for a system: the saturation point

The Monitoring - Tuning - Testing cycle
Perform an initial load test to get a baseline that you can refer to later, with the
Performance Advisors facility enabled. Use the number of users at your
saturation point as the load parameter in all future load tests. Check the monitors
in Tivoli Performance Viewer according to the top ten hotlist and the Performance
Advisors. After you have implemented an advisor’s recommendation, perform
another test cycle to find out if you have gained throughput (because of a
decreased average response time) or freed resources (for example, memory by
reducing thread pools) which you could then possibly spend on other
components that need more memory resources. Repeat this procedure to find an
optimum configuration for your system and application. Keep in mind that
performance tuning is an iterative process, so do not rely on results from a single
run.

Here is a short overview of the steps necessary to perform a load test for tuning
purposes with the Runtime Performance Advisor as described above:

Important: Here the goal is to drive CPU utilization to nearly 100 percent. If
you cannot reach that state with opened up queues, there is most likely a
bottleneck in your application, in your network connection, some hard limit on
a resource or possibly any other external component you did not modify.

375

25

680

28

921

32

1137

34

1296

38

1315

75

1300

153

1236

323

1183
422

10 20 30 40 50 100 200 400 500

Client Load

0

200

400

600

800

1000

1200

1400

0

50

100

150

200

250

300

350

400

450

500
Buckle Zone

Transactions/s

RT

Throughput and Response Time

Light Load

Throughput
Plateau

Near linear increase
in response time

Th
ro

ug
hp

ut

 Chapter 17. Performance tuning 971

1. Enable the PMI service in all application servers and Node Agent (if using a
WebSphere Network Deployment environment), and restart both. In
WebSphere V6, PMI is enabled by default with the Basic monitoring set, so
unless you disabled it previously, there should be no need to restart the
servers. However, you might want to configure the statistics to be monitored
for your test.

2. Enable Runtime Performance Advisor for all application servers.

3. Open Monitoring and Tuning -> Performance Viewer -> Current Activity
and select the server you want to monitor in the WebSphere Administrative
Console.

4. Simulate your representative production level load using a stress test tool.

– Make sure that there are no errors or exceptions during the load test.

– Record throughput and average response time statistics to plot a curve at
the end of all testing iterations.

5. Check the Runtime Performance Advisor and Tivoli Performance Viewer.
Apply advice and follow your own intuition. You’ll get messages like the one in
Figure 17-13 on page 973 that provide suggestions about which settings
might improve performance on your system.

– Restart components or services if necessary.

– Reset all components (for example, the database) to the initial state.

6. Retest (go back to step 4).

Attention: Please notice that advice provided by Tivoli Performance Viewer
Performance Advisor or the Runtime Performance Advisor is not applied
automatically by WebSphere. You’ll have to decide which changes make
sense for your environment, apply them to your configuration, and test the
effects these changes had during a load test.

972 WebSphere Application Server V6 Scalability and Performance Handbook

Figure 17-13 Tuning advice given by the Runtime Performance Advisor

Data capture best practices
To get accurate results, mind the following best practices for data capturing:

� Measure during steady-state of the load test

Do not include ramp-up/ramp-down times in your performance data
measurements and analysis (see Figure 17-14 on page 974). Measure during
the steady-state when the maximum of users are concurrently performing
requests.

 Chapter 17. Performance tuning 973

Figure 17-14 Measurement interval: concurrently active users versus elapsed time

� Monitor machine logs and resources

Monitor important log files for exceptions or errors. Be sure that there are no
exceptions or deadlocks in the database. Keep an eye on system resources
like memory, paging activity, CPU, disk IO, network utilization, socket states,
etc., for bottlenecks.

Important log files are SystemOut.log and SystemErr.log. Monitor these logs
to make sure your application runs without errors. SystemErr.log should
typically remain free of entries. Errors logged there must be solved before you
can capture meaningful performance data. Likewise, any sort of exception in
SystemOut.log during the performance run should be solved before another
run, because exception handling and the I/O necessary to write stacks to the
log are expensive operations that impact performance.

For a Network Deployment cluster, you don't need to repeat all the monitoring
steps for each cluster member if they are all set up identically; monitoring one
or two representative cluster members should be sufficient. What is essential
however, is to check the CPU statistics for each node to make sure that all
cluster member processes are using similar amounts of CPU and there are
no extra processes consuming CPU on any nodes that can interfere with the
application server CPU efficiency.

� Test on idle systems

Make sure you do not perform test runs during database backups,
maintenance cycles, or while other people perform tests on these systems.

� Use isolated networks

Load driving machines should be attached to the same network switch as
your first-layer machines like Web servers or network dispatchers to be able

Time

Us
er

s

Measurement Interval

Us
er

s

974 WebSphere Application Server V6 Scalability and Performance Handbook

to apply the highest load possible on the front network interfaces of your
infrastructure.

� Performance tuning is an iterative process

10-15 test runs are quite usual during the tuning phase. Perform long lasting
runs to detect resource leaks, for example, memory leaks, where the load
tested application runs out of heap space only after a given time.

17.5 Performance tuning guidelines
Tuning is about utilizing resources to their fullest potential, resulting in the fastest
request processing possible. Many components in WebSphere Application
Server have an impact on performance and tuning is highly
application-dependent. This section discusses how to identify bottlenecks, gives
a practical introduction into analyzing them, and finally gives recommendations
on settings for major WebSphere environment properties.

It is important to stress once again that performance tuning is not an exact
science. Factors that influence testing vary from application to application, and
also from platform to platform. This section is designed to provide a primer for the
reader in a way that describes areas that can be tuned to increase performance.

The latest performance tuning information can be found in the WebSphere
Application Server V6 InfoCenter, located at

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Select the appropriate version of the InfoCenter you wish to read. Then navigate
to the Tuning performance section in the contents pane on the left side.

17.5.1 Tuning parameter hotlist
The following list of tuning suggestions is a subset of the complete list that
follows in this chapter. These parameters are on a hot list because they have an
important impact on performance. The majority of the parameters are application
dependent, and should only be adjusted after close inspection of testing results
for the application in question.

� Hardware and capacity settings, see 17.5.3, “Hardware and capacity settings”
on page 976.

� Java Virtual Machine heap size, see 17.5.6, “Java tuning” on page 1002.

� Application assembly performance checklist, see 17.5.5, “Application
assembly performance checklist” on page 991.

 Chapter 17. Performance tuning 975

� Data sources connection pool and prepared statement cache, see “Data
sources” on page 983.

� Solaris operating system TCP_TIME_WAIT_INTERVAL, see “Solaris” on
page 1014.

� Pass by value versus Pass by reference, see “Pass by reference” on
page 1022.

� IBM HTTP Server access logs, see “Access logs” on page 1019.

� HTTP keep-alive connections, see “HTTP transport channel Maximum
persistent requests” on page 988.

17.5.2 Parameters to avoid failures
The following list of parameters is a subset of the entire list of parameters, and is
designed to minimize application failures. The majority of these will also be
application specific and should be adjusted based on observed application
execution and configuration:

� Number of Connections to DB2:

Default settings are likely too low. See “Data sources” on page 983.

� Allow thread allocation beyond maximum:

When selected this might cause problems because the system becomes
overloaded because too many threads are allocated. See “Thread pool” on
page 988 for more information.

� Using TCP Sockets for DB2 on Linux:

For local databases. See “Use TCP sockets for DB2 on Linux” on page 1026.

� Connection Pool Size:

Ensure enough connections for transaction processing with Entity EJBs and
for avoiding deadlock. See “Connection pool size” on page 983.

17.5.3 Hardware and capacity settings
Obviously, the hardware and its capacity play an important role in performance.
Part 1 to Part 5 of this redbook provide detailed information about how to set up a
scalable WebSphere environment. However, the following parameters are to be
considered:

� Disk speed

Disk speed and configuration can have a dramatic effect on the performance
of application servers that run applications that are heavily dependent on
database support, that use extensive messaging, or are processing workflow.

976 WebSphere Application Server V6 Scalability and Performance Handbook

Disk I/O subsystems that are optimized for performance, for example RAID
array, are essential components for optimum application server performance
in these environments. It is recommended that you spread the disk
processing across as many disks as possible to avoid contention issues that
typically occur with one or two disk systems.

� Processor speed

Increasing the processor speed often helps throughput and response times
once other bottlenecks have been removed where the processor was waiting
for such events as input and output, and application concurrency.

� System memory

Increasing memory to prevent the system from paging memory to disk
improves the performance. Allow a minimum of 256 MB of memory for each
processor (512 MB is recommended). Adjust the parameter when the system
is paging and processor utilization is low because of the paging.

� Networks

Run network cards and network switches at full duplex. Running at half
duplex decreases performance. Verify that the network speed can
accommodate the required throughput. Also, make sure that 100 MB is in use
on 10/100 Ethernet networks.

17.5.4 Adjusting WebSphere Application Server system queues
WebSphere Application Server establishes a queuing network, which is a group
of interconnected queues that represent various components. There are queues
established for the network, Web server, Web container, EJB container, Object
Request Broker (ORB), data source, and possibly a connection manager to a
custom back-end system. Each of these resources represents a queue of
requests waiting to use that resource. Queues are load-dependent resources. As
such, the average response time of a request depends on the number of
concurrent clients.

As an example, think of an application, consisting of servlets and EJBs, that
accesses a back-end database. Each of these application elements reside in the
appropriate WebSphere component (for example servlets in the Web container)
and each component can handle a certain number of requests in a given time
frame.

A client request enters the Web server and travels through WebSphere
components in order to provide a response to the client. Figure 17-15 on
page 978 illustrates the processing path this application takes through the
WebSphere components as interconnected pipes that form a large tube.

 Chapter 17. Performance tuning 977

Figure 17-15 Queuing network

The width of the pipes (illustrated by height) represents the number of requests
that can be processed at any given time. The length represents the processing
time that it takes to provide a response to the request.

In order to find processing bottlenecks, it is useful to calculate a transactions per
second (tps) ratio for each component. Ratio calculations for a fictional
application are shown in Example 17-3:

Example 17-3 Transactions per second ratio calculations

The Web Server can process 50 requests in 100 ms =

The Web container parts can process 18 requests in 300 ms =

The EJB container parts can process 9 requests in 150 ms =

The datasource can process 40 requests in 50 ms =

The example shows that the application elements in the Web container and in
the EJB container process requests at the same speed. Nothing would be gained
from increasing the processing speed of the servlets and/or Web container
because the EJB container would still only handle 60 transactions per second.
The requests normally queued at the Web container would simply shift to the
queue for the EJB container.

Web
Container

Data
Source

Response

Processing Time
(ms)

Request

Number of concurrent requests

Web
Server

800700600500400300200100

EJB
Container

50

40

30

20

10

50req
0.1s

--------------- 500tps=

18req
0.3s

--------------- 60tps=

9req
0.15s
-------------- 60tps=

40req
0.05s
--------------- 800tps=

978 WebSphere Application Server V6 Scalability and Performance Handbook

This example illustrates the importance of queues in the system. Looking at the
operations ratio of the Web and EJB containers, each is able to process the
same number of requests over time. However, the Web container could produce
twice the number of requests that the EJB container could process at any given
time. In order to keep the EJB container fully utilized, the other half of the
requests must be queued.

It should be noted that it is common for applications to have more requests
processed in the Web server and Web container than by EJBs and back-end
systems. As a result, the queue sizes would be progressively smaller moving
deeper into the WebSphere components. This is one of the reasons queue sizes
should not solely depend on the operation ratios.

The following section outlines a methodology for configuring the WebSphere
Application Server queues. The dynamics of an individual system can be
dramatically changed by moving resources, for example moving the database
server onto another machine, or providing more powerful resources, for example
a faster set of CPUs with more memory. Thus, adjustments to the tuning
parameters are for a specific configuration of the production environment.

Queuing before WebSphere
The first rule of tuning is to minimize the number of requests in WebSphere
Application Server queues. In general, requests should wait in the network (in
front of the Web server), rather than waiting in WebSphere Application Server.
This configuration allows only those requests that are ready to be processed to
enter the queuing network. To accomplish this, specify that the queues furthest
upstream (closest to the client) are slightly larger, and that the queues further
downstream (furthest from the client) are progressively smaller.

As an example, the queuing network becomes progressively smaller as work
flows downstream. When 200 client requests arrive at the Web server, 125
requests remain queued in the network because the Web server is set to handle
75 concurrent clients. As the 75 requests pass from the Web server to the Web
container, 25 remain queued in the Web server and the remaining 50 are
handled by the Web container. This process progresses through the data source
until 25 user requests arrive at the final destination, the database server.
Because there is work waiting to enter a component at each point upstream, no
component in this system must wait for work to arrive. The bulk of the requests
wait in the network, outside of WebSphere Application Server. This type of
configuration adds stability, because no component is overloaded. The Edge
Server Components can be used to direct waiting users to other servers in a
WebSphere Application Server cluster.

 Chapter 17. Performance tuning 979

Determining optimum queue sizes
A simple way to determine the right queue size for any component is to perform a
number of load runs against the application server environment at a time when
the queues are very large, ensuring maximum concurrency through the system.

For example, one approach would be:

� Set the queue sizes for the Web server, Web container and data source to an
initial value, for example 100.

� Simulate a large number of typical user interactions entered by concurrent
users in an attempt to fully load the WebSphere environment. In this context,
“concurrent users” mean simultaneously active users that send a request,
wait for the response, and immediately resend a new request upon response
reception - without thinktime.

Use any stress tool to simulate this workload, such as OpenSTA, discussed in
“Testing the performance of an application” on page 940 or the tools
mentioned in “Other testing tools” on page 964.

� Measure overall throughput and determine at what point the system
capabilities are fully stressed (the saturation point).

� Repeat the process, each time increasing the user load. After each run,
record the throughput (requests per second) and response times (seconds
per request) and plot the throughput curve.

The throughput of WebSphere Application Server is a function of the number of
concurrent requests present in the total system. At some load point, congestion
will start to develop due to a bottleneck and throughput will increase at a much
lower rate until reaching a saturation point (maximum throughput value). The
throughput curve should help you identify this load point.

It is desirable to reach the saturation point by driving CPU utilization close to
100%, since this gives an indication that a bottleneck is not caused by something
in the application. If the saturation point occurs before system utilization reaches
100%, there is likely another bottleneck that is being aggravated by the
application. For example, the application might be creating Java objects causing
excessive garbage collection mark phase bottlenecks in Java that you may notice
as only one processor being utilized at a time on multi-processor systems. On
uni-processor systems you’ll not be able to see the symptom, but only the

Note: If resources are more readily available on the application server or
database server, it may be appropriate to tune such that every request from
the Web server has an available application server thread, and every
application server thread has an available database connection. The need for
this type of configuration depends on the application and overall site design.

980 WebSphere Application Server V6 Scalability and Performance Handbook

problems it is causing. Please refer to section 17.5.6, “Java tuning” on page 1002
to learn more about this behavior.

The most manageable type of bottleneck occurs when the CPUs of the servers
become fully utilized. This type of bottleneck can be fixed by adding additional or
more powerful CPUs.

An example throughput curve is shown in Figure 17-16.

Figure 17-16 Throughput curve

In Figure 17-16, Section A contains a range of users that represent a light user
load. The curve in this section illustrates that as the number of concurrent user
requests increase, the throughput increases almost linearly with the number of
requests. You can interpret this to mean that at light loads, concurrent requests
face very little congestion within the WebSphere Application Server system
queues.

In the heavy load zone or Section B, as the concurrent client load increases,
throughput remains relatively constant. However, the response time increases
proportionally to the user load. That is, if the user load is doubled in the heavy
load zone, the response time doubles.

Note: There are two ways to manage application bottlenecks: remove the
bottleneck or replicate the bottleneck. The best way to manage a bottleneck is
to remove it. You can use a Java-based application profiler, such as Rational
Application Developer (see Chapter 15, “Development-side performance and
analysis tools” on page 839 for more information), Performance Trace Data
Visualizer (PTDV), Optimizelt, JProbe or Jinsight to examine overall object
utilization.

X

Saturation Point

Th
ro

ug
hp

ut
 (R

eq
/S

ec
)

Section
A

50

40

30

20

10

60

0
8070605040302010 15014013012011010090

Concurrent Users

Section
B

Section
C

X

X

X

X

X
X

X
X X X X X X XX XX X X

X

0

 Chapter 17. Performance tuning 981

In Section C (the buckle zone) one or more of the system components have
become exhausted and throughput starts to degrade. For example, the system
might enter the buckle zone when the network connections at the Web server
exhaust the limits of the network adapter or if the requests exceed operating
system limits for file handles.

Determining the maximum concurrency point
The number of concurrent users at the throughput saturation point represents the
maximum concurrency of the application. For example, if the application
saturated the application server at 50 users, 48 users might give the best
combination of throughput and response time.

This value is called the Max Application Concurrency value. Max Application
Concurrency becomes the preferred value for adjusting the WebSphere
Application Server system queues. Remember, it is desirable for most users to
wait in the network; therefore, queue sizes should decrease when moving
downstream farther from the client. For example, given a Max Application
Concurrency value of 48, start with system queues at the following values: Web
server 75, Web container 50, data source 45. Perform a set of additional
experiments adjusting these values slightly higher and lower to find the best
settings.

The Tivoli Performance Viewer (TPV) can be used to determine the number of
concurrent users through the Servlet Engine Thread Pool Concurrently Active
Threads metric. Refer to 14.3, “Using Tivoli Performance Viewer” on page 790 for
more information about TPV.

Adjusting queue settings for access patterns
In many cases, only a fraction of the requests passing through one queue enters
the next queue downstream. In a site with many static pages, many requests are
fulfilled at the Web server and are not passed to the Web container. In this
circumstance, the Web server queue can be significantly larger than the Web
container queue. In the previous section, the Web server queue was set to 75
rather than closer to the value of Max Application Concurrency. Similar
adjustments need to be made when different components have different
execution times. As the percentage of static content decreases, however, a
significant gap in the Web server queue and the application server queue can
create poorly performing sites overall. Remember that tuning is an art, not a
science, and different Web sites have different requirements.

For example, in an application that spends 90% of its time in a complex servlet
and only 10% making a short JDBC query, on average 10% of the servlets are
using database connections at any time, so the database connection queue can
be significantly smaller than the Web container queue. Conversely, if much of a

982 WebSphere Application Server V6 Scalability and Performance Handbook

servlet execution time is spent making a complex query to a database, consider
increasing the queue values at both the Web container and the data source.
Always monitor the CPU and memory utilization for both the WebSphere
Application Server and the database servers to ensure the CPU or memory are
not being overutilized.

Configuring the queues
Within WebSphere Application Server, the queues are represented as pooled
resources, for example thread pools or database connection pools. Pool settings
determine the maximum concurrency level of a resource. This section describes
how the different queues are represented in WebSphere and their settings.

As the queues are most easily tuned from the inside out of the WebSphere
Application Server environment, this section describes the queue properties in
this order (looking at the components from right to left in Figure 17-15 on
page 978).

Data sources
There are two settings to be concerned with for determining data source queues:

� Connection pool size
� Prepared statement cache size

Connection pool size
When accessing any database, the initial database connection is an expensive
operation. WebSphere Application Server supports JDBC 2.0 Standard
Extension APIs to provide support for connection pooling and connection reuse.
The connection pool is used for direct JDBC calls within the application, as well
as for enterprise beans using the database.

Tivoli Performance Viewer can help find the optimal size for the connection pool.
Use a standard workload that represents a typical number of incoming client
requests, use a fixed number of iterations, and use a standard set of
configuration settings. Watch the Pool Size, Percent Used and Concurrent
Waiters counters of the data source entry under the JDBC Connection Pools
module. The optimal value for the pool size is that which reduces the values for
these monitored counters. If Percent Used is consistently low, consider
decreasing the number of connections in the pool.

Better performance is generally achieved if the value for the connection pool size
is set lower than the value for the Max Connections in the Web container. Lower
settings for the connection pool size (10-30 connections) typically perform better
than higher (more than 100) settings. On UNIX platforms, a separate DB2
process is created for each connection. These processes quickly affect
performance on systems with low memory, causing errors.

 Chapter 17. Performance tuning 983

Each entity bean transaction requires an additional connection to the database
specifically to handle the transaction. Be sure to take this into account when
calculating the number of data source connections.

The connection pool size is set from the Administrative Console using these
steps:

1. Select Resources -> JDBC Providers in the console navigation tree.

2. Select the appropriate scope (cell, node or server), depending on your
configuration.

3. Open the JDBC provider configuration by clicking the name of the provider.

4. Select the Data Sources entry under Additional Properties.

5. Open the data source configuration by clicking the data source name.

6. Select Connection pool properties.

7. Use the Minimum connections and Maximum connections fields to configure
the pool size.

8. Save the configuration and restart the affected application servers for the
changes to take effect.

The default values are 1 for Min connections and 10 for Max connections.

Deadlock can occur if the application requires more than one concurrent
connection per thread, and the database connection pool is not large enough for
the number of threads. Suppose each of the application threads requires two
concurrent database connections and the number of threads is equal to the
maximum connection pool size. Deadlock can occur when both of the following
are true:

� Each thread has its first database connection, and all are in use.

� Each thread is waiting for a second database connection, and none would
become available, since all threads are blocked.

To prevent the deadlock in this case, the value set for the database connection
pool must be at least one higher than the number of waiting threads in order to
have at least one thread complete its second database connection.

To avoid deadlock, code the application to use, at most, one connection per
thread. If the application is coded to require C concurrent database connections
per thread, the connection pool must support at least the following number of
connections, where T is the maximum number of threads:

T * (C - 1) + 1

984 WebSphere Application Server V6 Scalability and Performance Handbook

The connection pool settings are directly related to the number of connections
that the database server is configured to support. If the maximum number of
connections in the pool is raised, and the corresponding settings in the database
are not raised, the application fails and SQL exception errors are displayed in the
SystemErr.log file.

Prepared statement cache size
The data source optimizes the processing of prepared statements to help make
SQL statements process faster. It is important to configure the cache size of the
data source to gain optimal statement execution efficiency. A prepared statement
is a precompiled SQL statement that is stored in a prepared statement object.
This object is used to efficiently execute the given SQL statement multiple times.
If the JDBC driver specified in the data source supports precompilation, the
creation of the prepared statement will send the statement to the database for
precompilation. Some drivers might not support precompilation and the prepared
statement might not be sent until the prepared statement is executed.

If the cache is not large enough, useful entries will be discarded to make room for
new entries. In general, the more prepared statements your application has, the
larger the cache should be. For example, if the application has five SQL
statements, set the prepared statement cache size to 5, so that each connection
has five statements.

Tivoli Performance Viewer can help tune this setting to minimize cache discards.
Use a standard workload that represents a typical number of incoming client
requests, use a fixed number of iterations, and use a standard set of
configuration settings. Watch the PrepStmtCacheDiscardCount counter of the
JDBC Connection Pools module. The optimal value for the statement cache size
is the setting used to get either a value of zero or the lowest value for
PrepStmtCacheDiscardCount.

As with the connection pool size, the statement cache size setting requires
resources at the database server. Specifying too large a cache could have an
impact on database server performance. It is highly recommended that you
consult your database administrator for determining the best setting for the
prepared statement cache size.

The cache size is set from the Administrative Console using these steps:

1. Select Resources -> JDBC Provider in the console navigation tree.

2. Select the appropriate scope (cell, node or server), depending on your
configuration.

Note: The statement cache size setting defines the maximum number of
prepared statements cached per connection.

 Chapter 17. Performance tuning 985

3. Open the JDBC provider configuration by clicking the name of the provider.

4. Select the Data Sources entry in the Additional Properties pane.

5. Open the data source configuration by clicking the data source name.

6. Select WebSphere Application Server data source properties.

7. Use the Statement cache size field to configure the total cache size.

8. Save the configuration and restart the affected application servers for the
change to take effect.

EJB container
You can use the following parameters to make adjustments that improve
performance for the EJB container.

Cache settings (Cache size and Cleanup interval)
To determine the cache absolute limit, multiply the number of enterprise beans
active in any given transaction by the total number of concurrent transactions
expected. Then, add the number of active session bean instances. Use the Tivoli
Performance Viewer to view bean performance information. The cache settings
consist of two parameters: the cache size and the cleanup interval.

The cleanup interval specifies the interval at which the container attempts to
remove unused items from the cache in order to reduce the total number of items
to the value of the cache size.

The cache size specifies the number of buckets in the active instance list within
the EJB container.

To change these settings, click Servers -> Application servers ->
<AppServer_Name> -> EJB Container Settings -> EJB container -> EJB
cache settings.

The default values are Cache size=2053 buckets and Cache cleanup
interval=3000 milliseconds.

ORB thread pool size
Method invocations to enterprise beans are only queued for requests coming
from remote clients going through the RMI activity service. An example of such a
client is an EJB client running in a separate Java Virtual Machine (another
address space) from the enterprise bean. In contrast, no queuing occurs if the
EJB client (either a servlet or another enterprise bean) is installed in the same
JVM that the EJB method runs on and the same thread of execution as the EJB
client.

986 WebSphere Application Server V6 Scalability and Performance Handbook

Remote enterprise beans communicate by using the RMI/IIOP protocol. Method
invocations initiated over RMI/IIOP are processed by a server-side ORB. The
thread pool acts as a queue for incoming requests. However, if a remote method
request is issued and there are no more available threads in the thread pool, a
new thread is created. After the method request completes, the thread is
destroyed. Therefore, when the ORB is used to process remote method
requests, the EJB container is an open queue, due to the use of unbounded
threads.

Tivoli Performance Viewer can help tune the ORB thread pool size settings. Use
a standard workload that represents a typical number of incoming client
requests, use a fixed number of iterations, and use a standard set of
configuration settings. Watch the PercentMaxed counter of the Thread Pools
module. If the value of this counter is consistently in the double digits, then the
ORB could be a bottleneck and the number of threads in the pool should be
increased.

The degree to which the ORB thread pool value needs to be increased is a
function of the number of simultaneous servlets (that is, clients) calling enterprise
beans and the duration of each method call. If the method calls are longer or the
applications spend a lot of time in the ORB, consider making the ORB thread
pool size equal to the Web container size. If the servlet makes only short-lived or
quick calls to the ORB, servlets can potentially reuse the same ORB thread. In
this case, the ORB thread pool can be small, perhaps even one-half of the thread
pool size setting of the Web container.

The ORB thread pool size is configured from the Administrative Console using
these steps:

To change these settings, click ->EJB cache settings.

1. Select Servers -> Application servers -> <AppServer_Name> ->
Container Services.

2. Select ORB Service ->Thread Pool.

3. Use the Maximum Size field to configure the maximum pool size. Note that
this only affects the number of threads held in the pool (the actual number of
ORB threads can be higher).

4. Save the configuration and restart the affected application server for the
change to take effect.

Some additional settings related to the ORB can also be tuned. These are
explained in 17.5.12, “Object Request Broker (ORB)” on page 1022.

 Chapter 17. Performance tuning 987

Web container
To route servlet requests from the Web server to the Web containers, a transport
connection between the Web server plug-in and each Web container is
established. The Web container manages these connections through transport
channels and assigns each request to a thread from the Web container thread
pool.

Thread pool
The Web container maintains a thread pool to process inbound requests for
resources in the container (that is servlets and JSPs).

Tivoli Performance Viewer can help tune the Web container thread pool size
settings. Use a standard workload that represents a typical number of incoming
client requests, use a fixed number of iterations, and use a standard set of
configuration settings. Watch the PercentMaxed and ActiveCount counters of the
Thread Pools module. If the value of the PercentMaxed counter is consistently in
the double digits, then the Web container could be a bottleneck and the number
of threads should be increased. On the other hand if the number of active
threads are significantly lower than the number of threads in the pool, consider
lowering the thread pool size for a performance gain.

The Web container thread pool size is configured from the Administrative
Console using these steps:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Select the Thread Pools entry under Additional Properties.

3. Select the WebContainer entry in the thread pools list of the workspace.

4. Use the Maximum Size field to configure the maximum pool size. Note that in
contrast to the ORB, the Web container only uses threads from the pool,
hence a closed queue. The default value is 50.

5. Save the configuration and restart the affected application server for the
change to take effect.

HTTP transport channel Maximum persistent requests
The maximum persistent requests is the maximum number of requests allowed
on a single keep-alive connection. This parameter can help prevent denial of
service attacks when a client tries to hold on to a keep-alive connection. The

Important: Checking the Allow thread allocation beyond maximum thread
size box on the Thread Pool Configuration page allows for an automatic
increase of the number of threads beyond the maximum size configured for
the thread pool. As a result of this, the system can become overloaded
because too many threads are allocated.

988 WebSphere Application Server V6 Scalability and Performance Handbook

Web server plug-in keeps connections open to the application server as long as it
can, providing optimum performance.

A good starting value for the maximum number of requests allowed is 100 (which
is the default value). If the application server requests are received from the Web
server plug-in only, increase this parameter's value.

The maximum number of requests allowed is configured from the Administrative
Console using these steps:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Select Web Container Settings -> Web container transport chains under
Container Settings.

3. Select the transport chain you want to modify, for example
WCInboundDefault.

4. Select HTTP Inbound Channel (HTTP #) in the Transport Channels pane.

5. Enter a value in the Maximum persistent requests field.

6. Click OK.

7. Save the configuration and restart the affected application server for the
change to take effect.

HTTP transport channel Read timeout
Specifies the amount of time, in seconds, the HTTP transport channel waits for a
read request to complete on a socket after the first read request occurs. The read
being waited for could be an HTTP body (such as a POST) or part of the headers
if they were not all read as part of the first read request on the socket.

The read timeout is configured from the Administrative Console using these
steps:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Select Web Container Settings -> Web container transport chains under
Container Settings.

3. Select the transport chain you want to modify.

4. Select HTTP Inbound Channel (HTTP #) in the Transport Channels pane.

5. Enter a value in the Read timeout field (the default starting value is 60).

6. Click OK.

7. Save the configuration and restart the affected application server for the
change to take effect.

 Chapter 17. Performance tuning 989

Web server
The queue mechanism regarding the Web server in WebSphere Application
Server V6 was greatly improved in its scalability and tuning can focus primarily
on the Web server itself. You do not have to take into account about what load
this places onto the application servers. All Web servers have settings for
configuring the maximum number of concurrent requests accepted. For
information about how to configure this setting, refer to 17.5.8, “The Web server”
on page 1015. For details about the new features of IBM HTTP Server powered
by Apache 2.0 and how to use them, refer to “IBM HTTP Server powered by
Apache 2.0” on page 1015.

Determining the Web server maximum concurrency threads setting
A Web server monitor (see 14.9, “Monitoring the IBM HTTP Server” on
page 826) can help tune the maximum concurrent thread processing setting for
the Web server. Use a standard workload that represents a typical number of
incoming client requests, use a fixed number of iterations, and use a standard set
of configuration settings. Watch the number of Web server threads going to the
Web container and the number of threads accessing static content locally on the
Web server.

Using cluster configurations
The capability to spread workload among application servers using clustering
can be a valuable asset in configuring highly scalable production environments.
This is especially true when the application is experiencing bottlenecks that are
preventing full CPU utilization of Symmetric Multiprocessing (SMP) servers.
When adjusting the WebSphere system queues in clustered configurations,
remember that when a server is added to a cluster, the server downstream
receives twice the load. This is illustrated in Figure 17-17.

Figure 17-17 Clustering and queuing

Network

WebWeb

ServerServer

Web Web

ContainerContainer

DB

DataData

SourceSource

clientsclients

Web Web

ContainerContainer

990 WebSphere Application Server V6 Scalability and Performance Handbook

Two Web containers within a cluster are located between a Web server and a
data source. It is assumed the Web server, Web container, and data source (but
not the database) are all running on a single SMP server. Given these
constraints, the following queue considerations need to be made:

� Web server queue settings can be doubled to ensure ample work is
distributed to each Web container.

� Web container thread pools can be reduced to avoid saturating a system
resource such as CPU or another resource that the servlets are using.

� The data source pools can be reduced to avoid saturating the database
server.

� Java heap parameters can be reduced for each instance of the application
server. For versions of the JVM shipped with WebSphere Application Server,
it is crucial that the heap from all JVMs remain in physical memory. Therefore,
if a cluster of four JVMs are running on a system, enough physical memory
must be available for all four heaps.

17.5.5 Application assembly performance checklist
Application assembly tools are used to assemble J2EE components and
modules into J2EE applications. Generally, this consists of defining application
components and their attributes including enterprise beans, servlets and
resource references. Many of these application configuration settings and
attributes play an important role in the runtime performance of the deployed
application. The most important parameters and advice for finding optimal
settings are:

� Enterprise bean modules:

– Entity EJBs - Bean cache
– Method extensions - Isolation level
– Method extensions - Access intent
– Container transactions

� Web modules:

– Web application - Distributable
– Web application - Reload interval
– Web application - Reload enabled
– Web application - Web components - Load on startup

Note: While the database exists once in the environment and is configured
once in a cell, each application server that uses a datasource has its own
datasource loaded in its own JNDI namespace.

 Chapter 17. Performance tuning 991

Enterprise bean modules
This section explains the enterprise bean module parameters mentioned above
in detail.

Entity EJBs - Bean cache
WebSphere Application Server provides significant flexibility in the management
of database data with Entity EJBs. The Entity EJBs Activate at and Load at
configuration settings specify how and when to load and cache data from the
corresponding database row data of an enterprise bean. These configuration
settings provide the capability to specify enterprise bean caching Options A, B or
C, as specified in the EJB 1.1 specification.

Option A provides maximum enterprise bean performance by caching database
data outside of the transaction scope. Generally, Option A is only applicable
where the EJB container has exclusive access to the given database. Otherwise,
data integrity is compromised. Option B provides more aggressive caching of
Entity EJB object instances, which can result in improved performance over
Option C, but also results in greater memory usage. Option C is the most
common real-world configuration for Entity EJBs.

� Bean cache - Activate at

This setting specifies the point at which an enterprise bean is activated and
placed in the cache. Removal from the cache and passivation are also
governed by this setting. Valid values are Once and Transaction. Once
indicates that the bean is activated when it is first accessed in the server
process, and passivated (and removed from the cache) at the discretion of
the container, for example when the cache becomes full. Transaction
indicates that the bean is activated at the start of a transaction and passivated
(and removed from the cache) at the end of the transaction. The default value
is Transaction.

� Bean cache - Load at

This setting specifies when the bean loads its state from the database. The
value of this property implies whether the container has exclusive or shared
access to the database. Valid values are Activation and Transaction.
Activation indicates the bean is loaded when it is activated and implies that
the container has exclusive access to the database. Transaction indicates
that the bean is loaded at the start of a transaction and implies that the
container has shared access to the database. The default is Transaction.

Note: Although WebSphere Application Server 5.1 and higher also supports
EJB 2.0, the following information refers to EJB 1.1 settings.

992 WebSphere Application Server V6 Scalability and Performance Handbook

The settings of the Activate at and Load at properties govern which commit
options are used.

� For Option A (exclusive database access), use Activate at = Once and Load
at = Activation.

This option reduces database input/output by avoiding calls to the ejbLoad
function, but serializes all transactions accessing the bean instance. Option A
can increase memory usage by maintaining more objects in the cache, but
can provide better response time if bean instances are not generally
accessed concurrently by multiple transactions.

� For Option B (shared database access), use Activate at = Once and Load at =
Transaction.

Option B can increase memory usage by maintaining more objects in the
cache. However, because each transaction creates its own copy of an object,
there can be multiple copies of an instance in memory at any given time (one
per transaction), requiring the database be accessed at each transaction. If
an enterprise bean contains a significant number of calls to the ejbActivate
function, using Option B can be beneficial because the required object is
already in the cache. Otherwise, this option does not provide significant
benefit over Option A.

� For Option C (shared database access), use Activate at = Transaction and
Load at = Transaction.

This option can reduce memory usage by maintaining fewer objects in the
cache. However, there can be multiple copies of an instance in memory at any
given time (one per transaction). This option can reduce transaction
contention for enterprise bean instances that are accessed concurrently but
not updated.

Method extensions - Isolation level
WebSphere Application Server enterprise bean method extensions provide
settings to specify the level of transactional isolation used when accessing data.

Isolation level settings specify various degrees of runtime data integrity provided
by the corresponding database. First, choose a setting that meets data integrity
requirements for the given application and specific database characteristics.

The valid values are:

� Serializable

Note: When using WebSphere Network Deployment and workload
management is enabled, Option A cannot be used. You must use settings
that result in the use of Options B or C.

 Chapter 17. Performance tuning 993

� Repeatable read
� Read committed
� Read uncommitted

Isolation level also plays an important role in performance. Higher isolation levels
reduce performance by increasing row locking and database overhead while
reducing data access concurrency. Various databases provide different behavior
with respect to the isolation settings. In general, Repeatable read is an
appropriate setting for DB2 databases. Read committed is generally used for
Oracle. Oracle does not support Repeatable read and will translate this setting to
the highest isolation level of Serializable.

The Isolation level can be specified at the bean or method level. Therefore, it is
possible to configure different isolation level settings for various methods. This is
an advantage when some methods require higher isolation than others, and can
be used to achieve maximum performance while maintaining integrity
requirements. However, isolation cannot change between method calls within a
single enterprise bean transaction. A runtime exception will be thrown in this
case.

The following section describes the four isolation levels:

� Serializable

This level prohibits the following types of reads:

– Dirty reads: A transaction reads a database row containing uncommitted
changes from a second transaction.

– Nonrepeatable reads: One transaction reads a row, a second transaction
changes the same row, and the first transaction rereads the row and gets
a different value.

– Phantom reads: One transaction reads all rows that satisfy an SQL
WHERE condition, a second transaction inserts a row that also satisfies
the WHERE condition, and the first transaction applies the same WHERE
condition and gets the row inserted by the second transaction.

� Repeatable read

This level prohibits dirty reads and nonrepeatable reads, but it allows
phantom reads.

� Read committed

This level prohibits dirty reads, but allows nonrepeatable reads and phantom
reads.

� Read uncommitted

This level allows dirty reads, nonrepeatable reads, and phantom reads.

994 WebSphere Application Server V6 Scalability and Performance Handbook

The container uses the transaction isolation level attribute as follows:

� Session beans and entity beans with bean-managed persistence (BMP):

For each database connection used by the bean, the container sets the
transaction isolation level at the start of each transaction unless the bean
explicitly sets the isolation level on the connection.

� Entity beans with container-managed persistence (CMP):

The container generates database access code that implements the specified
isolation level.

Isolation levels for EJBs
WebSphere Application Server enterprise bean method extensions provide
settings to specify individual enterprise bean methods as read-only. This setting
denotes whether the method can update entity attribute data (or invoke other
methods that can update data in the same transaction).

By default, all enterprise bean methods are assumed to be "update" methods.
This results in EJB Entity data always being persisted back to the database at the
close of the enterprise bean transaction. Marking enterprise methods that do not
update entity attributes as Access Intent Read, provides a significant
performance improvement by allowing the WebSphere Application Server EJB
container to skip the unnecessary database update.

A behavior for "finder" methods for CMP Entity EJBs is available. By default,
WebSphere Application Server will invoke a Select for Update query for CMP
enterprise bean finder methods such as findByPrimaryKey. This exclusively locks
the database row for the duration of the enterprise bean transaction. However, if
the enterprise bean finder method has been marked as Access Intent Read, the
container will not issue the For Update on the select, resulting in only a read lock
on the database row.

Isolation levels and read-only methods: If an entity bean has methods that do
not update attributes (getter type methods) they can be specified as read-only
methods in the deployment description. This will avoid executing a SELECT FOR
UPDATE/UPDATE pair of SQL statements, and hence will provide a performance
improvement.

EJBs deployed in WebSphere Application Server can be assigned one of four
transaction isolation levels. These are Repeatable Read, Read Committed, Read

Important: The following applies only to EJBs that are compliant with the
EJB 1.1 specification. We recommend that new EJBs be developed to be
compliant with the EJB 2.0 specification. However, some existing EJBs may
only be compliant with EJB 1.1.

 Chapter 17. Performance tuning 995

Uncommitted and Serializable. The default level is Repeatable Read, but
performance can be improved by the use of a lower isolation level such as Read
Committed.

EJB 2.0 has adopted the J2C resources isolation level. Now you can specify the
isolation by using the access intent in your EJBs. The access intent for each
method of an EJB 2.0 CMP entity bean can be specified in the EJB deployment
descriptor to provide hints to the EJB container about how the method will be
used. The supported access intents are pessimistic update - Weakest Lock At
Load, pessimistic update, optimistic update, pessimistic read, and optimistic
read. In general, read-only methods and optimistic locking will provide better
performance. However, be careful with the use of optimistic locking since
problems may only become apparent under heavy load and hence may not be
found in development.

Table 17-1 describes the access intent settings, and how this might affect the
underlying isolation levels.

Table 17-1 Access intent settings

Important: The following applies only to EJBs that are compliant with the EJB
2.0 specification.

Access intent
profile name

Concurrency control,
access type

Transaction
isolation

wsPessimisticRead Pessimistic/Read
(lock held for duration of transaction)

Repeatable Read

wsPessimisticUpdate Pessimistic/Update
(generates SELECT FOR UPDATE and
grabs locks at beginning of transaction)

Repeatable Read

wsPessimisticUpdate-
Exclusive

Pessimistic/Update
(lock held for duration of transaction)

Serializable

wsPessimisticUpdate-
noCollision

Pessimistic/Update
(no locks are held, updates permitted,
locks escalated on update)

Read Committed

wsPessimisticUpdate-
WeakestLockAtLoad
(default)

Pessimistic/Update
(no locks are held, updates permitted,
locks escalated on update)

Repeatable read

wsOptimisticRead Optimistic/Read
(read-only access)

Read Committed

996 WebSphere Application Server V6 Scalability and Performance Handbook

You must balance your performance needs against the data consistency. As
stated before, with more restrictive isolation levels, the performance becomes
worse. So you have to study your application to see when to use one access
intent setting or another. Some core entity beans can represent data involved in
many transactions. If they do not have a fast access they will become a
bottleneck. But also as the data is used in many transactions the data must be
consistent. So you can apply different isolation levels to different methods.

The get methods are read-only methods, so you can apply a low isolation level as
Read Committed. The set methods normally are more seldom used and need to
be very strongly isolated, so you can apply the most restrictive isolation level as
Serializable.

Pessimistic methods block the data for more time than optimistic methods, so
normally optimistic methods are faster than pessimistic methods.

Figure 17-18 Lock time in Optimistic and Pessimistic transactions

In WebSphere Application Server V6 the access intent settings can be adjusted
during runtime, depending on the requirements of the actual unit of work
performed. This feature is part of Application profiling. Application profiling
enables you to configure multiple access intent policies on the same entity bean.
Application profiling reflects the fact that different units of work have different use
patterns for enlisted entities and can require different kinds of support from the
server run time environment.

Application Profiling
Application profiling enables you to identify particular units of work to the
WebSphere Application Server run time environment. The run time can tailor its
support to the exact requirements of that unit of work. Access intent is currently

wsOptimisticUpdate Optimistic/Update
(generates overqualified SQL UPDATE
statements and forces compare before
update)

Read Committed

Access intent
profile name

Concurrency control,
access type

Transaction
isolation

Optimistic Transaction Pessimistic Transaction

Lock Time Lock Time

 Chapter 17. Performance tuning 997

the only run time component that makes use of the application profiling
functionality. For example, you can configure one transaction to load an entity
bean with strong update locks and configure another transaction to load the
same entity bean without locks.

Application profiling introduces two new concepts in order to achieve this
function: tasks and profiles.

� Tasks

A task is a configurable name for a unit of work. Unit of work in this case
means either a transaction or an ActivitySession. The task is used for the
duration of its unit of work to identify configured policies specific to that unit of
work.

� Profiles

A profile is simply a mapping of a task to a set of access intent policies that
are configured on entity beans. When an invocation on a bean (whether by a
finder method, a CMR getter, or a dynamic query) requires data to be
retrieved from the back end system, the current task associated with the
request is used to determine the exact requirement of the transaction. The
same bean loads and behaves differently in the context of the task-to-profile
mapping. Each profile provides the developer an opportunity to reconfigure
the application's access intent. If a request is operating in the absence of a
task, the run time environment uses either a method-level access intent (if
any) or a bean-level default access intent.

The Application Server Toolkit (AST) includes a static analysis engine that can
assist you in configuring application profiling. The tool examines the compiled
classes and the deployment descriptor of a Java 2 Platform, Enterprise Edition
(J2EE) application to determine the entry point of transactions, calculate the set
of entities enlisted in each transaction, and determine whether the entities are
read or updated during the course of each identified transaction. You can execute
the analysis in either closed world or open world mode. A closed-world analysis
assumes that all possible clients of the application are included in the analysis
and that the resulting analysis is complete and correct. The results of a
closed-world analysis report the set of all transactions that can be invoked by a
Web, JMS, or application client. The results exclude many potential transactions
that never execute at run time. An open-world analysis assumes that not all
clients are available for analysis or that the analysis cannot return complete or
accurate results. An open-world analysis returns the complete set of possible
transactions. The results of an analysis persist as an application profiling
configuration. The tool establishes container managed tasks for servlets,
JavaServer Pages (JSP) files, application clients, and message-driven beans
(MDBs). Application profiles for the tasks are constructed with the appropriate
access intent for the entities enlisted in the transaction represented by the task.

998 WebSphere Application Server V6 Scalability and Performance Handbook

However, in practice, there are many situations where the tool returns at best
incomplete results. Not all applications are amenable to static analysis. Some
factory and command patterns make it impossible to determine the call graphs.
The tool does not support the analysis of ActivitySessions. You should examine
the results of the analysis very carefully. In many cases you must manually
modify them to meet the requirements of the application. However, the tool can
be an effective starting place for most applications and may offer a complete and
quick configuration of application profiles for some applications.

Read-ahead hints
Read-ahead schemas enable applications to minimize the number of database
round-trips by retrieving a working set of CMP beans for the transaction within
one query. Read-ahead involves activating the requested CMP beans and
caching the data of related beans (relationships), which ensures that data is
present for the beans that are most likely to be needed next by an application. A
read-ahead hint is a canonical representation of the related beans that are to be
read. It is associated with a finder method for the requested bean type, which
must be an EJB 2.x- compliant CMP entity bean.

Container transactions
The container transaction setting specifies how the container manages
transaction scopes when delegating invocation to the enterprise bean individual
business method. The legal values are:

� Never
� Mandatory
� Requires New
� Required
� Supports
� Not Supported
� Bean Managed

The container transactions attribute can be specified individually for one or more
enterprise bean methods. Enterprise bean methods not requiring transactional
behavior can be configured as Supports to reduce container transaction
management overhead.

The following section describes the legal values in detail:

� Never

This legal value directs the container to invoke bean methods without a
transaction context. If the client invokes a bean method from within a
transaction context, the container throws the java.rmi.RemoteException
exception.

 Chapter 17. Performance tuning 999

If the client invokes a bean method from outside a transaction context, the
container behaves in the same way as if the Not Supported transaction
attribute was set. The client must call the method without a transaction
context.

� Mandatory

This legal value directs the container to always invoke the bean method within
the transaction context associated with the client. If the client attempts to
invoke the bean method without a transaction context, the container throws
the javax.jts.TransactionRequiredException exception to the client. The
transaction context is passed to any enterprise bean object or resource
accessed by an enterprise bean method.

Enterprise bean clients that access these entity beans must do so within an
existing transaction. For other enterprise beans, the enterprise bean or bean
method must implement the Bean Managed value or use the Required or
Requires New value. For non-enterprise bean EJB clients, the client must
invoke a transaction by using the javax.transaction.UserTransaction interface.

� Requires New

This legal value directs the container to always invoke the bean method within
a new transaction context, regardless of whether the client invokes the
method within or outside a transaction context. The transaction context is
passed to any enterprise bean objects or resources that are used by this
bean method.

� Required

This legal value directs the container to invoke the bean method within a
transaction context. If a client invokes a bean method from within a
transaction context, the container invokes the bean method within the client
transaction context. If a client invokes a bean method outside a transaction
context, the container creates a new transaction context and invokes the bean
method from within that context. The transaction context is passed to any
enterprise bean objects or resources that are used by this bean method.

� Supports

This legal value directs the container to invoke the bean method within a
transaction context if the client invokes the bean method within a transaction.
If the client invokes the bean method without a transaction context, the
container invokes the bean method without a transaction context. The
transaction context is passed to any enterprise bean objects or resources that
are used by this bean method.

� Not Supported

This legal value directs the container to invoke bean methods without a
transaction context. If a client invokes a bean method from within a

1000 WebSphere Application Server V6 Scalability and Performance Handbook

transaction context, the container suspends the association between the
transaction and the current thread before invoking the method on the
enterprise bean instance. The container then resumes the suspended
association when the method invocation returns. The suspended transaction
context is not passed to any enterprise bean objects or resources that are
used by this bean method.

� Bean Managed

This value notifies the container that the bean class directly handles
transaction demarcation. This property can be specified only for session
beans and (in EJB 2.0 implementations only) for message-driven beans, not
for individual bean methods.

Web modules
This section explains the parameters that can be set for Web modules.

Web application - Distributable
The distributable flag for J2EE Web applications specifies that the Web
application is programmed to be deployed in a distributed servlet container.

Web application - Reload interval
The reload interval specifies a time interval, in seconds, in which the Web
application’s file system is scanned for updated files, such as servlet class files or
JSPs.

The Reload interval can be defined at different levels for various application
components. Generally, the reload interval specifies the time the application
server will wait between checks to see if dependent files have been updated and
need to be reloaded. Checking file system time stamps is an expensive operation
and should be reduced. The default is 0 (zero). Setting this to a value of 3
seconds is good for a test environment, because the Web site can be updated
without restarting the application server. In production environments, checking a
few times a day is a more common setting.

Web application - Reloading enabled
This specifies whether file reloading is enabled. The default is false.

Web application - Web components - Load on startup
Indicates whether a servlet is to be loaded at the startup of the Web application.
The default is false.

Important: Web applications should be marked as Distributable if, and only if,
they will be deployed in a WebSphere Application Server clustered
environment.

 Chapter 17. Performance tuning 1001

Many servlets perform resource allocation and other up-front processing in the
servlet init() method. These initialization routines can be costly at runtime. By
specifying Load on startup for these servlets, processing takes place when the
application server is started. This avoids runtime delays, which can be
encountered on a servlet’s initial access.

17.5.6 Java tuning
The following section focuses on tuning Java memory. Enterprise applications
written in Java involve complex object relationships and utilize large numbers of
objects. Although Java automatically manages memory associated with an
object's life cycle, understanding the application's usage patterns for objects is
important. In particular, ensure the following:

� The application is not over-utilizing objects
� The application is not leaking objects (that is, memory)
� The Java heap parameters are set to handle the use of objects

Understanding the effect of garbage collection is necessary to apply these
management techniques.

Garbage collection basics
Garbage collection algorithms, like JVMs, have evolved and become more and
more complex to understand. Knowledge of how the Garbage Collector (GC)
works is necessary for designing and tuning Java applications and application
servers. Following is a broad, somewhat simplified, overview of the Mark -
Sweep - Compact (MSC) garbage collection technique implemented by IBM
JVMs. For an in-depth study of additional, state-of-the-art heap management and
garbage collection techniques, refer to the articles mentioned in “Additional JVM
and garbage collection related resources” on page 1010.

The JVM allocates areas of storage inside the Java heap, where objects, arrays,
and classes are stored. An allocated object is considered live when there exists
at least one reference to it, that means, it is used by someone, commonly
another object. Thus the object is also considered reachable. When this object is
no longer used by anyone, all references should have been removed, it is now
considered garbage, and its allocated storage area should be reclaimed for
reuse. This task is performed by the Garbage Collector.

When the JVM is unable to allocate an object from the current Java heap
because of lack of free, contiguous space, a memory allocation fault occurs
(allocation failure) and the Garbage Collector is invoked. (The GC can also be
invoked by a specific function call: System.gc(). However, when System.gc() is
invoked, the JVM can simply 'take it under advisement' and choose to defer the
GC operation until later if the JVM has more pressing needs to attend to.) The

1002 WebSphere Application Server V6 Scalability and Performance Handbook

first task of the GC is to make sure to acquire all locks required for garbage
collection, and then stops all the other threads. Because of this garbage
collection is also referred to as stop-the-world (STW) collection. Garbage
collection will then take place in three phases: mark, sweep, and optionally
compact.

Mark phase
In the mark phase, all reachable objects that are referenced either directly by the
JVM, for example through threads stacks, or in turn by other objects, will be
identified. Everything else that is not marked is considered garbage.

Sweep phase
All allocated objects that are not marked are swept away, that is, the space used
by them is reclaimed.

Compaction phase
When the garbage has been removed from the heap, the GC can consider
compacting the heap, which is typically riddled with holes caused by the freed
objects by now. When there is no chunk of memory available big enough to
satisfy an allocation request after garbage collection, the heap has to be
compacted. Because heap compaction means moving objects around and
updating all references to them, it is extremely costly in terms of time, and the
GC tries to avoid it if possible. Modern JVM implementations try to avoid heap
compaction by focusing on optimizing object placement in the heap.

Heap expansion and shrinkage
Heap expansion will occur after garbage collection if the ratio of free to total heap
size falls below the value specified by the -Xminf parameter. The default is 0.3
(or 30%).

Heap shrinkage will occur after garbage collection if the ratio of free to total heap
size exceeds the value specified by the -Xmaxf parameter. The default is 0.6 (or
60%). The amount of expansion is governed by the minimum expansion size, set
by the -Xmine parameter, and the maximum expansion size, defined by -Xmaxe.
The defaults for -Xmine are 1MB, for -Xmaxe 0, which is equal to unlimited. These
parameters do not have any effect on a fixed-size heap, where the -Xms and -Xmx
values are equal.

Note: Do not confuse the Java heap with the native (or system) heap! The
native heap is never garbage collected; it is used by the JVM process and
stores all the objects that the JVM itself needs during its entire lifetime. The
native heap is typically much smaller than the Java heap.

 Chapter 17. Performance tuning 1003

Parallel versus concurrent operation
Recent releases of JVMs implement multiple helper threads that run in parallel
on a multi-processor machine during the mark and sweep phases. These threads
are asleep during normal operation, and only during garbage collection the work
is divided between the main GC thread and his helper threads, using all
processors simultaneously. Parallel mark mode is enabled by default since IBM
JVM versions 1.3.0, while parallel sweep is enabled by default since
version 1.3.1. As mentioned before, garbage collection is basically a
stop-the-world operation. This is not entirely true: IBM JVM 1.3.1 and higher also
know an optional concurrent mark mode, where a background thread is started
by the JVM, and some of the work of the mark phase is done concurrently while
all application threads are active. Thus the STW pause will be reduced when
garbage collection finally occurs. Concurrent mark is disabled by default, and can
be activated using the -Xgcpolicy:optavgpause parameter.

In addition, IBM JVM 1.4 knows an incremental compaction mode which
parallelizes the compaction phase. For an introductory explanation of parallel
and concurrent modes, refer to the developerWorks article Fine-tuning Java
garbage collection performance by Sumit Chawla found at:

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

or the IBM JVM Diagnostics Guides (see “Additional JVM and garbage collection
related resources” on page 1010) for an in-depth discussion of these features.

The garbage collection bottleneck
Examining Java garbage collection can give insight into how the application is
utilizing memory. Garbage collection is a Java strength. By taking the burden of
memory management away from the application developer, Java applications are
more robust than applications written in languages that do not provide garbage
collection. This robustness applies as long as the application is not abusing
objects. Garbage collection normally consumes anywhere from 5 to 20% of the
total execution time of a properly functioning application. If not managed,
garbage collection can be one of the biggest bottlenecks for an application,
especially when running on SMP server machines.

The garbage collection gauge
Garbage collection can be used to evaluate application performance health. By
monitoring garbage collection during the execution of a fixed workload, users

Note: In some cases, concurrent mark may reduce the throughput of an
application. It is recommended you compare the application performance with
and without concurrent mark, using identical loads to measure the effect on
application performance.

1004 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

gain insight as to whether the application is over-utilizing objects. Garbage
collection can even be used to detect the presence of memory leaks.

Use the garbage collection and heap statistics in Tivoli Performance Viewer (see
14.3, “Using Tivoli Performance Viewer” on page 790) to evaluate application
performance health. Mind that you have to enable the JVMPI facility (see
“Performance data provided by JVMPI” on page 787) to get detailed garbage
collection statistics. By monitoring garbage collection, memory leaks and overly
used objects can be detected.

For this type of investigation, set the minimum and maximum heap sizes to the
same value. Choose a representative, repetitive workload that matches
production usage as closely as possible, user errors included. To ensure
meaningful statistics, run the fixed workload until the state of the application is
steady. Reaching this state usually takes several minutes.

Detecting over-utilization of objects
To see if the application is overusing objects, look in Tivoli Performance Viewer at
the counters for the JVMPI profiler. The average time between garbage collection
calls should be 5 to 6 times the average duration of a single garbage collection. If
not, the application is spending more than 15% of its time in garbage collection.
Also, look at the numbers of freed, allocated, and moved objects.

If the information indicates a garbage collection bottleneck, there are two ways to
clear the bottleneck. The most cost-effective way to optimize the application is to
implement object caches and pools. Use a Java profiler to determine which
objects to target. If the application cannot be optimized, adding memory,
processors and application clusters might help. Additional memory allows each
application server in a cluster to maintain a reasonable heap size. Additional
processors allow the cluster members to run in parallel.

Detecting memory leaks
Memory leaks in Java are a dangerous contributor to garbage collection
bottlenecks. Memory leaks are more damaging than memory overuse, because
a memory leak ultimately leads to system instability. Over time, garbage
collection occurs more frequently until finally the heap is exhausted and Java fails
with a fatal Out of Memory exception. Memory leaks occur when an unneeded
object has references that are never deleted. This most commonly occurs in
collection classes, such as Hashtable, because the table itself always has a
reference to the object, even after real references have been deleted.

High workload often causes many applications to crash immediately after being
deployed in the production environment. This situation is especially true for
leaking applications where the high workload accelerates the magnification of the
leakage and a memory allocation failure occurs.

 Chapter 17. Performance tuning 1005

Memory leak testing relates to magnifying numbers. Memory leaks are
measured in terms of the amount of bytes or kilobytes that cannot be garbage
collected. The delicate task is to differentiate these amounts from the expected
sizes of useful and unusable memory. This task is achieved more easily if the
numbers are magnified, resulting in larger gaps and easy identification of
inconsistencies. The following is a list of important conclusions about memory
leaks:

� Long-running test

Memory leak problems are manifested only after a period of time. Therefore,
memory leaks are usually found during long-running tests. Short runs can
lead to false alarms. One of the problems in Java is whether to say that a
memory leak is occurring when memory usage has seemingly increased
either abruptly or monotonically in a given period. These kind of increases
can be valid, and the objects created can be referenced at a much later time.
In other words, what method is used to differentiate the delayed use of objects
from completely unused objects? Running applications over a long period of
time will get a higher confidence for whether the delayed use of objects is
actually occurring. Because of this, memory leak testing cannot be integrated
with some other types of tests, such as functional testing, that occur earlier in
the process. However, tests such as stress or durability tests can be
integrated.

� System test

Some memory leak problems occur only when different components of a big
project are combined and executed. Interfaces between components can
produce known or unknown side effects. System test is a good opportunity to
make these conditions happen.

� Repetitive test

In many cases, memory leak problems occur by successive repetitions of the
same test case. The goal of memory leak testing is to establish a big gap
between unusable memory and used memory in terms of their relative sizes.
By repeating the same scenario over and over again, the gap is multiplied in a
very progressive way. This testing helps if the amount of leaks caused by an
execution of a test case is so minimal that it could hardly be noticed in one
run.

Repetitive tests can be used at the system level or module level. The
advantage with modular testing is better control. When a module is designed
to keep the private module without creating external side effects such as
memory usage, testing for memory leaks can be much easier.

� Concurrency test

Some memory leak problems can occur only when there are several threads
running in the application. Unfortunately, synchronization points are very

1006 WebSphere Application Server V6 Scalability and Performance Handbook

susceptible to producing memory leaks because of the added complication in
the program logic. Careless programming can lead to references being kept
or unreleased. The incident of memory leaks is often facilitated or accelerated
by increased concurrency in the system. The most common way to increase
concurrency is to increase the number of clients in the test driver.

Consider the following when choosing which test cases to use for memory leak
testing:

� A good test case exercises areas of the application where objects are
created. Most of the time, knowledge of the application is required. A
description of the scenario can suggest creation of data spaces, such as
adding a new record, creating an HTTP session, performing a transaction and
searching a record.

� Look at areas where collections of objects are being used. Typically, memory
leaks are composed of objects of the same class. Also, collection classes
such as Vector and Hashtable are common places where references to
objects are implicitly stored by calling corresponding insertion methods. For
example, the get method of a Hashtable object does not remove its reference
to the object being retrieved.

Using Tivoli Performance Viewer to detect memory leaks
Tivoli Performance Viewer helps to find memory leaks. For best results, repeat
experiments with increasing duration, such as 1000, 2000, and 4000-page
requests. The Tivoli Performance Viewer graph of used memory should have a
sawtooth shape. Each drop on the graph corresponds to a garbage collection.
There is a memory leak if one of the following occurs:

� The amount of memory used immediately after each garbage collection
increases significantly. The sawtooth pattern will look more like a staircase.

� The sawtooth pattern has an irregular shape.

Also, look at the difference between the number of objects allocated and the
number of objects freed. If the gap between the two increases over time, there is
a memory leak.

If heap consumption indicates a possible leak during a heavy workload (the
application server is consistently near 100% CPU utilization), yet the heap
appears to recover during a subsequent lighter or near-idle workload, this is an
indication of heap fragmentation. Heap fragmentation can occur when the JVM is
able to free sufficient objects to satisfy memory allocation requests during
garbage collection cycles, but the JVM does not have the time to compact small
free memory areas in the heap into larger contiguous spaces.

 Chapter 17. Performance tuning 1007

Another form of heap fragmentation occurs when small objects (less than 512
bytes) are freed. The objects are freed, but the storage is not recovered, resulting
in memory fragmentation.

Java heap parameters
The Java heap parameters also influence the behavior of garbage collection.
Increasing the heap size allows more objects to be created. Because a large
heap takes longer to fill, the application runs longer before a garbage collection
occurs. However, a larger heap also takes longer to compact and causes
garbage collection to take longer.

For performance analysis, the initial and maximum heap sizes should be equal,
as this will eliminate heap growing and shrinking delays. Equating initial with
maximum heapsize without previous heap size tuning will in most cases create
an inefficiently used heap: when it is sized too big, the heap is not used by the
application entirely and thus memory resources are wasted.

When tuning a production system where the working set size of the Java
application is not understood, a good starting value is to let the initial heap size
be 25% of the maximum heap size. The JVM will then try to adapt the size of the
heap to the working set size of the application.

Run a series of test experiments that vary the Java heap settings. For example,
run experiments with 128 MB, 192 MB, 256 MB, and 320 MB. During each
experiment, monitor the total memory usage. If the heap is expanded too
aggressively, paging can occur (use the vmstat command or the Windows NT or
Windows 2000 Performance Monitor to check for paging). If paging occurs,
reduce the size of the heap or add more memory to the system.

When all test runs are finished, compare the following statistics:

� Number of garbage collection calls

� Average duration of a single garbage collection call

� Average time between calls

Important: It is not recommended that you set the initial and maximum heap
sizes equal in a production environment. For details, please refer to the
following technote:

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21160795

Important: Make sure that the heap never pages, as that would introduce a
enormous performance loss.

1008 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/support/docview.wss?rs=180&uid=swg21160795

� Ratio between the average length of a single garbage collection call and the
average time between calls

If the application is not over-utilizing objects and has no memory leaks, a state of
steady memory utilization is reached. Garbage collection also occurs less
frequently and for shorter durations.

If the heap free time settles at 85% or more, consider decreasing the maximum
heap size values, because the application server and the application are
under-utilizing the memory allocated for heap.

The best result for the average time between garbage collections is at least five
to six times the average duration of a single garbage collection. If you do not
achieve this number, the JVM is spending more than 15% of its time in garbage
collection. Finding this point might require trial and error. A longer interval
between garbage collection cycles can result in longer GC runs, while very short
intervals can be inefficient.

Heap thrashing
Avoid heap thrashing at all costs. It is caused by a heap that is barely large
enough to avoid expansion but not large enough to satisfy future allocation
failures. Usually a garbage collection cycle frees up enough space for not only
the current allocation failure but a substantial number of future allocation
requests. But when heap is getting thrashed, each garbage collection cycle frees
up barely enough heap space to satisfy just the current allocation failure. The
result is that the next allocation request leads to another garbage collection
cycle, and so on. This scenario can also occur due to lots of short-lived objects.

Tuning the IBM JVM
Every JVM generally offers a whole set of tuning parameters affecting the
performance of application servers and applications. Since JVM tuning is a wide
and complex topic, this section will present an introduction into garbage
collection analysis and tuning in reference to the IBM JVM and provide a series
of links and resources for further study.

Analyzing verbosegc output
Using verbosegc as the next step after using Tivoli Performance Viewer, is a very
good way to see what is going on with garbage collection. Verbosegc mode is
enabled by the -verbosegc command-line option, and output is directed to the file
native_stderr.log. This information can then be used to tune the heap size or
diagnose problems. For excellent resources and illustrated examples of
verbosegc analysis, refer to the following resources:

 Chapter 17. Performance tuning 1009

� Sensible Sanitation: Understanding the IBM Java Garbage Collection Part 3:
verbosegc and command-line parameters

http://www.ibm.com/developerworks/library/i-garbage3.html

� Fine-tuning Java garbage collection performance

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

Common problems
Following is a short list of common problems and suggested solutions:

� The GC frequency is too high until the heap reaches a steady state.

Use verbosegc to determine the size of the heap at a steady state and set
-Xms to this value.

� The heap is fully expanded and the occupancy level is greater than 70%.

Increase the -Xmx value so the heap is not more than 70% occupied.

� At 70% occupancy the frequency of GCs is too great.

Change the setting of -Xminf. The default is 0.3, which will try to maintain 30%
free space by expanding the heap. A setting of 0.4 increases this free space
target to 40%, reducing the frequency of GCs.

� Pause times are too long.

Try using -Xgcpolicy:optavgpause (introduced in 1.3.1), which reduces pause
times and makes them more consistent as the heap occupancy rises. There
is a cost to pay in throughput. This cost varies and will be about 5%.

Additional JVM and garbage collection related resources
� Garbage collection in the 1.4.1 JVM available from developerWorks at

http://www.ibm.com/developerworks/java/library/j-jtp11253/

� A brief history of garbage collection, developerWorks

http://www.ibm.com/developerworks/java/library/j-jtp10283/

� Sensible Sanitation: Understanding the IBM Java Garbage Collection, Parts 1
and 2, developerWorks

http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/

� IBM JVM Diagnostics Guides from developerWorks

http://www.ibm.com/developerworks/java/jdk/diagnosis/

� Fine-tuning Java garbage collection performance from developerWorks

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

1010 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/library/i-garbage3.html
http://www.ibm.com/developerworks/ibm/library/i-gctroub/
http://www.ibm.com/developerworks/java/library/j-jtp11253/
http://www.ibm.com/developerworks/java/library/j-jtp10283/
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/
http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www.ibm.com/developerworks/ibm/library/i-gctroub/

� Mash that trash - Incremental compaction in the IBM JDK Garbage Collector

http://www.ibm.com/developerworks/ibm/library/i-incrcomp/

Tuning the Sun JVM
The Sun JVM also offers several tuning parameters affecting the performance of
WebSphere Application Servers and application performance. These are
explained in detail in the InfoCenter article “Java virtual machine settings”. The
tuning settings can be set as Generic JVM Arguments. Therefore, look for the
Generic JVM Arguments section in this article, especially for the parameters
“-XX” and “-server | -client “.

The InfoCenter is available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Miscellaneous JVM settings
Following are several generic JVM setting recommendations that apply to most
or all existing JVMs.

Just In Time (JIT) compiler
The Just In Time (JIT) compiler can significantly affect performance. If you
disable the JIT compiler, throughput decreases noticeably. Therefore, for
performance reasons, keep JIT enabled.

To determine the setting of this parameter:

8. Select Servers -> Application servers -> <AppServer_Name>.

9. Select Java and Process Management -> Process Definition.

10.Select Java Virtual Machine.

11.Check the setting of the Disable JIT check box.

12.If changes are made, save them and restart the application server.

Heap size settings
These parameters can set the maximum and initial heap sizes for the JVM.

In general, increasing the size of the Java heap improves throughput until the
heap no longer resides in physical memory. After the heap begins swapping to
disk, Java performance drastically suffers. Therefore, the maximum heap size
needs to be low enough to contain the heap within physical memory.

The physical memory usage must be shared between the JVM and other
applications running on the system, such as the database. For assurance, use a
smaller heap, for example 64 MB, on machines with less memory.

 Chapter 17. Performance tuning 1011

http://www.ibm.com/developerworks/ibm/library/i-incrcomp/
http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Try a maximum heap of 128 MB on a smaller machine, that is, less than 1 GB of
physical memory. Use 256 MB for systems with 2 GB memory, and 512 MB for
larger systems. The starting point depends on the application.

If performance runs are being conducted and highly repeatable results are
needed, set the initial and maximum sizes to the same value. This setting
eliminates any heap growth during the run. For production systems where the
working set size of the Java applications is not well understood, an initial setting
of one-fourth the maximum setting is a good starting value. The JVM will then try
to adapt the size of the heap to the working set of the Java application.

� Select Servers -> Application servers -> <AppServer_Name>.

� Select Java and Process Management -> Process Definition.

� Select Java Virtual Machine.

� In the General Properties configuration pane, enter values for the Initial Heap
Size and Maximum Heap Size fields.

� Apply and save your changes, then restart the application server.

Class garbage collection
Disabling class garbage collection enables more class reuse, which, in some
cases, has resulted in small performance improvements.

In most cases, run with class garbage collection turned on. This is the default.

To disable class garbage collection, enter the value -Xnoclassgc in the Generic
JVM Arguments field of the application servers’ JVM configuration. To do this:

� Select Servers -> Application servers -> <AppServer_Name>.

� Select Java and Process Management -> Process Definition.

� Select Java Virtual Machine.

� Enter the value -Xnoclassgc in the Generic JVM Arguments field.

� Apply and save your changes. Restart the application server.

17.5.7 Operating system tuning
This section provides some basic information about operating system tuning
parameters, especially for AIX. For more details refer to the WebSphere
InfoCenter at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Expand Tuning performance -> Tuning the application server environment,
then select Tuning operating systems or search for “Tuning operating
systems”.

1012 WebSphere Application Server V6 Scalability and Performance Handbook

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Over time, more information will be added to the InfoCenter, for example HP-UX
related tuning information. Therefore, for the latest information, always check the
InfoCenter in addition to this redbook.

AIX
There are many AIX operating system settings to consider that are not within the
scope of this redbook. Some of the settings you can adjust are:

� Adapter transmit and receive queue
� TCP/IP socket buffer
� IP protocol mbuf pool performance
� Update file descriptors
� Update the scheduler

However, two important settings are outlined in the next sections.

AIX with DB2
Separating your DB2 log files from the physical database files can boost
performance. You can also separate the logging and the database files from the
drive containing the Journaled File System (JFS) service. AIX uses specific
volume groups and file systems for the JFS logging.

The AIX filemon utility is used to view all file system input and output, and to
strategically select the file system for the DB2 logs. The default location for the
files is /home/<db2_instance>/<db2_instance>/NODExx/SQLyy/SQLOGDIR/.

To change the location of the files, at a DB2 command prompt, issue the
following command:

db2 update db cfg for [database_name] using newlogpath
[fully_qualified_path]

It is recommended that you move the logs to a separate disk when your
application shows more than a 20% I/O wait time.

AIX file descriptors (ulimit)
Specifies the number of open files permitted.

When should you try adjusting this value? The default setting is typically
sufficient for most applications. If the value set for this parameter is too low, a
Memory allocation error is displayed.

Check the UNIX reference pages on ulimit for the syntax for different shells. For
the KornShell shell (ksh), to set ulimit to 2000, issue the following command:

ulimit -n 2000

 Chapter 17. Performance tuning 1013

Use smit (or smitty) to permanently set this value for a user.

Use the command ulimit -a to display the current values for all limitations on
system resources. The default setting is 2000, which is also the recommended
value.

HP-UX 11i
Some HP-UX 11i settings can be modified to significantly improve WebSphere
Application Server performance. For a number of HP-UX 11i kernel parameter
recommendations see the InfoCenter article “Tuning HP-UX systems”.

Linux - RedHat Advanced Server 2.1
Kernel updates for RedHat Advanced Server 2.1 have implemented changes
affecting WebSphere performance, especially memory-to-memory HTTP
Session replication. If you are running any kernel prior to 2.4.9-e.23, upgrade at
least to this kernel, but preferably to the latest supported.

Linux - SuSE Linux Enterprise Server 8 SP2A
The Linux scheduler is very sensitive to excessive context switching, so fixes
have been integrated into the SLES8 kernel distribution to introduce delay when
a thread yields processing. This fix is automatically enabled in SLES8 SP3 but
must be enabled explicitly in SLES8 SP2A.

See the InfoCenter article “Tuning Linux systems” for details.

Solaris
There are several parameters that have a significant performance impact for
WebSphere on Solaris. Please refer to the InfoCenter article “Tuning Solaris
systems” for detailed information.

Also, many TCP parameters exist that can affect performance in a Solaris
environment. For more information about tuning the TCP/IP Stack, see the article
“Tuning your TCP/IP Stack and More” at:

http://www.sean.de/Solaris/soltune.html

Windows NT or 2000 TCP/IP parameters
Several tuning parameters exist for Windows NT and Windows 2000, such as
TcpTimedWaitDelay and MaxUserPort.

Please see the InfoCenter article called “Tuning Windows systems” for more
information.

1014 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.sean.de/Solaris/soltune.html

17.5.8 The Web server
WebSphere Application Server provides plug-ins for several Web server brands
and versions. Each Web server operating system combination has specific
tuning parameters that affect the application performance.

This section discusses some of the performance tuning settings associated with
the Web servers. In addition to the settings mentioned in this section, additional
information about Web server tuning can be found in the WebSphere InfoCenter
article called “Tuning Web servers”.

Web server configuration refresh interval
WebSphere Application Server administration tracks a variety of configuration
information about WebSphere Application Server resources. Some of this
information, such as URIs pointing to WebSphere Application Server resources,
needs to be understood by the Web server. This configuration data is pushed to
the Web server through the WebSphere Application Server plug-in at intervals
specified by this parameter. Periodic updates allow new servlet definitions to be
added without having to restart any of the WebSphere Application Server
servers. However, the dynamic regeneration of this configuration information is
costly in terms of performance. You can try to adjust this value in a stable
production environment. The default reload interval setting is 60 seconds.

This parameter can be customized in the Administrative Console by selecting
Servers -> Web servers -> <WebServer_name> -> Plug-in properties and
setting the Refresh configuration interval there. Increase the refresh interval to a
value that represents an acceptable wait time between the servlet update and
the Web server update.

IBM HTTP Server powered by Apache 2.0
First we give you a short introduction into IBM HTTP Server powered by
Apache 2.0 and its new features. For IHS 6.0 tuning information go to “Tuning
IBM HTTP Server V6” on page 1017.

For the remainder of this section we’ll refer to the underlying product that IBM
HTTP Server V2 and V6 are built on as Apache 2.0. Please notice that IBM
HTTP Server incorporates all the features of Apache 2.0 and extends upon them,
although we do not cover the specific features of IBM HTTP Server here.

New Features
There are various changes in IBM HTTP Server powered by Apache 2.0 and
while it was an option in previous versions, WebSphere Application Server V6 is
the first version to ship with this version by default. Following are a few important
new features of IBM HTTP Server powered by Apache 2.0. For a complete
feature list, visit the Apache 2.0 Web site at

 Chapter 17. Performance tuning 1015

http://httpd.apache.org/docs-2.0/new_features_2_0.html

� Apache 2.0 is a thread-based Web server

Although Apache 1.3 is thread-based on the Windows platform, it is a
process-based Web server on all UNIX and Linux platforms. That means, it
implements the multi-process, single-thread process model: for each
incoming request, a new child process is created or requested from a pool to
handle it.

However, Apache 2.0 is now a fully thread-based Web server on all platforms.
This gives you the following advantages:

– Each request does not requires its own httpd process anymore, and less
memory is needed.

– Overall performance improves because in most cases new httpd
processes do not need to be created.

– The plug-in load-balancing and failover algorithms work more efficiently in
a multi-threaded HTTP server. If one plug-in thread marks an application
server unavailable, all other connection threads of the plug-in within the
same process will share that knowledge, and will not try to connect to this
particular application server again before the RetryInterval has elapsed.
See 6.10, “WebSphere plug-in behavior” on page 309 for information
about the RetryInterval parameter and plug-in load balancing and failover
issues.

� The mod_deflate module

This module allows supporting browsers to request that content be
compressed before delivery. It provides the Deflate output filter that lets
output from the server be compressed before it is sent to the client over the
network. Some of the most important benefits of using the mod_deflate
module are:

– Saves network bandwidth during data transmission
– Shortens data transmission time
– Generally improves overall performance

Detailed information about configuring and using mod_deflate can be found at

http://httpd.apache.org/docs-2.0/mod/mod_deflate.html

� Request and response filtering

Note: On the UNIX platform, Apache 2.0 also allows you to configure
more than one process to be started. This means that the thread model
is then changed to multi-process, multi-thread.

1016 WebSphere Application Server V6 Scalability and Performance Handbook

http://httpd.apache.org/docs-2.0/new_features_2_0.html
http://httpd.apache.org/docs-2.0/mod/mod_deflate.html

Apache modules may now be written as filters which act on the stream of
content as it is delivered to or from the server.

Single-processing versus multi-processing
Apache 2.0 achieves efficient support of different operating systems by
implementing a Multi-Processing Modules (MPM) architecture, allowing it, for
example, to use native networking features instead of going through an
emulation layer in version 1.3. For detailed information about MPM refer to the
Apache HTTP Server documentation found at:

http://httpd.apache.org/docs-2.0/mpm.html

MPMs are chosen at compile time and differ for each operating system, which
implies that the Windows version uses a different MPM module than the AIX or
Linux version. The default MPM for Windows is mpm_winnt, whereas the default
module for AIX is mpm_worker. For a complete list of available MPMs, refer to the
Apache MPM documentation URL above. To identify which MPM compiled into
an Apache 2.0 Web server, run the apachectl -l command, which prints out the
module names. Look for a module name worker, or a name starting with the mpm
prefix (see Example 17-4).

Example 17-4 Listing of compiled in modules for IBM HTTP Server V6 on AIX

./apachectl -l
Compiled in modules:
 core.c
 worker.c
 http_core.c
 mod_suexec.c
 mod_so.c

� mpm_winnt module

This Multi-Processing Module is the default for the Windows operating
systems. It uses a single control process which launches a single child
process which in turn creates all the threads to handle requests.

� mpm_worker module

This Multi-Processing Module implements a hybrid multi-process
multi-threaded server. This is the default module for AIX. By using threads to
serve requests, it is able to serve a large number of requests with less system
resources than a process-based server. Yet it retains much of the stability of a
process-based server by keeping multiple processes available, each with
many threads.

Tuning IBM HTTP Server V6
This section gives you configuration tips for the UNIX and Windows platform that
provide a good starting point for Web server tuning, and an explanation of the

 Chapter 17. Performance tuning 1017

http://httpd.apache.org/docs-2.0/mpm.html

new configuration directives used. Keep in mind that every system and every site
has different requirements, so make sure to adapt these settings to your needs!
See Example 17-5 for a UNIX sample configuration and Example 17-6 on
page 1019 for a Windows sample configuration.

� ThreadsPerChild

Each child process creates a fixed number of threads as specified in the
ThreadsPerChild directive. The child creates these threads at startup and
never creates more. If using an MPM like mpm_winnt, where there is only one
child process, this number should be high enough to handle the entire load of
the server. If using an MPM like worker, where there are multiple child
processes, the total number of threads should be high enough to handle the
common load on the server.

� ThreadLimit

This directive sets the maximum configured value for ThreadsPerChild for the
lifetime of the Apache process. ThreadsPerChild can be modified during a
restart up to the value of this directive.

� MaxRequestsPerChild

This directive controls after how many requests a child server process is
recycled and a new one is launched.

� MaxClients

This controls the maximum total number of threads that may be launched.

� StartServers

The number of processes that will initially be launched is set by the
StartServers directive.

� MinSpareThreads and MaxSpareThreads

During operation, the total number of idle threads in all processes will be
monitored, and kept within the boundaries specified by MinSpareThreads and
MaxSpareThreads.

� ServerLimit

The maximum number of processes that can be launched is set by the
ServerLimit directive.

Example 17-5 A sample configuration for the UNIX platform

<IfModule worker.c>
ServerLimit 1
ThreadLimit 2048
StartServers 1
MaxClients 1024
MinSpareThreads 1

1018 WebSphere Application Server V6 Scalability and Performance Handbook

MaxSpareThreads 1024
ThreadsPerChild 1024
MaxRequestsPerChild 0
</IfModule>

Example 17-6 A sample configuration for the Windows platform

<IfModule mpm_winnt.c>
ThreadsPerChild 2048
MaxRequestsPerChild 0
</IfModule>

Access logs
All incoming HTTP requests are logged here. Logging degrades performance
because of the (possibly significant) I/O overhead.

To turn logging on or off, edit the IBM HTTP Server httpd.conf file, located in the
directory <IBM HTTP Server Home>/conf. Search for a line with the text
CustomLog. Comment out this line, then save and close the httpd.conf. file. Stop
and restart the IBM HTTP Server. By default, logging is enabled, but for better
performance it is recommended that you disable the access logs.

Sun Java System Web server, Enterprise Edition
(formerly Sun ONE Web Server, formerly iPlanet)

The default configuration of the Sun Java System Web server, Enterprise Edition
provides a single-process, multi-threaded server. Refer to the InfoCenter article
“Configuring the Sun Java System Web Server” for tips.

The InfoCenter is available at:

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

Microsoft IIS
The Web server has several properties that dramatically affect the performance
of the application server, such as IIS permission properties. Refer to the
InfoCenter article “Configuring Microsoft Internet Information Services (IIS)” for
additional information.

Attention: Using a ThreadsPerChild value greater than 512 is not
recommended on the Linux and Solaris platform. If 1024 threads are needed,
the recommended solution is to increase the ServerLimit value to 2 to launch
two server process with 512 threads each.

 Chapter 17. Performance tuning 1019

http://publib.boulder.ibm.com/infocenter/ws60help/index.jsp

17.5.9 Dynamic Cache Service
The Dynamic Cache Service improves performance by caching the output of
servlets, commands and Java Server Pages (JSP) files. WebSphere Application
Server consolidates several caching activities, including servlets, Web services,
and WebSphere commands into one service called the dynamic cache. These
caching activities work together to improve application performance, and share
many configuration parameters, which are set in an application server's dynamic
cache service.

The dynamic cache works within an application server Java Virtual Machine
(JVM), intercepting calls to cacheable objects, for example through a servlet's
service() method or a command's execute() method, and either stores the
object's output to or serves the object's content from the dynamic cache.
Because J2EE applications have high read/write ratios and can tolerate small
degrees of latency in the currency of their data, the dynamic cache can create an
opportunity for significant gains in server response time, throughput, and
scalability.

See 10.4, “Using WebSphere dynamic cache service” on page 515 for an
in-depth discussion of dynamic caching, and 10.4.1, “Installing Dynamic Cache
Monitor” on page 516 on using the dynamic cache monitor.

17.5.10 Security settings
This section discusses how various settings related to security affect
performance. Refer to WebSphere Application Server V6: Security Handbook,
SG24-6316 for more information about WebSphere Security.

When evaluating security for your environment, always keep the following steps
in mind:

1. Analyze your security needs regarding authentication, authorization, and
communication paths over which this information is exchanged.

2. Turn off security where you do not need it.

3. Make sure you do not sacrifice security for the sake of performance.

Disabling security
Security is a global setting. When security is enabled, performance may be
decreased by up to 20%.

In the Administrative Console, select Security -> Global Security. The Enable
global security and Enforce Java 2 security check boxes control global
security settings.

1020 WebSphere Application Server V6 Scalability and Performance Handbook

Fine-tune the security cache timeout for the environment
If WebSphere Application Server security is enabled, the security cache timeout
can influence performance. The timeout parameter specifies how often to refresh
the security-related caches.

Security information pertaining to beans, permissions, and credentials is cached.
When the cache timeout expires, all cached information becomes invalid.
Subsequent requests for the information result in a database lookup. Sometimes,
acquiring the information requires invoking a Lightweight Directory Access
Protocol (LDAP)-bind or native authentication. Both invocations are relatively
costly operations for performance.

Determine the best trade-off for the application by looking at usage patterns and
security needs for the site.

Use the Administrative Console to change this value. To do so, select Security
-> Global Security. Enter an appropriate value in seconds in the Cache Timeout
field. The default is 600 seconds.

17.5.11 Tuning Secure Sockets Layer
The following are two types of Secure Sockets Layer (SSL) performance:

� Handshake
� Bulk encryption/decryption

Overview of handshake and bulk encryption and decryption
When an SSL connection is established, an SSL handshake occurs. After a
connection is made, SSL performs bulk encryption and decryption for each
read/write. The performance cost of an SSL handshake is much larger than that
of bulk encryption and decryption.

How to enhance SSL performance
In order to enhance SSL performance, the number of individual SSL connections
and handshakes must be decreased.

Decreasing the number of connections increases performance for secure
communication through SSL connections, as well as non-secure communication
through simple TCP connections. One way to decrease individual SSL
connections is to use a browser that supports HTTP 1.1. Decreasing individual
SSL connections could be impossible for some users if they cannot upgrade to
HTTP 1.1.

Another common approach is to decrease the number of connections (both TCP
and SSL) between two WebSphere Application Server components. The

 Chapter 17. Performance tuning 1021

following guidelines help to ensure the HTTP transport channel of the application
server is configured so that the Web server plug-in does not repeatedly reopen
new connections to the application server:

� The maximum number of requests per keep-alive connection can also be
increased. The default value is 100, which means the application server will
close the connection from the plug-in after 100 requests. The plug-in would
then have to open a new connection. The purpose of this parameter is to
prevent denial of service attacks when connecting to the application server
and continuously sending requests in order to tie up threads in the application
server.

� Use a hardware accelerator if the system performs several SSL handshakes.

Hardware accelerators currently supported by WebSphere Application Server
only increase the SSL handshake performance, not the bulk
encryption/decryption. An accelerator typically only benefits the Web server
because Web server connections are short-lived. All other SSL connections
in WebSphere Application Server are long-lived.

� Use an alternative cipher suite with better performance.

The performance of a cipher suite is different with software and hardware.
Just because a cipher suite performs better in software does not mean a
cipher suite will perform better with hardware. Some algorithms are typically
inefficient in hardware (for example, DES and 3DES). However, specialized
hardware can provide efficient implementations of these same algorithms.

The performance of bulk encryption and decryption is affected by the cipher
suite used for an individual SSL connection.

17.5.12 Object Request Broker (ORB)
Several settings are available for controlling internal Object Request Broker
(ORB) processing. You can use these to improve application performance in the
case of applications containing enterprise beans.

You can change these settings for the default server or any application server
configured in the administrative domain from the Administrative Console.

Pass by reference
For EJB 1.1 beans, the EJB 1.1 specification states that method calls are to be
Pass by value. For every remote method call, the parameters are copied onto the
stack before the call is made. This can be expensive. The Pass by reference,
which passes the original object reference without making a copy of the object,
can be specified.

1022 WebSphere Application Server V6 Scalability and Performance Handbook

For EJB 2.0 beans, interfaces can be local or remote. For local interfaces,
method calls are Pass by reference, by default.

If the EJB client and EJB server are installed in the same WebSphere Application
Server instance, and the client and server use remote interfaces, specifying Pass
by reference can improve performance up to 50%.

Please note that Pass by reference helps performance only when non-primitive
object types are being passed as parameters. Therefore, int and floats are
always copied, regardless of the call model.

The use of this option for enterprise beans with remote interfaces violates EJB
Specification, Version 2.0 section 5.4. Object references passed to EJB methods
or to EJB home methods are not copied and can be subject to corruption.

In Example 17-7, a reference to the same MyPrimaryKey object passes into
WebSphere Application Server with a different ID value each time. Running this
code with Pass by reference enabled causes a problem within the application
server because multiple enterprise beans are referencing the same
MyPrimaryKey object. To avoid this problem, set the
com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation system property to
true when Pass by reference is enabled. Setting allowPrimaryKeyMutation to
true causes the EJB container to make a local copy of the PrimaryKey object. As
a result, however, a small portion of the performance advantage of setting Pass
by reference is lost.

Example 17-7 Pass by reference problem demonstration

Iterator iterator = collection.iterator();
MyPrimaryKey pk = new MyPrimaryKey();
while (iterator.hasNext()) {
 pk.id = (String) iterator.next();
 MyEJB myEJB = myEJBHome.findByPrimaryKey(pk);
}

Use the Administrative Console to set allowPrimaryKeyMutation:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Then, select Container Services -> ORB Service.

3. Select Custom Properties.

4. Create a new property by clicking New.

Important: Pass by reference can be dangerous and can lead to unexpected
results. If an object reference is modified by the remote method, the change
might be seen by the caller.

 Chapter 17. Performance tuning 1023

5. Assign the new property the name
com.ibm.websphere.ejbcontainer.allowPrimaryKeyMutation and a value of
true.

6. Click OK and save the changes.

7. Stop and restart the application server.

As a general rule, any application code that passes an object reference as a
parameter to an enterprise bean method or to an EJB home method must be
scrutinized to determine if passing that object reference results in loss of data
integrity or in other problems.

Use the Administrative Console to set this value:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Then, select Container Services -> ORB Service.

3. Select the check box Pass by reference.

4. Click OK and Apply to save the changes.

5. Stop and restart the application server.

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.iiop.noLocalCopies.

The default is Pass by value for remote interfaces and Pass by reference for EJB
2.0 local interfaces.

If the application server expects a large workload for enterprise bean requests,
the ORB configuration is critical. Take note of the following properties.

com.ibm.CORBA.ServerSocketQueueDepth
This property corresponds to the length of the TCP/IP stack listen queue and
prevents WebSphere Application Server from rejecting requests when there is no
space in the listen queue.

If there are many simultaneous clients connecting to the server-side ORB, this
parameter can be increased to support the heavy load up to 1000 clients. The
default value is 50.

To set the property (in our example we set it to 200), follow these steps:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Then, select Container Services -> ORB Service.

3. Select Custom Properties.

1024 WebSphere Application Server V6 Scalability and Performance Handbook

4. Click New and create a new name/value pair with the name
com.ibm.CORBA.ServerSocketQueueDepth and the value 200.

5. Click OK and Apply to save the changes.

6. Stop and restart the application server.

Connection cache maximum
This property has two names and corresponds to the size of the ORB connection
table. The property sets the standard for the number of simultaneous ORB
connections that can be processed.

If there are many simultaneous clients connecting to the server-side ORB, this
parameter can be increased to support the heavy load up to 1000 clients. The
default value is 240.

If you use command line scripting, the full name of this system property is
com.ibm.CORBA.MaxOpenConnections.

Use the Administrative Console to set this value:

1. Select Servers -> Application servers -> <AppServer_Name>.

2. Then, select Container Services -> ORB Service.

3. Update the Connection cache maximum field and click OK.

4. Click Apply to save the changes then restart the application server.

ORB thread pool size
Refer to “EJB container” on page 986 for more information.

17.5.13 XML parser selection
Add XML parser definitions to the jaxp.properties file and xerces.properties file
found in the <WAS_HOME>/jre/lib directory to help facilitate server startup. The
XMLParserConfiguration value might have to be changed as new versions of
Xerces are provided.

In both files, insert the lines shown in Example 17-8.

Example 17-8 XML parser definitions

javax.xml.parsers.SAXParserFactory=org.apache.xerces.jaxp.SAXParserFactoryImpl
javax.xml.parsers.DocumentBuildFactory=org.apache.xerces.jaxp.DocumentBuilder
FactoryImpl
org.apache.xerces.xni.parser.XMLParserConfiguration=org.apache.xerces.parsers.
StandardParserConfiguration

 Chapter 17. Performance tuning 1025

17.5.14 DB2 tuning
DB2 has many parameters that can be configured to optimize database
performance. For complete DB2 tuning information, refer to the DB2 UDB
Administration Guide: Performance.

DB2 logging
DB2 has corresponding log files for each database. Performance improvements
can be gained by setting the log files on a different hard drive from the database
files. Refer to “AIX with DB2” on page 1013 for more information.

DB2 configuration advisor
Located in the DB2 Control Center, this advisor calculates and displays
recommended values for the DB2 buffer pool size, the database and database
manager configuration parameters, with the option of applying these values. See
more information about the advisor in the online help facility within the Control
Center.

Use TCP sockets for DB2 on Linux
On Linux platforms, whether the DB2 server resides on a local machine with
WebSphere Application Server or on a remote machine, configure the DB2
application databases to use TCP sockets for communications with the
database.

The directions for configuring DB2 on Linux can be found in the WebSphere
Application Server installation documentation for the various operating systems.
This document specifies setting DB2COMM for TCP/IP and corresponding
changes required in the /etc/services file.

The default is to use shared memory for local databases but it is recommended
that you change the specification for the DB2 application databases and for any
session databases from shared memory to TCP sockets.

DB2 MaxAppls and DB2 MaxAgents
When configuring the data source settings for the databases, confirm the DB2
MaxAppls setting is greater than the maximum number of connections for the
data source. If you are planning to use multiple cluster members, set the
MaxAppls value as the maximum number of connections multiplied by the
number of cluster members.

The same relationship applies to the session manager number of connections.
The MaxAppls setting must be equal to or greater than the number of
connections. If you are using the same database for session and data sources,

1026 WebSphere Application Server V6 Scalability and Performance Handbook

set the MaxAppls value as the sum of the number of connection settings for the
session manager and the data sources.

Refer to “Connection pool size” on page 983 for more information about minimum
and maximum number of connections.

DB2 buffpage
Buffpage is a database configuration parameter. It defines the amount of memory
that will be allocated for a new defined bufferpool, if you omit it in the DDL. A
bufferpool is a memory storage area where database pages containing table
rows or index entries are temporarily read and changed. The purpose of the
bufferpool is to improve database system performance. Data can be accessed
much faster from memory than from disk.

Refer to the WebSphere InfoCenter section “DB2 tuning parameters” for more
information about how to configure this parameter.

DB2 query optimization level
When a database query is executed in DB2, various methods are used to
calculate the most efficient access plan. The query optimization level parameter
sets the amount of work and resources that DB2 puts into optimizing the access
plan. The range is from zero to 9.

An optimization level of 9 causes DB2 to devote a lot of time and all of its
available statistics to optimizing the access plan.

The optimization level is set on individual databases and can be set with either
the command line or with the DB2 Control Center. Static SQL statements use the
optimization level specified on the prep and bind commands. If the optimization
level is not specified, DB2 uses the default optimization as specified by the
dft_queryopt parameter. Dynamic SQL statements use the optimization class
specified by the current query optimization special register, which is set using the
SQL Set statement. For example, the following statement sets the optimization
class to 1:

Set current query optimization = 1

If the current query optimization register has not been set, dynamic statements
will be bound using the default query optimization class.

The default value is 5. It is recommended that you set the optimization level for
the needs of the application. High levels should only be used when there are very
complicated queries.

 Chapter 17. Performance tuning 1027

DB2 reorgchk
The performance of the SQL statements can be impaired after many updates,
deletes, or inserts have been made. Performance can be improved by obtaining
the current statistics for the data and rebinding.

Use the following DB2 command to issue runstats on all user and system tables
for the database you are currently connected to:

db2 reorgchk update statistics on table all

You should then rebind packages using the bind command.

In order to see if runstats has been done, issue the following command on DB2
CLP:

db2 -v "select tbname, nleaf, nlevels, stats_time from sysibm.sysindexes"

If no runstats has been done, nleaf and nlevels will be filled with -1 and
stats_time will have an empty entry "-". If runstats was done already, the real-time
stamp when the runstats was completed will also be displayed under stats_time.
If you think the time shown for the previous runstats is too old, execute runstats
again.

DB2 MinCommit
This parameter allows delayed writing of log records to a disk until a minimum
number of commits have been performed, reducing the database manager
overhead associated with writing log records. For example, if MinCommit is set to
2, a second commit would cause output to the transaction log for the first and
second commits. The exception occurs when a one-second timeout forces the
first commit to be output if a second commit does not come along within one
second. In test applications, up to 90% of the disk input and output was related to
the DB2 transaction log. Changing MinCommit from 1 to 2 reduced the results to
45%.

Try to adjust this parameter if the disk input/output wait is more than 5% and
there is DB2 transaction log activity from multiple sources. When a lot of activity
occurs from multiple sources, it is less likely that a single commit will have to wait
for another commit (or the one-second timeout).

Do not adjust this parameter if you have an application with a single thread
performing a series of commits (each commit could hit the one-second delay).

To view the current value for a particular database follow these steps:

� Issue the DB2 command get db cfg for <dbname> (where <dbname> is the
name of the application database) to list database configuration parameters.

� Look for "Group commit count (MINCOMMIT)".

1028 WebSphere Application Server V6 Scalability and Performance Handbook

� Set a new value by issuing the DB2 command update db cfg for <dbname>
using mincommit n (where n is a value between 1 and 25 inclusive).

The new setting takes effect immediately.

The following are several metrics that are related to DB2 MinCommit:

� The disk input/output wait can be observed on AIX with the command vmstat
5. This shows statistics every 5 seconds. Look for the wa column under the
CPU area.

� The percentage of time a disk is active can be observed on AIX with the
command iostat 5. This shows statistics every 5 seconds. Look for the
%tm_act column.

� The DB2 command get snapshot for db on <dbname> (where <dbname> is
the name of the application database) shows counters for log pages read and
log pages written.

The default value is 1. It is recommended that you set MinCommit to 1 or 2 (if the
circumstance permits).

17.5.15 Additional reference materials
� IBM WebSphere Application Server Library, including monitoring and

troubleshooting documentation, are found at:

http://www.ibm.com/software/webservers/appserv/library/index.html

� WebSphere Application Server White papers found at:

http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&dc=DB100

� iSeries performance documents, including WebSphere Application Server for
iSeries Performance Considerations and links to the PTDV tool, Workload
Estimator tool, and other documents are found at:

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserve
r/product/PerformanceConsiderations.html

� “J2EE Application Development: One or many applications per application
server?” (Nov. 2002) found at:

http://www.ibm.com/developerworks/websphere/techjournal/0211_alcott/alco
tt.html

� “Handling Static content in WebSphere Application Server” (Nov. 2002) found
at:

http://www.software.ibm.com/wsdd/techjournal/0211_brown/brown.html

 Chapter 17. Performance tuning 1029

http://www.ibm.com/developerworks/websphere/techjournal/0211_alcott/alcott.html
http://www.software.ibm.com/wsdd/techjournal/0211_brown/brown.html
http://www.ibm.com/software/webservers/appserv/library/index.html
http://www.ibm.com/support/search.wss?rs=180&tc=SSEQTP&dc=DB100
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/PerformanceConsiderations.html

� The WebSphere Application Server zone at WebSphere Developer Domain
at:

http://www.ibm.com/developerworks/websphere/zones/was/

1030 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/websphere/zones/was/

Part 7 Appendixes

Part 7

© Copyright IBM Corp. 2005. All rights reserved. 1031

1032 WebSphere Application Server V6 Scalability and Performance Handbook

Appendix A. Sample URL rewrite servlet

This appendix describes how to set up an example to test session management
using URL rewrites.

A

© Copyright IBM Corp. 2005. All rights reserved. 1033

Setting up the servlet
The class SessionSampleURLRewrite has been provided since none of the
standard samples uses URL rewriting to manage sessions. This is because
using URL rewrites requires additions to the normal servlet code.

Source code
Example A-1 lists the Java source for the class. You can either compile and
package this class yourself or you can use the pre-compiled class file packaged
in urltest.war. You can find information about how to download urltest.war in
Appendix B, “Additional material” on page 1037.

Example: A-1 SessionSampleURLRewrite class source code

public class SessionSampleURLRewrite extends HttpServlet {
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {

 // Step 1: Get the Session object

 boolean create = true;
 HttpSession session = request.getSession(create);

 // Step 2: Get the session data value

 Integer ival = (Integer)
 session.getAttribute ("sessiontest.counter");
 if (ival == null) ival = new Integer (1);
 else ival = new Integer (ival.intValue () + 1);
 session.setAttribute ("sessiontest.counter", ival);

 // Step 3: Rewrite the session ID onto the URL

 String contextPath = request.getContextPath();
 String servletName = request.getServletPath();
 String encodeString = contextPath + servletName;
 String encodedURL = response.encodeURL(encodeString);

 // Step 4: Output the page

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println("<head><title>Session Tracking Test</title></head>");

1034 WebSphere Application Server V6 Scalability and Performance Handbook

 out.println("<body>");
 out.println("<h1>Session Tracking Test</h1>");
 out.println ("You have hit this page " + ival + " times" + "
");

 if (!session.isNew()) {
 out.println("<p>");
 if(request.isRequestedSessionIdFromURL())
 out.print("Your requested session ID was found in a rewritten
URL");
 else
 out.print("Your requested session ID was NOT found in a rewritten
URL");
 }

 // Use the rewritten URL as the link, You must enable URL Rewriting in the
session Manager and
 // disable cookies in either the Session Manager or the browser

 out.print("<p>");
 out.print("<a href=\"");
 out.print(encodedURL);
 out.println("\">Request this servlet again using the rewritten URL");

 out.println("</body></html>");
 }
}

Steps to install SessionSampleURLRewrite servlet
Please refer to 8.7.2, “Install BeenThere” on page 427 for detailed instructions on
how to install an enterprise application.

Installing the urltest Web module
In summary, these are the steps to install urltest.war:

1. Locate urltest.war as described in Appendix B, “Additional material” on
page 1037 and store it on your workstation or on your server.

2. Open the WebSphere Administrative Console and select Applications ->
Install New Application.

3. In the Preparing for the application installation window:

a. Browse to the urltest.war Web module archive (Local path or Server path).

 Appendix A. Sample URL rewrite servlet 1035

b. Enter a context root, such as /urltest.

c. Click Next.

4. Leave all defaults on the second Preparing for the application installation
window and click Next again. If you get security warnings, just click Continue.

5. If desired, change the name of the application (default = urltest_war) in Step 1
of the Install New Application procedure. Click Next.

6. On the Step 2: Map modules to servers window, from the Clusters and
Servers selection box, choose the application server and the HTTP server on
you wish to install urltest.war. Then check the box for the Module urltest and
click Apply. Clicking Next brings you to Step 3.

7. Map the Web Module urltest to the desired Virtual host. Click Next once
again.

8. Verify the installation on the Step 4: Summary window and click Finish to
install the urltest Web module.

9. Save the changes to the Master Configuration.

10.To start the urltest_war enterprise application, locate urltest_war in the
Enterprise Applications view. Select the application and click Start.

11.If you did not configure your Web Servers to automatically regenerate and
propagate the plug-in, you need to do it now (if needed, refer to 8.7.3,
“Regenerate Web server plug-in” on page 431 for instructions on how to do
so).

You can now access the URL rewrite sample application using:

http://<your_http_server>:<port>/<your_context_root>/urltest

For example:

http://http1/urltest/urltest

1036 WebSphere Application Server V6 Scalability and Performance Handbook

Appendix B. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246392

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select the Additional materials and open the directory that corresponds with
the redbook form number, SG24-6392.

B

© Copyright IBM Corp. 2005. All rights reserved. 1037

ftp://www.redbooks.ibm.com/redbooks/SG246392
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
urltest.war URL Rewrite Example Web module
BeenThere.ear Original BeenThere application code
Trade6Redirector.zip Trade 6 back-end application for WebSphere MQ

scenario
BeenThereSIB.zip BeenThere modified for default messaging provider

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB
Operating System: Windows, AIX, Solaris, Linux, OS/400®
Processor: 500 MHz Pentium®, RS/6000®, iSeries, Sparc
Memory: 384 MB RAM minimum

How to use the Web material
� Create a subdirectory (folder) on your workstation or your server, and

download the urltest.war file into this folder.

� Create a subdirectory (folder) on a Windows system and download the
BeenThere.ear file into this folder. This Enterprise Application Resource is all
you need to install the BeenThere application on your applications server(s).

� Create a subdirectory (folder) on a Windows system and download the
Trade6Redirector.zip file into this folder. Unzip the files. The zip file consists of
two files:

– Trade6Redirector.ear
– Instructions for setup of TradeRedirector.txt

Follow the install instructions from the text file.

� Create a subdirectory (folder) on a Windows system and download the
BeenThereSIB.zip file into this folder. Unzip the files. The zip-file consists of
two files:

– BeenThere.ear (this is the BeenThere version that was modified for the
default messaging provider!)

– BeenThereDocumentation.zip

Then unzip the BeenThereDocumentation.zip archive.

1038 WebSphere Application Server V6 Scalability and Performance Handbook

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 1047. Note that some of the documents referenced here
may be available in softcopy only.

� WebSphere Application Server V6 System Management and Configuration
Handbook, SG24-6451

� IBM WebSphere V6 Planning and Design Handbook, SG24-6446

� WebSphere Application Server V6: Security Handbook, SG24-6316

� Rational Application Developer V6 Programming Guide, SG24-6449

� WebSphere Version 6 Web Services Handbook Development and
Deployment, SG24-6461

� WebSphere Application Server Network Deployment V6: High availability
solutions, SG24-6688

� IBM WebSphere V5.1 Performance, Scalability, and High Availability,
WebSphere Handbook Series, SG24-6198-01

� Patterns: Self-Service Application Solutions Using WebSphere V5.0,
SG24-6591

� WebSphere Studio 5.1.2 JavaServer Faces and Service Data Objects,
SG24-6361

� Planning for the Installation and Rollout of WebSphere Studio Application
Monitor 3.1, SG24-7072

� Installing WebSphere Studio Application Monitor V3.1, SG24-6491

� End-to-End e-business Transaction Management Made Easy, SG24-6080

© Copyright IBM Corp. 2005. All rights reserved. 1039

Other publications
These publications are also relevant as further information sources:

� Load Balancer Administration Guide Version 6.0, GC31-6858

� Caching Proxy Administration Guide Version 6.0, GC31-6857

� Concepts, Planning, and Installation for Edge Components Version 6.0,
GC31-6855

� IBM JVM Diagnostics Guides

http://www.ibm.com/developerworks/java/jdk/diagnosis/

� “Performance Testing Protocol for WebSphere Application Server-based
Applications”

http://www7b.software.ibm.com/wsdd/techjournal/0211_polozoff/polozoff.html

� Stacy Joines, et.al., Performance Analysis for Java Web Sites,
Addison-Wesley, September 2002, ISBN 0201844540

� Kareem Yusuf, Ph.D, Enterprise Messaging Using JMS and IBM WebSphere,
IBM Press, 2004, ISBN 0131468634

� Floyd Marinescu, EJB Design Patterns: Advanced Patterns, Processes, and
Idioms, Wiley, 2002, ISBN 0471208310

Online resources
These Web sites and URLs are also relevant as further information sources:

� WebSphere Application Server InfoCenter

http://www.ibm.com/software/webservers/appserv/infocenter.html

� Edge Components InfoCenter

http://www.ibm.com/software/webservers/appserv/ecinfocenter.html

� IBM WebSphere Application Server

http://www.ibm.com/software/webservers/appserv

� IBM WebSphere Application Server hardware and software requirements

http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html

� IBM WebSphere Application Server support pate

http://www.ibm.com/software/webservers/appserv/was/support/

� IBM WebSphere Edge Server

http://www.ibm.com/software/webservers/edgeserver

1040 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/developerworks/java/jdk/diagnosis/
http://www7b.software.ibm.com/wsdd/techjournal/0211_polozoff/polozoff.html
http://www.ibm.com/software/webservers/appserv/ecinfocenter.html
http://www.ibm.com/software/webservers/appserv/doc/latest/prereq.html
http://www.ibm.com/software/webservers/appserv
http://www.ibm.com/software/webservers/edgeserver
http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/webservers/appserv/infocenter.html

� IBM DB2 UDB hardware and software requirements

http://www.ibm.com/software/data/db2/udb/sysreqs.html

� HTTP server configuration at IBM HTTP Server InfoCenter

http://www.ibm.com/software/webservers/httpservers/library.html

� IBM WebSphere Application Server Library

http://www.ibm.com/software/webservers/appserv/library/index.html

� WebSphere Application Server Development white papers

http://www.ibm.com/software/webservers/appserv/whitepapers.html

� WebSphere Application Server zone at WebSphere Developer Domain

http://www7b.boulder.ibm.com/wsdd/zones/was/

� WebSphere performance Web site, including Trade 6 code download

http://www.ibm.com/software/webservers/appserv/was/performance.html

� IBM ~ iSeries performance documents

http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/p
roduct/PerformanceConsiderations.html

� GUI tool for building cache policy files

http://www.alphaworks.ibm.com/tech/cachepolicyeditor

� WebSphere Developer Domain

http://www.software.ibm.com/wsdd/

� IBM developerWorks

http://www.ibm.com/developerworks/

� IBM alphaWorks

http://www.alphaworks.ibm.com

� Page Detailer information and download

http://www.alphaworks.ibm.com/tech/pagedetailer

� IBM Tivoli Monitoring for Web Infrastructure

http://www.ibm.com/software/tivoli/products/monitor-web/

� IBM Tivoli Monitoring for Transaction Performance

http://www.ibm.com/software/tivoli/products/monitor-transaction/

� List of IBM's Business Partners that offer performance monitoring tools
compliant with WebSphere Application Server

http://www.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_b
psolutions.html

 Related publications 1041

http://www.ibm.com/software/data/db2/udb/sysreqs.html
http://www.ibm.com/software/webservers/httpservers/library.html
http://www.ibm.com/software/webservers/appserv/library/index.html
http://www.ibm.com/software/webservers/appserv/whitepapers.html
http://www7b.boulder.ibm.com/wsdd/zones/was/
http://www.ibm.com/software/webservers/appserv/was/performance.html
http://www.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/product/PerformanceConsiderations.html
http://www.alphaworks.ibm.com/tech/cachepolicyeditor
http://www.software.ibm.com/wsdd/
http://www.ibm.com/developerworks/
http://www.alphaworks.ibm.com
http://www.alphaworks.ibm.com/tech/pagedetailer
http://www.ibm.com/software/tivoli/products/monitor-web/
http://www.ibm.com/software/tivoli/products/monitor-transaction/
http://www.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html
http://www.ibm.com/software/webservers/pw/dhtml/wsperformance/performance_bpsolutions.html

� Java Performance Tuning Web site

http://www.javaperformancetuning.com/

� Design for Scalability - An Update

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/scala
bility.html

� Technote TIPS0223 (WebSphere Application Server V5: Separating Static
and Dynamic Web Content):

http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0223.html
?Open

� Caching Technologies for Web Applications

http://www.almaden.ibm.com/u/mohan/

� Exploiting Dynamic Caching in WebSphere Application Server 5.0, Part 1 & 2

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Content
ID=3623&publicationid=19&PageView=Search&channel=2

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Content
ID=4409&publicationid=19&PageView=Search&channel=2

� Monitoring Performance with WebSphere

http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&Content
ID=1492&publicationid=13&PageView=Search&channel=2

� Hints on Running a High-Performance Web Server - Tuning IBM IHS

http://www.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html

� Enhancements and Changes in J2SE 1.4.1 Platform

http://java.sun.com/products/archive/j2se/1.4.1_07/changes.html

� Reducing Garbage Collection Times and Sizing Memory

http://developers.sun.com/techtopics/mobility/midp/articles/garbage/

� Improving Java Application Performance and Scalability by Reducing
Garbage Collection Times and Sizing Memory Using JDK 1.4.1

http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollecti
on2/

� Fine-tuning Java garbage collection performance

http://www.ibm.com/developerworks/ibm/library/i-gctroub/

� Garbage collection in the 1.4.1 JVM

http://www.ibm.com/developerworks/java/library/j-jtp11253/

� A brief history of garbage collection

http://www.ibm.com/developerworks/java/library/j-jtp10283/

1042 WebSphere Application Server V6 Scalability and Performance Handbook

http://java.sun.com/products/archive/j2se/1.4.1_07/changes.html
http://www.javaperformancetuning.com/
http://www.almaden.ibm.com/u/mohan/
http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/scalability.html
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=3623&publicationid=19&PageView=Search&channel=2
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=4409&publicationid=19&PageView=Search&channel=2
http://www.e-promag.com/eparchive//index.cfm?fuseaction=viewarticle&ContentID=1492&publicationid=13&PageView=Search&channel=2
http://www.ibm.com/software/webservers/httpservers/doc/v136/misc/perf.html
http://developers.sun.com/techtopics/mobility/midp/articles/garbage/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://www.ibm.com/developerworks/ibm/library/i-gctroub/
http://www.ibm.com/developerworks/java/library/j-jtp11253/
http://www.ibm.com/developerworks/java/library/j-jtp10283/
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/tips0223.html?Open

� Sensible Sanitation: Understanding the IBM Java Garbage Collection, Parts 1
and 2

http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/

� Sensible Sanitation: Understanding the IBM Java Garbage Collection Part 3:
verbosegc and command-line parameters

http://www.ibm.com/developerworks/library/i-garbage3.html

� Mash that trash - Incremental compaction in the IBM JDK Garbage Collector

http://www.ibm.com/developerworks/ibm/library/i-incrcomp/

� J2EE Application Development: One or many applications per application
server?

http://www.software.ibm.com/wsdd/techjournal/0211_alcott/alcott.html

� Handling Static content in WebSphere Application Server

http://www.software.ibm.com/wsdd/techjournal/0211_brown/brown.html

� JavaServer Pages 2.0 Specification

http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html

� Struts, an open-source MVC implementation

http://www.ibm.com/developerworks/ibm/library/j-struts/

� Struts home page

http://struts.apache.org/

� Integrating Struts, Tiles, and JavaServer Faces

http://www.ibm.com/developerworks/java/library/j-integrate/

� New to SOA and Web services

http://www.ibm.com/developerworks/webservices/newto/index.html

� Developing and Deploying Command Caching with WebSphere Studio V5

http://www.ibm.com/developerworks/websphere/registered/tutorials/0306_mcgui
nnes/mcguinnes.html

� JSR 235: Service Data Objects

http://www.jcp.org/en/jsr/detail?id=235

� Introduction to Service Data Objects

http://www.ibm.com/developerworks/java/library/j-sdo/

� Log4J

http://jakarta.apache.org/log4j/

 Related publications 1043

http://www.ibm.com/developerworks/websphere/registered/tutorials/0306_mcguinnes/mcguinnes.html
http://www.jcp.org/en/jsr/detail?id=235
http://www.ibm.com/developerworks/ibm/library/i-garbage1/
http://www.ibm.com/developerworks/ibm/library/i-garbage2/
http://www.ibm.com/developerworks/library/i-garbage3.html
http://www.software.ibm.com/wsdd/techjournal/0211_alcott/alcott.html
http://www.software.ibm.com/wsdd/techjournal/0211_brown/brown.html
http://www.ibm.com/developerworks/ibm/library/i-incrcomp/
http://www.ibm.com/developerworks/java/library/j-sdo/
http://www.ibm.com/developerworks/webservices/newto/index.html
http://www.ibm.com/developerworks/java/library/j-integrate/
http://www.ibm.com/developerworks/ibm/library/j-struts/
http://struts.apache.org/
http://jcp.org/aboutJava/communityprocess/final/jsr152/index.html
http://jakarta.apache.org/log4j/

� IBM WebSphere Developer Technical Journal: Writing PMI applications using
the JMX interface

http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao
.html

� IBM WebSphere Developer Technical Journal: Writing a Performance
Monitoring Tool Using WebSphere Application Server's Performance
Monitoring Infrastructure API

http://www.ibm.com/developerworks/websphere/techjournal/0202_rangaswamy/ran
gaswamy.html

� WebSphere Performance Diagnostics - Going beyond the Metrics

http://www.sys-con.com/websphere/article.cfm?id=207

� Design for Performance: Analysis of Download Times for Page Elements
Suggests Ways to Optimize

http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/perfo
rm.html

� Implementing a Highly Available Infrastructure for WebSphere Application
Server Network Deployment, Version 5.0 without Clustering

http://www.ibm.com/developerworks/apps/transform.wss?URL=/developerworks/we
bsphere/library/techarticles/0304_alcott/alcott.xml&xslURL=/developerworks/
websphere/xsl/document.xsl&format=one-column

� Server Clusters For High Availability in WebSphere Application Server
Network Deployment Edition 5.0

http://www.ibm.com/support/docview.wss?uid=swg27002473

� JMS Application Architectures

http://www.theserverside.com/articles/article.tss?l=JMSArchitecture

� JMS 1.1 simplifies messaging with unified domains”, found at:

http://www.ibm.com/developerworks/java/library/j-jms11/

� JMS Topologies and Configurations with WebSphere Application Server and
WebSphere Studio Version 5

http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barci
a/barcia.html

� Learning About JMS Messages

http://www.phptr.com/articles/article.asp?p=170722

� Supportpacs about JMS performance with WebSphere MQ

http://www.ibm.com/software/integration/support/supportpacs/product.html

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006854&loc=en_US&cs=
utf-8&lang=en

1044 WebSphere Application Server V6 Scalability and Performance Handbook

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006854&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006854&loc=en_US&cs=utf-8&lang=en
http://www.ibm.com/developerworks/websphere/techjournal/0202_rangaswamy/rangaswamy.html
http://www.ibm.com/developerworks/websphere/techjournal/0402_qiao/0402_qiao.html
http://www.sys-con.com/websphere/article.cfm?id=207
http://www.ibm.com/developerworks/websphere/library/techarticles/hvws/perform.html
http://www.ibm.com/developerworks/apps/transform.wss?URL=/developerworks/websphere/library/techarticles/0304_alcott/alcott.xml&xslURL=/developerworks/websphere/xsl/document.xsl&format=one-column
http://www.ibm.com/support/docview.wss?uid=swg27002473
http://www.theserverside.com/articles/article.tss?l=JMSArchitecture
http://www.ibm.com/developerworks/websphere/library/techarticles/0310_barcia/barcia.html
http://www.ibm.com/software/integration/support/supportpacs/product.html
http://www.ibm.com/developerworks/java/library/j-jms11/
http://www.phptr.com/articles/article.asp?p=170722

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006902&loc=en_US&cs=
utf-8&lang=en

� J2EE Connector Architecture

http://java.sun.com/j2ee/connector/download.html

� Java Security, JAAS, JCE and JSSE

http://java.sun.com/security

� Apache Software Foundation

http://www.apache.org

� Apache HTTP Server source-code

http://httpd.apache.org/download.cgi

� Apache 2.0 Feature list

http://httpd.apache.org/docs-2.0/new_features_2_0.html

� Apache HTTP Server documentation

http://httpd.apache.org/docs-2.0/mpm.html

� Akamai

http://www.akamai.com

� Speedera

http://www.speedera.com

� Network Appliance

http://www.netapp.com

� Blue Coat

http://www.bluecoat.com

� Cisco Cache Engine

http://www.cisco.com

� Edge Side Include (ESI)

http://www.esi.org

� Sun Solaris performance information

http://www.sean.de/Solaris/soltune.html

� IBM Rational Suite® TestStudio®

http://www.ibm.com/software/awdtools/suite/

� Rational Performance Tester

http://www.ibm.com/software/awdtools/tester/performance/

 Related publications 1045

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006902&loc=en_US&cs=utf-8&lang=en
http://java.sun.com/security
http://www.apache.org
http://httpd.apache.org/download.cgi
http://httpd.apache.org/docs-2.0/new_features_2_0.html
http://httpd.apache.org/docs-2.0/mpm.html
http://www.akamai.com
http://www.speedera.com
http://www.netapp.com
http://www.bluecoat.com
http://www.cisco.com
http://www.esi.org
http://www.sean.de/Solaris/soltune.html
http://www.ibm.com/software/awdtools/suite/
http://www.ibm.com/software/awdtools/tester/performance/
http://java.sun.com/j2ee/connector/download.html

� ApacheBench manual and list of options

http://httpd.apache.org/docs/programs/ab.html

� Microsoft Data Access Components (MDAC) version 2.5 download

http://microsoft.com/data/download.htm

� OpenSTA V1.4.2

http://www.opensta.org/download.html

� OpenSTA community site

http://portal.opensta.org/

� OpenSTA sourcecode

http://opensta.sourceforge.net/

� JMeter, Open Source software from the Apache Software Foundation

http://jakarta.apache.org/jmeter/

� TestMaker and TestNetwork, from PushToTest

http://www.pushtotest.com/

� Grinder

http://grinder.sourceforge.net

� LoadRunner from Mercury Interactive

http://www.mercury.com/us/products/performance-center/loadrunner/

� Segue SilkPerformer

http://www.segue.com/products/load-stress-performance-testing/

� WebLOAD from Radview

http://www.radview.com/products/WebLOAD.asp

� WebStone from Mindcraft

http://www.mindcraft.com/webstone/

� OpenLoad from Opendemand Systems

http://www.opendemand.com/openload/

� Implementing a Highly Available Infrastructure for WebSphere Application
Server Network Deployment, Version 5.0 without Clustering

http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcot
t/alcott.html

1046 WebSphere Application Server V6 Scalability and Performance Handbook

http://httpd.apache.org/docs/programs/ab.html
http://microsoft.com/data/download.htm
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0304_alcott/alcott.html
http://www.opensta.org/download.html
http://portal.opensta.org/
http://opensta.sourceforge.net/
http://jakarta.apache.org/jmeter/
http://www.pushtotest.com/
http://grinder.sourceforge.net
http://www.mercury.com/us/products/performance-center/loadrunner/
http://www.segue.com/products/load-stress-performance-testing/
http://www.radview.com/products/WebLOAD.asp
http://www.mindcraft.com/webstone/
http://www.opendemand.com/openload/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 1047

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

1048 WebSphere Application Server V6 Scalability and Performance Handbook

Index

Numerics
2PC transaction 485
2phase commit 485, 666, 714
3DES 1022
80/20 rule 898

A
Abstract Parent Class 908
Access intent 928, 991, 996–997

Read 995
Settings 32

Access log 1019
Access patterns 982
Access plan 1027
action handler 903
ActionServlet 538, 901
Activate at 992

Once 992
Transaction 992

Activation specification 647, 652, 670
ActiveCount 988
activity.log 304, 307
ActivitySession 998
Adapter Bean Name 566
admin_host 232
Administrative cell 14
Administrative Console 13

Manage Web servers 244
Propagate plug-in configuration file 244
Regenerate plug-in 260

Administrative service 13, 773
ADV_was.java 193–194
Affinity

Process 357, 365, 370
Transaction 345, 357, 365

Agent 847
Agent Controller 844–847, 855

Agent 847
Client 847
Host process 846
J2EE Request Profiler 847
Java Profiling Agent 847

AIO device 206

© Copyright IBM Corp. 2005. All rights reserved.
Akamai 504, 566
Akamai EdgeSuite 566
Alarm Manager 779
Alexandre Polozoff 941
Apache 13, 1015
Apache HTTP Server 945
Apache JMeter 856, 897
Apache Software Foundation 901
Appliance server 53, 58
Application

80/20 rule 898
Architecture 897, 930
Caching technologies 897
Design 62, 897, 930
Execution flow 852
Life cycle 897
Performance 896, 930
Performance bottleneck 897
Performance optimization 897
Scalable 897

Application assembly performance 991
Application clients 72
Application design 40
Application development

Coding issues 936
Form submission 901
High-volume Web sites 899
JavaServer Pages 899
Memory allocation 930
Memory deallocation 930
Memory usage 930
Performance target 897
Performance testing 840
Reclaim memory 930
Servlets 899

Application maintenance 919
Application management 829

Enterprise view 829
Infrastructure testing 832
Measure end-to-end response time 832
Monitoring

Account and Server Group Management
836
Active 832

 1049

Client transactions 832
Memory Analysis 836
Monitoring On Demand 836
Passive 832
Software Consistency Check 836
System Resources 836
Trap and Alert Management 836

Performance management 830
Problem and resolution process 830
Problem determination 830
Request decomposition 832

Application performance 62, 896, 930
Health 1005
Testing 940

Application profiling 840, 928, 997
Closed-world analysis 998
Open-world analysis 998
Performance characteristics 873
Profile 998
Task 998
Verify runtime behavior 873

Application Response Measurement 807
Application Server Node 83
Application Server Samples

BeenThere 426
Application Server Toolkit 195, 515, 586, 709, 998

Analysis engine 998
ARM 771, 807
ARM agent 807
ARM Agents 805
ARM API 807
ARM interface 806
Array 937
AST See Application Server Toolkit
Asynchronous messaging system 625, 650
Automatic lock recovery 490
Auto-reload

Web module 263
Availability 4, 7, 100

EJB container 89
Failover 8
Hardware-based high availability 7
Maintainability 9
Web container 89
Web server 89

Availability matrix 484
Average concurrent users 940
Average request rate 940
Average servlet response time 805

Avg Method RT 775–776

B
Back end application 627
Backing bean 904
Backout queues 728
Backout threshold 728
BackupServers tag 276
Batch processing 54
Batch size 636
BEA Systems 924
Bean cache 991
Bean Managed Persistence See BMP
Bean managed transactions See BMT
Bean scope

application 900
page 900
request 900
session 900

Beans.instantiate() 900
BeenThere 309–310, 355, 426, 691

Application Server Samples 426
Download 426
Installation 427

Benchmark 41
Trade 6 391, 436

Benchmark Center 60
Benchmarking 59
bind 1027–1028
BLOB 910
Blue Coat 504
BMC 63
BMC Patrol 837
BMP 925, 995

Entity beans 667, 925
Advantages 926
Disadvantages 925

BMT 383
Bootstrap 347
Bootstrap server 347
Borland OptimizeIt 933
Bottleneck 978, 980–981, 987–988, 990, 997, 1004

Processing 978
Boundary statistic 773
Bounded range statistic 774
Broker 715

Administrator perspective 744
browse-parse-get loop 638

1050 WebSphere Application Server V6 Scalability and Performance Handbook

Buffer pool 1027
Build Verification Test process 64
Bulk encryption/decryption 1021
Bus

Clustering support 656
Destinations 647
Members 645–646
Messaging engine

High availability 656
Workload management 657

Multiple 646
Business Delegate 916
Business Delegate pattern 915, 920
Business logic layer 906, 912, 914, 916

Caching 919
Business objects 912
Business process model 912
Business rules 912
Business to business 48

C
CA See Certificate Authority
Cache 932, 985, 993

Discards 985
Flushing 937

Cache - Control 505
Cache appliances 504
Cache consistency 548
Cache ID 281, 541, 551, 568, 572
Cache instance 509

JNDI name 512
Object 510
Servlet 510

Cache invalidation 556
Event-based 556
Policy 556
Techniques 556
Time-based 556

Cache monitor 546, 557
Cache policy 570, 572, 907
Cache replication 511, 524, 547

cachespec.xml configuration 553
Configuration

Push frequency 553
Runtime mode

Not Shared 552
Push and Pull 550
Push only 551

Sharing policy 553
Not-shared 553
Shared push-pull 553
Shared-push 553

Enabling 548
Testing 554
Troubleshooting 558

Cache size 985–986
CacheMonitor.ear 516
CacheQueries 581
cachespec.xml 511, 524, 526, 532, 542, 548,
556–557

Configuration 532, 553
Location 512

cachespec.xml elements
 512–514

command 512
EdgeCacheable 514
ExternalCache 514
JAXRPCClient 513
not-shared 513
servlet 512
shared-pull 513
shared-push 513
shared-push-pull 513
static 512
sub-elements 514
webservice 512

CacheTimeMargin 581
Caching 55, 58, 826, 1020

Business logic 919
Commands 502, 504
Content type

GIF 502
HTML 502
JPG 502
JSP rendering less dynamic data 502

Customized content 503
Database 505

DB2 DBCache 505
Oracle 9i IAS - Relational Cache 505
TimesTen 505
Versant enJin 505

Dynamic content 501, 503, 556
Fragments 506–507
In memory 568, 610
Invalidation 501
JSPs 504
Page fragments 504

 Index 1051

Personalized data 501
Servlets 504, 826
Static content 501–502, 556, 610
To disk 610
Web page design 507
Web services 504, 826
WebSphere commands 826

Caching framework 502
Caching Proxy 87, 122, 394, 504, 507, 566

Adapter module 578
AIX

Installation
Using SMIT 210

AIX Installation
bos.iocp.rte 205
IOCP device 205
Prerequisites 205

Cachable content 122
Cache store 219
Collocation with Web server 214
Configuration 212

ibmproxy.conf 218
Port 213
Reverse proxy 213

Configuration wizard 213
Configure dynamic caching 581–582
Data retrieval 122
Disk cache 219
Dynamic caching 124, 578

Cache synchronization 579
Forward proxy 122, 212
Installation

LaunchPad 206
Load balancing 124
Monitoring 582
Protocols 122
Reverse proxy 122–123
Start

AIX
startsrc 223
stopsrc 223

Windows Services 222
Statistics 571
Stop

Windows Services 222
Storage device 122
Target Web server 214
Test 224
Troubleshooting 584

Web administration tool 216
Caching strategy 66
Caching techniques

Caching Proxy 610
Dynamic caching 610
ESI 610
For static content 610
FRCA 610
Web server plug-in 610

Caching tiers 503
Casting 936
CBR See Content Based Routing
CDN See Content Delivery Network
Cell

Web server 245
Certificate Authority 244
CF See Connection factory
Charts

Tivoli Performance Viewer 802
CICS 777, 834–835
CIFS 490
Cipher suite 1022
CIS 54
Cisco Cache Engine 504
Cisco CSS Controller 110
Class

Garbage collection 1012
Instance of 862
Instance Statistics 859
Structure 936

Client 847
Client authentication 244
Client ID 716
CloneID 281
Cluster 19, 52, 228, 244, 343, 389, 990

Creation 403–404
Horizontal scaling 82
Vertical scaling 82

Cluster member 19, 235, 244
Configuring transports 235
Failover operation 320
Failure 321
Failure during request 331
Failure with active sessions 322
Marking down 274
Overload 334
Security 23
Stopping 321

Cluster routing table 359

1052 WebSphere Application Server V6 Scalability and Performance Handbook

Cluster settings 491
ClusterAddress tag 268, 271
Clustered TM Policy 476, 489, 497
Clustering software 496
CMP 925, 995–996

Entity beans 666, 925, 995–996
Advantages 925
Disadvantages 926

CMT 383
Coding best practices 896, 930
Cold failover 487
Collection size 931
com.ibm.CORBA.LocateRequestTimeout 375
com.ibm.CORBA.MaxOpenConnections 1025
com.ibm.CORBA.RequestRetriesCount 375
com.ibm.CORBA.RequestRetriesDelay 375
com.ibm.CORBA.RequestTimeout 375–376
com.ibm.CORBA.ServerSocketQueueDepth 1024
COMM_FAILURE 375
Command bean 917
Command Cache 540–541
Command caching 34, 540, 609

Enabling 541
Testing 546

Command Design Pattern 541
Commits 1028
Concurrency test

Memory leak 1006
Concurrent requests 780
Concurrent user 980
Concurrent Waiters 983
Conditional check 936
Configuration repository 14
Connection 652

Keep-alive 1022
Connection backlog 334
Connection factory 650, 652, 699, 701, 716
Connection manager 977
Connection pool 792, 935, 983–985

Maximum connections 633
Connection pool size 983
Connection pooling 55, 813, 983

Performance data 777
ConnectionConsumer object 704
Connections

Idle 722
ConnectionWaitTimeout exception 667–668
ConnectTimeout 335
Container Managed Persistence See CMP

Container Managed Transactions See CMT
Container transactions 991, 999

Bean Managed 999, 1001
Mandatory 999–1000
Never 999
NotSupported 999–1000
Required 999–1000
Requires New 999–1000
Supports 999–1000

Content Based Routing 109
Content caching tiers

Client caching services 504
Dynamic cache service 504
External caching services 504
Internet content delivery services 504

Content Delivery Network 504, 508
Controller 907–908
Controller servlets 908
Cookie 909
Cookies 282, 312, 616, 911

JSESSIONID 281
CORBA 950
CORBA CosNaming 372
corbaloc provider URL 351
Core group 358, 467

Bridge service 468
Coordinator 468

Election 470
Failure 471
Preferred 469

Member 467
Member discovery 482
Member status 482

Connected 482
In a view 482
Not connected 482

Policy 467, 474, 660
Clustered TM Policy 489
Configuration

Fail back 476
Preferred servers 476
Preferred servers only 476
Quorum 476

Fail back 661
Large clusters 661
Match criteria 660
Preferred servers 660
Preferred servers only 661
Type 475, 660

 Index 1053

All active 475
M of N 475
No operation 476
One of N 475, 660
Static 477

Transport type 478
Channel Framework 479
Multicast 478
Unicast 478

Correlation ID 638
Cost/benefit analysis 56
Count statistic 773, 780
Counters 776, 792

Avg Method RT 775–776
Performance data 774
Selecting multiple 800

Covalent Enterprise Ready Server 13
CPU 614, 974
CPU starving 484
CPU utilization 63, 778, 971
Create custom profile 400
create method 355
Create server cluster 403
createSession 701
Current weight 270
Custom tag libraries See JSTL
Customer Information Service 54
Customer self-service 46
CustomLog 1019

D
Data

Caching 937
Data access frameworks 920
Data access layer 919
Data access logic 926
Data counters 779
Data Mediator Services 922–923

EJB 922
JDBC 922

Data mediators 920
Data Replication Service See DRS
Data server 42
Data source 921
Data source queues 983
Data Transfer Object pattern 915, 920
Data Transfer Objects 916, 923

XML 906

Data transmission time 1016
Database connection 935
Database connection pools 792
Database indexes 57
Database manager overhead 1028
Database persistence 280
Database row lock 995
Database session management

Session persistence 291
Datasource 935
DB2 87, 291, 438, 676, 734, 742, 1026

Buffpage 1027
catalog command 439
Configuration 438
Logging 1026
MaxAgents 1026
MaxAppls 1026
MinCommit 1028
Multi-row feature 295
Performance

Repeatable read 994
Query optimization level 1027
reorgchk 1028
Transaction log 1028
Variable row size 295

DB2 configuration advisor 1026
DB2 DBCache 505
DB2 Information Integrator 54
DB2 Legacy CLI-based Type 2 JDBC driver 676
DB2 UDB 835
DB2 universal JDBC Type 4 driver 439, 676, 750
db2cmd 438
DB2COMM 1026
DBMS connectivity 919
DCP 509
DCS 32, 466, 472, 474, 483

Heartbeat 483
Dead Letter Queue 738
Deadlock 974, 984
Deadlock situation 629
Default messaging provider 13, 34, 628, 643, 713

Activation specification 652, 670
Activation specification settings

Maximum batch size 670
Maximum concurrent endpoints 670

Add server cluster to bus 646
Add server to bus 646
Bus members 646
CF settings

1054 WebSphere Application Server V6 Scalability and Performance Handbook

Connection proximity 664
Bus 664
Cluster 664
Host 665
Server 665

Nonpersistent message 665
Persistent message 665
Read ahead 665
Share datasource with CMP 666
Target 663
Target significance

Preferred 664
Required 664

Target type 663
Clustered messaging engines 659
Clustering 656
Component relationships 655
Components

Connection factory 652
Destination 650
Message queue 650
Target destination 652

Configuration guidelines 663
Connection pooling 631
Connection pools settings

Aged timeout 670
Configuration 667
Connection timeout 667
Maximum connections 668
Minimum connections 669
Purge policy 670
Reap time 669
Unused timeout 669

Destinations 647
Alias 647
Foreign 647
Queue 647

Queue point 647
Topic space 647

High availability 656
JCA

Resource Adapter 652
JCA connection pool 655
Message destination 650
Message reliability 648

Performance 648
Messages

Levels of reliability 648
Messaging destination

Exception destination 671
Maximum failed deliveries 671

Messaging engine 646
Data store 649

Messaging engine name 646
Partitioned queues 657

Local partitions 657
Remote partition 658

Performance 643, 657
Preferred servers 660
Quality of Service 649
Workload management 656

Default SIBus Policy 476
default_host 232
DefaultApplication.ear 309
DefaultCoreGroup 476
DeliveryMode.NON_PERSISTENT 712
DeliveryMode.PERSISTENT 712
Dependency ID 542, 544
Dependent value classes 927
Deployment descriptor 348, 915, 925, 928, 998
Deployment Manager 7, 12, 87

Failure 374
plugin-cfg.xml 260
Profile 396
SPOF 358
Windows Service 400

DES 1022
Design

Application 40
Implementation 41

Destination 650, 699
destroy() method 901
Development cycle 840
Development environment 231, 263
Development life cycle 907
Dirty reads 994
Disk access 56
Disk IO 974
Disk utilization 63
Dispatcher 102

Advisors 104, 107
Connect 108
connecttimeout 108
Custom 109
Customizable 108
Downed server 108
receivetimeout 108

Executor 103

 Index 1055

Connection table 103
Forwarding methods 105

CBR 107
MAC forwarding 105
NAT/NAPT 106

Return address 107
Manager 103
Metric Server 104
Server weights 102

Dynamic 102
Fixed 102

Distributable 991, 1001
Distributed Fragment Caching and Assembly Sup-
port 566
DistributedMap 510
DistributedMap caching 34
DistributedObjectCache 510
Distribution and Consistency Services See DCS
DMap caching See DistributedMap caching
DMS 922
doGet method 651, 700, 900
Domain Replication Service 32
doPost method 900
DRS 26, 78, 294, 297–298, 377, 472

Number of replicas 299
Replication domain 299
Topologies 299

dscontrol 136, 201
cluster configure 162
executor report 157
executor stop 204
high status 178
high takeover 180
manager report 156, 191

dsserver 201, 203–204
Start Dispatcher 136
stop 204

DTO 916, 923
Durable subscription 715, 717

ID 716
DynaCacheEsi application 523
dynaedge-cfg.xml 580
Dynamic Cache Monitor 516, 523, 571, 826

Edge Statistics 571
Installation 517–518, 520–521, 561, 563

Dynamic Cache Policy Editor 515
Installation 586

Dynamic cache service 392, 502, 778, 826, 899,
938, 1020

Cache replication 524
Push frequency 550

Command caching 508
Configuration 515, 524
Disk off-load

LRU algorithm 526
Priority weighting 526

Disk offload 524, 526
Enable 526
Tuning 526

DistributedMap 34, 510
DistributedObjectCache 510
Enabling 524
JSP result caching 507
Servlet caching 507
Troubleshooting 557

Dynamic caching 907, 919
Cache consistency 548
Cache instance 509
Cache replication 511, 547
Caching Proxy adapter module 578
Command Design Pattern 541
DistributedMap 437
Dynamic Content Provider 509
Edge Side Includes 514
External cache group name 514
Struts and Tiles caching 537
WebSphere Command Framework API 541

Dynamic content 503
Dynamic Content Provider 509
Dynamic SQL statements 1027

E
Eclipse 844, 846, 956
Eclipse Hyades 844
Edge Components 53, 84, 87, 99, 101, 388, 394,
504, 571

Caching Proxy 122, 507–508
LaunchPad 125
New features in V6 125
Supported platforms 101

Edge of Network Caching Support 609
Edge server 42, 58
Edge Side Includes See ESI
Edge Statistics 571
EIS See Enterprise Information System
EJB 23–24, 883, 912–913, 986, 995

Bootstrapping 347

1056 WebSphere Application Server V6 Scalability and Performance Handbook

Caching options 29, 345, 927
Option A caching 345, 383, 992–993
Option B caching 345, 383, 992–993
Option C caching 346, 383, 992–993

Client 343, 927, 986
Cluster 407
Deployment descriptor 639, 915
Entity bean 28, 345
Entity bean home 343
Entity bean instance 343
Entity beans 926

Alternatives 928
Coding guidelines 926
Design guidelines 926

High availability 343
Home 349, 355, 914
Inheritance 927
InitialContext 914
Isolation levels 928, 995
JNDI lookup

In same cell 347
Outside cell 351
WebSphere client container 351

Load balancing 343
Local interface 914, 928
Lookup operation 914
Object reference 344
Passivation 346
read-only method 995
Reference 348–349, 914
Reference mapping 349
Remote method call 914
Response time 792
Server affinity 30
Session 28
Session bean home 343
Stateful session beans 28, 344

Failover 344
Stateless session bean instance 343
Stateless session beans 28, 344
Transaction 28
WLM 341
Workload management policy 357

EJB 2.0 914, 927, 996, 1001
EJB caching

Option A caching 345, 383, 992–993
Option B caching 345, 383, 992–993
Option C caching 346, 383, 992–993

EJB Command Framework 917

Disadvantages 918
EJB container 347, 366, 389, 913, 917, 925, 927,
986

Availability 89
Cache settings 986
Cache size 986
Cleanup interval 986
Failover

Tuning 375
Pool size 635
Thread pool 627
Transaction management 915
Workload management 389

EJB server selection policy
Prefer local 358, 366
Process affinity 358, 360, 368, 370
Server weighted round robin routing 358–359
Transaction affinity 358–359, 368, 370

EJB session bean 908, 926, 929
Direct access to back end 929

Advantages 929
Alternatives 930
Disadvantages 929

EJB stubs 917
EJB WLM 343

Cluster configuration changes 357
Configuration changes 357
Fairness balancing 362
Initial request 355
Prefer local 358, 366

Configuration 367
Runtime changes 368

Process affinity 357–358, 360, 365, 368, 370
Selection policy 357
Server weighted round robin

Configuration 362
Server weighted round robin routing 358–359

Configuration
Runtime changes 363

Transaction affinity 345, 357–359, 365, 368,
370

EJB workload management See EJB
WLM

ejbActivate 993
ejbLoad() 925
EJBLocalObject 383
EJBObject 383
ejbStore() 925
EJBTM 437

 Index 1057

EJS WLM 23
EJS workload management 17

Enabling 342
Entity bean 345
Failover 371
Normal operation 354
Server selection policy 358
Stateful session beans 344
Stateless session beans 344

Embedded HTTP transport 13, 73
en0 141
en1 141
Enable clone support 715
Enterprise beans

Performance data 777
Enterprise Information System 919–920
Enterprise JavaBean See EJB
Enterprise view of applications 829
Entity bean 28, 345, 919, 924, 984

Failover 383
Server affinity 30

Entity EJBs 924
Activate at 992
Load at 992
Manipulation of data 927
Result sets 927

Environment
Development 231, 263
Production 231

Error condition 937
error.log 308
error_log 308
ESI 504, 508, 559, 566

Best practices 615
Cache 568

Invalidation 574
Cache statistics 571

Cache Hits 572
Cache Misses By Cache ID 572
Cache Misses By URL 572
Cache Time Outs 572
Content 573
ESI Processes 572
Evictions 573
Number of Edge Cached Entries 572

include tags 567–568
Performance considerations 614
Processor 523, 560, 568, 610

Configuration 569

Processor cache 571
Request 572
Surrogate capability 508

ESI/1.0 505
esiInvalidationMonitor 523, 569
Event Broker

Execution Group 745
Message flow 745

Event Integration 833
Exception 937, 974, 1028

Catching 937
Throwing 937

execute() 1020
Execution flow 869
Execution Flow view 867
Execution Group 744
Execution time

Profiler
Execution time 858

Extensible Stylesheet Language Transformation
See XSLT
External cache

Invalidation 585
External Cache Adapter 524
External caching scenarios 558

Configuration
Adapter Bean Name 566
AFPA 564
Caching Proxy 565
ESI 568
EsiInvalidator 565–566
External cache group 560

Cache group members 565
Web server plug-in 568

IBM HTTP Server’s high-speed cache 559
Using Caching Proxy 578

Configuration
External cache group 579

Using Edge Components 559
Using ESI 558–559, 566
Using FRCA 559, 574

Configuration
External cache group 575

Using Web server plug-in 558, 566
External clustering software 476

F
Facade 370, 915, 927

1058 WebSphere Application Server V6 Scalability and Performance Handbook

Message 914
Session 913

Failover 8, 16, 21, 228, 244
Cold 487
Hot 489
ORB plug-in 371
Primary and backup servers 275
Stateful session beans 377

Best practices 383
Configuration 378

Application level 379
EJB container level 378
EJB module level 381

Stateless session beans 377
Tuning 335
Web server plug-in 275

Failover tuning
ConnectTimeout 335
RetryInterval 337

Failure
Deployment Manager 374

Fast Response Cache Accelerator See FRCA
Fat client 908
Fault isolation 10
Federated node 400
Field

Static 933
File system locking 490
filemon 1013
Filter 812
FIN_WAIT 483
Final modifier 937
finally block 641
findByPrimaryKey 995
Firewall 11
Fragment caching 506–507
Fragmentation 930
FRCA 508, 559, 564, 566, 574, 577

Monitoring cache 578
Functional Verification Test 64
FVT 64

G
Garbage collection 469, 786–787, 837, 863, 910,
931, 936, 980, 1008

Bottleneck 1004–1005
Class 1012
Common problems 1010

Compaction phase 1003
Concurrent mark mode 1004
Incremental compaction mode 1004
Mark phase 1003
Monitoring 1005
Parallel mark mode 1004
Parallel sweep mode 1004
Phases 1003
Sweep phase 1003
Time 933

Garbage collection call 933, 1005
Duration of 1008
Length of 1009
Number of 1008
Time between calls 1009

Garbage Collector 930, 1002
Mark - Sweep - Compact technique 1002

GC See Garbage collection
Generic JVM arguments 787
Generic messaging provider 628
genericJvmArguments 790
GenPluginCfg 260–261

wsadmin 260–261
get-by-correlationId 638
get-by-messageId 638
getConnection() 668
getIntValue() 913
getLongValue() 913
getRuntimeEnvInfo method 355
getter type method 995
Google 964
Grinder 965

H
HA group 474
HA policy 358
HA software 489, 713
HACMP 465, 468, 476, 488, 713, 734
HAManager 32, 297, 358, 374, 466, 660

Core group 467
Member 467
Policy 467

Core group bridge service 468
Core group policy 474
Failure detection 483

Active 483
TCP KEEP_ALIVE 485

Failure detection time 483

 Index 1059

High availability group 479
Match criteria 477
Messaging services 466
Policy 497
Server failure 466
Singleton service 466
Transaction service HA 466
Transport buffer 472
View 482
View installation 483

HAManager MBean 476
Handshake 1021
Harden Get Backout 729
Hardened 729
Hardware

Requirements 388
Hardware accelerator 1022
Hardware-based high availability 7
Hashtable 1005, 1007
Heap 722, 787, 975, 991

Allocations 786
Compaction 933, 1003
Consumption 1007
Expansion 1003
Fragmentation 1007
Number of objects in heap 933
Parameters 1002, 1008
Shrinkage 1003
Size 813, 933, 1005, 1011

Initial 1008, 1011
Maximum 1005, 1008, 1011
Minimum 1005
Tuning 1009

Space 57
Thrashing 1009
-Xgcpolicy 1004
-Xmaxe 1003
-Xmaxf 1003
-Xmine 1003
-Xminf 1003
-Xms 1003
-Xmx 1003

Hidden form fields 911
High availability

EJB bootstrap failover 371
EJB container redundancy 372

High availability group 467, 474, 479
High Availability Manager See HAManager
High availability software 85

High-volume Web sites
Application development 899

HitCount 309, 313
Hits per

Day 940
Hour 940
Minute 940
Month 940

Home 343, 355
Horizontal scaling 22, 82, 84
Host alias 516
Host Process 846
Hosts interactions 869
Hot failover 489
HP-UX 11i 1014
htcformat 219–220, 584
HTML frames 911
HTTP 229, 908, 942
HTTP advisor 93
HTTP cache 505
HTTP cache directives 504
HTTP channel 235
HTTP GET 945, 953
HTTP Inbound Channel 989
HTTP POST 945
HTTP requests 937
HTTP response code 503 338–339
HTTP server See Web server
HTTP session 25, 383, 909

Invalidation 910
Server affinity 30
Size 910
Timeout 11

HTTP transport 13, 234, 239
Embedded 73

HTTP transport channel
Maximum persistent requests 988
Read timeout 989

HTTP transport port 516
HTTP tunneling 479
HTTP/1.1 505
HTTP/1.1 caching directives 505
http_plugin.log 304, 809
httpd command 1017
httpd.conf 826, 1019
HTTPS 229, 479, 908
HTTPS transport 239
HttpServlet.init() method 900
HttpServlet.service() 303

1060 WebSphere Application Server V6 Scalability and Performance Handbook

HttpSessionBindingListener 911
HttpSessions 900
Hyades 844

I
IBM AIX 5.2 388
IBM alphaWorks 840, 886
IBM Business Workload Manager 833
IBM DB2 UDB 926
IBM DB2 UDB 8.2 676, 689
IBM DB2 UDB V8.1 388
IBM eServer Benchmark Centers 60
IBM Global Services 61
IBM HTTP Server 12, 80, 87, 251, 504, 609, 826,
945, 1015

Admin Process 80
Error log 308
mod_deflate 1016
Monitoring 826
Multi-processing 1017
Server-status page 826
Tuning

MaxClients 1018
MaxRequestsPerChild 1018
MaxSpareThreads 1018
MinSpareThreads 1018
ServerLimit 1018
StartServers 1018
ThreadLimit 1018
ThreadsPerChild 1018

Use as external cache 574
IBM HTTP Server 2.0.42.2 388
IBM HTTP Server powered by Apache 945
IBM JDK 1.4.1 388
IBM ORB 355
IBM Rational Agent Controller 844–846, 874
IBM Rational Application Developer See Rational
Application Developer
IBM Rational Performance Tester 956–957

HTTP Proxy Recorder 959
Performance Schedule

Create 961
Create Loop 962
Run 962

Performance Summary Report 962
Performance Test

Record 958
Reports 963

Response vs Time 963
Test Contents 961
Virtual test users 962

IBM Rational Software Development Platform 958
IBM service log file 828
IBM Test Center 60
IBM Tivoli Monitoring for Transaction Performance
803
IBM Tivoli Monitoring for Web Infrastructure 803
IBM Tivoli performance monitoring tools 790
IBM TotalStorage 490
IBM WebSphere Application Server Network De-
ployment V5.1 388
ibmproxy.conf 581, 584
IBMSession 304
Identifying field 639
ifconfig 155
if-then 936
IGS 61
IHS 80
Implementation design 41
IMS 777, 834–835
Infrastructure testing 832
init() 1002
Initial context 624
Initial heap size 1008
InitialContext 347, 352, 372, 375, 914
Initialization

Lazy 931
initialization routines 1002
In-memory cache 568
In-process request 370
Installation

Application 427
Instance 343, 774
Instance Statistics 862
Instrumentation level

Setting 780
Interface

Implementation 913
local 927
Remote 917

Internet Explorer 960
Internet Information Server 13
Internet Services Provider 504
Interoperable Object Reference See IOR
Invalidation 553, 556

ESI cache 574
Event-based 556

 Index 1061

Event-driven 559
External cache 585
Policy 556
Techniques 556
Time-based 556

Invalidation API 556
IOR 356

Direct 356
Indirect 356

iostat 1029
IP sprayer See Load Balancer
IP spraying 100
IP-forwarding 123
iPlanet 1019
Isolation levels 991, 993, 995, 997

Database overhead 994
Row locking 994

ISP See Internet Services Providers
ITSO sample topology 86, 388, 403

J
J2C Authentication data 750
J2C connectors

Performance data 777
J2EE 72–73, 341, 834

APIs 73
Application 831, 1020
Application client container 351
Applications 621
Business logic tier 73
Client application

Prefer local policy 366
Client tier 72
Components 228, 883
Context lookup 624
Context reference 624
Enterprise Information System tier 73
Management specifications 773
Multi-tier environment 72
Name 716
Naming 347
Presentation tier 72
Request Profiler 847, 875
Request Profiler Agent 867
Security 909
Specification 900
Tiers model 72

J2EE 1.3 437, 625

J2EE 1.4 437, 621, 914
J2EE 1.4 compliant messaging provider 621
J2EE Connector Architecture See JCA
J2EE Specification 924
J2EETM) 437
Jakarta project 901
Java

Access to synchronized resources 934
Buffered I/O classes 937
Casting 936
Class structure 936
Client 16, 343, 360, 913

Bootstrapping 352
Conditional check 936
Copying contents of arrays 937
Externalization 910
Final modifier 937
I/O libraries 934
if-then 936
Memory management 931
Memory tuning 1002
Monitors 934
Performance

Swapping 1011
Process ID 359
Reflection 936
Strings 936
Synchronization 933
Using ? for conditional check 936

Java 2 Platform Enterprise Edition See J2EE
Java Community Process 928
Java Connector Architecture See JCA
Java Data Objects See JDO
Java Database Connectivity See JDBC
Java Management Extension 772, 804
Java Message Service Server See JMS
Java Messaging Service See JMS
Java Naming and Directory Interface See JNDI
Java process

Attach to 849
Java Profiling Agent 847, 875–876, 1005
Java Specification Request 924
Java Virtual Machine 75, 370, 777, 927
Java Virtual Machine Profiler InterfaceSee JVMPI
java.lang.String 936
java.lang.StringBuffer 936
java.rmi.RemoteException 999
java.sql.Connection 935
java.sql.PreparedStatement 936

1062 WebSphere Application Server V6 Scalability and Performance Handbook

java.sql.ResultSet 935
java.sql.Statement 935–936
java.util.ArrayList 934
java.util.Hashtable 931, 934
java.util.Vector 931, 934
java: lookup names 352
JavaBeans 912
JavaServer Faces See JSF
JavaServer Pages See JSP
javax.jms.MessageProducer 712
javax.jts.TransactionRequiredException 1000
javax.servlet.Servlet.init() method 900
javax.transaction.UserTransaction 1000
JAX-RPC 437
JCA 631, 647–648, 777, 924, 933

Adapter 926
Connection pool 655

JDBC 641, 901, 919, 927, 933, 935
Cached Rowset 924
Driver 936
Provider 292, 984

Connection pool settings 984
Resources 676, 688
Rowset 924

JDO 919, 924, 928
Advantages 929
Alternatives 929
Data access 928
Disadvantages 929

JFS See Journaled File System
Jinsight 981
JIT compiler See Just in Time compiler
JMeter 897, 964
JMS 13, 485, 621, 625, 650, 908, 917, 933

Activation specification 647, 670
Maximum batch size 635
Maximum endpoints 635

Activation specification settings
Maximum batch size 670
Maximum concurrent endpoints 670

API 625, 650
Receive messages 625, 650
Send messages 625, 650

Average workload arrival rate 719
Class 712
Client subscription

Durable 715
Non-durable 715

Component settings 711

Components 643, 705
Connection factory 701
Destination 699
JNDI Name service 650, 699, 702
Listener port 702
Message destination 699

Queue 699
Topic 699

Message queue 702
Queue destination 702
Queue manager 652, 699, 702
Target destination 701

Configuration
Enable clone support 715
Enable XA support 714
Listener port maximum sessions 718
Maximum messages 720
Maximum session pool size 724
Maximum sessions 720
Message persistence 712
Transport Type

BINDINGS 712
CLIENT 712

Configuration guidelines 708
Connections 624, 652, 722
Correlation ID 638
Default messaging provider 643
Destination 652, 701, 726
Durable subscription 717

ID 716
Failure 724
High availability 485
Infrastructure 705
Listener port 702
Message destination 699
Message ID 638
Message listener service 702–703
Message persistence 641
MessageProducer 649
Objects 716
Peak workload arrival rate 719
Performance tuning 719
Point-to-point messaging 655
Provider 638

WebSphere MQ 704
Provider code 728
Publish/subscribe 655, 715
QCF 704
Queue 747

 Index 1063

Queue destination settings 713
Queue reader thread 720
Resource adapter 625, 635, 671
Resources 676, 688
Session 721–722
Specification 638
Topic destination settings 713
Usage 625

JMS 1.1 unified API 699
JMX 771–772, 804
JNDI 355, 624, 649, 935, 937

Lookup 347–348, 652, 654, 701, 704, 900
Server cluster 353

Fault-tolerant 354
Single server 352

Name 430, 710
Fully qualified 348

Name resolution 348
Name service 650, 652, 699, 701–702
Namespace 624, 651, 700

Journaled File System 476, 496, 1013
JProbe 981
JSESSIONID 281–282, 297, 534
JSF 899, 903, 908, 923

Backing bean 904
Data conversion 904
Internationalization support 904
JSP tag library 904
Page navigation 904
UI component

JSP 911, 998
Compositional 899

JSP 2.0 899
jsp include tag 511, 899
jsp usebean tag 900
JSP/servlet caching 907
JSTL 899, 901
Just In Time compiler 1011
JVM 75, 366, 370, 467, 504, 720, 777, 927

Memory utilization 837
JVM log 557
JVM resource 722
JVM tuning 1011
JVMPI 771, 777, 786, 846–847, 972, 1005

Disabling using Administrative Console 790
Disabling using wsadmin 790
Enabling using Administrative Console 787
Enabling using wsadmin 789

JVMPI profiler 1005

K
keep-alive connection 1022
kill command 494

L
Latency 43, 1020
Layers

Business logic 912
Data access 919
Presentation 898

Lazy initialization 931
lbadmin 136
LDAP 1021
Least recently used See LRU algorithm
Life cycle 777
Linux scheduler 1014
Listener 707

Service thread pool 722
Listener port 702, 716, 721

Configuration 704
Failure 726
Initialization 703
Maximum connection pool size 724
Maximum number of sessions 718
Maximum retries 728
Maximum sessions 633, 718
Minimum connection pool size 724
Retry interval 728
Retry settings 726
Session 704, 707
Sessions 721

Load at 992
Activation 992
Transaction 992

Load Balancer 84, 87, 91
Advisor logging level 202
Advisor status 201
Advisors 146

Connect 146
Custom 193
Customizable 190
HTTP 146

AIX Installation 132
CBR component 109
Cisco CSS Controller 110
Cluster IP alias 162
Command line interface

dscontrol 136

1064 WebSphere Application Server V6 Scalability and Performance Handbook

Configuration 394
Add cluster 138
Add Web servers 143
Basic scenario 136
Client gateway address 181
Executor 137
Network router address 186
Port 141
Return address 185
Save 146

Content Based Routing 109
Custom advisors 91, 109
Dispatcher 102

Automatic start 203
CBR forwarding method 109
Scripts

goActive 119
goIdle 119
goInOp 119
goStandby 119
highavailChange 120
serverDown 120
serverUp 120

Start 136
Start automatically 203

Executor
Start 137

Forwarding method
NAT/NAPT 181

Graphical user interface
lbadmin 136

High availability 116, 162
Active server 117
Backup server 117
Backup server configuration 168
Configuration 164
Dispatcher scripts 119
Failover 179
Primary server 117
Primary server configuration 162
Reach target 118
Recovery 117
Recovery strategy 164
Server role 164
Server state 162
Standby server 117

High availability configuration
Reach target 169
Test 177

Test automatic recovery strategy 177
Test manual recovery strategy 180

High availability scripts 162
Configuration 171
goActive 172
goInOp 173
goStandby 172
highavailChange 174
serverDown 174
serverUp 174

HTTP Advisor Request 191
Installation 128
Installation and Configuration 128
Installation wizard 128
LaunchPad 128
Log file 202
Manager

Log 145
Start 144

Mutual High availability 118
Nortel Alteon Controller 110
On dedicated server 114
Protocols 102
Server affinity 110

Active cookie affinity 113
Cross port affinity 112
Passive cookie affinity 113
SSL session ID 114
Stickyness to source IP address 111
URI affinity 113

Server monitor 156
Site Selector 110
SPOF 116
Stop all components 204
Testing

NAT 189
Topologies 114

Collocated 115
High availability 116
Mutual high availability 118
On dedicated server 114

Windows
Dispatcher service 203

Load Balancer Node 84
Load balancing 8, 16, 20, 84
Load factors 66
Load information 778
Load on startup 991, 1001
Load testing tools 945

 Index 1065

Load tests 66
Load value 777
LoadRunner 965
Local cache 504
Location Service Daemon 356, 374
Lock lease 490
Lock recovery 490
Log

System.out 808
Viewing with Tivoli Performance Viewer 793

Log Analyzer 828
Symptom database 828

Log4J 935
Logging 934

Reduction of 935
Logging library

Multithreaded 935
LogLevel 305
Logout functionality 910
Long-running test

Memory leak 1006
Lookup 935
Loop 937
Loop iteration 937
Loopback interface

Alias 148
AIX 155
Other platforms 155
Windows 149

Lotus Domino 13
LRU algorithm 526
LSD 373
LSD See Location Service Daemon

M
Maintainability 4, 9

Configuration
Dynamic 9
Mixed 9

Fault isolation 10
Managed node 79, 400
Managed node custom profile 396
Managing state 24
Mandatory 915, 999–1000
Match criteria 477
Max Application Concurrency 982
Max Connections 983–984
MAX.RECOVERY.RETRIES 726

MaxClients 1018
Maximum concurrency level 983
Maximum concurrency point 982
Maximum heap size 1005, 1008
Maximum messages 719–720
Maximum number of connections 337
Maximum number of threads 334, 1018
Maximum persistent requests 989
Maximum sessions 720
Maximum size 987
Maximum thread pool size 725
Maximum weight 269
MaxRequestsPerChild 1018
MaxSpareThreads 1018
maxWeight 270
MBeans 773
MDB 29, 625, 632, 647, 650, 652–654, 671–672,
702, 704–705, 715, 728, 730, 913, 917, 937, 998

Listener ports 716–717
onMessage 653, 702, 718, 721

Mediation 908
Memory 777, 974

Allocation error 1013
Allocation fault 1002
Leak 834, 841, 901, 930, 932, 935, 969, 1002,
1005, 1009

Concurrency test 1006
Detection 837
Long-running test 1006
Repetitive test 1006
System instability 1005
System test 1006
Testing 1006–1007
Tivoly Performance Viewer 1007

Overuse 1005
Utilization 63, 1004

Memory-to-memory replication 26, 78, 280
Partition ID 297
Replication domain 295

Mercury LoadRunner 945
Message

Backlog 719
Producer 647, 658
Queue 650, 702
Reliability 648
Selector 639

Message broker 716, 728, 742
Connection timeout 728

Message consumer 647, 658

1066 WebSphere Application Server V6 Scalability and Performance Handbook

Message destination 699
Queue 699
Topic 699

Message driven bean 647
Message facade 914, 917
Message ID 638
Message listener

Service thread 634
Threads 707

Message listener service 640, 702–703, 705, 726
Maximum sessions 721
Maximum threads 633

Message listener threads 707, 721, 765
Message persistence 641, 712

Configuration values 713
Message retention

Disable 640
MessageConsumer 641, 716
Message-driven beans 29, 625, 632, 647, 650,
652–653, 702, 913, 917, 937
Messaging

Acknowledge mode 636, 670
Bus 645
Connection 622

QueueConnection 622
TopicConnection 622

ConnectionFactory 622
TopicConnectionFactory 622

Default messaging provider
Consuming messages 635

Destination 622
Queue 622
Topic 622

Engine 468, 646
UUID 649

Formats
Record-oriented 626
Tagged delimited 626
XML 626

Levels of reliability 648
Listener port 633
MessageConsumer 622

QueueBrowser 622
QueueReceiver 622
TopicSubscriber 622

MessageProducer 622
QueueSender 622
TopicPublisher 622

Performance 630

Point-to-point 622, 637, 639, 647
Publish/subscribe 44, 622, 647, 655, 672–673,
715, 728, 730–731, 734, 739, 747, 752
publish/subscribe 472
QueueConnectionFactory 622
Session 622

QueueSession 622
TopicSession 622

Simultaneous message processing 718
System 625, 650

Topology 710, 720
WebSphere MQ

Consuming messages 632
Workload 687
Workload patterns 627

From MDBs 632
From Web/EJB container 627

Messaging services 466, 476
Metadata API 921
Method extensions 993
Method invocation 853
Method Statistics 861
Microsoft Data Access Components 949
Microsoft IIS See Microsoft Internet Information
Server
Microsoft Internet Information Server 13, 1019
Microsoft Loopback Adapter

Add 149
Configure 152

Microsoft Windows 2000 Server 388
Min connections 984
MinCommit 1028
Minimum heap size 1005
MinSpareThreads 1018
mod_deflate 1016
mod_mem_cache 610
Model View Controller See MVC
Module

Performance data 774
Monitoring

Active 832
Passive 832

MPM architecture 1017
mpm_winnt 1017–1018
mpm_worker 1017
MQ

JMS connection pooling 722
JMS pooling 722
Queue manager 722, 726

 Index 1067

Transaction support 712
MQ Explorer GUI 728
MQ JMS classes 717, 722
MQJMS.POOLING.THRESHOLD 722
MQJMS.POOLING.TIMEOUT 722
mqsistart 746
Multicast 471
Multi-process 1016
Multi-Processing Modules architecture 1017
Multithreaded logging library 935
Multi-tier environment 72
MVC 510, 541, 615, 896, 901

N
Name space 347
NAS 467, 475, 489
NAT/NAPT 181
native_stderr.log 1009
NDAdvisor.java.servlet 193
Network Appliance 504
Network Attached Storage See NAS
Network bandwidth 1016
Network Deployment Manager 12
Network File System v4 490
Network interface 141
Network latency 376
Network utilization 974
Never 999
NFA 103, 118
NFS v4 490
nleaf 1028
nlevels 1028
Node

Performance data 774
Node Agent 12
Non-blocking connection 336
Non-durable subscription 715
Non-forwarding address 103
Nonrepeatable reads 994
Non-serializable data 551
Nortel Alteon Controller 110
NotSupported 915, 999–1000
Number of concurrent endpoints 637
numRequest 780
NVRAM 491

O
Object

Collection 932
Creation 931
Destruction 931
Loitering 932
Pool 931
Reference 930, 932
Reuse 931
Serialization 910
Temporary 932

Object cache instance 510
Object pools 779, 969
Object References Graph 864

Object Details view 866
Object Request Broker 342, 355, 777–778, 977,
987–988, 1022

Connection cache maximum 1025
On demand computing 74
One-phase commit 666
Online banking 43
Online shopping 43, 45
Online trading 43, 47
onMessage method 653, 655, 694, 702, 705, 718,
721, 765
Open System Testing Architecture See OpenSTA
OpenLoad 965
OpenSTA 897, 948
Operations ratio 979
Optimistic concurrency control 384, 922
Optimistic methods 997
Optimization level 1027
Optimizelt 981
Option A caching 345, 383, 992–993
Option B caching 345, 383, 992–993
Option C caching 346, 383, 992–993
Oracle 676, 689

Read committed 994
Oracle 9i IAS - Relational Cache 505
ORB 342, 777–778, 977, 987–988, 1022

Plug-in 342, 370
Failover 371
Normal operation 354

Service 987
Thread pool size 986, 1025

org.apache.struts.action.ActionServlet.class 538
OS TCP/IP keep-alive time-out 376
Out of Memory exception 1005
Over-utilizing objects 1005, 1009

1068 WebSphere Application Server V6 Scalability and Performance Handbook

P
Package statistics 858
Page Detailer 525, 839–840, 886

Connection Attempt Failed 887
Connection Setup Time 887
Considerations 890
Data capture 887
Delivery Time 888
Details view 893
Detect broken links 890
Detect server timeouts 890
Host Name Resolution 887
Legend 892
Measure Web application performance 886
Monitoring HTTP and HTTPS requests 886
Page Time 887
Performance measurement

Browser cache 890
Network delays 890
Packet loss 890

Server Response Time 888
Socks Connection Time 888
SSL Connection Setup Time 888

Paging 484
Paging activity 974
partitionID 281, 297
Pass by reference 915, 927, 1022
Pass by value 370, 915
Passivation 346
Peak

Concurrent users 940
Load 969
Request rate 940
Usage hours 940

PercentMaxed 987–988
PercentUsed 668, 983
PerfMBean 773
Performance 6, 100, 502

Access intent read 995
Application design 941
Average concurrent users 940
Average request rate 940
Breaking point 941
Caching of data 937
Caching of EJB references 914
Connection pool 935
Data counters 779
EJB home 914
Garbage collection 1002

Hardware capacity 976
Hits per day 940
Hits per hour 940
Hits per minute 940
Hits per month 940
Inefficient settings 813
Load 812
Load testing 942
Load testing tools 941, 945

ApacheBench 945
Advantages 946
Limitations 945
Options 947

Mercury LoadRunner 945
OpenSTA 948

Architecture 950
Collectors 954
Commander 950
Create test 954
Define test 953
Execute test 955
Features 948
Name Server 950
Prerequisites 949
Randomization of requests 953
Record a script 951
Repository 950
Repository host 950
Script Modeler 951
Specify runtime parameters 954
Task group 953
View test results 955

Rational Performance Tester 945
Segue SilkPerformer 945

Measuring 840
Minimize memory usage 931
Monitoring 793
Monitoring - tuning - testing 971
Monitoring tools 771
Overhead 933
Peak concurrent users 940
Peak request rate 940
Peak usage hours 940
Poor coding practices 941
Profiling 840
Project cycle 840
Recommendations 813
Reduce EJB overhead 914
Regular usage hours 940

 Index 1069

Requirements 63
SDO 923
Site abandonment rate 940
Stress testing tools 942

Evaluation 942
Functions 942

Strings 936
Testing 62, 940, 969

Data set 63
Network 64
Phases 64

Application testing 64–65
Development testing 64

Results 63
Test environment 63

Testing tools 964
Grinder 965
JMeter 964
LoadRunner 965
OpenLoad 965
Segue SilkPerformer 965
TestMaker 964
TestNetwork 964
WebLOAD 965
WebStone 965

Think time 943
Trade 6 391, 436
Traffic patterns 941
Tuning 939

Top ten monitoring list 965
Tuning parameter hotlist 975
Tuning values 939
Vertical scaling 933
Web site performance improvement 890

Performance Advisor in Tivoli Performance Viewer
See TPV Advisor
Performance Advisors 813, 965, 971

Runtime Performance Advisor 813
TPV Advisor 813

Performance analysis 969
Load test

Measure steady-state 973
Ramp-down time 973
Ramp-up time 973

Production level workload 970
Repeatable tests 970
Saturation point 970
Stress test tool 970
Terminology 969

Load 969
Peak load 969
Requests/second 969
Response time 969
Throughput 969

Performance bottleneck 841
Performance data

Connection pooling 777
Counters 774
Enterprise beans 777
J2C connectors 777
Module 774
Node 774
Server 774
Submodule 774

Performance data classification
Boundary statistic 773
Bounded range statistic 774
Count statistic 773
Range statistic 773
Time statistic 774

Performance Data Framework 772
Performance data hierarchy 774
Performance Management 61
Performance monitoring 790

Develop monitoring application 804
Under load conditions 770

Performance monitoring and management tools
803
Performance Monitoring Infrastructure See PMI
Performance Monitoring Service 693, 765
Performance of a Web page

Key factors 890
Performance problems 770

Application design 770
Application view 770
Back-end system 770
End-user view 770
External view 770
Hardware 770
Monitoring tools 770
Network 770
Product bugs 770
Response time 770

Performance Servlet 771
Performance Trace Data Visualizer 981
Performance tuning 62

Access log 1019
AIX 1013

1070 WebSphere Application Server V6 Scalability and Performance Handbook

AIX file descriptors 1013
AIX ulimit 1013
AIX with DB2 1013
DB2 1026
DB2 Buffpage 1027
DB2 configuration advisor 1026
DB2 log files 1013
DB2 logging 1026
DB2 MaxAgents 1026
DB2 MaxAppls 1026
DB2 MinCommit 1028
DB2 on Linux 1026
DB2 query optimization level 1027
DB2 reorgchk 1028
Disabling security 1020
Disk speed 976
Dynamic cache service 1020
Full duplex 977
Java memory 1002
Life cycle 941
Logging 1019
Microsoft IIS 1019
Network 977
Number of requests 978
Ongoing process 941
Operating System 1012
ORB 1022
OS 1012
Parameter hotlist 975
Pass by reference 1022
Process

Testing - Evaluating - Tuning 941
Processing time 978
Processor speed 977
Security 1020
SSL 1021
SSL hardware accelerator 1022
Sun ONE Web Server 1019
System memory 977
Top-ten monitoring list

Average response Time 967
CPU utilization 967
Datasource connection pool size 967
Disk and network I/O 967
EJB container thread pool 967
Garbage collection statistics 967
JVM memory 967
Live number of HTTP Sessions 967
Number of requests per second 967

Paging activity 968
Web container tread pool 967
Web server threads 967

Web server 1015
Web server reload interval 1015
Windows 1014
Windows MaxUserPort 1014
Windows TcpTimedWaitDelay 1014
XML parser selection 1025

Persistence
Database 78

Persistent service
High availability 491

Persistent session management 294
Database session persistence 411
Memory-to-memory session replication 411

Persistent sessions 26
Pervasive computing 906
Pessimistic methods 997
Phantom reads 994
PID 849
Planning for scalability 43
Planning requirements 40

Capacity 40
Functional 40
Non-functional 40

Plug-in
See ORB

Plug-in
See Web server plug-in
Configuration

ClusterAddress 268
Configuration file

Custom 78
Generation 258
Settings 255

Installation location 262
Refresh interval 263
Workload management 17

Workload management
Plug-in 310

Plug-in file
Propagation 262

plugin-cfg.xml 81, 252, 258, 432, 569
Propagation 262
Propagation to Web server 244

PMI 693, 770–771, 786, 790, 805–806, 813, 965
API 771
Counters 772

 Index 1071

AllocateCount 695
Available Message Count 694
CloseCount 694
CreateCount 694
MessageBackoutCount 694
MessageCount 694
ServerSessionPoolUsage 694
Total Messages Consumed 694
Total Messages Produced 694
WaitTime 694

Data 776
Garbage collection 786

Enterprise bean Performance Module 694
Instrumentation 770, 805
Instrumentation levels 781
JCA Connection Pools Performance Module
694
MBeans 773
Metrics 773
Monitoring level 776
Performance modules 798
Predefined statistic set

All 780
Basic 780
Custom 780
Extended 780
None 780

Sequential counter update 782
Service 773, 782, 791, 972

Enabling using Administrative Console 782
Enabling using wsadmin 785
List objects 785

SIB Service Performance Module 693
Point-to-point messaging 639, 655, 672–673, 705,
730–731, 738, 747, 752
Pool Size 983
Port 234

Unique port number 235
Positive weights 269
Precompilation 985
Prefer local 358, 366, 405

Advantage 366
prep 1027
Prepared statement cache 813, 985

Size 985
Presentation layer 898, 906, 916
PrimaryServers tag 271, 276
Process affinity 357–358, 360, 365, 368, 370
Process ID 849

Process interactions 869
Processing

Up-front 1002
Processing bottlenecks 978
Production environment 231
Production system tuning 66
Profile 396

Custom 396
Deployment Manager 396

Profile creation
Custom 400
Deployment Manager 397

Profile Creation Wizard 397
Profiler 839–840

Agent 845
Analyzing the execution of an application 868
Application process 845
Call path 881
Class Instance Statistics 859
Client 847
Code coverage 842
Collect Object References 865
Configuration settings 855
Data collection 854
Deployment host 846
Development host 846
Execution Flow view 867
Execution time analysis 842
Filters 876
Instance Statistics 862
Memory analysis 841
Memory Leak Analysis 865
Method Details view 881
Method Invocation view 867
Method Statistics 861
Object and Class Interaction (Sequence Dia-
gram) 868
Object References Graph 864

Object Details view 866
Output 854
Package statistics 858
Performance analysis views 880
Performance Call Graph view 880
Probekit 843

BCI engine 843
Process Interaction View 871
Profiling Monitor view

Class interactions 870
Host interactions 870

1072 WebSphere Application Server V6 Scalability and Performance Handbook

Object interactions 870
Process interactions 870
Thread interactions 870

Profiling set
Execution History 876

Sequence Diagrams 884
Test client 845
Testing methodology 856
Thread analysis 842
Thread Interactions View 872
Using 857
Views 857

Profiler agent 786
Profiling

Add application sources 877
Filters 852
Instances of classes 862
Limits 853
Method calls 867
Methods 861
Program execution 868
Project 852
Set 852
Start Monitoring 879
Test scenario 879
Tools 839–840

Profiling and Logging perspective 847, 849, 857,
875
Profiling Monitor view 857
Profiling tools 898, 933
Project

Life cycle 897
Project cycle 840
Proof-of-concept 61
Propagate plug-in file 262
Properties file 352
Provider

JDBC 984
Provider URL 347, 351
pthread_mutex 614
Publish/subscribe messaging 44, 472, 647, 655,
672–673, 715, 728, 730–731, 734, 739, 747, 752
Push frequency 550

Q
QCF 622, 704

QueueConnection 704
Queue 980, 983

Connection factory 702
Destination 654, 702, 704

Settings 713
Local 738
Manager 652, 699, 701–702

Local 734
Receiving 738
Remote 734
Sending 738

QueueConnection 634, 704, 707
QueueSession 634, 704
Queuing before WebSphere 979
Queuing network 977, 979
Quorum 476

R
RAID array 977
Ramp-down 946
Ramp-up 946
Random 267, 271
Range statistic 773, 780
Ratio calculation 978
Rational Application Developer 515, 586, 839–840,
868, 925

Application profiling 840
Performance measuring 840
Performance profiling 840
Profiling 841

Code coverage 842
Data collection engine 844
Execution time analysis 842
Memory analysis 841
Memory Leak analysis 842
Probekit 843
Thread analysis 842

Profiling architecture 844
Profiling project 852

Rational Performance Tester 159, 856, 897, 945,
956–957

Create Performance Test 959
Rational Purify 933
Rational Robot 832
Rational TestManager 957
Read committed 994–995

Oracle 994
read only method 995
Read timeout 989
Read uncommitted 994–995

 Index 1073

Read/write ratio 1020
Read-ahead 999
readObject() 910
read-only method 995
RECOVERY.RETRY.INTERVAL 726
Redbooks Web site 1047

Contact us xxv
RedHat 614
RedHat Advanced Server 2.1 1014
RedHat Enterprise Linux WS 957
RedHat Linux Advanced Server 2.1 614
reduce memory usage 993
Reference

Static 933
reference LookupTime 780
Reflection 902, 936
Refresh interval

Web server plug-in 263
regedit 154
Regular usage hours 940
Relational database 920
Reload enabled 991, 1001
Reload interval 991, 1001
reorgchk 1028
Repeatable read 994–995

DB2 994
Repetitive test

Memory leak 1006
Module level 1006
System level 1006

Replication domain 295, 383, 405, 412, 548
Request decomposition 832
Request filtering 1016
Request Metrics 770–771, 805–806, 808

ARM agent 807
Enabling using Administrative Console 806
Filtering mechanism 805
Filters 812

EJB method name 806
JMS 806
Source IP 806
URI 806
Web Services 806

Level
Debug 807
Hops 807
None 806
Performance_debug 807

Log 807

Trace format 808
Trace record format 809

Correlators 809
Request/response model 909
Required 915, 999–1000
Requirements

Non-functional 63
Requires New 915, 999–1000
Resilience 489
Resource allocation 1002
Resource Analyzer 790
Resource constraint problems 805
Resource leaks 975
Resource lock 721
Resource references 651, 700
Response filtering 1016
Response time 6, 43, 777
RetryInterval 256, 274, 337, 1016
Reuse

Business logic 919
RFC

2616 505
3143 505

RMI 986
RMI over IIOP 773
RMI/IIOP 908, 914, 987
RMM 474
Rollback 671, 728
Round robin

Server weights 267
Turn off 267
With weighting 267

Route tag 255
Routing table 359

Windows 149, 153
runmqsc 747
runstats 1028
Runtime delays 1002
Runtime Performance Advisor 813, 968

Advice Configuration 816
Advice configuration 819
Configuration 815
Output 819
Using 817

S
Sample topology 86, 388
SAN 476, 488–490

1074 WebSphere Application Server V6 Scalability and Performance Handbook

Saturation point 970–971, 980
Maximum concurrency point 982

Scalability 4–5, 21, 74, 100
Horizontal and vertical combined 22
Horizontal scaling 22
Vertical scaling 21

Scalability planning 43
Scaling

Vertical 933
Scaling techniques 42, 51

Aggregating user data 54
Appliance server 53
Batch requests 54
Caching 55
Creating a cluster of machines 52
Managing connections 55
Segmenting workload 53
Using a faster machine 52

Scaling-out 59
Scaling-up 59
Scope 709, 716

Application 709
Cell 709
Cluster 709
Node 709
Server 709

SDO 638, 906, 912, 919–920
Abstraction layer 920
Advantages 923
Architecture 920

Components
Data graph 921
Data mediator 921
Data object 921

Data mediators 920
Disadvantages 923
Performance 923

Security 4, 10
Cluster member 23
SSL communication 11

Security cache timeout 11, 1021
Security requirements 45
Segue SilkPerformer 945, 965
SELECT 995
Selector 637, 639
Separator 281
Serializable 993–994, 996–997

Dirty reads 994
Nonrepeatable reads 994

Phantom reads 994
Serialization 370
Serializing 910, 914
Server

Performance data 774
Server affinity 30

EJB 30
Entity bean 30
HTTP session 30
Stateful session beans 30

Server certificate 244
Server cluster 14, 228

Workload management 20
Server failure 466
Server selection policy 358, 365, 368
Server tag 255
Server template 404
Server weights 18, 267, 269, 359

maxWeight 270
ServerCluster tag 255
ServerLimit 1018
Server-sided XSLT processing 906
Service Data Objects See SDO
Service Integration Bus 643, 645

Clustering support 656
service() method 900, 1020
Service-oriented architecture 912
Servlet 2.3 specification 280–282
Servlet cache instance 510
Servlet clustering 17
Servlet response time 792
Servlet session manager 778
Servlet workload management 17
Servlet/JSP result cache 541, 609
Servlet/JSP result caching 529–530, 585

Configuration 531
Demonstration 533

Servlets 883
ServletToDestination 650–651, 700
Session

Affinity 271, 281, 937
Identifier 281
Object 900

Session beans 913
EJB

Session bean 345
Passivation 912

Session cache 813
Session clustering 26

 Index 1075

Session configuration
Basic 287

Level 287
Distributed 289
General Properties 287

Session facade 913, 917
Session ID 281
Session identifier

Clone ID 294, 296
cookies 282
SSL ID 282, 284
URL rewriting 283

Session management 4, 24–25, 279
Behavior 312
Create database 291
Database persistence 78
DRS 26
EJB

 28
Memory-to-memory replication 26, 78, 294
Persistent sessions 26, 78, 294
Replication domain 295
Session clustering 26
Writing frequency 300

Session persistence 78
Database 909
Database persistence 280
Memory-to-memory replication 280

Session pool
Maximum sessions 632

Session state 10
Session time-out 285
SESSIONMANAGEMENTAFFINI 284
SessionSampleURLRewrite 1034
setDeliveryMode() 712
setEntityContext() method 915
setupCmdLine 677, 749
Shared resources 933
SIB service Performance Module 693
Siebel 922
Siebel API 922
Sikatra JProbe 933
Simultaneous message processing 718
Single point of failure See SPOF
Single threaded 933
Single-thread process 1016
SingleThreadModel 900
Singleton object 932
Singleton service 466, 476, 479

Messaging engine 468
Transaction Manager 468

SIT 65
Site abandonment rate 940
Site Selector 110
Sizing 58, 63
SMIT 132
smit 1014
smitty 1014
SMP 478
SNMP 955
SNMP traps 837
snoop servlet 233, 309
SOA 912
SOAP 392, 437, 773
SOAP/HTTP 908
SOAP/HTTPS 908
Socket states 974
Software

Requirements 388
Source code profiling 830
Spawned threads 937
Spawning 937
Speedera 504
SPOF 7, 59, 85, 358, 466, 646, 734

Database 295
SQL 985

Statement 925, 995
Dynamic 1027
Static 1027

SSA 488
SSL 479, 560

Accelerator hardware 11
Bulk encryption/decryption 1021
Cipher suite 1022
Connections 1021
Handshake 1021
Handshaking 11
Hardware accelerator 1022
ID 282, 284, 315
Performance 1021
Session identifier 282
Session time-out 285

Stack traces 937
StartServers 1018
Stateful 25
Stateful session beans 28, 344, 909, 911

Failover 344, 377
Best practices 383

1076 WebSphere Application Server V6 Scalability and Performance Handbook

Configuration 378
Application level 379
EJB container level 378
EJB module level 381

Home objects
Clustering of 344

Instance variables 911
Replication 32
Server affinity 30
Size 912

Stateless 25, 909
Stateless session beans 28, 344, 914, 917

Failover 377
Statement Cache Size 986
Static content 502
Static field 933
Static reference 933
Static SQL statements 1027
Static variable 932
stats_time 1028
stdout 934
Steady memory utilization 1009
Sticky time 111
Stored procedures 926, 936
Stream 266
String concatenation 936
Strings 936

Manipulation operation 936
Struts 510, 899, 901, 908, 923

Action handlers 908
Framework 510
JSP UI tag library 901

struts-config.xml 538
Subject Matter Expert 831
Submodule

Performance data 774
Subscription

Durable 734
Non-durable 674, 731, 734

Sun Java System Web Server 13
Sun ONE Web Server 13, 1019
Supports 915, 999–1000
Surrogate-Capabilities 568
SUSE Linux Enterprise Server 957
SUSE Linux Enterprise Server 8 SP2A 1014
SVT 65
Swapping 1011
Symptom database See Log Analyzer
sync() 300

Synchronization 933
java.util.Hashtable 934
java.util.Vector 934
Method 934
Object 934
Overhead 934

Synchronization points 1006
Synthetic transaction 805
Synthetic Transaction Investigator 832
System Integration Test 65
System level metrics 778
System resource management 830
System test

Memory leak 1006
System Verification Test 65
System.arraycopy() 937
System.gc() 1002
System.out 771
System.out.println() 934
SystemOut.log 471, 482, 764, 809, 813
Systems management framework 830

T
Target destination 652, 701
TCF 622

Client ID 752
TCP sockets 1026
TCP/IP keep-alive 376
TCP/IP ports 402
Test applications

BeenThere 426
Trade 6 438

Test environment 63–64
TestMaker 964
TestNetwork 964
Think time 943
Thread pool 55, 778, 792, 983, 987–988

Web container 988, 991
Thread starts 786
Thread waits 777, 787
ThreadLimit 1018
Threads 627, 777–778, 787, 984, 986, 988, 990

Idle 1018
Maximum number 1018
Spawned 937
Web server 990

Threads of work 703
ThreadsPerChild 1018

 Index 1077

Threshold 931
Throughput 6, 969
Throughput curve 980–981
Tiles 511, 901

Framework 511
Time statistic 774, 780
TimesTen 505
Time-to-live 505, 616
Tivoli 63
Tivoli Data Warehouse 833
Tivoli Intelligent Orchestrator 833
Tivoli Monitoring for Transaction Performance
(TMTP) 831
Tivoli Performance Viewer 668, 693, 718, 724, 765,
770–771, 775, 782, 790–793, 814, 946, 965, 972,
982–983, 985, 987–988, 1005, 1007

Change scale of a counter 802
Clear Buffer 802
Collection Status 793
Configuration

Log settings 795
User settings 794

Refresh Rate 795
Views 795

Configure settings 794
Counters 800

Resetting 802
Engine 791
Functionality 793
Interface 791
Modifying charts 802
Monitoring level 798
Performance Advisor 794
Performance modules 798
Record a log file 800
Record in log files 800
Refresh data 799
Replay a log file 801
Replay log file 801
Summary Reports 794
Summary reports 796

Connection pool summary 797
EJB method summary 797
EJB summary 796
Servlet summary 796
Thread pool summary 797

View Performance Modules 794
Viewing JVMPI output 789

Tivoli System Automation 465, 468, 488

Tivoli Web Health Console 833
TMTP 831
Topic destination settings 713
Topologies

Horizontal scaling 82
Vertical scaling 82
Web server separated 81

Topology 71
Topology selection 94

Criteria 94
Requirements 94

toString() 932
Total memory usage 1008
TPV Advisor 813, 821, 968

Output 824
tr0 141
tr1 141
Trace 828

Web server plug-in 308
TraceFormat 828
Trade 6 436, 644, 672, 698, 730, 840, 961

Configuration script 749
Home servlet 533
Installation 676

Using Administrative Console 450
Using script 453

Installation script 453
JMS functionality 673, 731
JMS usage example 674, 686
PingServletToMDBQueue 702
Populate database 458
Servlet2MDBQueue 653
TradeBrokerMDB 653, 702, 731
Uninstall 460

Trade3 508, 532, 542
Benchmark

Using command caching 611
Using ESI 611
Using servlet and JSP result caching 611
Without caching 611

Performance
Using servlet and command caching 614
Using servlet, command, and ESI caching
614
Without caching 614

Transaction 28, 370, 383
Boundary 927
Context 927
Flow 805

1078 WebSphere Application Server V6 Scalability and Performance Handbook

Isolation level 995
Read committed 994–995
Read uncommitted 994–995
Repeatable read 994–995
Serializable 993, 996

Rollback 634
Support 712, 714
Type 915

Mandatory 915
NotSupported 915
Required 915
Requires New 915
Supports 915

Transaction affinity 31, 345, 357–359, 365, 368,
370, 383
Transaction logs 485, 489, 1028
Transaction Manager 468, 476, 489, 496, 778

Clustered TM Policy 497
HA solution 489
High availability 485

Failover 494
Hot-failover 489

Using external HA software 496

Configuration 496
Using shared file system 489

Configuration 491
WebSphere V5 487

Transaction server 42
Transaction service 466

Failure 486
Recovery process 487

Transactions per second (tps) ratio 978
Transfer Object pattern 915
Transport

Channels 237
Transport buffer 472
Transport chains 231
Transport protocol 229
Transport tag 255
Transport type 478

Channel Framework 479
Multicast 478
Unicast 478

Transports 234
Channels 989
Setting up 236
Setting up multiple transports 239
Settings 235

try {} catch{} block 937
Tuning 57
Tuning failover 335
Two-phase commit 666, 714
Two-phase commit transaction 485

U
UAT 65
UDDI 392
ulimit 1013
UML See Unified Modelling Language
UML2 Object Interactions sequence diagram 884
Unbounded ORB Service Thread Pool Advice 817
Unified Modelling Language 868
Unit of work 998
UNIVERSAL_JDBC_DRIVER_PATH 448, 683,
689, 750, 762
Unmanaged node 79
unsetEntityContext() 915
UPDATE/UPDATE pair 995
Up-front processing 1002
Uri tag 254
UriGroup tag 254
URL

Encoding 283, 317
Rewriting 283, 317

Example 319
Session identifier

URL rewriting 282
urltest Web module 1035

Usage patterns 66
User Acceptance Test 65
User interface 912
User Interface component See UI component
User to business 46–47
User to data 44
User to online buying 45

V
valueUnBound() 911
Variable

Final 932
Scope 932
Static 932

Vector 1007
-verbosegc 1009
Versant enJin 505
Vertical scaling 21, 82, 933

 Index 1079

view-helper class 902
Virtual host 232, 516, 759

admin_host 232
default_host 232
Servlet request 232
Wildcard settings 233

VirtualHost tag 254
VirtualHostGroup tag 239, 254
vmstat 1008, 1029

W
WASService.exe 400
WCInboundDefault 231, 989
WCInboundDefaultSecure 231
Web application

Execution 847
Web application performance 886
Web application testing 940, 964
Web client 15
Web container 55, 228, 347, 389, 651, 700, 988

Availability 89
Cluster 404
Failover 272
Failure 272, 321
Failure during request 331
Failure with active sessions 322
HTTP transport 239
HTTPS transport 239
Requests 979
Setting up 230
Thread pool 627
Threads 627
Transport 234
Transport chains 231
Workload management 388

Web module
Auto-reload 263

Web performance analysis 969
Web primitive 764
Web server 12, 42, 567

Access log 339
Availability 89, 100
Cluster 100, 102
Configuration

Reload interval 1015
Error log 304, 308
Failover 83
IBM HTTP Server V6 251

Managed node 79, 246
Configuration 247

Management 244
Maximum concurrency thread setting 990
Overloading 100
Performance 100
Process-based 1016
Reload interval 1015
Scalability 100
Single point of failure 83
Thread-based 1016
Threads 57
Unmanaged node 79, 248

Configuration 249
IBM HTTP Server 80

Workload management 17
Web Server Node 78
Web server plug-in 12, 235, 273, 504, 567, 805,
988–989

Caching 508
Config element 263
Configuration file 252

Propagation 252
Configuration file generation 258

Manual 260
Configuration service 258
Failover 275
Failover tuning 335
Log file 305
Log location 305
Logging 304
LogLevel 305

Stats 306
Marking down cluster member 274
Normal operation 309
Primary and backup servers 275
Processing requests 264
Refresh interval 263
refreshInterval attribute 263
Regenerate from Administrative Console 260
Regenerate using GenPluginCfg command 261
Regeneration 431, 453
Retry interval 274
RetryInterval 274
Suppress load balancing 271
Trace 308
Troubleshooting 304
Workload management 17, 264
Workload management policies 267

1080 WebSphere Application Server V6 Scalability and Performance Handbook

Web services 392, 437, 779, 912, 920
SOAP 392
UDDI 392
WSDL 392

Web services gateway 778
Web site classification 44, 50
Web site performance

Caching 891
Downloads of large objects 891
Number of embedded objects 890
SSL 891

Web tier 896
WebContainer Inbound Chain 13, 73, 231
WEB-INF 532
WebLOAD 965
WebSphere

Administrative Console 13
Administrative service 13, 773
Application server 12
Basic configuration 4
Cell configuration 402
Cluster 19, 244, 395

Creation 395
Configuration repository 14
Deployment Manager 7, 12
EJS WLM 23
Embedded HTTP transport 13
InfoCenter 975
JMS 13
Load Balancer 91

Custom advisors 91
Node Agent 12
Plug-in 228

WLM 17
Resource analyzer 335
Runtime Messages 813
Single Server 342
Thread pool 813
Topology 71
Trade 6 436
Variables

DB2UNIVERSAL_JDBC_DRIVER_PATH
448, 683, 689, 750, 762

Web server plug-in 12
WebSphere Application Server

Application development 896, 930
WebSphere Application Server Network Deploy-
ment V6 388
WebSphere Application Server topology 720

WebSphere Application Server V6 342
Performance improvements 31

WebSphere Business Integration Event Broker
697, 732, 734, 736, 740

Configuration 742
Configuration manager 743
Message broker 743
Message Brokers Toolkit 743

WebSphere Command Framework API 541
WebSphere Commerce Suite 505
WebSphere configuration

Dynamic 9
Mixed 9

WebSphere Connection Manager 55
WebSphere CORBA CosNaming 347
WebSphere custom advisor 93
WebSphere Data Objects 924
WebSphere Dynamic cache service See Dynamic
cache service
WebSphere Edge Components See Edge Compo-
nents
WebSphere Edge Server 609
WebSphere Extended Deployment 476, 483
WebSphere external caching 508

Using Caching Proxy 508
Using ESI 508
Using FRCA 508

WebSphere High Availability service 374
WebSphere InfoCenter 975
WebSphere MQ 628, 697, 699, 701, 713, 722, 732,
834

Backout queues 728
Backout threshold 728
Client-side selection 637
Cluster 736–737
Clustering 732

Workload management 732
Components

Queue manager 701
Configuration 736
Connection pooling 630
Correlation ID 638
Create cluster 740
Create queue 741–742
Create queue manager 738, 740
Dead Letter Queue 738
Explorer 738, 740, 764
Failover and workload management 734
Header 638

 Index 1081

Infrastructure 734
Message filtering by content 637
Message ID 638
Provider 697
Publish/subscribe broker 743
Queue

Local 738
Queue manager 637, 699, 702, 712

Local 734
Receiving 738
Sending 738

Remote queue manager 734
Server 699
Server-side selection 638
Workload management 737

WebSphere Partition Facility 476, 483
WebSphere queue size 979–980
WebSphere Runtime Messages 820
WebSphere runtime resources 792
WebSphere sample applications 691
WebSphere Studio Application Developer 515, 586
WebSphere Studio Application Monitor See WSAM
WebSphere transaction service 485
WebStone 965
Weight

Current 270
Maximum 269
Positive 269

Weighted round robin 267–268
Windows Common Internet File System 490
Windows Service 400
WLM See Workload management
Workload characteristics 49–50
Workload distribution policy 255
Workload management 4, 6, 16, 20, 228, 244, 264,
733, 778, 933

Backup servers 228–229
BackupServers tag 276
Browser requests 268
Demonstration 391
HTTPS considerations 244
Policies 267

Random 267
Weighted round robin 267–268

Primary servers 228
PrimaryServers tag 276
Random 271
Selection process 309
Server cluster 20

Servlet 17
Suppress load balancing 271
Web server 17
Web server plug-in 17
Weighted round robin 229

Server weights 269
Workload patterns 44, 674

Business to business 48
Customer self-service 46
Online shopping 45
Online trading 47
Publish/subscribe 44
User to business 46–47
User to data 44
User to online buying 45

wsadmin 440, 676, 709, 771, 782
Create cache instance 512
GenPluginCfg 260–261
list PMIService 785
modify 786
save 786

WSAM 831, 834
Architecture 834

Console application 835
Data collectors 835
Managing server 835

Portal Monitoring 837
WSDL 392, 437
wsOptimisticRead 996
wsPessimisticRead 996
wsPessimisticUpdate 996
wsPessimisticUpdate-Exclusive 996
wsPessimisticUpdate-noCollision 996
wsPessimisticUpdate-WeakestLockAtLoad 996
WYSIWYG 899

X
XA support 712, 714
XA transactions 721
XML 524, 626, 905

Cache policy file 541
Data source 920
Data Transfer Objects 906
Parser 1025

-Xnoclassgc 1012
-XrunpmiJvmpiProfiler 787, 790
XSL standard 905
XSL stylesheets 906

1082 WebSphere Application Server V6 Scalability and Performance Handbook

XSLT 626, 901
Processing

Server-sided 906
Transformation 905

XSLTC 906

Z
z/OS 835
zLinux 835

 Index 1083

1084 WebSphere Application Server V6 Scalability and Performance Handbook

(2.0” spine)
2.0” <

->
 2.498”

1052 <
->

 1314 pages

W
ebSphere Application

Server V6 Scalability and
Perform

ance Handbook

®

SG24-6392-00 ISBN 0738490601

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

WebSphere Application
Server V6
Scalability and Performance
Handbook
WebSphere
Handbook Series

Workload manage
Web server, servlet,
and EJB requests

Learn about
performance
monitoring and
tuning

This IBM Redbook discusses various options for scaling
applications based on IBM WebSphere Application Server Network
Deployment V6. It explores how a basic WebSphere configuration
can be extended to provide more computing power by better
exploiting the power of each machine and by using multiple
machines. It examines a number of techniques:
- Using the IBM WebSphere Edge Components Load Balancer to
distribute load among multiple Web servers
- Using the WebSphere Web server plug-in to distribute the load
from one Web server to multiple application servers in a server
cluster
- Using the WebSphere EJB workload management facility to
distribute load at the EJB level
- Using dynamic caching techniques to improve the performance of
a Web site
- Using the HAManager to meet high availability needs of critical
applications
- Using application development best practices to develop a
scalable application
- Using the performance tuning options available with WebSphere
to adjust the application server configuration to the needs of your
application

This redbook provides step-by-step instructions for implementing
a sample, multiple-machine environment. We use this environment
to illustrate most of the IBM WebSphere Application Server Network
Deployment V6 workload management and scalability features.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	May 2005, First Edition

	Part 1 Getting started
	Chapter 1. Overview and key concepts
	1.1 Objectives
	1.1.1 Scalability
	1.1.2 Workload management
	1.1.3 Availability
	1.1.4 Maintainability
	1.1.5 Session state
	1.1.6 Performance impact of WebSphere Application Server security

	1.2 WebSphere Application Server architecture
	1.2.1 WebSphere Application Server Network Deployment components
	1.2.2 Web clients
	1.2.3 Java clients

	1.3 Workload management
	1.3.1 Web server workload management
	1.3.2 Plug-in workload management
	1.3.3 Workload management using WebSphere clustering
	1.3.4 Enterprise Java Services workload management

	1.4 Managing session state among servers
	1.4.1 HTTP sessions and the session management facility
	1.4.2 EJB sessions or transactions
	1.4.3 Server affinity

	1.5 Performance improvements over previous versions
	1.6 The structure of this redbook

	Chapter 2. Infrastructure planning and design
	2.1 Infrastructure deployment planning
	2.1.1 IBM Design Centers for e-business on demand

	2.2 Design for scalability
	2.2.1 Understanding the application environment
	2.2.2 Categorizing your workload
	2.2.3 Determining the most affected components
	2.2.4 Selecting the scaling techniques to apply
	2.2.5 Applying the technique(s)
	2.2.6 Re-evaluating

	2.3 Sizing
	2.4 Benchmarking
	2.4.1 IBM eServer™ Benchmarking Centers
	2.4.2 IBM Test Center

	2.5 Performance tuning
	2.5.1 Application design problems
	2.5.2 Understand your requirements
	2.5.3 Test environment setup
	2.5.4 Test phases
	2.5.5 Load factors
	2.5.6 Production system tuning
	2.5.7 Conclusions

	Chapter 3. Introduction to topologies
	3.1 J2EE tiers model
	3.2 Topology selection criteria
	3.3 Strategies for scalability
	3.4 Web server topology in a Network Deployment cell
	3.4.1 Web server managed node
	3.4.2 Web server unmanaged node
	3.4.3 IBM HTTP Server (IHS) as unmanaged node (special case)

	3.5 Single machine, single node, Web server separated
	3.6 Vertical scaling topology
	3.7 Horizontal scaling topology
	3.8 Horizontal scaling with IP sprayer topology
	3.9 Topology with redundancy of several components
	3.10 The sample topology
	3.11 Topologies and high availability
	3.11.1 Using WebSphere Load Balancer custom advisor

	3.12 Topology selection summary

	Part 2 Distributing the workload
	Chapter 4. Introduction to WebSphere Edge Components
	4.1 Introduction
	4.1.1 Scalability
	4.1.2 Availability
	4.1.3 Performance

	4.2 IBM WebSphere Edge Components overview
	4.3 Load Balancer overview
	4.3.1 Dispatcher
	4.3.2 Content Based Routing (CBR)
	4.3.3 Site Selector
	4.3.4 Cisco CSS Controller and Nortel Alteon Controller

	4.4 Server affinity in Load Balancer
	4.4.1 Stickyness to source IP address
	4.4.2 Cross port affinity
	4.4.3 Passive cookie affinity
	4.4.4 Active cookie affinity
	4.4.5 URI affinity
	4.4.6 SSL session ID

	4.5 Load Balancer topologies
	4.5.1 Load Balancer on a dedicated server
	4.5.2 Collocated servers
	4.5.3 High availability
	4.5.4 Mutual high availability

	4.6 Dispatcher scripts
	4.7 Load Balancer features comparison
	4.8 Caching Proxy overview
	4.8.1 Forward proxy
	4.8.2 Reverse proxy (IP forwarding)
	4.8.3 Using multiple Caching Proxy servers
	4.8.4 Dynamic caching

	4.9 WebSphere Edge Components V6 new features

	Chapter 5. Using IBM WebSphere Edge Components
	5.1 Load Balancer installation
	5.1.1 Load Balancer installation wizard
	5.1.2 Load Balancer installation using SMIT in AIX
	5.1.3 Post installation tasks

	5.2 Load Balancer configuration: basic scenario
	5.2.1 Configuring the Load Balancer cluster
	5.2.2 Configuring the balanced servers
	5.2.3 Testing the basic scenario

	5.3 Load Balancer: high availability scenario
	5.3.1 Configuring high availability
	5.3.2 Adding reach targets
	5.3.3 Checking the configuration
	5.3.4 Configuring the high availability scripts
	5.3.5 Testing the high availability scenario

	5.4 Load Balancer: NAT scenario
	5.4.1 Testing the NAT scenario

	5.5 Load Balancer: additional configuration options
	5.5.1 Basic Load Balancer scenario with customizable advisor settings
	5.5.2 Using WebSphere Application Server custom advisor
	5.5.3 Starting Dispatcher automatically after a reboot
	5.5.4 Starting and stopping Dispatcher components

	5.6 Caching Proxy installation
	5.6.1 Checking prerequisites
	5.6.2 Caching Proxy installation wizard
	5.6.3 Caching Proxy installation using SMIT in AIX

	5.7 Caching Proxy configuration
	5.7.1 Using the Caching Proxy configuration wizard
	5.7.2 Using the Caching Proxy Web-based administration tool
	5.7.3 Manual configuration
	5.7.4 Creating and defining a cache storage

	5.8 Managing the Caching Proxy process
	5.8.1 Testing the Caching Proxy scenario

	Chapter 6. Plug-in workload management and failover
	6.1 Introduction
	6.2 WebContainer transport chains and virtual hosts
	6.2.1 WebContainer Inbound Chains
	6.2.2 Virtual hosts
	6.2.3 Transport chains: the details

	6.3 Creating clusters and cluster members
	6.4 Web server topologies
	6.4.1 Managed Web servers
	6.4.2 Unmanaged Web servers
	6.4.3 Unmanaged IBM HTTP Server V6.0 server (special case)

	6.5 WebSphere plug-in configuration file
	6.5.1 The plug-in configuration file
	6.5.2 Generation of the plug-in configuration file
	6.5.3 Propagation of the plug-in file
	6.5.4 Bypassing the plug-in

	6.6 WebSphere plug-in workload management
	6.6.1 Processing requests
	6.6.2 Plug-in workload management policies

	6.7 Web container failures and failover
	6.7.1 Primary and backup servers

	6.8 HTTP session management
	6.8.1 Session affinity
	6.8.2 Session identifiers
	6.8.3 Session management and failover inside the plug-in
	6.8.4 Session management configuration
	6.8.5 Database session management configuration
	6.8.6 Memory-to-memory replication configuration
	6.8.7 Understanding DRS (Data Replication Services)
	6.8.8 Session management tuning

	6.9 Troubleshooting the Web server plug-in
	6.9.1 Logging
	6.9.2 Trace

	6.10 WebSphere plug-in behavior
	6.10.1 Normal operation
	6.10.2 Failover operation
	6.10.3 Tuning failover

	Chapter 7. EJB workload management
	7.1 Enabling EJB workload management
	7.2 EJB types and workload management
	7.2.1 Stateless session beans
	7.2.2 Stateful session beans
	7.2.3 Entity beans

	7.3 EJB bootstrapping
	7.3.1 Bootstrapping within WebSphere containers
	7.3.2 Bootstrapping outside of a J2EE container

	7.4 How EJBs participate in workload management
	7.4.1 Initial request
	7.4.2 Subsequent requests
	7.4.3 Cluster run state changes

	7.5 EJB workload management routing policy
	7.5.1 Server weighted round robin
	7.5.2 Prefer local
	7.5.3 Process affinity
	7.5.4 Transaction affinity

	7.6 EJB high availability and failover
	7.6.1 EJB client redundancy and bootstrap failover support
	7.6.2 EJB container redundancy and EJB WLM failover support
	7.6.3 EJB failover behavior

	Part 3 Implementing the solution
	Chapter 8. Implementing the sample topology
	8.1 Overview
	8.2 Software products
	8.2.1 The sample topology
	8.2.2 Applications used in our sample topology

	8.3 Installation summary
	8.4 Installing and configuring WebSphere Edge Components
	8.4.1 Configuring the Caching Proxy
	8.4.2 Configuring the Load Balancer
	8.4.3 Checking the Load Balancer and Caching Proxy configurations

	8.5 Installing WebSphere and configuring clusters
	8.5.1 Introduction
	8.5.2 Deployment Manager installation and profile creation
	8.5.3 Application server nodes installation (federated nodes)
	8.5.4 Verifying the profiles
	8.5.5 Creating the Web container cluster
	8.5.6 Creating the EJB cluster
	8.5.7 Verifying the cluster topology
	8.5.8 Configure distributed session management
	8.5.9 Starting the clusters

	8.6 Installing and configuring IBM HTTP Server 6.0
	8.6.1 IBM HTTP Server 6.0 installation
	8.6.2 WebSphere plug-in installation
	8.6.3 Configuring Web servers in the cell
	8.6.4 Testing Web server configurations

	8.7 Installing and configuring BeenThere
	8.7.1 BeenThere installation summary
	8.7.2 Install BeenThere
	8.7.3 Regenerate Web server plug-in
	8.7.4 Configuring WEBcluster members for BeenThere
	8.7.5 Verifying BeenThere

	8.8 Installing and configuring Trade 6
	8.8.1 Download the Trade 6.0.1 installation package
	8.8.2 Set up and configure tradedb database
	8.8.3 Configure the WebSphere cell
	8.8.4 Install Trade 6 from the WebSphere Administrative Console
	8.8.5 Regenerate Web server plug-in and start servers
	8.8.6 Install Trade 6 using the installation script
	8.8.7 Working with Trade 6
	8.8.8 Verify failover with Trade 6
	8.8.9 Volume testing Trade 6
	8.8.10 Uninstalling Trade 6

	Part 4 High availability and caching
	Chapter 9. WebSphere HAManager
	9.1 Introduction
	9.2 Core group
	9.2.1 Core group coordinator
	9.2.2 Transport buffer
	9.2.3 Distribution and Consistency Services
	9.2.4 Core group policy
	9.2.5 Match criteria
	9.2.6 Transport type

	9.3 High availability group
	9.4 Discovery of core group members
	9.5 Failure Detection
	9.5.1 Active failure detection
	9.5.2 TCP KEEP_ALIVE

	9.6 JMS high availability
	9.7 Transaction Manager high availability
	9.7.1 Transaction Manager HA of previous versions of WebSphere
	9.7.2 Hot-failover of Transaction Manager using shared file system
	9.7.3 Hot-failover of transaction logs using external HA software

	Chapter 10. Dynamic caching
	10.1 Introduction
	10.1.1 WWW caching services
	10.1.2 Fragment caching
	10.1.3 Dynamic caching scenarios

	10.2 What is new in WebSphere V6 dynamic caching
	10.2.1 Dynamic Content Provider interface
	10.2.2 Cache instances
	10.2.3 Caching Struts and Tiles applications
	10.2.4 Cache replication

	10.3 The cachespec.xml configuration file
	10.3.1 cachespec.xml elements
	10.3.2 Dynamic Cache Policy Editor

	10.4 Using WebSphere dynamic cache service
	10.4.1 Installing Dynamic Cache Monitor
	10.4.2 Enabling dynamic cache service

	10.5 WebSphere dynamic caching scenarios
	10.5.1 Servlet/JSP result caching
	10.5.2 Struts and Tiles caching
	10.5.3 Command caching
	10.5.4 Cache replication
	10.5.5 Cache invalidation
	10.5.6 Troubleshooting the dynamic cache service

	10.6 WebSphere external caching scenarios
	10.6.1 WebSphere External Cache configuration
	10.6.2 External caching by Web server plug-in
	10.6.3 External caching on the IBM HTTP Server
	10.6.4 External caching on the Caching Proxy

	10.7 Using the Dynamic Cache Policy Editor
	10.7.1 Dynamic Cache Policy Editor installation
	10.7.2 Creating cache policy entries
	10.7.3 Examples: Creating cachespec.xml entries with the Dynamic Cache Policy Editor

	10.8 Conclusion
	10.9 Benchmarking Trade 3
	10.9.1 Dynamic caching
	10.9.2 Edge Side Includes

	10.10 Reference

	Part 5 Messaging
	Chapter 11. Using asynchronous messaging for scalability and performance
	11.1 Introduction
	11.2 Basic use of the JMS API
	11.2.1 The unified programming interface
	11.2.2 Consuming JMS messages

	11.3 Choosing what format to use within JMS messages
	11.4 Managing workload for asynchronous messaging
	11.4.1 Basic workload patterns
	11.4.2 Selectors
	11.4.3 Application defined persistence
	11.4.4 Freeing JMS object resources

	Chapter 12. Using and optimizing the default messaging provider
	12.1 Introduction
	12.2 Introduction to the Service Integration Bus and the default messaging provider
	12.2.1 Bus or Service Integration Bus
	12.2.2 Bus members and messaging engines
	12.2.3 Destinations
	12.2.4 JMS activation specification
	12.2.5 Message reliability
	12.2.6 Data stores

	12.3 Components used in a default messaging provider configuration
	12.3.1 JMS component diagram for sending a message
	12.3.2 Bus and message-driven beans

	12.4 Component relationships
	12.5 Clustering, high availability and workload management
	12.5.1 Cluster bus members for high availability
	12.5.2 Cluster bus members for workload management
	12.5.3 Partitioned queues
	12.5.4 JMS clients connecting into a cluster of messaging engines
	12.5.5 Preferred servers and core group policies

	12.6 Choosing optimal configuration settings
	12.6.1 Important connection factory settings
	12.6.2 Setting up default messaging provider connection pools
	12.6.3 Important JMS activation specification settings

	12.7 Failure to process a message
	12.8 Usage scenarios: Trade 6 and the default messaging provider
	12.8.1 What does Trade 6 use the default messaging provider for?
	12.8.2 Example 1: One messaging engine on the bus
	12.8.3 Example 2: One messaging engine per server

	12.9 Workload management example using BeenThere
	12.9.1 Taking advantage of the BeenThere documentation
	12.9.2 Possible topologies to use with BeenThere

	12.10 Monitoring performance with Tivoli Performance Viewer

	Chapter 13. Understanding and optimizing the use of WebSphere MQ
	13.1 Introduction
	13.1.1 JMS component diagram for sending a message
	13.1.2 JMS and message-driven beans

	13.2 MQ JMS component relationships
	13.2.1 Component relationships when using MDBs

	13.3 Choosing optimal configuration settings
	13.3.1 Creation of the MQ provider objects at the correct scope
	13.3.2 Important MQ JMS component settings
	13.3.3 The listener service and listener ports
	13.3.4 Setting up the connection factory pools
	13.3.5 More information

	13.4 JMS Listener port failure behavior
	13.4.1 Failure in the listener port
	13.4.2 Failure to process a message

	13.5 Example JMS topologies and scenarios
	13.5.1 What does Trade 6 use JMS for?
	13.5.2 Clustered Trade 6 with WebSphere MQ and WebSphere Business Integration Event Broker

	13.6 Monitoring performance with Tivoli Performance Viewer
	13.6.1 What do the counters under JCA Connection Pools mean?

	Part 6 Performance monitoring, tuning, and coding practices
	Chapter 14. Server-side performance and analysis tools
	14.1 The dimensions of monitoring
	14.1.1 Overview: Collecting and displaying application server data

	14.2 Performance Monitoring Infrastructure
	14.2.1 Performance data classification
	14.2.2 Performance data hierarchy
	14.2.3 Performance data counters
	14.2.4 PMI predefined statistic sets
	14.2.5 Enabling the PMI service
	14.2.6 Using JVMPI facility for PMI statistics
	14.2.7 Summary

	14.3 Using Tivoli Performance Viewer
	14.3.1 About Tivoli Performance Viewer
	14.3.2 What can Tivoli Performance Viewer do?
	14.3.3 Starting Tivoli Performance Viewer
	14.3.4 Configuring Tivoli Performance Viewer
	14.3.5 Tivoli Performance Viewer summary reports
	14.3.6 Displaying by performance modules
	14.3.7 Getting online help

	14.4 Other performance monitoring and management solutions
	14.5 Developing your own monitoring application
	14.6 Request Metrics
	14.6.1 Enabling and configuring Request Metrics
	14.6.2 Request Metrics trace record format
	14.6.3 Filters

	14.7 Performance Advisors
	14.7.1 Runtime Performance Advisor configuration settings
	14.7.2 Advice configuration settings
	14.7.3 Using the Runtime Performance Advisor
	14.7.4 Runtime Performance Advisor output
	14.7.5 Using TPV Advisor
	14.7.6 TPV Advisor output

	14.8 Dynamic Cache Monitor
	14.9 Monitoring the IBM HTTP Server
	14.10 Log Analyzer
	14.11 Application management
	14.11.1 Tivoli Monitoring for Transaction Performance V5.3 (TMTP)
	14.11.2 WebSphere Studio Application Monitor V3.1 (WSAM)

	14.12 Reference

	Chapter 15. Development-side performance and analysis tools
	15.1 Introduction
	15.2 The Profiler (profiling tools)
	15.2.1 What’s new with profiling
	15.2.2 Profiling architecture
	15.2.3 IBM Rational Agent Controller
	15.2.4 Setting up for Profiling
	15.2.5 Profiling an application
	15.2.6 Profiler views
	15.2.7 Resolving performance bottlenecks - Execution time analysis

	15.3 IBM Page Detailer
	15.3.1 Overview
	15.3.2 Important considerations
	15.3.3 Key factors
	15.3.4 Tips for using Page Detailer
	15.3.5 Reference

	Chapter 16. Application development: best practices for application design, performance and scalability
	16.1 Introduction
	16.2 Presentation layer
	16.2.1 JavaServer Pages
	16.2.2 Struts
	16.2.3 JavaServer Faces
	16.2.4 XML/XSLT processing
	16.2.5 Caching for the presentation layer

	16.3 Control
	16.3.1 Maintaining state: stateful session beans versus HTTP session

	16.4 Business logic layer
	16.4.1 How to implement the interface to the business logic
	16.4.2 Facade
	16.4.3 EJB Command Framework
	16.4.4 Caching business logic

	16.5 Data access layer
	16.5.1 Service Data Objects
	16.5.2 Entity beans
	16.5.3 Java Data Objects
	16.5.4 EJB session bean: direct access to back end

	16.6 Key factors for application performance
	16.6.1 Memory
	16.6.2 Synchronization
	16.6.3 Logging
	16.6.4 Database access

	16.7 General coding issues
	16.8 Reference

	Chapter 17. Performance tuning
	17.1 Testing the performance of an application
	17.1.1 Introduction to application performance testing

	17.2 Selecting testing tools
	17.3 Tools of the trade
	17.3.1 ApacheBench
	17.3.2 OpenSTA
	17.3.3 Rational Performance Tester
	17.3.4 Other testing tools

	17.4 Performance monitoring guidelines
	17.4.1 Top ten monitoring hotlist
	17.4.2 Performance analysis

	17.5 Performance tuning guidelines
	17.5.1 Tuning parameter hotlist
	17.5.2 Parameters to avoid failures
	17.5.3 Hardware and capacity settings
	17.5.4 Adjusting WebSphere Application Server system queues
	17.5.5 Application assembly performance checklist
	17.5.6 Java tuning
	17.5.7 Operating system tuning
	17.5.8 The Web server
	17.5.9 Dynamic Cache Service
	17.5.10 Security settings
	17.5.11 Tuning Secure Sockets Layer
	17.5.12 Object Request Broker (ORB)
	17.5.13 XML parser selection
	17.5.14 DB2 tuning
	17.5.15 Additional reference materials

	Part 7 Appendixes
	Appendix A. Sample URL rewrite servlet
	Setting up the servlet
	Source code
	Steps to install SessionSampleURLRewrite servlet
	Installing the urltest Web module

	Appendix B. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

