IBM eServer Certification Study Guide - AIX 5L Communications

Developed specifically for the purpose of preparing for AIX certification

Makes an excellent companion to classroom education

For experienced AIX professionals

Tim Dasgupta
Stephen Sommer

Redbooks

ibm.com/redbooks
Second Edition (December 2002)

This edition applies to AIX 5L Version 5.1 (5765-E61) and subsequent releases running on an IBM @server pSeries or RS/6000 server.

This document was updated on January 6, 2004.

© Copyright International Business Machines Corporation 2000, 2002. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Figures ... ix

Tables .. xi

Notices ... xiii
Trademarks ... xiv

Preface ... xv
The team that wrote this redbook .. xvi
Become a published author .. xvii
Comments welcome ... xviii

Chapter 1. Certification overview ... 1
 1.1 Certification requirements ... 2
 1.1.1 Required prerequisite .. 2
 1.1.2 Recommended prerequisite 2
 1.1.3 Information and registration for the certification exam .. 2
 1.1.4 Core requirements ... 2
 1.2 Certification education courses ... 7

Chapter 2. Network interfaces and protocols 9
 2.1 Networking basics ... 10
 2.2 Ethernet standards overview ... 11
 2.2.1 Access method .. 12
 2.2.2 Fast Ethernet ... 13
 2.2.3 Gigabit Ethernet ... 13
 2.3 Asynchronous Transfer Mode (ATM) 13
 2.3.1 TCP/IP over ATM ... 14
 2.4 Network media .. 15
 2.5 Ethernet frame types .. 18
 2.6 Hubs, bridges, switches, and routers 19
 2.7 Network protocols ... 21
 2.7.1 Protocol summary .. 24
 2.8 Networking hardware .. 24
 2.8.1 Network adapters .. 25
 2.8.2 Network drivers ... 30
 2.9 AIX network interfaces ... 31
 2.10 Quiz ... 33
 2.10.1 Answers ... 39
2.11 Exercises ... 39

Chapter 3. Network addressing and routing .. 41
3.1 Internet addressing ... 42
 3.1.1 IP address format ... 42
 3.1.2 Internet address classes ... 43
 3.1.3 Special Internet addresses 45
 3.1.4 Subnetting .. 47
 3.1.5 Supernetting .. 53
 3.1.6 Address Resolution Protocol (ARP) 54
3.2 Routing .. 55
 3.2.1 An introduction to static and dynamic routing 56
 3.2.2 Static routing ... 57
 3.2.3 Dynamic routing ... 61
 3.2.4 ICMP redirects .. 64
 3.2.5 Routing debugging ... 66
3.3 Command summary ... 68
 3.3.1 The ifconfig command ... 68
 3.3.2 The netstat command .. 68
 3.3.3 The route command ... 69
 3.3.4 The chdev command .. 70
 3.3.5 The lsattr command ... 70
3.4 Quiz .. 71
 3.4.1 Answers .. 76
3.5 Exercises ... 76

Chapter 4. Basic network administration ... 79
4.1 Network administration using SMIT 80
 4.1.1 Minimum configuration 80
 4.1.2 Further TCP/IP configuration 81
 4.1.3 Setting the host name ... 83
 4.1.4 Host name resolution ... 83
 4.1.5 Network interface configuration 86
 4.1.6 The prtconf command .. 88
 4.1.7 The TTY configuration .. 90
 4.1.8 Asynchronous Terminal Emulation 91
 4.1.9 EtherChannel ... 93
4.2 Configuring network attributes .. 96
4.3 Securing network services ... 98
 4.3.1 The r-commands ... 100
 4.3.2 The telnet service ... 102
 4.3.3 The FTP service ... 103
4.4 Command summary ... 103
Contents

4.4.1 The lsattr command ... 103
4.4.2 The chdev command ... 104
4.5 Quiz ... 105
 4.5.1 Answers ... 108
4.6 Exercises ... 108

Chapter 5. Network daemons .. 109
5.1 Network startup .. 110
 5.1.1 System Resource Controller 111
5.2 Network subsystems .. 111
5.3 Stopping network subsystems .. 113
5.4 Internet daemon - inetd .. 114
 5.4.1 The /etc/inetd.conf file 114
 5.4.2 The /etc/services file 117
 5.4.3 The ports assigned to network services 117
 5.4.4 Inetd subsystem control 119
5.5 Network subservers ... 120
 5.5.1 Controlling subservers 120
 5.5.2 File Transfer Protocol (FTP) 121
 5.5.3 Anonymous FTP ... 122
 5.5.4 RCP file transfer ... 122
 5.5.5 Trivial File Transfer Protocol 122
 5.5.6 Security consideration with inetd subservers 122
5.6 Command summary .. 125
 5.6.1 The startsrc command 125
 5.6.2 The stopsrc command 126
 5.6.3 The refresh command 126
 5.6.4 The lssrc command .. 127
5.7 Quiz ... 128
 5.7.1 Answers ... 130
5.8 Exercises ... 130

Chapter 6. Network services administration 131
6.1 Bootstrap protocol BOOTP .. 132
 6.1.1 Configuring BOOTP .. 133
6.2 Dynamic Host Configuration Protocol (DHCP) 134
 6.2.1 DHCP server configuration 136
 6.2.2 DHCP/BOOTP relay agent configuration 138
 6.2.3 BOOTP and DCHP interoperation 139
 6.2.4 DHCP client configuration 140
6.3 Dynamic Domain Name System (DDNS) 140
6.4 Simple Network Management Protocol (SNMP) 141
 6.4.1 Files and file formats 141
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>OSI reference model</td>
<td>11</td>
</tr>
<tr>
<td>2-2</td>
<td>CSMA/CD algorithm</td>
<td>12</td>
</tr>
<tr>
<td>2-3</td>
<td>A representative ATM network</td>
<td>14</td>
</tr>
<tr>
<td>2-4</td>
<td>TCP/IP protocol suite</td>
<td>21</td>
</tr>
<tr>
<td>3-1</td>
<td>IP address format</td>
<td>42</td>
</tr>
<tr>
<td>3-2</td>
<td>Binary to decimal review</td>
<td>43</td>
</tr>
<tr>
<td>3-3</td>
<td>IP address classes</td>
<td>44</td>
</tr>
<tr>
<td>3-4</td>
<td>Subnetting example</td>
<td>48</td>
</tr>
<tr>
<td>3-5</td>
<td>Default subnet mask for network classes</td>
<td>50</td>
</tr>
<tr>
<td>3-6</td>
<td>Subnetting scenario</td>
<td>52</td>
</tr>
<tr>
<td>3-7</td>
<td>Configuring routing through smitty</td>
<td>59</td>
</tr>
<tr>
<td>3-8</td>
<td>smitty routed screen</td>
<td>63</td>
</tr>
<tr>
<td>3-9</td>
<td>smitty chgated screen</td>
<td>64</td>
</tr>
<tr>
<td>3-10</td>
<td>Routed network</td>
<td>65</td>
</tr>
<tr>
<td>4-1</td>
<td>SMIT TCP/IP configuration screen</td>
<td>80</td>
</tr>
<tr>
<td>4-2</td>
<td>SMIT TCP/IP minimum configuration parameters screen</td>
<td>81</td>
</tr>
<tr>
<td>4-3</td>
<td>SMIT TCP/IP Further Configuration screen</td>
<td>82</td>
</tr>
<tr>
<td>4-4</td>
<td>SMIT menu for resolv.conf</td>
<td>85</td>
</tr>
<tr>
<td>4-5</td>
<td>smitty chinet screen</td>
<td>87</td>
</tr>
<tr>
<td>4-6</td>
<td>SMIT screen to add new EtherChannel</td>
<td>94</td>
</tr>
<tr>
<td>4-7</td>
<td>SMIT screen for choosing the adapters that belong to the channel</td>
<td>94</td>
</tr>
<tr>
<td>4-8</td>
<td>SMIT screen for configuring the EtherChannel</td>
<td>95</td>
</tr>
<tr>
<td>4-9</td>
<td>Execution process flow of rsh</td>
<td>101</td>
</tr>
<tr>
<td>5-1</td>
<td>TCP/IP network startup procedure</td>
<td>110</td>
</tr>
<tr>
<td>5-2</td>
<td>SMIT screen for controlling SRC subsystems</td>
<td>113</td>
</tr>
<tr>
<td>5-3</td>
<td>Inetd configuration support in wsm</td>
<td>120</td>
</tr>
<tr>
<td>6-1</td>
<td>The BOOTP client/server message flow</td>
<td>132</td>
</tr>
<tr>
<td>6-2</td>
<td>The DHCP client/server simple request message flow</td>
<td>135</td>
</tr>
<tr>
<td>7-1</td>
<td>NFS protocol flowchart</td>
<td>150</td>
</tr>
<tr>
<td>7-2</td>
<td>NFS daemon activity</td>
<td>153</td>
</tr>
<tr>
<td>7-3</td>
<td>NFS mount</td>
<td>155</td>
</tr>
<tr>
<td>7-4</td>
<td>NFS file locking request</td>
<td>157</td>
</tr>
<tr>
<td>7-5</td>
<td>smitty mknfsexp screen</td>
<td>159</td>
</tr>
<tr>
<td>7-6</td>
<td>smitty mknfsmnt screen</td>
<td>169</td>
</tr>
<tr>
<td>8-1</td>
<td>DNS structure</td>
<td>195</td>
</tr>
<tr>
<td>10-1</td>
<td>NIS domain</td>
<td>226</td>
</tr>
<tr>
<td>10-2</td>
<td>NIS daemons</td>
<td>227</td>
</tr>
<tr>
<td>10-3</td>
<td>Change NIS domain name screen in smitty</td>
<td>230</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>10-4</td>
<td>Hosts in example before NIS</td>
<td>232</td>
</tr>
<tr>
<td>10-5</td>
<td>Hosts ready for NIS startup</td>
<td>234</td>
</tr>
<tr>
<td>10-6</td>
<td>smitty mkmaster screen</td>
<td>235</td>
</tr>
<tr>
<td>10-7</td>
<td>smitty mkslave screen</td>
<td>237</td>
</tr>
<tr>
<td>11-1</td>
<td>SLIP serial links</td>
<td>248</td>
</tr>
<tr>
<td>11-2</td>
<td>Smit TTY screen</td>
<td>249</td>
</tr>
<tr>
<td>11-3</td>
<td>SMIT TTY option screen</td>
<td>249</td>
</tr>
<tr>
<td>11-4</td>
<td>SMIT parent adapter option screen</td>
<td>250</td>
</tr>
<tr>
<td>11-5</td>
<td>SMIT Add a TTY option screen</td>
<td>251</td>
</tr>
<tr>
<td>11-6</td>
<td>SMIT Add a Network Interface screen</td>
<td>254</td>
</tr>
<tr>
<td>11-7</td>
<td>SMIT TTY PORT for SLIP Network Interface options screen</td>
<td>255</td>
</tr>
<tr>
<td>11-8</td>
<td>SMIT Add a Serial Line INTERNET Network Interface screen</td>
<td>256</td>
</tr>
<tr>
<td>11-9</td>
<td>Customer information</td>
<td>261</td>
</tr>
</tbody>
</table>
Tables

2-1 Protocol summary ... 24
2-2 RS/6000 7025 F50 AIX Location Codes 27
2-3 pSeries 640 Model B80 AIX location codes 28
2-4 AIX Version 4.3 supported interfaces 32
3-1 IP address classes .. 44
3-2 Subnet mask calculation 49
3-3 Class B subnetting reference chart 52
3-4 Class C subnetting reference chart 53
3-5 Commonly used flags of the ifconfig command 68
3-6 Commonly used flags of the netstat command 69
3-7 Commonly used flags of the route command 69
3-8 Commonly used flags of the chdev command 70
3-9 Commonly used flags of the lsattr command 70
4-1 The ATE program subcommands 92
4-2 Configurable network attributes 97
4-3 The r-commands .. 100
4-4 Commonly used flags of the lsattr command 104
4-5 Commonly used flags of the chdev command 104
5-1 Command and port quick reference guide 118
5-2 $HOME/.rhosts definitions 124
5-3 Commonly used flags of the startsrc command 126
5-4 Commonly used flags of the stopsrc command 126
5-5 Commonly used flags of the refresh command 127
5-6 Commonly used flags of the lssrc command 127
6-1 Commonly used flags of the dadmin command 145
7-1 NFS protocols ... 151
7-2 Commonly used flags of the automount command 175
7-3 Commonly used flags of the showmount command 181
7-4 Commonly used flags of the exportfs command 182
7-5 Commonly used flags of the mount command 182
7-6 Commonly used flags of the nfsstat command 183
7-7 Commonly used flags of the iptrace command 183
7-8 Commonly used flags of the ipreport command 184
7-9 Commonly used flags of the netstat command 185
7-10 Commonly used flags of the chnfs command 185
7-11 Commonly used flags of the rpcinfo command 186
8-1 Common DNS resource record types 196
10-1 NIS default map files .. 228
10-2 Commonly used flags of the ypbind command 241
10-3 Commonly used flags of the ypset command 242
10-4 Commonly used flags of the ypinit command 242
10-5 Commonly used flags of the yppush command 243
10-6 Commonly used flags of the ypxfr command 243
10-7 Commonly used flags of the ypcat command 244
10-8 Commonly used flags of the yppasswd command 244
11-1 Commonly used flags of the slattach command 260
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

- AIX®
- AIX 5L™
- IBM®
- DFS™
- LoadLeveler®
- Micro Channel®
- PowerPC®
- PowerPC Reference Platform®
- PS/2®
- pSeries™
- PTX®
- QMF™
- Redbooks®
- Redbooks™
- RS/6000®
- SP™
- Versatile Storage Server™

The following terms are trademarks of International Business Machines Corporation and Lotus Development Corporation in the United States, other countries, or both:

- Domino™

The following terms are trademarks of other companies:

- ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

- Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

- Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

- C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

- UNIX is a registered trademark of The Open Group in the United States and other countries.

- SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
Preface

The AIX and IBM @server pSeries Certifications, offered through the Professional Certification Program from IBM, are designed to validate the skills required of technical professionals who work in the powerful and often complex environments of AIX and IBM @server pSeries. A complete set of professional certifications are available. They include:

- IBM Certified AIX User
- IBM Certified Specialist - Business Intelligence for RS/6000
- IBM Certified Specialist - Domino for RS/6000
- IBM @server Certified Specialist - p690 Solutions Sales
- IBM @server Certified Specialist - p690 Technical Support
- IBM @server Certified Specialist - pSeries Sales
- IBM @server Certified Specialist - pSeries AIX System Administration
- IBM @server Certified Specialist - pSeries AIX System Support
- IBM @server Certified Specialist - pSeries Solution Sales
- IBM Certified Specialist - RS/6000 SP and PSSP V3
- IBM Certified Specialist - Web Server for RS/6000
- IBM @server Certified Specialist - pSeries HACMP for AIX
- IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L

Each certification is developed by following a thorough and rigorous process to ensure the exam is applicable to the job role and is a meaningful and appropriate assessment of skill. Subject matter experts who successfully perform the job participate throughout the entire development process. They bring a wealth of experience to the development process, making the exams much more meaningful than the typical test that only captures classroom knowledge and ensuring the exams are relevant to the real world. Thanks to their effort, the test content is both useful and valid. The result of this certification is the value of appropriate measurements of the skills required to perform the job role.

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX 5L Communications certification exam as a selected course of study in order to achieve the IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L certification.

This redbook provides a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered in the exam.
This publication does not replace practical experience, nor is it designed to be a stand-alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam.

For additional information about certification and instructions on how to register for an exam, visit our Web site at:

http://www.ibm.com/certify

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Tim Dasgupta is an IBM Certified AIX Advanced Technical Expert (CATE). He works as a Senior Systems Architect at IBM Global Services in Canada. He has over eight years of experience in the areas of AIX, RS/6000, and pSeries. He is currently the Team Leader of Midrange Architecture Group in Montreal, Canada.

Stephen Sommer is an IBM Certified AIX Advanced Technical Expert (CATE), AIX Version 4.3.3 and 5.1. He works as a Senior IT Specialist at Faritec Services, an IBM Business Partner in Johannesburg, South Africa. He has eight years of experience in Midrange Support for AIX, RS/6000 and pSeries both in South Africa and the United Kingdom.

The authors of the first edition were:

Thomas Herlin IBM Denmark
André de Klerk IBM South Africa
Thomas C. Cederlög IBM Sweden
Tomasz Ostaszewski Prokom Software SA in Poland

The project that produced this publication was managed by:

Scott Vetter International Technical Support Organization, Austin Center

Special thanks to:

Shannan L DeBrule IBM Atlanta
Darin Hartman Program Manager, AIX Certification
Thanks to the following people for their invaluable contributions to this project:

Jesse Alcantar, Greg Althaus, Karl Borman, Larry Brenner, Greg Flaig, Shawn Mullen, Brian Nicholls
IBM Austin

Michelle Page-Rivera
IBM Atlanta

Edward Geraghty
IBM Boston

Federico Vagnini
IBM Italy

Adnan Ikram
IBM Pakistan

Christopher Snell
IBM Raleigh

Peter Mayes
IBM U.K.

Malin Cederberg and Robert Olsson
ILS Sweden

Yesid Jaramillo
Sistemas Integrales de Informatica S.A. Columbia

Karl Jones
Systems Analyst - Designed Business Systems

Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You'll team with IBM technical professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability.
Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways:

▶ Use the online Contact us review redbook form found at:

ibm.com/redbooks

▶ Send your comments in an Internet note to:

redbook@us.ibm.com

▶ Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493
Chapter 1. Certification overview

This chapter provides an overview of the skill requirements needed to obtain an IBM Advanced Technical Expert certification. The following chapters are designed to provide a comprehensive review of specific topics that are essential for obtaining the certification:

IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L

This level certifies an advanced level of pSeries and AIX knowledge and understanding, both in breadth and depth. It verifies the ability to perform in-depth analysis, apply complex AIX concepts, and provide resolution to critical problems, all in a variety of areas within AIX, including the hardware that supports it.
1.1 Certification requirements

To attain the IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L certification, you must pass four tests.

One test is the prerequisite for certification as a Specialist in either pSeries AIX System Administration or pSeries AIX System Support. The other three tests are selected from a variety of pSeries and AIX topics. These requirements are explained in greater detail in the sections that follow.

1.1.1 Required prerequisite

Prior to attaining the IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L certification, you must be certified as either an:

- IBM @server Certified Specialist - pSeries AIX System Administration
 or
- IBM @server Certified Specialist - pSeries AIX System Support

1.1.2 Recommended prerequisite

A minimum of six to 12 months’ experience in performing in-depth analysis and applying complex AIX concepts in a variety of areas within AIX is a recommended prerequisite.

1.1.3 Information and registration for the certification exam

For the latest certification information, see the following Web site:
http://www.ibm.com/certify

1.1.4 Core requirements

You must select three of the following exams. You will receive a Certificate of Proficiency for tests when passed.

AIX 5L Installation and System Recovery
Test 233 was developed for this certification.

Preparation for this exam is the topic of *IBM @server Certification Study Guide - AIX 5L Installation and System Recovery*, SG24-6183.
AIX 5L Performance and System Tuning
Test 234 was developed for this certification.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX 5L Performance and System Tuning, SG24-6184.

AIX 5L Problem Determination Tools and Techniques
Test 235 was developed for this certification.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX 5L Problem Determination Tools and Techniques, SG24-6185.

AIX 5L Communications
The following objectives were used as a basis when the certification test 236 was developed. Some of these topics have been regrouped to provide better organization when discussed in this publication.

Preparation for this exam is the topic of this publication.

Section I - Planning
1. Determine network architecture:
 a. Determine which type of adapter(s) will be used in the network.
 b. Identify the network cable type to be used for the network.
 c. Determine slot location and interface name for the adapter that is being used.

2. Determine address and naming scheme, subnet masks, and routes:
 a. Obtain IP address to be used for the adapter from network administrator.
 b. Determine network class for IP address being used from first octet of address.
 c. Determine required network class based on number of desired subnets and hosts per network.
 d. Determine network mask to be used to satisfy subnet requirements.
 e. Identify default gateway that will be used to get outside local network.
 f. Decide if this machine will be an IP gateway.
 g. Select a host name for the machine and possible aliases.
 h. Determine names if there are additional adapters.

3. Identify required services:
 a. Decide if this machine will be a DNS server or client.
b. Determine if this machine will be an NFS, NIS, Mail, NTP, or DHCP server or client.

c. Evaluate which remote services this machine will support (rlogin, ftp, tftp, bootp, ppp)

Section II - Network Configuration

1. Verify communication adapter is available:
 a. Run `lsdev -Cc adapter` to see which adapters are available
 b. Install device drivers for network adapter if it is not available.

2. Configure adapter and verify connectivity:
 a. Adjust network adapter attributes.
 b. Enter the host name, IP address, subnet mask, default gateway, domain name, and DNS server address on SMIT TCP/IP minimum configuration screen.
 c. Run `netstat -in` and `ifconfig` to verify proper configuration.
 d. Run the `ping` command on another machine on the local network to verify connectivity.

3. Add static routes:
 a. Determine the static network routes to add due to network segments not accessible through the default route.
 b. Configure the static routes using SMIT route and providing the destination address, network mask, next hop, and metric of the route.

4. Configure network options:
 a. Determine which network options need to be adjusted to improve network performance.
 b. Edit `/etc/rc.net` to enable network options at system boot.

Section III - Services Configuration

1. DNS
 a. Select lookup order using either $NSLOOKUP or `/etc/netsvc.com`
 b. Update `/etc/resolv.conf` with correct information.
 c. Determine domains to be served from this server.
 d. Set up a primary DNS server.
 e. Edit `/etc/rc.tcpip` to autostart named at system boot.
 f. Verify Domain Name System services are working properly.
2. NFS
 a. Configure the appropriate number of nfssd and biod daemons to start.
 b. Configure file systems to export to NFS clients.
 c. Configure file systems to NFS mount from remote servers.
3. NIS
 a. Determine if this machine is to be a client or server.
 b. Set yp domain name using `domainname` command.
 c. Determine which configuration files need to be served.
 d. Create map files for NIS server.
 e. Configure ypbind, ypserv, and yppasswd daemons to start.
4. DHCP
 a. Enable dhcpsd in `/etc/rc.tcpip` to autostart on system boot.
5. MAIL
 a. Verify `/etc/sendmail.cf` contains correct host and domain information.
 b. Update `/etc/aliases` with appropriate user redirects.
 c. Refresh sendmail daemon.
6. Remote Services (inetd.conf)
 a. Update `/etc/inetd.conf` to turn desired services on or off.
 b. Refresh inetd.
7. SNMP
 a. Edit `/etc/rc.net` to enable SNMP.
 b. Update `/etc/snmpd.conf` to set community names and servers to receive SNMP traps.

Section IV - Security
1. Assess Risk Analysis
 a. Disable all daemons not directly required on this server.
 b. Configure remote access authorization in `/etc/host.equiv` and `.rhost` files.
 c. Determine if security services are current and no maintenance is required.
2. Security Options
 a. Consider other independent security control systems that may improve security.
 b. Decide if Kerberos will be used.
Section V - Asynchronous Communication
1. Configuration of asynchronous adapters:
 a. Install necessary device drivers and updates for asynchronous adapters.
 b. Make sure asynchronous adapters are available.
2. Configure TTYs as terminals, printers, or modems:
 a. Attach TTY to desired port.
 b. Use smit to add TTY with desired configuration options.
 c. Verify TTY is working properly.
3. Configure uucp, cu, ppp, ate, and so on:
 a. Configure appropriate device files for each desired service.
 b. Verify each desired service is working properly.

Section VI - Troubleshooting
1. Identify connectivity problems:
 a. Use netstat or ifconfig to verify proper IP setup for local adapter
 b. Use netstat, ping, and traceroute to isolate routing issues
 c. Use iptrace to verify packet delivery
2. Identify and resolve network performance issues:
 a. Use netstat to gather statistics
 b. Update no and chattr to adjust network and device options
3. Determine NFS mounting and performance problems:
 a. Adjust number of biod and nfsd daemons if necessary
 b. Adjust NFS options with nfso command if necessary
 c. Verify file systems are exported from server
 d. Verify name resolution
4. Identify modem connectivity problems:
 a. Verify TTY for modem is available
 b. Check login enable attribute
 c. Check port settings
 d. Use cu to verify configuration with modem

pSeries HACMP for AIX
Test 187 was developed for this certification.
Preparation for this exam is the topic of IBM\server Certification Study Guide - pSeries HACMP for AIX, SG24-6187.

RS/6000 SP and PSSP V3.1
Test 188 was developed for this certification.

Preparation for this exam is the topic of IBM Certification Study Guide - RS/6000 SP, SG24-5348.

p690 Technical Support
Test 195 was developed for this certification.

An IBM Redbook is planned for first quarter 2003 on this subject.

1.2 Certification education courses

Courses are offered to help you prepare for the certification tests. For a current list, visit the following Web site, locate your test number, and select the education resources available:

Chapter 2. Network interfaces and protocols

One of the most important aspects of the modern business machine is the network connectivity. With small businesses setting up networks that range from two or three workstations through global corporations that connect tens of thousands of workstations to hundreds of servers, often of different platforms, it is critical to understand the differences between the different protocols and interfaces. It is not uncommon for businesses to have various platforms, each running a different network protocol and interfacing with the other systems through an intermediate system.
2.1 Networking basics

The most common way of describing a network is the International Standards Organization's Open Systems Interconnection (OSI) Reference Model, also referred to as the OSI seven-layer model. The seven layers of the OSI model are as follows:

7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

Levels 1 through 3 are network specific, and will differ depending on what physical network you are using. Levels 4 through 7 comprise network-independent, higher level functions. Each layer describes a particular function (instead of a specific protocol) that occurs in data communications. The seven layers function in order from highest to lowest are defined as follows:

Application
Comprises the applications that use the network.

Presentation
Ensures that data is presented to the applications in a consistent fashion.

Session
Manages the connections between applications.

Transport
Ensures error-free data transmission.

Network
Manages the connections to other machines on the network.

Data Link
Provides reliable delivery of data across the Physical Layer (which is usually inherently unreliable).

Physical
Describes the physical media of the network. For example, the GigaBit Ethernet cable is part of the Physical Layer.

While the OSI Reference Model is useful for discussing networking concepts, many networking protocols do not closely follow the OSI model. For example, when discussing Transmission Control Protocol/Internet Protocol (TCP/IP), the Application and Presentation Layer functions can be combined into a single level, as can the Session and Transport Layers, as well as the Data Link and Physical Layers.
Each layer in the OSI model defines a communications protocol with the corresponding layer on the remote machine. The layers pass data only to the layers immediately above and below. As shown in Figure 2-1, each layer adds its own header (and, in the case of the Data Link Layer, footer) information, effectively encapsulating the information received from the higher layers. Ethernet and token-ring are the most common network interfaces; however, there are others that exist.

Token-ring, originally developed by IBM, uses a token-passing mechanism to regulate traffic on the ring. It is defined by the IEEE 802.5 standard.

Ethernet is a broadcast-based protocol that uses collision detection and avoidance for network traffic regulation. Ethernet, defined by the IEEE 802.3 standard, was originally developed by the Xerox Palo Alto Research Center.

FDDI is similar to token-ring in that it also passes a token over a ring, except that it is a fiber optic ring.

Serial Line Internet Protocol (SLIP) and Point-to-Point Protocol (PPP) are protocols that use serial ports and modems to communicate.

Asynchronous Transfer Mode (ATM) is a full duplex cell-switching protocol that supports end-to-end connections.

2.2 Ethernet standards overview

Ethernet is the most popular type of network in the world. It is popular because it is easy to implement, and the cost of ownership is relatively lower than that of other technologies. It is also easy to manage, and the Ethernet products are readily available.
2.2.1 Access method

Hosts send messages on an Ethernet LAN using a Network Interface Layer protocol, with carrier sense and multiple access with collision detect (CSMA/CD). The CSMA/CD ensures that all devices communicate on a single medium, but that only one transmits at a time, and that they all receive simultaneously. If two devices try to transmit at the same instant, the transmit collision is detected, and both devices wait a random period before trying to transmit again using a backoff algorithm shown in Figure 2-2.

![Figure 2-2 CSMA/CD algorithm](image)

The chance of a collision depends on the following:

- The number of workstations on the network. The more workstations, the more likely collisions will occur.
- The length of the network. The longer the network, the bigger the chance for collisions due to the time needed for signals to reach all devices.
- The length of the data packet, that is, the MTU size. A larger packet length takes a longer time to transmit, which increases the chance of a collision.
The collision statistics for the particular Ethernet interface can be obtained by the `entstat` command:

```
# entstat -d en0
....
Single Collision Count: 12
Multiple Collision Count: 11
....
IBM PCI Ethernet Adapter Specific Statistics:
---------------------------------------------
Chip Version: 16
Packets with Transmit collisions:
  1 collisions: 12  6 collisions: 0  11 collisions: 0
  2 collisions: 2  7 collisions: 2  12 collisions: 0
  3 collisions: 3  8 collisions: 2  13 collisions: 0
  4 collisions: 0  9 collisions: 1  14 collisions: 0
  5 collisions: 0  10 collisions: 1  15 collisions: 0
```

2.2.2 Fast Ethernet

The Fast Ethernet, or the IEEE 802.3u standard, is 10 times faster than the 10 Mbps Ethernet. The cabling used for Fast Ethernet is 100BaseTx, 100BaseT4 and the 100BaseFx. The framing used in Fast Ethernet is the same as that used in Ethernet. Therefore, it is very easy to upgrade from Ethernet to Fast Ethernet. Because the framing and size are the same as that of Ethernet and the speed has been increased 10 times, the length of the network must be reduced, or else the collision would not be detected and would cause problems to the network.

2.2.3 Gigabit Ethernet

The Gigabit Ethernet, or IEEE 802.3z standard, is 10 times faster than the Fast Ethernet. To accelerate speeds from 100-Mbps Fast Ethernet to 1 Gbps, several changes need to be made to the physical interface. It has been decided that Gigabit Ethernet will look identical to Ethernet from the Data Link Layer upward. The physical media can be either a copper cable, but with shorter lengths, or a fiber optic cable.

2.3 Asynchronous Transfer Mode (ATM)

ATM is a high performance, cell-switching, connection-oriented technology. In ATM networks, end stations attach to the network using dedicated full-duplex connections. ATM can be used for voice and video as well as multimedia applications. Figure 2-3 shows an example of how to set up a network using ATM.
2.3.1 TCP/IP over ATM

The Internet Engineering Task Force RFC1577: *Classical IP and ARP over ATM* standard specifies the mechanism for implementing Internet Protocol (IP) over ATM. Since ATM is connection-oriented technology and IP is a datagram-oriented technology, mapping the IP over ATM is not trivial.

In general, the ATM network is divided into logical IP subnetworks (LISs). Each LIS is comprised of some number of ATM stations. LISs are analogous to traditional LAN segments and are interconnected using routers. A particular adapter (on an ATM station) can be part of multiple LISs. This feature may be very useful for implementing routers.
RFC1577 specifies RFC1483, which specifies Logical Link Control/Sub-Network Access Protocol (LLC/SNAP) encapsulation as the default. In Permanent Virtual Circuits (PVC) networks for each IP station, all PVCs must be manually defined by configuring VPI:VCI (VP and VC identifiers) values. If LLC/SNAP encapsulation is not being used, the destination IP address associated with each VPI:VCI must be defined. If LLC/SNAP encapsulation is being used, the IP station can learn the remote IP address by an InARP mechanism. For Switched Virtual Circuits (SVC) networks, RFC1577 specifies an ARP server per LIS. The purpose of the ARP server is to resolve IP addresses into ATM addresses without using broadcasts. Each IP station is configured with the ATM address of the ARP server. IP stations set up SVCs with the ARP server, which in turn sends InARP requests to the IP stations. Based on the InARP reply, an ARP server sets up IP-to-ATM address maps. IP stations send ARP packets to the ARP server to resolve addresses, which returns ATM addresses.

IP stations then set up an SVC to the destination station and data transfer begins. The ARP entries in IP stations and the ARP server age are based on a well-defined mechanism. For both the PVC and SVC environments, each IP station has at least one virtual circuit per destination address.

The TCP/IP and ARP services would need to be started for ATM to work.

2.4 Network media

Every transmission standard has some restrictions related to hardware capability. Even the quality of the cables can dictate the quality of the network solution.

10Base2

This is the lowest-cost form of networking. The system uses a BNC connector and needs to be terminated on both ends of the cable, irrespective of the number of users between the two termination points. One disadvantage is that if there is a problem anywhere in the network, it is very difficult to localize the problem to a specific segment to correct the problem. Below are some limitations for 10Base2 networks:

- The maximum length per segment is 185 meters or 607 feet.
- Maximum of 30 nodes per unrepeated network segment.
- Runs on RG-58 (thin coaxial) cable. Coax cable may require terminator resistors.
- Connects using BNC connectors.
10Base5
This standard runs on a thicker coaxial cable than 10Base2 and is better suited for the network backbone rather than the actual user segments. Below are some limitations for 10Base5 networks:

- Maximum length per segment is 500 meters or 1640 feet.
- Maximum of 100 users/devices per unrepeated network segment.
- Runs on RG-8 coaxial (thicknet) cable. Coax cable may require terminator resistors and disconnecting a coax cable may have negative consequences on the entire network.
- Connects using AUI connectors.

10BaseT
This is normally the best price versus performance option. It is a bit more expensive than either 10Base2 or 10Base5; however, the termination is done either on the network card or the hub, which makes reliability and scalability simpler. Below are some limitations for 10BaseT networks:

- Maximum length is 150 meters or 492 feet per segment, depending on cable specifications.
- Maximum of 1024 nodes per network.
- Runs on unshielded twisted pair (UTP) cable.
- Connects using RJ-45 connectors.

10BaseF
Using fiber optic is the most expensive option when setting up a network. Fiber optic cable has an advantage of being able to be run next to electrical lines because of lack of electromagnetic interference. This option will mostly be used when connecting two buildings to the same LAN, because it is not feasible to use it within a standard office environment. Even though a maximum of 2 kilometers can be reached per segment, this can depend on the equipment being used. Below are some limitations for 10BaseF networks:

- A maximum length of 2000 meters or 6562 feet per segment depending on equipment being used.
- Maximum of 1024 users/devices per network. This is the Ethernet user/device limit.
- Runs on fiber optic cable.
- Rough handling can affect fiber optic cable.
100BaseFx
The fiber optic version of 100BaseFx is also a rather expensive solution for networking in a small LAN environment, but could be used to connect two or more buildings on one site together. Below are some limitations for 100BaseFx networks:

- A maximum length of 500 meters or 1640 feet per segment depending on equipment being used.
- Maximum of 1024 users/devices per network. This is the Ethernet user/device limit.
- Runs on fiber optic cable.
- Rough handling can affect fiber optic cable.

100BaseTx
This standard is compatible with the 10BaseT, so it has become the most popular of the 100 Mbps standards. This makes it a less expensive option for implementation, since an existing network structure can be used to upgrade to the faster standard. Below are some limitations for 100BaseTx networks:

- Maximum length up to 150 meters or 492 feet per segment, depending on cable specifications.
- Maximum of two nodes per segment and 1024 nodes per network.
- Runs on unshielded twisted pair (UTP) cable.
- Connects using RJ-45 connectors.

100BaseT4
Although the 100BaseT4 is similar to the 100BaseT, it uses a four-pair twisted pair cable instead of the two-pair twisted pair of the 100BaseT standard and is not compatible with 10BaseTx. This incompatibility has ensured that it is not widely used. Below are some limitations for 100BaseT4 networks:

- Runs on unshielded four pair (UTP) cable.
- Connects using RJ-45 connectors.

The differences between the cables
When a cable is categorized as a cat 3 or cat 5, this refers to the transmission speed ratings of the cables (cat 5 being the fastest). Below are the main differences between the cables:

- Category 1 = No performance criteria
- Category 3 = Rated to 16 Mbps (used for 10BaseT, 100BaseT4)
- Category 4 = Rated to 20 Mbps (used for token-ring, 10BaseT)
Category 5 = Rated to 100 Mbps (used for 100BaseTx, 10BaseT)

2.5 Ethernet frame types

There are two different Ethernet frame types: Ethernet II (also known as Standard Ethernet) and IEEE 802.3. They differ in the way that each frame identifies the upper layer protocol. Ethernet II uses a TYPE value for the identification and IEEE 802.3 uses a data LENGTH indicator.

Both Ethernet II and 802.3 can use the same physical component for communication. There are four transmission speeds and they are 10 Mbps, 100 Mbps, 1000 Mbps (Gigabit) and the new 10000 Mbps (10 Gigabit) standard.

The 10 Mbps standards
Below are some cable standards for 10 Mbps networks:

- 10Base2 runs over a thin 50 ohm baseband coaxial cable. It is also known as thin-Ethernet.
- 10Base5 runs over standard 50 ohm baseband coaxial cable.
- 10BaseF runs over fiber optic cable.
- 10BaseT runs over unshielded twisted-pair cable.

The 100 Mbps standards (also known as Fast Ethernet)
Below are some cable standards for 100 Mbps networks:

- 100BaseFx runs over a fiber optic cable.
- 100BaseT4 runs over a four-pair twisted-pair cable.
- 100BaseTx (also known as 10Base100) runs over a two-pair twisted-pair cable.

The 1000 Mbps (Gigabit) standard
Below are some cable standards for 1000 Mbps networks:

- 1000BaseT runs over unshielded twisted-pair cable.
- 1000BaseCX/LX/DX runs over a fiber optic cable.

The most commonly used frame type is Ethernet II, although some systems use the IEEE 802.3.
2.6 Hubs, bridges, switches, and routers

There are various ways to connect a network together as described below.

Hubs
A hub is a common connection point for devices in a network. Hubs are commonly used to connect segments of a LAN. A hub contains multiple ports. When a packet arrives at one port, it is copied to the other ports so that all segments of the LAN can see all packets.

A passive hub simply serves as a conduit for the data, enabling it to go from one device (or segment) to another. So-called intelligent hubs include additional features that enable an administrator to monitor the traffic passing through the hub and to configure each port in the hub. Intelligent hubs are also called manageable hubs.

A third type of hub, called a switching hub, actually reads the destination address of each packet and then forwards the packet to the correct port.

Bridges
A bridge is a device that connects two local area networks (LANs) or two segments of the same LAN. The two LANs being connected can be similar or dissimilar. For example, a bridge can connect an Ethernet with a token-ring network.

Unlike routers, bridges are protocol-independent. They simply forward packets without analyzing and re-routing messages. Consequently, they are faster than routers, but also less versatile.

Switches
A switch is a device that filters and forwards packets between LAN segments. Switches operate at the Data Link Layer (layer 2) of the OSI Reference Model and therefore support any packet protocol. LANs that use switches to join segments are called switched LANs or, in the case of Ethernet networks, switched Ethernet LANs.

Routers
A router is a device that connects any number of LANs.

Routers use headers and a forwarding table to determine where packets go, and they may communicate with each other in order to configure the best route between any two hosts.
Very little filtering of data is done through routers. Routers do not care about the type of data they handle.

Switched and non-switched 10BaseT systems
The following section discusses the main differences between non-switched 10BaseT networks using hubs and switched 10BaseT systems.

To understand why switches provide more functionality than hubs, a fundamental limitation of (non-switched) Ethernet should be understood. There can only be one device transmitting on a segment at any given time. If two or more devices attempt to transmit at the same time, a collision occurs. (An Ethernet segment where only one conversation can occur is called a collision domain.) After a collision, all devices must retransmit. As the number of devices on an Ethernet segment increases, the probability for collisions increase. Because devices must spend more time retransmitting data, the network is perceived to be slow.

Non-switched 10BaseT networks using hubs and repeaters
Before the advent of switches, a network could be divided into segments with a device called a bridge. Bridges have two Ethernet ports. As traffic flows through a network, a bridge learns which devices (identified by the MAC or hardware address) are on each side. The bridge then makes decisions to forward or not forward each packet to the other side based on where the destination device is located. A bridge thus divides a network into two collision domains, allowing two independent conversations to occur. If a bridge is placed intelligently, for example separating two departments and their respective file servers, they can improve network efficiency.

On non-switched networks, small mini-hubs may still be appropriate for offices where there are not enough jacks for every device.

Switched 10BaseT networks using switches
Hubs do no processing on network traffic; they simply repeat the incoming signal to all available ports. On a switch, every port acts as a bridge. If each switch port is connected to a single device, each device can, in principle, act independently of every other device.

For example, consider a switch with the following devices attached:

- Computer 1
- Computer 2
- Computer 3
- Printer
- File server
- Uplink to the Internet
In this case, computer 1 could be printing a document, while computer 2 connects to a file server, while computer 3 accesses the Internet. Because the switch intelligently forwards traffic only to the devices involved, there can be multiple independent simultaneous conversations.

2.7 Network protocols

All communications software uses protocols, sets of semantic and syntactic rules that determine the behavior of functional units in achieving communication. Protocols define how information is delivered, how it is enclosed to reach its destination safely, and what path it should follow. Protocols also coordinate the flow of messages and their acknowledgments.

Protocols exist at different levels within a UNIX kernel and cannot be directly manipulated. However, they are indirectly manipulated by what the user chooses to do at the application programming interface (API) level. The choices a user makes when invoking file transfer, remote login, or terminal emulation programs define the protocols used in the execution of those programs.

There are various protocols available. With the Internet being so popular, the most common is TCP/IP, which is a combination of TCP and IP protocols.

To help understand the interaction between the different protocols and the layer on which they work, refer to Figure 2-4. This is the TCP/IP protocol suite, as this is the most common protocol being used.

![TCP/IP protocol suite](image)

Address Resolution Protocol

Each network adapter has assigned a unique hardware address and the Hardware Layer uses them in order to define the destination of each network message within the same LAN. The ARP protocol is used to translate Internet
addresses into the hardware addresses on local area networks. Unlike most protocols, ARP packets do not have fixed-format headers. Instead, the message is designed to be used with a variety of network technologies. ARP is not used in point-to-point connections (for example Serial Line Internet Protocol (SLIP) or Serial Optical Channel Converter) since the destination of messages at the Hardware Layer is always the same.

The kernel maintains an IP address to hardware address translation table, and the ARP is not directly available to users or applications. When an application sends an Internet packet to one of the interface drivers, the driver requests the appropriate address mapping in order to define the destination from the Hardware Layer point of view. If the mapping is not in the table, an ARP broadcast packet is sent through the requesting interface driver to the hosts on the local area network. When any host that supports ARP receives an ARP request packet, it notes the IP and hardware addresses of the requesting system and updates its mapping table. If the receiving host does not match the requested IP address, it discards the request packet, otherwise it sends a response packet to the requesting system, containing its own hardware address. The requesting system learns in this way the new IP to hardware address mapping and stores it in the translation table.

Entries in the ARP mapping table are deleted after 20 minutes, while incomplete entries (ARP requests not answered) are deleted after three minutes. A permanent entry can be made in the ARP mapping tables using the `arp` command. The ARP cache works similar to a processor cache, using set associativity to determine cache replacement. Using the `no` command, it is possible to adjust the ARP table size if the number of systems on a subnet is very high.

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is used to report communication errors or to test reachability from the source to the destination host. The `ping` command, for example, uses ICMP messages. ICMP uses the basic support of IP as though ICMP were a higher level protocol; however, ICMP is actually an integral part of IP and must be implemented by every IP module.

Internet Protocol

The Internet Protocol (IP) provides unreliable, connectionless packet delivery for the Internet. IP is connectionless because it treats each packet of information independently. It is unreliable because it does not guarantee delivery or have error recovery (that is, it does not require acknowledgments from the sending host, the receiving host, or intermediate hosts). It does provide basic flow control.
Simple Network Management Protocol
The Simple Network Management Protocol (SNMP) is a protocol for remotely performing administrative functions on a device.

Network Time Protocol
The Network Time Protocol (NTP) is available only in AIX Version 4.2 or later versions. It provides clock synchronization with time servers.

User Datagram Protocol
The User Datagram Protocol (UDP) is an unreliable user-level transport protocol for transaction-oriented applications. It handles datagram sockets and uses the IP for network services. It is up to the application that uses UDP to ensure transport reliability.

Transmission Control Protocol
TCP provides reliable stream delivery of data between Internet hosts. Like UDP, TCP uses the Internet Protocol, the underlying protocol, to transport datagrams, and supports the block transmission of a continuous stream of datagrams between process ports. Unlike UDP, TCP provides reliable message delivery. TCP ensures that data is not damaged, lost, duplicated, or delivered out of order to a receiving process. This assurance of transport reliability keeps applications programmers from having to build communications safeguards into their software.

Point-to-Point Protocol (PPP)
The Point-to-Point Protocol (PPP) is an open protocol for wide area network TCP/IP connectivity that can support both dial and leased lines. It can also be used to extend an enterprise intranet across multiple locations. PPP is a more robust alternative to Serial Line Internet Protocol (see Chapter 11, “Serial Line Internet Protocol” on page 247 for more information) when used as a dial-up protocol.

Point-to-point circuits in the form of asynchronous and synchronous lines have long been the mainstay for data communications.

PPP has three main components:
1. A method for encapsulating datagrams over serial links.
2. A Link Control Protocol (LCP) for establishing, configuring, and testing the data-link connection.
3. A family of Network Control Protocols (NCPs) for establishing and configuring different Network Layer protocols. PPP is designed to allow the simultaneous use of multiple Network Layer protocols.
PPP differentiates between client and server. This operating system can act as both a client and a server. The distinction is made to simplify configuration. PPP servers tend to allocate a pool of IP addresses among the connections that are being made. There is some correlation between the media devices. This implementation of PPP breaks this correlation. All server PPP connections are allocated on a first-available basis. This facilitates the separation of PPP from the media. The attachment process must request to be linked to the proper type of link. PPP links use a pool of IP addresses, so normal IP traffic can be confused with PPP IP addresses. It is recommended that PPP use a unique set of unused IP addresses and a machine with PPP active not have other services started.

2.7.1 Protocol summary

Table 2-1 summarizes which major protocols are used by which services and commands.

<table>
<thead>
<tr>
<th>Protocol name</th>
<th>Description</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Protocol</td>
<td>Provided by the program that uses TCP/IP for communication.</td>
<td>Used by TELNET, FTP, SNMP, and others.</td>
</tr>
<tr>
<td>TCP Protocol</td>
<td>Provides connection-oriented reliable data delivery, duplicate data suppression, congestion control, and flow control.</td>
<td>TCP function calls such as open, send, receive, and others.</td>
</tr>
<tr>
<td>UDP Protocol</td>
<td>Provides connectionless, unreliable, best-effort service.</td>
<td>UDP applications such as TFTP, DNS, NFS, RPC, and others.</td>
</tr>
<tr>
<td>Internet Protocol</td>
<td>Hides the underlying physical network by creating a virtual network view.</td>
<td>Includes IP addressing, IP subnet, IP routing, etc. Other internetwork layer protocols are IP, ICMP, IGMP, ARP and RARP.</td>
</tr>
<tr>
<td>Network Interfaces</td>
<td>Allow TCP/IP traffic to flow over various kinds of physical networks.</td>
<td>Includes Ethernet, token-ring, FDDI, SLIP, PPP, and others.</td>
</tr>
</tbody>
</table>

2.8 Networking hardware

The following sections discuss network adapters, drivers, and interfaces.
2.8.1 Network adapters

In AIX, TCP/IP networking is supported by several network adapter cards and connections, including:

- Ethernet adapters (10/100 MBps) (either built-in or adapter cards)
- Gigabit Ethernet
- Token-ring
- Fiber Distributed Data Interface (FDDI)
- Asynchronous Transfer Mode (ATM) Turboways 100/155
- Asynchronous adapters and native serial ports
- Serial Optical Channel Converter

Adding a network adapter

When an adapter is added to the system, a logical device is created in the ODM, for example Ethernet adapters, as follows:

```
# lsdev -Cc adapter | grep ent
ent0    Available 10-80    IBM PCI Ethernet Adapter (22100020)
ent1    Available 20-60    Gigabit Ethernet-SX PCI Adapter (14100401)
```

A corresponding network interface will allow TCP/IP to use the adapter. For auto-detectable adapters, such as Ethernet and token-ring, the network interface is automatically created. For other types (for example, ATM), an interface might need to be manually created.

To configure the new network interface, use the SMIT command `smit mkinet`.

To load additional drivers, if required, use the `smit installp` command.

AIX location codes

In the following, the AIX location codes are described for the purpose of identifying the location of network adapters on your system. The AIX location code is a way of identifying physical devices. The actual location code values vary among the different server architecture types such as MCA, PCI RSPC, and PCI CHRP, but the same format is used.

The location code consists of up to four fields of information depending on the type of device. The basic formats of the AIX location codes are:

- **AB-CD-EF-GH** For planars, adapters and any non-SCSI devices
- **AB-CD-EF-G,H** For SCSI devices/drives

For planars, adapter cards, and non-SCSI devices, the location code is defined as:
AB The AB value identifies a bus type or PCI parent bus as assigned by the firmware.

CD The CD value identifies adapter number, adapter's devfunc number or physical location. The devfunc number is defined as the PCI device number times 8 plus the function number.

EF The EF value identifies the connector ID used to identify the adapter's connector that a resource is attached to.

GH Identifies a port, address, device, or field replaceable unit (FRU).

Adapters such as network adapters and network cards are identified with just AB-CD.

The possible values for AB are:

00 Processor bus
01 ISA bus
02 EISA bus
03 MCA bus
04 PCI bus (used in the case where the PCI bus cannot be identified)
05 PCMCIA buses
xy For PCI adapters where x is equal to or greater than 1. The x and y are characters in the range of 0-9, A-H, J-N, P-Z (O, I, and lowercase are omitted) and are equal to the parent bus's ibm, aix-loc Open Firmware Property.

The possible values for CD depend on the adapter/card:

PCI adapters/cards CD is the device's devfunc number. The C and D are characters in the range of hexadecimal numbers 0-F.

Pluggable ISA adapters CD is equal to the order the ISA cards are defined/configured either by SMIT or the ISA Adapter Configuration Service Aid.

Integrated ISA adapters CD is equal to a unique code identifying the ISA adapter. In most cases this is equal to the adapter's physical location code. In cases where a physical location code is not available, CD will be FF.

To illustrate the usage of AIX location codes used for a network adapter, Table 2-2 on page 27 lists those for a RS/6000 7025 Model F50.
Table 2-2 RS/6000 7025 F50 AIX Location Codes

<table>
<thead>
<tr>
<th>Location Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-80</td>
<td>Ethernet Port.</td>
</tr>
<tr>
<td>20-58 to 20-5F</td>
<td>Any PCI card in slot 1. PCI 64-bit bus</td>
</tr>
<tr>
<td>20-60 to 20-67</td>
<td>Any PCI card in slot 2. PCI 64-bit bus</td>
</tr>
<tr>
<td>10-68 to 10-6F</td>
<td>Any PCI card in slot 3. PCI 32-bit bus</td>
</tr>
<tr>
<td>10-70 to 10-77</td>
<td>Any PCI card in slot 4. PCI 32-bit bus</td>
</tr>
<tr>
<td>10-78 to 10-7F</td>
<td>Any PCI card in slot 5. PCI 32-bit bus</td>
</tr>
<tr>
<td>30-60 to 30-67</td>
<td>Any PCI card in slot 6. PCI 32-bit bus</td>
</tr>
<tr>
<td>30-68 to 30-6F</td>
<td>Any PCI card in slot 7. PCI 32-bit bus</td>
</tr>
<tr>
<td>30-70 to 30-77</td>
<td>Any PCI/ISA card in slot 8.</td>
</tr>
<tr>
<td>30-78 to 30-7F</td>
<td>Any PCI/ISA card in slot 9</td>
</tr>
</tbody>
</table>

To identify the adapter location, list the adapters on the system using the `lsdev` command, as follows:

```
# lsdev -Cc adapter
ppa0    Available 01-R1    Standard I/O Parallel Port Adapter
sa0     Available 01-S1    Standard I/O Serial Port
sa1     Available 01-S2    Standard I/O Serial Port
sa2     Available 01-S3    Standard I/O Serial Port
siokma0 Available 01-K1    Keyboard/Mouse Adapter
fda0    Available 01-D1    Standard I/O Diskette Adapter
scsi0   Available 10-60    Wide SCSI I/O Controller
tonk0   Available 10-68    IBM PCI Tokenring Adapter (14103e00)
ten0    Available 10-80    IBM PCI Ethernet Adapter (22100020)
mg20    Available 20-58    GXT130P Graphics Adapter
ent1    Available 20-60    Gigabit Ethernet-SX PCI Adapter (14100401)
scsi1   Available 30-58    Wide SCSI I/O Controller
sioka0  Available 01-K1-00 Keyboard Adapter
sioma0  Available 01-K1-01 Mouse Adapter
```

The network adapters on this system are tok0 (a PCI token-ring adapter card with location code 10-68), ent0 (a built-in Ethernet adapter with location code 10-80), and a PCI Gigabit Ethernet adapter card with location code 20-60. Using the location table, it is possible to see that the Gigabit Ethernet adapter card is located in the 64-bit PCI slot 2. The token-ring adapter card is located in 32-bit PCI slot 3.

Table 2-2 lists the location codes of a pSeries 640 Model B80.
Table 2-3 pSeries 640 Model B80 AIX location codes

<table>
<thead>
<tr>
<th>Location code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-60</td>
<td>Ethernet port 1</td>
</tr>
<tr>
<td>10-80</td>
<td>Ethernet port 2</td>
</tr>
<tr>
<td>20-58 to 20-5F</td>
<td>Card in PCI Slot 1P</td>
</tr>
<tr>
<td>20-60 to 20-67</td>
<td>Card in PCI Slot 2P</td>
</tr>
<tr>
<td>10-68 to 10-6F</td>
<td>Card in PCI Slot 3P</td>
</tr>
<tr>
<td>10-70 to 10-77</td>
<td>Card in PCI Slot 4P</td>
</tr>
<tr>
<td>10-78 to 107F</td>
<td>Card in PCI Slot 5P</td>
</tr>
<tr>
<td>01-R1</td>
<td>Parallel Port</td>
</tr>
<tr>
<td>01-S2</td>
<td>Serial Port 2</td>
</tr>
<tr>
<td>01-S3</td>
<td>Serial Port 3</td>
</tr>
<tr>
<td>10-88</td>
<td>Internal SCSI</td>
</tr>
<tr>
<td>10-89</td>
<td>External SCSI</td>
</tr>
</tbody>
</table>

Note: Recommendations on the placement of adapter cards for the different server models can be found in PCI Adapter Placement Reference, SA38-0538.

The location code table is not valid for all RS/6000 PCI CHRP models. For a precise description of the AIX location code for a specific RS/6000 or pSeries model, refer to the user's guide of that system. You can also use the following URL:

The `lscfg` command displays configuration, diagnostic, location and vital product data (VPD) information about the system. Below is an example of the `lscfg` command:

```
# lscfg
INSTALLED RESOURCE LIST
```

The following resources are installed on the machine.
+/- = Added or deleted from Resource List.
* = Diagnostic support not available.
Removing a network adapter

To remove a network adapter you first have to remove the network interfaces and remove the adapter device afterwards.

For an ent1 Ethernet adapter, perform the following steps (remember that both ent1 and et1 exists):

1. List the adapter:
   ```
   # lsdev -C1 ent1
   ent1 Available 04-D0 IBM PCI Ethernet Adapter (22100020)
   ```

2. List the network interface definition:
   ```
   # lsdev -C1 en1
   en1 Available Standard Ethernet Network Interface
   ```

3. Bring the interface down:
   ```
   # ifconfig en1 down
   ```

4. Delete the network interface definition for the adapter:
   ```
   # ifconfig en1 detach
   ```

5. Delete the network interface driver for the adapter:
   ```
   # rmdev -l en1 -d
   en1 deleted
   # rmdev -l ent1 -d
   ent1 deleted
   ```

After this, you can shut down, power off the system, and physically remove the adapter, or, if you are using a PCI hot-swap slot, deactivate the PCI slot and remove the adapter while the system is running.
2.8.2 Network drivers

To verify which driver for your adapter is installed in your system, verify your network adapter type using the `lsdev` command and check the device ID of the adapter, which is the number in brackets after the adapter description. Search for the corresponding LPP using the `lslpp` command. The following example shows how to retrieve driver information for a Gigabit Ethernet Adapter:

```
# lsdev -Cc adapter | grep ent
ent0    Available 10-80    IBM PCI Ethernet Adapter (22100020)
ent1    Available 20-60    Gigabit Ethernet-SX PCI Adapter (14100401)
```

```
# lslpp -l | grep 14100401
devices.pci.14100401.diag  4.3.3.0 COMMITTED Gigabit Ethernet-SX PCI
devices.pci.14100401.rte  4.3.3.10 COMMITTED Gigabit Ethernet-SX PCI
```

You can use the `lppchk` command to verify that files for an installable software product (fileset) match the Software Vital Product Data (SWVPD) database information for file sizes, checksum values, or symbolic links. For example, to verify that all filesets have all required prerequisites and are completely installed, enter:

```
# lppchk -v
```

Missing driver

If the new hardware is not listed when using the `lsdev` command (for example, `lsdev -Cc adapter`), you can determine the missing software by running `cfgmgr` from a command window. The `cfgmgr` command will display a warning and indicate the missing driver filesets:

```
# cfgmgr
cfgmgr: 0514-621 WARNING: The following device packages are required for
device support but are not currently installed.
IBMW25H3037:devices.pci.IBM.38H5818
```

Install the missing driver software and re-run `cfgmgr` or insert the first AIX CD and run `cfgmgr -i /dev/cd0`. If `cfgmgr` does not display a warning message, the adapter device was created using the correct driver.

Network driver attributes

To see the actual driver setting or list of attributes of a network driver, use the `lsattr` command. This will list all the available driver attributes names with their current values and a description of the purpose of the attribute. Each driver attribute has a flag indicating if the attribute is changeable or not.
This example lists the attributes of a Gigabit Ethernet Driver. Notice that the attributes `busmem`, `busintr`, `intr_priority`, and `rx_que_size` are not changeable. The values for this PCI network card are set automatically by the system.

If the attribute flag is set to True, then the value can be changed by the `chdev` command, as follows:

```
# chdev -l ent1 -a rx_checksum=yes
ent1 changed
```

Before changing any network driver attribute, refer to the publications for the specific device driver. For best performance, interface settings must match the network settings.

The `lsattr` command can assist in setting the correct value for the network driver attributes. The `-R` flag provides information about the value range for a specific driver attribute:

```
# lsattr -R -l ent1 -a stat_ticks
1000...1000000 (+1)
```

This example shows that the attribute `stat_tick` (clock ticks before statistics updated) can be set from 1000 to 1000000 using integer numbers.

2.9 AIX network interfaces

The interfaces listed in Table 2-4 on page 32 are supported by AIX Version 4.3. There may be multiple devices of the same type in the system and each device
will have an interface. The x after the adapter and interface names indicates the number of the adapter or interface respectively, starting from 0. The number increases for each adapter added to the system.

Table 2-4 AIX Version 4.3 supported interfaces

<table>
<thead>
<tr>
<th>Adapter</th>
<th>Interface</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>lo0</td>
<td>Loopback</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>entx</td>
<td>enx</td>
<td>Standard Ethernet (all speeds 10/100/Gigabit)</td>
</tr>
<tr>
<td>entx</td>
<td>etx</td>
<td>IEEE 802.3</td>
</tr>
<tr>
<td>tokx</td>
<td>trx</td>
<td>Token-ring</td>
</tr>
<tr>
<td>atmx</td>
<td>atx</td>
<td>Asynchronous Transfer Mode (ATM)</td>
</tr>
<tr>
<td>fddix</td>
<td>fix</td>
<td>Fiber Distributed Data Interface (FDDI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sax</td>
<td>slx</td>
<td>Serial Line Internet Protocol (SLIP)</td>
</tr>
<tr>
<td>sax</td>
<td>ppx</td>
<td>Point-to-Point Protocol (PPP)</td>
</tr>
<tr>
<td>sx25ax</td>
<td>xsx</td>
<td>X.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP or Mainframe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cssx</td>
<td>cssx</td>
<td>SP Switch</td>
</tr>
<tr>
<td>opsx</td>
<td>sox</td>
<td>Serial Optical Channel Converter</td>
</tr>
<tr>
<td>catx</td>
<td>cax</td>
<td>370 Parallel Channel Network Interface</td>
</tr>
</tbody>
</table>

Note that for Ethernet adapters, the standard Ethernet (en), and 802.3 (et) network technologies use the same type of adapter.

The `lsdev` command can be used to list the available network interfaces on your system:

```
# lsdev -Cc if
en0 Available Standard Ethernet Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
lo0 Available Loopback Network Interface
tr0 Available Token Ring Network Interface
```

Similar to the network adapter, the network interface attributes can be changed using a combination of the `lsattr` and `chdev` command.
For example:

```bash
# lsattr -E -l en0 -a netaddr
netaddr 10.47.1.5 Internet Address True
```

The following example shows how `chdev` can be used to change the IP address of the system.

```bash
# chdev -l en0 -a netaddr=10.47.1.6
en0 changed
# ifconfig en0
en0:
   flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
   inet 10.47.1.6 netmask 0xffff0000 broadcast 10.47.255.255
```

Note: Be aware of the following considerations:

- The Ethernet adapter can be used for either Ethernet or IEEE 802.3.
- There can be multiple adapters of the same type in the system and each will have its own interface.

2.10 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which one of the following adapters may directly connect with fiber optic cables?
 - A. Arcnet
 - B. FDDI
 - C. 16 MB token-ring
 - D. 10 MB Ethernet
2. In some networks, an adapter may be required to use special end of the line termination resistors. Which one of the following indicates this type of network?
 A. Coaxial
 B. Fiber optic
 C. Shielded pair
 D. Unshielded twisted pair

3. Which one of the following cable types is not affected by electromagnetic interference?
 A. Coaxial
 B. Fiber optic
 C. Cat 3 UTP
 D. Cat 5 UTP

4. Which one of the following cable types is associated with an Ethernet card with a BNC connector?
 A. 10BaseT
 B. 10Base2
 C. 10Base5
 D. 10Base100

5. The IP address of the only FDDI adapter must be changed in a system. Which one of the following network interfaces should be modified?
 A. fda
 B. fd0
 C. fi0
 D. fddi0

6. In order to keep a host’s clock synchronized with other host clocks, which one of the following services should be used?
 A. NIS
 B. NTP
 C. DHCP
 D. INETD
7. Which one of the following cable types indicates that an adapter setting of “BNC” is required?
 A. Coaxial
 B. Wireless
 C. Fiber optic
 D. Twisted pair

8. Which one of the following adapter information is provided by the `lsdev -C` command?
 A. Availability
 B. Firmware levels
 C. Hardware address
 D. Transmit queue size

9. Which one of the following commands will indicate if the device driver is installed?
 A. `ls`
 B. `lslpp`
 C. `netstat`
 D. `ifconfig`

10. Which one of the following commands should be used to correctly install a device driver?
 A. `rcp`
 B. `mkdev`
 C. `smitty inet`
 D. `smitty installp`

11. Which one of the following commands reveals the current setting for an adapter's cable type?
 A. `route`
 B. `lsdev`
 C. `lslpp`
 D. `lsattr`
12. An Ethernet switch is set for half duplex on the port and leads to an adapter on an AIX machine. Which one of the following settings should result in maximum adapter performance?
 A. Half-duplex
 B. Full-duplex
 C. Autosense
 D. Autonegotiate

13. Which one of the following commands can temporarily shut down a network interface?
 A. route
 B. cfgmgr
 C. netstat
 D. ifconfig

14. On a large flat Class B network there are over 65,500 machines on the same unrouted wire. Which one of the following procedures must be performed to ensure adequate connectivity is maintained?
 A. Use multiple adapters
 B. Increase the default ARP table size
 C. Alias multiple IP addresses onto the adapters
 D. Enlarge the size of the default routing table size

15. To configure a switched virtual circuit classical IP interface on an ATM adapter, which one of the following ATM server addresses should be supplied?
 A. “ARP”
 B. “DNS”
 C. “LES”
 D. “LECS”
16. Scenario: A network administrator has been asked to integrate a new RS/6000 to be used as a corporate mail server into the network. There are five nodes on the Ethernet II network, with a network address of 193.3.7.0 and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring and integrated Ethernet adapters.

Which one of the following devices should be configured for this?

A. at0
B. tr0
C. et0
D. en0

17. An AIX box can ping successfully through a hub. However, when the same cable is disconnected from the hub and connected to a switch, the ping fails. In which one of the following is the problem most likely to be occurring?

A. The cable
B. The switch
C. The AIX box
D. The target of the ping

18. If AIX is configured with the same Internet address for the Ethernet network and PPP setup, which one of the following options is true?

A. The `pppattachd` command will not need to be run.
B. One of the network interfaces will be unusable for outbound traffic.
C. A separate route will not need to be created for the PPP connection.
D. It will automatically create a new IP address at the start of the PPP connection.

19. Given a subnet mask of 255.255.255.0, which one of the following addresses should be used to broadcast a packet to all subnets?

A. 129.35.35.255
B. 129.35.255.255
C. 129.255.255.255
D. 255.255.255.255
20. In a network with subnets, a packet with destination IP address 255.255.255.255 is:
 A. An invalid packet.
 B. A broadcast to a subnet.
 C. A broadcast to all hosts connected to the Internet.
 D. A broadcast to every host directly attached to the local network.

21. Which one of the following commands indicates physical slot locations for every adapter installed?
 A. `lscfg`
 B. `ls1pp`
 C. `lsattr`
 D. `ifconfig`

22. Which one of the following commands can be used to check if the ent0 adapter is available?
 A. `ifconfig en0`
 B. `lscfg -vl ent0`
 C. `lsattr -El ent0`
 D. `lsdev -Cl ent0`
2.10.1 Answers

The following are the preferred answers to the questions provided in this section:

1. B
2. A
3. B
4. B
5. C
6. B
7. A
8. A
9. B
10.D
11.D
12.A
13.D
14.B
15.A
16.D
17.B
18.B
19.B
20.D
21.A
22.D

2.11 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. What interfaces are used by AIX for the different protocols?
2. Explain the differences between the cables and in which type of system they will most likely be used.
Network addressing and routing

The following topics are discussed in this chapter:

- The IP addressing overview
- Routing concepts
- Setting up the router

This chapter contains an introduction to TCP/IP and discusses the network addressing and routing protocols.
3.1 Internet addressing

If you want your machines to communicate with each other across the TCP/IP network, you must give them unique IP addresses. Each host is assigned a unique 32-bit logical address (in the case of IPv4) that is divided into two main parts: the network number and the host number. The network number identifies a logical network to which the host belongs and must be the same across the subnet. The host number identifies a host on the specific logical network.

3.1.1 IP address format

The IP address is the 32-bit address, grouped eight bits at a time, separated by dots and represented in decimal format - *dotted decimal notation*. Each bit in the octet has a binary weight (128, 64, 32, 16, 8, 4, 2, 1). The minimum value for an octet is 0, and the maximum value for an octet is 255. Figure 3-1 illustrates the basic format of an IP address.

![Figure 3-1 IP address format](image)

Binary to decimal conversion review

The decimal value of the bits ranges from high to low with the leftmost bit in every byte having the highest value of 128. To convert from binary value to decimal value, add decimal values on the position where the bits have a value of 1. An example is shown in Figure 3-2 on page 43.
If you are not sure, you can use the `bc` command. To make the conversion of value 195 to binary format, enter:

```
# bc
obase=2
195
11000011
```

To convert binary value 11001100 to decimal value, enter:

```
# bc
ibase=2
11001100
204
```

3.1.2 Internet address classes

IP addressing supports five different address classes: A, B, C, D and E. Classes A, B and C are available for commercial networking use. You can recognize the network class by first checking bits in the first octet of an address’ network part.

After converting all of those bits to binary format and recalculating numbers of hosts and networks, you receive data as shown in Figure 3-3 on page 44.
Figure 3-3 IP address classes

To determine an IP address’s class use Table 3-1. For example, in the IP address 195.116.119.2, the first octet is 195. Because 195 falls between 192 and 223, 195.116.119.2 is a class C address.

Table 3-1 IP address classes

<table>
<thead>
<tr>
<th>IP address class</th>
<th>Format</th>
<th>First octet</th>
<th>Address range</th>
<th>Number bits network / host</th>
<th>Number of hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>N.H.H.H</td>
<td>0</td>
<td>1.0.0.0</td>
<td>7 / 24</td>
<td>$2^{24} - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>127.0.0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>127.0.0.0 - 127.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>N.N.H.H</td>
<td>10</td>
<td>128.1.0.0</td>
<td>14 / 16</td>
<td>$2^{16} - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128.1.0.0 - 128.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128.1.0.0 - 128.127.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>191.254.0.0</td>
<td></td>
<td>$2^{16} - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>191.254.0.0 - 191.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>191.254.0.0 - 191.127.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>N.N.N.H</td>
<td>110</td>
<td>192.0.1.0</td>
<td>22 / 8</td>
<td>$2^{8} - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192.0.1.0 - 192.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>192.0.1.0 - 192.0.127.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>223.255.0.0</td>
<td></td>
<td>$2^{8} - 2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>223.255.0.0 - 223.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>223.255.0.0 - 223.254.127.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>1110</td>
<td>224.0.0.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>224.0.0.0 - 239.255.255.255</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>224.0.0.0 - 224.127.255.255</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N - Network number
H - Host number

Class A, B, and C provide address ranges that are useful to define a private network without INTERNIC authorization. A private network can have the following address ranges:
3. Network addressing and routing

Class A
10.0.0.0 to 10.255.255.255

Class B
172.16.0.0 to 172.31.255.255

Class C
192.168.0.0 to 192.168.255.255

Internet Assigned Numbers Authority (IANA) can be contacted to get a public address. If a domain name is required, INTERNIC provides a list of authorized organizations who can allocate domain names. Visit the following IANA and INTERNIC sites for further details:

http://www.iana.org
http://www.internic.net

3.1.3 Special Internet addresses

There are a few IP addresses that cannot be used as a host address. Those addresses are used for special occasions.

The loopback address

The Internet Protocol defines the special network address, 127.0.0.1, as a local *loopback* address. Hosts use local *loopback* addresses to send messages to themselves. The loopback interface allows a client and server on the same host to communicate with each other using TCP/IP. The network class A with network address 127 is reserved for the loopback interface lo0. AIX assigns the IP address 127.0.0.1 to this interface and assigns it the name *localhost*. To check attributes of any interface use the `ifconfig` or `lsattr` command.

```
# ifconfig lo0
lo0:
  flags=e08084b<UP,BROADCAST,LOOPBACK,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
  inet 127.0.0.1 netmask 0xff000000 broadcast 127.255.255.255
  inet6 ::1/0

# lsattr -El lo0
  netaddr 127.0.0.1 Internet Address            True
  state    up    Current Interface Status       True
  netmask  Subnet Mask                           True
  mtu      16896 Maximum IP Packet Size for This Device True
  netaddr6 ::1 N/A                                 True
  prefixlen Subnet Mask                          True
```

The network address

The *network address* is an IP address with all host address bits set to 0. If you have IP address 195.116.119.2, the network address for this will be 195.116.119.0. This type of address is used in the routing table as the network destination address. An example routing table as follows (0 is omitted in the routing tables):
The broadcast address

TCP/IP can send data to all hosts on a local network or to all hosts on all directly connected networks. Such transmissions are called broadcast messages. For example, the routed routing daemon uses broadcast messages to query and respond to routing queries. Broadcast addresses are never valid as a source address. They must specify the destination address. The different types of broadcast addresses include:

- **Limited broadcast address**
 This uses the address 255.255.255.255 (all bits 1 in all parts of the IP address). It refers to all hosts on the local subnet. This is recognized by every host. The hosts do not need any IP configuration information. Routers do not forward this packet.

- **Network-directed broadcast address**
 This is used in an unsubnetted environment. The network number is a valid network number and the host number is all ones (for example, 128.2.255.255). This address refers to all hosts on the specified network. Routers should forward these broadcast messages. This is used in ARP requests on unsubnetted networks.

- **Subnet-directed broadcast address**
 If the network number is a valid network number, the subnet number is a valid subnet number and the host number is all ones, then the address refers to all hosts on the specified subnet. Since the sender's subnet and the target subnet may have different subnet masks, the sender must somehow find out the subnet mask in use at the target. The actual broadcast is performed by the router that receives the datagram into the subnet.

- **All-subnets-directed broadcast address**
 If the network number is a valid network number, the network is subnetted and the local part is all ones (for example, 128.2.255.255), then the address refers to all hosts on all subnets in the specified network. In principle, routers may propagate broadcasts for all subnets, but are not required to do so. In practice, they do not. There are very few circumstances where such a broadcast is desirable. If misconfigured, it can lead to problems. Consider the

```
# netstat -nr
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups
Route Tree for Protocol Family 2 (Internet):
default 9.3.240.1 UGC 0 0 tr0 - -
9.3.240/24 9.3.240.58 U 30 130787 tr0 - -
127/8 127.0.0.1 U 54 1300 lo0 - -
195.116.119/24 195.116.119.2 U 0 2 en0 - -
```
misconfigured host 9.180.214.114 in a subnetted Class A network. If the
device was configured with the address 9.255.255.255 as a local broadcast
address instead of 9.180.214.255, all of the routers in the network will forward
the request to all clients.

If routers do respect all-subnets-directed broadcast address, they use an
algorithm called reverse path forwarding to prevent the broadcast messages
from multiplying out of control.

For example, to check the broadcast setting for interface en0, enter:

```
# ifconfig en0
en0:
flags=4e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64
BIT,PSEG>
          inet 9.3.4.100 netmask 0xfffffe00 broadcast 9.3.5.255
```

The multicast address

The use of Internet Protocol (IP) multicasting enables a message to be
transmitted to a group of hosts, instead of having to address and send the
message to each group member individually. Internet addressing provides for
Class D addressing that is used for multicasting. IP multicast is a routing
technique that allows IP traffic to be sent from one source or multiple sources
and delivered to multiple destinations. Instead of sending individual packets to
each destination, a single packet is sent to a multicast group, which is identified
by a single IP destination group address. The intent of multicasting is to reduce
the load on hosts not required to receive the message. IP multicasting is used
with Internet Chat, Internet Talk Radio, Internet Phone, and Video conferencing.

Every network traffic IP multicast also needs to be routed between networks. AIX
uses the mrouted daemon that multicasts traffic between multicast-capable
subnetworks. The /etc/mrouted.conf configuration file contains entries that
provide configuration information used by the mrouted daemon.

The last column of Table 3-1 on page 44 shows the number of hosts in the
appropriate network class. The reason for subtracting two hosts is that one
address is reserved for the broadcast address, and one address is reserved for
the network address.

3.1.4 Subnetting

Subnet addressing allows an autonomous system made up of multiple networks
to share the same Internet address class. The subnetwork capability of TCP/IP
also makes it possible to divide a single network into multiple logical networks
(subnets). This makes sense for class A and class B addresses, since attaching
thousands of hosts to a single network is impossible.
A standard IP address has two fields (see 3.1.1, “IP address format” on page 42): a network address and a host address. A subnet address is created by borrowing bits from the host field and designating them as the subnet field. The number of borrowed subnet bits varies and it depends of the chosen subnet mask. Figure 3-4 shows how bits are borrowed from the host address field to create the subnet address field and how the subnet mask works.

![Figure 3-4 Subnetting example](image)

When deciding how to partition the host address into the subnet address and host address, you should consider the number of subnets and the number of hosts on those subnets.

You have great flexibility when assigning subnet addresses and host addresses. The bits of the host address can be divided according to the needs and potential growth of the organization and its network structure. The only restrictions are:

- Network address is constant for all its subnets.
- Subnet address is constant throughout the physical network.
- Host address is a field that is normally at least 2 bits wide.

If the width of the subnet address field is 0, the network is not organized into subnets, and addressing to the network is performed using the Internet network address as mentioned in 3.1.1, “IP address format” on page 42.

Note: It is generally desirable for the subnet bits to be contiguous and located as the most significant bits of the host address.
Subnet mask

The subnet mask tells the system what the subnet partitioning scheme is. This bit mask consists of the network address portion and subnet address portion of the IP address.

The host number part of the IP address is subdivided into a second network number and a host number. This second network is termed a subnetwork or subnet. The main network now consists of a number of subnets. The IP address is interpreted as:

<network number><subnet number><host number>

The combination of subnet number and host number is often termed the local address or the local portion of the IP address. Subnetting is implemented in a way that is transparent to remote networks. A host within a network that has subnets is aware of the subnetting structure. A host in a different network is not. This remote host still regards the local part of the IP address as a host number.

When a host sends a message to a destination, the system must determine whether the destination is on the same network as the source or if the destination can be reached through a gateway. The system compares the destination address to the host address using the subnet mask. If the destination is not on the local network, the system sends the packet to a gateway. The gateway performs the same comparison to see if the destination address is on a network it can reach locally.

Table 3-2 shows how to calculate the subnet mask from binary format to the dotted decimal notation.

Table 3-2 Subnet mask calculation

<table>
<thead>
<tr>
<th>Bits of octet</th>
<th>Mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>128 64 32 16 8 4 2 1</td>
<td></td>
</tr>
<tr>
<td>1 0 0 0 0 0 0 0</td>
<td>128</td>
</tr>
<tr>
<td>1 1 0 0 0 0 0 0</td>
<td>192</td>
</tr>
<tr>
<td>1 1 1 0 0 0 0 0</td>
<td>224</td>
</tr>
<tr>
<td>1 1 1 1 0 0 0 0</td>
<td>240</td>
</tr>
<tr>
<td>1 1 1 1 1 0 0 0</td>
<td>248</td>
</tr>
<tr>
<td>1 1 1 1 1 1 0 0</td>
<td>252</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 0</td>
<td>254</td>
</tr>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>255</td>
</tr>
</tbody>
</table>
A subnet mask is 32 bits long. A bit set to 1 in the subnet mask indicates that bit position is part of the network address portion of the IP address. A bit set to 0 in the subnet mask indicates that bit position is part of the host address portion of the IP address.

There are default subnet mask sets (Figure 3-5) for each network class address. Using an address with a default subnet mask for an address class indicates that subnets are not set up for the network.

Figure 3-5 Default subnet mask for network classes

The class A address subnetting example

Take, for example, a subnet mask of 255.255.255.192 (or 11111111 11111111 11111111 11000000 in bit notation). Note that, by convention, the <network address> is included in the mask as well.

Because of the all bits 0 and all bits 1 restrictions, this defines $2^{18}-2$ (from 1 to 262143) valid subnets. This split provides 262142 subnets, each with a maximum of 2^6-2 (62) hosts.

The value applied to the subnet number takes the value of the full octet with non-significant bits set to zero. For example, the hexadecimal value 01 in this subnet mask assumes an 8-bit value 01000000. This provides a subnet value of 64.

Applying the 255.255.255.192 to the sample class A address 9.67.38.1 provides the following information:

```
00001001 01000011 00100110 00000001 = 9.67.38.1 (class A address)
```
This leaves a host address of:

\[------- ------- ------- --000001 = 1 \quad \text{(host address)} \]

IP will recognize all host addresses as being on the local network for which the logical AND operation described above produces the same result. This is important for routing IP datagrams in subnet environments.

The actual subnet number is:

\[------- 01000011 00100110 00------ = 68760 \quad \text{(subnet number)} \]

This subnet number is a relative number. That is, it is the 68760th subnet of network 9 with the given subnet mask. This number bears no resemblance to the actual IP address that this host has been assigned (9.67.38.1). It has no meaning in terms of IP routing.

The division of the original <host address> into <subnet><host> is chosen by the network administrator. The values of all zeroes and all ones in the <subnet> field are reserved.

The class B address subnetting example

The default subnet mask for a class B address that has no subnetting is 255.255.0.0, while the subnet mask for a class B address 172.16.0.0 that specifies 3 bits of subnetting is 255.255.224.0. The reason for this is that 3 bits of subnetting give \(2^3 - 2 = 6\) (1 for the network address and 1 for the broadcast address) subnets possible. You have 5 bits from the 3rd octet and 8 bits from the last octet forming a total of 13 bits for the host’s address. This gives you \(2^{13} - 2 = 8190\) hosts per subnet. Figure 3-6 on page 52 shows a subnetting scenario for this address.
Table 3-3 shows the subnet mask, the number of subnets, and the number of hosts depending on the numbers of bits for subnet for network class B.

Table 3-3 Class B subnetting reference chart

<table>
<thead>
<tr>
<th>Numbers of bits for subnet</th>
<th>Subnet mask</th>
<th>Number of subnets</th>
<th>Number of hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>255.255.192.0</td>
<td>2</td>
<td>16382</td>
</tr>
<tr>
<td>3</td>
<td>255.255.224.0</td>
<td>6</td>
<td>8190</td>
</tr>
<tr>
<td>4</td>
<td>255.255.240.0</td>
<td>14</td>
<td>4094</td>
</tr>
<tr>
<td>5</td>
<td>255.255.248.0</td>
<td>30</td>
<td>2046</td>
</tr>
<tr>
<td>6</td>
<td>255.255.252.0</td>
<td>62</td>
<td>1022</td>
</tr>
<tr>
<td>7</td>
<td>255.255.254.0</td>
<td>126</td>
<td>510</td>
</tr>
<tr>
<td>8</td>
<td>255.255.255.0</td>
<td>254</td>
<td>254</td>
</tr>
</tbody>
</table>
The class C address subnetting example

The subnet mask for a class C address 192.168.2.0 that specifies 5 bits of subnetting is 255.255.255.248. With 5 bits available for subnetting, \(2^5 - 2 = 30\) subnets possible. Now you have 3 bits left for the hosts part and it gives \(2^3 - 2 = 6\) hosts per subnet. Table 3-4 shows number of hosts, number of subnets, and subnet mask depending on numbers of bits for subnet.

Table 3-4 Class C subnetting reference chart

<table>
<thead>
<tr>
<th>Number of bits for subnet</th>
<th>Subnet mask</th>
<th>Number of subnets</th>
<th>Number of hosts</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>255.255.255.192</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>3</td>
<td>255.255.255.224</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>255.255.255.240</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>255.255.255.248</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>255.255.255.252</td>
<td>62</td>
<td>2</td>
</tr>
</tbody>
</table>

The class D address subnetting example

These addresses are reserved for multicasting (a sort of broadcasting, but in a limited area, and only to hosts using the same class D address). See “The multicast address” on page 47 for more details.

3.1.5 Supernetting

Whereas subnetting takes part of the host portion of the IP address and adds it to the network part portion, supernetting works the opposite way. It effectively reduces the number of bits used for the network portion. This technique allows a
number of class C addresses to be aggregated into a single address for routing purposes.

3.1.6 Address Resolution Protocol (ARP)

Machines on the same network must know each other's physical (or MAC) addresses in order to communicate. By broadcasting Address Resolution Protocol (ARP) packets, a host can dynamically discover the MAC-layer address corresponding to a particular IP Network Layer address.

To check the ARP addresses of interfaces on your system, enter:

```
# netstat -iv
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Mtu</th>
<th>Network</th>
<th>Address</th>
<th>Ipkt</th>
<th>Ierrs</th>
<th>Opkt</th>
<th>Oerrs</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>16896</td>
<td>link#1</td>
<td></td>
<td>180084</td>
<td>0</td>
<td>180138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>127</td>
<td>loopback</td>
<td>180084</td>
<td>0</td>
<td>180138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>::1</td>
<td></td>
<td>180084</td>
<td>0</td>
<td>180138</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>link#2</td>
<td>0.4.ac.61.73.f7</td>
<td>579283</td>
<td>0</td>
<td>38394</td>
<td>167</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>9.3.240</td>
<td>server4</td>
<td>579283</td>
<td>0</td>
<td>38394</td>
<td>167</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>link#3</td>
<td>8.0.5a.fc.d2.el</td>
<td>1690</td>
<td>0</td>
<td>2292</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>10.47</td>
<td>10.47.1.1</td>
<td>1690</td>
<td>0</td>
<td>2292</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

After detecting an IP-to-MAC address mapping, the system updates its ARP cache table to store the mapping, thus avoiding the need to broadcast ARP packets each time the system wants to contact the same network device. If the device is not recontacted or it does not broadcast ARP packets for a specified time, the cache entry is flushed. This is needed because if the device's adapter has been changed, it has a new MAC address with the same IP address and your system would still have the old entry in the table.

To check the ARP cache on your system, enter the `arp` command:

```
# arp -a
```

```
server3.itsc.austin.ibm.com (9.3.240.58) at 0:6:29:be:d2:a2 [token ring]
  ? (9.3.240.108) at 0:20:35:fe:49:18 [token ring]
  eagle.itsc.austin.ibm.com (9.3.240.68) at 0:20:35:7c:9:fa [token ring]
  ? (9.3.240.100) at 0:6:29:f0:e1:c [token ring]
  ? (9.3.240.75) at 0:6:29:1:a:ba [token ring]
  itso240.itsc.austin.ibm.com (9.3.240.1) at 8:0:5a:fe:21:7 [token ring]
  dhcp240.itsc.austin.ibm.com (9.3.240.2) at 0:20:35:29:b:6d [token ring]
  ? (9.3.240.103) at 0:20:35:fe:4b:5b [token ring]
  server1.itsc.austin.ibm.com (9.3.240.56) at 0:6:29:be:b1:dc [token ring]
  server2.itsc.austin.ibm.com (9.3.240.57) at 0:4:ac:61:9d:5 [token ring]
```

The ARP cache table entry contains the:

- Host name, if it only can be resolved.
- IP address.
MAC address.

Hardware interface type, such as token-ring or Ethernet.

Entries in the ARP mapping table are deleted after 20 minutes; incomplete entries are deleted after 3 minutes. To make a permanent entry in the ARP mapping tables, use the `arp` command with the pub parameter. Following is an incomplete ARP entry example:

```
server5.mycompany.example (9.3.4.29) at (incomplete)
```

When any host that supports ARP receives an ARP request packet, the host notes the IP and hardware addresses of the requesting system and updates its mapping table, if necessary. If the receiving host IP address does not match the requested address, the host discards the request packet. If the IP address does match, the receiving host sends a response packet to the requesting system. The requesting system stores the new mapping and uses it to transmit any similar pending Internet packets.

3.2 Routing

Routing allows information to be directed from a source host to a destination host in another network. There are two types of routing in TCP/IP: static routing and dynamic routing.

If you want two networks to communicate with each other, you can connect them through one machine, called a router (gateway). This machine must be physically on both networks. A router contains the addressing and routing information (routing table) for each host on its network, and may use routing daemons to broadcast routing information to, and receive routing information from, other routers. TCP/IP routes packets to the appropriate computer on the network, using its destination IP address by consulting a routing table.

TCP/IP searches the routing table for a best-fit match in following order:

1. **Host route** defines a gateway that can forward packets to a specific host or gateway on another network.

2. **Network route** defines a gateway that can forward packets to any of the hosts on a specific network.

3. **Default route** defines a gateway to use when a host or network route to a destination is not otherwise defined.
3.2.1 An introduction to static and dynamic routing

Static routing is simple table mappings established by the network administrator prior to the beginning of routing. These mappings do not change unless the network administrator alters them. Algorithms that use static routes are simple to design and work well in environments where network traffic is relatively predictable and where network topology is simple.

Because static routing systems cannot react to network changes, they generally are considered unsuitable for today’s large, changing networks. Most of the dominant routing algorithms now are dynamic routing algorithms, which adjust to changing network circumstances by analyzing incoming routing update messages. If the message indicates that a network change has occurred, the routing software recalculates routes and sends out new routing update messages. These messages cross the network, stimulating routers to rerun their algorithms and change their routing tables accordingly.

Dynamic routing algorithms can be supplemented with static routes where appropriate. A *router of last resort* (a router to which all unroutable packets are sent), for example, can be designated to act as a repository for all unroutable packets, ensuring that all of them are at least handled in some way. There are two daemons in AIX responsible for dynamic routing: routed and gated.

The gated daemon supports Routing Information Protocol (RIP), Exterior Gateway Protocol (EGP), Border Gateway Protocol (BGP), Defense Communications Network Local-Network Protocol (HELLO), Open Shortest Path First (OSPF), and many others. The routed daemon supports only Routing Information Protocol (RIP).

Routing daemons can operate in one of two modes, passive or active, depending upon the options you use when starting the daemons. In active mode, routing daemons broadcast routing information periodically about their local network to gateways and hosts and receive routing information from hosts and gateways. In passive mode, routing daemons receive routing information from hosts and gateways, but do not attempt to keep remote gateways updated (they do not advertise their own routing information).

Note: You may decide to use a combination of static and dynamic routing. That is, you might want to give static definitions to a few specific routes, while allowing other routes to be updated by the daemons. The static routes you create are not advertised to other gateways and are not updated by the routing daemons.
3.2.2 Static routing

Routes are defined in the kernel routing table. These route definitions include information on networks reachable from the local host, gateways that can be used to reach remote networks, and the hop count (or distance metric) to those networks. When a gateway receives a packet, it checks the routing tables to obtain where to send the packet next along the path to its destination. To display the routing table on your machine, use the `netstat` command:

```bash
# netstat -nr
```

<table>
<thead>
<tr>
<th>Destination</th>
<th>Gateway</th>
<th>Flags</th>
<th>Refs</th>
<th>Use</th>
<th>If</th>
<th>PMTU</th>
<th>Exp</th>
<th>Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
<td>9.3.240.1</td>
<td>UGc</td>
<td>0</td>
<td>0</td>
<td>tr0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9.3.240/24</td>
<td>9.3.240.58</td>
<td>U</td>
<td>33</td>
<td>128221</td>
<td>tr0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10.47/24</td>
<td>9.3.240.59</td>
<td>UGc</td>
<td>0</td>
<td>0</td>
<td>tr0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>127/8</td>
<td>127.0.0.1</td>
<td>U</td>
<td>54</td>
<td>1284</td>
<td>l00</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>195.116.119/24</td>
<td>195.116.119.2</td>
<td>U</td>
<td>6</td>
<td>21313</td>
<td>en0</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Route Tree for Protocol Family 24 (Internet v6):

| ::1 | ::1 | UH | 0 | 0 | l00| 16896 | - |

Using the `netstat` command output shown above, you can find out that:

- The default gateway for that machine is the router with IP address 9.3.240.1.
- To reach hosts on the local network 9.3.240.0, the machine will use its own interface tr0 with IP address 9.3.240.58.
- To reach hosts on the remote network 10.47.0.0, the machine will forward all packets to the host with IP 9.3.240.59 through interface tr0.
- To reach hosts on the local network 195.116.119.0, the machine will forward all packets to its own interface en0 with IP address 195.116.119.2.

As shown, entries have different flags that show the state of the route, as follows:

- **U** Up.
- **H** The route is to a host rather than to a network.
- **G** The route is to a gateway.
- **D** The route was created dynamically by a redirect.
- **M** The route has been modified by a redirect.
- **L** The link-level address is present in the route entry.
- **c** Access to this route creates a cloned route.
- **W** The route is a cloned route.
There are three methods to add a route to a routing table: implicit and explicit methods, or by adding a dynamic routing protocol such as RIP. The implicit method is performed when you configure the adapter. Follow the example to see how the implicit method works. First remove the en0 interface and then check which network interfaces are already configured:

```
# ifconfig en0 detach
# netstat -i
Name   Mtu   Network     Address            Ipkt   Ierrs   Opkts   Oerrs   Coll
lo0  16896 link#1                          201414    0     201508    0     0
lo0  16896 127     localhost.austin.     201414    0     201508    0     0
lo0  16896 ::1                              201414    0     201508    0     0
tr0  1492  link#2     0.4.ac.61.73.f7     632486    0    49983    167    0
tr0  1492  9.3.240    server4f.itsc.aus    632486    0    49983    167    0
```

As shown, there are two network interfaces: lo0 and tr0. To check current routing table, use the `netstat` command:

```
# netstat -nr
Routing tables
Destination       Gateway           Flags   Refs   Use   If   PMTU  Exp  Groups
```

```
Route Tree for Protocol Family 2 (Internet):
default          9.3.240.1         UGc       0        0  tr0     -   -
9.3.240/24       9.3.240.59        Uc        0        0  tr0     -   -
127/8            127.0.0.1         U         8    3489  lo0     -   -
```

```
Route Tree for Protocol Family 24 (Internet v6):
::1              ::1               UH        0        0  lo0  16896   -
```

As shown, the routing table contains three route definitions. Next add the new interface en0:

```
# ifconfig en0 10.47.1.1 netmask 255.255.0.0 up
```

Now the routing table has one entry more. This is a route associated with new interface en0:

```
# netstat -nr
Routing tables
Destination       Gateway           Flags   Refs   Use   If   PMTU  Exp  Groups
```

```
Route Tree for Protocol Family 2 (Internet):
default          9.3.240.1         UGc       0        0  tr0     -   -
9.3.240/24       9.3.240.59        Uc        0        0  tr0     -   -
10.47/16          10.47.1.1         Uc        0        0  en0     -   -
127/8            127.0.0.1         U         8    3489  lo0     -   -
```

```
Route Tree for Protocol Family 24 (Internet v6):
::1              ::1               UH        0        0  lo0  16896   -
```
The explicit routes are added by the network administrator. There are a few methods to add an entry to the routing table. The easiest way is to use **smitty mkroute**, shown in Figure 3-7. Configuring static routes through **smitty** adds them to the ODM databases and makes them permanent even after a system reboot.

The **smitty mkroute** command uses the **chdev** command so you can do the same job with the following commands:

```
chdev -l inet0 -a route='10.47.0.0','9.3.240.59'
```

The -C flag shows the routing tables, including the user-configured and current costs of each route.

The cost (also known as hopcount) prioritizes routes going to the same destination. If one or more routes go to a particular destination with a cost of 0 (zero), those routes are used, and routes with higher costs are not used. You should always give routes a cost greater than 0 to specify them as backup routes. If the lower cost routes are deleted, or if Dead Gateway Detection discovers a problem and raises their costs, the backup routes are used instead.

The user-configured cost is set using the -hopcount flag of the **route** command. The current cost may be different from the user-configured cost if Dead Gateway Detection has changed the cost of the route. The example below adds an entry to the routing table with a hopcount of 2:

```
route add -p -h 2 10.47.0.0/24 dev inet0 gw 9.3.240.59
```
Another way to add an entry to the routing table is the `route` command. These entries are not permanent and will be lost after the next system reboot.

Routes to a particular host are distinguished from those to a network by interpreting the IP associated with the destination. The optional keywords `-net` and `-host` force the destination to be interpreted as a network or a host.

The `route` command does not update the ODM database, so if you want to make it permanent, include the `route` command entry in the `/etc/rc.net` (/etc/rc.bsdnet for Berkeley-style network configurations) file.

The following are examples using the `route` command:

- To establish a route to the computer with IP address 10.47.1.2 through the gateway with IP address 9.3.240.59, enter:
  ```
  # route add 10.47.1.2 9.3.240.59
  9.3.240.59 host 10.47.1.2: gateway 9.3.240.59
  ```

- To establish a route to network 10.47.0.0 through the gateway with IP address 9.3.240.59, enter:
  ```
  # route add -net 10.47 9.3.240.59
  9.3.240.59 net 10.47: gateway 9.3.240.59
  ```

- To establish a default gateway, enter:
  ```
  # route add 0 9.3.240.1
  9.3.240.1 net 0: gateway 9.3.240.1
  ```

The value 0 or the `default` keyword for the destination parameter means that any packet sent to destinations not previously defined and not on a directly connected network goes through the default gateway. The 9.3.240.1 address is that of the gateway chosen to be the default.

- To clear the host gateway table, enter:
  ```
  # route -f
  default 9.3.240.1 done
  10.47 9.3.240.59 done
  ```

Configuring a system to work as static router

If your system is going to be configured as a router (it has two or more network interfaces), then it needs to be enabled as a router by the `no` command. The network option that controls routing from one network to another is `ipforwarding` and by default is disabled. To enable it, enter:

```
# no -o ipforwarding=1
```
This is not a permanent setting and after the next system reboot will be lost. To make this permanent, add this command to the end of /etc/rc.net file.

To check other network options and their values, enter the `no -a` command.

If your system has only one network interface, you can still use it as a router. Establish an additional network address for the interface using the `ifconfig` command with the `alias` parameter. To setup an additional IP address for interface `en0`, type:

```
ifconfig en0 10.50.1.1 netmask 255.255.0.0 alias
```

Check the settings for `en0` interface:

```
# ifconfig en0
en0:
  flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64IT>
        inet 10.47.1.1 netmask 0xffff0000 broadcast 10.47.255.255
        inet 10.50.1.1 netmask 0xffff0000 broadcast 10.50.255.255
```

Now the system has two different addresses; however, it can route packets between networks using one interface. If you check the routing table, you will find a new entry associated with network 10.50.0.0 and with interface `en0`:

```
# netstat -nr
Routing tables
Destination      Gateway           Flags   Refs     Use  If   PMTU  Exp  Groups
Route Tree for Protocol Family 2 (Internet):
10.47/16         10.47.1.1         Uc        0        0  en0     -   -
10.50/16         10.50.1.1         Uc        0        0  en0     -   -
127/8            127.0.0.1         U         7     3630  lo0 16896   -
Route Tree for Protocol Family 24 (Internet v6):
::1              ::1               UH        0        0  lo0 16896   -
```

3.2.3 Dynamic routing

This section discuss the dynamic routing protocol.

Link-state versus distance-vector protocol

Link-state algorithms flood routing information to all nodes in the internetwork. Each router, however, sends only the portion of the routing table that describes the state of its own links. Distance-vector algorithms call for each router to send all or some portion of its routing table, but only to its neighbors. Link-state algorithms send small updates everywhere, while distance-vector algorithms send larger updates only to neighboring routers. Link-state algorithms converge more quickly and are less prone to routing loops than distance-vector algorithms.
On the other hand, link-state algorithms require more CPU power and memory than distance vector algorithms.

Routed daemon
The routed daemon is responsible for managing the network routing tables in the kernel. If multiple interfaces are present, the routed daemon assumes that the local host forwards packets between networks and transmits a RIP request packet on each interface, using a broadcast message.

The routed daemon then listens for RIP routing requests and response packets from other hosts. When the routed daemon supplies RIP information to other hosts, it sends RIP update packets every 30 seconds (containing copies of its routing tables) to all directly connected hosts and networks.

When the routed daemon receives a RIP request packet to supply RIP routing information, it generates a reply in the form of a response packet. Each route is marked with a hop-count metric, which is the number of gateway hops between the source network and the destination network. The metric for each route is relative to the sending host. A metric of 16 or greater is considered infinite or beyond reach.

Besides the ability of the routed daemon to manage routes to directly connected hosts and networks, it also uses distant and external gateways. These gateways cannot be identified by RIP queries, so the routed daemon reads the /etc/gateways file for information about these distant and external gateways. Its format is:

```
<destination> <name1> gateway <name2> metric <value> <type>
```

Following is a brief description of each element in a gateways file entry:

- **destination**: Keyword that indicates whether the route is to a network or a specific host. The two possible keywords are net and host.
- **name1**: The name or IP address of destination.
- **name2**: The name or IP address of the gateway host to which messages should be forwarded.
- **value**: The hop count, or number of gateways from the local network to the destination network.
- **type**: Keyword that indicates whether the gateway should be treated as active, passive, or external.

To specify a route to the network 10.47.0.0, through the gateway server4, add the following entry:

```
net 10.47.0.0 gateway server4 metric 1 passive
```
The routed daemon is a subsystem controlled by SRC and is a member of the tcpip system group. To start it in passive mode, enter:

```
# startsrc -s routed -a "-q"
0513-059 The routed Subsystem has been started. Subsystem PID is 22500.
```

The routed daemon is disabled by default, but if you uncomment the appropriate line in the /etc/rc.tcpip file, routing will start automatically after a system reboot.

You can also set up and start the routed daemon using the `smitty routed` command, as shown Figure 3-8.

![smitty routed screen]

Gated daemon

As mentioned in 3.2.1, “An introduction to static and dynamic routing” on page 56, the gated daemon provides gateway routing functions for a few routing protocols.

The gated daemon can be controlled by the SRC and it is a member of the SRC tcpip system group. This daemon is disabled by default. To permanently enable it, uncomment the appropriate line in the /etc/rc.tcpip and the gated daemon will start automatically after system reboot.

The default configuration file for the gated daemon is the /etc/gated.conf file. This file is read by the gated daemon at initialization time. By default, if the gated
daemon is started without specifying any information in the configuration file, the RIP protocol will be turned to active mode.

To start the gated daemon, use `smitty chgated` as shown Figure 3-9 or use the SRC command.

To start the gated daemon and log messages to `/var/tmp/gated.log` file, enter:

```
# startsrc -s gated -a "-tall /var/tmp/gated.log"
```

To stop the gated daemon normally, enter:

```
# stopsrc -s gated
```

![Figure 3-9 smitty chgated screen](image)

Note: Results are unpredictable when the gated and routed daemons run on the same host.

3.2.4 ICMP redirects

ICMP generates several kinds of useful messages, including Destination Unreachable, Echo Request and Reply, Redirect, Time Exceeded, and Router Advertisement and Router Solicitation. If an ICMP message cannot be delivered, no second one is generated. This is to avoid an endless flood of ICMP messages.
An ICMP redirect message is sent by the router to the source host to stimulate more efficient routing. The router still forwards the original packet to the destination. ICMP redirects allow host routing tables to remain small because it is necessary to know the address of only one router, even if that router does not provide the best path. Even after receiving an ICMP redirect message, some devices might continue using the less efficient route.

If an ICMP redirect message is received from an intermediate router, it means that the host should send future datagrams for the network to the router whose IP address is specified in the ICMP message. This preferred router will always be on the same subnet as the host that sent the datagram and the router that returned the IP datagram. The router forwards the datagram to its next hop destination. This message will not be sent if the IP datagram contains a source route.

Figure 3-10 shows three IP networks connected by two routers, R1 and R2. For different destinations, workstation A uses different ways to send its IP packets to the destinations.

In the above example, workstation C can elect either R1 or R2 as its default router. In the event that R1 is elected as the default router, C will send data to R1 when it needs to talk to A, B or D. Sending to A and B is straightforward: it passes the data to R1, which proceeds to forward the traffic to A or B. The tricky
part is when C wants to forward data to D. Since R1 is the default router, all data will be forwarded to R1 from C. R1 is then going to realize that in order to reach D, it has to forward the traffic to R2. This bouncing of traffic from R1 to R2 will create extra delay and also extra traffic on the network.

To overcome this situation, routers implement the ICMP redirect, which informs workstation D that instead of sending the data to R1, it should instead send to R2. This would require workstation C to have the ability to handle ICMP redirect messages that were sent out by R1. Not all workstations support this feature and therefore, it is better to avoid designing the network in this manner.

To disable ICMP redirects on your server, use the following example:

```
# no -o ipsendredirects=0
```

This will update the network configurable attributes. The change will take effect immediately and will be effective until the next boot. To make the change permanent, add the `no` command to `/etc/rc.net`.

3.2.5 Routing debugging

If you are not able to ping by host name or IP address, you may have a routing problem.

First, check the routing tables as follows:

- Use the `netstat -rn` command to show the content of your local routing table using IP addresses.
- Check the netmask on display and ensure that it is correct (ask the network administrator what it should be if you are unsure).
- If there is a default route, attempt to ping it.
- If you have more than one network interface, attempt to determine if any interfaces are working.

If you cannot ping your default route, either it is down, or your local network connection may be down. Attempt to ping all of the other gateways listed in the routing table to see if any portion of your network is functioning:

```
# netstat -nr
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups
```

<table>
<thead>
<tr>
<th>Route Tree for Protocol Family 2 (Internet):</th>
</tr>
</thead>
<tbody>
<tr>
<td>default</td>
</tr>
<tr>
<td>9.3.240/24</td>
</tr>
<tr>
<td>10.47.1.2</td>
</tr>
<tr>
<td>127/8</td>
</tr>
</tbody>
</table>
127.0.0.1 127.0.0.1 UH 3 761 lo0 - -
195.116.119/24 195.116.119.2 U 2 406 en0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

If you cannot ping any host or router interface from among those listed in the routing table, try to ping your loopback interface lo0 with the following command:

ping localhost

If the ping is successful, you have either an adapter or network hardware problem or a routing problem.

If the ping is not successful, you need to:

▶ Ensure that the inetd process is active using the lssrc -g tcpip command. If inetd is not active, issue the startsrc -s inetd or startsrc -g tcpip commands.

▶ Check the state of the loopback interface (lo0) with the netstat -i command. If you see lo0* in the output, check the /etc/hosts file for an uncommented local loopback entry as follows:

127.0.0.1 loopback localhost # loopback (lo0) name/address

An asterisk (*) after the interface name in the output from the netstat command indicates that the interface is down. Use the following command to start the lo0 interface:

ifconfig lo0 inet 127.0.0.1 up

If you cannot reach a host which is in a different network, you can check the connection using the traceroute command. The traceroute output shows each gateway that the packet traverses on its way to find the target host. If possible, examine the routing tables of the last machine shown in the traceroute output to check if a route exists to the destination from that host. The last machine shown is where the routing is not functioning as intended.

traceroute 9.3.240.56
traceroute to 9.3.240.56 (9.3.240.56), 30 hops max, 40 byte packets
 1 server4e (10.47.1.1) 1 ms 1 ms 0 ms
 2 server1 (9.3.240.56) 1 ms 1 ms 1 ms

If the connections are performing poorly, packet fragmentation may be a problem. AIX Version 4.3 has a service that allows automatic path MTU discovery. A fixed MTU size can also be set with the no command.
3.3 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

3.3.1 The ifconfig command

The ifconfig command configures or displays network interface parameters for a network using TCP/IP. The command has the following syntax:

ifconfig Interface [AddressFamily [Address [DestinationAddress]]] [Parameters...]

The commonly used flags are provided in Table 3-5.

Table 3-5 Commonly used flags of the ifconfig command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressFamily</td>
<td>Specifies which network address family to change.</td>
</tr>
<tr>
<td>Parameters</td>
<td>alias Establishes an additional network address for the interface.</td>
</tr>
<tr>
<td></td>
<td>delete Removes the specified network address.</td>
</tr>
<tr>
<td></td>
<td>detach Removes an interface from the network interface list.</td>
</tr>
<tr>
<td></td>
<td>down Marks an interface as inactive (down), which keeps the system from trying to transmit messages through that interface.</td>
</tr>
<tr>
<td></td>
<td>netmask Mask Specifies how much of the address to reserve for subdividing networks into subnetworks.</td>
</tr>
<tr>
<td></td>
<td>up Marks an interface as active (up). This parameter is used automatically when setting the first address for an interface.</td>
</tr>
<tr>
<td>Address</td>
<td>Specifies the network address for the network interface.</td>
</tr>
</tbody>
</table>

3.3.2 The netstat command

The netstat command shows network status. The command has the following syntax:

/bin/netstat [-n] [{ -r -i -I Interface }] [-f AddressFamily] [-p Protocol] [Interval]
The commonly used flags are provided in Table 3-6.

Table 3-6 Commonly used flags of the netstat command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n</td>
<td>Shows network addresses as numbers.</td>
</tr>
<tr>
<td>-r</td>
<td>Shows the routing tables.</td>
</tr>
<tr>
<td>-i</td>
<td>Shows the state of all configured interfaces.</td>
</tr>
<tr>
<td>-I Interface</td>
<td>Shows the state of the configured interface</td>
</tr>
<tr>
<td></td>
<td>specified by the Interface variable.</td>
</tr>
<tr>
<td>-f AddressFamily</td>
<td>Limits reports of statistics or address</td>
</tr>
<tr>
<td></td>
<td>control blocks to those items specified by the</td>
</tr>
<tr>
<td></td>
<td>AddressFamily variable.</td>
</tr>
<tr>
<td>-p Protocol</td>
<td>Shows statistics about the value specified for the</td>
</tr>
<tr>
<td></td>
<td>Protocol variable.</td>
</tr>
<tr>
<td>-m</td>
<td>Shows statistics recorded by the memory management</td>
</tr>
<tr>
<td></td>
<td>routines.</td>
</tr>
</tbody>
</table>

3.3.3 The route command

The `route` command manually manipulates the routing tables. The command has the following syntax:

```
```

The commonly used flags are provided in Table 3-7.

Table 3-7 Commonly used flags of the route command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Command</td>
<td>add</td>
</tr>
<tr>
<td></td>
<td>flush or -f</td>
</tr>
<tr>
<td></td>
<td>delete</td>
</tr>
<tr>
<td></td>
<td>get</td>
</tr>
<tr>
<td>-net</td>
<td>Indicates that the Destination parameter should be</td>
</tr>
<tr>
<td></td>
<td>interpreted as a network.</td>
</tr>
<tr>
<td>-host</td>
<td>Indicates that the Destination parameter should be</td>
</tr>
<tr>
<td></td>
<td>interpreted as a host.</td>
</tr>
<tr>
<td>Destination</td>
<td>Identifies the host or network to which you are</td>
</tr>
<tr>
<td></td>
<td>directing the route.</td>
</tr>
<tr>
<td>-netmask</td>
<td>Specifies the network mask to the destination address.</td>
</tr>
</tbody>
</table>
3.3.4 The `chdev` command

The `chdev` command changes the characteristics of a device. The command has the following syntax:

```
chdev -l Name [ -a Attribute=Value ... ]
```

The commonly used flags are provided in Table 3-8.

Table 3-8 Commonly used flags of the `chdev` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-l Name</code></td>
<td>Specifies the device logical name, specified by the Name parameter, in the Customized Devices object class whose characteristics are to be changed.</td>
</tr>
<tr>
<td><code>-a Attribute=Value</code></td>
<td>Specifies the device attribute value pairs used for changing specific attribute values.</td>
</tr>
</tbody>
</table>

3.3.5 The `lsattr` command

The `lsattr` command displays attribute characteristics and possible values of attributes for devices in the system. The command has the following syntax:

```
lsattr -E -l Name [ -a Attribute ] ...
```

The commonly used flags are provided in Table 3-9.

Table 3-9 Commonly used flags of the `lsattr` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-E</code></td>
<td>Displays the attribute names, current values, descriptions, and user-settable flag values for a specific device.</td>
</tr>
<tr>
<td><code>-l Name</code></td>
<td>Specifies the device logical name in the Customized Devices object class whose attribute names or values are to be displayed.</td>
</tr>
<tr>
<td><code>-a Attribute</code></td>
<td>Displays information for the specified attributes of a specific device or kind of device.</td>
</tr>
</tbody>
</table>
3.4 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which one of the following network protocols can alter an otherwise static routing table?
 A. RPC
 B. TCP
 C. UDP
 D. ICMP

2. Which one of the following commands is needed to add an alias IP address onto an interface?
 A. alias
 B. route
 C. netstat
 D. ifconfig

3. Which one of the following commands can store routes in the ODM?
 A. gated
 B. chdev
 C. route
 D. ifconfig

4. Which one of the following address classes applies to 127.0.0.1?
 A. Class A
 B. Class B
 C. Class C
 D. Class D

5. Which one of the following network masks allows room for exactly 510 hosts?
 A. 255.128.0.0
 B. 255.254.0.0
 C. 255.255.254.0
 D. 255.255.255.128
6. A default gateway has already been configured. However, it begins to point to a different address, although it was not manually changed. Which one of the following is the most probable cause of the change in addresses?
 A. arp
 B. netstat
 C. NIS, DNS, NFS
 D. gated or routed

7. On a newly installed AIX Version 4 machine, which one of the following actions will enable the machine to act as a gateway?
 A. Enable gated
 B. Enable routed
 C. Enable ipforwarding
 D. Configure a default gateway

8. Which one of the following commands can show statistics for each interface?
 A. no
 B. lsattr
 C. vmstat
 D. netstat

9. Which one of the following commands verifies that round-trip connectivity is functional between the local host and another machine?
 A. ping
 B. lsdev
 C. netstat
 D. ifconfig

10. A local subnet can be pinged as well as the default gateway. However, the hosts that are beyond the default gateway cannot be pinged. Which one of the following is the most probable cause?
 A. ARP is not functioning
 B. IP forwarding is not on for the local system
 C. The default gateway is not routing traffic for the host
 D. Something has been configured incorrectly on the local machine
11. Which one of the following commands will successfully add a route to the routing table?
 A. `route add 128.66.12.3 0`
 B. `route add 0 128.66.12.3`
 C. `route -n add 128.88.12.1`
 D. `route add 128.66 128.88.12.1`

12. Which one of the following parameters can prevent packet fragmentation on routers when connecting to remote networks?
 A. `mtu`
 B. `sb_max`
 C. `rfc1323`
 D. `tcp_mssdfit`

13. If AIX is configured to forward IP packets from one network to another network, which one of the following is true?
 A. AIX has no IP forwarding capabilities.
 B. The two network addresses must be placed in the forward file.
 C. Two network adapter cards would require the `ipforwarding` flag to be set to "1".
 D. The broadcast flag does not need to be set on the network adapter cards using the `ifconfig` command.

14. An ATM backbone has been subnetted so that each subnet contains 14 hosts. Which one of the following is the subnet mask?
 A. `255.255.255.14`
 B. `255.255.255.16`
 C. `255.255.255.240`
 D. `255.255.255.248`

15. Which one of the following `no` options should be set to "1" before the machine can act as a gateway?
 A. `ipforwarding`
 B. `multi_homed`
 C. `ipsrouteforward`
 D. `subnetsarelocal`
16. In AIX Version 4, which one of the following options is an invalid source IP address?
 A. 1.0.0.1
 B. 1.1.1.1
 C. 127.0.0.1
 D. 240.240.240.240

17. Which one of the following statements correctly describes the following address: 132.120.107.11 using a default network for the address class?
 A. 132.120.107.11 is a multicast address
 B. 132 is the network address and 120.107.11 is the local host address
 C. 132.120 is the network address and 107.11 is the local host address
 D. 132.120.107 is the network address and 11 is the local host address

18. Which one of the following commands is used to alter the cable type used for an installed adapter?
 A. lscfg
 B. chdev
 C. cfgmgr
 D. ifconfig

19. Which one of the following commands will permanently change the IP address of a network interface?
 A. no
 B. alias
 C. chdev
 D. confsetcntrl

20. Which one of the following options is not affected by the smit tcpip minimum configuration screen?
 A. /etc/hosts
 B. /etc/resolv.conf
 C. routing tables
 D. tunable network options

21. An entry in an ARP table reads incomplete. Which one of the following statements has most likely occurred?
 A. The hardware address at the host has changed.
B. The machine can still be pinged but not telneted.
C. An ARP request and reply was processed at the same time.
D. An ARP request was transmitted looking for that machine, but no reply was received.

22. Which one of the following procedures would set the hop count for a route to 5 for a specific Ethernet interface, provided that the destination IP address is B.C.D.E and the gateway is A.B.C.D?
 A. `net B.C.D.E gateway A.B.C.D metric 5 passive`
 B. `ifconfig en0 B.C.D.E netmask 255.255.255.0 metric 5`
 C. `route add B.C.D.E A.B.C.D -hopcount 5`
 D. `no -o ip6_defttl=5`

23. The routing term hop count is given another name on the SMIT route menus. What is this alternate name?
 A. time-to-live
 B. cost
 C. time exceeded
 D. metric

24. Which address range is routable and requires coordination with IANA?
 A. `10.0.0.0 - 10.255.255.255`
 B. `172.16.0.0 - 172.31.255.255`
 C. `192.168.0.0 - 192.168.255.255`
 D. `193.0.0.0 - 255.255.255.255`
3.4.1 Answers

The following are the preferred answers to the questions provided in this section:

1. D
2. D
3. B
4. A
5. C
6. D
7. C
8. D
9. A
10. C
11. B
12. A
13. C
14. C
15. A
16. D
17. C
18. B
19. C
20. D
21. D
22. C
23. B
24. D

3.5 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.
1. Calculate how many hosts and networks are within network class B with subnetmask 255.255.255.192.

2. For given host address 153.19.177.201 with subnet mask of 255.255.225.224, determine the network address and broadcast address.

3. Check the routing table for your system and find out what the default gateway is for.

4. Add a second address to the network card in your machine. Use the `ifconfig` command.

5. Check the routing table for your system. Do you have another routing entry now?

6. Which protocol will modify routes?

7. On which port does telnet listen and on which port does FTP listen?
Basic network administration

Basic network administration including name address configuration is discussed in this chapter. For a discussion on DNS, see Chapter 8, “Domain Name System” on page 193.
4.1 Network administration using SMIT

The following sections discuss how to perform basic network administration using the SMIT interface.

4.1.1 Minimum configuration

The minimum configuration of TCP/IP is typically done at initial installation or when an adapter and corresponding interface need to be installed. Issue the SMIT command: smitty tcpip and the screen shown in Figure 4-1 appears.

```
TCP/IP
Move cursor to desired item and press Enter.

Minimum Configuration & Startup
Further Configuration
Use DHCP for TCP/IP Configuration & Startup
IPV6 Configuration
Quality of Service Configuration & Startup

Available Network Interfaces
Move cursor to desired item and press Enter.

en0 Standard Ethernet Network Interface
et0 IEEE 802.3 Ethernet Network Interface
tc0 Token Ring Network Interface

F1=Help F2=Refresh F3=Cancel
F8=Image F10=Exit Enter=Do
F9 /=Find n=Find Next
```

Figure 4-1 SMIT TCP/IP configuration screen

Select the Minimum Configuration & Startup menu and select the interface that needs to be configured from the list that is presented (Figure 4-2 on page 81).
Chapter 4. Basic network administration

4.1.2 Further TCP/IP configuration

When performing a more detailed TCP/IP system administration, use the `smitty configtcp` command.
Figure 4-3 SMIT TCP/IP Further Configuration screen

The SMIT menu for further TCP/IP configuration (smitty configtcp) assists you in the administration of the following topics:

Hostname
Show and set the system host name.

Static Routes
List, add, delete routes, flush routing table.

Network Interfaces
List, add, change and remove network interfaces.

Name Resolution
List and edit contents of /etc/hosts and /etc/resolv.conf.

Client Network Services
Edit /etc/services file.

Server Network Services
Start/stop network daemons and network services. Menus to SRC commands.

Manage Print Server
List, add, remove network printer daemons.

Select BSD style rc Configuration
Modify TCP/IP bootup procedure to use /etc/rc.bsdnet instead of the default /etc/rc.net.

Start Configured TCPIP Daemons
Start all configured TCP/IP daemons.

Stop TCPIP Daemons
Stop all running TCP/IP daemons.

Authentication Configuration
Configure Kerberos 4 or Kerberos 5 authentication. Default is standard AIX.
4.1.3 Setting the host name

After your machine has an IP address you have to name it. The `hostname` command sets and displays the name of the current host system. Only users with root user authority can set the host name. The `chdev` command will also set the host name, but it does it permanently. You can also use the `smit mkhostname` fast path to run this command.

To check the host name, enter:

```
# hostname
server3
```

You can do the same job using the `chdev` command:

```
# chdev -l inet0 -a hostname=server3
inet0 changed
```

This will change the host name permanently. Now you can check the host name:

```
# lsattr -El inet0 -a hostname -F value
server3
```

4.1.4 Host name resolution

In simple TCP/IP networks, all machines on the network are defined with a name that has a corresponding IP address. The mapping of names to IP addresses is stored in the `/etc/hosts` file, acting as a simple lookup database. As most TCP/IP networks are very large and might be connected to the Internet, a different name resolution scheme is needed. These TCP/IP networks use the domain name system (DNS/BIND) having DNS server daemons (named) acting as databases responding to host name lookup. For more information on DNS, see Chapter 8, “Domain Name System” on page 193.

Note that TCP/IP host name lookup is also referred to as host name resolving. This resolution is done by all programs that want to communicate over a TCP/IP network (see man page on `gethostbyname` library call).

By default, the resolver routines first attempt to resolve names using the following priority scheme:

- DNS/BIND using the `/etc/resolv.conf`
- NIS (see Chapter 10, “NIS” on page 223)
- Look up in the `/etc/hosts` file

The default order can be changed by creating the configuration file `/etc/netsvc.conf` and specifying a different search order.
The environment variable NSORDER overrides both the /etc/netsvc.conf file and the default ordering. Services are ordered as hosts = value, value, value in the /etc/netsvc.conf file, where at least one value must be specified from the list bind, nis, local. NSORDER specifies a list of values.

Example of changing the NSORDER:

```
# ping -c 1 server2
PING server2.itsc.austin.ibm.com: (9.3.240.57): 56 data bytes
64 bytes from 9.3.240.57: icmp_seq=0 ttl=255 time=0 ms

----server2.itsc.austin.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
# export NSORDER=local,bind,nis
# ping -c 1 server2
PING server2: (9.3.240.57): 56 data bytes
64 bytes from 9.3.240.57: icmp_seq=0 ttl=255 time=0 ms

----server2 PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
```

Notice the missing domain name in the second ping command.

Changing the resolver priority scheme must be used with caution, but may be necessary in cases where the DNS servers are not responding.

resolv.conf

The /etc/resolv.conf file defines the DNS name server information for local resolver routines. If the /etc/resolv.conf file does not exist, the DNS is not available and the system will attempt name resolution using the default paths, the /etc/netsvc.conf file (if it exists), or the NSORDER environment variable (if it exists).

When a DNS server is specified during TCP/IP configuration, a /etc/resolv.conf file is generated. Further configuration of the resolv.conf file can be done using the SMIT command `smit resolv.conf` (Figure 4-4 on page 85).
Figure 4-4 SMIT menu for resolv.conf

Following is an example of a resolv.conf file:

```
# cat /etc/resolv.conf
nameserver 9.3.240.2
nameserver 9.53.248.2
nameserver 9.53.183.2
domain itsc.austin.ibm.com
```

Following are the valid entry format in the resolv.conf file:

- A domain entry tells the resolver routines which default domain name to append to names that do not end with a . (period). There can be only one domain entry. This entry is of the form:

  ```
domain DomainName
  ```

- A search entry defines the list of domains to search when resolving a name. Only one domain entry or search entry can be used. If the domain entry is used, the default search list is the default domain. A search entry should be used when a search list other than the default is required. The entry is of the form:

  ```
search DomainName ...
  ```

The search entry can have from one to six DomainName variables.
A nameserver entry defines the Internet address of a remote DOMAIN name server to the resolver routines on the local domain. This entry is of the form:

```
nameserver Address
```

The options entry specifies miscellaneous behaviors of the resolver. The entry is of the form:

```
options OptionName
```

The OptionName variable can have one of the following values:

- **debug**
 - Turns on the RES_DEBUG resolver option, which enables resolver debugging.

- **ndots:n**
 - Specifies that for a domain name with n or more periods (.) in it, the resolver should try to look up the domain name "as is" before applying the search list.

Each nameserver entry specifies the IP address of the DNS name server to use. In this example, three name servers are defined. The local resolver routines will query each domain name server for name resolution. When multiple name servers are specified, if the first name server does not respond, then the next name server in the list is queried.

The entry domain is used for the default domain name. The local resolver appends the default domain to names that do not end with a . (period).

Instead of domain you can use the entry **search**. The search entry defines the list of domains to search when resolving a name. The first domain entry is interpreted as the default domain. Note that the usage of domain or search is complementary.

4.1.5 Network interface configuration

If you get an IP address and netmask of your machine from a network administrator, you have enough information to set up a network interface. Though SMIT allows you a shortcut to this method, many programmers wish to learn how to configure the interfaces directly.

First, list all your network interfaces:

```
# lsdev -Cc if
en0 Available Standard Ethernet Network Interface
et0 Defined IEEE 802.3 Ethernet Network Interface
lo0 Available Loopback Network Interface
tr0 Available Token Ring Network Interface
```

As shown, there are three interfaces that you could use: en0, et0, and tr0. To configure one of them, use `smitty chinet` as shown in Figure 4-5 on page 87.
You can do the same job using the `chdev` command for the appropriate interface:

```bash
# chdev -l en0 -a netaddr='9.3.240.58' -a netmask=255.255.255.0'
en0 changed
```

`smitty chinet` and `chdev` update the ODM database and the change will be permanent. Another way to change network interface characteristics is by using the `ifconfig` command, but this does not update the ODM database. The `ifconfig` command can assign an address to a network interface and can configure or display the current network interface configuration information. The network interface configuration is held on the running system and must be reset after each system restart.

To query the status of an en0 interface, enter the command in the following format:

```bash
# ifconfig en0
en0:
flags=up,BROADCAST,NOTRAILERS,_RUNNING,SIMPLEX,MULTICAST,ROUPRT,64BIT>
et 195.116.119.2 netmask 0xffffff00 broadcast 195.116.119.255
```

To mark the local Ethernet interface en0 as down, enter:

```bash
ifconfig en0 inet down
```
Finally to set up the IP address 195.116.119.2 with a netmask of 255.255.255.0 for interface en0, enter the command in the following format:

```
# ifconfig en0 195.116.119.2 netmask 255.255.255.0 up
```

You can also use `iptrace` command to record packets exchanged on an interface from a specific remote host. The `iptrace` daemon, invoked by `iptrace` command, records Internet packets received from configured interfaces. Command flags provide a filter so that the daemon traces only packets meeting specific criteria. Packets are traced only between the local host on which the `iptrace` daemon is invoked and the remote host. The LogFile parameter specifies the name of a file to which the results of the `iptrace` command are sent. See 7.3.2, “Controlling server daemons” on page 160 and 7.7.5, “The iptrace command” on page 183 for more details.

4.1.6 The `prtconf` command

The `prtconf` command located in `/usr/sbin/prtconf` displays system configuration information. The output includes the total amount of memory, and the configuration of system peripherals formatted as a device tree. The `prtconf` command is useful to show slot placements. The `prtconf` command has been included in AIX 5L and later versions. Running `prtconf` on an IBM RS/6000 Model F80 produces the following sample output:

```
# prtconf
System Model: IBM,7025-F80
Processor Type: PowerPC_RS64-III
Number Of Processors: 4
Memory Size: 1024MB
Good Memory Size: 1024MB
Firmware Version: IBM,M2P01072
Console Login: enable
Auto Restart: false
Full Core: false

Network Information
 Host Name: server4.itsc.austin.ibm.com
 IP Address: 9.3.4.100
 Sub Netmask: 255.255.254.0
 Gateway: 9.3.4.41
 Name Server: 9.3.4.2
 Domain Name: itsc.austin.ibm.com

Paging Space Information
 Total Paging Space: 512MB
 Percent Used: 1%

Volume Groups Information
```
rootvg:

<table>
<thead>
<tr>
<th>PV_NAME</th>
<th>PV STATE</th>
<th>TOTAL PPs</th>
<th>FREE PPs</th>
<th>FREE DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk0</td>
<td>active</td>
<td>542</td>
<td>120</td>
<td>92..00..00..00..28</td>
</tr>
<tr>
<td>hdisk1</td>
<td>active</td>
<td>542</td>
<td>539</td>
<td>109..108..105..108..109</td>
</tr>
</tbody>
</table>

testvg:

<table>
<thead>
<tr>
<th>PV_NAME</th>
<th>PV STATE</th>
<th>TOTAL PPs</th>
<th>FREE PPs</th>
<th>FREE DISTRIBUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk2</td>
<td>active</td>
<td>542</td>
<td>533</td>
<td>109..99..108..108..109</td>
</tr>
</tbody>
</table>

0516-010: Volume group must be varied on; use varyonvg command.

INSTALLED RESOURCE LIST

The following resources are installed on the machine.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ sys0</td>
<td>00-00 System Object</td>
</tr>
<tr>
<td>+ sysplanar0</td>
<td>00-00 System Planar</td>
</tr>
<tr>
<td>+ mem0</td>
<td>00-00 Memory</td>
</tr>
<tr>
<td>+ proc0</td>
<td>00-00 Processor</td>
</tr>
<tr>
<td>+ L2cache0</td>
<td>00-00 L2 Cache</td>
</tr>
<tr>
<td>* pmc0</td>
<td>00-00 n/a</td>
</tr>
<tr>
<td>+ proc2</td>
<td>00-02 Processor</td>
</tr>
<tr>
<td>+ proc4</td>
<td>00-04 Processor</td>
</tr>
<tr>
<td>+ proc6</td>
<td>00-06 Processor</td>
</tr>
<tr>
<td>* pci0</td>
<td>00-fffff09000 PCI Bus</td>
</tr>
<tr>
<td>* isa0</td>
<td>10-80 ISA Bus</td>
</tr>
<tr>
<td>+ fda0</td>
<td>01-D1 Standard I/O Diskette Adapter</td>
</tr>
<tr>
<td>+ fd0</td>
<td>01-D1-00-00 Diskette Drive</td>
</tr>
<tr>
<td>* siokma0</td>
<td>01-K1 Keyboard/Mouse Adapter</td>
</tr>
<tr>
<td>+ sioka0</td>
<td>01-K1-00 Keyboard Adapter</td>
</tr>
<tr>
<td>+ kbd0</td>
<td>01-K1-00-00 PS/2 keyboard</td>
</tr>
<tr>
<td>+ sioma0</td>
<td>01-K1-01 Mouse Adapter</td>
</tr>
<tr>
<td>+ mouse0</td>
<td>01-K1-01-00 3 button mouse</td>
</tr>
<tr>
<td>+ ppa0</td>
<td>01-R1 CHRP IEEE1284 (ECP) Parallel Port Adapter</td>
</tr>
<tr>
<td>+ sa0</td>
<td>01-S1 Standard I/O Serial Port</td>
</tr>
<tr>
<td>Device</td>
<td>Code</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>lp1</td>
<td>01-S1-00-00</td>
</tr>
<tr>
<td>sa1</td>
<td>01-S2</td>
</tr>
<tr>
<td>lp0</td>
<td>01-S2-00-00</td>
</tr>
<tr>
<td>sa2</td>
<td>01-S3</td>
</tr>
<tr>
<td>sa3</td>
<td>01-S4</td>
</tr>
<tr>
<td>pci2</td>
<td>10-58</td>
</tr>
<tr>
<td>scsi0</td>
<td>11-08</td>
</tr>
<tr>
<td>rmt0</td>
<td>11-08-00-0,0</td>
</tr>
<tr>
<td>cd0</td>
<td>11-08-00-1,0</td>
</tr>
<tr>
<td>hdisk0</td>
<td>11-08-00-2,0</td>
</tr>
<tr>
<td>hdisk1</td>
<td>11-08-00-4,0</td>
</tr>
<tr>
<td>scsi1</td>
<td>11-09</td>
</tr>
<tr>
<td>pci3</td>
<td>10-5a</td>
</tr>
<tr>
<td>pci4</td>
<td>10-5c</td>
</tr>
<tr>
<td>pci5</td>
<td>10-5e</td>
</tr>
<tr>
<td>toko</td>
<td>1A-08</td>
</tr>
<tr>
<td>pci1</td>
<td>00-fff7f0a000</td>
</tr>
<tr>
<td>pci6</td>
<td>20-58</td>
</tr>
<tr>
<td>ent0</td>
<td>21-08</td>
</tr>
<tr>
<td>pci7</td>
<td>20-5a</td>
</tr>
<tr>
<td>scsi2</td>
<td>27-08</td>
</tr>
<tr>
<td>hdisk2</td>
<td>27-08-00-8,0</td>
</tr>
<tr>
<td>hdisk3</td>
<td>27-08-00-9,0</td>
</tr>
<tr>
<td>ses0</td>
<td>27-08-00-15,0</td>
</tr>
<tr>
<td>scsi3</td>
<td>27-09</td>
</tr>
<tr>
<td>hdisk4</td>
<td>27-09-00-8,0</td>
</tr>
<tr>
<td>hdisk5</td>
<td>27-09-00-9,0</td>
</tr>
<tr>
<td>ses1</td>
<td>27-09-00-15,0</td>
</tr>
<tr>
<td>pci8</td>
<td>20-5c</td>
</tr>
<tr>
<td>pci9</td>
<td>20-5e</td>
</tr>
<tr>
<td>mg20</td>
<td>20-08</td>
</tr>
<tr>
<td>pci10</td>
<td>20-60</td>
</tr>
<tr>
<td>pci11</td>
<td>20-62</td>
</tr>
<tr>
<td>pci12</td>
<td>20-64</td>
</tr>
<tr>
<td>pci13</td>
<td>20-66</td>
</tr>
</tbody>
</table>

4.1.7 The TTY configuration

AIX is a multiuser operating system that allows user access from local or remote attached devices. The communication layer that supports this function is the TTY subsystem. The communication between terminal devices and the programs that read and write to them is controlled by the TTY interface. Examples of TTY devices are:

- Modems
- ASCII terminals
System console
- Serial printer
- System console
- Xterm or aixterm under X-Windows

Following is an example of how to configure a TTY console on serial port 0 with login enable (if the TTY is used as a remote console, failure to enable the login will result in a CF1 error and a message to select the console after boot):

```bash
# mkdev -c tty -t tty -s rs232 -p sa0 -w 0 -a login=enable
tty0 Available
```

To validate that the TTY has been added to the customized VPD object class, enter:

```bash
# lscfg -vp|grep tty
  tty0              01-S1-00-00       Asynchronous Terminal
```

To display the full path name of the system console effective on the next startup of the system, enter:

```bash
# lscons -b
/dev/tty0
```

To remove a TTY, first disable the login. For example, to disable login for tty0, enter:

```bash
# chdev -l tty0 -a login=disable
tty0 changed
```

To remove tty0, enter:

```bash
# rmdev -l tty0 -d
tty0 deleted
```

4.1.8 Asynchronous Terminal Emulation

The **ate** command starts the Asynchronous Terminal Emulation (ATE) program. ATE establishes a connection between a workstation and a remote computer. A workstation acts as a terminal connected to the remote computer. Using ATE you can connect to, and exchange data with, remote databases and other systems.

Note: Users must be members of the UNIX-to-UNIX Copy Program (uucp) group in order to use ATE. A user with root authority uses the SMIT to install individual users in groups.

ATE establishes the connection and allows users to record and control the session. After logging in to the remote system, a user executes programs, issues
commands, and uses files on the remote system as a local user. ATE also
enables a workstation to emulate a VT100 terminal.

ATE uses menus and subcommands. From the menus, users issue
subcommands to connect to a remote system, receive and transfer files, and
execute commands. The Unconnected Main Menu displays any time users issue
the `ate` command. The Connected Main Menu displays when users press the
MAINMENU_KEY (usually the Ctrl+V key sequence) while connected to another
system. The `connect` subcommand makes the connection.

The ATE program supports three control key sequences: the CAPTURE_KEY
(usually Ctrl+B), PREVIOUS_KEY (usually CTRL+-R), and MAINMENU_KEY
(usually CTRL+V). These control keys do not function until the ATE program is
started. The control keys and other ATE defaults can be changed by editing the
ate.def file format.

To start ATE, enter:

```
# ate
```

Table 4-1 lists the common ATE subcommands.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alter</td>
<td>Temporarily changes data transmission characteristics in the ATE program.</td>
</tr>
<tr>
<td>break</td>
<td>Interrupts current activity on a remote system.</td>
</tr>
<tr>
<td>connect</td>
<td>Connects to a remote computer.</td>
</tr>
<tr>
<td>directory</td>
<td>Displays the ATE dialing directory.</td>
</tr>
<tr>
<td>help</td>
<td>Provides help information for the ATE subcommands.</td>
</tr>
<tr>
<td>modify</td>
<td>Temporarily modifies local settings used for terminal emulation.</td>
</tr>
<tr>
<td>perform</td>
<td>Allows the user to issue workstation operating system commands while using ATE.</td>
</tr>
<tr>
<td>quit</td>
<td>Exits the Asynchronous Terminal Emulation (ATE) program.</td>
</tr>
<tr>
<td>receive</td>
<td>Receives a file from a remote system.</td>
</tr>
<tr>
<td>send</td>
<td>Sends a file to a remote system.</td>
</tr>
<tr>
<td>terminate</td>
<td>Terminates an ATE connection to a remote system.</td>
</tr>
</tbody>
</table>
4.1.9 EtherChannel

EtherChannel is a network aggregation technology that allows you to produce a single large pipe by combining the bandwidth of multiple Ethernet adapters. In AIX 5L Version 5.1, the EtherChannel feature has been enhanced to support the detection of interface failures. This is called network interface backup.

EtherChannel is a trademark registered by Cisco Systems and is generally called *multi-port trunking or link aggregation*. If your Ethernet switch device has this function, you can exploit the support provided in AIX 5L Version 5.1. In this case, you must configure your Ethernet switch to create a channel by aggregating a series of Ethernet ports.

Network interface backup mode

In the network interface backup mode, the channel will only activate one adapter at a time. The intention is that the adapters are plugged into different Ethernet switches, each of which is capable of getting to any other machine on the subnet/network. When a problem is detected, either with the direct connection, or through inability to ping a machine, the channel will deactivate the current adapter, and activate a backup adapter.

Note: The network interface backup feature is currently supported by 10/100 Ethernet and gigabit Ethernet PCI cards (devices.pci.23100020.rte and devices.pci.14100401.rte). If you are using other devices, you may receive unexpected results.

Configuring EtherChannel for network interface backup

Use SMIT either by choosing the SMIT fastpath EtherChannel or by clicking **Devices -> Communication -> EtherChannel**, as shown in Figure 4-6 on page 94.
Choose **Add an EtherChannel** to add a new definition to your system, as shown in Figure 4-7.

Figure 4-6 *SMIT screen to add new EtherChannel*

<table>
<thead>
<tr>
<th>List All Etherchannels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Add An Etherchannel</td>
</tr>
<tr>
<td>Change / Show Characteristics of an Etherchannel</td>
</tr>
<tr>
<td>Remove An Etherchannel</td>
</tr>
</tbody>
</table>

Figure 4-7 *SMIT screen for choosing the adapters that belong to the channel*
To create a new EtherChannel, you have to select the network interfaces that will be a part of the channel. If you select an interface that is in use or already part of another EtherChannel, you will receive an error similar to the following:

Method error (/usr/lib/methods/cfgech):
0514-001 System error:
Method error (/usr/lib/methods/chgent):
0514-062 can not perform the requested function because the specified device is busy.

Choose a valid alternate hardware address for the new EtherChannel, as shown in Figure 4-8. Change the EtherChannel mode to netif_backup to enable the network interface backup feature. In that mode, the channel will poll the adapter for Link Status. If the Link Status is not up (either due to a cable being unplugged, switch down, or device driver problem), the channel will switch to another adapter. This mode is the only one that makes use of the Internet Address to Ping, Number of Retries, and Retry Time-out fields. The following list provides the meaning of the fields:

- **Internet Address to Ping**
 The address will be pinged if the address field has a non-zero address and the mode is set to netif_backup. If the channel is unable to ping the address for the Number of Retries times in Retry Time-out intervals, the channel will switch adapters.
- Number of Retries
 The number of retries is the number of ping response failures before the channel switches adapters. The default is three times.

- Retry Timeout
 The retry timeout is the interval in seconds between the times when the channel will send out a ping packet and poll the adapter's Link Status. The default is one-second intervals.

 Once the EtherChannel has been configured, the new adapter and interfaces are made available.

Configuring IP on the EtherChannel interface

The new interface can be configured as any other network interface. Use SMIT to define an IP address on the interface:

```
# ifconfig en0
en0:
  flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64 BIT>
    inet 10.0.0.4 netmask 0xffffff00 broadcast 10.0.0.255
```

Use the `ping` command to test the new IP connection:

```
# ping 10.0.0.3
PING 10.0.0.3: (10.0.0.3): 56 data bytes
64 bytes from 10.0.0.3: icmp_seq=0 ttl=255 time=0 ms
64 bytes from 10.0.0.3: icmp_seq=1 ttl=255 time=0 ms
64 bytes from 10.0.0.3: icmp_seq=2 ttl=255 time=0 ms
```

4.2 Configuring network attributes

The `no` command is used to configure network attributes. The `no` command sets or displays current network attributes in the kernel. This command only operates on the currently running kernel. The command must be run again after each startup or after the network has been configured. Whether the command sets or displays an attribute is determined by the accompanying flag. The `-o` flag performs both actions. It can either display the value of an attribute or set a new value for an attribute. When the `no` command is used to modify a network option, it will log a message to the syslog using the LOG_KERN facility.

Be careful when using this command. The `no` command performs no range checking; therefore it accepts all values for the variables. If used incorrectly, the `no` command can cause your system to become inoperable.
Some network attributes are runtime attributes that can be changed at any time. Others are loadtime attributes that must be set before the netinet kernel extension is loaded and must be placed near the top of /etc/rc.net file.

The following section shows some examples of using network attribute configuration.

To change the maximum size of the mbuf pool to 3MB, enter:

```
# no -o thewall=3072
```

To change the default socket buffer sizes on your system, add the following lines to the end of the /etc/rc.net file:

```
/usr/sbin/no -o tcp_sendspace=16384
/usr/sbin/no -o udp_recvspace=16384
```

Table 4-2 is a partial listing of configurable network attributes.

Table 4-2 Configurable network attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>directed_broadcast</td>
<td>Specifies whether or not to allow a directed broadcast to a gateway.</td>
</tr>
<tr>
<td>ipforwarding</td>
<td>Specifies whether the kernel should forward packets.</td>
</tr>
<tr>
<td>thewall</td>
<td>Specifies the maximum amount of memory, in kilobytes, that is allocated to the memory pool.</td>
</tr>
<tr>
<td>ipsendredirects</td>
<td>Specifies whether the kernel should send redirect signals.</td>
</tr>
<tr>
<td>net_malloc_police</td>
<td>Specifies the size of the net_malloc/net_free trace buffer. This includes checks for freeing a buffer, alignment and buffer overwrite.</td>
</tr>
<tr>
<td>route_expire</td>
<td>Specifies whether the route expires.</td>
</tr>
<tr>
<td>routervalidate</td>
<td>Specifies that each connection’s cached route should be revalidated each time a new route is added to the routing table.</td>
</tr>
<tr>
<td>sb_max</td>
<td>Specifies the maximum buffer size allowed for a socket.</td>
</tr>
<tr>
<td>tcp_sendspace</td>
<td>Specifies the system default socket buffer size for sending data.</td>
</tr>
<tr>
<td>udp_recvspace</td>
<td>Specifies the system default socket buffer size for receiving UDP data.</td>
</tr>
</tbody>
</table>
4.3 Securing network services

This section provides a basic understanding about several standard network services on AIX, including:

- The r-commands
- The telnet service
- The ftp service

Although, these services can be configured with the Kerberos authentication method for additional security, using separate purchaseable software products on AIX. Other additional auditing packages include Computer Oracle and Password System (COPS), Security Administration Tool for Analyzing Networks (SATAN), and Security Administrator’s Integrated Network Tool (SAINT).

Kerberos

Kerberos is a network authentication protocol. It is designed to provide strong authentication for client/server applications by using secret-key cryptography. Some sites attempt to use firewalls to solve their network security problems. Unfortunately, firewalls assume that intruders are on the outside, which is often an incorrect assumption. Several damaging incidents of computer crime are carried out by insiders. Firewalls also have a significant disadvantage in that they restrict how your users can use the Internet. Kerberos was created as a solution to these network security problems. The Kerberos protocol uses strong cryptography so that a client can prove its identity to a server (and vice versa) across an insecure network connection. After a client and server have used Kerberos to prove their identity, they can also encrypt all of their communications to assure privacy and data integrity as they go about their business.

Computer Oracle and Password System

Computer Oracle and Password System (COPS) is a collection of security tools that are designed specifically to aid the typical UNIX systems administrator, programmer, operator, or consultant in the often neglected area of computer security. The package can be broken down into three key parts. The first is the actual set of programs that attempt to automate security checks that are often performed manually (or perhaps with user-written short shell scripts or programs) by a system administrator. The second part is the documentation, which details how to set up, operate, and interpret any results given by the programs. The third part includes a list of possible extensions that might appear in future releases. COPS is a collection of programs that each attempt to tackle a different problem area of UNIX security. A few examples are listed below:

- File, directory, and device permissions/modes.
- Poor passwords.
Content, format, and security of password and group files.

The programs and files run in /etc/rc* and cron(tab) files.

Existence of root-SUID files, their writeability, and whether or not they are shell scripts.

A CRC check against important binaries or key files to report any changes therein.

Writability of users’ home directories and startup files (.profile, .cshrc, for example).

Anonymous FTP setup.

Security Administration Tool for Analyzing Networks (SATAN)

SATAN is an older tool that was written to help systems administrators. It recognizes several common networking-related security problems, and reports the problems without actually exploiting them. For each type or problem found, SATAN offers a tutorial that explains the problem and what its impact could be. The tutorial also explains what can be done about the problem: correct an error in a configuration file, install a fix from the vendor, use other means to restrict access, or simply disable service. A few examples are listed below:

- NFS file systems exported to arbitrary hosts
- NFS file systems exported to unprivileged programs
- NFS file systems exported via the portmapper
- NIS password file access from arbitrary hosts
- Old (prior to 8.6.10) Sendmail versions
- REXD access from arbitrary hosts
- X server access control disabled
- Arbitrary files accessible via TFTP
- Remote shell access from arbitrary hosts
- Writable anonymous FTP home directory

Security Administrator’s Integrated Network Tool (SAINT)

SAINT is the Security Administrator’s Integrated Network Tool. In its simplest mode, it gathers as much information about remote hosts and networks as possible by examining such network services as finger, NFS, NIS, ftp and tftp, rexd, statd, and other services. The information gathered includes the presence of various network information services as well as potential security flaws, usually in the form of incorrectly set-up or configured network services, well-known bugs in system or network utilities, or poor or policy decisions. It can then either report on this data or use a simple rule-based system to investigate any potential security problems. Users can then examine, query, and analyze the output with an HTML browser, such as Mosaic, Netscape, or Lynx. While the program is primarily designed to analyze the security implications of the results,
a great deal of general network information can be gained when using the tool, such as network topology, network services running, types of hardware, and software being used on the network.

When run in exploratory mode, SAINT can be very beneficial. Based on the initial data collection and a user-configurable ruleset, it will examine the avenues of trust and dependency and iterate further data collection runs over secondary hosts. This not only allows you to analyze your own network or hosts, but also to examine the real implications inherent in network trust and services and help them make reasonably educated decisions about the security level of the systems involved.

SAINT has a target acquisition program that normally uses **fping** to determine whether or not a host or set of hosts in a subnet are alive. When a host is behind a firewall, however, tcp_scan is used to probe common ports to test for an alive host. It then passes this target list to an engine that drives the data collection and the main feedback loop. Each host is examined to see if it has been seen before, and, if not, a list of tests and probes is run against it (the set of tests depends on the distance the host is from the initial target and what probe level has been set.) The tests emit a data record that has the host name, the test run, and any results found from the probe; this data is saved in files for analysis. The user interface uses HTML to link the often vast amounts of data to more coherent and palatable results that the user can readily digest and understand.

Note: We have purposely excluded these advanced configurations from this redbook in order to simply explain the basic concept of these services.

4.3.1 The r-commands

The r-commands, where r stands for remote, is a so-called generic name for the **rcp**, **rlogin** and **rsh** commands. Table 4-3 lists the remote commands and describes their purpose:

Table 4-3 The r-commands

<table>
<thead>
<tr>
<th>R-command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rcp</td>
<td>Transfers files between a local and a remote host, or between two remote hosts.</td>
</tr>
<tr>
<td>rlogin</td>
<td>Connects a local hosts with a remote host.</td>
</tr>
<tr>
<td>rsh</td>
<td>Executes the specified command at the remote host or logs into the remote host.</td>
</tr>
</tbody>
</table>
These commands are installed in the /usr/bin directory and included in the bos.net.tcp.clients fileset, as shown in the following example:

```
# ls -l /usr/bin/rcp /usr/bin/remsh /usr/bin/rlogin /usr/bin/rsh
-r-sr-xr-x 1 root system 319972 Feb 10 2002 /usr/bin/rcp
-r-sr-xr-x 2 root system 303506 Feb 10 2002 /usr/bin/remsh
-r-sr-xr-x 1 root bin 306328 Feb 10 2002 /usr/bin/rlogin
-r-sr-xr-x 2 root system 303506 Feb 10 2002 /usr/bin/rsh
# lslpp -w /usr/bin/rcp /usr/bin/remsh /usr/bin/rlogin /usr/bin/rsh
File                                      Fileset               Type
----------------------------------------------------------------------------
/usr/bin/rcp                                bos.net.tcp.client    File
/usr/bin/remsh                              bos.net.tcp.client    Hardlink
/usr/bin/rlogin                             bos.net.tcp.client    File
/usr/bin/rsh                                bos.net.tcp.client    File
```

As an example of the usage of these commands, Figure 4-9 illustrates the basic execution process flow of the `rsh` command.

The process flow is explained in the following list:

1. On the source host (client), the `rsh` command is invoked to connect to the destination host (server), as shown in A.

2. The rshd daemon attempts to validate the specified user using the following steps:
 a. The rshd daemon looks up the configured name service to be used for the user name and password, for example, the `/etc/password` file or NIS password map.
 b. If the user ID is not 0, rshd searches the `/etc/hosts.equiv` file to verify that the client name is listed; then the rshd daemon validates the user.
 c. If the `$HOME/.rhosts` file exists, rshd tries to authenticate the user by checking the `$HOME/.rhosts` file.
d. If either of the previous attempts failed, rshd shows you a password prompt of the user for the authentication.

3. Once rshd validates the user, it spawns a child shell of the user, as shown in B. The shell inherits the network connections established by the rshd daemon and it passes the command specified on the rsh command line. The shell sends the output to the client using the inherited network connection, as shown in C. When the remote command terminates, the local rsh process exits.

The /etc/host.equiv file is a system-wide configuration file for r-commands. The $HOME/.rhosts file is a user-basis configuration file for each user. To facilitate r-commands service, both files must reside on the server and have the same format as follows:

hostname [username]

The first field of this format expresses the host name, which is allowed to access the server. If a special character ‘+’ is specified, any host is allowed to access the server. The optional second field expresses the user name to which access to the server is granted. If a special character ‘+’ is specified, any user is granted the access; in other words, no authentication is attempted.

Although the usage of r-commands is quite simple and convenient, it may provide a security hole in your system. We strongly recommend you disable these services on your system.

The white paper rlogin(1): The Untold Story, provided by CERT, gives detailed information about security vulnerability for r-commands. It can be found at:

http://www.cert.org/archive/pdf/rlogin1_98tr017.pdf

Note: The r-commands service transmits all the data between client and server in clear text.

4.3.2 The telnet service

The telnet service is based on a client/server architecture, as follows:

telnet The telnet command, installed as /usr/bin/telnet, is an application client that supports the telnet service.

telnetd The telnetd daemon, installed as /usr/sbin/telnetd, is a server daemon process that supports the telnet service. The telnetd daemon process listens at port 23 by default, as specified in the /etc/services file. The telnetd daemon is invoked from inetd (an Internet super daemon process) upon receiving the connection request to the telnet service.
4.3.3 The FTP service

The ftp service is based on a client/server architecture, as follows:

ftp The *ftp* command, installed as /usr/bin/ftp, is an application client that supports the ftp service to be used for transferring files between a local and a remote host.

ftpd The ftpd daemon, installed as /usr/sbin/ftpd, is a server daemon process that supports the ftp service. The ftpd daemon is invoked from inetd upon receiving the connection request to the ftp service.

Note: The ftp service transmits all the data between client and server using a non-encrypted format.

4.4 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

4.4.1 The lsattr command

The *lsattr* command displays attribute characteristics and possible values of attributes for devices in the system. The command has the following syntax:

```
lsattr { -D [ -O ] | -E [ -O ] | -F Format } -l Name [ -a Attribute ] ... [ -f File ] [ -h ] [ -H ]
```

```
lsattr { -D [ -O ] | -F Format } { [ -c Class ] [ -s Subclass ] [ -t Type ] } [ -a Attribute ] ... [ -f File ] [ -h ] [ -H ]
```

```
lsattr -R { -l Name | [ -c Class ] [ -s Subclass ] [ -t Type ] } -a Attribute [ -f File ] [ -h ] [ -H ]
```

The commonly used flags are provided in Table 4-4 on page 104.

Note: The telnet service transmits all the data between client and server in clear text.

Note: The ftp service transmits all the data between client and server using a non-encrypted format.
Table 4-4 Commonly used flags of the lsattr command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a Attribute</td>
<td>Displays information for the specified attributes of a specific device or kind of device. You can use one -a flag for each attribute name or multiple attribute names. If you use one -a flag for multiple attribute names, the list of attribute names must be enclosed in quotes with spaces between the names. Using the -R flag, you must specify only one -a flag with only one attribute name. If you do not specify either the -a or -R flag, the lsattr command displays all information for all attributes of the specified device.</td>
</tr>
<tr>
<td>-E</td>
<td>Displays the attribute names, current values, descriptions, and user-settable flag values for a specific device when not used with the -O flag. The -E flag displays only the attribute name and current value in colon format when used with the -O flag. This flag cannot be used with the -c, -D, -F, -R, -s, or -t flag.</td>
</tr>
<tr>
<td>-l Name</td>
<td>Specifies the device logical name in the Customized Devices object class whose attribute names or values are to be displayed.</td>
</tr>
</tbody>
</table>

4.4.2 The chdev command

The chdev command changes the characteristics of a device. The command has the following syntax:

```
chdev -l Name [ -a Attribute=Value ... ] [ -f File ] [ -h ] [ -p ParentName ] [-P | -T ] [ -q ] [ -w ConnectionLocation ]
```

The commonly used flags are provided in Table 4-5.

Table 4-5 Commonly used flags of the chdev command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l device</td>
<td>The name of the device that is being changed.</td>
</tr>
<tr>
<td>-a</td>
<td>The device attribute and the new value. Use lsattr to see the attributes that can be changed.</td>
</tr>
</tbody>
</table>
4.5 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. All of the following are times when the minimum configuration smit screen for TCP/IP should be used *except*:
 A. When setting a default route
 B. When reconfiguring TCP/IP from scratch
 C. When changing the IP address of one adapter in the system
 D. When configuring the first adapter in a newly installed machine

2. Scenario: A network administrator has been asked to integrate a new RS/6000 to be used as a corporate mail server into the network. There are five nodes on the Ethernet II network, with a network address of 193.3.7.0 and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring and integrated Ethernet adapters.

 Which one of the following files should be modified in order to enable this node to use DNS for host name resolution?
 A. /etc/hosts
 B. /etc/inetd.conf
 C. /etc/resolv.conf
 D. /etc/named.boot

3. Scenario: A network administrator has been asked to integrate a new RS/6000 to be used as a corporate mail server into the network. There are five nodes on the Ethernet II network, with a network address of 193.3.7.0 and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring and integrated Ethernet adapters.

 The Internet Service Provider has set up a gateway for the administrator to access the Internet. The IP address of this gateway is 193.3.7.99. Which one of the following actions must occur for this new machine to reach the Internet?
 A. Create a network route to 193.3.7.99 for 0.0.0.0
 B. Assign 193.3.7.99 as an alias to the Ethernet adapter
 C. Add the address 193.3.7.99 to the /etc/resolv.conf file
 D. Use `no` to set the ipforwarding attribute to 193.3.7.99
4. If the local machine is configured as a primary name server, which one of the following statements is true?
 A. /etc/resolv.conf does not exist
 B. /etc/resolv.conf must be an empty file
 C. /etc/resolv.conf contains the local loopback address
 D. /etc/resolv.conf is either an empty file or contains “nameserver 127.0.0.1”

5. Which one of the following will result from an adapter configuration of `ifconfig en0 129.35.22.8 network 255.0.0.0`?
 A. Destination Gateway 129.0.0.99 129.35.22.8
 B. Destination Gateway 129.255.0.1 129.35.22.8
 C. Destination Gateway 224.0.0.1 129.35.22.8
 D. Destination Gateway 254.0.0.1 129.35.22.8

6. Which one of the following procedures must be performed to add multiple nameservers or multiple domains when searching for a DNS lookup?
 A. Use a smit panel.
 B. Edit the /etc/resolv.conf.
 C. Start the named daemon.
 D. Refresh the named daemon.

7. All of the following are used to audit or evaluate system security except:
 A. COPS
 B. Kerberos
 C. SATAN
 D. SAINT

8. Which one of the following statements best describes Kerberos?
 A. Kerberos is a system designed to provide host security.
 B. Kerberos is a password encryption system that replaces login in a Trusted Computing Base.
 C. Kerberos is a network authentication protocol.
 D. Kerberos is a public-key cryptography system used in AIX IPSec.
9. Which one of the following commands does not definitively show whether there is an Asynchronous Terminal installed on a system?
 A. lsconf -vp
 B. lsattr -El tty0
 C. lsdev -C
 D. lscons

10. All of the following will show all TTY ports except?
 A. lsconf -vp
 B. lscons
 C. lsdev -C
 D. lsattr -El tty0

11. Which command is used to adjust tcp_sendspace?
 A. netstat
 B. ifconfig
 C. no
 D. chdev

12. Which command is used to modify network options?
 A. no -o
 B. ifconfig -a
 C. chdev -l
 D. netstat -m

13. After installing and configuring a modem for a remote console tty0 on the S1 port, the system is restarted, an error code CF1 is received, and a prompt to identify the console is displayed. Which one of the following options is the best recovery solution?
 A. pdisable
 B. chcons -a login=enable /dev/tty0
 C. chdev -l tty0 -a login=enable
 D. swcons tty0
4.5.1 Answers

The following are the preferred answers to the questions provided in this section:

1. C
2. C
3. A
4. D
5. A
6. B
7. B
8. C
9. D
10. B
11. C
12. A
13. C

4.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Determine the location of your network adapters.
2. On a test system, change the subnet mask of en0 using the chdev command.
Network daemons

This chapter discusses the following topics:

- TCP/IP network startup
- Network daemons
- Network services, specifically BOOTP and DHCP
- General network configuration and the tools provided
- Administration of network adapters and interfaces

Several common services that a system administrator has to manage are discussed in this chapter.
5.1 Network startup

When the system is powered on, the network startup is initiated by `cfgmgr` as part of the second boot phase. The network startup script that starts the network is determined by the ODM configuration rules. The AIX default is `/etc/rc.net` script, which uses the ODM data to define, load, and configure network interfaces.

Figure 5-1 illustrates the complete startup process.

Another possible network startup is the BSD-style network configuration using `/etc/rc.bsdnet`. This script uses the traditional `ifconfig` command to configure the networking interface.

The next phase of networking startup is running the `/etc/rc.tcpip` script that is started by the `init` program. At network installation time, an entry is made in the `/etc/inittab` automatically inserting the `rc.tcpip` script. The `rc.tcpip` script starts selected network daemons using the System Resource Controller (SRC).

In AIX, the name subsystem and subserver have specific meanings:
- **subsystem** A daemon or server that is controlled by SRC.
- **subserver** A daemon that is controlled by a subsystem. Since the only TCP/IP subsystem that controls subservers is `inetd`, all TCP/IP daemons controlled by `inetd` are subservers.
5.1.1 System Resource Controller

The SRC is an AIX-specific subsystem controller used to manage and control subsystem processes (also known as server daemons). The SRC helps system administrators control system server processes/daemons by providing utilities for start, stop, trace, list, and refresh of daemons.

The following utilities are provided for managing the SRC:

- **startsrc**: Starts the TCP/IP subsystems and TCP/IP subservers.
- **stopsrc**: Stops all TCP/IP subsystems and TCP/IP subservers.
- **refresh**: Refreshes the subsystems and subservers (that is, it forces the re-initialization).
- **lssrc**: Provides the status of subsystems and subservers.

For more information on the SRC, refer to the IBM Certification Study Guide - pSeries AIX System Administration, SG24-6191.

5.2 Network subsystems

The `/etc/rc.tcpip` file is a shell script that, when executed on system bootup, uses `startsrc` to start up selected daemons. The `rc.tcpip` script can also be executed at any time from the command line.

The following TCP/IP subsystems, listed in file order, can be started with `rc.tcpip`:

- **syslogd**: Log server for standard UNIX error logs.
- **portmap**: Port lookup facility used for remote procedure call (RPC).
- **inetd**: Internet daemon that starts other services such as telnet or ftp.
- **named**: Domain name server in a domain network.
- **lpd**: Print server daemon.
- **routed** or **gated**: Dynamic routing. Note that you cannot have both running simultaneously.
- **sendmail**: Mail transfer agent.
- **timed, xntpd**: Time synchronization daemons.
- **rwhod**: Remote uptime and users.
- **snmpd, dpid2**: SNMP daemons.
- **dhcpd, dhcprd, dhrcpsd**: DHCP daemons.
autoconf6, ndpd-host IPv6 daemons.

mrouted Multicast routing.

Note: The rc.tcpip starts syslogd, portmap, inetd, lpd, and sendmail daemons automatically. All the other daemons listed above must be uncommented in rc.tcpip. This is usually done when the network daemons are individually configured.

To list of all network daemons, use the `lssrc` command:

```
# lssrc -g tcpip
```

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Group</th>
<th>PID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>inetd</td>
<td>tcpip</td>
<td>7484</td>
<td>active</td>
</tr>
<tr>
<td>snmpd</td>
<td>tcpip</td>
<td>7740</td>
<td>active</td>
</tr>
<tr>
<td>dpid2</td>
<td>tcpip</td>
<td>7998</td>
<td>active</td>
</tr>
<tr>
<td>tftpd</td>
<td>tcpip</td>
<td>14494</td>
<td>active</td>
</tr>
<tr>
<td>rwhod</td>
<td>tcpip</td>
<td>15466</td>
<td>active</td>
</tr>
<tr>
<td>gated</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>named</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>routed</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>iptrace</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>xntpd</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>timed</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>dhcpcd</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>dhcpsd</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>dhcpd</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>ndpd-host</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>ndpd-router</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
<tr>
<td>mrouted</td>
<td>tcpip</td>
<td></td>
<td>inoperative</td>
</tr>
</tbody>
</table>

This lists all the server daemons in the group tcpip. Alternatively, for controlling TCP/IP subsystems you can use `smitty subsys`, as shown in Figure 5-2 on page 113.
5.3 Stopping network subsystems

All TCP/IP subsystems started with `rc.tcpip` can be stopped with the SRC `stopsrc` command. The subsystems can be stopped individually using the `-s` flag.

```bash
# stopsrc -s dhcpsd
0513-044 The dhcpsd Subsystem was requested to stop.
```

Or the subsystems can be stopped collectively using the TCP/IP group `-g` flag for `stopsrc`:

```bash
# stopsrc -g tcpip
```

Note: Use this command at the system console only.

Additionally, for convenience, the script `/etc/tcp.clean` can be used for stopping the daemons.
5.4 Internet daemon - inetd

The Internet daemon inetd is the super server daemon that manages the other Internet subservers and starts up the other server daemons upon request. The inetd both simplifies the management and reduces system load by invoking other daemons only when they are needed. The inetd is started from the rc.tcpip script using the SRC. At startup, the inetd reads its configuration file /etc/inetd.conf, which specifies what Internet services to provide on the system. The inetd will listen to each port that the corresponding Internet service is using, for example, telnet (port 23). If a client request is made on the specific port, inetd starts up the program specified in the inetd.conf, which in the example of telnet is the telnetd daemon.

5.4.1 The /etc/inetd.conf file

The /etc/inetd.conf file is the default configuration file for the inetd daemon. This file enables you to specify which daemons to start by default and supply the arguments that correspond to the desired style of functioning for each daemon. If you change the /etc/inetd.conf file, run the `refresh -s inetd` or `kill -1 InetdPID` command to inform the inetd daemon of the changes to its configuration file.

The inetd configuration file located in /etc/inetd.conf is a simple ASCII file containing an entry for each supported Internet service. Each entry consists of:

- **ServiceName**: The name of the Internet service as it is listed in /etc/services. The name must be identical to the first entry of the /etc/services line that matches the name.

- **SocketType**: Contains the name for the type of socket used for the service.
 - stream - specifies a stream socket.
 - dgram - specifies a datagram socket.
 - sunrpc_tcp - specifies a RPC stream socket.
 - sunrpc_udp - specifies a RPC datagram socket.

- **ProtocolName**: The name of the Internet protocol used by the service as defined in the /etc/protocols file.
 - tcp - specifies TCP/IP protocol.
 - udp - specifies the UDP protocol.

- **wait/nowait/SRC**: Wait is for dgram, nowait is for stream. Determines whether inetd waits for a datagram server to release the socket before continuing listening to the socket. The SRC instruction works like wait, but uses `startsrc` on the subsystem and stores information about the starting of the service.
User Name Specifies the user name the inetd starts the server with. This allows control of the permissions of the server process.

Server Path Full path to the server program. For services that the inetd daemon provides internally, this field should be internal.

Program Arguments Optional command-line arguments the server program is started with. The maximum number of arguments is five.

The following shows an extract from the /etc/inetd.conf file:

```
## service socket protocol wait/ user server program
## name type protocol nowait user server arguments
##
ftp stream tcp6 nowait root /usr/sbin/ftpd ftpd
#telnet stream tcp6 nowait root /usr/sbin/telnetd telnetd -a
shell stream tcp6 nowait root /usr/sbin/rshd rshd
kshell stream tcp nowait root /usr/sbin/krshd krshd
login stream tcp6 nowait root /usr/sbin/rlogind rlogind
klogin stream tcp nowait root /usr/sbin/krlogind krlogind
exec stream tcp6 nowait root /usr/sbin/rexecd rexecd
#comsat dgram udp wait root /usr/sbin/comsat comsat
#uucp stream tcp nowait root /usr/sbin/uucpd uucpd
#bootps dgram udp wait root /usr/sbin/bootpd bootpd
/etc/ bootp tab
....
```

The following is a list of the Internet subservers supported by inetd on a basic AIX installation. A starting hash (#) sign indicates that these subservers by default are not configured (commented out) in /etc/inetd.conf.

The following daemons are controlled by the inetd daemon:

bootpd The bootpd daemon is the server that receives all bootp requests. It uses the /etc/bootptab file to read its configuration information.

comsat The comsat daemon is the server that receives reports of incoming mail and notifies users if they have enabled this service with the *biff* command.

ftpd The /usr/sbin/ftpd daemon is the DARPA Internet File Transfer Protocol (FTP) server process. The ftpd daemon uses the TCP to listen at the port specified with the *ftp* command service specification in the /etc/services file.

telnetd The /usr/sbin/telnetd daemon is a server that supports the Defense Advanced Research Product Agency (DARPA) standard Telnet Protocol (TELNET). When a *telnet* session is
started, the telnetd daemon sends TELNET options to the client (remote) host to indicate an ability to perform options.

rshd
The /usr/sbin/rshd daemon is the server for the `rcp` and `rsh` commands. The rshd daemon provides remote execution of shell commands. These commands are based on requests from privileged sockets on trusted hosts.

rlogin
The /usr/sbin/rlogind daemon is the server for the `rlogin` remote login command. The server provides a remote login facility.

rexecd
The /usr/sbin/rexecd daemon is the server for the `rexec` command.

fingerd
The /usr/sbin/fingerd daemon is a simple protocol that provides an interface to the `finger` command at several network sites.

tftpd
The /usr/sbin/tftpd daemon runs the Trivial File Transfer Protocol (TFTP) server. Files sent using TFTP can be found in the directory specified by the full path name given on the `tftp` or `utftp` command line.

talkd
The /usr/sbin/talkd daemon is the server that notifies a user (the recipient) that another user (the caller) wants to initiate a conversation. The daemon sets up the conversation if the recipient accepts the invitation. The caller initiates the conversation by executing the `talk` command specifying the recipient. The recipient accepts the invitation by executing the `talk` command specifying the caller.

uucpd
The uucpd daemon is a subserver of the inetd daemon. The uucpd daemon must be running as a background process on all the networked systems before the BNU program can use TCP/IP system to communicate. If the uucpd daemon is not running, reconfigure the inetd daemon to start the uucpd daemon. Use the `netstat` command to find out if the uucpd daemon is running.

The `ftpd`, `rlogind`, `rexecd`, `rshd`, `talkd`, `telnetd`, and `uucpd` daemons are started by default. The `tftpd`, `fingerd`, and `comsat` daemons are not started by default unless they are uncommented in the `/etc/inetd.conf` file.

Additional software products might use the inetd features to start up their network services. Typically this is done by inserting entries in the `/etc/inetd.conf`; for example, WebSphere MQ places the listener daemon in care of the inetd daemon.
5.4.2 The /etc/services file

The /etc/services file contains information about the known services used in the DARPA Internet network as well as other entries that may be added by third-party vendors. Each service is listed on a single line corresponding to the form:

ServiceName PortNumber/ProtocolName Aliases

These fields contain the following information:

ServiceName Specifies an official Internet service name.

PortNumber Specifies the socket port number used for the service.

ProtocolName Specifies the transport protocol used for the service.

Aliases Specifies a list of unofficial service names.

Items on a line are separated by spaces or tabs. Comments begin with a # (pound sign) and continue until the end of the line.

If you edit the /etc/services file, run the `refresh -s inetd` or `kill -1 InetdPID` command to inform the inetd daemon of the changes.

An example of the /etc/services file is as follows:

```
# Network services, Internet style
#
tcpmux          1/tcp                           # TCP Port Service Multiplexer
  tcpmux          1/udp                           # TCP Port Service Multiplexer
  compressnet     2/tcp                           # Management Utility
  compressnet     2/udp                           # Management Utility
  ...
telnet          23/tcp
smtp            25/tcp          mail
nsw-fe          27/tcp                          # NSW User System FE
  nsw-fe          27/udp                          # NSW User System E
  ...
man             9535/tcp
man             9535/udp
isode-dua       17007/tcp
  isode-dua       17007/udp
dtspc           6112/tcp
fontserver      7100/tcp                xfs     # X11R6 font server
```

5.4.3 The ports assigned to network services

Table 5-1 provides a quick reference to some of the more common daemons that are controlled in /etc/inetd.conf or /etc/sendmail.cf and what they do.
Table 5-1 Command and port quick reference guide

<table>
<thead>
<tr>
<th>Daemon</th>
<th>Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ftp</td>
<td>21</td>
<td>Transfers files between a local and a remote host.</td>
</tr>
<tr>
<td>tftp</td>
<td>69</td>
<td>Trivial File Transfer Protocol. Transfers files between hosts using minimal protocol.</td>
</tr>
<tr>
<td>login</td>
<td>513</td>
<td>The <code>rlogin</code> command connects the local terminal to the remote host specified by the HostName parameter.</td>
</tr>
<tr>
<td>telnet</td>
<td>23</td>
<td>Connects the local host with a remote host, using the Telnet interface.</td>
</tr>
<tr>
<td>bootps</td>
<td>67</td>
<td>Sets up the Internet Boot Protocol server.</td>
</tr>
<tr>
<td>timed</td>
<td>525</td>
<td>Time server daemon. Synchronizes clock with other machines running timed on the local area network.</td>
</tr>
<tr>
<td>shell</td>
<td>514</td>
<td>At login, the shell defines the user environment after reading the shell startup files.</td>
</tr>
<tr>
<td>snmp</td>
<td>161</td>
<td>SNMP is used by network hosts to exchange information in the management of networks.</td>
</tr>
<tr>
<td>smtp</td>
<td>25</td>
<td>A protocol, typically used over a network, in which the objective is to transfer mail. SMTP is used by the <code>sendmail</code> command to accept and receive mail.</td>
</tr>
</tbody>
</table>

Every network service is performed over a port. Below is a list of some of the more common ports and their respective network services as extracted from the `/etc/services` file:

```
ftp        21/tcp
login      513/tcp                  # no passwords used
kshell     544/tcp
klogin     543/tcp
exec       512/tcp
uucp       540/tcp                # uucp daemon
bootps     67/udp                 # bootp server port
finger     79/tcp
netstat    15/tcp
netstat    11/tcp                # users
snmp       161/tcp               # snmp request port
snmp       161/udp               # snmp request port
snmp-trap  162/tcp               # snmp monitor trap port
```
snmp-trap 162/udp # snmp monitor trap port
smtp 25/tcp mail
re-mail-ck 50/tcp # Remote Mail Checking Protocol
re-mail-ck 50/udp # Remote Mail Checking Protocol
xns-mail 58/tcp # XNS Mail
xns-mail 58/udp # XNS Mail
ni-mail 61/tcp # NI MAIL
ni-mail 61/udp # NI MAIL
imap2 143/tcp # Interim Mail Access Pro. v2
imap2 143/udp # Interim Mail Access Pro. v2
pcmail-srv 158/tcp # PCMail Server
pcmail-srv 158/udp # PCMail Server
mailq 174/tcp # MAILQ
mailq 174/udp # MAILQ
tam 209/tcp # Trivial Auth. Mail Protocol
tam 209/udp # Trivial Auth. Mail Protocol
imap3 220/tcp # Interactive Mail Access Pro.
imap3 220/udp # Interactive Mail Access Pro.
mailbox 2004/tcp

The list is not exhaustive, but does show the main daemons needed for the networking environment.

5.4.4 Inetd subsystem control

Any change to the /etc/inetd.conf file requires a refresh of the inetd daemon in order to re-read the configuration and apply the change.

refresh -s inetd
0513-095 The request for subsystem refresh was completed successfully.

An alternate way of controlling the inetd daemon and the /etc/inetd.conf is using the Web-based System Manager (wsm) menus for networking. Figure 5-3 on page 120 shows the wsm networking support window for controlling inetd.
5.5 Network subservers

The following section discusses the network subservers and how to perform basic administration on them.

5.5.1 Controlling subservers

The SRC can be used to activate the individual inetd subservers by using `startsrc` with the -t flag.

```
# startsrc -t time
0513-124 The time subserver has been started.
```
Alternatively, use the dedicated SMIT command `smitty subserver`.

Stopping individual inetd subservers can be done by using the `stopsrc -t` command.

For example:

```bash
# stopsrc -t ftp
0513-127 The ftp subserver was stopped successfully.
# hostname
server2
# ftp server2
ftp: connect: A remote host refused an attempted connect operation.
ftp> quit
# startsrc -t ftp
0513-124 The ftp subserver has been started.
# ftp server2
Connected to server2.itsc.austin.ibm.com.
Name (server2:root):
```

5.5.2 File Transfer Protocol (FTP)

The File Transfer Protocol (FTP) is used for copying files between machines using TCP. The FTP client logs into the other system with an FTP server (`ftpd`) and is authenticated with a user ID and password. After the login, the FTP client can perform a set of operations. The following are the most frequent operations:

- **prompt**: Toggle interactive prompting.
- **cd**: Select a directory.
- **lcd**: Change the working directory on the local host. If you do not specify a directory, the `ftp` command uses your home directory.
- **ls, dir**: List files available for transfer.
- **ascii, binary**: Define the transfer type: `ascii` (default) sets the file-transfer type to network ASCII, and `binary` sets the file-transfer type to binary image. Must always be used when transferring programs.
- **get, mget**: Copy file or files from the remote server.
- **put, mput**: Copy file or files to the remote server.
- **help**: List and help on all FTP commands.

The FTP server `ftpd` is an inetd subserver and it is by default activated in the `/etc/inetd.conf` configuration.
5.5.3 Anonymous FTP

Anonymous FTP allows public access to some file directories on your system. The remote user only needs to use the login name anonymous and password guest or some other common password conventions (typically the user's Internet e-mail ID).

To set up anonymous FTP on AIX, use the script /usr/samples/tcpip/anon.ftp. This will create the appropriate users and directories for using anonymous FTP. Setting up anonymous FTP will allow guest users to write binaries that could contain computer viruses if they are not carefully monitored.

5.5.4 RCP file transfer

The rcp command copies one or more files between a local host and a remote host, between two separate remote hosts, or between files at the same remote host. This command is similar to the cp command except that it works only for remote file operations and the attributes of a file are maintained. If extra security is needed for your network, this command may be disabled by the system administrator.

5.5.5 Trivial File Transfer Protocol

Trivial File Transfer Protocol (TFTP) is a simple protocol to transfer files implemented on top of UDP (User Datagram Protocol). TFTP is used, for example, by network stations to download boot images. TFTP is a small subset of FTP, providing only read/write of files from/to a server.

Note: TFTP has no means of user authentication and is considered an unsecure protocol.

The TFTP server tftpd is an inetd subserver, so /etc/inetd.conf must be configured to activate TFTP. The file /etc/tftpaccess.ctl file is used for configuring remote access to the directories on the system, by allowing (keyword allow) or denying (keyword deny) access to directories. A sample file is provided in /usr/samples/tcpip/tftpaccess.ctl.

5.5.6 Security consideration with inetd subservers

The following sections discuss various security considerations with regards to inetd subservers.
The $HOME/.netrc file
The $HOME/.netrc file contains information used by the automatic login feature of the `rexec` and `ftp` commands. It is a hidden file in a user's home directory and must be owned either by the user executing the command or by the root user. If the .netrc file contains a login password, the file's permissions must be set to 600 (read and write by owner only). The login password is in plain text. Even with permissions set to 600, passwords for remote systems are vulnerable to being revealed to any user with root authority.

The $HOME/.forward file
When mail is sent to a local user, the `sendmail` command checks for the $HOME/.forward file. The $HOME/.forward file can contain one or more addresses or aliases. If the file exists, the message is not sent to the user. The message is sent to the addresses or aliases in the $HOME/.forward file. All messages, including confidential ones, will never reach the user if this is implemented.

The /etc/hosts.equiv file
The /etc/hosts.equiv file, along with any local $HOME/.rhosts files, defines the hosts (computers on a network) and user accounts that can invoke remote commands on a local host without supplying a password. The $HOME/.rhosts file is similar to the /etc/hosts.equiv file, except that it is maintained for individual users.

The $HOME/.rhosts file
The $HOME/.rhosts file defines which remote hosts (computers on a network) can invoke certain commands on the local host without supplying a password. This file is a hidden file in the local user's home directory and must be owned by the local user. It is recommended that the permissions of the .rhosts file be set to 600 (read and write by owner only). Bypassing the need for a password may be a security concern, especially if you allow all users on a particular system access without needing a password.

The permissions and the entries in the $HOME/.rhosts file will affect whether a user on a remote host can successfully establish an rsh session. Both files, hosts.equiv and .rhosts, must have permissions denying write access to group and other. If either group or other have write access to a file, that file is ignored.

Note: Setting up services of FTP, remote login (rlogind), or remote execution (rexec) will have security implications for your system. In the following, configuration files for automatic access are discussed, but be aware of the possible danger of these configurations.
The securetcpip command

The **securetcpip** command provides enhanced security for the network. This command performs the following:

1. Runs the `tcbck -a` command, which disables the nontrusted commands and daemons: `rcp`, `rlogin`, `rlogind`, `rsh`, `rshd`, `tftp`, and `tftpd`. The disabled commands and daemons are not deleted; instead, they are changed to mode 0000. You can enable a particular command or daemon by re-establishing a valid mode.

2. Adds a TCP/IP security stanza to the `/etc/security/config` file. The stanza is in the following format:

   ```
   tcpip: netrc = ftp,rexec     /* functions disabling netrc */
   ```

Before running the `securetcpip` command, quiesce the system by logging in as root user and executing the `killall` command to stop all network daemons.

Note: The `killall` command kills all processes except the calling process. If logged in or applications are running, exit or finish before executing the `killall` command.

After issuing the `securetcpip` command, shut down and restart your system. All of your TCP/IP commands and network interfaces should be properly configured after the system restarts.

Some examples are shown in Table 5-2.

Table 5-2 $HOME/.rhosts definitions

<table>
<thead>
<tr>
<th>Local Host (sv1050a) User itsouser</th>
<th>Remote Host (aix4xdev) User itsouser</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ cat > $HOME/.rhosts</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>aix4xdev</td>
<td>rshd: 0826-813 Permission is denied.</td>
</tr>
<tr>
<td>$ chmod 600 $HOME/.rhosts</td>
<td>$</td>
</tr>
<tr>
<td>$</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>$ cat > $HOME/.rhosts</td>
<td>.</td>
</tr>
<tr>
<td>aix4xdev itsouser</td>
<td>..</td>
</tr>
<tr>
<td>$ chmod 600 $HOME/.rhosts</td>
<td>.profile</td>
</tr>
<tr>
<td>$</td>
<td>.rhosts</td>
</tr>
<tr>
<td>$</td>
<td>.sh_history</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>
5.6 Command summary

The following sections include descriptions of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

5.6.1 The `startsrc` command

The `startsrc` command starts a subsystem, a group of subsystems, or a subserver. The command has the following syntax:

For subsystem:

```
startsrc [-a Argument] [-e Environment] [-h Host] {-s Subsystem | -g Group}
```

For subserver:

```
startsrc [-h Host] -t Type [-o Object] [-p SubsystemPID]
```

The commonly used flags are provided in Table 5-3 on page 126.

<table>
<thead>
<tr>
<th>Local Host (sv1050a) User itsouser</th>
<th>Remote Host (aix4xdev) User itsouser</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ cat > $HOME/.rhosts</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>aix4xdev +</td>
<td>.</td>
</tr>
<tr>
<td>$ chmod 600 $HOME/.rhosts</td>
<td>..</td>
</tr>
<tr>
<td>$</td>
<td>.profile</td>
</tr>
<tr>
<td></td>
<td>.rhosts</td>
</tr>
<tr>
<td></td>
<td>.sh_history</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ chmod 644 $HOME/.rhosts</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>$</td>
<td>.</td>
</tr>
<tr>
<td></td>
<td>..</td>
</tr>
<tr>
<td></td>
<td>.profile</td>
</tr>
<tr>
<td></td>
<td>.rhosts</td>
</tr>
<tr>
<td></td>
<td>.sh_history</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ chmod 666 $HOME/.rhosts</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>$</td>
<td>rshd: 0826-813 Permission is denied.</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>$ chmod 777 $HOME/.rhosts</td>
<td>$ rsh sv050a -l itsouser ls -a</td>
</tr>
<tr>
<td>$</td>
<td>rshd: 0826-813 Permission is denied.</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>
Table 5-3 Commonly used flags of the startsrc command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-s Subsystem</td>
<td>Specifies a subsystem to be started. The Subsystem variable can be the actual subsystem name or the synonym name for the subsystem. The command is unsuccessful if the subsystem is not contained in the subsystem object class.</td>
</tr>
<tr>
<td>-t Type</td>
<td>Specifies that a subserver is to be started. The command is unsuccessful if the Type variable is not contained in the subserver object class.</td>
</tr>
</tbody>
</table>

5.6.2 The stopsrc command

The **stopsrc** command stops a subsystem, a group of subsystems, or a subserver. The command has the following syntax:

For Subsystem:

```
stopsrc [-h Host] [-f | -c] {-a | -g Group | -p SubsystemPID | -s Subsystem }
```

For Subserver:

```
stopsrc [-h Host] [-f] -t Type [-p SubsystemPID] [-P SubserverPID | -o Object]
```

The commonly used flags are provided in Table 5-4.

Table 5-4 Commonly used flags of the stopsrc command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g Group</td>
<td>Specifies that a group of subservers are to be stopped. The command is unsuccessful if the Group name is not contained in the subsystem object class.</td>
</tr>
<tr>
<td>-s Subsystem</td>
<td>Specifies a subsystem to be stopped. The Subsystem parameter can be the actual subsystem name or the synonym name for the subsystem. The stopsrc command stops all currently active instances of the subsystem. The command is unsuccessful if the subsystem name is not contained in the subsystem object class.</td>
</tr>
<tr>
<td>-t Type</td>
<td>Specifies that a subserver is to be stopped. The stopsrc command is unsuccessful if the Type specified is not contained in the subserver object class.</td>
</tr>
</tbody>
</table>

5.6.3 The refresh command

The **refresh** command requests a refresh of a subsystem or group of subsystems. The command has the following syntax:
refresh [-h Host] {-g Group|-p SubsystemPID|-s Subsystem}

The commonly used flags are provided in Table 5-5.

Table 5-5 Commonly used flags of the refresh command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-g Group</td>
<td>Specifies a group of subsystems to refresh. The refresh command is unsuccessful if the group name is not contained in the subsystem object class.</td>
</tr>
<tr>
<td>-s Subsystem</td>
<td>Specifies a subsystem to refresh. The Subsystem name can be the actual subsystem name or the synonym name for the subsystem. The refresh command is unsuccessful if subsystem name is not contained in the subsystem object class.</td>
</tr>
</tbody>
</table>

5.6.4 The lssrc command

The lssrc command gets the status of a subsystem, a group of subsystems, or a subserver. The command has the following syntax:

Subsystem status:

lssrc [-h Host] { -a | -g GroupName | [-l] -s Subsystem | [-l] -p SubsystemPID }

Subserver status:

lssrc [-h Host] [-l] -t Type [-p SubsystemPID] [-o Object] [-P SubserverPID]

The commonly used flags are provided in Table 5-6.

Table 5-6 Commonly used flags of the lssrc command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Lists the current status of all defined subsystems.</td>
</tr>
<tr>
<td>-g Group</td>
<td>Specifies a group of subsystems to get status for. The command is unsuccessful if the GroupName variable is not contained in the subsystem object class.</td>
</tr>
<tr>
<td>-s Subsystem</td>
<td>Specifies a subsystem to get status for. The Subsystem variable can be the actual subsystem name or the synonym name for the subsystem. The command is unsuccessful if the Subsystem variable is not contained in the subsystem object class.</td>
</tr>
</tbody>
</table>
5.7 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which one of the following methods will allow a file to be copied from a remote host and retain the attributes of the file?
 - A. `ftp`
 - B. `rcp`
 - C. `tcopy`
 - D. No protocol provides such function

2. After uncommenting a line in `/etc/inetd.conf` to enable tftpd, which one of the following will allow a remote machine to access a file through `tftp`?
 - A. `/usr/sbin/tftpd`
 - B. `refresh -s inetd`
 - C. Uncomment the line for tftpd in `/etc/services`
 - D. No action is required

3. Since the use of `/etc/hosts.equiv` or `~/.rhosts` allows remote access without using a password, which one of the following procedures is most appropriate to disable the use of these files?
 - A. Use the `-l` flag on `rsh` and `rlogin`
 - B. Put an entry in the `/etc/nologin` file
 - C. Delete the `/etc/hosts.equiv` and `~/.rhosts` files and tell your users not to create new ones
 - D. Change permissions of `/etc/hosts.equiv` and `~/.hosts` to anything other than 600

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-t</code> Type</td>
<td>Requests that a subsystem send the current status of a subserver. The command is unsuccessful if the subserver Type variable is not contained in the subserver object class.</td>
</tr>
</tbody>
</table>
4. Scenario: A network administrator has been asked to integrate a new
RS/6000 to be used as a corporate mail server into the network. There are
five nodes on the Ethernet II network, with a network address of 193.3.7.0
and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring
and integrated Ethernet adapters.

Which one of the following files must be edited to allow the machine to be a
tFTP server?
A. /etc/bootptab
B. /etc/rc.tcpip
C. /etc/inetd.conf
D. /etc/netsvc.conf

5. Which one of the following files on the local machine should be edited in order
to enable user Fred to perform rexec commands on a remote machine
without being prompted for a password?
A. ~fred/.login
B. ~fred/.netrc
C. ~fred/.rhosts
D. /etc/hosts.equiv

6. Once a file has been edited, which one of the following actions must occur
before clients can use the bootp server?
A. telinit q
B. refresh -s inetd
C. startsrc -s bootpd
D. No action is required

7. All of the following services are controlled by inetd except:
A. nfsd
B. ftpd
C. telnetd
D. pop3d
5.7.1 Answers

The following are the preferred answers to the questions provided in this section:

1. B
2. B
3. C is the most secure, but D will work
4. C
5. B
6. B
7. A

5.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Verify, on your system, which network subsystems and subservers are running.
2. On a dedicated test system, try to disable the FTP facility. What file would you need to edit? Make a backup of the corresponding file before you edit it. Test it to see if it works! Once you have done the test, re-enable FTP by restoring the original file.
Network services administration

The AIX TCP/IP supports a large set of network services. The main network services are the following:

- **DNS**
 - Domain Name System
- **NFS**
 - Network File System
- **NIS**
 - Network Information Services
- **BOOTP**
 - BOOTstrap Protocol
- **DHCP**
 - Dynamic Host Configuration Protocol
- **DDNS**
 - Dynamic Domain Name System
- **SNMP**
 - Simple Network Management Protocol

Some of the network services are covered in separate chapters. For DNS, refer to Chapter 8, “Domain Name System” on page 193. For NFS, refer to Chapter 7, “NFS” on page 149. For NIS, refer to Chapter 10, “NIS” on page 223.

The network services BOOTP, DHCP, and DDNS are described in the following sections.
6.1 Bootstrap protocol BOOTP

The Bootstrap Protocol (BOOTP) is used for providing IP addresses and IP parameters to systems on a TCP/IP network that are not configured. The system types could be network computers, X-terminals, network printers, and other machines that only have a minimal startup program in ROM.

Once BOOTP has provided the boot parameters, the actual downloading of image software is typically done with Trivial File Transfer Protocol (TFTP) or NFS.

The BOOTP uses UDP to bootstrap systems that request the IP address and additional information such as boot file from a BOOTP server. BOOTP is a draft standard protocol and its specifications can be found in RFC 951 Bootstrap Protocol.

The BOOTP client uses a broadcast on the local network, as it does not yet have an IP address.

![Diagram of BOOTP client/server message flow]

Figure 6-1 The BOOTP client/server message flow

The server replies to the broadcast with either a broadcast or unicast back to the client. The BOOTP request and replies contain a vendor-specific area that allows transmission of system information such as subnet mask, host name, domain name, default gateway, name servers, and other information.

By using a BOOTP server, the management of network machines can be centralized and administration becomes easier.
In situations where a lot of network clients requesting BOOTP are residing on smaller subnetworks without a BOOTP server, a router known as the BOOTP relay agent is required. This server forwards the BOOTP requests from the clients to the BOOTP server and similar are the BOOTP replies forwarded back to the requestor. This scheme of having one or multiple BOOTP relay agents allows consolidation of multiple networks with a central BOOTP server, thus reducing the overall network administration.

The BOOTP message flow between the client and the BOOTP server is illustrated in Figure 6-1 on page 132:

1. The client broadcasts a BOOTREQUEST datagram to the bootps service (port 67), which contains the hardware address of the client.
2. The datagram is picked up and forwarded by the BOOTP relay agent that listens to the same port 67. Note this might only happen in complex network scenarios.
3. The BOOTP server replies with a BOOTREPLY datagram message to the bootpc service (port 68). If the request came directly from the client, then the server might broadcast the request to 255.255.255.255. If the BOOTREQUEST came from a relay, the server can unicast the datagram to the relay.
4. The relay (if involved) will broadcast or unicast the BOOTREPLY to the client.

6.1.1 Configuring BOOTP

In AIX, the BOOTP is implemented in the server daemon bootpd, which is started by inetd (/etc/inetd.conf). Alternatively, the bootpd can be started in stand-alone mode using the flag -s. The bootpd daemon reads at startup a configuration file which, by default, is the /etc/bootptab. This file contains an entry for each client using the BOOTP service.

The following is an extract from a /etc/bootptab file:

```plaintext
... 
# Legend: 
#    first -- hostname 
#    field   (may be full domain name and probably should be) 
#    hd      -- home directory 
#    bf      -- bootfile 
#    sa      -- server IP address to tftp bootfile from 
#    gw      -- gateways 
#    ha      -- hardware address 
#    ht      -- hardware type 
#    ip      -- host IP address 
```
sm -- subnet mask
tc -- template host (points to similar host entry)
hn -- name switch
bs -- boot image size
dt -- old style boot switch
T170 -- (xstation only) -- server port number
T175 -- (xstation only) -- primary/secondary boot host indicator
T176 -- (xstation only) -- enable tablet
T177 -- (xstation only) -- xstation 130 hard file usage
T178 -- (xstation only) -- enable XDMCP
T179 -- (xstation only) -- XDMCP host
T180 -- (xstation only) -- enable virtual screen

...

The entry shown in the bootptab file specifies a network station aixnc1 and all the necessary information to boot it using TFTP.

The first entry is the client name.

ht Specifies the host hardware type, in this case token-ring.
ha Specifies the host hardware address.
ip Specifies the client's IP address.
sa Specifies the IP address of the TFTP server, where the client's boot file resides.

bf Specifies the name of the boot file (in this case, kernel).
hd Specifies the home directory on the TFTP server.
ds Specifies the domain name server address list.

gw Specifies the gateway address list. If this tag is defined, the sm (subnet mask) tag must also be defined.

6.2 Dynamic Host Configuration Protocol (DHCP)

The Dynamic Host Configuration Protocol (DHCP) provides a mechanism for dynamic allocation of IP addresses and configuration parameters on a TCP/IP network. DHCP is used extensively for client PCs (stationary PCs and laptops) or other network computing devices to relieve the network administration of manual configuration. The ability to move from network to network and automatically obtain a valid configuration is especially important for mobile users.
DHCP is based on the BOOTP protocol with the additional capability of automatic allocation of reusable network addresses and additional configuration options. The DHCP specifications can be found in RFC 2131 and RFC 2132.

DHCP messages use the same UDP port 67 for requests to servers and UDP port 68 for clients. A DHCP setup can coexist with BOOTP provided it is configured to do so (see more on this issue later in 6.2.3, “BOOTP and DHCP interoperation” on page 139).

DHCP consists of two components:

- A protocol that delivers host-specific configuration parameters from a DHCP server to a network host.
- A mechanism for the allocation of temporary or permanent network addresses to network host.

DHCP supports three mechanisms for IP address allocation:

Dynamic allocation
DHCP assigns an IP address for a limited period of time. This network address, called a *lease*, allows automatic reuse of addresses that no longer are in use.

Automatic allocation
DHCP assigns a permanent IP address to the host.

Manual allocation
The network address is assigned manually by a network administrator.

The following is a description of the DHCP interaction sequence between client and server to obtain a DHCP network address. Figure 6-2 illustrates the message flow.

Figure 6-2 The DHCP client/server simple request message flow
1. The client broadcasts a DHCPDISCOVER message on the local subnet. This message may include some options such as network address suggestion or lease duration.

2. The DHCP server responds with a DHCPOFFER message that includes an available network address and other configuration options. The address offered to the client is reserved in order to prevent it from being used by other requesting clients. Multiple DHCP servers might react on the client broadcast, so multiple DHCPOFFERs might be sent.

3. The client chooses the configuration parameters offered and sends a DHCPREQUEST message back indicating which server it has selected and the requested IP address option. The DHCP server receives the DHCPREQUEST broadcast from the client. In case of multiple offers, the DHCP servers not selected by the DHCPREQUEST message use this message to drop out of the transaction.

4. The DHCP server selected in the DHCPREQUEST message commits itself to the client with a DHCPACK message containing the configuration parameters for the client.

After step 4 the client is fully configured. This simple scenario illustrates only a successful request scenario. The following parts of the DHCP client initialization are not shown:

- If the client is not satisfied with the parameters offered, it may send a DHCPDECLINE and restart the request process again.
- A client renews its lease prior to expiration by issuing another DHCPREQUEST.
- If no DHCPACK is received, the client times out and retries from the beginning (step 1.).
- When shutting down, a client makes a DHCPRELEASE and releases its parameters.

6.2.1 DHCP server configuration

The DHCP server program dhcpsd implements the DHCP service described above. At startup the DHCP server is configured by reading the /etc/dhcpsd.cnf file, which specifies the server's initial database of options and addresses.

The dhcpsd server is started in the /etc/rc.tcpip file, or it can be started from Web-based System Manager, from SMIT, or through SRC commands.

```
# startsrc -s dhcpsd
0513-059 The dhcpsd Subsystem has been started. Subsystem PID is 17744.
```
Configuring a good DHCP server environment on your network is not a trivial thing to do. Many considerations must be taken into account, such as what subnets in your networks have DHCP clients, which pool of addresses are available for each network, which gateways need to be set up, and so on.

Following is a simple example of a DHCP server configuration file /etc/dhcpsd.cnf file:

```plaintext
...
#
#   dhcpsd.cnf -- DHCP Server Configuration File
#
#
#   This file contains directives that can be specified by the
#   server's administrator to configure the server and enforce
#   policies.
...
numLogFiles 6
logFileSize 1000
logFileName /usr/tmp/dhcpsd.log
logItem SYSErr
logItem OBJerr
logItem PROTerR
logItem WARNING
leaseTimeDefault 1 day
leaseExpireInterval 6 hour
#
network 10.0.0.0 24
{
    subnet 10.47.1.0 10.47.1.55-10.47.1.100
    {
        option 1 255.255.255.0
        option 3 10.47.1.1
        option 6 10.47.1.2
        option 15 itsc.austin.ibm.com
    }
}
```

The numLogFiles, logFileSize, logFileName, and logItem parameters are for the logging configuration. The parameter leaseTimeDefault specifies the default lease duration. The default is 1 hour, while in this example it is specified to 1 day. The leaseExpireInterval parameter specifies the time a lease expiration condition is examined.

This example shows a DHCP configuration for the subnet 10.47.1.0. The DHCP server assigns IP addresses ranging from 10.47.1.55 to 10.47.1.100. Each
DHCP client will receive the following settings: subnet mask (option 1) is set to 255.255.255.0, the default gateway (option 3) is set to 10.47.1.1, the domain name server (option 6) is set to 10.47.1.2, and finally the domain name (option 15) is set to itsc.austin.ibm.com.

A large set of options can be configured in DHCP. The description of the DHCP configuration option numbers are located in the file /etc/option.file.

To assist the administration of an DHCP server in AIX 4.3, the system utility dadmin is provided. The **dadmin** command lets the DHCP administrator query and modify the state of the DHCP server database. Both local and remote DHCP servers can be queried for a pool of IP addresses or IP address status. Other possible administration commands delete an IP address mapping, alter the tracing level, and refresh the server.

For example:

```
# dadmin -h server4 -v -s
Connecting to the DHCP server: server4
Got a socket, attempting to connect.

Connected to server4 successfully.
Send of header completed.

PLEASE WAIT....Gathering Information From the Server....PLEASE WAIT

Receive of header completed.

IP Address      Status  Lease Time Start Time  Last Leased Proxy ClientID
10.47.1.55      Leased     6:00:00 06/27 12:11 06/27 12:11 FALSE 1-00062995ec27
...
```

6.2.2 DHCP/BOOTP relay agent configuration

The dhcprd daemon is the DHCP relay agent for forwarding both BOOTP and DHCP requests. The UDP broadcasts sent by a BOOTP or DHCP client are not allowed to be passed through network gateways and routers; thus, a BOOTP/DHCP relay agent, the dhcprd daemon, has to send these packets to the appropriate servers.

The dhcprd is started using SRC, either in /etc/rc.tcpip (by uncommenting the corresponding entry) or by interactively using the **startsrc** command.

The dhcprd daemon reads the configuration file /etc/dhcprd.cnf at startup.
An example of an /etc/dhcprd.cnf file is as follows:

```bash
numLogFiles 4
logFileSize 100
logFileName /usr/tmp/dhcprd.log
logItem SYSERR
logItem OBJERR
server 10.47.1.1
```

The numLogFiles, logFileSize, logFileName, and logItem have the same parameter format as used in the DHCP server configuration file, namely logging parameters. The server parameter specifies the IP address of the server to which a DHCP relay agent should forward BOOTP or DHCP datagram. Multiple servers can be specified; all will receive a datagram message.

Since the dhcprd uses the same port as the bootpd daemon (port 67), you can only have one (either dhcprd or bootpd) daemon running. If you choose the dhcprd daemon, you will need to uncomment bootp from the /etc/inetd.conf file, then enter `refresh -s inetd` on the command line. If bootpd is running, this program needs to be stopped before starting the daemons.

6.2.3 BOOTP and DHCP interoperation

The format of DHCP messages is based on the format of BOOTP messages, which allows BOOTP and DHCP clients to coexist. Every DHCP message contains an IP Address Lease Time (DHCP message type option 51). Any message without this option is assumed to be from a BOOTP client.

The DHCP server responds to BOOTREQUEST messages with BOOTREPLY. A DHCP server may offer static addresses or automatic addresses to a BOOTP client (although not all BOOTP implementations will understand automatic addresses). If an automatic address is offered to a BOOTP client, then that address must have an infinite lease time, as the client will not understand the DHCP lease mechanism.

To support BOOTP clients from a DHCP server, the dhcpsd flag `supportBOOTP` must be set.

Add the following line to your dhcpsd configuration file /etc/dhcpsd.cnf:

```bash
... supportBOOTP Yes ...
```

To support BOOTP clients from a DHCP server, the /etc/bootptab configuration must be migrated to DHCP configuration. The bootptodhcp utility is provided in order to support this migration.
6.2.4 DHCP client configuration

The DHCP client daemon is implemented in the dhcpcd daemon. It requests IP address and parameters from a DHCP server. When an AIX system is configured to run with a DHCP client, the dhcpcd entry in the /etc/rc.tcpip startup script needs to be uncommented. Notice that the dhcpcd is, obviously, the first network daemon to be started.

At startup, the dhcpcd reads its configuration file /etc/dhcpcd.ini.

An example of the /etc/dhcpcd.ini is as follows:

```
#   dhcpcd.ini -- DHCP Client configuration file
#
#
#   This file contains directives that can be specified
#   to configure the client.
numLogFiles      4
logFileSize      100
logFileName     /usr/tmp/dhcpcd.log
logItem SYSERR
updateDNS "/usr/sbin/dhcpaction '%s' '%s' '%s' '%s' A NONIM >> /tmp/updns.out 2>&1 "
```

The numLogFiles, logFileSize, logFileName and logItem entries have the same parameter format used in the DHCP server configuration file, namely logging parameters. The updateDNS parameter is a quoted string used for executing a program, in this case dhcpaction, to update the DNS server with the inverse mapping of the IP address provided by DHCP and host name of the machine.

For more information about DNS updates, see 6.3, “Dynamic Domain Name System (DDNS)” on page 140.

Instead of editing /etc/rc.tcpip and /etc/dhcpcd.ini manually, a preferred way to configure the DHCP client is using the smit usedhcp fast path.

6.3 Dynamic Domain Name System (DDNS)

The Domain Name System is a static implementation of naming network units, providing host names for statically allocated IP addresses. In order to take advantage of DHCP and dynamically assigned IP addresses and still be able to allocate meaningful host names, the Dynamically Domain Name System (DDNS) was specified. In a DDNS environment, when the client receives its address from a DHCP server, it automatically updates its A record on the DNS server with the new address. In AIX Version 4.3, the program nsupdate is used to update information on a DDNS server.
6.4 Simple Network Management Protocol (SNMP)

SNMP is used by network hosts to exchange information on the management of networks. SNMP network management is based on the familiar client/server model that is widely used in TCP/IP-based network applications. Each host that is to be managed runs a process called an agent. The agent is a server process that maintains the Management Information Base (MIB) database for the host. Hosts that are involved in network management decision-making may run a process called a manager. A manager is a client application that generates requests for MIB information and processes responses. In addition, a manager may send requests to agent servers to modify MIB information.

The SNMP daemon is started using the `snmpd` command. This command may be issued only by a user with root privileges or by a member of the system group.

6.4.1 Files and file formats

The following files and formats are used with the SNMP.

- **mib.defs**: Defines the MIB variables the SNMP agent should recognize and handle. The `snmpinfo` command requires a set format to be followed for the `/etc/mib.defs` file.
- **mibll.my**: Defines the ASN.1 definitions for the MIB variables as defined in RFC 1213.
- **smi.my**: Defines the ASN.1 definitions by which the SMI is defined as in RFC 1155.
- **snmpd.conf**: Defines the configuration file for the snmpd agent.
- **ethernet.my**: Defines the ASN.1 definitions for the MIB variables defined in RFC 1398.
- **fddi.my**: Defines the ASN.1 definitions for the MIB variables defined in RFC 1512.
- **generic.my**: Defines the ASN.1 definitions for the MIB variables defined in RFC 1229.
- **ibm.my**: Defines the ASN.1 definitions for the IBM enterprise section of the MIB tree.
- **token-ring.my**: Defines the ASN.1 definitions for the MIB variables defined in RFC 1231.
unix.my Defines the ASN.1 definitions for a set of MIB variables for memory buffer (mbuf) statistics, SNMP multiplexing (SMUX) peer information, and various other information.

view.my Defines the ASN.1 definitions for the SNMP access list and view tables.

snmpd.peers Defines a sample peers file for the snmpd agent.

6.4.2 SNMP Requests for Comments (RFCs)

SNMP is defined in several Requests for Comments (RFCs), which are available from the Network Information Center at SRI International, Menlo Park, California.

The following RFCs define SNMP:

RFC 1155 Defines the structure of management information.
RFC 1157 Defines the SNMP to create requests for Management Information Base (MIB) information and formatting responses.
RFC 1213 Defines the MIB for network management.
RFC 1227 Defines the SNMP multiplexing (SMUX) protocol for extending base SNMP agents.
RFC 1228 Defines the Distributed Protocol Interface (DPI) for extending base SNMP agents.
RFC 1229 Defines an extension to the interfaces table as defined in RFC 1213.
RFC 1231 Defines an extension to the interfaces table for token-ring devices.
RFC 1398 Defines an extension to the interfaces table as Ethernet devices.
RFC 1512 Defines an extension to the interfaces table for Fiber Distributed Data Interface (FDDI) devices.

The snmpd.conf file

The snmpd.conf file provides the configuration information for the snmpd agent. This file can be changed while the snmpd agent is running. If the `refresh` or `kill -1` command is issued, the snmpd agent will reread this configuration file. The snmpd agent must be under System Resource Control (SRC) for the `refresh` command to force the reread.
This configuration file contains:

- Entries for community names. The community entry specifies the communities, associated access privileges and MIB views the snmpd agent allows.

- Access privileges and view definitions for incoming Simple Network Management Protocol (SNMP) request packets. The view entry specifies the MIB subtrees to which a particular community has access.

- Entries for host destinations for trap notification. The trap entry specifies the hosts the snmpd agent notifies in the event a trap is generated.

- Entries for log file characteristics. The logging entry specifies the characteristics for the snmpd agent logging activities if logging is not directed from the `snmpd` command with the -f option.

- Entries for snmpd-specific parameters. The snmpd entry specifies configuration parameters for the snmpd agent.

- Entries for SNMP Multiplexing Protocol (SMUX) association configurations. The SMUX entry specifies configuration information for SMUX associations between the snmpd agent and SMUX peer clients.

- Entries for the sysLocation and sysContact variables. The sysLocation and sysContact entries specify the values of the sysLocation and sysContact variables.

The snmpd.conf file must be owned by the root user. If the snmpd.conf file is not owned by root, or if the snmpd daemon cannot open the configuration file, the snmpd daemon issues a FATAL message to the log file if logging is enabled and snmpd terminates.

Certain rules apply for specifying particular parameters in entries in the snmpd.conf configuration file. Some entries require the specification of object identifiers, object names, or both. The following rules apply:

- An object identifier is specified in dotted numeric notation and must consist of at least three elements. The maximum number of elements in the object identifier is 50. Elements are separated by a . (period). The first element must be a single digit in the range of 0 to 2. The second element must be an integer in the range of 1 to 40. The third and subsequent elements must be integers in the range of 1 to the size of an unsigned integer.

- An object name consists of a textual name with an optional numeric instance. The object name must be known to the snmpd agent. Object names typically are names of nodes in the Management Information Base (MIB) tree. If the root of the MIB tree, iso, is specified as an object name, the numeric instance is absolutely required. A . (period) separates the textual name from the numeric instance.
Following is an example of the last lines of the `/etc/snmpd.conf` file:

```
# NOTE:  Comments are indicated by # and continue to the end of the line.
# There are no restrictions on the order in which the configuration
# entries are specified in this file.
#
#******************************************************************************
logging    file=/usr/tmp/snmpd.log enabled
logging    size=0                            level=0
community  public
community  private 127.0.0.1 255.255.255.255 readWrite
community  system 127.0.0.1 255.255.255.255 readWrite 1.17.2
view       1.17.2         system enterprises view
trap       public          127.0.0.1       1.2.3   fe     # loopback
#snmpd      maxpacket=1024 querytimeout=120 smuxtimeout=60
smux       1.3.6.1.4.1.2.3.1.2.1.2         gated_password  # gated
smux       1.3.6.1.4.1.2.3.1.2.2.1.1.2     dpid_password   #dpid
```

The `snmpd.peers` file

The `snmpd.peers` file defines a sample peers file for the `snmpd` agent.

In the following example, the file layout is explained in the `/etc/snmpd.peers` file:

```
# Syntax:
#
#   <name>  <object id>     <password>      <priority>
#
#    where <name> is the name of the process acting as an SMUX peer and
#    <object id> is the unique object identifier in dotted decimal
#    notation of that SMUX peer.  <password> specifies the password that the
#    snmpd daemon requires from the SMUX peer client to authenticate
#    the SMUX association. The highest priority is 0 (zero). The lowest
#    priority is (2^31)-1. The default password is the null string. The
#    default priority is 0 (zero). Fields to the right of <object id> are
#    optional, with the limitation that no fields to the left of a specified
#    field are omitted.
#
#    Each token is separated by white space, though double-quotes may be
#    used to prevent separation.
#
#******************************************************************************
```
Chapter 6. Network services administration

6.5 Command summary

The following sections provide descriptions of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

6.5.1 The dadmin command

The dadmin command is used to query and modify the status of the DHCP server. The command has the following syntax:

The commonly used flags are provided in Table 6-1.

Table 6-1 Commonly used flags of the dadmin command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-v</td>
<td>Toggle the verbose mode.</td>
</tr>
<tr>
<td>-h host</td>
<td>The host name of the DHCP server.</td>
</tr>
<tr>
<td>-s</td>
<td>Displays the status of each address in the DHCP server's configured pools.</td>
</tr>
</tbody>
</table>

6.6 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A company has a network in which hosts are frequently added to and removed from the network or are reconfigured. Which one of the following methods should be used for host name resolution?
 A. DDNS
 B. DHCP
 C. inetd
 D. /etc/hosts
2. Which one of the following services allows complete remote administration of the local network?
 A. FTP
 B. NIS
 C. SNMP
 D. telnet

3. Which one of the following protocols utilizes MIBs on a client system to remotely monitor control functions on that client?
 A. NTP
 B. IPNG
 C. SMTP
 D. SNMP

4. Which one of the following should be disabled if a host is to act as a DHCP server?
 A. tftpd
 B. gated
 C. snmpd
 D. bootpd

5. Which one of the following files must be edited to enable bootpd?
 A. /etc/inittab
 B. /etc/inetd.conf
 C. /etc/bootptab
 D. /etc/netsvc.conf

6. A machine with the hardware address 0XAB213BAFEE0B is on the subnet 9.67.112.0. It has the following attributes:

 Lease Time Default 30 minutes
 Lease Expire Interval 3 minutes
 Support Bootp yes
 Support Unlisted Clients yes

 Network 9.0.0.0 24
 Subnet 9.2.218.09.2.218.1-9.2.218.128
 Subnet 9.67.112.09.67.112.1-9.67.112.64
 Client 6 0xab213bafee0b0
Which one of the following address ranges will the DHCP server assign to the client?

A. 9.2.218.1 to 9.2.218.218
B. 9.67.112.1 to 9.67.112.64
C. 9.67.112.65 to 9.67.112.128
D. An address will not be assigned to the client

6.6.1 Answers

The following are the preferred answers to the questions provided in this section:

1. A
2. C
3. D
4. D
5. B
6. D

6.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Set up DHCP on an isolated test network, using the example in 6.2.1, “DHCP server configuration” on page 136 as input for a dhcpsd configuration file.
2. On a system running DHCP server, use the \texttt{dadmin} command to query the current status.
3. What is the configuration parameter for allowing BOOTP and DHCP to interoperate? View other configuration options in the \texttt{/etc/options.file}.
4. How is the \texttt{snmpd.conf} file used?
Chapter 7. NFS

In this chapter, the following topics are discussed:

- NFS protocols and daemons
- NFS server considerations
- NFS client considerations
- Automount

NFS is an acronym for Network File System, a product developed by Sun Microsystems. This is a distributed file system implementation providing remote, transparent access to files and directories. AIX supports the latest NFS protocol update, NFS Version 3. AIX also provides an NFS Version 2 client and server and is therefore providing backward compatibility with existing install bases of NFS clients and servers. Negotiation will occur to check what is the highest version of NFS supported by both involved systems.

NFS operates on a client/server basis. An NFS server has files on a local disk, which are accessed through NFS on a client machine. To handle this operation, NFS consists of:

- Networking protocols
- Client and server daemons
- Kernel extensions

The kernel extensions are outside the scope of this chapter, but the protocols and the daemons will be covered. The following sections discuss the protocols involved.
7.1 Protocols

The NFS specific protocols are Remote Procedure Call protocol (RPC) and eXternal Data Representation (XDR) protocol. Figure 7-1 shows the relationships between the protocols:

![Figure 7-1 NFS protocol flowchart](image)

7.1.1 UDP or TCP

As all traffic on the Internet is more or less defined by the use of IP at the network layer, so is NFS. On the next layer, the Transport Layer, the choice of UDP or TCP is optional on AIX.

The AIX version decides the default set of the NFS version and transport protocol. Table 7-1 on page 151 defines the order of default mount options and the fallback order if the default options are not available.
Table 7-1 NFS protocols

<table>
<thead>
<tr>
<th>AIX Version</th>
<th>NFS Version 3</th>
<th>NFS Version 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1</td>
<td>UDP</td>
<td>TCP</td>
</tr>
<tr>
<td>4.3.x</td>
<td>TCP</td>
<td>UDP</td>
</tr>
<tr>
<td>5.1.x</td>
<td>TCP</td>
<td>UDP</td>
</tr>
</tbody>
</table>

There are many differences in the behavior, especially in timeout handling, between NFS using TCP and NFS using UDP. More on this subject is found in 7.4.2, “Client mount options” on page 171.

7.1.2 RPC

RPC is a library of procedures. The procedures allow one process (the client process) to direct another process (the server process) to execute procedure calls as though the client process had executed the calls in its own address space. Because the client and the server are two separate processes, they are not required to be on the same physical system, although they can.

The RPC call used is based on the file system action taken by the user. For example, when issuing an `ls -la` command on an NFS mounted directory, the long listing will be done through a RPC named NFSPROC3_FSINFO, which will initiate the long listing on the server, which in turn will send the output from the command through RPC back to the client. To the user, this transaction is totally transparent.

The `/etc/rpc` file contains a list of server names and their corresponding RPC program numbers and aliases. For example:

```
# more /etc/rpc
portmapper      100000  portmap sunrpc
nfs             100003  nfsprog
ypserv          100004  ypprog
mountd          100005  mount showmount
ypbind          100007
ypasswdd        100009  yppasswd
statmon         100023
status          100024
bootparam       100026
ypupdated       100028  ypupdate
ypxfrd          100069  ypxfr
pcnfsd          150001
autofs          100099  automount       #209812
```
Because the server and client processes can reside on two different physical systems, which may have completely different architectures, RPC must address the possibility that the two systems may not represent data in the same manner. Therefore, RPC uses data types defined by the eXternal Data Representation (XDR) protocol.

7.1.3 XDR

XDR is the specification for a standard representation of various data types. By using a standard data type representation, data can be interpreted correctly, even if the source of the data is a machine with a completely different architecture.

XDR is used when the vnode points out that the file or directory accessed is not a local file or directory, but resides on a remote system. A conversion of data into XDR format is needed before sending the data. Conversely, when it receives data, it converts the data from XDR format into its own specific data type representation.

7.2 NFS daemons

Depending on the task, some of the NFS-related daemons are started on a system. Servers need the following daemons in an active state:

- portmap
- nfsd
- rpc.mountd

The client only needs the following daemons to be able to mount a remote directory:

- portmap
- biod

As default, the startup of NFS services is handled by /etc/rc.nfs called by init from /etc/inittab. When looking at these scripts, you can see that the default startup also include the following daemons on both a server and a client system:

- rpc.statd
- rpc.lockd

It is important to remember that the portmap must be started before starting the NFS daemons.

The relationship between NFS daemons on the server side and the client side is shown in Figure 7-2 on page 153.
In the following sections are overviews of the different tasks the daemons handle.

7.2.1 The portmap daemon

The portmap daemon converts RPC program numbers into Internet port numbers. When an RPC server starts up, it registers with the portmap daemon. The server tells the daemon which port number it is listening to and which RPC program numbers it serves. By this process, the portmap daemon knows the location of every registered port used by RPC servers on the host, and which programs are available on each of these ports. When mounting, the mount request starts with an RPC call named GETPORT that calls the portmap which, in turn, will inform the client of the port number that the called RPC server listens to. After this, the port number is used as reference for further communication. This is why the NFS daemons need to be registered with the portmap daemon. See Figure 7-3 on page 155.
A client consults the portmap daemon only once for each program the client tries to call. The portmap daemon tells the client which port to send the call to. The client stores this information for future reference.

Since standard RPC servers are normally started by the inetd daemon, the portmap daemon must be started before the inetd daemon is invoked.

Note: If the portmap daemon is stopped or comes to an abnormal end, all RPC servers on the host must be restarted.

7.2.2 The rpc.mountd daemon

rpc.mountd handles the actual mount service needed when a client sends a mount request with an RPC procedure named MOUNTPROC3_MNT to the server. The mountd daemon finds out which file systems are available for export by reading the /etc/xtab file. In addition, the mountd daemon provides a list of currently mounted file systems and the clients on which they are mounted. This list can be shown by the showmount command.

For example:

```
# showmount -a
server4f.itsc.austin.ibm.com:/home
server4f.itsc.austin.ibm.com:/tmp/thomasc/testfs
```

The output shows that server4 has mounted /tmp/thomasc/testfs and /home.

The mount services is provided on the server from the /usr/sbin/rpc.mountd daemon, and the /usr/sbin/mount command on the client. Figure 7-3 on page 155 has a flowchart of a mount.
7.2.3 The nfsd daemon

The nfsd daemon runs on a server and handles client requests for file system operations. Each daemon handles one request at a time. This means that on the server side, the receipt of any one NFS protocol request from a client requires the dedicated attention of an nfsd daemon until that request is satisfied, and the results of the request processing are sent back to the client. The nfsd daemons are the active agents providing NFS services. The default number of nfsd started from /etc/rc.nfs is eight.

The NFS daemons are inactive if there is no NFS requests to handle. When the NFS server receives RPC calls on the nfsd’s receive socket, nfsds are awakened to pick the packet of the socket and invoke the requested operations. As mentioned earlier, the nfsd taking a packet is dedicated to that one operation until its completion. This is regardless of the type of operation.
7.2.4 The biod daemon

The block I/O daemon (biod) runs on all NFS client systems. When a user on a client wants to read or write to a file on a server, the biod daemon sends this request to the server. For each read or write request, one biod is requested. The biod daemon is activated during system startup and runs continuously.

The number of biods are limited on a per-mount-point basis. Up to six biods can work on any one remote mounted file system at any time. But the default number of started biods are six for NFS Version 2 and four for NFS Version 3. The reason to set a limit on biods per mount is that a unregulated number of biods may overload a server.

7.2.5 The rpc.lockd daemon

When mounting file systems that could be accessed both locally and remotely, the system need some kind of file locking mechanism to maintain file system integrity. This is handled by the rpc.lockd and the rpc.statd. These daemons also cooperate to reestablish locks on files after a server crash.

The lockd processes lock requests. The lockd forwards lock requests for remote data to the server lock daemon through the RPC package. The lockd then asks statd (status monitor) for monitor service. The reply to the lock request is not sent to the kernel until both the statd and the server lockd reply. The statd should always be started before lockd.

If either the status monitor (rpc.statd, covered in 7.2.6, “The rpc.statd daemon” on page 156) or the server lock daemon is unavailable, the reply to a lock request for remote data is delayed until all daemons (that is, rpc.lockd and rpc.statd on both sides) become available.

When a server recovers, it waits for a grace period for all client lockd to submit reclaim requests. The client lockd are notified of the server recovery by statd. At this stage, the daemons resubmit previously granted lock requests.

7.2.6 The rpc.statd daemon

The statd daemon interacts with the lockd to provide crash and recovery functions for the locking services on NFS. The statd should always be started before lockd.

The status monitor maintains information on the location and status of connections in the /etc/sm directory, the /etc/sm.bak file, and the /etc/state file. When restarted, the status monitor daemon queries these files and tries to re-establish the connection it had prior to the server crash. If you need to start
these daemons and release existing locks, delete these files before restarting the
statd daemon. After this, start the lockd daemon. The communication occurring
at file locking is shown in Figure 7-4.

![Figure 7-4 NFS file locking request](image)

7.3 NFS server considerations

Because the NFS protocol is designed to be operating system independent, the
connection between the server and the client is stateless. Statelessness means
that the server does not have to maintain state of its clients to be able to function
correctly. Statelessness does not mean that the server is not allowed to maintain
the state of its clients. In the NFS configuration, the server is *dumb* and the client
is *smart*, which means that the client has to convert the file access method
provided by the server into an access method understood by its applications.

Considering this, there is really not much to do at the server side but export the
file system, directory or file chosen, start the daemons, and control performance.
In the following sections, these issues will be covered in more detail.
7.3.1 Exporting file systems from a server

The fileset needed for the NFS server function is named bos.net.nfs.server and is part of the default definition of the Server bundle.

The connection between /etc/exports, exportfs, and /etc/xtab

There are two files used for export on a server. The first one, the one that is actually edited, is /etc/exports. This is a simple text file that can be directly edited with your favorite editor or edited through smitty nfs submenus. A simple example of this file follows:

```bash
# more /etc/exports
/tmp/thomasc -root=server4,access=server1:server2:server4
/tmp/thomasc/testfs -ro
```

This /etc/exports file defines, with access=, that a mount of /tmp/thomasc can be made from server1, server2, and server4. The statement -root=server4 allows root access only to the root users from server4. The default is for no hosts to be granted root access. As mentioned earlier, the showmount command is helpful in checking what is exported from a specified server, but the showmount command will not show whether some system is granted root access or not, as shown in the following output:

```bash
# showmount -e server3
export list for server3:
/tmp/thomasc server1,server2,server4
```

As shown in the output from showmount, there is no export done of /tmp/thomasc/testfs (-ro in the /etc/exports file shows that the intent was to do a read-only export). The reason is that the actual NFS subsystem does not use the /etc/exports file, but the /etc/xtab file. This file is updated at execution of the exportfs command as shown in the example:

```bash
# exportfs -a
```

The exportfs -a command will read all entries in the /etc/exports file and update the /etc/xtab with these entries. Now, the output from showmount -e server3 appears as follows:

```bash
# showmount -e server3
export list for server3:
/tmp/thomasc server1,server2,server4
/tmp/thomasc/testfs (everyone)
```

Again, there is no entry in the showmount command whether the file system exported is read-only or read-write. But when trying to create a file in the directory, the following error message appears:

```bash
# touch testfile
```
When using smitty, `smitty mknfsexp` does both these steps: updates the `/etc/exports` and executes the `exportfs` command, as shown in Figure 7-5.

```
Add a Directory to Exports List

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

* PATHNAME of directory to export         [/tmp/thomas/testfs] /
* MODE to export directory
HOSTS & NETGROUPS allowed client access []
Anonymous UID [-2]
HOSTS allowed root access [server1]
HOSTNAME list. If exported read-mostly []
Use SECURE option? no +
Public filesystem? no +
* EXPORT directory now. system restart or both both +
PATHNAME of alternate Exports file []

F1=Help       F2=Refresh       F3=Cancel       F4=List
F5=Reset      F6=Command       F7=Edit         F8=Image
F9=Shell      F10=Exit         Enter=Do
```

Figure 7-5 smitty mknfsexp screen

The `/etc/rmtab` file

When `mountd` accepts a mount request from a client, it notes the directory name passed in the mount request and the client host name in `/etc/rmtab`. Entries in `/etc/rmtab` are long-lived; they remain in the file until the client performs an explicit unmount of the file system. It is this file that is read to generate the `showmount -a` output.

The information in `/etc/rmtab` can become stale if the server goes down abruptly, or if clients are physically removed without unmounting the file system. In this case, you would remove all locks and the rmtab file. For example:

```
# stopsrc -g nfs
# stopsrc -s portmap
# cd /etc
# rm -fr sm sm.bak state xtab rmtab
# startsrc -s portmap
# startsrc -g nfs
# exportfs -a
```
7.3.2 Controlling server daemons

As discussed in previous sections, the daemons to control on the server side are portmap, rpc.mountd, nfds, and the lock-handling daemons rpc.statd and rpc.lockd. You do not need to have rpc.statd and rpc.lockd running to be able to mount, although it is recommended and they are started as the defaults from /etc/rc.nfs. In the following sections, a couple of scenarios are covered describing what happens when some of these daemons are inactive.

Portmap problem determination

In the following scenario the portmap daemon is stopped.

```
# showmount -a
server4f.itsc.austin.ibm.com:/tmp/thomasc/testfs
# stopsrc -s portmap
0513-044 The portmap Subsystem was requested to stop.
```

Existing mounts (server4) are still accessible because the biod/nfsd interaction is not dependent on portmap after the initial client contact. For example:

```
# mount

<table>
<thead>
<tr>
<th>node</th>
<th>mounted</th>
<th>mounted over</th>
<th>vfs</th>
<th>date</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>Jun</td>
<td>11 16:46</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>Jun</td>
<td>11 16:46</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>Jun</td>
<td>11 16:47</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>Jun</td>
<td>11 16:47</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>Jun</td>
<td>11 16:47</td>
<td>rw,log=/dev/hd8</td>
</tr>
<tr>
<td>/dev/cd0</td>
<td>/exinfofcd</td>
<td>cdrfs</td>
<td>Jun</td>
<td>20 08:27</td>
<td>ro</td>
</tr>
</tbody>
</table>

server3 /tmp/thomasc/testfs /tmp/server3ro nfs3 Jun 20 19:04
```

When trying to use `showmount -e server3` from server1 (which does not have any active mount) to see the exported directories, the command will hang. The `showmount -e` command communicates with the rpc.mountd daemon, which is pointed out by the portmap daemon.

When trying to mount the directory, an iptrace of the event will show that the portmap port, 111, is unreachable:

```
# startsrc -s iptrace -a " -a -s server3 -b /tmp/iptrace2.bin"
0513-059 The iptrace Subsystem has been started. Subsystem PID is 16526.
```

The command example starts the iptrace through SRC with some useful flags (the -a outside the quotation marks is an attribute flag for the `startsrc` command):
-a (within the quotation marks) suppresses ARP requests
-s defines host to trace
-b bidirectional traffic

In the next step, the mount is initiated. The command will eventually hang:

```
# mount server3:/tmp/thomasc/testfs /tmp/thomasc
```

The event to trace was the mount try. The `iptrace` command can now be stopped with:

```
# stopsrc -s iptrace
```

Use the `ipreport` command to convert the binary iptrace file to ASCII format:

```
# ipreport -srn /tmp/iptrace2.bin /tmp/thomasc/ipreport2.out
```

```
# more /tmp/thomasc/ipreport2.out
```

IPTRACE version: 2.0
Packet Number 1
TOK: ====(106 bytes transmitted on interface tr0)=== 14:30:59.084118759
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:06:29:be:b1:dc, dst = 00:06:29:be:d2:a2]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.56 > (server1.itsc.austin.ibm.com)
IP: < DST = 9.3.240.58 > (server3.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=6898, ip_off=0
IP: ip_ttl=30, ip_sum=8f2e, ip_p = 17 (UDP)
UDP: <source port=830, <destination port=111(sunrpc) >
UDP: [udp length = 64 | udp checksum = 54ca]
RPC: **CALL** XID=961637844
RPC: Program=100000 (PMAPPROG) Version=2 Procedure=3 (PMAPPROC_GETPORT)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
PMP: Prog=100005 Vers=3 Prot=6 Port=0

Packet Number 2
TOK: ====(78 bytes received on interface tr0)=== 14:30:59.084636275
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 00:06:29:be:d2:a2, dst = 00:06:29:be:b1:dc]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < DST = 9.3.240.56 > (server1.itsc.austin.ibm.com)
To fix this problem, the right order of starting services should be followed:

1. Stop the NFS daemons on server.

 This might result in a situation where rpc.lockd and nfsd stay in a STOPPING status. If this happens, restart the statd daemon, stop the lockd daemons, and finally stop the statd daemon. Check the status with the `lssrc -g nfs` command. This should also take care of the unresponsive nfsd. If this did not help, unmount all clients and repeat the procedure.

2. Start portmap.

nfsd problem determination

In the next scenario, the nfsd daemon is stopped at the NFS server. When trying to mount the test file system from the server, the `mount` command hangs with the following error message:

```
# mount server3:/tmp/thomasc/testfs /tmp/server3mnt
mount: 1831-010 server server3 not responding
mount: retrying server3:/tmp/thomasc/testfs
```

When looking at the iptrace output of this event, the client uses the RPC PMAPPROC_GETPORT to connect to 100003, which, as earlier mentioned, is nfsd. The output shows PMP returning a value of 0. This RPC is defined at the following URL:

http://www.opengroup.org/onlinepubs/9629799/toc.htm

The description tells you that if the port value is zero, as in this example, the program called is not registered. Again the importance of portmap is shown.

Packet Number 24

TOK: ====(106 bytes transmitted on interface tr0)==== 15:30:00.808241654
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:06:29:be:b1:dc, dst = 00:06:29:be:d2:a2]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.56 > (server1.itsc.austin.ibm.com)
IP: < DST = 9.3.240.58 > (server3.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=8397, ip_off=0
IP: ip_ttl=30, ip_sum=8953, ip_p = 17 (UDP)
UDP: <source port=683, <destination port=111(sunrpc) >
UDP: [udp length = 64 | udp checksum = 6bda]
RPC: **CALL** XID=962484044
RPC: Program=100000 (PMAPPROG) Version=2 Procedure=3 (PMAPPROC_GETPORT)
RPC: AUTH_NULL Opaque Authorization Base 0 Opaque Authorization Length 0
PMP: Prog=100003 Vers=3 Prot=6 Port=0

Packet Number 25
TOK: ====(78 bytes received on interface tr0)==== 15:30:00.809164951
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 00:06:29:be:d2:a2, dst = 00:06:29:be:b1:dc]
TOK: 802.5 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < DST = 9.3.240.56 > (server1.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=44783, ip_off=0
IP: ip_ttl=30, ip_sum=fb4c, ip_p = 17 (UDP)
UDP: <source port=111(sunrpc), <destination port=683 >
UDP: [udp length = 36 | udp checksum = 7967]
RPC: **REPLY** XID=962484044
RPC: 100000(PMAPPROG) 3(PMAPPROC_GETPORT)
RPC: Reply Stat: MSG_ACCEPTED
RPC: Accepted Reply Stat: SUCCESS
PMP: Returning 0

That is what a mount attempt would look like if nfsd is down on the server. Take a look at how an unresponsive nfsd daemon influences a client with a mounted file system.

When issuing a long listing of an NFS mounted file system, a biod-to-nfsd interaction is requested. This will result in a command hang, with the following error message:

```
# pwd
/tmp/server3ro
# ls -la
NFS server server3 not responding still trying
```

This problem is solved by starting the nfsd. As long as the portmap daemon was active and the nfsd can register with the portmap daemon, no further actions need to be taken.

rpc.mountd problem determination

If the rpc.mountd at the server does not answer to mount requests, there are some points to remember.
When trying to mount a file system from the server, `iptrace` shows that the server responds with port unreachable, just as expected. More interesting is what happens when an unmount of an existing mount is issued from a client, which would be the normal scenario at a client reboot (as an example).

The `iptrace` from the client shows the portmap has a port registered for `rpc.mountd`, which portmap communicates to the client. The client calls program 100005 (`rpc.mountd`) on the assigned port, but receives a port unreachable message.

Packet Number 3
TOK: ====(166 bytes transmitted on interface tr0)==== 08:20:39.765724065
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:04:ac:61:73:f7, dst = 00:06:29:be:d2:a2]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: < DST = 9.3.240.58 > (server3.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=144, ip_id=40703, ip_off=0
IP: ip_ttl=30, ip_sum=ae2, ip_p = 17 (UDP)
RPC: **CALL** XID=962260761
RPC: Program=100005 (MOUNTPROG) Version=1 Procedure=3 (MOUNTPROC_UMNT)
RPC: AUTH_UNIX
RPC: Cred:
RPC: Time=0x395212a7 (Thu Jun 22 08:20:39 2000)
RPC: Machine=server4 Uid=0 Gid=0 Group List Length=6
RPC: Groups= (0 2 3 7 8 10)
MNT: Path: /tmp/thomasc/testfs

Packet Number 4
TOK: ====(78 bytes received on interface tr0)==== 08:20:39.766378665
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 18, frame control field = 40
TOK: [src = 00:06:29:be:d2:a2, dst = 00:04:ac:61:73:f7]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < DST = 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=56, ip_id=58893, ip_off=0
IP: ip_ttl=255, ip_sum=e33a, ip_p = 1 (ICMP)
ICMP: icmp_type=3 (DEST UNREACH)
ICMP: icmp_code=3 (9.3.240.58: UDP PORT 38637 unreachable, src=946)
At the client, the error messages Warning: unmount:: RPC: 1832-008 Timed out would appear.

```bash
# mount
node     mounted mounted over   vfs   date     options
-------- ----------- ------------- ---- ---------- ----------
/dev/hd4 /       jfs  Jun 11 16:46 rw,log=/dev/hd8
/dev/hd2 /usr    jfs  Jun 11 16:46 rw,log=/dev/hd8
/dev/hd9var /var  jfs  Jun 11 16:47 rw,log=/dev/hd8
/dev/hd3 /tmp    jfs  Jun 11 16:47 rw,log=/dev/hd8
/dev/hd1 /home   jfs  Jun 11 16:47 rw,log=/dev/hd8
server3 /tmp/thomasc/testfs /tmp/server3ro nfs3 Jun 22 08:37
# umount /tmp/server3ro
Warning: unmount:: RPC: 1832-008 Timed out
```

When checking the mount points of the client, /tmp/thomasc/testfs is no longer mounted.

```bash
# mount
node     mounted mounted over   vfs   date     options
-------- ----------- ------------- ---- ---------- ----------
/dev/hd4 /       jfs  Jun 11 16:46 rw,log=/dev/hd8
/dev/hd2 /usr    jfs  Jun 11 16:46 rw,log=/dev/hd8
/dev/hd9var /var  jfs  Jun 11 16:47 rw,log=/dev/hd8
/dev/hd3 /tmp    jfs  Jun 11 16:47 rw,log=/dev/hd8
/dev/hd1 /home   jfs  Jun 11 16:47 rw,log=/dev/hd8
```

The unmount was successful from a client point of view, but at the server rpc.mountd keeps track of its clients in the /etc/rmtab file as mentioned earlier. This file will not be up to date after such a scenario occurs. It will still tell the server NFS subsystem that a file system is exported to server4.

Under normal circumstances, the unmount would communicate with rpc.mountd on the server, and the rpc.mountd would update the /etc/rmtab file by commenting out the entry for the export (exchanging the first letter with a #). For example:

```bash
# more /etc/rmtab
server4f.itsc.austin.ibm.com:/tmp/thomasc/testfs
```

7.3.3 Server performance

When narrowing down the performance discussion on servers to NFS specifics, the issue is often related to dropped packets. NFS servers may sometimes drop packets due to overload.
One common place where a server will drop packets is the UDP socket buffer. Remember that the default for data transfer for AIX Version 4.3 is TCP, but UDP is still used for mounting and GETPORT calls. Dropped packets here are counted by the UDP layer and the statistics can be seen by using the `netstat -p UDP` command. For example:

```
# netstat -p UDP
udp:
  89827 datagrams received
  0 incomplete headers
  0 bad data length fields
  0 bad checksums
  329 dropped due to no socket
  77515 broadcast/multicast datagrams dropped due to no socket
  0 socket buffer overflows
  11983 delivered
  11663 datagrams output
(At the testsystem the buffer size was sufficient)
```

NFS packets will usually be dropped at the socket buffer only when a server has a lot of NFS write traffic. The NFS server uses UDP and TCP sockets attached to the NFS port, and all incoming data is buffered on those ports. The default size of this buffer is 60000 bytes. Doing some quick math by dividing that number by the size of the default NFS Version 3 write packet (32765), you find that it will take only two simultaneous write packets to overflow that buffer. That could be done by just one NFS client (with the default configurations). Practically speaking, however, it is not as easy as it sounds to overflow the buffer. As soon as the first packet hits the socket, an nfsd will be awakened to start taking the data off.

One of two things has to happen. There is either high volume or high burst traffic on the socket. If there is high volume, a mixture of lots of writes, or other possibly non-write NFS traffic, there may not be enough nfsds to take the data off the socket fast enough to keep up with the volume (recall that it takes a dedicated nfsd to service each NFS call of any type). In the high burst case, there may be enough nfsds, but the speed at which packets arrive on the socket is such that the nfsd daemons cannot wake up fast enough to keep it from overflowing.

Each of the two situations has a different method to handle it. In the case of high volume, it may be sufficient to just increase the number of nfsds running on the system. Since there is no significant penalty for running extra nfsds on an AIX machine, this should be tried first.

This can be done with the following command:

```
# chnfs -n 16
```

This stops the currently running daemons, modifies the SRC database code to reflect the new number, and restarts the daemons indicated.
In the case of high burst traffic, the only solution is to make the socket bigger in the hope that some reasonable size will be sufficiently large enough to give the nfsds time to catch up with the burst. Memory dedicated to this socket will not be available for any other use, so it must be noted that making the socket larger may result in that memory being underutilized the vast majority of the time. The cautious administrator will watch the socket buffer overflows statistic and correlate it with performance problems and make a determination of how big to make the socket buffer. To check the NFS kernel options, use the `nfsadmin` command:

```
# nfsadmin -a
portcheck=0
udpchecksum=1
nfs_socket_size=60000
nfs_tcp_socket_size=60000
nfs_setattr_error=0
nfs_gather_threshold=4096
nfs_repeat_messages=0
nfs_udp_duplicate_cache_size=0
nfs_tcp_duplicate_cache_size=5000
nfs_server_base_priority=0
nfs_dynamic_retrans=1
nfs_linode_pages=0
nfs_max_connections=0
nfs_max_threads=8
nfs_use_reserved_ports=0
nfs_device_specific_bufs=1
nfs_server_clread=1
nfs_rfc1323=0
nfs_max_write_size=0
nfs_max_read_size=0
nfs_allow_all_signals=0
```

If you change the `nfssocket` sizes, you must verify that the kernel variable `sb_max` is greater than the NFS buffer values chosen. The default value of `sb_max` is 1048576 on AIX Version 4.3.3 and later. If you need to increase the `sb_max` value. This can be done with the `no` command. Remember that everything changed with `no` or `nfsadmin` is valid only until the next boot (if these changes have been added to some startup script, for example, `/etc/rc.nfs`).

7.4 NFS client considerations

There are a couple of things to consider when looking at the clients in an NFS environment. The first is mount problems, the second is what options should be used when mounting, and finally, performance issues.
7.4.1 Client-side mount problem determination

The first issue to be covered is the problems with mounting file systems, directories or files. Except for the problems discussed in “Portmap problem determination” on page 160, “nfsd problem determination” on page 162, and “rpc.mountd problem determination” on page 163, and the way to use iptrace shown in those examples, there is not really much to do on the client side. A simple checklist can help you with most problems:

- Check if the file system you try to mount is exported.

 When a mount request is sent to a server for an export that does not exist, the following error message appears:

  ```
  # mount server3:/usr/welcome /tmp/server3mnt
  mount: 1831-011 access denied for server3:/usr/welcome
  mount: 1831-008 giving up on:
  server3:/usr/welcome
  The file access permissions do not allow the specified action.
  ```

 To check what file systems, directories, or files are exported from a server, use the `showmount` command as follows:

  ```
  # showmount -e <server>
  ```

 The output from the command shows you the directories exported, and to whom they are exported, as discussed in “The connection between /etc/exports, exportfs, and /etc/xtab” on page 158.

- If the server does not answer to a `showmount -e` call (which communicates with rpc.mountd), check if the RPC servers are registered with the portmap daemon, as follows:

  ```
  # rpcinfo -p server3 (the command issued on server4; edited output)
  program vers proto port service
  100000 4   tcp  111   portmapper
  100000 3   tcp  111   portmapper
  100000 2   tcp  111   portmapper
  100000 4   udp  111   portmapper
  100000 3   udp  111   portmapper
  100000 2   udp  111   portmapper
  100000 2   udp  111   portmapper
  100000 3   udp  111   portmapper
  100000 2   udp  111   portmapper
  100000 3   udp  111   portmapper
  100000 4   udp  111   portmapper
  100000 1   tcp  660   status
  100000 1   tcp  654   status
  100000 1   udp  38624 nlockmgr
  100000 2   udp  38624 nlockmgr
  100000 3   udp  38624 nlockmgr
  100000 4   udp  38624 nlockmgr
  100000 1   tcp  37693 nlockmgr
  100000 2   tcp  37693 nlockmgr
  100000 3   tcp  37693 nlockmgr
  100000 4   tcp  37693 nlockmgr
  ```
The output shows that the portmap (program 100000) is available, so is statd (100024), lockd (100021), nsfd (100003), and mountd (100005).

If the RPC programs are up and running but you still do not have any answer on showmount -e, then you probably tried to mount a file system from a host that is not configured as a server.

- Check the syntax on the mount command. Also remember that only root can issue any mount command, and system group members can issue mounts, provided they have write access to the mount point.

To mount the file system that has been used in the previous examples, from server3 on /tmp/thomasc/server3ro, issue the following command on server4:

```
# mount server3:/tmp/thomasc/testfs /tmp/thomasc/server3ro
```

You can also use smitty mknfsmnt, as shown in Figure 7-6:
When using **smitty**, the option to edit `/etc/filesystems` is available (highlighted). By editing `/etc/filesystems`, the only thing to do when mounting an NFS file system is to issue the `mount` command with the local mount point as an argument. For example:

```
# mount /tmp/server3ro
```

```
# mount

<table>
<thead>
<tr>
<th>node</th>
<th>mounted</th>
<th>mounted over</th>
<th>vfs</th>
<th>options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>rw,log=/dev/hd8</td>
<td></td>
</tr>
</tbody>
</table>

server3 /tmp/thomasc/testfs /tmp/server3ro nfs3 bg,hard,intr
```

(The output is edited to fit the screen)

The stanza format of `/etc/filesystems` is easy to comprehend. The entry for the file system in our examples appears as follows:

```
/tmp/server3ro:
  dev             = "/tmp/thomasc/testfs"
  vfs             = nfs
  nodename        = server3
  mount           = false
  options         = bg,hard,intr
  account         = false
  type            = thomasc
```

These options are covered in 7.4.2, “Client mount options” on page 171. In the stanza, you can see the `mount` has a value of false. The `mount` command uses the associated values. It recognizes five values for the `mount` attributes: automatic, true, false, removable, and readonly. Automatic means that the file system is to be mounted at boot; this is usually used for system-defined file systems. A value of true means that the `mount all` is allowed to mount this file system. Finally the value of false means that the mount will only occur when the file system is specified as an argument to the `mount` command, or the type is used for mount.

The `type = value` is a nice feature with the `mount` command. By defining `type` to a common value for several file systems, all these file systems can be mounted by giving the value as an argument to the `-t` flag. For example:

```
# mount -t thomasc
```
7.4.2 Client mount options

There are several useful options when considering and planning for an NFS mount. The one specific for smitty, update of /etc/filesystems, was covered in 7.4.1, “Client-side mount problem determination” on page 168.

The most common issue is whether to use a hard mount or a soft mount. A soft mount will try to re-transmit a number of times. This re-transmit value is defined by the retrans option. After the set number of retransmissions has been used, the soft mount gives up and returns an error.

A hard mount retries a request until a server responds. The hard option is the default value. On hard mounts, the intr option should be used to allow a user to interrupt a system call that is waiting on a crashed server.

Both hard mounts and soft mounts use the timeo option, to calculate the time between re-transmits. The default value is 0.7 seconds for the first timeout. After that, it increases the timeout exponentially until a maximum of 30 seconds, where it stabilizes until a reply is received. Depending on the value set for the retrans option, the soft mount has probably given up already at this stage. When discussing timeouts and hard mounts, you should choose between two other mount options, proto TCP or UDP.

When using UDP, it is important to understand that if a write or read packet is lost on the network or dropped at the server, the full timeout interval will expire before the packet is retransmitted from the client. Using UDP, there is no intermediate-ack mechanism that would inform the client, for example, that the server only received five of the expected six write fragment packets.

The reliable delivery mechanisms built into TCP will help maintain good performance in networks where the unreliable UDP transport fails. The reason is that TCP uses a packet-level delivery acknowledgment mechanism that keeps fragments from being lost. Recall that lost fragments using UDP require re-sending the entire read or write request after a timeout expires. TCP avoids this by guaranteeing delivery of the request.

Finally, there is the choice of mounting in the background (bg) or in the foreground (fg). If bg is defined and an NFS server does not answer a mount request,
request, then another mount process will start in the background and keep trying to establish the mount. By this method, the mount process is free to process another mount request. Define bg in the /etc/filesystems file when establishing a predefined mount that will be mounted during system startup. Mounts that are non-interruptible and running in the foreground can hang the client if the network or server is down when the client system starts up. If a client cannot access the network or server, the user must start the machine again in maintenance mode and edit the appropriate mount requests.

This applies to the default mount options, which are TCP, NFS Version 3, and hard mount in the background (on test system running 4.3.3, but the documentation at the time of publication states that fg is default).

7.4.3 Client performance considerations

A client performance discussion often concentrates on the number of biods used. For biod daemons, there is a default number of biods (six for a V2 mount, four for a V3 mount) that may operate on any one remote mounted file system at one time. The idea behind this limitation is that allowing more than a set number of biods to operate against the server at one time may overload the server. Since this is configurable on a per-mount basis on the client, adjustments can be made to configure client mounts by the server capabilities.

When evaluating how many biods to run, you should consider the server capabilities as well as the typical NFS usage on the client machine. If there are multiple users or multiple process on the client that will need to perform NFS operations to the same NFS mounted file systems, you have to be aware that contention for biod services can occur with just two simultaneous read or write operations.

Since up to six biods can be working on reading a file in one NFS file system, if another read starts in another NFS mounted file system, both reads will be attempting to use all six biods. In this case, presuming that the server(s) are not already overloaded, performance will likely improve by increasing the biod number to 12. This can be done using the chnfs command:

chnfs -b 12

On the other hand, suppose both file systems are mounted from the same server and the server is already operating at peak capacity. Adding another six biods could actually decrease the response dramatically due to the server dropping packets and resulting in timeouts and retransmits.
Tuning the numbers of nfSD and biod daemons

After you have arrived at an initial number of biod and nfSD daemons, or have changed one or the other, the following steps will assist you in fine tuning your system.

First, recheck the affected systems for CPU or I/O saturation with the `vmstat` and `iostat` commands. If the server is now saturated, you must reduce its load or increase its power, or both.

Use the `netstat -s` command to determine if any system is experiencing UDP socket buffer overflows. If so, use the `no -a` command to verify the UDP settings have been implemented. If so, and the system is not saturated, increase the number of biod or nfSD daemons.

Examine the nullrecv column in the `nfsstat -s` command output. If the number starts to grow, it may mean there are too many nfSD daemons. However, this is less likely on this operating system's NFS servers than it is on other platforms. The reason for that is that all nfSD daemons are not awakened at the same time when an NFS request comes into the server. Instead, the first nfSD daemon wakes up, and if there is more work to do, this daemon wakes up the second nfSD daemon, and so on.

To change the number of nfSD daemons, you can use the `chnfs` command, or set the nfso nfs_max_threads parameter as mentioned earlier.

To change the number of nfSD daemons on a server to 10, both immediately and at each subsequent system boot, use the following:

```bash
# chnfs -n 10
```

To change the number of nfSD daemons on a system to 9, with the change delayed until the next system boot, run the following command:

```bash
# chnfs -I -n 9
```

To change the number of biod daemons per mount, use the biod mount option.

Increasing the number of biod daemons on the client worsens server performance because it allows the client to send more request at once, further loading the network and the server. In extreme cases of a client overrunning the server, it may be necessary to reduce the client to one biod daemon, as follows:

```bash
# stopsrc -s biod
```

This leaves the client with the kernel process biod still running.
There are also some mount options that may improve the performance on the client. The most useful options are used to set the read and write sizes to some value that changes the read/write packet size that is sent to the server.

For NFS Version 3 mounts, the read/write sizes can be both increased and decreased. The default read/write sizes are 32 KB. The maximum possible on AIX at the time of publication is 61440 bytes (60 x 1024). Using 60 KB read/write sizes may provide slight performance improvement in specialized environments. To increase the read/write sizes when both server and client are AIX machines requires modifying settings on both machines. On the client, the mount must be performed setting up the read/write sizes with the -o option (for example, -o rsize=61440,wsize=61440). On the server, the advertised maximum read/write size is configured through use of the nfso command using the nfs_max_write_size and nfs_max_read_size parameters. For example:

```
# nfso -o nfs_max_write_size=61440
```

The nfsstat command displays statistical information about the NFS and RPC interfaces to the kernel. You can also use this command to reinitialize this information. If no flags are given, the default is the nfsstat -csnr command. For example, to display statistics for each NFS mounted file system, enter:

```
# nfsstat -m
/mnt from /mnt:ut.austin.ibm.com
  Flags:
  vers=3,proto=tcp,auth=unix,hard,intr,link,symlink,rsize=32768,wsize=32
  768,retrans=5
  All:     srtt=0 (0ms), dev=0 (0ms), cur=0 (0ms)
```

7.5 Automount

Automount is used for automatic and transparent mounting and unmounting of file systems. Automount monitors specify directory mount points. When a file I/O operation is requested to that mount point, the automountd daemon performs the RPC call (or the system call) to complete the mount. Any directories that do not already exist on the client will be created. AIX Version 4.3.1 and earlier used a daemon called automount, and in AIX 4.3.2 the AutoFS is used for automount. AutoFS provides automatic mount of many types of file systems, for example CDRFS and JFS. The daemon in AutoFS is called automountd. In AIX Version 4.3.2 and later, automount is just a command, not a daemon.

As discussed, AutoFS allows file systems to be mounted as needed. With this method of mounting directories, all file systems do not need to be mounted all of the time; only those being used are mounted.
For example, to mount an NFS directory automatically, first check that the server has exported the directory by using the \texttt{showmount} command:

\begin{verbatim}
showmount -e server3
export list for server3:
/tmp/thomasc server1,server2,server4
/tmp/thomasc/testfs (everyone)
/home (everyone)
\end{verbatim}

Then create an AutoFS map file. Any file name can be used although it is a good idea to define if an indirect map or a direct map is used. The \texttt{automount} command is used as an administration tool for AutoFS. It installs AutoFS mount points and associates an automount map with each mount point. The AutoFS file system monitors attempts to access directories within it and notifies the automountd daemon. The daemon uses the map to locate a file system, which it then mounts at the point of reference within the AutoFS file system. The syntax for the \texttt{automount} command is:

\begin{verbatim}
/usr/sbin/automount [-v] [-t Duration] [-i Interval]
\end{verbatim}

Some useful \texttt{automount} flags are provided in Table 7-2.

\begin{table}[h]
\centering
\begin{tabular}{|l|l|}
\hline
\textbf{Flags} & \textbf{Description} \\
\hline
\texttt{-t Duration} & Specify a duration, in seconds, that an AutoFS unmount thread sleeps before it starts to work again. The default timeout is five minutes. \\
\hline
\texttt{-i Interval} & Specifies an interval, in seconds, that an AutoFS automounted directory lives. \\
\hline
\texttt{-v} & Displays on standard output verbose status and warning messages. Supported for both implementation. \\
\hline
\end{tabular}
\caption{Commonly used flags of the automount command}
\end{table}

\subsection{Indirect maps}

In this section, how to use indirect maps is discussed.

Start by editing a file to look like the example file mount.indirect.map. Because this is a configuration file, it is usually placed in the /etc file system, but in the examples below the /tmp directory is used. Start with defining the mount point to be used by automountd. Then define the options (if such are needed) and finally enter the path to the server directory, just like a normal mount.

\begin{verbatim}
more mount.indirect.map
S3testfs -rw server3:/tmp/thomasc/testfs
\end{verbatim}
Then start the automountd with:

```bash
# startsrc -s automountd
0513-059 The automountd Subsystem has been started. Subsystem PID is 22574.
```

At this stage, you can see that the only thing that has been done is editing a file and starting a daemon. To make this work, you have to define for the `automount` command where the parent directory is for the AutoFS mount point directory (S3testfs), defined in the mount.indirect.map file. This is done in the following way:

```bash
# automount -m /tmp/thomasc /tmp/mount.indirect.map
```

NIS is sometimes used to propagate map files to NFS clients. The `-m` flag tells the automount facility not to use NIS. The automount daemon, by default, reads the `/etc/auto.master` map to find which directories to watch for mounts. The auto.master map has the following format:

```
DirectoryPath   AutomountMapName
```

The AutomountMapName field specifies a file containing the automount map for the directory specified by the DirectoryPath field. For example, the contents of the `/etc/auto.master` file on the server might be as follows:

```
/home/home     /etc/auto.home
/usr/lpp       /etc/auto.direct
```

The auto.master file entries direct the automount daemon to use the `/etc/auto.home` automount map for the `/home/home` directory and the `/etc/auto.direct` automount map for the `/usr/lpp` directory.

In this example, the `/etc/auto.home` and `/etc/auto.direct` were local files on the client that contained all of the automount map needed. The contents of the automount maps can also be maintained by NIS. The files would still exist on the client, but the contents would be different. For example, the `/etc/auto.home` file would contain the following:

```
+auto.home
```

And the `/etc/auto.direct` file would contain the following:

```
+auto.direct
```

This directs the automount daemon to consult the NIS maps auto.home and auto.direct when it reads the local files. The NIS server would contain two new NIS maps. The maps would be auto.home and auto.direct. They would be added to the `/var/yp/Makefile` in the same way that the auto.master NIS map was added. This makes them available for use by the NIS clients running the automount daemon. See Chapter 10, “NIS” on page 223 for further details on NIS.
After the initiation of the automount facility, there is an entry in the mount table that tells us that automountd will look at the entries in /tmp/mount.indirect.map for reference when creating mount points under the parent directory /tmp/thomasc. (The mount point will be /tmp/thomasc/S3testfs).

```
# mount
node mounted mounted over vfs date options
-------- ---------- ------- ---- -------- ------------
/dev/hd4 / jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd1 /home jfs Jun 11 16:47 rw,log=/dev/hd8
/tmp/mount.indirect.map /tmp/thomasc autofs rw,ignore
```

(the output has been edited to fit the screen - the timestamp is removed)

When issuing a long listing of the content of /tmp/thomasc there will, at this point, be no entries, because the mount point to monitor is S3testfs.

```
# ls -la
total 536873840
dr-xr-xr-x  2 root     system         2 Jun 22 14:33 .
drwxrwxrwt  18 bin      bin         1024 Jun 22 14:12 ..
```

When issuing a long listing of one of the mount points, the mount will occur, as well as the creation of the mount point.

```
# ls -la S3testfs
total 537196352
drwxr-xr-x  2 root     system         2 Jun 22 11:03 .
drwxrwxt-x  2 root     system         2 Jun 22 14:34 ..
drwxr-xr-x  3 root     sys          512 Jun 19 15:53 dumpfmt
drwxr-xr-x  2 root     sys          512 Jun 19 15:53 findcore
```

The mount point will only exist as long as the mount is valid. As mentioned before, the automount facility also handles the unmount of the file systems. The activity in the file system defines when the unmount will occur. If nobody uses the file system (no process uses the directory as $PWD), two timeout values are used.

The first one, -tl (time to live), defines the time in seconds that the automountd should wait before attempting to unmount a quiescent file system. The default value is 300 seconds.

The other one, -tw (time to wait), defines the number of seconds to wait before the daemon retries to unmount the file system in the previous unmount attempt was unsuccessful. The default is 60 seconds.
To change these timeout values, use the flags with the `automount` command. For example:

```
# automount -m -t1 600 -tw 300 /tmp/mount.indirect.map /tmp/thomasc
```

In the mount table, the actual mount will appear:

```
# mount
node mounted mounted vfs date options
-------- ---------- -------- ---- ---------- ---------------
/dev/hd4 / jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd1 /home jfs Jun 11 16:47 rw,log=/dev/hd8
/tmp/mount.indirect.map /tmp/thomasc autofs rw,ignore server3 /tmp/thomasc/testfs /tmp/thomasc/S3testfs nfs3 Jun 22 14:34 rw
```

In the preceding example, an indirect map file is used. As seen in the map file (/tmp/mount.indirect.map), the mount points are defined with relative paths. This provides the administrator the opportunity to use another parent directory.

7.5.2 Direct maps

The other map file used with automount is a direct map file. In the direct map file, the absolute path to the mount point is defined (in the following example, /tmp/thomasc and /home/remote):

```
# more /tmp/mount.direct.map
/home/remote server3:/home
```

The initiation of the `mount` command differs from the indirect automount in the sense that you do not need to point out the parent directory that is specified in the direct map. This is defined by the use on `/`. The mount point will also be created at this point, if it did not already exist. To initiate the automount with a direct map (auto.direct.map), use the following command:

```
# automount -m /- /tmp/mount.direct.map
```

When using direct maps, the mount table will appear slightly different. Instead of pointing out one file that has the mount points defined, one mount point definition is defined in the mount list for each entry in the direct map:

```
# mount
node mounted mounted vfs date options
-------- -------- ------- ---- ---------- ---------------
/dev/hd4 / jfs Jun 11 16:46 rw,log=/dev/hd8
```
This does not mean that the actual mount has occurred. The actual mount request will be sent to the server when the mount point is used. The output in the mount table will then also show a mount point for the actual mount point:

```
# mount
node mounted mounted over vfs date options
-------- -------- -------- ---- ------------ ---------------
/dev/hd4 / jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd2 /usr jfs Jun 11 16:46 rw,log=/dev/hd8
/dev/hd9var /var jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Jun 11 16:47 rw,log=/dev/hd8
/dev/hd1 /home jfs Jun 11 16:47 rw,log=/dev/hd8
```

7.5.3 Auto.master map

In the previous examples, the automount commands are used with arguments (the map files), but when initiated without arguments, automount consults the master map for a list of AutoFS mount points and their maps. This gives you an easy way to start several map files, both indirect and direct, at the same time. This file can be called /etc/auto.master or /etc/auto_master.

The syntax of the auto.master file is intuitive. Just point out the parent directory for indirect automounts, and point out that with special flag /- that the direct map includes the absolute path. The two mapfiles used in the previous examples will be used in the following example:

```
# more /etc/auto.master
/tmp/thomasc            /tmp/mount.indirect.map
/-                      /tmp/mount.direct.map
```

Because the syntax for the indirect and the direct maps are included in the auto.master, you only need to tell the automount command which file to read. For example:

```
# automount -m -f auto.master
```

```
# mount
node mounted mounted over vfs date options
-------- -------- -------- ---- ------------ ---------------
/dev/hd4 / jfs Jun 11 16:46 rw,log=/dev/hd8
```
The mount table appears as expected. The access of the mount point directories will next initiate the actual mount as defined in the indirect and the direct map file.

7.6 Summary

NFS is used for transparent mount of remote file systems.

7.6.1 Protocols

NFS can use UDP or TCP on the transport layer.

NFS uses XDR for interpreting data representation between different hardware architectures.

NFS uses RPC for transparent remote execution of calls.

7.6.2 Daemons

The portmap registers all NFS daemons.

- `rpcinfo -p` is used to check what programs are registered.

The rpc.mountd handles mount requests on the server.

- It uses `/etc/xtab` to verify exports.
- `showmount -a` shows exports.
- `showmount -e <server>` shows what file systems are exported.

Nfsd on the server answers all client requests, except mount requests.

- By default, eight nfs daemons are started from `/etc/rc.nfs`.

Biod handles all write and read requests at the client side.

- Up to six biods can work on one mount point.

Rc.lockd and rc.statd handles locking requests and information.
7.6.3 Files

The /etc/exports file is edited with file systems to be exported.

The /etc/xtab files is generated with the `exportfs` command and is used by the rpc.mountd at mount requests.

The /etc/rmtab file has records of active exports.

A list of server names and their corresponding RPC program number is in /etc/rpc.

7.7 Command summary

The following section provides a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

7.7.1 The showmount command

The `showmount` command displays a list of all clients that have remotely mounted file systems.

The syntax of the `showmount` command is:

```
showmount [ -a ] [ -d ] [ -e ] [ Host ]
```

Some useful `showmount` flags are provided in Table 7-3.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Shows active mounts.</td>
</tr>
<tr>
<td>-e <server></td>
<td>Shows exported file systems.</td>
</tr>
</tbody>
</table>

7.7.2 The exportfs command

The `exportfs` command exports and unexports directories to NFS clients.

The syntax of the `exportfs` command is:

```
exportfs [ -a ] [ -v ] [ -u ] [ -i ] [ -fFile ] [ -oOption [ ,Option ... ] ]
[ Directory ]
```

Some useful `exportfs` flags are provided in Table 7-4 on page 182.
Table 7-4 Commonly used flags of the exportfs command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Exports all filesets defined in /etc/exports.</td>
</tr>
<tr>
<td>-u</td>
<td>Unexports the directories you specify; can be used with -a.</td>
</tr>
<tr>
<td>-o <option></td>
<td>Specifies optional characteristics for the exported directory.</td>
</tr>
</tbody>
</table>

7.7.3 The mount command

The `mount` command makes a file system available for use.

The syntax of the `mount` command is:

```
mount [ -f ] [ -n Node ] [ -o Options ] [ -p ] [ -r ] [ -v VfsName ] [ -t Type
| [ Device | Node:Directory ] Directory | all | -a ]
[-V [generic_options] special_mount_points
```

Some useful `mount` flags are provided in Table 7-5.

Table 7-5 Commonly used flags of the mount command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-[a I all]</td>
<td>Mounts all file systems in the /etc/filesystems file with stanzas that contain the true mount attribute.</td>
</tr>
<tr>
<td>-n <node></td>
<td>Specifies the remote node that holds the directory to be mounted.</td>
</tr>
<tr>
<td>-o fg</td>
<td>Foreground mount attempt.</td>
</tr>
<tr>
<td>-o bg</td>
<td>Background mount attempts.</td>
</tr>
<tr>
<td>-o proto=[tcpludp]</td>
<td>Protocol to use.</td>
</tr>
<tr>
<td>-o vers=[2</td>
<td>3]</td>
</tr>
<tr>
<td>-o soft</td>
<td>Returns an error if the server does not respond.</td>
</tr>
<tr>
<td>-o hard</td>
<td>Retries a request until the server responds.</td>
</tr>
<tr>
<td>-o intr</td>
<td>Allows keyboard interrupts on hard mounts.</td>
</tr>
<tr>
<td>-o timeo=n</td>
<td>Sets the Network File System (NFS) timeout period to n tenths of a second.</td>
</tr>
<tr>
<td>-o retrans=n</td>
<td>Sets the number of NFS transmissions to n.</td>
</tr>
</tbody>
</table>
7.7.4 The nfsstat command

The nfsstat command displays statistical information about the Network File System (NFS) and Remote Procedure Call (RPC) calls.

The syntax of the nfsstat command is:

```
nfsstat [ -c ] [ -s ] [ -n ] [ -r ] [ -z ] [ -m ]
```

Some useful nfsstat flags are provided in Table 7-6.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Displays client information.</td>
</tr>
<tr>
<td>-m</td>
<td>Displays statistics for each NFS file system mounted along with the server name and address, mount flags, current read and write sizes, retransmission count, and the timers used for dynamic retransmission.</td>
</tr>
<tr>
<td>-n</td>
<td>Prints NFS information for both the client and server.</td>
</tr>
</tbody>
</table>

7.7.5 The iptrace command

The iptrace command provides interface-level packet tracing for Internet protocols.

The syntax of the iptrace command is:

```
iptrace [ -a ] [ -e ] [ -PProtocol ] [ -iInterface ] [ -pPort ]
[ -sHost [ -b ] ] [ -dHost [ -b ] ] LogFile
```

Some useful iptrace flags are provided in Table 7-7.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Suppresses ARP packets.</td>
</tr>
<tr>
<td>-s <host></td>
<td>Records packets coming from the source host specified by the host variable.</td>
</tr>
<tr>
<td>-b</td>
<td>Changes the -d or -s flags to bidirectional mode.</td>
</tr>
</tbody>
</table>

7.7.6 The ipreport command

The ipreport command generates a packet trace report from the specified packet trace file.
The syntax of the `ipreport` command is:

```
ipreport [-e] [-r] [-n] [-s] LogFile
```

Some useful `ipreport` flags are provided in Table 7-8.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-s</code></td>
<td>Prepends the protocol specification to every line in a packet.</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Decodes remote procedure call (RPC) packets.</td>
</tr>
<tr>
<td><code>-n</code></td>
<td>Includes a packet number to facilitate easy comparison of different output formats.</td>
</tr>
</tbody>
</table>

7.7.7 The `netstat` command

The `netstat` command shows network status.

The syntax of the `netstat` command is:

- To display active sockets for each protocol or routing table information:
  ```
  /bin/netstat [-n] [-{ -A -a} | {-r -i -I Interface}] [-f AddressFamily] [-p Protocol] [Interval] [System]
  ```
- To display the contents of a network data structure:
  ```
  /bin/netstat [-m | -s | -ss | -u | -v] [-f AddressFamily] [-p Protocol] [Interval] [System]
  ```
- To display the packet counts throughout the communications subsystem:
  ```
  /bin/netstat -D
  ```
- To display the network buffer cache statistics:
  ```
  /bin/netstat -c
  ```
- To display the data link provider interface statistics:
  ```
  /bin/netstat -P
  ```
- To clear the associated statistics:
  ```
  /bin/netstat [-Zc | -Zi | -Zm | -Zs]
  ```

Some useful `netstat` flags from an NFS point of view are provided in Table 7-9 on page 185.
Table 7-9 Commonly used flags of the netstat command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-P <protocol></td>
<td>Shows statistics about the value specified for the Protocol variable.</td>
</tr>
<tr>
<td>-s</td>
<td>Shows statistics for each protocol.</td>
</tr>
<tr>
<td>-D</td>
<td>Shows the number of packets received, transmitted, and dropped in the communications subsystem.</td>
</tr>
</tbody>
</table>

7.7.8 The chnfs command

The `chnfs` command changes the configuration of the system to invoke a specified number of biod and nfsd daemons.

The syntax of the `chnfs` command is:

```
chnfs [ -n NumberOfNfsd ] [ -b NumberOfBiod ] [ -I | -B | -N ]
```

Some useful `chnfs` flags are provided in Table 7-10.

Table 7-10 Commonly used flags of the chnfs command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-n <value></td>
<td>Specifies the number of nfsd daemons to run on the system.</td>
</tr>
<tr>
<td>-b <value></td>
<td>Specifies the number of biod daemons to run on the system.</td>
</tr>
</tbody>
</table>

7.7.9 The rpcinfo command

The `rpcinfo` command reports the status of Remote Procedure Call (RPC) servers.

The syntax of the `rpcinfo` command is:

- To display a list of statistics:
  ```
  /usr/bin/rpcinfo [ -m | -s ] [ Host ]
  ```

- To display a list of registered RPC programs:
  ```
  /usr/bin/rpcinfo -p [ Host ]
  ```

- To report transport:
  ```
  /usr/bin/rpcinfo -T transport Host Prognum [ Versnum ]
  ```

- To display a list of entries:
  ```
  /usr/bin/rpcinfo -l [ -T transport ] Host Prognum Versnum
  ```
To report program status:
/usr/bin/rpcinfo [-n PortNum] -u Host Prognum [Versnum]

To report response status:
/usr/bin/rpcinfo [-n PortNum] -t Host Prognum [Versnum]

To display all hosts running a specified program version:
/usr/bin/rpcinfo [-b] [-T transport] Prognum Versnum

To delete registration of a service:
/usr/bin/rpcinfo [-d] [-T transport] Prognum Versnum

Some useful `rpcinfo` flags are provided in Table 7-11.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p <host></td>
<td>Probes the portmap service on the host and displays a list of all registered RPC programs.</td>
</tr>
<tr>
<td>-m <host></td>
<td>Displays a table of portmap operations statistics on the specified host.</td>
</tr>
<tr>
<td>-s <host></td>
<td>Displays a concise list of all registered RPC programs on the host.</td>
</tr>
</tbody>
</table>

7.8 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A machine is required to mount remote file systems. Which one of the following services should be used?

 A. NFS
 B. NIS
 C. NTP
 D. DHCP

2. By default, for AIX Version 4.3.3 on which one of the following file systems on the AIX NFS client will the AIX automount daemon mount file systems from the NFS server?

 A. / (root) file system
 B. /tmp file system
 C. /mnt file system
3. In the case where file integrity is very important, which one of the following
 types of mount is most appropriate for an NFS-mounted writable file system?
 A. Soft mount
 B. Hard mount
 C. Background mount
 D. Foreground mount

4. Which one of the following types of mount is most appropriate so that an NFS
 server crash should have the minimum effect on the state of the client
 machine?
 A. Soft mount
 B. Hard mount
 C. Foreground mount
 D. Background mount

5. Given the following contents of the /etc/exports file of an AIX NFS server,
 which one of the following conclusions is the most appropriate to draw?

 /usr/local/bin
 /src -access=anyone
 /usr/spool/mail -root=rs1,-access=rs1

 A. /src can be written to by root on and NFS client machine.
 B. /usr/local/bin can be accessed by any NFS client.
 C. Machine rs1 has read-only access to /usr/spool/mail.
 D. The /src file system can be accessed by any NFS client.

6. Given the following contents of the /etc/exports file of an AIX NFS server,
 which one of the following conclusions is the most appropriate to draw?

 /usr/local -rw=dopey:hungry:grumpy
 /src -access=anyone,ro
 /usr/spool/mail -root=rs1,-access=rs1

 A. /src can be written to by root on an NFS client machine.
 B. /src can be written to by a machine named anyone.
 C. Machine rs1 has read-only access to /usr/spool/mail.
 D. The /usr/local directory can be written to by machine grumpy.
7. A /home directory from the NFS server MachineA is trying to be mounted to the mount point /MachineA/home on the NFS client MachineB.

Which one of the following diagnostic commands should be used to determine why the mount is hanging?

A. `diag`
B. `errpt`
C. `nfsstat`
D. `iptrace`

8. The /MachineA/home directory has been mounted and has been used for several days. Currently, all commands that try to reference files in /MachineA/home hang. `rpcinfo` shows that all RPC services on MachineA are registered. Which one of the following is the most probable cause?

A. MachineA is down
B. nfsd is not running on MachineA
C. `securetcpip` has been run on MachineA
D. /home has been unexported on MachineA

9. It becomes necessary to unmount /home from the client. `umount` gives a message warning that the unmount timed out. Which one of the following is the most probable cause?

A. nfsd is no longer running on the client
B. rpc.mountd is not running on the client
C. rpc.mountd is not running on the server
D. /home has been unexported on the client

10. Machine A is being used as a large file repository and must be capable of transferring large amounts of data both to and from the network. Performance is the primary concern in this case. Instructions have been sent forth to tune the network for optimal performance.

NFS performance problems have been reported on a server. In order to check for socket buffer overflows, which one of the following commands should be used?

A. `nfso`
B. `nfsstat`
C. `netstat`
D. `enstat`
11. If the following error occurred while attempting an NFS mount from a client machine, which one of the following actions should be performed?

```
# mount nfs_server:/usr/local /mnt mount: 1831-011 access denied for
nfs_server:/usr/local mount: 1831-008 giving up on: nfs_server:/usr/local
The file access permissions do not allow the specified action.
```

A. Start biod daemons on the NFS client.
B. Start nfsd daemons on the NFS server.
C. Add execute permission for others to the /usr/local directory.
D. Add an entry for /usr/local in the exports file and execute `exportfs -a` on nfs_server.

12. Which one of the following files is used by the NFS server to specify which file system can be mounted on a client?

A. `/etc/filesystems`
B. `/etc/exports`
C. `/usr/bin/showmount`
D. `/usr/sbin/exportfs`

13. Given the following auto master file, which one of the following will the AIX automount daemon search to find the mount information for a directory?

```
/home? /- /etc/auto.direct -ro,intr,soft,rsize=8192,wsize=8192 /home
auto.home -rw,intr,hard,rsize=8192,wsize=8192
```

A. `/etc/auto.direct`
B. `/etc/auto.home`
C. `/home/auto.home`
D. NIS auto.home file

14. Which one of the following specifications will verify that an AIX 5L Version 5.1 automount mount point stays mounted for at least one hour?

A. Specify `"i 3600"` as a parameter to the automount command
B. Specify `"v 3600"` as a parameter to the automount command
C. Specify `"t 3600"` as a parameter to the automount command
D. Additional specifications are not required in the automount command as 1 hour is the default

15. Below are auto.master and auto.home map files. No home directories are currently mounted on the AIX NFS client. The automounter is using the default temporary mount location. Which one of the following actions will
occur when user3, whose home is in /home/user3, logs into the AIX NFS client?

auto.master /- /etc/auto.direct -ro,intr,soft,rsize=8192,wsize=8192
/home auto.home -rw,intr,hard,rsize=8192,wsize=8192 # auto.home user1
nfs_server:/home/user1 user2 nfs_server:/home/user2 user3
nfs_server:/home/user3 user4 nfs_server:/home/user4

A. A No such file or directory error message is displayed.
B. The automount daemon mounts /home/user3 on the nfs_server machine.
C. The automount daemon mounts /home from the nfs_server in /mnt and
 creates a symbolic link from /home/user3 to /mnt/home/user3.
D. The automount daemon mounts /home/user3 from the nfs_server over
 /tmp_mnt/home/user3 and creates a symbolic link from /home/user3 to
 /tmp_mnt/home/user3.

16. Using the netstat -s command, which section of the output should be
 checked for socket buffer overflows?
A. TCP
B. UDP
C. IP
D. NFS

17. Which command will change the quantity of biod daemons immediately and
 for each subsequent reboot?
A. chnfs -b newvalue
B. chnfs -N -b newvalue
C. chnfs -I -b newvalue
D. netstat -s newvalue
7.8.1 Answers

The following are the preferred answers to the questions provided in this section:

1. A
2. A
3. B
4. A
5. B
6. D
7. D
8. B
9. C
10. C
11. D
12. B
13. D
14. C
15. D
16. B
17. A

7.9 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Start iptrace and trace a long listing of mounts and a file creation in the NFS mounted file system. Try to make a drawing of the bidirectional traffic going between the NFS daemons from the output of the iptrace.

2. Use the auto.master file to point out both an indirect and a direct map. What differences are there in the use of mount points between indirect and direct mounts? Run iptrace when accessing an indirect mount point. What RPCs are used for the action?
Domain Name System

The following topics are discussed in this chapter:

- The Domain Name System (DNS) concept.
- Setting up the DNS server.
- Setting up the DNS client.
8.1 DNS overview

When you want to connect to another system you can use the `telnet` server command. TCP/IP will examine the `/etc/hosts` file for a host server, and then read off the IP address. The host's table-based name resolution is convenient for reasonably small networks with few entries to include in the `/etc/hosts` file. The practice of maintaining identical `/etc/hosts` files on all UNIX hosts is a time-demanding method, because it requires that changes made to one must be consistently implemented in all others. This approach can easily become impractical as the size of the network increases.

Due to the growth of the number of hosts, this mechanism became too cumbersome and was replaced by a new concept: the Domain Name System. Hosts can continue to use a local flat namespace (`/etc/hosts` file) instead of, or in addition to, the DNS. The Domain Name System allows a program running on a host to perform the mapping of a high-level symbolic name to an IP address for any other host without the need for every host to have a complete database of host names.

DNS is configured on a client/server basis. The server is the name server that makes its data available to the clients. The clients (resolver) generate the query that goes to the name server requesting name-serving information. DNS is implemented by the named daemon in TCP/IP.

8.1.1 The DNS hierarchy

The hierarchical structure of the DNS enables the distribution and delegation of responsibility for host name-to-IP-address mapping. Whereas the `/etc/hosts` file requires an entry for every possible system you might wish to connect to, DNS requires only that you maintain the data for your administrative domain. Host lookups for a given domain are then serviced by the domain's name server. A DNS hierarchy is organized into an inverted tree that can be traversed to service requests for hosts from another domain. See Figure 8-1 on page 195 for a graphical representation of the DNS hierarchy.
This structure has a root domain at the highest level. All domains under the root domain (com, edu, mil, and others) are called top-level domains. A fully qualified domain name is the sequence of names from the local domain up to the root. Each of the top-level domains are subdivided into subdomains. The root name server knows where all the name servers are from top-level domains.

There is one special domain named in-addr.arpa that was created to solve the problem of mapping IP address to host names. IP addresses are represented in PTR resource records as a domain name, so now it is possible to perform inverse addressing with the same efficiency as regular name service lookup.

8.1.2 Domain name resolution

The domain name resolution process proceeds in the following steps:

1. A user program issues a request for the IP address of a host by passing the host name.
2. The resolver formulates a query to the name server.
3. The name server checks to see if the answer is in its local authoritative database or cache, and if so, returns it to the client. Otherwise, it will query
other available name servers, starting down from the root of the DNS tree or as high up the tree as possible.

4. The user program will finally be given a corresponding IP address.

The query and reply messages are transported by either UDP or TCP.

8.1.3 DNS resource records

Basically, a DNS resource record (RR) is an entry in the DNS database that specifies information for some resources. RRs are stored in the DNS database files, which are read when the DNS server is started. The most common RRs are provided in Table 8-1.

Table 8-1 Common DNS resource record types

<table>
<thead>
<tr>
<th>Record type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOA</td>
<td>Start Of Authority: Specifies which host is the definitive authority or primary source of the domain data. An SOA record is required for each defined domain and only one SOA record per database file is permitted.</td>
</tr>
<tr>
<td>NS</td>
<td>Name Server: Specifies the name server for the domain. It is possible to have multiple name servers. There should be an entry for each name server in the domain.</td>
</tr>
<tr>
<td>A</td>
<td>Address: Each reachable host in the domain will require that an A record be maintained so that the name server can perform host name-to-IP-address mapping.</td>
</tr>
<tr>
<td>CNAME</td>
<td>Canonical Name: Used in the specification of a host name alias.</td>
</tr>
<tr>
<td>PTR</td>
<td>Pointer: The PTR record performs the inverse function of an A record, that is, IP-address-to-host name mapping.</td>
</tr>
<tr>
<td>MX</td>
<td>Mail Exchanger: Specifies a host that provides advanced e-mail routing capabilities for the domain.</td>
</tr>
</tbody>
</table>

8.1.4 DNS components

DNS performs host name-to-IP-address mapping using a distributed hierarchical database to maintain mapping. This system consists of a few components: primary server, secondary server, and DNS client.

Primary server

The primary name server provides authoritative name lookup response for the zone it serves. Authoritative response means that the zone data files that are maintained by the network administrator reside on this server.
Secondary server
The secondary server provides the same services as the primary server, but the data for the zone is not kept locally, but is obtained from the primary authoritative server. This data requesting is called zone transfer. Response to queries from a secondary server are known as non-authoritative response.

Caching-only servers
A name server that does not have authority for any zone is called a caching-only name server. A caching-only name server obtains all of its data from primary or secondary name servers as required. Once an answer is received back, the caching-only name server will cache the answer.

Forwarders
This configuration causes the server to forward queries on to another name server for resolution. Name service lookups to this type of server will be forwarded to the specified name server.

8.2 Setting up a primary DNS server
Configuring a DNS server requires several files and databases to be modified or created. The process is time-consuming, but is done only once. Configuration steps are as follows:

1. Create the /etc/named.boot.
2. Create the name zone file.
3. Create the IP zone file.
4. Create the local IP zone file.
5. Create the cache file.
6. Start the named daemon.

8.2.1 The /etc/named.boot file
The /etc/named.boot file is read by the named daemon when it starts. It specifies the location of the database files. The following is a simple /etc/named.boot file for domain test.ibm.com and for network 9.3.240.0:

```
# cat /etc/named.boot
directory /etc
primary  test.ibm.com        named.test
primary  240.3.9.in-addr.arpa  named.rev.240
primary  0.0.127.in-addr.arpa  named.rev.local
cache    .                      named.cache
```
This file has the following attributes:

- The directory entry tells the named daemon where the configuration files are located. In this example, files are stored in the /etc directory.

- The primary entry indicates the domain for which this named daemon is the primary name server and the file that contains name-to-address resolution mapping information for all machines in the name server's zone of authority. As you can see in the example, this is the primary server for domain test.ibm.com; mappings are stored in /etc/named.test file.

- The third line points to the file /etc/named.rev.240, which maps the IP address for network 9.3.240.0. This is for reverse name resolution purposes. The name server is the primary server for reverse domain 240.3.9.in-addr.arpa. In this file subnetwork, addresses are listed in reverse order because the IP addresses have the most significant octets first.

 - The IN-ADDR.ARPA record

 The structure of names in the domain system is set up in a hierarchical fashion. The address of a name can be found by tracing down the domain structure, contacting a server for each label in the name. Because the structure is based on names, there is no easy way to translate a host address back into its host name.

 In order to allow simple reverse translation, the IN-ADDR.ARPA domain was created. This domain uses host addresses as part of a name that points to the data for that host. The IN-ADDR.ARPA domain provides an index to the resource records of each host based on its address. There are subdomains within the IN-ADDR.ARPA domain for each network, based on network number. Also, to maintain consistency and natural groupings, the 4 octets of a host number are reversed. The IN-ADDR.ARPA domain is defined by the IN-ADDR.ARPA record in the named.boot files and the DOMAIN hosts data file.

- The fourth line is the statement for loopback.

- The last line describes the cache file, which contains addresses for the root domain servers.

Note: You can use any file name you want for data files with the exception of the /etc/named.boot file name.

8.2.2 The name zone file

The host’s data file is one of the data files and contains name-to-address resolution mapping information for all machines in the name server's zone of authority. IBM provides two awk scripts that can help you build name zone files.
Be careful when you decide to use these scripts; they do not generate ideal zone files. The /usr/samples/tcpip/hosts.awk builds the name-to-IP-address database and /usr/samples/tcpip/addrs.awk builds the reverse IP file. Here is an example of these scripts:

```
# cd /usr/samples/tcpip/
# ./hosts.awk /etc/hosts > /etc/named.test
# ./addrs.awk /etc/hosts > /etc/named.rev.240
```

The SOA record indicates the start of a zone of authority. There should be only one SOA record per zone. However, the SOA record for the zone should be in each name zone file and IP zone file on each name server in the zone. The name zone file starts with an SOA record.

The primary server name zone file for network itsc.austin.ibm.com, stored on host server4.itsc.austin.ibm.com in the file /etc/named.test, contains the following entries:

```
# cat /etc/named.test
; name server data file
; (also see /etc/named.boot)
;
; NAME          TTL     CLASS   TYPE    RDATA
;
; setting default domain to "itsc.austin.ibm.com"
;
@                   9999999 IN      SOA     server4.itsc.austin.ibm.com. root.server
4.itsc.austin.ibm.com. (            ; Serial
   3600            ; Refresh
   300            ; Retry
   3600000         ; Expire
   86400 )         ; Minimum
server4 loopback    9999999 IN      NS     server4
localhost          9999999 IN      A       127.0.0.1       ; loopback (lo0)name/address
server4             9999999 IN      A       9.3.4.100
server1             9999999 IN      A       9.3.4.97
server5             9999999 IN      A       9.3.4.29
```

Major fields in the SOA record and their meanings:

NAME Name of the zone. The @ sign indicates the zone is the same as that indicated in /etc/named.boot.

TTL Time to live. A value 9999999 means no timeout.

CLASS Internet (IN).
TYPE
Start of authority (SOA).

RDATA
Name of the host on which this data file resides.

Serial
Version number of this data file. This number is incremented each time a change is made to the data. The upper limit for the number to the right of the decimal point is 9999. The secondary name server checks this value to see if it needs to download information again.

Refresh
The number of seconds after which a secondary name server checks with the primary name server to see if an update is needed.

Retry
The number of seconds after which a secondary name server is to retry after a refresh attempt fails.

Expire
The upper limit in seconds that a secondary name server can use the data before it expires because it has not been refreshed.

Minimum
The minimum time, in seconds, to use as time-to-live values in resource records.

Below the SOA record there are entries with name-to-IP-address mapping. The first column indicates host name. The second column defines the length of time, in seconds, that the information from this record should stay in cache. If there is no value, the default becomes the value of the Minimum TTL field in SOA. The third field defines the class of address; IN means Internet address. The next column is the class of record (refer to Table 8-1 on page 196). The last column contains IP addresses except in the case of CNAME records, in which case it contains host names defined elsewhere in the /etc/named.boot file.

8.2.3 The IP zone file
An IP zone file is used for IP-address-to-name mapping. It looks similar to a name zone file with the exception of addresses. What is new in this file is the PTR resource record type in the type field. The PTR records provide address-to-name conversions. The host name in the last column is fully qualified.

The primary server IP zone file for network itsc.austin.ibm.com, stored on host server4.itsc.austin.ibm.com in the file /etc/named.rev.240, contains the following entries:

cat /etc/named.rev.240
; setting default domain to ... itsc.austin.ibm.com
@ 9999999 IN SOA server4.itsc.austin.ibm.com.
root.server
4.itsc.austin.ibm.com. (}
As previously discussed, use the /usr/samples/tcpip/addrs.awk script to create this file.

8.2.4 The local IP zone file

The local IP zone file contains the PTR record for the loopback address. The SOA record is not required in this file. The presence of the @ sign indicates the current domain. In the example of a primary name server, this file is named named.rev.local and is located in the /etc directory. The following example shows the content of this file:

```
# cat /etc/named.rev.local
@           IN      NS      server4.test.ibm.com.
1.0.0.127    IN      PTR     loopback.
```

8.2.5 The root cache file

Now that all the local information is complete, the name server needs to know about the root name server for the domain. This data is known as the root cache. The root server for the example name server is the machine dhcp240.itsc.austin.ibm.com with IP address 9.3.240.2. The root cache file looks like this:

```
# cat /etc/named.cache
. 9999999 IN NS dhcp240.itsc.austin.ibm.com.
dhcp240.itsc.austin.ibm.com. 9999999 IN A 9.3.240.2
```

The dot in the first line indicates the default domain.

8.2.6 The /etc/named.hosts file

The named.hosts file on a primary server contains the authoritative information for a zone. Following is an example of a named.hosts file:

```
cat /usr/samples/tcpip/named.hosts
```
8.2.7 Starting named daemon

Create an /etc/resolv.conf file by issuing the following command:

```
# touch /etc/resolv.conf
```

The presence of this file indicates that the host should use a name server, not the /etc/hosts file, for name resolution. This file must exist on a name server host and either may contain the local host's address and the loopback address or be empty. Alternatively, the /etc/resolv.conf file may contain the following entry:

```
# cat /etc/resolv.conf
nameserver 127.0.0.1
domain test.ibm.com
```

The 127.0.0.1 address is the loopback address, which causes the host to access itself as the name server.

Next, change the host name to a fully qualified domain name using the `smitty hostname` or `chdev` command:

```
# chdev -l inet0 -a hostname=server4.test.ibm.com
inet0 changed
```

Now you can start the named daemon with the command `startsrc -s named`. The /etc/rc.tcpip file must be changed so that the named daemon will be started at the system reboot.

8.3 Setting up a secondary DNS server

The difference between the primary and secondary name server is where they get their information. The primary reads its own files, but the secondary downloads information from the primary using a zone transfer. Periodically, the secondary name server checks in with the primary server to see if the database has changed. The advantage of a secondary name server is there is no
maintenance of files. All the file maintenance is done on the primary name server. The /etc/named.boot file, local IP zone file, and cache file must be created on the secondary name server. They are not part of the zone transfer.

8.3.1 The /etc/named.boot file for a secondary name server

The /etc/named.boot file for the secondary name server looks the same as the one used in a primary name server, except that the IP address for the primary server is added. This addition tells the name server that it is the secondary name server for that specified domain. This server is the only primary name server for localhost. The following is an example of a /etc/named.boot file for the secondary name server:

```
# cat /etc/named.boot
directory       /etc
secondary       test.ibm.com  9.3.240.59  named.test.bak
secondary       240.3.9.in-addr.arpa  9.3.240.59  named.rev.240.bak
primary         0.0.127.in-addr.arpa  named.rev.local
cache           .                       named.cache
```

8.3.2 Local IP zone file for secondary name server

The local IP zone file appears the same as what was entered on the primary name server with the exception of indicating itself in the SOA and NS record.

```
# cat /etc/named.rev.local
@               9999999 IN      SOA  server3.test.ibm.com.
root.server3.test.ibm.com.  ( 1.0        ; Serial
                                3600        ; Refresh
                                300        ; Retry
                                3600000     ; Expire
                                86400       ; Minimum TTL

                        1       IN      PTR     loopback.
```

8.3.3 Starting up a secondary name server

Before you start the named daemon, you must copy the root cache file from the primary name server and create empty /etc/resolv.conf file:

```
# touch /etc/resolv.conf
```

Now you are ready to start the daemon. You can use either the startsrc -s named or smitty stnamed commands. Remember to uncomment the following line in the /etc/rc.tcpip file to make named start automatically after a reboot:

```
start /usr/sbin/named "$src_running"
```
After you start the named daemon files, /etc/named.test.bak and /etc/named.rev.240.bak will be created from the primary name server's database.

8.4 Setting up a cache-only name server

This name server is not authoritative for any domains except localhost. It just responds to clients based on its queries to the other name servers. Every resolved query is cached so it can later respond to clients using its cache. To configure it, you need to set up the /etc/named.boot file, the local IP zone file for localhost, and the cache file.

The /etc/named.boot file appears as follows:

```
# cat /etc/named.boot
directory /etc
primary 0.0.127.in-addr.arpa named.rev.local
cache . named.cache
```

Start the named daemon and your cache-only name server is ready to run.

8.5 Setting up the DNS client

When you have the primary and secondary name servers set up, it is time to set up the DNS client. First change the client's host name to a fully qualified domain. You can use `smitty hostname` or `chdev` command to permanently change host name:

```
# chdev -l inet0 -a hostname=client.test.ibm.com
inet0 changed
```

The next step is to create the /etc/resolv.conf file. It should contain the domain name and name servers (primary and secondary) IP addresses:

```
# cat /etc/resolv.conf
domain test.ibm.com
nameserver 9.3.240.59
nameserver 9.3.240.58
```

To check if the DNS client is set up correctly, use the `nslookup` command and try to resolve a few names of other systems:

```
# nslookup
Default Server: server4.test.ibm.com
Address: 9.3.240.59

> gateway
```
Server: server4.test.ibm.com
Address: 9.3.240.59

Name: gateway.test.ibm.com
Address: 9.3.240.1

> 9.3.240.57
Server: server4.test.ibm.com
Address: 9.3.240.59

Name: server2.test.ibm.com
Address: 9.3.240.57

Resolver routines on hosts running TCP/IP normally attempt to resolve names using the following sources:

- DNS (named)
- Network Information Service (NIS)
- Local /etc/hosts file

By default, resolver routines attempt to resolve names using the above resources. DNS will be tried first. If the /etc/resolv.conf file does not exist or if DNS could not find the name, NIS is queried if it is running. NIS is authoritative over the local /etc/hosts, so the search will end here if it is running. If NIS is not running, then the local /etc/hosts file is searched.

This default order can be overwritten by creating the configuration file, /etc/netsvc.conf, and specifying the desired ordering. The environment variable NSORDER overrides the host settings in the /etc/netsvc.conf file. The example /etc/netsvc.conf file is as follows:

```
# cat /etc/netsvc.conf
hosts = local , nis
```

If both the /etc/netsvc.conf file and the NSORDER are used, NSORDER overrides the /etc/netsvc.conf file.

The values specified and their ordering is dependent on the network configuration. For example, if the local network is organized as a flat network, then only the /etc/hosts file is needed. The /etc/netsvc.conf file would contain the following line:

```
hosts=local
```

The NSORDER environment variable would be set as:

```
NSORDER=local
```
If the local network is a domain network using a name server for name resolution and an /etc/hosts file for backup, specify both services. The /etc/netsvc.conf file would contain the following line:

hosts=bind,local

The NSORDER environment variable would be set as:

NSORDER=bind,local

The algorithm will attempt the first source in the list. The algorithm will then determine to try another specified service based on:

- Current service is not running; therefore, it is unavailable.
- Current service could not find the name and is not authoritative.

8.6 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Given a host with the following /etc/named.boot file:

   ```
   directory /var/named
   secondary nuts.com 128.66.12.1 named.hosts
   secondary 132.128.in-addr.arpa 128.66.12.1 named.rev
   primary 0.0.127.in-addr.arpa named.local
   cache . named.ca
   ```

 Which one of the following statements is valid?

 A. The address 128.66.12.1 is the primary server for the network 132.128.0.0.
 B. The address 128.66.12.1 is the backup secondary server.
 C. The address 128.66.12.1 indicates this is a secondary server for network 128.66.0.0.
 D. The address 128.66.12.1 is the IP address for this host to use to download data for the nuts.com domain.

2. In a DNS environment, the zone file that maps IP addresses to host names (sometimes called the named.rev file) is created on which one of the following servers?

 A. Cache
 B. Primary
 C. Secondary
 D. Primary and secondary
3. A gateway machine has access to the Internet and is trying to reach a machine on the Internet called cactus.org. Although the gateway machine cannot reach cactus.org, another network across town is able to reach cactus.org. Furthermore, the gateway machine can reach the network across town, but cannot ping the cactus.org. Which one of the following tools will best help diagnose the location of the problem?

A. iptrace
B. netstat
C. tcpdump
D. traceroute

4. Assume a host in domain peanut.com. The named.boot is as follows:

```
primary 0.0.127.in-addr.arpa /etc/named.local cache . /etc/named.ca
```

This host performs which one of the following functions?

A. A cache only server
B. A reverse name lookup server for domain peanut.com
C. A primary name server for domain arpa.com and cache server
D. A primary name server for domain peanut.com and cache server

5. When a DNS secondary server is set up, which one of the following files is required locally?

A. /etc/named.ca
B. /etc/inetd.conf
C. /etc/named.boot
D. /etc/named.hosts

6. Which one of the following pieces of information are not required in the local IP zone file?

A. PTR
B. SOA
C. NS
D. Hostname
8.6.1 Answers

The following are the preferred answers to the questions provided in this section:

1. D
2. B
3. D
4. A
5. C
6. B

8.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. On a test system that does not affect any user, set up a primary name server.
2. On the other system, change the reference to the primary name server that you set up previously by editing the /etc/resolv.conf file.
3. Change the name resolution default order by editing the /etc/netsvc.conf file, so that /etc/hosts file will be used before the domain name server. Add an entry to the /etc/hosts file that is not in the name server.
4. Set the value of the NSORDER environment value to override the /etc/netsvc.conf file.
Chapter 9. Mail services

In AIX there are three mail programs available for use, as follows:

- mail
- mh
- bellmail

A user-agent program provides facilities for creating, receiving, sending, and filing mail. In addition, you need a transport-agent program, sendmail, which distributes incoming mail from other systems or packages, and distributes each outgoing mail item and transmits it to a similar program in one or more remote systems.

Note: The mail and mh mail systems are incompatible in the way they store mail; either one mail handler or the other must be used, not both.

In this chapter, the mail user-agent will be used, since this is the most commonly used mail program in AIX.
9.1 Mail system overview

The following sections discuss the basic features of the mail, mh, and bellmail systems.

9.1.1 The mail system

The mail system provides you with a user interface to handle mail to and from both a local network user and a remote system user.

A mail message can be text, entered using an editor, or an ASCII file. In addition to a typed message or a file, you can send:

- **System messages**: Informs users the system has been updated. A system message is similar to a broadcast message, but is sent on the local network only.
- **Secret mail**: Used to send classified information. A secret mail message is encrypted. The recipient must enter a password to read it.
- **Vacation message**: Informs users you are on vacation. When your system receives mail in your absence, it sends a message back to the origin. The message states you are on vacation. Any mail you receive while on vacation can also be forwarded.
- **Mail relay**: Relaying of mail messages to another mail server. In order to relay mail, you will need to have sendmail (see 9.3, “The sendmail command” on page 212) running as a background daemon. This, by definition, will allow incoming mail to your mail server. However, you can selectively allow relaying by adding the fully qualified names (or IP addresses) of the allowed hosts to your /etc/mail/relay-domains file. Once you do this, and run the `refresh -s sendmail` command, those hosts will be allowed to relay through your machine. The installation of sendmail is automatic.
- **Mail endpoint**: Destination mail server. Messages will not be relayed beyond this point.

When you receive mail using the **mail** subcommands, you can:

- Leave the mail in the system mailbox.
- Read and delete the mail.
- Forward the mail.
- Add comments to the mail.
- Store the mail in your personal mailbox (mbox).
- Store the mail in a folder you have created.
- Displays a list of aliases and their addresses.

9.1.2 The mh system

The mh mail system is a collection of commands that enables you to perform each mail processing function directly from the command line. These commands provide a broader range of function than the subcommands of mail, and since they can be issued at any time the command prompt is displayed, you gain power and flexibility in creating mail and in processing received mail. For example, you can read a mail message, search a file or run a program to find a particular solution, and answer the message, all within the same shell.

The mh mail system enables you to create, distribute, receive, view, process, and store messages.

9.1.3 The bellmail system

The bellmail mail system is the original AT&T UNIX mail command, which handles mail for users on the same system and also for users on remote systems that can be accessed by means of Basic Network Utilities (BNU), sometimes known as the UNIX-to-UNIX Copy Program (UUCP). These programs support only networks of systems connected by dial-up or leased point-to-point communication lines.

9.2 The mailq command

The `mailq` command prints a list of messages that are in the mail queue. The `mailq` command is the same as the `sendmail -bp` command.

Specify the `-v` flag to display message priority.

The log file and temporary files associated with the messages in the mail queue are kept in the `/var/spool/mqueue` directory.

Running the `mailq` command will give the following results:

```bash
# mailq
There is 1 request in the mail queue
---QID---- --Size-- -----Q-Time----- ----------Sender/Recipient-----------
OAA19258*      29 Mon Jun 26 14:57 root
                     root@server2
```
Running the `mailq -v` command will give the following results:

```
# mailq -v
There is 1 request in the mail queue
--Q-ID-- --Size-- -Priority-- --Q-Time---- -----------Sender/Recipient--------
OAA19258*   29   30047 Jun 26 14:57 root       root@server2
```

9.3 The `sendmail` command

The `sendmail` command receives formatted text messages and routes the messages to one or more users. Used on a network, the `sendmail` command translates the format of the header information of the message to match the requirements of the destination system. The program determines the network of the destination system by using the syntax and content of the addresses.

The `sendmail` command can deliver messages to:

- Users on the local system.
- Users connected to the local system using the TCP/IP protocol.
- Users connected to the local system using the Basic Networking Utilities (BNU) command protocol.

The `sendmail` command is not intended as a user interface routine; other commands provide user-friendly interfaces. Use the `sendmail` command only to deliver preformatted messages.

The `sendmail` command uses a configuration file (the `/etc/sendmail.cf` file by default) to set operational parameters and to determine how the command parses addresses. This file is a text file that you can edit with other text editors. After modifying `sendmail.cf`, refresh the `sendmail` daemon.

After making any changes to the `sendmail.cf` file, the `sendmail` daemon must be instructed to re-read the new configuration information in `/etc/sendmail.cf`.

The `/etc/mail/sendmail.cf` file:

- Stores information about the type of mailer programs running.
- Defines how the `sendmail` command rewrites addresses in messages.
- Defines how the `sendmail` command operates in the following environments:
 - Local mail delivery.
 - Local area network delivery using TCP/IP.
 - Remote delivery using Basic Utilities Network (BNU).
The /etc/mail/sendmail.cf file consists of a series of control lines, each of which begins with a single character defining how the rest of the line is used. Lines beginning with a space or a tab are continuation lines. Blank lines and lines beginning with a # (pound sign) are comments. Control lines are used for defining:

- Macros and classes for use within the configuration file.
- Message headings.
- Mailers.
- Options for the sendmail command.

Macros in the /etc/mail/sendmail.cf file are interpreted by the sendmail command. A macro is a symbol that represents a value or string. A macro is defined by a D subcommand in the /etc/mail/sendmail.cf file. The syntax for macro definitions is:

```
Dxval
```

where `x` is the name of the macro (which may be a single character or a word in braces) and `val` is the value it should have. There should be no spaces given that do not actually belong in the macro value. Macros are interpolated using the construct `$x`, where `x` is the name of the macro to be interpolated.

AIX defines the following macros:

- `$_` RFC1413-validation & IP source route (V8.1 and above).
- `$a` The origin date in RFC822 format.
- `$b` The current date in RFC822 format.
- `$(bodytype)` The ESMTP BODY parameter.
- `$B` The BITNET relay.
- `$c` The hop count.
- `$(client_addr)` The connecting host's IP address.
- `$(client_name)` The connecting host's canonical name.
- `$(client_port)` The connecting host's port name.
- `$(client_resolve)` Holds the result of the resolve call for $(client_name).
- `$(currHeader)` Header value as quoted string.
- `$(currHeader)` The host name of the DECnet relay (m4 technique).
- `$d` The current date in UNIX (ctime)(3) format.
- `$daemon_addr` The IP address on which the daemon is listening for connections. Unless DaemonPortOptions is set, this will be 0.0.0.0.
$(daemon_family) If the daemon is accepting network connections, this is the network family.

$(daemon_flags) The flags for the daemon as specified by the Modifiers= part of DaemonPortOptions where the flags are separated from each other by spaces and uppercase flags are doubled.

$(daemon_info) Information about a daemon as a text string. For example, SMTP+queueing@00.

$(daemon_name) The name of the daemon from DaemonPortOptions Name= suboption. If this suboption is not used, the default will be set to Daemon#, where # is the daemon number.

$(daemon_port) The port on which the daemon is accepting connections. Unless DaemonPort Options is set, this will most likely be set to the default of 25.

$(deliveryMode) The current delivery mode used by sendmail.

$e Obsolete. Used SmtpGreetingMessage option instead.

$envid) The original DSN envelope ID.

$E X400 relay (unused) (m4 technique).

$f The sender's address.

$F FAX relay (m4 technique).

$g The sender's address relative to the recipient.

$h Host part of the recipient address.

$H The mail hub (m4 technique).

$(hdrlen) The length of the header value, which is stored in $(currHeader).

$(hdr_name) The name of the header field for which the current header check ruleset has been called.

$i The queue identifier.

$(if_addr) The IP address of an incoming connection interface unless it is in the loopback net.

$(if_name) The name of an incoming connection interface.

$= The official canonical name.

$k The UUCP node name (V8.1 and above).

$l Obsolete. Use UnixFromLine option instead.

$L Local user relay (m4 technique).
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>The DNS domain name (V8.1 and above).</td>
</tr>
<tr>
<td>M</td>
<td>Who we are masquerading as (m4 technique).</td>
</tr>
<tr>
<td>$(mail_addr)$</td>
<td>The address part of the resolved triple of the address given for the SMTP MAIL command.</td>
</tr>
<tr>
<td>$(mail_host)$</td>
<td>The host from the resolved triple of the address given for the SMTP MAIL command.</td>
</tr>
<tr>
<td>$(mail_mailer)$</td>
<td>The mailer from the resolved triple of the address given for the SMTP MAIL command.</td>
</tr>
<tr>
<td>n</td>
<td>The error messages sender.</td>
</tr>
<tr>
<td>$(ntries)$</td>
<td>The number of delivery attempts.</td>
</tr>
<tr>
<td>o</td>
<td>Obsolete. Use OperatorChars option instead.</td>
</tr>
<tr>
<td>$opMode$</td>
<td>The startup operating mode (V8.7 and above).</td>
</tr>
<tr>
<td>p</td>
<td>The <code>sendmail</code> process ID.</td>
</tr>
<tr>
<td>$q-$</td>
<td>Default form of the sender address.</td>
</tr>
<tr>
<td>$(queue_interval)$</td>
<td>The queue run interval as defined in the -q flag.</td>
</tr>
<tr>
<td>r</td>
<td>The protocol used.</td>
</tr>
<tr>
<td>R</td>
<td>The relay for unqualified names (m4 technique).</td>
</tr>
<tr>
<td>$(rcpt_addr)$</td>
<td>The address part of the resolved triple of the address given for the SMTP RCPT command.</td>
</tr>
<tr>
<td>$(rcpt_host)$</td>
<td>The host from the resolved triple of the address given for the SMTP RCPT command.</td>
</tr>
<tr>
<td>$(rcpt_mailer)$</td>
<td>The mailer from the resolved triple of the address given for the SMTP RCPT command.</td>
</tr>
<tr>
<td>s</td>
<td>The sender's host name.</td>
</tr>
<tr>
<td>S</td>
<td>The Smart host (m4 technique).</td>
</tr>
<tr>
<td>$(server_addr)$</td>
<td>The address of the server of the current outgoing SMTP connection.</td>
</tr>
<tr>
<td>$(server_name)$</td>
<td>The name of the server of the current outgoing SMTP connection.</td>
</tr>
<tr>
<td>t</td>
<td>Current time in seconds.</td>
</tr>
<tr>
<td>u</td>
<td>The recipient's user name.</td>
</tr>
<tr>
<td>U</td>
<td>The UUCP name to override k.</td>
</tr>
<tr>
<td>v</td>
<td>The sendmail program's version.</td>
</tr>
<tr>
<td>V</td>
<td>The UUCP relay (for class $=V$) (m4 technique).</td>
</tr>
</tbody>
</table>
The short name of this host.

W The UUCP relay (for class $=W$) (m4 technique).

X The full name of the sender.

X The UUCP relay (for class $=X$) (m4 technique).

Y The home directory of the recipient.

Z The name of the controlling TTY.

Y The UUCP relay for unclassified hosts.

Z The recipient's home directory.

Z The version of this m4 configuration (m4 technique).

Lines in the configuration file that begin with a capital letter H define the format of the headers used in messages. The format of the H control line is:

\[H[?MailerFlags?]FieldName: Content \]

Programs and interfaces to mailers are defined in Mailer (M) line. The format is:

\[Mname, \{field=value\}* \]

There are several global options (O) that can be set from a configuration file. The syntax of this line is:

\[O option=value \]

The /etc/sendmail.pid file is a sendmail configuration file that allows you to stop and start the sendmail daemon. Root must have access to this file for the sendmail daemon to start and stop successfully.

The /etc/sendmail.pid file, which also has a link to /etc/mail/sendmail.pid in AIX Version 5L and later, contains the process identifier of the current sendmail daemon and the sendmail daemon startup command. The information in this file should be used to correctly stop and restart the sendmail daemon after a change has been made in the /etc/sendmail.cf file. To view the sendmail.pid file, enter the following command:

\[
\# \text{cat} /etc/sendmail.pid
\]

12136

/usr/lib/sendmail -bd -q30

If the sendmail daemon was started using the /usr/sbin/sendmail command, the following command will stop the current sendmail daemon:

\[
\# \text{kill} \text{`head -1 /etc/sendmail.pid`}\]
Once the old sendmail process is gone, a new instance should be started as in the following example:

eval ‘tail -1 /etc/sendmail.pid’

Or, if you started the sendmail command using the startsrc command, enter the following:

#refresh -s sendmail
0513-095 The request for subsystem refresh was completed successfully.

Both of these commands cause the daemon to reread the /etc/sendmail.cf file, the /etc/aliases file, and the /etc/sendmail.nl file.

The sendmail command allows you to define aliases to use when the sendmail command handles the local mail. Aliases are alternate names that you can use in place of elaborate network addresses. You can also use aliases to build distribution lists.

Define aliases in the /etc/aliases file. This file is a text file you can edit. The sendmail command uses a database version of this file. You must build a new alias database by running the sendmail -bi command or the newaliases command before any changes made to the /etc/aliases file become effective.

Note: When defining aliases in the /etc/aliases file, use only lowercase characters for nested aliases. Uppercase characters on the right-hand side of an alias are converted to lowercase before being stored in the Database Manager (DBM) database.

Every system must have a user or user alias designated as the postmaster alias. The default postmaster alias is a root file. You can assign this alias to a different user in the /etc/aliases file. The postmaster alias allows other users outside your system to send mail to a known ID and to get information about mailing to users on your system. Also, users on your system can send problem notifications to the postmaster ID.

To add an alias to a system, edit the /etc/aliases file. In the example, the alias that will be added is certify, which can reside on the same or different servers. Edit the /etc/aliases file using vi or another editor and insert the following line:

certify: user02, user5801@server3, root@server4, user5911@server4

The new entry in the /etc/aliases is shown as follows:

Alias for mailer daemon
MAILER-DAEMON:root

Following alias is required by the new mail protocol, RFC 822
postmaster:root

Aliases to handle mail to msgs and news
nobody: /dev/null
certify: user02, user5801@server3, root@server4, user5911@server4

Rebuild the aliases database file as follows:

sendmail -bi
/etc/aliases: There are 4 aliases. The longest is 56 bytes, with 109 bytes total.

or

newaliases
/etc/aliases: There are 4 aliases. The longest is 56 bytes, with 109 bytes total.

Either the sendmail -bi or newaliases command can be used, because both commands function the same.

When mail is sent to the user, certify it will now be sent to all the users defined as aliases in the /etc/aliases file.

9.4 Sendmail upgrade enhancements (5.1.0)

AIX 5L Version 5.1 uses Sendmail Version 8.11.0. This version has several enhancements and changes.

- The sendmail files sendmail.cf and aliases have been moved to the /etc/mail directory. Links exist on the POWER platforms that are required for the migration to AIX 5L Version 5.1 from earlier releases of AIX. The sendmail files are in /etc/mail and no links exist between them and the /etc directory.

 # 1s -l /etc/sendmail.cf /etc/aliases
 lrwxrwxrwx 1 root system 21 Mar 07 10:28/etc/sendmail.cf->/etc/mail/sendmail.cf
 lrwxrwxrwx 1 root system 17 Mar 07 10:28 /etc/aliases->/etc/mail/aliases

- Sendmail supports the Berkeley DB 3.1.14 format to more efficiently store the aliases.db database file. Other databases used can store their data in the Berkeley database formats.

- Support for message submission agents.

- Multiple queues, memory buffered pseudo files, and more control over resolver timeouts improve performance.

- The ability to connect to servers running on named sockets.

- Better LDAP integration and support for LDAP-based routing.
- Improved support for virtual hosting.
- Anti-spam control features.
- Several new map classes, which include arith and macro.

More information on Sendmail Version 8.11.0 is available from the following Web site:

http://www.sendmail.org

9.5 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Scenario: A network administrator has been asked to integrate a new RS/6000 to be used as a corporate mail server into the network. There are five nodes on the Ethernet II network, with a network address of 193.3.7.0 and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring and integrated Ethernet adapters.

Once the system has been configured as a mail server. Which one of the following commands should be used to check the status of pending mail?

A. mailx
B. mailq
C. bellmail
D. sendmail

2. After editing mail aliases on the mailserver, which one of the following actions should be performed to put the changes into effect?

A. sendmail -bi
B. startrc -s sendmail
C. refresh -s sendmail
D. Updates are automatic so no action is required

3. A user would like for personal e-mail to be redirected to another system. Which one of the following files may be modified in order to perform this action?

A. /etc/aliases
B. /etc/.forward
C. /etc/sendmail.cf
4. Assuming a system administrator has correctly set up a system's fully qualified host name including the correct domain, what is needed to modify to correctly set the identity of the host for sendmail?
 A. Dw, Cw and Dj in /etc/sendmail.cf
 B. $w, $j and $m in /etc/sendmail.cf
 C. Nothing; sendmail will try to find the right values
 D. Dw and $w, Dj and $j in /etc/sendmail.cf

5. Which one of the following in /etc/sendmail.cf can be used to change the host name used for sendmail?
 A. Dw macro
 B. $j macro
 C. Cw macro
 D. $=m value

6. A network administrator has been asked to integrate a new server to be used as a corporate mail server into the network. There are five nodes on the Ethernet network, with a network address of 193.3.7.0 and a subnet mask of 255.255.255.0. The machine contains ATM, token-ring and integrated Ethernet adapters. Which one of the following files contain the name of the process acting as a smux peer?
 A. /etc/inetd.conf
 B. /etc/snmpd.conf
 C. /etc/snmpd.peers
 D. /etc/netsvc.conf
9.5.1 Answers

The following are the preferred answers to the questions provided in this section:

1. B
2. A
3. A
4. C
5. A
6. C

9.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. What does the `mailq` command do?
2. How is mail redirected?
In this chapter the following topics are discussed:

- Components of NIS.
- NIS configuration considerations.
- Startup of NIS.
- Managing NIS maps.

Network Information Service (NIS) is a distributed database that allows you to maintain consistent configuration files throughout your network. NIS replaces replicated copies of common configuration files, such as `/etc/passwd` and `/etc/hosts`, with data maps for each file located on a central server.

NIS is the current name for the service originally known as Yellow Pages (YP). NIS and YP are functionally identical. When working with NIS, you will recognize that NIS commands usually start with yp (for example: `- ypwhich`, `- ypget`, and `- ypset`).

NIS is a part of the network file system (NFS) software package that includes commands and daemons for NFS, NIS, and other services. On AIX Version 4.3.3 or later, NFS and NIS are no longer installed together as one package, but require installation of `bos.net.nis.server` or `bos.net.nis.client`. Each is independent and each is configured and administered individually.

NIS uses RPC as NFS does. For a brief discussion of RPC, see 7.1.2, “RPC” on page 151.
Support for NIS+ was introduced with AIX 4.3.3. NIS and NIS+ cannot be combined in a single environment.

10.1 Components of NIS

The NIS environment is composed of clients and servers; these are logically grouped together in a domain. Each domain has a particular set of characteristics. A domain is not restricted to a physical network layout. Neither should the NIS domain be confused with DNS domains. The NIS domain characteristics are defined in maps, or databases, that specify certain system information such as user names, passwords, and host names.

An NIS domain is a collection of systems that are logically grouped together. A group of hosts that share the same set of NIS maps belong to the same domain. The hosts are usually grouped together in the domain for a common reason, for example when working in the same group at a particular location. Each NIS host is assigned to a domain when the system starts. The domain name must be set on all hosts that intend to use NIS.

There is one master server per NIS domain, and the systems in the domain are typically on the same network. However, access to data served by NIS is independent of the relative locations of the NIS client and server. By design, you cannot add another master server to a domain because there would be two authoritative sources for the maps. To reduce master server load, you can add slave servers to the domain, or define more than one domain. Each new domain, of course, has its own master server.

In the following sections, the master server, slave servers, NIS daemons, and NIS maps are discussed.

10.1.1 NIS servers

An NIS server is a host that provides configuration information to other hosts on the network. Servers retain a set of maps and run the ypserv daemon, which processes requests from clients for information contained in maps. There are two types of servers: a master server and a slave server.

Master servers
A master server is the single host in a particular domain that maintains the authoritative maps. The master server may run the ypupdated daemon, which prompts slave servers to update their copies of the maps (all other hosts in the domain must obtain their map information from the master server, either directly or indirectly through a slave server). If ypupdated is used, secure NFS should be
configured as explained in *AIX 5L Version 5.1 System Management Guide: Communications and Networks*, on the Internet. The master server also runs the `ypasswdd` daemon, which processes requests to change users’ passwords. When choosing a master server, the following criteria should be met:

- **Accessible by the system administrator**

 If something goes wrong, or if updates need to be made, it is easy to reach the master server.

- **Stable**

 It needs to be stable so systems that depend on it can rely on uninterrupted service.

- **Accessible from the network**

 Although networks can be complex with the presence of many gateways or bridges, the master server should be accessible from most systems on the network.

In a small domain, each host can access the master server directly. However, for a larger number of hosts in a domain, the master server can become overloaded. To balance the NIS processing load and provide services when the master server is unavailable, additional hosts can be designated as slave servers.

Slave servers

NIS slave servers act as intermediaries between clients and the master server by keeping exact replicas of the master server's maps. All changes to the maps are made on the master server. Then, the changes are propagated from the master server to the slave servers. Once a slave server is added to the domain, it is able to answer the same queries that the master is able to answer. In this way, slave servers can help the master server without violating the authority of the master server.

Slave servers also act as a backup in case the master server or the network fails. A client requesting information waits until a server responds. Adding slave servers increases the availability of information even if the master server is unavailable.

The number of slave servers in a domain should be balanced to achieve the desired level of availability and response time without adding the expense of copying data to too many systems. There should be at least one slave server for each domain, but normally there is one slave server per subnet, as shown in Figure 10-1 on page 226.
10.1.2 NIS daemons

There are only four NIS daemons included in the yp group. They are as follows:
As mentioned in previous sections, the client daemon, ypbind, is the daemon that has to establish connections. On the server side, the ypserv daemon is accepting and serving all yp requests. If NIS is used for centralized password management, then the `yppasswd` command on the client contacts the yppasswdd daemon. Finally, there is the ypupdated daemon that is used with Secure NFS. If Secure NFS is not used, this daemon should not be started (this is why the `startsrc -g yp` is not a good option in some environments). The relationship between NIS daemons is shown in Figure 10-2.

![NIS daemons](image)

10.1.3 NIS maps

NIS maps are databases that specify certain system information such as user names, passwords, and host names, in a database format called DBM. Most maps are constructed from a standard text files by associating an index key with a value. For example, the information in the master server's `/etc/hosts` file is used to create a map that uses each host name as a key and the IP address as the
value. The key and value pairs (also known as records) that are created from the entries in the /etc/hosts file comprise the hosts.byname map. In addition to the hosts.byname file, a hosts.byaddr file is also provided for reverse name resolution. For these two functions, name resolution and reverse name resolution, a total of four files are needed:

- hosts.byname.dir
- hosts.byname.pag
- hosts.byaddr.dir
- hosts.byaddr.pag

Files ending in .dir contain an index in the .pag files containing the key/value pair for faster searching.

Note: An NIS record has a maximum size of 1024 bytes. This limitation applies to all NIS map files. For example, a list of users in a group can contain a maximum of 1024 characters in single-byte character set file format. NIS cannot operate correctly with map files that exceed this maximum.

The most commonly used maps have nicknames that some commands can translate into map names. For example:

```
#ypcat hosts
```

The output you receive is actually the contents of the hosts.byname map, because there is no map called hosts in the NIS database. The `ypcat -x` command produces a list of available nicknames.

By default, the maps listed in Table 10-1 are created if their corresponding source files are available on the master server:

<table>
<thead>
<tr>
<th>Map</th>
<th>Nickname</th>
<th>Source file</th>
</tr>
</thead>
<tbody>
<tr>
<td>passwd.byname</td>
<td>passwd</td>
<td>/etc/passwd</td>
</tr>
<tr>
<td>passwd.byuid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>group.byname</td>
<td>group</td>
<td>/etc/group</td>
</tr>
<tr>
<td>group.bygid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hosts.byaddr</td>
<td>hosts</td>
<td>/etc/hosts</td>
</tr>
<tr>
<td>hosts.byname</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
10.2 NIS configuration considerations

All NIS systems must meet these conditions before you start configuring NIS:

- TCP/IP must be running.
- The portmap daemon must be running.
- NFS must be installed.
- The `bos.net.nis.server` or `bos.net.nis.client` fileset must be installed. These filesets are not installed by default on AIX Version 4.3.3 or later.

<table>
<thead>
<tr>
<th>Map</th>
<th>Nickname</th>
<th>Source file</th>
</tr>
</thead>
<tbody>
<tr>
<td>ethers.byaddr</td>
<td>ether</td>
<td>/etc/ethers</td>
</tr>
<tr>
<td>ethers.bynum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>networks.byaddr</td>
<td>networks</td>
<td>/etc/networks</td>
</tr>
<tr>
<td>networks.bynum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpc.bynum</td>
<td></td>
<td>/etc/rpc</td>
</tr>
<tr>
<td>services.bynum</td>
<td>service</td>
<td>/etc/service</td>
</tr>
<tr>
<td>protocols.bynum</td>
<td>protocols</td>
<td>/etc/protocols</td>
</tr>
<tr>
<td>protocols.bynum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>netgroup</td>
<td></td>
<td>/etc/netgroups</td>
</tr>
<tr>
<td>netgroup.bynum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>netgroup.byhost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>netgroup.byuser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>bootparams</td>
<td></td>
<td>/etc/bootparams</td>
</tr>
<tr>
<td>mail.aliases</td>
<td>aliases</td>
<td>/etc/aliases</td>
</tr>
<tr>
<td>mail.byaddr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>publickey.bynum</td>
<td></td>
<td>/etc/publickey</td>
</tr>
<tr>
<td>netid.bynum</td>
<td></td>
<td>/etc/passwd , /etc/groups</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/etc/hosts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>/etc/netid</td>
</tr>
<tr>
<td>netmasks.byaddr</td>
<td></td>
<td>/etc/netmasks</td>
</tr>
<tr>
<td>ypservers</td>
<td></td>
<td>N/A</td>
</tr>
</tbody>
</table>
10.2.1 Master server configuration

There are a few steps to perform on the server before starting to configure the clients.

If you want to increase the security in your NIS environment, you can use the /var/yp/securenets file. The ypserv daemon (used both on the master and the slave to answer ypbind requests) uses the /var/yp/securenets file and, if present, only responds to IP addresses in the range given. This file is read only when the ypserv daemon starts. To cause a change in /var/yp/securenets to take effect, you must kill and restart the daemon. The format of the file is netmask netaddr. For example:

255.255.255.0 9.3.240.0

Next, define a domain name.

Master server domain name definition

When starting to configure a server, you can start with defining the domain name. This can be done with the smitty chypdom command, as shown in Figure 10-3.

![Change NIS Domain Name of this Host](image)

When choosing to set both or restart, as values in the CHANGE domain name take affect field, the domain name will be set in /etc/rc.nfs. This can also be done by editing the /etc/rc.nfs file directly, for example:
If you choose to use the `domainname` command, the domain name will be set in the current login session, as shown in the following example:

```bash
#domainname tcdomain
```

This is an easy way to activate maps that are on other NIS domains. When using the `domainname` command without any arguments, it will return the current NIS domain. For example:

```bash
# domainname
tcdomain
```

Edit map source files

The next step is to edit the source files needed for map creation. In this example, the `/etc/passwd` and the `/etc/hosts` will be used. There is support for a multitude of map files, as shown in Table 10-1 on page 228.

The `/etc/passwd` file

The `/etc/passwd` file on the NIS master server needs to include all the user account information for all users on all NIS clients on the network that will belong to the NIS domain that the master is serving. It is also common that the server will be a client as well. This way, the server will have access to all information from the maps. If the NIS master server is to have local users (not to be administered through NIS), then another text input file may be used to build these maps.

If you choose to use a password file other than `/etc/passwd` to build the password map, you must specify to the `yppasswdd` daemon the path to that file. By default, the `yppasswdd` daemon changes passwords for entries in the `/etc/passwd` file. To change the default password file to another file, perform the following steps:

1. Edit the `/etc/rc.nfs` file, locate the following stanza and change the `DIR` statement so that it specifies the path to your alternate passwd file. For example, if you use the `/var/yp/passwd` file, the `DIR` statement should look like this:

   ```bash
   #Uncomment the following lines to start up the NIS
   #yppasswdd daemon.
   DIR=/var/yp
   if [ -x /usr/lib/netsvc/yp/rpc.yppasswdd -a -f $DIR/passwd ]; then
       start rpc.yppasswdd /usr/lib/netsvc/yp/rpc.yppasswdd /etc/passwd -m
   fi
   ```
2. Enter the following three commands:

```
# stopsrc -s yppasswdd
0513-004 The Subsystem or Group, yppasswdd, is currently inoperative.
# chssys -s yppasswdd -a '/var/yp/passwd -m passwd'
0513-077 Subsystem has been changed.
# startsrc -s yppasswdd
0513-059 The yppasswdd Subsystem has been started. Subsystem PID is 23334.
```

The yppasswdd daemon will now use your alternate password file.

Figure 10-4 provides the values used for the sample system, with their copies of /etc/passwd and /etc/hosts before configuring NIS.

![Diagram of NIS configuration]

Figure 10-4 Hosts in example before NIS

In the example case, server3 has the most users, server4 will serve as a master, and server5 has no users defined in /etc/passwd. The entries for server3 users will be edited into the server4:/etc/passwd file.
The /etc/hosts file

Next the /etc/hosts file has to include all systems involved in the domain:

```
127.0.0.1               loopback localhost      # loopback (lo0) name/address
9.3.4.100       server4  server4.itsc.austin.ibm.com
9.3.4.29        server5
```

Now the server is prepared for defining the domain and editing the map source files. Before starting up the master server, consider what work must be done on slave servers and clients.

10.2.2 Client configuration considerations

In the example, the client will be fully dependent on the master server for password management and for name resolution. Therefore, all locally defined users may be removed from the /etc/passwd file, since they have been copied into the /etc/passwd file on the master server. After the removal of these, an escape sequence, `+::0:0::`, should be added to the end of /etc/passwd. This escape sequence tells the system to use NIS for password handling. For example:

```
# echo +::0:0:: > /etc/passwd
```

The /etc/hosts file needs only the loopback interface and the entry for the host. Next, make the system use NIS for name resolution, by editing /etc/netsvc.conf. For example:

```
# more /etc/netsvc.conf
host = nis,bind,local
```

You can override the default order by modifying the /etc/irs.conf configuration file and specifying the desired ordering.

The settings in the /etc/netsvc.conf configuration file override the settings in the /etc/irs.conf file. The NSORDER environment variable overrides the settings in the /etc/irs.conf and the /etc/netsvc.conf files.

Also remember to define your domain name, either by editing the /etc/rc.nfs, by using smitty chypdom as shown in Figure 10-3 on page 230 for permanent domain name setting, or by using the domainname command for temporary domain name setting.

10.2.3 Slave server configuration considerations

An important thing to remember is the slave server behaves like a client, in that it is dependent on the master server for updates of its records. In our example, the slave server will copy the /etc/passwd and /etc/hosts from the master, so the
same editing that was done on the client should be done on the slave server (/etc/passwd, /etc/hosts and /etc/netsvc.conf).

At this stage, the hosts in the example would appear as shown in Figure 10-5.

![Figure 10-5 Hosts ready for NIS startup](image)

Now the setup is ready. In the following section, NIS startup is discussed.

10.3 Starting NIS

Depending on the role the host has in the NIS domain, there are some differences in how to start NIS. In the following sections, the master, slave, and client startup are discussed.

10.3.1 Master server startup

To start NIS for the master, enter `smitty mkmaster`, as shown in Figure 10-6 on page 235.
The shortcut with smitty is that the /etc/rc.nfs will be updated, and the daemons chosen will be started after every reboot.

The startup can also be done through an interactive command called ypinit, (actually it is a script). The ypinit command does not update the etc/rc.nfs file; neither will it start the daemons (this must be done separately).

On the master server, the ypinit command should be started with the -m flag (for master). When the command is executed, you will have to answer a few questions. Among other things, it will prompt you for a list of slave servers:

```
# ypinit -m
Installing the NIS data base will require that you answer
a few questions.
Questions will all be asked at the beginning of the procedure.
Do you want this procedure to quit on non-fatal errors? [y/n: n] n
OK, please remember to go back and redo manually
whatever fails. If you don't, some part of the system
(perhaps the NIS itself) won't work.

At this point, we have to construct a list of the
hosts which will run NIS servers. server4 is in the list of NIS
server hosts. Please continue to add the names for the other
hosts, one per line. When you are done with the list, type a <control D>.
ext host to add: server4
next host to add: ^D
```
The current list of NIS servers looks like this:

server4

Is this correct? [y/n: y] y
There will be no further questions. The remainder of the procedure should take 5 to 10 minutes.
Building /var/yp/tcdomain/ypservers...
Running /var/yp/Makefile...
updated passwd
updated group...........

The ypinit -m command will call the makedbm command, which will create the database format file, the actual map file, and place these by default in /var/yp/<domainname>. In this example, the target directory will be /var/yp/tcdomain. The target directory can be changed by editing /var/yp/Makefile.

The ypinit command is dependent on the existence of the input files listed in Table 10-1 on page 228, but the database file ypservers does not have a standard input file like the rest of the map files. If you want to update the ypservers map file (for example, after adding another slave server to the domain), you need to directly use the makedbm command, as in the following example:

cd /var/yp
(makedbm -u tcdomain/ypservers ; echo server1) | makedbm - ypservers

In the previous command example, the -u flag will undo the DBM file. It prints out a DBM file one entry per line, with a single space separating keys from values. In this instance, the -u output, as well as the line echoed - server1, will be piped into the next makedbm command rather than being directed to the display. By doing this, a new ypserver map is created including the new slave server - server1.

After the ypinit -m command, the /var/yp/tcdomain includes the following maps:

ls
group.bygid.dir	mail.byaddr.dir	protocols.bynumber.dir
group.bygid.pag	mail.byaddr.pag	protocols.bynumber.pag
groupbyname.dir	netidbyname.pag	publickeybyname.pag
groupbyname.pag	netidbyname.pag	publickeybyname.pag
hostbyaddr.dir	passwdbyname.dir	rpcbyname.pag
hostbyaddr.pag	passwdbyname.pag	rpcbyname.pag
hostbyname.dir	passwdbyuid.dir	servicesbyname.pag
hostbyname.pag	passwdbyuid.pag	servicesbyname.pag
mailaliases.dir	protocolsbyname.dir	ypserversdir
mailaliases.pag	protocolsbyname.pag	ypserverspag
10.3.2 Slave server startup

After configuring the master server, you will configure hosts chosen to act as slave servers. Slave servers keep exact replicas of the master server's maps and share the processing burden by answering queries when the master server is busy or unavailable. Before starting the slave servers, the NIS master server must be configured and started. In the example, no slave server is configured.

When using subnets, a slave server should be configured on each subnet that has NIS clients for the given NIS domain. This allows clients to bind at startup without pointing out the IP address to the ypbind daemon.

Create NIS domain as described in “Master server domain name definition” on page 230. It is the same domain name as the master server.

You can now create the directory for this domain, start the NIS daemons, and obtain copies of the NIS maps from the master server, by using `smitty mkslave`, as shown in Figure 10-7.

![Figure 10-7 smitty mkslave screen](image)

The system takes a few minutes to perform several tasks. First, it runs the `ypinit -s <master>` command. It creates the directory `/var/yp/<domainname>`, where `domainname` is the domain name you defined earlier. Then it runs the `ypxfr` command to obtain the NIS maps from the master server. If the `ypinit` command exits successfully, the system uncomments the entries in the `/etc/rc.nfs` file for the `ypserv` and `ypbind` daemons. Finally, the system starts these daemons.
If this NIS slave server is not on the same IP network as the NIS master server (that is, a gateway router is positioned between the slave server and the master server), you must explicitly identify the NIS master server by using the \texttt{ypset} command. For example, enter the command:

\begin{verbatim}
startsrc -s ypbind -a "scott_vetter_domain"
0513-059 The ypbind Subsystem has been started. Subsystem PID is 14696.
ypset 9.3.4.100
\end{verbatim}

where 9.3.4.100 is the IP address of the NIS master server.

If you want to use the command-line interface for a startup of the slave server, you first have to start up the ypbind daemon on the slave server to make it able to connect to the master server.

Next, use the \texttt{ypinit -s <master>} command. This command prompts you, just as in the case for \texttt{ypinit -m}, for various information and takes a few minutes to complete. For example:

\begin{verbatim}
ypinit -s server4
\end{verbatim}

Edit the \texttt{/etc/rc.nfs} file and uncomment the lines that use the \texttt{startsrc} commands to start these daemons. For example:

\begin{verbatim}
if [-x /usr/etc/ypserv -a -d /etc/yp/`domainname```]; then
 startsrc -s ypserv
fi
\end{verbatim}

This should also be done for the ypbind daemon. By doing this, the slave server will be available after the next reboot.

Finally, the escape sequence should be added into the \texttt{/etc/passwd} file. If there are users to be locally administered, the escape sequence should be placed after the users that are to be administered locally. The \texttt{/etc/passwd} file will be sequentially scanned at login, and when finding the escape sequence, NIS will be used instead of local password verification.

At this stage, the ypserv daemon has not yet been started, although you prepared the system to start that daemon after restart. Start the daemon with:

\begin{verbatim}
startsrc -s ypserv
\end{verbatim}

\section*{10.3.3 NIS client startup}

The client startup is the last configuration task. With the escape sequence in \texttt{/etc/passwd} and domain name set, you only need to start ypbind, which is the client daemon. For example:

\begin{verbatim}
startsrc -s ypbind
\end{verbatim}
0513-059 The ypbind Subsystem has been started. Subsystem PID is 27134.

```
# ypwhich
ypwhich: 1831-178 Domain tcdomain not bound.
# ypwhich
server4
```

This command sequence shows that the `ypwhich` command has not received an answer when executed directly after the startup of the ypbind daemon. This is because the broadcast on the subnet for an NIS server has not yet received an answer. When executed the next time, the binding is set up.

At this point, it is good to use the `ypcat` command to check the listings available (for example, which hosts are defined by the master server hosts.bynname map), as follows:

```
# ypcat hosts
9.3.240.59      server4
9.3.240.58      server3
127.0.0.1               loopback localhost      # loopback (lo0) name/address
10.47.1.2       server5
10.47.1.1       server4e
```

The client setup is done.

If you administer passwords through NIS, you need to start the yppasswd daemon (named yppasswdd) on the master server. When doing this, it is good to remember that all password changes would be handled by the `yppasswd` command, as follows:

```
# yppasswd thomasc
Old NIS password:
thomasc's New password:
Enter the new password again:
```

One downside of using the `yppasswd` command is shown in the following output of the `/etc/passwd` file on the master server:

```
# more /etc/passwd
morpheus:*:2554:21::/home/morpheus:/usr/bin/ksh
anonymou:*:202:1::/home/ftp:/usr/bin/ksh
trinity:*:2553:7::/home/trinity:/usr/bin/ksh
thomasc:M.BHTz4w35RKQ:15610:1::/tmp/thomasc:/usr/bin/ksh
```

As you can see, the encrypted password is in `/etc/passwd`, not in `/etc/security/passwd`, as with local password management.
10.3.4 Managing NIS maps

System information, such as a new user account or a changed password, can require constant updating. Whenever you need to modify an NIS map, you should do so on the master server and then propagate the changes to the slave servers. The only exception to this rule is when users change their password with the `yppasswd` command. When changing a map, you need to start with editing the source file. For example, in editing `/etc/hosts`, add server1 (9.3.240.56) to the file.

Even though the source file has been edited, the NIS subsystem is not yet aware of the changes:

```
# ypcat hosts
9.3.240.59   server4
9.3.240.58   server3
127.0.0.1     loopback localhost   # loopback (lo0) name/address
10.47.1.2    server5
10.47.1.1    server4e
```

The map files must be rebuilt. This can be done either with `smitty mkmaps` or with the `make` command:

```
# cd /var/yp
# make hosts
0+1 records in.  
0+1 records out. 
updated hosts    
pushed hosts     
Target "hosts" is up to date. 
```

Afterwards, the information as seen by the client will be up to date:

```
# ypcat hosts
9.3.240.59   server4
9.3.240.58   server3
9.3.240.56   server1
127.0.0.1     loopback localhost   # loopback (lo0) name/address
10.47.1.2    server5
10.47.1.1    server4e
```

The map is now changed, and the master server has requested that all the slave servers update their maps.

To manually propagate NIS maps from the master server to slave servers, you can choose to use the `ypxfr <mapname>` command at the slave server or use the `yppush <mapname>` command at the master server.
10.4 NIS configuration summary

- The master server runs the ypserv and yppasswdd daemons.
- The master server updates the slave servers with yppush.
- The slave servers runs the ypbind and ypserv daemons.
- The slave servers update maps with ypxfr.
- Clients do not have local maps.
- Clients request information from a master or slave server through the ypbind daemon.

10.5 Command summary

The following sections provide a list of the key commands discussed in this chapter. For a complete reference of the following commands, consult the AIX product documentation.

10.5.1 The ypbind command

The \texttt{ypbind} command enables client processes to bind, or connect, to an NIS server.

The syntax for \texttt{ypbind} is:

\texttt{/usr/lib/netsvc/yp/ypbind \[-s \] \[-ypset \] \[-ypsetme \]}

The commonly used flags are provided in Table 10-2.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ypset</td>
<td>Indicates the local host accepts \texttt{ypset} commands from local or remote hosts.</td>
</tr>
<tr>
<td>-ypsetme</td>
<td>Indicates that the local host accepts \texttt{ypset} commands only from the local host.</td>
</tr>
</tbody>
</table>

10.5.2 The ypset command

The \texttt{ypset} command directs a client machine to a specific server.

The syntax for \texttt{ypset} is:

\texttt{ypset \[-V1 \] \[-d Domain \] \[-h Host \] Server}

The commonly used flags are provided in Table 10-3 on page 242.
10.5.3 The ypinit command

The ypinit command sets up NIS maps on a Network Information Services (NIS) server.

The syntax for ypinit is:
ypinit [-o] [-n] [-q] -m [SlaveName ...]

The commonly used flags are provided in Table 10-4.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-m <slave name(s)></td>
<td>Indicates that the local host is to be the NIS master. If the -q flag is</td>
</tr>
<tr>
<td></td>
<td>used, the -m flag can be followed by the names of the machines that will</td>
</tr>
<tr>
<td></td>
<td>be the NIS slave servers.</td>
</tr>
<tr>
<td>-q</td>
<td>Indicates that the ypinit command is to get arguments from the command</td>
</tr>
<tr>
<td></td>
<td>line instead of prompting for input.</td>
</tr>
<tr>
<td>-s <MasterName></td>
<td>Copies NIS maps from the server workstation you specify in the MasterName</td>
</tr>
<tr>
<td></td>
<td>parameter.</td>
</tr>
</tbody>
</table>

10.5.4 The yppush command

The yppush command prompts the Network Information Services (NIS) slave servers to copy updated NIS maps.

The syntax for yppush is:
yppush [-v] [-d Domain] MapName

The commonly used flags are provided in Table 10-5 on page 243.
Table 10-5 Commonly used flags of the yppush command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d <domain></td>
<td>Specifies a domain other than the default domain. The maps for the specified domain must exist.</td>
</tr>
<tr>
<td>-v</td>
<td>Displays messages as each server is called and then displays one message for each server's response (if you are using the Version 2 protocol). If this flag is omitted, the command displays error messages only.</td>
</tr>
</tbody>
</table>

ypxfr

The `ypxfer` command transfers a Network Information Services (NIS) map from an NIS server to a local host.

The syntax for `ypxfr` is:

```
ypxfr [ -f ] [ -c ] [ -d Domain ] [ -h Host ] [ -s Domain ] [ -C TID Program IPAddress Port ] [ -S ] MapName
```

The commonly used flags are provided in Table 10-6.

Table 10-6 Commonly used flags of the ypxfr command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Forces the transfer to occur even if the version at the master is not more recent than the local version.</td>
</tr>
<tr>
<td>-d < domain></td>
<td>Specifies a domain other than the default domain. The maps for the specified domain must exist.</td>
</tr>
<tr>
<td>-h <host></td>
<td>Gets the map from the host specified, regardless of what the map says the master is. If a host is not specified, the <code>ypxfr</code> command asks the NIS service for the name of the master and tries to get the map from there. The Host variable can contain a name or an Internet address in the form a.b.c.d.</td>
</tr>
</tbody>
</table>

ypcat

The `ypcat` command prints out a Network Information Services (NIS) map.

The syntax for `ypcat` is:

```
ypcat [ -k ] [ -t ] [-d DomainName ] MapName
```

The commonly used flags are provided in Table 10-7 on page 244.
The `yppasswd` command

The `yppasswd` command changes your network password in Network Information Services (NIS).

The syntax for `yppasswd` is:

```
yppasswd [-f [ Name ]] | -s [ Name [ ShellProg ]]
```

The commonly used flags are provided in Table 10-8.

Table 10-8 Commonly used flags of the `yppasswd` command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f <name></td>
<td>Changes user Name's gecos information in the NIS maps. Gecos information is general information stored in the <code>/etc/passwd</code> file.</td>
</tr>
</tbody>
</table>

10.6 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which one of the following files determines whether host names are looked up at DNS or NIS first?
 A. `/etc/irs.conf` and `/etc/hosts`
 B. `/etc/resolv.conf` and `/etc/hosts`
 C. `/etc netsvc.conf` and `/etc/hosts`
 D. `/etc/irs.conf` and `/etc/netsvc.conf`

2. All of the following files affect DNS lookups except:
 A. `/etc/hosts`
 B. `/etc/irs.conf`
 C. `/etc/resolv.conf`
 D. `/etc/netsvc.conf`
3. All of the following are generally involved with looking up addresses for public Internet hosts except:
 A. DNS
 B. NIS
 C. An /etc/hosts file
 D. /etc/resolv.conf file

4. Which one of the following commands can be executed on an NIS slave server to transfer a NIS map from the NIS master server?
 A. ypcat
 B. ypxfr
 C. yppush
 D. ypmatch

5. By default, which one of the following names are most appropriate for the NIS map versions of the /etc/passwd file?
 A. password.dir and password.pag
 B. /etc/passwd.NIS and /etc/security/password.NIS
 C. /etc/passwd.bynname and /etc/security/passwd.byuid
 D. password.bynname.pag, password.bynname.dir, password.byuid.pag, and password.byuid.dir

6. Which one of the following entries should be in the /etc/passwd file so password lookups will search the NIS maps?
 A. +::0:0:::
 B. *::0:0:::
 C. -::!0:0:::
 D. @::0:0:::
10.6.1 Answers

The following are the preferred answers to the questions provided in this section:

1. D
2. A
3. B
4. B
5. D
6. A

10.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Create a subnet with at least three hosts for this exercise. Set up one as the master server and set up at least two clients. If you have access to a fourth host on the test subnet, then set it up as a slave server.

2. Transfer all user accounts to the master server. Set up the /etc/passwd file on all clients to point out the use of NIS.

3. Update the master with a new user. Recreate the passwd map.

4. Use the `ypxfr` command to get an updated version of /etc/passwd from the master server.
Serial Line Internet Protocol

In this chapter the following topics are discussed:

- Setting up the hardware for a connection
- Configuring SLIP
- Activating and Deactivating SLIP

Serial Line Internet Protocol (SLIP) is the protocol designed to handle TCP/IP traffic when operating through a serial connection as shown in Figure 11-1 on page 248. It is commonly used on dedicated serial links and dial-up connections that operate at speeds of 1200 bps or higher.
11.1 Setting up the serial port and modem

When setting up the serial link and modems, ensure it is done on both machines. The procedure is the same for both machines. This example assumes that there is a telephone line at each site and that both systems have all the hardware required to install this protocol. The UNIX-to-UNIX Copy Program (UUCP) must be installed on the system. To validate, enter:

```
# lslpp -f | grep bos.net.uucp
bos.net.uucp 5.1.0.25
bos.net.uucp 5.1.0.25
```

To begin setting up the TTY device, enter:

```
# smitty tty
```

Select the ADD a TTY option (Figure 11-2 on page 249), or if the port is already set up, choose the Change / Show Characteristics of a TTY option, and press Enter.
Figure 11-2 Smit TTY screen

Select the **tty rs232 Asynchronous Terminal** TTY type (Figure 11-3) and press Enter.
Select the parent adapter for the TTY port as shown in Figure 11-4.

![TTY](image)

In the Add a TTY option screen, select the port number (a list of available ports can be displayed by pressing the F4 key). There are a few things that need to be considered for the setup:

- **Enable Login** can be either Disable, Enable, Share, or Delay. For SLIP to work, it should be set to Disable on both systems.
 - **Disable** indicates no getty process is run on the port.
 - **Enable** indicates a getty process is run on the port.
 - **Share** indicates a getty process is run on the port in bi-directional mode. The getty process allows the port to be shared with other programs by waiting for an opening of the port to complete before attempting to get a lock on the TTY device. If an active process already owns the lock, the getty process lets that process own the TTY port until the lock goes away.
 - **Delay** indicates a getty process is run on the port in bi-directional mode. With the delay setting, no login herald is displayed until the getty process receives a keystroke from the user.

- **FLOW CONTROL** should be set to either RTS or none. The default option for this is XON. The term “flow control” is used to describe the method by which a
serial device controls the amount of data being transmitted to itself. The selectable types of flow control used with TTYs are:

XON/XOFF (Transmission ON/Transmission OFF) flow control involves the sending of data transmission control characters along the data stream. For this reason, it is often referred to as software flow control.

XON/IXANY XON/IXANY is similar to the XON/XOFF software flow control, except that any character received causes the data transmission to resume.

RTS/CTS Ready To Send/Clear To Send is sometimes called pacing or hardware handshaking. The term hardware handshaking comes from the use of cabling and voltages as a method of data transmission control. Unlike XON/XOFF, which sends control characters in the data stream, RTS/CTS uses positive and negative voltages along dedicated pins or wires in the device cabling.

NONE NONE disables all flow control and overrides any other flow control that was selected.

Press Enter to continue, and a screen like Figure 11-5 is shown completing the steps.

Figure 11-5 SMIT Add a TTY option screen

Press F10 to exit back to the command prompt.
The /etc/uucp/Devices file needs to be edited to set up the new modem. Add the following line to the file:

```
Direct tty0 - 9600 direct
```

When inserting this line, it should be the first modem description line in the Devices file. The /etc/uucp/Devices file contains information about the devices on the local system that can establish a connection to a remote computer using the Basic Networking Utilities (BNU) program. This file includes information for hardwired, telephone, and TCP/IP communication links.

Note: To use baud rates higher than 38400, specify a baud rate of 50 in the /etc/uucp/Devices file for the desired TTY, then change the SMIT configuration for that TTY to reflect the actual baud rate desired.

The Devices file must contain a description of each device on the local system that can establish a remote connection using the BNU program. Each line in the Devices file includes the following fields:

- **Type**: Typically specifies the type of hardwired or automatic calling unit (ACU) device.
- **Line**: Specifies the device name for the port.
- **Line2**: Specifies the dialer name if the Line entry specifies an 801 dialer.
- **Class**: Typically specifies the transmission speed.
- **Dialer-Token Pairs**: Specifies a particular type of autodialer (modem) and the token (a defined string of characters) that is passed to the dialer.

Run the `cu` command and set up the modem. After each typed line, the modem should display a status of OK once the Enter key has been pressed, as follows:

```
# cu -ml tty0
Connected
ate1
OK
atq0
OK
at&f
OK
at&d2
OK
ats0=1
OK
ats9=12
OK
```
The connection is ended.

The **at** command settings that are used do the following:

- E1 turns the echo mode on.
- Q0 enables the displaying of result codes.
- &F is used to reset the modem to factory defaults.
- &D2 sets DTR.
- S0 and S9 set register values.
- &C1 set carrier.
- &W writes the settings to the modem.
- The tilde-period ends the connection.

The modem can be tested in the following manner:

```
# cu -ml tty0
Connected
atdt ### ####
```

This will connect you to the remote system where ### #### is the remote system's telephone number.
11.2 Configuring the SLIP connection

The modem is working and has been tested; now the system needs to be set up for the SLIP connection. This procedure needs to be done on both systems.

Set up the SLIP attachment as follows:

```
# smit mkinet
```

Select the **Add a Serial Line INTERNET Network Interface** option and press Enter as shown in Figure 11-6.

```
Add a Network Interface

Move cursor to desired item and press Enter.

Add a Standard Ethernet Network Interface
Add an IEEE 802.3 Network Interface
Add a Token-Ring Network Interface
Add a Serial Line INTERNET Network Interface
Add a Serial Optical Network Interface
Add a 370 Channel Attach Network Interface
Add a FDDI Network Interface

F1=Help          F2=Refresh          F3=Cancel          F8=Image
F9=Shell         F10=Exit           Enter=Do
```

Figure 11-6 SMIT Add a Network Interface screen

Select the TTY device that has been configured for SLIP and press Enter. In this example, it is tty0, as shown in Figure 11-7 on page 255.
Insert the INTERNET ADDRESS and the DESTINATION Address. On the remote server, the addresses will be 10.11.12.2 for the INTERNET ADDRESS and 10.11.12.1 for the DESTINATION Address. The BAUD RATE and DIAL STRING fields are left empty, as the baud rate and number to be dialed are set up using the `slattach` command. These settings are shown in Figure 11-8 on page 256.

Figure 11-7 SMIT TTY PORT for SLIP Network Interface options screen
After the command has been successfully completed, press F10 to exit.

Edit the /etc/hosts file and insert the IP addresses and server names for the servers. These names must be unique and cannot be shared with other servers.

10.11.12.1 slipserver1
10.11.12.2 slipserver2

Run the following command on the remote server to set up the SLIP attachment:

```
# slattach tty0
```

Run the following command on the local server to set up the SLIP attachment:

```
# slattach tty0 9600 "" AT OK ATDT####-#### CONNECT ""
```

The above string is interpreted as "Use tty0 at 9600 baud, send AT and you should get back an OK, dial ####-#### and I should get a CONNECT back."

slattach: Device /dev/tty0 successfully opened.
slattach: using slip interface sl0 for /dev/tty0
slattach: The /dev/tty0 connection is established.

The netstat command can be used to display the link between the two systems, as follows:

```
# netstat -in  
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
```

Add a Serial Line INTERNET Network Interface

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

| Entry Fields |
|-------------|--------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| * INTERNET ADDRESS (dotted decimal) * | 10.11.12.1 | 10.11.12.2 |
| * DESTINATION Address (dotted decimal) * | [] | [] |
| Network MASK (hexadecimal or dotted decimal) | [] | [] |
| * ACTIVATE the Interface after Creating it? * | yes | + |
| * TTY PORT for SLIP Network Interface * | tty0 | +# |
| BAUD RATE | [] | [] |
| DIAL STRING | [] | [] |

(either both dial string and baud rate or none)

F1=Help
F2=Refresh
F3=Cancel
F4=List
F5=Reset
F6=Command
F7=Edit
F8=Image
F9=Shell
F10=Exit
Enter=Do

Figure 11-8 SMIT Add a Serial Line INTERNET Network Interface screen
On the remote server, the output appears as follows:

```
# netstat -in
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Mtu</th>
<th>Network</th>
<th>Address</th>
<th>Ipkts</th>
<th>Ierrs</th>
<th>Opkts</th>
<th>Oerrs</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>16896</td>
<td>link#1</td>
<td></td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>127</td>
<td>127.0.0.1</td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>::1</td>
<td></td>
<td>137</td>
<td>0</td>
<td>137</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>link#2</td>
<td>0.4.ac.61.9d.c5</td>
<td>15762</td>
<td>0</td>
<td>3726</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>9.3.240</td>
<td>9.3.240.57</td>
<td>15762</td>
<td>0</td>
<td>3726</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s10</td>
<td>1006</td>
<td>link#3</td>
<td></td>
<td>483</td>
<td>0</td>
<td>582</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>s10</td>
<td>1006</td>
<td>10</td>
<td>10.11.12.1</td>
<td>483</td>
<td>0</td>
<td>582</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

To test the remote server, the `ping` command can be used:

```
# ping slipserver2
```

```
PING slipserver2: (10.11.12.2): 56 data bytes
64 bytes from 10.11.12.2: icmp_seq=0 ttl=255 time=250 ms
64 bytes from 10.11.12.2: icmp_seq=1 ttl=255 time=250 ms
64 bytes from 10.11.12.2: icmp_seq=2 ttl=255 time=250 ms
64 bytes from 10.11.12.2: icmp_seq=3 ttl=255 time=250 ms
64 bytes from 10.11.12.2: icmp_seq=4 ttl=255 time=250 ms
^C
---slipserver2 PING Statistics---
6 packets transmitted, 5 packets received, 16% packet loss
round-trip min/avg/max = 250/250/250 ms
```

The remote SLIP server is now available for use.

In the following example, a FTP transfer between the machines will be done. This will display a SLIP connection that can be used as a normal TCP/IP system would be used.

From the `slipserver1`, type the following and then log in to the remote system:

```
# ftp slipserver2
Connected to slipserver2.
Name (slipserver2:root):
331 Password required for root.
Password:
230 User root logged in.
```

Change directory to the directory to get files from and to put a file into:

```
ftp> cd /home/user01
```
250 CWD command successful.
ftp> pwd
257 "/home/user01" is current directory.

List the contents of the directory:

ftp> ls
200 PORT command successful.
150 Opening data connection for ..
 userprog1
 userfile1
226 Transfer complete.

Change the file transfer type to binary for the userprog1 file:

ftp> binary
200 Type set to I.

Get both the files for transfer using the mget as opposed to the get command:

ftp> mget /home/user01/* /home/myuser1
mget userfile1? y
200 PORT command successful.
150 Opening data connection for userfile1 (416 bytes).
226 Transfer complete.
429 bytes received in 0.6014 seconds (0.6967 Kbytes/s)
 local: userfile1 remote: userfile1
mget userprog1? y
200 PORT command successful.
150 Opening data connection for userprog1 (1871 bytes).
226 Transfer complete.
1925 bytes received in 2.197 seconds (0.8556 Kbytes/s)
 local: userprog1 remote: userprog1

Put a single file from the local host onto the remote host:

ftp> put /home/myuser1/myfile02 /home/user01/myfile02
200 PORT command successful.
150 Opening data connection for /home/user01/myfile02.
226 Transfer complete.
1310 bytes sent in 0.006891 seconds (185.6 Kbytes/s)
 local: /home/myuser1/myfile02 remote: /home/user01/myfile02

List the contents of the remote directory:

ftp> ls -l
200 PORT command successful.
150 Opening data connection for /bin/ls.
total 8
 -rw-r----- 1 root system 1310 Jun 28 14:49 myfile02
 -rw-r--r-- 1 root system 416 Jun 28 14:38 userfile1
 -rw-r--r-- 1 root system 1871 Jun 28 14:37 userprog1
Transfer complete.
Exit the system:
ftp> bye
221 Goodbye.

11.2.1 Deactivating the SLIP connection

To temporarily deactivate the slip connection, use the following commands:

```
# ifconfig sl0 down
```

Check for any currently running `slattach` processes:

```
# ps -ef | grep slat
  root 10874     1   0 11:44:11      0  0:00 slattach tty0 9600 ""
  root 11112  2526   0 11:53:57  pts/0  0:00 grep slat
```

Kill the `slattach` process:

```
# kill 10874
```

Note: Do not use `kill -9` to stop the `slattach` process. This may cause problems and cause a system crash. If the system does crash, the only way to fix this is to remove the SLIP and the TTY using SMIT and then reconfigure the TTY and SLIP using SMIT again.

11.2.2 Activating a SLIP connection

To reactivate the SLIP connection, run the following commands. The `ifconfig` command will have to be run on both machines.

```
# ifconfig sl0 up
```

Run the following command on the remote server to set up the SLIP attachment:

```
# slattach tty0
```

Run the following command on the local server to set up the SLIP attachment:

```
# slattach tty0 9600 "" AT OK ATDT####### CONNECT ""
```

11.3 The `slattach` command

The `slattach` command assigns a TTY line to a network interface.
The `slattach` command is run by the `/etc/rc.net` file during system startup to automatically configure any Serial Line Internet Protocol (SLIP) network interfaces defined by the System Management Interface Tool (SMIT).

The command syntax for the `slattach` command is as follows:

```
slattach TTYName [ BaudRate  DialString [ DebugLevel ] ]
```

The commonly used flags are provided in Table 11-1.

Table 11-1 Commonly used flags of the slattach command

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>BaudRate</code></td>
<td>Sets the speed of the connection. The default speed is 9600.</td>
</tr>
<tr>
<td><code>DebugLevel</code></td>
<td>Sets the level of debug information desired. A number from 0 through 9 may be specified. A value of 0 specifies no debug information; a value of 9 specifies the most debug information. The default value is 0.</td>
</tr>
<tr>
<td><code>DialString</code></td>
<td>Specifies a string of expect/respond sequences using the Basic Networking Utility (BNU)/UNIX to UNIX Copy Program (UUCP) chat syntax.</td>
</tr>
<tr>
<td><code>TTYName</code></td>
<td>Specifies a TTY line. This string is in the form ttyxx or /dev/ttyxx.</td>
</tr>
</tbody>
</table>

11.4 Files

Following are examples of files used for SLIP:

- **/etc/uucp/Devices**: This Devices file is used in conjunction with the Dialers file.
- **/etc/uucp/Systems**: Lists and describes remote systems accessible to a local system.
- **/etc/uucp/Dialers**: Lists modems used for Basic Networking Utilities (BNU) remote communications links.
- **/etc/uucp/Dialcodes**: Contains the initial digits of telephone numbers used to establish remote connections over a phone line.
- **/etc/uucp/Sysfiles**: Let system administrators specify alternate Systems, Devices and Dialers files to replace the default files in the `/etc/uucp` directory.
11.5 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter. Use the following figure to help answer the first question.

![Figure 11-9 Customer information](image_url)
1. A modem and TTY need to be configured for a SLIP link that can be initiated from either direction. Given the information provided in Figure 11-9 on page 261, which one of the following is the best procedure to accomplish the configuration?

A. Program the modem to lock its DTE speed to 38400, set the speed attribute of the TTY to 38400, and change the first Direct entry for tty0 in /usr/lib/uucp/Devices to 38400 baud.

B. Set the speed attribute of the TTY to 38400, turn on software flow control in the TTY attributes, and change the first Direct entry for tty0 in /usr/lib/uucp/Devices to 38400 baud.

C. Change the speed attribute of tty0 to 38400, change the parity to even, bits per character to 7, with 1 stop bit, and use a baud rate of 38400 when starting the SLIP link in both the local and the remote machine.

D. Make sure the cable is a null modem cable, lock the baud rate of the modem to 38400, change the speed of tty0 to 38400, and start the communications link with a baud rate of 38400.

2. A company decides to add a dial-in modem on a native serial port. Which one of the following filesets should be loaded to enable configuration and use of the modem?

A. bos.mh
B. bos.net.uucp
C. bos.net.tcp.client
D. bos.net.tcp.server

3. A Hayes compatible modem is being attached to a TTY port and will be shared by all users for both dial-in and dial-out connectivity. What is the best default value for the SMIT TTY Enable LOGIN field?

A. SHARE
B. ENABLE
C. DELAY
D. HAYES

4. The host's integrated TTY port is DTE. The modem async port is DCE. What is the correct cable?

A. Straight-thru cable
B. Roll-over cable
C. Null-modem cable
D. RJ-45 cable
11.5.1 Answers

The following are the preferred answers to the questions provided in this section:

1. A
2. B
3. C
4. A

11.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. In the /etc/uucp/Devices file, what line must be inserted for the modem?
2. Make the changes in the /etc/uucp/Devices file and then set up the modem. What command is used to set up the modem?
3. What command can be used to check for problems with the SLIP connection?
4. What fileset needs to be installed for the modem to be connected?
5. Must the modem port be enabled for SLIP to work?
6. Set up the SLIP attachment. What command was used to configure the remote and the local hosts?
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>Application Binary Interface</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACL</td>
<td>Access Control List</td>
</tr>
<tr>
<td>ADSM</td>
<td>ADSTAR Distributed Storage Manager</td>
</tr>
<tr>
<td>ADSTAR</td>
<td>Advanced Storage and Retrieval</td>
</tr>
<tr>
<td>AFPA</td>
<td>Adaptive Fast Path Architecture</td>
</tr>
<tr>
<td>AFS</td>
<td>Andrew File System</td>
</tr>
<tr>
<td>AH</td>
<td>Authentication Header</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APAR</td>
<td>Authorized Program Analysis Report</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>ASCI</td>
<td>Accelerated Strategic Computing Initiative</td>
</tr>
<tr>
<td>ASCII</td>
<td>American National Standards Code for Information Interchange</td>
</tr>
<tr>
<td>ASR</td>
<td>Address Space Register</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AuditRM</td>
<td>Audit Log Resource Manager</td>
</tr>
<tr>
<td>AUI</td>
<td>Attached Unit Interface</td>
</tr>
<tr>
<td>AWT</td>
<td>Abstract Window Toolkit</td>
</tr>
<tr>
<td>BCT</td>
<td>Branch on Count</td>
</tr>
<tr>
<td>BFF</td>
<td>Backup File Format</td>
</tr>
<tr>
<td>BI</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>BIND</td>
<td>Berkeley Internet Name Daemon</td>
</tr>
<tr>
<td>BIST</td>
<td>Built-In Self-Test</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>BLOB</td>
<td>Binary Large Object</td>
</tr>
<tr>
<td>BLV</td>
<td>Boot Logical Volume</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Boot Protocol</td>
</tr>
<tr>
<td>BOS</td>
<td>Base Operating System</td>
</tr>
<tr>
<td>BSC</td>
<td>Binary Synchronous Communications</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CATE</td>
<td>Certified Advanced Technical Expert</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer-Graphics Aided Three-Dimensional Interactive Application</td>
</tr>
<tr>
<td>CCM</td>
<td>Common Character Mode</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CDE</td>
<td>Common Desktop Environment</td>
</tr>
<tr>
<td>CDLI</td>
<td>Common Data Link Interface</td>
</tr>
<tr>
<td>CD-R</td>
<td>CD Recordable</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk-Read Only Memory</td>
</tr>
<tr>
<td>CE</td>
<td>Customer Engineer</td>
</tr>
<tr>
<td>CEC</td>
<td>Central Electronics Complex</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CGE</td>
<td>Common Graphics Environment</td>
</tr>
<tr>
<td>CHRP</td>
<td>Common Hardware Reference Platform</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>CISPR</td>
<td>International Special Committee on Radio Interference</td>
</tr>
<tr>
<td>CLIO/S</td>
<td>Client Input/Output Sockets</td>
</tr>
<tr>
<td>CLVM</td>
<td>Concurrent LVM</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>CMP</td>
<td>Certificate Management Protocol</td>
</tr>
<tr>
<td>COFF</td>
<td>Common Object File Format</td>
</tr>
<tr>
<td>COLD</td>
<td>Computer Output to Laser Disk</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSID</td>
<td>Character Set ID</td>
</tr>
<tr>
<td>CSR</td>
<td>Customer Service Representative</td>
</tr>
<tr>
<td>CSS</td>
<td>Communication Subsystems Support</td>
</tr>
<tr>
<td>CSU</td>
<td>Customer Set-Up</td>
</tr>
<tr>
<td>CWS</td>
<td>Control Workstation</td>
</tr>
<tr>
<td>DAD</td>
<td>Duplicate Address Detection</td>
</tr>
<tr>
<td>DAS</td>
<td>Dual Attach Station</td>
</tr>
<tr>
<td>DASD</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>DAT</td>
<td>Digital Audio Tape</td>
</tr>
<tr>
<td>DBCS</td>
<td>Double Byte Character Set</td>
</tr>
<tr>
<td>DBE</td>
<td>Double Buffer Extension</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCE</td>
<td>Distributed Computing Environment</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Data Channel</td>
</tr>
<tr>
<td>DDS</td>
<td>Digital Data Storage</td>
</tr>
<tr>
<td>DE</td>
<td>Dual-Ended</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DFL</td>
<td>Divide Float</td>
</tr>
<tr>
<td>DFP</td>
<td>Dynamic Feedback Protocol</td>
</tr>
<tr>
<td>DFS</td>
<td>Distributed File System</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DIMM</td>
<td>Dual In-Line Memory Module</td>
</tr>
<tr>
<td>DIP</td>
<td>Direct Insertion Probe</td>
</tr>
<tr>
<td>DIT</td>
<td>Directory Information Tree</td>
</tr>
<tr>
<td>DIVA</td>
<td>Digital Inquiry Voice Answer</td>
</tr>
<tr>
<td>DLT</td>
<td>Digital Linear Tape</td>
</tr>
<tr>
<td>DMA</td>
<td>Direct Memory Access</td>
</tr>
<tr>
<td>DMT</td>
<td>Directory Management Tool</td>
</tr>
<tr>
<td>DN</td>
<td>Distinguished Name</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Service/System</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOI</td>
<td>Domain of Interpretation</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DPCL</td>
<td>Dynamic Probe Class Library</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>DSA</td>
<td>Dynamic Segment Allocation</td>
</tr>
<tr>
<td>DSE</td>
<td>Diagnostic System Exerciser</td>
</tr>
<tr>
<td>DSO</td>
<td>Distributed Segment Oriented</td>
</tr>
<tr>
<td>DSO</td>
<td>Distributed SMIT</td>
</tr>
<tr>
<td>DSU</td>
<td>Data Service Unit</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminating Equipment</td>
</tr>
<tr>
<td>DW</td>
<td>Data Warehouse</td>
</tr>
<tr>
<td>EA</td>
<td>Effective Address</td>
</tr>
<tr>
<td>EC</td>
<td>Engineering Change</td>
</tr>
<tr>
<td>ECC</td>
<td>Error Checking and Correcting</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EFI</td>
<td>Extensible Firmware Interface</td>
</tr>
<tr>
<td>EHD</td>
<td>Extended Hardware Drivers</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EISA</td>
<td>Extended Industry Standard Architecture</td>
</tr>
<tr>
<td>ELA</td>
<td>Error Log Analysis</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>ELF</td>
<td>Executable and Linking Format</td>
</tr>
<tr>
<td>EMU</td>
<td>European Monetary Union</td>
</tr>
<tr>
<td>EOF</td>
<td>End of File</td>
</tr>
<tr>
<td>EPOW</td>
<td>Environmental and Power Warning</td>
</tr>
<tr>
<td>ERRM</td>
<td>Event Response resource manager</td>
</tr>
<tr>
<td>ESID</td>
<td>Effective Segment ID</td>
</tr>
<tr>
<td>ESP</td>
<td>Encapsulating Security Payload</td>
</tr>
<tr>
<td>ESSL</td>
<td>Engineering and Scientific Subroutine Library</td>
</tr>
<tr>
<td>ETML</td>
<td>Extract, Transformation, Movement, and Loading</td>
</tr>
<tr>
<td>F/C</td>
<td>Feature Code</td>
</tr>
<tr>
<td>F/W</td>
<td>Fast and Wide</td>
</tr>
<tr>
<td>FC</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>FCAL</td>
<td>Fibre Channel Arbitrated Loop</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communication Commission</td>
</tr>
<tr>
<td>FCP</td>
<td>Fibre Channel Protocol</td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td>FDPR</td>
<td>Feedback Directed Program Restructuring</td>
</tr>
<tr>
<td>FDX</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In/First Out</td>
</tr>
<tr>
<td>FLASH EPROM</td>
<td>Flash Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>FMA</td>
<td>Floating point Multiply Add operation</td>
</tr>
<tr>
<td>FPR</td>
<td>Floating Point Register</td>
</tr>
<tr>
<td>FPU</td>
<td>Floating Point Unit</td>
</tr>
<tr>
<td>FRCA</td>
<td>Fast Response Cache Architecture</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations and acronyms
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter Integrated-Circuit Communications</td>
</tr>
<tr>
<td>IAR</td>
<td>Instruction Address Register</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>ICCCM</td>
<td>Inter-Client Communications Conventions Manual</td>
</tr>
<tr>
<td>ICE</td>
<td>Inter-Client Exchange</td>
</tr>
<tr>
<td>ICElib</td>
<td>Inter-Client Exchange library</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Device Electronics</td>
</tr>
<tr>
<td>IDS</td>
<td>Intelligent Decision Server</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IHV</td>
<td>Independent Hardware Vendor</td>
</tr>
<tr>
<td>IIOP</td>
<td>Internet Inter-ORB Protocol</td>
</tr>
<tr>
<td>IJG</td>
<td>Independent JPEG Group</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet Key Exchange</td>
</tr>
<tr>
<td>ILS</td>
<td>International Language Support</td>
</tr>
<tr>
<td>IM</td>
<td>Input Method</td>
</tr>
<tr>
<td>INRIA</td>
<td>Institut National de Recherche en Informatique et en Automatique</td>
</tr>
<tr>
<td>IP</td>
<td>Internetwork Protocol (OSI)</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Load</td>
</tr>
<tr>
<td>IPSec</td>
<td>IP Security</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association (which sets standards for infrared support including protocols for data interchange)</td>
</tr>
<tr>
<td>IRQ</td>
<td>Interrupt Request</td>
</tr>
<tr>
<td>IS</td>
<td>Integrated Service</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture, Instruction Set Architecture</td>
</tr>
<tr>
<td>ISAKMP</td>
<td>Internet Security Association Management Protocol</td>
</tr>
<tr>
<td>ISB</td>
<td>Intermediate Switch Board</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated-Services Digital Network</td>
</tr>
<tr>
<td>ISMP</td>
<td>InstallShield Multi-Platform</td>
</tr>
<tr>
<td>ISNO</td>
<td>Interface Specific Network Options</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ISV</td>
<td>Independent Software Vendor</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>JBOD</td>
<td>Just a Bunch of Disks</td>
</tr>
<tr>
<td>JDBC</td>
<td>Java Database Connectivity</td>
</tr>
<tr>
<td>JFC</td>
<td>Java Foundation Classes</td>
</tr>
<tr>
<td>JFS</td>
<td>Journaled File System</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
</tr>
<tr>
<td>KDC</td>
<td>Key Distribution Center</td>
</tr>
<tr>
<td>L1</td>
<td>Level 1</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LANE</td>
<td>Local Area Network Emulation</td>
</tr>
<tr>
<td>LAPI</td>
<td>Low-Level Application Programming Interface</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LDIF</td>
<td>LDAP Directory Interchange Format</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LFD</td>
<td>Load Float Double</td>
</tr>
<tr>
<td>LFT</td>
<td>Low Function Terminal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>LID</td>
<td>Load ID</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LP</td>
<td>Logical Partition</td>
</tr>
<tr>
<td>LP64</td>
<td>Long-Pointer 64</td>
</tr>
<tr>
<td>LPI</td>
<td>Lines Per Inch</td>
</tr>
<tr>
<td>LPP</td>
<td>Licensed Program Product</td>
</tr>
<tr>
<td>LPR/LPD</td>
<td>Line Printer/Line Printer Daemon</td>
</tr>
<tr>
<td>LRU</td>
<td>Least Recently Used</td>
</tr>
<tr>
<td>LTG</td>
<td>Logical Track Group</td>
</tr>
<tr>
<td>LV</td>
<td>Logical Volume</td>
</tr>
<tr>
<td>LVCB</td>
<td>Logical Volume Control Block</td>
</tr>
<tr>
<td>LVD</td>
<td>Low Voltage Differential</td>
</tr>
<tr>
<td>LVM</td>
<td>Logical Volume Manager</td>
</tr>
<tr>
<td>MAP</td>
<td>Maintenance Analysis Procedure</td>
</tr>
<tr>
<td>MASS</td>
<td>Mathematical Acceleration Subsystem</td>
</tr>
<tr>
<td>MAU</td>
<td>Multiple Access Unit</td>
</tr>
<tr>
<td>MBCS</td>
<td>Multi-Byte Character Support</td>
</tr>
<tr>
<td>Mbps</td>
<td>Megabits Per Second</td>
</tr>
<tr>
<td>MBps</td>
<td>Megabytes Per Second</td>
</tr>
<tr>
<td>MCA</td>
<td>Micro Channel Architecture</td>
</tr>
<tr>
<td>MCAD</td>
<td>Mechanical Computer-Aided Design</td>
</tr>
<tr>
<td>MDI</td>
<td>Media Dependent Interface</td>
</tr>
<tr>
<td>MES</td>
<td>Miscellaneous Equipment Specification</td>
</tr>
<tr>
<td>MFLOPS</td>
<td>Million of Floating point Operations Per Second</td>
</tr>
<tr>
<td>MII</td>
<td>Media Independent Interface</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed-Integer Programming</td>
</tr>
<tr>
<td>MLR1</td>
<td>Multi-Channel Linear Recording 1</td>
</tr>
<tr>
<td>MMF</td>
<td>Multi-Mode Fibre</td>
</tr>
<tr>
<td>MODS</td>
<td>Memory Overlay Detection Subsystem</td>
</tr>
<tr>
<td>MP</td>
<td>Multiprocessor</td>
</tr>
<tr>
<td>MPC-3</td>
<td>Multimedia PC-3</td>
</tr>
<tr>
<td>MPI</td>
<td>Message Passing Interface</td>
</tr>
<tr>
<td>MPOA</td>
<td>Multiprotocol over ATM</td>
</tr>
<tr>
<td>MPP</td>
<td>Massively Parallel Processing</td>
</tr>
<tr>
<td>MPS</td>
<td>Mathematical Programming System</td>
</tr>
<tr>
<td>MST</td>
<td>Machine State</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>MWCC</td>
<td>Mirror Write Consistency Check</td>
</tr>
<tr>
<td>MX</td>
<td>Mezzanine Bus</td>
</tr>
<tr>
<td>NBC</td>
<td>Network Buffer Cache</td>
</tr>
<tr>
<td>NCP</td>
<td>Network Control Point</td>
</tr>
<tr>
<td>ND</td>
<td>Neighbor Discovery</td>
</tr>
<tr>
<td>NDP</td>
<td>Neighbor Discovery Protocol</td>
</tr>
<tr>
<td>NFB</td>
<td>No Frame Buffer</td>
</tr>
<tr>
<td>NFS</td>
<td>Network File System</td>
</tr>
<tr>
<td>NHRP</td>
<td>Next Hop Resolution Protocol</td>
</tr>
<tr>
<td>NIM</td>
<td>Network Installation Management</td>
</tr>
<tr>
<td>NIS</td>
<td>Network Information System</td>
</tr>
<tr>
<td>NL</td>
<td>National Language</td>
</tr>
<tr>
<td>NLS</td>
<td>National Language Support</td>
</tr>
<tr>
<td>NT-1</td>
<td>Network Terminator-1</td>
</tr>
<tr>
<td>NTF</td>
<td>No Trouble Found</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NUMA</td>
<td>Non-Uniform Memory Access</td>
</tr>
<tr>
<td>NUS</td>
<td>Numerical Aerodynamic Simulation</td>
</tr>
<tr>
<td>NVRAM</td>
<td>Non-Volatile Random Access Memory</td>
</tr>
<tr>
<td>NWP</td>
<td>Numerical Weather Prediction</td>
</tr>
<tr>
<td>OACK</td>
<td>Option Acknowledgment</td>
</tr>
<tr>
<td>OCS</td>
<td>Online Customer Support</td>
</tr>
<tr>
<td>ODBC</td>
<td>Open Database Connectivity</td>
</tr>
<tr>
<td>ODM</td>
<td>Object Data Manager</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OLAP</td>
<td>Online Analytical Processing</td>
</tr>
<tr>
<td>OLTP</td>
<td>Online Transaction Processing</td>
</tr>
<tr>
<td>ONC+</td>
<td>Open Network Computing</td>
</tr>
<tr>
<td>OOUI</td>
<td>Object-Oriented User Interface</td>
</tr>
<tr>
<td>OSF</td>
<td>Open Software Foundation, Inc.</td>
</tr>
<tr>
<td>OSL</td>
<td>Optimization Subroutine Library</td>
</tr>
<tr>
<td>OSLp</td>
<td>Parallel Optimization Subroutine Library</td>
</tr>
<tr>
<td>P2SC</td>
<td>POWER2 Single/Super Chip</td>
</tr>
<tr>
<td>PAM</td>
<td>Pluggable Authentication Mechanism</td>
</tr>
<tr>
<td>PAP</td>
<td>Privileged Access Password</td>
</tr>
<tr>
<td>PBLAS</td>
<td>Parallel Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PDT</td>
<td>Paging Device Table</td>
</tr>
<tr>
<td>PDU</td>
<td>Power Distribution Unit</td>
</tr>
<tr>
<td>PE</td>
<td>Parallel Environment</td>
</tr>
<tr>
<td>PEDB</td>
<td>Parallel Environment Debugging</td>
</tr>
<tr>
<td>PEX</td>
<td>PHIGS Extension to X</td>
</tr>
<tr>
<td>PFS</td>
<td>Perfect Forward Security</td>
</tr>
<tr>
<td>PGID</td>
<td>Process Group ID</td>
</tr>
<tr>
<td>PHB</td>
<td>Processor Host Bridges</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>PID</td>
<td>Process ID</td>
</tr>
<tr>
<td>PID</td>
<td>Process ID</td>
</tr>
<tr>
<td>PIOFS</td>
<td>Parallel Input Output File System</td>
</tr>
<tr>
<td>PKR</td>
<td>Protection Key Registers</td>
</tr>
<tr>
<td>PMTU</td>
<td>Path MTU</td>
</tr>
<tr>
<td>POE</td>
<td>Parallel Operating Environment</td>
</tr>
<tr>
<td>POP</td>
<td>Power-On Password</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating Interface for Computing Environments</td>
</tr>
<tr>
<td>POST</td>
<td>Power-On Self-test</td>
</tr>
<tr>
<td>POWER</td>
<td>Performance Optimization with Enhanced Risc (Architecture)</td>
</tr>
<tr>
<td>PPC</td>
<td>PowerPC</td>
</tr>
<tr>
<td>PPM</td>
<td>Piecewise Parabolic Method</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>PREP</td>
<td>PowerPC Reference Platform</td>
</tr>
<tr>
<td>PSE</td>
<td>Portable Streams Environment</td>
</tr>
<tr>
<td>PSSP</td>
<td>Parallel System Support Program</td>
</tr>
<tr>
<td>PTF</td>
<td>Program Temporary Fix</td>
</tr>
<tr>
<td>PTPE</td>
<td>Performance Toolbox Parallel Extensions</td>
</tr>
<tr>
<td>PTX</td>
<td>Performance Toolbox</td>
</tr>
<tr>
<td>PV</td>
<td>Physical Volume</td>
</tr>
<tr>
<td>PVC</td>
<td>Permanent Virtual Circuit</td>
</tr>
<tr>
<td>PVID</td>
<td>Physical Volume Identifier</td>
</tr>
<tr>
<td>QMF</td>
<td>Query Management Facility</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>QP</td>
<td>Quadratic Programming</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RAN</td>
<td>Remote Asynchronous Node</td>
</tr>
<tr>
<td>RAS</td>
<td>Reliability, Availability, and Serviceability</td>
</tr>
<tr>
<td>RDB</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>RDBMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>RDISC</td>
<td>ICMP Router Discovery</td>
</tr>
<tr>
<td>RDN</td>
<td>Relative Distinguished Name</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>RDP</td>
<td>Router Discovery Protocol</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comments</td>
</tr>
<tr>
<td>RIO</td>
<td>Remote I/O</td>
</tr>
<tr>
<td>RIP</td>
<td>Routing Information Protocol</td>
</tr>
<tr>
<td>RIPL</td>
<td>Remote Initial Program Load</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction-Set Computer</td>
</tr>
<tr>
<td>RMC</td>
<td>Resource Monitoring and Control</td>
</tr>
<tr>
<td>ROLTP</td>
<td>Relative Online Transaction Processing</td>
</tr>
<tr>
<td>RPA</td>
<td>RS/6000 Platform Architecture</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Procedure Call</td>
</tr>
<tr>
<td>RPL</td>
<td>Remote Program Loader</td>
</tr>
<tr>
<td>RPM</td>
<td>Red Hat Package Manager</td>
</tr>
<tr>
<td>RSC</td>
<td>RISC Single Chip</td>
</tr>
<tr>
<td>RSCT</td>
<td>Reliable Scalable Cluster Technology</td>
</tr>
<tr>
<td>RSE</td>
<td>Register Stack Engine</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource Reservation Protocol</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-Time Clock</td>
</tr>
<tr>
<td>RVSD</td>
<td>Recoverable Virtual Shared Disk</td>
</tr>
<tr>
<td>SA</td>
<td>Secure Association</td>
</tr>
<tr>
<td>SACK</td>
<td>Selective Acknowledgments</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SAR</td>
<td>Solutions Assurance Review</td>
</tr>
<tr>
<td>SAS</td>
<td>Single Attach Station</td>
</tr>
<tr>
<td>SBCS</td>
<td>Single-Byte Character Support</td>
</tr>
<tr>
<td>ScaLAPACK</td>
<td>Scalable Linear Algebra Package</td>
</tr>
<tr>
<td>SMB</td>
<td>Server Message Block</td>
</tr>
<tr>
<td>SMIT</td>
<td>System Management Interface Tool</td>
</tr>
<tr>
<td>SMP</td>
<td>Symmetric Multiprocessor</td>
</tr>
<tr>
<td>SMS</td>
<td>System Management Services</td>
</tr>
<tr>
<td>SNG</td>
<td>Secured Network Gateway</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon-on-Insulator</td>
</tr>
<tr>
<td>SP</td>
<td>IBM RS/6000 Scalable POWER parallel Systems</td>
</tr>
<tr>
<td>SPI</td>
<td>Security Parameter Index</td>
</tr>
<tr>
<td>SDR</td>
<td>System Data Repository</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Synchronous Dynamic Random Access Memory</td>
</tr>
<tr>
<td>SE</td>
<td>Single Ended</td>
</tr>
<tr>
<td>SEPBU</td>
<td>Scalable Electrical Power Base Unit</td>
</tr>
<tr>
<td>SGI</td>
<td>Silicon Graphics Incorporated</td>
</tr>
<tr>
<td>SGID</td>
<td>Set Group ID</td>
</tr>
<tr>
<td>SHLAP</td>
<td>Shared Library Assistant Process</td>
</tr>
<tr>
<td>SID</td>
<td>Segment ID</td>
</tr>
<tr>
<td>SIT</td>
<td>Simple Internet Transition</td>
</tr>
<tr>
<td>SKIP</td>
<td>Simple Key Management for IP</td>
</tr>
<tr>
<td>SLB</td>
<td>Segment Lookaside Buffer</td>
</tr>
<tr>
<td>SLIH</td>
<td>Second Level Interrupt Handler</td>
</tr>
<tr>
<td>SLIP</td>
<td>Serial Line Internet Protocol</td>
</tr>
<tr>
<td>SLR1</td>
<td>Single-Channel Linear Recording 1</td>
</tr>
<tr>
<td>SM</td>
<td>Session Management</td>
</tr>
<tr>
<td>SMIP</td>
<td>System Management Interface Tool</td>
</tr>
<tr>
<td>SPEC</td>
<td>System Performance Evaluation Cooperative</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SPM</td>
<td>System Performance Measurement</td>
</tr>
<tr>
<td>SPOT</td>
<td>Shared Product Object Tree</td>
</tr>
<tr>
<td>SPS</td>
<td>SP Switch</td>
</tr>
<tr>
<td>SPS-8</td>
<td>Eight-Port SP Switch</td>
</tr>
<tr>
<td>SRC</td>
<td>System Resource Controller</td>
</tr>
<tr>
<td>SRN</td>
<td>Service Request Number</td>
</tr>
<tr>
<td>SSA</td>
<td>Serial Storage Architecture</td>
</tr>
<tr>
<td>SSC</td>
<td>System Support Controller</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>STFDU</td>
<td>Store Float Double with Update</td>
</tr>
<tr>
<td>STP</td>
<td>Shielded Twisted Pair</td>
</tr>
<tr>
<td>SUID</td>
<td>Set User ID</td>
</tr>
<tr>
<td>SUP</td>
<td>Software Update Protocol</td>
</tr>
<tr>
<td>SVC</td>
<td>Switch Virtual Circuit</td>
</tr>
<tr>
<td>SVC</td>
<td>Supervisor or System Call</td>
</tr>
<tr>
<td>SWVPD</td>
<td>Software Vital Product Data</td>
</tr>
<tr>
<td>SYNC</td>
<td>Synchronization</td>
</tr>
<tr>
<td>TCE</td>
<td>Translate Control Entry</td>
</tr>
<tr>
<td>Tcl</td>
<td>Tool Command Language</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TCQ</td>
<td>Tagged Command Queuing</td>
</tr>
<tr>
<td>TGT</td>
<td>Ticket Granting Ticket</td>
</tr>
<tr>
<td>TLB</td>
<td>Translation Lookaside Buffer</td>
</tr>
<tr>
<td>TOS</td>
<td>Type Of Service</td>
</tr>
<tr>
<td>TPC</td>
<td>Transaction Processing Council</td>
</tr>
<tr>
<td>TPP</td>
<td>Toward Peak Performance</td>
</tr>
<tr>
<td>TSE</td>
<td>Text Search Engine</td>
</tr>
<tr>
<td>TSE</td>
<td>Text Search Engine</td>
</tr>
<tr>
<td>TTL</td>
<td>Time To Live</td>
</tr>
<tr>
<td>UCS</td>
<td>Universal Coded Character Set</td>
</tr>
<tr>
<td>UDB EEE</td>
<td>Universal Database and Enterprise Extended Edition</td>
</tr>
<tr>
<td>UDI</td>
<td>Uniform Device Interface</td>
</tr>
<tr>
<td>UIL</td>
<td>User Interface Language</td>
</tr>
<tr>
<td>ULS</td>
<td>Universal Language Support</td>
</tr>
<tr>
<td>UP</td>
<td>Uniprocessor</td>
</tr>
<tr>
<td>USB</td>
<td>Universal Serial Bus</td>
</tr>
<tr>
<td>USLA</td>
<td>User-Space Loader Assistant</td>
</tr>
<tr>
<td>UTF</td>
<td>UCS Transformation Format</td>
</tr>
<tr>
<td>UTM</td>
<td>Uniform Transfer Model</td>
</tr>
<tr>
<td>UTP</td>
<td>Unshielded Twisted Pair</td>
</tr>
<tr>
<td>UUCP</td>
<td>UNIX-to-UNIX Communication Protocol</td>
</tr>
<tr>
<td>VESA</td>
<td>Video Electronics Standards Association</td>
</tr>
<tr>
<td>VFB</td>
<td>Virtual Frame Buffer</td>
</tr>
<tr>
<td>VG</td>
<td>Volume Group</td>
</tr>
<tr>
<td>VGDA</td>
<td>Volume Group Descriptor Area</td>
</tr>
<tr>
<td>VGSA</td>
<td>Volume Group Status Area</td>
</tr>
<tr>
<td>VHDCI</td>
<td>Very High Density Cable Interconnect</td>
</tr>
<tr>
<td>VLAN</td>
<td>Virtual Local Area Network</td>
</tr>
<tr>
<td>VMM</td>
<td>Virtual Memory Manager</td>
</tr>
<tr>
<td>VP</td>
<td>Virtual Processor</td>
</tr>
<tr>
<td>VPD</td>
<td>Vital Product Data</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>VSD</td>
<td>Virtual Shared Disk</td>
</tr>
<tr>
<td>VSM</td>
<td>Visual System Manager</td>
</tr>
<tr>
<td>VSS</td>
<td>Versatile Storage Server</td>
</tr>
<tr>
<td>VT</td>
<td>Visualization Tool</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WLM</td>
<td>Workload Manager</td>
</tr>
<tr>
<td>WTE</td>
<td>Web Traffic Express</td>
</tr>
<tr>
<td>XCOFF</td>
<td>Extended Common Object File Format</td>
</tr>
<tr>
<td>XIE</td>
<td>X Image Extension</td>
</tr>
<tr>
<td>XIM</td>
<td>X Input Method</td>
</tr>
<tr>
<td>XKB</td>
<td>X Keyboard Extension</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>XLF</td>
<td>XL Fortran</td>
</tr>
<tr>
<td>XOM</td>
<td>X Output Method</td>
</tr>
<tr>
<td>XPM</td>
<td>X Pixmap</td>
</tr>
<tr>
<td>XSSO</td>
<td>Open Single Sign-on Service</td>
</tr>
<tr>
<td>XTF</td>
<td>Extended Distance Feature</td>
</tr>
<tr>
<td>XVFB</td>
<td>X Virtual Frame Buffer</td>
</tr>
</tbody>
</table>
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks” on page 276.

- IBM @server Certification Study Guide - pSeries AIX System Administration, SG24-6191
- IBM @server Certification Study Guide - pSeries AIX System Support, SG24-6199
- IBM @server Certification Study Guide AIX 5L Installation and System Recovery, SG24-6183
- IBM @server Certification Study Guide AIX 5L Performance and System Tuning, SG24-6184
- IBM @server Certification Study Guide AIX 5L Problem Determination Tools and Techniques, SG24-6185
- IBM @server Certification Study Guide - pSeries HACMP for AIX, SG24-6187
- IBM Certification Study Guide RS/6000 SP, SG24-5348
- AIX 5L Performance Tools Handbook, SG24-6039
- Problem Solving and Troubleshooting in AIX 5L, SG24-5496
- AIX Logical Volume Manager, from A to Z: Introduction and Concepts, SG24-5432
- Managing AIX Server Farms, SG24-6606
- TCP/IP Tutorial and Technical Overview, GG24-3376
Other resources

These publications are also relevant as further information sources:

- *PCI Adapter Placement Reference*, SA38-0538
- The following types of documentation are located at the following URL:

 http://www-1.ibm.com/servers/eserver/pseries/library
 - User guides
 - System management guides
 - Application programmer guides
 - All commands reference volumes
 - Files reference
 - Technical reference volumes used by application programmers

Referenced Web sites

These Web sites are also relevant as further information sources:

- http://www.redbooks.ibm.com
- http://www.storage.ibm.com

How to get IBM Redbooks

You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the following Web site:

ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from that site.
IBM Redbooks collections

Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web site for information about all the CD-ROMs offered, as well as updates and formats.
Index

Symbols
$HOME/.forward 123
$HOME/.netrc 123
$HOME/.rhosts 123
/etc/aliases file 217
/etc/auto.direct file 176
/etc/auto.home file 176
/etc/auto.master file 176
/etc/boottab 133
/etc/dhcpcd.ini 140
/etc/dhcpsd.cnf 137, 139
/etc/gated.conf 63
/etc/gateways 62
/etc/host files 194, 205
/etc/host files.equival 123
/etc/inetd.conf 138
/etc/inetd.conf 114
/etc/irs.conf file 233
/etc/mail 218
/etc/mail/sendmail.pid 216
/etc/named.boot 197, 203–204
/etc/netsvc.conf 83, 205
/etc/option.file 138
/etc/passwd 231
/etc/rc.bsdnet 60, 110
/etc/rc.net 60, 110
/etc/rc.tcpip 63, 111, 202–203
/etc/resolv.conf 84, 202–205
/etc/sendmail.cf 212
/etc/sendmail.cf file
 Macros 213
 Mailers 213
 Message 213
 Options 213
/etc/sendmail.pid 216
/etc/services 117
/etc/tcp.clean 113
/etc/tftpaccess.ctl 122
/etc/uucp/Devices field description 252
/etc/uucp/Devices file 252
/usr/samples/tcpip/anon.ftp 122

Numerics
100BaseT4 17
100BaseTx 17
10Base2 15
10Base5 16
10BaseF 16
10BaseT 16

A
address
 class 43
 B 50–51
 ip
 format 42
 MAC 54
 network address 45
 physical 54
 subnet mask 49
Address Resolution Protocol (ARP) 22, 54
addr.ssl 201
AIX Location Codes 25
alias 61
aliases.db 218
All-subnets-directed broadcast address 46
 reverse path forwarding 47
anonymous ftp 122
arith class 219
arp command 22, 54
Asynchronous Transfer Mode (ATM) 11, 13
at command settings for modem for SLIP 253
ATE 91
auto.master 179
auto_master 179
AutoFS 174
automount 174, 176, 178
 auto_master 179
 auto_master 179
 automountd 174
 direct maps 178
 Indirect maps 178
 time to live 177
 time to wait 177
<table>
<thead>
<tr>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>bc 43</td>
<td>cache file 197</td>
</tr>
<tr>
<td>bellmail system 211</td>
<td>caching-only DNS server 197, 204</td>
</tr>
<tr>
<td>Berkeley DB 3.1.14 218</td>
<td>cfgmgr command 30</td>
</tr>
<tr>
<td>bind 233</td>
<td>channel 93</td>
</tr>
<tr>
<td>biod 152, 156, 172</td>
<td>chdev 59, 202, 204</td>
</tr>
<tr>
<td>bootpd 133</td>
<td>chdev command 31, 33, 87, 104</td>
</tr>
<tr>
<td>bootpd command 133</td>
<td>chnfs 166, 172, 185</td>
</tr>
<tr>
<td>bootstrap protocol (BOOTP)</td>
<td>flag table 175, 185</td>
</tr>
<tr>
<td></td>
<td>Class D addressing 47</td>
</tr>
<tr>
<td></td>
<td>client configuration of DHCP 140</td>
</tr>
<tr>
<td></td>
<td>CNAME 196</td>
</tr>
<tr>
<td></td>
<td>commands 133, 203</td>
</tr>
<tr>
<td></td>
<td>arp 22, 54</td>
</tr>
<tr>
<td></td>
<td>automount 174, 176, 178</td>
</tr>
<tr>
<td></td>
<td>bc 43</td>
</tr>
<tr>
<td></td>
<td>cfgmgr 30</td>
</tr>
<tr>
<td></td>
<td>chdev 31, 33, 59, 87, 104, 202, 204</td>
</tr>
<tr>
<td></td>
<td>chnfs 166, 172, 185</td>
</tr>
<tr>
<td></td>
<td>cu 252–253</td>
</tr>
<tr>
<td></td>
<td>dadmin 145</td>
</tr>
<tr>
<td></td>
<td>dhcpcd 140</td>
</tr>
<tr>
<td></td>
<td>dhcprd 138</td>
</tr>
<tr>
<td></td>
<td>dchpsd 136</td>
</tr>
<tr>
<td></td>
<td>domainname 231</td>
</tr>
<tr>
<td></td>
<td>exportfs 158, 181</td>
</tr>
<tr>
<td></td>
<td>ftp 257</td>
</tr>
<tr>
<td></td>
<td>ifconfig 33, 45, 58, 67, 87, 259</td>
</tr>
<tr>
<td></td>
<td>alias 61</td>
</tr>
<tr>
<td></td>
<td>ipreport 161, 183</td>
</tr>
<tr>
<td></td>
<td>iptrace 160, 183</td>
</tr>
<tr>
<td></td>
<td>kill 259</td>
</tr>
<tr>
<td></td>
<td>lppchk 30</td>
</tr>
<tr>
<td></td>
<td>lsattr 31, 33, 45, 103</td>
</tr>
<tr>
<td></td>
<td>lscfg 28</td>
</tr>
<tr>
<td></td>
<td>lsdev 25, 27, 30, 32, 86</td>
</tr>
<tr>
<td></td>
<td>lslpp 30</td>
</tr>
<tr>
<td></td>
<td>lssrc 127</td>
</tr>
<tr>
<td></td>
<td>lssrc command 67</td>
</tr>
<tr>
<td></td>
<td>mailq 211</td>
</tr>
<tr>
<td></td>
<td>makedbm 236</td>
</tr>
<tr>
<td></td>
<td>mktpip 81</td>
</tr>
<tr>
<td></td>
<td>mount 154, 162, 170, 182</td>
</tr>
<tr>
<td></td>
<td>netstat 46, 54, 57–58, 66, 166, 184, 256</td>
</tr>
<tr>
<td></td>
<td>newaliases 217–218</td>
</tr>
<tr>
<td></td>
<td>nfs 167, 174</td>
</tr>
<tr>
<td></td>
<td>nfsstat 174, 183</td>
</tr>
<tr>
<td></td>
<td>no 60</td>
</tr>
<tr>
<td></td>
<td>ipforwarding 60</td>
</tr>
<tr>
<td></td>
<td>nslookup 204</td>
</tr>
<tr>
<td></td>
<td>ping 66–67, 257</td>
</tr>
<tr>
<td></td>
<td>ps 259</td>
</tr>
<tr>
<td></td>
<td>rcp 122</td>
</tr>
<tr>
<td></td>
<td>refresh 126</td>
</tr>
<tr>
<td></td>
<td>route 59–60</td>
</tr>
<tr>
<td></td>
<td>rpcinfo 168, 185</td>
</tr>
<tr>
<td></td>
<td>sendmail 217–218</td>
</tr>
<tr>
<td></td>
<td>showmount 154, 158–159, 181</td>
</tr>
<tr>
<td></td>
<td>slattach 256, 259</td>
</tr>
<tr>
<td></td>
<td>startsrc 63–64, 125, 160, 202</td>
</tr>
<tr>
<td></td>
<td>stopsrc 113, 126</td>
</tr>
<tr>
<td></td>
<td>stopsrc command 64</td>
</tr>
<tr>
<td></td>
<td>traceroute 67</td>
</tr>
<tr>
<td></td>
<td>ybind 241</td>
</tr>
<tr>
<td></td>
<td>ypcat 228, 243</td>
</tr>
<tr>
<td></td>
<td>ypinit 235, 238, 242</td>
</tr>
<tr>
<td></td>
<td>yppasswd 239, 244</td>
</tr>
<tr>
<td></td>
<td>yppush 240, 242</td>
</tr>
<tr>
<td></td>
<td>ypset 238, 241</td>
</tr>
<tr>
<td></td>
<td>ypwhich 239</td>
</tr>
<tr>
<td></td>
<td>ypxfr 237, 243</td>
</tr>
</tbody>
</table>

Computer Oracle and Password System (COPS) 98
configuration
 BOOTP 133

280 IBM @server Certification Study Guide - AIX 5L Communications
DHCP server 136
minimum network configuration 80
Configuring IP on the EtherChannel interface 96
configuring SLIP connection 254
conversion
 binary 42
 decimal 42
COPS 98
cu command 252–253

dadmin command 145
daemons 152, 180, 226
 activity figure 153
 automountd 174
 biod 152, 156, 172
 bootpd 133
dhcpcd 140
dhcrpd 138
dhcpsd 136
ftp 121
gated 56, 63
inetd 114
named 202
network daemons 109
nfsd 152, 155, 162
NIS daemon figure 227
portmap 152–153, 160
routed 56, 62
rpc.lockd 152, 156
rpc.mountd 152, 154, 163
rpc.statd 152, 156
subsystems started by rc.tcpip 111
tftp 122
ypbind 226, 230
yppasswd 225
ypserv 230
ypupdated 224
deactivating SLIP connection 259
default route 55
dhcpcd command 140
dhcrpd command 138
dhcpsd command 136
direct maps 178
distance vector 61
DNS 193
 client 193, 204
 server 193
types 196
domain 224
 master definition 230
NIS picture 226
root 195
smitty change domain menu 230
Domain Name System (DNS) 193
domainname 231
dynamic domain name system (DDNS) 140
dynamic host configuration protocol (DHCP) 134
 client
 /etc/dhcpcd.ini 140
 configuration 140
dhcpcd daemon 140
dadmin 138
 interoperation with BOOTP 139
 message protocol 135
 relay agent 138
 server
 configuration 136
 configuration file /etc/dhcpsd.cnf 137
 configurations options /etc/options.file 138
dhcpsd 136
 status with dadmin 145
dynamic IP allocation with DHCP 135
dynamic routing 56, 61

E
environment variable
 NSORDER 84
escape sequence 233
EtherChannel 93, 95
EtherChannel enhancements (5.1.0) 93
Ethernet 11
Ethernet frame types 18
 10 Mbps standard 18
 100 Mbps standard 18
 1000 Mbps (Gigabit) standard 18
Ethernet switch 93
Ethernet switch device 93
exportfs 158, 181
 flag table 182
exporting file system 158
external data presentation 150

F
FDDI 11
figures
make NIS master 235
NFS daemon activity 153
NFS locking request 157
NFS mount 155
NFS protocol flowchart 150
NIS configuration 234
NIS daemons 227
NIS domain 226
NIS hosts example 232
smitty change NIS domain menu 230
smitty exportfs menu 159
smitty make NIS slave 237
file transfer 122

$HOME/.forward 123
$HOME/.netrc 123
$HOME/.rhosts 123
/etc/aliases 217
/etc/auto.direct 176
/etc/auto.home 176
/etc/auto.master 176
/etc/bootptab 133
/etc/dhcpcd.ini 140
/etc/dhcpsd.cnf 137
/etc/exports 158
/etc/filesystems 170
/etc/gated.conf 63
/etc/gates 62
/etc/host 194, 205, 227, 233
/etc/host.equiv 123
/etc/mail/relay-domains 210
/etc/named.boot 197, 203–204
/etc/netsvc.conf 83, 205, 233
/etc/option.file 138
/etc/passwd 223, 231, 238
/etc/rc.bsdnet 60
/etc/rc.net 60
/etc/rc.nfs 155, 230–231
/etc/tcpip 63, 202–203
/etc/resolv.conf 84, 202–205
/etc/rmtab 159, 165
/etc/rpc 151
/etc/sendmail.cf 212
/etc/sm 156
/etc/sm.bak 156
/etc/state 156
/etc/uucp/Devices 252
/etc/xtab 158
/irs.conf 233

/var/yp/Makefile 236
/var/yp/securenets 230
auto.master 179
auto_master 179
cache file 197
direct maps 178
ethernet.my 141
fddi.my 141
generic.my 141
ibm.my 141
indirect maps 175
IP zone file 197, 200
mib.defs 141
mibll.my 141
name zone file 197
named.hosts 201
smi.my 141
snmpd.conf 141–142
snmpd.peers 142, 144
token-ring.my 141
unix.my 142
view.my 142
forwarder 197
fping 100
ftp
$HOME/.netrc 123
anonymous 122
network subserver 121
operation commands 121
port number 117
ftp command 257
ftp service 98, 103
ftpd 103

G
gated 56, 63
gateway 55

H
hard mount 171
host name
resolution 83
setting the host name 83
Host route 55
hosts.awk 199
ICMP redirects 64
ifconfig 45, 58, 67
alias 61
ifconfig command 33, 87, 259
IN-ADDR.ARPA domain 198
indirect maps 175
inetd - internet daemon 114
change in /etc/services 117
configuration file /etc/inetd.conf 114
control of inetd 119
security considerations 122
wsm control interface 120
Interconnecting 10BaseF systems 16
interface
lo0 45
loopback 45
interface configuration 86
Internet address
dynamic allocation with DHCP 135
Internet Address to Ping 95
Internet Control Message Protocol (ICMP) 22
internet daemon - inetd 114
Internet Protocol (IP) 22
Internet Protocol (IP) multicasting 47
interoperation of BOOTP and DHCP 139
intr 171
IP
address
format 42
subnet mask 49
IP zone file 197, 200
ipforwarding 60
ipreport 161, 183
flag table 184
iptrace 160, 183
flag table 183
ISO Open Systems Interconnection (OSI) Reference Model 10

Kerberos 98
Kerberos authentication method 98
kill command 259

LDAP 218
LDAP-based routing 218
lease - DHCP dynamic IP allocation 135
Limited broadcast address 46
link aggregation 93
link-state 61
lo0 45
local resolver 86
localhost 45
LOG_KERN 96
loopback 45
lppchk command 30
lsattr 45
lsattr command 31, 33, 45, 103
lscfg command 28
lsdev command 25, 27, 30, 32, 86
lssrc command 30
lssrc command 127

MAC address 54
macro class 219
Macros
$(bodytype) 213
$(client_addr) 213
$(client_name) 213
$(client_port) 213
$(client_resolve) 213
$(currHeader) 213
$(daemon_addr) 213
$(daemon_family) 214
$(daemon_flags) 214
$(daemon_info) 214
$(daemon_name) 214
$(daemon_port) 214
$(deliveryMode) 214
$(envid) 214
$(hdr_name) 214
$(hdrlen) 214
$(if_addr) 214
$(if_name) 214
$(mail_addr) 215
$(mail_host) 215
$(mail_mailer) 215
$(ntries) 215
$(queue_interval) 215
$(rcpt_addr) 215
$(rcpt_host) 215
mail

$HOME/.forward 123
mail endpoint 210
mail relay 210

N
name zone file 197
named daemon 202
named sockets 218
named.hosts 201
netstat 46, 54, 57–58, 66, 166, 184, 256
flag table 185
network
administration
using SMIT 80
configuration
further configuration 81
host name 83
minimum configuration 80
mktcpip command 81
interface
ifconfig 87
interface configuration 86
startup 110
subscribers 110
subsystems 110
network adapters 25
adding 25
removing 29
network address 45
changing with chdev 87
network administration
basic administration 79
network bridges 19
network cable differences 17
network daemons 109
bootpd 133
network driver 30
attributes 30
missing 30
network hubs 19
Network Information Service (NIS) 205, 223
Network interface backup mode 93
network interfaces 9, 31
network protocols 9, 21
Network route 55
network routers 19
network services
BOOTP 132
DDNS 140
DHCP 134
DHCP client 140
DHCP relay agent 138
inetd - internet daemon 114
port definitions 117
security considerations with subservers 122
stopping with SRC 113
subserver control with SRC 120
network startup
BSD-style 110
default 110
network subserver
ftp 121
tftp - Trivial File Transfer Protocol 122
network subsystems 111
network switches 19
Network-directed broadcast address 46
newaliases command 217–218
NFS 223
client considerations 167
client mount options 171
client performance 172
daemon activity figure 153
daemons 152
export 158
lock request figure 157
mount figure 155
mount problems 168
server considerations 157
server performance 165
smitty mount menu 169
stateless 157
nfs_max_read_size 174
nfs_max_write_size 174
nfs_socketsize 167
nfs_tcp_socketsize 167
nfstpd 152, 155, 162
nfsd 152, 155, 162
nfsstat command 174, 183
NIS 223–224
bind 233
client configuration considerations 233
client startup 238
components 224
configuration considerations 229
daemon figure 227
daemons 226
default map table 228
domain 224
domain picture 226
escape sequence 233
host example figure 232
managing NIS maps 240
map source files 231
maps 227
master server configuration 230
master server start up 234
master servers 224
NIS configuration figure 234
server 224
server criteria 225
slave server configuration considerations 233
slave server start up 237
slave servers 225
smitty mkmaster figure 235
smitty mkslave figure 237
no 60
 ipforwarding 60
no command 96
NS 196, 203
nslookup 204
NSORDER 205
NSORDER environment variable 84
NTP 23
Number of Retries 96

O
ODM network address change 87
opengroup URL 162

P
ping 66–67
ping command 257
Point-to-Point Protocol (PPP) 23
port definitions 117
portmap 152–153, 160
PPP 11
primary DNS server 196
protocol 62
 ARP 54
 routing 55
 BGP 56
 distance vector 61
 dynamic 56, 61
 EGP 56
 HELLO 56
 link-state 61
 OSPF 56
 RIP 56
 static 56–57
protocol ICMP 64
protocols 150, 180
 protocol flowchart picture 150
rpc 150–151
 program number 151
tcp 150
udp 150
xdr 150, 152
prtcfg 88
ps command 259
pSeries 640 Model B80 AIX Location Codes 28
PTR 195–196, 200–201

R
rc.tcpip 111
r-commands 98
rcp command 100, 122
Redbooks Web site 276
 Contact us xviii
refresh command 126
relay agent for DHCP/BOOTP 138
remote procedure call 150
resolver 194–195
resolving hostname
 /etc/netsvc.conf 83
 NSORDER 84
 sequence 83
resource record
 CNAME 196
 MX 196
 NS 196, 203
 PTR 195, 200–201
 SOA 196, 199, 203
 types 196
retrans 171
Retry Timeout 96
reverse path forwarding 47
rlogin command 100
root domain 195
route 60
 default 55
 host 55
 network 55
route command 59
routed 56, 62
router 55
routing 55
 RIP 62
routing table 55–56, 58
RPC 151
rpc.lockd 152, 156
rpc.mountd 152, 154, 163
rpc.statd 152, 156
rpcinfo 168, 185
flag table 186
rsh command 100

S
SAINT 99
SATAN 99
scripts
 addrs.awk 201
 hosts.awk 199
secondary DNS server 197, 202
secret mail 210
Securing network services 98
security
 consideration with subservers 122
 securetcpip 124
Security Administration Tool for Analyzing Networks (SATAN) 98–99
Security Administrator’s Integrated Network Tool (SAINT) 98–99
sendmail
 $HOME/.forward 123
sendmail command 212, 217–218
 configuration file 212
 delivery areas 212
Sendmail upgrade enhancements (5.1.0) 218
Sendmail Version 8.11.0 218
Serial Line Internet Protocol (SLIP) 11, 22, 247
setting up a modem 248
setting up a serial port 248
showmount 154, 158–159, 181
 flag table 181
Simple Network Management Protocol (SNMP) 23, 141
simple reverse translation 198
slattach command 256, 259
 parameters 260
 syntax 260
slave server 224–225
SMIT fast path
 smit chgated 64
 smit chinet 86
 smit configtcp 81
 smit hostname 202, 204
 smit mkhostname 83
 smit mkinet 254
 smit mkroute 59
 smit resolv.conf 84
smit routed 63
smit stnamed 203
smit subserver 121
smit subsys 112
smit tcpip 80
smit tty 248
smitty menus
 create nfs export 159
 NFS mount 169
 NIS domainname 230
SNMP daemon 141
SNMP file formats 141
SNMP files 141
SNMP Requests for Comments (RFCs) 142
snmpd.conf
 example 144
 file contents 143
 parameter rules 143
snmpd.peers example 144
SOA 196, 199, 203
soft mount 171
startsrc 63–64, 125, 160, 202–203
startup network 110
stateless 157
static routing 56–57
stopping
 network subsystems 113
stopsrc 64
stopsrc command 113, 126
subnet mask 49
Subnet-directed broadcast address 46
subnetting 47
subservers 110
 control with inetd 114
 control with SRC 120
subsystems 110
 list started by rc.tcpip 111
supernetting 53
system administration
 TCP/IP configuration 81
system resource controller - SRC 111
lssrc 127
refresh 126
startsrc 125
stopsrc 126

T
tables
chnfs flags 175, 185
exportfs flags 182
ipreport flags 184
iptrace flags 183
mount flags 182
netstat flags 185
NIs default maps 228
rpcinfo flags 186
showmount flags 181
ypbind flags 241
ypcat flags 244
ypinit flags 242
yppasswd flags 244
yppush flags 243
ypset flags 242
ypxfr flags 243

TCP/IP
configuration
 further configuration 81
 minimum configuration 80
securetcpip 124
TCP/IP over ATM 14
telnet 102
 port number 117
telnet service 98
telnetd 102
testing a modem 253
tftp - Trivial File Transfer Protocol 122
The Asynchronous Terminal Emulation (ATE) program 91
The IN-ADDR.ARPA Record 198
thewall 97
time to live 177
time to wait 177
token ring 11
traceroute 67
Transmission Control Protocol (TCP) 23
tty configuration 90
tty setup
 slip setup considerations 250

U
UNIX-to-UNIX Copy Program (uucp) 91
User Datagram Protocol (UDP) 23
uucp 91

V
vacation message 210

W
wsm
 inetd control interface 120

X
XDR 152

Y
Yellow Pages 223
YP 223
ypbind 226, 230, 241
 flag table 241
ypcat 228, 243
 flag table 244
ypinit 235, 238, 242
 flag table 242
yppasswd 239, 244
 flag table 244
yppasswdd 225
yppush 240, 242
 flag table 243
ypserv 230
ypset 238, 241
 flag table 242
ypupdated 224
ypwhich 239
ypxfr 237, 243
 flag table 243
This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX 5L Communications certification exam as a selected course of study in order to achieve the IBM eServer Certified Advanced Technical Expert - pSeries and AIX 5L certification.

This IBM Redbook is designed to provide a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered in the exam.

This publication does not replace practical experience, nor is it designed to be a stand alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam. So, whether you are planning to take the AIX 5L Communications certification exam, or if you just want to validate your AIX skills, this redbook is for you.

This publication was updated to include the new content included in Test 236, which was based on AIX 5L Version 5.1.