

ibm.com/redbooks

Patterns: Implementing
an SOA Using an
Enterprise Service Busus

Martin Keen
Amit Acharya
Susan Bishop
Alan Hopkins
Sven Milinski

Chris Nott
Rick Robinson

Jonathan Adams
Paul Verschueren

Design and implement an ESB using
current WebSphere technologies

Service-oriented architecture
and Web services

Learn by example with
practical scenarios

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Patterns: Implementing an SOA Using an Enterprise
Service Bus

July 2004

International Technical Support Organization

SG24-6346-00

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (July 2004)

This edition applies to WebSphere Application Server V5.1, WebSphere Business Integration
Server Foundation V5.1, and WebSphere Business Integration Message Broker V5.0.

Note: Before using this information and the product it supports, read the information in
“Notices” on page ix.

Contents

Notices . ix
Trademarks . x

Preface . xi
The team that wrote this redbook. xi
Become a published author . xv
Comments welcome. xvi

Part 1. Patterns for e-business and SOA . 1

Chapter 1. Introduction to Patterns for e-business 3
1.1 The Patterns for e-business layered asset model . 4
1.2 How to use the Patterns for e-business . 6

1.2.1 Select a pattern or Custom design . 6
1.2.2 Selecting Application patterns. 11
1.2.3 Review Runtime patterns . 12
1.2.4 Review Product mappings . 14
1.2.5 Review guidelines and related links . 15

1.3 Summary . 16

Chapter 2. e-business on demand and service-oriented architecture . . . 17
2.1 Overview of e-business on demand . 18

2.1.1 Key business attributes . 19
2.1.2 Key technology attributes . 19
2.1.3 Key requirements for integration flexibility . 24

2.2 e-business on demand and the service-oriented architecture. 25
2.3 The on demand Operating Environment and the ESB 26

2.3.1 The on demand Operating Environment . 27

Chapter 3. Web services and service-oriented architecture 33
3.1 Drivers for Web services and SOA . 34
3.2 Introduction to service-oriented architecture . 37

3.2.1 Coupling and decoupling of aspects of service interactions 39
3.2.2 Designing connectionless services . 45
3.2.3 Service granularity and choreography . 47
3.2.4 Implications of service-oriented architecture. 52

3.3 Web services architecture . 53
3.3.1 Web services interoperability . 56
3.3.2 Advanced and future Web services standards 58

© Copyright IBM Corp. 2004. All rights reserved. iii

3.4 Emerging infrastructure components for Web services and SOA 63
3.5 Web services and SOA together . 65
3.6 Conclusion. 67
3.7 Further information . 68

Part 2. Enterprise Service Bus. 71

Chapter 4. Enterprise Service Bus and SOA patterns 73
4.1 Introducing the Enterprise Service Bus . 74
4.2 The role of the ESB in SOA. 76
4.3 A capability model for the Enterprise Service Bus 82

4.3.1 The minimum capability ESB implementation. 84
4.3.2 The Enterprise Service Bus is an infrastructure component 87
4.3.3 Security issues affecting the Enterprise Service Bus 89

4.4 SOA profile of the Application Integration patterns 90
4.4.1 Summary of Process Integration patterns. 91
4.4.2 The Enterprise Service Bus pattern . 96
4.4.3 Other SOA patterns. 106
4.4.4 Modeling additional SOA components . 106
4.4.5 Extended Enterprise SOA patterns . 108

4.5 Common ESB scenarios . 112
4.5.1 Basic integration of two systems. 113
4.5.2 Enable wider connectivity to one or more applications 115
4.5.3 Enable wider connectivity to legacy systems 117
4.5.4 Enable wider connectivity to an EAI infrastructure 118
4.5.5 Implement controlled integration between organizations 120
4.5.6 Automate processes by choreographing services 122
4.5.7 Implement a robust SOA with Web services support 123
4.5.8 Architecture decision questions . 125

4.6 Summary and next steps in the design process 131

Chapter 5. ESB and SOA component implementations 133
5.1 Runtime product descriptions . 134

5.1.1 IBM WebSphere Application Server V5.1 . 134
5.1.2 IBM WebSphere MQ V5.3. 134
5.1.3 IBM WebSphere Application Server Network Deployment V5.1. . . 135
5.1.4 IBM WebSphere Business Integration Message Broker V5.0. 136
5.1.5 IBM WebSphere Business Integration Server Foundation V5.1 . . . 137
5.1.6 IBM WebSphere InterChange Server V4.2 138
5.1.7 IBM WebSphere MQ Workflow V3.5. 139
5.1.8 IBM WebSphere Business Integration Connect V4.2.1 139

5.2 SOA component product mappings . 140
5.2.1 Service Directory product mappings . 141
5.2.2 Business Service Choreography product mappings 142

iv Patterns: Implementing an SOA Using an Enterprise Service Bus

5.2.3 SOA product mappings . 142
5.3 Product capabilities for the Enterprise Service Bus 144

5.3.1 Assessment of ESB capabilities by product 145
5.3.2 WebSphere Business Integration Message Broker 145
5.3.3 WebSphere Application Server Network Deployment. 147
5.3.4 WebSphere Business Integration Connect 149
5.3.5 Options for customized implementation . 149

Chapter 6. Endpoint enablement roadmap . 153
6.1 Web services. 154

6.1.1 HTTP service bus . 154
6.1.2 JMS service bus . 156

6.2 WebSphere Business Integration Adapters . 159
6.2.1 Application interfaces . 159
6.2.2 Available adapters. 160
6.2.3 Capabilities of the adapters and the ESB . 161
6.2.4 Intelligent use of the adapters with an ESB 162
6.2.5 Further Information . 163

6.3 J2EE Connector Architecture . 164
6.4 Alternatives . 165

Part 3. Scenario implementation . 167

Chapter 7. The business scenario used in this book. 169
7.1 WS-I sample application . 170
7.2 Scenarios . 170

7.2.1 Stage I: internal supply chain management on demand 170
7.2.2 Stage II: addition of warehouses. 172
7.2.3 Stage III: divested inter-enterprise manufacturers 173

Chapter 8. Enterprise Service Bus: Router variation. 175
8.1 Business scenario . 176
8.2 Design guidelines . 177

8.2.1 Design overview . 177
8.2.2 Router variation. 181

8.3 Development guidelines . 188
8.3.1 Using JAX-RPC handlers in an ESB. 188
8.3.2 Developing a handler in WebSphere Studio 193
8.3.3 Preparing a handler for deployment to Web Services Gateway . . . 193

8.4 Runtime guidelines . 193
8.4.1 Installing the Web Services Gateway . 194
8.4.2 Configuring the Web Services Gateway . 194
8.4.3 Deploying Web Service Gateway channels 196
8.4.4 Deploying Web Service Gateway services 197

 Contents v

8.4.5 Extracting the endpoint address . 203
8.4.6 Configuring the service requesters to point to the Gateway 205
8.4.7 JAX-RPC handler runtime guidelines . 208
8.4.8 Runtime guidelines for selective SOAP parsing 211
8.4.9 Runtime guidelines for proxy operation mode. 212
8.4.10 Other runtime issues . 213

8.5 Further information . 216

Chapter 9. Enterprise Service Bus: Broker variation. 219
9.1 Business scenario . 220
9.2 Design guidelines . 221

9.2.1 Design overview . 221
9.2.2 Broker design . 225

9.3 Development guidelines . 236
9.3.1 Prerequisite configuration . 237
9.3.2 Broker variation implementation . 238

9.4 Runtime guidelines . 259
9.4.1 Incorporation of Broker . 260
9.4.2 Distributed WebSphere MQ configuration. 263
9.4.3 Externalized data definition . 264
9.4.4 Message flow deployment. 265
9.4.5 Troubleshooting message flows . 266
9.4.6 Quality of service capabilities . 267

9.5 Further information . 268

Chapter 10. Business Service Choreography . 271
10.1 Business scenario . 272
10.2 Design guidelines . 273

10.2.1 Design overview . 273
10.3 Development guidelines . 281

10.3.1 Long-running process . 282
10.3.2 Short-running process. 290

10.4 Runtime guidelines . 294
10.4.1 Deploying a process . 294

10.5 Further information . 297

Chapter 11. Exposed ESB Gateway composite pattern. 299
11.1 Business scenario . 300
11.2 Design guidelines . 300

11.2.1 Design overview . 301
11.2.2 ESB Gateway design . 307

11.3 Runtime guidelines . 314
11.3.1 Transfer of the Manufacturer service implementation. 314
11.3.2 Configuration of a single gateway . 315

vi Patterns: Implementing an SOA Using an Enterprise Service Bus

11.3.3 Configuring a second gateway . 319
11.3.4 Securing the communications channel . 323
11.3.5 Further runtime alternatives and considerations 328

11.4 Further information . 329

Part 4. Appendixes . 331

Appendix A. Additional material . 333
Locating the Web material . 333
Using the Web material . 333

System requirements for downloading the Web material 334
How to use the Web material . 334

Appendix B. Configuring the scenario lab environment 335
Setting up the base environment . 336

Creating an HTTP server to look up WSDL . 336
Creating a WebSphere Studio workspace . 337
Exporting enterprise applications from WebSphere Studio. 338
Configuring WebSphere MQ . 338
Configuring WebSphere Application Server . 339
Testing the business scenario. 340

Setting up the ESB Router variation scenario . 343
Setting up the ESB Broker variation scenario . 343

Installing WebSphere Business Integration Message Broker 344
Setting up WebSphere MQ . 344
Setting up DB2 . 346
Setting up ODBC data sources . 346
Setting up the Message Brokers Toolkit . 347

Setting up the Business Service Choreography scenario 347

Abbreviations and acronyms . 349

Related publications . 351
IBM Redbooks . 351
Other publications . 351
Online resources . 354
How to get IBM Redbooks . 355
Help from IBM . 355

Index . 357

 Contents vii

viii Patterns: Implementing an SOA Using an Enterprise Service Bus

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2004. All rights reserved. ix

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
Cloudscape™
DB2®
DB2 Universal Database™
developerWorks®
Domino®

e-business on demand™
IBM®
IMS™
iSeries™
Lotus®
Lotus Notes®
pSeries®

Redbooks(logo) ™
Redbooks™
SupportPac™
Tivoli®
WebSphere®
z/OS®

Other company, product, and service names may be trademarks or service marks of others.

x Patterns: Implementing an SOA Using an Enterprise Service Bus

Preface

Many enterprises (large and small) are focused on increasing their business
flexibility while simplifying their IT infrastructure in order to better meet their
business objectives. The IBM® on demand Operating Environment defines a set
of integration and infrastructure management capabilities that enterprises can
use to achieve these challenging objectives. The on demand Operating
Environment features of particular relevance to this book are the use of a
service-oriented architecture (SOA) together with an Enterprise Service Bus.
These are both necessary to achieve the goals of increased business flexibility
and a simplified IT infrastructure. Many of these enterprises are determined to
use proven architectures, designs, and product mappings in order to speed their
implementation and minimize their risk.

The Patterns for e-business are a group of proven, reusable assets that can be
used to increase the speed of developing and deploying e-business applications.
This IBM Redbook focuses on how the SOA profile of the Process Integration
patterns can be used to start implementing SOA using an Enterprise Service
Bus.

Part 1 presents a description of SOA and how it applies to Web services and
e-business on demand™. Emerging SOA trends are also discussed.

Part 2 provides a detailed description of the Enterprise Service Bus (ESB)
concept and how this fits with the Patterns for e-business. Common usage
scenarios, a minimum capability ESB, and SOA patterns are described. IBM
product mappings are then applied to the SOA patterns.

Part 3 guides you through the process of implementing an Enterprise Service
Bus using current IBM technologies. Router and Broker interactions within an
Enterprise Service Bus are covered, along with off-the-bus service choreography
and the Exposed ESB Gateway to enable interaction in an inter-enterprise
environment.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

© Copyright IBM Corp. 2004. All rights reserved. xi

Figure 1 Back row (left to right): Martin, Chris, Alan, Amit, Sven; front row: Susan and Rick

Martin Keen is an Advisory IT Specialist at the International Technical Support
Organization, Raleigh Center. He writes extensively about WebSphere®
products and Patterns for e-business. He also teaches IBM classes worldwide
about WebSphere and business process management. Before joining the ITSO,
Martin worked in the EMEA WebSphere Lab Services team in Hursley, UK.
Martin holds a bachelor’s degree in Computer Studies from Southampton
Institute of Higher Education.

Amit Acharya is a Software Engineer with WebSphere Quality Center of
Competence Organization, in Research Triangle Park, North Carolina. He has
two years of experience in Enterprise Application Development (EAD) using
J2EE, Web services, and WebSphere Studio. His areas of expertise include
simulating customer environments for the latest releases of WebSphere
Application Server, and scalability and performance of WebSphere Application
Server. He has also actively contributed to the IBM patent portfolio. Before joining
the WebSphere Application Server group, Amit worked with the WebSphere
Edge Server performance group in IBM Pittsburgh Lab. He holds a Masters of

xii Patterns: Implementing an SOA Using an Enterprise Service Bus

Science degree in Electrical and Computer Engineering from Purdue University
in Indiana.

Susan Bishop is an accredited Senior Technical IT Specialist with IBM Software
Group in Brisbane, Australia. She has eight years of experience in software
development, consulting, technical sales, and integration architecture. Her areas
of expertise include WebSphere technologies, EDI, J2EE, and customer
solutions analysis. She received a BSc degree in Computer Information Systems
from DeVry Institute of Technology in Calgary, Canada.

Alan Hopkins is a Senior IT Specialist with IBM Software Group Services, based
at the Hursley Laboratory in the UK. He has more than 15 years of experience in
technologies related to IBM middleware and e-business. Currently, he is focused
on the application of these technologies to the integration of business processes.
Alan has a Ph.D in computational statistical mechanics from the University of
Bradford in the UK.

Sven Milinski is an IT Specialist with IBM Global Services, Germany, and has
four years of experience in the Enterprise Application Development (EAD) and
Enterprise Application Integration (EAI) fields using J2EE and messaging
technologies. He architected and developed several Web services–based
integration solutions and contributed to Web services–related publications
external to IBM. Sven holds a Bachelor's Degree in Information Technology from
the Berufsakademie (University of Cooperative Education) in Mannheim,
Germany.

Chris Nott is a Consulting IT Specialist with IBM Software Group in the UK. He
has 14 years of IT experience in software development, technical pre-sales
consulting, and solution architecture. His areas of expertise include Enterprise
Application Integration (EAI) using application connectivity and process
integration approaches, and he has a strong background in relational systems
design and database technology. He holds a Bachelor of Science degree in
Mathematics from the University of Durham and is registered with the
Engineering Council in the UK as a Chartered Engineer.

Rick Robinson is an Advisory IT Architect in IBM Software Group Services,
based at the Hursley Laboratory in the UK. He has seven years of experience in
IT, and his roles have included solution architecture, design, and development.
Rick has a PhD in the Physics of Superconducting devices from the University of
Birmingham in the UK. His areas of expertise include distributed systems design,
the WebSphere platform, and service-oriented architecture, and he has written
and spoken extensively on these subjects.

Jonathan Adams is an IBM Distinguished Engineer. He has been an IT
Architect with IBM for 36 years. For the past 10 years, he has focused on helping
IBM deliver reuseable end-to-end middleware solutions to its customers. Since

 Preface xiii

September 1998, he has worked in the Software Group Technical Strategy
organization leading the definition and development of the Patterns for
e-business. These patterns have been built by teaming across all major IBM
divisions. The resultant patterns are being used by IBMers, customers and
Business Partners to help reduce risk and increase speed to market on many
e-business solution developments.

Paul Verschueren is a Consulting e-business Architect in the IBM Architecture
Services group based at Hursley Laboratories, U.K. He has more than 20 years
of experience in large-scale architecture and design problems, with a particular
focus on business intelligence, business process management, identity
management, and business Process Integration. He has most recently been
leading work in IBM to revise and extend the application of IBM Patterns for
e-business to the domain of Process Integration.

Thanks to the following people for their contributions to this project:

Eugene Kharlamov
WebSphere Studio Development, Toronto

Helen Wylie
Consulting IT Architect, Hursley

Graham Winn
Hursley Web Services Service Team

Adrian Spender, Adrian Warman
Web Services Development, UK

Marc-Thomas Schmidt
Distinguished Engineer, Enterprise Service Bus & Meta-information
Management, Somers, NY

Shankar S Kalyana
Executive Architect, Atlanta

Stuart Jones
Worldwide Technical Sales, Chicago

Olaf Zimmermann
Senior IT Architect Enterprise Integration, Heidelberg, Germany

Frank Mueller
IBM Global Services, Germany

Beth Hutchison
Senior Technical Staff Member and Web Services Architect, Hursley

xiv Patterns: Implementing an SOA Using an Enterprise Service Bus

Rachel Reinitz
Web Services Senior Consultant and Senior Certified IT Specialist, California

Mark Colan
Evangelist for SOA & Web Services, Cambridge

Keith Jones
Development Manager & Senior Consulting IT Architect, Colorado

Dave Clarke
WebSphere Business Integration Marketing, Hursley

Kareem Yusuf
Program Director, WebSphere Product Management & Marketing, New York

Sarah Hill
Senior IT Specialist, Software Group, UK

Betsy Thaggard
Editor, ITSO, Austin Center

Finally, thanks to Mark Endrei and the redbook team of Patterns:
Service-Oriented Architecture and Web Services, SG24-6303

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners, and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

 Preface xv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us. We want our Redbooks™ to be as helpful as
possible. Send us your comments about this or other Redbooks in one of the
following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 662
P.O. Box 12195
Research Triangle Park, NC 27709-2195

xvi Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

Part 1 Patterns for
e-business and
SOA

Part one introduces the IBM Patterns for e-business, e-business on demand, and
service-oriented architecture.

Part 1

© Copyright IBM Corp. 2004. All rights reserved. 1

2 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 1. Introduction to Patterns for
e-business

The role of the IT architect is to evaluate business problems and build solutions
to solve them. The architect begins by gathering input on the problem, an outline
of the desired solution, and any special considerations or requirements that must
be factored into that solution. The architect then takes this input and designs the
solution, which can include one or more computer applications that address the
business problems by supplying the necessary business functions.

To improve the process over time, we need to capture and reuse the experience
of the IT architects in such a way that future engagements can be made simpler
and faster. We do this by capturing knowledge gained from each engagement
and using it to build a repository of assets. IT architects can then build future
solutions that are based on these proven assets. This reuse saves time, money,
and effort, and helps ensure delivery of a solid, properly architected solution.

The IBM Patterns for e-business help facilitate this reuse of assets. Their
purpose is to capture and publish e-business artifacts that have been used,
tested, and proven to be successful. The information that is captured is assumed
to fit the majority, or 80/20, situation. The IBM Patterns for e-business are further
augmented with guidelines and related links for their better use.

1

© Copyright IBM Corp. 2004. All rights reserved. 3

1.1 The Patterns for e-business layered asset model
The Patterns for e-business approach enables architects to implement
successful e-business solutions through the reuse of components and solution
elements from proven successful experiences. The Patterns approach is based
on a set of layered assets that can be exploited by any existing development
methodology. These layered assets are structured in a way that each level of
detail builds on the last. These assets include:

� Business patterns that identify the interaction between users, businesses,
and data.

� Integration patterns that tie multiple Business patterns together when a
solution cannot be provided based on a single Business pattern.

� Composite patterns that represent commonly occurring combinations of
Business patterns and Integration patterns.

� Application patterns that provide a conceptual layout describing how the
application components and data within a Business pattern or Integration
pattern interact.

� Runtime patterns that define the logical middleware structure that supports an
Application pattern. Runtime patterns depict the major middleware nodes,
their roles, and the interfaces between these nodes.

� Product mappings that identify proven and tested software implementations
for each Runtime pattern.

� Best-practice guidelines for design, development, deployment, and
management of e-business applications.

Figure 1-1 on page 5 shows these assets and their relationships to each other.

4 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 1-1 The Patterns for e-business layered asset model

Patterns for e-business Web site
The layers of patterns, along with their associated links and guidelines, enable
the architect to start with a problem and a vision for the solution, and then find a
pattern that fits that vision. Then, by drilling down using the patterns process, the
architect can further define the additional functional pieces that the application
will need to succeed. Finally, the application can be built using coding techniques
that are outlined in the associated guidelines.

The Patterns Web site provides an easy way to navigate through the layered
Patterns assets to determine the most appropriate assets for a particular
engagement.

For easy reference, see the Patterns for e-business Web site at:

http://www.ibm.com/developerWorks/patterns/

Best-Practice Guidelines

Application Design
Systems Management
Performance
Application Development
Technology Choices

Customer
requirements

Product
mappings

Any m
ethodology

Runtime
patterns

Application
patterns

Composite
patterns

Business
patterns

Integration
patterns

 Chapter 1. Introduction to Patterns for e-business 5

http://www.ibm.com/developerWorks/patterns/

1.2 How to use the Patterns for e-business
As described in the last section, the Patterns for e-business have a layered
structure in which each layer builds detail on the last. At the highest layer are
Business patterns, which describe the entities that are involved in the e-business
solution.

Composite patterns appear in the hierarchy, as shown above the Business
patterns in Figure 1-1 on page 5. However, Composite patterns are made up of
several individual Business patterns and at least one Integration pattern. In this
section, we discuss how to use the layered structure of Patterns for e-business
assets.

1.2.1 Select a pattern or Custom design

When faced with the challenge of designing a solution for a business problem,
the first step is to get a high-level view of the goals you are trying to achieve. A
proposed business scenario should be described and each element should be
matched to an appropriate IBM Pattern for e-business. You may find, for
example, that the total solution requires multiple Business and Integration
patterns, or that it fits into a Composite pattern or Custom design.

For example, suppose an insurance company wants to reduce the amount of
time and money that is spent on call centers that handle customer inquiries. By
enabling customers to view their policy information and request changes online,
the company will be able to cut back significantly on the resources that are spent
handling this by phone. The objective is to enable policy holders to view their
policy information, which is stored in legacy databases.

The Self-Service business pattern fits this scenario perfectly. It is meant to be
used in situations in which users need direct access to business applications and
data. Let’s take a look at the available Business patterns.

6 Patterns: Implementing an SOA Using an Enterprise Service Bus

Business patterns
A Business pattern describes the relationship between the users, the business
organizations or applications, and the data to be accessed.

There are four primary Business patterns, as shown in Figure 1-2.

Figure 1-2 The four primary Business patterns

It would be very convenient if all problems fit nicely into these four slots, but
reality says that things will often be more complicated. The patterns assume that
most problems, when broken down into their basic components, will fit more than
one of these patterns. When a problem requires multiple Business patterns, the
Patterns for e-business provide additional patterns in the form of Integration
patterns.

Business patterns Description Examples

Self-Service
(User-to-Business)

Applications in which
users interact with a
business via the Internet
or intranet

Simple Web site
applications

Information Aggregation
(User-to-Data)

Applications in which
users can extract useful
information from large
volumes of data, text,
images, etc.

Business intelligence,
knowledge management,
Web crawlers

Collaboration
(User-to-User)

Applications in which the
Internet supports
collaborative work
between users

E-mail, community, chat,
video conferencing, etc.

Extended Enterprise
(Business-to-Business)

Applications that link two
or more business
processes across
separate enterprises

EDI, supply chain
management, etc.

 Chapter 1. Introduction to Patterns for e-business 7

Integration patterns
Integration patterns enable us to tie together multiple Business patterns to solve
a business problem. Figure 1-3 outlines the Integration patterns.

Figure 1-3 Integration patterns

These Business and Integration patterns can be combined to implement
installation-specific business solutions. We call this a Custom design.

Custom design
We can illustrate the use of a Custom design to address a business problem
through an iconic representation, as shown in Figure 1-4.

Figure 1-4 Patterns representing a Custom design

Integration patterns Description Examples

Access Integration
Integration of several
services through a
common entry point

Portals

Application Integration
Integration of multiple
applications and data
sources without the user
directly invoking them

Message brokers,
workflow managers

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

8 Patterns: Implementing an SOA Using an Enterprise Service Bus

When illustrating a Custom design, we can show any unused Business or
Integration patterns as lighter blocks than those that are used. For example,
Figure 1-5 shows a Custom design that does not have a Collaboration business
pattern or an Extended Enterprise business pattern for a business problem.

Figure 1-5 Custom design with Self-Service, Information Aggregation, Access
Integration, and Application Integration

A Custom design may also be a Composite pattern if it recurs many times across
domains with similar business problems. For example, the iconic view of a
Custom design in Figure 1-5 can also describe a Sell-Side Hub composite
pattern.

Ac
ce

ss
 In

te
gr

at
io

n Self-Service

Collaboration

Information Aggregation

Extended Enterprise Ap
pl

ic
at

io
n

In
te

gr
at

io
n

 Chapter 1. Introduction to Patterns for e-business 9

Composite patterns
Several common uses of Business and Integration patterns have been identified
and formalized into Composite patterns. Figure 1-6 shows the identified
Composite patterns.

Figure 1-6 Composite patterns

The makeup of these patterns is variable in that there will be basic patterns
present for each type, but the Composite can be extended easily to meet
additional criteria. For more information about Composite patterns, refer to
Patterns for e-business: A Strategy for Reuse by Jonathan Adams et al.

Composite patterns Description Examples

Electronic Commerce User-to-Online-Buying www.macys.com
www.amazon.com

Portal

Typically designed to aggregate
multiple information sources and
applications to provide uniform,
seamless, and personalized
access for its users.

Enterprise Intranet portal
providing self-service functions
such as payroll, benefits, and
travel expenses.

Collaboration providers who
provide services such as e-mail
or instant messaging.

Account Access
Provide customers with
around-the-clock account access
to their account information.

Online brokerage trading apps.
Telephone company account
manager functions.

Bank, credit card and insurance
company online apps.

Trading Exchange
Enables buyers and sellers to
trade goods and services on a
public site.

Buyer's side - interaction
between buyer's procurement
system and commerce
functions of e-Marketplace.

Seller's side - interaction
between the procurement
functions of the e-Marketplace
and its suppliers.

Sell-Side Hub
(Supplier)

The seller owns the e-Marketplace
and uses it as a vehicle to sell
goods and services on the Web.

www.carmax.com (car purchase)

Buy-Side Hub
(Purchaser)

The buyer of the goods owns the
e-Marketplace and uses it as a
vehicle to leverage the buying or
procurement budget in soliciting
the best deals for goods and
services from prospective sellers
across the Web.

www.wre.org
(WorldWide Retail Exchange)

10 Patterns: Implementing an SOA Using an Enterprise Service Bus

1.2.2 Selecting Application patterns
After the Business pattern is identified, the next step is to define the high-level
logical components that make up the solution and how these components
interact. This is known as the Application pattern. A Business pattern usually has
multiple possible Application patterns. An Application pattern may have logical
components that describe a presentation tier for interacting with users, an
application tier, and a back-end application tier.

Application patterns define the application by its most basic conceptual
components to identify the goal of the application. In our example, the application
falls into the Self-Service business pattern and the goal is to build a simple
application that enables users to access back-end information. The
Self-Service::Directly Integrated Single Channel application pattern shown in
Figure 1-7 fulfills this requirement.

Figure 1-7 Self-Service::Directly Integrated Single Channel

The Application pattern that is shown consists of a presentation tier that handles
the request from and response to the user. The application tier represents the
component that handles access to the back-end applications and data. The
multiple application boxes on the right represent the back-end applications that
contain the business data. The type of communication is specified as
synchronous (one request, one response; then next request, next response) or
asynchronous (multiple requests and responses intermixed).

Suppose that the situation is a little more complicated than that. For example, if
the automobile policies and the homeowner policies are kept in two separate and
dissimilar databases, the user request would actually need data from multiple,

Presentation synchronous Web
Application

synch/
asynch Back-End

Application 1

Application node
containing new or
modified components

Application node containing
existing components with
no need for modification
or that cannot be changed

Read/Write data

Back-End
Application 2

 Chapter 1. Introduction to Patterns for e-business 11

disparate back-end systems. In this case there is a need to divide the request
into multiple requests (decompose the request) to be sent to the two different
back-end databases, then to gather the information that is sent back from the
requests and put it into the form of a response (recompose). In this case the
Self-Service::Decomposition application pattern shown in Figure 1-8 would be
more appropriate.

Figure 1-8 Self-Service::Decomposition

This Application pattern extends the idea of the application tier that accesses the
back-end data by adding decomposition and recomposition capabilities.

1.2.3 Review Runtime patterns
The Application pattern can be refined further with more explicit functions to be
performed. Each function is associated with a runtime node. In reality these
functions, or nodes, can exist on separate physical machines or can co-exist on
the same machine. In the Runtime pattern, this is not relevant. The focus is on
the logical nodes that are required and their placement in the overall network
structure.

As an example, assume that our customer has determined that their solution fits
into the Self-Service business pattern and that the Directly Integrated Single
Channel pattern is the most descriptive of the situation. The next step is to
determine the Runtime pattern that is most appropriate for their situation.

They know that users on the Internet will access their business data and will
therefore require a measure of security. Security can be implemented at various
layers of the application, but the first line of defense is almost always one or more

Presentation synchronous Decomp/
Recomp

synch/
asynch

Application node
containing new
or modified
components

Application node
containing existing
components with no need
for modification or that
cannot be changed

Read/
 Write data

Transient data
- Work in progress
- Cached committed data
- Staged data (data replication
flow)

Back-End
Application 1

Back-End
Application 2

12 Patterns: Implementing an SOA Using an Enterprise Service Bus

firewalls that define who and what can cross the physical network boundaries
into their company network.

They also need to determine the functional nodes that are required to implement
the application and security measures. The Runtime pattern shown in Figure 1-9
is one of their options.

Figure 1-9 Directly Integrated Single Channel application pattern::Runtime pattern

By overlaying the Application pattern on the Runtime pattern, you can see the
roles that each functional node fulfills in the application. The presentation and
application tiers will be implemented with a Web application server, which
combines the functions of an HTTP server and an application server. It handles
both static and dynamic Web pages.

Application security is handled by the Web application server through the use of
a common central directory and security services node.

A characteristic that makes this Runtime pattern different from others is the
placement of the Web application server between the two firewalls. The Runtime

Internal Network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l
Existing

Applications
and Data

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Application

Server

Domain Name
Server

Directory and
Security
Services

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

 Chapter 1. Introduction to Patterns for e-business 13

pattern shown in Figure 1-10 is a variation on this. It splits the Web application
server into two functional nodes by separating the HTTP server function from the
application server. The HTTP server (Web server redirector) serves static Web
pages and redirects other requests to the application server. It moves the
application server function behind the second firewall, adding further security.

Figure 1-10 Directly Integrated Single Channel application pattern::Runtime pattern:
Variation 1

These are just two examples of the possible Runtime patterns that are available.
Each Application pattern will have one or more Runtime patterns defined. These
can be modified to suit the customer’s needs. For example, the customer may
want to add a load-balancing function and multiple application servers.

1.2.4 Review Product mappings
The last step in defining the network structure for the application is to correlate
real products with one or more runtime nodes. The Patterns Web site shows
each Runtime pattern with products that have been tested in that capacity. The

Internal network
Demilitarized Zone

(DMZ)Outside World

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

lI
N
T
E
R
N
E
T

Public Key
Infrastructure

User

Web
Server

Redirector

Domain Name
Server

Presentation Application Application

Directly Integrated Single Channel application

Application

Existing
Applications

and Data

Application
Server

Directory and
Security
Services

Existing
Applications

and Data

14 Patterns: Implementing an SOA Using an Enterprise Service Bus

Product mappings are oriented toward a particular platform, though more likely
the customer has a variety of platforms involved in the network. In this case, it is
simply a matter of mix and match.

For example, the runtime variation in Figure 1-10 on page 14 could be
implemented using the product set depicted in Figure 1-11.

Figure 1-11 Directly Integrated Single Channel application pattern: Windows 2000 Product mapping

1.2.5 Review guidelines and related links
The Application patterns, Runtime patterns, and Product mappings are intended
to guide you in defining the application requirements and the network layout. The
actual application development has not been addressed yet. The Patterns Web
site provides guidelines for each Application pattern, including techniques for
developing, implementing, and managing the application, based on the following
guidelines:

� Design guidelines instruct you on tips and techniques for designing the
applications.

� Development guidelines take you through the process of building the
application, from the requirements phase all the way through the testing and
rollout phases.

Internal networkDemilitarized zone

O
ut

si
de

 w
or

ld

Pr
ot

oc
ol

 F
ire

w
al

l

D
om

ai
n

Fi
re

w
al

l

Web Server
Redirector

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0 HTTP Plug-in
IBM HTTP Server 1.3.26

Directory and
Security
Services

LDAP

 Application
 Server

Windows 2000 + SP3
IBM SecureWay Directory V3.2.1
IBM HTTP Server 1.3.19.1
IBM GSKit 5.0.3
IBM DB2 UDB EE V7.2 + FP5

Database

Existing
Applications

and Data

Windows 2000 + SP3
IBM DB2 UDB ESE V8.1

JMS Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM WebSphere MQ 5.3
Message-driven bean application

Web Services Option:
Windows 2000 + SP3
IBM WebSphere Application
Server V5.0
IBM HTTP Server 1.3.26
IBM DB2 UDB ESE 8.1
Web service EJB application

JCA Option:
z/OS Release 1.3
IBM CICS Transaction Gateway
V5.0
IBM CICS Transaction Server
V2.2
CICS C-application

Windows 2000 + SP3
IBM WebSphere Application
Server V5.0

JMS Option add:
IBM WebSphere MQ 5.3

 Chapter 1. Introduction to Patterns for e-business 15

� System management guidelines address the day-to-day operational concerns,
including security, backup and recovery, application management, and so
forth.

� Performance guidelines give information about improving the application and
system performance.

1.3 Summary
The IBM Patterns for e-business are a collected set of proven architectures. This
repository of assets can be used by companies to facilitate the development of
Web-based applications. They help an organization understand and analyze
complex business problems and break them down into smaller, more
manageable functions that can then be implemented.

16 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 2. e-business on demand and
service-oriented architecture

Increasing consideration is being given to the strategic initiative of e-business on
demand. This chapter provides an overview of the on demand concepts and
discusses the correlation with the service-oriented architecture (SOA). Attention
is given to how these concepts are achieved using Web services.

The chapter includes:

� A brief summary of the business drivers and technical capabilities of
e-business on demand

� The correlation between e-business on demand and SOA

� IBM on demand Operating Environment and the Enterprise Service Bus

2

© Copyright IBM Corp. 2004. All rights reserved. 17

2.1 Overview of e-business on demand
The IBM vision of e-business on demand is to enable customers to succeed in an
environment with an unprecedented rate of change.

Businesses want to focus on core competencies, reduce spending, and reuse
existing information in new ways without a major overhaul of their existing
infrastructure. There exists a constant pressure to juggle the often conflicting
demands to provide flexibility, cost savings, and efficiency. The following sections
outline the key business and technical attributes that provide the basis for the on
demand message.

Figure 2-1 identifies the key components of e-business on demand, which are
discussed in detail in the sections that follow.

Figure 2-1 e-business on demand overview diagram

IntegrationIntegration

AutomationAutomation

VirtualizationVirtualization

Security Availability Provisioning Optimization

Systems and Policy Management

Integration of People - Business Process - Information
Anywhere, Anytime, from Any Device

Pools of Virtual Resources

Collaboration Transactional
Processes

Information
Management

Application Development, Deployment & Maintenance

Servers Storage Distributed
Systems

Business
Objectives

and
Policies

Product
Lifecycle

Management

Customer
Relationship
Management

Enterprise
Resource
Planning

Value
Chain

Management

Legacy &
Strategic

Applications

Customer &
Partner

Applications Bu
si

ne
ss

Pr
oc

es
se

s

O
pe

n
St

an
da

rd
s-

Ba
se

d

18 Patterns: Implementing an SOA Using an Enterprise Service Bus

2.1.1 Key business attributes
From a business perspective, e-business on demand is about providing a way for
companies to realign their business and technology environment to match the
request for reusable business functionality.

Business drivers can be summarized with the following key elements:

� Focused

Enabling the enterprise to focus on their core competencies; what makes
them successful and what makes them unique. Strategic alliances are formed
to provide needs external to these core competencies.

� Responsive

The ability to respond with agility to customer demands, market opportunities,
or external threats. These decisions are guided through insight-driven
decision management features.

� Variable

To achieve operational and business process flexibility. To adapt variable cost
structures (fixed to variable) to provide a high level of operational efficiency.

� Resilient

Capability and robustness to respond to changes in both business and
technical environments. Manage changes and threats with predictable
outcomes.

Companies can achieve these business imperatives by exploiting current
technological developments while drawing on experiences that have been
learned from past architectural constructs.

2.1.2 Key technology attributes
The business drivers of e-business on demand must be supported by a
well-defined technical infrastructure.

These key technological attributes deliver the flexibility, responsiveness, and
efficiency that on demand organizations require:

� Integration
� Virtualization
� Automation
� Open standards

Figure 2-2 on page 20 provides a high-level overview of the range of each
e-business on demand attribute.

 Chapter 2. e-business on demand and service-oriented architecture 19

Figure 2-2 Four key technology attributes of e-business on demand

In the sections that follow, these four key elements are described as they apply to
e-business on demand. They are then expanded to demonstrate the correlation
of e-business on demand and the SOA.

Integration
The fundamental component of on demand infrastructure is integration:

In 2002, Sam Palmisano, Chief Executive Officer of IBM, defined on demand in
the following way: “An on demand business is an enterprise whose business
processes, integrated end-to-end with key partners, suppliers, and customers,
can rapidly respond to any customer demand, market opportunity, or external
threat.”

Integration can occur at various levels:

� People

To function at an on demand operating level, human-to-human and
human-to-process interaction requires integration throughout the various
levels not limited to end users. Business partners, customers, and employees
are all important resources to the value chain provided by on demand. For
example, integration can occur for developers through open tooling

on demand

Proprietary InteroperableOpen Standards

VirtualizationPhysical

AutomationManual

IntegrationSilos

Grid

Automated

Full Integration

20 Patterns: Implementing an SOA Using an Enterprise Service Bus

paradigms based on open standards, for business partners by the creation of
horizontal processes and employees through collaboration.

� Process

Recurring elements (security, service level, monitoring, and so on) can be
shared across applications to provide horizontal services to decouple these
reusable application components. The use of SOA and Web services to
implement these processes, including the emerging Business Process
Execution Language for Web Services (BPEL4WS), will facilitate more rapid
changes in these processes, enabling the business to respond with agility to
changing market conditions.

� Applications

Organizations have invested enormous resources and capital into custom-
designed and off-the shelf applications. The application integration goal is to
leverage, rather than replace, these assets by providing ways of connecting,
routing, and transforming the data that is stored or shared among them.
Applications sit on disparate systems in an enterprise or across many
enterprises.

� Systems

Systems manage, process, and deliver data to the people and applications in
the solution environment. An on demand Operating Environment requires the
system to be transparent to the elements that interact with it.

� Data

Data is the primary business element of a system. The data is the source of
the information and can more easily be shared through the adoption of
standards specifications.

Virtualization
Various areas of technology in our lives exploit virtualization concepts, including
cell phones, PDAs, wireless connectivity, printers, and so forth. Aspects of
virtualization draw on widely adopted architectural concepts, including object
oriented design and development, Web services, and XML.

There is a spectrum of virtualization that begins at independent stand-alone
systems on one side (a large mainframe system, perhaps) and grid computing on
the other. In the middle are varying degrees of client-server implementations.

A grid paradigm, an absolute example of on-demand virtualization, is a collection
of distributed computing resources that are available over a local or wide area
network and that appear to an end user or application as one large virtual
computing system.

 Chapter 2. e-business on demand and service-oriented architecture 21

The Internet, the most widely recognized example of virtualization, provides a
virtual network that supplies access to content and applications.

The vision is to create virtual dynamic organizations through secure, coordinated
resource sharing among individuals, institutions, and resources. Grid computing
is an approach to distributed computing that spans locations, organizations,
machine architectures, and software boundaries.

Figure 2-1 on page 18 depicts virtualization as a set of virtualized resource pools
based on:

� Servers

This could include partioning, hypervisors, VM OS, emulators, I/O
virtualization, virtual Ethernet, and so forth.

� Storage

Here, the focus is on the addition of intelligence and value in the network.

� Distributed systems

This includes Web services, scheduling, provisioning, workload management,
billing/metering, and transaction management.

The goal of grid computing, and thus on demand virtualization, is to provide
unlimited power, collaboration, and information access to everyone connected to
a grid.

Automation
Autonomic computing addresses an organization’s need to limit the amount of
time and cost that occurs as a result of:

� Overprovisioning

� High cost of new applications and highly skilled labor

� Amount of time spent on disparate technology platforms even within one
organization

� IT budget spent on maintenance, not problem resolution

� Complexities in operating heterogeneous systems

Note: Open Grid Services Architecture (OGSA) is an important starting point
for grid enablement. For more information about OGSA, refer to the article at:

http://www-106.ibm.com/developerworks/grid/library/gr-visual/

22 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www-106.ibm.com/developerworks/grid/library/gr-visual/

So how can organizations begin to address these common concerns using an on
demand Operating Environment? This is where autonomic computing comes in.
Autonomic computing can be summarized using the four key components:

� Self-healing

A system’s ability to keep functioning. In order to achieve this, the system
must detect, prevent, and recover from disruptions with minimal or no human
intervention. This requirement is directly proportional to increased business
dependence on technical infrastructures. The need for self-healing is directly
proportional to the organization’s availability requirement.

� Self-configuring

The ability to adapt dynamically to changing environments, add and remove
components to and from the systems, and change the environment to adapt
to variable workloads.

� Self-optimization

Configuration that maximizes operational efficiency including resource tuning
and workload management. This alleviates the constant drain on resources to
perform routine tasks. The goal is to tune systems to respond to the workload
changes. Systems have to monitor and self-tune continuously, adapting and
learning from the environment around them.

� Self-protecting

Security is one of the inhibitors of the adoption of SOAs as organizations
prepare themselves to share data externally. Self-protection requires the
system to provide safe alternatives to secure information and data.
Self-protecting automation works by anticipating, detecting, identifying, and
protecting systems from external or internal threats.

Open standards
While described as an attribute on its own, open standards affects the on
demand Operating Environment across the previously defined levels including
automation, integration, and virtualization. Each of these elements leverage open
standards specifications in order to achieve their objectives. Open standards are
the key element of flexibility and interoperability across heterogeneous systems.

The global adoption of a standard specification enables the disparate systems to
interact with each other. The underlying platforms may be completely different
and independent but open standards enable processes to be built despite (or
because of) these differences.

Open standards provide the e-business on demand Operating Environment with
a standard, open mechanism to invoke system services.

 Chapter 2. e-business on demand and service-oriented architecture 23

Shortly, we will discuss the open standards that are involved in providing the level
of interoperability that is required to create an SOA.

2.1.3 Key requirements for integration flexibility
In order to enable the business integration that is required by an on demand
business while maintaining the maximum flexibility of implementation, we need to
meet the requirements shown in Figure 2-3.

Figure 2-3 On demand key requirements for integration flexibility

Each requirement poses several questions:

� Coupling business processes

– How do we model the business?

– How do we refactor the business into processes, components, and
services that can interact dynamically and change in an agile manner?

� Decoupling technology

– How do we support business behavior with systems that can interact
without joining them too tightly?

– How can we change and evolve the systems and interactions on the
timescales required by the business?

� Enabling infrastructure

– How do we build the technical infrastructure to support, execute, manage,
and measure these interactions, services, components, and processes?

Coupling business processes

Decoupling technology Enabling infrastructure

24 Patterns: Implementing an SOA Using an Enterprise Service Bus

2.2 e-business on demand and the service-oriented
architecture

SOA, as described in 3.2, “Introduction to service-oriented architecture” on
page 37, is an approach to defining integration architectures based on the
concept of a service. The business and infrastructure functions that are required
to make an effective on demand environment are provided as services. These
services are the building blocks of the system.

Services can be invoked independently by either external or internal service
requesters to process simple functions, or can work together by choreographic
implementations to quickly devise new functionality to existing processes.

SOAs may use Web services as a set of flexible and interoperable standards for
distributed systems. There is a strong complimentary nature between SOA and
Web services as described in Chapter 3, “Web services and service-oriented
architecture” on page 33.

SOA touches on the four key elements of e-business on demand in the following
way:

� Open standards

– SOA provides a standard method of invoking Web services (business logic
and functionality) for disparate organizations to share across network
boundaries.

– Web services use open standards to allow inter-enterprise connectivity
across networks and the Internet:

• Messaging protocols (SOAP).

• Transport protocols (including HTTP, HTTPS, JMS).

• Security can be handled at both the transport level (HTTPS) and/or at a
protocol level (WS-Security).

– WSDL allows Web services to be self-describing for a loosely coupled
architecture.

– Standards bodies, including WS-I, W3C and OASIS exist using
technologists from industry leading software vendors (IBM, BEA, Oracle,
Microsoft® and so forth) to accelerate and guide open standards creation
and adoption.

� Integration

– Interfaces are provided to wrap service endpoints to provide a
system-independent architecture to promote cross-industry
communication.

 Chapter 2. e-business on demand and service-oriented architecture 25

– SOAs can provide dynamic service discovery and binding, which means
that service integration can occur on demand.

� Virtualization

– A key principle of SOA is that services should be invoked by service
requesters that are oblivious to service implementation details, including
location, platform, and if appropriate to the business scenario, even the
identity of the service provider.

– Grid services and the very framework it all rests on is very much like
object-oriented programming.

� Automation

– Grid technologies are applying SOA principles to implementing
infrastructure services that will provide an evolutionary approach to
increased automation.

Further information
For more information about the topics that are covered in this section, visit:

� IBM Web Services

http://www.ibm.com/webservices

� IBM on demand Operating Environment

http://www-3.ibm.com/software/info/openenvironment/

� IBM developerWorks®: SOA and Web services zone

http://www.ibm.com/developerworks/webservices

2.3 The on demand Operating Environment and the ESB
The Enterprise Service Bus (ESB) is to SOA as SOA is to e-business on
demand. In this section, we explain that statement.

In order to create a truly successful e-business on demand, one must embrace
the SOA. which helps businesses wrap functions (services) to provide loosely
coupled accessibility to functions, flows, and applications.

So how does the Enterprise Service Bus address the IBM vision of an on
demand business? This section aims to describe the way that the Enterprise
Service Bus can help businesses create processes that meet the objectives of
the capabilities of an on-demand environment.

26 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/webservices
http://www-3.ibm.com/software/info/openenvironment/
http://www.ibm.com/developerworks/webservices

2.3.1 The on demand Operating Environment
Figure 2-4 shows the on demand Operating Environment based on the SOA.

.

Figure 2-4 On demand Operating Environment architecture

The three core components of the on demand Operating Environment, including
integration services, Enterprise Service Bus, and infrastructure services, work
together to provide the capability to meet defined business objectives.

Business services leverage the application and infrastructure services, which are
mediated by the Enterprise Service Bus, to provide real business processes to
end users including customers, employees, and business partners.

Business service management incorporates the policies and goals of the
organization, such as service levels, metrics, and other measurable business
guidelines.

Enterprise Service Bus
The Enterprise Service Bus is emerging as a service-oriented infrastructure
component that makes large-scale implementation of the SOA principles
manageable in a heterogeneous world.

On demand applications are business services built from services that provide a
set of capabilities that are worth advertising for use by other services. Typically, a
business service relies on many other services in its implementation. Services
interact via the Enterprise Service Bus, which facilitates mediated interactions

Service Level Automation and Orchestration

Integration Services
Information

Management
Services

Common
Services

Business
Function
Services

Business
Process

Choreography
Services

User
Access

Services

Security Message Processing Modeling

Integration Mgmt & Autonomic Service Level Intelligence Communication

Enterprise Service Bus

Utility Business Services

Resource Virtualization

Infrastructure Services

Business
Performance
Management

Business
Service

Business
Service

U
S
E
R

B
U
S
I
N
E
S
S

Business
Services

Quality of ServiceService Interaction

User
Interaction
Services

 Chapter 2. e-business on demand and service-oriented architecture 27

between service endpoints. The Enterprise Service Bus supports event-based
interactions as well as message exchange for service request handling. One
innovation of the Enterprise Service Bus is a common model for messages and
events. All messages can become events if deploying the service binds the
message to a topic in the event space.

For both events and messages, mediations can be used to facilitate interactions
(for example, to find services that provide capabilities that a requestor is asking
for or to take care of interface mismatches between requesters and providers
that are compatible in terms of their capabilities). In this context, we use the term
service in a very general sense, and it might be worth noting that although from
the perspective of the bus all application components can be specified through
WS-* standards (because it requires a normalized representation for efficient
mediated, capability-based matchmaking), this does not imply that they all
communicate with SOAP or WS-* protocol standards.The Enterprise Service Bus
supports a broad spectrum of ways to get on and off the bus, including on ramps
for legacy applications or business connections that enable external partners in
B2B interaction scenarios to participate in the service interaction game.

Although they all look the same from the perspective of the Enterprise Service
Bus, services implement different facets of an overall on demand application,
including:

� Realize interactions with people involved in the underlying business process.

� Provide adapters to existing applications that have to be integrated.

� Choreograph the interaction of several services to achieve a business goal.

� Watch for potential problems in the execution of the process, ready to take
action to fix them if they occur.

� Manage resources that are needed to perform required business functions.

Therefore, in addition to providing the basic infrastructure for service interactions,
the on demand Operating Environment identifies a set of common patterns for
construction of on demand applications and provides specific capabilities to
support realization of distinct service categories that play particular roles in those
patterns. The two distinct service categories are integration and infrastructure
service kinds.

The capabilities that are provided by the Enterprise Service Bus (including
service level, service interface, quality of service, intelligence, communication,
security, message management, modeling, management/automation, and
integration) that facilitate the interactions between the levels in the on demand
Operating Environment are discussed in detail in 4.3, “A capability model for the
Enterprise Service Bus” on page 82.

28 Patterns: Implementing an SOA Using an Enterprise Service Bus

Enterprise Service Bus scenarios are discussed and implemented in Part 3,
“Scenario implementation” on page 167.

Integration services
The programming model for on demand business services is based on
application development using component (service) assembly. The services in
the integration category are used by on demand application builders to create
new business services; they include services that facilitate integration as well as
services that provide business functions to be integrated:

� User access services

Handle adaptation from three orthogonal perspectives:

– Endpoint form factor such as display size, memory, and processor
limitations (ranging from desktop down to pervasive devices)

– Modes of interaction including conventional display/keyboard interactions,
as well as speech-based interactions and combinations (multi-modality)

– Connection types such as peer-to-peer or client/server across a range of
connection reliability including fully disconnected operations

� User interaction services

Handle direct interactions with people involved in the business process; for
example, processing work items that are spawned by choreography or
collaborative process elements.

� Business process choreography services

Support the execution of other services that express their behavior using
process flow or rule technology. Process flows, for example, are used to
describe the interaction of other services (nearly any of the integration kinds,
including other process flow services) to perform the tasks required to realize
the functions offered by the new (combined or aggregated) business service.

� Business function services

Provide the atomic business functions (those that are not composed from
other services) that are required by the overall business service; this includes
adapters to packaged or existing custom applications as well as brand new
application components created to realize a functional need that is not
already covered by existing applications.

� Common services

Implement useful features, or helper functions, that are designed to be used
by many business services. Examples include services implementing
personalization of user access and user interaction services, or for reporting
status and progress of business services.

 Chapter 2. e-business on demand and service-oriented architecture 29

� Information management services

Help to integrate information hosted in a variety of data sources such as
databases or legacy applications, to access (query, update, and search) that
information, to analyze information from those sources in business
intelligence scenarios, or taking care of metadata about information and
services used and provided by the business services living in the on demand
Operating Environment.

Integration services are hosted by application services that provide container
facilities to simplify their participation in interactions with other integration
services and with on demand Operating Environment infrastructure services. On
demand integration service developers focus on realizing the business logic that
they care about, assembling integration services that provide required business
function and declaring expected quality of service.

Programmers and administrators annotate their applications and services with
policy declarations that specify quality of service. The application container (and
the Enterprise Service Bus) automates the interactions with infrastructure
services to achieve the expressed policies. An application container also
provides generic facilities such as taking care of security or transaction
management requirements for the services that it hosts, as well as kind-specific
facilities such as generating events reporting status and progress of business
process choreography services.

Infrastructure services
The services in the infrastructure category provide and manage the infrastructure
into which business services and their constituents are deployed. These include:

� Utility business services

Support functions such as billing, metering, rating, peering, and settlement;
commonly used, for example, when hosting on demand business services or
their components.

� Service level automation and orchestration

Provide services that facilitate translation into reality of quality of service
policy declarations that are associated with business services. This is
achieved by services that implement autonomic managers, which monitor the
execution of services (more precisely, services instrumented to be managed
elements) in the on demand Operating Environment according to the policy
declarations they receive. They then analyze their behavior, and if the
analysis indicates problems, plan a meaningful reaction to that problem and
initiate execution of that plan. This closed feedback loop is called an M-A-P-E
(Monitor, Analyze, Plan, Execute) loop. Several specializations of such
services focus on managing, for example, availability, configuration or
workload for the managed elements, provisioning resources, performing

30 Patterns: Implementing an SOA Using an Enterprise Service Bus

problem management, handling end-to-end security for on demand Operating
Environment services, or managing data placement.

� Resource virtualization services

Provide the instrumentation of server-, storage-, network-, and other
resources, including structured (relational) and unstructured information
content that is held in a variety of data sources, to enable management and
virtualization of those resources under the control of on demand Operating
Environment resource managers. Virtualization services include mapping
requirements of business services and their components to available
resources based on quality of service declarations of the service and
knowledge about the current utilization of available resources.

Besides the fact that they implement very different capabilities that support a
variety of on demand Operating Environment patterns, the main difference
between the two categories of services is which user roles build and use them.
Infrastructure elements are built by middleware providers and ISVs while
integration elements are built by on demand infrastructure and application
builders.

One of the most important insights of the on demand Operating Environment is
that a common pattern supports both application services and infrastructure
services. For example:

� Adapters enable integration of existing infrastructure components into the
Enterprise Service Bus.

� Service choreography is often used for scripting of M-A-P-E execution plans.

� The Enterprise Service Bus provides the infrastructure for exchange of events
between managed elements and autonomic managers.

� End users interact with infrastructure services through the portal user
interaction services.

 Chapter 2. e-business on demand and service-oriented architecture 31

32 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 3. Web services and
service-oriented architecture

This chapter provides an introduction to service-oriented architecture (SOA). It
also introduces Web services as an implementation of SOA. The primary goal is
to be explicit concerning the design principles in order to assist architects and
designers in creating SOAs that are likely to achieve the promoted benefits. In
this chapter, we discuss the following topics:

� Drivers for Web services and SOA

� An overview of SOA

� An overview of Web services architecture

� The combined benefits of Web services and SOA

� Where to find more information

3

© Copyright IBM Corp. 2004. All rights reserved. 33

3.1 Drivers for Web services and SOA
The implementation of SOA using Web services technologies is the current state
of the art in systems integration. Both topics are covered extensively in industry
literature (see, for example, the sources listed in 3.7, “Further information” on
page 68), but there is some variation in their description, so an introduction is
provided here to place the remaining content of this redbook in context.

For some time, the vision of much of the IT industry has been to achieve rapid,
flexible integration of IT systems across all elements of the business cycle. The
drivers behind this vision include:

� Increasing the speed at which businesses can implement new products and
processes or change existing ones

� Reducing implementation and ownership costs

� Enabling flexible pricing models by outsourcing elements of the business or
moving from fixed to variable pricing, based on transaction volumes

� Simplifying the integration work that is required by mergers and acquisitions

� Achieving better IT utilization and return on investment

� Simplifying the enterprise architecture and computing model

Really achieving these goals affects the entire scope of a business’s processes
and IT systems, as depicted in Figure 3-1 on page 35. Such pictures should be
familiar to anyone with an interest in Enterprise Application Integration,
Business-to-Business, or Portal technologies, but it is fair to say that, perhaps
until recently, the industry has lacked a consistent and comprehensive approach
to technology and architecture on this scale. Although several systems that cover
some elements of this scope have been implemented, there has not been a
single, broadly accepted approach.

The combination of Service Oriented Architecture, an approach that draws
together proven techniques from several proceeding architecture and design
styles, with new open standards and integration technologies has the potential to
provide such a consistent approach.

34 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 3-1 Integration across the value chain

In order to describe why both Web services and SOA are necessary to achieve
these goals, it is informative to consider the specific technical issues that arise in
any attempt to flexibly integrate systems on the scale that we are discussing:

� Business systems are implemented using a multitude of technologies and
platforms.

� Business processes are implemented by a mixture of people practices,
application code, and interactions between people and systems or systems
and systems.

� Changes to one system tend to imply ripples of change at many levels to
many other systems.

� No single, fully functional integration solution will talk to all of the systems in
the enterprise.

� Deployment of any single, proprietary integration solution across the
enterprise is complex, costly, and time-consuming.

� All issues that are involved in internal integration are encountered again when
integrating with partners and their systems.

� There is no single data, business, or process model across or beyond the
enterprise.

Finance Manufac-
turing

Distri-
bution Retail Telecom Govern-

ment
Industry

Solutions

Customer
Relationship
Management

Enterprise
Resource
Planning

Project
Lifecycle

Management

Value
Chain

Management
Customers

Employees

Suppliers &
Distributors

Infrastructure

Business Integration (Inter- and Intra-Enterprise)

...

 Chapter 3. Web services and service-oriented architecture 35

� Not all integration technologies work as well across a wide area network or
the Internet as they do across a local area network, perhaps due to:

– The use of exotic protocols.

– Constraints imposed by security technologies, including firewalls.

– Constraints imposed by network bandwidth.

As we discuss Web services and SOA in this section, we see how those issues
are addressed; particularly, it is only the appropriate combination of both the Web
services technology and the SOA approach that enables us to address them all
on the broadest scales. In that vein, we should take stock briefly of what both
Web services and SOA have achieved separately to date:

� Most significant SOAs are proprietary or customized implementations based
on reliable messaging and Enterprise Application Integration middleware (for
example WebSphere Business Integration) and do not use Web services
technologies. They have, however, demonstrated the benefits of SOA, usually
within a single enterprise.

� Most existing Web services implementations consist of point-to-point
integrations that address a limited set of business functions between a
defined set of cooperating partners, and they use HTTP (an unreliable
transport) as the communication mechanism. They have, however,
demonstrated the efficacy of the Web services technologies in integrating
heterogeneous systems both within and among organizations.

� There are several more ambitious efforts underway using both Web services
and SOA. However, many of these efforts are building significant customized
infrastructure function in addition to using off-the-shelf products and
technologies.

It is also worth noting that as we are dealing with enterprise integration and
implementation here, we have to be aware of all of the usual requirements for
enterprise class systems to, for example:

� Leverage existing assets.

� Support both customized systems and commercial off-the-shelf (COTS)
packages.

� Support incremental adoption and implementation.

� Provide for loose coupling between systems.

� Incorporate synchronous and asynchronous communication and transaction
models.

� Be secure.

� Support multiple programming languages and platforms.

36 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Handle high volumes and transaction rates that exhibit peaked behavior.

� Support global deployment, including multiple languages, currency
independence, and 24/7 operations.

Finally, we should be clear that there are is no magic for achieving this. We
contend that all of this is possible with Web services and SOA, but you cannot
just “deploy” a “Web services SOA” and switch it on. Instead, we describe an
incremental approach to designing and deploying what can become an
enterprise-class SOA using Web services over an appropriate timescale.

3.2 Introduction to service-oriented architecture
Service-oriented architecture is an approach to defining integration architectures
based on the concept of a service. It applies successful concepts proved by
Object Oriented development, Component Based Design, and Enterprise
Application Integration technology. The goal of SOA can be described as bringing
the benefits of loose coupling and encapsulation to integration at an enterprise
level.

In order to describe SOA, it is first necessary to define what we understand by a
“service” in this context. This is key as, unless we are confident that the services
that we define really are well designed, we cannot be sure to achieve the
promoted benefits of SOA. The most commonly agreed-on aspects of the
definition of a service in SOA are:

� Services are defined by explicit, implementation-independent interfaces.

� Services are loosely bound and invoked through communication protocols
that stress location transparency and interoperability.

� Services encapsulate reusable business function.

The use of explicit interfaces to define and encapsulate services function is of
particular importance and is illustrated in Figure 3-2 on page 38. Note how the
interface encapsulates those aspects of process and behavior that are common
to an interaction between two systems, while hiding the specifics of each
implementation. The use of interfaces to define and mediate various aspects of
service interactions is discussed in 3.2.1, “Coupling and decoupling of aspects of
service interactions” on page 39. By explicitly defining the interaction in this way,
those aspects of either system (for example the platform they are based on) that
are not part of the interaction are free to change without affecting the other
system.

 Chapter 3. Web services and service-oriented architecture 37

Figure 3-2 The key concepts of SOA

After the function has been encapsulated and defined as a service in an SOA, it
can be used and reused by one or more systems that participate in the
architecture. For example, when the reuse of a Java™ logging API could be
described as “design time” (when a decision is made to reuse an available
package and bind it into application code), the intention of SOA is to achieve the
reuse of services at:

� Runtime: Each service is deployed in one place and one place only, and is
remotely invoked by anything that must use it. The advantage of this
approach is that changes to the service (for example, to the calculation
algorithm or the reference data it depends on) need only be applied in a
single place.

SYSTEM 1

Internal Code
and Process

Interface Code Exposing
Well-Encapsulated Services

Interoperable Protocols with
Location Transparency

INTERFACE
Shared Process, Data
and Service Definitions

Interoperable Protocols with
Location Transparency

SYSTEM 2

Internal Code
and Process

Interface Code Exposing
Well-Encapsulated Services

38 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Deployment time: Each service is built once but redeployed locally to each
system or set of systems that must use it. The advantage of this approach is
increased flexibility to achieve performance targets or to customize the
service (perhaps according to geography).

Note that in contrast to reusing service implementations at runtime, the
encapsulation of functions as services and their definition using interfaces also
enables the substitution of one service implementation for another. For example,
the same service might be provided by multiple providers (such as a car
insurance quote service, which might be provided by multiple insurance
companies), and individual service requesters might be routed to individual
service providers through some intermediary agent.

The encapsulation of services by interfaces and their invocation through
location-transparent, interoperable protocols are the basic means by which SOA
enables increased flexibility and reusability. In order to really understand how
these benefits can be achieved we delve a little further into the detail of good
service design by considering these topics:

� Coupling and decoupling of aspects of service interactions
� Designing connectionless services
� Service granularity and choreography

3.2.1 Coupling and decoupling of aspects of service interactions
A basic tenet of SOA is that the use of explicit service interfaces and
interoperable, location-transparent communication protocols means that services
are loosely coupled with each other. To understand how this is implemented in
practice, and how it enables the benefits of SOA, we explore the meaning of
loose coupling in more detail.

By loosely coupling services, we mean restricting the number of things that the
requester application code and the provider application code know about each
other. If a change is made to any aspect of a service that is coupled, then either
the requester or the provider application code (or, more likely, both) will have to
change. If a change is made by any party (the requester, provider, or mediating
infrastructure) to any aspect of a service that is decoupled, then there should be
no need to make subsequent changes in the other parties.

Notice that we are no longer discussing loosely coupled services, but coupled
and decoupled aspects of services. We can also ask whether coupled and
decoupled are the only two relationships that can exist for an aspect of a service
between the requester and the provider. For example, the business behavior (the
function and data model) obviously must be coupled in order for the requester
and provider to interact. In order to flexibly integrate systems in a heterogeneous

 Chapter 3. Web services and service-oriented architecture 39

environment, it is best that the requester and provider platforms (for example
AIX® or Windows®) be decoupled.

However, in a realistic situation, the interactions between requester and provider
must also be secured, and the relationship between their transactional models
will have to be understood in order to define how failures will be handled. These
and other characteristics fall somewhere between coupled and decoupled the
sense that those terms are used here. (We would rather not have to include
complex security and transactional function in the application code of either the
requester or provider, but neither can we afford for them to be entirely
independent.)

As a working framework, we define the following relationship styles for service
aspects among requesters and providers:

� An aspect is coupled if changes to the aspect by one party in the interaction
(requester, provider, or mediating infrastructure) require corresponding
changes by the other parties.

� An aspect is declared if its behavior is specified in the interface to the service,
and service requesters and providers can only interact if they have matching
declared behavior, and this behavior is consistent with the capabilities of the
intermediary infrastructure supporting the interaction.

There are two variations of declared behavior that provide some additional
levels of flexibility:

– An aspect is transformed if it is declared by both service requesters and
service providers, but the infrastructure provides some transformation
capability to enable interactions between service requesters and providers
that declare mismatched behavior.

– An aspect is negotiated if both requester and provider declare a spectrum
of behaviors that they are able to support, and if the intermediary
infrastructure is capable of negotiating an agreed behavior between them
for each interaction.

� An aspect is decoupled if changes to the aspect by one party in the interaction
do not require corresponding changes by the other parties.

In order to clarify these ideas, it is useful to consider an example of each type of
coupling:

� Business data models are usually coupled between service requesters and
providers; the application code of each must understand the information that
is required to describe (for example) a Customer, Account, or Order.

� Communication protocols can be declared in the service interface. In practice,
this requires that applications code to a protocol-independent service API,
such as a suitable implementation of JAX-RPC. If this is the case, then the

40 Patterns: Implementing an SOA Using an Enterprise Service Bus

protocol binding in the service interface definition can be changed (for
example, from SOAP/HTTP to SOAP/JMS). This does not require changes to
the application code, but it affects the behavior of the service API
implementation, which will execute the service interaction through a different
protocol.

� Data formats are often transformed: It is very common, for example, to
convert legacy formats, such as COBOL copybooks, to XML formats when
enabling service interfaces to legacy systems. Alternatively, different XML
schema may be used by different systems in an SOA to describe the same
data models. In either case, the supported format is, or can be, defined in a
service interface, and middleware transformation capabilities can be used in
the service infrastructure to perform the required transformations without
affecting application code or behavior.

� The identity of a service provider might be negotiated through a third-party
broker component. The broker might use geographical location, client
identify, membership scheme information, transaction value, or several other
criteria to match the service requester with a suitable service provider.

� The implementation platform is often decoupled; if two systems interact
through interoperable protocols such as SOAP/HTTP or messaging
middleware, then neither is aware in any way of the hardware, operating
system, or perhaps even the application server platform supporting the other;
either party can change any or all of these aspects without affecting the other.

We can apply these relationships to various aspects of service that can be
identified in a SOA. For some aspects, SOA or other design principles specify the
desired style of relationship; for other aspects, several relationships might be
appropriate depending on specific scenarios. For each aspect, different
techniques can be applied to implement the desired relationship. Table 3-1 on
page 42 identifies some service aspects, relationships, and techniques. It should
be noted, however, that this area is the subject of ongoing debate and evolution,
and the table should not be taken as definitive. Similarly, the available
technologies are evolving rapidly (for example, the emerging WS-Policy
specification will affect this area of design deeply in coming years.

 Chapter 3. Web services and service-oriented architecture 41

Table 3-1 Service aspects, relationships and implementation techniques in SOA

Aspect SOA intention Techniques

Semantic
interface

Coupled � Business systems must share an
understanding of the tasks and data that are
processed by the service.

� Shared business object libraries or XML
schemas can be exploited.

� Some transformations, aggregations or
enrichments of data might be consistent with
the interface semantics and implemented by
the bus infrastructure; more likely such
transformations would be related to service
granularity and choreography, as described
in “Service granularity and choreography” on
page 47.

Language Decoupled � Language and platform-independent
interface definition such as IDL, WSDL, XSD.

� Language and platform-independent data
formats such as XML.

� Language and platform-independent
communication protocols such as IIOP,
SOAP, WebSphere MQ.

� Invocation APIs (for example, JAX-RPC),
adapters, or ESB infrastructure to integrate
applications to the interface definitions and
data formats.

Platform Decoupled

Data format Declared or
Transformed

� Language and platform-independent data
formats such as XML.

� Adapters, XSL style sheets, or bus
infrastructure required to support
transformations between data formats, such
as between COBOL copybooks and XML.

� Application development tool wizards can
create language-specific representations of
some data formats, particularly XML.

� Other aspects of data format that are critical
to real-world SOA implementations are data
encoding, code pages, and data
compression, including XML compression
techniques.

42 Patterns: Implementing an SOA Using an Enterprise Service Bus

Protocol Declared or
Transformed

� Service invocation mechanisms for service
requesters and providers that do not specify
service protocol or locations; for example, an
implementation of JAX-RPC with support for
multiple protocols.

� Adapters or ESB infrastructure can perform
service routing and protocol transformation.

Location Decoupled

Service
provider identity
or
implementation

Declared or
Negotiated

� Service invocation mechanisms that enable
service substitution, for example JAX-RPC.

� Adapters or ESB infrastructure can perform
service routing to different providers.

� Directory (for example, UDDI) or broker
intermediary to decide who fulfills the service
each time.

� An ESB might identify a suitable service
provider based on WS-Policy, for example by
selecting the cheapest or most-responsive
provider available at the time.

Time Declared or
Negotiated

� As IT systems show many differing planned
and unplanned availability characteristics
(such as 24/7 versus working hours), service
interactions will sometimes have to span
systems with different characteristics.

� Declared by WSDL or negotiated through
WS-Policy.

� Use of asynchronous transport protocols, for
example WebSphere MQ,
WS-ReliableMessaging.

� ESB or intermediary store and forward
capability for asynchronous request /
response, message correlation, and so forth.

� Message correlation and transaction
identifiers used to associate individual
service interactions with longer ongoing
business process interactions.

Aspect SOA intention Techniques

 Chapter 3. Web services and service-oriented architecture 43

Delivery
assurance,
integrity, and
error handling

Declared or
Negotiated

� Assured delivery communication protocols;
for example WebSphere MQ,
WS-ReliableMessaging.

� Error and exception handling processes, for
example for SOAP faults.

� Use the features and deployment descriptors
of containers, such as J2EE, in service
implementations.

� Advanced WS standards, for example
WS-ReliableMessaging and WS-Transaction.

� Negotiated through WS-Policy by the ESB.
� In order to provide a consistent end-to-end

approach to delivery assurance, integrity, and
error handling for a chain of service
interactions, it will often be necessary to
combine several techniques that are used for
individual interactions. These techniques
might include handling communication
failures, the use of synchronous two-phase
commit, the ability to handle duplicate
messages, and compensation schemes.

Security Declared or
Negotiated

� Declared by WS-Security or negotiated
through WS-Policy.

� Point-to-point or communication-based
security and trust models.

� Implemented through applications or through
third-party or intermediary components in the
SOA architecture.

Service version Declared or
Negotiated

� Service naming standards.
� Version-based routing in the bus

infrastructure.
� Service request / provider tolerance of

changes in optional data attributes.

Aspect SOA intention Techniques

44 Patterns: Implementing an SOA Using an Enterprise Service Bus

It is interesting to note in the table that the only aspect of the service that is
specified as coupled is the business behavior. By specifying other aspects to be
declared, transformed, negotiated, or decoupled, the intention is to build the
maximum possible flexibility into the architecture, enabling other aspects of
service implementation and interaction to vary as freely as possible.

In combination with the flexibility of business behavior that is achieved by
encapsulating well-designed business function as services, SOA attempts to
maximize the overall flexibility of integrated business systems. The next two
sections discuss some aspects of what is meant by encapsulating well-designed
business function as services, in order to ensure that the flexibility of behavior
really is achieved.

3.2.2 Designing connectionless services
The question of whether services should be stateful or stateless has been
discussed frequently in relation to SOA. However, the issue is complicated by
whether it really is possible to draw a clear line between state and business data.
Many service interactions must be stateful in order to play a role in ongoing
business processes or interactions; the issue is how we should design such
services so as to maximize the flexibility of the architecture and the processes it
supports.

To answer this issue, we return to the key to SOA: defining behavior in the
interface. In doing so, we do away with considering stateful and stateless

Interaction state Declared � Matching of messages or events to long-lived
processes by explict process or transaction
IDs in semantic interface, or by application
data (for example, customer ID).

� Service Choreography technology may
provide some facility to use a variety of input
data to associate messages with specific
instances of processes.

� Primary key matching technology such as
provided by WebSphere InterChange Server.

� The emerging WS-ResourceFramework
provides a standard model for associating
services with stateful resources.

� Enterprise Application Integration
middleware support for message aggregation
and correlation.

� Customized solutions involving custom
message headers.

Aspect SOA intention Techniques

 Chapter 3. Web services and service-oriented architecture 45

services, and instead declare that services, whether they deal with stateful
business behavior (for example, the renewal process for an insurance policy) or
stateless business behavior (such as performing an exchange rate calculation)
should be connectionless.

Connectionless services are those that do not allow or require a service
requester and a specific, executable instance of the service provider to maintain
a relationship between service invocations. The successful implementation of
connectionless services depends on two considerations:

� The use of technology that prevents handles being retained to specific
executable instances.

� The design of service interfaces that do not depend on implicit, shared
knowledge created through a sequence of interactions between a specific
requester and provider.

The first consideration is relatively easy to address: When stateless protocols
such as asynchronous messaging are used to invoke services, this criterion is
fulfilled. When technologies that are capable of supporting stateful behavior are
used, the features of the technology that manipulate state (for example,
HTTPSession or cookies) should not be used. Meeting this criterion might imply
the use or assessment of specific communication technologies, or the application
of design and development guidelines to the implementation of systems that
participate in the SOA.

The second criterion can only be fulfilled through its application as a design
principle to the design of the individual service interface. Table 3-2 shows an
example of both a connected and connectionless design for two services. In this
example, a store system in a consumer electronics shop is trying to charge the
cost of an expensive television to a card account that belongs to Bruce; the cost
is high enough that the store system must explicitly authorize the transaction with
the card supplier.

Table 3-2 Connected and connectionless service interactions

Connectionless Connected

Service Client: Can Bruce pay $1000 for a
new television?
Service Provider: Yes
Service Client: Charge Bruce $1000 for a
new television
Service Provider: OK

Service Client: Can Bruce pay $1000 for a
new television?
Service Provider: Yes
Service Client: Charge him $1000 for a
new television
Service Provider: OK

All of the business data is defined in the
interface

Part of the business data (the fact that we
are dealing with Bruce) is implied in the
sequence

46 Patterns: Implementing an SOA Using an Enterprise Service Bus

The Connectionless example in the table shows that the interface to each call
specifies all of the data that is required to perform the service, other than
business information owned by the service provider. For example, Bruce’s card
balance and credit limit are not part of the service interface because they are
business information owned by the card provider. However, the fact that Bruce is
the owner of the account that is relevant to this specific transaction is a part of
the interface, because both the service to authorize the payment and the service
to make the payment must relate to the same cardholder. If this information were
not part of the service interface (as in the Connected example), then the specific,
executable instances of the service client and the service provider would have to
maintain a reference to each other in order to identify the correct context.

This could cause difficulty if, for example, the physical server that supports the
instance of the service provider crashed; in such as case, what happens to the
instance of the service that remembers that it was dealing with Bruce? Was the
state of that instance safely stored somewhere prior to the failure, perhaps in a
database? If so, how does the service requester then connect to another
executable instance of the service that somehow knows which information to
read from the database? All of these issues should be familiar to anyone who has
developed stateful distributed applications, such as J2EE or WebSphere
applications that make use of the Java HTTPSession object.

The principle that services should be designed to be connectionless is really
saying that for a shared sequence of activity, each instance of that activity should
be identified uniquely (for example, through a transaction ID or, in this case
through a customer ID, Bruce), and that the identity should form part of all
service calls. Even better would be to explicitly define and share the process
definition, as the emerging BPEL4WS standard could do.

3.2.3 Service granularity and choreography
Many descriptions of SOA also refer to the use of “large-grained” services.
However, some powerful counterexamples of successful, reusable, fine-grained
services exist. For example, getBalance is a very useful service, but hardly
large-grained.

More realistically, there will be many useful levels of service granularity in most
SOAs; for example:

� Technical functions (such as logging)
� Business functions (such as getBalance)
� Business transactions (such as openAccount)
� Business processes (such as applyForMortgage)

Some degree of choreography or aggregation is required between each
granularity level. It is unlikely that all organizations will share identical definitions

 Chapter 3. Web services and service-oriented architecture 47

of granularity, but each will undoubtedly find it beneficial to define their own. At
each level of granularity, it is important that service definitions encapsulate
function well enough that it is reusable. Figure 3-3 shows an example of service
granularities and choreographies between them.

Figure 3-3 Service granularity and choreography

Figure 3-3 describes these interactions among services of various granularities:

1. A user submits a request to a self-service application to create a mortgage
account. The self-service application submits the business process service
request createMortgageAccount through the service infrastructure to a
service choreographer component, whose purpose is to choreograph
business transaction services into business process services.

2. On receiving the request for the createMortgageAccount business process
service, the service infrastructure first invokes authentication and
authorization technical function services to ensure that the request is valid,

Submit

Self-Service
Application

1

Public createCustomerRecord {
Check and validate parameters...
Request a unique ID
Check postcode against address
Store and commit data

}

4

Service Infrastructure

Authorization &
Authentication

Services
Log

Customer
Management

System

External
Service

1

9

Service Choreographer 3

Submit

Authenticate &
Authorize

createMortgageAccount

createCustomerRecord

createCustomerRecord

Implementation

Check Postcode
Log

a c
b Steps a and b

omitted for clarity
Steps a and b

omitted for clarity

2

48 Patterns: Implementing an SOA Using an Enterprise Service Bus

then a log technical function service before finally invoking the
createMortgageAccount business process service in the service
choreographer.

3. The service choreographer executes the createMortgageAccount business
process service. If the request is valid, then when the other process elements
are complete the choreographer invokes the createCustomerRecord
business transaction service through the service infrastructure to store the
details of the new customer. (Before doing this, it may already have invoked
storeMortgageDetails.)

4. In the implementation of the Customer Management System
createCustomerRecord business transaction service, it is necessary to
validate the information for the new customer. Part of this validation is
checking whether the post code and address match. In order to do this, a
CheckPostCode business function service is invoked through the service
infrastructure.

To summarize, three aggregations or choreographies are performed by distinct
components for distinct granularity levels:

Service choreographer Choreographs business transaction services into
higher level business process services.

Service Infrastructure (may be an Enterprise Service Bus) Choreographs
technical function services to control the invocation of
business process services, business transaction
services, and business function services.

Individual application components
Responsible for invoking business function services
where they are required in order to implement
business transaction services.

Of course, this is just one hypothetical example. Real organizations must
formulate their own definitions.

Large-grained interfaces simplify coupling between processes
A recurring issue in system design and implementation is building interactions
between two systems that have to share the execution of a process, in such a
way that the process is flexible and can enable other systems to participate. A
good example is in the design of Web browser applications, where the process of
naviagating through browser screens is matched by the application code to some
elements of a business process. A typical example of the impact when this
matching is not performed well is what happens when a new interface with a
different sequence of screens, such as a mobile phone interface, is added. All
too often, significant changes are required to the application business logic.

 Chapter 3. Web services and service-oriented architecture 49

Given that the business process did not change, it would be better if changes to
business logic were not required.

The use of large-grained services can help to match such processes in a more
flexible manner. In order to illustrate this, consider the two examples in Table 3-3.

Table 3-3 Different interaction styles in applying for a mortgage

The second approach, By Telephone, consists of a large number of fine-grained
interactions. Both parties, the applicant and the worker in the call center,
maintain an implicit knowledge of where they are in a conversation. If, for
example, the caller must be away from the telephone for a period of time
(perhaps to answer the door), then either the call center worker must hold the line
(which is not good for productivity), or the caller will have to call back later, when
another worker will have to scan records for the previous interaction and
determine the point to resume the process.

The first approach, By Post, is much simpler. At the start of the interaction, the
mortgage provider publishes the information that is required to process a
mortgage application. The client may collect that information through any
process they prefer, over any period of time, without further involving the
mortgage provider’s resources. When ready, the client may return the form by
post, visit the nearest office, or telephone a call center and read the information
over the telephone. Either way, much more flexibility of behavior is allowed,
because a single, large-grained entity was published as the interface to a service
with a clear business purpose. In contrast, By Telephone requires many
individual interactions, and is concerned with many separate elements of data
with no individual significance to the business process, and which are not
explicitly defined in an open manner. Even if the call center worker follows a
script, that script is available only to one party.

Service-like API-like

By Post:

Client requests application form.
Provider sends it.
Client fills it in and returns it.
Provider says yes or no.

By Telephone:

Client calls provider.
Provider says "Hello, how can we help?"
"I'd like a mortgage, please."
"What's your name?"
"John Smith."
"What's the property address?"
"27 ..."
...and so forth...
"... Your mortgage agreement number is
12345, I'll post the rest of the details."

50 Patterns: Implementing an SOA Using an Enterprise Service Bus

In this sense, large-grained services tend to be more flexible because they reflect
the underlying business process and changes in state of business data rather
than the specifics of any one interaction style. Similarly, a failure to focus on
interactions that are meaningful to business processes (rather than those that
are specific to individual pages in a Web application, for example) are part of the
difficulty that is experienced in opening several early Web applications to
additional channels, such as mobile phones and PDAs, with very different
interface devices that require very different screen arrangements.

In the By Telephone example, the mortgage application is in the same business
state — incomplete — for most of the interactions. It is in different states only at
the very start and very end: “new application” and “complete application.” These
are the two most obvious services that are required to implement the interaction,
and they map well to the description of the By Post example.

In a pragmatic sense, any system that implements this also requires the ability to
make general updates to a transaction that is in the “incomplete application”
state, so we will need additional services. For those services to reflect the
business process rather than the characteristics (sequence of screens) of any
one application, we should design a general “update application” service, rather
than specific services such as “update customer name,” “update property
address,” and so on.

Large-grained interfaces can be tolerant to certain changes
It is often asserted that the use of large-grained service definitions inherently
leads to more flexible systems, or that the use of simple interfaces leads to more
stable interfaces. It is worth examining why this may be so.

For example: An organization that has grown by merger and acquisition stores
data describing some customers in one database and data describing other
customers in another. The organization might implement an “update customer
details” service that provides common access to both systems, perhaps with
some routing capability with knowledge of which customers are stored in which
database, perhaps based on different formats of the Customer ID field.

Now consider that a new company is acquired and brings with it a third customer
database. This new customer database has a marital status field that the first two
do not. Therefore, the “update customer” interface to this database includes a
field that the other databases do not have.

If the “update customer details” service had originally been defined as accepting
first name, second name, address line 1, address line 2, date of birth... (each
individual attribute of a customer), we would now have a problem: the third
database requires a new attribute, and so requires a different service interface,
so there are now two distinct update customer details services.

 Chapter 3. Web services and service-oriented architecture 51

We could have designed the “update customer details” service to accept an XML
data type that is defined through an XML schema as a Customer type. When the
third customer database is added, the marital status field could be added to the
XML schema as an optional attribute. The same service interface definition can
then be used to define the update customer details interfaces to all three
databases without requiring changes to the existing two systems.

Of course, in practice it may not be that easy. Applications that are used to
capture changes to customer data may have to be changed to manipulate the
extra field. Or if an update request that includes a marital status field is sent to a
customer database that doesn’t recognize it, the database may ignore the
additional field or be unable to process the request. Is it meaningful to the
business to ignore data to this way, and will it match customer expectations?

Generally, there are potential uses for such flexibility, but it will not be appropriate
in all cases and may in fact be difficult for some applications and some
technologies to implement. Overall, it is more important that the granularity of the
service definition results in the encapsulation of reusable function that makes
sense to service clients than for it simply to be large. And there is no escaping
the need to define a governance process and technical means to support the
evolution and versioning of service interfaces over time.

3.2.4 Implications of service-oriented architecture
The encapsulation of reusable business function, the achievement of loose
coupling, the definition of appropriate levels of granularity, and so forth are
analysis issues as much as a technology issues. They are difficult issues to
grasp, so SOA cannot be successful without skilled architects and designers who
understand and are able to articulate them. It is easy to see these concerns
becoming hostage to time, skill, and cost issues, leading to another generation of
isolated systems that will require integration.

Widespread implementation of an SOA and infrastructure is a long-term
endeavour that involves all of the usual hard business decisions, questions of
data, and process ownership. It requires serious, long-term commitment by
business and by the IT organization that supports it. It may involve upfront costs,
centralized costs, and many other challenges:

� No specific technologies are ruled in or ruled out.

� Legacy implementations are possible (for example, CICS® Transaction
Server “super router” transactions with simplified, text-based interfaces)

� EAI implementations are commonplace (for example, XML over MQ /
WebSphere Business Integration Message Broker)

� Web services are potentially a very good fit, but are still maturing.

52 Patterns: Implementing an SOA Using an Enterprise Service Bus

3.3 Web services architecture
Web services are a recent set of technology specifications that leverage existing
proven open standards such as XML, URL, and HTTP to provide a new
system-to-system communication standard. Based on this communication
model, additional higher-level Web services standards have also been defined to
address transactions, security, business processes, and so forth: the
higher-order functions that are required to get systems, applications, and
processes (rather than objects and components) talking to each other.

Web services learn from the way the Web revolutionized how people talk to
systems: new customers, new business models, extensions of opportunity, new
transparency and improved collaboration between employees and employers,
and in some cases reductions in infrastructure costs and complexity. The key to
these successes was a universal server-to-client model that is consistent with a
highly distributed environment, based on simple open standards and industry
support.

Web services promises to do the same thing for the way systems talk to systems:
integrating one business directly with another so that the process doesn't have to
wait for people to provide the glue, get your own business talking to itself or your
partners to provide integrated IT systems, and again the potential for dramatic
reductions in infrastructure costs and complexity. Once again, the key is a
universal program-to-program communication model based on simple open
standards and industry support.

Figure 3-4 on page 54 shows the basic interaction model supported by Web
services.

 Chapter 3. Web services and service-oriented architecture 53

Figure 3-4 Basic Web services

Basic Web services define interactions among Service Requesters, Service
Providers, and Service Directories as follows:

Service Requesters find Web services in a UDDI Service Directory. They retrieve
WSDL descriptions of Web services offered by Service Providers, who previously
published those descriptions to the Service Directory. After the WSDL has been
retrieved, the Service Requester binds to the Service Provider by invoking the
service through SOAP.

The basic Web services are often described in terms of SOAP, WSDL, and
UDDI, each of which we define and discuss. However, it should be noted that
each of these standards can be used in isolation, and there are many successful
implementations of SOAP alone, or SOAP and WSDL, in particular.

SOAP
SOAP is an XML messaging protocol that is independent of any specific
transport protocol. SOAP defines a framework within which messages contain

Directory/Namespace

Service
Directory

2. Find
UDDI

1. Publish
WSDL

Client Server

Service
Provider

Service
Requester SOAP

3. Use

http://mygateway.com/services/createOrder
<order>
 <id>1234</id>
 <customer id>AB35</customer id>
 <line>
 <item>
 <part no>127.87A</part no>
 <quantity>2</quantity>
 ...

54 Patterns: Implementing an SOA Using an Enterprise Service Bus

headers, which are used to control the behavior of SOAP-enabled middleware,
and a message body. As SOAP is an XML format, and as XML is text-based,
SOAP is supportable in the vast majority of existing and new technical
environments and can be transported over a vast variety of protocols.

In practice, SOAP is most often communicated over HTTP, although this is likely
to evolve rapidly because HTTP is an unreliable protocol. (For instance, it is
already possible to send SOAP messages through JMS implementations such as
WebSphere MQ.) Basic SOAP also makes no reference to characteristics of
interactions such as security and transactionality. However, as SOAP headers
provide an extensible model, these aspects are being added gradually to the
Web services specifications as extensibility elements, as we describe further in
the next section. The use of SOAP over specific protocols, such as HTTP, is
usually written as SOAP/HTTP, SOAP/JMS, and so forth.

The SOAP V1.2 specification is available from the World Wide Web Consortium,
and deliberately does not define a meaning for SOAP as an acronym. (SOAP is
sometimes referred to as Service Oriented Architecture Protocol, or by its
definition in the more widely supported SOAP V1.1 specification, Simple Object
Access Protocol.)

WSDL: Web Services Description Language
WSDL is an XML-based interface definition language that separates function
from implementation, and enables design by contract as recommended by SOA.
WSDL descriptions contain a PortType (the functional and data description of the
operations that are available in a Web service), a Binding (providing instructions
for interacting with the Web service through specific protocols, such as
SOAP/HTTP), and a Port (providing a specific address through which a Web
service can be invoked using a specific protocol binding).

The value of WSDL is that it enables development tooling and middleware for any
platform and language to understand service operations and invocation
mechanisms. For example, given the WSDL interface to a service that is
implemented in Java, running in a WebSphere environment, and offering
invocation through HTTP, a developer working in the Microsoft .Net platform can
import the WSDL and easily generate application code to invoke the service.

As with SOAP headers, the WSDL specification is extensible and provides for
additional aspects of service interactions to be specified, such as security and
transactionality.

UDDI: Universal Description, Discovery, Integration
UDDI servers act as a directory of available services and service providers.
SOAP can be used to query UDDI to find the locations of WSDL definitions of
services, or the search can be performed through a user interface at design or

 Chapter 3. Web services and service-oriented architecture 55

development time. The original UDDI classification was based on a U.S.
government taxonomy of businesses, and recent versions of the UDDI
specification have added support for custom taxonomies.

A public UDDI directory is provided by IBM, Microsoft, and SAP, each of whom
runs a mirror of the same directory of public services. However, there are many
patterns of use that involve private registries; see Steve Graham’s articles:

� The role of private UDDI nodes in Web services, Part 1: Six species of UDDI

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html

� The role of private UDDI nodes, Part 2: Private nodes and operator nodes

http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

SOAP/HTTP uses existing namespaces and infrastructure
One of the important potential benefits of Web services is to reduce the reliance
of integration on specific integration technologies that require heavyweight
deployment where such deployment would be problematic or impossible —
typically, in business-to-business interactions, particularly as they become more
widespread and dynamic.

The specific use of Web services with HTTP as a communication protocol has
some extraordinary benefits in this area. Because SOAP/HTTP uses HTTP as a
communication protocol and URL as the addressing format, the entire global
network of distributed, resilient routing and communications infrastructure that
the Internet provides can be used. Allowances must be made for the unreliable
nature of HTTP, but the advantages of a service communication protocol that is
already deployed and globally pervasive should not be underestimated.

3.3.1 Web services interoperability
A unique feature of Web services is that it is a relatively high-level integration
protocol with near-ubiquitous support in the IT industry; this alone is an important
reason for its success and is behind why many individual projects have used the
Web services standards to perform integrations between different platforms.

In order to facilitate the development of truly interoperable Web services
standards from this widespread support, the Web Services Interoperability
Organization (often referred to as the WS-I) was formed in February 2002. The
WS-I aims to promote interoperability of Web services implementations by
publishing profiles, which are descriptions of conventions and practices for the
use of specific combinations of Web services standards through which systems
can interact. Technology vendors can then produce compliant implementations
and publicize that compliance, offering some level of assurance to technology

56 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/library/ws-rpu1.html
http://www.ibm.com/developerworks/webservices/library/ws-rpu2.html

customers as to the level of Web services interoperability that can be achieved
with different implementations.

The WS-I published the first profile for interaction, the Basic Profile, in July 2003,
and many technology vendors provide product implementations of Web services
that are compliant with this profile, which is described further in “WS-I Basic
Profile V1.0” on page 57. The WS-I is creating a Basic Security Profile to
describe interoperability using the Web services security (WS-Security)
standards. A draft specification of this profile was published in February 2004.

Of course, interoperability can be achieved using Web services where WS-I
profiles do not exist; however, it may be more limited or require additional work to
achieve. Therefore, the WS-I is an important mechanism for assuring and
simplifying interoperability between implementations of Web services standards
as those standards mature and evolve.

The Web Services Interoperability Organization Web site contains links to
published, draft, and planned interoperability profiles and information about
vendor compliance:

http://www.ws-i.org/

WS-I Basic Profile V1.0
The WS-I Basic Profile V1.0 specifies a set of usage scenarios and Web services
standards that can be used to integrate systems. It focuses on the core
foundation technologies upon which Web services are based: HTTP, SOAP,
WSDL, UDDI, XML, and XML Schema. Basic Profile V1.0 was approved
unanimously on July 22, 2003, by the WS-I board of directors and members.

The WS-I Basic Profile V1.0 - Profile Specification consists of the following
non-proprietary Web services–related specifications:

� SOAP V1.1
� WSDL V1.1
� UDDI V2.0
� XML V1.0 (Second Edition)
� XML Schema Part 1: Structures
� XML Schema Part 2: Datatypes
� RFC2246: The Transport Layer Security Protocol Version 1.0
� RFC2459: Internet X.509 Public Key Infrastructure Certificate and CRL

Profile
� RFC2616: HyperText Transfer Protocol V1.1
� RFC2818: HTTP over TLS
� RFC2965: HTTP State Management Mechanism
� The Secure Sockets Layer Protocol Version 3.0

 Chapter 3. Web services and service-oriented architecture 57

http://www.ws-i.org/

The WS-I Basic Profile 1.0 - Usage Scenario consists of three usage scenarios,
where a usage scenario is a design pattern of interacting entities including actor,
roles, and message exchange patterns:

� One-way usage scenario

– Simplest usage scenario in which the message exchange is one-way, with
a consumer sending a request to a provider.

– Should be used only when loss of information can be tolerated.

� Synchronous request/response usage scenario

– Most commonly used usage scenario: A consumer sends a request to a
provider, who processes the request and sends back a response.

� Basic callback usage scenario

– This is used to simulate an asynchronous operation using synchronous
operations.

– Composed of two synchronous request/response usage scenarios, one
initiated by a consumer and the other by a producer.

The WS-I Supply Chain Management sample application depicts an application
for a fictitious consumer electronics retailer. This sample application is the basis
of the scenarios in this Redbook, and is described in Chapter 7, “The business
scenario used in this book” on page 169.

See also the following IBM developerWorks articles:

� First look at the WS-I Basic Profile 1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� First look at the WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

3.3.2 Advanced and future Web services standards
There are many successful implementations of the basic Web Services
standards, particularly SOAP and WSDL, but as previously described, many
aspects of service interaction and integration are not directly supported by those
basic standards, such as security, transactionality, delivery assurance, and
process modeling.

The Web services standards are evolving and maturing to address these aspects
of interaction and integration, increasing their value to SOA. In this section we

58 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

cover some of the recent and emerging Web services standards that support
more sophisticated aspects of service interactions and SOA.

Production-level product support for some of these standards is not yet available,
but early implementations exist. The IBM Emerging Technologies Toolkit (ETTK),
for example, provides an implementation of WS-ReliableMessaging. The toolkit
can be downloaded from:

http://www.alphaworks.ibm.com/tech/ettk

Web services security
In theory, Web services can leverage any security model that is appropriate to
the underlying communication technologies. (SOAP/HTTP can utilize basic
HTTP authentication or SSL authentication and encryption.) However, such
simple point-to-point models are insufficient for the widespread integration needs
of SOA. For example:

� Communication security does not recognize the different between SOAP
message headers and the SOAP message body.

� Credentials may be technology-specific to the communication mechanism,
but inappropriate to communication mechanisms that are used farther down
the interaction chain.

� Combining many interactions in a secure overall chain involves trust models
between the participants in the chain. Such models are often customized or
proprietary, and are not consistent with flexibly changing the participants in
the chain as they imply a technology barrier to participation.

In 2002, IBM and Microsoft proposed an architecture and roadmap for Web
services security (WS-Security). This set out a framework consisting of several
Web services specifications, including WS-Security, WS-Trust, WS-Privacy, and
WS-Policy. It also accommodated existing security technologies such as
Kerberos, XML Digital Signatures and XML Encryption.

Support for the basic WS-Security standards is available in existing products and
can be used to implement secure Web Services solutions. As described in
“Security issues affecting the Enterprise Service Bus” on page 89, understanding
the security requirements of specific SOA situations and selecting appropriate
technologies, include those compliant with the WS-Security standards, is a key
decision in SOA implementation.

Further information
� Security in a Web Services World: a Proposed Architecture and Roadmap

http://www.ibm.com/developerworks/library/ws-secmap/

 Chapter 3. Web services and service-oriented architecture 59

http://www.alphaworks.ibm.com/tech/ettk
http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

WS-ReliableMessaging and SOAP/JMS
As discussed previously, the HTTP protocol that is used widely in SOAP
interactions and specified in the WS-I basic profile offers relatively poor reliability
in contrast to communication protocols that are often associated with valuable
business transactions, such as WebSphere MQ. Many SOA scenarios involve
interactions that require a level of delivery assurance beyond that provided by
HTTP.

The WS-ReliableMessaging specification defines a protocol for reliable
communication (including SOAP messages) that use a variety of communication
technologies, which may themselves be less reliable. An updated specification
was published in March 2004, but production support is not yet available in
middleware products.

Until WS-ReliableMessaging is widely available, alternative approaches are
possible using implementations of SOAP over more reliable communication
infrastructures. For example, SOAP messaging is supported through the JMS
API to WebSphere MQ by WebSphere MQ, the Web Services Gateway, and
WebSphere Business Integration Server Foundation. However, such approaches
tend to be implementations by specific technology vendors so, although they are
useful in particular SOA implementations, they do not have all of the potential
benefits of a fully open-standard implementation.

Further information
� Updated: Web Services Reliable Messaging: A new protocol for reliable

delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� Implementation Strategies for WS-ReliableMessaging: How
WS-ReliableMessaging can interact with other middleware communication
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

Business Process Execution Language for Web Services
As the encapsulation and exposure of business functions as services in an SOA
enables the definition of processes consisting of those services, the Business
Process Execution Language for Web Services (BPEL4WS) provides a
standard, XML language for expressing business processes consisting of
functions that are defined through WSDL interfaces. BPEL4WS supports both
short-lived processes and long-lived processes (processes that must wait at
certain points until some event occurs, such as the receipt of an event).

60 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/library/ws-secroad/
http://www.ibm.com/developerworks/webservices/library/ws-rm/
http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

As with WSDL, BPEL4WS has both design time and runtime uses. At design
time, development or modeling tools can use, import, or export BPEL4WS to
enable business analysts to specify processes and developers to refine them and
bind process steps to specific service implementations. However, runtime
choreography and workflow engines can use BPEL4WS to control the execution
of process and invoke the services that are required to implement them.

Although BPEL4WS is a relatively new standard, product support such as
WebSphere Business Integration Server Foundation V5.1 is available. This
provides additional facilities to compensate failed processes (a proprietary
equivalent to the WS-BusinessActivity standard described in the next section,
“Web services transactions”) and provide a user workflow interface to enable
human actions to fulfill WSDL-defined steps in a BPEL4WS process.

Further information
� BPEL4WS specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with BPEL4WS, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� BPEL4WS support in WebSphere Business Integration Server Foundation

http://www.ibm.com/software/integration/wbisf/features/

� BPEL4WS support in WebSphere Studio Application Developer Integration
Edition

http://www.ibm.com/software/integration/wsadie/features/

Web services transactions
Although WS-ReliableMessaging will provide a means to assure the delivery of
individual communications in a Web services interaction, a means is also
required to control the integrity of business transactions in an SOA that consist of
one or more Web services invocations or interactions.

Within the framework of the Web services coordination (WS-Coordination)
specification, both synchronous (WS-AtomicTransaction) and long-lived
(WS-BusinessActivity) transaction models have been defined. These replace the
previous WS-Transaction specification.

The WS-AtomicTransaction specifies a model for synchronous, two-phase
committal of distributed transactions using Web services protocols.
WS-BusinessActivity defines an asynchronous model for compensating failed
processes using undo actions to reverse the affects of individual steps of the
process. Neither specification has mature product support to date.

 Chapter 3. Web services and service-oriented architecture 61

http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www.ibm.com/software/integration/wbisf/features/
http://www.ibm.com/software/integration/wsadie/features/

Further information
� WS-AtomicTransaction specification

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� Transactions in the world of Web Services, part 1 and part 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

Web Services Policy Framework (WS-Policy)
The Web Services Policy Framework is intended to provide a set of languages
by which service requesters and providers can express their requirements and
capabilities concerning QoS of service interactions, such as security,
transactionality, and communication reliability. Eventually a framework of such
languages, supported by Enterprise Service Bus middleware, will enable
open-standard implementations of negotiated coupling between various aspects
of service interactions. (See 3.2.1, “Coupling and decoupling of aspects of
service interactions” on page 39.)

A WS-Policy specification is available, although specific policy languages for
quality of service aspects such as security are still required, and product support
has yet to emerge.

Further information
� WS-Policy framework specification

http://www.ibm.com/developerworks/library/ws-polfram/

� Web Services Policy Framework: New specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

Web Services Resource Framework (WS-ResourceFramework)
As we write this book, WS-ResourceFramework is an architectural proposal
rather than a standard, but it relates to some of the aspects of SOA that we have
only touched on in the discussion of Web services (namely the design, rather
than technical, characterization of services). In 3.2.2, “Designing connectionless
services” on page 45, we discussed the relationship between service definitions,
processes and stateful behavior, and suggested some techniques for designing
flexible services to participate in stateful interactions.

62 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/library/ws-atomtran/
http://www.ibm.com/developerworks/webservices/library/ws-busact/
http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/
http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html

In order to enable middleware to provide increasingly sophisticated support for
such stateful interactions, the Web Services Resource Framework provides a
model for associating Web services with stateful resources (for example data,
such as rows in a database), as opposed to stateful processes (as can be
accomplished with BPEL4WS), which is essentially a model for making Web
services middleware and infrastructure aware of stateful identifiers such as
transaction IDs.

Further information
� WS-ResourceFramework overview

http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpa
per.html

3.4 Emerging infrastructure components for Web
services and SOA

In addition to the ongoing evolution of the basic SOA concepts and Web services
technologies, architectures and infrastructures for SOA are evolving some
common components. These components are increasingly forming the basis for
packaged technologies that are offered by IT vendors. In this section, we discuss
a few of the more obvious or important infrastructure and architecture
components.

Enterprise Service Bus
Although the basic Web services technologies, particularly SOAP/HTTP, can
provide a certain quality of service to SOA by simply using existing Internet and
intranet infrastructures, many enterprise requirements demand higher qualities of
service, which require a dedicated infrastructure. This infrastructure must
support both the established basic Web services technologies, established
middleware communication technologies such as WebSphere MQ, and,
eventually, emerging standards such as WS-ReliableMessaging.

Similarly, by just enabling or adding Web service interactions that use existing
Internet and intranet infrastructure between systems in an architecture, many
individual point-to-point integrations can be created. This has long been known
to be difficult to maintain and evolve, hence the broad use of Enterprise
Application Integration middleware supporting hub-and-spoke integration
patterns.

These requirements to provide an appropriately capable and manageable
infrastructure for Web services and SOA are coalescing into the concept of the

 Chapter 3. Web services and service-oriented architecture 63

http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html

Enterprise Service Bus, which will be the subject of much of this redbook, from
Chapter 4, “Enterprise Service Bus and SOA patterns” on page 73 onward.

Service directories and brokers
Although the UDDI directory specification was one of the earlier Web services
specifications, it is implemented in only a small number of Web services
implementations. Many Web service or SOA implementations use either simpler,
design-time directories (perhaps based around collaboration technology) or
customized service directories (often using database technology).

However, a key benefit of SOA, particularly in enabling on demand solutions, is a
more flexible selection of service providers. This can give businesses the choice
of either providing their own service implementations to support their business
processes or selecting from services provided by partner organizations. Some
service providers may implement the service themselves, and others might be
brokers for several end-service providers.

Similarly, as Web services standards mature to support increased security, trust
models, and declarative policies, the use of services that are discovered
dynamically in public directories may become a more attractive option.

Several SOA implementations have already implemented some or all of these
ideas, often with significant customized development. In time, products,
standards, and architecture and design patterns are likely to evolve toward a
number of well-defined intermediary models, including directories and brokers.

Service choreography
The desire to explicitly model and execute business processes is nothing new:
Business analysis tools have been available for many years, and workflow
function has been implemented in many technologies, from legacy systems to
packaged applications to collaboration and groupware technology.

However, the emergence of service-oriented architecture and the Web services
standards is opening new opportunities in this area. The SOA principles provide
guidelines for defining services and processes that are likely to be more flexible
and can be implemented in existing systems. The Web services technologies
provide new, standard means of exposing and defining those services, and
choreographing them into business processes.

Although this is still a new area, the appropriateness of SOA and Web services to
long-standing requirements to model and automate processes is strong enough
that this trend is likely to grow swiftly over the next few years.

64 Patterns: Implementing an SOA Using an Enterprise Service Bus

User access to services
Service-oriented architecture specifies the use of interfaces to define
encapsulated, reusable business function: in part, those interfaces identify a
business function and specify the data required to interact with it. This is
precisely the purpose of many application user interfaces: to enable users to
identify a function, collect the data required to invoke it, and return the outcome
to the user.

This correspondence has led to several interesting patterns emerging in
providing user access to services and Web services:

� Portal technologies, such as WebSphere Portal Server, offer the capability to
automatically present some Web services as portlets; however, this is often
dependent on the addition of specific display-related information to the Web
services description.

� The Oasis Remote Portlet Web Services specification provides an open
standards means to exposed Web services in a manner that is suitable for
display by portal technology, but the standard is relatively recent so full
product support may take some time to emerge.

� The World Wide Web Consortium recently published the xForms specification
for device-independent description of the data model for user interfaces. The
content of xForms descriptions bears several similarities with that of WSDL
descriptions of the data that is required by and returned from a service. If a
service interface can be transformed manually or programmatically into an
xForms definition, then xForms UI generators can be used to generate a
variety of Web-based, desktop, or other UIs. The xForms specification can be
found at:

http://www.w3.org/TR/xforms/

3.5 Web services and SOA together
The link between Web services and SOA is threefold:

� Web services provide an open standard and machine-readable model
(WSDL) for creating explicit, implementation-independent descriptions of
service interfaces.

� Web services provide communication mechanisms that are
location-transparent and interoperable.

� Web services are evolving through BPEL4WS, document-style SOAP, and
WSDL, and emerging technologies such as WS-ResourceFramework to
support the technical implementation of well-designed services that
encapsulate and model reusable function in a flexible manner.

 Chapter 3. Web services and service-oriented architecture 65

http://www.w3.org/TR/xforms/

Together, Web services and SOA have the potential to address the technical
issues that we introduced at the start of this section:

� (WS) A multitude of technologies and platforms support your business
systems.

Web services are a set of open-standard technologies that are supported by
most of the IT industry and by the Web Services Interoperability organization.
Their basis in simple, text-based, and open-standard technologies such as
XML and HTTP, and the fact that they can leverage more sophisticated
interoperable technologies such as asynchronous messaging, means that
they can be supported in the vast majority of IT environments. Increasing
ubiquity and maturity of product support means that implementing and
integrating Web services will become increasingly efficient.

� (SOA) Business process models are a mixture of people practices,
application code, and interactions among people and systems or systems and
systems.

Although SOA is an approach to architecture that must be applied to systems
and integrations, it specifies a set of principles and techniques that encourage
the encapsulation and modeling of reusable business functions and
processes. Recent and emerging trends in Web services, such as BPEL4WS
and WS-ResourceFramework, will increasingly support the modeling
concepts of SOA.

� (SOA) Changes to one system tend to imply ripples of change at many levels
to many other systems.

SOA specifies several principles and techniques for achieving the
encapsulation of service function and the loose coupling of service
interactions. These techniques minimize the cases where change to one part
of a system implies changes to other parts to those cases where the implied
changes are necessary to support the underlying changes to the way the
system supports the business.

� (WS) No single, fully functional integration solution will talk to them all.

At one level, the use of widely available and interoperable basic Web services
open standards such as SOAP/HTTP with existing Internet and intranet
infrastructure provide an integration solution that already has impressive
reach, and it will become increasingly ubiquitous. Where increased
manageability and qualities of service are required, emerging Enterprise
Service Bus middleware, which combine Web services and SOA concepts
with the power of traditional Enterprise Application Integration middleware
technology, will provide a sophisticated and widely interoperable integration
infrastructure.

66 Patterns: Implementing an SOA Using an Enterprise Service Bus

� (WS) Deployment of any single, proprietary integration solution across the
enterprise is complex, costly, and time consuming.

Where basic Web services that utilize existing infrastructure are appropriate,
deployment costs and efforts are minimal. The increasing availability of Web
services support in Enterprise Application Integration middleware also
enables the integration of different middleware infrastructures. Similarly,
emerging Enterprise Service Bus technologies will interact with existing
integration infrastructure rather than automatically replace it. So, although
SOA and Web services cannot remove the cost and effort of deploying
integration infrastructure, they offer several characteristics to minimize it.

� (WS) Assuming that you get past that, will your integration solution talk to your
partners? Your future partners?

The Web services technologies have proven effective in many B2B
integrations, where their open standards basis and use of simple, existing
infrastructure and protocols makes them particularly effective. Recent and
emerging standards such as WS-Security add to the sophistication of
interaction that is possible when using Web services in this model.

� (SOA) There is no single data, business, or process model across (or beyond)
the enterprise.

Although they are not a magic solution, the SOA principles define an
approach that enables organizations to progressively expose functions across
their business as services and to combine those services into process. Over
time, businesses that take this approach will improve the consistency of their
business and process models, and will leverage the use of business process
modeling and automation technology to more explicitly control and monitor
their execution of processes.

� (WS) Not all integration technologies work as well across a wide area network
or the Internet as they do across a local area network

The Web services technologies support multiple protocols, so they can use
the simplest protocols available, such as HTTP when that offers an
advantage, or leverage other infrastructures such as WebSphere MQ when
that is more appropriate.

3.6 Conclusion
We began this chapter by discussing the factors that drive businesses to
consider service-oriented architecture and Web services, and we elaborated on
the technical issues that make it hard (in practice) to achieve goals of flexible
integration and process automation that are commensurate with those factors.

 Chapter 3. Web services and service-oriented architecture 67

We have discussed how the key features of SOA and Web services enable us to
address those technical issues, and we have offered new opportunities for more
flexible, rapid, and widespread integration, in a model that is consistent with the
exposure of business function as services, and the choreography of those
services into processes that can be modeled, executed, and monitored:

� Service-oriented architecture defines concepts and general techniques for
designing, encapsulating, and invoking reusable business functions through
loosely bound service interactions. Most of the techniques have been proven
individually in previous technologies or design styles. SOA unites them in an
approach intended to bring encapsulation and re-use to the enterprise level.

� Web services provide an emerging set of open-standard technologies that can
be combined with proven existing technologies to implement the concepts
and techniques of SOA.

� Industry support for Web services standards, interoperability among different
implementations of Web services, and the infrastructure technology that is
required to support an SOA give technology customers increasingly mature
and sophisticated technologies that are suitable for SOA implementation.

These techniques and technologies give companies the tools that are required to
implement flexible SOAs and evolve toward an on demand business model.
However, at the current time and for some time to come, the technologies will be
evolving rather than mature and stable. Therefore, individual SOA solutions must
make carefully balanced solutions among customized, proprietary, and
open-standard technologies, which characteristics and components of SOA to
implement, and which areas of business function and process to apply them to.
Of course, these decisions will be balanced between business benefits,
technology maturity, and implementation or maintenance efforts.

3.7 Further information
Consult these sources for more information:

� The IBM Redbook Patterns: Service-Oriented Architecture and Web
Services, SG24-6303

� “Web Service Oriented Architecture - The Best Solution to Business
Integration,” by Annrai O'Toole, Cape Clear Software CEO, at:

http://www.capeclear.com/clear_thinking1.shtml

� “SOA - Save Our Assets,” by Lawrence Wilkes, CBDI Forum (subscription
required) at:

http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start_re
c=0

68 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.capeclear.com/clear_thinking1.shtml
http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start_rec=0
http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start_rec=0

� The IBM series of articles “Migrating to a Service Oriented Architecture” by
Kishore Channabasavaiah, Kerrie Holley, and Edward M. Tuggle Jr., at:

http://www.ibm.com/developerworks/library/ws-migratesoa/
http://www.ibm.com/developerworks/webservices/library/ws-migratesoa2/

� “Service-Oriented Architecture expands the vision of Web services”

http://www.ibm.com/developerworks/webservices/library/ws-soaintro.html

� “Coarse-Grained Interfaces Enable Service Composition in SOA,” by Jeff
Hanson at:

http://builder.com.com/5100-6386-5064520.html

� Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, Perspectives on Web
Services, Springer, 2003, ISBN 3-540-00914-0

 Chapter 3. Web services and service-oriented architecture 69

http://www.ibm.com/developerworks/webservices/library/ws-soaintro.html
http://www-106.ibm.com/developerworks/library/ws-migratesoa/
http://builder.com.com/5100-6386-5064520.html
http://www-106.ibm.com/developerworks/webservices/library/ws-migratesoa2/

70 Patterns: Implementing an SOA Using an Enterprise Service Bus

Part 2 Enterprise
Service Bus

This section defines the SOA patterns, including the Enterprise Service Bus
(ESB) pattern, that extend the scope of the Patterns for e-business. A top-down
approach is used to help you model an ESB architecture for your given business
scenario:

� Common business scenarios are described in 4.5, “Common ESB scenarios”
on page 112. Each business scenario lists the SOA patterns that are relevant
to it.

� The ESB subset of the SOA patterns are described in 4.4, “SOA profile of the
Application Integration patterns” on page 90.

� The SOA patterns and components have Product mappings defined, as
shown in 5.2, “SOA component product mappings” on page 140.

Implementations of the Products mappings are described in Part 3 of this
redbook.

Part 2

© Copyright IBM Corp. 2004. All rights reserved. 71

72 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 4. Enterprise Service Bus and
SOA patterns

This chapter describes the Enterprise Service Bus (ESB) and its role within a
service-oriented architecture (SOA). It discusses:

� The role of the Enterprise Service Bus in SOA

� A model for analyzing ESB requirements and capabilities

� Common scenarios for ESB requirements

� SOA patterns (including ESB patterns) that are based on the Patterns for
e-business Process Integration patterns

4

© Copyright IBM Corp. 2004. All rights reserved. 73

4.1 Introducing the Enterprise Service Bus
Chapter 3, “Web services and service-oriented architecture” on page 33,
described the principles of SOA by defining the characteristics of services and
their interactions. The redbook Patterns: Service-Oriented Architecture and Web
Services, SG24-6303, describes the implementation of such service interactions
using the Direct Connection pattern in the Patterns for e-business Process
Integration patterns.

However, enterprises that wish to implement an SOA need a more sophisticated,
manageable infrastructure that can support high volumes of individual
interactions. Additionally, any such infrastructure should support more
established integration styles, such as message-oriented and event-driven
integration, or at least integrate with existing infrastructures. Such an
infrastructure should support enterprise-level qualities of service. The Enterprise
Service Bus is emerging as the unifying concept for such infrastructure, and it is
the subject of this chapter and much of the rest of this book.

The Process Integration patterns define Broker, Serial Process, and Parallel
Process as interaction styles that can be mediated by infrastructure components,
in addition to the Direct Connection pattern. This chapter demonstrates that the
Enterprise Service Bus is consistent with support for the Broker pattern and its
Router variation, whereas Serial Process, Parallel Process, and their Workflow
variations are the subject of other components of SOA.

The concept of an Enterprise Service Bus was first described as “a new
architecture that exploits Web services, messaging middleware, intelligent
routing, and transformation” by Roy Schulte of Gartner, in the paper “Predicts
2003: Enterprise Service Buses Emerge” in December 2002. Since then, the
ESB has been the subject of much debate in the SOA and Web services
community. Some of this debate has focused specifically on Java and Web
services technologies to such an extent that Andrew Binstock (Integration Watch)
remarked in December 2003:

“Am I the only one who thinks this [ESB] emperor has no clothes? The only
thing this vision of the ESB offers that cannot be found in IBM’s WebSphere
MQ and in TIBCO’s various products is that the latter are not inherently based
on Java specifications... ESBs have no defining advantage over products
such as WebSphere MQ, and they lack its credentials.”

In this chapter we attempt to resolve issues that concern the nature and benefits
of the ESB by analyzing its capabilities and indicating ways in which an ESB can
be built. To do so, we combine SOA design principles, Web services technologies
and existing features of Enterprise Application Integration middleware, consistent

74 Patterns: Implementing an SOA Using an Enterprise Service Bus

with both the original Gartner vision and an appreciation of the value of mature
middleware technologies.

Figure 4-1 maps the SOA design method to the components that were defined in
2.1.3, “Key requirements for integration flexibility” on page 24. It shows that the
SOA design method is unified by emerging methods and techniques for SOA
design that combine the technologies and disciplines of Web services and the
ESB.

Figure 4-1 On demand linchpins

We describe the Enterprise Service Bus as providing a set of infrastructure
capabilities, implemented by middleware technology, that enable the integration
of services in an SOA. A variety of ESB capabilities have been identified and are
summarized here, but not all of them are required in every situation in which
some form of bus can deliver value. We also define a set of minimum capabilities
that fulfill the most basic needs for an Enterprise Service Bus that are consistent
with the principles of SOA.

Identifying these minimum capabilities enables us to identify which existing
technologies can be used to implement an ESB. By considering how the
requirements of a specific situation indicate the need for additional capabilities,
we can choose the most appropriate implementation technology for that
situation.

Coupling business processes

Decoupling
technology

Enabling infrastructure

SOA Design
Method

Web
Services

ESB

SOA Design
Principles

 Chapter 4. Enterprise Service Bus and SOA patterns 75

4.2 The role of the ESB in SOA
In order to implement an SOA, both applications and infrastructure must support
the SOA principles. Enabling applications involves the creation of service
interfaces to existing or new functions, either directly or through the use of
adapters. Enabling the infrastructure at the most basic level involves the
provision of capability to route and transport service requests to the correct
service provider. The role of the Enterprise Service Bus is, in part, simply to
enable the infrastructure in this way.

The true value of the Enterprise Service Bus concept, however, is to enable the
infrastructure for SOA in a way that reflects the needs of today’s enterprise: to
provide suitable service levels and manageability, and to operate and integrate in
a heterogeneous environment. The implications of these requirements go
beyond basic routing and transport capability, and they are described in The
Enterprise Service Bus Capability Model in 4.3, “A capability model for the
Enterprise Service Bus” on page 82.

The ESB should enable the substitution of one service implementation by
another with no effect to the clients of that service. This requires both the service
interfaces that are specified by SOA and that the ESB allows client code to
invoke services in a manner that is independent of the service location and
communication protocol that is involved.

The ESB supports multiple integration paradigms
In order to fully support the variety of interaction patterns that are required in a
comprehensive SOA (for example, request / response, publish / subscribe,
events), the Enterprise Service Bus must support in one infrastructure the three
major styles of Enterprise Integration:

� Service-oriented architectures in which applications communicate through
reusable services with well-defined, explicit interfaces. Service-oriented
interactions leverage underlying messaging and event communication
models.

� Message-driven architectures in which applications send messages through
the ESB to receiving applications.

� Event-driven architectures in which applications generate and consume
messages independently of one another.

The ESB does this while providing additional capabilities to mediate or transform
service messages and interactions, enabling a wide variety of behaviors and
supporting the various models of coupling interaction that are described in 3.2.1,
“Coupling and decoupling of aspects of service interactions” on page 39. These

76 Patterns: Implementing an SOA Using an Enterprise Service Bus

capabilities are discussed in more detail in 4.3, “A capability model for the
Enterprise Service Bus” on page 82.

Figure 4-2 shows a high-level view of the Enterprise Service Bus.

Figure 4-2 The Enterprise Service Bus

The ESB centralizes control and distributes processing
The ESB is sometimes described as a distributed infrastructure and is contrasted
with solutions (such as broker technologies) that are commonly described as
hub-and-spoke. Figure 4-3 illustrates this common depiction of the ESB.
However, this view of the ESB is not very helpful in describing how the ESB is
physically implemented. For example, what infrastructure components implement
the ESB, which is depicted as a line in this diagram?

Figure 4-3 The Enterprise Service Bus as a physical infrastructure

In contrast, hub-and-spoke integration solutions (Figure 4-4) seek to centralize
control of configuration: routing information, service naming, and so forth.

Bus: ESB

Service
Requester

Service
Requester

Service
Requester

Service
Provider

Service
Provider

Service
Provider

 Chapter 4. Enterprise Service Bus and SOA patterns 77

Figure 4-4 Hub-and-spoke integration

In the Patterns for e-business Process Integration patterns an ESB is classified
as a type of bus, which in turn is classified as a type of hub, as shown in
Figure 4-5 and Figure 4-6 on page 79.

Figure 4-5 Hub variation: Bus

Service
Requester

Service
Requester

Service
Requester

Hub:
ESB

Service
Provider

Service
Provider

Service
Provider

This variant will normally be
used with federated adapters to
connect the clients to the
protocols and message formats
in use on the Bus

Bus

Hub

A Hub may be physically
distributed as a set of federated
hubs – this variant is described
as a Bus

Hub

Hub Hub

A

A A

78 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-6 Hub, Bus, and ESB relationship

The distinction between distributed bus and centralized hub-and-spoke solutions
is really a false one. Two different issues are being addressed here: the
centralization of control and the distribution of infrastructure. In initial or
small-scale implementations of integration solutions, the physical infrastructure is
likely to be centralized: concentrated on a single cluster, or hub, of servers.
However, as the implementation evolves, the infrastructure may become more
physically distributed, as a bus, while retaining at least logically the central
control over configuration. Figure 4-7 shows the resulting implementation of an
ESB. (The Configuration and Control Services node is shown dotted to illustrate
that it is a logical construct.)

Figure 4-7 The ESB as a distributed infrastructure with centralized control

� Hub – provides a logically
centralized integration service
(for example Network, Integration
Server, Process Manager,
Database)

� Bus – a Hub which supports a
distributed or federated
implementation

� ESB – a Bus which (amongst other things)
supports a virtual namespace manageable
as a single image

Hub

Bus

ESB

Bus: Enterprise Service Bus

Configuration and Control Services

Hub:
Runtime Node

Hub:
Runtime Node

Hub:
Runtime Node

Hub:
Runtime Node

Configuration

Service
Requester

Service
Requester

Service
Requester

Service
Provider

Service
Provider

Service
Provider

 Chapter 4. Enterprise Service Bus and SOA patterns 79

Of course, this wide distribution of broker technology in a bus pattern is
dependent on the capabilities of specific technologies to support such distribution
patterns. Equally important from the perspective of incremental implementation
and deployment of ESB technology is the ability to extend existing deployments
by adding further distributed processing capacity without affecting the existing
infrastructure.

The role of the ESB and other SOA components
The ESB is not the only infrastructure component in a SOA. Although individual
scenarios vary, there are other commonly occurring components whose role we
should position relative to the ESB:

� The Business Service Directory, which provides a taxonomy and details of
available services to systems that participate in an SOA.

� The Business Service Choreography, which is used to orchestrate sequences
of service interactions into short or long-lived business processes.

� The ESB Gateway, which is used to provide a controlled point of external
access to services where the ESB does not provide this natively. Larger
organizations are likely to keep the ESB Gateway as a separate component.
An ESB Gateway can also be used to federate ESBs within an enterprise.

Figure 4-8 on page 81 illustrates these components interacting with the ESB in
an SOA.

80 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-8 The role of the Enterprise Service Bus in a service-oriented architecture

Business Service Directory
In order to perform routing of service interactions, the ESB obviously requires at
least basic routing information, which might be provided by an ESB Namespace
Directory, or by more simple means such as a routing table. However, this routing
information is not necessarily the same as the business service directory SOA
component; the role of the business service directory is to provide details of
services that are available to perform business functions that are identified within
a taxonomy. The business service directory might be an open-standard UDDI
directory, or more basic forms might be implemented as a design-time service
catalogue, perhaps using collaboration technology. Such catalogues can achieve
one of the primary goals of a business service directory: to publish the availability
of services and encourage their reuse across the development activity of an
enterprise.

The vision of Web services defines an open-standard UDDI directory that
enables the dynamic discovery and invocation of business services. However,
although technologies mature toward that vision, more basic solutions are likely
to be implemented in the near term.

Infrastructure components
for service-oriented
architecture

Internal
Service

Providers

ESB Gateway

Business
Service

Choreography

Business Service
Directory

 ESB Namespace
Directory

Enterprise Service Bus

Routing, transformation,
mediations, security, and so forth

External
Service

Providers

Internal
Service

Requesters

External
Service

Requesters

 Chapter 4. Enterprise Service Bus and SOA patterns 81

Business Service Choreography
The role of the Business Service Choreography and its relationship to the
granularity or type of services that comprise an SOA was described in 3.2.3,
“Service granularity and choreography” on page 47. The role of the
choreographer is usually to define and execute business processes, whose
configuration and flows are determined by business logic. Such behavior does
not usually have a place in an infrastructure component such as the Enterprise
Service Bus.

However, the ESB is responsible for infrastructure functions that involve service
sequencing, aggregations and mediations (such as splitting and recombining
messages), or invoking technical infrastructure services around invocations of
business services. The dividing line between business and technical logic
controlling such sequencing and mediations is an indistinct one, so in some
cases logic that could be considered as business logic to some extent may in fact
be implemented in the ESB. Additionally, many of the capabilities that are
required to sequence technical functions and mediations in the ESB are similar
to those that are required to choreograph services in the Business Service
Choreography, so it might be that in some cases the same technology is used to
implement both.

ESB Gateway
An ESB Gateway makes the services of one organization available to others,
and vice versa, in a controlled and secure manner. Although this might require
capabilities such as business partner provisioning and management, which are
distinct from ESB capabilities, the intent of this component is different from the
intent of the ESB, which is to provide a service infrastructure within an
organization. For both these reasons, the ESB Gateway is likely to be integrated
to, but not part of, the Enterprise Service Bus. An ESB Gateway can also be
used to federate ESBs within an enterprise.

4.3 A capability model for the Enterprise Service Bus
Table 4-1 on page 83 summarizes and categorizes some of the Enterprise
Service Bus capabilities that are identified in existing literature. Although some
are quite basic, some (such as autonomic or intelligent capabilities) represent
significant steps toward an on demand Operating Environment. These
capabilities are used to assess the suitability of various existing technologies for
implementing the ESB.

82 Patterns: Implementing an SOA Using an Enterprise Service Bus

Table 4-1 Categorized Enterprise Service Bus capabilities

Communication Service interaction

� Routing
� Addressing
� Protocols and standards (HTTP,

HTTPS)
� Publish / subscribe
� Response / request
� Fire & forget, events
� Synchronous and asynchronous

messaging

� Service interface definition (WSDL)
� Substitution of service implementation
� Service messaging models required

for communication and integration
(SOAP, XML, or proprietary Enterprise
Application Integration models)

� Service directory and discovery

Integration Quality of service

� Database
� Legacy and application adapters
� Connectivity to enterprise application

integration middleware
� Service mapping
� Protocol transformation
� Data enrichment
� Application server environments

(J2EE and .Net)
� Language interfaces for service

invocation (Java, C/C++/C#)

� Transactions (atomic transactions,
compensation, WS-Transaction)

� Various assured delivery paradigms
(WS-ReliableMessaging or support
for Enterprise Application Integration
middleware)

Security Service level

� Authentication
� Authorization
� Non-repudiation
� Confidentiality
� Security standards (Kerberos,

WS-Security)

� Performance
� Throughput
� Availability
� Other continuous measures that might

form the basis of contracts or
agreements

Message processing Management and autonomic

� Encoded logic
� Content-based logic
� Message and data transformations
� Message / service aggregation and

correlation
� Validation
� Intermediaries
� Object identity mapping
� Service / message aggregation
� Store and forward

� Administration capability
� Service provisioning and registration
� Logging
� Metering
� Monitoring
� Integration to systems management

and administration tooling
� Self-monitoring and self-management

 Chapter 4. Enterprise Service Bus and SOA patterns 83

Many of these capabilities can be implemented either using proprietary
technologies or through the use of open standards. This is similar to the different
techniques that can be applied to coupling the various aspects of service
interactions as described in “Coupling and decoupling of aspects of service
interactions” on page 39. Indeed, many of the ESB capabilities are concerned
with supporting those coupling and decoupling techniques.

Decisions about whether any capability should be implemented through a
customized, proprietary, or open-standard implementation are among the key
decisions when designing SOA architectures. The trade-offs involve:

� Whether an open-standards approach offers specific interoperability benefits
through “out-of-box” support for multiple technologies, and whether
interoperability will actually be achieved without significant work. (For
example, do the WS-I interoperability profiles cover those standards?)

� What service level requirements around performance, scalability, and delivery
assurance are required, how do these match the capabilities and maturity of
proprietary versus open-standards technologies, and how do these contrast
with what could be achieved through a customized approach?

� What combination of capabilities, whether customized, proprietary, or
open-standard, is required, and which technologies support implementation
of that combination?

We do not discuss each capability or category in great detail in this redbook;
instead, we focus on those that are of the most interest in deciding how to
implement an ESB, and which technologies are available to implement them.

4.3.1 The minimum capability ESB implementation
In 3.2.1, “Coupling and decoupling of aspects of service interactions” on
page 39, we discussed the characteristics that interactions should have in order
to be designated as services, as this helps us to design architectures that will
indeed achieve the promoted benefits of the SOA approach. In a similar way, we
will try to define some minimum or mandatory characteristics that should be
exhibited by an Enterprise Service Bus. Our goal in doing this is to provide a

Modeling Infrastructure Intelligence

� Object modeling
� Common business object models
� Data format libraries
� Public versus private models for

business-to-business integration
� Development and deployment tooling

� Business rules
� Policy-driven behavior, particularly for

service level, security and quality of
service capabilities (WS-Policy)

� Pattern recognition

84 Patterns: Implementing an SOA Using an Enterprise Service Bus

means by which to assess whether a given proposed ESB architecture or design
is likely to achieve the projected benefits of both SOA and ESB.

In order to do this, we start from the most commonly agreed elements of the ESB
definition:

� The ESB is a logical architectural component that provides an integration
infrastructure consistent with the principles of SOA.

� SOAs consist of services that are defined by explicit, implementation-
independent interfaces. They are loosely bound and invoked through
communication protocols that stress location transparency and
interoperability. Services encapsulate reusable business function.

� The ESB may be implemented as a distributed, heterogeneous infrastructure.

� The ESB provides the means to manage the service infrastructure and the
capability to operate in today's distributed, heterogeneous environment.

We can then define the minimum capabilities that an ESB should have in order to
provide an infrastructure consistent with those principles, and hence consistent
with the promoted benefits of SOA and the Enterprise Service Bus (Table 4-2).

Table 4-2 Minimum capabilities for the Enterprise Service Bus

We are now in a position to assess the suitability of individual technologies or
products for implementing the Enterprise Service Bus; although the minimum
capabilities can help us define which technologies are candidates, the detailed
requirements of any particular scenario drive additional ESB capabilities that can
then be used to select specific appropriate products. Note that at this stage we

Category Capabilities Reason

Communication � Routing
� Addressing
� At least one messaging style (request

/ response, pub/sub)
� At least one transport protocol that is

or can be made widely available

� Provide location transparency and
support service substitution

Integration � Several integration styles or adapters
� Protocol transformation

� Support integration in
heterogeneous environments and
support service substitution

Service
interaction

� Service interface definition
� Service messaging model
� Substitution of service implementation

� Support SOA principles,
separating application code from
specific service protocols and
implementations

Management
and autonomic

� Administration capability � A point of control over service
addressing and naming

 Chapter 4. Enterprise Service Bus and SOA patterns 85

do not require the use of any technologies such as Web Services, J2EE, or even
XML. The use of those technologies is very likely as they fit these requirements
well, but it is not mandatory. This relationship is similar to that between SOA and
the Web services technologies.

Basic SOAP/HTTP and WSDL are not an ESB
Given both the prominence of Web services technologies in current discussions
of SOA and the Enterprise Service Bus, and the fact that many successful
implementations of Web services technologies exist, it is interesting to analyze
what the use of basic Web services technologies (WSDL and SOAP/HTTP)
achieves against the minimum ESB capabilities (Figure 4-9).

� URL addressing and the existing HTTP and DNS infrastructure provide a bus
with routing services and location transparency.

� SOAP/HTTP supports the request/response messaging paradigm.

� The HTTP transport protocol is widely available.

� SOAP and WSDL are an open, implementation-independent messaging and
interfacing model.

Figure 4-9 SOAP/HTTP and WSDL through the Internet do not provide an ESB

"Service Bus" Components

Service Requester

WSDL/SOAP
Interface

Service Adapter

WSDL/SOAP
Interface

Internet or IntranetDNS Router DNS Router

Service Adapter

WSDL/SOAP
Interface

Service Adapter

WSDL/SOAP
Interface

Proprietary Interfaces

Existing Components Providing Services
(Legacy, Applications, EAI Middleware, and so forth)

Service Requester

WSDL/SOAP
Interface

Service Requester

WSDL/SOAP
Interface

Service Requester

WSDL/SOAP
Interface

86 Patterns: Implementing an SOA Using an Enterprise Service Bus

Although the use of SOAP/HTTP and WSDL in this way has many advantages,
there are some important ways in which this scenario falls short of the
capabilities of the Enterprise Service Bus:

� The scenario relies on the provision of interoperable SOAP/HTTP
enablement of each participating system. As the Web services standards are
still maturing, there are many systems for which this will not be feasible. An
Enterprise Service Bus should provide some form of support for alternative
integration techniques.

� Control over service addressing and routing is dispersed between client
invocation code, adapter configurations, and the DNS infrastructure. There is
no single point of infrastructure control — in other words, this is a
point-to-point integration style.

� Vitally, there is no capability to substitute the one implementation of a service
provider for another without changing the service requesters; clients and
provider code tend to be bound to service invocations over specific protocols
and to specific addresses.

Finally, note that the use of adapters to integrate using SOAP/JMS shares many
of the same characteristics of the SOAP/HTTP scenario.

Requirements for ESB capabilities beyond the minimum
As just noted, the specific requirements of any SOA or ESB scenario for
capabilities beyond the minimum ESB set can be used to identify appropriate
implementation technologies. The remainder of this section, and Chapter 5,
“ESB and SOA component implementations” on page 133, discuss how
scenarios might be analyzed in order to determine the required capabilities and
possible implementation technologies.

In particular, the following types of requirements are likely to lead to the use of
more sophisticated technologies, either now or over time:

� Quality of service and service-level capabilities.

� Higher-level SOA concepts, such as a service directory, and transformations.

� IBM on demand Operating Environment demands, such as management and
autonomic capabilities and intelligent capabilities.

� Truly heterogeneous operation across multiple networks, multiple protocols,
multiple domains of disparate ownership.

4.3.2 The Enterprise Service Bus is an infrastructure component
In “The role of the ESB and other SOA components” on page 80, the ESB is
positioned as an infrastructure component, and as such as a component that

 Chapter 4. Enterprise Service Bus and SOA patterns 87

does not host or execute business logic. This is in contrast to components such
as service requesters, service providers, and the Business Service
Choreography whose role is to handle business logic.

However, it is often difficult to draw a clear line between what is business logic
and what is infrastructure function. As increasingly intelligent infrastructures are
designed and implemented during the move to an on demand Operating
Environment, we will often confront the dilemma as to what is or is not business
logic, and what function should be implemented in the Enterprise Service Bus or
elsewhere.

Some examples of logic that might be difficult to categorize in this way are:

� Sequencing calls to legacy “screen-scraping” adapters to construct one
business transaction from several fine-grained legacy transactions.

� Disaggregating and aggregating messages when broking interactions
between a single requester and multiple providers, particularly where
aggregation involves combining results to a query from multiple sources.

� Sequencing logging, auditing, and metering service invocations around
business service invocations; auditing is a business requirement, so it could
be argued that this sequencing incorporates business logic. As an
infrastructure evolves with on demand capability, do metering services
become business rather than infrastructure function when they link directly to
payment services, for example?

� Content-based routing, where the infrastructure inspects the content of
messages before deciding which service provider to route them to.

From another perspective, many technologies that provide ESB capability offer a
mediations facility between service requesters and providers. Examples in
current technology include WebSphere Business Integration Message Broker
message flows or JAX-RPC handlers. However, all of these are firmly aimed at
technical or infrastructure rather than business function (even when they are
intended, for example, to perform per-transaction billing functions in an on
demand environment – that is viewed as an infrastructure service). So, the ESB
is still consistent with the Broker and Router patterns.

In individual architectures, it is more important that each type of logic is clearly
assigned to one or more components and technologies than that any categoric
distinction is made between off-ESB business logic and on-ESB infrastructure
logic.

88 Patterns: Implementing an SOA Using an Enterprise Service Bus

4.3.3 Security issues affecting the Enterprise Service Bus
The extensive, multi-system integration that is involved in SOAs gives rise to
requirements to provide security across a scope that has not been the focus of
many existing security technologies. We will not cover security issues for SOA
and the ESB in depth, but we will highlight those that may have a particular
influence on ESB design or technology selection.

Point-to-point or end-to-end security
Securing individual interactions in isolation is relatively straightforward, as only
the technologies and requirements of the two interacting parties need to be
considered in designing the security solution. However, if this interaction is
actually part of a multi-step interaction (perhaps between a service requester, a
service broker, and a service provider), things become more complicated:

� Can a “trust” model be used to view the entire interaction as secure, as long
as each constituent interaction is secured? Can this “trust” simply be agreed
in principle, or does it depend on the use of specific security solutions (for
example, authentication using certificates that are provided by a certificate
authority) for the individual interactions?

� Is the infrastructure required to provide an end-to-end security model, for
example, to propagate the service requester identity through the
infrastructure, including brokers or other intermediaries, and use it to
authenticate to the end service provider?

� Is a more sophisticated hybrid model required (for example, enable service
requesters to authenticate to a service broker)? Enable only the broker to
authenticate to and invoke services from service providers. Hide personal
information concerning the clients from the broker, but make it available to the
service provider.

These examples are not intended to be an exhaustive description of security
requirement possibilities, but they indicate some of the complexity that SOA can
drive.

Implementation techniques for ESB security
Whatever the requirements, there are several means to address them:

� Can specific security technologies, such as the Tivoli® security products, be
used to support the security requirements of the infrastructure?

� Can communication-level security techniques (for example, SSL encryption or
certificate authentication) be used to secure individual interactions within a
trust model?

 Chapter 4. Enterprise Service Bus and SOA patterns 89

� Can support for open standards (for example, WS-Security, SAML, Kerberos,
LDAP, x509 certificates) in the infrastructure and other participating systems
be used?

� Can support of open standards or a proprietary security model be added
using extension points to the infrastructure, such as a handler or intermediary
programming models?

� Can some aspects of the security model, such as client identity and
password, be processed as part of the application and data design (for
example, include identity and authorization information in each service
message and process them using application code)? Does such an approach
require specific security applications or components (authentication servers
or providers of security tickets) to be included in the architecture?

All of these approaches are possible, but the industry direction is toward
standards-compliant (such as WS-Security) security features supported by
infrastructure and middleware. However, these standards are relatively recent,
and product support for them is emerging rather than established, particularly
where interoperability is concerned. Therefore, a priority of any ESB architecture
should be to establish the security requirements as early as possible so that they
can be included in the choice of implementation technology.

For more information, consult the following resources:

� Securing Web services tutorial

http://www.ibm.com/developerworks/webservices/edu/ws-dw-ws-secws-i.html

� Best Practices for Web services: Web services security

http://www.ibm.com/developerworks/webservices/library/ws-best11/

4.4 SOA profile of the Application Integration patterns
In this section we will use the Patterns for e-business process-focused
Application Integration patterns (also referred to as Process Integration patterns)
to define a way of modeling the Enterprise Service Bus, and define some SOA
patterns that can be used to design and describe ESB components in an SOA
infrastructure.

For more information about the process-focused Application Integration patterns,
see the modular redpaper e-business Patterns for Application Integration,
REDP3837, which is part of the redbook Patterns: Broker Interactions for Intra-
and Inter-Enterprise, SG24-6075.

90 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/edu/ws-dw-ws-secws-i.html
http://www.ibm.com/developerworks/webservices/library/ws-best11/

4.4.1 Summary of Process Integration patterns
The Process Integration patterns define a set of patterns and a methodology for
using them within the Application Integration patterns in the Patterns for
e-business. The methodology defines a process for analyzing collaboration and
interaction requirements in order to specify requirements for any infrastructure to
support them.

In the most general sense, a collaboration denotes N-to-N activities between
subsystems within a distributed system. Complex collaborations between
subsystems can be broken down into more basic interactions. An interaction
focuses on 1-to-1 or 1-to-N activities originating from a single subsystem. In this
way, complex collaborations involving many subsystems can be decomposed
into simpler interactions that are easier to analyze.

Collaboration patterns
The Process Integration patterns provide a set of Collaboration patterns that are
used to design or describe broad organizational relationships between
applications, and a set of Interaction patterns that are used to describe required
behavior in greater detail.

The Process Integration::Collaboration patterns are shown in Figure 4-10 on
page 92 and can be summarized as follows:

� Composed Service pattern: Represents applications that compose function
from other applications.

� Zone pattern: Is widely applicable and can represent network zones, such as
intranets or demilitarized zones, application server containers, and so on. It is
described in “The Process Integration::Zone pattern” on page 95.

� Hub patterns: Represents dedicated integration infrastructure providing either
basic connection services (a Network Hub), or more advanced services such
as process management, or data integration services (a Collaboration Hub).
Its relevance to the Enterprise Service Bus is described in “The ESB
centralizes control and distributes processing” on page 77.

 Chapter 4. Enterprise Service Bus and SOA patterns 91

Figure 4-10 Process Integration::Collaboration patterns

Figure 4-11 on page 93 shows the Bus pattern, which is a variation of the Hub
pattern. Note that orientation is not significant.

Collaboration HubNetwork Hub

Composed ServiceZone

<Service>New App

SR
SP

SP
Gateway

<Zone>

App
App1

App2

Zone Services Connectors

A

B

D E

CHub

En
ca

ps
ul

at
io

n?

Connection Provision
(Physical Focus)

Service Provision
(Logical Focus)

Ye
s

No A

B

D E

CHub

Gateway

Spectrum

SR

SR

App

App

= application tier = middleware node

92 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-11 Bus pattern as a variation of the Hub pattern

Interaction patterns
The Process Integration::Integration patterns define four styles of interaction
(and several variations) that are listed here in order of increasing flexibility and
sophistication. As the Application patterns build on each other, their capabilities
and reliance on middleware increase, and they require less application
development effort:

� Direct Connection application pattern

The simplest interaction type, which is based on a 1-to-1 topology. It enables
a pair of applications within the organization to directly communicate with
each other.

– Message Connection variation

Applies to solutions where the business process does not require a
response from the target application within the scope of the interaction.

– Call Connection variation

Applies to solutions where the business process depends on the target
application processing a request and returning a response within the
scope of the interaction.

� Broker application pattern

Based on a 1-to-N topology that separates distribution rules from the
applications. It enables a single interaction from the source application to be
distributed to multiple target applications concurrently. This application pattern
reduces the proliferation of point-to-point connections.

– Router variation

Applies to solutions where the source application initiates an interaction
that is forwarded to at most one of multiple target applications.

Bus

D E F

A B C

Bus

D

E

F

A

B

C

 Chapter 4. Enterprise Service Bus and SOA patterns 93

– Pub/Sub variation

In the Pub/Sub variation, the Broker provides an additional Direct
Connection interaction. This provides the capability to dynamically update
the distribution rules governing the Broker. By executing this Direct
Connection interaction, interested parties can add themselves to the list of
targets for a particular Broker Interaction.

� Serial Process application pattern

Extends the 1-to-N topology provided by the Broker application pattern by
facilitating the sequential execution of business services that are hosted by
several target applications. Thus it enables the orchestration of a serial
business process in response to an interaction initiated by the source
application.

– Serial Process Workflow variation

Extends the basic serial process orchestration capability by supporting
human interaction for completing certain process steps.

� Parallel Process application pattern

Extends the basic serial process orchestration capability provided by the
Serial Process application pattern by supporting parallel (concurrent)
execution of the subprocesses.

– Parallel Process Workflow variation

Extends the basic parallel process orchestration capability by supporting
human interaction for completing certain process steps.

Figure 4-12 on page 95 summarizes these four Process Integration::Interaction
patterns. One dimension shows support for concurrent interactions to multiple
target applications in parallel. The other dimension shows support for
non-concurrent interactions to multiple targets in series.

94 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-12 Process Integration::Interaction patterns

Levels of decomposition
In discussing integration problems and solutions we often have need to show
components of the solution at different levels of detail. In the Process Integration
patterns we call these levels of decomposition. When a component is shown
without any internal detail, we call this a level 0 representation. Subsequent
decompositions may be labelled level 1, level 2 decompositions and so forth.
This is purely intended as a suggestive notational convenience; the different level
numbers are helpful in sequencing diagrams but they have no absolute meaning.

Process Integration pattern profiles
The Process Integration patterns define extensions to the basic Process
Integration patterns as profiles. For example, the Extended Enterprise profile
extends the applicability of the patterns to encompass enterprise-to-enterprise
scenarios, including the Internet.

The patterns described in this chapter form part of a new SOA profile.

The Process Integration::Zone pattern
The Patterns for e-business Process Integration patterns describe a Zone as an
area in which a specific set of services is available. A Zone is accessed through
one or more Gateways, which are also referred to as Ports in the SOA profile.

Serial Process

Direct Connection Broker

Parallel Interaction

Se
ria

l I
nt

er
ac

tio
n

Ye
s

No Yes

No Source
Application

Connection
Rules

Target
Application

Variations: Message/Call
Connection

Source
Application

Broker
Rules

Target
ApplicationTarget

ApplicationTarget
Application

Variation: Router, Pub/Sub

Variation: Serial Workflow
Parallel Process

Variation: Parallel Workflow

Source
Application

Serial
Process

Rules Tier

Target
ApplicationTarget

ApplicationTarget
Application

Source
Application

Parallel
Process

Rules Tier
Target

ApplicationTarget
ApplicationTarget

Application

 Chapter 4. Enterprise Service Bus and SOA patterns 95

Examples of a Zone and Gateway might be:

� An intranet, accessed via a firewall and proxy server
� A J2EE Web container accessed through an HTTP listener
� A message broker accessed through a queue

In Figure 4-13 the Process Integration::Zone pattern is specialized using a Port
as a Gateway in order to connect to an ESB.

Figure 4-13 A specialization of the Process Integration::Zone pattern

4.4.2 The Enterprise Service Bus pattern
The Enterprise Service Bus pattern is part of the SOA profile in the Patterns for
e-business Process Integration patterns. They provide a set of names for
composite Process Integration patterns that are particularly useful in the SOA
domain.

“The role of the ESB in SOA” on page 76 and “A capability model for the
Enterprise Service Bus” on page 82 describe the ESB as providing a set of
capabilities, including a point of control over service addressing and naming.
Service requestors access the ESB by invoking services with specific addresses
through specific protocols. The ESB integrates with service providers by
supporting several integration mechanisms including services, but all of which
could be described as invoking services through specific addresses and
protocols — even if in some cases the “address” is the name of a CICS
transaction and the “protocol” is a J2EE resource adapter integrating with the
CICS Transaction Gateway.

Zone: ESB

ESB Services

Port

96 Patterns: Implementing an SOA Using an Enterprise Service Bus

This enables us to define the ESB in terms of the Process Integration::Zone
pattern:

� The Enterprise Service Bus is a Zone in which the ESB capabilities are made
available to service interactions.

� The ESB exposes a set of Ports to service requesters. Each Port is identified
with a specific protocol and set of addresses through which it provides access
to the ESB.

� The ESB uses a set of Ports to integrate to service providers. Each Port
supports a specific protocol and a set of addresses that are specific to the
services it provides access to.

� The ESB will contain processing units (Hubs) that apply the ESB capabilities
to service interactions between service requester ports and service provider
ports. These processing units may be distributed in any physical pattern, but
all share a common administration infrastructure and configuration. The
configuration may form part of the deployed ESB infrastructure or may be
separate from it.

This modeling of the ESB has the effect of defining the scope of a single ESB:

� A single ESB provides access to a well-defined set of services implemented
by one or more providers. It controls the invocation protocols and addresses
made available to service requesters through which to invoke those services.

� A single ESB is controlled by a single administration infrastructure.

And note some of the implications of that definition:

� A single ESB may be associated with any number of protocols. In fact,
although it is common to discuss ideas such as the HTTP Service Bus, the
ESB is associated with a set of service implementations first, a set of
protocols second.

� The ESB infrastructure may be physically deployed in any central, clustered,
or distributed pattern.

Note: Inbound and outbound ports are defined by the following:

� A protocol
� One or more addresses
� A specific way of handling service interaction characteristics such as

transactionality, security, and so forth.

An inbound port can listen for a specific address over a specific protocol.
However, multiple outbound ports can invoke the same address over the
same protocol.

 Chapter 4. Enterprise Service Bus and SOA patterns 97

� A single administration infrastructure is specified to provide a single point of
control. We will consider this infrastructure to be part of the ESB for the
purposes of our initial discussions.

Figure 4-14 illustrates the ESB pattern. This level 1 decomposition is based on
the specialized Process Integration::Zone pattern (Figure 4-13 on page 96)
where a Port is a Gateway, specialized for connection to an ESB.

This model depicts the ESB as belonging within an Enterprise (as implied by the
name Enterprise Service Bus). We will use this definition in this redbook but treat
an Enterprise rather flexibly to mean an organization of governance. The ellipses
in this diagram represent context. For example, they show a shared namespace
controlled by the ESB.

Figure 4-14 ESB pattern: level 1 decomposition

By applying the ESB capabilities from 4.3, “A capability model for the Enterprise
Service Bus” on page 82 to this model, we can identify that the Hub execution
units within the ESB should support interactions that fit the Process Integration
Broker pattern and its variation, Router. The distinction between the two patterns
is encapsulated in the ESB capability message processing - message / service

Enterprise

ESB Namespace
Directory

O
ut

bo
un

d
Po

rt
1

O
ut

bo
un

d
Po

rt
2

O
ut

bo
un

d
Po

rt
3

In
bo

un
d

Po
rt

1

In
bo

un
d

Po
rt

2

In
bo

un
d

Po
rt

3
Zone: ESB

ESB

The Service
Requester-specific
invocation protocol

A single administration
infrastructure

Administration
Services

Service Requesters

The ESB Namespace
name has been
mapped to an outbound
port address

The outbound port
maps the message to
meet the Service
Provider's
requirements

An ESB Namespace
name is used over
these connections

This maps all the ESB
Namespace names to
their endpoints

D E F

A B C

Service Providers

Hub

98 Patterns: Implementing an SOA Using an Enterprise Service Bus

aggregation and correlation: If the ESB is required to support Broker interactions
as opposed to Router interactions, it will need this capability.

The role of the ESB as an infrastructure component, as opposed to a component
such as Business Service Choreography that processes business logic, means
that the ESB is less appropriate to the Serial Process and Parallel Process
patterns and particularly their Workflow variations; however, as discussed in
4.3.2, “The Enterprise Service Bus is an infrastructure component” on page 87,
such distinctions are not always clear, and the growth of intermediary capabilities
in ESB technologies may mean that increasing Serial Process and Parallel
Process interactions are supported, but for supporting infrastructure function
rather than business logic.

Although we should not prejudge a proper analysis of solution patterns based on
requirements, we can also begin to see the suitability of some technologies to
implementing the ESB pattern:

� The Web Services Gateway component of WebSphere Application Server
Network Deployment can be used to implement an Enterprise Service Bus
managing a group of services available through SOAP/HTTP or SOAP/JMS
and fulfilled through SOAP/HTTP, SOAP/JMS, RMI/IIOP, J2C, and so on.

� WebSphere Business Integration Message Broker can be used to implement
an Enterprise Service Bus managing a group of services available through
SOAP/HTTP or SOAP/JMS and fulfilled through SOAP/HTTP, SOAP/JMS,
RMI/IIOP, J2C, EDI, JDBC, and so on, while providing additional message
processing, modeling, and service level capabilities.

We can use this analysis to indicate how the capability to control service
addressing, routing, and protocol transformations supports the vital concept of
service implementation substitution: If each inbound and outbound port is
associated with a specific service address and protocol, and the Hub contains
service routing and mapping and protocol transformation capability, then the
outbound port can be replaced without affecting the inbound port, simply by
changing the intermediary processing within the Hub. Figure 4-15 on page 100
illustrates this process.

 Chapter 4. Enterprise Service Bus and SOA patterns 99

Figure 4-15 The ESB enables service provider substitution

Business drivers for the ESB pattern
Although the majority of this section has been concerned with defining the ESB
in relation to business and IT drivers for SOA and the ESB, we should
summarize those drivers as part of the formal pattern definition of the ESB:

� Provide a robust, manageable, distributed integration infrastructure
consistent with the principles of SOA.

� Enable interaction through services that are defined by explicit
implementation-independent interfaces, are loosely bound and invoked
through communication protocols that stress location transparency and
interoperability, and encapsulate reusable business function.

� Provide an integrated infrastructure capability to support SOA,
message-oriented middleware, and event-driven integration.

� Support service routing and substitution, protocol transformations, and other
message processing.

Enterprise

ESB Namespace
Directory

O
ut

bo
un

d
Po

rt
2

O
ut

bo
un

d
Po

rt
3

In
bo

un
d

Po
rt

1

In
bo

un
d

Po
rt

2

In
bo

un
d

Po
rt

3

Zone: ESB

ESB

Administration
Services

Hub

Indirect service
address and
invocation protocol
unchanged.

Service mapping
changed to replace
direct service address
and/or integration
protocol.

O
ut

bo
un

d
Po

rt
1

O
ut

bo
un

d
Po

rt
1*

D E F

A B C

Service Requesters

Service Providers

100 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Support both Web Services and traditional EAI communication standards and
technologies.

Implementing SOA coupling styles with the ESB
The discussion so far has concentrated on characteristics of service interactions
that were described in “The minimum capability ESB implementation” on
page 84. However, in many ESB scenarios, the infrastructure should support
SOA coupling styles for more sophisticated aspects of service interaction as
described in “Coupling and decoupling of aspects of service interactions” on
page 39, including security and transactionality.

Table 4-3 indicates why SOA requires the infrastructure capabilities that are
provided by the ESB: they are fundamental to providing the loose coupling
between applications. Each capability implemented in the bus is a capability that
does not have to be implemented by, and matched between, applications.

Table 4-3 Service aspects, relationships, and implementation using ESB capabilities

Aspect SOA intention Relevant ESB capabilities

Semantic
Interface

Coupled � Service interaction: service interface
definition

� Modeling: data format libraries
� Message processing: message and data

transformations, service / message
aggregation

Language Decoupled � Communication: protocols and standards
� Integration: connectivity to EAI middleware,

protocol transformation, application server
environments, language interfaces for service
invocation

� Service interaction: service interface
definition, service messaging model

Platform Decoupled

Data Format Declared or
Transformed

� Service interaction: service messaging model
� Integration: legacy and application adapters
� Message processing: message and data

transformations

Protocol Declared or
Transformed

� Communication: routing, addressing,
protocols and standards

� Service interaction: substitution of service
implementation

� Integration: service mapping, protocol
transformation, language interfaces for
service invocation

Location Decoupled

 Chapter 4. Enterprise Service Bus and SOA patterns 101

Service
Provider
Identity or
Implementation

Declared or
Negotiated

� Service interaction: substitution of service
implementation, service directory and
discovery

� Integration: service mapping, protocol
transformation, language interfaces for
service invocation

� Infrastructure intelligence: policy driven
behavior

Time Declared or
Negotiated

� Communication: synchronous and
asynchronous messaging

� Integration: protocol transformation
� Infrastructure intelligence: policy driven

behavior
� Message processing: message service

aggregation and correlation, store and
forward

� Quality of service: assured delivery
paradigms

Delivery
Assurance,
Integrity, and
Error Handling

Declared or
Negotiated

� Quality of service: all
� Infrastructure intelligence: policy driven

behavior

Security Declared or
Negotiated

� Security: all
� Infrastructure intelligence: policy driven

behavior

Service Version Declared or
Negotiated

� Communication: routing, addressing
� Integration: service mapping
� Message processing: content-based logic
� Infrastructure intelligence: policy driven

behavior

Aspect SOA intention Relevant ESB capabilities

102 Patterns: Implementing an SOA Using an Enterprise Service Bus

Interaction
State

Declared � Matching of messages or events to long-lived
processes by explicit process or transaction
IDs in semantic interface, or by application
data (for example, customer ID).

� Business Service Choreography technology
may provide some facility to use a variety of
input data to associate messages with
specific instances of processes.

� Primary key matching technology such as
provided by WebSphere Interchange Server.

� The emerging WS-ResourceFramework
provides a standard model for associating
services with stateful resources.

� Enterprise Application Integration
middleware support for message aggregation
and correlation.

� Customized solutions involving custom
message headers.

Aspect SOA intention Relevant ESB capabilities

 Chapter 4. Enterprise Service Bus and SOA patterns 103

Figure 4-16 Coupling service interaction aspects between service requesters and service
providers through the ESB

Note that Figure 4-16 shows a single ellipse to illustrate the service requester
perspective of service interactions through the ESB. This should not imply that all
interactions share exactly the same characteristics. In a realistic SOA, it is likely
that several styles of service interaction will be required; an obvious example
would be the use of two protocols, such as SOAP/HTTP or WebSphere MQ. The
intention of the diagram is to emphasize the need to limit and control the number
of service interaction styles to a manageable number, through the use of an
Enterprise Service Bus. This shields service requesters from dealing with the
complexity and variety of different interaction styles that might be necessary to
deal with all of the service providers (such as Web Services applications, legacy
systems, and packaged applications) in a heterogeneous environment.

In “Modeling additional SOA components” on page 106, we combine the
Enterprise Service Bus pattern with other Patterns for e-business Process
Integration patterns. To simplify the depiction of these combinations, we will
introduce the Enterprise Service Bus pattern at a level 0 decomposition, as
shown in Figure 4-17 on page 105. Note that orientation is not significant.

Enterprise

O
ut

bo
un

d
Po

rt
1

O
ut

bo
un

d
Po

rt
2

O
ut

bo
un

d
Po

rt
3

In
bo

un
d

Po
rt

1

In
bo

un
d

Po
rt

2

In
bo

un
d

Po
rt

3

ESB

Hub

Semantic Interface
Requester
perspective

Provider
perspective

Language

Platform

Data Format

Protocol

Location

Service Provider Identity
or Implementation
Time

Delivery Assurance and
Error Handling

Security

Service Version

Interaction State

D E F

A B C

Service Requesters

Service Providers

104 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-17 ESB pattern: level 0 decomposition

Directionality of service interactions
The preceding discussion has described the roles of service requester and
service provider as separate; of course, in many situations the same application
or infrastructure component performs both roles by offering its functions as
services while invoking services from other applications. Of course, the
Enterprise Service Bus itself both provides services to service requesters and
requests services from service providers, as do Business Service Choreography
components.

However, this distinction between the roles of service requesters and service
providers is still a useful one; a full analysis of the various possible interaction
styles (for example request / response, publish / subscribe, fire and forget,
events) is beyond the scope of our discussion, but it is generally true that:

� Service requesters can contact service providers using specific named
services.

� Service providers must either maintain contact with the service requester that
invoked them in order to respond, retain a locating handle, or rely on the
service infrastructure to do this for them.

� Interaction models that involve pushing messages from service providers to
service requesters (for example publish / subscribe or event models) require
the service provider to maintain contact with the service requester or retain a
locating handle, or require the service requester to offer a callback service.

Enterprise

ESB

D E F

A B C

Enterprise

D

E

F

A

B

C

ES
B

 Chapter 4. Enterprise Service Bus and SOA patterns 105

In this way, the roles of service requester and service provider are rather
different, and so it is worth distinguishing between them, even when both are
performed by the same application or component.

4.4.3 Other SOA patterns
An ESB Gateway node makes the services of one organization available to
others, and vice versa, in a controlled and secure manner. The ESB Gateway
can be used to federate ESBs across an organization, for example. If the ESB
Gateway is exposed, it can be used in an inter-enterprise environment.

Figure 4-18 shows the ESB Gateway pattern.

Figure 4-18 ESB Gateway pattern

4.4.4 Modeling additional SOA components
As the SOA pattern that is introduced here is a composite of the Process
Integration patterns, it can be combined with the base Process Integration
patterns in modeling entire infrastructures and architectures.

For example, the ESB pattern can be used to replace a Direct Connection
pattern, such as a point-to-point interaction using a connector to reach an
application. Figure 4-19 on page 107 illustrates this idea. Alternatively, for
connectors that are closely integrated with the ESB, these might be modeled as
specific Ports that provide access to the Zone representing the Enterprise
Service Bus. Such a pattern might apply where a particular service integration
requires capabilities that are not required for other service interactions that the
ESB supports. (Typical examples are Legacy or Application Adapter capabilities.)

Zone: ESB

ESB Services
ESB

Gateway

106 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-19 Replacing the Direct Connection pattern with a composite Process Integration pattern

Other applications and components can also be modeled, such as Business
Service Choreography shown in Figure 4-20.

Figure 4-20 Business Service Choreography as connected to the ESB

Enterprise

Connector

Enterprise

or

A

Connector

Enterprise

ESB

E F

A B C

ESB

E F

A B C

Application ApplicationApplication

Enterprise

E F

A B C

Business Service
Choreography

ESB

Connector

Application

 Chapter 4. Enterprise Service Bus and SOA patterns 107

4.4.5 Extended Enterprise SOA patterns
This section describes how to use an ESB to communicate with service
requesters and providers in external enterprises. The exposed patterns do not
define the service requesters and providers that the patterns are interacting with;
these service providers may or may not be other ESBs.

Product mappings for these patterns are described in 5.2.3, “SOA product
mappings” on page 142.

Exposed ESB pattern
The Exposed ESB pattern extends access to all or a subset of services to
external clients, and enables the ESB to access external resources as services.
This pattern is concerned with identifying the basic capabilities that are required
to provide such access, rather than modeling specific external components,
services, or interactions.

Drivers
� Provide controlled external access to a subset of services that are available

through an ESB.

� Enable an ESB to access external services and resources.

� Reuse ESB infrastructure rather than implementing a separate ESB Gateway.

Description
This pattern represents direct exposure of the ESB to external service requesters
and providers. The ESB implementation will have to provide appropriate routing,
security, and protocol transformation capabilities.

Figure 4-21 on page 109 illustrates the Exposed ESB pattern. Note that the
diagram assumes that the Internet is used as the communication transport for
interaction with other enterprises. This is the most common scenario, but it could
be replaced equally by a Value Added Network (VAN).

108 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 4-21 The Exposed ESB pattern

Relevant ESB capabilities
The following ESB capabilities (from those listed in 4.3, “A capability model for
the Enterprise Service Bus” on page 82) are relevant to the Exposed ESB
pattern. You must consider these capabilities when deciding on product
mappings to implement this pattern.

� Communications

– Routing

– Addressing

– Protocols and standards

� Service interaction (all)

� Integration

– Service mapping

– Protocol transformation

� Quality of service (all)

� Security (all)

� Service level (all)

Internet

WWW

Other Enterprises

D

A

Enterprise 1

ESB

D E F

A B C

Service
Requesters

Service
Providers

 Chapter 4. Enterprise Service Bus and SOA patterns 109

� Message processing

– Message and data transformations

– Validation

– Intermediaries

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

– Discovery

� Modeling

– Public versus private models

Exposed ESB Gateway composite pattern
The Exposed ESB Gateway pattern represents a composite of the ESB pattern
and the ESB Gateway pattern for inter-enterprise access. The Exposed ESB
Gateway pattern is implemented in Chapter 11, “Exposed ESB Gateway
composite pattern” on page 299.

Drivers
� Provide controlled external access to a subset of services available through

an ESB.

� Enable an ESB to access external services and resources.

� Provide additional or alternative security, routing, logging, and other
capabilities to external service interactions that are relative to those that are
available internally.

� Provide additional protection from external access to internal services.

� Provide additional features to manage and provision external service
partners.

Description
A more sophisticated scenario introduces an explicit service gateway. We can
model this as an Exposed ESB Gateway pattern. The Exposed ESB Gateway
pattern connects to service requesters or service providers through the Internet.
This pattern can enable more sophisticated control over external service access
by providing additional security models, buffering of service requests to protect
internal system capacity, and additional transformations of protocol, data
formats, or models of delivery assurance.

The potential disadvantage of this model, aside from the extra infrastructure it
requires, is the need for an additional point of administration between internal

110 Patterns: Implementing an SOA Using an Enterprise Service Bus

and external systems participating in service requests. (Both the ESB and the
Exposed ESB Gateway must now be administered.)

In order to provide a consistent view of service interactions to both internal and
external service requesters and providers, the features of the ESB and the
Exposed ESB Gateway that are used to support service interactions, as
described in “Implementing SOA coupling styles with the ESB” on page 101, will
have to be matched.

Figure 4-22 illustrates the Exposed ESB Gateway pattern.

Figure 4-22 The Exposed ESB Gateway composite pattern

Relevant ESB capabilities
The following ESB capabilities (from those listed in 4.3, “A capability model for
the Enterprise Service Bus” on page 82) are relevant to the Exposed ESB
Gateway pattern. You must consider these capabilities when deciding on product
mappings to implement this pattern.

� Communications

– Routing

– Addressing

– Protocols and standards

Internet

WWW

Other Enterprises

D

A

Enterprise 1

ESB

D E F

A B C

B2B
Gateway

Service
Requesters

Service
Providers

Internet

WWW

Other Enterprises

D

A

Enterprise 1

ESB

D E F

A B C

ESB
Gateway

Service
Requesters

Service
Providers

 Chapter 4. Enterprise Service Bus and SOA patterns 111

� Service interaction (all)

– Integration

– Service mapping

– Protocol transformation

� Quality of service (all)

� Security (all)

� Service level (all)

� Message processing

– Message and data transformations

– Validation

– Intermediaries

� Management and autonomic

– Service provisioning and registration

– Logging, metering, and monitoring

– Discovery

� Modeling

– Public versus private models

4.5 Common ESB scenarios
In the following scenarios, we describe common starting points for the
implementation of SOA with or without an ESB. The scenarios are intended to
describe individual situations to which SOA with or without an ESB might be
appropriate. They are not intended to describe the SOA or ESB requirements of
an entire organization. Indeed, in some cases SOA or an Enterprise Service Bus
might be strategic goals driven by business requirements across an organization,
but in many more cases SOA or an ESB are suggested by IT organizations in
response to increasing demands across a business for more flexible and
widespread integration in order to support several projects.

Our reason for focusing on individual situations is that they characterize
individual requirements that can be analyzed in order to identify suitable
approaches and technologies. In some cases, it will be most appropriate to
implement simple solutions to each individual scenario; in other situations it may
be more advantageous to combine requirements across scenarios and
implement a common, more advanced solution. In other cases it may be better to
take a mixed approach, and implement individual solutions, but with

112 Patterns: Implementing an SOA Using an Enterprise Service Bus

characteristics that enable future integration across the solutions in an
evolutionary manner.

The following sections are useful references:

� The scenarios are described with reference to the ESB capabilities described
in 4.3, “A capability model for the Enterprise Service Bus” on page 82.

� The scenarios reference the SOA patterns and technologies that are
described in 4.4, “SOA profile of the Application Integration patterns” on
page 90.

Each common ESB scenario describes:

� Drivers: business and technical factors leading to the scenario.

� Scenario discussion: a brief discussion of the scenario.

� Candidate technologies: the generic technology types that are often
considered in this scenario.

� Relevant issues: links to specific relevant issues that are further considered in
4.5.8, “Architecture decision questions” on page 125.

� Relevant patterns: links to specific SOA patterns that form candidate
solutions.

� ESB capability requirements: those aspects of ESB capability as described in
4.3, “A capability model for the Enterprise Service Bus” on page 82 that are
most relevant to the scenario. The capabilities might be implemented in any
aspect of the solution (for example, using the ESB pattern or perhaps in
adapters that connect to it). Note that these lists are not intended to be
exhaustive; further capabilities are likely to be driven by the requirements of
specific situations, or by the issues that are discussed in 4.5.8, “Architecture
decision questions” on page 125.

4.5.1 Basic integration of two systems
This section describes the drivers, technologies, and issues of the basic
integration of two systems. It then highlights the relevant SOA patterns and ESB
capabilities that apply to this scenario.

Drivers
� A need to integrate two and only two systems that are implemented in

different technologies (for example, J2EE and .Net)

� A lack of knowledge as to more general integration requirements

� A need to implement a quick, tactical integration

 Chapter 4. Enterprise Service Bus and SOA patterns 113

� A desire to loosely couple the integration so as to later replace it with a more
strategic solution

Scenario discussion
Some interoperable standard likely to be under consideration. Whichever
technology is chosen will have to be supported to some extent in the
environments of both applications. This might be true particularly when the two
systems are owned by different parties or where only limited network access is
allowed between the systems.

Candidate technologies
� Web services
� Messaging technology
� Adapters or connectors

Relevant issues
� 1. Function and Data Interfaces
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 6. Technology Support in Existing Systems
� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 13. Service Level Requirements
� 14. Security Requirements

Relevant SOA patterns
� Direct Connection: Basic integration within or between organizations using

adapters, interruptible protocols, and so forth. Described in Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

� ESB pattern: Use of infrastructure technology to implement an Enterprise
Service Bus.

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise.

ESB capability requirements
� Communications (all)

� Service interaction:

– Service interface definition

– Service messaging models

114 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Integration:

– Database

– Legacy and application adapters

– Application server environments

– Language interfaces for service invocation

� Quality of service (all)

� Security (all)

4.5.2 Enable wider connectivity to one or more applications
This section describes the drivers, technologies, and issues of enabling wider
connectivity to one or more applications. It then highlights the relevant SOA
patterns and ESB capabilities that apply to this scenario.

Drivers
� Enable service access to packaged applications (for example CRM, ERP).

� Enable service access to existing or new customized applications, perhaps
implemented in J2EE or other application server environments.

Scenario discussion
There is value in exposing these functions as services either to enable the
applications to interoperate with each other, or to provide access to new channels
or clients. The use of open standards communication and service protocols
seems the best way forward.

Candidate technologies
� Web services

� Asynchronous messaging

� Enterprise Application Integration middleware, message broking technology,
Enterprise Service Bus

Relevant issues
� 1. Function and Data Interfaces
� 2. Common Business Data Model
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 6. Technology Support in Existing Systems
� 8. Availability of Services in EAI Infrastructure
� 9. Service Provider Protection

 Chapter 4. Enterprise Service Bus and SOA patterns 115

� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 12. Business Service Choreography
� 13. Service Level Requirements
� 14. Security Requirements

Relevant SOA patterns
� Direct Connection: Basic integration within or between organizations using

adapters, interruptible protocols and so forth. Described in Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

� ESB pattern: Use of infrastructure technology to implement an Enterprise
Service Bus.

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise.

� Business Service Choreography: If business service choreography is also
required, implement the Serial Process or Parallel Process patterns as
described in Patterns: Serial and Parallel Processes for Process
Choreography and Workflow, SG24-6306.

ESB capability requirements
� Communications (all)

� Service interaction:

– Service interface definition

– Substitution of service implementation

– Service messaging models

– Service directory and discovery

� Integration:

– Database

– Legacy and application adapters

– Service mapping

– Protocol transformation

– Application server environments

– Language interfaces for service invocation

� Quality of service (all)

� Security (all)

� Service level (all)

116 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

4.5.3 Enable wider connectivity to legacy systems
This section describes the drivers, technologies, and issues of enabling wider
connectivity to legacy systems. It then highlights the relevant SOA patterns and
ESB capabilities that apply to this scenario.

Drivers
Business value in exposing core business transactions in legacy systems to new
channels.

Scenario discussion
Many organizations have an enormous investment in legacy technologies (such
as CICS Transaction Server and IMS™ Transaction Server) that support
applications that provide their core business transactions and data access. There
may be significant value in providing open standard, service-based access to
those transactions (for example, transactions that query account balance, create
orders, schedule or track deliveries, and query stock levels).

Candidate technologies
� Adapters and connectors
� Legacy integration technology
� Asynchronous messaging
� Web services

Relevant issues
� 1. Function and Data Interfaces
� 2. Common Business Data Model
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 7. Legacy XML Support and Processing
� 8. Availability of Services in EAI Infrastructure
� 9. Service Provider Protection
� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 13. Service Level Requirements
� 14. Security Requirements

 Chapter 4. Enterprise Service Bus and SOA patterns 117

Relevant SOA patterns
� Direct Connection: Basic integration within or between organizations using

adapters, interruptible protocols, and so forth. Described in Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

� ESB pattern: Use of infrastructure technology to implement an Enterprise
Service Bus.

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise.

ESB capability requirements
� Communications (all)

� Service interaction:

– Service interface definition

– Service messaging models

� Integration:

– Database

– Legacy and application adapters

� Quality of service (all)

� Security (all)

� Service level (all)

� Message processing

– Message / service aggregation and correlation

– Message and data transformations

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

4.5.4 Enable wider connectivity to an EAI infrastructure
This section describes the drivers, technologies, and issues of enabling wider
connectivity to EAI infrastructure. It then highlights the relevant SOA patterns
and ESB capabilities that apply to this scenario.

Drivers
Business value in extending access to services that are available through
Enterprise Application Integration (EAI) infrastructure.

118 Patterns: Implementing an SOA Using an Enterprise Service Bus

Scenario discussion
Existing functions of application and legacy systems or both have already been
exposed through EAI infrastructure. However, additional connections through
additional channels can drive further value, but these channels may not be in
reach of the EAI infrastructure, either because they are deployed beyond it or
they support incompatible communication mechanisms.

Candidate technologies
� Customized or proprietary HTTP protocols
� Web services
� Additional EAI middleware

Relevant issues
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 5. Adoption of Standards at the Edge or in the Heart of Infrastructure
� 8. Availability of Services in EAI Infrastructure
� 9. Service Provider Protection
� 11. External Access to Services
� 13. Service Level Requirements
� 14. Security Requirements

Relevant SOA patterns
� ESB pattern: Use of infrastructure technology to implement an Enterprise

Service Bus

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise

ESB capability requirements
� Communications (all)

� Service interaction:

– Service interface definition

– Substitution of service implementation

– Service messaging models

� Integration:

– Connectivity to Enterprise Application Integration middleware

– Service mapping

– Protocol transformation

– Application server environments

 Chapter 4. Enterprise Service Bus and SOA patterns 119

– Language interfaces for service invocation

� Quality of service (all)

� Security (all)

� Service level (all)

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

4.5.5 Implement controlled integration between organizations
This section describes the drivers, technologies, and issues of implementing
controlled integration across organizations. It then highlights the relevant SOA
patterns and ESB capabilities that apply to this scenario.

Drivers
� Enable customers, suppliers, or other partners to integrate directly with

functions provided by one or more applications (legacy or otherwise).

� Provide a point of control to secure and manage external access to services.

Scenario discussion
The use of open standards is preferred as the organization has no direct control
over the technologies that are used by its partners. Note that this scenario might
apply either between separate organizations or between units of a larger
distributed organization.

Candidate technologies
� Web services
� ESB Gateways

Relevant issues
� 1. Function and Data Interfaces
� 2. Common Business Data Model
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 6. Technology Support in Existing Systems
� 8. Availability of Services in EAI Infrastructure
� 9. Service Provider Protection
� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 13. Service Level Requirements

120 Patterns: Implementing an SOA Using an Enterprise Service Bus

� 14. Security Requirements

Relevant SOA patterns
� ESB pattern: Use of infrastructure technology to implement an Enterprise

Service Bus

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise

ESB capability requirements
� Communications (all)

� Service interaction (all)

� Integration:

– Legacy and application adapters

– Connectivity to Enterprise Application Integration middleware

– Service mapping

– Protocol transformation

– Application server environments

� Quality of service (all)

� Security (all)

� Service level (all)

� Message processing

– Message and data transformations

– Validation

– Intermediaries

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

– Discovery

� Modeling

– Data format libraries

– Public versus private models

 Chapter 4. Enterprise Service Bus and SOA patterns 121

4.5.6 Automate processes by choreographing services
This section describes the drivers, technologies, and issues of automating
systems by choreographing services. It then highlights the relevant SOA patterns
and ESB capabilities that apply to this scenario.

Drivers
� Model and automate business processes.
� Choreograph services into processes in a flexible manner.
� Enable monitoring and measurement of business processes.

Scenario discussion
Existing packaged applications (such as CRM and ERP) or customized
applications, perhaps implemented in J2EE or other application server
environments, provide functions that are useful beyond the applications
themselves. These functions can be exposed as services using open-standard
communication and service protocols so that the applications can interoperate.
The interactions between the applications form business processes at some
level, and these processes should be explicitly modeled and executed using
appropriate modeling and process execution technology, preferably in
compliance with open standards.

Candidate technologies
� Web Services Choreography
� Workflow

Relevant issues
� 1. Function and Data Interfaces
� 2. Common Business Data Model
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 6. Technology Support in Existing Systems
� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 12. Business Service Choreography
� 13. Service Level Requirements
� 14. Security Requirements

Note: This scenario can be considered an evolution of the Enable Wider
Connectivity to One or More Applications scenario

122 Patterns: Implementing an SOA Using an Enterprise Service Bus

Relevant SOA patterns
� Business Service Choreography: If business service choreography is also

required, implement the Serial Process or Parallel Process patterns as
described in Patterns: Serial and Parallel Processes for Process
Choreography and Workflow, SG24-6306.

� Direct Connection: Linking the choreographer to service providers through
basic integration using adapters, interruptible protocols, and so forth.
Described in Patterns: Service-Oriented Architecture and Web Services,
SG24-6303.

� ESB pattern: Use of infrastructure technology to implement an Enterprise
Service Bus.

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise.

ESB capability requirements
� Communications (all)
� Service interaction (all)
� Integration (all)
� Quality of service (all)
� Security (all)
� Service level (all)
� Message processing (all)
� Modeling (all)

4.5.7 Implement a robust SOA with Web services support
This section describes the drivers, technologies, and issues of implementing a
robost SOA with Web services support. It then highlights the relevant SOA
patterns and ESB capabilities that apply to this scenario.

Drivers
� Enable widespread internal or external access to services provided by

multiple applications (legacy or otherwise).

� Provide a general infrastructure for controlled and flexible integration in
response to demands from across the business.

� Enable the widespread exposure of functions as services and their
choreography into automated, measurable business processes.

 Chapter 4. Enterprise Service Bus and SOA patterns 123

Scenario discussion
This scenario is effectively a composite of the preceding scenarios. Various
security, aggregation, transformation, routing, and business service
choreography capabilities are required.

Candidate technologies
� Web services and Web services choreography
� Workflow
� Enterprise Application Integration middleware

Relevant issues
� 1. Function and Data Interfaces
� 2. Common Business Data Model
� 3. Technologies for Interoperability
� 4. Advanced Interaction Characteristics
� 5. Adoption of Standards at the Edge or in the Heart of Infrastructure
� 6. Technology Support in Existing Systems
� 7. Legacy XML Support and Processing
� 8. Availability of Services in EAI Infrastructure
� 9. Service Provider Protection
� 10. Consistent and Controlled Service Enablement
� 11. External Access to Services
� 12. Business Service Choreography
� 13. Service Level Requirements
� 14. Security Requirements

Relevant SOA patterns
� ESB pattern: Use of infrastructure technology to implement an Enterprise

Service Bus.

� Extended Enterprise SOA patterns: Application of the SOA patterns for
extended enterprise.

� Business Service Choreography: If business service choreography is also
required, implement the Serial Process or Parallel Process patterns as
described in Patterns: Serial and Parallel Processes for Process
Choreography and Workflow, SG24-6306.

ESB capability requirements
� Communications (all)

� Service interaction (all)

� Integration (all)

� Quality of service (all)

124 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Security (all)

� Service level (all)

� Message processing (all)

� Management and autonomic:

– Service provisioning and registration

– Logging, metering, and monitoring

– Discovery

� Modeling (all)

– Object modeling

– Common business object models

– Data format libraries

– Public versus private models

– Development and deployment tooling

4.5.8 Architecture decision questions
This section presents several key architectural issues, referred to by the
individual scenarios in 4.5, “Common ESB scenarios” on page 112. The
discussion of each issue indicates additional ESB capabilities that may be
required to address it. These capabilities can contribute to the selection of
candidate implementation technologies by using the assessment of ESB
capabilities in Chapter 5, “ESB and SOA component implementations” on
page 133.

1. Function and Data Interfaces: Are the existing functions and their data
interfaces good matches to the services you want to provide, or can
appropriate modification or aggregation be performed in the applications?

– If not, the following capabilities will be required either in adapters or the
ESB infrastructure, or will have to be performed by service requesters:

• Integration: service / message aggregation
• Message processing: message and data transformations, message /

service aggregation and correlation

2. Common Business Data Model: Should the services be exposed in the form
of some common business data model? If so, do the systems that implement
those services already support that model, or can they be made to do so?

– If not, the following capabilities will be required either in adapters or the
ESB infrastructure:

• Integration: service / message aggregation

 Chapter 4. Enterprise Service Bus and SOA patterns 125

• Message processing: message and data transformations

3. Technologies for Interoperability: Are open standards required, or can
appropriate interoperability be achieved through Enterprise Application
Integration middleware? If open standards are required, which ones are
appropriate?

– Although the use of open standards is one way to achieve interoperability,
proprietary Enterprise Application Integration middleware is also highly
interoperable, and often significantly more mature. Many organizations
also have extensive existing infrastructures that can, in some scenarios,
minimize the benefits of open standards.

– In scenarios where open standards are required, Web services are
perhaps the most obvious choice in this context. However, JMS, JDBC,
basic XML, or several other technologies such as EDI or industry XML
formats can also be applied.

– In practice, interoperability between different implementations of the same
standards cannot always be assumed, particularly if the standards are
recent or emerging. In the case of Web services, the Web Services
Interoperability Organization has recently published the Basic Profile for
interoperability using SOAP and WSDL, and other profiles for more
advanced standards will follow (including WS-Security and
WS-Transaction). Until such profiles are comprehensive, established, and
widely supported by products, the use of open standards will not
guarantee, and may not always facilitate, interoperability.

– Relevant capabilities:

• Communications: communication technologies, protocols, and
standards

• Service interaction: service interface definition, service messaging
models

• Integration (all)

• Message processing: message and data transformations

• Quality of service (all)

• Service levels (all)

4. Advanced Interaction Characteristics: Is support for basic communication
protocols and standards (such as WebSphere MQ, SOAP, WSDL) required,
or more sophisticated capabilities such as WS-Security and WS-Transaction?

– Requirements to support more sophisticated standards will impose more
stringent constraints on the options for implementation technologies and
may imply the use of less mature technologies. Relevant capabilities are:

• Communications (all)

126 Patterns: Implementing an SOA Using an Enterprise Service Bus

• Integration: protocol transformation

• Quality of service (all)

• Security (all)

5. Adoption of Standards at the Edge or in the Heart of Infrastructure: Where
changes to the message formats and protocols that are used by an existing
infrastructure are under consideration, including the adoption of open
standards, are the changes required throughout the existing infrastructure, or
can they be applied at the edges? If EAI technology is in use or under
consideration, does that have its own internal format, or can it process open
standards as an internal format?

– Any use of open standards is likely to be driven by needs to extend
access, so it is usually more important that they are available at the
interfaces to existing infrastructure than that they are used internally.

– If internal use of specific formats, technologies or standards is required,
this will place constraints on the choice of implementation technology.

– Relevant capabilities:

• Communications: communication technologies, protocols, and
standards

• Service interaction: service interface definition, service messaging
models

• Integration (all)

• Message processing: message and data transformations

• Quality of service (all)

• Service levels (all)

6. Technology Support in Existing Systems: Do the systems that implement
functions that should be exposed as services support the required
technologies or open standards such as SOAP, JMS, or XML?

– If not, either the ESB infrastructure or adapters will need the capability to
transform between the required open standards and the formats that are
supported by the service providers:

• Communications: communication technologies, protocols, and
standards

• Service interaction: service interface definition, service messaging
models

• Integration (all)

• Message processing: message and data transformations

 Chapter 4. Enterprise Service Bus and SOA patterns 127

7. Legacy XML Support and Processing: Where access to legacy systems is
required using more recent XML-based technologies (including SOAP, but
also basic XML with Enterprise Application Integration middleware), is direct
support (such as CICS SOAP support) available, or is a separate adapter
required? Does the legacy platform support XML processing, and is such
processing a sensible use of the platform capabilities?

– If for any of these reasons a required SOAP or XML capability will not be
made available on a legacy platform, appropriate transformation capability
will be required either in adapters (such as JCA or WebSphere Business
Integration Adapters), in an integration tier, or in the ESB infrastructure:

• Integration: legacy and application adapters, protocol transformation

• Message processing: message and data transformations

8. Availability of Services in EAI Infrastructure: If an EAI technology is already
available, does it implement services as message flows with appropriate
function and interface granularity, or can it be made to do so? What
connectivity protocols does it support (for example JCA, SOAP, WebSphere
MQ, RMI)?

– If existing message flows do not provide the required services, then
additional flows will be needed to perform transformations. If the EAI
technology does not directly support the required standards, a gateway
component can be added:

• Communications: communication technologies, protocols, and
standards

• Service interaction: service interface definition, service messaging
model

• Integration: connectivity to EAI middleware, service mapping, protocol
transformation

• Message processing: message and data transformations, message /
service aggregation and correlation

9. Service Provider Protection: What measure of protection should be afforded
to the service provider systems from service requester channels in the form of
workload buffering, security, logging, and so forth?

– Such buffering will often be a role of the ESB infrastructure, and define
some of the capabilities it requires. If specific service provider systems
(such as legacy transactional systems) have additional needs for
protection, a dedicated integration tier could be used:

• Communications: synchronous and asynchronous messaging

• Integration: legacy and application adapters, protocol transformation

• Security (all)

128 Patterns: Implementing an SOA Using an Enterprise Service Bus

• Service level (all)

• Message processing: store and forward

• Management and autonomic: logging, metering, monitoring

10.Consistent and Controlled Service Enablement: How many services should
be enabled? What aspects of enablement should be consistent across the
services, and how can consistency be enforced, perhaps across multiple
platforms and applications?

– If very few services are involved, a simple point-to-point integration model
may be appropriate. However, if more are involved or are likely to become
so over time, the addition of a control point such as that provided by an
ESB becomes increasingly beneficial:

• Communications: routing, addressing

• Service interaction: substitution of service implementation, service
directory and discovery

• Integration: service mapping, protocol transformation

• Security (all)

• Management and autonomic: service provisioning and registration,
logging, metering, monitoring

11.External Access to Services: Are the service interactions contained within the
organization or are some external?

– If external access is required, a gateway component can be used to
provide additional control. This is often the case in addition to an ESB
infrastructure that is implemented within a single organization, as the
requirements for security and service routing may differ for services made
available externally:

• Communications: routing, addressing

• Service interaction: substitution of service implementation, service
directory and discovery

• Integration: service mapping, protocol transformation

• Security (all)

• Management and autonomic: service provisioning and registration,
logging, metering, monitoring

• Modeling: public versus private models

 Chapter 4. Enterprise Service Bus and SOA patterns 129

12.Business Service Choreography: Are there requirements for business service
choreography, and do they involve short-lived or long-lived (stateful)
processes, or both? Do they include manual activities?

– Where these requirements constitute business function, the choreography
should be implemented in a Business Service Choreography component
separate from the ESB. Requirements to support long-lived stateful
processes or manual activities will place constraints on the choice of
implementation technology.

– Long-lived services or event models may require message processing:
Message / service aggregation and correlation capabilities.

13.Service Level Requirements: What service level requirements should the
infrastructure support, such as service response time, throughput, and
availability, and how is it required to scale over time?

– Some of the candidate technologies for ESB implementation are relatively
new and may only have been tested against limited service levels.
Similarly, because the relevant open standards are either recent or
emerging, support for them in more established products and technologies
is also new.

– For the foreseeable future, critical architectural decisions will be
concerned with balancing the benefits of specific open standards
supported by emerging or mature product technologies against service
level requirements. These point-in-time decisions will have to recognize
that some standards, and product support for them, are relatively mature
(such as XML and SOAP), some (such as WS-Security) are newer, and
some (such as WS-Transaction) are still emerging.

– The trade-off between the benefits of standards and proven service-level
characteristics often drive a mixed approach that combines
standards-compliant technologies with proprietary or customized
technologies in an ESB and SOA architecture.

– Relevant capabilities:

• Communication: communication technologies, standards, and
protocols

• Integration: connectivity to EAI middleware, protocol transformation

• Quality of service (all)

• Security (all)

• Service level (all)

• Message processing: message and data transformations

14.Security Requirements: Is a point-to-point or end-to-end security model
required (should the ESB simply authorize service requests, or should it pass

130 Patterns: Implementing an SOA Using an Enterprise Service Bus

the requestor identity or other credentials through to the service provider)? Is
there a need to integrate the service security model with application or legacy
security systems?

– If point-to-point security is acceptable, several existing solutions (such as
SSL, J2EE security for database access, and adapter security models)
can be applied. If end-to-end security is required, the WS-Security
standard is a possibility if it is supported by all of the involved systems.
Alternatively, a customized model using custom message headers or
passing security information as application data could be used.

– Relevant capabilities:

• Security (all)

4.6 Summary and next steps in the design process
In this chapter, we have introduced and analyzed the Enterprise Service Bus and
its role in SOA. Through the use of a capability model and with reference to the
various coupling styles applied to aspects of service interactions in an SOA, we
were able to provide a model for analyzing common ESB and SOA scenarios to
specify both appropriate implementation patterns and detailed capabilities that
should be supported by the technologies that are used to implement those
patterns.

The next step in the design process is to select specific technologies, standards,
and other techniques to implement the chosen patterns. Where those patterns
are variations of the Enterprise Service Bus as described in this chapter, the
mapping of the patterns to runtime patterns and specific implementation
technologies can be found in Chapter 5, “ESB and SOA component
implementations” on page 133.

More detail concerning such implementations is the subject of the scenario
implementation chapters in Part 3 of this redbook. Where implementation
patterns are either simpler, such as Direct Connection, or refer to other SOA
components, such as Serial Process or Parallel Process, we have provided
references to further resources in this chapter.

 Chapter 4. Enterprise Service Bus and SOA patterns 131

132 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 5. ESB and SOA component
implementations

In this chapter, we discuss technologies that can be used to implement the
Enterprise Service Bus, and other related components of a service-oriented
architecture. This chapter contains the following sections:

� Runtime product descriptions

Provides a description of the products that are used throughout this book.

� SOA component product mappings

Summarizes the SOA components we have discussed in the book and
identifies product mappings for them.

� Product capabilities for the Enterprise Service Bus

As the role of the ESB capabilities is so crucial to identifying appropriate
implementation technologies, this section presents an analysis of product
features against the ESB capability model.

5

© Copyright IBM Corp. 2004. All rights reserved. 133

5.1 Runtime product descriptions
This section describes IBM products that are discussed and used throughout this
book. After we briefly describe each product, we illustrate how to choose which
products to use to implement the various patterns that were described in the
previous chapter.

5.1.1 IBM WebSphere Application Server V5.1
IBM WebSphere Application Server V5.1 represents a continuation of the
evolution to a single, integrated, cost-effective, Web services–enabled, J2EE
server foundation for applications that offers customers:

� One deployment model
� One administration point
� One programming model
� One integrated application development environment

With IBM WebSphere Application Server V5.1, IBM enables customers to
expand their business opportunities and productivity through a world-class
infrastructure that is ready for e-business on demand.

IBM WebSphere Application Server base V5.1 provides a robust application
deployment environment for single-server, light production situations.

It contains a base application server that supports the full J2EE 1.3 environment.
It enables a full range of enterprise integration and offers enhanced security,
performance, availability, connectivity, and scalability options. Administration is
done through a Web-based interface or through a scripting tool.

It includes support for new Web services standards, including JAX-RPC and
Web services for J2EE (both part of the J2EE 1.4 release), and for WS-Security.
It also provides runtime support for SOAP messaging using WebSphere MQ as a
transport.

More information about IBM WebSphere Application Server base V5.1 can be
found at:

http://www.ibm.com/software/webservers/appserv/was/

5.1.2 IBM WebSphere MQ V5.3
IBM WebSphere MQ provides assured once-only delivery of messages across
more than 35 industry platforms using a variety of communications protocols.

134 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/software/webservers/appserv/was/

The transportation of message data through a network is made possible through
the use of a network of WebSphere MQ queue managers. Each queue manager
hosts local queues that are containers used to store messages. Through remote
queue definitions and message channels, data can be transported to its
destination queue manager.

To use the services of a WebSphere MQ transport layer, an application must
make a connection to a WebSphere MQ queue manager, the services of which
enable it to receive (get) messages from local queues or send (put) messages to
any queue on any queue manager. The application’s connection may be made
directly (where the queue manager runs locally to the application) or as a client to
a queue manager that is accessible over a network.

Dynamic workload distribution is another important feature of WebSphere MQ.
This feature shares the workload among a group of queue managers that are
part of the same cluster. This enables WebSphere MQ to balance the workload
across available resources automatically and provide hot standby capabilities if a
system component fails. This is a critical feature for companies that need to
maintain round-the-clock availability.

WebSphere MQ supports a variety of application programming interfaces
(including MQI, AMI, and JMS), which provide support for several programming
languages as well as point-to-point and publish/subscribe communication
models. In addition to support for application programming, WebSphere MQ
provides several connectors and gateways to a variety of other products, such as
Microsoft Exchange, Lotus® Domino®, SAP/R3, CICS, and IMS, to name just a
few.

More information can be found at the IBM WebSphere MQ Web site:

http://www.ibm.com/software/ts/mqseries

5.1.3 IBM WebSphere Application Server Network Deployment V5.1
WebSphere Application Server Network Deployment is an extension to
WebSphere Application Server base. It includes the Web Services Gateway
component. Although it is shipped with WebSphere Application Server Network
Deployment, the Web Services Gateway can also run in a standalone
WebSphere Application Server instance.

The Web Services Gateway is a runtime component that provides configurable
mapping between Web service requesters and providers. Services that are
defined with WSDL can be mapped to available transport channels. The basic
components of the Web Services Gateway are:

� Channels that define the entry points into the Web Services Gateway.

 Chapter 5. ESB and SOA component implementations 135

http://www.ibm.com/software/ts/mqseries

� Services that map to WSDL-described Web service implementations.

� UDDI references to manage the publishing of an exposed Web service to a
private or public UDDI registry.

� Filters that are used to intercept service invocations that come into the Web
Services Gateway and act on the services.

� JAX-RPC handlers that are used to intercept service requests between the
service requester and the Web Services Gateway (inbound handler) and
between the Web Services Gateway and the target service (outbound
handler). JAX-RPC handlers can perform similar tasks as filters but provide
an approach based on open and accepted standards.

More information about IBM WebSphere Application Server Network Deployment
V5.1 can be found at:

http://www.ibm.com/software/webservers/appserv/was/network/

5.1.4 IBM WebSphere Business Integration Message Broker V5.0
WebSphere Business Integration Message Broker V5.0 extends the messaging
capabilities of WebSphere MQ by adding message routing, transformation, and
publish/subscribe features. Message Broker provides a runtime environment that
executes message flows, which consist of a graph of nodes that represent the
processing that is needed for integrating applications. They can be designed to
perform a wide variety of functions, including:

� Routing of messages to zero or more destinations based on the contents of
the message or message header. (Both one-to-many and many-to-one
messaging topologies are supported.)

� Transformation of messages into different formats so that diverse applications
can exchange messages that each of them can understand.

� Processing message content in several message domains, including the XML
domain that handles self-defining (or generic) XML messages, the Message
Repository Manager (MRM), which handles predefined message sets, and
unstructured data (BLOB domain).

WebSphere Business Integration Message Broker also provides these features:

� Simplified integration of existing applications with Web services through the
transformation and routing of SOAP messages, as well as logging of Web
services transactions.

� Mediation between Web services and other integration models as both a
service requester and a service provider.

136 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/software/webservers/appserv/was/network/

� Compliance with standards such as Web Services Definition Language
(WSDL), Simple Object Access Protocol (SOAP), and Hypertext Transfer
Protocol (HTTP).

� Integrated WebSphere MQ transports for enterprise, mobile, real-time,
multicast, and telemetry endpoints.

� Standards-based metadata including XML schema and WSDL.

More information about IBM WebSphere Business Integration Message Broker
V5.0 can be found at:

http://www.ibm.com/software/integration/wbimessagebroker

5.1.5 IBM WebSphere Business Integration Server Foundation V5.1
WebSphere Business Integration Server Foundation V5.1 builds on WebSphere
Application Server to provide a premier Java 2 Enterprise Edition (J2EE) and
Web services technology-based application platform for deploying enterprise
Web services solutions for dynamic e-business on demand.

It includes WebSphere Process Choreographer, which provides IBM WebSphere
Application Server with the ability to choreograph intra-enterprise and
inter-enterprise services into business processes that are described using the
open-standard Business Process Execution Language for Web Services
(BPEL4WS). Each activity in the business process is defined as a service using
WSDL. The business process in itself is also exposed as a WSDL-defined Web
service.

The business processes that are implemented in an enterprise typically require a
mixture of human and IT resources, and these processes are supported by
Process Choreographer. A process is a directed graph that starts with an Input
node and ends with an Output node. A process itself is described in WSDL. Its
input and output are described as WSDL messages.

A process can contain many activities. An activity can be the invocation of an
EJB, a Java class, a service, or another process. A process can also be event
driven. For example, it can be paused to wait for an event and then resumed
when a message arrives.

WebSphere Process Choreographer supports processes that can be:

� Long-running (macro-flow) and interruptible (requiring human intervention)
� Short-running (micro-flow) and part of a one-business transaction

 Chapter 5. ESB and SOA component implementations 137

http://www.ibm.com/software/integration/wbimessagebroker

More information about IBM WebSphere Business Integration Server Foundation
V5.1 can be found at:

http://www.ibm.com/software/integration/wbisf/

5.1.6 IBM WebSphere InterChange Server V4.2
WebSphere InterChange Server is a integration process management broker
that is used to integrate applications. It has a common business object model on
which process logic (called a collaboration) executes, which is isolated from the
endpoint applications. This facilitates the reuse of process integration logic and
enables execution consistency and simplified ongoing maintenance.

WebSphere InterChange Server provides business object transformation,
intelligent routing of messages, and a runtime container for business process
integration logic. This means that it is easy to manage stateful interactions
between multiple disparate integration endpoints.

WebSphere InterChange Server has a library of prebuilt integration processes
and business objects. These describe commonly occurring business process
functions that typically are used to integrate packaged (COTS) applications.

Using WebSphere InterChange Server with the WebSphere Business Integration
Adapter for Web Services:

� Collaborations can be exposed as Web services.

� Collaborations can consume Web services using service calls.

� Mediation between service requesters and service providers can be
implemented.

� SOAP messages can be processed using the SOAP Data Handler.

The capabilities of WebSphere InterChange Server should be considered in
conjunction with the WebSphere Business Integration Adapter for Web Services
(which includes the SOAP Data Handler):

� Routing can be performed in collaborations and polymorphic maps.

� Aggregation of calls to multiple service providers is implemented by:

– Making service calls serially.

– Using asynchronous service calls.

� Transformation is performed in maps.

Find more information about IBM WebSphere InterChange Server V4.2 at:

http://www.ibm.com/software/integration/wbiserver/ics/

138 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/software/integration/wbisf/
http://www.ibm.com/software/integration/wbiserver/ics/

5.1.7 IBM WebSphere MQ Workflow V3.5
IBM WebSphere MQ Workflow is aimed at helping organizations automate their
business processes. It is best suited for automating process-centric business
processes, as its strength is in people-based workflows. WebSphere MQ
Workflow supports many different staff delegation algorithms, and it can drive
system integration via the implementation of one or more User Program
Execution Servers (UPES). A UPES activity within a process sends a
WebSphere MQ XML-formatted message to a user-defined WebSphere MQ
queue. The UPES is a custom program that receives this message and performs
the request, constructs an XML response that the WebSphere MQ Workflow
server will understand, and sends the message back to the server. Because a
UPES request is delivered by WebSphere MQ, this means that the UPES can
run on any of the many operating system platforms that WebSphere MQ runs on.

WebSphere MQ Workflow can be used with WebSphere Business Integration
Workbench to provide real-time process tracking. Also, real production metrics
from the audit trail can be used within WebSphere Business Integration Monitor
to analyze an organization’s processes. Using these products together provides
any customer with the information that is needed to achieve continuous process
improvement.

WebSphere MQ Workflow is built on proven IBM technology. The communication
layer is built on WebSphere MQ, and the database can use DB2®. The servers
can run on many OS platforms, including z/OS®, providing flexibility for an
organization’s environment. The operational model that can be developed for a
WebSphere MQ Workflow implementation can be designed for highly available
environments.

More information about IBM WebSphere MQ Workflow V3.5 can be found at:

http://www.ibm.com/software/integration/wmqwf/

5.1.8 IBM WebSphere Business Integration Connect V4.2.1
WebSphere Business Integration Connect is a B2B community management
solution that provides extensive support for partner definition and management
of document interactions. The Advanced and Enterprise editions provide
SOAP/HTTP support as one of the transport solutions for trading partner
integration in addition to other transport formats including FTP, SMTP,
RosettaNet, cXML, and AS2. It runs on WebSphere Application Server and has
three main components:

� Community Console

This provides the administration interface for setting up the trading community
and monitoring the flow of documents and processes within the community.

 Chapter 5. ESB and SOA component implementations 139

http://www.ibm.com/software/integration/wmqwf/

� Receiver

This component handles secure and reliable receipt of documents,
independent of the transport protocol from community participants over the
Internet. It writes the documents to shared file service for the Document
Manager to process.

Documents can enter the system from within the enterprise via a directory or
over HTTP, HTTPS, or JMS. The Document Manager detects the document
and routes it to the community participant.

� Document Manager

This component receives documents, performs any user-configured
validation processing, and then delivers the document to its final destination.
Subsystems can encrypt and decrypt the document, perform digital signature
verification, transform and validate XML, and log entries about the processing
of the document.

WebSphere Business Integration Connect provides SOAP bi-directional
passthrough support between enterprise and trading partners. There is no
introspection, parsing, or validation of the SOAP body during processing. It
provides support for SOAP V1.1, WSDL V1.1, WS-I Basic Profile 1.0, and
supports RPC-encoded, RPC-literal, and Document-literal binding styles.

Setting up a Web service in WebSphere Business Integration Connect involves
uploading the WSDL definition file that is provided by the trading partner for the
service and setting the target Web service public URL. The endpoint for the
service is not delineated from WebSphere Business Integration Connect.

WebSphere Business Integration Connect provides support for SOAP/HTTP and
SOAP/HTTPS. Currently, there is no support for SOAP/JMS or transport
rebinding. Web services security is via SSL and basic authentication; at present
no WS-Security integration is provided. Non-repudiation is provided using
authentication and auditing.

More information about IBM WebSphere Business Integration Connect V4.2.1
can be found at:

http://www.ibm.com/software/integration/wbiconnect/

5.2 SOA component product mappings
In the previous chapters, we identified and described the following components,
or node types, that play a role in an SOA infrastructure:

� Direct Connection

140 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/software/integration/wbiconnect/

� Service Directory

� Business Service Choreography

� Enterprise Service Bus patterns:

– Enterprise Service Bus

– Exposed ESB

– Exposed ESB Gateway

In this book, we do not concentrate on the Direct Connection pattern, other than
the discussion in Chapter 6, “Endpoint enablement roadmap” on page 153. For
more information about using the Direct Connection pattern in an SOA, refer to
Patterns: Service-Oriented Architecture and Web Services, SG24-6303.

In the following sections, we discuss the remaining patterns and components,
and indicate which technologies may be used to implement them.

5.2.1 Service Directory product mappings
The Service Directory component may exist either as part of the Enterprise
Service Bus or as a component in its own right. Where this component exists as
part of the Enterprise Service Bus, often it is implemented by the ESB
technology. However, some implementations might involve linking the ESB to an
external service directory.

In this section, we discuss only the cases where an explicit Service Directory is
required, in which case Service Directory can be considered a node type.

Several approaches could be taken to implementing a Service Directory node:

� UDDI

A dedicated UDDI technology, such as that available with WebSphere
Application Server Network Deployment, to provide Service Directory based
on Web services standards.

� LDAP server

LDAP directory servers, such as IBM Tivoli Directory Server, are not
specifically intended to provide directories of services but they do provide a
flexible directory format that could be adapted to this requirement.

� Customized database

Where neither UDDI or LDAP are appropriate, a customized directory can be
implemented using a database. This is the approach that is taken in
Chapter 5, “ESB and SOA component implementations” on page 133.

 Chapter 5. ESB and SOA component implementations 141

� Other customized solutions

The preceding three options have concentrated on technologies that provide
standards support, use supported products, and are suitable for dynamic
service discovery. However, there are many other possibilities such as the
provision of simple service directories using collaboration technologies such
as Lotus Notes® and Domino, or through basic Web sites. Such directories
may not be so suited to dynamic service discovery, but they do fulfill the basic
goal of publishing information that describes available services in a SOA.

5.2.2 Business Service Choreography product mappings
Where a separate Business Service Choreography component is required to
model and execute service choreographies that encapsulate business logic, a
separate runtime component usually is provided. An alternative would be to use
the same technology that is used to implement the Enterprise Service Bus
(assuming that the technology has appropriate capabilities); however, this is
unlikely to be a common scenario, as the intents of the two components are
rather separate.

Candidate products for implementing the Business Service Choreography
component include:

� WebSphere Business Integration Server Foundation
� WebSphere Business Integration InterChange Server
� WebSphere MQ Workflow

The ESB capabilities of WebSphere Business Integration Server Foundation
V5.1 and WebSphere Business Integration Interchange Server are described in
5.3.1, “Assessment of ESB capabilities by product” on page 145. However, that
section does not consider their suitability for implementation of the Business
Service Choreography component.

Implementation of service choreography using WebSphere Business Integration
Server Foundation V5.1 is described in Chapter 10, “Business Service
Choreography” on page 271.

For more details about service choreography, consult Patterns: Serial and
Parallel Processes for Process Choreography and Workflow, SG24-6306.

5.2.3 SOA product mappings
The previous chapters defined the following SOA patterns:

� ESB pattern
� ESB Gateway pattern

142 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Exposed ESB pattern
� Exposed ESB Gateway composite pattern

These are all examples of the Hub runtime pattern in the Patterns for e-business
Process Integration patterns - they all represent an infrastructure component for
mediating interactions. Additionally, they must support the ESB capabilities that
are identified through the discussion of requirement scenarios, architectural
issues, and solution patterns as presented in Chapter 4, “Enterprise Service Bus
and SOA patterns” on page 73. In any individual situation, those capabilities will
determine which technologies are appropriate for implementing an ESB, ESB
Gateway, Exposed ESB, or Exposed ESB Gateway pattern.

Depending on the exact ESB capabilities that are required, the following
approaches could be taken:

� Web Services Gateway (available with WebSphere Application Server
Network Deployment)

� WebSphere Business Integration Message Broker

� WebSphere Business Integration Connect (although this is primarily suited to
the Exposed ESB Gateway pattern)

� Customized implementation based on WebSphere Application Server

� Customized implementation based on WebSphere MQ

There are certain other technologies that, although primarily intended for other
uses, provide certain features that are appropriate to Enterprise Service Bus
capability. Though they would not be considered prime candidates for ESB
implementation, they do provide features that promote ESB-like access to their
function:

� WebSphere Business Integration Server Foundation

� WebSphere Business Integration Interchange Server

In this book, we cannot describe all of the possible implementations of each
pattern in each technology, but the more common product-based solutions are
covered as follows:

� Implementation of the ESB pattern using the Web Services Gateway is
described in Chapter 8, “Enterprise Service Bus: Router variation” on
page 175.

� Implementation of the ESB pattern using WebSphere Business Integration
Message Broker is described in Chapter 9, “Enterprise Service Bus: Broker
variation” on page 219.

 Chapter 5. ESB and SOA component implementations 143

� Implementation of the Exposed ESB Gateway composite pattern using the
Web Services Gateway is described in Chapter 11, “Exposed ESB Gateway
composite pattern” on page 299.

An assessment of product features against the ESB capability model is made in
5.3, “Product capabilities for the Enterprise Service Bus” on page 144.

Standard, proprietary, and customized approaches
The choice among standard, proprietary, and customized approaches to various
aspects of ESB implementation is discussed in 4.5.8, “Architecture decision
questions” on page 125, particularly question 3 on page 126, “Technologies for
Interoperability.” There are two senses in which this question applies when
identifying implementation technologies for the ESB:

� The decision whether to base ESB implementation primarily on a product,
such as WebSphere Business Integration Message Broker, or on a custom
implementation perhaps using features of other products such as WebSphere
Application Server or WebSphere MQ.

� The decision to implement each aspect of service interaction, such as
security, transactionality, and service interface definition, using open
standards, proprietary features, or customized formats.

The first case is the more fundamental, but similar issues apply in both:

� Balancing the cost of development and maintenance of specific solutions
against the availability of interoperable or open-standard product
implementations that support appropriate service levels.

� Balancing requirements to support emerging Web services specifications
against requirements for high service levels.

� Balancing the desire for a single simple solution against the desire to apply
the best technical solution to each requirement across the enterprise.

Other aspects of customized implementation are discussed in 5.3.5, “Options for
customized implementation” on page 149.

5.3 Product capabilities for the Enterprise Service Bus
As the role of the ESB capabilities is so crucial to identifying appropriate
implementation technologies, this section presents an analysis of product
features against the ESB capability model.

144 Patterns: Implementing an SOA Using an Enterprise Service Bus

5.3.1 Assessment of ESB capabilities by product
Table 5-1 rates each product against the ESB capabilities that are defined in the
previous chapter. WebSphere Application Server and WebSphere MQ are
included to indicate the base features that they provide that may be leveraged in
a more customized solution.

Table 5-1 Matching ESB capabilities to products

5.3.2 WebSphere Business Integration Message Broker
Here we list the capabilities of WebSphere Business Integration Message Broker
as they relate to an ESB:

� Communication

– Dynamic routing using database or service lookup.

– Support for request-response, fire and forget, and publish and subscribe.

– Asynchronous and synchronous delivery support.

Enterprise
Service Bus
Capability

WebSphere
Application
Server V5.1

WebSphere
MQ V5.3

WebSphere
Application
Server
Network
Deployment
V5.1

WebSphere
Business
Integration
Message
Broker V5.0

WebSphere
Business
Integration
Connect
V4.2.1

Communication Medium Limited Limited Strong Fairly Strong

Integration Medium Strong Medium Strong Limited

Security Strong Limited Fairly Strong Limited Strong

Message
processing

Medium Limited Limited Strong Medium

Modeling Limited Limited Limited Fairly Strong Fairly Strong

Service
interaction

Strong Limited Strong Strong Strong

Quality of service Strong Strong Medium Strong Medium

Service level Strong Strong Medium Strong Strong

Management and
autonomic

Medium Medium Medium Medium Fairly Strong

Infrastructure
intelligence

Limited Limited Limited Limited Limited

 Chapter 5. ESB and SOA component implementations 145

– Event-driven processing (using WebSphere Business Integration
Adapters).

– Transaction management support and assured once-only delivery of
persistent WebSphere MQ messages.

� Service Interaction

– The implementation of a service as a message flow can be changed
without affecting the service requester.

– A service provider’s implementation can change without affecting its
access from a message flow.

– A message flow can handle a service request with no, partial, or complete
SOAP (or message) validation and processing.

� Integration

– Integration with relational databases (which can be under transactional
control). This access can be used for data enrichment to provide
additional information that is required for service provider processing.

– Connectivity to applications, such as COTS packages, using WebSphere
Business Integration Adapters.

– Aggregation: The processing of a single service request from a client by
fanning out several requests to service providers and aggregating the
results into a single response.

– Protocol transformation support: HTTP to JMS and vice versa.

� Service Level

– High performance and throughput characteristics (documented on the IBM
SupportPacs Web site).

– Partial parsing is automatically supported. For example, the SOAP header
could be parsed and the body transported.

– High levels of availability can be achieved using multiple brokers and
execution groups underpinned with WebSphere MQ clustering.

� Quality of service

– Message flows can be transactions, using WebSphere MQ as a
transaction manager, for example.

– Use of WebSphere MQ as the JMS transport assures the once-only
delivery of persistent messages.

� Security

– Authentication and authorization for access over JMS can be provided by
WebSphere MQ infrastructure.

146 Patterns: Implementing an SOA Using an Enterprise Service Bus

– Authentication and authorization for access over HTTP must be provided
by an external HTTP server. (Custom security can be implemented within
WebSphere Business Integration Message Broker and this could make a
call out to an LDAP directory using a plug-in node that is provided as a
SupportPac™.)

� Message processing

– Decoding and encoding of SOAP messages (including faults).

– Ability to define logic, such as dynamic routing, based on content.

– SOAP header validation. (XML and custom message formats can also be
validated.)

– Comprehensive message transformation facilities. Stylesheet
transformation can be used.

– Able to act as an intermediary between a service requester and service
provider, with independence between the two.

� Management and autonomic

– Messages can be logged in whole or in part. Such information can be
used to input into metering and monitoring.

– Services that are created from message flows could be published in an
external directory such as UDDI. A client could then use UDDI to discover
the services.

� Modeling

– Broad support for data formats, including SOAP. Business entity support
through XSDs.

– Stateless.

� Infrastructure intelligence

– Message flow processing can be adapted according to business rules.

5.3.3 WebSphere Application Server Network Deployment
Here we list the capabilities of the Web Services Gateway component of
WebSphere Application Server Network Deployment as it relates to an ESB.

� Communication

– Internet routing supported with proxy.

– Supports SOAP, UDDI, WSDL, and Web services for J2EE.

– Uses SOAP/JMS channels that support point-to-point and
publish/subscribe styles of messaging.

– Asynchronous messaging supplied through the JMS interface.

 Chapter 5. ESB and SOA component implementations 147

– Synchronous messaging can be managed through Apache SOAP or
SOAP/HTTP transports.

� Service interaction

– WSDL is used by the Gateway as the service interface definition and the
service implementation definition.

– Can publish services to a UDDI directory (either a private IBM, or external,
directory).

� Integration

– Java provides the language interface.

– Protocol transformation support.

� Service level

– Selective SOAP parsing is supported. This option can be enabled or
disabled at the service level and does not affect the ability to apply filters
to the SOAP message.

– Web service performance can be monitored through the Performance
Monitoring Infrastructure (PMI), including the number of asynchronous
and synchronous requests and responses.

� Security

– Tokens, keys, signatures, and encryption according to the WS-Security
specification may be applied to every deployed Web service.

– Authentication and authorization is available through the WebSphere
Application Server.

– HTTPS is supported.

– Proxy authentication can enabled.

– Message-level security, as part of the WS-Security specification, is
implemented using JAX-RPC.

� Message processing

– JAX-RPC is used as message handlers to provide the ability to extend the
basic service implementation. For example, JAX-RPC handlers can be
used to manage message-level security (encryption/decryption), logging,
and auditing.

148 Patterns: Implementing an SOA Using an Enterprise Service Bus

5.3.4 WebSphere Business Integration Connect
The capabilities of WebSphere Business Integration Connect as they relate to an
ESB are:

� Communication

– Support for EDI, Web Services, SMTP, and HTTP communication with
external partners.

– The Advanced and Enterprise editions provide SOAP/HTTP support.

� Service interaction

– Supports SOAP and WSDL.

– Provides a directory of services and interactions.

� Integration

– Provided through Web services or JMS, so the integration capabilities of
the WebSphere Business Integration family can be used.

� Service level

– Takes advantage of WebSphere Application Server’s proven resilience,
performance, and scalability.

� Security

– Message encryption and decryption, digital signature verification, and
provides features for non-repudiation.

� Message processing

– Transform and validate XML.

� Management and autonomic

– Logs entries about the processing of messages.

� Modeling

– Provides features to model interactions with partners, and support for
various industry standard communication mechanisms such as
RosettaNet.

5.3.5 Options for customized implementation
As discussed in 5.2.3, “SOA product mappings” on page 142, customized effort
may be required in an ESB implementation either to implement a customized
ESB or to support service interaction characteristics that are not supported by
standards or product features.

 Chapter 5. ESB and SOA component implementations 149

Such customized development should be weighed carefully against business
benefit; unless it is restricted to relatively simple function, it can imply significant
development and maintenance costs, not to mention the eventual cost of
migration to an open-standard or product-supported solution.

Customized implementation using application server features
Most application servers, including WebSphere Application Server, provide
several runtime features that support ESB capabilities, such as support for Web
Services standards and for programming models that enable data and message
manipulation. The development tooling for such application servers, such as
WebSphere Studio Application Developer, includes tools and wizards to simplify
the development of application, framework, or infrastructure code to leverage
those runtime features. Service interactions using many protocols, such as
SOAP/HTTP, SOAP/JMS, and RMI/IIOP can be enabled this way. As application
servers support these standards in the same way as more dedicated Enterprise
Service Bus technologies, such as through JAX-RPC–compliant
implementations, they can provide similar features, such as the ability to
implement intermediaries using JAX-RPC handlers.

Such application servers and tooling also provide support for a wide variety of
integration methods, either directly (databases, J2EE connectors, and so forth),
or through support for Enterprise Application Integration middleware (such as
WebSphere MQ).

In its most basic form, tooling wizards could be used to create basic code to
expose a variety of systems as service providers. A danger in doing this,
however, is that the result is, effectively, a large set of unrelated point-to-point
interactions that all happen to be hosted in the same application server runtime.
This effect can be reduced by adding framework or utility functions, such as
common approaches to logging, security, and data format transformation.
However, there is a need to limit the extent of application development that is
undertaken in such an approach, so as to avoid implementing an overly
sophisticated solution that will be costly to maintain.

Customized implementation using messaging middleware
Customized development based on messaging middleware may be an option
when Web services support is not critical and quality-of-service requirements
demand the use of mature middleware. Of course, there is a spectrum of
approaches to the use of messaging middleware to support SOA: Chapter 9,
“Enterprise Service Bus: Broker variation” on page 219 describes the use of
WebSphere Business Integration Message Broker to provide an ESB
infrastructure that supports Web Services interactions. There is no reason why
the same infrastructure should not support a variety of other message-based and

150 Patterns: Implementing an SOA Using an Enterprise Service Bus

event-based interactions that are part of an overall SOA but that, for various
reasons, do not use the Web services standards.

Where the Web services standards are not used, either for specific interactions
or for all interactions within an SOA, several decisions must be made:

� In order to fulfill the criteria for service interactions, some form of explicit
interface definition is required. This definition is usually, but not always,
machine-readable (for example, WSDL can be read by application
development tools or ESB middleware). Machine-readable interface
specifications increase the options that are available to loosely couple service
interactions. In some cases, a proprietary interface definition might be
provided by the messaging middleware, in other cases a customized model
might be used.

� Some form of service messaging model is also required, such as to provide a
message body using some format for application data and message headers
and describing other aspects of the interaction such as security or
transactional context. Again, these features may be provided by middleware,
or a customized approach could be used. It is important to note that there are
many choices of non-Web services messaging models that nevertheless
provide interoperability and conform to open standards. XML or industry
formats that are based on it, such as ebXML, are good examples.

� Applications that are service requesters will have to invoke and receive
service requests that are defined by the interface definition and that use the
service messaging model. When the interface definition or messaging model
is proprietary, applications will either have to construct appropriate messages
themselves, or a framework will have to be provided to assist them.

Given the rapid emergence and maturity of Web services standards, the amount
of effort that should be put into customized implementations is questionable,
unless the implementation is to provide support for an open standard that is not
directly supported by the product. Preferably, as a starting position, service
interactions should use open standards or supported features of product
technologies in order to minimize development, maintenance, and migration cost.

In terms of fulfilling the minimum ESB capabilities, it is also important to consider
how routing, addressing, and service directory features are provided. Some
middleware technologies, such as WebSphere Business Integration Message
Broker, provide sophisticated support for these capabilities, whereas others such
as the base WebSphere MQ product do not, so they have to be implemented in
some other manner.

Finally, approaches that are based on messaging middleware can be combined
with approaches that are based on Web services in an overall infrastructure for
SOA. In some cases, the same technology, such as WebSphere Business

 Chapter 5. ESB and SOA component implementations 151

Integration Message Broker, support both approaches. In other cases, it might be
combined, perhaps with a gateway technology such as WebSphere Business
Integration Connect, to provide additional features.

Customized implementation of emerging open standards
Whichever approach is taken to ESB implementation, the rapidly changing and
emerging nature of the Web services standards means that it is always possible
that the chosen technologies do not provide support for a particular Web
services standard, as that standard is too recent. However, it may be that there is
a desire to use such an emergent standard to implement some aspect of service
interactions.

In this case, it is possible to use features of the ESB technology runtime to
provide a customized implementation of an open standard, rather than using
product features. Although a development and maintenance cost is involved in
doing this, the use of an open standard reduces the eventual migration cost to a
product-supported solution.

152 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 6. Endpoint enablement
roadmap

An Enterprise Service Bus (ESB) can interoperate with a wide variety of
endpoints. Perhaps the most obvious is an endpoint wrapped as a Web service.
In this instance, there are several options for the protocol that is used to
communicate with the Web service. This chapter discusses two: an HTTP
service bus and a JMS service bus.

The evolution of service-oriented architecture can drive organizations to enable
service-based access to their legacy transactions. Organizations should
therefore plan to define and implement the most appropriate form of service
enablement for each of their legacy systems; options include leveraging legacy
XML or Web services support (such as is provided by CICS Transaction Server),
the use of adapters or connectors that are fronted by application servers, and the
use of EAI or Gateway technology to provide legacy connectivity.

This chapter discusses two such service enablement options: WebSphere
Business Integration Adapters and the J2EE Connector Architecture.

6

© Copyright IBM Corp. 2004. All rights reserved. 153

6.1 Web services
Web services are a common implementation of an SOA. They offer a standard
interface for many different types of endpoints (such as J2EE, messaging, and
enterprise systems) and therefore are well suited to an ESB architecture.

Web services can communicate using SOAP messages over a variety of
protocols. Each protocol effectively provides a service bus between multiple
endpoints. The most common service bus implementations include:

� HTTP service bus
� JMS service bus

6.1.1 HTTP service bus
The HTTP service bus is the most familiar way to send requests and responses
between service requesters and providers, due to wide adoption of the HTTP
protocol through the creation of the Internet. Even non-transactional companies
are connected to the Internet and are therefore able to use the HTTP service bus
inter-enterprise.

Organizations are already well-equipped to handle HTTP security requirements
and have put in measures to ensure that only valid HTTP requests are received
through firewalls, proxy servers, demilitarized zones, HTTP servers,
authorization, authentication procedures, and so forth. As a result, HTTP is
usually one of the first transport layers an organization would use when thinking
about inter-enterprise solutions.

Figure 6-1 on page 155 shows the implementation of services on an HTTP
service bus. This is an implementation of the Application Integration::Direct
Connection runtime pattern.

154 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 6-1 Runtime pattern and Product mapping for an HTTP bus

Use of an ESB extends the HTTP service bus concept. It enables the service
requester to communicate using HTTP and permits the service provider to
receive the request using a different transport mechanism.

Many ESB implementation providers have an HTTP service bus in addition to at
least one other protocol. Any of these protocols can be used for ESB interactions
and often are chosen based on service-level requirements.

Advantages of HTTP
There are several advantages to using HTTP as a transport for Web services
interactions, including:

� HTTP is a widely adopted protocol. Any organization with a Web server has
implemented HTTP, and any client that uses a Web browser uses HTTP.
Therefore, the HTTP infrastructure is widely available.

� The HTTP protocol is open and deployed on many different system types,
including non-traditional computing devices such as PDAs.

� Most enterprises allow HTTP to travel freely through protocol firewalls.
Therefore, there are fewer barriers to extended enterprise use of HTTP as a
transport for Web services.

WebSphere Application
Server V5.1

Windows 2000 + SP4

SO
AP

 P
ro

vi
de

r

Internal network

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider><Service Consumer> <Service Provider>

Adapter
Connector

Adapter
Connector

Adapter
Connector

SO
AP

 P
ro

vi
de

r

WebSphere Application
Server V5.1

Red Hat Linux AS 2.1

SOAP 1.1 /
HTTP 1.1

JA
X-

R
PC

JA
X-

R
PC

<Service Bus>

 Chapter 6. Endpoint enablement roadmap 155

Disadvantages of HTTP
HTTP is a lightweight and stateless protocol that was not originally designed to
carry application data. Disadvantages of using it for Web services include:

� The protocol is stateless. If any state data is required to maintain an
application session, the applications must create and manage the state data.

� HTTP is not a reliable protocol. If reliable delivery of application data is
required, the application must either:

– Develop a reliability framework, such as exchanging receipt messages.

– Use a more reliable protocol.

Further information
For more information about the design, development, and runtime of an HTTP
service bus, consult Chapter 5, “HTTP service bus” in the redbook Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

6.1.2 JMS service bus
While it does not quite provide the level of interoperability based on the wide
adoption that the HTTP service bus can boast, the JMS service bus brings
advantages in terms of quality of service.

JMS, part of the J2EE standard, provides a conventional way to create, send,
and receive enterprise messages. A JMS service bus can provide asynchronous
and reliable messaging to a Web service invocation. This means that the
requestor can receive acknowledgement of assured delivery and communicate
with enterprises that may not be available.

Figure 6-2 on page 157 shows the implementation of services on an MQ bus,
using JMS. This is an implementation of the Application Integration::Direct
Connection runtime pattern.

156 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 6-2 Runtime pattern and product mapping for an MQ bus using JMS

As with the HTTP service bus, use of an ESB extends the JMS service bus,
enabling service requesters and providers to communicate using different
protocols.

IBM JMS implementations
IBM provides two implementations of JMS:

1. A JMS provider included with WebSphere Application Server V5.1
(Embedded Messaging), which can be used for asynchronous communication
between applications running on WebSphere Application Server V5.1
servers.

2. IBM WebSphere MQ V5.3 includes built-in JMS Provider support with
enhanced performance features for integrating JMS applications with other
applications. IBM WebSphere MQ takes care of network interfaces, assures
once and once-only delivery of messages, deals with communications
protocols, dynamically distributes workload across available resources, and
handles recovery after system problems. IBM WebSphere MQ is available for
most popular operating system platforms.

W
eb

Sp
he

re
 A

pp
lic

at
io

n
Se

rv
er

 V
5.

1

Internal network

App Server/
Services

App Server/
Services

App Server/
Services

<Service Provider><Service Consumer> <Service Provider>

Adapter
Connector

Adapter
Connector

Adapter
Connector

W
eb

Sp
he

re
 M

Q
 V

5.
3

W
eb

Sp
he

re
 A

pp
lic

at
io

n
Se

rv
er

 V
5.

1
W

eb
Sp

he
re

 M
Q

 V
5.

3

Windows 2000 + SP4 Red Hat Linux AS 2.1

WebSphere MQ
(for JMS)

<Service Bus>

 Chapter 6. Endpoint enablement roadmap 157

Advantages of JMS
There are several advantages to using JMS as a transport for Web services
interactions, including:

� JMS provides a more reliable transport than alternatives such as HTTP.
� Asynchronous requests can be deployed readily.
� It leverages existing, enterprise-proven messaging systems.

Disadvantages of JMS
Although JMS is an open standard for Java-based systems, the actual transport
system must be provided by a software product. Therefore, there are several
considerations, including:

� The communicating Web services must have access to JMS providers that
can communicate with each other. Generally, this implies that the same
product must be installed. For example, both systems must have IBM
WebSphere MQ installed.

� JMS is a Java-based standard and is not as readily accessible to systems
that are not based on Java.

These disadvantages only occur for use with the Direct Connection pattern. That
is, the service requestor and service provider have adopted use of the same
product (IBM WebSphere MQ, for example). When using an Enterprise Service
Bus, this is not necessarily a requirement.

Keep in mind that the capabilities of an ESB, which are listed in 4.3, “A capability
model for the Enterprise Service Bus” on page 82, identify protocol
transformation as ESB functionality. This means that by using an Enterprise
Service Bus as a key component of the SOA, two organizations can send and
receive messages regardless of the original message structure.

Using the ESB capabilities enables:

� A service provider to receive a JMS message that is sent from a service
requester that originated from different JMS providers.

� A service provider to receive a JMS message that is sent from a service
requester that originated the call using HTTP.

Further Information
For more information about the design, development, and runtime of a JMS
service bus, consult Chapter 6, “JMS service bus” in the redbook Patterns:
Service-Oriented Architecture and Web Services, SG24-6303.

158 Patterns: Implementing an SOA Using an Enterprise Service Bus

6.2 WebSphere Business Integration Adapters
This section describes how to communicate with existing business logic by using
WebSphere Business Integration Adapters. It discusses application interface
choices, available adapters, and using adapters with the Enterprise Service Bus.

6.2.1 Application interfaces
Organizations may have custom or off-the-shelf applications that provide
important business information. Perhaps the company has purchased (or
merged with) another organization and would like to use that application as a
product endpoint. How the application exchanges information to the ESB
depends on the application accessibility options.

Alternative ways an application can exchange information with the ESB include:

� Application-provided Web service interface

Some applications and legacy application servers have adopted the open
standards philosophy and have included a Web services interface. The
WSDL defines the interface to communicate directly with the application
business logic. Where possible, taking a direct approach is always preferred.

� Non-Web service interface

The application does not expose business logic via Web services. An
application-specific adapter can be supplied to provide a basic intermediary
between the application API and the ESB. The adapter has two parts: the
adapter framework and the application-specific component.

� Service wrapper as interface to adapter

In some cases the adapter may not supply the correct protocol (JMS, for
example) that the ESB expects. In this case, the adapter would be Web
service enabled.

Figure 6-3 on page 160 illustrates these alternatives.

 Chapter 6. Endpoint enablement roadmap 159

Figure 6-3 Options for accessing an Enterprise Information Store (EIS) from an ESB

6.2.2 Available adapters
Adapters are useful for extracting data and transactional information from
packaged applications and belong to one of the following four areas:

� Application adapters

Including Ariba Buyer, Clarify, eMatrix, JDEdwards, mySAP.com, Oracle
Applications, PeopleSoft, Portal Infranet, QAD MFG/PRO, Retek, SAP
Exchange Infrastructure, Siebel, WebSphere Commerce, and others.

� Technology adapters

Including ACORD XML, COM, CORBA, e-mail, EJB, Exchange, FIX Protocol,
iSeries™, iSoft Peer-to-Peer Agent, JDBC (SQL and stored procedure
access), JMS, JText, Lotus Domino, SWIFT, WebSphere MQ, WebSphere
Business Integration Message Broker, WebSphere MQ Workflow, Web
Services, and XML.

Some of these technology adapters can use Data Handlers. These include
Data Handlers for EDI, SOAP, XML, and various text formats.

� Mainframe adapters

Including ADABAS, CICS Transaction Server, DB2 (on zOS), IDMS
Database, IMS Transaction Manager, IMS Database Manager, Natural, and
VSAM.

<service provider>

WBI Adapter

Adapter
Framework

Connector

EIS

<service provider>

WBI Adapter

Adapter
Framework

Connector

EIS

<service provider>

EIS

Service
Interface

Service
Interface

<<ESB implementation>><<ESB implementation>>

160 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Adapter development tools

The WebSphere Business Integration Adapter Development Tools are an
integrated toolkit that provides a framework for developing custom adapters in
Java or C++.

For a complete and current list of WebSphere Business Integration Adapters,
see:

http://www.ibm.com/software/integration/wbiadapters

6.2.3 Capabilities of the adapters and the ESB
The WebSphere Business Integration Adapters are built using a common
adapter framework and all typically have the following characteristics:

� Bi-directional

– An event detection mechanism is provided to enable the adapter to
capture application-generated events. These events trigger processing in
an integration broker. This is known as event processing.

– The adapter can make changes in applications at the request of an
integration broker. This is known as request processing.

� Configurable through metadata

The adapter represents application entities as business objects. These are
defined in metadata and used by the adapter at runtime. This means that the
adapter operates generically for all business objects and business object
operations (create, retrieve, update, and delete, for example).

The metadata holds information that defines how to invoke application APIs
for each business object.

Business object definitions can be created directly from application entities at
development time for many adapters using an Object Discovery Agent.

� A reusable infrastructure component

The adapter is a reusable infrastructure component across many integration
brokers. Currently these include:

– WebSphere InterChange Server

– WebSphere Business Integration Message Broker

– WebSphere Business Integration Server Foundation

� Multi-threaded business object processing

Most adapters are built using Java. This means that request processing can
be multi-threaded. For event processing, multiple adapter instances can be
created to provide scalability and resilience options.

 Chapter 6. Endpoint enablement roadmap 161

http://www.ibm.com/software/integration/wbiadapters

The WebSphere Business Integration Adapters communicate with integration
brokers by sending and receiving business objects over JMS. (Note that there
are additional options when using WebSphere InterChange Server.) When
looking at how an ESB can interact with an adapter, there are two options:

� An ESB implementation can access the adapter by using the native business
object over JMS mechanism.

� A Web services wrapper can be implemented to access the adapter. Care
should be exercised when considering this option to make sure that real
benefits would be realized, such as increasing reuse.

Figure 6-3 on page 160 shows an enterprise with existing applications providing
connectivity to the ESB using off-the-shelf adapters to provide them with an SOA
without changing their back-end systems. (Note that event processing may
require application changes to record the events. IBM provides artifacts and
samples that are specific to each adapter).

The service requestor calls a service provided by the Enterprise Service Bus, the
bus provides the required capabilities (security and transformation, for example)
and the request is sent to the adapter. The adapter takes in the request and
translates it to the EIS language. The response is followed through the reverse of
the same process.

6.2.4 Intelligent use of the adapters with an ESB
One of the inherent issues of adapter technology revolves around the complexity
of interacting with many applications, and commercial off-the-shelf (COTS)
packages in particular.

WebSphere InterChange Server has a tight coupling with the WebSphere
Business Integration Adapters. It is designed to manage the process of
interacting with applications and is particularly well suited to COTS packages.

For example, a new order record may consist of customer details, various
contact information for queries and delivery, and a list of the products that are
being ordered. Some COTS packages place restrictions on order placement (for
example, an order can be placed only for a valid customer and if a delivery
contact is correctly specified). WebSphere InterChange Server is designed to
manage these interactions with the application so that it can verify that the
prerequisite information correctly exists or to create or update it if it does not.
Then the order can be created in the application with low risk of failure. The
characteristics that define this behavior are configurable in prebuilt collaborations
(integration processes) that IBM supplies to run on WebSphere InterChange
Server.

162 Patterns: Implementing an SOA Using an Enterprise Service Bus

The WebSphere Business Integration Adapter for Web Services can be used to
provide a Web service interface to the collaboration from the ESB. Figure 6-4
shows how this might look.

Figure 6-4 Using WebSphere InterChange Server to access applications

6.2.5 Further Information
Consult the redbook Using Web Services for Business Integration, SG24-6583,
for further information.

Note: The use of WebSphere InterChange Server as described here should
not be confused with using WebSphere InterChange Server to provide:

� An implementation of the capabilities of the ESB
� Process management of services provided by the ESB

WBI Adapter
for Web Services

<service provider>

WBI Adapter

Adapter
Framework

Connector

EIS

<<ESB implementation>><<ESB implementation>>

Adapter
Framework

Connector

Service
Interface

WebSphere InterChange Server

 Chapter 6. Endpoint enablement roadmap 163

6.3 J2EE Connector Architecture
The J2EE Connector Architecture is aimed at providing a standard way to access
enterprise applications from a J2EE-based Java application. It defines a set of
Java interfaces through which application developers can access heterogeneous
EIS systems (for example, legacy systems such as CICS) and Enterprise
Resource Planning (ERP) applications.

J2EE Connector Architecture 1.0 support is a requirement of the J2EE 1.3
specification. It provides access to a range of systems through a common client
interface (CCI) API. Application programmers code to the single API rather than
having unique interfaces for each proprietary system. The link from the API to the
enterprise system is called a resource adapter and is provided by a third-party
vendor. This is somewhat analogous to the model for JDBC drivers. Resource
adapters are packaged as resource adapter archive (RAR) files.

IBM supplies resource adapters for enterprise systems such as CICS
Transaction Server and IMS Transaction Server.

IBM provides a tool to generate enterprise beans and Web services that
encapsulate interactions with a resource adapter. This tool is part of WebSphere
Studio Application Developer Integration Edition.

Figure 6-5 on page 165 shows how a J2EE Connector Architecture endpoint that
is exposed as a Web service can be invoked using the Web Services Gateway as
the ESB implementation. These protocols are used:

1. HTTP to communicate between the service requester and the ESB.

2. JMS to communicate between the ESB and the J2EE Connector Architecture
Web service.

3. An enterprise-specific protocol to communicate between the J2EE Connector
Architecture resource adapter and the legacy system application.

164 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 6-5 Using the J2EE Connector Architecture as an endpoint

Further information
For more information about building J2EE Connector Architecture Web services,
consult Exploring WebSphere Studio Application Developer Integration Edition,
SG24-6200. For information about the CICS resource adapters, see Java
Connectors for CICS: Featuring the J2EE Connector Architecture, SG24-6401.

6.4 Alternatives
While it is not the intent of this redbook to concentrate on endpoint enablement, it
is critical to the ESB concept to ensure that enterprises are aware that there are
a multitude of ways to wrapper existing code with a service interface.

Any application that is described using WSDL can be deployed as a Web
service. The WSDL specification defines SOAP bindings for services; however, it
is possible to add binding extensions.

Some of the available alternative endpoints are:

� Enterprise JavaBeans (EJB)

Using RMI-IIOP as the access protocol, an EJB method can be invoked.

� Message-driven bean (MDB)

Using an MDB enables an EJB to act as a JMS endpoint.

Service
Client

Protocol
Transformation,

Security, etc.

IBM Web Services Gateway

Inbound
Channel WSDL

WSDL

Service
Provider

JCA

HTTP

JMS

 Chapter 6. Endpoint enablement roadmap 165

� Java class

Services can be built from a single Java class using in-thread Java method
invocations as the access protocol.

� SQL and stored procedures

A database stored procedure can be exposed as a stateless session bean.
That stateless session bean is then deployed into a SOAP router or as a
SOAP service, changing the access mechanism from JDBC to RMI-IIOP and
then to SOAP.

It may be valid to access an endpoint database from the ESB using SQL. In
this case it is unlikely to make sense to implement a Web service interface.

� Native MQ

Many legacy systems can be accessed using WebSphere MQ messaging. In
this case the queue is enabled as an endpoint for the ESB.

When considering integrating such MQ-enabled applications with the ESB,
the starting point will often be an XSD, a custom wire format or a tag-delimited
string that is provided by the application. For example, these can be imported
into WebSphere Business Integration Message Broker to create a message
set. To provide access as a Web service, the message flow must implement
the transformation of the message portions of the WSDL definition to this
message set.

When considering using JMS to access MQ-enabled applications, an
assessment must be made to establish whether the applications can handle
the JMS folder in the message header. For example, WebSphere Business
Integration Message Broker can be used to strip this JMS folder.

� JAX-RPC

Java API for XML-based RPC (JAX-RPC) is a highly interoperable way for
service entities to interoperate over ESB. A service requestor who creates a
JAX-RPC client can access a Web service that is running on a non-Java
platform and vice versa.

166 Patterns: Implementing an SOA Using an Enterprise Service Bus

Part 3 Scenario
implementation

Now that the Enterprise Service Bus patterns have been defined and mapped to
IBM product mappings, we implement some of these patterns in:

� Chapter 7, “The business scenario used in this book” on page 169

� Chapter 8, “Enterprise Service Bus: Router variation” on page 175

Implements the Enterprise Service Bus pattern using a Router interaction.

� Chapter 9, “Enterprise Service Bus: Broker variation” on page 219

Implements the Enterprise Service Bus pattern using a Broker interaction.

� Chapter 10, “Business Service Choreography” on page 271

Implements an off-the-bus Business Service Choreography process.

� Chapter 11, “Exposed ESB Gateway composite pattern” on page 299

Adds an Exposed ESB Gateway to an existing Enterprise Service Bus to
enable communication with external enterprises.

Part 3

© Copyright IBM Corp. 2004. All rights reserved. 167

168 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 7. The business scenario used
in this book

A common business scenario is used throughout Part 3 of this book: the WS-I
Supply Chain Management sample application.

This chapter describes the sample scenario, the three stages of the business
scenario, and the relevant chapter in which each stage is described.

7

© Copyright IBM Corp. 2004. All rights reserved. 169

7.1 WS-I sample application
The Web Services Interoperability Organization (WS-I) has developed a supply
chain management business scenario to demonstrate features of the WS-I Basic
Profile 1.0. The WS-I sample business scenario and the technical solution
overview are described in the following documents:

� WS-I Supply Chain Management Use Cases 1.0
� WS-I Usage Scenarios 1.0
� WS-I Supply Chain Management Technical Architecture 1.0

For full details, see the Web Services Interoperability Organization Web site:

http://www.ws-i.org

We use this business scenario to show how the Patterns for e-business,
service-oriented architecture, and Enterprise Service Bus approach can be used
to develop solutions to real-world business requirements that are based on
interoperability principles as defined in the WS-I Basic Profile.

This business scenario is a simplified supply chain for a consumer electronics
retailer. This chapter describes the evolution of scenarios as the supply chain
management organization moves from a directly connected intra-enterprise
environment to an expanded organization that has divested its business and
operates in an inter-enterprise environment.

7.2 Scenarios
This section describes the stages of the business scenario that is used
throughout the book. Each stage builds a layer of complexity onto the previous
stage.

7.2.1 Stage I: internal supply chain management on demand
In a typical B2C model, customers may access the retailer’s Web site, review the
catalog, and place orders for products such as televisions, DVD players, and
video cameras. The retailer system requests fulfilment of a consumer’s order
from the internal company warehouse, which responds as to whether line items
from the order can be filled. If stock for any line item falls below a minimum
threshold in the warehouse, a replenishment order is sent to an external
manufacturer using the B2B model.

The manufacturer does not immediately fulfill replenishment orders, but
completes the order at some later time (possibly after completing a
manufacturing run).

170 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ws-i.org

The business scenario is shown in Figure 7-1.

Figure 7-1 Stage 1: internal SCM

Initially, this business scenario uses the Direct Connection pattern to
communicate between each service. We discuss how to take this application and
model it with an Enterprise Service Bus: Router variation in Chapter 8,
“Enterprise Service Bus: Router variation” on page 175.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

WarehouseRetail
System

SCM
Application

 Chapter 7. The business scenario used in this book 171

7.2.2 Stage II: addition of warehouses
The company has a requirement to stock the parts that it offers to customers in
more than one warehouse. However, the customer must see the order as a
single transaction with the company. This is shown in Figure 7-2.

Figure 7-2 Stage II: additional warehouses

The Enterprise Service Bus: Router variation is no longer sufficient to model
these interactions because aggregation is required from the retail system to the
warehouse. In this instance, the Enterprise Service Bus: Broker variation can be
used. This is discussed in Chapter 9, “Enterprise Service Bus: Broker variation”
on page 219.

One of the three manufacturers is modeled as an external business process,
mapping to the Serial Workflow pattern. It is accessed by the Enterprise Service
Bus as discussed in Chapter 10, “Business Service Choreography” on page 271.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

172 Patterns: Implementing an SOA Using an Enterprise Service Bus

7.2.3 Stage III: divested inter-enterprise manufacturers
The company has decided to divest itself of the three manufacturers. Each will be
sold off to another company or be established as a new company in its own right.
Various interactions must now take place securely over the Internet. This is
shown in Figure 7-3.

Figure 7-3 Stage III: divested manufacturers

Each manufacturer runs within its own Enterprise Service Bus. Communication
between two Enterprise Services Bus implementations is represented by the
Exposed ESB Gateway pattern. This is discussed in Chapter 11, “Exposed ESB
Gateway composite pattern” on page 299.

Intranet

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

Intranet

In
te

rn
et

 Chapter 7. The business scenario used in this book 173

174 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 8. Enterprise Service Bus:
Router variation

In this chapter, the Enterprise Service Bus (ESB) is moved from concept to
practical implementation by applying the service-oriented architecture (SOA)
Enterprise Service Bus:Router variation. Using a simple scenario (described in
Chapter 7, “The business scenario used in this book,” beginning on page 169)
we demonstrate how an ESB can be designed and implemented using this
pattern.

In this chapter, the following points are discussed:

� The sample business scenario that our solution is meant to address

� Design guidelines that describe the design approaches for using the Router
variation to mediate service interactions in an ESB

� Development guidelines that show how to gain access and modify the flows
that mediate service interactions in an ESB

� Runtime guidelines that discuss the considerations for configuring the Router

This chapter primarily focuses on the Web Services Gateway, which is supplied
with WebSphere Application Server Network Deployment V5.1.1, as the product
mapping of the Enterprise Service Bus: Router variation.

8

© Copyright IBM Corp. 2004. All rights reserved. 175

8.1 Business scenario
Our supplied business scenario represents a simplified SCM solution that is
based on the WS-I SCM sample scenario as defined in Chapter 7, “The business
scenario used in this book,” beginning on page 169. The sample scenario is used
to illustrate the benefits of applying an SOA using an Enterprise Service Bus
within an single enterprise.

In Figure 8-1, the Supply Chain Management application makes requests to the
Retail System to help customers buy electronics goods online. The Retailer
fulfills stock from the Warehouse and the Warehouse replenishes stock from the
Manufacturers.

Figure 8-1 High-level business context showing the existing infrastructure

The organization has a few concerns with their current ability to meet market
demands. Competition is increasing, customers have more options and
opportunities, and the enterprise is under management pressure to do more for
less. Consequently, the proposed solution must focus on solving the following
business issues:

� Quicker response to change:

– Improve the ability to respond to changes including both business
requirements and changes in technology.

– Mergers and acquisitions means that their service providers often change.
These changes must be implemented with speed in a central location.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

WarehouseRetail
System

SCM
Application

176 Patterns: Implementing an SOA Using an Enterprise Service Bus

– Rapidly grow the business without constant infrastructure change.

� Reduce costs:

– Suppliers throughout the supply chain have different infrastructures.
Managing all of these differences can be costly due to increases in trained
resources, time, and training.

– Reuse of existing code by combining independent business requirements
in an innovative way.

– Utilize existing resources more efficiently.

– Make use of industry open standards in all possible locations of the
solution.

8.2 Design guidelines
This section discusses the design guidelines relating to the Enterprise Service
Bus: Router variation. The business scenario that is used in this chapter is based
on Stage I of the business scenario described in 7.2, “Scenarios” on page 170.

8.2.1 Design overview
Figure 8-2 shows an overview of the steps that might be taken to design a
solution to address business requirements. We follow these steps in this section.

Figure 8-2 Design overview

Selecting the pattern
This business scenario has the following interaction requirements:

� Only one warehouse provider is used.

� A warehouse calls each manufacturer in isolation. Interactions with more than
one manufacturer requires multiple calls.

Choosing the relevant SOA pattern
The simplest form of mediation is the Enterprise Service Bus: Router variation.
This uses the Process Integration Router pattern. This pattern meets the needs
of the business scenario in this chapter, because no aggregation is required. The
Router application pattern is shown in Figure 8-3 on page 178.

Review the
implementation

options

Analyze the
business

requirements

Select an
Integration

pattern
Select a
Product

Design and
implement
the solution

 Chapter 8. Enterprise Service Bus: Router variation 177

Figure 8-3 Router application pattern

The Router application pattern is a variation of the Broker application pattern that
dictates that a single request received by the Router is routed to only one target.

For further information on the Router pattern, consult Patterns: Broker
Interactions for Intra- and Inter-enterprise, SG24-6075.

Applying the SOA pattern to the scenario
The Enterprise Service Bus: Router variation is implemented for our business
scenario as shown in Figure 8-4.

Figure 8-4 The Router pattern in the ESB

Source
Application

 Router
Rules

Target
Application

Target
Application

Target
Application

R/O

Router Rules

Warehouse
A

Manufacturer
B

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Manufacturer
C

ESB: Router variation

178 Patterns: Implementing an SOA Using an Enterprise Service Bus

Implementing the Router variation in the ESB
The use of an Enterprise Service Bus in the context of a business scenario such
as this offers the following benefits:

� The ESB is a bus with a single configuration and distributed deployment.
Managing communications through the bus provides many advantages,
including decoupling of service requesters and providers, and centralized
control of a service namespace.

� Protocol conversion occurs inside the ESB (for example, SOAP/HTTP to
SOAP/JMS). Requesters using one protocol can invoke services that are
exposed using a different protocol.

� The ESB can provide logging and transformation of service requests and
service responses.

� The ESB can provide centralized security for Web services invocations. It
can, for example, authenticate all service requesters centrally.

� The ESB provides a common access point for service requesters that need
access to services providers. The ESB intercepts and routes requests to the
relevant service provider. A change in the location of the service provider only
affects the ESB routing; the service provider location remains transparent to
the service requester.

Specifically, we use the Enterprise Service Bus: Router variation to provide:

� Service routing of requests from service requesters to the relevant service
provider based on a routing table.

� Protocol transformation, to allow the decoupling of the protocol that is used
between the service requesters and service providers.

Product implementation options
We now consider ESB capabilities in the context of selecting a product to
implement the Enterprise Service Bus: Router variation. Our product selection for
the scenario was based on:

� The products that are currently available

� The ability of the products’ capabilities to map to the requirements

� The existing infrastructure of our organization (for example, whether the
company already uses one of the products)

The following products could be used to implement an Enterprise Service Bus:
Router variation:

� WebSphere Application Server Network Deployment V5.1.1 Web Services
Gateway

 Chapter 8. Enterprise Service Bus: Router variation 179

� WebSphere Business Integration Message Broker V5.0

� WebSphere InterChange Server V4.2

To help with selecting the appropriate product, refer to:

� The description of each product, in 5.1, “Runtime product descriptions” on
page 134

� The ESB capabilities of each product, described in 5.3, “Product capabilities
for the Enterprise Service Bus” on page 144

Product selection for scenario implementation
To address the requirements of the business scenario using the Router pattern,
we selected the Web Services Gateway component of WebSphere Application
Server Network Deployment V5.1.1. Figure 8-5 shows the product mapping.

Figure 8-5 Product mapping for Application Integration::Router pattern on the ESB

In our lab environment, only Windows 2000 machines were used. However, it is
likely that many enterprises will choose to implement their Enterprise Service
Bus on other platforms such as IBM pSeries® running AIX.

Intranet

ESB: Router variation

Retailer

SCM
Application

Retail
System

Business
Event Log

Warehouse
A

Manufacturer
A

Manufacturer
C

Manufacturer
B

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

�Windows 2000 + SP3
�IBM WebSphere Application Server
Network Deployment V5.1.1

�Windows 2000 + SP3
�IBM WebSphere Application
Server v5.1.1
�IBM HTTP Server V1.3.28
�JAX RPC

180 Patterns: Implementing an SOA Using an Enterprise Service Bus

The Router is leveraged to manage communication between all service
requesters and service providers. Figure 8-6 illustrates a different view of our
solution to the scenario requirements in terms of service requesters, service
providers, and the protocols that are used for communication with the ESB.

Figure 8-6 Solution to the scenario requirements

8.2.2 Router variation
This section describes design considerations for an Enterprise Service Bus:
Router variation. First, the Web Services Gateway architecture is described, then
design considerations for the Router variation are discussed.

Web Services Gateway architecture
The entry point to the Web Services Gateway is defined by a channel. A channel
defines the protocol that you can use to access the Web Services Gateway. The
incoming message is assessed on arrival through the channel to determine
which service is required. Each service that is exposed by the Web Services
Gateway has to be bound to one or more channels. One or more filters can be

Intranet

HTTP

HTTP

HTTP HTTP HTTP,JMS

HTTP,JMS HTTP HTTP HTTP

ESB: Router variation

Retailer

Enterprise Zone

Warehouse
A

Manufacturer
B

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Manufacturer
C

 Chapter 8. Enterprise Service Bus: Router variation 181

bound to a service for manipulating both request and response messages.
Inbound JAX-RPC handlers can be bound to a channel, and outbound JAX-RPC
handlers can be bound to the invocation of a target service deployed in the Web
Services Gateway. The WSDL service definition specifies the provider service
interface and implementation that is used to access the target service
(Figure 8-7).

Figure 8-7 Web Services Gateway architecture

The response from the target service flows along the exact same path back to
the service requester. There is no extra channel for an immediate response.
However, the implementation of the handleResponse method of a JAX-RPC
handler might be different to the implementation of the handleRequest method.
Similarly one or more response filters can be deployed independently of the
request filters.

The process of deploying a target service into a Web Services Gateway channel
generates two different external WSDL files; an implementation definition and an
interface definition. These new WSDL files can be exported for use by client
applications, and are the externalization of the service capabilities that are
offered by the internal target service. The implementation WSDL definition is
used to simplify the connection process for a client, particularly when dynamic
invocation is used. Having obtained the implementation definition, the client can
then access the WSDL interface definition produced by Web Services Gateway,
which provides full information about the target service (as presented externally
by the Web Services Gateway).

For further information about Web Services Gateway V5.1.1 features, consult:

http://www.ibm.com/developerworks/websphere/techjournal/0403_flurry/0403_fl
urry.html

Design approach
This section discusses considerations for designing a Router ESB solution.

WSDL
with

Target
Service

ProviderGateway
Engine

<<service
requester>>

WSGW
Exported
WSDL

Request
Channel

Invoke

Web Services Gateway
<<ESB Implementation>>

Inbound
Handlers

<<service
provider>>

Filters Outbound
Handlers

182 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/websphere/techjournal/0403_flurry/0403_flurry.html

Design alternative: location of service definitions
The interface, binding, and service endpoint of a Web service are defined in
WSDL files. The Router must have access to these service definitions and can
get it through the following options:

� Copy the WSDL files to a local directory that the Router has access to.

� Publish the WSDL files on an HTTP server, where they can be retrieved by
the Router.

� Publish the WSDL files to a private UDDI registry.

To achieve the first option with the Web Services Gateway, copy the WSDL files
into a subfolder of the Web Services Gatewayinstallation directory within
WebSphere Application Server. While this option is the easiest to configure, it
should be considered for prototypes only.

Either the HTTP server or UDDI registry should be used for production-ready
implementations. The HTTP server approach is the simplest to implement, but
the UDDI approach offers several advantages:

� UDDI registries allow a fine degree of classification for Web services in your
organization, which enables service requesters to quickly find the Web
services to fit their needs.

� Providers of Web services within a enterprise could change frequently
because of organizational changes or business reasons. From an
administrative point of view it might be easier that each service provider
keeps its published data up to date using UDDI, versus maintaining the
WSDL files located on a HTTP server.

Reasons for not using the UDDI approach include:

� In an ESB scenario, the only client that uses the UDDI registry to obtain
WSDL interface definition and implementation definitions of the Web services
in your organization is the Router. The service requesters will obtain the
interface definition and implementation definition from the Router. This limits
the need for most UDDI features.

� If the Router supports the WS-Inspection specification (as the Web Services
Gateway does) the service requesters can easily locate the WSDL
documents of the Web services that are exposed by the Router.

The reasons for using UDDI in this scenario are more organizational than
technical, so we do not use a UDDI registry in our sample scenario. Instead we
place the WSDL files on an HTTP server.

 Chapter 8. Enterprise Service Bus: Router variation 183

Design alternative: client design considerations
When you introduce a Router ESB into an SOA, point your service requesters to
this ESB rather than directly to the service provider. There are two alternatives
for changing the service requester:

1. Use the WSDL files that are generated by the Router in the service requester,
and regenerate the Web service client stubs.

2. Change the end-point address in your existing WSDL files on the client to
point to the Router.

Generally, the first option is the safer and cleaner approach. You use a separate
set of WSDL files in your service requesters to invoke a service that is exposed
by the Router. These WSDL files are maintained by the Router, and they contain
information such as the namespace of the Router, so they are decoupled from
the service provider. The warning on this approach is that you have to make
changes to your client code to reflect the changes.

The second option is easier to implement as it requires no changes to your client
code. You simply change the end-point address to point to the Router and then
redeploy your client application. As a drawback, the service requester uses the
same interface description to invoke a service exposed by the Router as the
Router uses to invoke the target service. This creates a tighter coupling with the
service provider and could lead to problems where the Router and service
provider publish to the same UDDI registry.

Mediation
Here we discuss the types of mediation that can be performed by a Router ESB.

Design alternative: selective SOAP parsing
If mediation of information in a SOAP body is not required, it is not necessary for
a Router to parse this SOAP body. This brings several benefits:

� Performance is improved.

� Incompatibilities between the parser in the Router and the supplied SOAP
body are not an issue.

By default, the Web Services Gateway parses the SOAP body of any message it
receives. Use the selective SOAP parsing feature to turn parsing off. With
selective SOAP parsing turned on, the SOAP body will pass through the Web
Services Gateway unchecked.

Selective SOAP parsing is available only for the SOAP/HTTP channel. See
“Design alternative: WS-Security” on page 187 for an explanation of how to use
selective SOAP parsing and WS-Security together to establish end-to-end
security.

184 Patterns: Implementing an SOA Using an Enterprise Service Bus

Design alternative: custom versus standards-based mediation
A Router can intercept SOAP requests and examine them in several ways. For
example, the Web Services Gateway offers two alternatives: filters or JAX-RPC
handlers.

JAX-RPC is the standards-based way for heterogeneous systems to
communicate. It is part of the J2EE Web services specification and is supported
in WebSphere Application Server V5.1.1. As the standards-based approach,
using JAX-RPC handlers with the Web Services Gateway is recommended.
JAX-RPC handlers are available for SOAP/HTTP channels and SOAP/JMS
channels.

JAX-RPC handlers can act between service requesters and the Web Services
Gateway (inbound handlers) or between the Web Services Gateway and service
providers (outbound handlers). You can have multiple inbound or outbound
handlers, which are called a handler chain. JAX-RPC handlers generally work
best when acting on SOAP headers. You can configure which headers a handler
is intended to process.

Filters are a custom Web Services Gateway solution that do not benefit from the
advantages of using a J2EE open standard such as JAX-RPC handlers. Filters
are still supported and are the only option when using Apache SOAP channels.

Design alternative: static versus dynamic service provider routing
A Router can determine the service provider to route a request to in the following
ways:

� Statically, by looking up the endpoint for a given Web service request from
within the Router application or from an external routing table

� Dynamically, by examining the SOAP message and determining the endpoint,
based on the content of this message.

The static approach has the following advantages:

� Easiest to configure, with no programming required

� Best performance

� Ensures that all requests for a particular Web service operation are forwarded
to the same service provider

� Can be changed in the Router application or external routing table without
requiring a change to the service requester

In most cases, the static approach is sufficient. However, the dynamic approach
offers the chance to use mediation to examine the SOAP message to determine
which service provider endpoint to use.

 Chapter 8. Enterprise Service Bus: Router variation 185

The Web Services Gateway implements this dynamic approach when it is
configured in proxy operation mode.

In proxy operation mode you configure only one Web Services Gateway service,
(the proxy service) without any target services. You can make any SOAP request
to this service. As a consequence of not having to define target services, some
other mechanism is needed to tell the Web Services Gateway where to route a
request to. This will be achieved by writing and configuring a JAX-RPC handler
that selects the appropriate target service and sets the endpoint URL to this
target service into a SOAP message property named transport.url.

To select the appropriate target service’s endpoint URL, an agreement regarding
a routing parameter is needed between the service requesters and the routing
handler:

� The service requester could place a HTTP request parameter into the
request. The handler can receive the full request URL using the SOAP
message property inbound.url.

� The service requester could place a routing parameter in a SOAP header.

The content of the agreed routing parameter can be either:

� The target service’s endpoint URL

or

� Some identification of the target service (such as the WSDL port type). The
routing handler uses this information to look up the target service endpoint
address from, for example, a UDDI registry.

As this book is being written, the proxy operation mode is supported only by the
SOAP/HTTP channel. To use the proxy operation mode, you have to configure
the Web Services Gateway to use selective SOAP parsing. (See “Design
alternative: selective SOAP parsing” on page 184.)

The Web Services Gateway has to know whether a received message is a
request-response message or a one-way message. Since the SOAP body will
not be parsed, this information cannot be gathered from the message
automatically. Therefore the clients have to place the operationMode HTTP
parameter into the request. The value of this parameter can either by oneway or
requestResponse. The default value is requestResponse.

Regarding the Enterprise Service Bus: Router variation, the proxy operation
mode of the Web Services Gateway provides the following advantages:

� For an ESB it is very likely to apply a basic set of mediations such as logging
and security to all service invocations. In proxy mode, these mediations must

186 Patterns: Implementing an SOA Using an Enterprise Service Bus

be configured only once by configuring a handler chain that is applied to the
proxy service.

� The service providers in an organization are subject to change over time.
Provided that each service provider keeps its routing directory entry (for
example, in a UDDI registry) updated, the proxy operation mode allows for a
zero ESB administration after it is set up.

Security
The aim of applying security in an SOA is to provide end-to-end security between
a service requester and a service provider. By introducing a third party such as
the Router between the communication, end-to-end security can no longer be
achieved using transport-level security mechanisms such as SSL.

Design alternative: WS-Security
WS-Security describes how to secure SOAP messages that provide message
integrity, message confidentiality, identification, and authentication. WS-Security
provides security on the message level; you can apply any of the aforementioned
security mechanisms to parts of the message.

With WS-Security, you can use the Router as a security endpoint to enforce
different security constraints on inter-enterprise messages that are sent to the
Router (versus intra-enterprise messages).

To address confidentiality, you can encrypt the SOAP body or parts of it. This
enables a Router such as the Web Services Gateway to process the message
without affecting end-to-end security by decrypting and encrypting data. In the
case of the Web Services Gateway, selective SOAP parsing must be turned on
so the encrypted SOAP body is not parsed.

There are some cases in which WS-Security protected messages cannot flow
through the Router, such as a message with a digitally signed body. In this
instance, the message contains SOAP headers with signing information, which
would be altered in their transit through the Router, thereby invalidating the
message.

In contrast to confidentiality where you want to establish an end-to-end security
context, it might be worth thinking of intercepting authentication at the Router
stage. Each service requester could be authenticated at the Router. After
successful authentication at the Router, a new authentication context is
established between the Router and the service provider.

This eases the necessary configuration effort for authentication because each
service requester must be authenticated only at the Router, as opposed to
authenticating each service requester at each potential service provider side.

 Chapter 8. Enterprise Service Bus: Router variation 187

Version 1 of the WS-Security specification was recently (April 2004) ratified by
OASIS. The Web Services Gateway that is part of WebSphere Application
Server Network Deployment Version 5.1 currently implements the WS-Security
draft recommendation (April 2002).

Design alternative: basic authentication, role-based authorization
If you need a role-based authorization model to protect operations of services
exposed by the Web Services Gateway, you can make use of the basic
authentication and authorization mechanism based on the broader security
features of WebSphere Application Server.

These mechanisms are:

� Web Services Gateway-level authentication
� Web service operation-level authorization

Using Gateway-level authentication, you can set up the Web Services Gateway
channel applications to provide access only to service requesters that supply the
correct user ID and password and, thus, restrict the access to the ESB.

Additionally, the Web Services Gateway enables you to assign the J2EE
role-based authorization model to operations of services that are exposed by the
Web Services Gateway. Consult the WebSphere Application Server Network
Deployment InfoCenter for detailed information.

8.3 Development guidelines
To implement the Router ESB design, very little work is required in the
development environment. We now develop a very basic JAX-RPC handler that
writes the message contents unformatted to the systems log.

8.3.1 Using JAX-RPC handlers in an ESB
JAX-RPC handlers, which are compliant with J2EE Web services (as defined in
JSR 101 and JSR 109), are a new feature of the Web Services Gateway that is
part of WebSphere Application Server, Network Deployment Edition Version 5.1.

Handlers can be generic (such as a handler used for logging) or
application-specific by processing a specific SOAP header only or by fulfilling a
SOAP actor function.

188 Patterns: Implementing an SOA Using an Enterprise Service Bus

JAX-RPC handlers add means of mediation to our ESB implementation:

� JAX-RPC handlers provide a standards-based approach for managing
message-level security as defined by the WS-Security specification. Within
an ESB implementation, it might be of particular interest to:

– Add or act on identification and authentication information.

– Validate message integrity.

� Logging

Web service requests and responses that pass through the Web Services
Gateway can be logged.

� Message transformation

JAX-RPC handlers can add, delete, or modify any SOAP headers. JAX-RPC
handlers can also modify the SOAP body of a message within the limitations
defined in JSR 109. Some of the elements that cannot be changed in a SOAP
body are:

– The WSDL operation

– The types of the parts in a message

– The number of parts in a message

� Configure timeouts

You can configure a timeout for outbound requests by setting a SOAP
message property called timeout.

� Terminating a request

You can terminate an incoming request in a handler (for example, after
unsuccessful authentication of the service requester).

� Dynamic service routing

– In scenarios in which you have configured multiple target services or
target ports for a Web Services Gateway service, you can use a JAX-RPC
handler to determine the correct service provider. The handler can choose
the intended target service or target port from the list of available target
services or target ports.

– When operating the Web Services Gateway in proxy mode, use a
JAX-RPC handler to identify the target service, and route this request to
the target service by setting the endpoint URL in a SOAP message
property called transport.url.

� Establish a shared context

You can use JAX-RPC handlers to establish a shared context between the
service requesters, service providers, or any JAX-RPC handler–enabled
intermediary such as the Web Services Gateway. Establish a shared context

 Chapter 8. Enterprise Service Bus: Router variation 189

by placing some piece of information into the message header in a handler on
one node and act on that information in a handler on another node.

JAX-RPC handlers can be applied to SOAP/HTTP channels and SOAP/JMS
channels.

In our sample scenario, we do not have a mediation requirement that could be
satisfied using a JAX-RPC handler. Therefore, we provide a rather simple
JAX-RPC handler that logs the request and response messages.

Writing a JAX-RPC handler
We only cover what is needed to write a generic handler. For more about SOAP
header processing and SOAP actors, consult the SOAP 1.1 specification.

To develop a handler, you have to implement the Handler interface, which is
defined as shown in Example 8-1.

Example 8-1 Interface definition of a JAX-RPC handler

abstract public interface javax.xml.rpc.handler.Handler extends
java.lang.Object {

abstract public boolean handleRequest(MessageContext arg);
abstract public boolean handleResponse(MessageContext arg);
abstract public boolean handleFault(MessageContext arg);
abstract public void init(HandlerInfo arg);
abstract public void destroy();
abstract public QName[] getHeaders();

}

The methods init and destroy are for lifecycle control. Similar to servlets,
handler instances might be shared between invocations. The J2EE container
calls init when a handler is instantiated and before any request will be dispatched
to the handleRequest, handleResponse, or handleFault methods. The J2EE
container calls the destroy method to inform a handler instance that it will be
removed from the container’s working set. Thus, anything that is needed in the
handler in order to process requests can be set up in the init method and can be
tidied up in the destroy method.

The HandlerInfo object that is passed to the init method provides context
information from the runtime system. The HandlerInfo.getHandlerConfig()
method returns name/value pairs that are configured in the handlers deployment
descriptor. The method HandlerInfo.getHeaders() returns the set of SOAP
headers that are defined in the deployment descriptor for this handler.

The JSR 109 specification states that a Handler.init() method must retain the
information that is defined by HandlerInfo.getHeaders(). Additionally, the JSR

190 Patterns: Implementing an SOA Using an Enterprise Service Bus

109 specification states that a Handler implementation must implement the
getHeaders() method to return the results of the HandlerInfo.getHeaders()
method.

The handleRequest method is invoked when a request message arrives.
Similarly, the handleResponse message is invoked when a response message
arrives. The handleFault method performs SOAP fault processing.

Instead of implementing the Handler interface directly, you can inherit the
javax.xml.rpc.handler.GenericHandler class, which provides default
implementations for all of the above-mentioned Handler methods except
getHeaders().

Putting all of this information together, our first handler looks like Example 8-2.

Example 8-2 JAX-RPC handler implementation - part one

package com.ibm.ral.itso;

import java.io.IOException;
import javax.xml.namespace.QName;
import javax.xml.rpc.handler.*;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.*;

public class LogHandler extends GenericHandler {

private QName[] headers = null;

public void init(HandlerInfo handlerInfo) {
headers = handlerInfo.getHeaders();

}

public QName[] getHeaders() {
return headers;

 }
}

Note that we also have to implement the init method in order to implement the
getHeaders method as required by JSR 109. In the next step, we implement the

Note: IBM provides another default handler implementation with the class
com.ibm.wsspi.webservices.rpc.handler.GenericHandler, which implements
the interface com.ibm.wsspi.webservices.rpc.handler.Handler. While it is
possible to start your handler development using these classes, your handlers
will not be portable to any other JAX-RPC implementation.

 Chapter 8. Enterprise Service Bus: Router variation 191

handleRequest and handleResponse methods to log the message contents, as
shown in Example 8-3.

Example 8-3 JAX-RPC handler implementation - part two

public boolean handleRequest(MessageContext msgContext) {
System.out.println("a request message is passing the gateway...");
logMessage(msgContext);
return true;

}
public boolean handleResponse(MessageContext msgContext) {

System.out.println("a response message is passing the gateway...");
logMessage(msgContext);
return true;

}
protected void logMessage(MessageContext msgContext) {

SOAPMessageContext smc = (SOAPMessageContext) msgContext;
SOAPMessage sm = smc.getMessage();
try {

sm.writeTo(System.out);
System.out.println();

} catch (SOAPException e) {
e.printStackTrace();

} catch (IOException e) {
e.printStackTrace();

}
}

Both methods, handleRequest and handleResponse, are passed a reference to a
MessageContext. Note that casting this reference to a SOAPMessageContext
without testing (as shown) is not recommended by JSR 109, because in the
future there might be support for message types other than SOAP by container
vendors.

A MessageContext serves two purposes:

� It can be used to pass parameters between handlers in a handler chain or just
different handler methods in the same handler.

� It provides access to the SOAP message. In our simple sample, we only use
the SOAPMessageContext to get the SOAP message, which we want to log
to the system log entirely.

192 Patterns: Implementing an SOA Using an Enterprise Service Bus

8.3.2 Developing a handler in WebSphere Studio
Developing a handler in WebSphere Studio Application Developer is easy:

1. Create a Java project. For the project name, type: Handler

2. Create a package in this Java project. For the package name enter:
com.ibm.ral.itso

3. Adjust the Java Build Path for your Java Project:

– Add WAS_50_PLUGINDIR/lib/qname.jar

– Add WAS_50_PLUGINDIR/lib/webservices.jar

4. Create a handler class:

– Right-click the created package and select New → Class.

– For the class name enter: LogHandler

– For the superclass enter: javax.xml.rpc.handler.GenericHandler

– Click Finish.

5. Complete the implementation of your handler, as shown in Example 8-2 on
page 191 and Example 8-3 on page 192.

8.3.3 Preparing a handler for deployment to Web Services Gateway
To deploy a JAX-RPC handler to the Web Services Gateway, first you must make
it available to WebSphere Application Server. You can do one of the following:

� Export the required class files from WebSphere Studio Application Developer
and copy them into the directory structure under <install_root>/classes
(providing the package name in this directory structure as well). Using this
method, our sample handler LogHandler.class file is copied to the
<install_root>/classes/com/ibm/ral/itso directory, where <install_root> is the
directory in which you have installed WebSphere Application Server.

� Export the class files that are required for your handler to a JAR file and copy
the JAR file to the install_root/lib/app directory.

The deployment of the handler into the Web Services Gateway configuration is
described in the Runtime guidelines section in 8.4.7, “JAX-RPC handler runtime
guidelines” on page 208.

8.4 Runtime guidelines
In this section we start with a brief look at installing and configuring the Web
Services Gateway. After that, we replace the point-to-point interactions in our

 Chapter 8. Enterprise Service Bus: Router variation 193

business scenario by implementing the Enterprise Service Bus: Router variation
using the Web Services Gateway. The following three-step process must be
performed for every Web service interaction:

1. Deploy a Web Services Gateway service.

2. Retrieve the endpoint address of this service.

3. Configure the service requesters to point to the endpoint address of the Web
Services Gateway service.

8.4.1 Installing the Web Services Gateway
The Web Services Gateway is a J2EE application that is supplied with
WebSphere Application Server Network Deployment edition. We installed the
Web Services Gateway on a standalone IBM WebSphere Application Server
base V5.1.1 server. For the installation of the Web Services Gateway, we
followed the installation guidelines in the WebSphere InfoCenter, which is
located at:

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

We only installed the SOAP/HTTP channel for this sample scenario, as we only
have HTTP traffic incoming to the Web Services Gateway.

8.4.2 Configuring the Web Services Gateway
When configuring the Web Services Gateway before first use, you have to
configure a namespace URI. This is an important step because you have to
redeploy all of your Web Services Gateway services if you make changes to the
namespace URI.

The Web Services Gateway namespace URI is used as the targetNamespace in
the WSDL implementation definition files that are exported from the Web
Services Gateway. Thus, there will be a different set of WSDL files for the
services that are exposed by the Web Services Gateway than for those that point
directly to the service provider. The namespace URI differentiates these files.

Note: In order to run this scenario, we used WebSphere Application Server
Network Deployment V5.1.1 (Fix Pack 1). This release contains several
essential fixes to the Web Services Gateway.

Note: After installing, be sure to update your Web server plug-in by selecting
Environment → Update Web Server Plugin in the WebSphere
Administrative Console.

194 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

You should therefore specify a namespace URI that reflects your organization
and the services that will be exposed by this ESB.

To configure the Web Services Gateway and other settings:

1. Open the IBM Web Services Gateway Admin Tool. For the default installation
on server1, the URL for accessing the console will be:

http://<hostname>/wsgw/admin

2. Click Gateway → Configure in the navigation panel.

3. In the Configure Gateway window, set the following properties (Figure 8-8):

Namespace URI urn:itso.ral.ibm.com

WSDL URI http://appsrv1a.itso.ral.ibm.com/wsgw

This is the URI that Web service clients will use to access the WSDL file and
the exposed Web service.

Figure 8-8 Web Services Gateway configuration

4. In this scenario we did not configure Proxy settings because we are
performing intra-enterprise operations. These settings may be necessary
when using the Web Services Gateway in an inter-enterprise environment.

Note: The namespace URI can be set to a URN or URL. We found that
URLs with path names (such as http://itso.ral.ibm.com/ESB) were not
supported as valid namespace URIs at runtime.

 Chapter 8. Enterprise Service Bus: Router variation 195

5. Click Apply Changes to configure the Web Services Gateway.

8.4.3 Deploying Web Service Gateway channels
Currently, these channels types are available in the Web Services Gateway:

� Apache SOAP channel
� SOAP/HTTP channel
� SOAP/JMS channel

The Apache SOAP channel and the SOAP/HTTP channel both support SOAP
applications that are SOAP 1.1 compatible (such as Apache SOAP 2.3 and Axis
SOAP 1.0). So if you have an application that uses a production-supported
Axis 1.0 SOAP stack, generating SOAP 1.1 and using HTTP as the transport
protocol, then it can use either channel. However, the use of the newer
SOAP/HTTP channel is recommended in this case.

If you are using the Apache SOAP Channel, then the SOAP message format
must be RPC style. To handle document-style SOAP messages, you must use
the SOAP/HTTP channel (which supports both RPC and document-style SOAP
messages).

If you deploy Web services that pass attachments in a MIME message, then
these Web services can only be accessed using the SOAP/HTTP channel.

When this redbook was written, SOAP/JMS channels provided no support for
SOAP with attachments.

For each channel type, two versions are supplied with the Web Services
Gateway. The WebSphere InfoCenter refers to these two versions as inbound
and outbound channels. For example, you can use these two versions to grant
different access rights to different groups of service requesters using Web
Services Gateway-level authentication as described in “Design alternative: basic
authentication, role-based authorization” on page 188.

Our scenario uses RPC-style messages as well as document style messages.
HTTP is the only protocol that is used by service requesters to request services
from service providers, so we only need to deploy the SOAP/HTTP channel.

To deploy the SOAP/HTTP Channel, perform the following steps:

1. Click Channels → Deploy in the navigation panel on the left.

2. In the Deploy Channel window (Figure 8-9 on page 197), the following fields
are required:

Channel Name SOAPHTTPChannel1

Home Location SOAPHTTPChannel1Bean

196 Patterns: Implementing an SOA Using an Enterprise Service Bus

End Point Address http://<hostname>:port/wsgwsoaphttp1

Async Reply Context Name leave blank (not supported)

Async Reply Context Value leave blank (not supported)

Figure 8-9 SOAP/HTTP channel settings

8.4.4 Deploying Web Service Gateway services
After installing and configuring the Web Services Gateway, the next step is to
deploy Web services. This section describes how to deploy services, starting
with a simple deployment, and then describes some design alternatives.

Deploying a basic Gateway service
Services that are deployed to the Web Services Gateway are called Gateway
services. This section describes how to deploy a basic Gateway service.

We deploy the Retailer Web service. To deploy a service:

1. Click Services → Deploy in the left frame of the Web Services Gateway
Admin Tool.

Note: To deploy a Gateway service, the Web Services Gateway must be able
to access the WSDL file that defines your Web service, either using a URL or
business key of a UDDI registry. Therefore, you should place your WSDL files
either on an HTTP server or publish them to a UDDI registry. The following
step-by-step instructions assume that the WSDL files can be found by using
the URL http://appsrv1a.itso.ral.ibm.com/wsdl/xy.wsdl where xy.wsdl is the
name of the WSDL file.

 Chapter 8. Enterprise Service Bus: Router variation 197

2. In most cases, only three fields have to be populated (see Figure 8-10 on
page 199):

Gateway Service Name Sets a name for the Gateway service. We set this
to RetailerGWService.

Channels Specifies the channel on which the Web service
call will be received. We chose the
SOAPHTTPChannel1 channel.

WSDL Location If you are retrieving the Web services WSDL files
from an HTTP server, set this to point to the
address of the WSDL file that defines the location
of the Web service. We set this to
http://appsrv1a.itso.ral.ibm.com/wsgw/Retaile
r_Impl.wsdl.

Note: By leaving the Target Service Name and Target Service Namespace
sections blank, these attributes will be populated by the Web Services
Gateway. This assumes that your WSDL file defines only one WSDL service.

198 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 8-10 Deploy Gateway Service

We created three additional Gateway services, as shown in Table 8-1. Each
service retrieved the WSDL file from http://appsrv1a.itso.ral.ibm.com/wsdl.

Table 8-1 Other Web Services Gateway services

Gateway service name Channels WSDL location

ManufacturerGWService SOAPHTTPChannel1 Manufacturer_Impl.wsdl

ManufacturerBGWService SOAPHTTPChannel1 ManufacturerB_Impl.wsdl

ManufacturerCGWService SOAPHTTPChannel1 ManufacturerC_Impl.wsdl

WarehouseCallBackGWService SOAPHTTPChannel1 WarehouseCallBack_Impl.wsdl

 Chapter 8. Enterprise Service Bus: Router variation 199

Design alternative: multiple target services
For our sample scenario, we created a Gateway service for each Manufacturer.
All Manufacturer Web services share the same WSDL port type definition so it
would be possible to define only one Gateway service for this WSDL port type
and configure multiple target services for this Gateway service (see Figure 8-11).
In this case you would need a JAX-RPC handler to select the correct target
service for the incoming request.

Figure 8-11 Multiple target services

Design alternative: protocol transformation
The Web Services Gateway can perform protocol transformation of Web service
requests. For example, a request that is received from a service requester over
the SOAP/HTTP channel can be forwarded to a service provider as a SOAP/JMS
request.

No configuration is necessary in the Web Services Gateway to perform this. The
only requirement is that the WSDL service implementation file contains the
relevant binding and endpoint for the protocol you wish to use.

In our scenario, the Retailer service places a call to the Warehouse Web service
with a SOAP/HTTP request. The Web Services Gateway transforms this request
to SOAP/JMS, because the WSDL implementation file specifies that this protocol
is to be used (Example 8-4 on page 201).

200 Patterns: Implementing an SOA Using an Enterprise Service Bus

Example 8-4 Warehouse_Impl.wsdl

<wsdl:service name="WarehouseService">
<wsdl:port name="Warehouse" binding="intf:WarehouseSoapJMSBinding">

<wsdlsoap:address location="jms:/queue?destination=jms/WarehouseQ&
connectionFactory=jms/WarehouseQCF&
targetService=Warehouse"/>

</wsdl:port>
</wsdl:service>

We defined the Warehouse service in the Web Services Gateway as shown in
Table 8-2. This service retrieved the WSDL file from
http://appsrv1a.itso.ral.ibm.com/wsdl.

Table 8-2 Warehouse Gateway service

Design alternative: multiple services in a single WSDL file
Some Web services may define multiple services in a single WSDL service
implementation file. For example the LoggingFacility Web service defines two
services, one for a SOAP/HTTP service and another for a SOAP/JMS service as
shown in Example 8-5.

Example 8-5 Multiple services in a single WSDL file

<wsdl:service name="LoggingFacilityService">
<wsdl:port name="LoggingFacility" binding="intf:LoggingFacilitySoapBinding">

<wsdlsoap:address
location="http://appsrv1a:9080/LoggingFacility/services/LoggingFacility"/>

</wsdl:port>
</wsdl:service>

<wsdl:service name="LoggingFacilityJMSService">
<wsdl:port name="LoggingFacility" binding="intf:LoggingFacilitySoapJMSBinding">

<wsdlsoap:address location="jms:/queue?destination=jms/LoggingFacilityQ&
connectionFactory=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>

</wsdl:port>
</wsdl:service>

Note: If the Web Services Gateway and service provider are located on
different machines, you have to configure a JMS provider on the Web
Services Gateway machine to point to the queue manager of the service
provider.

Gateway service name Channels WSDL location

WarehouseGWJmsService SOAPHTTPChannel1 Warehouse_Impl.wsdl

 Chapter 8. Enterprise Service Bus: Router variation 201

When deploying such services to the Web Services Gateway, it is not sufficient
simply to supply the WSDL location, as the Web Services Gateway is unable to
determine which service is intended to be deployed. Therefore, you must also
specify the target service name and the target service namespace.

For example, to define the LoggingFacility service, which uses SOAP/HTTP, we
specified:

� Gateway Service Name set to LoggingFacilityGWHttpService

� Channels set to SOAPHTTPChannel1

� WSDL location set to
http://appsrv1a.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.wsdl

� Target Service Name set to LoggingFacilityService

� Target Service Namespace set to
http://www.ws-i.org/SampleApplications/SupplyChainManagement/2002
-08/LoggingFacility.wsdl

Similarly, we defined a second LoggingFacility service (which uses SOAP/JMS)
called LoggingFacilityGWJmsService with the same settings, except Target
Service Name, which was set to LoggingFacilityJMSService.

Design alternative: multiple target ports
Instead of defining two service definitions in a single WSDL file, you can define
multiple WSDL ports with a single WSDL service (Example 8-6).

Example 8-6 Multiple ports in a single WSDL service

<wsdl:service name="LoggingFacilityService">
<wsdl:port name="LoggingFacilityHTTP" binding="intf:LoggingFacilitySoapBinding">

<wsdlsoap:address
location="http://appsrv1a:9080/LoggingFacility/services/LoggingFacility"/>

</wsdl:port>
<wsdl:port name="LoggingFacilityJMS" binding="intf:LoggingFacilitySoapJMSBinding">

<wsdlsoap:address
location="jms:/queue?destination=jms/LoggingFacilityQ&
connectionFactory=jms/LoggingFacilityQCF&targetService=LoggingFacility"/>

</wsdl:port>
</wsdl:service>

In this instance, you would deploy a single Gateway service for both ports. The
Web Services Gateway detects that multiple ports are defined in the service and
creates target service ports for each of them (Figure 8-12 on page 203).

202 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 8-12 Multiple target service ports

Define a JAX-RPC handler to select the appropriate target port for the target
service. Failure to do so will mean the that Web Services Gateway will always
select the first target service port in the list.

8.4.5 Extracting the endpoint address
The Gateway creates endpoint addresses, which the service requester must use
to access the Gateway services. Allowing for the name of a Gateway service and
the channel you have configured for a Gateway service, the endpoint address will
be similar to:

http://appsrv1a.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengine/urn%3Aitso.ra
l.ibm.com%23RetailerGWService

To extract the endpoint address:

1. Open the Web Services Gateway Admin Tool and click Services → List in
the left frame.

2. Click RetailerGWService in the list of deployed services.

3. In the Service: RetailerGWService window, scroll down to the Exported
WSDL definitions section and click View external WSDL implementation
definition.

4. Copy the value from the location attribute of the soap:address element to a
temporary text file or to your service requester’s WSDL implementation file.
(See “Configuring the service requesters to point to the Gateway” on
page 205.)

Repeat these steps for the remaining Gateway services.

Design alternative: export the Gateway-generated WSDL files
Instead of copying the endpoint address, you can export the WSDL
implementation definition file that the Web Services Gateway generates and
regenerate the Web service client. In the generated WSDL implementation
definition file, the namespace URI that you have configured in 8.4.2, “Configuring
the Web Services Gateway” on page 194 is specified as the targetNamespace.

 Chapter 8. Enterprise Service Bus: Router variation 203

The WSDL interface definition file will be imported from a location within the Web
Services Gateway (see Example 8-7). Thus you have two sets of WSDL files:

� WSDL files that define how to reach a service provider and, in our case, are
located on an HTTP server

� WSDL files that define how to reach the Web Services Gateway target
service, and are located within the Web Services Gateway

Example 8-7 WSDL implementation definition file generated by the Gateway

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="urn:itso.ral.ibm.com"
xmlns:interface="http://www.ws-i.org/SampleApplications/SupplyChainManagement/2
002-08/Retailer.wsdl"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">
 <wsdl:import

namespace="http://www.ws-i.org/SampleApplications/SupplyChainManagement
/2002-08/Retailer.wsdl"

location="http://appsrv1a.itso.ral.ibm.com
/wsgw/ServiceInterface?name=RetailerGWService"/>

 <wsdl:service name="RetailerGWService">
 <wsdl:port name="RetailerPortTypeSOAPHTTPBindingPort"

binding="interface:RetailerPortTypeSOAPHTTPBinding">
 <soap:address

location="http://appsrv1a.itso.ral.ibm.com/wsgwsoaphttp1
/soaphttpengine/urn%3Aitso.ral.ibm.com%23RetailerGWService"/>

 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

If you regenerate the Web service client with the Web Services Gateway
supplied WSDL, some code adjustments are necessary in your service
requester’s implementation code (see 8.4.6, “Configuring the service requesters
to point to the Gateway” on page 205).

To export the WSDL implementation definition file that the Web Services
Gateway has generated:

1. Select the a Gateway service from the list of deployed services.

2. In the Exported WSDL Definitions section, right-click External WSDL
implementation definition (WSDL only) and select Save Target As and
save the file using an appropriate filename.

204 Patterns: Implementing an SOA Using an Enterprise Service Bus

Design alternative: Use WS-Inspection to extract the endpoint
To help your service users locate the WSDL documents for services that are
deployed to the Web Services Gateway, the Web Services Gateway also
supports the WS-Inspection specification. To open a WS-Inspection document
that contains references to the WSDL documents for all of the Web Services
Gateway-deployed services, issue an HTTP GET against:

http://host:port/wsgw/wsinspection.wsil

Here, host and port are the host name and port number that your HTTP server is
listening on. You can specify this URL in the Web service client wizard in
WebSphere Studio Application Developer.

8.4.6 Configuring the service requesters to point to the Gateway
To regenerate your Web service clients in WebSphere Studio Application
Developer you could either:

� Change the endpoint URL in your existing WSDL implementation definition
file on the client side to the value that you have captured in the step
“Extracting the endpoint address” on page 203.

� Use the Web Service client wizard to regenerate the Web service client by
specifying the location of the WSDL implementation definition file that has
been generated by the Web Services Gateway.

Changing the Web service endpoint URL
To change the endpoint URL for the Retailer Web service in the SCMSampleUI
application to point to the service that is exposed by the Web Services Gateway
(RetailerGWService in our scenario), open the Retailer_Impl.wsdl file and
change soap:address:

<wsdlsoap:address
location="http://appsrv1a.itso.ral.ibm.com:9080/Retailer/services/Retailer"/>

Note: You do not have to export the External WSDL interface definition
from the Web Services Gateway because the External WSDL
implementation definition imports it using a URL that points to a location
within the Web Services Gateway.

Note: Instead of saving the file, you can copy the link to this file (select
Copy Shortcut) and use this URL to specify the WSDL file location in the
Web service client wizard in WebSphere Studio Application Developer.

 Chapter 8. Enterprise Service Bus: Router variation 205

To the value that you have captured in 8.4.5, “Extracting the endpoint address”
on page 203:

<wsdlsoap:address
location="http://appsrv1g.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengine/urn
%3Aitso.ral.ibm.com%23RetailerGWService"/>

To pick up the changed endpoint URL in your client code, you can either
regenerate the Web services client or use the Deploy WebServices option in
WebSphere Application Server (Figure 8-13). WebSphere Application Server will
regenerate the deployment code based on the Web services client deployment
descriptors, updating it with the current endpoint address from the WSDL file.
Similar to EJB deployment, this only has to be performed when the deployment
details have changed.

Figure 8-13 Deploying Web services using the WebSphere Administrative Console

To regenerate the Web services client in WebSphere Studio Application
Developer using the changed endpoint URL, right-click Retailer_Impl.wsdl and
select Web Services → Generate Client. Follow the instructions in the wizard.

Note: No code changes are required in the service requester implementation,
because only the endpoint URL has changed.

206 Patterns: Implementing an SOA Using an Enterprise Service Bus

Regenerating the client using the generated WSDL file
To regenerate the Web service client based on the WSDL implementation
definition file that is generated by Web Services Gateway:

1. Start the Web service client wizard: Select File → New → Other → Web
Services → Web Service Client.

2. In the Web services client wizard, select Java Proxy on the Web Services
page and click Next.

3. On the Client Environment Configuration page, select the Client Web Project
(SCMSampleUIWeb in our case) and click Next.

4. On the Web Service Selection Page, specify either:

– The location to the exported external WSDL implementation definition file.

– The URL to the external WSDL implementation definition file.

– The URL to the WSIL document of the Web Services Gateway. In this
case you have to select the URL that points to the WSDL file that you want
to use, in the next window (see Figure 8-14).

Figure 8-14 Selecting the WSDL file location from a WSIL document

5. Select Define custom mapping for namespace to package and click Next.
On the next screen, click Import and select Build → wsdl →
Retailer-NStoPkg.properties. Click OK.

6. Click Finish to create the Web service client.

After regenerating the Web service client, the following changes are made:

� A new Java package (in our case com.ibm.ral.itso) is created. This matches
the namespace URI that we configured in 8.4.2, “Configuring the Web
Services Gateway” on page 194.

� This package contains the JAX-RPC service interface (RetailerGWService)
and the JAX-RPC service object (RetailerGWServiceLocator).

� A new service (service/RetailerGWService) is added to
webservicesclient.xml.

 Chapter 8. Enterprise Service Bus: Router variation 207

To use this service, change your service requester to look up the reference to
this service. For SCMSampleUIWeb, this code is located in the class
shopper.Shopper. Change the code that retrieves a reference to the service
object from:

RetailerService retailer = (RetailerService)
ctx.lookup("java:comp/env/service/RetailerService");

to:

RetailerGWService retailer = (RetailerGWService)
ctx.lookup("java:comp/env/service/RetailerGWService");

8.4.7 JAX-RPC handler runtime guidelines
Two tasks are necessary to use JAX-RPC handlers developed in WebSphere
Studio Application Developer in the Web Services Gateway:

� Deploying the handler to the Web Services Gateway
� Configuring inbound and outbound handler chains

Deploying JAX-RPC handlers to the Web Services Gateway
To deploy a JAX-RPC handler to the Web Services Gateway configuration:

1. Open the IBM Web Services Gateway Admin Tool.

2. Select Handlers → Deploy. (See Figure 8-15.)

Figure 8-15 Deploy JAX-RPC Handler configuration

208 Patterns: Implementing an SOA Using an Enterprise Service Bus

3. For Handler Name, enter a unique name by which the handler will be known
in the Web Services Gateway. For our sample handler, enter LogHandler.

4. For Handler Class, enter the fully qualified name of the handler class. For our
sample handler enter com.ibm.ral.itso.LogHandler.

5. Define optional properties:

– Init parameter name / value

You can define any name / value pair for configuration purposes. The
handler can access these parameters using
HandlerInfo.getHandlerConfig()

– SOAP header QName

• Here you can specify any SOAP header’s qualified namespace to
indicate to the runtime that this handler is either to consume or to
produce a specific SOAP header.

• Syntax: {namespace_URI}local_name

– SOAP role

• The SOAP role that a handler is supposed to fulfill.

Configuring inbound and outbound handler chains
You can configure one or more channels for a Gateway service to listen for
incoming requests. For each of these Gateway service/channel combinations,
you can configure a handler. This handler is called an inbound handler.

Additionally, you can configure multiple target services for a Gateway service,
and each target service can have multiple target ports. For each of these
Gateway service / target service / target port combinations, you can configure a
handler. This handler is called an outbound handler.

For each the combinations, you can configure more than one handler. If you
configure more than one handler, you also have to provide an execution order.
This is referred to as a handler chain.

To configure an inbound handler for a the RetailerGWService:

1. Open the IBM Web Services Gateway Admin Tool.

2. Select Services-> List.

3. Click RetailerGWService.

Note: When you deploy a handler you can only configure three init
parameters, one SOAP header QName, and one SOAP role. After deploying
the handler you could add more of these configuration parameters.

 Chapter 8. Enterprise Service Bus: Router variation 209

4. In the Channels section, click Edit JAX-RPC handler configuration.

5. On the Edit Gateway Service JAX-RPC handler configuration page, you
should see the previously deployed LogHandler in the dropdown list
(Figure 8-16). Select LogHandler and click Add.

Figure 8-16 Gateway service JAX-RPC handler configuration

6. To create a handler chain, you have to specify an order. Select another
handler and specify whether it should be executed before or after LogHandler
(Figure 8-17). We did not have a second handler to add.

Figure 8-17 Defining a handler chain

Outbound handlers can be configured in the Target Service Port section of a
Gateway service by clicking Edit target service JAX-RPC handler
configuration (Figure 8-18 on page 211).

210 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 8-18 JAX-RPC handlers can be configured for target service ports

8.4.8 Runtime guidelines for selective SOAP parsing
The selective SOAP parsing feature can be switched on for a Gateway service,
ensuring that the SOAP body will not be parsed by the Web Services Gateway.
To use this feature, two configuration steps are required:

1. For the WebSphere Application Server instance where the Web Services
Gateway is running, configure it to run in single class loader mode. Set this in
the WebSphere Administrative Console by clicking Servers → Application
Servers → server1 and setting Application classloader policy to Single
(Figure 8-19 on page 212). Restart WebSphere Application Server for this
change to take effect.

 Chapter 8. Enterprise Service Bus: Router variation 211

Figure 8-19 Specifying a single classloader

2. In the Web Services Gateway Admin Tool, define a new Gateway service,
and set the Message part representation to Selective SOAP Parsing /
Generic Classes (Figure 8-20).

Figure 8-20 Turning on selective SOAP parsing

8.4.9 Runtime guidelines for proxy operation mode
To configure the Web Services Gateway to use proxy mode, complete these
steps:

1. Follow all of the steps in the section 8.4.8, “Runtime guidelines for selective
SOAP parsing” on page 211.

2. Additionally, in the Gateway service definition, select the Act as proxy
service option (Figure 8-21 on page 213).

3. Do not specify a target service in the Gateway service definition.

4. Create a JAX-RPC handler to route requests to the appropriate service
provider.

Note: It is not possible to turn on selective SOAP parsing for an existing
Gateway service. You must create a new one.

212 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 8-21 Act as proxy service

8.4.10 Other runtime issues
This section discusses some other runtime issues relating to the Web Services
Gateway, such as how to handle exceptions and monitor SOAP messages.

Handling exceptions for the Web Services Gateway
During normal processing of a Web service invocation, a fault message might be
generated by the target service and is passed back to the channel to be sent to
the originator. As far as the Web Services Gateway is concerned, there is no
difference between processing a normal output message and processing a fault
message.

But when an exception occurs during processing of a request, the channel needs
some way to decide what to do with the exception. What is needed is a service
that provides a pluggable handler that can look at the message, exception, and
other information to decide whether the exception should be thrown back to the
originator, or whether a fault message should be constructed.

This service is not provided with the Web Services Gateway, but the Web
Services Gateway does contain an interface to encapsulate such a service. The
ExceptionHandler interface allows channels to call an exception handling
service, and allows the exceptions to be reported to a third party for analysis.

The Home object for this service must implement the
com.ibm.wsgw.beans.ExceptionHandlerHome interface and be located in JNDI
at websphere/WSGW/ExceptionHandlerService.

Capturing Web service invocation information
The Web Services Gateway has not implemented a service that stores
operational messages, but it does contain an interface (the MessageWarehouse
interface) to encapsulate such a service. This interface is driven by channels on
receipt of requests and before sending responses.

 Chapter 8. Enterprise Service Bus: Router variation 213

If you have your own system for handling (classifying, storing, and retrieving)
operational messages, potentially you can use it to log the Web Services
Gateway’s operational messages through the MessageWarehouse interface.

The Home object for this service must implement the
com.ibm.wsgw.beans.MessageWarehouseHome interface and be located in
JNDI at websphere/WSGW/MessageWarehouse.

Monitoring SOAP messages
You can trace the XML messages exchanged between a Web service client and
the server. In this section we look at two tools:

� The TCPMon tool provided with WebSphere Application Server V5.1.1

� The TCP/IP Monitor Server provided with WebSphere Studio Application
Developer

WebSphere TCPMon tool
The TCPMon tool enables tracing of SOAP messages by redirecting messages
from one port to another, displaying the contents as they go. WebSphere
Application Server normally listens on port 9080. To trace messages that are
sent to the application server, TCPMon can be configured, for example, to listen
on port 9088 and redirect messages to 9080. The client is modified to use port
9088 to access the Web service.

This tool is provided with WebSphere Application Server V5.1.1. It enables you
to view the contents of the SOAP messages that are exchanged between the
source and target applications, as shown in Figure 8-22 on page 215.

214 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 8-22 Tracing SOAP messages using TCPMon

You can start TCPMon from a command window as follows:

set CLASSPATH=%CLASSPATH%;<WAS_HOME>\lib\webservices.jar
<WAS_HOME>\java\bin\java com.ibm.ws.webservices.engine.utils.tcpmon

For more about TCPMon, see the InfoCenter article “Tracing Web services
messages” at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

TCP/IP Monitor Server
The TCP/IP Monitor Server that is provided with WebSphere Studio Application
Developer (shown in Figure 8-23 on page 216) also allows tracing of SOAP
messages. It works in a similar way to the WebSphere TCPMon tool. To use the
TCP/IP Monitor Server, create a new Server and Configuration and select
Other → TCP/IP Monitor Server for the server type.

 Chapter 8. Enterprise Service Bus: Router variation 215

http://www.ibm.com/software/webservers/appserv/infocenter.html

Figure 8-23 Tracing SOAP messages using WebSphere Studio TCP/IP Monitor Server

Application server clustering
The Web Services Gateway is a J2EE enterprise application that runs on
WebSphere Application Server. This means that in a Network Deployment
environment, clustering of application servers can be used to improve
performance and availability.

For information about WebSphere Application server clustering, see IBM
WebSphere V5.0 Performance, Scalability, and High Availability, SG24-6198.

8.5 Further information
� Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, Perspectives on Web

Services, Springer, 2003, ISBN 3-540-00914-0

� Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

� Java API for XML-based RPC

http://java.sun.com/xml/downloads/jaxrpc.html

� Web Services Security (WS-Security) Version 1.0

http://www.ibm.com/developerworks/webservices/library/ws-secure/

� Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-securi
ty-1.0.pdf

� WebSphere Application Server Information Center Library

http://www.ibm.com/software/webservers/appserv/infocenter.html

216 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://java.sun.com/xml/downloads/jaxrpc.html
http://www.ibm.com/developerworks/webservices/library/ws-secure/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ibm.com/software/webservers/appserv/infocenter.html

� IBM developerWorks SOA and Web services zone

http://www.ibm.com/developerworks/webservices

� IBM WebSphere V5.0 Performance, Scalability, and High Availability,
SG24-6198

 Chapter 8. Enterprise Service Bus: Router variation 217

http://www-136.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices
http://www.ibm.com/developerworks/webservices

218 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 9. Enterprise Service Bus:
Broker variation

In this chapter we expand on the concept of the Enterprise Service Bus (ESB)
using the service-oriented architecture (SOA) Enterprise Service Bus: Broker
variation. We explore the architectural implications of using the Enterprise
Service Bus: Broker variation in an SOA by building on the scenarios that are
supplied in Chapter 7, “The business scenario used in this book” on page 169.

In Chapter 8, “Enterprise Service Bus: Router variation” on page 175, we saw
the implementation of the Router pattern to replace Direct Connections. In this
chapter, we describe a fuller ESB implementation that reduces the number of
service invocations by using the Enterprise Service Bus: Broker variation.

In this chapter, the following topics are discussed:

� The sample business scenario that our solution should address.

� Design guidelines that describe the design approaches for using the
Enterprise Service Bus: Broker variation to mediate service interactions in an
ESB.

� Development guidelines that show how development tools may be used to
define the flows that mediate these service interactions in an ESB.

� Runtime guidelines that discuss the considerations for deploying the flows.

9

© Copyright IBM Corp. 2004. All rights reserved. 219

9.1 Business scenario
The sample application that was introduced in Chapter 7, “The business scenario
used in this book” on page 169, is a simplified supply chain for a consumer
electronics retailer. The supply chain components have been deployed as Web
services, and the application can be used as shown in Figure 9-1.

Figure 9-1 High-level business context showing the existing infrastructure

The company is facing several issues with the existing infrastructure, which it is
looking to overcome. In addition to those discussed in the business scenario,
there are two more challenges:

� The company has a requirement to stock the parts it offers to customers in
more than one warehouse. Each part will only be held in one warehouse.
However, the customer must see the order as a single transaction with the
company. Therefore, an order must be seamlessly divided within the company
so that requests for shipment by warehouses are only made for the parts it
stocks. The responses from the warehouses must be aggregated to provide a
single response to the customer.

� The company is looking to grow its product line through acquisition. This
means being able to bring additional warehouses online and also broaden its
supply chain by allowing more manufacturing facilities to make the company’s
goods.

We will be implementing the Enterprise Service Bus: Broker variation to illustrate
how a solution to these requirements can be provided.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

220 Patterns: Implementing an SOA Using an Enterprise Service Bus

9.2 Design guidelines
Many of the design guidelines that have been discussed in Chapter 8,
“Enterprise Service Bus: Router variation” on page 175, apply when designing a
solution using the Enterprise Service Bus: Broker variation. However, we discuss
variations and additional considerations for meeting the requirements that are
described in Stage II of the business scenario.

9.2.1 Design overview
An overview of the steps that might be taken to design a solution to address
business requirements is shown in Figure 9-2. We now follow these steps.

Figure 9-2 Design overview

Selecting the pattern
We start by considering the requirements that are described in the business
scenario in the previous section in conjunction with the Process Integration
patterns found in 4.4, “SOA profile of the Application Integration patterns” on
page 90. The need to ship orders from multiple warehouses can be summarized
as follows:

� For a single client request, the ESB must distribute requests to multiple
service providers and return a single response to the client.

Furthermore, there is a requirement to easily integrate acquired companies into
the organization’s infrastructure:

� Additional warehouses must be added seamlessly behind the single client
request from the retailer.

� Additional manufacturers could be accessed to provide goods to the
warehouses.

Choosing the relevant SOA pattern
To address these requirements, we implement the Enterprise Service Bus:
Broker variation for our scenario in this chapter. This variation uses the Process
Integration Broker pattern, as shown in Figure 9-3 on page 222.

Review the
implementation

options

Analyze the
business

requirements

Select an
Integration

pattern
Select a
Product

Design and
implement
the solution

 Chapter 9. Enterprise Service Bus: Broker variation 221

Figure 9-3 Broker application pattern

The Broker pattern dictates that a single request received from a source
application can be sent to multiple target applications. The responses from the
target applications can be aggregated into a single response, which is returned
to the source application. For more information about the Broker pattern, consult
Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075.

Applying the SOA pattern to the scenario
The Enterprise Service Bus: Broker variation is implemented for our business
scenario, as shown in Figure 9-4.

Figure 9-4 The Broker pattern in the ESB

Implementing the Enterprise Service Bus: Broker variation
Multiple similar interactions often benefit from a strategy of centralizing control to
enable standardization and reuse across a distributed infrastructure.
Implementing the Enterprise Service Bus: Broker variation provides message

Source
Application

Broker
Rules

Target
Application

Target
Application

Target
Application

Broker Rules
& WIP Results

WIP

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Manufacturer
C

ESB: Broker variation

222 Patterns: Implementing an SOA Using an Enterprise Service Bus

distribution that is based on predefined distribution rules that can invoke multiple
targets concurrently. Key components of this solution design include:

� Message transformation
� Content-based routing
� Message decomposition/recomposition

The Broker pattern is described further in 3.4.4, “Broker application pattern,” in
Patterns: Service-Oriented Architecture and Web Services, SG24-6303.

Scenario requirement for the Broker variation
The implementation of the Enterprise Service Bus: Router variation in Chapter 8,
“Enterprise Service Bus: Router variation” on page 175, eliminated the Direct
Connection pattern for service invocations. However, it does not meet the
additional requirements of our business scenario. In particular, the number of
service invocations that are made by service clients will increase in line with the
number of service calls. This may lead to higher latency in the execution of
several application operations, such as the ship order request made by the
Retailer. Perhaps, more important, it is not optimizing ongoing maintenance effort
and overall flexibility of the ESB.

By introducing the Enterprise Service Bus: Broker variation, service invocations
can be encapsulated behind a single request to the ESB from a service client. In
our scenario, we are using this pattern to simplify the access by the Retailer to
fulfill the order across several of the Warehouses: instead of implementing a
service call to each warehouse in the Retailer, a single service request can be
made by the Retailer to the ESB. The ESB will make a service request to each of
the Warehouses, aggregate the responses, and return the results to the Retailer.

The general requirements for service routing and protocol conversion in this
chapter are the same as for Chapter 8, “Enterprise Service Bus: Router
variation” on page 175.

Product implementation options
We now consider the capabilities of the ESB in the context of selecting a product
to implement the Enterprise Service Bus: Broker variation. Our product selection
for the scenario was based on:

� Available products.

� The ability of the products’ capabilities to map to the requirements.

� The existing infrastructure of our organization. (For example, does the
company already use one of the products?)

 Chapter 9. Enterprise Service Bus: Broker variation 223

The following products could be used to implement an Enterprise Service Bus:
Broker variation:

� WebSphere Business Integration Message Broker V5.0
� WebSphere InterChange Server V4.2
� WebSphere Business Integration Server Foundation V5.1

To help with selecting the appropriate product, refer to:

� The description of each product in 5.1, “Runtime product descriptions” on
page 134.

� The ESB capabilities of each product, described in 5.3, “Product capabilities
for the Enterprise Service Bus” on page 144.

Product selection for scenario implementation
To address the requirements that are described in 9.1, “Business scenario” on
page 220 using the Enterprise Service Bus: Broker variation, we selected
WebSphere Business Integration Message Broker. The product mapping is
shown in Figure 9-5.

Figure 9-5 Product mapping for Application Integration::Broker pattern on the ESB

Intranet

ESB: Broker variation

Retailer

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

Manufacturer
C

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

�Windows 2000 + SP3
�IBM WebSphere Business Integration
Message Broker V5 + CSD03
�IBM WebSphere MQ V5.3 + CSD06
�DB2 UDB V8.1 + Fixpack 5

�Windows 2000 + SP3
�IBM WebSphere Application
Server v5.1.1
�IBM HTTP Server V1.3.28
�JAX RPC

224 Patterns: Implementing an SOA Using an Enterprise Service Bus

In our lab environment, only Windows 2000 machines were used. However, it is
likely that many enterprises will choose to implement their Enterprise Service
Bus on other platforms such as IBM pSeries running AIX.

Figure 9-6 illustrates a different view of our solution to the scenario requirements
in terms of service requesters, service providers, and the protocols used for
communication with the ESB.

Figure 9-6 Solution to the scenario requirements

9.2.2 Broker design
Many of the design guidelines that are provided in 8.2.2, “Router variation” on
page 181 apply to the Enterprise Service Bus: Broker variation. Additional
considerations that should be given to the Enterprise Service Bus: Broker
variation over the Enterprise Service Bus: Router variation now follow in three
categories:

� Design approach
� Broker communication
� Inside the Broker

Intranet

HTTP

HTTP

HTTP HTTP HTTP,JMS HTTP

HTTP

HTTP,JMS HTTP,JMS HTTP,JMS HTTP

ESB: Broker variation

Retailer

Enterprise Zone

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Manufacturer
C

 Chapter 9. Enterprise Service Bus: Broker variation 225

Design approach
Here we discuss some of the approaches to take when designing the Broker
variation implementation.

Design alternative: top-down or bottom-up
A top-down approach develops the WSDL definition from scratch whereas a
bottom-up approach uses an existing interface to derive the WSDL definition.

The introduction of the ESB adds further considerations. For a top-down
approach these are as follows:

� Two WDSL definitions must be developed for each service: one provided by
the ESB to the service client and one for the server-side service provider.

� The WSDL definitions for each service can be identical across the ESB
except for the port element (which specifies the address for binding) and the
binding element when different protocol support is required. The other major
elements of the WDSL definition can be common across the ESB.

� Interoperability is facilitated by largely common definitions.

For a bottom-up approach the considerations are:

� The WSDL definition is derived for each server-side interface. Using the
Enterprise Service Bus: Broker variation, multiple interfaces may have to be
aggregated by the ESB to provide a service for clients. It is still possible to use
a common WSDL definition for a service across the ESB as in the top-down
approach.

� Such aggregation can involve complex service design and complex
transformation logic to enable results from service providers to be merged for
the client.

� Existing system implementations can be considered in the design of the
service provided by the ESB.

It is also worth noting that the access of server-side functionality and data by the
ESB does not have to be provided as a Web service. Many access mechanisms
can be used by technologies that are capable of implementing the Enterprise
Service Bus: Broker variation to reach these existing systems more easily.
Examples include applications that are already MQ-enabled, those that are
accessible through adapters, and SQL. In such cases, the Enterprise Service
Bus: Broker variation would encapsulate such access behind a service interface
that it provides to consumers.

Formally, this type of access is still part of an ESB because it is still able to
implement a single point of control over the namespace for the services that are
contained within. However, it is likely that use of such an access mechanism

226 Patterns: Implementing an SOA Using an Enterprise Service Bus

represents a Direct Connection pattern implementation from the ESB to an
application.

Chapter 6, “Endpoint enablement roadmap” on page 153, discusses endpoint
access in more detail. This includes accessing endpoints that do not provide a
Web services interface.

For our scenario implementation, the WS-I has provided the WDSL for the
services. We have used the same WSDL for service clients and service
providers, changing the port in the service requester WSDL definition to access
the service on the ESB.

As we write this book, WebSphere Business Integration Message Broker is more
suited to a bottom-up approach because it is highly capable of reflecting
server-side interfaces.

Design alternative: location of business logic
We consider business logic in terms of two types of functionality:

1. Aggregation

One of the additional requirements of the business scenario is to support the
ship order request across multiple warehouses. This requires the use of
aggregation to manage multiple requests to the Warehouses in response to a
single request from the Retailer. With this type of requirement, careful
consideration must be given regarding the location of business logic.

It is worth noting here that in some ways, aggregation is the result of business
logic because decisions must be made about whether to return one, some, or
all of the responses to the original requester.

In practice, requirements are more complicated than for our scenario. For
example, more than one warehouse might be allowed to stock each part, and
fulfilment for a part on an order might be by more than one warehouse. In this
case, the best implementation of the aggregation may include some business
logic.

2. Process management

In the context of business logic, we must also explore process management.
An ESB does not provide full process choreography: business processes
execute in an external engine and invoke services that are provided by the
ESB. Similarly, the ESB can invoke business processes that are provided by a
separate process engine.

However, there may be situations where the combination of low-level services
into a single exposed service could take place inside the ESB. Internal serial
process logic can be used to handle sequences of calls such as those
involved in screen-scraping dialogs with legacy systems.

 Chapter 9. Enterprise Service Bus: Broker variation 227

Such business logic can be implemented in applications. In this case, these
points should be noted:

� Applications are owned by business divisions (such as Sales and
Manufacturing) in most organizations. This means that they have control over
the logic.

� Flexibility of business logic within a business division is facilitated. Services
must be designed to allow changes to business logic by a business division
without the need for other service providers to change their WSDL definitions.

The alternative is the ESB. However, the drawbacks of locating business logic in
the ESB are:

� The ESB is rarely owned by a business division, and so development of and
changes to logic in the ESB may require consensus across divisions in many
organizations.

� The impact of changes to logic in the ESB on business divisions may be high.

� The logic is centralized in the ESB, facilitating reuse, allowing a single point of
maintenance, and enabling it to be provided as a service.

The important design point here is that within an architecture for each ESB
implementation it should be clear where such logic should be assigned.

For the scenario implementation, we chose to ensure that the business logic was
contained in one of the endpoints and not in the ESB.

Design alternative: service granularity
Service granularity is an important consideration when implementing the
Enterprise Service Bus: Broker variation. This is because the amount of
transformation, aggregation and routing implemented in the ESB can significantly
affect the granularity. This in turn affects efficiency, the amount of reuse, and
ongoing maintenance effort.

The core principles are as follows:

� Services that implement business interactions are likely to be more stable.
Overall success is more likely.

Note: Although an ESB will probably not be owned by a business division, an
ESB implementation is unlikely to be successful unless there are governance
processes that enable a business division to decide what simple and complex
services it wishes to see deployed and to request these. Projects determine
the functions that are required of the back-end systems, and they should be
involved in defining the WSDL exposed by the ESB.

228 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Services should be designed as complete units of work. A Web service
probably maps best to the implementation of a use case.

� Implement a façade over fine-grained object methods. This minimizes
network latency and the number of cross-network calls. There may have to be
some serial logic when services are being built from calls to existing back-end
systems and there is a desire not to expose the fine details.

� Coarser granularity improves performance and hides implementation details
from consumers (including the developers of client applications).

� Services can be used by multiple service clients if they are general enough.

� Services on the ESB should not implement Business Service Choreography
business logic (except for non-functional requirements or as described in
“Design alternative: aggregation versus serial processing” on page 235).
They can encapsulate external serial processing.

Implementing services for demanding non-functional requirements for
fine-grained access is not recommended. For example, high-performance access
to an endpoint should be direct. Alternatively, see the database lookup pattern
described in “Design alternative: externalizing service lookup” on page 232.

In our scenario implementation, the WSDL was provided by the WS-I, so this was
not a factor that we had to consider. However the primary use of WebSphere
Business Integration Message Broker is typically mediation and it is likely that the
granularity of integration endpoints will be significant in determining the amount
of transformation, routing, and aggregation.

Broker communication
Here we discuss how the ESB is accessed and how it accesses service
providers when it implements the Enterprise Service Bus: Broker variation.

Design alternative: JMS versus HTTP
The two primary options for transporting SOAP messages are HTTP and JMS.
These technology options are discussed in Chapter 6, “Endpoint enablement
roadmap” on page 153.

It is important to recognize that there is no single point of control over the
namespace with HTTP because of the characteristics of the widely used domain
controller infrastructure. This differs from the scope of an ESB that is defined by a
group of services that are accessible through one or more protocols whose
addressing and naming is controlled at a single point.

A Broker variation solution can aggregate service calls across multiple providers
using multiple transport protocols. However, the reliability of the service that is
provided by the ESB should be considered. Implementing JMS as the

 Chapter 9. Enterprise Service Bus: Broker variation 229

communication from the ESB to providers may allow a transactional controller
where appropriate technologies allow and are selected.

WSDL definition changes are required to provide protocol conversion from HTTP
to JMS in the Broker variation solution. In summary, changes must be made to
the transport attribute of the soap:binding and the location attribute of the
soap:address.

It is expected that many enterprises will use JMS as a reliable transport for their
protocol to the service providers where the services are internal and
communication does not pass through a firewall. WebSphere MQ is a JMS
provider that assures once-only delivery of persistent messages.

Design alternative: externalizing the service endpoint
In any particular situation there may be multiple namespaces, but the only one
that counts in the context of an ESB is that which contains the service names. By
using some kind of external data store to manage this namespace we have a
single point of control irrespective of the transport mechanism.

This control over service mapping via a service namespace:

� Enables a single point of control over routing from the indirect to the direct
address.

� Achieves location transparency by decoupling the client and service
invocation.

In order to implement the service mapping or routing rules that are required in
order to achieve this, some form of service routing table is implied. Although
collections of message flows that implement individual service mappings could
be used to implement this, a better practice is to externalize the routing
information to a database or directory.

Approaches to external service lookup are discussed further in “Design
alternative: externalizing service lookup” on page 232.

Inside the Broker
We now consider design alternatives to be made within a Broker variation
solution.

Design alternative: single versus individual flows
There are two extremes of approach to implementing logic inside the Broker
variation solution:

� Each service call that is made by a client can be routed through its own flow
inside the ESB.

230 Patterns: Implementing an SOA Using an Enterprise Service Bus

� All client service calls can be targeted at a single generic flow inside the ESB
where the originator is identified to route the request.

An individual flow for each client service operation may be quicker to build than
flows with generic handling, but they are not easy to manage and maintain.
There are two alternatives:

� Implement flows with some degree of generalism, perhaps by service.

– These can be implemented as a distinct flow for each service provided by
the ESB, for example.

– Each flow provides routing and mediation support for the operations that
are provided by the service.

– This approach lends itself well to services that are invoked over JMS.

– Management of the ESB reflects the breakdown of the implemented flows.
This would provide a level of simplification.

� Implement a single generic flow for all services.

– The approach can be implemented by placing a generic entry point façade
over the set of flows that were implemented in the alternative approach.

– The single generic flow approach can easily support services that are
invoked over HTTP.

– Management involves a single flow that may not provide the granularity for
most simplicity, although it does provide a manageable entry point.

– When the routing directory is external, the routing is maintained by
updating the routing directory and not by amending and redeploying the
logic in the flow.

– Where there are other mediation requirements, such as transformation,
these must be implemented in a second flow, and so some of the
advantages of the single generic flow approach will be lost.

For an ESB, all the approaches are valid because each reflects the single
namespace requirement over the services in an ESB. From a best practices
viewpoint, some degree of generalism should be employed.

Use of a generic flow requires a service location lookup. This is discussed in
“Design alternative: externalizing service lookup” on page 232.

We now look at the design for using HTTP and JMS as the entry point protocol in
turn:

� HTTP

Where HTTP is used as the transport protocol by service clients to reach the
ESB, a common URI can be used to access the generic flow. Either a URL

 Chapter 9. Enterprise Service Bus: Broker variation 231

selector or an entry in the SOAP header can be used to identify the required
service provider.

� JMS

A generic flow can only listen to a single queue, so different service
operations are requested on the same queue. This means that the service
information that can be used by the ESB to identify the target provider must
be carried in the SOAP header (or RFH2 header in the case of WebSphere
Business Integration Message Broker).

Design alternative: externalizing service lookup
There is an additional requirement for the ESB when implementing a single
generic flow: The address of the service provider must be established based on
the incoming service request.

One option is to write the mapping of originator service to provider service(s) into
the flow. This hard-codes the service routing and is not recommended.

An alternative approach is to externalize the lookup in a directory. The
advantages of this approach are:

� Loose-coupling of services.

� A standards-based mechanism can be used.

� It allows a single point of control over routing from an indirect to a direct
address.

� The address information can be maintained in the directory without having to
maintain the logic that is defined in the ESB. For example, the services might
change physical location over time.

� Flexibility to support the promotion of code from one environment to another,
such as test to production.

� Several identical services can be deployed in different locations to provide
high availability (via failover) and some level of load balancing.

The technology choices for implementing this directory include a relational
database and possibly UDDI. The purpose of UDDI is more oriented to being
accessed by a service client. For the ESB we require a directory for use by the
ESB. A UDDI implementation provides these additional capabilities over a
database implementation:

� Dynamic discovery of service interfaces at runtime
� Allows the use of different providers of the same service

For our ESB, these additional capabilities are not required. In our scenario
implementation of the Enterprise Service Bus: Broker variation using WebSphere

232 Patterns: Implementing an SOA Using an Enterprise Service Bus

Business Integration Message Broker, we chose to build on the core dynamic
routing capability of the product and implement a lookup using a table in a
database. Figure 9-7 shows this best-practice pattern for providing a solution for
our directory.

Figure 9-7 Database lookup pattern

Suppose that the service client makes a request to the URL:

http://localhost:7080/ServiceBroker/Manufacturer

The WebSphere Business Integration Message Broker HTTP Input node picks
up the request because the HTTP server in WebSphere Business Integration
Message Broker is listening on port 7080.

1. From a field on the incoming message, Manufacturer is stripped from the
incoming request URL.

2. Then a call is made to the database to look up the address of the service
provider using the name Manufacturer.

3. The flow sets the service provider’s address in the message structure.

The flow makes the service request to the provider.

For access to a service provider over JMS, the design must be altered as follows:

1. From a field on the incoming message, Manufacturer is stripped from the
incoming request URL.

Message flow

Extract code
value from
message

Lookup
value for

code

Set value in
message …

Database

Lookup table
code1 value1
code2 value2
code3 value3
…

SQL
<code>

Results Set
<value>

…

Error
handling

…

 Chapter 9. Enterprise Service Bus: Broker variation 233

2. A call is made to the database to look up the target queue name for the
service provider using the name Manufacturer.

3. The flow sets the destination queue name in the message structure.

4. The appropriate JMS headers must be created in the message.

The request is made by putting the message on a queue.

In these examples, note that access to the database using Web services for the
address information would be an example of an anti-pattern and should be
avoided: SQL access should be used directly.

Design alternative: partial versus full SOAP intermediary
A true SOAP intermediary will carry out the validation and processing of SOAP
headers. The simple advantage of not validating and processing SOAP headers
is performance, because parsing of the message is not required. However,
SOAP processing will be of minor impact to performance compared with the
overall solution design.

There are several advantages to performing the validation and processing of
SOAP headers:

� SOAP faults are handled properly so that they correctly identify the service
that is causing the fault:

– Generation of SOAP faults

– Encoding of SOAP faults

� Operations supported by the service can be validated.

� The SOAP header must be properly validated and processed when the
mustUnderstand attribute is set to 1.

� Decoding and encoding of the SOAP service requests and responses.

� Setting of the operation name and related namespace.

� Switching service style from document to RPC.

Note: The use of WebSphere Business Integration Message Broker in our
implementation requires one flow to put the MQ message and another to
handle the response. A description of how to do this is included in 9.3,
“Development guidelines” on page 236.

Note: To support both HTTP and JMS for service providers, a column must be
added to the service lookup table in the database to hold the protocol. The
flow must then route accordingly.

234 Patterns: Implementing an SOA Using an Enterprise Service Bus

In our scenario implementation that uses WebSphere Business Integration
Message Broker, we have accessed the elements of the SOAP message when
required. However, time constraints prevented us from implementing a full SOAP
intermediary.

If this functionality is required, download SupportPac IA81 (WebSphere Business
Integration Message Broker and Web Services) from the IBM SupportPacs Web
site or at:

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006268

It provides the following:

� A library of procedures handling the SOAP elements of Web service
messages

� Examples of how Web services may be used with WebSphere Business
Integration Message Broker

� Sample scenarios

� Supporting assets in the form of message sets, message flows, custom
nodes, and test messages

Design alternative: aggregation versus serial processing
The alternative here relates to the specific implementation options in the product
that is selected to implement the Enterprise Service Bus: Broker variation.

True aggregation in this context means that requests are made to more than one
service provider by the ESB in parallel on behalf of a single service request from
a client. It involves the management of the responses from each of the service
providers and the merging and transformation of the results into a single
response to the original requestor. This means considering the following:

� Overall time-out for the aggregation

� Handling of partial set of responses through the non-response or error from
one or more providers

� Handling of invalid replies

� Construction of the SOAP body response by merging the results from the
service providers appropriately

� Transactional requirements

Not all products are capable of aggregation and neither are all requirements
where a single request requires access of multiple providers suited to it. In such
cases it makes sense to consider serial calls from the ESB to the service
provider.

 Chapter 9. Enterprise Service Bus: Broker variation 235

http://www.ibm.com/support/docview.wss?rs=203&uid=swg24006268

We provide the following guidance for when to use aggregation:

� End-to-end requests to service provider are fast.

� There are many requests to be made to service providers for each client
request.

The duration of a serial process implementation is the sum of the duration of the
steps, whereas for aggregation it is the duration of the longest individual call.

The important distinction between this type of serial process and the type
discussed in Chapter 10, “Business Service Choreography” on page 271 is that
any one call to a provider does not depend on the previous calls. If such a
dependency is a requirement, then the serial process should not be implemented
on the ESB.

In our scenario implementation we have used aggregation for the ship order
service operation. Figure 9-8 shows the high-level design for the message flow.

Figure 9-8 Aggregation design

9.3 Development guidelines
In this section we take the draft ESB design shown in Figure 9-5 on page 224
and present a detailed description of the steps that are taken to implement the
ESB using WebSphere Business Integration Message Broker V5. Since this
redbook is not an introductory text for the technologies that we use to build
example ESB implementations, a certain level of understanding is assumed.
Readers who are not familiar with WebSphere Business Integration Message
Broker should refer to 9.5, “Further information” on page 268.

Within WebSphere Business Integration Message Broker, Brokered service
invocations are managed as message flows. Our working scenario includes

Broker

Retailer <Aggregator>

<subflow>

<subflow>

<subflow>

Warehouse A

Warehouse B

Warehouse C

SOAP/
HTTP

SOAP/
JMS

236 Patterns: Implementing an SOA Using an Enterprise Service Bus

examples of service invocations with several differing characteristics. Collectively,
these message flows facilitate the centralized brokering of the service
invocations in our sample scenario and provide an example implementation of
the Application Integration::Broker pattern. As shown in Table 9-1, the service
invocations within our scenario can be conveniently partitioned into the following
types:

� Serial HTTP invocation

In this simple invocation type, a client makes a single service request over
HTTP. WebSphere Business Integration Message Broker behaves as a
simple SOAP intermediary, dynamically routing the request to an available
service endpoint. The resulting HTTP data stream that contains the service
response is returned to the client.

� Serial HTTP to JMS invocation

In this invocation type the target service is exposed using JMS transport
bindings; however, the service client makes an HTTP-based service
invocation. WebSphere Business Integration Message Broker mediates
between the disparate client and service by providing a protocol switch
capability.

� Parallel HTTP to JMS invocation

This service invocation type requires the mapping of a single source HTTP
request to multiple concurrent target JMS services. The HTTP responses that
are returned from the individual services are aggregated and returned to the
caller. The decision to route to one or more of several preconfigured service
endpoints is managed dynamically at execution time.

We chose to support these invocation types via the implementation of the three
distinct message flows shown in Table 9-1.

Table 9-1 Implemented message flows

9.3.1 Prerequisite configuration
WebSphere Business Integration Message Broker provides explicit support for
the handling of incoming HTTP requests. This capability is provided by the
HTTPListener service. The port that is used by this service is defined during the
creation of a Broker instance, and it defaults to port 7080. The examples and

Invocation Type Message Flow Name

Serial HTTP HTTPtoHTTPMsgFlow

Serial HTTP to JMS JMSLoggingRequestMsgFlow

Parallel HTTP to JMS AggQtyMsgFlow

 Chapter 9. Enterprise Service Bus: Broker variation 237

discussion in the following sections of this chapter use this default value. In the
event that your environment has been configured to use a different port, you may
need to adjust values in the following discussion accordingly.

WebSphere Business Integration Message Broker provides native ODBC
support, enabling executing message flows to interact with external data
repositories (typically relational databases). This capability is usually used from
within WebSphere Business Integration Message Broker to enrich message data
en route to its target application, or to retrieve details of the target endpoint
location. In order to enable this capability, it is necessary to define an ODBC data
source via which the external data repository can be accessed. Because we
make use of this native ODBC support to access DB2 UDB, the definition and
population of tables, together with the configuration of an ODBC data source, are
prerequisite activities to the development steps outlined below.

9.3.2 Broker variation implementation
In this section we describe the development of three message flows that
collectively implement all of the service invocation types that are contained within
our scenario.

Serial HTTP flow implementation
Our serial HTTP message flow is invoked by the arrival of an HTTP request at
the HTTP listener port. The message flow parses the incoming message
structure to deduce the target service name, which is then used as the key in the
retrieval of the target service endpoint address from an external data repository.
The target service is invoked by transmitting the incoming SOAP request
envelope over HTTP to the endpoint address. The resultant SOAP response
envelope is returned unmodified to the requesting client. Figure 9-9 on page 239
depicts a high-level representation of the Application Integration::Router pattern
implementation in our environment.

Important: Some of the code fragments that are presented in the remainder
of this section have a line length that exceeds our page width. For this reason
we use the ‘||’ characters to represent a line break that has been inserted for
formatting purposes. For example, the following formatted line of code:

OutputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.ns1:ShipGoods. ||
ItemList = NULL;

represents:

OutputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.ns1:ShipGoods.ItemList = NULL;

238 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 9-9 High-level representation of the serial HTTP message flow

The various activities that make up the overall message flow functionality are
represented by the nodes of a directed graph. The nodes shown in Table 9-2
were used to build the serial HTTP message flow.

Table 9-2 Simple Router pattern message flow nodes

Figure 9-10 shows the directed graph representation of our simple Router
pattern message flow.

Figure 9-10 HTTPtoHTTPMsgFlow message flow

Node Name Node Type

HTTP Input HTTP Input

IdentifyService Compute

HTTP Request HTTP Request

PostRequest Compute

HTTP Reply HTTP Response

Message Flow
Endpoint Lookup and Dynamic Routing

2

Routing
Table

1

5

HTTPService
Client

Service
Endpoint

Service
Endpoint

Service
Endpoint

3

4

HTTP

 Chapter 9. Enterprise Service Bus: Broker variation 239

HTTP Input : HTTP Input
This initial node facilitates the invocation of our message flow as a result of the
arrival of an incoming HTTP message to the WebSphere Business Integration
Message Broker HTTP Listener. The URL Selector property value is used to
register a message flow as the recipient of HTTP request messages that are
addressed to matching URI values. Table 9-3 summarizes the relevant property
values of the HTTP Input node.

Table 9-3 HTTP Input node configuration property values

Compute : IdentifyService
The Compute node is provided to enable explicit manipulation of message
content via the provision of ESQL code. In the IdentifyService node, we parse the
URL field of the incoming HTTP Request to determine the service name.

Example 9-1 Parsing the service name

DECLARE SVC CHAR;
DECLARE SVCURL CHAR;
DECLARE STEMLEN INTEGER;
DECLARE SVCLEN INTEGER;

CALL CopyMessageHeaders();
...
-- Extract the required service name from the client's URL
SET SVCURL = InputRoot.HTTPInputHeader."X-Original-HTTP-Command";
SET STEMLEN = POSITION('/' IN SVCURL FROM 1 REPEAT 4);
SET SVCLEN = LENGTH(SVCURL)-9-STEMLEN;
SET SVC = SUBSTRING(SVCURL FROM STEMLEN+1 FOR SVCLEN);

This value is used to retrieve the service endpoint URL from a predefined
database table. We dynamically specify the service endpoint URL by overriding
the default setting of the HTTP Request node Web service URL with the retrieved
value.

Example 9-2 Overriding default Web service URL with retrieved value

-- Use the service name to look up the service provider's URL
SET OutputRoot.HTTPRequestHeader."X-Original-HTTP-URL"

Category Name Value

Basic URL Selector /ServiceBroker/*

Basic Maximum client wait time 33

Default Message Domain XMLNS

240 Patterns: Implementing an SOA Using an Enterprise Service Bus

= THE (SELECT ITEM S.LOCATION FROM Database.SERVICE_ROUTER AS S
WHERE S.NAME = SVC);

Finally, we must ensure that the HTTP message body is forwarded to the service
endpoint.

Example 9-3 Copy HTTP request body to Output Root

DECLARE J INTEGER CARDINALITY(InputRoot.*[]);
...
SET OutputRoot.*[J+1] = InputRoot.*[J];

Table 9-4 presents the relevant property values of the IdentifyService node.

Table 9-4 IdentifyService node configuration property values

HTTP Request : HTTP Request
The HTTP Request node enables external HTTP applications to be consumed
from within a Message Flow. Although we specify a default value of the service
endpoint address, in our scenario this value is always overridden in the
IdentifyService node as described above. Table 9-5 presents the relevant
property values of the HTTP Request node.

Table 9-5 HTTP Request node configuration property values

Compute : PostRequest
We have provided a Compute node following the service request as a container
for logic that should be executed prior to returning the service output to the
requesting client. Because the HTTP Reply node that is described is configured

Category Name Value

Basic Data Source BROKERDB

Basic Compute Mode Message

Category Name Value

Basic Web Service URL http://localhost

Basic Request Timeout 20

Advanced Use whole input message as request Checked

Advanced Replace input message with web-service response Checked

Advanced Generate default HTTP headers from input Checked

Default Message Domain XMLNS

 Chapter 9. Enterprise Service Bus: Broker variation 241

to generate default HTTP headers, we simply suppress the HTTP header
returned by the service invocation.

Example 9-4 Suppressing HTTP response header from service

CALL CopyEntireMessage();

-- Remove HTTP header from the service’s response
Set OutputRoot.HTTPResponseHeader = null;

Note that all Configuration properties for the PostRequest node are set to their
default values.

HTTP Response : HTTP Response
The HTTP Response node is responsible for returning the output from the
service endpoint back to the client. Table 9-6 shows configuration property
values that are used in this example.

Table 9-6 HTTP Response node properties

Serial flow with protocol switch implementation
Our example scenario provides an example of an HTTP-aware service client that
requires access to a service that is exposed only via a JMS transport binding.
This transport capability mismatch necessitates the introduction of a protocol
switch capability to mediate among the disparate applications. This requirement
is well-suited to the capability provided by WebSphere Business Integration
Message Broker. In this section we describe the development of a message flow
that implements the required protocol switch to facilitate interoperability between
the client and service.

Table 9-11 on page 243 presents a high-level representation of the functionality
that is provided by this message flow.

Category Name Value

Basic Ignore Transport Failures Checked

Basic Generate default HTTP headers from input or response Checked

Note: This HTTPtoHTTPMsgFlow is able to handle both Document and
RPC-style Web service requests. However, it can invoke Web services only
over HTTP using request-response and not one-way calls.

242 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 9-11 High-level representation of serial flow with protocol switch implementation

The nodes in Table 9-7 were used to build the serial protocol switch message
flow.

Table 9-7 Serial flow with protocol switch message flow nodes

Figure 9-12 shows the directed graph representation of our message flow.

Figure 9-12 JMSLoggingRequestMsgFlow message flow

HTTP Input : HTTP Input
In a similar manner to that described for our earlier message flow in “Serial HTTP
flow implementation” on page 238, the incoming HTTP Request is accepted by
the HTTP Input node. Note that in contrast to the previous flow, we have
specified the URL Selector property value in the form of a fully qualified URL in
this message flow by way of example (Table 9-8 on page 244).

Node name Node type

HTTP Input HTTP Input

PrepareJMS Compute

MQOutput MQ Output

PrepareHTTPResponse Compute

HTTP Reply HTTP Reply

Message Flow
HTTP to JMS Protocol Switch

Dynamic Routing
HTTPService

Client

Service
Endpoint

Service
Endpoint

Service
EndpointJMS

1

4

2

3

 Chapter 9. Enterprise Service Bus: Broker variation 243

Table 9-8 HTTP Input node configuration property values

Compute : PrepareJMS
The subsequent PrepareJMS Compute node is responsible for preparing the
in-flight message for onward transmission over JMS. We first set the MQMD
header fields required by WebSphere MQ, and then specify JMS header fields
that will be used by the target JMS Web service implementation. Finally we
suppress the HTTP header information accompanying the incoming request.
Figure 9-5 provides the salient code associated with this node.

Example 9-5 ESQL for Compute node PrepareJMS

CALL CopyEntireMessage();

-- Add MQMD headers for MQ Application
CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN 'MQMD';
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;

-- Add the MQRFH2 header to hold the jms folder
-- Set the response queue, target service and message content type
CREATE NEXTSIBLING OF OutputRoot.MQMD DOMAIN 'MQRFH2';
SET OutputRoot.MQRFH2.mcd.Msd = 'jms_bytes';
SET OutputRoot.MQRFH2.jms.Dst = 'queue:///LoggingFacilityQ';
SET OutputRoot.MQRFH2.usr.targetService = 'LoggingFacility';
SET OutputRoot.MQRFH2.usr.contentType = 'text/xml; charset=utf-8';

-- Clear the http header
SET OutputRoot.HTTPInputHeader = NULL;

Category Name Value

Basic URL Selector http://localhost:7080/LoggingFacility

Basic Maximum client wait time 30

Default Message Domain XMLNS

Note: The values of destination and targetService in the MQRFH2 header
could be set dynamically in ESQL so that the flow becomes more generic.
This would provide capability similar to the previous HTTP routing message
flow, as described in “Serial HTTP flow implementation” on page 238. The
routing table that is accessed in DB2 UDB would have additional columns,
including service name, destination queue, and the name of the target service.
A reply to queue could also be held on the table if a response was required.

244 Patterns: Implementing an SOA Using an Enterprise Service Bus

MQOutput : MQOutput
Here we complete our protocol switch by writing the in-flight message to a
preconfigured WebSphere MQ queue. It should be noted that in this example the
forwarding of the message on to the target service is an asynchronous operation.
The MQOutput node does not block until the corresponding service response
message arrives; logical control advances immediately to the next node in the
message flow. Table 9-9 summarizes configuration property values for the
MQOutput node.

Table 9-9 Configuration property values for MQOutput node MQOutput

Note that all other configuration property values for this node are left unset and
unchecked.

Compute : PrepareHTTPResponse
Following interaction with WebSphere MQ, we must now ensure that the in-flight
message is compatible for returning to the service client over HTTP. This requires
the suppression of the WebSphere MQ-specific MQMD message header, which
is achieved with a single ESQL statement executed within this node, as shown in
Table 9-6. Note that all node properties are set to their default values.

Example 9-6 ESQL code for Compute node PrepareHTTPResponse

CALL CopyEntireMessage();

-- Remove the MQMD header
SET OutputRoot.MQMD = NULL;

HTTP Reply : HTTP Reply
Finally, a response is returned to the originating client over HTTP. Note that the
specified properties of the HTTP Reply node ensure that the header information
required by the HTTP transport protocol are generated (Table 9-10).

Category Name Value

Basic Queue Name LoggingFacilityQ

Advanced Destination Mode Queue Name

Advanced Transaction Mode Automatic

Advanced Persistence Mode Automatic

Advanced New Message ID Checked

Advanced New Correlation ID Checked

Advanced Message Context Default

 Chapter 9. Enterprise Service Bus: Broker variation 245

Table 9-10 Configuration property values for HTTP Reply node

Parallel HTTP-JMS protocol switch flow implementation
In our example Supply Chain Management scenario, a given retailer’s stock is
sourced from multiple different warehouses. In order to isolate the retailer from
the potentially changing number and identity of available warehouses, we
implement the logic that is responsible for routing warehouse requests in the
Enterprise Service Bus. Because our front-end application permits the customer
to submit an order that consists of several items, the order may have to be
satisfied by shipments from multiple warehouses. To optimize the process from a
performance perspective, we need to transmit warehouse requests that
correspond to a single customer order concurrently. Since the varying number of
warehouses that are required to fulfill a given request is transparent to the
retailer, there is an implicit need to aggregate responses from individual
warehouses before returning the response.

In this section, we describe the development of a message flow that provides the
concurrent service invocation and response aggregation capability. Figure 9-13
on page 247 depicts a high-level representation of the retailer-to-warehouse
interaction.

Category Name Value

Basic Ignore Transport Failures Checked

Basic Generate default headers from input or response Checked

Note: This message flow shows protocol conversion from HTTP to JMS for
Web services that use fire and forget for the JMS message. It will be a
frequent requirement to support services in this situation that are
request-response.

In this case, two message flows must be developed because the MQInput
node in WebSphere Business Integration Message Broker has no input
terminal. Thus one flow begins with an HTTPInput node and the other ends
with an HTTPReply node. In this case, the HTTP context must be passed from
one flow to the other so that the response can be returned to the requestor.

Unfortunately, WebSphere Business Integration Message Broker does not
provide any built-in mechanism for persisting data across message flows.
However, there are several ways in which this information can be passed. One
is shown in Example 4 of IBM SupportPac IA81, and another, which uses
aggregation, is shown in the next message flow.

246 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 9-13 High-level representation of Broker pattern implementation

The nodes that are used to define the WebSphere Business Integration Message
Broker message flow are tabulated in Table 9-11.

Table 9-11 AggQtyMsgFlow nodes

Node name Node type

HTTP Input HTTPInput

AddMQMD Compute

AggCtrlQty AggregateControl

Whse A Request Compute

Whse B Request Compute

Whse C Request Compute

SetHTTPContext Compute

AggReqWhseA MQOutput

WriteHTTPContext MQOutput

AggReqWhseB MQOutput

AggReqWhseC MQOutput

HTTPContext AggregateRequest

WhseA AggregateRequest

WhseB AggregateRequest

WhseC AggregateRequest

Message Flow
HTTP to JMS Protocol Switch
Concurrent Dynamic Routing

Response Aggregation
HTTPService

Client

Service
Endpoint

Service
Endpoint

Service
EndpointJMS

 Chapter 9. Enterprise Service Bus: Broker variation 247

Figure 9-14 shows the directed graph representation depicting the relative
position of each of the nodes in the overall message flow.

Figure 9-14 AggQtyMsgFlow message flow

In the following sections we consider the implementation of each message flow
node in turn.

HTTPInput : HTTP Input
As described for the two previously documented message flows, the initial HTTP
Input node is used to register this message flow for a given URI pattern.
Figure 9-12 shows the configuration properties for the AggQtyMsgFlow HTTP
Input node.

Table 9-12 Configuration property values for AggQtyMsgFlow HTTPInput node

Replies MQInput

AggregateReply AggregateReply

ConsolidateResponse Compute

HTTP Reply HTTPReply

Category Name Value

Basic URL Selector /ShipGoods

Basic Maximum client wait time 30

Node name Node type

248 Patterns: Implementing an SOA Using an Enterprise Service Bus

Compute : AddMQMD
Because the request will be forwarded to multiple concurrent endpoints over
JMS, we must ensure that the message format meets the requirements of
WebSphere MQ and JMS. The ESQL code presented in Example 9-7 is
responsible for adding the requisite MQMD and JMS headers. Note that we
dynamically specify the reply-to queue to which the JMS Web service
implementation should return its response in the JMS RFH2 header Rto field.

The last steps are to save the HTTP context of the service requestor and to
suppress the existing HTTP header.

Example 9-7 ESQL code to prepare message for forwarding over JMS

CALL CopyEntireMessage();

-- Add the MQMD header for MQPUT in the correct position
CREATE NEXTSIBLING OF OutputRoot.Properties DOMAIN 'MQMD';
SET OutputRoot.MQMD.Version = MQMD_CURRENT_VERSION;
SET OutputRoot.MQMD.StrucId = MQMD_STRUC_ID;

-- Add the MQRFH2 header to hold the jms folder
-- Set the response queue, target service and message content type
CREATE NEXTSIBLING OF OutputRoot.MQMD DOMAIN 'MQRFH2';
SET OutputRoot.MQRFH2.mcd.Msd = 'jms_bytes';
SET OutputRoot.MQRFH2.jms.Dst = 'queue:///WarehouseQ';
SET OutputRoot.MQRFH2.jms.Rto = 'queue://SOA.QUEUE.MANAGER/WSHIPRESPONSE';
SET OutputRoot.MQRFH2.usr.targetService = 'Warehouse';
SET OutputRoot.MQRFH2.usr.contentType = 'text/xml; charset=utf-8';

-- Save the http message context for later retrieval
SET Environment.Variables.context =
CAST(InputLocalEnvironment.Destination.HTTP.RequestIdentifier AS CHARACTER);

-- Clear the http header
SET OutputRoot.HTTPInputHeader = NULL;

AggregateControl : AggCtrlQty
WebSphere Business Integration Message Broker provides out-of-the-box
support for concurrently executing multiple endpoint invocations via the
AggregateControl node. We use an instance of this node type in our scenario to
fan out the concurrent invocation of multiple warehouses. A name is specified for
the AggregateControl instance, which is then used subsequently on a
corresponding AggregateReply node. Responses that are received after the time
interval that is specified in the Timeout value will not be included in the
aggregated response. However, additional capability could be incorporated into
the message flow to cope with this eventuality.

 Chapter 9. Enterprise Service Bus: Broker variation 249

WebSphere Business Integration Message Broker implicitly partitions the overall
flow (presented in Figure 9-14 on page 248) into two separate flows: The first
terminates after the Aggregate Request nodes, and the second flow commences
upon receipt of the response messages at the Replies MQInput node.

To successfully return an HTTP response to the originating client requestor, the
second flow needs HTTP context information to insert into the HTTP response
message. There are several ways to ensure that this information is available to
the second flow. In this example we chose to forward the data directly to the
AggregateReply node using the built-in Aggregation capability.

In fact, taking this approach in our implementation enables easy separation of the
two parts of the flow into two discrete message flows.

Table 9-13 shows configuration property values for the AggCtrlQty node.

Table 9-13 Configuration property values for AggCtrlQty node

Compute : SetHTTPContext
In this Compute node, we create a new message body containing the HTTP
context so that we can use it in the secondary message flow to return the
response message to the original service requestor in the HTTP Reply node.

Example 9-8 SetHTTPContext node ESQL code

CALL CopyMessageHeaders();

-- Create the body of the message.
CREATE NEXTSIBLING OF OutputRoot.MQRFH2 DOMAIN 'XMLNS';

-- Create one element in the body which carries the HTTP context.
SET OutputRoot.XMLNS.HTTPcontext = Environment.Variables.context;

Compute : Whse A Request
In our implementation, we have configured our message flow to spawn
concurrent execution activity through WebSphere MQ messages for each
preconfigured warehouse endpoint service. A copy of the in-flight message
structure that contains details of all items in the order is forwarded to each
execution thread. Each execution thread must determine which of the items
within the order are stocked by the warehouse to which this thread corresponds.
Note that in our scenario a given item is only stocked by a single warehouse.

Category Name Value

Basic Aggregate Name StockShip

Basic Timeout 22

250 Patterns: Implementing an SOA Using an Enterprise Service Bus

The incoming SOAP header makes use of XML schema namespaces, so we
need to namespace-qualify any reference to contained attributes. As a
convenience we can declare namespace instances in ESQL for subsequent use.
Example 9-9 shows an example of ESQL namespace declarations.

Example 9-9 Required namespace declaration in Whse A Request

DECLARE SoapNS NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';

We must then determine how many items have been ordered.

Example 9-10 Determining how many parts have been ordered

DECLARE CRD INTEGER CARDINALITY(InputRoot.XMLNS.SoapNS:Envelope. ||
SoapNS:Body.*:ShipGoods.*:ItemList.*:Item[]);

Next, we must iterate through each item and retrieve the identity of the
warehouse that stocks this part from an external database table. If the
warehouse identity value is not equal to ‘A’ we delete the item entry from the
message. Example 9-11 shows the ESQL code used to achieve this.

Example 9-11 Checking Warehouse A for items

DECLARE I INTEGER 1;
DECLARE J INTEGER 1;

CALL CopyEntireMessage();

LP : WHILE I <= CRD DO
SET WHS = THE (SELECT ITEM P.WAREHOUSE FROM Database.PART_LOCATION AS P

WHERE P.PART_NUMBER =
InputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.*:ShipGoods.*:ItemList.*: ||

Item[I].*:ProductNumber);
IF WHS <> 'A' THENSET

SET OutputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.*:ShipGoods.* ||
:ItemList.*:Item[J].*:ProductNumber = NULL;

SET OutputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.*:ShipGoods.* ||
:ItemList.*:Item[J].*:Quantity = NULL;

SET OutputRoot.XMLNS.SoapNS:Envelope.SoapNS:Body.*:ShipGoods.*||
:ItemList.*:Item[J]= NULL;

ELSE
SET J = J+1;

END IF;
SET I = I+1;

END WHILE LP;

 Chapter 9. Enterprise Service Bus: Broker variation 251

Finally, we handle the case in which none of the items is stocked by Warehouse
A, by suppressing the service call.

Example 9-12 Handle item not found in warehouse case

-- If none of the parts requested are in Warehouse A then
-- do not send MQ message
IF (J=1) THEN

RETURN FALSE;
END IF;
RETURN TRUE;

Figure 9-14 provides non-default configuration property values for the Whse A
Request Compute node.

Table 9-14 Configuration property values for Whse A Request node

The behavior of Compute nodes Whse B Request and Whse C Request is
similar to that described for Whse A Request above, but is related to the checking
for items in Warehouse B and Warehouse C respectively. However we amend the
targetService set previous in the MQRFH2 header as shown in Example 9-13.

Example 9-13 Resetting the targetService

-- Override destination and target service operation name
SET OutputRoot.MQRFH2.jms.Dst = 'queue:///WarehouseBQ';
SET OutputRoot.MQRFH2.usr.targetService = 'WarehouseB';

MQOutput : WriteHTTPContext
This node is used to write a message containing the HTTP context information
that must be made available to the secondary message flow. The properties in
Table 9-15 on page 252 show that the message will be put on to the
SendHTTPContext queue. This message will be picked up by a small flow
described after this flow, “BounceHTTPContextMsgFlow” on page 258. The
reply-to information is used by this flow to put the message straight on to the
AggregateReply input queue.

Table 9-15 Configuration property values for WriteHTTPContext node

Category Name Value

Basic Data Source BROKERDB

Category Name Value

Basic Queue Manager Name WBRK_QM

Basic Queue Name SendHTTPContext

252 Patterns: Implementing an SOA Using an Enterprise Service Bus

MQOutput : AggReqWhseA, AggReqWhseB, AggReqWhseC
Each concurrent thread of execution then has its own MQOutput node as the
means to forward the request JMS message to its outbound destination. The
outbound Queue that corresponds to each warehouse is given by the
warehouse-specific Queue Name value.

The configuration property values shown in Table 9-16 are similar for each of the
three MQOutput nodes AggReqWhseA, AggReqWhseB, and AggReqWhseC
except where indicated.

Table 9-16 MQOutput node property values for AggQtyMsgFlow

AggregateRequest : Whse A, Whse B, Whse C, HTTPContext
Each outbound concurrent thread of execution is terminated by an instance of
the AggregateRequest Node. Note that the Folder Name property specifies the
folder into which each individual Warehouse response will be written within the
body of the aggregated response message structure.

Table 9-17 Aggregate Request node configuration property values

Advanced New Message ID Checked

Advanced Message Context Default

Request Request Checked

Request Reply-to queue manager WBRK_QM

Request Reply-to queue WSHIPRESPONSE

Category Name Value

Basic Queue Manager Name WBRK_QM

Basic (Warehouse A) Queue Name WASHIPREQUEST

Basic (Warehouse B) Queue Name WBSHIPREQUEST

Basic (Warehouse C) Queue Name WCSHIPREQUEST

Node Category Name Value

HTTPcontext Basic Folder Name HTTPcontext

Whse A Basic Folder Name WhseA

Whse B Basic Folder Name WhseB

Category Name Value

 Chapter 9. Enterprise Service Bus: Broker variation 253

MQInput : Replies
In the description of the AddMQMD Compute node, we saw how the Rto JMS
header field is used to specify the JMS destination to which each JMS service
should send its response. In this example, we specify the same queue
destination for each of the three Warehouse services. The Replies MQInput node
represents the Reply-to-queue and behaves as the input vehicle for each of the
service response messages.

Table 9-18 summarizes the relevant non-default configuration property values for
this node.

Table 9-18 Replies MQInput node

AggregateReply : AggregateReply
The AggregateReply node is responsible for merging multiple concurrent threads
of execution and is a direct counterpart to the AggregateControl node discussed
earlier in “AggregateControl : AggCtrlQty” on page 249. This node accomplishes
aggregation of the service response messages.

Table 9-19 on page 254 summarizes the relevant non-default configuration
property values for this node.

Note that if the aggregation timeout is reached before all of the responses have
been received, then the message is propagated to the Timeout terminal of the
this node. In this message flow, the Timeout terminal is connected to the
Compute : ConsolidateResponse node for onward processing. This means that if
a Warehouse fails to respond in the defined time, then the result that is returned
to the application user shows the ordered parts that are held in that Warehouse
as being out of stock. (The remainder of the order is processed as normal.)

Table 9-19 Aggregate Reply configuration property values

Whse C Basic Folder Name WhseC

Category Name Value

Basic Queue Name WSHIPRESPONSE

Default Message Domain XMLNS

Category Name Value

Basic Aggregate Name StockShip

Node Category Name Value

254 Patterns: Implementing an SOA Using an Enterprise Service Bus

Compute : ConsolidateResponse
The ConsolidateResponse Compute node is responsible for transforming the
aggregated response as forwarded by the AggregateReply node into a format
that is acceptable to the client requestor. The ESQL code that performs this
transformation is explained step-by-step.

1. We first declare the namespaces and references that we will use
subsequently in the ESQL module (Example 9-14).

Example 9-14 XML namespace declarations

DECLARE SoapNS NAMESPACE 'http://schemas.xmlsoap.org/soap/envelope/';
DECLARE ns2 NAMESPACE 'http://www.ws-i.org/SampleApplications/ ||

SupplyChainManagement/2002-08/Warehouse.xsd';

2. We then create the SOAP envelope structure in the Output message
structure (Example 9-15).

Example 9-15 Output message SOAP envelope definition

CREATE FIELD OutputRoot.XMLNS.SoapNS:Envelope;

3. The next ESQL code fragment checks whether the aggregated response that
is forwarded by the AggregateReply node contains information returned by
Warehouse A. If it does, we copy the information into the output message
structure parts (Example 9-16).

Example 9-16 Copy response from warehouse A into output message structure

DECLARE C INTEGER 0;
DECLARE HDR BOOLEAN FALSE;

IF (CARDINALITY(InputRoot.ComIbmAggregateReplyBody.WhseA[]) <> 0) THEN
-- If parts were ordered from warehouse A the copy its response into the
-- output message

SET OutputRoot.XMLNS.*:Envelope = InputRoot.ComIbmAggregateReplyBody. ||
WhseA.XMLNS.*:Envelope;

SET C = CARDINALITY(OutputRoot.XMLNS.*:Envelope.*:Body.*: ||
ShipGoodsResponse. *:Response.*:ItemStatus[]);

SET HDR = TRUE;
END IF;

4. Now we must determine whether the aggregated response input message
structure contains information returned by Warehouse B. If it does, we copy it
across to the output message structure, making sure that the information is

 Chapter 9. Enterprise Service Bus: Broker variation 255

merged with any SOAP envelope information from Warehouse A if
necessary.

In Example 9-17 we check for a response from Warehouse B, then determine
whether required header information has been written during prior processing
of Warehouse A data, and if no header has yet been defined we add it here.

Example 9-17 Checking for Warehouse B return data

IF (CARDINALITY(InputRoot.ComIbmAggregateReplyBody.WhseB[]) <> 0) THEN
IF (NOT HDR) THEN

-- If parts were ordered from warehouse B but not from warehouse A
-- then copy its response into the output message
SET OutputRoot.XMLNS.*:Envelope = InputRoot.ComIbmAggregateReplyBody. ||

WhseB.XMLNS.*:Envelope;
SET C = CARDINALITY(OutputRoot.XMLNS.*:Envelope.*:Body. ||

:ShipGoodsResponse.:Response.*:ItemStatus[]);
SET HDR = TRUE;

ELSE

5. If Warehouse A did return a response so that the SOAP header information
already exists in our output message, then we follow the ELSE path to
incorporate the response from Warehouse B into the aggregated response
message structure. This is shown in Example 9-18 and Example 9-19 on
page 257.

We first perform the response check and, if necessary, define a message
substructure to hold the data.

Example 9-18 Add Warehouse B message structure

DECLARE CRDB INTEGER CARDINALITY(InputRoot.ComIbmAggregateReplyBody. ||
WhseB.XMLNS.*:Envelope.*:Body.*:ShipGoodsResponse.*:Response. ||
*:ItemStatus[]);

DECLARE I INTEGER 1;
DECLARE TMP INTEGER 0;

LPB : WHILE I <= CRDB DO
SET C = C + 1;
CREATE FIELD OutputRoot.XMLNS.*:Envelope.*:Body.*:ShipGoodsResponse.||

:Response.:ItemStatus[C] TYPE Name NAMESPACE ns2;
SET OutputRoot.XMLNS.*:Envelope.*:Body.*:ShipGoodsResponse.*:Response. ||

*:ItemStatus[C].(XML.NamespaceDecl)xmlns = ns2;

6. Next, we create fields for the individual response elements and copy their
values across into the response message structure.

256 Patterns: Implementing an SOA Using an Enterprise Service Bus

Example 9-19 Copy response fields into output message structure

CREATE LASTCHILD OF OutputRoot.XMLNS.*:Envelope.*:Body.*: ||
ShipGoodsResponse.*:Response.*:ItemStatus[C] DOMAIN('XMLNS') ||
NAMESPACE ns2 NAME 'ProductNumber';

SET OutputRoot.XMLNS.*:Envelope.*:Body.*:ShipGoodsResponse. ||
:Response.:ItemStatus[C].ns2:ProductNumber = InputRoot. ||
ComIbmAggregateReplyBody.WhseB .XMLNS.*:Envelope.*:Body. ||
:ShipGoodsResponse.:Response.*:ItemStatus[I].*:ProductNumber;

CREATE LASTCHILD OF OutputRoot.XMLNS.*:Envelope.*:Body.*: ||
ShipGoodsResponse.*:Response.*:ItemStatus[C] DOMAIN('XMLNS') ||
NAMESPACE ns2 NAME 'Status' VALUE 2;

SET OutputRoot.XMLNS.*:Envelope.*:Body.*:ShipGoodsResponse.*: ||
Response.*:ItemStatus[C].ns2:Status = InputRoot. ||
ComIbmAggregateReplyBody.WhseB.XMLNS.*:Envelope.*:Body. ||
:ShipGoodsResponse.:Response.*:ItemStatus[I].*:Status;

END WHILE LPB;

The remaining code in this node is responsible for copying across any
response data from Warehouse C into the output message structure. The
coding constructs that are used are similar in principle to those that are
described for the manipulation of response data from Warehouses A and B,
so for the sake of brevity we shall not explicitly present the code listing here.
Interested readers can download and view the code package provided as an
accompaniment to this IBM Redbook.

7. We extract the HTTP Context information from the incoming aggregated
message tree structure and copy it into the response message for return to
the client requestor (Example 9-20).

Example 9-20 Consolidate Response node: restoring HTTP context

IF (CARDINALITY(InputRoot.ComIbmAggregateReplyBody.HTTPcontext[]) <> 0) THEN
SET OutputLocalEnvironment.Destination.HTTP.RequestIdentifier =

CAST(InputRoot.ComIbmAggregateReplyBody.HTTPcontext.XMLNS.HTTPcontext
AS BLOB);

...
END IF;

In Example 9-20 on page 257 we set a value in the Local Environment. This
means that we have to change property value for this node: in the pull-down list,
the Compute Mode must be set to LocalEnvironment And Message.

 Chapter 9. Enterprise Service Bus: Broker variation 257

HTTPReply : HTTP Reply
Finally, we return the aggregated message, potentially containing responses
from differing warehouse services to the requesting client.

BounceHTTPContextMsgFlow
The aggregation message flow AggQtyMsgFlow uses a small additional flow to
enable the message that carries the HTTP context to pass between the first part
of the flow and the second part. It is a trivial flow, which picks up a message from
a queue and replies by putting the same content onto the reply-to queue. This
reply-to queue is the same queue to which the aggregation replies are sent from
the warehouses, WSHIPRESPONSE.

There are two nodes in this flow:

� MQInput
� MQOutput

Figure 9-15 shows the directed graph representation that depicts the relative
position of these two nodes in the message flow.

Figure 9-15 BounceHTTPContextMsgFlow message flow

We now look at the implementation of each of these nodes in turn.

MQInput
The MQInput waits for a message to be received on a specified WebSphere MQ
queue. This queue must be defined as a local queue on the WebSphere
Business Integration Message Broker’s queue manager. When received, the
node performs an MQ get operation to read the message from the queue. The
configuration properties for this node are shown in Table 9-20.

Table 9-20 Configuration properties for BounceHTTPContextMsgFlow MQInput node

MQReply
No configuration properties were changed from the default settings for this node.
The reply-to queue is specified in the header of the message put on the queue

Category Name Value

Basic Queue Name SendHTTPContext

Default Message Domain XMLNS

258 Patterns: Implementing an SOA Using an Enterprise Service Bus

SendHTTPContext by the message flow AggQtyMsgFlow. See “MQOutput :
WriteHTTPContext” on page 252.

9.4 Runtime guidelines
In this section, we present a discussion of the steps for restructuring our example
Supply Chain implementation in order to incorporate a Broker component into
the deployment infrastructure. At a high level, the starting point application
infrastructure for this chapter essentially comprises a series of point-to-point
interactions, as depicted in Figure 9-16. The discussion as presented here
assumes that the configuration that is required to support the starting point
scenario has already been defined. For example, the WebSphere Application
Server JMS resource definitions that facilitate JMS Web service invocations are
considered to be a prerequisite for the starting point configuration, and as such
are not explicitly described in this chapter.

Figure 9-16 Scenario implemented using Direct Connection pattern

Note: Information about how to use aggregation to consume Web services
using SOAP over HTTP can be found in the redbook Patterns: Broker
Interactions for Intra- and Inter-enterprise, SG24-6075.

WarehouseC

WarehouseA

WarehouseB

ManufacturerC

ManufacturerB

ManufacturerA

User
Interface

Retailer

Logging

 Chapter 9. Enterprise Service Bus: Broker variation 259

A major benefit of our restructuring to incorporate a Broker component is the
rationalization of multiple point-to-point interactions into a logical hub-and-spoke
architecture. This alternative architectural approach is shown in Figure 9-17.

Figure 9-17 Scenario implemented using Broker pattern

In 9.3, “Development guidelines” on page 236, we saw how the interactions that
comprise our overall scenario can be categorized into three types. We have
chosen to handle each invocation type in a separate message flow, as
summarized in Table 9-1 on page 237. We now examine the configuration steps
that are required to replace the point-to-point interactions for each invocation
type with the Broker pattern alternative.

9.4.1 Incorporation of Broker
To introduce the message flows that we have developed to handle each of our
three service invocation types, we introduce a level of indirection into the service
client to service provider interaction. Essentially this involves the modification of
the WSDL that is used by each service client, replacing the service endpoint
address in each case with that of WebSphere Business Integration Message
Broker. After modifying each client WSDL file, it is necessary to reinstall the
containing Enterprise Application into WebSphere Application Server, including
the regeneration of Web services bindings.

Table 9-21 on page 261 shows the message flows that each Web service
interaction uses.

User
Interface Retailer

ManufacturerC

ManufacturerB

ManufacturerA

WarehouseC

WarehouseB

WarehouseA

Logging

Broker

260 Patterns: Implementing an SOA Using an Enterprise Service Bus

Table 9-21 Message flow requirements for the scenario

The steps that must be followed in order to achieve the required level of
indirection are broadly similar, irrespective of the underlying transport protocol
that is used for the service invocation. In the remainder of this section, we step
through the process for the modification of the interaction between service client
SCMSampleUI and service provider LoggingFacility. Note that these steps must
be repeated for every serial HTTP service client.

Modifying WSDL definition files
Open the service client WSDL file in WebSphere Studio Application Developer
WSDL editor and navigate to the soap:address field. Recall that the URL pattern
specified for the URL Selector property of the HTTP Input node of message flow
HTTPtoHTTPMsgFlow was:

http://localhost:7080/ServiceBroker/*

Logic within the message flow will use the value concatenated with this URL
stem as the key used on the retrieval of the service endpoint address from the
externalized endpoint database. We chose to concatenate the service name to
the URL stem in order to form the complete URL that will be used by the service
client, giving the following value:

http://localhost:7080/ServiceBroker/LoggingFacility

This is shown in Figure 9-18 on page 262.

Service requester Operation Service provider Broker message
flow requirement

SCM application getCatalog Retailer HTTP routing

SCM application submitOrder Retailer HTTP routing

Retailer shipGoods Warehouses HTTP to JMS
aggregation

Warehouse submitPO Manufacturer HTTP routing

Manufacturer submitSN Warehouse HTTP routing

SCM application getEvents LoggingFacility HTTP routing

Retailer logEvent LoggingFacility HTTP to JMS
protocol conversion

Warehouse logEvent LoggingFacility HTTP to JMS
protocol conversion

Manufacturer logEvent LoggingFacility HTTP to JMS
protocol conversion

 Chapter 9. Enterprise Service Bus: Broker variation 261

Figure 9-18 Changing service endpoint address used by serial HTTP client

Redeploying enterprise applications
After making the changes to the WSDL file used by the service client that were
discussed in the previous section, we must redeploy the enterprise application:

1. Export the enterprise application as an EAR file from WebSphere Studio
Application Developer.

2. From the WebSphere Application Server administration console, stop and
uninstall any prior versions of the SCMSampleUI application that you might
have installed in your environment.

You can now install the new enterprise application version from the admin
console. We have changed the endpoint service address, so the Web services
bindings must be regenerated by selecting the Deploy Web services check box
on Step 1. (Alternatively, the client bindings can be generated in WebSphere
Studio Application Developer.)

Additional configuration is required for the Warehouse service:

1. Export the Warehouse.ear file from WebSphere Studio Application Developer.

2. Regenerate the endpoints.

This can be done directly from WebSphere Studio Application Developer or,
as follows, on the command line from the directory where the file
Warehouse.jar is located:

<Studio_home>\v5.1.1\runtimes\base_v51\bin\endptenabler.bat

262 Patterns: Implementing an SOA Using an Enterprise Service Bus

You are then prompted for the name of the EAR file, which is entered as:

Warehouse.ear

Take the default value for the HTTP router name. The HTTP context root
should be supplied as follows:

/Warehouse

3. Deploy the Warehouse enterprise application.

The following settings are required for the redeployment of the enterprise
archive:

a. Select the Regenerate bindings check box prior to Step 1.

b. Select the Deploy Web services check box on Step 1.

9.4.2 Distributed WebSphere MQ configuration
Although the scenario that is described in this chapter was developed on a single
machine, the individual services could be distributed across multiple machines in
the future. For this reason, we have chosen to maintain some degree of isolation
between the WebSphere MQ resources referenced by the runtime artefacts
deployed within WebSphere Business Integration Message Broker and
WebSphere Application Server. A WebSphere MQ queue manager is created
during the installation of WebSphere Business Integration Message Broker, with
a default name of WBRK_QM. Our definition of message flow AggQtyMsgFlow
includes references to queues that are defined within its default queue manager
WBRK_QM.

In a similar way, WebSphere MQ JMS resources that are defined within
WebSphere Application Server reference queues that are defined within a
dedicated queue manager, SOA.QUEUE.MANAGER. Because the queues
within the respective queue managers are the foundation of the transport
mechanism that is used to pass messages between our message flows and JMS
services, we must define distributed WebSphere MQ resources to establish
connectivity. This distributed WebSphere MQ queueing scheme is illustrated in
Figure 9-19 on page 264. A more detailed description of the definition of the
required WebSphere MQ objects is provided in Appendix B, “Configuring the
scenario lab environment” on page 335.

 Chapter 9. Enterprise Service Bus: Broker variation 263

Figure 9-19 Distributed WebSphere MQ scheme

9.4.3 Externalized data definition
Our message flows consume externalized configuration data to determine
service endpoint addresses and the mapping of specific items to the appropriate
warehouse. We chose to use DB2 UDB as the data management technology,
and we defined two tables to contain the values.

Table 9-22 shows a sample of the service endpoint routing data that is defined
within the SERVICE_ROUTER table.

Table 9-22 Sample data from SERVICE_ROUTER table

The values in Table 9-23 on page 265 are used to determine the Warehouse
corresponding to any given Item. These are held within the PART_LOCATION
table in DB2 UDB. The primary key is made up of both columns because of the
requirement that parts are only stocked in one warehouse.

WASToBrokerChannel

WASToBrokerChannel

WASToBrokerChannel

BrokerToWASChannel

WBI Message Broker

Queue Manager
WBRK_QM

WASHIPREQUEST

WBSHIPREQUEST

WCSHIPREQUEST

WSHIPRESPONSE

Queue Manager
SOA.QUEUE.MANAGER

WASHIPREQUEST

WBSHIPREQUEST

WCSHIPREQUEST

WSHIPRESPONSE

WebSphere Application
Server

AggQtyMsgFlow

JMS Port Listener
WarehouseListener

Name Location

Manufacturer http://appsrv1l.itso.ral.ibm.com:9080/Manufacturer/services/Manufacturer

LoggingFacility http://appsrv1l.itso.ral.ibm.com:9080/LoggingFacility/services/LoggingFacility

WarehouseCallBack http://appsrv1l.itso.ral.ibm.com:9080/WarehouseCallBack/services/WarehouseC
allBack

Retailer http://appsrv1l.itso.ral.ibm.com:9080/Retailer/services/Retailer

264 Patterns: Implementing an SOA Using an Enterprise Service Bus

Table 9-23 Data held in PART_LOCATION table

9.4.4 Message flow deployment
Administration of WebSphere Business Integration Message Broker is shipped
with an Eclipse-based development and administration Toolkit. Message flows
are packaged into Broker archives for deployment. Within a running Broker
instance, Broker archives are deployed to an execution group. Broker archives
can be deployed readily into an execution group via a simple drag-and-drop
paradigm. Further details about how to package and deploy message flows can
be found in “Deploy the message flow” on page 248 of Patterns: Broker
Interactions for Intra- and Inter-enterprise, SG24-6075.

Broker archives (and, therefore, message flows) can be deployed to more than
one execution group and more than one Broker to meet scalability and
availability requirements. Our scenario has one restriction to this: a flow
containing an AggregateReply node must not be deployed to multiple execution
groups in a Broker; multiple instances of the flow are allowed. By splitting
AggQtyMsgFlow into two message flows, the first part can be deployed to
multiple execution groups. In this case, the AggregateControl message would be
passed between the flows using WebSphere MQ.

To run the full scenario, multiple instances of the HTTPtoHTTPMsgFlow
message flow are required concurrently. To enable more than one instance of a
flow to be executed at once in an execution group, a configuration setting is
required on the message flow in the Broker archive. The Additional Instances
property should be set to 7 as shown in Figure 9-20 on page 266.

PART_NUMBER Warehouse

605001 A

605002 B

605003 C

605004 A

605005 B

605006 C

605007 A

605008 B

605009 C

 Chapter 9. Enterprise Service Bus: Broker variation 265

Figure 9-20 Setting the number of instances of a message flow

9.4.5 Troubleshooting message flows
Two main mechanisms are available for troubleshooting WebSphere Business
Integration Message Broker message flows:

� The Flow Debug perspective in the Message Brokers Toolkit

This is a visual debugging environment. You can set breakpoints in a flow and
then step through the flow. While you are stepping, you can examine and
change the message and variables in ESQL code or Java code. These
capabilities enable you to debug a wide variety of error conditions in flows,
such as:

– Incorrectly wired activities (for example, outputs that are connected to the
wrong inputs)

– Incorrect conditional branching in transition conditions

– Unintended infinite loops in flows

� Tracing an execution group in a Broker

To trace the execution of message flows in an execution group:

a. Enter the following command in a command window before putting
messages onto the input queue or making an HTTP request:

mqsichangetrace <Broker> -u -e <execution group> -l debug -r

266 Patterns: Implementing an SOA Using an Enterprise Service Bus

b. Put the message onto the input queue or make the HTTP request. After
the message flow has completed execution, you can read the trace log
and format it to show the result by using the following commands:

mqsireadlog <Broker> -u -e <execution group> -o trace.xml
mqsiformatlog -i trace.xml -o formattrace.log
mqsichangetrace <Broker> -u -e <execution group> -l none

The formatted trace is in the formattrace.log text file.

This sequence of commands can be used to create a .bat file, which is
commonly known as usertrace.

A useful utility for placing messages on WebSphere MQ queues for message
flow execution and reading the response messages from queues is provided as
part of IBM SupportPac IH03. It includes the rfhutil utility and can be found at:

http://www.ibm.com/software/integration/support/supportpacs/

9.4.6 Quality of service capabilities
For an ESB implementation, the quality of service capabilities is greatly affected
by the qualities of the environment and of the service providers. The following
discussion focuses on the quality of service implications when using WebSphere
Business Integration Message Broker.

Availability
Installing a WebSphere Business Integration Message Broker default
configuration of one Broker with a single execution group leads to a single point
of failure. This is easily remedied by deploying two Brokers on similar machines
with a WebSphere MQ cluster configuration. Where connection is by IP address,
an IP switching facility is required.

This deployment approach is in line with the attributes of an ESB implementation
because it provides a physically distributed infrastructure, which has a central
configuration.

Performance
Performance and capacity planning reports are available for the WebSphere
Business Integration Message Broker in the form of IBM SupportPacs at:

http://www.ibm.com/software/integration/support/supportpacs/

Security
Security provides confidentiality and non-repudiation by authenticating the
involved parties, encrypting messages, and providing access control. Security
has additional importance if the activity occurs over the Internet. The service

 Chapter 9. Enterprise Service Bus: Broker variation 267

http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/support/supportpacs/

provider can have different approaches and levels of providing security,
depending on the service requestor.

SSL is available for the Internet and WebSphere MQ protocols. However, SSL
support is not provided by the HTTP nodes in WebSphere Business Integration
Message Broker, so a Web server or the Web Services Gateway is needed.
Where encryption is required directly to the Broker, JMS can be used with
WebSphere MQ.

WebSphere Business Integration Message Broker does not provide WS-Security
support. However, the overall infrastructure can provide this support by deploying
Web Services Gateway.

Security requirements are broader when considering publish and subscribe. A
finer granularity of security exists in WebSphere Business Integration Message
Broker when using publish and subscribe.

Transactionality
WebSphere Business Integration Message Broker provides transactional support
via WebSphere MQ (and JMS with WebSphere MQ) or supported databases.

For external activity, the message flow has to enlist in a global transaction such
that all required resources are coordinated. If a message flow includes
interaction with an external user database, the message flow can be configured
such that all of its processing is coordinated within a transaction. This ensures
that either all processing is successfully completed or no processing is
completed; thus all affected resources (queues, databases, and so on) can
maintain or return to a consistent state, and data integrity is preserved.

If an error is generated in a message flow node, the default behavior that will be
taken by the Broker depends on how you have created and connected the
message flow, and whether the message that is being processed is under
transactional control.

9.5 Further information
� Developing Solutions in WebSphere MQ Integrator, SG24-6579

� WebSphere MQ Integrator Deployment and Migration, SG24-6509

� Migration to WebSphere Business Integration Message Broker V5,
SG24-6995

� Using Web Services for Business Integration, SG24-6583

� Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075

268 Patterns: Implementing an SOA Using an Enterprise Service Bus

� WebSphere Business Integration Message Broker SupportPacs

http://www.ibm.com/software/integration/support/supportpacs/

� WebSphere Business Integration Message Broker information library

http://www.ibm.com/software/integration/wbimessagebroker/library/

 Chapter 9. Enterprise Service Bus: Broker variation 269

http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/integration/wbimessagebroker/library/

270 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 10. Business Service
Choreography

This chapter describes the implementation of Business Service Choreography
for our business scenario. In previous chapters, we have described the
Enterprise Service Bus Router and Broker variations. Business Service
Choreography is mainly concerned with business logic and therefore is likely to
be implemented in a component outside the Enterprise Service Bus (ESB) rather
than within the bus itself. This chapter primarily focuses on design and
development of Business Service Choreography within the manufacturer service
and its connection to the ESB.

In this chapter, the following topics are discussed:

� Sample business scenario with Business Service Choreography

� Design guidelines for designing a Business Service Choreography process

� Development guidelines describing the processes that are implemented in
this chapter

� Runtime guidelines discussing the deployment and runtime options for a
business process in relation to an Enterprise Service Bus

This chapter primarily focuses on developing BPEL4WS processes for
WebSphere Business Integration Server Foundation.

10

© Copyright IBM Corp. 2004. All rights reserved. 271

10.1 Business scenario
As discussed in earlier chapters, the WS-I sample application is a simplified
supply chain for a consumer electronics retailer. When the warehouse runs out of
goods, it makes a request for additional stock from the manufacturers. The
manufacturer receives the request and sends the shipment to the warehouse.

The basic infrastructure of multiple manufacturers remains the same as the
previous scenario, as shown in Figure 10-1.

Figure 10-1 Existing infrastructure

One of the external manufacturers has decided to model the fulfillment operation
as a business process. This gives the manufacturer two advantages:

� The sequence of activities within the business process can be changed easily.

� The manually executed approval activity can be incorporated with the
automated activities in a single process.

In this chapter, we showcase the design and development of Business Service
Choreography. We also discuss the connection of that process as a service to
the existing Enterprise Service Bus within the organization.

Intranet

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

272 Patterns: Implementing an SOA Using an Enterprise Service Bus

10.2 Design guidelines
This section reviews the design considerations and critiques of the available
product mappings for its implementation.

10.2.1 Design overview
This section outlines some things to think about when implementing Business
Service Choreography as an off-the-ESB service.

Selecting the pattern
Typically, the business requirements drive the pattern selection; therefore we
start to analyze our needs, leading to the selection of a pattern implementation
for the manufacturer.

Currently, the manufacturer runs its business process through a mixture of
manual and automated steps. The overall process is not explicitly modeled or
documented in any great detail. As a result, it is difficult to measure business
performance indicators, such as the response time for fulfilling orders, or to
assess the impact of changes on those indicators. In order to improve both the
measurability and flexibility of the business, the manufacturer has decided to
explicitly model and automate its business processes, including a new workflow
system to manage the execution of manual steps.

Specifically, the business requirements demand the following:

� Separation of business process flow logic from the individual application or
function logic.

� Loose coupling between different services for quicker response and flexibility
to adapt to the changing business needs, including replacing one service
implementation with another.

� The inclusion of human intervention and manual steps within an automated
process model.

– A management/staff personnel intervention (or approval) to prompt the
production of goods when the manufacturer is low on some requested
goods.

Choosing the relevant SOA pattern
The Business Service Choreography component is suitable for this scenario.
This component can use the Process Integration Serial Process application
pattern to describe the interactions of a business process, as is shown in
Figure 10-2 on page 274.

 Chapter 10. Business Service Choreography 273

Figure 10-2 Serial Process application pattern

Where human interaction is involved (as is the case with this business scenario),
the Serial Workflow variation applies. See Figure 10-3.

Figure 10-3 Serial Workflow application pattern

For more information on the Serial Process and Serial Workflow patterns, consult
the redbook Patterns: Serial and Parallel Processes for Process Choreography
and Workflow, SG24-6306.

Source
Application Serial Process

Rules Tier

Target
Application

Target
Application

Target
Application

R/O
WIP

Intermediate
Results Process

Execution Rules

Source
Application Serial Workflow

Rules Tier

Target
Application

Target
Application

Target
Application

R/O
WIP

Human
Interaction
Resolution

Intermediate
Results Process Execution

Rules including
 task-resource relationship

274 Patterns: Implementing an SOA Using an Enterprise Service Bus

Applying the SOA pattern to the scenario
Due to the requirement for human interaction, we have elected to use the Serial
Workflow pattern to implement our Business Service Choreography process.
This Business Service Choreography sits off the Enterprise Service Bus as an
additional service provider (Figure 10-4).

Figure 10-4 Business Service Choreography off the ESB

Business Service Choreography benefits
The key benefits of using Business Service Choreography are:

� Flexibility: achieved by externalization of process logic for the individual
application.

� Human interaction: facilitating various staff functions such as approval,
investigation, and claim.

� Reusability of the software components or services in the process, resulting
in cost savings.

� The construction of processes from services with explicit interfaces enables
the easy substitution of one service interface with another.

Product implementation options
Business Service Choreography can be implemented in a number of IBM
products. We specifically considered the following:

� WebSphere Business Integration Server Foundation V5.1
� WebSphere MQ Workflow V3.5

To help with selecting the appropriate product, refer to the description of each
product in 5.1, “Runtime product descriptions” on page 134.

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Manufacturer
C

ESB: Broker variation Business
Service

Choreography

 Chapter 10. Business Service Choreography 275

Product selection for scenario implementation
To address the requirements described in the business scenario using Business
Service Choreography, we selected the WebSphere Process Choreographer
capability of WebSphere Business Integration Server Foundation. The product
mapping is shown in Figure 10-5.

Figure 10-5 Product mapping for Business Service Choreography off the ESB

By selecting WebSphere Business Integration Server Foundation, we can take
advantage of the support for the open-standard Business Process Execution for
Web Services (abbreviated as BPEL4WS). The BPEL4WS V1.1 specification
can be found at:

http://www.ibm.com/developerworks/library/ws-bpel/

Figure 10-6 on page 277 illustrates a different view of our solution to the scenario
requirements in terms of service requesters, service providers, and the protocols
that are used for communication with the ESB.

�Windows 2000 + SP3
�IBM WebSphere Application
Server v5.1

Intranet

ESB: Broker variation

Retailer

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

Manufacturer
C

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

App Server/
Services

Business
Service

Choreography

�Windows 2000 + SP3
�IBM WebSphere Business Integration
Message Broker V5 + CSD03
�IBM WebSphere MQ V5.3 + CSD06
�DB2 UDB V8.1 + Fixpack 5

�Windows 2000 + SP3
�IBM WebSphere
Business Integration
Server Foundation V5.1

276 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/library/ws-bpel/

Figure 10-6 Business Service Choreography-based manufacturer off the ESB

Business Service Choreography design
We now look at the different design approaches that we can take to implement a
solution based in Business Service Choreography. Business Service
Choreography incorporates the business logic of the enterprise, thus is
implemented off the bus.

This section includes:

� Solution overview
� Design alternatives

Solution overview
The Business Service Choreography process flow for the manufacturer consists
of the following activities (Figure 10-7 on page 278):

� Manufacturer receives the request for shipment of goods.

Intranet

HTTP

HTTP

HTTP HTTP HTTP,JMS HTTP

HTTP

HTTP,JMS HTTP,JMS HTTP,JMS HTTP

ESB: Broker variation

Retailer

Enterprise Zone

Warehouse
A

Warehouse
B

Manufacturer
B

Warehouse
C

SCM
Application

Retail
System

Manufacturer
A

Business
Event Log

HTTP

Manufacturer
C

Business
Service

Choreography

 Chapter 10. Business Service Choreography 277

� Manufacturer sends a response back to the warehouse indicating that the
order was received.

– This does not mean that the order was fulfilled and the goods will be
shipped; it is just an acknowledgement of receipt of the order.

� The request is sent to the inventory division to determine whether the
requested goods are available.

– If the goods are in stock:

• Make a callback to the warehouse and send the shipment.

– If the goods are below the threshold or out-of-stock:

• Ask the manager to authorize production for that specific product item.

• Make a callback to the warehouse and send the shipment.

Figure 10-7 Manufacturer implemented as a Business Service Choreography process

278 Patterns: Implementing an SOA Using an Enterprise Service Bus

Design alternatives
To design the Business Service Choreography as described in Figure 10-7, we
consider the following design alternatives that are available to us and select the
best that is appropriate for our scenario, based on their benefits and limitations.

Design alternative: top-down versus bottom-up modeling
In the top-down design approach, we already have the WSDL interface
definitions defining the services and interface. The service implementation is
designed and developed at a later stage. This kind of approach gives us the
following benefits and impacts:

� Services defined according to the requirements of clients, the business
definition of the process, or both.

� Parallel development between the service requester and service provider.

� Reuse of the existing WSDL and XSD to either migrate or enhance the
current enterprise application.

� Services tend to be large-grained, which promotes flexibility and reusability.

� Service definitions may not precisely match functions that are offered by
existing systems, so some transformation, aggregation, or modification may
be required.

In the bottom-up approach, the service definition is based on existing
implementations of function. Business services and processes must then be
created by aggregation, transformation, or choreography of these existing
functions. This kind of approach is usually taken when:

� The service provider already has an application and it would like to expose its
implementation as a Web service.

� Existing service implementations are not amenable to change, perhaps
because they are complex systems that support many processes.

� An existing service provider interface definition is found and used by a service
requester, without the knowledge of the service provider. There is no
agreement between the consumer and provider. The service provider may
change and republish the service at any time.

Because we are using the WS-I sample supply chain management application
scenario, we already have the existing WSDL and the XSD definitions, so we will
use the top-down approach.

 Chapter 10. Business Service Choreography 279

Design alternative: long-running versus short-running processes
A short-running process completes in a short interval of time. It does not persist
any data and can be summarized as a single business transaction. A
short-running process design is considered when:

� A synchronous interaction is desired.
� A process will run for a limited time.
� No human interaction is required.
� Runtime data persistence is not required.

A long-running process can potentially complete in a longer interval of time, such
as an hour, several days, or several months. It persists the process instance data
and may involve human interaction. A long-running process design is considered
when:

� An asynchronous interaction is desired.

� A process will run for a potentially long, undetermined time.

� Human interaction is required.

� Runtime data persistence is required because either:

– The process may take very long time to complete.

– Human intervention is involved.

� The process may have to wait for external events, or its outcome may be
affected by them.

Based on the requirements we have for the manufacturer, our need for human
interaction (management authorization for stock production) dictates that we
should implement a long-running process.

Design alternative: composite processes
Short-running and long-running processes can interoperate with each other.
There are four invocation compositions:

� A long-running process invoking a short-running process

Human-based or event-based activities require a process to be long-running,
but such a process may also include simpler functions that are short-lived.
Therefore, a short-running process containing these functions could be
invoked. This is useful in situations where commonly occurring short-running
business logic is reused as a subprocess in long-running processes.

� A short-running process invoking a long-running process

In this instance a short-running process invokes a long-running process in a
fire-and-forget manner. The short-running process then continues to the next
activity in the flow. The long-running process executes in its own thread,

280 Patterns: Implementing an SOA Using an Enterprise Service Bus

enabling the short-running process to complete while the long-running
process continues to execute.

This composition is useful when a synchronous request/response interaction
is required by the client that invokes the process. The short-running process
starts, invokes a long-running process, then returns an acknowledgement
back to the client. The client does not have to wait for the long-running
process to complete before it receives a response.

For example, when you purchase a book from an online bookstore, you
receive an acknowledgement indicating that the order was placed and will be
shipped by a certain date. Behind the scenes, this acknowledgement might
have been generated by a short-running process that triggered a long-running
process to check the inventory, order the book, and ship it to the respective
customer.

� A long-running process invoking a long-running process and a short-running
process invoking a short running process

The last two compositions are usually preferred when you already have an
existing process and would like to reuse this logic as part of a larger flow.

In our scenario, we used the short-running process invoking a long-running
process composition for the manufacturer process:

1. When the warehouse calls the manufacturer to ship the order, an
acknowledgement is sent back to the warehouse indicating successful
placement of the order. This will be implemented in the short-running process.

2. The short-running process invokes a long-running process, which performs
the inventory check and, if required, requests management approval. When
the long-running process completes, a callback is sent to the warehouse,
informing it that the order has shipped.

10.3 Development guidelines
In this section, we build the processes defined in Figure 10-7 on page 278 to
create a business process implementation of the manufacturer service. Two
processes are created:

� Short-running process

Exposes a process interface that is invoked by a client (the warehouse
service) to place an order for stock. The short-running process invokes a
long-running process, then returns a reply to the client. This maps to the
Serial Process pattern because it uses no human interaction.

 Chapter 10. Business Service Choreography 281

� Long-running process

Checks the inventory, replenishes stock, gains management approval if
necessary, and ships the goods. The requirement for human interaction
means that this maps to the Serial Workflow pattern.

Both processes are created in the BPEL4WS open standard, using WebSphere
Studio Application Developer Integration Edition V5.1. This section assumes that
you have some knowledge of using WebSphere Studio Application Developer
Integration Edition to build business processes.

10.3.1 Long-running process
This section describes how to build the long-running process for our business
scenario:

� Creating the skeleton process and process interface

Describes how to create the long-running process skeleton and how to assign
an existing WSDL interface to it.

� Building the process

Describes each activity, partner link, and variable that is used in the process.

Creating the skeleton process and process interface
This section describes how to create a new BPEL4WS process and assign the
relevant process interface to it. We go into detail in this section to get you started
with a working process template. The remainder of the process is not described
in step-by-step detail.

1. Create a new BPEL4WS process in WebSphere Studio in the Business
Integration perspective:

a. Create a new service project (File → New → Service Project) called
WSIManufacturer.

b. Create a new business process in this service project (File → New →
Business Process) in package com.ibm.itso.process called
longRunning.bpel.

c. In the New Business Process wizard, you will be asked which process
type to use. Select Sequence-based BPEL Process.

2. When a new process is created, you will see two files in the Services view.
The .bpel file contains the BPEL process, and by default is opened in the
BPEL Editor. The .wsdl file represents the generated process instance for the

282 Patterns: Implementing an SOA Using an Enterprise Service Bus

process. We want to use our own predefined process interface. Complete the
following steps to use the predefined interface:

a. In the process editor, delete the variable called InputVariable and the
partner link called PartnerLink.

b. Import the process interface WSDL file and associated XSD files into the
com.ibm.itso.process package. These files are supplied with the source
code that accompanies this redbook:

• fulfillPOProcessInterface.wsdl

• ManufacturerPO.xsd

• ManufacturerSN.xsd

• Configuration.wsdl

• Configuration.xsd

c. Drag fulfillPOProcessInterface.wsdl into the process editor. When
asked to select the Port Type, select FulfillPOPortType. This should
create a new partner link.

d. Select FulfillPOPortType and display the Implementation tab properties.
Click <--> to assign the partner role name and port type as the process
role name and port type (Figure 10-8).

Figure 10-8 Setting the process role name and port type

e. The Receive activity must point to an operation in this partner link and be
assigned a variable. Click the Receive activity. In the Implementation tab,
set the Partner Link to FulfillPOPortType. By default this should set the
Operation to fulfillPO. To create a new variable click New and name the
variable fulfillPORequest.

f. The fulfillPO operation defines a one-way interaction, so the Reply activity
is not required. Delete it.

3. Finally, this process is long-running. The default is to create a short-running
process, so we need to modify this. In the BPEL Editor, click longRunning at
the top of the process and select the Server tab. Check the option Process is
long-running (Figure 10-9).

 Chapter 10. Business Service Choreography 283

Figure 10-9 Setting the process to be long-running

Building the long-running process
This section describes the activities and other entities that are part of the
long-running process. The complete process is shown in Figure 10-10 on
page 284.

Figure 10-10 Long-running process in the BPEL Editor

284 Patterns: Implementing an SOA Using an Enterprise Service Bus

Partner links
Partner links identify the parties that interact with your business process. Each
partner link is defined by a partner type and a role name and can either set or
modify the variables that are used by the activities within the process.

The following partner links are used in this process:

� FulfillPOPortType

– Contains the interface for this process.

– Is implemented by the fulfullPOProcessInteface.wsdl file.

� InventoryPortType

– Contains the CheckInventory service.

– Is implemented by the InventoryPortTypeJavaService.wsdl file.

Variables
Variables are Java representations of WSDL messages, and are used to set, get,
and store message values. Each WSDL message that is used by an activity, Java
snippet, or condition must be represented by a variable.

We created the following variables:

� fulfillPORequest

Used to store the process input data. Represents the POFulfill message that
is defined in fulfillPOProcessInterface.wsdl.

� checkInventoryRequest and checkInventoryResponse

Used to store the input and output messages of the CheckInventory
operation. Represents the CheckInventoryRequest and
CheckInventoryResponse messages in Inventory.wsdl.

� authorizeNewStockRequest and authorizeNewStockResponse

Used by the staff activity to store data from the management approval human
interaction. Represents the AuthorizeNewStockRequest and
AuthorizeNewStockResponse messages in AuthorizeNewStock.wsdl.

Receive activity
The receive activity represents the start of a process. It waits for external input,
based on the partner link, port type, and operation that it expects to receive. This
receive activity waits for the fulfillPO operation to be invoked.

Notice that this process does not contain a reply activity. This indicates that the
process contains a one-way interface.

 Chapter 10. Business Service Choreography 285

Assign activity : MapInputVariables
The assign activity is used to map one value to another. This assign activity
maps the PurchaseOrder part that is defined in the process interface with the
PurchaseOrder part that is used in the CheckInventory service. This ensures that
data that is entered as input to the process is sent to the CheckInventory service.
The assign is shown in Figure 10-11.

Figure 10-11 MapInputVariables assign activity

Invoke activity : CheckInventory
Invoke activities are used for invoking services. A service can be a Web service
or any other type of service that can be described in WSDL and is supported by
the Web Services Invocation Framework.

This activity invokes the checkInventory operation, which is a service with a Java
class endpoint. To use this service, you must import the endpoint and service
description into the workspace. The checkInventory operation is provided in the
Java project InventoryProject and is supplied with this book.

To add the checkInventory operation to the process, drag the service file
(InventoryPortTypeJavaService.wsdl) into the process editor to create a partner
link, then add an invoke activity that uses the partner link (Figure 10-12). You will
also create variables for the activity.

286 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 10-12 CheckInventory invoke activity, and InventoryPortType partner link

CheckInventory is service that provides the implementation for checking whether
the goods are available in the stock. It accepts the parameters PurchaseOrder,
ConfigurationHeader, StartHeader. If the goods are available in stock, it returns
an empty object of type PurchaseOrder; otherwise it fills in the empty object with
the number of goods required to be manufactured.

Java snippet : LogCheckInventoryResponse
A Java snippet is a BPEL4WS extension that enables you to add code to a
process. This code is typically used for mapping variables, adding logging and
tracing, and to perform other Java functions.

In this instance we use a Java snippet to output the response of the
CheckInventory operation, stored in the checkInventoryResponse variable, to the
system console (Example 10-1 on page 287).

Example 10-1 LogCheckInventoryResponse Java snippet

System.out.println("checkInventoryResponse: " +
getCheckInventoryResponse().toString());

Switch structure : GoodsInStock
A switch structure is similar to the switch Java construct. It allows a single path of
execution to be taken based on a specific case being met. In our example, we
check to see whether the ordered goods are in stock. If they are, we log this fact
and continue. If not, we execute a separate path that includes a staff activity to
request permission to manufacture new stock.

 Chapter 10. Business Service Choreography 287

A case statement checks whether an empty PurchaseOrder (indicating that all
items are in stock) has been returned by the CheckInventory service.
Example 10-2 shows the Java expression that is used.

Example 10-2 Case statement for GoodsInStock

CheckInventoryResponseMessage unfilledStock = getCheckInventoryResponse();
return (unfilledStock.getUnfilledPurchaseOrder().getItems().getItem() == null);

An otherwise statement indicates that if all case statements evaluate to false, the
flow continues down the otherwise branch.

Figure 10-13 shows the GoodsInStock switch.

Figure 10-13 GoodsInStock switch

Java snippets : LogInStock and LogAuthorizeNewStock
These Java snippets report the decision of the switch to the system console,
indicating either all items are in stock, or that management approval is required
to replenish stock. These Java snippets are optional but are useful for logging
and debugging purposes.

Assign activity : MapInventoryVariables
This assign activity maps the UnfilledPurchaseOrder part from the
CheckInventoryResponse variable to the UnfilledStock part of the
authorizeNewStockRequest variable.

The content of the authorizeNewStockRequest variable is used as the input
message of the work item for the staff activity. The manager who claims the work
item uses the data in the input message to make the decision as to whether to
approve or reject the request.

288 Patterns: Implementing an SOA Using an Enterprise Service Bus

Staff activity : AuthorizeNewStock
Staff activities are another BPEL4WS extension, and they enable human
interaction in a process. In some ways, a staff activity is like a regular invoke
activity in that it contains an input and output message that is defined in WSDL.
The owner of the staff activity receives the input message and, based on this,
populates the output message.

At runtime, when a staff activity is reached, a work item is generated. This work
item must be claimed and completed before the process can continue.
Permissions are granted as to who can view, edit, and claim a work item by
assigning roles to a staff activity: potential owner, editor, and reader. Each role
can be assigned to an individual user or a group of users, or be dynamically
determined at runtime using a late binding.

Staff plug-in providers define the user registry to use for security credential
resolution. Such user registries include the local operating system (such as the
Windows user registry) and an LDAP directory.

We created a staff activity and assigned it the authorizeNewStock operation. The
response message to this operation (mapped by the
authorizeNewStockResponse variable) contains a single Boolean part where the
manager indicates whether the request to manufacture new stock is authorized.

For simplicity of testing, we did not want to specify strict security constraints
regarding who could be the potential owner of this staff activity. Therefore we set
the potential owner to use the verb Everybody (Figure 10-14 on page 289) and
the staff plug-in provider to the everybody configuration (Figure 10-15 on
page 290). This means that any user, whether authenticated or not, has the
ability to claim and complete work items that are generated by this staff activity.

Figure 10-14 AuthorizeNewStock staff activity potential owner

 Chapter 10. Business Service Choreography 289

Figure 10-15 Staff plug-in provider

Also for simplicity, this process does not examine the response of the staff
activity to determine whether the manager authorized the request. Normally you
would examine the output message of a staff activity and divert the flow
accordingly.

Java snippet : LogDone
The final activity in the process is a Java snippet that sends a message to the
system console indicating that the process has completed and the stock is
dispatched. It represents the convergence of both execution paths in the switch.

In the interest of time, the callback to the warehouse service to indicate that the
stock is dispatched has not been implemented. This would take the form of an
invoke activity that invokes the WarehouseCallBack Web service, and would
most likely be routed back through the Enterprise Service Bus.

10.3.2 Short-running process
The short-running process achieves two goals:

� It facilitates a short request/response operation with a client, returning an
acknowledgement that an order has been placed.

� It invokes the long-running process to dispatch the stock ordered in a
fire-and-forget manner.

Although most of the actual functionality is contained within the long-running
process, the short-running process is a useful facade. It provides the client with a

290 Patterns: Implementing an SOA Using an Enterprise Service Bus

short response time that would not have been guaranteed if the client invoked
the long-running process directly.

This section has two parts:

� Creating the skeleton process and process interface

Describes the existing WSDL interface that is assigned to the process.

� Building the process

Describes each activity, partner link, and variable that is used in the process.

Creating the skeleton process and process interface
Because the short-running process contains a request/response interface, it has
a Receive and Reply activity. We named the process shortRunning.bpel.

As with the long-running process, we used a predefined WSDL file to specify the
process interface. Follow the steps described in “Creating the skeleton process
and process interface” on page 282 to switch the process interface, but use the
submitPO operation of the port type ManufacturerPortType defined in
submitPOProcessInterface.wsdl.

Building the short-running process
This section describes the activities and other entities that are part of the
long-running process. Figure 10-16 on page 292 shows the complete process.

Note: The short-running process will be deployed with a SOAP/HTTP process
binding. Use of this binding requires that we make the following changes to
our process interface file submitPOProcessInterface.wsdl:

� Replace all WSDL and XSD schema imports with inline code.
� Modify all simple types to not use the restriction element.
� Remove all references to the mustUnderstand attribute.

 Chapter 10. Business Service Choreography 291

Figure 10-16 Short-running process in the BPEL4WS editor

Partner links
The following partner links are used in this process:

� ManufacturerPortType

– Contains the interface for this process.

– Is implemented by the submitPOProcessInteface.wsdl file.

� longRunning

– References the long-running BPEL4WS process.

– Is implemented by the longRunning.bpel file.

Variables
We created the following variables:

� submitPORequest

Used to store the process input data. Represents the POSubmit message
that is defined in submitPOProcessInterface.wsdl.

� submitPOResponse

Used to store the process output data. Represents the ackPO message that
is defined in submitPOProcessInterface.wsdl.

� longRunningRequest

Used to store the data to send to the long-running process. Represents the
POFulfill message that is defined in fulfillPOProcessInterface.wsdl.

292 Patterns: Implementing an SOA Using an Enterprise Service Bus

Receive activity
The receive activity represents the start of a process. It waits for external input,
based on the ManufacturerPortType partner link and port type, and the submitPO
operation.

Assign activity : MapInputVariables
Maps the PurchaseOrder part of the submitPORequest variable to the
PurchaseOrder part of the longRunningRequest variable. This ensures that the
stock information that is sent to the receive activity is propagated to the
long-running process.

Invoke activity : DispatchStock
We have discussed that an invoke activity can invoke a Web service or a service
with a Web Services Invocation Framework endpoint. Additionally, an invoke
activity can invoke a BPEL4WS process. The DispatchStock activity invokes the
long-running BPEL4WS process we have built.

To invoke a BPEL4WS process, simply drag the .bpel file into the BPEL Editor to
create a partner link, then assign the invoke activity to that partner link
(Figure 10-17).

Figure 10-17 Invoking a BPEL4WS process

The long-running process exposes the operation fulfillPO, which is a one-way
operation, so the long-running process will be invoked in a fire-and-forget
manner. After the long-running process instance has started, the short-running
process will continue execution. When the short-running process completes, the
long-running process may still be running.

 Chapter 10. Business Service Choreography 293

Java snippet : LogOrderPlaced
This Java snippet (Example 10-3) serves two purposes:

� Sends a message to the system log to indicate that an order has been placed
with the manufacturer.

� Sets the process output variable submitPORequest to the Boolean value of
true to indicate successful completion of the short-running process.

Example 10-3 LogOrderPlaced Java snippet

System.out.println("Order has been placed with the manufacturer");
AckPOMessage submitPOResponse = getSubmitPOResponse(true);
submitPOResponse.setResponse(true);

Reply activity
The activity that returns a response to the process client. This is the response
portion of the submitPO request/response operation.

10.4 Runtime guidelines
This section describes guidelines for running a Business Service Choreography
process. It describes the deployment and testing options, and highlights the best
options to use when interfacing with an Enterprise Service Bus.

10.4.1 Deploying a process
Before you can run a process, you must deploy it as an enterprise application.
This deployment process serves two purposes:

� Packages the process and service project into an enterprise application that
can be installed as an EAR file in WebSphere Business Integration Server
Foundation.

� Creates a process binding that can be used to start the process instance.

When you deploy a process, you are required to enter the process binding type,
even if ultimately you do not intend to start the process using the process
binding. Multiple process bindings can be created for a given process.

294 Patterns: Implementing an SOA Using an Enterprise Service Bus

Design alternative: process bindings
When deploying a process, you are given a choice of four process bindings:

� EJB binding

Generates a stateless session Enterprise bean that acts as a facade to the
process. A client can invoke a method on this session bean to initiate the
process.

� JMS binding

Generates a message-driven Enterprise bean that acts as a facade to the
process. The message-driven bean contains a message selector that listens
on a specific queue for a message containing a specific header property. A
client can initiate the process by sending a properly formatted message to the
appropriate JMS queue.

� SOAP/HTTP binding

Exposes the process as a Web service provider with a SOAP/HTTP interface.
There are two types of SOAP/HTTP binding:

– IBM Web Service

Uses the SOAP provider supplied with WebSphere Business Integration
Server Foundation V5.1. This creates a JAX-RPC compliant Web service.

– Apache

Uses the Apache SOAP provider. Provided for compatibility with earlier
Web services runtimes.

� SOAP/JMS binding

Exposes the process as a Web service with a SOAP/JMS interface. This
binding uses the IBM Web Service SOAP provider.

We created the following process bindings:

� Short-running process: SOAP/HTTP IBM Web Service binding

To expose a Business Service Choreography process to an Enterprise
Service Bus, the SOAP/HTTP or SOAP/JMS bindings should be used. This
enables the Enterprise Service Bus to invoke the process as a regular Web
service.

� Long-running process: JMS binding

The long-running process is invoked by the short-running process. This
invocation does not use a process binding. Therefore the choice of process
binding for the long-running process is irrelevant, unless you intend to invoke
the long-running process directly. The default process binding for a
long-running process is the JMS binding.

 Chapter 10. Business Service Choreography 295

Preparing a business process container
After a process binding has been created for a process, and the process is
packaged into an enterprise application (EAR file), it can be run in a business
process container. Two business process containers are provided:

� WebSphere Studio Application Developer Integration Edition test server

You can use WebSphere Studio to create a WebSphere Business Integration
Server Foundation test server. This server contains an automatically
configured business process container, which uses a local Cloudscape™
database for persistence, and an internal JMS provider. This server is useful
for testing business processes.

� WebSphere Business Integration Server Foundation

After a process is tested and working, it should be deployed to WebSphere
Business Integration Server Foundation. A business process container can be
created automatically when WebSphere Business Integration Server
Foundation is installed, or you can create one manually. This business
process container can be configured to use a variety of databases and JMS
providers.

Starting a process instance
After a process has been deployed and installed in a real or test WebSphere
Business Integration Server Foundation server, you can create process
instances from it in the following ways:

� Process Web Client

The Process Web Client is an application that is supplied with WebSphere
Business Integration Server Foundation that enables you to start, view,
monitor, and terminate process instances. Additionally, it can be used to
manipulate work items that are generated by staff activities. The Process Web
Client can also be customized using JSPs.

Note: The Process Web Client is not compatible with many process
instances that contain complex types. The complex types that are used in
the short-running process described in this chapter fall into this category. In
this case, you must use another option to initiate the process instance,
such as create customized JSPs for the Process Web Client that are
compatible with the complex types, or build your own process client.

296 Patterns: Implementing an SOA Using an Enterprise Service Bus

� Process binding

A process binding is always created during deployment, regardless of
whether you intend to use it. For testing purposes you can invoke process
bindings as follows:

– An EJB binding can be invoked by using the Universal Test Client of
WebSphere Studio to invoke the relevant EJB method.

– A SOAP/HTTP or SOAP/JMS binding can be invoked by using the Web
Services Explorer of WebSphere Studio to invoke the relevant WSDL
operation.

� WebSphere Process Choreographer API

An API is provided to work directly with process instances. The API contains
two interfaces: a session bean and a message-driven bean. Using either of
these interfaces, you can work with process instances, work items, and
process variables.

� Custom client

You can create a custom client application that either uses the WebSphere
Process Choreographer API or a process binding to invoke a process
instance. We created a JSP application that uses the SOAP/HTTP process
binding to invoke the short-running process.

To start a process instance from an Enterprise Service Bus, it is expected that
you will use the SOAP/HTTP or SOAP/JMS process binding.

10.5 Further information
� Patterns: Serial and Parallel Processes for Process Choreography and

Workflow, SG24-6306

� Business Process Execution Language for Web Services Version 1.1

http://www.ibm.com/developerworks/library/ws-bpel/

� WebSphere Business Integration Server Foundation InfoCenter

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

 Chapter 10. Business Service Choreography 297

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www.ibm.com/developerworks/library/ws-bpel/

298 Patterns: Implementing an SOA Using an Enterprise Service Bus

Chapter 11. Exposed ESB Gateway
composite pattern

This chapter takes the Enterprise Service Bus (ESB) implementation that was
discussed in previous chapters and describes how access to the Internet can be
provided to allow interactions between different enterprises.

We use the Exposed ESB Gateway composite pattern to expose access from our
ESB to an external enterprise. This chapter explores the architectural
implications of using it to add Internet access to a service-oriented architecture
(SOA). The Exposed ESB Gateway was introduced in 4.4.5, “Extended
Enterprise SOA patterns” on page 108.

We extending the scenario that was developed in previous chapters to illustrate
many of the issues that are discussed and to describe how this was achieved.

In this chapter, the following topics are discussed:

� The sample business scenario that our solution must address

� Design guidelines that describe the design approaches for using the Exposed
ESB Gateway composite pattern to allow Internet access to and from an ESB

� Runtime guidelines that illustrate the configuration of service invocation
routing

11

© Copyright IBM Corp. 2004. All rights reserved. 299

11.1 Business scenario
The sample application that was introduced in Chapter 7, “The business scenario
used in this book” on page 169, is a simplified supply chain for a consumer
electronics retailer. The company has implemented the Enterprise Service Bus to
meet the business requirements.

The company has decided to divest itself of the three manufacturers. Each will be
sold off to other companies or established as new companies in their own right.
Various interactions must now take place securely over the Internet. These are:

� The functionality enabling a warehouse to replenish stock from a
manufacturer.

� The notification of shipment by a warehouse of replenishment stock by a
manufacturer.

� The logging of business tracking information by the manufacturer.

Figure 11-1 shows the business infrastructure.

Figure 11-1 High-level business context with external manufacturers

11.2 Design guidelines
We now analyze the business requirements to select the appropriate design
patterns and product components for implementation.

Intranet

Business
Event Log

Retail
System

SCM
Application

Manufacturer
Manufacturer

Manufacturer
Manufacturer

Manufacturer
Warehouse

Intranet

In
te

rn
et

300 Patterns: Implementing an SOA Using an Enterprise Service Bus

11.2.1 Design overview
Figure 11-2 shows an overview of the steps that might be taken to design a
solution to address business requirements. We now follow these steps.

Figure 11-2 Design overview

Selecting the pattern
We start by considering the requirements that were described in the business
scenario in the previous section in conjunction with the Process Integration
patterns that were defined in 4.4, “SOA profile of the Application Integration
patterns” on page 90. To be able to access manufacturers in external
organizations, the following areas must be considered:

� Addressing of remote services
� Security over the Internet
� Implementation of changes with minimal impact on the existing infrastructure

We previously implemented an ESB, and Figure 11-3 illustrates these areas.

Figure 11-3 The Exposed ESB Gateway composite pattern applied to this scenario

Review the
implementation

options

Analyze the
business

requirements

Select an
Integration

pattern
Select a
Product

Design and
implement
the solution

Enterprise Zone

In
te

rn
et Enterprise

Enterprise

Enterprise

SCM
Application

Retail
System

Warehouse
A

Warehouse
B

Business
Event Log

Warehouse
C

ESB: Broker variation Manufacturer
B

ESB
Gateway

Manufacturer
C

Manufacturer
A

 Chapter 11. Exposed ESB Gateway composite pattern 301

When considering the patterns, first and foremost we must be able to access the
Internet. The way in which this will be done is by using the addressing capability
of the ESB and routing requests that are provided externally over the Internet. In
this way we can eliminate the effect on our endpoint service requesters and
service providers in the enterprise.

Furthermore, in our scenario each enterprise (the original retailer and the three
new manufacturers) knows the specific enterprises it must interact with.

Choosing the relevant SOA pattern
To be able to manage the demands of linking the infrastructures over the
Internet, we must use an Extended Enterprise SOA pattern. The Exposed ESB
Gateway composite pattern (hereby referred to as the Exposed ESB Gateway
pattern) enables us to grant access to an external enterprise from our own ESB,
as shown in Figure 11-4.

Figure 11-4 Exposed ESB Gateway composite pattern

We use an Extended Enterprise::Exposed Router pattern to model the
interaction in the ESB Gateway node. Figure 11-5 on page 303 shows the
Exposed Router application pattern and that the Exposed Router can route
requests through to a single target application. Aggregation is not supported.

Internet

WWW

Other Enterprises

D

A

Enterprise 1

ESB

D E F

A B C

B2B
Gateway

Service
Requesters

Service
Providers

Internet

WWW

Other Enterprises

D

A

Enterprise 1

ESB

D E F

A B C

ESB
Gateway

Service
Requesters

Service
Providers

302 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 11-5 Extended Enterprise::Exposed Router application pattern

If you apply the Exposed Router application pattern (Figure 11-5) to the ESB
Gateway in Enterprise 1 (Figure 11-4 on page 302) then:

� The Source Application is the Enterprise Service Bus in Enterprise 1.
� The Target Application is the service provider in Enterprise 2.

For further information about the Exposed Router pattern, consult Patterns:
Broker Interactions for Intra- and Inter-enterprise, SG24-6075.

Implementing the ESB Gateway
The use of the ESB Gateway enables intelligent routing of a service request to
an external service provider. The separation of the service interface in the ESB
from its implementation in another enterprise helps address the likely differences
in technology and information models.

By attaching an ESB Gateway to an ESB we achieve further important benefits:

� The ESB retains control over its service namespace.

– It takes responsibility for routing service requests that are provided
externally to the Exposed ESB Gateway.

– It takes responsibility for routing service requests from outside the
enterprise that have been routed to the ESB by the ESB Gateway.

� The separation of service requestors and service providers in the enterprise
by using an ESB enables the addition of the ESB Gateway without affecting
these endpoints.

� The ESB Gateway can receive service requests from other enterprises and
route them to the ESB without affecting the endpoint service implementations.

Inter-
enterprise

Zone

Demilitarized
Zone

Partner A
Secure Zone

Source
Application

Partners B

Target
Application

Target
Application

Target
Application

Partners C

Partners D

Router
Rules

 Chapter 11. Exposed ESB Gateway composite pattern 303

Scenario requirement for the ESB Gateway
Three service invocations are related to the Manufacturer in our scenario:

� The ESB makes a call (on behalf of the Warehouse) to the Manufacturer to
replenish stock.

� The Manufacturer sends business events to the ESB (which routes them to
the LoggingFacility).

� The Manufacturer calls back to the ESB (which routes the call to the
Warehouse) with a shipping note.

Prior to the divesting of the Manufacturer, these calls were direct between the
ESB and Manufacturer. We now need to use the ESB Gateway to address these
interactions between the enterprises.

From Chapter 9, “Enterprise Service Bus: Broker variation” on page 219 we have
an ESB implemented in the Retail enterprise. In this chapter we introduce
separate Manufacturer enterprises and will introduce an ESB Gateway for these
enterprises. The enterprises will communicate with each other over the Internet,
routing the requests according to the address resolution that is defined in each.

Product implementation options
We now need to consider the capabilities of products from which we can make a
selection to implement the ESB Gateway alongside an ESB. Our product
selection for the scenario was based on:

� The product that is currently available.

� The ability of the products’ capabilities to map to the requirements.

� The existing infrastructure of our organization (for example, whether the
company already uses one of the products).

The following products can be used to implement the ESB Gateway in
conjunction with an existing ESB.

� Web Services Gateway (as part of WebSphere Application Server V5.1.1
Network Deployment)

� WebSphere Business Integration Connect V4.2.1

To help with selecting the appropriate product, refer to the following:

� The description of each product, described in 5.1, “Runtime product
descriptions” on page 134.

Product selection for the scenario implementation
The ESB Gateway does not make assumptions about the service providers that
it invokes nor the service requesters from which it receives requests. In our

304 Patterns: Implementing an SOA Using an Enterprise Service Bus

scenario, the service provider is actually another ESB, enabling us to show the
use of two ESB Gateways.

To address the requirements of the business scenario using the ESB Gateway,
we selected the Web Services Gateway. The full runtime pattern is shown in
Figure 11-6 and Figure 11-7 on page 306.

Figure 11-6 Exposed ESB Gateway composite pattern implementation: Retail

Retail Enterprise
Secure Zone

Demilitarized
Zone

Inter-
enterprise

Zone

Network
Infra-

structure

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

ESB: Broker variation

SOAP/
HTTP

SOAP/
HTTP

Internet

�Windows 2000 + SP3
�WebSphere Application Server
Network Deployment V5.1.1

�Windows 2000 + SP3
�WebSphere Business Integration
Message Broker v5 + CSD03
�WebSphere MQ v5.3 + CSD06
�DB2 UDB v8.1 + Fixpack 5

ESB
Gateway

 Chapter 11. Exposed ESB Gateway composite pattern 305

Figure 11-7 Exposed ESB Gateway composite pattern implementation : Manufacturer

Figure 11-8 on page 307 illustrates a different view of our solution to the scenario
requirements in terms of the service clients, service provider, ESB, and
protocols.

ManufacturerA Enterprise Secure Zone

ManufacturerCEnterprise Secure Zone

ManufacturerBEnterprise Secure Zone

Demilitarized
Zone

Inter-enterprise
Zone

Network
Infra-

structure

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l

Enterprise
Service Bus

SOAP/
HTTP

Internet

Enterprise
Service Bus

Enterprise
Service Bus

ESB
Gateway

ESB
Gateway

ESB
Gateway

WebSphere Application Server
Network Deployment V5.1.1

306 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 11-8 Solution to the scenario requirements

11.2.2 ESB Gateway design
Many of the design guidelines that are provided in 8.2.2, “Router variation” on
page 181 apply to the ESB Gateway. Additional considerations are discussed
here to reflect the following differences:

� The ESB Gateway is not part of the ESB.
� The ESB Gateway is a gateway to and from the Internet.

The starting point for these design discussions is an implemented ESB in the
Retailer organization and an implemented ESB in one of the Manufacturers.

Intranet

HTTP

HTTP

Retailer

Internet

ESB: Router
variation

HTTP

Enterprise Zone

HTTP

Enterprise Zone

HTTP

Enterprise Zone

HTTP

ESB
Gateway

HTTP HTTP HTTP,
JMS

HTTP,
JMS

HTTP,
JMS

HTTP,
JMS

ESB: Broker variation ESB
Gateway

HTTP

SCM
Application

Retail
System

Business
Event Log

Warehouse
A

Warehouse
B

Warehouse
C

Manufacturer
A

Manufacturer
B

Manufacturer
C

 Chapter 11. Exposed ESB Gateway composite pattern 307

Design alternative: sharing of WSDL definitions
Invocation of inter-enterprise services implicitly requires the sharing of service
definitions in the form of WSDL definition files. This can be achieved in several
ways:

� In its most elementary form, organizations can simply provide WSDL
definition files to trading partners. This means that WSDL definitions are
common and static across the organizations. Changes to the definitions take
time to roll out and must be made with the agreement of both the service
provider and service requesters: Agreement must be reached between
multiple organizations.

� More sophisticated techniques could include the population of shared UDDI
directories, avoiding the need to share service definitions in advance of
execution. This enables the service definition to be identified dynamically at
runtime. It is up to the service provider to maintain the WSDL definition and
for service requesters to discover the current version and bind to it
dynamically at runtime.

Design alternative: service discovery timing
There are two alternatives when deciding when to discover service definitions.

� Service client development time

Developers or configurers of the service client must import the WSDL
definitions that are provided by the service provider prior to deployment and
runtime execution. This leads to higher performance but lower flexibility over
the alternative approach.

� Service client execution time

Higher flexibility is possible at execution time because the service can be
discovered dynamically. The service client then binds to the provider.
However, this adds processing and reduces performance.

An additional consideration is that this dynamic approach may improve
certain qualities of service. For example:

– If a service that has been discovered turns out to be unavailable then it
enables another to be invoked.

– If the algorithm for choosing a service provider may result in different
services being selected over time.

Dynamic service discovery requires a directory.

Design alternative: managing the service namespace
The first point to recognize is that lookup of services in the ESB and lookup of
services by the ESB Gateway are required. However, they are separate

308 Patterns: Implementing an SOA Using an Enterprise Service Bus

requirements because an ESB manages its own service namespace and not that
of an ESB Gateway as well.

Options for directories include:

� URL to a WSDL definition

In our scenario implementation of the Router variation in the ESB in
Chapter 8, “Enterprise Service Bus: Router variation” on page 175, we look
up the service in the ESB using a URL in the Web Services Gateway from a
WSDL definition on the HTTP server.

If client requests to the ESB Gateway require transformation to invoke the
service provider, then development effort is required. This might be to
implement a JAX-RPC handler in the case of the Web Services Gateway in
our scenario.

This option enables easy switching from SOAP/JMS inside the enterprise to
or from SOAP/HTTP(S) outside.

� UDDI

A UDDI registry can be used by the ESB Gateway to obtain the interface
description and the implementation description of the Web services
dynamically at execution time. This can be from public directories provided by
organizations such as IBM, or by accessing privately managed directories
(within or outside the enterprise).

Although it may be easier in the short term to simply put the WSDL files of the
Web services on a Web server than to implement a solution using a public or
a private registry, consider the following trade-offs:

– Web sites do not have a discovery protocol that enables consumers to
search for and download WSDL files.

– As the use of Web services becomes more popular, consumers are
increasingly likely to use a UDDI registry to find Web services.

– UDDI registries allow a fine degree of classification for Web services that
enables consumers to quickly find Web services to fit their needs.

– For dynamic service discovery at execution time, the trade-off is
performance.

For further information about UDDI, see Chapter 8, “Service Directory”, in
Patterns: Service-Oriented Architecture and Web Services, SG24-6303. For
an example using UDDI with the Web Services Gateway, see the redbook
Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075.

� Database lookup of service location

In our scenario implementation of the Broker variation in the ESB in
Chapter 9, “Enterprise Service Bus: Broker variation” on page 219, we look

 Chapter 11. Exposed ESB Gateway composite pattern 309

up the service in the ESB from a DB2 table using WebSphere Business
Integration Message Broker.

This is suitable when the only the address location of the service definition is
required to change other complex database schema structures and
processing will be required. This would be the case when service clients of
the ESB Gateway implementation use the same service interface definitions
as the service providers (except for the address location): No transformation
is required.

In our scenario implementation, we set the URL of the service provider in the
WSDL definitions and imported them at configuration time into the Web Services
Gateway. From the Web Services Gateway, the WSDL definitions are accessed
via URLs.

Design alternative: security
This is usually an important topic for implementations that use the Internet for
inter-enterprise communication. The main requirements are generally as follows:

� Authentication
� Authorization
� Confidentiality
� Integrity
� Non-repudiation
� Auditing

We now look at these requirements for securing Web services with the following
security measures:

1. Securing the communications channel

The choices are to use HTTP over Secure Sockets Layer (SSL) connections
(HTTPS) or HTTP basic authentication.

– HTTP basic authentication uses the HTTP header to carry user ID and
password information. This information is sent over an SSL connection
(HTTPS) but everything else is sent over HTTP. The mechanism tends to
be limited because of the encryption key length that is used or the burden
of using client-side certificates (which requires a PKI infrastructure).

– HTTPS is widely used for secure communication over the Internet.
However, it does not provide security behind the HTTPS endpoints. The
entire message payload is encrypted and so this may have an adverse
impact on performance. This also means that it cannot be used as a
solution to meet requirements where part of the message must remain
confidential between service endpoints.

Both confidentiality and message integrity are provided with SSL.

310 Patterns: Implementing an SOA Using an Enterprise Service Bus

The use of SSL allows either or both the client and server to prove identity
to the other. This can be achieved using certificates and provides an
authentication mechanism.

With a federated ESB implementation, it may make sense to only secure the
communications between the intermediaries on either side of the Internet,
between the ESB Gateways.

Securing the communications channel in conjunction with J2EE security and
JSR 109 can additionally address authorization requirements. The J2EE
role-based authorization model can be assigned to operations of services
exposed by the Web Services Gateway used in our scenario implementation.

2. XML document level security

The choices here are to take the W3C recommendations to use XML
Signature and XML Encryption to meet integrity and confidentiality
requirements at the XML document level:

– XML Encryption

This provides the ability to encrypt certain portions of an XML document,
such as part or all of the SOAP body. An XML syntax is used to represent
the encrypted content and information that enables a service provider to
decrypt it.

– XML Signature

Algorithms are available to sign XML documents, such as a SOAP
envelope. XML Signature provides a mechanism for securely verifying the
origin of such a message by using an XML-compliant syntax for
representing the signature.

For more information, see:

http://www.w3c.org

The use of the Structure Assertion Markup Language (SAML) standard allows
the exchange of authentication and authorization information with XML
between business partners. Further information can be found at:

http://www.oasis-open.org

The use of these capabilities has several drawbacks:

– Performance may be affected adversely.

– Current tooling may hide the XML layer from service developers.

– A PKI infrastructure is required.

3. WS-Security

Version 1.0 of WS-Security was ratified recently as an OASIS standard. It
provides a mechanism for signing and securing Web services message

 Chapter 11. Exposed ESB Gateway composite pattern 311

http://www.w3c.org
http://www.oasis-open.org

exchanges. This includes adding and acting on identification and
authentication information through security token propagation, providing
message confidentiality and validating message integrity. These mechanisms
can be used as part of a complete security solution.

The requirements that are addressed by the specification are to support:

– Multiple security tokens for authentication or authorization

– Multiple trust domains

– Multiple encryption technologies

– End-to-end message-level security (not just at the transport level)

For a federated ESB implementation, it makes sense to consider using
WS-Security between the service endpoints rather than between specific
pairs of intermediaries, such as ESBs and ESB Gateways. However, it may
be appropriate to use WS-Security between ESB Gateways over the Internet
because the increased openness allows encryption of part or all of the SOAP
body only, for example.

Furthermore, whereas HTTPS with client authentication is implemented at a
transport level with no fine level of control for services, WS-Security can be
used to provide a high degree of flexibility for addressing security
requirements for services, including the authentication of a service request
from one ESB Gateway by another.

Further information on WS-Security can be found at:

http://www.ibm.com/developerworks/webservices/library/ws-secure

Non-repudiation is not discussed in this book. Auditing can be a characteristic of
products that are used to implement the ESB Gateway.

Design alternative: common WSDL definitions
The choice here is to use a common WSDL definition across the federated ESB
for each service provider versus generating a definition at each intermediary,
such as the ESB Gateway.

By changing the definition, transformation is required that demands resources at
both implementation and execution time. However, control over the service
interface may not be possible:

� Between enterprises because agreement between the enterprise providing
the service and potential multiple enterprises consuming the service may not
be possible or realistic.

� At the service provider endpoint that might result from taking a bottom-up
approach to service definition with an existing system.

312 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/library/ws-secure

Design alternative: locating the HTTP server
When implementing an ESB Gateway, it is common for a standalone HTTP
service to the deployed into the DMZ between two firewalls. In this case, HTTPS
can be used to secure the communication link over the Internet for incoming
service requests to the HTTP server. This then forwards the requests to the ESB
Gateway sitting on the intranet using HTTPS. The ESB Gateway then converts
the protocol to HTTP (or JMS) and makes a request to the ESB on behalf of the
original requestor. This is shown in Figure 11-9.

Figure 11-9 Infrastructure to receive service requests over the Internet

A full implementation of our scenario in this configuration would use the Web
Services Gateway to implement the ESB Gateway.

Note that WebSphere Application Server provides an embedded HTTP server
that avoids requests from HTTP clients that have to access a separate HTTP
server. Further detail and alternative topology options are described in Chapter 3
of IBM WebSphere Application Server V5.1 System Management and
Configuration WebSphere Handbook Series, SG24-6195.

Design alternative: change of namespace
In our scenario, the Manufacturers are divested. It is realistic to expect that the
namespaces that are used to identify the target service will change to reflect the
new organizations’ identities. For the Retail enterprise, the changes would be
reflected in its ESB Gateway implementation and not in the ESB because the
ESB should not be aware that the provider of a service it requests is in another
enterprise.

Design alternative: inter-enterprise process management
A B2B transaction may require business process management of several
interactions between enterprises. Where one interaction depends upon at least

Inter-enterprise
Zone

Demilitarized
Zone

Enterprise Secure Zone

D
om

ai
n

Fi
re

w
al

l

Pr
ot

oc
ol

 F
ire

w
al

l
HTTP
Server

Network
Infra-

structure

Internet

ESB
ESB

SOAP/
HTTPS

SOAP/
HTTPS

SOAP/HTTP or
SOAP/JMS

Gateway

 Chapter 11. Exposed ESB Gateway composite pattern 313

one previous interaction then this should not be implemented as part of the ESB
Gateway. Neither should it be implemented as part of the ESB. The business
process manager is a separate component that makes service calls to the ESB.

11.3 Runtime guidelines
The starting point for the development of this scenario is the implementation of
Chapter 9, “Enterprise Service Bus: Broker variation” on page 219. This was built
on server appsrv1l.itso.ral.ibm.com using WebSphere Business Integration
Message Broker to implement the ESB.

For the implementation in this chapter we show the divesting of one of the
Manufacturers. This was moved to a new server, entsrv1w.itso.ral.ibm.com.

We see that some of the benefits of using an ESB over the point-to-point setup of
the original starting point of the scenario were realized in the development of the
scenario in this chapter. All the changes were relatively trivial configuration
changes.

The movement of the Manufacturer service affects three service invocations that
must now pass between the two servers. These are:

� The replenishment of stock ordered by the Warehouse with the Manufacturer.

� The callback by the Manufacturer to the Warehouse with the shipping note.

� Calls made by the Manufacturer to the LoggingFacility to record these events:

– Replenishing the stock

– Producing and shipping the additional stock

11.3.1 Transfer of the Manufacturer service implementation
Only one change was needed to enable the scenario application to function as
before: to update the service routing entry in the ESB for the Manufacturer
service by issuing the command in Example 11-1 in DB2 UDB.

Example 11-1 Amending the service namespace entry for Manufacturer

UPDATE service_router
SET location = ‘http://entsrv1w.itso.ral.ibm.com:9080/Manufacturer/services/Manufacturer’
WHERE name = ‘Manufacturer’

This entry is used by the message flow HTTPtoHTTPMsgFlow in WebSphere
Business Integration Message Broker to look up the target service location.

314 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure 11-10 shows the resulting configuration.

Figure 11-10 The infrastructure with the Manufacturer service installed remotely

11.3.2 Configuration of a single gateway
We next configured the Web Services Gateway on the Manufacturer’s server,
entsrv1. Figure 11-11 shows the target configuration.

Figure 11-11 The infrastructure with one gateway configured

The detailed steps that are required for this task are covered in 11.3, “Runtime
guidelines” on page 314, and this is a summary:

1. The Web Services Gateway was installed on entsrv1w.

Warehouse Server: appsrv1l

Manufacturer Server: entsrv1w

WebSphere Application Server

WebSphere Application Server

LoggingFacility
Service

WebSphere Business Integration
Message Broker

HTTPtoHTTPMsgFlow

DB2: service_router

Manufacturer
LoggingFacility

WarehouseCallBack

Manufacturer Service

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

Warehouse Service

Manufacturer_Impl.wsdl

Warehouse Server: appsrv1l

Manufacturer Server: entsrv1w

WebSphere Application Server

WebSphere Application Server

WebSphere Application Server

LoggingFacility
Service

Web Services Gateway

Manufacturer_Impl.wsdl

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

WebSphere Business Integration
Message Broker

HTTPtoHTTPMsgFlow

DB2: service_router

Manufacturer
LoggingFacility

WarehouseCallBack

Manufacturer Service

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

Warehouse Service

Manufacturer_Impl.wsdl

 Chapter 11. Exposed ESB Gateway composite pattern 315

2. Configure the gateway with the settings shown in Table 11-1.

Table 11-1 Settings for configuring the gateway

3. Deploy a SOAP/HTTP channel in the Web Services Gateway with the settings
shown in Table 11-2.

Table 11-2 Settings for deploying a channel

4. Set up the service locations for the three service invocations.

If it doesn’t already exist, create a new directory in the HTTP server on
entsrv1w called wsdl in C:\<IBM HTTP Server>\htdocs\en_US.

– Replenish stock order from the Warehouse to the Manufacturer.

Update the service router table in DB2 UDB for WebSphere Business
Integration Message Broker to point to the Web Services Gateway on
entsrv1w with the statement in Example 11-2.

Example 11-2 Updating the routing entry in DB2 UDB

UPDATE service_router
SET location =
‘http://entsrv1w.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengine/urn%3Aentsrv1w.itso.ral.ibm.com%
23ManufacturerWsgwService’
WHERE name = ‘Manufacturer’

If not already present, copy the following files from the Warehouse to the
new directory on entsrv1w:

• Manufacturer_Impl.wsdl
• Manufacturer.wsdl
• Configuration.wsdl
• ManufacturerPO.xsd
• ManufacturerSN.xsd
• Configuration.xsd

Attribute Value

Namespace URI for services urn:entsrv1w.itso.ral.ibm.com

WSDL URI for exported definitions http://entsrv1w.itso.ral.ibm.com/wsgw

Attribute Value

Channel Name SOAPHTTPChannel1

Home Location SOAPHTTPChannel1Bean

End Point Address http://entsrv1w.itso.ral.ibm.com/wsgwsoaphttp1

316 Patterns: Implementing an SOA Using an Enterprise Service Bus

In the Manufacturer_Impl.wsdl file, set the import location attribute paths
to:

http://entsrv1w.itso.ral.ibm.com/wsdl/

Then specify the SOAP address location to point to Manufacturer on
entsrv1w as follows:

<wsdlsoap:address
location="http://entsrv1w.itso.ral.ibm.com:9080/Manufacturer/services
/Manufacturer"/>

Note that this is only necessary because we implemented an ESB and the
original WSDL in the Warehouse pointed to WebSphere Business
Integration Message Broker.

– Logging Facility calls from the Manufacturer

Update the LoggingFacility_Impl.wsdl for the Manufacturer EJB in
WebSphere Studio Application Developer to point to Web Services
Gateway by setting the SOAP address location as follows:

<wsdlsoap:address
location="http://entsrv1w.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengi
ne/urn%3Aentsrv1w.itso.ral.ibm.com%23LoggingFacilityWsgwService"/>

Do not export the Manufacturer.ear file and reinstalling the Manufacturer
service in WebSphere Application Server for now.

If they are not already present, copy the following files to the new directory
on entsrv1w as before:

• LoggingFacility_Impl.wsdl

• LoggingFacility.wsdl

• LoggingFacility.xsd

Set the import location attributes as before.

Set the SOAP address location attribute to point to the broker on appsrv1l
as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com:7080/ServiceBroker/Logging
Facility"/>

– Call back from the Manufacturer to the Warehouse.

Update the WarehouseCallBack_Impl.wsdl for the Manufacturer EJB in
WebSphere Studio Application Developer to point to Web Services
Gateway by setting the SOAP address location as follows:

<wsdlsoap:address
location="http://entsrv1w.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengi
ne/urn%3Aentsrv1w.itso.ral.ibm.com%23WarehouseCallBackWsgwService"/>

 Chapter 11. Exposed ESB Gateway composite pattern 317

Export the Manufacturer.ear file and reinstall the Manufacturer service in
WebSphere Application Server on entsrv1w.

If not already present, copy the following files to the new directory on
entsrv1w as before:

• WarehouseCallBack_Impl.wsdl

• Warehouse.wsdl

• Warehouse.xsd

Set the import location attributes as before.

Set the SOAP address location attribute to point to the broker on appsrv1l
as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com:7080/ServiceBroker/Warehou
seCallBack"/>

5. Three services were deployed in Web Services Gateway: one for each of the
service invocations that are required to support the Manufacturer. The
settings are shown in Table 11-3, Table 11-4, and Table 11-5 on page 318.

Table 11-3 Manufacturer gateway service settings

Table 11-4 LoggingFacility gateway service settings

Table 11-5 WarehouseCallBack gateway service settings

Attribute Value

Gateway Service Name ManufacturerWsgwService

Channels SOAPHTTPChannel1

WSDL Location http://entsrv1w.itso.ral.ibm.com/wsdl/Manufacturer_Im
pl.wsdl

Attribute Value

Gateway Service Name LoggingFaciltyWsgwService

Channels SOAPHTTPChannel1

WSDL Location http://entsrv1w.itso.ral.ibm.com/wsdl/LoggingFacility_I
mpl.wsdl

Attribute Value

Gateway Service Name WarehouseCallBackWsgwService

Channels SOAPHTTPChannel1

318 Patterns: Implementing an SOA Using an Enterprise Service Bus

11.3.3 Configuring a second gateway
The benefits that are derived by using an ESB (and the first Web Services
Gateway) are now becoming considerable because we are now isolated from the
endpoint services. In fact, the configuration to insert the second Web Services
Gateway was quicker to complete than the installation of the product itself.

Figure 11-12 The infrastructure with two configured Web Services Gateways

The resulting configuration is shown in Figure 11-12 on page 319. For the
configuration steps, we follow the same summary style as was used in the
previous section.

1. The Web Services Gateway was installed on appsrv1l.

2. Configure the gateway with the settings shown in Table 11-6.

WSDL Location http://entsrv1w.itso.ral.ibm.com/wsdl/WarehouseCallB
ack_Impl.wsdl

Attribute Value

Warehouse Server: appsrv1l

Manufacturer Server: entsrv1w

WebSphere Application Server

WebSphere Application Server

WebSphere Application Server

WebSphere Application Server

LoggingFacility
Service

Web Services Gateway

Manufacturer_Impl.wsdl

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

Web Services Gateway

WebSphere Business Integration
Message Broker

HTTPtoHTTPMsgFlow

DB2: service_router

Manufacturer
LoggingFacility

WarehouseCallBack

Manufacturer_Impl.wsdl

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

Manufacturer Service

LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl
Warehouse Service

Manufacturer_Impl.wsdl

 Chapter 11. Exposed ESB Gateway composite pattern 319

Table 11-6 Settings for configuring the gateway

3. Deploy a SOAP/HTTP channel in the gateway with the settings shown in
Table 11-7.

Table 11-7 Setting for deploying a channel

4. Set up the service locations for the three service invocations.

If it doesn’t already exist, create a new directory in the HTTP server on
appsrv1l called wsdl in C:\<IBM HTTP Server>\htdocs\en_US.

– Replenish stock order from the Warehouse to the Manufacturer.

Update the service router table in DB2 UDB for WebSphere Business
Integration Message Broker to point to the gateway on appsrv1l with the
statement in Example 11-3.

Example 11-3 Updating the routing entry in DB2 UDB

UPDATE service_router
SET location =
‘http://appsrv1l.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengine/urn%3Aappsrv1l.itso.ral.ibm.com%
23ManufacturerWsgwService’
WHERE name = ‘Manufacturer’

If they are not already present, copy these files from the Warehouse to the
new directory on appsrv1l:

• Manufacturer_Impl.wsdl

• Manufacturer.wsdl

• Configuration.wsdl

• ManufacturerPO.xsd

• ManufacturerSN.xsd

• Configuration.xsd

Attribute Value

Namespace URI for services urn:appsrv1l.itso.ral.ibm.com

WSDL URI for exported definitions http://appsrv1l.itso.ral.ibm.com/wsgw

Attribute Value

Channel Name SOAPHTTPChannel1

Home Location SOAPHTTPChannel1Bean

End Point Address http://appsrv1l.itso.ral.ibm.com/wsgwsoaphttp1

320 Patterns: Implementing an SOA Using an Enterprise Service Bus

In the Manufacturer_Impl.wsdl file, set the import location attribute paths
to:

http://appsrv1l.itso.ral.ibm.com/wsdl/

Then specify the SOAP address location to point to the Web Services
Gateway on entsrv1w as follows:

<wsdlsoap:address
location="http://entsrv1w.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengi
ne/urn%3Aentsrv1w.itso.ral.ibm.com%23ManufacturerWsgwService"/>

– Logging facility calls from the Manufacturer

In the LoggingFacility_Impl.wsdl file for the Web Services Gateway on
entsrv1w, set the SOAP address location attribute to point to the Web
Services Gateway on appsrv1l as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengi
ne/urn%3Aappsrv1l.itso.ral.ibm.com%23LoggingFacilityWsgwService"/>

If they are not already present, copy these files to the new directory on
appsrv1l as before:

• LoggingFacility_Impl.wsdl

• LoggingFacility.wsdl

• LoggingFacility.xsd

Set the import location attributes as before.

Set the SOAP address location attribute in LoggingFacility_Impl.wsdl to
point to the broker on appsrv1l as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com:7080/ServiceBroker/Logging
Facility"/>

– Call back from the Manufacturer to the Warehouse.

In the WarehouseCallBack_Impl.wsdl file for Web Services Gateway on
entsrv1w, set the SOAP address location attribute to point to the Web
Services Gateway on appsrv1l as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com/wsgwsoaphttp1/soaphttpengi
ne/urn%3Aappsrv1l.itso.ral.ibm.com%23WarehouseCallBackWsgwService"/>

If they are not already present, copy these files to the new directory on
appsrv1l as before:

• WarehouseCallBack_Impl.wsdl

• Warehouse.wsdl

 Chapter 11. Exposed ESB Gateway composite pattern 321

• Warehouse.xsd

Set the import location attributes as before.

Set the SOAP address location attribute in WarehouseCallBack_Impl.wsd
to point to the broker on appsrv1l as follows:

<wsdlsoap:address
location="http://appsrv1l.itso.ral.ibm.com:7080/ServiceBroker/Warehou
seCallBack"/>

5. Three services were deployed in the Web Services Gateway: one for each of
the service invocations that are required to support the Manufacturer. The
settings are shown in Table 11-8, Table 11-9, and Table 11-10 on page 322.

Table 11-8 Manufacturer gateway service settings

Table 11-9 LoggingFacility gateway service settings

Table 11-10 WarehouseCallBack gateway service settings

6. Redeploy the following services in the Web Services Gateway on entsrv1w
after removing and adding a new WSDL location for each to pick up the
updated files.

– LoggingFacilityWsgwService

Attribute Value

Gateway Service Name ManufacturerWsgwService

Channels SOAPHTTPChannel1

WSDL Location http://appsrv1l.itso.ral.ibm.com/wsdl/Manufacturer_Impl.w
sdl

Attribute Value

Gateway Service Name LoggingFaciltyWsgwService

Channels SOAPHTTPChannel1

WSDL Location http://appsrv1l.itso.ral.ibm.com/wsdl/LoggingFacility_Impl.
wsdl

Attribute Value

Gateway Service Name WarehouseCallBackWsgwService

Channels SOAPHTTPChannel1

WSDL Location http://appsrv1l.itso.ral.ibm.com/wsdl/WarehouseCallBack
_Impl.wsdl

322 Patterns: Implementing an SOA Using an Enterprise Service Bus

– WarehouseCallBackWsgwService

11.3.4 Securing the communications channel
In this section, we secure the communications link between the two Web
Services Gateways for the three service operations using HTTPS (Figure 11-13
on page 323). Note that no changes were required in the service endpoints or
the ESB.

Figure 11-13 Securing the communications link

Generating self-signed certificates
Here we use the IBM key management tool, ikeyman, which is provided with
WebSphere Application Server to generate the self-signed certificates and key
databases. It can be found in C:\<WebSphere Application Server>\bin.

Three types of files will be created:

� Key database file

This is a password-protected file that holds certificates of the organization
that are associated with the organization’s public and private keys.

Note: When inserting and configuring the new Web Services Gateway, we
only needed to make changes to routing information in the ESB and the
Web Services Gateway on either side of the new Web Services Gateway.
No other changes were required. In particular, our endpoints remained
unchanged.

Warehouse Server: appsrv1l Manufacturer Server: entsrv1w

WebSphere Application Server WebSphere Application Server

Web Services Gateway

ManufacturerWsgwService
LoggingFacility_Impl.wsdl

WarehouseCallBack_Impl.wsdl

Web Services Gateway

Manufacturer_Impl.wsdl
LoggingFacilityWsgwService

WarehouseCallBackWsgwService

Manufacturer
Certificate

Warehouse
Key File

Warehouse
Trust File

Manufacturer
Trust File

Manufacturer
Key File

Warehouse
Certificate

HTTPS
HTTPS
HTTPS

 Chapter 11. Exposed ESB Gateway composite pattern 323

� Trust database file

This is a password-protected file that holds the certificates of other trusted
organizations that are associated with those organizations’ public keys.

� Certificate file

These are individual certificate files that are associated with a public key of an
organization that are provided by that organization to others.

For these first two steps we first show the configuration for the Warehouse that is
making a request to the Manufacturer to replenish stock. In this case, the
Warehouse is the client that is running on server appsrv1l. The service provider,
Manufacturer, which is running on server entsrv1w, is the server.

1. Generating a certificate for the Manufacturer on entsrv1w.

a. Launch ikeyman.bat from a DOS command prompt on entsrv1w.

b. Select Key Database File → New from the menu.

c. Using JKS as the Key database type, type ManufacturerKey.jks for the
File Name. Enter C:\kdb (this is where we store our files) for the Location.
Click OK.

d. Enter a password for the key database and click OK.

e. A list of signer certificates appears. Select all of them and click Delete to
delete the entire list.

f. Now select Create → New Self-Signed Certificate from the menu.

g. Enter manufacturercert for the label and use X509 V3 as the version and
1024 as the key size. Enter Manufacturer for the common name and
Manufacturer for the organization. Take the defaults for country and
validity period. Click OK.

h. Select the generated certificate and click Extract Certificate.

i. Use Base64-encoded ASCII data as the Data type.

j. Enter ManufacturerCert.arm as the filename and C:\kdb as the location
and click OK.

k. Close the file by selecting Key Database File → Close from the menu.

2. Generating a trust file using the Manufacturer’s certificate for the Warehouse
on appsrv1l.

a. Copy ManufacturerCert.arm from C:\kdb on entsrv1w to C:\kdb on
appsrv1l.

b. Launch ikeyman on appsrv1l.

c. Select Key Database File → New from the menu.

324 Patterns: Implementing an SOA Using an Enterprise Service Bus

d. Using JKS as the Key database type, type WarehouseTrust.jks for the File
Name and C:\kdb for the Location. Click OK.

e. Enter a password for the trust database and click OK.

f. A list of signer certificates appears. Select all of them and click Delete to
delete the entire list.

g. Ensure that Signer Certificates is selected from the pull-down list in the
Key Database Content panel and click Add.

h. Enter ManufacturerCert.arm for the filename and C:\kdb for the location.
Click OK.

i. Enter manufacturercert for the label.

j. Close the file by selecting Key Database File → Close from the menu.

Step 3 on page 325 is required to implement client authentication using a
certificate for the replenish stock service operation and to enable the service
requests from the Manufacturer to the Warehouse (the callback) and
LoggingFacility (logEvent) to be secured.

3. Follow steps 1 on page 324 and 2 on page 324 to create the client side
certificate by swapping warehouse for manufacturer and appsrv1l for entsrv1w
(and vice versa).

Setting up WebSphere Application Server
1. Configuring the server side on the Manufacturer server, entsrv1w.

a. Launch the WebSphere Administration console on the Manufacturer
server, entsrv1w.

b. Select Security → SSL. Click New.

c. Enter ManufacturerSSLSettings for the Alias.

d. For the Key File Name, enter C:\kdb\ManufacturerKey.jks, and enter its
password in Key File Password. The Key File Format is JKS.

e. For the Trust File Name, enter C:\kdb\ManufacturerTrust.jks, and enter
its password in Trust File Password. The Trust File Format is JKS.

f. Do not check the Client Authentication check box. Take the remaining
default values and click OK.

g. In the left-side panel, click Servers → Application Servers and server1.
Click Web Container in Additional Properties and then HTTP transports
in Additional Properties.

h. Click the * for port 9443.

i. Ensure that the Enable SSL check box is checked and select
<hostname>/ManufacturerSSLSettings from the SSL pull-down list.

 Chapter 11. Exposed ESB Gateway composite pattern 325

j. Click OK and save the configuration changes.

2. Configuring the client side on the Warehouse server, appsrv1l.

a. Check that there is a copy of the ibmjsse.jar file in the <WebSphere
Application Server>/java/jre/lib/ext directory.

b. Edit the security properties file <WebSphere Application
Server>/java/jre/lib/security/java.security so that it includes entries for both
the Sun security provider and the IBM security provider. You should add
the entries for sun.security.provider.Sun and
com.ibm.jsse.IBMJSSEProvider to what already exists if not already
present, and the result might look like Example 11-4 on page 326.

Example 11-4 Entries in java.security

...
security.provider.1=com.ibm.crypto.provider.IBMJCE
security.provider.2=sun.security.provider.Sun
security.provider.3=com.ibm.jsse.IBMJSSEProvider
security.provider.4=com.ibm.security.jgss.IBMJGSSProvider
security.provider.5=com.ibm.security.cert.IBMCertPath
security.provider.6=com.ibm.crypto.pkcs11.provider.IBMPKCS11
...

The order is significant. The Sun security provider must come before the
IBM provider.

c. Launch the WebSphere Administration Console on the Manufacturer
server, appsrv1l.

d. Set up the following system properties:

• javax.net.ssl.trustStore

Value: <Your trust store database file location>

• javax.net.ssl.trustStorePassword

Value: <Your trust store database password>

• java.protocol.handler.pkgs

Value: com.ibm.net.ssl.internal.www.protocol

This is the IBM reference implementation.

You do this by navigating as follows:

i. Click Server → Application Servers and server1.

ii. Under Additional Properties, click Process Definition.

iii. Under Additional Properties, click Java Virtual Machine.

326 Patterns: Implementing an SOA Using an Enterprise Service Bus

e. For the Generic JVM arguments field, enter the value in Example 11-5.
(Each name value pair is prefixed with -D and is separated from the next
with a space.)

Example 11-5 Value for Generic JVM arguments field

-Djava.protocol.handler.pkgs=com.ibm.net.ssl.internal.www.protocol
-Djavax.net.ssl.trustStore=C:\kdb\WarehouseTrust.jks
-Djavax.net.ssl.trustStorePassword=<password>

If you are enabling client authentication or security for each Manufacturer as a
service requestor, then step 3 on page 327 is required.

3. Follow steps 1 on page 325 and 2 on page 326, swapping warehouse for
manufacturer and appsrv1l for entsrv1w (and vice versa).

Setting up the Web Services Gateway
1. Perform the following steps on the Warehouse server, appsrv1l.

a. In the HTTP server, locate the Manufacturer_Impl.wsdl file in C:\<IBM
HTTP Server>\htdocs\en_US\wsdl.

b. Update the SOAP address location by changing the initial HTTP to HTTPS
and adding the port number 9443 as follows:

<wsdlsoap:address
location="https://entsrv1w.itso.ral.ibm.com:9443/wsgwsoaphttp1/soapht
tpengine/urn%3Aentsrv1w.itso.ral.ibm.com%23ManufacturerWsgwService"/>

c. Redeploy the service ManufacturerWsgwService in the Web Services
Gateway on appsrv1l using this amended WSDL definition, as shown in
Table 11-7 on page 320.

2. Perform the following steps on the Manufacturer server, entsrv1w:

a. In the HTTP server, locate the LoggingFacility_Impl.wsdl file in C:\<IBM
HTTP Server>\htdocs\en_US\wsdl.

b. Update the SOAP address location by changing the initial HTTP to HTTPS
and adding the port number 9443 as follows:

<wsdlsoap:address
location="https://appsrv1l.itso.ral.ibm.com:9443/wsgwsoaphttp1/soaphttpe
ngine/urn%3Aappsrv1l.itso.ral.ibm.com%23LoggingFacilityWsgwService"/>

c. Redeploy the service LoggingFacilityWsgwService in the Web Services
Gateway on entsrv1w using this amended WSDL definition, as shown in
Table 11-4 on page 318.

d. In the HTTP server, locate the file WarehouseCallBack_Impl.wsdl in
C:\<IBM HTTP Server>\htdocs\en_US\wsdl.

 Chapter 11. Exposed ESB Gateway composite pattern 327

e. Update the SOAP address location by changing the initial HTTP to HTTPS
and adding the port number 9443 as follows:

<wsdlsoap:address
location="https://appsrv1l.itso.ral.ibm.com:9443/wsgwsoaphttp1/soaphttpe
ngine/urn%3Aappsrv1l.itso.ral.ibm.com%23WarehouseCallBackWsgwService"/>

f. Redeploy the service WarehouseCallBackWsgwService in the Web
Services Gateway on entsrv1w using this amended WSDL definition, as
shown in Table 11-5 on page 318.

3. Stop and start the WebSphere Application Servers on both servers, appsrv1l
and entsrv1w.

11.3.5 Further runtime alternatives and considerations
Time and available infrastructure when writing this book prevented the
configuration of several important aspects related to implementing a federated
ESB using the Web Services Gateway. Some of these are now listed:

1. Configuring HTTPS with a Web server.

To extend our scenario implementation to include a Web server to receive
incoming requests over HTTPS, see Chapter 10 in IBM WebSphere Security
V5.0, SG24-6573.

2. Configuring client authentication with HTTPS.

3. Obtaining a certificate signed by a certificate authority (CA).

In our scenario configuration, we used self-signed certificates. See IBM
WebSphere Security V5.0, SG24-6573, to learn how to request a certificate
signed by a certificate authority.

4. Configuring proxy security.

The Web Services Gateway requires access to the Internet for invoking Web
services and potentially for retrieval of WSDL files. Many enterprise
installations use a proxy server in support of Internet routing, and many proxy
servers require authentication before they grant access to the Internet.

The Web Services Gateway can be configured to add username and
password details for outbound service requests so that accesses to the
Internet by HTTP clients can be validated by such proxy servers.

For more details, see “Enabling proxy authentication for the gateway” in the
WebSphere Application Server Information Center at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

5. Configuring WS-Security.

Web Services Gateway can be configured for secure transmission of SOAP
messages using tokens, keys, signatures, and encryption in accordance with

328 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/software/webservers/appserv/infocenter.html

the Web Services Security (WS-Security) draft recommendation of April
2002. WS-Security was ratified in April 2004.

See “Enabling Web Services Security (WS-Security) for the gateway” in the
WebSphere Application Server Information Center for further details.

6. Changing the namespace of the Manufacturer in our scenario.

This requires configuration in the Web Services Gateway.

11.4 Further information
� Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, Perspectives on Web

Services, Springer, 2003, ISBN 3-540-00914-0

� IBM WebSphere Application Server V5.1 System Management and
Configuration WebSphere Handbook Series, SG24-6195

� IBM WebSphere Security V5.0, SG24-6573

� The WebSphere Application Server (including Web Services Gateway)
Information Center can be found at:

http://www.ibm.com/software/webservers/appserv/infocenter.html

 Chapter 11. Exposed ESB Gateway composite pattern 329

http://www.ibm.com/software/webservers/appserv/infocenter.html

330 Patterns: Implementing an SOA Using an Enterprise Service Bus

Part 4 Appendixes

Part 4

© Copyright IBM Corp. 2004. All rights reserved. 331

332 Patterns: Implementing an SOA Using an Enterprise Service Bus

Appendix A. Additional material

This redbook refers to additional material that can be downloaded from the
Internet as described below.

Locating the Web material
The Web material associated with this redbook is available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG246346

Alternatively, you can go to the IBM Redbooks Web site at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the
redbook form number, SG24-6346.

Using the Web material
The additional Web material that accompanies this redbook includes the
following files:

File name Description
sg246346.zip Scenario implementation zip file

A

© Copyright IBM Corp. 2004. All rights reserved. 333

ftp://www.redbooks.ibm.com/redbooks/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

System requirements for downloading the Web material
The following system configuration is recommended:

Hard disk space: 10 MB minimum
Operating System: Windows 2000 or XP
Processor: Intel® Pentium® 4, 1 GHz or faster
Memory: 512 MB minimum, 1 GB prefered

How to use the Web material
Create a subdirectory (folder) on your workstation, and unzip the contents of the
Web material zip file into this folder.

For information about how to use the scenario implementation files that are
included in the additional material, refer to Appendix B, “Configuring the scenario
lab environment” on page 335.

334 Patterns: Implementing an SOA Using an Enterprise Service Bus

Appendix B. Configuring the scenario lab
environment

This section describes the steps that are necessary for configuring a working
environment to use with the scenario implementations as described in Part 3 of
this redbook.

Each scenario requires a base environment to be configured. This base
environment is also described in the chapter.

Source code is supplied with the redbook to help configure the environment.
Consult Appendix A, “Additional material” on page 333 for information about how
to obtain it.

B

© Copyright IBM Corp. 2004. All rights reserved. 335

Setting up the base environment

This describes how to configure the basic, Direct Connection pattern
implementation of the scenario. It is used as the basis for adding an Enterprise
Service Bus. Figure B-1 shows the protocols that are used to send SOAP
messages between the Web services in this scenario.

Figure B-1 Web services interactions

Creating an HTTP server to look up WSDL

Configure the following:

1. On the machine where you intend to run the scenario, open the Windows
hosts file and set appsrv1a.itso.ral.ibm.com to localhost. If your WebSphere
Studio workspace is on a remote machine, set the host file on this machine to
point to the appsrv1a.itso.ral.ibm.com machine.

2. Install IBM HTTP Server. Create a wsdl directory in this server. Using the
product defaults, this will create a directory in C:\Program
Files\IBMHttpServer\htdocs\en_US\wsdl.

3. Copy the WSDL supplied with the redbook into this wsdl directory.

4. Test that your Web server is working by entering the following URL in a Web
browser. It should show the WSDL interface for the Retailer service.

http://appsrv1a.itso.ral.ibm.com/wsdl/Retailer.wsdl

Important: This base environment must be configured before you can test
any of the more advanced scenarios.

Manufacturer
Manufacturer

Manufacturer

Business
Event Log

WarehouseRetail
System

SCM
Application

Warehouse
CallBack

HTTP

HTTP

JMS

JMS HTTP

HTTP

HTTP

HTTP
HTTP

Note: The scenario assumes that the Web services WSDL definitions are
located on the machine appsrv1a.itso.ral.ibm.com.

336 Patterns: Implementing an SOA Using an Enterprise Service Bus

Creating a WebSphere Studio workspace
In WebSphere Studio Application Developer V5.1.1, open a new workspace, and
import the following projects using File → Import → Existing Project into
Workspace:

� Build
� LoggingFacility
� LoggingFacilityEJB
� LoggingFacilityJMS
� LoggingFacilityWeb
� Manufacturer
� ManufacturerEJB
� ManufacturerWeb
� ManufacturerB
� ManufacturerBEJB
� ManufacturerBWeb
� ManufacturerC
� ManufacturerCEJB
� ManufacturerCWeb
� Retailer
� RetailerWeb
� SCMSampleUI
� SCMSampleUIWeb
� UDDIUtility
� Warehouse
� WarehouseEJB
� WarehouseEJBRouter
� WarehouseJMS
� WarehouseWebTemp
� WarehouseB
� WarehouseBEJB
� WarehouseBEJBRouter
� WarehouseBJMS
� WarehouseC
� WarehouseCEJB
� WarehouseCEJBRouter
� WarehouseCJMS

Note that you may need to alter the Java Build Path properties of UDDIUtility to
indicate the location of uddi4jv2.jar.

 Appendix B. Configuring the scenario lab environment 337

Exporting enterprise applications from WebSphere Studio
Export the enterprise applications from WebSphere Studio into EAR files so they
can be installed into WebSphere Application Server.

1. In the J2EE perspective of WebSphere Studio, move to the J2EE Hierarchy
view, and export the following enterprise applications:

– LoggingFacility
– Manufacturer
– ManufacturerB
– ManufacturerC
– Retailer
– SCMSampleUI
– Warehouse

The Warehouse enterprise application requires an additional step: The
endpoint enabler must be run for it. To do this, in a command prompt navigate
to the directory where you have exported Warehouse.ear, then type:

<Studio_home>\v5.1.1\runtimes\base_v51\bin\endptenabler.bat

You are then prompted for the name of the EAR file, which is entered as:

Warehouse.ear

Take the default value for the HTTP router name. The HTTP context root
should be supplied as follows:

/Warehouse

Configuring WebSphere MQ
Install WebSphere MQ V5.3 with CSD06 or above. Create a queue manager
called SOA.QUEUE.MANAGER, with a listener set to listen on TCP/IP port 1418.
Define the following local queues from this queue manager:

� LoggingFacilityQ
� WSISampleAQ
� WSISampleBQ
� WSISampleCQ
� WarehouseQ
� WarehouseBQ
� WarehouseCQ

338 Patterns: Implementing an SOA Using an Enterprise Service Bus

Configuring WebSphere Application Server
In the WebSphere Application Server Administrative Console:

1. Define the following resources for the WebSphere JMS MQ provider:

a. Define WebSphere MQ Queue Connection Factories as shown in
Table B-1.

Table B-1 WebSphere MQ Connection Factories

b. Define WebSphere MQ Queue Destinations as shown in Table B-2.

Table B-2 WebSphere MQ Queue Destinations

c. Define Listener Ports as shown in Table B-3.

Table B-3 Listener Ports

Name JNDI name Queue manager

LoggingFacilityQCF jms/LoggingFacilityQCF SOA.QUEUE.MANAGER

WSISampleQCF jms/WSISampleQCF SOA.QUEUE.MANAGER

WarehouseQCF jms/WarehouseQCF SOA.QUEUE.MANAGER

Name JNDI name Base queue name

LoggingFacilityQ jms/LoggingFacilityQ LoggingFacilityQ

WSISampleAQ jms/WSISampleAQ WSISampleAQ

WSISampleBQ jms/WSISampleBQ WSISampleBQ

WSISampleCQ jms/WSISampleCQ WSISampleCQ

WarehouseQ jms/WarehouseQ WarehouseQ

WarehouseBQ jms/WarehouseBQ WarehouseBQ

WarehouseCQ jms/WarehouseCQ WarehouseCQ

Name Connection factory JNDI name Destination JNDI name

LoggingFacilityListener jms/LoggingFacilityQCF jms/LoggingFacilityQ

WSISampleAListenerPort jms/WSISampleQCF jms/WSISampleAQ

WSISampleBListenerPort jms/WSISampleQCF jms/WSISampleBQ

WSISampleCListenerPort jms/WSISampleQCF jms/WSISampleCQ

WarehouseListenerPort jms/WarehouseQCF jms/WarehouseQ

 Appendix B. Configuring the scenario lab environment 339

2. Restart the server to pick up the Listener Port definitions.

3. Install each of the EAR files you exported from WebSphere Studio into
WebSphere Application Server.

Testing the business scenario
To test the business scenario, enter the following URL:

http://appsrv1a.itso.ral.ibm.com:9080/SCMSample

This should start the Supply Chain Management Sample Application, as shown
in Figure B-2.

Figure B-2 SCM sample application

The following steps describe how to use the SCM sample application:

1. To retrieve a list of products, click the Place New Order button. This displays
a list of 10 products, as shown in Figure B-3 on page 341.

WarehouseBListenerPort jms/WarehouseQCF jms/WarehouseBQ

WarehouseCListenerPort jms/WarehouseQCF jms/WarehouseCQ

Name Connection factory JNDI name Destination JNDI name

340 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure B-3 SCM sample application: shopping cart

2. You can order multiple quantities of each product. If the warehouse has
sufficient stock for the product, an order will be placed.

If the placement of the order causes the warehouse’s stock level of that
product drop below a certain threshold, then an reorder request is sent to the
manufacturer of the product.

The warehouse stock level is stored in the
org.ws_i.www.Impl.WarehouseImpl class in the WarehouseEJB project. For
example, the stock level for the first three products is shown in Table B-4 on
page 342.

 Appendix B. Configuring the scenario lab environment 341

Table B-4 Warehouse stock levels

If the current stock level falls below the minimum stock level, the stock is
reordered so that, after the reorder has arrived, the stock will be at maximum
stock level. For example, you order 6 items of 605001. This reduces the
current stock level to 4 (10 - 6). A reorder will be made for 21 new items.

Each manufacturer only manufactures certain products. For example
Manufacturer A manufacturers products 605001, 605004, and 605007.

3. Place orders for multiple products in the SCM sample application by entering
quantities and pressing Submit Order. For example, order 3 items of product
605001 and 6 items of product 605002. This triggers a reorder of product
605002 with Manufacturer B.

4. The order status screen shows which orders were placed and which orders
were not placed due to insufficient stock. Click Track Order to see the entries
that were written to the LoggingFacility. As new entries are added to the
Logging Facility, you must refresh this screen by clicking Order Status and
then clicking Track Order again. Figure B-4 on page 343 shows the results of
an order in which products 605001 and 605002 were shipped and a reorder
for 19 units of product 605002 was placed with Manufacturer B.

Product number Current level Minimum level Maximum level

605001 10 5 25

605002 7 4 20

605003 15 10 50

342 Patterns: Implementing an SOA Using an Enterprise Service Bus

Figure B-4 SCM sample application: track order

5. To start a new order, click Configure. At this point, all state is lost, and the
warehouse stock levels return to their default values.

Setting up the ESB Router variation scenario
After the base environment is installed you can configure the Enterprise Service
Bus Router variation scenario as described in Chapter 8, “Enterprise Service
Bus: Router variation” on page 175.

Setting up the ESB Broker variation scenario
Once the base environment is installed you must complete the steps in this
section before implementing the Enterprise Service Bus Broker pattern scenario
as described in Chapter 9, “Enterprise Service Bus: Broker variation” on
page 219.

 Appendix B. Configuring the scenario lab environment 343

Installing WebSphere Business Integration Message Broker
Install WebSphere Business Integration Message Broker V5.0 with default
settings. Run the mqsicreatebroker and mqsicreateconfigmgr commands to
create a broker and configuration manger, using default values.

Setting up WebSphere MQ
In addition to the WebSphere MQ setup that was performed for the base
environment, the following changes are necessary:

1. The queue manager WBRK_QM is created as part of the WebSphere
Business Integration Message Broker installation. Create a listener set to
listen on TCP/IP port 1415.

2. Define the following local queues for the WBRK_QM queue manager:

– WSHIPRESPONSE
– SendHTTPContext
– temp

3. Create a transmission queue for both the SOA.QUEUE.MANAGER and
WBRK_QM queue managers called XmitSenderScenario2.

4. Create a sender channel for SOA.QUEUE.MANAGER with the settings
shown in Table B-5.

Table B-5 Sender channel on SOA.QUEUE.MANAGER

5. Similarly, create a Receiver Channel on SOA.QUEUE.MANAGER with
settings as shown in Table B-6 on page 345.

Name Value

Name SOA_QM_to_WBRK_QM

Transmission protocol TCP/IP

Connection Name 127.0.0.1(1415)

Transmission queue XmitSenderScenario2

Note: You can set the Disconnect Interval to 0 on the Extended panel of the
Sender channel properties to stop the channel timing out.

344 Patterns: Implementing an SOA Using an Enterprise Service Bus

Table B-6 Receiver channel on SOA.QUEUE.MANAGER

6. On queue manager WBRK_QM, create a sender channel as defined in
Table B-7.

Table B-7 Sender channel on WBRK_QM

7. Create a Receiver Channel on WBRK_QM with settings as shown in
Table B-8.

Table B-8 Receiver channel on WBRK_QM

8. Start each sender channel.

9. Define a remote queue on SOA.QUEUE.MANAGER with the settings shown
in Table B-9.

Table B-9 Remote queue on SOA.QUEUE.MANAGER

Name Value

Name WBRK_QM_to_SOA_QM

Transmission protocol TCP/IP

Name Value

Name WBRK_QM_to_SOA_QM

Transmission protocol TCP/IP

Connection Name 127.0.0.1(1418)

Transmission queue XmitSenderScenario2

Name Value

Name SOA_QM_to_WBRK_QM

Transmission protocol TCP/IP

Name Value

Name WSHIPRESPONSE

Transmission Queue Name XmitSenderScenario2

Remote Queue Manager Name WBRK_QM

Remote Queue Name WSHIPRESPONSE

 Appendix B. Configuring the scenario lab environment 345

10.In a similar fashion, define remote queues on WBRK_QM, setting the remote
queue manager to SOA.QUEUE.MANAGER. Table B-10 shows the mapping
between the queue name and the remote queue name on
SOA.QUEUE.MANAGER to use.

Table B-10 Remote queues on WBRK_QM

Setting up DB2
Install DB2 Universal Database™ V8.1 with Fixpack 5 to hold the tables that are
used by the WebSphere Business Integration Message Broker message flows.

Define the following:

1. Create a new database called BROKERDB.

2. Create the table SERVICE_ROUTER in the BROKERDB database. Add the
following columns:

NAME Is a VARCHAR of length 20, is not nullable, and is the
primary key.

LOCATION Is a VARCHAR of length 120 and is not nullable.

3. Repeat the procedure to create the PART_LOCATION table. It contains the
following columns:

PART_NUMBER Is an INTEGER, not nullable, and the primary key.

WAREHOUSE Is a VARCHAR of length 1 and is not nullable.

4. Create a third table called HTTPCONTEXT. This contains the field CLIENTID,
which is a CHARACTER of length 51.

5. Populate the SERVICE_ROUTER and PART_LOCATION tables by running
the insertdata.sql script: db2 -f insertdata.sql

Setting up ODBC data sources
To configure the ODBC data sources:

1. Open the DB2 Configuration Assistant, right-click BROKERDB, and select
Change Database.

Name Remote queue name

LoggingFacilityQ LoggingFacilityQ

WASHIPREQUEST WarehouseQ

WBSHIPREQUEST WarehouseBQ

WCSHIPREQUEST WarehouseCQ

346 Patterns: Implementing an SOA Using an Enterprise Service Bus

2. Click 4. Data Source and select the Register this database for ODBC
check box.

3. Click OK and close the DB2 Configuration Assistant.

Setting up the Message Brokers Toolkit
The message flows that are described in the Enterprise Service Bus Broker
chapter have been prebuilt and supplied the with redbook source code. You can
import each of the four message flows that are supplied with the redbook as
projects in the Message Brokers Toolkit.

Setting up the Business Service Choreography scenario
To run the Business Service Choreography scenario in WebSphere Studio
Application Developer Integration Edition, complete the following steps:

1. Import the InventoryProject and WSIManufacturer projects (from the source
code supplied with this redbook) into a WebSphere Studio Application
Developer Integration Edition workspace.

2. Import the TestClient.war Web project (also supplied with this redbook) into
the workspace.

3. Follow the steps in 10.4, “Runtime guidelines” on page 294 to deploy the
processes.

4. Before starting the server, be sure to add the Testclient.war Web application
to the server. Also select the option on the server to Create tables and data
sources.

5. After the server has started, use the customized Web client to invoke the
long-running process. Run TestClient.jsp in the
WebContent/sample/ManufacturerPortTypeProxy folder.

6. Select the submitPO method to run. This enables you to set the input
message to send to the long-running process instance. Specify a prodID and
a quantity, then click Invoke. The process will run.

7. If you specify a quantity that requires a reorder of stock, a staff work item will
be generated. Use the Business Process Web Client to claim and complete
this work item.

8. The process has completed when Stock dispatched is displayed in the
console. You can also check the state of a process in the Created By Me view
of the Business Process Web Client.

 Appendix B. Configuring the scenario lab environment 347

348 Patterns: Implementing an SOA Using an Enterprise Service Bus

acronyms
API Application Programming
Interface

B2B Business-to-business

BPEL4WS Business Process Execution
Language for Web Services

CCI Common Client Interface

CICS Customer Information Control
System

CORBA Common Object Request
Broker Architecture

COTS Commerical-Off-The-Shelf

DMZ Demilitarized zone

DNS Domain Name System

DOS Disk Operating System

DVD Digitial Video Disc

EAI Enterprise Application
Integration

EAR Enterprise Archive

ebXML Electronic Business using
XML

EDI Electronic Data Interchange

EIS Enterprise Information
System

EJB Enterprise JavaBean

EPI External Presentation
Interface

ERP Enterprise Resource Planning

ESB Enterprise Service Bus

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol
Secure

IBM International Business
Machines Corporation

Abbreviations and

© Copyright IBM Corp. 2004. All rights reserved.
IDE Integrated Development
Environments

IIOP Internet Inter-ORB Protocol

ITSO International Technical
Support Organization

J2C or JCA J2EE Connector Architecture

J2EE Java 2 Platform, Enterprise
Edition

JAR Java archive

JAX-RPC Java API for XML-based
Remote Procedure Calls

JDBC Java database connectivity

JMS Java Message Service

JNDI Java Naming and Directory
Interface

JSP JavaServer Pages

JVM Java Virtual Machine

LAN Local Area Network

LDAP Lightweight Directory Access
Protocol

MDB Message Driven Bean

OASIS Organization for the
Advancement of Structured
Information Standards

OGSA Open Grid Services
Architecture

PKI Public-Key Infrastructure

QoS Quality of Service

RAR Resource Adapter Archive

RMI Remote Method Invocation

SCM Supply Chain Management

SOA Service-Oriented Architecture

SOAP Simple Object Access
Protocol

 349

SQL Structured Query Language

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol
/ Internet Protocol‘

UDDI Universal Description
Discovery and Integration

UML Unified Modeling Language

URL Uniform Resource Locator

WAR Web Archive

WSDL Web Services Description
Language

WS-I Web Services Interoperability
Organization

WSIF Web Services Invocation
Framework

WSIL Web Services Inspection
Language

XML Extensible Markup Language

XSD XML Schema Definition

XSL Extensible Stylesheet
Language

XSLT Extensible Stylesheet
Language Transformations

350 Patterns: Implementing an SOA Using an Enterprise Service Bus

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information on ordering these publications, see “How to get IBM Redbooks”
on page 355. Note that some of the documents referenced here may be available
in softcopy only.

� Developing Solutions in WebSphere MQ Integrator, SG24-6579

� IBM WebSphere Application Server V5.1 System Management and
Configuration WebSphere Handbook Series, SG24-6195

� IBM WebSphere V5.0 Security WebSphere Handbook Series, SG24-6573

� IBM WebSphere V5.0 Performance, Scalability, and High Availability,
SG24-6198

� Migration to WebSphere Business Integration Message Broker V5,
SG24-6995

� Patterns: Broker Interactions for Intra- and Inter-enterprise, SG24-6075

� Patterns: Serial and Parallel Processes for Process Choreography and
Workflow, SG24-6306

� Patterns: Service-Oriented Architecture and Web Services, SG24-6303

� Using Web Services for Business Integration, SG24-6583

� WebSphere MQ Integrator Deployment and Migration, SG24-6509

Other publications
These publications are also relevant as further information sources:

� Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, Perspectives on Web
Services, Springer, 2003, ISBN 3-540-00914-0

� Jonathan Adams, Srinivas Koushik, Guru Vasudeva, George Galambos,
Patterns for e-business: A Strategy for Reuse, IBM Press, 2001, ISBN
1-931182-02-7

© Copyright IBM Corp. 2004. All rights reserved. 351

� First look at the WS-I Basic Profile 1.0

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html

� First look at the WS-I Usage Scenarios

http://www.ibm.com/developerworks/webservices/library/ws-iuse/

� Preview of WS-I sample application

http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/

� “Security in a Web Services World: a Proposed Architecture and Roadmap,”
a joint security whitepaper from IBM Corporation and Microsoft Corporation

http://www.ibm.com/developerworks/library/ws-secmap/

� Web Services Security: Moving up the stack

http://www.ibm.com/developerworks/webservices/library/ws-secroad/

� “Updated: Web Services Reliable Messaging,” a new protocol for reliable
delivery between distributed applications

http://www.ibm.com/developerworks/webservices/library/ws-rm/

� “Implementation Strategies for WS-ReliableMessaging,” how
WS-ReliableMessaging can interact with other middleware communication
systems

http://www.ibm.com/developerworks/webservices/library/ws-rmimp/

� BPEL4WS specification

http://www.ibm.com/developerworks/library/ws-bpel/

� Business Process with BPEL4WS, a series of introductory articles and
references

http://www.ibm.com/developerworks/webservices/library/ws-bpelcol1/

� BPEL4WS support in WebSphere Business Integration Server Foundation

http://www-306.ibm.com/software/integration/wbisf/features/

� BPEL4WS support in WebSphere Studio Application Developer Integration
Edition

http://www-306.ibm.com/software/integration/wsadie/features/

� WS-AtomicTransaction specification

http://www.ibm.com/developerworks/library/ws-atomtran/

� WS-BusinessActivity specification

http://www.ibm.com/developerworks/webservices/library/ws-busact/

� “Transactions in the world of Web services,” part 1 and 2

http://www.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www.ibm.com/developerworks/webservices/library/ws-wstx2/

352 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://www.ibm.com/developerworks/webservices/library/ws-basicprof.html
http://www.ibm.com/developerworks/webservices/library/ws-iuse/
http://www.ibm.com/developerworks/webservices/library/ws-wsisamp/
http://www-106.ibm.com/developerworks/library/ws-secmap/
http://www-106.ibm.com/developerworks/webservices/library/ws-secroad/
http://www-106.ibm.com/developerworks/webservices/library/ws-rm/
http://www-106.ibm.com/developerworks/webservices/library/ws-rmimp/
http://www-106.ibm.com/developerworks/library/ws-bpel/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol1/
http://www-306.ibm.com/software/integration/wbisf/features/
http://www-306.ibm.com/software/integration/wsadie/features/
http://www-106.ibm.com/developerworks/library/ws-atomtran/
http://www-106.ibm.com/developerworks/webservices/library/ws-busact/
http://www-106.ibm.com/developerworks/webservices/library/ws-wstx1/
http://www-106.ibm.com/developerworks/webservices/library/ws-wstx2/

� WS-Coordination specification

http://www.ibm.com/developerworks/library/ws-coor/

� WS-Policy specification

http://www.ibm.com/developerworks/library/ws-polfram/

� “Web Services Policy Framework,” new specifications improve WS-Security

http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.ht
ml

� WS-Resource Framework overview

http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpa
per.html

� “Web Service Oriented Architecture - The Best Solution to Business
Integration,” Annrai O'Toole, Cape Clear Software CEO

http://www.capeclear.com/clear_thinking1.shtml

� “SOA - Save Our Assets,” Lawrence Wilkes, CBDI Forum (subscription
required)

http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start_re
c=0

� The IBM series of articles “Migrating to a service-oriented architecture” by
Kishore Channabasavaiah, Kerrie Holley, and Edward M. Tuggle Jr.

http://www.ibm.com/developerworks/library/ws-migratesoa/
http://www.ibm.com/developerworks/webservices/library/ws-migratesoa2/

� “Coarse-grained interfaces enable service composition in SOA,” Jeff Hanson,
Builder.com

http://builder.com.com/5100-6386-5064520.html

� Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/2000/NOTE-SOAP-20000508

� Java API for XML-based RPC

http://java.sun.com/xml/downloads/jaxrpc.html

� Web Services Security (WS-Security) Version 1.0

http://www.ibm.com/developerworks/webservices/library/ws-secure/

� Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-securi
ty-1.0.pdf

� Business Process Execution Language for Web Services Version 1.1

http://www.ibm.com/developerworks/library/ws-bpel/

 Related publications 353

http://www.ibm.com/developerworks/library/ws-coor/
http://www.ibm.com/developerworks/library/ws-polfram/
http://www.ibm.com/developerworks/webservices/library/ws-polfram/summary.html
http://www.ibm.com/developerworks/webservices/library/ws-resource/ws-wsrfpaper.html
http://www.capeclear.com/clear_thinking1.shtml
http://www.cbdiforum.com/report_summary.php3?topic_id=2&report=623&start_rec=0
http://www.ibm.com/developerworks/library/ws-migratesoa/
http://www.ibm.com/developerworks/webservices/library/ws-migratesoa2/
http://builder.com.com/5100-6386-5064520.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://java.sun.com/xml/downloads/jaxrpc.html
http://www.ibm.com/developerworks/webservices/library/ws-secure/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://www.ibm.com/developerworks/library/ws-bpel/

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM Patterns for e-business

http://www.ibm.com/developerWorks/patterns/

� IBM Web Services

http://www.ibm.com/webservices

� IBM on demand Operating Environment

http://www-3.ibm.com/software/info/openenvironment/

� IBM developerWorks: SOA and Web services zone

http://www.ibm.com/developerworks/webservices

� IBM alphaWorks

http://www.alphaworks.ibm.com/

� IBM CICS

http://www.ibm.com/software/ts/cics

� IBM developerWorks

http://www.ibm.com/developerworks

� IBM Web services

http://www.ibm.com/software/solutions/webservices

� IBM WebSphere Developer Domain

http://www7b.boulder.ibm.com/wsdd/

� IBM WebSphere MQ

http://www.ibm.com/software/ts/mqseries

� IBM WebSphere software platform

http://www.ibm.com/software/webservers/appserv

� WebSphere Application Server Information Center

http://www.ibm.com/software/webservers/appserv/infocenter.html

� IBM WebSphere MQ family SupportPacs

http://www.ibm.com/software/integration/support/supportpacs/

� WebSphere Business Integration Message Broker information center

http://www.ibm.com/software/integration/wbimessagebroker/library/

� WebSphere Business Integration Server V5.1.x information center

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp

354 Patterns: Implementing an SOA Using an Enterprise Service Bus

http://publib.boulder.ibm.com/infocenter/ws51help/index.jsp
http://www.ibm.com/software/integration/wbimessagebroker/library/
http://www.ibm.com/webservices
http://www-3.ibm.com/software/info/openenvironment/
http://www.ibm.com/developerworks/webservices
http://www.ibm.com/software/integration/support/supportpacs/
http://www.ibm.com/software/webservers/appserv/infocenter.html
http://www.ibm.com/software/webservers/appserv
http://www.ibm.com/software/ts/mqseries
http://www.ibm.com/developerWorks/patterns/
http://www.alphaworks.ibm.com/
http://www.ibm.com/software/ts/cics
http://www.ibm.com/developerworks
http://www.ibm.com/software/solutions/webservices
http://www7b.boulder.ibm.com/wsdd/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications, and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services

 Related publications 355

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

356 Patterns: Implementing an SOA Using an Enterprise Service Bus

Index

Numerics
80/20 situation 3

A
Adapter development tools 161
Adoption of Standards 127
Advanced and future Web services standards 58

Business Process Execution Language for Web
Services 60
Web services security 59

WS-Policy 59
WS-Privacy 59
WS-Security 59
WS-Trust 59

Web services transactions 61
Web Services Policy Framework 62

WS-Policy 62
Web Services Resource Framework 62

WS-ResourceFramework 62
WS-AtomicTransaction 61
WS-BusinessActivity 61
WS-Coordination 61

WS-ReliableMessaging 60
Advanced Interaction Characteristics 126
Aggregation 227, 235
Application adapters 160
Application patterns 4, 11
Application server clustering 216
Auditing 310
Authentication 310
Authorization 310
Automation 22
Availability of Services in EAI Infrastructure 128

B
B2B Service Gateway 82

Business partner provisioning 82
Basic authentication 188
Basic Profile 57
Best practices 4, 15
Bi-directional 161
BPEL4WS 282

© Copyright IBM Corp. 2004. All rights reserved.
BPEL4WS extension 287
Broker application pattern 93
Business data models 40
Business patterns 4, 7
Business processes 47
Business Service Choreography 80, 82

Business logic 82
Service sequencing 82
Technical logic 82

Business Service Directory 80–81
Service catalogue 81
UDDI directory 81

Business transactions 47

C
Call Connection variation 93
CICS Transaction Server 164
Commercial Off-The-Shelf 36
Common Business Data Model 125
Communication 83
Communication protocols 40
Composite patterns 4, 10
Confidentiality 310
Consistent and Controlled Service Enablement 129
Coupled 40

D
Data Format 101
Data formats 41
Declared 40
Decoupled 40
Delivery Assurance and Error Handling 102
Direct Connection application pattern 93
Distributed bus 79
Distributed infrastructure 77
Dynamic discovery 232
Dynamic service routing 189

E
e-business on demand 18

Automation 22
Self-configuring 23

 357

Self-healing 23
Self-optimization 23
Self-protecting 23

Business drivers 19
Focused 19
Resilient 19
Responsive 19
Variable 19

Integration 20
Applications 21
Data 21
People 20
Process 21
Systems 21

On Demand Operating Environment
Enterprise Service Bus 27
Infrastructure services 30

Resource virtualization services 31
Service level automation and orchestra-
tion 30
Utility business services 30

Integration services 29
Business function services 29
Business process choreography services
29
Common services 29
Information management services 30
User access services 29
User interaction services 29

Open Grid Services Architecture 22
Open standards 23
Service-oriented architecture

Automation 26
Integration 25
Open standards 25
Virtualization 26

Virtualization 21
Distributed systems 22
Servers 22
Storage 22

Embedded Messaging 157
Enterprise Java Bean 165
Enterprise Resource Planning 164
Enterprise Service Bus 63, 73

Architecture decision questions 125
Adoption of Standards 127
Advanced Interaction Characteristics 126
Availability of Services in EAI Infrastructure
128

Common Business Data Model 125
Consistent and Controlled Service Enable-
ment 129
External Access to Services 129
Function and Data Interfaces 125
Legacy XML Support and Processing 128
Security Requirements 130
Service Choreography 130
Service Level Requirements 130
Service Provider Protection 128
Technologies for Interoperability 126
Technology Support in Existing Systems
127

Broker variation
Aggregation 227, 235
Bottom-up 226
Broker communication 229
Content-based routing 223
Database lookup pattern 233
Design approach 226
Externalizing service lookup 232
Externalizing the service endpoint 230
Full SOAP intermediary 234
HTTP 229
Individual flows 230
Inside the Broker 230
JMS 229
Location of business logic 227
Message decomposition 223
Message recomposition 223
Message transformation 223
Modifying WSDL definition files 261
Partial SOAP intermediary 234
Process management 227
Redeploying enterprise applications 262
Serial processing 235
Service granularity 228
Single flows 230
Top-down 226

Business Service Choreography 80
Business Service Directory 80
Capabilities 82

Communication 83
Infrastructure Intelligence 84
Integration 83
Management and Autonomic 83
Message Processing 83
Modeling 84
Open standards 84

358 Patterns: Implementing an SOA Using an Enterprise Service Bus

Quality of Service 83
Security 83
Service Interaction 83
Service Level 83
Service level requirements 84

Content-based routing 88
ESB Gateway 80
Infrastructure component 87
Infrastructure function 88
Mediate 76
Minimum capability 84

Communication 85
Heterogeneous infrastructure 85
Integration 85
Integration techniques 87
Location transparency 85
Logical architectural component 85
Manage the service infrastructure 85
Management and Autonomic 85
Service Interaction 85
SOAP/HTTP 86
WSDL 86

on demand Operating Environment 88
Product capabilities 144

WebSphere Application Server Network De-
ployment 147
WebSphere Business Integration Connect
149
WebSphere Business Integration Message
Broker 145

Router variation 179
Basic authentication 188
Centralized control 179
Client design considerations 184
Common access point 179
Custom mediation 185
Design approach 182
Dynamic service provider routing 185
Location of service definitions 183
Logging 179
Mediation 184
Protocol conversion 179
Role based authorization 188
Security 179, 187
Selective SOAP parsing 184
Standards-based mediation 185
Static service provider routing 185
WS-Security 187

Security issues 89

Authenticate 89
Authorization 90
Certificates 89
Client identity 90
End-to-end 89
Implementation techniques 89
Kerberos 90
Point-to-point 89
SAML 90
SSL 89
Tivoli 89
Trust model 89
WS-Security 90

Substitution 76
Transform 76

Enterprise Service Bus patterns 96
Broker 98
Business drivers 100

Infrastructure 100
Location transparency 100
Loosely bound 100
Protocol transformation 100

Extended Enterprise SOA patterns 108
Exposed ESB 108

Description 108
Drivers 108
Relevant ESB capabilities 109

Exposed ESB Gateway pattern 110
Description 110
Drivers 110
Relevant ESB capabilities 111

HTTP Service Bus 97
Hubs 97
Ports 97
Router 98
Scope 97
SOA coupling styles

Data Format 101
Delivery Assurance and Error Handling 102
Interaction State 103
Language 101
Location 101
Platform 101
Protocol 101
Security 102
Semantic Interface 101
Service Provider Identity 102
Service Version 102
Time 102

 Index 359

Zone 97
ESB Gateway 80
Event driven architectures 76
Exposed ESB 108
Exposed ESB Gateway pattern 110, 302

Change of namespace 313
Common WSDL definitions 312
Inter-enterprise process management 313
Locating the HTTP server 313
Security 310

Securing the communications channel 310
WS-Security 311
XML document level security 311

XML Encryption 311
XML Signature 311

Service discovery timing 308
Development time 308
Execution time 308
Managing the service namespace 308

UDDI 309
URL to a WSDL definition 309

Sharing of WSDL definitions 308
Exposed Router pattern 302
Extended Enterprise SOA patterns 108
External Access to Services 129

F
Failover 232
Function and Data Interfaces 125

G
Guidelines 4, 15

H
High availability 232
HTTP service bus 154
Hub 91
Hub-and-spoke 77, 260
Human interaction 275

I
IBM WebSphere Application Server 134
IBM WebSphere Application Server Network De-
ployment 135
IBM WebSphere Business Integration Connect 139
IBM WebSphere Business Integration Message
Broker 136

IBM WebSphere Business Integration Server Foun-
dation 137
IBM WebSphere InterChange Server 138
IBM WebSphere MQ 134
IBM WebSphere MQ Workflow 139
Implementation platform 41
IMS Transaction Server 164
Industry support 68
Infrastructure Intelligence 84
Infrastructure services 30
Integration 20, 83
Integration patterns 4, 8
Integration services 29
Integration Watch 74
Integrity 310
Interaction State 103

J
J2EE Connector Architecture 164
Java class 166
JAX-RPC 166
JAX-RPC handlers 188

Deploying 208
Dynamic service routing 189
Inbound handler chains 209
Logging 189
Message transformation 189
Outbound handler chains 209
Preparing for deployment 193
Shared context 189
Terminating a request 189
Timeouts 189
WebSphere Studio 193
Writing 190

JMS RFH2 249
JMS service bus 156

L
Language 101
Large grained interfaces 51
Legacy XML Support and Processing 128
Load balancing 232
Location 101
Long-running processes 280
Loose-coupling 232

360 Patterns: Implementing an SOA Using an Enterprise Service Bus

M
Mainframe adapters 160
Management and Autonomic 83
Mediate 76
Mediation 184
Message Connection variation 93
Message driven architectures 76
Message Processing 83
Message-driven bean 165
Modeling 84
MQMD header 244
MQRFH2 header 244

N
Native MQ 166
Network latency 229
Non-repudiation 310

O
OASIS 188
ODBC 238
on demand Operating Environment 26–31
Open Grid Services Architecture 22
Open standards 23

P
Parallel Process application pattern 94

Pattern profiles 95
Extended Enterprise 95
Service-oriented architecture profile 95

Zone pattern 95
Gateways 95
Message broker 96

Parallel Process Workflow variation 94
Partner links 285
Patterns for e-business

Application Integration patterns 90
Application patterns 4, 11
Best practices 4, 15
Business patterns 4, 7
Composite patterns 4, 10
Guidelines 4, 15
Integration patterns 4, 8
Process Integration 91

Broker application pattern 93
Router variation 93

Composed Service 91

Direct Connection application pattern 93
Message Connection variation 93

Hub 91
Parallel Process application pattern 94
Serial Process application pattern 94

Serial Process Workflow variation 94
Zone 91

Product mappings 4, 14
Runtime patterns 4, 12
Web site 5

Platform 101
Process centric 139
Process management 227
Process Web Client 296
Product mappings 4, 14, 140

Business Service Choreography 142
Enterprise Service Bus 142
Service Directory 141

Protocol 101
Protocol switch 242
Protocol transformation 200
Proxy operation mode 212

Q
Quality of Service 83

R
Redbooks Web site 355

Contact us xvi
Resource adapters 164
Role based authorization 188
Router variation 93
Runtime patterns 4, 12

S
Scenarios 170

Stage I 170
Stage II 172
Stage III 173

Security 83
Security Requirements 130
Selective SOAP parsing 184, 211
Self-configuring 23
Self-healing 23
Self-optimization 23
Self-protecting 23
Self-signed certificates 323

 Index 361

Certificate file 324
Key database file 323
Trust database file 324

Semantic Interface 101
Serial Process application pattern 94
Serial Process Workflow variation 94
Serial Workflow pattern 275

Benefits 275
Bottom-up modeling 279
Composite processes 280
Flexibility 275
Human interaction 275
Long-running processes 280
Reusability 275
Short-running processes 280
Top-down modeling 279

Service Choreography 130
Service granularity 228
Service Interaction 83
Service Level 83
Service Level Requirements 130
Service naming 77
Service Provider Identity 102
Service Provider Protection 128
Service providers 105
Service requesters 105
Service Version 102
Service-oriented architecture 25–26, 37–52, 76

Component Based Design 37
Connectionless services 45

Connected 46
Connectionless 46
Service interfaces 46
Specific executable instances 46

Coupling and decoupling 39
Aspects 39
Business behavior 45
Business data models 40
Communication protocols 40
Coupled 40
Data formats 41
Declared 40

Negotiated 40
Transformed 40

Decoupled 40
Implementation platform 41
Service provider identity 41

Customized 36
Drivers 34

Business processes 35
Business systems 35
Flexible pricing 34
Increasing speed 34
Reducing costs 34
Return on investment 34
Simplifying integration 34

Emerging approaches 63
Enterprise Service Bus 63
Service choreography 64
Service directories and brokers 64
User access to services 65

Object Oriented development 37
Proprietary 36
Service 37

Deployment time 39
Implementation-independent 37
Loosely bound 37
Reusable 37
Runtime 38
Substitution 39

Service granularity and choreography
Business functions 47
Business processes 47
Business transactions 47
Technical functions 47

Web services and 33–69
Short-running processes 280
SOA

See Service-oriented architecture
SQL 166
Staff activity 289
Stored procedures 166
SupportPac IA81 246

T
TCP/IP Monitor Server 215
TCPMon 214
Technologies for Interoperability 126
Technology adapters 160
Technology Support in Existing Systems 127
Transform 76
Transformed 40

U
UDDI 309
UDDI directory 81
User Program Execution Servers 139

362 Patterns: Implementing an SOA Using an Enterprise Service Bus

V
Virtualization 21

W
Web 181
Web services 33, 154

HTTP service bus 154
Advantages of HTTP 155
Disadvantages of HTTP 156

JMS service bus 156
Advantages of JMS 158
Disadvantages of JMS 158
Embedded Messaging 157
IBM JMS implementations 157
WebSphere MQ 157

Web services architecture 53
Namespaces 56
Service Directories 54
Service Providers 54
Service Requesters 54
SOAP 54
Universal Description, Discovery, Integration
55
Web Services Description Language 55
Web services interoperability 56

Web Services Interoperability Organization
56

Basic Profile 57
Web Services Gateway 181

Capturing Web service invocation information
213
Channels 196

Apache SOAP 196
Inbound channels 196
Outbound channels 196
SOAP/HTTP 196
SOAP/JMS 196

Configuring service requesters 205
Changing the Web service endpoint 205
Regenerating the client 207

Extracting the end point
Gateway generated WSDL 203
WS-Inspection 205

Extracting the endpoint address 203
Gateway services 197

Multiple target ports 202
Multiple target services 200
Protocol transformation 200

Target Service Name 198
Target Service Namespace 198

Handling exceptions 213
Installing 194
Monitoring SOAP messages 214
Proxy operation mode 212
Selective SOAP parsing 211

Web services interoperability 56
Web Services Interoperability Organization 56
Web Services Invocation Framework 286
Web services security 59
WebSphere Business Integration Adapters 159

Application interfaces 159
Application provided Web service interface
159
Non-Web service interface 159
Service wrapper as interface to adapter 159

Available adapters 160
Adapter development tools 161
Application adapters 160
Mainframe adapters 160
Technology adapters 160

Capabilities 161
Bi-directional 161
Configurable 161
Multi-threaded 161
Reusable 161

Enterprise Service Bus 162
WebSphere Business Integration Message Broker
236

AggregateControl 249
AggregateReply 254
AggregateRequest 253
Compute 240
Externalized data definition 264
HTTP Input 240
HTTP Reply 245
HTTP Request 241
HTTPListener service 237
Message flow deployment 265
MQInput 254
MQOutput 245, 252
Parallel HTTP to JMS invocation 237
Protocol switch 242
Quality of service capabilities 267

Availability 267
Performance 267
Security 267
Transactionality 268

 Index 363

Serial HTTP invocation 237
Serial HTTP to JMS invocation 237
Troubleshooting message flows 266

WebSphere MQ 157, 263
WebSphere MQ configuration 263
WebSphere MQ Workflow

User Program Execution Servers 139
WebSphere Process Choreographer

Assign activity 286
Business process container 296
Case statement 288
Deploying 294
Invoke activity 286

Java class 286
Web service 286

Java snippet 287
Partner links 285
Partner type 285
Process bindings 295

EJB binding 295
JMS binding 295
SOAP/HTTP binding 295

Apache 295
IBM Web Service 295

SOAP/JMS binding 295
Process Web Client 296
Receive activity 285
Reply activity 294
Staff activity 289

Late binding 289
Permissions 289
Roles 289

Editor 289
Potential owner 289
Reader 289

Staff plug-in providers 289
User registries 289
Work item 289

Starting a process instance 296
Custom client 297
Process binding 297
Process Web Client 296
WebSphere Process Choreographer API
297

Switch structure 287
Variables 285

WebSphere Studio Application Developer 193
TCP/IP Monitor Server 214

WebSphere Studio Application Developer Integra-

tion Edition 282
Workload management 135
WS-AtomicTransaction 61
WS-BusinessActivity 61
WS-Coordination 61
WS-I sample application 170
WS-Inspection 205
WS-Policy 59, 62
WS-Privacy 59
WS-ReliableMessaging 60
WS-Security 59, 187, 311
WS-Trust 59

X
XML Encryption 311
XML Signature 311

Z
Zone pattern 95

364 Patterns: Implementing an SOA Using an Enterprise Service Bus

(0.5” spine)
0.475”<->

0.875”
250 <->

 459 pages

Patterns: Im
plem

enting an SOA Using an Enterprise Service Bus

®

SG24-6346-00 ISBN 0738490008

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Patterns: Implementing
an SOA Using an
Enterprise Service Bus

Design and
implement an ESB
using current
WebSphere
technologies

Service-oriented
architecture and
Web services

Learn by example
with practical
scenarios

Patterns for e-business is a group of proven, reusable assets
that can be used to increase the speed of developing and
deploying e-business applications. This IBM Redbook focuses
on how the service-oriented architecture profile of the
Process Integration patterns can be used to start
implementing service-oriented architecture using an
Enterprise Service Bus.

Part 1 presents a description of service-oriented architecture
and how it applies to Web services and e-business on
demand. Emerging service-oriented architecture trends are
also discussed.

Part 2 provides a detailed description of the Enterprise Service
Bus (ESB) concept, and how this fits with the Patterns for
e-business. Common usage scenarios, a minimum capability
ESB, and ESB patterns are described. IBM product mappings
are then applied to the ESB patterns.

Part 3 guides you through the process of implementing an
Enterprise Service Bus using current IBM technologies. Router
and Broker interactions within an Enterprise Service Bus are
covered, along with off-the-bus service choreography and the
Exposed ESB Gateway to enable interaction in an
inter-enterprise environment.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Part 1 Patterns for e-business and SOA
	Chapter 1. Introduction to Patterns for e-business
	1.1 The Patterns for e-business layered asset model
	1.2 How to use the Patterns for e-business
	1.2.1 Select a pattern or Custom design
	1.2.2 Selecting Application patterns
	1.2.3 Review Runtime patterns
	1.2.4 Review Product mappings
	1.2.5 Review guidelines and related links

	1.3 Summary

	Chapter 2. e-business on demand and service-oriented architecture
	2.1 Overview of e-business on demand
	2.1.1 Key business attributes
	2.1.2 Key technology attributes
	2.1.3 Key requirements for integration flexibility

	2.2 e-business on demand and the service-oriented architecture
	2.3 The on demand Operating Environment and the ESB
	2.3.1 The on demand Operating Environment

	Chapter 3. Web services and service-oriented architecture
	3.1 Drivers for Web services and SOA
	3.2 Introduction to service-oriented architecture
	3.2.1 Coupling and decoupling of aspects of service interactions
	3.2.2 Designing connectionless services
	3.2.3 Service granularity and choreography
	3.2.4 Implications of service-oriented architecture

	3.3 Web services architecture
	3.3.1 Web services interoperability
	3.3.2 Advanced and future Web services standards

	3.4 Emerging infrastructure components for Web services and SOA
	3.5 Web services and SOA together
	3.6 Conclusion
	3.7 Further information

	Part 2 Enterprise Service Bus
	Chapter 4. Enterprise Service Bus and SOA patterns
	4.1 Introducing the Enterprise Service Bus
	4.2 The role of the ESB in SOA
	4.3 A capability model for the Enterprise Service Bus
	4.3.1 The minimum capability ESB implementation
	4.3.2 The Enterprise Service Bus is an infrastructure component
	4.3.3 Security issues affecting the Enterprise Service Bus

	4.4 SOA profile of the Application Integration patterns
	4.4.1 Summary of Process Integration patterns
	4.4.2 The Enterprise Service Bus pattern
	4.4.3 Other SOA patterns
	4.4.4 Modeling additional SOA components
	4.4.5 Extended Enterprise SOA patterns

	4.5 Common ESB scenarios
	4.5.1 Basic integration of two systems
	4.5.2 Enable wider connectivity to one or more applications
	4.5.3 Enable wider connectivity to legacy systems
	4.5.4 Enable wider connectivity to an EAI infrastructure
	4.5.5 Implement controlled integration between organizations
	4.5.6 Automate processes by choreographing services
	4.5.7 Implement a robust SOA with Web services support
	4.5.8 Architecture decision questions

	4.6 Summary and next steps in the design process

	Chapter 5. ESB and SOA component implementations
	5.1 Runtime product descriptions
	5.1.1 IBM WebSphere Application Server V5.1
	5.1.2 IBM WebSphere MQ V5.3
	5.1.3 IBM WebSphere Application Server Network Deployment V5.1
	5.1.4 IBM WebSphere Business Integration Message Broker V5.0
	5.1.5 IBM WebSphere Business Integration Server Foundation V5.1
	5.1.6 IBM WebSphere InterChange Server V4.2
	5.1.7 IBM WebSphere MQ Workflow V3.5
	5.1.8 IBM WebSphere Business Integration Connect V4.2.1

	5.2 SOA component product mappings
	5.2.1 Service Directory product mappings
	5.2.2 Business Service Choreography product mappings
	5.2.3 SOA product mappings

	5.3 Product capabilities for the Enterprise Service Bus
	5.3.1 Assessment of ESB capabilities by product
	5.3.2 WebSphere Business Integration Message Broker
	5.3.3 WebSphere Application Server Network Deployment
	5.3.4 WebSphere Business Integration Connect
	5.3.5 Options for customized implementation

	Chapter 6. Endpoint enablement roadmap
	6.1 Web services
	6.1.1 HTTP service bus
	6.1.2 JMS service bus

	6.2 WebSphere Business Integration Adapters
	6.2.1 Application interfaces
	6.2.2 Available adapters
	6.2.3 Capabilities of the adapters and the ESB
	6.2.4 Intelligent use of the adapters with an ESB
	6.2.5 Further Information

	6.3 J2EE Connector Architecture
	6.4 Alternatives

	Part 3 Scenario implementation
	Chapter 7. The business scenario used in this book
	7.1 WS-I sample application
	7.2 Scenarios
	7.2.1 Stage I: internal supply chain management on demand
	7.2.2 Stage II: addition of warehouses
	7.2.3 Stage III: divested inter-enterprise manufacturers

	Chapter 8. Enterprise Service Bus: Router variation
	8.1 Business scenario
	8.2 Design guidelines
	8.2.1 Design overview
	8.2.2 Router variation

	8.3 Development guidelines
	8.3.1 Using JAX-RPC handlers in an ESB
	8.3.2 Developing a handler in WebSphere Studio
	8.3.3 Preparing a handler for deployment to Web Services Gateway

	8.4 Runtime guidelines
	8.4.1 Installing the Web Services Gateway
	8.4.2 Configuring the Web Services Gateway
	8.4.3 Deploying Web Service Gateway channels
	8.4.4 Deploying Web Service Gateway services
	8.4.5 Extracting the endpoint address
	8.4.6 Configuring the service requesters to point to the Gateway
	8.4.7 JAX-RPC handler runtime guidelines
	8.4.8 Runtime guidelines for selective SOAP parsing
	8.4.9 Runtime guidelines for proxy operation mode
	8.4.10 Other runtime issues

	8.5 Further information

	Chapter 9. Enterprise Service Bus: Broker variation
	9.1 Business scenario
	9.2 Design guidelines
	9.2.1 Design overview
	9.2.2 Broker design

	9.3 Development guidelines
	9.3.1 Prerequisite configuration
	9.3.2 Broker variation implementation

	9.4 Runtime guidelines
	9.4.1 Incorporation of Broker
	9.4.2 Distributed WebSphere MQ configuration
	9.4.3 Externalized data definition
	9.4.4 Message flow deployment
	9.4.5 Troubleshooting message flows
	9.4.6 Quality of service capabilities

	9.5 Further information

	Chapter 10. Business Service Choreography
	10.1 Business scenario
	10.2 Design guidelines
	10.2.1 Design overview

	10.3 Development guidelines
	10.3.1 Long-running process
	10.3.2 Short-running process

	10.4 Runtime guidelines
	10.4.1 Deploying a process

	10.5 Further information

	Chapter 11. Exposed ESB Gateway composite pattern
	11.1 Business scenario
	11.2 Design guidelines
	11.2.1 Design overview
	11.2.2 ESB Gateway design

	11.3 Runtime guidelines
	11.3.1 Transfer of the Manufacturer service implementation
	11.3.2 Configuration of a single gateway
	11.3.3 Configuring a second gateway
	11.3.4 Securing the communications channel
	11.3.5 Further runtime alternatives and considerations

	11.4 Further information

	Part 4 Appendixes
	Appendix A. Additional material
	Locating the Web material
	Using the Web material
	System requirements for downloading the Web material
	How to use the Web material

	Appendix B. Configuring the scenario lab environment
	Setting up the base environment
	Creating an HTTP server to look up WSDL
	Creating a WebSphere Studio workspace
	Exporting enterprise applications from WebSphere Studio
	Configuring WebSphere MQ
	Configuring WebSphere Application Server
	Testing the business scenario

	Setting up the ESB Router variation scenario
	Setting up the ESB Broker variation scenario
	Installing WebSphere Business Integration Message Broker
	Setting up WebSphere MQ
	Setting up DB2
	Setting up ODBC data sources
	Setting up the Message Brokers Toolkit

	Setting up the Business Service Choreography scenario

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

