Developed specifically for the purpose of preparing for AIX certification

Makes an excellent companion to classroom education

For experienced AIX professionals
Note: Before using this information and the product it supports, read the information in “Notices” on page xv.

This edition applies to AIX 5L Version 5.1 (5765-E61) and subsequent releases running on an IBM @server pSeries or RS/6000 server.

© Copyright International Business Machines Corporation 2000, 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

<table>
<thead>
<tr>
<th>Figures</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tables</td>
<td>xiii</td>
</tr>
<tr>
<td>Notices</td>
<td>xv</td>
</tr>
<tr>
<td>Trademarks</td>
<td>xvi</td>
</tr>
</tbody>
</table>

Preface
- The team that wrote this redbook: xvii
- Become a published author: xviii
- Comments welcome: xx

Chapter 1. Certification overview
1. Certification requirements 1
 1.1 Certification requirements 2
 1.1.1 Required prerequisite 2
 1.1.2 Recommended prerequisite 2
 1.1.3 Information and registration for the certification exam .. 2
 1.1.4 Core requirements 2
 1.2 Certification education courses 6

Chapter 2. Customer relations 7
2.1 Defining the problem 8
2.2 Collecting information from the user 8
2.3 Collecting information about the system 10
2.4 Quiz .. 10
 2.4.1 Answers 12

Chapter 3. Booting problem determination 13
3.1 A general overview of the boot process 14
3.2 BIST - POST 15
 3.2.1 MCA systems 15
 3.2.2 PCI systems 20
3.3 Boot phase 1 22
3.4 Boot phase 2 24
 3.4.1 LED 551, 555, or 557 26
 3.4.2 LED 552, 554, or 556 26
 3.4.3 LED 518 28
 3.4.4 The alog command 28
3.5 Boot phase 3 29
3.5.1 The /etc/inittab file
3.5.2 LED 553
3.5.3 LED c31
3.5.4 LED 581
3.5.5 pSeries servers
3.6 Boot-related information in the error log
3.7 Boot summary
3.8 Command summary
3.8.1 The errpt command
3.8.2 The w command
3.9 Quiz
3.9.1 Answers
3.10 Exercises

Chapter 4. Hardware problem determination
4.1 Hardware basics
4.1.1 Hardware inventory
4.2 Running diagnostics
4.2.1 Concurrent mode
4.2.2 Stand-alone diagnostics from disk - service mode
4.2.3 Stand-alone diagnostics from CD-ROM
4.2.4 Task selection or service aids
4.3 Serial Storage Architecture disks
4.3.1 General SSA setup rules
4.3.2 SSA devices
4.3.3 SSA disk considerations
4.3.4 Three-digit display values
4.3.5 Common boot time LEDs
4.3.6 888 in the three-digit display
4.4 Command summary
4.4.1 The chdev command
4.4.2 The lsattr command
4.5 Quiz
4.5.1 Answers
4.6 Exercises

Chapter 5. System dumps
5.1 Configuring the dump device
5.2 Starting a system dump
5.2.1 Using the command line
5.2.2 Using the SMIT interface
5.2.3 Using the Reset button
5.2.4 Using special key sequences
7.2.1 Data relocation .. 140
7.2.2 Backup data ... 140
7.2.3 ODM resynchronization 140
7.2.4 Understanding importvg problems 141
7.2.5 Extending the number of max physical partitions 143
7.3 Disk replacement .. 144
 7.3.1 Replacing a disk 144
 7.3.2 Recovering an incorrectly removed disk 148
7.4 The AIX JFS ... 150
 7.4.1 Creating a JFS 150
 7.4.2 Increasing the file system size 152
 7.4.3 File system verification and recovery 152
 7.4.4 Sparse file allocation 154
 7.4.5 Unmount problems 154
 7.4.6 Removing file systems 155
 7.4.7 Different output from du and df commands 156
 7.4.8 Enhanced journaled file system 156
 7.4.9 The /proc file system 162
 7.4.10 Disk quota ... 164
7.5 Paging space ... 166
 7.5.1 Recommendations for creating or enlarging paging space 166
 7.5.2 Determining if more paging space is needed 167
 7.5.3 Reducing and removing paging space 168
7.6 Command summary ... 169
 7.6.1 The lsvg command 169
 7.6.2 The chvg command 170
 7.6.3 The importvg command 171
 7.6.4 The rmvcopy command 172
 7.6.5 The reducevg command 172
 7.6.6 The rmdev command 172
 7.6.7 The syncvg command 173
7.7 Quiz ... 173
 7.7.1 Answers ... 176
7.8 Exercises .. 176

Chapter 8. Network problem determination 177
8.1 Network interface problems 178
8.2 Routing problems .. 181
 8.2.1 Dynamic or static routing 184
8.3 Name resolution problems 185
 8.3.1 The tcpdump and iptrace commands 186
8.4 NFS troubleshooting .. 189
 8.4.1 General steps for NFS problem solving 189
Figures

3-1 General boot order .. 14
3-2 Function selection menu in diag 17
3-3 Task selection menu in diag 18
3-4 Display/alter bootlist menu in diag 18
3-5 SMS main menu .. 21
3-6 Boot phase 1 .. 23
3-7 Boot phase 2, part one ... 24
3-8 Boot phase 2, part two ... 25
3-9 Boot phase 3 .. 30
3-10 Example of rc.boot 3 in /etc/inittab 31
4-1 Main diagnostics menu .. 48
4-2 Format of the 103 code message 60
4-3 Case study .. 63
5-1 SMIT dump screen .. 69
5-2 SMIT Add a TTY screen - Remote reboot options 72
5-3 Error log case study ... 102
5-4 Case study .. 104
6-1 The errpt command error log report process 111
6-2 The errpt command error record template repository process 112
7-1 Disk problem mail from Automatic Error Log Analysis (diagela) 145
8-1 Case study .. 197
9-1 SMIT menu to change the number of licensed users 203
9-2 The smitty crjfsbf fast path 207
9-3 SMIT screen for changing AIX operating system characteristics ... 208
9-4 Output display of the topas command 214
9-5 Change/Show Current Print Subsystem option 224
10-1 General performance tuning flowchart 234
10-2 CPU penalty example .. 257
10-3 Web-based System Manager Overview and Tasks dialog 276
10-4 Hierarchy of classes ... 277
10-5 Resources cascading through tiers 281
10-6 SMIT with the class creation attributes screen 281
10-7 SMIT panel shows the additional localshm attribute 283
10-8 Resource set definition to a specific class 290
10-9 SMIT main panel for resource set management 291
10-10 SMIT panel for rset registry management 292
10-11 SMIT panel to add a new resource set 293
10-12 Performance tuning flowchart .. 299
11-1 SMIT Software Maintenance and Utilities panel 311
11-2 Install and Update Software panel .. 313
12-1 Netscape filesets .. 323
12-2 HTTP filesets ... 324
12-3 Documentation Library Service filesets 325
12-4 Documentation Library Service .. 328
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-1</td>
<td>Common MCA LED codes</td>
<td>19</td>
</tr>
<tr>
<td>3-2</td>
<td>MCA POST LEDs</td>
<td>37</td>
</tr>
<tr>
<td>3-3</td>
<td>Boot phase 2 LED codes</td>
<td>37</td>
</tr>
<tr>
<td>3-4</td>
<td>Boot phase 3 LED codes</td>
<td>37</td>
</tr>
<tr>
<td>3-5</td>
<td>Commonly used flags of the erpt command</td>
<td>38</td>
</tr>
<tr>
<td>3-6</td>
<td>Commonly used flags of the w command</td>
<td>39</td>
</tr>
<tr>
<td>4-1</td>
<td>SSA adapter information</td>
<td>55</td>
</tr>
<tr>
<td>4-2</td>
<td>Common MCA LED codes</td>
<td>58</td>
</tr>
<tr>
<td>4-3</td>
<td>Location code mapping table</td>
<td>60</td>
</tr>
<tr>
<td>4-4</td>
<td>Commonly used flags of the chdev command</td>
<td>61</td>
</tr>
<tr>
<td>4-5</td>
<td>Commonly used flags of the lsattr command</td>
<td>61</td>
</tr>
<tr>
<td>4-6</td>
<td>Forth phase 2 LED codes</td>
<td>62</td>
</tr>
<tr>
<td>5-1</td>
<td>REMOTE reboot ENABLE settings</td>
<td>73</td>
</tr>
<tr>
<td>5-2</td>
<td>SHD default values</td>
<td>73</td>
</tr>
<tr>
<td>5-3</td>
<td>Differences in system dump</td>
<td>80</td>
</tr>
<tr>
<td>5-4</td>
<td>The vmmerrlog structure</td>
<td>93</td>
</tr>
<tr>
<td>5-5</td>
<td>Commonly used flags of the snap command</td>
<td>96</td>
</tr>
<tr>
<td>5-6</td>
<td>Commonly used flags of the strings command</td>
<td>97</td>
</tr>
<tr>
<td>5-7</td>
<td>Commonly used flags of the sysdumpdev command</td>
<td>99</td>
</tr>
<tr>
<td>5-8</td>
<td>Commonly used flags of the sysdumpstart command</td>
<td>101</td>
</tr>
<tr>
<td>6-1</td>
<td>Commonly used flags of the errdemo command</td>
<td>108</td>
</tr>
<tr>
<td>6-2</td>
<td>Commonly used flags of the erpt command</td>
<td>112</td>
</tr>
<tr>
<td>6-3</td>
<td>List of error classes</td>
<td>121</td>
</tr>
<tr>
<td>6-4</td>
<td>Commonly used flags of the errclear command</td>
<td>125</td>
</tr>
<tr>
<td>6-5</td>
<td>System Resource Controller commands</td>
<td>130</td>
</tr>
<tr>
<td>7-1</td>
<td>Journaled file system specifications</td>
<td>161</td>
</tr>
<tr>
<td>7-2</td>
<td>Functions of pseudo files in /proc/<pid> directory</td>
<td>163</td>
</tr>
<tr>
<td>7-3</td>
<td>Commonly used flag of the lsvg command</td>
<td>170</td>
</tr>
<tr>
<td>7-4</td>
<td>Commonly used flag of the chvg command</td>
<td>171</td>
</tr>
<tr>
<td>7-5</td>
<td>Commonly used flags of the importvg command</td>
<td>171</td>
</tr>
<tr>
<td>7-6</td>
<td>Commonly used flags of the reducevg command</td>
<td>172</td>
</tr>
<tr>
<td>7-7</td>
<td>Commonly used flags of the mdev command</td>
<td>172</td>
</tr>
<tr>
<td>7-8</td>
<td>Commonly used flag of the syncvg command</td>
<td>173</td>
</tr>
<tr>
<td>8-1</td>
<td>Commonly used flags of the chdev command</td>
<td>192</td>
</tr>
<tr>
<td>8-2</td>
<td>Commonly used flags of the exportfs command</td>
<td>192</td>
</tr>
<tr>
<td>8-3</td>
<td>Commonly used flags of the ifconfig command</td>
<td>193</td>
</tr>
<tr>
<td>8-4</td>
<td>Commonly used flags of the iproute command</td>
<td>193</td>
</tr>
<tr>
<td>8-5</td>
<td>Commonly used flags of the lsattr command</td>
<td>194</td>
</tr>
<tr>
<td>8-6</td>
<td>Commonly used flags of the netstat command</td>
<td>194</td>
</tr>
<tr>
<td>Chapter</td>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8-7</td>
<td>Commonly used flags of the route command</td>
<td>195</td>
</tr>
<tr>
<td>8-8</td>
<td>Commonly used flags of the tcpdump command</td>
<td>196</td>
</tr>
<tr>
<td>9-1</td>
<td>Managing TTY devices</td>
<td>219</td>
</tr>
<tr>
<td>9-2</td>
<td>Comparison of print subsystem functions</td>
<td>221</td>
</tr>
<tr>
<td>9-3</td>
<td>Commonly used flags of the lssrc command</td>
<td>225</td>
</tr>
<tr>
<td>9-4</td>
<td>Commonly used flags of the startsrc command</td>
<td>226</td>
</tr>
<tr>
<td>9-5</td>
<td>Commonly used flags of the trace command</td>
<td>227</td>
</tr>
<tr>
<td>9-6</td>
<td>Commonly used flags of the trcrpt command</td>
<td>227</td>
</tr>
<tr>
<td>10-1</td>
<td>CPU-related ps output</td>
<td>241</td>
</tr>
<tr>
<td>10-2</td>
<td>Memory-related ps output</td>
<td>251</td>
</tr>
<tr>
<td>10-3</td>
<td>Some commonly used flags for the schedtune command</td>
<td>258</td>
</tr>
<tr>
<td>10-4</td>
<td>List of process types</td>
<td>287</td>
</tr>
<tr>
<td>10-5</td>
<td>Examples of class assignment rules</td>
<td>288</td>
</tr>
<tr>
<td>10-6</td>
<td>Sample dbx subcommands</td>
<td>294</td>
</tr>
<tr>
<td>10-7</td>
<td>Sample kdb subcommands</td>
<td>296</td>
</tr>
<tr>
<td>10-8</td>
<td>Commonly used flags of the sar command</td>
<td>300</td>
</tr>
<tr>
<td>10-9</td>
<td>Commonly used flags of the ps command</td>
<td>300</td>
</tr>
<tr>
<td>10-10</td>
<td>Commonly used flags of the netstat command</td>
<td>301</td>
</tr>
<tr>
<td>10-11</td>
<td>Commonly used flags of the nfsstat command</td>
<td>302</td>
</tr>
<tr>
<td>11-1</td>
<td>Commonly used flags of the lppchk command</td>
<td>314</td>
</tr>
<tr>
<td>11-2</td>
<td>Commonly used flags of the lslpp command</td>
<td>316</td>
</tr>
<tr>
<td>11-3</td>
<td>Commonly used flags of the instalpp command</td>
<td>316</td>
</tr>
<tr>
<td>11-4</td>
<td>Commonly used flags of the instfix command</td>
<td>317</td>
</tr>
<tr>
<td>11-5</td>
<td>Commonly used flags of the lppchk command</td>
<td>317</td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area.

Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM’s application programming interfaces.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

<table>
<thead>
<tr>
<th>IBM Trademark</th>
<th>IBM Trademark</th>
<th>IBM Trademark</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFP™</td>
<td>LoadLeveler®</td>
<td>Redbooks™</td>
</tr>
<tr>
<td>AIX®</td>
<td>Micro Channel®</td>
<td>Redbooks(logo)™</td>
</tr>
<tr>
<td>AIX 5L™</td>
<td>Perform™</td>
<td>RS/6000®</td>
</tr>
<tr>
<td>DFS™</td>
<td>PowerPC Reference Platform®</td>
<td>Sequent®</td>
</tr>
<tr>
<td>@server</td>
<td>PowerPC®</td>
<td>SP™</td>
</tr>
<tr>
<td>IBM®</td>
<td>PowerPC Reference Platform®</td>
<td>TotalStorage™</td>
</tr>
<tr>
<td>Infoprint®</td>
<td>pSeries™</td>
<td>Versatile Storage Server™</td>
</tr>
<tr>
<td>IPDS™</td>
<td>PTX®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>QMF™</td>
<td></td>
</tr>
</tbody>
</table>

The following terms are trademarks of International Business Machines Corporation and Lotus Development Corporation in the United States, other countries, or both:

<table>
<thead>
<tr>
<th>Lotus Trademark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domino™</td>
</tr>
<tr>
<td>Lotus®</td>
</tr>
<tr>
<td>Notes®</td>
</tr>
</tbody>
</table>

The following terms are trademarks of other companies:

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

C-bus is a trademark of Corollary, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.
Preface

The AIX and IBM @server pSeries Certifications offered through the Professional Certification Program from IBM are designed to validate the skills required of technical professionals who work in the powerful and often complex environments of AIX and IBM @server pSeries. A complete set of professional certifications is available. It includes:

- IBM Certified AIX User
- IBM Certified Specialist - Business Intelligence for RS/6000
- IBM Certified Specialist - Domino for RS/6000
- IBM @server Certified Specialist - p690 Solutions Sales
- IBM @server Certified Specialist - p690 Technical Support
- IBM @server Certified Specialist - pSeries Sales
- IBM @server Certified Specialist - pSeries AIX System Administration
- IBM @server Certified Specialist - pSeries AIX System Support
- IBM @server Certified Specialist - pSeries Solution Sales
- IBM Certified Specialist - RS/6000 SP and PSSP V3
- IBM Certified Specialist - Web Server for RS/6000
- IBM @server Certified Specialist - pSeries HACMP for AIX
- IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L

Each certification is developed by following a thorough and rigorous process to ensure the exam is applicable to the job role and is a meaningful and appropriate assessment of skill. Subject matter experts who successfully perform the job participate throughout the entire development process. They bring a wealth of experience into the development process, making the exams much more meaningful than the typical test that only captures classroom knowledge, and ensuring that the exams are relevant to the real world. Thanks to their effort, the test content is both useful and valid. The result of this certification is the value of appropriate measurements of the skills required to perform the job role.

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX 5L Problem Determination Tools and Techniques certification exam as a selected course of study in order to achieve the IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L certification.

This IBM Redbook is designed to provide a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered in the exam.
This publication does not replace practical experience, nor is it designed to be a stand-alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam.

For additional information about certification and instructions on how to register for an exam, visit our Web site at:

http://www.ibm.com/certify

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Austin Center.

Tim Dasgupta is an IBM Certified AIX Advanced Technical Expert (CATE). He works as a Senior Systems Architect at IBM Global Services in Canada. He has over eight years of experience in the areas of AIX, RS/6000, and pSeries. He is currently the Team Leader of Midrange Architecture Group in Montreal, Canada.

Stephen Sommer is an IBM Certified AIX Advanced Technical Expert (CATE), AIX Version 4.3.3 and 5.1. He works as a Senior IT Specialist at Faritec Services, an IBM Business Partner in Johannesburg, South Africa. He has eight years of experience in Midrange Support for AIX, RS/6000, and pSeries, both in South Africa and the United Kingdom.

The authors of the first edition are:

Thomas C. Cederlöf IBM Sweden
André de Klerk IBM South Africa
Thomas Herlin IBM Denmark
Tomasz Ostaszewski Prokom Software SA in Poland

The project that produced this publication was managed by:

Scott Vetter IBM Austin

Special thanks to:

Darin Hartman Program Manager, AIX Certification
Shannan L DeBrule IBM Atlanta

Thanks to the following people for their invaluable contributions to this project:

Jesse Alcantar IBM Austin
Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You'll team with IBM technical professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
Comments welcome

Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways:

► Use the online Contact us review redbook form found at:
 ibm.com/redbooks
► Send your comments in an Internet note to:
 redbook@us.ibm.com
► Mail your comments to:
 IBM Corporation, International Technical Support Organization
 Dept. JN9B Building 003 Internal Zip 2834
 11400 Burnet Road
 Austin, Texas 78758-3493
Chapter 1. Certification overview

This chapter provides an overview of the skill requirements needed to obtain an IBM Advanced Technical Expert certification. The following chapters are designed to provide a comprehensive review of specific topics that are essential for obtaining the certification IBM @server Certified Advanced Technical Expert - pSeries and AIX 5L.

This level certifies an advanced level of pSeries and AIX knowledge and understanding, both in breadth and depth. It verifies the ability to perform in-depth analysis, apply complex AIX concepts, and provide resolution to critical problems, all in a variety of areas within AIX, including the hardware that supports it.
1.1 Certification requirements

To attain the IBM Certified Advanced Technical Expert - pSeries and AIX 5L certification, you must pass four tests.

One test is the prerequisite in either pSeries AIX System Administration or pSeries AIX System Support. The other three tests are selected from a variety of pSeries and AIX topics. These requirements are explained in greater detail in the sections that follow.

1.1.1 Required prerequisite

Prior to attaining the IBM Certified Advanced Technical Expert - pSeries and AIX 5L certification, you must be certified as either an:

- IBM Certified Specialist - pSeries AIX System Administration
- IBM Certified Specialist - pSeries AIX System Support

1.1.2 Recommended prerequisite

A minimum of six to 12 months of experience in performing in-depth analysis and applying complex AIX concepts in a variety of areas within AIX is a recommended prerequisite.

1.1.3 Information and registration for the certification exam

For the latest certification information, see the following Web site:

http://www.ibm.com/certify

1.1.4 Core requirements

Select three of the following exams. You will receive a Certificate of Proficiency for tests when passed.

AIX 5L Installation and System Recovery

Test 233 was developed for this certification.

Preparation for this exam is the topic of IBM Certification Study Guide - AIX 5L Installation and System Recovery, SG24-6183.
AIX 5L Performance and System Tuning
Test 234 was developed for this certification.

Preparation for this exam is the topic of IBM® Certification Study Guide - AIX 5L Performance and System Tuning, SG24-6184.

AIX 5L Problem Determination Tools and Techniques
The following objectives were used as a basis when the certification test 235 was developed. Some of these topics have been regrouped to provide better organization when discussed in this publication.

Preparation for this exam is the topic of this publication.

Section I - Identify problem
To identify the problem:
1. Clarify the problem description.
 a. Get an exact description of the symptom from the person reporting it.
 b. Determine whether the problem occurs at particular times.
 c. Determine what steps are required to recreate the problem or symptom.
2. Determine the source of the problem.
 a. Determine if the system is hung or slow.
 b. Analyze error logs for messages relating to the problem/symptom to isolate the source.
 c. Check the system LED panel for pertinent information.
 d. Determine basic network functionality by using network tools.
 e. Examine a core file or attached running process.
 f. Check the system console for error messages.
 g. Force system dump on the hung system.
 h. Isolate the cause of the printer problem.

Section II - Perform problem analysis
To perform problem analysis:
1. Identify the cause of the problem description.
 a. Examine system dumps.
 b. Examine log files for messages related to problem.
 c. Check the AIX error log for hardware failures and paging space problems.
 d. Determine if network interfaces are active.
e. Verify that file systems are mounted and accessible using commands such as `mount`, `df`, and `ls`.

f. Check for software installation problems in install logs and using the `lspp` command.

g. Check `syslog.conf` to see if additional error logging is enabled.

h. Manage processes and daemons.

i. Diagnose Logical Volume Manager (LVM) problems.

j. Determine if file systems and kernel are compatible (jfs/jfs2).

2. Identify recent system changes preceding the problem.
 a. Use the AIX error log report to determine if reboot introduced the problem.
 b. Check with customer/vendor for recent software/hardware changes.
 c. Identify recent system and application configuration changes.
 d. Check for `vmtune`, `schedtune`, or `wlm` tuning changes.
 e. Check for changes to printing subsystems.

3. Analyze error messages.
 a. Look up the system dump code.
 b. Use the `alog -t boot -o` command to check for a problem during boot.

Section III - Use tools/create solution

To use tools and create a solution:

1. Use system tools to evaluate the problem.
 a. Use the `vmstat` command to look for basic CPU, memory, and I/O bottlenecks.
 b. Use the `topas` command to look for basic system performance problems.
 c. Use the `iostat` command to identify unusual disk activity.
 d. Use the `sar` command to check for excessive system call and fork rates.
 e. Use `iptrace`, `netstat`, `traceroute`, and `ping` commands to check for network connectivity and adapter problems.
 f. Use `tprof` to identify abnormal CPU usage.
 g. Examine the hung process stack using the `crash/kdb` and/or `dbx` command.
 h. Enable debug/verbose modes to gather more information.
 i. Use dump/trace tools to examine system behavior.
 j. Enable accounting/auditing to monitor application behavior.
k. Use `ipc` commands for managing IPC (shared memory and semaphores, for example).

l. Use the `df` command to check file system status.
m. Use `lpstat` to determine printer status.

2. Use tools to create solutions.
 Use `wlm` to control resources.

Section IV - Perform problem avoidance

To implement a plan:

1. Plan implementation.
 a. Use supported hardware/software configurations.
 b. Develop a test plan for new hardware/software changes.

2. Monitor system health.
 a. Monitor AIX error logs for hardware failure messages.
 b. Monitor AIX error logs for software failure messages.
 c. Monitor syslog output.
 d. Monitor application logs.
 e. Monitor for low memory, paging space, and file system space.
 f. Log system performance.
 g. Review error alerts.
 h. Monitor the system operating environment (for example, power and temperature).

3. Implement system modification control.
 a. Schedule system changes.
 b. Restrict root access.
 c. Evaluate the impact of any modifications as they relate to the enterprise.

AIX 5L Communications

Test 236 was developed for this certification.

Preparation for this exam is the topic of IBM® Server Certification Study Guide - AIX 5L Communications, SG24-6186.

pSeries HACMP for AIX

Test 187 was developed for this certification.
Preparation for this exam is the topic of IBM® Certification Study Guide - pSeries HACMP for AIX, SG24-6187.

RS/6000 SP and PSSP V3.1
Test 188 was developed for this certification.

Preparation for this exam is the topic of IBM® Certification Study Guide - RS/6000 SP, SG24-5348.

p690 Technical Support
Test 195 was developed for this certification.

An IBM Redbook is planned for first quarter 2003 on this subject.

1.2 Certification education courses
Courses are offered to help you prepare for the certification tests. For a current list, visit the following Web site, locate your test number, and select the education resources available:

Customer relations

The following topics are discussed in this chapter:

- Problem definition
- Collecting information from the user
- Collecting information from the system

This chapter is intended for system support people who have to assist customers with a certain problem. The intention is to provide methods for describing a problem and collecting the necessary information about the problem in order to take the best corrective course of action.
2.1 Defining the problem

The first step in problem resolution is to define the problem. It is important that the person trying to solve the problem understands exactly what the users of the system perceive the problem to be. A clear definition of the problem is useful in two ways:

- It can give you a hint as to the cause of the problem.
- It is much easier to demonstrate to the users that the problem has been solved if you know how the problem is seen from their point of view.

For example, consider the situation where a user is unable to print a document. The problem may be due to the /var file system running out of space. The person solving the problem may fix this and demonstrate that the problem has been fixed by using the `df` command to show that the /var file system is no longer full.

This example can also be used to illustrate another difficulty with problem determination. Problems can be hidden by other problems. When you fix the most visible problem, another one may come to light. The problems that are unearthed during the problem determination process may be related to the one that was initially reported. In other words, there may be multiple problems with the same symptoms. In some cases, you may discover problems that are completely unrelated to the one that was initially reported.

In the previous printing example, simply increasing the amount of free space in the /var file system may not solve the problem being experienced by the user. The printing problem may turn out to be a cable problem, a problem with the printer, or perhaps a failure of the lpd daemon. This is why understanding the problem from the user’s perspective is so important. In this example, a better way of proving that the problem has been resolved is to get the user to successfully print her document.

2.2 Collecting information from the user

The best way of understanding the problem from the users’ perspective is to ask questions. From their perception of the situation, you can deduce if they have a problem, and the time scale in which they expect it to be resolved. Their expectations may extend beyond the scope of the machine or the application it is running.
The following questions should be asked when collecting information from the user during problem determination:

- **What is the problem?**

 Try to get the users to explain what the problem is and how it affects them. Depending on the situation and the nature of the problem, this question can be supplemented by either of the following two questions:

 - What is the system doing?
 - What is the system *not* doing?

 Once you have determined what the symptoms of the problem are, you should try to establish the history of the problem.

- **How did you first notice the problem? Did you do anything differently that made you notice the problem?**

- **When did it happen? Does it always happen at the same time (for example, when the same job or application is run)?**

- **Does the same problem occur elsewhere? Is only one machine experiencing the problem or are multiple machines experiencing the same problem?**

- **Have any changes been made recently?**

 This refers to any type of change made to the system, ranging from adding new hardware or software to configuration changes of existing software.

- **If a change has been made recently, were all of the prerequisites met before the change was made?**

 Software problems most often occur when changes have been made to the system, and either the prerequisites have not been met (for example, system firmware is not at the minimum required level), or instructions have not been followed exactly in order (for example, the person following the instructions second guesses what the instructions are attempting to do and decides they know a quicker route). The second guess then means that, because the person has taken a perceived better route, prerequisites for subsequent steps may not have been met, and the problem develops into the situation you are confronted with.

 Other changes, such as the addition of hardware, bring their own problems, such as cables incorrectly assembled, contacts bent, or addressing misconfigured.

 The *How did you first notice the problem?* question may not help you directly, but it is very useful in getting the person to talk about the problem. Once he starts talking, he invariably tells you things that will enable you to determine the starting point for problem resolution.
If the problem occurs on more than one machine, look for similarities and differences between the situations.

2.3 Collecting information about the system

The second step in problem determination is collecting information about the system. Some information will have already been obtained from the user during the process of defining the problem.

The user is not the only source that can provide information regarding a problem. By using various commands, it is possible to determine how the machine is configured, the errors that are being produced, and the state of the operating system.

The use of commands, such as `lsdev`, `lspv`, `lsvg`, `ls1pp`, `lsattr`, `df`, `mount`, and others, enable you to gather information on how the system is configured. Other commands, such as `errpt`, can give you an indication of any errors being logged by the system.

If the system administrator uses SMIT or Web-based System Manager to perform administrative tasks, examine the log files for these applications to look for recent configuration changes. The log files are, by default, contained in the home directory of the root user and, by default, are named `/smit.log` for SMIT and `/websm.log` for the Web-based System Manager.

If you are looking for something specific based on the problem described by the user, then other files are often viewed or extracted so that they can be sent to your IBM support function for analysis, such as system dumps or checkstop files.

2.4 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A user complains that she is no longer able to get into the system. Which of the following procedures should be performed to determine the cause?
 A. Check the `/etc/security/passwd` file.
 B. Inform the user that she is not doing something right.
 C. Identify the steps the user is performing to access the system.
 D. Ignore the user’s definition and attempt to determine the problem from scratch.
2. A user explains that a problem was first noticed after a software update occurred. Which of the following procedures should the system administrator perform next to fix the updated software?

A. Reboot the system.
B. Add more memory to the system.
C. Load a backup made prior to the update.
D. Check for the prerequisites and updates of software applied.
2.4.1 Answers

The following are the preferred answers to the questions provided in this section.

1. C
2. D
Booting problem determination

The following topics are discussed in this chapter:

- A general overview of the boot process
- Differences between MCA and PCI systems
- AIX boot phase 1 - configuring the base devices
- AIX boot phase 2 - activating the root volume group
- AIX boot phase 3 - configuring the remaining devices
- Common boot problem scenarios and how to fix them

Because boot problems are among the most common problems, an overall discussion on the subject is useful. This chapter begins with a general overview of the boot process, then expands on the details and discusses the process along with the LED codes for each stage of the boot process in further detail. A summary of the LED codes can be found in “LED codes” on page 37.
3.1 A general overview of the boot process

Both hardware and software problems can cause the system to halt during the boot process. The boot process is also dependent on which hardware platform is used. In the initial startup phase, there are some important differences between MCA and PCI systems, and these differences will determine the way to handle a hardware-related boot problem. These differences are covered in 3.2, “BIST - POST” on page 15.

The general workflow of the boot process is shown in Figure 3-1.

![General boot order diagram](image)

Figure 3-1 General boot order

The initial hardware check is to verify that the primary hardware is okay. This phase is divided into two separate phases on an MCA system. The first is the built-in self test (BIST), and the second a power-on self test (POST). On PCI systems, it is handled by a single POST. After this, the system loads the boot logical volume (BLV) into a RAM file system (RAMFS) and passes control to the BLV.
Because the rootvg is not available at this point, all the information needed for boot is included in the BLV used for creation of the RAMFS in memory. After this, the init process is loaded and starts to configure the base devices. This is named boot phase 1 (the init process executes the rc.boot script with an argument of 1).

The next step, named boot phase 2, attempts to activate rootvg, and this is probably the phase where the most common boot problems occur (for example, a file system or the jfslog is corrupt). Next, the control is passed to the rootvg init process and the RAMFS is released.

Finally, the init process, now loaded from disk (not the BLV), executes the rc.boot script with an argument of 3 to configure the remaining devices. This final stage is done from the /etc/inittab file. This is named boot phase 3.

3.2 BIST - POST

As mentioned before, there are differences between the classic RS/6000 system with MCA architecture and the PCI systems that are delivered today. The MCA system is discussed first.

3.2.1 MCA systems

At a system startup of an MCA system, the first thing that happens is a BIST. These tests are stored on EPROM chips, and the tests performed by BIST are
mainly to components on the motherboard. LED codes shown during this phase of the startup will be in the range of 100–195, defining the hardware status. After this, the POST will be initialized.

The task of the POST is to find a successful hardware path to a BLV. All hardware that is required to load a boot image is tested. The LED codes at this stage are in the range of 200–2E7. Both hardware and software problems can cause a halt in the startup process during this stage.

On an MCA system, the load of the BLV starts with checking the bootlist. The bootlist is defined by the key position (a physical key switch is located on the outside of many of the MCA models). When the key is in the normal position, applications will be started as well as network services. This is done when the init process reads the /etc/inittab file and executes the configuration scripts referenced in that file. A normal boot is represented by run level 2. The /etc/inittab file is discussed in further detail in 3.5.1, “The /etc/inittab file” on page 31. To manipulate the boot list for normal mode, use the following command:

```
# bootlist -m normal hdisk0 hdisk1 rmt0 cd0
```

This command will set the system to search hdisk0 first for a usable BLV. If there is no BLV on hdisk0, then hdisk1 will be searched, and so on.

The service bootlist is used when booting the system for maintenance tasks. The key is switched to the service position. No applications or network services will be started. To check the service bootlist, use the -o flag, which was introduced with AIX Version 4.2, as follows:

```
# bootlist -m service -o
```

```
fd0
cd0
rmt0
hdisk2
ent0
```

Another feature introduced with AIX Version 4.2 is the use of generic device names. Instead of pointing out the specified disk, such as hdisk0 or hdisk1, you can use the generic definition of SCSI disks. For example, the following command uses the generic SCSI definition:

```
# bootlist -m service cd rmt scdisk
```

This command will request the system to probe any CD-ROM or DVD-ROM, then probe any tape drive, and finally probe any SCSI disk, for a BLV. The actual probing of the disk is a check of sector 0 for a boot record that contains data that points out the location of the boot image.
Changes to the bootlist can also be made through the `diag` command menus. At the Function Selection menu, choose **Task Selection**, as shown in Figure 3-2.

![FUNCTION SELECTION](image)

Move cursor to selection. Then press Enter.

- **Diagnostic Routines**
 - This selection will test the machine hardware. Wrap plugs and other advanced functions will not be used.

- **Advanced Diagnostics Routines**
 - This selection will test the machine hardware. Wrap plugs and other advanced functions will be used.

- **Task Selection (Diagnose, Advanced Diagnose, Service Aids, etc.)**
 - This selection will list the tasks supported by these procedures. Once a task is selected, a resource menu may be presented showing all resources supported by the task.

- **Resource Selection**
 - This selection will list the resources in the system that are supported by these procedures. Once a resource is selected, a task menu will be presented showing all tasks that can be run on the resource(s).

F1=Help F10=Exit F3=Previous Menu

Figure 3-2 Function selection menu in diag

In the list of tasks, choose **Display or Change Bootlist**, as shown in Figure 3-3 on page 18.
Finally, you have to choose whether to change the Normal mode bootlist or the Service mode bootlist, as shown in Figure 3-4.

![Figure 3-4 Display/alter bootlist menu in diag](image)

From the list below, select a task by moving the cursor to the task and pressing 'Enter'. To list the resources for the task highlighted, press 'List'.

TASKS SELECTION LIST

From the list below, select a task by moving the cursor to the task and pressing 'Enter'. To list the resources for the task highlighted, press 'List'.

- Display Firmware Device Node Information
- Display Hardware Error Report
- Display Hardware Vital Product Data
- Display Microcode Level
- Display Previous Diagnostic Results
- Display Resource Attributes
- Display Service Hints
- Display Software Product Data
- Display System Environmental Sensors
- Display Test Patterns
- **Display or Change Bootlist**
- Download Microcode

![Figure 3-3 Task selection menu in diag](image)

DISPLAY/ALTER BOOTLIST

Select an option, then press Enter.

- **Normal mode bootlist**
 - This selection allows displaying, altering, or erasing the normal mode bootlist.

- **Service mode bootlist**
 - This selection allows displaying, altering, or erasing the service mode bootlist.

![Figure 3-4 Display/alter bootlist menu in diag](image)
At this point, a lot of things can cause a boot problem. The bootlist could point to a device that does not have a BLV, or the devices pointed to are not accessible because of hardware errors.

The following sections cover several problems that can cause a halt. All problems at this stage of the startup process have an error code defined, which is shown on the LED display on the operator panel of the system. These LED values are covered again in 4.3.5, “Common boot time LEDs” on page 57, with the additional codes not related to initial system startup.

LED 200
A LED code 200 is related to the secure key position. When the key is in the secure position, the boot will stop until the key is turned, either to the normal position or the service position. The boot will then continue.

LED 299
A LED code of 299 indicates that the BLV will be loaded. If this LED code is passed, then the load is successful. If, after passing 299, you get a stable 201, then you have to recreate the BLV, as discussed in “How to recreate the BLV” on page 19.

MCA LED codes
Table 3-1 provides a list of the most common LED codes on MCA systems. More of these can be found in the AIX base documentation.

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–195</td>
<td>Hardware problem during BIST.</td>
</tr>
<tr>
<td>200</td>
<td>Key mode switch in secure position.</td>
</tr>
<tr>
<td>201</td>
<td>If LED 299 passed, recreate BLV.</td>
</tr>
<tr>
<td></td>
<td>If LED 299 has not passed, POST encountered a hardware error.</td>
</tr>
<tr>
<td>221–229</td>
<td>The bootlist in NVRAM is incorrect (boot from media and change the</td>
</tr>
<tr>
<td>221</td>
<td>bootlist), or the bootlist device has no bootimage (boot from media and</td>
</tr>
<tr>
<td>223–229</td>
<td>recreate the BLV), or the bootlist device is unavailable (check for</td>
</tr>
<tr>
<td>225–229</td>
<td>hardware errors).</td>
</tr>
<tr>
<td>233–235</td>
<td></td>
</tr>
</tbody>
</table>

How to recreate the BLV
When the LED code indicates that the BLV cannot be loaded, you should start diagnosis by checking for hardware problems, such as cable connections. The
next step is to start the system in maintenance mode from an external media, such as an AIX installation CD-ROM. Use the Access this Volume Group startup menu after booting from the installation media, and start a shell menu for recreation of the BLV (this menu is also used if the boot problem was due to an incorrect bootlist). Execute the following command if you want to recreate the BLV on hdisk0:

```
# bosboot -ad /dev/hdisk0
```

Another scenario where you may want to create a BLV with the `bosboot` command is with a mirrored rootvg. Mirroring this volume group does not make the disks containing the mirrored data bootable. You still have to define the disks in the bootlist and execute the `bosboot` command on the mirrored devices.

The following is a short summary on how to access the maintenance menus. For more detailed information see Chapter 10, “Accessing a system that will not boot”, in the *AIX Version 5.0 Installation Guide, SC23-4112*.

1. Boot the system from the installation media.
2. At the installation menu, choose **Start Maintenance for System Recovery**.
3. On the next menu, choose **Access a Root Volume Group**.
4. A list of accessible disks is shown. Choose the rootvg disk.
5. Finally, choose **Access this Volume Group** and start a shell when you want to recreate the BLV. Change the bootlist or forgotten root password.

Choose **Access this Volume Group** and start a shell before mounting file systems if the file systems or the jfslog in rootvg are corrupt.

3.2.2 PCI systems

When booting PCI systems, there are important differences from the MCA systems. It has already been mentioned that there is an absence of BIST. Another difference is the absence of the key switch. Modern PCI systems use a logical keymode switch, which is handled by the use of function keys. Also, the diag function is missing on some older PCI systems. The following section discusses how to change the bootlist and the support of the normal and service boot options on PCI systems.

Changing the bootlist on PCI systems

All PCI systems have System Management Services (SMS) menus. On most systems, these menus can be accessed by pressing function key 1 (F1) or 1 when the console is initiated (the use of 1 or F1 depends on the use of graphical display or ASCII terminal). At this time, a double beep is heard. Depending on the PCI model, there are three or four choices in the SMS main menu. One of these is named boot. Under this menu, you can define the bootlist. The SMS
main menu from an RS/6000 Model 43P-140 is shown in Figure 3-5. Newer PCI systems also have an additional selection called multiboot.

Figure 3-5 SMS main menu

Changing the boot order can also be done with the bootlist command.

Normal boot and service boot on PCI systems

Some PCI systems do not support service mode (for example, the 7248-43P). The only way to boot in another mode, such as maintenance mode, is to change the normal bootlist. This can be done with the `bootlist -m normal` command, if the system is accessible. If the system is not accessible, this can be done by booting from installation media and changing the bootlist through the SMS menus.

All PCI systems have a default bootlist. On modern PCI systems, this default bootlist can be accessed (and from diag) by using the F5 function key. This is a good option to use when booting the system in single user mode for accessing stand-alone diag functions. This cannot be done on older PCI systems. Instead, a single bootlist is provided and can be reset to the default values by removing the battery for about 30 seconds. This is because the bootlist is stored in NVRAM, and the NVRAM is only non-volatile as long as the battery is maintaining the memory.
Newer PCI architecture machines (for example, the 43P-150) support a service bootlist. The simplest way to find out if a particular system supports the service boot option is to execute:

```
# bootlist -m service -o
0514-220 bootlist: Invalid mode (service) for this model
```

If you receive the previous error message, the system does not support the service boot option.

All new PCI systems support the following key allocations as standard:

- F1 or 1 on ASCII terminal: Starts System Management Services
- F5 or 5 on ASCII terminal: Boot diag (use default boot list of fd, cd, scdisk, or network adapter)
- F6 or 6 on ASCII terminal: Boot diag (use of custom service boot list)

POST LED codes on PCI systems

On old PCI systems, such as the 7020-40P or the 7248-43P, the LED display is missing, so there will be no LED codes to help solve boot problems. Fortunately, this has been changed on modern PCI systems, but the error codes generated during this phase of the system startup differs from model to model. The only way to figure out the exact meaning of an error code is to refer to the service guide delivered with the system. IBM provides a Web page where service guides for most PCI systems are available in HTML and PDF format. The URL is:

3.3 Boot phase 1

So far, the system has tested the hardware, found a BLV, created the RAMFS, and started the init process from the BLV. The rootvg has not yet been activated. From this step on, the boot sequence is the same on both MCA systems and PCI systems.

The workflow for boot phase 1 is shown in Figure 3-6 on page 23.
During this phase, the following steps are taken:

1. The init process started from RAMFS executes the boot script rc.boot 1. At this stage, the `restbase` command is called to copy the reduced ODM from the BLV into the RAMFS. If this operation fails, a LED code of 548 is presented.

2. After this, the `cfgmgr -f` command reads the Config_Rules class from the reduced ODM. In this class, devices with the attribute `phase=1` will be considered base devices. Base devices are all devices that are necessary to access rootvg. The process invoked with rc.boot 1 attempts to configure devices so that rootvg can be activated in the next rc.boot phase.

3. At the end of boot phase 1, the `bootinfo -b` command is called to determine the last boot device. At this stage, the LED shows 511.
3.4 Boot phase 2

In boot phase 2, the rc.boot script is passed to the parameter 2. The first part of this phase is shown in Figure 3-7.

![Diagram of boot phase 2 steps]

Figure 3-7 Boot phase 2, part one

During this phase, the following steps are taken.

1. The rootvg volume group will be varied on with the special `ipl_varyon` command. If this command is not successful, one of the following LED codes will appear: 552, 554, or 556.

2. After the successful execution of `ipl_varyon`, the root file system (/dev/hd4) is mounted on a temporary mount point (/mnt) in RAMFS. If this fails, 555 or 557 will appear in the LED display.

3. Next, the /usr and /var file systems are mounted. If this fails, the LED 518 appears. The mounting of /var, at this point, enables the system to copy an eventual dump from the default dump devices, /dev/hd6, to the default copy directory, /var/adm/ras.
4. After this, rootvg’s primary paging space, /dev/hd6, will be activated.

The second part of this phase is shown in Figure 3-8, and the following steps are taken:

1. The copy of rootvg’s RAMFS’ ODM and /dev directories will occur (mergedev). This is possible because the temporary mount point, /mnt, is used for the mounted root file system.

2. Next, the /usr and /var from the RAMFS are unmounted.

3. Finally, the root file system from rootvg (disk) is mounted over the root file system from the RAMFS. The mount points for the rootvg file systems become available. Now the /var and /usr file systems from the rootvg can be mounted again on their ordinary mount points.

There is no console available at this stage, so all boot messages will be copied to alog. The alog command can maintain and manage logs.
As mentioned, there are a lot of different possible problems in this phase of the boot. The following sections discuss how to correct some of them.

3.4.1 LED 551, 555, or 557

There can be several reasons for a system to halt with LED codes 551, 555, or 557. For example:

- A damaged file system
- A damaged journaled file system (JFS) log device
- A failing disk in the machine that is a member of the rootvg

To diagnose and fix these problems, you need to boot from a bootable media, access the maintenance menus, choose **Access a Volume Group**, and start a shell before mounting file systems, and then do one or all of the following actions:

- To ensure file system integrity, run the `fsck` command to fix any file systems that may be corrupted:
  ```
  # fsck -y /dev/hd1
  # fsck -y /dev/hd2
  # fsck -y /dev/hd3
  # fsck -y /dev/hd4
  # fsck -y /dev/hd9var
  ```

- To ensure the correct function of the log device, run the `logform` command on `/dev/hd8` to recreate the log device:
  ```
  # /usr/sbin/logform /dev/hd8
  ```

- If the BLV is corrupted, recreate the BLV and update the bootlist:
  ```
  # bosboot -a -d /dev/hdisk0
  # bootlist -m normal hdisk0
  ```

3.4.2 LED 552, 554, or 556

A LED code of 552, 554, or 556 during a standard disk-based boot indicates that a failure occurred during the varyon of the rootvg volume group. This can be the cause of:

- A damaged file system
- A damaged journaled file system (JFS) log device
- A bad IPL-device record or bad IPL-device magic number (the magic number indicates the device type)
- A damaged copy of the Object Data Manager (ODM) database on the boot logical volume
A hard disk in the inactive state in the root volume group
- A damaged superblock

To diagnose and fix the problem, you need to boot from the installation media, navigate the menus to access the volume group, and start a shell before mounting the file systems.

If the `fsck` command indicates that block 8 could not be read when used, as shown in 3.4.1, “LED 551, 555, or 557” on page 26, the file system is probably unrecoverable. The easiest way to fix an unrecoverable file system is to recreate it. This involves deleting it from the system and restoring it from a backup. Note that `/dev/hd4` cannot be recreated. If `/dev/hd4` is unrecoverable, you must reinstall AIX.

A corrupted ODM in the BLV is also a possible cause for these LED codes. To create a usable one, run the following commands that remove the system's configuration and save it to a backup directory:

```bash
# /usr/sbin/mount /dev/hd4 /mnt
# /usr/sbin/mount /dev/hd2 /usr
# /usr/bin/mkdir /mnt/etc/objrepos/bak
# /usr/bin/cp /mnt/etc/objrepos/Cu* /mnt/etc/objrepos/bak
# /usr/bin/cp /etc/objrepos/Cu* /mnt/etc/objrepos
# /usr/sbin/umount all
# exit
```

After this, you must copy this new version of the ODM in the RAMFS to the BLV. This is done with the `savebase` command. Before that, make sure you place it on the disk used for normal boot by executing:

```bash
# lslv -m hd5
```

Save the clean ODM database to the boot logical volume. For example:

```bash
# savebase -d /dev/hdisk0
```

Finally, recreate the BLV and reboot the system. For example:

```bash
# bosboot -ad /dev/hdisk0
# shutdown -Fr
```

Another possible reason for these error codes is a corrupted superblock. If you boot in maintenance mode and receive error messages such as Not an AIX file system or Not a recognized file system type, it is probably due to a corrupted superblock in the file system.

Each file system has two superblocks: One in logical block 1 and a copy in logical block 31. To copy the superblock from block 31 to block 1 for the root file system, issue the following command (before you use this command, check the
product documentation for the AIX release you are using to make sure all of the
parameters shown are correct):

```bash
# dd count=1 bs=4k skip=31 seek=1 if=/dev/hd4 of=/dev/hd4
```

3.4.3 LED 518

The 518 LED code has an unclear definition in the product documentation, which
reads:

- **Display Value 518**

 Remote mount of the / (root) and /usr file systems during network boot did not
 complete successfully.

This is not the entire problem. If the system runs into problems while mounting
the /usr from disk (locally, not a network mount), you will get the same error. Fix
this problem using the same procedure as you would for any other rootvg file
system corruption.

3.4.4 The alog command

Up until this stage, the system has not yet configured the console, so there is no
stdout defined for the boot processes. At this stage, the `alog` command is useful.

The `alog` command can maintain and manage logs. All boot information is sent
through the `alog` command. To look at the boot messages, use the following
command options:

```bash
# alog -ot boot
*************** no stderr ***************
--------------
Time: 12      LEDS: 0x538
invoking top level program -- "/usr/lib/methods/definet > /dev/null
2>&1;opt=`/usr/sbin/lsattr -E -l inet0 -a bootup_option -F value`
if [ $opt = "no" ];then nf=/etc/rc.net
else nf=/etc/rc.bsdnet
fi;$nf -2;x=$?;test $x -ne 0&&echo $nf failed. Check for invalid
command
s >&2;exit $x"
```

```
Time: 21      LEDS: 0x539
return code = 0
*************** no stdout ***************
```

The `alog` command with the `-C` option hangs the attributes for a specified log
type.
Assuming that you have an existing log type sample in the alog configuration database, to change the name of the log file for the log type sample to /var/sample.log, enter:

```
# alog -C -t sample -f /var/sample.log
```

The next step of the boot process checks the bootup_option to determine if a BSD-style configuration of TCP/IP services are to be used, or if the default of ODM-supported configuration should be used. During this stage, the LED codes 538 and 539 are shown, as provided in the preceding alog example.

3.5 Boot phase 3

In the boot process, the following boot tasks have been accomplished:

- Hardware configuration performed during BIST and POST
- The load of the BLV
- Phase 1, where base devices are configured to prepare the system for activating the rootvg
- Phase 2, where rootvg is activated

Finally, phase 3 is initiated by the init process loaded from rootvg. An outline of this phase is shown in Figure 3-9 on page 30.
The order of boot phase 3 is as follows:

1. Phase 3 is started in /etc/inittab.

2. The /tmp file system is mounted.

3. The rootvg is synchronized. This can take some time. This is why the `syncvg rootvg` command is executed as a background process. At this stage, the LED code 553 is shown.

4. At this stage, the `cfgmgr -p2` process for normal boot and the `cfgmgr -p3` process for service mode are also run. `cfgmgr` reads the Config.rules file from ODM and checks for devices with phase=2 or phase=3.

5. Next, the console will be configured. LED codes shown when configuring the console are shown on the following page. After the configuration of the console, boot messages are sent to the console if no STDOUT redirection is made. Many of these boot messages scroll past at a fast pace, so there is not
always time to read all of the messages. However, all missed messages can be found in /var/adm/ras/conslog.

6. Finally, the synchronization of the ODM in the BLV with the ODM from the / (root) file system is done by the `savebase` command.

When the `cfgcon` process is called, different LED codes are shown depending on which device is configured.

The `cfgcon` LED codes include:

- **c31** Console not yet configured. Provides instructions to select console.
- **c32** Console is an LFT terminal.
- **c33** Console is a TTY.
- **c34** Console is a file on the disk.

3.5.1 The `/etc/inittab` file

The `/etc/inittab` file supplies configuration scripts to the init process. In Figure 3-10, the highlighted line is the file record that runs `rc.boot` with parameter 3.

```bash
init:2:initdefault:
srcstrap:/sbin/rc.boot 3 >/dev/console 2>&1 # Phase 3 of system boot
powerfail:/etc/rc.powerfail 2>&1 1 alog -tboot > /dev/console # Power Failure Detection
rc:2:wait:/etc/rc 2>&1 1 alog -tboot > /dev/console # Multi-User checks
fbcheck:2:wait:/usr/sbin/fbcheck 2>&1 1 alog -tboot > /dev/console # run /etc/Fbcheck
srcstr:2:respawn:/usr/sbin/srcstr # System Resource Controller
rctcpip:2:wait:/etc/rc.tcpip > /dev/console 2>&1 # Start TCP/IP daemons
rcnfs:2:wait:/etc/rc.nfs > /dev/console 2>&1 # Start NFS Daemons
cron:2:respawn:/usr/sbin/cron
probe:2:wait:/usr/lib/ldp/pio/etc/pioinit >/dev/null 2>&1 # pb cleanup
qdaemon:2:wait:/usr/bin/startsrc -sqdaemon
writesrv:2:wait:/usr/bin/startsrc -swritesrv
```

Figure 3-10 Example of `rc.boot` 3 in `/etc/inittab`
The /etc/inittab file is composed of entries that are position dependent and have the following format:

Identifier:RunLevel:Action:Command

The first line in /etc/inittab (initdefault) defines what run level is to be considered as a default run level. In the example provided, the run level is 2, which means a normal multi-user boot. In the case of a multi-user boot, all records with run level 2 will be executed from the /etc/inittab file. If this value is missing, you are prompted at boot to define the run level.

The rc.boot line is to be executed on all run levels (this equals run level 0123456789). The action defined, sysinit, has to finish before continuing with the next line in /etc/inittab. From rc.boot 3, among other things, the rootvg is synchronized, the mirroring is started, and the /tmp directory mounted. A detailed description of /etc/inittab is provided in IBM @server Certification Study Guide - pSeries AIX System Support, SG24-6199.

3.5.2 LED 553

A LED code of 553 is caused when the /etc/inittab file cannot be read. To recover from a LED 553, check /dev/hd3 and /dev/hd4 for space problems and erase unneeded files to free up disk space. Check the /etc/inittab file for corruption and correct the errors if necessary. Typical syntax errors found in /etc/inittab, as seen at the support centers, are entries that are incorrectly defined in the file. When editing /etc/inittab, the inittab commands should be issued. For example:

- mkitab
- chitab

It is helpful to remember that /etc/inittab is very sensitive to even the most trivial syntax error. A misplaced dot can halt the system boot.

3.5.3 LED c31

LED code c31 is not really an error code, but the system is waiting for input from the keyboard. This is usually encountered when booting from CD-ROM or a mksysb tape. This is normally the dialog to select the system console.

3.5.4 LED 581

LED code 581 is not really an error code. LED 581 is shown during the time that the configuration manager configures TCP/IP and runs /etc/rc.net to do specific adapter, interface, and host name configuration.
A problem is when the system hangs while executing /etc/rc.net. The problem can be caused by either a system or a network problem that happens because TCP/IP waits for replies over an interface. If there are no replies, the wait eventually times out and the system marks the interface as down. This time-out period varies and can range from around three minutes to an indefinite period.

The following problem determination procedure is used to verify that the methods and procedures run by /etc/rc.net are causing the LED 581 hang:

1. Boot the machine in service mode.
2. Move the /etc/rc.net file to a safe location:

 \texttt{mv /etc/rc.net /etc/rc.net.save}

3. Reboot in normal mode to see if the system continues past the LED 581 and allows you to log in.

 \textbf{Note:} The previous steps assume that DNS or NIS is not configured.

If you determine that the procedures in /etc/rc.net are causing the hang, that is, the system continued past LED 581 when you performed the steps above, the problem may be one of the following:

- Ethernet or token-ring hardware problems
 Run diagnostics and check the error log.
- Missing or incorrect default route
- Networks not accessible
 Check that the gateways, name servers, and NIS masters are up and available.
- Bad IP addresses or masks
 Use the \texttt{iptrace} and \texttt{ipreport} commands for problem determination.
- Corrupt ODM
 Remove and recreate network devices.
- Premature name or IP address resolution
 Either named, ypbind/ypserv, or /etc/hosts may need correction.
- Extra spaces at the ends of lines in configuration files
 Use the \texttt{vi} editor with the set list subcommand to check files, such as the /etc/filesystems file, for this problem.
- LPP installations or configurations with errors
 Reinstall the LPP.
A specific LED 581 hang case occurs when ATMLE is being used with DNS. If you are experiencing this problem, you can either work around the problem by adding a host=localhost,bind entry to the /etc/netsvc.conf file or by adding the following lines to the /etc/rc.net file:

```
# Part III - Miscellaneous Commands.
# Set the hostid and uname to `hostname`, where hostname has been
# set via ODM in Part I, or directly in Part II.
# (Note it is not required that hostname, hostid and uname all be
# the same).
export NSORDER="local"  <<========NEW LINE ADDED HERE
/usr/sbin/hostid `hostname` =>$LOGFILE 2>&1
/bin/uname -S`hostname|sed 's/..$//'` =>$LOGFILE 2>&1
unset NSORDER  <<========NEW LINE ADDED HERE
```

3.5.5 pSeries servers

Although new pSeries servers have the same basic boot steps, the LEDs are displayed differently. Please consult your specific pSeries service guide for more information. Following is an example of IBM pSeries 690 boot phases.

The IPL process starts when AC power is connected to the system. The IPL process has the following phases.

Phase 1: Service processor initialization

Phase 1 starts when AC power is connected to the system and ends when OK is displayed in the media subsystem operator panel. 8xxx checkpoints are displayed during this phase. Several 9xxx codes may also be displayed. Service processor menus are available at the end of this phase by striking any key on the console keyboard.

Phase 2: Hardware initialization by the service processor

Phase 2 starts when system power-on is initiated by pressing the power on button on the media subsystem operator panel. 9xxx checkpoints are displayed during this time. 91FF, the last checkpoint in this phase, indicates that the transition to phase 3 is taking place.

Phase 3: System firmware initialization

On a full system partition, at phase 3, a system processor takes over control and continues initializing partition resources. During this phase, checkpoints in the
form Exxx are displayed. E105, the last checkpoint in this phase, indicates that control is being passed to the AIX boot program. On a partitioned system, there is a global system-wide initialization phase 3, during which a system processor continues the initialization process. Checkpoints in this phase are of the form Exxx. This global phase 3 ends with a LPAR... on the operator panel. As a logical partition begins a partition-initialization phase 3, one of the system processors assigned to that partition continues initialization of resources assigned to that partition. Checkpoints in this phase are also of the form Exxx. This partition phase 3 ends with an E105 displayed on the partition’s virtual operator panel on the HMC, indicating control has been passed to that logical partition’s AIX boot program. For both the global and partition phase 3, location codes may also be displayed on the physical operator panel and the partition’s virtual terminal, respectively.

Phase 4: AIX boot
When AIX starts to boot, checkpoints in the form 0xxx and 2xxx are displayed. This phase ends when the AIX login prompt displays on the AIX console.

3.6 Boot-related information in the error log

Because the function of the error log should be familiar to you from your previous certification training, this section will only cover boot-related messages.

The error log facility provides historical information on system boots and what may have caused them. One way to find the reboot time stamp is to check for when error logging has been turned on, as shown in the following example:

```
# errpt
 IDENTIFIER  TIMESTAMP  T C RESOURCE_NAME  DESCRIPTION
 499B30CC  0711125600  T H ent1  ETHERNET DOWN
 1104AA28  0711125200  T S SYSPROC  SYSTEM RESET INTERRUPT RECEIVED
 9DBCFDEE  0711125500  T O errdemon  ERROR LOGGING TURNED ON
 499B30CC  0707114100  T H ent1  ETHERNET DOWN
 499B30CC  0707113700  T H ent1  ETHERNET DOWN
 C60BB505  0705101400  P S SYSPROC  SW PROGRAM ABNORMALLY TERMINATED
 35BFC499  0705101100  P H cd0  DISK OPERATION ERROR
 0BA49C99  0705101100  T H scsi0  SCSI BUS ERROR
 9DBCFDEE  0704153700  T O errdemon  ERROR LOGGING TURNED ON
 192AC071  0704153700  T O errdemon  ERROR LOGGING TURNED OFF
 9DBCFDEE  0704152600  T O errdemon  ERROR LOGGING TURNED ON
```

Every time the system is booted, the error log facility is started. In the previous example, the system has been gracefully shut down two times on the 4th of July.
When the system is gracefully shut down, the error logging facility is also shut down, as the error log entry 192AC071 shows. In the case of the reboot on the 11th of July, there is no stop of the error log facility reported; in other words, that shutdown cannot be considered graceful. Three minutes before the reboot (12:55), a system reset is reported (the line above with the 12:52 time stamp). The reason for the non-graceful reboot is often reported sequentially later than the reboot. The reason for the reboot (the use of the Reset button) is shown highlighted in the following example:

```
# errpt -aj 1104AA28
```

```
LABEL:          SYS_RESET
IDENTIFIER:     1104AA28
Date/Time:       Tue Jul 11 12:52:54
Sequence Number: 12
Machine Id:      000BC6D4C00
Node Id:         server3
Class:           S
Type:            TEMP
Resource Name:   SYSPROC

Description
SYSTEM RESET INTERRUPT RECEIVED

Probable Causes
SYSTEM RESET INTERRUPT

Detail Data
KEY MODE SWITCH POSITION AT BOOT TIME
normal
KEY MODE SWITCH POSITION CURRENTLY
normal
```

3.7 Boot summary

The following section provides short summaries of the boot phases and some common LED codes.

Boot phases

BIST and POST are used to test hardware and to find a successful hardware path to a BLV.

Boot phase 1 (init rc.boot 1) is used to configure base devices.

Boot phase 2 (init rc.boot 2) is used to activate the rootvg.
Boot phase 3 (init /sbin/rc.boot 3) is used to configure the rest of the devices.

LED codes

The LED codes during POST on an MCA system are listed in Table 3-2.

Table 3-2 MCA POST LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason/action</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–195</td>
<td>Hardware problem during BIST.</td>
</tr>
<tr>
<td>200</td>
<td>Key mode switch in secure position.</td>
</tr>
<tr>
<td>201</td>
<td>If LED 299 passed, recreate BLV. If LED 299 has not passed, POST encountered a hardware error.</td>
</tr>
<tr>
<td>221</td>
<td>The bootlist in NVRAM is incorrect (boot from media and change the bootlist), or the bootlist device has no bootimage (boot from media and recreate the BLV), or the bootlist device is unavailable (check for hardware errors).</td>
</tr>
<tr>
<td>221</td>
<td></td>
</tr>
<tr>
<td>221–229</td>
<td></td>
</tr>
<tr>
<td>223–229</td>
<td></td>
</tr>
<tr>
<td>225–229</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td></td>
</tr>
<tr>
<td>233–235</td>
<td></td>
</tr>
</tbody>
</table>

The LED codes shown during boot phase 2 are listed in Table 3-3.

Table 3-3 Boot phase 2 LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason/action</th>
</tr>
</thead>
<tbody>
<tr>
<td>551</td>
<td>Corrupted file system, use the <code>fsck -y device</code> command.</td>
</tr>
<tr>
<td>555</td>
<td>Corrupted jfslog, use the <code>/usr/sbin/logform /dev/hd8</code> command.</td>
</tr>
<tr>
<td>557</td>
<td>Corrupted BLV, use the <code>bosboot -ad device</code> command.</td>
</tr>
<tr>
<td>552</td>
<td>The ipl_varyon failed. Except for the reason mentioned above (551, 555, or 557):</td>
</tr>
<tr>
<td>554</td>
<td>▶ Corrupted ODM, backup ODM; recreate with <code>savebase</code>.</td>
</tr>
<tr>
<td>556</td>
<td>▶ Superblock dirty; copy in superblock from block 31.</td>
</tr>
<tr>
<td>518</td>
<td><code>/usr</code> cannot be mounted: If <code>/usr</code> should be mounted over the network, check for network problem. If <code>/usr</code> is to be mounted locally, fix the file system.</td>
</tr>
</tbody>
</table>

The LED codes shown during boot phase 3 are listed in Table 3-4.

Table 3-4 Boot phase 3 LED codes

<table>
<thead>
<tr>
<th>LED</th>
<th>Reason/action</th>
</tr>
</thead>
<tbody>
<tr>
<td>553</td>
<td>Syntax error in <code>/etc/inittab</code>.</td>
</tr>
</tbody>
</table>
3.8 Command summary

The following section provides a list of the key commands discussed in this chapter.

3.8.1 The errpt command

The `errpt` command is used to check for errors reported by the error log facility.

The syntax of the `errpt` command is provided in the following examples.

To process a report from the error log, the syntax is:

```
errpt [ -a ] [ -A ] [ -c ] [ -d ErrorClassList ] [ -D ] [ -e EndDate ] [ -g ]
[ -i File ] [ -I File ] [ -j ErrorID [ ,ErrorID ] ] | [ -k ErrorID [ ,ErrorID ] ]
[ -l SequenceNumber ] [ -m Machine ] [ -n Node ] [ -s StartDate ]
[ -F FlagList ] [ -N ResourceNameList ] [ -t ] [ -d ErrorClassList ]
[ -j ErrorID [ ,ErrorID ] ] | [ -k ErrorID [ ,ErrorID ] ]
[ -F FlagList ] [ -P ] [ -T ErrorTypeList ] [ -y File ] [ -z File ]
```

To process a report from the error record template repository, the syntax is:

```
errpt [ -a ] [ -A ] [ -I File ] [ -t ] [ -d ErrorClassList ]
[ -j ErrorID [ ,ErrorID ] ] | [ -k ErrorID [ ,ErrorID ] ]
[ -F FlagList ] [ -P ] [ -T ErrorTypeList ] [ -y File ] [ -z File ]
```

Some useful `errpt` command flags are provided in Table 3-5.

Table 3-5 Commonly used flags of the `errpt` command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Detailed output</td>
</tr>
<tr>
<td>-j <code>error identifier</code></td>
<td>Includes only the error-log entries specified by the ErrorID (error identifier) variable</td>
</tr>
<tr>
<td>-s <code>StartDate</code></td>
<td>Specifies all records posted on and after the StartDate variable</td>
</tr>
<tr>
<td>-T <code>ErrorTypeList</code></td>
<td>Limits the error report to error types specified by the valid ErrorTypeList variables: INFO, PEND, PERF, PERM, TEMP, and UNKN</td>
</tr>
</tbody>
</table>
3.8.2 The `w` command

The `w` command prints a summary of current system activity.

The syntax of the `w` command is:

```
  w [ -h ] [ -u ] [ -w ] [ -l | -s ] [ User ]
```

Some useful `w` command flags are provided in Table 3-6.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td>Prints the time of day, amount of time since last system startup, number of users logged on, and number of processes running. Same output as the <code>uptime</code> command.</td>
</tr>
</tbody>
</table>

3.9 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. While a machine is booting up, several error messages are appearing on the screen. The user is not able to write down all of the errors. However, the user can refer to the console log file stored by default. Which of the following indicates where the console log file is located by default?

 A. `/tmp/conslog`
 B. `/tmp/console.log`
 C. `/var/adm/ras/conslog`
 D. `/var/adm/ras/console.log`

2. A system is hanging with a LED code of 581. This means that the system is hanging while running `/etc/rc.net`. Which of the following procedures should be performed next?

 A. Run `rm /etc/rc.net` and then reboot.
 B. Replace the network interface adapter.
 C. Reboot the system into service mode and run `rmdev -d ent0`.
 D. Reboot the system into service mode and run `mv /etc/rc.net /etc/rc.net.save`.
3. A file system is being mounted but failed. After running the `fsck` command the problem is still not resolved. Which of the following commands should run next?
 A. Run `savebase`.
 B. Run `logform`.
 C. Run `sync1vodm`.
 D. Restore file system from mksysb.

4. After applying patches, no preventative steps were taken. As a result, the system hangs during the reboot with the following message: *starting tcp/ip daemons*. All of the following procedures are applicable to fixing the problem except:
 A. Checking `/etc/inittab`
 B. Checking `/etc/rc.tcpip`
 C. Checking name resolution
 D. Running the `bosboot` command to fix bootable image

5. A system was rebooted in normal mode but hung after the multi-user initialization completed. The `alog -ot boot` command indicated the following:
   ```plaintext
   Saving Base Customize Data to boot disk
   Starting the sync daemon
   Starting the error daemon
   Starting Multi-user Initialization
   Performing auto-varyon of Volume Groups
   Activating all paging spaces
   Swapon: Paging device `/dev/hd6` activated.
   `/dev/rhd1` (/home): #;#; Unmounted cleanly - Check suppressed
   Performing all automatic mounts
   Multi-user initialization completed
   ```
 Once the system is booted into maintenance mode, which of the following procedures should be performed to first attempt to fix the problem?
 A. Run `fsck`.
 B. Check the `/etc/rc` file for any incorrect entries.
 C. Check `/etc/filesystems` for any incorrect entries.
 D. Edit `/etc/inittab` and comment out the `rctcpip` and `rcnfs` lines.
6. A system was running fine until a power outage occurred during the reboot. As a result, the system LED displayed cycles between 223 and 229. Which of the following procedures should be performed next?

A. Power off/up the system.
B. Boot into maintenance mode and run fsck.
C. Boot into maintenance mode and run bosboot.
D. Boot into maintenance mode and check the bootlist.
3.9.1 Answers

The following are the preferred answers to the questions provided in this section.

1. C
2. D
3. B
4. D
5. D
6. D

3.10 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

Do not perform these exercises on a production system or data:

1. Create a file system for this exercise and copy in some files to the file system, then destroy the first super block. This can be done by copying 4 KB from /dev/zero to block 1 on your logical volume. For example:

   ```
   dd count=1 bs=4k seek=1 if=/dev/zero of=/dev/thomasclv
   ```

 Try to mount the file system and run `fsck` on the file system to determine the problem. Finally, fix the problem as described in this chapter.

2. Still on your test system, with verified mksysb at hand, make a backup of /etc/inittab. Remove the first uncommented line and try to reboot. You are, at reboot, prompted for what?

 After the boot has finished, edit the /etc/inittab and change a dot to a comma or a colon to semicolon on a line with action=wait. What happens? Which LED code is displayed? What do you have to do to fix this?
Hardware problem determination

The following topics are discussed in this chapter:

▸ Hardware basics
▸ Running diagnostics
▸ SSA problem determination
▸ Three-digit display codes

This chapter discusses common hardware-related problem determination. It provides problem-resolving procedures based on the system architecture.
4.1 Hardware basics

RS/6000 and pSeries servers are available in a variety of models. A server can be in single processor or multiprocessor configurations. Currently, models comply to a number of architecture specifications, such as Micro Channel, PowerPC Reference Platform (PREP), Common Hardware Reference Platform (CHRP), and RS/6000 Platform Architecture (RPA).

The hardware platform type is an abstraction that allows machines to be grouped according to fundamental configuration characteristics, such as the number of processors or I/O bus structure. Machines with different hardware platform types have basic differences in the way their devices are dynamically configured at boot time. Currently available hardware platforms, which are able to be differentiated by software, in the RS/6000 and pSeries family are:

- rs6k: Micro Channel-based uni-processor models
- rs6ksmp: Micro Channel-based symmetric multiprocessor models
- rspc: ISA-bus models
- chrp: PCI-bus models

In order to determine the hardware platform type on your machine, enter the following command:

```
# bootinfo -p
chrp
```

4.1.1 Hardware inventory

To determine a system's hardware inventory, use either the `lsdev` command or the `lscfg` command. These commands show different aspects of installed devices. The `lsdev` command displays information about devices in the device configuration database.

```
# lsdev -C
sys0     Available 00-00         System Object
sysplanar0 Available 00-00         System Planar
pci0     Available 00-fef00000    PCI Bus
pci1     Available 00-fee00000    PCI Bus
pci2     Available 00-fed00000    PCI Bus
isa0     Available 10-58         ISA Bus
sa0      Available 01-S1         Standard I/O Serial Port
sa1      Available 01-S2         Standard I/O Serial Port
scsi1    Available 30-58         Wide SCSI I/O Controller
cd0      Available 10-60-00-4,0   SCSI Multimedia CD-ROM Drive
mem0     Available 00-00         Memory
proc0    Available 00-00         Processor
```
The output shows whether the device is in the Available or Defined state.

Use the `lscfg` command to display vital product data (VPD) such as part numbers, serial numbers, microcode level, and engineering change levels from either the Customized VPD object class or platform-specific areas. To display all of these features for hdisk1, enter:

```
# lscfg -vp -l hdisk1
```

DEVICE LOCATION DESCRIPTION

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>LOCATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>hdisk1</td>
<td>10-60-00-9,0</td>
<td>16 Bit SCSI Disk Drive (9100 MB)</td>
</tr>
</tbody>
</table>

- Manufacturer: IBM
- Machine Type and Model: DNES-309170W
- FRU Number: 25L3101
- ROS Level and ID: 53414730
- Serial Number: AJ286572
- EC Level: F42017
- Part Number: 25L1861
- Device Specific.(Z0): 0000003029F00013A
- Device Specific.(Z1): 25L2871
- Device Specific.(Z2): 0933
- Device Specific.(Z3): 00038
- Device Specific.(Z4): 0001
- Device Specific.(Z5): 22
- Device Specific.(Z6): F42036

PLATFORM SPECIFIC

- Name: sd
- Node: sd
- Device Type: block
The most important fields in the previous example are:

FRU Number
Use this number to order the same device in case of damage to the original one.

ROS Level and ID
This is the microcode level, and it is used to determine the firmware version in your device.

To display attribute characteristics and possible values of attributes for devices in the system, use the `lsattr` command:

```
# lsattr -El hdisk1
pvid 000bc6ddc63c403800000000000000000 Physical volume identifier False
queue_depth 3 Queue DEPTH False
size_in_mb 9100 Size in Megabytes False
```

Note: It is a good practice to have a printout from the `lscfg`, `lsdev`, and `lsattr` commands to maintain and track your system inventory.

4.2 Running diagnostics

Hardware diagnostics can be run in three different ways:

- The first way is concurrent mode, where the system is up and running with users online, all processes running, and all volume groups being used.
- The second way is service mode. This is when you have the machine with AIX running, but with the minimum amount of processes started and only rootvg varied on.
- The third way is stand-alone diagnostics from CD-ROM. The CD-ROM-based diagnostics are a completely isolated version of AIX, so any diagnostics run are totally independent of the AIX setup on the machine being tested.

What method you select depends upon the circumstances, such as:

- Are you able to test the device? Is the device in use?
- Do you need to decide if the problem is related to hardware or AIX? Stand-alone diagnostics from CD-ROM or diskette are independent of the machine operating system. Advanced diagnostics run using the diagnostic CD-ROM or diskettes and completing successfully should be taken as proof of no hardware problem.
The method you use to run diagnostics varies with the machine type. The next sections describe how to run all the diagnostic modes on the most common machine types.

There are a few RS/6000 models that do not have the capability to run AIX-based diagnostics. The most common of these are the 7020-40P and 7248-43P. To run diagnostics on these models, you must have the SMS diskette for the machine.

Maintenance mode is a function of the `shutdown -m` command, which is sometimes referred to as single-user mode. It provides a limited working environment where networking services and user access is limited.

4.2.1 Concurrent mode

Concurrent mode diagnostics are run while AIX is running on the machine and potentially sharing the environment with users. To run diagnostics concurrently, you must have root authority and use one of the following methods:

1. To run diagnostics on a specific device, use the following command:
   ```
   diag -d [resource name]
   ```
 This command enables you to test a specific device directly without the need to pass through a number of menus. The diagnostic process run is the Advanced Diagnostic process.

2. To go directly to the main diagnostics menu, use the `diag` command.

3. Using SMIT, select the following menus in the order provided.
 a. Problem Determination
 b. Hardware Diagnostics
 c. Current shell

Methods 2 and 3 will present the entry screen of the diagnostics menu. If you press Enter, you will be provided a menu, as shown in Figure 4-1 on page 48.

Note: If you are going to boot from a CD-ROM or a mksysb tape on a machine that has a configuration with two or more SCSI adapters sharing the same SCSI bus, check that no SCSI adapters on the shared bus are set at address 7. If you boot from bootable media, the bootable media will automatically assign address 7 to all SCSI adapters on the machine being booted. This will cause severe problems on any other machines sharing the same SCSI bus that have address 7 IDs set on their adapters.
Diagnostic Routines

This set of routines is primarily aimed at the operator of the machine. When the diagnostics are run using this option, there will be no prompts to unplug devices or cables, and no wrap plugs are used. Therefore, the testing done by this method is not as comprehensive as the testing performed under Advanced Diagnostics. In some cases, it can produce a No Trouble Found result when there is an actual problem.

Advanced Diagnostics Routines

This set of routines will run diagnostic tests that will ask you to remove cables, plug and unplug wrap plugs, and use various other items. As a result, the tests run are as detailed as possible. Generally, if you get a No Trouble Found result using Advanced Diagnostics, you can be reasonably certain the devices tested have no hardware defects.

Task Selection

This section is sometimes referred to as Service Aids. There are many useful tools within this section. The use of this option is discussed in 4.2.4, “Task selection or service aids” on page 52.
After you have selected the level of diagnostics you wish to run, you are presented with a menu to select the Problem Determination method or the System Verification method.

Problem Determination

This selection will run the diagnostic routine and search the AIX error log for any errors posted in the previous 24 hours against the device you are testing. It will then use the sense data from any error log entry for the device being tested in conjunction with the results of the diagnostic testing of the device to produce a Service Request Number (SRN). This method must be used to determine the cause of any machine checks and checkstops on 7025 and 7026 machine types. If you are performing diagnostics more than seven days after the machine check occurred, then you will need to set the system date and time to within seven days of the machine check time stamp. The seven-day period is required when using AIX Version 4.3.1 and later. If you are using AIX Version 4.3.0 or earlier, the system date and time must be within 24 hours of the checkstop entry.

System Verification

Use this selection if you have just replaced a part or performed a repair action. System verification runs a diagnostic routine on the device but does not refer to the AIX error log, so it reflects the machine's condition at the time of running the test. You can also use system verification when you just want to run a direct test to a device or whole machine.

Concurrent mode provides a way to run diagnostics online to system resources while AIX is up and running and users are logged on.

Since the system is running in normal operation, some resources cannot be tested in concurrent mode. The following list shows which resources cannot be tested:

- SCSI adapters used by disks connected to paging devices
- Disk drives used for paging
- Memory
- Processors

Depending on the status of the device being tested, there are four possible test scenarios in concurrent mode:

- Minimal testing is used when the device is under the control of another process.
- Partial testing occurs when testing is performed on an adapter or device that has some processes controlling part of it. For example, testing unconfigured ports on an 8-port RS232 adapter.
Full testing requires that the device be unassigned and unused by any other process. Achieving this condition may require commands to be run prior to the commencement of the diagnostic testing.

When tests are run for CPU or memory, the diagnostics refer to an entry in the NVRAM that records any CPU or memory errors generated during initial testing done at system power on. By analyzing these entries, the diagnostics produce any relevant SRNs.

4.2.2 Stand-alone diagnostics from disk - service mode

Service mode enables you to run tests to the devices that would ordinarily be busy if you ran diagnostics with the machine up in normal mode boot (for example, the network adapter ent0). However, you still will not be able to test any SCSI device that is attached to the same SCSI adapter as disks containing paging space or rootvg. Stand-alone diagnostics from disk are started when you boot up the machine in service mode boot. The method that you employ to get a service mode boot depends upon the type of machine.

MCA machines

To start a service mode boot, power off the machine, then perform the following steps:

1. Set the key mode switch of the machine to the Service position.
2. Power on the machine without a CD-ROM, tape, or diskette in the machine.

After a period of time, you will see the Diagnostics Entry screen appear on the console. Press Enter and proceed to the screen that gives you the choice of diagnostics to run.

PCI machines

This section applies to machines of model type 7017, 7024, 7025, 7026, 7043, 7046, and newer. It does not apply to PCI machine types 7020 or 7248.

To start a service mode boot, power off the machine, then perform the following steps:

1. Turn on the machine power.
2. After a short period of time, you will see the Icons screen. At this point, press F6 if using a graphics console, or 6 if using an ASCII terminal. If you are using the graphics console, the display device may have power saving enabled, and it will take time to warm up and display the icon images. This can cause you to miss the Icon screen being displayed. In this situation, observe the power LED on the display device, and when it changes from orange to green, press the F6 key.
Once the keyboard input has been processed, the machine will display a Software Starting screen. This is followed by more information that indicates that the SCSI ID of the boot device is being used. Once diagnostics have been loaded, you will have the Diagnostic Entry screen displayed.

4.2.3 Stand-alone diagnostics from CD-ROM

Stand-alone diagnostics run from CD-ROM or diskettes is a good way of proving if the problem is a hardware or an AIX problem. The CD-ROM or diskettes load a totally independent version of AIX onto the machine as a RAM image. If you get a No Trouble Found result using advanced diagnostics using all of the test equipment asked for during the diagnostic, the probability of there being a hardware problem is extremely small. In such cases, the underlying cause of the problem is most often software related.

MCA machines

This section describes how to boot from CD-ROM on MCA machines and from diskette for the early level of MCA machines.

Boot from CD-ROM

To boot from CD-ROM, complete the following steps:

1. Power off the machine.
2. Turn the key mode switch to the Service position.
3. Power on the machine and place the Diagnostic CD-ROM in the drive.

For the machine to boot from the Diagnostic CD-ROM, there must be an entry in the bootlist that includes the CD-ROM. Using the code on the CD-ROM, the machine will boot, eventually pausing when displaying c31 in the LED panel. The code c31 is an indication that you need to select a system console. After selecting a console at the prompt, the Diagnostic Entry screen is displayed, followed by subsequent screens. One of these subsequent screens will prompt you to enter the terminal type. Make sure you know the type before you proceed, since a wrong entry could result in you having to restart the process from the beginning.

PCI bus machines

This section applies to machines of model type 7017, 7024, 7025, 7026, 7043, 7046, and newer. It does not apply to PCI machine types 7020 or 7248.

To start a CD-ROM boot, use the following procedures:

1. Power off the machine.
2. Turn on machine power.
3. Place the CD-ROM into the drive.

4. After a short period of time, you will see the Icons screen. At this point, press F5 if you are using a graphics console, or 5 if you are using an ASCII terminal. If you are using the graphics console, sometimes the display screen will have power saving enabled, and will take time to warm up before anything can be seen on the screen. This can cause you to miss the Icon screen display. In this situation, observe the power LED on the display device, and when it changes from orange to green, then press the F5 key (E1F1 LEDs are shown).

After performing the previous steps, you will get various screens displayed, one of which will indicate to you the SCSI address of the device that the machine is booting from. Following this screen, the Diagnostic Entry screen is displayed.

4.2.4 Task selection or service aids

The diagnostics described in this section are known by two names: task selection or service aids, depending upon the level of diagnostics you are using. Task selection is the name used by AIX Version 4.3.2; however, in AIX Version 4.1.4, the same menu is known as service aids. This portion of the diagnostic package is equally as useful in the diagnosis of faults as the diagnostic routines themselves. The next few sections will cover a selection of the service aids available.

Local area network service aid

This service aid is useful in the diagnosis of network problems. It enables you to type in IP addresses of both a source machine and a target machine. When activated, it will tell you if it managed to connect to the target machine. If it failed, it will try and give you a reason why it could not reach the destination host. The result of this can help in fault diagnosis.

Microcode download

Using this service aid makes manipulation of microcode much easier than doing it from the command line. As a result, you are less liable to make a mistake.

The microcode download facility is also available when using the Diagnostic CD-ROM. This enables you to download microcode to devices that are not capable of being updated when AIX is running.

SCSI bus analyzer

This is one of the most useful service aids. It enables you to issue a SCSI inquiry command to any device on any SCSI bus connected to the machine. The results that are returned give you a good idea of the problem.
The results returned are:

- The exerciser transmitted a SCSI inquiry command and did not receive any response back. Ensure that the address is valid, then try this option again.
- The exerciser transmitted a SCSI inquiry command and received a valid response back without any errors being detected.
- A check condition was returned from the device.

To run this service aid, perform the following steps:

1. From the Task Selection menu, select **SCSI Bus Analyzer**.
2. Next, select the adapter that has the device that you wish to test attached to it.
3. Use the Tab key to increment the SCSI ID field to the number you want to test.
4. Press F7 to confirm your selection.
5. Press Enter to commence the test.

If the device is working correctly, an affirmative system message should be returned almost instantly. If there is a problem, it should return an answer after a few seconds. Sometimes a device that has a severe check condition will hang the service aid. If this is the case, press Ctrl+C to exit from the service aid.

Disk maintenance

The disk-to-disk copy will only work with SCSI disks that pass diagnostics and ideally have minimal errors when the certify process is run. If the error rate is too high when a disk-to-disk copy is being run, the program will fail. You will find it useful if the customer situation is such that they have no backup and the disk is unstable but running. Disk-to-disk copy differs from an AIX-based migrate operation because it does not alter the source disk when finished, as the `migratepv` command does. Disk-to-disk copy is best run from CD-ROM diagnostics, which requires you to have the exclusive use of the machine while the disk copying takes place. Also, the disk to be copied to must not be smaller or more than 10 percent larger in size than the source disk. The copied disk will have the same PVID as the original, so the defective disk must be removed from the machine before starting AIX.

SSA service aids

This service aid can be used to help diagnose SSA subsystem problems. It is also used to physically identify and control SSA disks in the tower or drawer. This function greatly speeds the locating of specific disks, especially in very large installations.
4.3 Serial Storage Architecture disks

The Serial Storage Architecture (SSA) disk subsystem is capable of being externally connected to one or more RS/6000 or pSeries systems. Certain models of RS/6000 and pSeries can also be configured with internal SSA disks. SSA devices are connected through two or more SSA links to an SSA adapter that is located in the system used. The devices, SSA links, and SSA adapters are configured in loops. Each loop provides a data path that starts at one connector of the SSA adapter and passes through a link (SSA cable) to the devices. The loop continues through the devices, then returns through another link to a second connector on the SSA adapter. Each adapter is capable of supporting two loops. Each loop can have between one and 48 devices. A loop can have as many as eight SSA adapters connected in up to eight systems, but this is dependent on the type of SSA adapter being used and how they are configured. Again, dependent on adapters, disk subsystem, and cables in use, the aggregate loop speed per adapter can either be 80 MB/s or 160 MB/s. As you can see, the number of possible combinations is almost endless and changes at each product announcement. The SSA configuration rules provided in the following section cover basic considerations.

4.3.1 General SSA setup rules

The following rules must be followed when connecting a 7133 or similar SSA subsystem:

- Each SSA loop must be connected to a valid pair of connectors on the SSA adapter card. A1 and A2 form one loop, and B1 and B2 form another loop.
- Only one pair of connectors of an SSA adapter can be connected in a particular SSA loop. A1 or A2, with B1 or B2, cannot be in the same SSA loop.
- A maximum of 48 disks can be connected in an SSA loop.
- A maximum of three dummy disk drive modules can be connected next to each other.
- A maximum of two adapters can be in the same host per SSA loop.
- Cables joining SSA nodes should not exceed 25 meters.
- There is no addressing setup for any SSA device.
- There is no termination since all connections should form a loop.
The maximum number of adapters per SSA loop at the time of this writing is provided in Table 4-1.

Table 4-1 SSA adapter information

<table>
<thead>
<tr>
<th>Feature code</th>
<th>Description</th>
<th>Identifier</th>
<th>Maximum number per loop</th>
</tr>
</thead>
<tbody>
<tr>
<td>6214</td>
<td>MCA adapter</td>
<td>4-D</td>
<td>2</td>
</tr>
<tr>
<td>6216</td>
<td>MCA Enhanced SSA 4 port adapter</td>
<td>4-G</td>
<td>8</td>
</tr>
<tr>
<td>6217</td>
<td>MCA SSA RAID adapter</td>
<td>4-I</td>
<td>1</td>
</tr>
<tr>
<td>6218</td>
<td>PCI SSA RAID adapter</td>
<td>4-J</td>
<td>1</td>
</tr>
<tr>
<td>6219</td>
<td>MCA Enhanced RAID adapter</td>
<td>4-M</td>
<td>Between one and eight per loop, depending on microcode level and whether RAID and Fast Write Cache are used</td>
</tr>
<tr>
<td>6215</td>
<td>PCI Enhanced RAID adapter</td>
<td>4-N</td>
<td></td>
</tr>
<tr>
<td>6225</td>
<td>PCI Advanced Serial RAID adapter</td>
<td>4-P</td>
<td></td>
</tr>
<tr>
<td>6230</td>
<td>Advanced SerialRAID Plus adapter</td>
<td>4-P</td>
<td></td>
</tr>
</tbody>
</table>

For the most comprehensive and up-to-date information on SSA adapters, refer to the following URL:

http://www.storage.ibm.com/hardsoft/products/ssa

The user guides for each SSA adapter are also available on this Web site. They contain information about the valid adapter combinations allowed on the same loop.

4.3.2 SSA devices

SSA subsystem components use microcode to control their function. When working on SSA problems, you should ensure that the microcode level and any drivers on all devices in the loop are at the latest published level.

4.3.3 SSA disk considerations

If you configure an SSA disk into a system and it only shows as a pdisk with no corresponding hdisk, the most probable cause is that the disk was originally part of a RAID array set up on another machine. If disks are removed from a RAID array for any reason to be incorporated into any other system as a normal disk, the following procedure must be used:

1. Enter `smitty ssaraid` (the fast path to SSA RAID SMIT panels).
2. Select **Change Show use of an SSA Physical disk**. The disk must be returned to general use as an AIX system disk.

3. If the disk is to be removed from the system, use the relevant AIX commands. Do not remove the pdisk until you have removed the disk from the system using the SSA service aids.

If you are presented with this situation, and the disk with the problem was not a member of a RAID set on this machine, your only option to return this disk to normal use is to do a low-level format using the SSA service aid. This can take time if the disk is 9 GB or larger.

SSA RAID

The SSA subsystem is capable of being operated by some adapters as either single system disks or as RAID LUNs. Provided that all has been set up correctly, then the RAID implementation works well. If you have any doubts as to how the RAID is set up, refer to *SSA Adapters: User's Guide and Maintenance Information*, SA33-3272.

If you need to do anything involving an SSA RAID array, then use the relevant procedure listed. This will ensure that the integrity of the RAID set is maintained at all times.

Changing SSA disks

SSA disks are hot swappable. When preparing AIX for the removal of an SSA disk, do not use the `rmdev` command to remove the pdisk prior to physically removing the disk from the enclosure. You will need the pdisk to do the following steps. Use the `rmdev` command for the pdisk only when all steps are completed.

1. Use the SSA Service Aid to power the disk off prior to removal. This is done by using the set service mode and identify facility. This will put the disks on either side of the one you want to remove into string mode and power off the disk to be removed.

2. When the replacement disk or blanking module is inserted, use the same Service Aid to reset service mode. This will initialize the new disk and take the other disks out of string mode.

3. At this point, you can now run the `rmdev` command to remove the pdisk allocated to the disk you removed.

4. The disk change procedures will then tell you to run the `cfgmgr` command to create a new pdisk for the replaced physical disk.
If the disk to be changed is a defective RAID disk and was in use by the system, then you need to follow the procedures in SSA Adapters: User’s Guide and Maintenance Information, SA33-3272. Read these procedures carefully because some of the earlier editions of this publication indicate you have finished the procedure when, in fact, you need to perform other steps to return the array to a protected state. Below is a list of the important steps that need to be completed before you can be sure that the array will function correctly.

Steps involved in the replacement of a RAID SSA disk are:

1. Addition of the replacement disk to the system using the `cfgmgr` command or the `mkdev` command on HACMP systems.
2. Make the disk an array candidate or hot spare using SMIT.

If the disk was removed from a RAID array leaving it in an exposed or degraded state, you now need to add the disk to the array using SMIT. While the array is being rebuilt, error messages will be seen each hour in the error log. These will cease when the array is completely rebuilt. It is best to schedule disk swaps during scheduled downtime to minimize the effects on the system.

4.3.4 Three-digit display values

Three-digit display messages are system-error indicators that display on the system operator panel. Most of the three-digit display values are progress indicators that only display briefly. This section enables you to interpret the codes displayed on the system operator panel.

4.3.5 Common boot time LEDs

The following sections cover some hardware-related problems that can cause a halt. All problems at this stage of the startup process have an error code defined, which is shown in the LED display on the front panel.

LED 200

The LED code 200 is connected to the secure key position. When the key is in the secure position, the boot will stop until the key is turned, either to the normal position or the service position; then the boot will continue.

Note: The `cfgmgr` command should *not* be executed on any system that is in an HACMP cluster. To do so may seriously damage the configuration of the machine, possibly resulting in the cluster going down.
LED 299
A LED code of 299 shows that the BLV will be loaded. If this LED code is passed, then the load has been successful. If, after passing 299, you get a stable 201, then you have to recreate the BLV.

MCA LED codes
Table 4-2 provides a list of the most common LED codes on MCA systems. More of these can be found in the AIX Version 4 base documentation.

<table>
<thead>
<tr>
<th>LED</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–195</td>
<td>Hardware problem during BIST.</td>
</tr>
<tr>
<td>200</td>
<td>Key mode switch in secure position.</td>
</tr>
<tr>
<td>201</td>
<td>If LED 299 passed, recreate BLV. If LED 299 has not passed, POST encountered a hardware error.</td>
</tr>
<tr>
<td>221, 721, 223–229, 225–229, 233–235</td>
<td>The bootlist in NVRAM is incorrect (boot from media and change the bootlist), or the bootlist device has no bootimage (boot from media and recreate the BLV), or the bootlist device is unavailable (check for hardware errors).</td>
</tr>
</tbody>
</table>

4.3.6 888 in the three-digit display
A flashing 888 indicates that a problem was detected, but could not be displayed on the console. A message is encoded as a string of three-digit display values. The 888 will be followed by either a 102, 103, or 105. The Reset button is used to scroll the message.

The 102 code
A 102 indicates that a dump has occurred and your AIX kernel crashed due to component failure. A LED code description is provided in the following list:

- 888 - This value flashes to indicate a system crash.
- 102 - This value indicates an unexpected system halt.
- nnn - This value is the cause of the system halt (reason code).
- 0cx - The value 0cx indicates dump status.
The reason code is the second value displayed after 888 appears. Also, this code can be found using the stat subcommand in `crash`.

- **000** - Unexpected system interrupt (hardware related).
- **2xx** - Machine check. A machine check can occur due to hardware problems (for example, bad memory) or because of a software reference to a non-existent address.
- **3xx** - Data storage interrupt (DSI). A page fault always begins as a DSI, which is handled in the exception processing of the VMM. However, if a page fault cannot be resolved, or if a page fault occurs when interrupts are disabled, the DSI will cause a system crash. The page fault may not be resolved if, for example, an attempt is made to read or write a pointer that has been freed; in other words, the segment register value is no longer valid, and the address is no longer mapped.
- **400** - Instruction access exception. This is similar to a DSI, but occurs when fetching instructions, not data.
- **5xx** - External interrupt. Interrupt arriving from an external device.
- **700** - Program interrupt. Usually caused by a trap instruction that can be a result of failing an `assert`, or hitting a `panic` within a kernel or kernel extension code.
- **800** - Floating point unavailable. An attempt is made to execute a floating point instruction but the floating point available bit in the Machine Status Register (MSR) is disabled.

For more information about system dumps, see Chapter 5, “System dumps” on page 65.

The 103 and 105 codes

A 103 message indicates that a Service Request Number (SRN) follows the 103. The SRN consists of the two sets of digits following the 103 message. This number together with other system-related data is used to analyze the problem. Record and report the SRN to your service representative.

A 105 message indicates that an encoded SRN follows the 105. Record and report SRN 111-108 to your service representative. The format is shown in Figure 4-2 on page 60.
The fifth value identifies the FRU number (number of the defective part). Because more than one part could be described in the 888 message, the next eight identifiers describe the location code of the defective part. These should be mapped with the values provided in Table 4-3 to identify the location code.

Table 4-3 Location code mapping table

<table>
<thead>
<tr>
<th>Location Code</th>
<th>SRN identifying the FRU (104-101)</th>
<th>Type of read-out (103)</th>
<th># of FRU sequence (1st part)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 = 0</td>
<td>09 = 9</td>
<td>19 = I</td>
<td>28 = S</td>
</tr>
<tr>
<td>01 = 1</td>
<td>11 = A</td>
<td>20 = J</td>
<td>30 = T</td>
</tr>
<tr>
<td>02 = 2</td>
<td>12 = B</td>
<td>21 = K</td>
<td>31 = U</td>
</tr>
<tr>
<td>03 = 3</td>
<td>13 = C</td>
<td>22 = L</td>
<td>32 = V</td>
</tr>
<tr>
<td>04 = 4</td>
<td>14 = D</td>
<td>23 = M</td>
<td>33 = W</td>
</tr>
<tr>
<td>05 = 5</td>
<td>15 = E</td>
<td>24 = N</td>
<td>34 = X</td>
</tr>
<tr>
<td>06 = 6</td>
<td>16 = F</td>
<td>25 = O</td>
<td>35 = Y</td>
</tr>
<tr>
<td>07 = 7</td>
<td>17 = G</td>
<td>26 = P</td>
<td>36 = Z</td>
</tr>
<tr>
<td>08 = 8</td>
<td>18 = H</td>
<td>27 = R</td>
<td></td>
</tr>
</tbody>
</table>

4.4 Command summary

The following section provides a list of the key commands discussed in this chapter.
4.4.1 The chdev command

The chdev command changes the characteristics of a device. The command has the following syntax:

```
chdev -l Name [ -a Attribute=Value ... ]
```

The commonly used flags are provided in Table 4-4.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l Name</td>
<td>Specifies the device logical name, specified by the name parameter, in the Customized Devices object class whose characteristics are to be changed</td>
</tr>
<tr>
<td>-a Attribute=Value</td>
<td>Specifies the device attribute value pairs used for changing specific attribute values</td>
</tr>
</tbody>
</table>

4.4.2 The lsattr command

The lsattr command displays attribute characteristics and possible values of attributes for devices in the system. The command has the following syntax:

```
lsattr -E -l Name [ -a Attribute ] ...
```

The commonly used flags are provided in Table 4-5.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-E</td>
<td>Displays the attribute names, current values, descriptions, and user-settable flag values for a specific device</td>
</tr>
<tr>
<td>-l Name</td>
<td>Specifies the device logical name in the Customized Devices object class whose attribute names or values are to be displayed</td>
</tr>
<tr>
<td>-a Attribute</td>
<td>Displays information for the specified attributes of a specific device or kind of device</td>
</tr>
</tbody>
</table>
4.5 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which of the following commands should be used to determine the microcode level of a system?
 A. `lsattr -El`
 B. `lscfg -v1`
 C. `lsCs ssa`
 D. `lsdev -Cc disk`

2. After a legacy, the microchannel system has gone down with flashing 888s. Which of the following procedures is the best way to diagnose the problem?
 A. Turn the power off and back on.
 B. Reboot the system in maintenance mode.
 C. Turn the key to service and press the Reset button to take a dump.
 D. Verify that the key is in normal mode and press the Reset button to obtain error codes.

3. Which of the following AIX commands should be used to determine if there is a Service Request Number (SRN) on a device?
 A. `diag`
 B. `lssrn`
 C. `lsdev`
 D. `errpt`

4. Using information provided in Figure 4-3 on page 63, all of the following are true except:
 A. The error was unrecoverable.
 B. The termination of the SCSI bus failed.
 C. A defective cable or terminator probably caused the error.
 D. The presence of all zeros in the sense data indicates invalid data.
Figure 4-3 Case study

5. A mirrored SSA data disk volume group must have a disk replaced. Which of the following concerns should be considered?
 A. Schedule down time for rebooting.
 B. Schedule down time for replacement of disk.
 C. Schedule down time for replacement of disk and reboot.
 D. Schedule disk replacement for non-peak usage time.
4.5.1 Answers

The following are the preferred answers to the questions provided in this section.

1. B
2. D
3. A
4. D
5. B

4.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Take a hardware inventory of your system.
2. Check all possible menus in the concurrent mode diagnostics.
System dumps

In this chapter, the system dump is discussed with respect to how that dump is managed and read. The way to set up the dump device will also be discussed.

A system dump is created when the system has an unexpected system halt or a system failure. The dump will be a snapshot of the system at the time of the dump; it does not collect data about what happened before the system dump. This dump is written to the primary dump device; if this is not available, it will write the dump to the secondary device. A system dump can also be initiated by a user using a different device (if required).
5.1 Configuring the dump device

Prior to AIX Version 4.1, the default dump device is /dev/hd7. In AIX versions after 4.1, the default dump device is /dev/hd6, which is the default paging space logical volume (/dev/pagingnn for dumps). The secondary dump device is /dev/sysdumpnull. Once the system is booted, this image is copied from /dev/hd6 to the directory /var/adm/ras. AIX 5L Version 5.1 servers with a real memory size larger than 4 GB will, at installation time, have a dedicated dump device created. This dump device is automatically created and no user intervention is required. The default name of the dump device is lg_dumplv.

The current dump configuration can be determined by running the `sysdumpdev` command as follows:

```
# sysdumpdev
primary              /dev/hd6
secondary            /dev/sysdumpnull
copy directory       /var/adm/ras
forced copy flag     TRUE
always allow dump    FALSE
dump compression     OFF
```

The primary dump devices must always be in the root volume group for permanent dump devices. The secondary device may be outside the root volume group unless it is a paging space.

Note: Do not use a mirrored or copied logical volume as the active dump device. Carefully check your AIX release to see if this function is available. System dump error messages will not be displayed, and any subsequent dumps to a mirrored logical volume will fail.

Do not use a diskette drive as your dump device.

AIX Version 4.2.1 and later supports using any paging device in the root volume group (rootvg) as the secondary dump device.

The `sysdumpdev` command can be used to configure remote dump devices. The following conditions must be met before a remote dump device can be configured:

- The local and the remote host must have Transmission Control Protocol/Internet Protocol (TCP/IP) installed and configured.
- The local host must have the Network File System (NFS) installed.
- The remote host must support NFS.
The remote host must be operational and on the network. This condition can be tested by issuing the `ping` command.

The remote host must have an NFS exported directory defined such that the local host has read and write permissions as well as root access to the dump file on the remote host.

The remote host cannot be the same as the local host.

To change a primary dump device permanently, use the `sysdumpdev` command as follows:

```
# sysdumpdev -P -p /dev/hd3
primary /dev/hd3
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
```

This will remain the permanent dump device until it is changed again with the `sysdumpdev` command.

To change the secondary device permanently, use the `sysdumpdev` command as follows:

```
# sysdumpdev -P -s /dev/rmt0
primary /dev/hd3
secondary /dev/rmt0
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
```

To temporarily change the primary device to another device, use the `sysdumpdev` command as follows:

```
# sysdumpdev -p /dev/rmt0
primary /dev/rmt0
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
```

This will temporarily change the primary dump device to /dev/rmt0 until the next system reboot.
5.2 Starting a system dump

A user-initiated dump is different from a dump initiated by an unexpected system halt because the user can designate which dump device to use. When the system halts unexpectedly, a system dump is automatically initiated to the primary dump device. Do not start a system dump if the flashing 888 number shows in your operator panel display. This number indicates that your system has already created a system dump and written the information to your primary dump device. If you start your own dump before copying the information in your dump device, your new dump will overwrite the existing information.

You can start a system dump by using one of the methods listed below.

If you have the Software Service Aids Package installed, you have access to the `sysdumpstart` command and can start a dump using one of these methods:

- Use the command line.
- Use SMIT.

If you do not have the Software Services Aids Package installed, you must use one of these methods to start a dump:

- Use the Reset button.
- Use special key sequences.

5.2.1 Using the command line

To create a system dump, use the following steps to choose a dump device, initiate the system dump, and determine the status of the system dump.

Check which dump device is appropriate for your system (the primary or secondary device) by using the following `sysdumpdev` command:

```
# sysdumpdev -l
primary              /dev/hd6
secondary            /dev/sysdumpnull
copy directory       /var/adm/ras
forced copy flag     TRUE
always allow dump     FALSE
dump compression     OFF
```

This command lists the current dump devices. You can use the `sysdumpdev` command to change device assignments.

Start the system dump by entering the following `sysdumpstart` command:

```
# sysdumpstart -p
```
This command starts a system dump on the default primary dump device. You can use the -s flag to specify the secondary dump device. If a code shows in the operator panel display, refer to 5.3, “System dump status check” on page 74, for more information.

If the dump was successful, reboot the system. During the boot process, if the forced copy flag is set to TRUE, a menu will be displayed on the primary console requesting the removable media to copy the dump to /dev/rmtx or /dev/fd0. (You are prompted to choose which location.) The size of the dump in /dev/hd6 is also displayed. It is advisable to not use /dev/fd0 for the copy of the dump. Once the copy has been completed, exit the copy screen and the system will continue the boot process.

The `sysdumpdev -K` command will set the force copy flag to true.

5.2.2 Using the SMIT interface

Use the following SMIT command to choose a dump device and start the system dump:

```
# smit dump
```

The Choose the Show Current Dump Devices option can be used to note the available dump devices.

Select either the primary or secondary dump device to hold your dump information, as shown in Figure 5-1.

![SMIT dump screen](image-url)

Figure 5-1 SMIT dump screen
A command status screen will be displayed, and once the dump has completed, the system will need to be reset.

If the dump was successful, reboot the system. During the boot process, if the forced copy flag is set to TRUE, a menu will be displayed on the primary console requesting the removable media to copy the dump to /dev/rmtx or /dev/fd0. (You are prompted to choose which location.) The size of the dump in /dev/hd6 is also displayed. It is advisable to not use /dev/fd0 for the copy of the dump. Once the copy has been completed, exit the copy screen and the system will continue the boot process.

5.2.3 Using the Reset button

To start a dump with the Reset button, the key switch must be in the service position. If the system does not have a key switch, set the always allow system dump value to true. To set this, use the `sysdumpdev` command as follows:

```
# sysdumpdev -K
```

The value can be checked using the `sysdumpdev` command without flags as follows:

```
# sysdumpdev
primary     /dev/hd6
secondary   /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump TRUE
dump compression OFF
```

To obtain the system dump, press the Reset button. This will initiate the system dump and may take some time.

If the dump was successful, reboot the system. During the boot process, if the forced copy flag is set to TRUE (`sysdumpdev -D dumpdev`), a menu will be displayed on the primary console requesting the removable media to copy the dump to /dev/rmtx or /dev/fd0. (You are prompted to choose which location.) The size of the dump in /dev/hd6 is also displayed. It is advisable to not use /dev/fd0 for the copy of the dump. Once the copy has been completed, exit the copy screen and the system will continue the boot process.

If the system does not have a key switch, set the always allow dump option back to false. Use the `sysdumpdev` command as follows:

```
# sysdumpdev -k
```
Ensure that the always allow dump option has been set back to FALSE using the `sysdumpdev` command, as follows:

```
# sysdumpdev
primary              /dev/hd6
secondary            /dev/sysdumpnull
copy directory       /var/adm/ras
forced copy flag     TRUE
always allow dump    FALSE
dump compression     OFF
```

5.2.4 Using special key sequences

To start a dump with a key sequence, you must have the key switch in the service position, or have set the always allow dump value to true. To set this, use the `sysdumpdev` command as follows:

```
# sysdumpdev -K
```

The value can be checked using the `sysdumpdev` command without flags, as follows:

```
# sysdumpdev
primary              /dev/hd6
secondary            /dev/sysdumpnull
copy directory       /var/adm/ras
forced copy flag     TRUE
always allow dump    TRUE
dump compression     OFF
```

Press the Ctrl+Alt 1 key sequence to write the dump information to the primary dump device.

Press the Ctrl+Alt 2 key sequence to write the dump information to the secondary dump device.

Both of these key sequences will initiate the system dump, and this process may take some time.

If the dump was successful, reboot the system. During the boot process, if the forced copy flag is set to TRUE, a menu will be displayed on the primary console requesting the removable media to copy the dump to `/dev/rmtx` or `/dev/fd0`. (You are prompted to choose which location.) The size of the dump in `/dev/hd6` is also displayed. It is advisable to not use `/dev/fd0` for the copy of the dump. Once the copy has been completed, exit the copy screen and the system will continue the boot process.
If the system does not have a key switch to set the always allow dump value back to false, use the `sysdumpdev` command as follows:

```
# sysdumpdev -k
```

Ensure that the always allow dump option has been set back to FALSE by using the `sysdumpdev` command, as follows:

```
# sysdumpdev
primary /dev/hd6
secondary /dev/sysdumpnull
copy directory /var/adm/ras
forced copy flag TRUE
always allow dump FALSE
dump compression OFF
```

The TTY remote reboot

AIX Version 4.3.2 has added the ability to do a remote reboot of a system across native serial ports by using a user-defined string. This feature is configured by setting up two ODM attributes that have been added to the native serial ports. Figure 5-2 shows the options as they are set up in the SMIT screen.

![Figure 5-2 SMIT Add a TTY screen - Remote reboot options](image)

The settings for the REMOTE reboot ENABLE attribute are described in Table 5-1 on page 73.
Chapter 5. System dumps

5.2.5 System Hang Detection

AIX 5L introduces System Hand Detection (SHD) feature which provides a mechanism to detect a system hang situation and allows you a method to recover. This feature is implemented as the shdaemon daemon that runs at the highest process priority. This daemon queries the kernel for the lowest priority thread run over a specified interval. The shdaemon daemon is launched by init and it runs at priority 0 (zero).

If the priority is above a configured threshold, the daemon can take one of several actions. Each of these actions can be independently enabled, and each can be configured to trigger at any priority and over any time interval. Table 5-2 lists the default values when the SHD is enabled.

Table 5-2 SHD default values

<table>
<thead>
<tr>
<th>Option</th>
<th>Enablement</th>
<th>Priority</th>
<th>Timeout seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log an error in erlog file</td>
<td>Disable</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Display a warning message</td>
<td>Disable</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Give a recovering getty</td>
<td>Enabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Launch a command</td>
<td>Disabled</td>
<td>60</td>
<td>120</td>
</tr>
<tr>
<td>Reboot the system</td>
<td>Disabled</td>
<td>39</td>
<td>300</td>
</tr>
</tbody>
</table>

You can manage the SHD configuration using the smitty shd fast path to get to the SHD configuration menu.
The `shconf` command is invoked when SHD is enabled. It manages the system hang detection parameters.

The `shconf` command syntax is as follows:

```
shconf [ -D | -E ] [ -O ] -l
shconf -l Name -a Attribute=Value ...
```

5.3 System dump status check

When a system dump is taking place, status and completion codes are displayed in the operator panel display. When the dump is complete, a 0cx status code displays if the dump was user initiated, and a flashing 888 displays if the dump was system initiated.

You can check whether the dump was successful, and if not, what caused the dump to fail, if a 0cx code is displayed.

Note: If the dump fails, upon reboot, look for an error log entry with the label DSI_PROC or ISI_PROC. If the Detailed Data area shows an EXVAL of 000 0005, this is probably a paging space I/O error. If the paging space is the dump device or on the same hard drive as the dump device, the dump may have failed due to a problem with the hard drive. Diagnostics should be run against that disk.

5.3.1 Status codes

The following are the list of status codes for the system dump:

- **000** The kernel debugger is started. If there is an ASCII terminal attached to one of the native serial ports, enter `q dump` at the debugger prompt (>) on that terminal and then wait for the flashing 888s to appear in the operator panel display. After the flashing 888 appears, go to 5.6, “Copying a system dump” on page 77, which describes how to check the dump status.

- **0c0** The dump completed successfully. Go to 5.6, “Copying a system dump” on page 77.

- **0c1** An I/O error occurred during the dump.

- **0c2** A user-requested dump is not finished. Wait at least one minute for the dump to complete and for the operator panel display value to change. If the operator panel display value changes, find the new value on this list. If the value does not change, then the dump did not complete due to an
unexpected error. Complete the Problem Summary Form, and report the problem to your software service department.

0c4 The dump ran out of space. A partial dump was written to the dump device, but there is not enough space on the dump device to contain the entire dump. To prevent this problem from occurring again, you must increase the size of your dump media. Go to 5.4, “Increasing the size of the dump device” on page 76.

0c5 The dump failed due to an internal error. Wait at least one minute for the dump to complete and for the operator panel display value to change. If the operator panel display value changes, find the new value on the list. If the value does not change, then the dump did not complete due to an unexpected error. Complete the Problem Summary Form and report the problem to your software service department.

0c7 A network dump is in progress, and the host is waiting for the server to respond. The value in the operator panel display should alternate between 0c7 and 0c2 or 0c9. If the value does not change, then the dump did not complete due to an unexpected error. Complete the Problem Summary Form, and report the problem to your software service department.

0c8 The dump device has been disabled. The current system configuration does not designate a device for the requested dump. Enter the `sysdumpdev` command to configure the dump device.

0c9 A dump started by the system did not complete. Wait at least one minute for the dump to complete and for the operator panel display value to change. If the operator panel display value changes, find the new value on the list. If the value does not change, then the dump did not complete due to an unexpected error. Complete the Problem Summary Form and report the problem to your software service department.

0cc (For AIX Version 4.2.1 and later only) An error occurred dumping to the primary device; the dump has switched over to the secondary device. Wait at least one minute for the dump to complete and for the three-digit display value to change. If the three-digit display value changes, find the new value on this list. If the value does not change, then the dump did not complete due to an unexpected error. Complete the Problem Summary Form and report the problem to your software service department.

c20 The kernel debugger exited without a request for a system dump. Enter the `quit dump` subcommand. Read the new three-digit value from the LED display.
5.4 Increasing the size of the dump device

The size required for a dump is not a constant value, because the system does not dump paging space; only data that resides in real memory can be dumped. Paging space logical volumes will generally hold the system dump. However, because an incomplete dump may not be usable, use the procedure below to make sure that you have enough dump space.

When a system dump occurs, all of the kernel segment that resides in real memory is dumped (the kernel segment is segment 0). Memory resident user data (such as u-blocks) is also dumped.

The minimum size for the dump space can best be determined using the `sysdumpdev -e` command. This provides an estimated dump size, taking into account the memory currently in use by the system, as shown in the following example:

```bash
# sysdumpdev -e
0453-041 Estimated dump size in bytes: 38797312
```

If the dump device is the default dump device of /dev/hd6, use the `lsp -a` command to check paging space available, as follows:

```bash
# lsp -a
Page Space  Physical Volume   Volume Group    Size   %Used  Active  Auto  Type
hd6         hdisk0            rootvg         512MB       1     yes   yes    lv
```

If the size of the dump device needs to be increased, use the `smit chps` command and change the paging space size. If the dump device is a file, ensure that the file system has enough space; if not, use the `smit chfs` command to increase the size of the file system.

Starting with AIX 5.x, the `dumpcheck` facility will notify you if your dump device needs to be larger, or the file system containing the copy directory is too small. It will also automatically turn compression on if this will alleviate these conditions. This notification appears in the system error log.

5.5 Configuring remote dump devices

The `sysdumpdev` command can also be used to configure remote dump devices. The following conditions must be met before a remote dump device can be configured:

- The local and remote host must have Transmission Control Protocol/Internet Protocol (TCP/IP) installed and configured.
- The local host must have Network File System (NFS) installed.
The remote host must support NFS.

The remote host must be configured on the network (ping address).

The remote host must have an NFS exported directory defined such that the local host has read and write permissions as well as root access to the dump file on the remote host.

The remote host cannot be the same as the local host.

The network device driver must support remote dump.

To designate remote dump file /var/adm/ras/systemdump on host server4 for a primary dump device, enter:

```
# sysdumpdev -p server4:/var/adm/ras/systemdump
```

A colon (:) must be inserted between the host name and the file name.

5.6 Copying a system dump

If the dump is not copied to an external device during boot, it can be copied to the external device using the `snap` command. The `snap` command will check for an existing dump on the system and copy it to tape or, if no dump is available on the system, it will prompt for the dump to be copied from the external device.

The last system dump can be checked using the `sysdumpdev` command as follows:

```
# sysdumpdev -L
0453-039
```

Device name: /dev/hd6
Major device number: 10
Minor device number: 2
Size: 42568192 bytes
Dump status: 0
dump completed successfully
Dump copy filename: /usr/dumpdir/vmcore.0

In this case, the dump was successfully completed and it can be copied to an external media device, such as tape.

Use the `snap` command (as follows) to copy the dump to tape. The flags indicate that general operating system, file system, and kernel information, along with the kernel dump, are copied to a tape device:

```
# snap -gfKD -o /dev/rmt0
```
Setting output device to /dev/rmt0... done.
Checking space requirement for general information........................ done.
Checking space requirement for kernel information.............. done.
Checking space requirement for dump information...... done.
Checking space requirement for filesys information............... done.
Checking for enough free space in filesystem... done.

********Checking and initializing directory structure
Directory /tmp/ibmsupt/filesys already exists... skipping
Directory /tmp/ibmsupt/dump already exists... skipping
Directory /tmp/ibmsupt/kernel already exists... skipping
Directory /tmp/ibmsupt/general already exists... skipping
Directory /tmp/ibmsupt/testcase already exists... skipping
Directory /tmp/ibmsupt/other already exists... skipping
********Finished setting up directory /tmp/ibmsupt

Gathering general system information................................. done.
Gathering kernel system information............. done.
Gathering dump system information.... done.
Gathering filesys system information............... done.

Copying information to /dev/rmt0... Please wait... done.

**
****** Please Write-Protect the output device now...

**

**
****** Please label your tape(s) as follows:
****** snap blocksize=512
****** 'your name or company's name here'

**

The dump file can be copied from the external device using the _tar_ `-x` command. To view the contents of the tape device, use the following command:

```
# tar -tvf /dev/rmt0
drwx------ 0 0 0 Jul 12 13:48:44 2000 ./dump/
```
The files dump.snap, unix.Z, and dump_file should exist on the tape device and should be greater than 0 bytes in size.

5.7 Reading dumps

To check that the dump is readable, start the crash command (or use the kdb command on AIX 5L systems). Refer to 10.6.2, “The kdb command” on page 296, for details on the dump files, using the command syntax: crash dump unix. The crash command needs a kernel file (unix) to match the dump file. If you do not specify a kernel file, crash uses the file /unix by default:

```
# crash dump unix
```

If you do not see a message from crash about dump routines failing, you probably have a valid dump file. Run the stat subcommand at the > prompt, as in the following example:

```
# crash dump unix
> stat
```

```
sysname: AIX
nodename: sp5i
release: 3
version: 4
machine: 00012677400
time of crash: Tue May  4 04:56:10 CDT 1999
age of system: 4 min.
xmalloc debug: disabled
abend code: 300
csa: 0x2ff3b000
exception struct:
  dar: 0x00000000
  dsir: 0x00000000
  srv: 0x04000000
  dar2: 0x3c160040
  dsirr: 0x06001000: "(unknown reason code)"
```
Look at the time of the dump and the abend code. If these are related to the problem causing the dump, then perform some initial analysis. Refer to 5.9.1, “The crash command” on page 83, for more information.

A message stating dumpfile does not appear to match namelist means the dump is not valid. For example:

```
# crash dump unix
Cannot locate offset 0x02052b8 in segment 0x0000000.
endcomm 0x00000000/0x011c5e70
WARNING: dumpfile does not appear to match namelist
Cannot locate offset 0x00ccf10 in segment 0x0000000.
0452-179: Cannot read v structure from address 0x ccf10.
Symbol proc has null value.
Symbol thread has null value.
Cannot locate offset 0x00ccf10 in segment 0x0000000.
0452-179: Cannot read v structure from address 0x ccf10.
Cannot locate offset 0x00034c4 in segment 0x0000000.
0452-1002: Cannot read extension segment value from address 0x 34c4
```

Any other messages displayed when starting crash may indicate that certain components of the dump are invalid, but these are generally handled by crash. If a required component of the dump image is missing, additional messages will indicate this, and the dump should be considered invalid. To prevent problems, it is a good idea to use crash from the same level of AIX as that from the machine that created the dump.

Table 5-3 highlights the differences in dump between AIX Version 5.x and 4.x.

<table>
<thead>
<tr>
<th>AIX Version 5.x</th>
<th>AIX Version 4.x</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use the kdb command to read dumps.</td>
<td>Use the crash command to read dumps.</td>
</tr>
<tr>
<td>Use the dumpcheck command to check if the dump device is large enough.</td>
<td>Use the sysdumpdev command to check if the dump device is large enough.</td>
</tr>
<tr>
<td>An application can create a core file by using the coredump() system call.</td>
<td>Not available in AIX Version 4.x.</td>
</tr>
<tr>
<td>Servers with a real memory size larger than 4 GB will have a dedicated dump device created.</td>
<td>The paging space is used as the default dump device created.</td>
</tr>
<tr>
<td>A feature called System Hang Detection provides a SMIT-configurable mechanism to detect system hangs.</td>
<td>Not available in AIX Version 4.x.</td>
</tr>
</tbody>
</table>
5.8 Core dumps

When a system encounters a core dump, a core file is created in the current directory when various errors occur. Errors such as memory-address violations, illegal instructions, bus errors, and user-generated quit signals commonly cause a core dump. The core file that is created contains a memory image of the terminated process. A process with a saved user ID that differs from the real user ID does not produce a memory image.

5.8.1 Checking for core dump

When a core dump is created, an error will be reported, and the following entry can be seen in the error report:

```
# errpt
IDENTIFIER TIMESTAMP  T C RESOURCE_NAME  DESCRIPTION
...
C60BB505   0705101400 P S SYSPROC     SOFTWARE PROGRAM ABNORMALLY TERMINATED
...
```

From the previous report, it can be seen that the error has an identifier of C60BB505. A detailed report of the error can be displayed as follows:

```
# errpt -a -j C60BB505
--------------------------------------------------------------------------
LABEL:          CORE_DUMP
IDENTIFIER:     C60BB505
Date/Time:       Wed Jul  5 10:14:59
Sequence Number: 8
Machine Id:      000BC6DD4C00
Node Id:         client1
Class:           S
Type:            PERM
Resource Name:   SYSPROC
Description
SOFTWARE PROGRAM ABNORMALLY TERMINATED
Probable Causes
SOFTWARE PROGRAM
User Causes
USER GENERATED SIGNAL

Recommended Actions
CORRECT THEN RETRY
```
Failure Causes
SOFTWARE PROGRAM

Recommended Actions
RERUN THE APPLICATION PROGRAM
IF PROBLEM PERSISTS THEN DO THE FOLLOWING
CONTACT APPROPRIATE SERVICE REPRESENTATIVE

Detail Data
SIGNAL NUMBER
4
USER'S PROCESS ID:
15394
FILE SYSTEM SERIAL NUMBER
5
INODE NUMBER
2
PROGRAM NAME
netscape_aix4
ADDITIONAL INFORMATION
Unable to generate symptom string.
Too many stack elements.

In the previous output, it can be seen that the program that created the core dump was netscape_aix4. See the following section to help you determine where the core file is located.

5.8.2 Locating a core dump

When a system does a core dump, it writes a file named core. This file may be written anywhere in the system, including on networked file systems, and it will need to be found using the `find` command, as follows:

```
# find / -name core -ls
737 10188 -rw-r--r--  1 root     system   10430807 Jul  5 10:14 /core
```

From the command example, the file is located in the root directory.

5.8.3 Determining the program that caused the core dump

There are two ways to determine which program caused the core dump: One is using the `strings` command, and the other is using the `lquerypv` command. Although this information should be in the error report, there may be occasion when the error report is not available or has been cleared out.
The strings command will give the full path name of the program, and is used as follows:

```
# strings core | grep _=
_=~/usr/netscape/communicator/us/netscape_aix4
```

The 1querypv command is run as follows:

```
# lquerypv -h core 6b0 64
000006B0 7FFFFFFF FFFFFFFF 7FFFFFFF FFFFFFFF | ................|
000006C0 00000000 000007D0 7FFFFFFF FFFFFFFF | ................|
000006D0 00120000 137084E0 00000000 00000016 | .....p.........|
000006E0 6E657473 63617065 5F616978 34000000 | netscape_aix4....|
000006F0 00000000 00000000 00000000 00000000 | ................|
00000700 00000000 00000000 00000000 00000000 | ................|
00000710 00000000 00000F5A 00000000 00000776 | ............Z....v|
```

Using the information provided, the file was dumped by the netscape_aix4 program as displayed in the error report.

5.9 Command summary

The following section provides a list of the key commands and provides examples of their use.

5.9.1 The crash command

This section provides you with information on common problems using the crash command, and assists you in making a basic determination as to what caused the problem.

Uses of crash

The crash command can be used on a running system. Invoking crash with no parameters essentially allows you to view the memory and state of the currently running system by examining /dev/mem. The alter subcommand in crash allows you to modify the running kernel. This should only be used under the direction of IBM support, since incorrect use can cause the system to fail. The user must be in the system group to run the crash command on the live system.

The crash command can also be used on a system dump. It is the primary tool used to analyze a dump resulting from a system failure. Invoking the crash command with a parameter specifying a dump file allows you to examine a dump file for problem analysis.
Using crash, you can examine:

- Addresses and symbols
- Kernel stack traceback
- Kernel extensions
- The process table
- The thread table
- The file table
- The inode table
- System registers

In addition to the items listed, you can use crash to look at anything else contained in the kernel memory.

What the kernel is

The kernel is the program that controls and protects system resources. It runs in privileged mode. It operates directly with the hardware. The major functions of the kernel are:

- Creation and deletion of processes/threads
- CPU scheduling
- Memory management
- Device management
- Synchronization and communication tools for processes

In contrast to a user program, which creates a core dump and halts. If the kernel has an error the machine will fail.

The crash command is used to debug these kernel problems.

Examining a system dump

The crash command needs a kernel /unix file to match the dump file under analysis. For example:

```
itsosrv1:/dumptest> crash dumpfile unix
```

If no kernel file is specified, the default is /unix.

```
itsosrv1:/dumptest> crash dumpfile
Using /unix as the default namelist file.
```

The crash command uses the kernel file to interpret symbols and allows for symbolic translation and presentation. If the kernel file does not match the dump, you will get an error message when you start crash.

Basic crash subcommands

Once you initiate the crash command, the prompt character is the greater than sign (>). For a list of the available subcommands, type the question mark (?) character. To exit, type q. You can run any shell command from within the crash command by preceding it with an exclamation mark (!).

The following is a list of common crash subcommands:

- `stat`
 Shows dump statistics.

- `proc [-|] [-r] [ProcessTableEntry]`
 Displays the process table (proc.h). Alias p and ps.

- `user [ProcessTableEntry]`
 Displays user structure of named process (user.h). Alias u.

- `thread [-|] [-r] [-p] [ThreadTableEntry]`
 Displays the thread table (thread.h).

- `mst [addr]`
 Displays the mstsave portion of the uthread structure (uthread.h, mstsave.h).

- `ds [addr]`
 Finds the data symbol closest to the given address.

- `knlist [symbol]`
 Displays address of symbol name given. It is the opposite of ds.

- `trace [-k | s][-m][-r][ThreadTableEntry]`
 Displays kernel stack trace. Alias t.

- `le`
 Displays loader entries.

- `nm [symbol]`
 Displays symbol value and type as found in the /unix file.

- `od [symbol name or addr] [count] [format]`
 Dumps count number of data words starting at symbol name or address in the format specified by format.
- ? or help[]
 Lists all subcommands.
 Provides information about crash subcommands.

- cm [thread slot][seg_no]
 Changes the map of the crash command internal pointers for any process thread segment not paged out. Resets the map of internal pointers if no parameters are used.

- fs [thread slotNumber]
 Dumps the kernel stack frames for the specified thread.

- dlock [tid] [-p [processor_num]]
 Displays deadlock information about all types of locks: Simple, complex, and lockl.

- errpt [count]
 Displays error log messages. The errpt subcommand always prints all messages that have not yet been read by the errdemon. Count specifies the number of messages to print.

- du
 Dump user area of process.

- ppd
 Display per processor data area; useful for multiprocessor systems. Shows all data that varies for each processor, such as Current Save Area (CSA).

- symptom
 If your system supports symptom, this is a useful subcommand to obtain a quick snapshot of dump information.

The stat subcommand

The stat subcommand provides plenty of useful information about a dump, such as the dump code, the panic string, time of the crash, version and release of the operating system, name of the machine that crashed, and how long the machine had been running since the last crash or power off of the system. For example:

```
> stat
  sysname: AIX
  nodename: kmdvs
  release: 3
  version: 4
  machine: 000939434C00
  time of crash: Mon May  3 17:49:46 KORST 1999
  age of system: 2 day, 4 hr., 28 min.
```
Chapter 5. System dumps

The stat subcommand should always be the first command run when examining a system crash.

The trace -m subcommand

The trace -m subcommand gives you a kernel stack traceback.

This is typically the second command you will run when examining a system dump.

This subcommand provides information about what was happening in the kernel when the failure occurred. The trace -m subcommand provides a history of function calls and interrupt processing at the time of failure. If the failure occurred while interrupt processing was going on, this subcommand will be very useful in determining the cause. This subcommand traces the linked list of mstsave areas. The mstsave areas basically contain a history of what interrupt processing was going on in the system.

The machine state save area, or MST, contains a saved image of the machine's process context. The process context includes the general purpose and floating point registers, the special purpose registers, and other information necessary to restart a thread when it is dispatched. For example:

```bash
> trace -m
Skipping first MST
MST STACK TRACE:
0x002baeb0 (except=00000000:00000000:00000000:00000000:00000000) (intpri=3)
  IAR: .[atmle_dd:atmle_ready_ind]+d8 (01b05cb0): tweqi r5,0x0
  LR: .[atmle_dd:atmle_ready_ind]+34 (01b05c0c)
002ba940: .[atmle_dd:atmle_receive_ether_data]+1ec (01b0c35c)
002ba9a0: .[atm_demux:atm_dmx_receive]+204 (01adc0e8)
002baa00: .[atmdd:atm_deqhandler]+1254 (01ac7e6c)
002bac0: .[atmdd:atm_HandleCardRsp]+1a4 (01aba084)
002bad40: .[atmdd:atm_intr]+ac (01ac4a04)
002bad90: .i_poll_soft+9c (0001ef84)
002badf0: .i_softmod+c8 (0001e964)
002bae70: flih_603_patch+c0 (0000bb9c)
0x2ff3b400 (except=00000000:00000000:00000000:00000000:00000000) (intpri=11)
  IAR: .waitproc+c0 (00000ed0): lwz r3,0x6c(r28)
```
In this example, there are two levels of stack traceback. The first level shows the Instruction Address Register (IAR) pointing to a trap instruction, \texttt{tweqi \ r5, 0x0}, as shown.

The following registers are worth considering:

- **IAR** Instruction Address Register. The address of the instruction that caused the crash.
- **LR** Link Register that called the fatal function or where last call returns to.

This trap instruction is what you will see when you get a crash of type Program Interrupt, or Dump Status = 700. This was probably the result of assert or panic. It can be seen that the interrupt priority is 3 (\texttt{intpri=3}). In this case, it can be seen that interrupt processing was occurring when the crash happened, because the interrupt priority was less than 11 or 0xB, which is the base interrupt priority. This is the level at which a normal process runs.

The first entry on the stack traceback was the most recently running function, which was called by the function below it, which was called by the function below it, and so on. Therefore, in the case of the middle stack traceback in our example, it can be seen that i_softmod called i_poll_soft, which called some functions in atmdd and atm_demux modules, which in turn called atmle_receive_ether_data, which called atmle_ready_ind, and an assert was hit in atmle_ready_ind. Look at the code for this string to try to find out the cause of the assert action. You can deduce that the atmle_dd module did something wrong or the parameters passed in to the function were incorrect.

Make sure the failing module is at the latest version. Problems are frequently resolved in later versions of software. You can use the \texttt{le} subcommand in crash and the \texttt{lslpp -w} command to find the fileset that contains the specific module.

The le subcommand

Use the \texttt{le} subcommand with the address listed in the IAR of the topmost MST area as the argument. The address is displayed in brackets after the name of the module. For example:

```bash
> le 01b05cb0
LoadList entry at 0x04db7780
 Module start:0x00000000_01b016e0  Module filesize:0x00000000_00030fbc
 Module *end:0x00000000_01b3269c
 *data:0x00000000_0125ef40  data length:0x00000000_0000375c
 Use-count:0x000c  load_count:0x0001  *file:0x00000000
 *flags:0x00000272  TEXT KERNELEX DATAINTEXT DATA DATAEXISTS
```
One of the fields listed by the le subcommand is the name of the module. You can then use the `lslpp -w` command to determine the fileset that contains the module. For example:

```
itsosrv1:/> lslpp -w /usr/lib/drivers/atmle_dd
```

```
File                                    Fileset               Type
--------------------------------------------------------------------------
/usr/lib/drivers/atmle_dd              bos.atm.atmle            File
```

This command is available in AIX Version 4.2 or later.

Consider the following line:

```
002ba940: .[atmle_dd:atmle_receive_ether_data]+1ec (01b0c35c)
```

The address of the entry on the stack is in the first column. The last column contains the return address of the code (01b0c35c). This address corresponds to the function shown, `atmle_receive_ether_data`, which is contained in the module `atmle_dd`. The square brackets around the `[module:function]` pair indicate that this is a kernel extension. In addition, the instruction at this return address is at offset 0x1ec from the beginning of the function `atmle_receive_ether_data()`.

The last of the stack trace backs indicates that the user-level process (`intpri=b`) and the running process is `wait`. If the `crash` user subcommand is run, it will be seen that the running process is `wait`. However, `wait` did not cause the problem here; the problem was caused by a program running at interrupt level, and looking at the MST stack traceback is the only way to see the real problem.

When a Data Storage Interrupt (DSI) with dump code 300 occurs, the exception structure is filled in as follows:

```
0x2ff3b400 (except=DAR:DSISR:SRV:DAR2:DSIRR) (intpri=?)
```

The exception structure shows various machine registers and the interrupt level. The registers shown in the exception structure are defined as follows:

- **DAR**: Data Address Register
- **DSISR**: Data Storage Interrupt Status Register
- **SRV**: Segment Register Value
- **DAR2**: Secondary Data Address Register
DSIRR
Data Storage Interrupt Reason Register

The interrupt priority of the running context is shown in the (intpri=?) field at the end of the line. The intpri value ranges from 0xb (INTBASE) to 0x0 (INTMAX).

The exception structure is not used for code 700 dumps.

The le subcommand can indicate the kernel extension that an address belongs to. Take, for example, the address 0x0123cc5c. This is a kernel address, since it starts 0x01, which indicates it is in segment 0, the kernel segment. To find the kernel module that contains the code at this address, use the le subcommand. For example:

```
> le 0123cc5c
LoadList entry at 0x04db7780
  Module start:0x00000000_012316e0  Module filesize:0x00000000_00030fbc
  Module *end:0x00000000_0126269c
  *data:0x00000000_0125e540  data length:0x00000000_00030f2c
  Use-count:0x000c  load_count:0x0001  *file:0x00000000
  flags:0x00000272 TEXT KERNELEX DATAINTEXT DATA DATAEXISTS
  *exp:0x04e0e000  *lex:0x00000000  *deferred:0x00000000  *expsize:0x69626f64
  Name: /usr/lib/drivers/pse/pse
  *depend[00]:0x04db7580
  le_next: 0x04db7380
```

In this case, it can be seen that the code at address 0x0123cc5c is in module /usr/lib/drivers/pse/pse. The le subcommand is only helpful for modules that are already loaded into the kernel.

The proc subcommand

The proc subcommand displays entries in the process table. The process table is made up of entries of type struct proc, one per active process. Entries in the process table are pinned so that they are always resident in physical memory. The process table contains information needed when the process has been swapped out in order to get it running again at some point in the future. For example:

```
> proc - 0
SLT ST PID PPID PGRP UID EUID TCNT NAME
 0 0 0 0 0 0 0 1 swapper
  FLAGS: swapped_in no_swap fixed_pri kproc
  Links: *child:0xe300170  *siblings:0x00000000  *uid:0xe3001fa0
    *ganchor:0x00000000  *pgprpl:0x00000000  *ttyl:0x00000000
  Dispatch Fields:  pevent:0x00000000  *synch:0xffffffff
    lock:0x00000000  lock_d:0x01390000
  Thread Fields:  *threadlist:0xe6000000  threadcount:1
```
active:1 suspended:0 local:0 terminating:0
Scheduler Fields: fixed pri: 16 repage:0x000000000 scount:0 sched_pri:0
 *sched_next:0x00000000 *sched_back:0x000000000 cpticks:0
 msgcnt:0 majfltsec:0
Misc: adspace:0x0000000000 kstackseg:0x0000000000 xstat:0x0000
 *p_ipc:0x00000000 *p_dblist:0x0000000000 *p_dbnext:0x0000000000
Signal Information:
 pending:hi 0x0000000000,lo 0x0000000000
 sigcatch:hi 0x0000000000,lo 0x0000000000 sigignore:hi 0xffffffff,lo 0xffffffff
Statistics: size:0x0000000000(pages) audit:0x0000000000
 accounting page frames:0 page space blocks:0
 pctcpu:0 minflt:1802 majflt:7

The fields in the first few lines of the output are as follows:

SLT This is the process slot number, and simply indicates the process
 position in the process table. Use this number to tell the crash
 command which specific process block or u-block to display. Note that
 the slot numbers are in decimals.

ST This is a one-character field indicating the status of the process, and
 may be a=active, i=idle, t=stopped, or z=zombie.

PID This is the actual process ID by which the process is known to the
 system. The process slot number is used to generate the process ID.

PPID Parent process ID.

PGRP Process group ID.

UID User ID.

EUID Effective user ID.

TCNT Thread count.

NAME Program name.

FLAGS Status flags.

The thread subcommand
The thread table contains per-thread information that can be used by other
threads in a process. There is one structure allocated per active thread. Entries
that are in use are pinned to avoid page faults in kernel critical sections. For
example:

> thread - 0
SLT ST TID PID CPUID POLICY PRI CPU EVENT PROCNAME
 0 s 3 0 unbound FIFO 10 78 swapper
 t_flags: wakeonsig kthread

Links: *procp:0xe300000000 *uthreadp:0x2ff3b400 *userp:0x2ff3b6e0
*prevthread:0xe6000000 *nextthread:0xe6000000 *stackp:0x00000000
*wchan1(real):0x00000000 *wchan2(VMM):0x00000000 *wchan:0x00000000
wchan1sid:0x00000000 wchanoffset:0x00000000
wchan:0x00000000 wevent:0x000000001 *slist:0x00000000
Dispatch Fields: *prior:0xe6000000 *next:0xe6000000
polevel:0x0000000a ticks:0x0139 *synch:0xffffffff result:0x00000000
*eventlst:0x00000000 *wchan(hashed):0x00000000 suspend:0x0001
thread waiting for: event(s)
Scheduler Fields: cpuid:0xffffffff scpuid:0xffffffff pri: 16 policy:FIFO
affinity:0x0003 cpu:0x0078 lpri: 0 wpri:127 time:0x00
sav_pri:0x10
Misc: lockcount:0x00000000 ulock:0x00000000 *graphics:0x00000000
 dispct:0x000000e4 fpuct:0x00000001 boosted:0x0000
 userdata:0x00000000
Signal Information: cursig:0x00 *scp:0x00000000
 pending:hi 0x00000000,lo 0x00000000 sigmask:hi 0x00000000,lo 0x00000000

The fields in the output of the thread subcommand are as follows:

SLT Slot number.
ST Status. This may be i=idle, r=running, s=sleeping, w=swapped out, t=stopped, or z=zombie.
TID Thread ID.
PID Process ID of the associated process. There may be multiple threads per process, but only one process per thread.
CPUID CPU ID of the CPU running the thread. On a uniprocessor system, this will always be 0.
POLICY This is the scheduling policy used for the thread and may have the values FIFO, RR, or other.
PRI Dispatch priority. This is not the nice value.
CPU CPU utilization. This value is used for scheduling.
PROCNAME The name of the process for this thread.
EVENTS This is the wait channel if not zero.
FLAGS Status flags.

The od subcommand
To display and examine memory areas from the dump, use the od subcommand.
The syntax of the subcommand is as follows:

od [symbol name] [count] [format]

Formats are ASCII, octal, decimal, hex, byte, character, instruction, long octal, and long decimal.
For example:

> od vmker 15
000bde48: 00002001 00006003 00000000 00008004
000bde58: 00200000 00000012 0000000d 00000200
000bde68: 00080000 00000017 0078c93 00066320
000bde78: 00000ab2 00020000 00002870

> od 0xbde48 15 a
000bde48: 00002001 00006003 00000000 00008004 |.. ..`
000bde58: 00200000 00000012 0000000d 00000200 |
000bde68: 00080000 00000017 0078c93 00066320 |c
000bde78: 00000ab2 00020000 00002870 |{p|

The errpt subcommand

To examine the last few error log entries from the dump, use the errpt subcommand. For example:

> errpt
ERRORS NOT READ BY ERRDEMON (MOST RECENT LAST):
Sun Apr 6 01:01:11 1997 : DSI_PROC data storage interrupt : processor
Resource Name: SYSVMM
42000000 007ffffff 80000000 ffffffff
>

The symptom subcommand

The symptom[-e] subcommand displays the symptom string for a dump. It is not valid on a running system. The -e option will create an error log entry containing the symptom string and is normally only used by the system and not manually. The symptom string can be used to identify duplicate problems.

VMM error log

When the Dump Status code indicates a DSI or an ISI, look at the VMM error log. This is done using the od subcommand and looking at the vmmerrlog structure. See Table 5-4 for valid offset codes. For example:

> od vmmerrlog 9 a
00c95b0: 9d035e4d 53595356 4d4d2000 00000000 | ..^MSYSVMM
00c95c8: 00000000 0a000000 00000000 0000000b ||
00c95d0: 00000086 ||

Table 5-4 The vmmerrlog structure

<table>
<thead>
<tr>
<th>Offset</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x14</td>
<td>The Data Storage Interrupt Status Register (DSISR)</td>
</tr>
<tr>
<td>0x1c</td>
<td>Faulting address</td>
</tr>
<tr>
<td>0x20</td>
<td>VMM return code</td>
</tr>
</tbody>
</table>
In this example, the VMM return code 0x86 means protection exception. The various VMM return codes, symbolic names, and meanings are provided in the following:

0000000E This return code indicates an EFAULT. It comes from errno.h (14) and is returned if you attempt to access an invalid address.

FFFFFFFA This return code indicates that you tried to access an invalid page that is not in memory. This is usually the result of a page fault. This will be returned if you try to access something that is paged out while interrupts are disabled.

00000005 This is a hardware problem. An I/O error occurred when you tried to page in or page out, or you tried to access a memory mapped file and could not do it. Check the error log for disk or SCSI errors.

00000086 This return code indicates a protection exception. This means that you tried to store to a location that is protected. This is usually caused by low kernel memory.

0000001C This return code indicates no paging space. This means that the system has exhausted its paging space.

Handling crash output

Some crash subcommands generate many more lines than can fit on one screen. Also, crash does not pause the output after each screen is full. You will want to have some way of seeing the scrolled data.

In the past, the script or tee commands were used for this. For example:

```
tee -a outf | crash /tmp/dump /unix | tee -a outf
```

There is now a new way to obtain a log file by using the set logfile subcommand. For example:

```
>set logfile crash.log
```

Once this has been entered, crash starts logging all input and output to the specified file. The set variable subcommand is available in AIX Version 4.1.5, 4.2.1, 4.3, and later.

In addition to the logfile support, command pipeline support was added to crash, allowing you to pipe long output to other commands, such as more, pg, and grep. For example:

```
> le 0123cc5c | grep Name
Name: /usr/lib/drivers/pse/pse
```
5.9.2 Types of crashes

Common problems requiring crash dump analysis include those discussed in the following sections.

Kernel panic or trap
A kernel panic or trap is usually the cause of a system crash with the LED sequence 888-102-700-0cx.

In AIX, kernel panics manifest themselves as traps. The panic() routine in the kernel puts its message into a buffer, writes it to the debug TTY using the kernel debug program, and calls brkpoint(). If the kernel debugger is loaded, and an ASCII terminal is connected on a serial port, this will start the debugger; otherwise, it will cause a dump. If a panic or assert occurs, you must examine the source code to understand the condition that caused the panic or assert.

Addressing exception of data storage interrupt
An addressing exception of data storage interrupt is accompanied by the LED sequence 888-102-300-0cx.

The 300 in the LED sequence indicates an addressing exception (a data storage interrupt or DSI). This is usually caused by a bad address being accessed, or page fault occurring when interrupts are disabled. When you get this type of crash, check the VMM return code.

System hang
A dump can be forced when the system locks up (to determine the cause of the hang).

A system hang is a total system lockup. A dump forced by turning the key to the Service position and pressing the Reset button can be examined to see what locks are being held by whom. Refer to 5.2, “Starting a system dump” on page 68, for more information.

5.9.3 The snap command

The snap command gathers system configuration information and compresses the information into a TAR file. The file can then be downloaded to disk or tape, or transmitted to a remote system. The information gathered with the snap command may be required to identify and resolve system problems.
The `snap` command syntax is as follows:

```
snap [ -a ] [ -A ] [ -b ] [ -c ] [ -D ] [ -f ] [ -g ] [ -G ] [ -i ] [ -k ]
[ -1 ] [ -L ] [ -n ] [ -N ] [ -p ] [ -r ] [ -s ] [ -S ] [ -t ]
[ -o OutputDevice ] [ -d Dir ] [ -v Component ]
```

Commonly used `snap` command flags are listed in Table 5-5.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Gathers all system configuration information. This option requires approximately 8 MB of temporary disk space.</td>
</tr>
<tr>
<td>-A</td>
<td>Gathers asynchronous (TTY) information.</td>
</tr>
<tr>
<td>-b</td>
<td>Gathers SSA information.</td>
</tr>
<tr>
<td>-c</td>
<td>Creates a compressed TAR image (snap.tar.Z file) of all files in the /tmp/ibmsupt directory tree or other named output directory.</td>
</tr>
<tr>
<td>-D</td>
<td>Gathers dump and /unix information. The primary dump device is used. If <code>bosboot -k</code> was used to specify the running kernel to be other than /unix, the incorrect kernel will be gathered. Make sure that /unix is, or is linked to, the kernel in use when the dump was taken.</td>
</tr>
<tr>
<td>-dDir</td>
<td>Identifies the optional <code>snap</code> command output directory (/tmp/ibmsupt is the default).</td>
</tr>
<tr>
<td>-f</td>
<td>Gathers file system information.</td>
</tr>
<tr>
<td>-g</td>
<td>Gathers the output of the <code>ls1pp -hBc</code> command, which is required to recreate exact operating system environments. Writes output to the /tmp/ibmsupt/general/ls1pp.hBc file. Also collects general system information and writes the output to the /tmp/ibmsupt/general/general.snap file.</td>
</tr>
<tr>
<td>-G</td>
<td>Includes predefined Object Data Manager (ODM) files in general information collected with the -g flag.</td>
</tr>
<tr>
<td>-i</td>
<td>Gathers installation debug vital product data (VPD) information.</td>
</tr>
<tr>
<td>-k</td>
<td>Gathers kernel information.</td>
</tr>
<tr>
<td>-l</td>
<td>Gathers programming language information.</td>
</tr>
<tr>
<td>-L</td>
<td>Gathers LVM information.</td>
</tr>
<tr>
<td>-n</td>
<td>Gathers Network File System (NFS) information.</td>
</tr>
<tr>
<td>-N</td>
<td>Suppresses the check for free space.</td>
</tr>
</tbody>
</table>
5.9.4 The strings command

The strings command looks for printable strings in an object or binary file. A string is any sequence of four or more printable characters that end with a new-line or a null character. The strings command is useful for identifying random object files.

The strings command syntax is as follows:

```
strings [ -a ] [ - ] [ -o ] [ -t Format ] [ -n Number ] [ -t Number ] [ File ]
```

Commonly used strings command flags are listed in Table 5-6.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-oOutputDevice</td>
<td>Copies the compressed image onto diskette or tape.</td>
</tr>
<tr>
<td>-p</td>
<td>Gathers printer information.</td>
</tr>
<tr>
<td>-r</td>
<td>Removes snap command output from the /tmp/ibmsupt directory.</td>
</tr>
<tr>
<td>-s</td>
<td>Gathers Systems Network Architecture (SNA) information.</td>
</tr>
<tr>
<td>-S</td>
<td>Includes security files in general information collected with the -g flag.</td>
</tr>
<tr>
<td>-vComponent</td>
<td>Displays the output of the commands executed by the snap command. Use this flag to view the specified name or group of files.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a or -</td>
<td>Searches the entire file, not just the data section, for printable strings.</td>
</tr>
<tr>
<td>-n Number</td>
<td>Specifies a minimum string length other than the default of four characters. The maximum value of a string length is 4096. This flag is identical to the -Number flag.</td>
</tr>
<tr>
<td>-o</td>
<td>Lists each string preceded by its octal offset in the file. This flag is identical to the -t o flag.</td>
</tr>
</tbody>
</table>
5.9.5 The sysdumpdev command

The sysdumpdev command changes the primary or secondary dump device designation in a system that is running. The primary and secondary dump devices are designated in a system configuration object. The new device designations are in effect until the sysdumpdev command is run again, or the system is restarted.

If no flags are used with the sysdumpdev command, the dump devices defined in the SWservAt ODM object class are used. The default primary dump device is /dev/hd6. The default secondary dump device is /dev/sysdumpnull.

Note: Do not use a mirrored or copied logical volume as the active primary dump device. System dump error messages will not be displayed, and any subsequent dumps to a mirrored logical volume will fail.

Do not use a diskette drive as your dump device.

If you use a paging device, only use hd6, the primary paging device. AIX Version 4.2.1 or later supports using any paging device in the root volume group (rootvg) as the secondary dump device.

The sysdumpdev command syntax is as follows:

```
sysdumpdev [-c | -C] -P { -p Device | -s Device } [ -q ]
sysdumpdev [-c | -C] [ -p Device | -s Device] [ -q ]
sysdumpdev [-c | -C] [ -d Directory | -D Directory | -e | [ -k | -K ] | -1 | -L
| -p Device | -q | -r Host: Path | -s Device | -z ]
```
Commonly used `sysdumpdev` command flags are listed in Table 5-7.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Specifies that dumps will not be compressed. The <code>-c</code> flag applies to only AIX Version 4.3.2 and later versions.</td>
</tr>
<tr>
<td>-C</td>
<td>Specifies that all future dumps will be compressed before they are written to the dump device. The <code>-C</code> flag applies to only AIX Version 4.3.2 and later versions.</td>
</tr>
<tr>
<td>-d Directory</td>
<td>Specifies the directory the dump is copied to at system boot. If the copy fails at boot time, the <code>-d</code> flag ignores the system dump.</td>
</tr>
<tr>
<td>-D Directory</td>
<td>Specifies the directory the dump is copied to at system boot. If the copy fails at boot time, using the <code>-D</code> flag allows you to copy the dump to an external media. When using the <code>-d Directory</code> or <code>-D Directory</code> flags, the following error conditions are detected:</td>
</tr>
<tr>
<td></td>
<td>Directory does not exist.</td>
</tr>
<tr>
<td></td>
<td>Directory is not in the local journaled file system.</td>
</tr>
<tr>
<td></td>
<td>Directory is not in the rootvg volume group.</td>
</tr>
<tr>
<td>-e</td>
<td>Estimates the size of the dump (in bytes) for the current running system.</td>
</tr>
<tr>
<td>-k</td>
<td>Requires the key mode switch to be in the service position before a dump can be forced with the Reset button or the dump key sequences. This is the default setting.</td>
</tr>
<tr>
<td>-K</td>
<td>The Reset button or the dump key sequences will force a dump with the key in the normal position. On a machine without a key mode switch, a dump cannot be forced with the Reset button or the key switch without this value set.</td>
</tr>
<tr>
<td>-l</td>
<td>Lists the current value of the primary and secondary dump devices, copy directory, and forcecopy attribute.</td>
</tr>
<tr>
<td>-L</td>
<td>Displays statistical information about the most recent system dump. This includes date and time of last dump, number of bytes written, and completion status. The status value will correspond to the dump LED codes as follows: 0 = 0c0 - Dump completed successfully -1 = 0c8 - No primary dump device -2 = 0c4 - Partial dump -3 = 0c5 - Dump failed to start</td>
</tr>
<tr>
<td>-P</td>
<td>Makes permanent the dump device specified by the <code>-p</code> or <code>-s</code> flags. The <code>-P</code> flag can only be used with the <code>-p</code> or <code>-s</code> flags.</td>
</tr>
</tbody>
</table>
5.9.6 The sysdumpstart command

The `sysdumpstart` command provides a command line interface to start a kernel dump to the primary or secondary dump device. When the dump completes, the system halts. Use the `crash` command to examine a kernel dump. Use the `sysdumpdev` command to reassign the dump device.

The `sysdumpstart` command syntax is as follows:

```
sysdumpstart { -p Device | -s Device [ -f ] }
```

During a kernel dump, the following values can be displayed on the three-digit terminal display as follows:

- **0c0**: Indicates that the dump completed successfully.
- **0c1**: Indicates that an I/O error occurred during the dump. This value only applies to AIX Version 4.2.1 or later.
- **0c2**: Indicates that the dump is in progress.
- **0c4**: Indicates that the dump device is too small.
- **0c5**: Indicates a dump internal error.
- **0c6**: Prompts you to make the secondary dump device ready. This value does not apply for AIX Version 4.2.1 or later.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p Device</td>
<td>Temporarily changes the primary dump device to the specified device. The device can be a logical volume or a tape device. For a network dump, the device can be a host name and a path name.</td>
</tr>
<tr>
<td>-q</td>
<td>Suppresses all messages to standard output. If this flag is used with the -l, -r, -z, or -L flag, the -q flag will be ignored.</td>
</tr>
<tr>
<td>-r Host:Path</td>
<td>Frees space used by the remote dump file on server host. The location of the dump file is specified by the path.</td>
</tr>
<tr>
<td>-s Device</td>
<td>Temporarily changes the secondary dump device to the specified device. The device can be a logical volume or a tape device. For a network dump, the device can be a host name and a path name.</td>
</tr>
<tr>
<td>-z</td>
<td>Determines if a new system dump is present. If one is present, a string containing the size of the dump in bytes and the name of the dump device will be written to standard output. If a new system dump does not exist, nothing is returned. After the <code>sysdumpdev -z</code> command is run on an existing system dump, the dump will no longer be considered recent.</td>
</tr>
</tbody>
</table>
0c7 Indicates that the dump process is waiting for a response from the remote host.

0c8 Indicates that the dump was disabled. In this case, no dump device was designated in the system configuration object for dump devices. The sysdumpstart command halts, and the system continues running.

0c9 Indicates that a dump is in progress.

0cc Indicates that the system switched to the secondary dump device after attempting a dump to the primary device. This value only applies to AIX Version 4.2.1 and later.

The sysdumpstart command flags are listed in Table 5-8.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Suppresses the prompt to make the secondary dump device ready. This flag does not apply to AIX Version 4.2.1 or later.</td>
</tr>
<tr>
<td>-p</td>
<td>Initiates a system dump and writes the results to the primary dump device.</td>
</tr>
<tr>
<td>-s</td>
<td>Initiates a system dump and writes the results to the secondary dump device.</td>
</tr>
</tbody>
</table>

5.10 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Using the following error log entries as shown, which of the following conclusions best explains why the system crashed?
 A. The system crash was caused by a signal 11.
 B. The calc command caused the system to crash.
 C. The system crashed due to an invalid inode number.
 D. The system took a dump to paging space after the calc command core dumped.
Figure 5-3 Error log case study

2. Which of the following crash subcommands should be used to verify the date and time of a system dump?

A. le
B. t -s
C. stat
D. errpt
3. After a legacy microchannel system has gone down with flashing 888s, which of the following procedures is the best way to diagnose the problem?
 A. Turn the power off and back on.
 B. Reboot the system in maintenance mode.
 C. Turn the key to service and press the Reset button to make a dump.
 D. Verify that the key is in normal mode and press the Reset button to obtain error codes.

4. All of the following are contained in a system dump except:
 A. The entire contents of memory
 B. The history of kernel function calls
 C. The process/thread that was active
 D. The final history of error log events leading up to the system crash

5. Which of the following devices is a valid primary dump device?
 A. /dev/hd5
 B. /dev/null
 C. /var/adm/ras
 D. /dev/paging00

6. A system dump must be performed in order to have a permanent snapshot of the current state of the system. Which of the following commands should be run?
 A. snap
 B. crash
 C. sysdumpdev
 D. sysdumpstart

7. After a user initiates a dump request on an AIX system, the entry shown in Figure 5-4 on page 104 is recorded in the system's error log.
Which of the following conclusions can be drawn?

A. The dump request failed.
B. The dump request was initiated due to an invalid sequence number.
C. The dump request was partially successful.
D. The dump request was initiated due to a problem with the device with the major/minor numbers 10,1.

8. What does the LED c20 indicate?

A. A system dump failure.
B. A partial system dump.
C. A complete system dump.
D. The low level debugger is invoked.

9. If a system crashes and the LED c20 is displayed, what does this indicate?

A. A dump has been forced on the system.
B. The system has automatically crashed.
C. The kernel debugger has been invoked.
D. The system took a partial dump and failed.
10. Which of the following codes best indicates that a crash was caused by a software problem?
 A. 888-102-000-0c8
 B. 888-102-207-0c0
 C. 888-102-300-0c0
 D. 888-102-500-0c4

11. Which of the following codes best indicates that the crash was caused by a hardware problem?
 A. 888-102-207-0c0
 B. 888-102-300-0c4
 C. 888-102-300-0c8
 D. 888-102-700-0c0

12. Which of the following dump codes best describes the LED 0c2 condition?
 A. Dump completed successfully
 B. Dump is incomplete
 C. No valid dump device
 D. User requested dump started
5.10.1 Answers

The following are the preferred answers to the questions provided in this section.

1. D
2. C
3. D
4. A
5. D
6. D
7. A
8. D
9. C
10. C
11. A
12. D

5.11 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Describe the different ways to start a system dump.
2. On a core dump, name the two ways that can be used to find the program that caused the core dump.
3. Briefly describe how the `crash` command can be used to analyze system dumps.
Chapter 6. Error reports

AIX records system errors and other information, such as system shutdowns and other system functions, in the error log. The contents of the error log can be viewed using the error report. This chapter will cover the use of the error report and how it can be used to obtain information about problems, and how the report can be maintained.
6.1 The error daemon

The error logging daemon is started with the `errdemon` command and writes entries to the error log.

The error logging daemon reads error records from the `/dev/error` file and creates error log entries in the system error log. Besides writing an entry to the system error log, the error logging daemon performs error notification as specified in the error notification database `/etc/objrepos/errnotify`. The default system error log is maintained in the `/var/adm/ras/errlog` file. The last error entry is placed in nonvolatile random access memory (NVRAM). During system startup, this last error entry is read from NVRAM and added to the error log or dump when the error logging daemon is started.

The error logging daemon does not create an error log entry for the logged error if the error record template specifies Log=FALSE.

If you use the error logging daemon without flags, the system restarts the error logging daemon using the values stored in the error log configuration database for the error log file name, file size, and internal buffer size.

Use the `errclear` command to remove entries from the system error log.

Note: The error logging daemon is normally started during system initialization. Stopping the error logging daemon can cause error data temporarily stored in internal buffers to be overwritten before it can be recorded in the error log file.

6.2 The errdemon command

The `errdemon` command syntax is as follows:

```
errdemon [ [ -B BufferSize ] [ -i File ] [ -s LogSize ] | -l ]
```

Commonly used `errdemon` flags are shown in Table 6-1.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i File</code></td>
<td>Uses the error log file specified by the file variable. The specified file name is saved in the error log configuration database and is immediately put into use.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>Displays the values for the error log file name, file size, and buffer size from the error log configuration database.</td>
</tr>
</tbody>
</table>
Chapter 6. Error reports

An example of the `errdemon` command is provided in the following example.

To check the attributes of the error log file, use the `errdemon` command as follows:

```bash
# /usr/lib/errdemon -l
Error Log Attributes
--------------------------------------------
Log File                /var/adm/ras/errlog
Log Size                23899 bytes
Memory Buffer Size      8192 bytes
```

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-s LogSize</code></td>
<td>Uses the size specified by the LogSize variable for the maximum size of the error log file. The specified log file size limit is saved in the error log configuration database, and it is immediately put into use. If the log file size limit is smaller than the size of the log file currently in use, the error logging daemon renames the current log file by appending <code>.old</code> to the file name. The error logging daemon creates a new log file with the specified size limit. Generate a report from the old log file using the <code>-i</code> flag of the <code>errpt</code> command. If this parameter is not specified, the error logging daemon uses the log file size from the error log configuration database.</td>
</tr>
</tbody>
</table>

| `-BBufferSize` | Uses the number of bytes specified by the BufferSize parameter for the error log device driver's in-memory buffer. The specified buffer size is saved in the error log configuration database. If the BufferSize parameter is larger than the buffer size currently in use, the in-memory buffer is immediately increased. If the BufferSize parameter is smaller than the buffer size currently in use, the new size is put into effect the next time the error logging daemon is started after the system is rebooted. The buffer cannot be made smaller than the hard-coded default of 8 KB. If this parameter is not specified, the error logging daemon uses the buffer size from the error log configuration database. The size you specify is rounded up to the next integral multiple of the memory page size (4 KB). The memory used for the error log device driver's in-memory buffer is not available for use by other processes (the buffer is pinned). Be careful not to impact your system's performance by making the buffer excessively large. On the other hand, if you make the buffer too small, the buffer can become full if error entries arrive faster than they can be read from the buffer and put into the log file. When the buffer is full, new entries are discarded until space becomes available in the buffer. When this situation occurs, the error logging daemon creates an error log entry to inform you of the problem. You can correct the problem by enlarging the buffer. |

An example of the `errdemon` command is provided in the following example.
To change the current log file, the `errdemon` command is used as follows:

```
# /usr/lib/errdemon -i /var/adm/ras/myerrlog
```

To change the error log file size, the `errdemon` command is used as follows:

```
# /usr/lib/errdemon -s 47798
```

To change the error log buffer size, the `errdemon` command is used as follows:

```
# /usr/lib/errdemon -B 16384
```

0315-175 The error log memory buffer size you supplied will be rounded up to a multiple of 4096 bytes.

The new status can be checked using the `errdemon` command as follows:

```
# /usr/lib/errdemon -l
```

Error Log Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log File</td>
<td>/var/adm/ras/myerrlog</td>
</tr>
<tr>
<td>Log Size</td>
<td>47798 bytes</td>
</tr>
<tr>
<td>Memory Buffer Size</td>
<td>16384 bytes</td>
</tr>
</tbody>
</table>

The `errdemon` command without flags will start the error daemon if it is not running as follows:

```
# /usr/lib/errdemon
```

If the error daemon is running, an error will be reported as follows:

```
# /usr/lib/errdemon
```

0315-100 The error log device driver, /dev/error, is already open.

The error demon may already be active.

6.3 The `errpt` command

The `errpt` command generates an error report from entries in an error log. It includes flags for selecting errors that match specific criteria. By using the default condition, you can display error log entries in the reverse order in which they occurred and were recorded. By using the `-c` (concurrent) flag, you can display errors as they occur. If the `-i` flag is not used with the `errpt` command, the error log file processed by `errpt` is the one specified in the error log configuration database (by default `/var/adm/ras/errlog`).

The default summary report contains one line of data for each error. You can use flags to generate reports with different formats.
To process a report from the error log, use the following syntax:

```
errpt [ -a ] [ -c ] [ -d ErrorClassList ] [ -e EndDate ] [ -g ] [ -i File ]
[ -j ErrorID [ ,ErrorID ] ] [ -k ErrorID [ ,ErrorID ] ] [ -l ErrorLabel
[ ,ErrorLabel ] ] [ -m Machine ] [ -n Node ] [ -s StartDate ] [ -F FlagList
[ -N ResourceNameList ] [ -R ResourceTypeList ] [ -S ResourceClassList ]
[ -T ErrorTypeList ] [ -y File ] [ -z File ]
```

Figure 6-1 shows how the `errpt` command processes a report from the error log.

Note: The `errpt` command does not perform error log analysis; for analysis, use the `diag` command.

Figure 6-1 The `errpt` command error log report process

1. Do not add a space between these items.
To process a report from the error record template repository, use the following syntax:

```
errpt [-a] [ -t ] [ -d ErrorClassList ] [ -j ErrorID [ ,ErrorID ] ] |
       [ -k ErrorID [ ,ErrorID ] ] [ -J ErrorLabel [ ,ErrorLabel ] ] |
       [ -K ErrorLabel [ ,ErrorLabel ] ] [ -F FlagList ] [ -T ErrorTypeList ]
       [ -y File ] [ -z File ]
```

Figure 6-2 shows how the `errpt` command processes a report from the error record template.

Table 6-2 is a listing of the commonly used `errpt` command flags.

Table 6-2 Commonly used flags of the `errpt` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Displays information about errors in the error log file in detailed format. If used in conjunction with the - t flag, all the information from the template file is displayed.</td>
</tr>
<tr>
<td>-c</td>
<td>Formats and displays each of the error entries concurrently, that is, at the time they are logged. The existing entries in the log file are displayed in the order in which they were logged.</td>
</tr>
</tbody>
</table>
Chapter 6. Error reports

Flag Description

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-d ErrorClassList</code></td>
<td>Limits the error report to certain types of error records specified by the valid ErrorClassList variables: H (hardware), S (software), O (errlogger command messages), and U (undetermined). The ErrorClassList variable can be separated by commas (,), or enclosed in double quotation marks (") and separated by commas or space characters.</td>
</tr>
<tr>
<td><code>-e EndDate</code></td>
<td>Specifies all records posted before the EndDate variable, where the EndDate variable has the form mmddhhmmyy (month, day, hour, minute, and year).</td>
</tr>
</tbody>
</table>
Flag Description

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
</table>
| -g | Displays the ASCII representation of unformatted error log entries. The output of this flag is in the following format:
 - **el_sequence** Error log stamp number
 - **el_label** Error label
 - **el_timestamp** Error log entry time stamp
 - **el_crcid** Unique cyclic-redundancy-check (CRC) error identifier
 - **el_machineid** Machine ID variable
 - **el_nodeid** Node ID variable
 - **el_class** Error class
 - **el_type** Error type
 - **el_resource** Resource name
 - **el_rclass** Resource class
 - **el_rtype** Resource type
 - **el_vpd_ibm** IBM vital product data (VPD)
 - **el_vpd_user** User VPD
 - **el_in** Location code of a device
 - **el_connwhere** Hardware-connection ID (location on a specific device, such as slot number)
 - **et_label** Error label
 - **et_class** Error class
 - **et_type** Error type
 - **et_desc** Error description
 - **et_probcauses** Probable causes
 - **et_usercauses** User causes
 - **et_useraction** User actions
 - **et_instcauses** Installation causes
 - **et_instaction** Installation actions
 - **et_failcauses** Failure causes
 - **et_failaction** Failure actions
 - **et_detail_length** Detail-data field length
 - **et_detail_descid** Detail-data identifiers
 - **et_detail_encode** Description of detail-data input format
 - **et_logflg** Log flag
 - **et_alertflg** Alertable error flag
 - **et_reportflg** Error report flag
 - **el_detail_length** Detail-data input length
 - **el_detail_data** Detail-data input |
| -i File | Uses the error log file specified by the file variable. If this flag is not specified, the value from the error log configuration database is used. |
Error reports

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-j ErrorID[,ErrorID]</td>
<td>Includes only the error log entries specified by the ErrorID (error identifier) variable. The ErrorID variables can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters. When combined with the -t flag, entries are processed from the error-template repository. (Otherwise, entries are processed from the error-log repository.)</td>
</tr>
<tr>
<td>-k ErrorID[,ErrorID]</td>
<td>Excludes the error log entries specified by the ErrorID variable. The ErrorID variables can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters. When combined with the -t flag, entries are processed from the error-template repository. (Otherwise, entries are processed from the error-log repository.)</td>
</tr>
<tr>
<td>-l SequenceNumber</td>
<td>Selects a unique error log entry specified by the SequenceNumber variable. This flag is used by methods in the error-notification object class. The SequenceNumber variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-m Machine</td>
<td>Includes error log entries for the specified machine variable. The <code>uname -m</code> command returns the machine variable value.</td>
</tr>
<tr>
<td>-n Node</td>
<td>Includes error log entries for the specified node variable. The <code>uname -n</code> command returns the node variable value.</td>
</tr>
<tr>
<td>-s StartDate</td>
<td>Specifies all records posted after the StartDate variable, where the StartDate variable has the form mmddhhmmyy (month, day, hour, minute, and year).</td>
</tr>
<tr>
<td>-t</td>
<td>Processes the error record template repository instead of the error log. The -t flag can be used to view error record templates in report form.</td>
</tr>
<tr>
<td>-y File</td>
<td>Uses the error record template file specified by the file variable. When combined with the -t flag, entries are processed from the specified error template repository. (Otherwise, entries are processed from the error log repository, using the specified error template repository.)</td>
</tr>
<tr>
<td>-z File</td>
<td>Uses the error logging message catalog specified by the file variable. When combined with the -t flag, entries are processed from the error template repository. (Otherwise, entries are processed from the error log repository.)</td>
</tr>
<tr>
<td>Flag</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>-F FlagList</td>
<td>Selects error record templates according to the value of the Alert, Log, or Report field of the template. The FlagList variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters. The -F flag is used with the -t flag only. Valid values of the FlagList variable include: alert=0, which selects error record templates with the Alert field set to False. alert=1, which selects error record templates with the Alert field set to True. log=0, which selects error-record templates with the Log field set to False. log=1, which selects error record templates with the Log field set to True. report=0, which selects error record templates with the Report field set to False. report=1, which selects error record templates with the Report field set to True.</td>
</tr>
<tr>
<td>-J ErrorLabel</td>
<td>Includes the error log entries specified by the ErrorLabel variable. The ErrorLabel variable values can be separated by commas, or enclosed in double-quotation marks and separated by commas or blanks. When combined with the -t flag, entries are processed from the error template repository. (Otherwise, entries are processed from the error log repository.)</td>
</tr>
<tr>
<td>-K ErrorLabel</td>
<td>Excludes the error log entries specified by the ErrorLabel variable. The ErrorLabel variable values can be separated by commas, or enclosed in double-quotation marks and separated by commas or blanks. When combined with the -t flag, entries are processed from the error template repository. (Otherwise, entries are processed from the error log repository.)</td>
</tr>
<tr>
<td>-N ResourceNameList</td>
<td>Generates a report of resource names specified by the ResourceNameList variable. For hardware errors, the ResourceNameList variable is a device name. For software errors, it is the name of the failing executable. The ResourceNameList variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-R ResourceTypeList</td>
<td>Generates a report of resource types specified by the ResourceTypeList variable. For hardware errors, the ResourceTypeList variable is a device type. For software errors, it is the LPP value. The ResourceTypeList variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
</tbody>
</table>
To display a complete summary report, enter:

```
# errpt
```

<table>
<thead>
<tr>
<th>IDENTIFIER</th>
<th>TIMESTAMP</th>
<th>T</th>
<th>C</th>
<th>RESOURCE_NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>9DBCFDEE</td>
<td>0713172600</td>
<td>T</td>
<td>O</td>
<td>errdemon</td>
<td>ERROR LOGGING TURNED ON</td>
</tr>
<tr>
<td>9DBCFDEE</td>
<td>0713172400</td>
<td>T</td>
<td>O</td>
<td>errdemon</td>
<td>ERROR LOGGING TURNED ON</td>
</tr>
<tr>
<td>192AC071</td>
<td>0713172400</td>
<td>T</td>
<td>O</td>
<td>errdemon</td>
<td>ERROR LOGGING TURNED OFF</td>
</tr>
<tr>
<td>9DBCFDEE</td>
<td>0713172300</td>
<td>T</td>
<td>O</td>
<td>errdemon</td>
<td>ERROR LOGGING TURNED ON</td>
</tr>
<tr>
<td>192AC071</td>
<td>0713171700</td>
<td>T</td>
<td>O</td>
<td>errdemon</td>
<td>ERROR LOGGING TURNED OFF</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To display a complete detailed report, enter:

```
# errpt -a
```

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-S ResourceClassList</td>
<td>Generates a report of resource classes specified by the ResourceClassList variable. For hardware errors, the ResourceClassList variable is a device class. The ResourceClassList variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-T ErrorTypeList</td>
<td>Limits the error report to error types specified by the valid ErrorTypeList variables: INFO, PEND, PERF, PERM, TEMP, and UNKN. The ErrorTypeList variable can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
</tbody>
</table>

```
LABEL:          ERRLOG_ON
IDENTIFIER:     9DBCFDEE
Date/Time:       Thu Jul 13 17:26:11
Sequence Number: 143
Machine Id:      000FA17D4C00
Node Id:         server2
Class:           O
Type:            TEMP
Resource Name:   errdemon
```

```
ERROR LOGGING TURNED ON
```

Chapter 6. Error reports 117
Probable Causes
ERRDEMON STARTED AUTOMATICALLY

User Causes
/USR/LIB/ERRDEMON COMMAND

Recommended Actions
NONE

Date/Time: Thu Jul 6 15:16:09
Sequence Number: 8
Machine Id: 000FA17D4C00
Node Id: server2
Class: 0
Type: INFO
Resource Name: SYSPFS

Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FULL

Recommended Actions
USE FUSER UTILITY TO LOCATE UNLINKED FILES STILL REFERENCED
INCREASE THE SIZE OF THE ASSOCIATED FILE SYSTEM
REMOVE UNNECESSARY DATA FROM FILE SYSTEM

Detail Data
MAJOR/MINOR DEVICE NUMBER
002B 0003
FILE SYSTEM DEVICE AND MOUNT POINT
/dev/lv00, /u

To display a detailed report of all errors logged for the error identifier 369D049B, enter:

errpt -a -j 369D049B

LABEL: JFS_FS_FULL
IDENTIFIER: 369D049B
Date/Time: Thu Jul 6 15:16:09
Sequence Number: 8
Machine Id: 000FA17D4C00
Node Id: server2
Class: 0
Type: INFO
Resource Name: SYSPFS
Description
UNABLE TO ALLOCATE SPACE IN FILE SYSTEM

Probable Causes
FILE SYSTEM FULL

Recommended Actions
USE FUSER UTILITY TO LOCATE UNLINKED FILES STILL REFERENCED
INCREASE THE SIZE OF THE ASSOCIATED FILE SYSTEM
REMOVE UNNECESSARY DATA FROM FILE SYSTEM

Detail Data
MAJOR/MINOR DEVICE NUMBER
002B 0003
FILE SYSTEM DEVICE AND MOUNT POINT
/dev/lv00, /u

To display a detailed report of all errors logged in the past 24 hours, enter:

date
Fri Jul 14 14:08:35 CDT 2000
errpt -a -s 0714140800

To list error record templates for which logging is turned off for any error log entries, enter:

errpt -t -F log=0

Id Label Type CL Description
AF6582A7 LVM_MISSPVRET UNKN S PHYSICAL VOLUME IS NOW ACTIVE

To view all entries from the alternate error log file /var/adm/ras/myerrorlog, where myerrorlog is an alternative error log as specified with the errdemon -i command, enter:

errpt -i /var/adm/ras/myerrorlog

To view all hardware entries from the alternate error log file /var/adm/ras/errlog.alternate, enter:

errpt -i /var/adm/ras/errlog.alternate -d H
To display a detailed report of all errors logged for the error label ERRLOG_ON, enter:

```
# errpt -a -J ERRLOG_ON
```

```
LABEL: ERRLOG_ON
IDENTIFIER: 9DBCDFDEE

Date/Time: Thu Jul 13 17:26:11
Sequence Number: 143
Machine Id: 000FA17D4C00
Node Id: server2
Class: 0
Type: TEMP
Resource Name: errdemon

Description
ERROR LOGGING TURNED ON

Probable Causes
ERRDEMON STARTED AUTOMATICALLY

User Causes
/USR/LIB/ERRDEMON COMMAND

Recommended Actions
NONE

...

LABEL: ERRLOG_ON
IDENTIFIER: 9DBCDFDEE

Date/Time: Fri Jul  7 17:00:46
Sequence Number: 14
Machine Id: 000FA17D4C00
Node Id: server2
Class: 0
Type: TEMP
Resource Name: errdemon

Description
ERROR LOGGING TURNED ON

Probable Causes
ERRDEMON STARTED AUTOMATICALLY

User Causes
/USR/LIB/ERRDEMON COMMAND
Recommended Actions
NONE
6.3.1 Error classes

The Error Notification object class specifies the conditions and actions to be taken when errors are recorded in the system error log. The user specifies these conditions and actions in an Error Notification object.

Each time an error is logged, the error notification daemon determines whether the error log entry matches the selection criteria of any of the Error Notification objects. If matches exist, the daemon runs the programmed action, also called a notify method, for each matched object.

The Error Notification object class is located in the /etc/objrepos/errnotify file. Error Notification objects are added to the object class by using Object Data Manager (ODM) commands. Error Notification objects contain the class descriptors provided in Table 6-3.

Table 6-3 List of error classes

<table>
<thead>
<tr>
<th>Class of error log entry</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>Hardware error class</td>
</tr>
<tr>
<td>S</td>
<td>Software error class</td>
</tr>
<tr>
<td>O</td>
<td>Messages from the errorlogger command</td>
</tr>
<tr>
<td>U</td>
<td>Undetermined error class</td>
</tr>
</tbody>
</table>

The following is an error entry example of when the system is rebooted. It is a Class S temporary error:

```
LABEL: REBOOT_ID
IDENTIFIER: 2BFA76F6
Date/Time: Mon Sep 16 11:24:12 CDT
Sequence Number: 202
Machine Id: 000BC6FD4C00
Node Id: server2
Class: S
Type: TEMP
Resource Name: SYSPROC
Description
SYSTEM SHUTDOWN BY USER
Probable Causes
SYSTEM SHUTDOWN
Detail Data
```
USER ID
0
0=SOFT IPL 1=HALT 2=TIME REBOOT
0
TIME TO REBOOT (FOR TIMED REBOOT ONLY)
0

The following is an error entry example of when the system lost power for sysplanar0. It is a Class H permanent error:

LABEL:          EPOW_SUS_CHRP
IDENTIFIER:     BEOA0365

Date/Time: Thu Sep 12 12:56:20 CDT
Sequence Number: 184
Machine Id:      0015F8F4CO0
Node Id:         server4
Class:           H
Type:            PERM
Resource Name:   sysplanar0
Resource Class:  planar
Resource Type:   sysplanar_rspc
Location:        00-00

Description
ENVIRONMENTAL PROBLEM

Probable Causes
Power Turned Off Without a Shutdown
POWER OR FAN COMPONENT

Recommended Actions
RUN SYSTEM DIAGNOSTICS.
PERFORM PROBLEM DETERMINATION PROCEDURES

Detail Data
POWER STATUS REGISTER
0000 0005
PROBLEM DATA
0384 0040 0000 004E C600 9500 1515 2300 2002 0917 0000 0005 4020 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000

Diagnostic Analysis
Diagnostic Log sequence number: 414
Resource tested:        sysplanar0
Resource Description:   System Planar
Location:               P1
SRN:                    A05-160
Description:            System shutdown due to internal power supply failure

Note the SRN number highlighted in the previous example. Often IBM hardware engineers will ask for the SRN number to be able to research the specific symptom.

The following is an error entry example for sysplanar0. It is a Class H permanent error:

LABEL:          SCAN_ERROR_CHRP
IDENTIFIER:     BFE4C025
Date/Time:       Tue 17 Sep 10:57:38
Sequence Number: 67
Machine Id:      00572DAA4C00
Node Id:         localhost
Class:           H
Type:            PERM
Resource Name:   sysplanar0
Resource Class: planar
Resource Type: sysplanar_rspc
Location: 00-00

Description
UNDETERMINED ERROR

Failure Causes
UNDETERMINED

Recommended Actions
RUN SYSTEM DIAGNOSTICS.

Detail Data
PROBLEM DATA
0344 0003 0000 0082 C600 8D08 1150 1500 2002 0913 4942 4D00 4000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
03A0 005D A2B0 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000
......
......
......

The following is an error entry example of when an operator notification has been added to the error log. It is a Class O temporary error:

LABEL: OPMG
IDENTIFIER: AABAB241

Date/Time: Thu Sep 12 12:56:30 CDT
Sequence Number: 219
Machine Id: 00015F8F4C00
Node Id: server4
Class: 0
Type: TEMP
Resource Name: OPERATOR

Description
OPERATOR NOTIFICATION

User Causes
ERRLOGGER COMMAND

Recommended Actions
REVIEW DETAILED DATA

Detail Data
MESSAGE FROM ERRLOGGER COMMAND
This a test message!!!
6.4 The errclear command

The **errclear** command deletes error log entries older than the number of days specified by the days parameter. To delete all error log entries, specify a value of 0 for the days parameter.

If the `-i` flag is not used with the **errclear** command, the error log file cleared by **errclear** is the one specified in the error log configuration database. (To view the information in the error log configuration database, use the **errdemon** command.)

The **errclear** command syntax is as follows:

```
errclear [-d ErrorClassList] [-i File]
[-l SequenceNumber] [-m Machine] [-n Node] [-N ResourceNameList] [-R ResourceTypeList] [-S ResourceClassList] [-T ErrorTypeList]
[-y FileName] [-j ErrorID [,ErrorID]]
[-k ErrorID [,ErrorID]] Days
```

Table 6-4 provides the commonly used flags of the **errclear** command.

**Table 6-4  Commonly used flags of the errclear command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-d List</code></td>
<td>Deletes error log entries in the error classes specified by the list variable. The list variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters. The valid list variable values are H (hardware), S (software), O (errlogger messages), and U (undetermined).</td>
</tr>
<tr>
<td><code>-i File</code></td>
<td>Uses the error log file specified by the file variable. If this flag is not specified, the <strong>errclear</strong> command uses the value from the error log configuration database.</td>
</tr>
<tr>
<td><code>-j ErrorID[,ErrorID]</code></td>
<td>Deletes the error log entries specified by the ErrorID (error identifier) variable. The ErrorID variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td><code>-J ErrorLabel</code></td>
<td>Deletes the error log entries specified by the ErrorLabel variable. The ErrorLabel variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>Flag</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>-k ErrorID[,ErrorID]</td>
<td>Deletes all error log entries except those specified by the ErrorID (error identifier) variable. The ErrorID variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-K ErrorLabel</td>
<td>Deletes all error log entries except those specified by the ErrorLabel variable. The ErrorLabel variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-l SequenceNumber</td>
<td>Deletes error log entries with the specified sequence numbers. The SequenceNumber variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-m Machine</td>
<td>Deletes error log entries for the machine specified by the machine variable. The <code>uname -m</code> command returns the value of the machine variable.</td>
</tr>
<tr>
<td>-n Node</td>
<td>Deletes error log entries for the node specified by the node variable. The <code>uname -n</code> command returns the value of the node variable.</td>
</tr>
<tr>
<td>-N List</td>
<td>Deletes error log entries for the resource names specified by the list variable. For hardware errors, the list variable is a device name. For software errors, the list variable is the name of the unsuccessful executable. The list variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-R List</td>
<td>Deletes error log entries for the resource types specified by the list variable. For hardware errors, the list variable is a device type. For software errors, the value of the list variable is LPP. The list variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-S List</td>
<td>Deletes error log entries for the resource classes specified by the list variable. For hardware errors, the list variable is a device class. The list variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
<tr>
<td>-T List</td>
<td>Deletes error log entries for error types specified by the list variable. Valid list variable values are: PERM, TEMP, PERF, PEND, INFO, and UNKN. The list variable values can be separated by commas, or enclosed in double quotation marks and separated by commas or space characters.</td>
</tr>
</tbody>
</table>
To delete all entries from the error log, enter:

```
errclear 0
```

To delete all entries in the error log classified as software errors, enter:

```
errclear -d S 0
```

To clear all entries from the alternate error log file /var/adm/ras/errlog.alternate, enter:

```
errclear -i /var/adm/ras/myerrlog 0
```

To clear all hardware entries from the alternate error log file /var/adm/ras/errlog.alternate, enter:

```
errclear -i /var/adm/ras/myerrlog -d H 0
```

**Note:** Once the `errclear` command has been run, it clears the error log, and this data is no longer available. To get this error information, the error log would have to be restored from a backup prior to running the `errclear` command.

### 6.5 Accounting

The accounting system allows you to collect and report on individual, group, and Workload Manager (WLM) class use of various system resources. This accounting information can be used to bill users for the system resources they utilize, and to monitor selected aspects of the system operation. To assist with billing, the accounting system provides the resource-usage totals defined by members of the adm group, and, if the `chargefee` command is included, factors in the billing fee. The fileset bos.acct contains the accounting commands and configuration files.

The accounting system also provides data to assess the adequacy of current resource assignments, set resource limits and quotas, forecast future needs, and order supplies for printers and other devices.
6.5.1 Setting up an accounting system

The following is an overview of the steps you must take to set up an accounting system. Refer to the commands and files noted in these steps for more specific information.

1. Use the `nulladm` command to ensure that each file has the correct access permission: read (r) and write (w) permission for the file owner and group, and read(r) permission for others by typing:

   ```
 # /usr/sbin/acct/nulladm wtmp pacct
   ```

   This provides access to the pacct and wtmp files.

2. Update the `/etc/acct/holidays` file to include the hours you designate as prime time and to reflect your holiday schedule for the year.

3. Turn on process accounting by adding the following line to the `/etc/rc` file or by deleting the comment symbol (#) in front of the line if it exists:

   ```
 /usr/bin/su - adm -c /usr/sbin/acct/startup
   ```

   The `startup` procedure records the time that accounting was turned on and cleans up the previous day's accounting files.

4. Identify each file system you want included in disk accounting by adding the following line to the stanza for the file system in the `/etc/filesystems` file:

   ```
 account = true
   ```

5. Specify the data file to use for printer data by adding the following line to the queue stanza in the `/etc/qconfig` file:

   ```
 acctfile = /var/adm/qacct
   ```

6. As the adm user, create a `/var/adm/acct/nite`, a `/var/adm/acct/fiscal`, and a `/var/adm/acct/sum` directory to collect daily and fiscal period records:

   ```
 # su - adm
 # cd /var/adm/acct
 # mkdir nite fiscal sum
 # exit
   ```

7. Set daily accounting procedures to run automatically by editing the `/var/spool/cron/crontabs/root` file to include the `dodisk`, `ckpacct`, and `runacct` commands.

8. Set the monthly accounting summary to run automatically by including the `monacct` command in the `/var/spool/cron/crontabs/root` file. For example, type:

   ```
 15 5 1 * * /usr/sbin/acct/monacct
   ```

   Be sure to schedule this procedure early enough to finish the report. This example starts the procedure at 5:15 a.m. on the first day of every month.
9. To submit the edited cron file, type:

```
/crontab /var/spool/cron/crontabs/root
```

### 6.5.2 Setting up disk-usage accounting

The `dodisk` command initiates disk-usage accounting by calling the `diskusg` command and the `acctdisk` command. If you specify the `-o` flag with the `dodisk` command, a more thorough but slower version of disk accounting by login directory is initiated using the `acctdusg` command. Normally, the cron daemon runs the `dodisk` command. Syntax for this command is:

```
/usr/sbin/acct/dodisk [-o] [File ...]
```

The `-o` flag calls the `acctdusg` command, instead of the `diskusg` command, to initiate disk accounting by login directory.

By default, the `dodisk` command does disk accounting only on designated files with stanzas in the `/etc/filesystems` file and that contain the attribute `account=true`. If you specify file names with the `File` parameter, disk accounting is done on only those files.

If you do not specify the `-o` flag, the `File` parameter should contain the special file names of mountable file systems. If you specify both the `-o` flag and the `File` parameter, the files should be mount points of mounted file systems.

**Note:** You should not share accounting files among nodes in a distributed environment. Each node should have its own copy of the various accounting files.

This command should grant execute (x) access to members of the adm group only.

To start automatic disk-usage accounting, add the following to the `/var/spool/cron/crontabs/root` file:

```
0 2 * * 4 /usr/sbin/acct/dodisk
```

This example shows the instructions that the cron daemon will read and act upon. The `dodisk` command will run at 2 a.m. (0 2) each Thursday (4). This command is only one of the accounting instructions normally given to the cron daemon.
6.6 The syslogd daemon

The syslogd daemon receives information from other daemons and sends it to files, terminals, users, or other machines. Depending on its configuration, it only logs critical errors or debugging output. By default the file has no active entries. The syslogd daemon is started by /etc/rc.tcpip. The daemon is configured by /etc/syslog.conf, in which the priority of the information, its source, and where it should be sent to are specified.

The syslogd daemon is a subsystem of the System Resource Controller (SRC) and can be manipulated by the SRC commands described in Table 6-5.

Table 6-5  System Resource Controller commands

<table>
<thead>
<tr>
<th>SRC commands</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>startsrc</td>
<td>Starts a subsystem, group of subsystems, or a subserver</td>
</tr>
<tr>
<td>stopsrc</td>
<td>Stops a subsystem, group of subsystems, or a subserver</td>
</tr>
<tr>
<td>lssrc</td>
<td>Gets the status of a subsystem, group of subsystems, or a subserver</td>
</tr>
</tbody>
</table>

The syslogd daemon creates the /etc/syslog.pid file, which contains a single line with the command process ID used to end or reconfigure the syslogd daemon.

The /usr/include/sys/syslog.h include file defines the facility and priority codes used by the configuration file. Locally written applications use the definitions contained in the syslog.h file to log messages using the syslogd daemon.

The syslog subroutine writes messages onto the system log maintained by the syslogd command. The message is obtained from the errno global variable. Messages are read by the syslogd command and written to the system console or log file, or forwarded to the syslogd command on the appropriate host. Messages are tagged with codes indicating the type of priority for each. A priority is encoded as a facility, which describes the part of the system generating the message, and as a level, which indicates the severity of the message.

The syslogd daemon reads a datagram socket and sends each message line to a destination described by the /etc/syslog.conf configuration file. The syslogd daemon reads the configuration file when it is activated and when it receives a hangup signal. The syslogd daemon creates the /etc/syslog.pid file, which contains a single line with the command process ID used to end or reconfigure the syslogd daemon. A terminate signal sent to the syslogd daemon ends the daemon. The syslogd daemon logs the end-signal information and terminates immediately.
Each entry in the /etc/syslog.conf file must consist of two parts:

- A selector field to determine the message priorities to which the line applies
- An action

Each line can contain an optional part:

- Rotation

The fields must be separated by one or more tabs or spaces.

The selector field names a facility and a priority level. Separate facility names with a comma. Separate the facility and priority-level portions of the selector field with a period. Separate multiple entries in the same selector field with a semicolon (;). To select all facilities, use an asterisk (*).

The Action field identifies a destination (file, host, or user) to receive the messages. If routed to a remote host, the remote system will handle the message as indicated in its own configuration file. To display messages on a user's terminal, the Destination field must contain the name of a valid, logged-in system user.

The Rotation field identifies how rotation is used. If the Action field is a file, then rotation can be based on size or time, or both. You can also compress and archive the rotated files.

Each message is one line. A message can contain a priority code, marked by a digit enclosed in angle braces (< >) at the beginning of the line. Messages longer than 900 bytes may be truncated.

Use the following system facility names in the Selector field:

<table>
<thead>
<tr>
<th>Facility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>kern</td>
<td>Kernel</td>
</tr>
<tr>
<td>user</td>
<td>User level</td>
</tr>
<tr>
<td>mail</td>
<td>Mail subsystem</td>
</tr>
<tr>
<td>daemon</td>
<td>System daemons</td>
</tr>
<tr>
<td>auth</td>
<td>Security or authorization</td>
</tr>
<tr>
<td>syslog</td>
<td>syslogd daemon</td>
</tr>
<tr>
<td>lpr</td>
<td>Line-printer subsystem</td>
</tr>
<tr>
<td>news</td>
<td>News subsystem</td>
</tr>
<tr>
<td>uucp</td>
<td>uucp subsystem</td>
</tr>
<tr>
<td>*</td>
<td>All facilities</td>
</tr>
</tbody>
</table>
Use the following message priority levels in the Selector field. Messages of the specified priority level and all levels above it are sent as directed.

**emerg**
Specifies emergency messages (LOG_EMERG). These messages are not distributed to all users. LOG_EMERG priority messages can be logged into a separate file for reviewing.

**alert**
Specifies important messages (LOG_ALERT), such as a serious hardware error. These messages are distributed to all users.

**crit**
Specifies critical messages not classified as errors (LOG_CRIT), such as improper login attempts. LOG_CRIT and higher-priority messages are sent to the system console.

**err**
Specifies messages that represent error conditions (LOG_ERR), such as an unsuccessful disk write.

**warning**
Specifies messages for abnormal, but recoverable, conditions (LOG_WARNING).

**notice**
Specifies important informational messages (LOG_NOTICE). Messages without a priority designation are mapped into this priority message.

**info**
Specifies informational messages (LOG_INFO). These messages can be discarded, but are useful in analyzing the system.

**debug**
Specifies debugging messages (LOG_DEBUG). These messages may be discarded.

**none**
Excludes the selected facility. This priority level is useful only if preceded by an entry with an asterisk (*) in the same selector field.

Use the following message destinations in the Action field.

**File name**
Full path name of a file opened in append mode

**@host name**
Host name, preceded by an at sign (@)

**User[, User][...]**
User names

*** **
All users

Use the following rotation keywords in the Rotation field.

**rotate**
This keyword must be specified after the Action field.
size
This keyword specifies that rotation is based on size. It is followed by a number and either a k (kilobytes) or m (megabytes).

time
This keyword specifies that rotation is based on time. It is followed by a number and either an h (hour), d (day), w (week), m (month), or y (year).

files
This keyword specifies the total number of rotated files. It is followed by a number. If not specified, then there is an unlimited number of rotated files.

compress
This keyword specifies that the saved rotated files will be compressed.

archive
This keyword specifies that the saved rotated files will be copied to a directory. It is followed by the directory name.

Following is an example of a /etc/syslog.conf configuration file modification to send all system messages, except those from the mail facility, to a host named server4. Type:

* .debug;mail.none @server4

6.7 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A system has been experiencing intermittent problems. Which of the following procedures should be performed to determine if the problem has been occurring at a specific time or frequency rate?
   A. Check the error log.
   B. Look at the SMIT log.
   C. Talk to all of the users.
   D. Look at the crontab file.

2. Which of the following should be used as the device for reporting and buffering errors with time stamps?
   A. /etc/error
   B. /dev/error
   C. /usr/bin/error
   D. /etc/dev/error
3. A system operator accidentally deleted the error log with the `errclear 0` command before backing it up to a file. Which of the following procedures should be performed to retrieve the data?
   A. `errpt -v`
   B. `errpt -i /var/adm/ras/errlog`
   C. `cat /var/adm/ras/errlog`
   D. The data is lost and cannot be retrieved.

4. The syslogd daemon is typically started by:
   A. `/etc/inetd`
   B. `/etc/rc.tcpip`
   C. `/etc/rc.boot`
   D. `/etc/inittab`

5. The default `/etc/syslog.conf` configuration specifies that messages be logged for which of the following facilities?
   A. auth
   B. kern
   C. none
   D. daemon

6. The `dodisk` command is part of which fileset?
   A. `bos.adt.samples`
   B. `devices.scsi.disk.rte`
   C. `bos.acct`
   D. `bos.rte.filesystems`

7. To be able to monitor disk usage on a per-user basis, which of the following commands needs to be run?
   A. `df`
   B. `fileplace`
   C. `dodisk`
   D. `delta`
8. Which of the following options is the valid combination of selector, action, and rotation to use in the /etc/syslog.conf configuration file?
   A. *.debug, @hostname, archive
   B. system.alert, *, backup
   C. system.none, process ID, directories
   D. tcp.none, process ID, files
6.7.1 Answers

The following are the preferred answers to the questions provided in this section.

1. A
2. B
3. D
4. B
5. C
6. C
7. C
8. A

6.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Describe the two methods the `errpt` command uses to process a report.
2. Once the `errclear` command has been run to clear all entries in the error report, what is the only way to restore the error log?
3. What is the file name for the error log and the directory where it is kept?
LVM, file system, and disk problem determination

The following topics are discussed in this chapter:

- Logical Volume Manager (LVM) problems
- Replacement of physical volumes
- JFS problems and their solutions
- Paging space creation and removal, as well as recommendations about paging space

To understand the problems that can happen on an AIX system with volume groups, logical volumes, and file systems, it is important to have a detailed knowledge about how the storage is managed by the Logical Volume Manager. This chapter does not cover the fundamentals of the LVM; they are considered prerequisite knowledge required to understand the issues addressed in this chapter.
7.1 LVM data

The Logical Volume Manager (LVM) data structures that are required for the LVM to operate are stored in a number of structures. This logical layout is described in the following sections.

7.1.1 Physical volumes

Each disk is assigned a Physical Volume Identifier (PVID) when it is first assigned to a volume group. The PVID is a combination of the serial number of the machine creating the volume group and the time and date of the operation. The PVID is stored on the physical disk itself and is also stored in the Object Data Manager (ODM) of a machine when a volume group is created or imported.

You should not use the `dd` command to copy the contents of one physical volume to another, since the PVID will also be copied; this will result in two disks having the same PVID, which can confuse the system.

7.1.2 Volume groups

Each volume group has a Volume Group Descriptor Area (VGDA). There are (commonly) multiple copies of the VGDA in a volume group. A copy of the VGDA is stored on each disk in the volume group. The VGDA stores information about the volume group, such as the logical volumes and the disks in the volume group.

The VGDA is parsed by the `importvg` command when importing a volume group into a system. It is also used by the `varyonvg` command in the quorum voting process to decide whether a volume group should be varied on.

For a single disk volume group, there are two VGDA on the disk. When a second disk is added to make a two disk volume group, the original disk retains two VGDA and the new disk gets one VGDA.

Adding a third disk results in the extra VGDA from the first disk moving to the third disk for a quorum of three with each disk having one vote. Adding this additional disk adds a new VGDA per disk.

A volume group with quorum checking enabled (the default) must have at least 51 percent of the VGDA in the volume group available before it can be varied on. Once varied on, if the number of VGDA falls below 51 percent, the volume group will automatically be varied off.
In contrast, a volume group with quorum checking disabled must have 100 percent of the VGDA available before it can be varied on. Once varied on, only one VGDA needs to remain available to keep the volume group online.

A volume group also has a Volume Group Identifier (VGID), a soft serial number for the volume group similar to the PVID for disks.

Each disk in a volume group also has a Volume Group Status Area (VGSA), a 127 byte structure used to track mirroring information for up to the maximum 1016 physical partitions on the disk.

### 7.1.3 Logical volumes

Each logical volume has a Logical Volume Control Block (LVCB) that is stored in the first 512 bytes of the logical volume. The LVCB holds important details about the logical volume, including its creation time, mirroring information, and mount point (if it contains a journaled file system [JFS]).

Each logical volume has a Logical Volume Identifier (LVID) that is used to represent the logical volume to the LVM libraries and low-level commands. The LVID is made up of VGID.num, where num is the order in which it was created in the volume group.

### 7.1.4 Object Data Manager (ODM)

The Object Data Manger is used by the LVM to store information about the volume groups, physical volumes, and logical volumes on the system. The information held in the ODM is placed there when the volume group is imported or when each object in the volume group is created.

There exists an ODM object known as the vg-lock. Whenever an LVM modification command is started, the LVM command will lock the vg-lock for the volume group being modified. If for some reason the lock is inadvertently left behind, the volume group can be unlocked by running the `varyonvg -b` command, which can be run on a volume group that is already varied on.

### 7.2 LVM problem determination

The most common LVM problems are related to disk failures. Depending on the extent of the failure, you may be able to recover the situation with little or no data loss. However, a failed recovery attempt may leave the system in a worse condition. This leaves restoring from backup as the only way to recover. Therefore, always take frequent backups of your system.
7.2.1 Data relocation

When a problem occurs with a disk drive, data relocation may take place. There are three types of data relocation, namely:

- Internal to the disk
- Hardware relocation ordered by LVM
- Software relocation

Relocation typically occurs when the system fails to perform a read or write due to physical problems with the disk platter. In some cases, the data I/O request completes but with warnings. Depending on the type of recovered error, the LVM may be wary of the success of the next request to that physical location, and it orders a relocation to be on the safe side.

The lowest logical layer of relocation is the one that is internal to the disk. These types of relocations are typically private to the disk and there is no notification to the user that a relocation occurred.

The next level up in terms of relocation complexity is a hardware relocation called for by the LVM device driver. This type of relocation will instruct the disk to relocate the data on one physical partition to another portion (reserved) of the disk. The disk takes the data in physical location A and copies it to a reserved portion of the disk (location B). However, after this is complete, the LVM device driver will continue to reference physical location A, with the understanding that the disk itself will handle the true I/O to the real location B.

The top layer of data relocation is the *soft* relocation handled by the LVM device driver. In this case, the LVM device driver maintains a bad block directory, and whenever it receives a request to access logical location A, the LVM device driver will look up the bad block table and translate it to actually send the request to the disk drive at physical location B.

7.2.2 Backup data

The first step you should perform if you suspect a problem with LVM is to make a backup of the affected volume group and save as much data as possible. This may be required for data recovery. The integrity of the backup should be compared with the last regular backup taken before the problem was detected.

7.2.3 ODM resynchronization

Problems with the LVM tend to occur when a physical disk problem causes the ODM data to become out of sync with the VGDA, VGSA, and LVCB information stored on disk.
ODM corruption can also occur if an LVM operation terminates abnormally and leaves the ODM in an inconsistent state. This may happen, for example, if the file system on which the ODM resides (normally root, /) becomes full during the process of importing a volume group.

If you suspect that the ODM entries for a particular volume group have been corrupted, a simple way to resynchronize the entries is to varyoff and export the volume group from the system, then import and varyon to refresh the ODM. This process can only be performed for non-rootvg volume groups.

For the rootvg volume group, you can use the `redefinevg` command, which examines every disk in the system to determine which volume group it belongs to and then updates the ODM. For example:

```
redefinevg rootvg
```

If you suspect that the LVM information stored on disk has become corrupted, use the `synclvodm` command to synchronize and rebuild the LVCB, the device configuration database, and the VGDAs on the physical volumes. For example:

```
synclvodm -v myvg
```

If you have a volume group where one or more logical volumes is mirrored, use the `syncvg` command if you suspect that one or more mirrored copies has become stale. The command can be used to resynchronize an individual logical volume, a physical disk, or an entire volume group. For example:

```
syncvg -l lv02
```

The above command synchronizes the mirror copies of the logical volume lv02.

```
syncvg -v myvg
```

The above command synchronizes all of the logical volumes in the volume group myvg.

### 7.2.4 Understanding importvg problems

If importing a volume group into a system is not possible using the `importvg` command, the following areas are the typical problem areas:

- AIX version level
- Invalid PVID
- Disk change while volume group was exported
- Shared disk environment

In general, if the `importvg` command is unsuccessful, check the error log for information that can point to the problem.
AIX version level

Verify that the volume group you are importing is supported by the level of AIX running on the system. Various new features have been added to the LVM system at different levels of AIX, such as support for large volume groups. A number of these features require a change to the format of the VGDA stored on the disk, and thus will not be understood by previous levels of AIX.

Invalid PVID

Check that all of the disks in the volume group you are trying to import are marked as available to AIX and have valid PVIDs stored in the ODM. This can be checked using the `lspv` command. If any disks do not have a PVID displayed, use the `chdev` command to resolve the problem. For example:

```
lspv
hdisk0 000bc6fdc3dc07a7 rootvg
hdisk1 000bc6fdbff75ee2 testvg
hdisk2 000bc6fdbff92812 testvg
hdisk3 000bc6fdbff972f4 None
hdisk4 None None
chdev -l hdisk4 -a pv=yes
hdisk4 changed
lspv
hdisk0 000bc6fdc3dc07a7 rootvg
hdisk1 000bc6fdbff75ee2 testvg
hdisk2 000bc6fdbff92812 testvg
hdisk3 000bc6fdbff972f4 None
hdisk4 000bc6fd672864b9 None
```

In this example, the PVID for hdisk4 is not shown by the `lspv` command. This is resolved by running the `chdev` command. The PVID is read from the disk and placed in the ODM, if the disk is accessible. It will only write a new PVID if there truly is no PVID on the disk. Alternately, the disk can be removed using the `rmdev` command and, by running the configuration manager `cfgmgr` command, the device is recreated with the correct PVID. After this, an import of the volume group with the `importvg` command should be possible.

Disk change while volume group was exported

If the `importvg` command fails with an error message similar the following, the physical volume is marked missing and it is possible that some disk change to the disks defined in the volume group was made while the volume group was exported:

```
0516-056 varyon testvg: The volume group is not varied on because a physical volume is marked missing. Run diagnostics.
```
Check the error log with the `errpt` command in order to see what happened to the respective disk.

In order to force the volume group to be varied online, use the `-f` flag of the `importvg` command. This makes it possible to operate on the volume group and, depending on the situation, reconfigure the volume group by excluding the disk that is marked missing with the `reducevg` command.

**Shared disk environment**

In a shared disk environment, such as an SSA disk system, used by two or more systems, it is possible that the physical volumes defined are not accessible because they are already imported and varied on by another machine. Check the volume groups on both machines and compare the PVIDs by using the `lspv` command.

### 7.2.5 Extending the number of max physical partitions

When adding a new disk to a volume group, you may encounter an error due to there being too few PP descriptors for the required number of PVs. This may occur when the new disk has a much higher capacity than existing disks in the volume group.

This situation is typical on older installations, due to the rapid growth of storage technology. To overcome this, a change of the volume group LVM metadata is required.

The `chvg` command is used for this operation using the `-t` flag and applying a factor value, as shown in the following example:

```
lsvg testvg
VOLUME GROUP: testvg VG IDENTIFIER: 000bc6fd5a177ed0
VG STATE: active PP SIZE: 16 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 542 (8672 megabytes)
MAX LVs: 256 FREE PPs: 42 (672 megabytes)
LVs: 1 USED PPs: 500 (8000 megabytes)
OPEN LVs: 0 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32
chvg -t 2 testvg
0516-1193 chvg: WARNING, once this operation is completed, volume group testvg cannot be imported into AIX 430 or lower versions. Continue (y/n) ? y
0516-1164 chvg: Volume group testvg changed. With given characteristics testvg can include upto 16 physical volumes with 2032 physical partitions each.
```
This example shows that the volume group testvg with a current 9.1 GB disk has a maximum number of 1016 PPs per physical volume. Adding a larger 18.2 GB disk would not be possible; the maximum size of the disk is limited to 17 GB unless the maximum number of PPs is increased. Using the chvg command to increase the maximum number of PPs by a factor of 2 to 2032 PPs allows the volume group to be extended with physical volumes of up to approximately 34 GB.

7.3 Disk replacement

AIX, like all operating systems, can be problematic when you have to change a disk. AIX provides the ability to prepare the system for the change using the LVM. You can then perform the disk replacement and then use the LVM to restore the system back to how it was before the disk was changed. This process manipulates not only the data on the disk itself, but is also a way of keeping the Object Data Manager (ODM) intact.

The ODM within AIX is a database that holds device configuration details and AIX configuration details. The function of the ODM is to store the information between reboots, and also provide rapid access to system data, eliminating the need for AIX commands to interrogate components for configuration information. Since this database holds so much vital information regarding the configuration of a machine, any changes made to the machine, such as the changing of a defective disk, need to be done in such a way as to preserve the integrity of the database.

7.3.1 Replacing a disk

The following scenario shows a system that has a hardware error on a physical volume. However, since the system uses a mirrored environment, which has multiple copies of the logical volume, it is possible to replace the disk while the system is active. The disk hardware in this scenario are hot-swappable SCSI disks, which permit the replacement of a disk in a production environment.

One important factor is detecting the disk error. Normally, mail is sent to the system administrator (root account) from the Automatic Error Log Analysis (diagela). Figure 7-1 on page 145 shows the information in such a diagnostics mail.
Automatic Error Log Analysis (diagela) provides the capability to do error log analysis whenever a permanent hardware error is logged. Whenever a permanent hardware resource error is logged, the diagela program is invoked. Automatic Error Log Analysis is enabled by default on all platforms.

The diagela message shows that the hdisk4 has a problem. Another way of locating a problem is to check the state of the logical volume using the `lsvg` command, as in the following example:

```
lsvg -l mirrorvg
mirrorvg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lvdb01 jfs 500 1000 2 open/syncd /u/db01
lvdb02 jfs 500 1000 2 open/stale /u/db02
loglv00 jfslog 1 1 1 open/syncd N/A
```

The logical volume lvdb02 in the volume group mirrorvg is marked with the status stale, indicating that the copies in this LV are not synchronized. Look at the error log using the error-reporting `errpt` command, as in the following example:

```
errpt
EAA3D429 0713121400 U S LVDD PHYSICAL PARTITION MARKED STALE
F7DDA124 0713121400 U H LVDD PHYSICAL VOLUME DECLARED MISSING
41BF2110 0713121400 U H LVDD MIRROR WRITE CACHE WRITE FAILED
35BFCA99 0713121400 P H hdisk4 DISK OPERATION ERROR
```
This error information displays the reason why the LV lvdb02 is marked *stale*. The hdisk4 had an DISK OPERATION ERROR and the LVDD could not write the mirror cache.

Based on the information in the example, hdisk4 needs to be replaced. Before taking any action on the physical disk of the mirrored LV are recommended that you do a file system backup in case anything should go wrong. Since the other disk of the mirrored LV is still functional, all the data should be present. If the LV contains a database, then the respective database tools for backup of the data should be used.

**Removing a bad disk**

If the system is a high-availability (24x7) system, you might decide to keep the system running while performing the disk replacement, provided that the hardware supports an online disk exchange with hot-swappable disks. However, the procedure should be agreed upon by the system administrator or customer before continuing. Use the following steps to remove a disk:

1. To remove the physical partition copy of the mirrored logical volume from the erroneous disk, use the `rmlvcopy` command as follows:

   ```
 # rmlvcopy lvdb02 1 hdisk4
   ```

   The logical volume lvdb02 is now left with only one copy, as shown in the following:

   ```
 # lsvg -1 lvdb02
 lvdb02:/u/db02
 PV COPIES IN BAND DISTRIBUTION
   ```

2. Reduce the volume group by removing the disk you want to replace from its volume group:

   ```
 # reducevg -f mirrorvg hdisk4
   ```

   ```
 # lsvg -1 mirrorvg
 mirrorvg:
 LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
 lvdb01 jfs 500 1000 2 open/syncd /u/db01
 lvdb02 jfs 500 500 1 open/syncd /u/db02
 loglv00 jfslog 1 1 1 open/syncd N/A
   ```

3. Remove the disk as a device from the system and from the ODM database with the `rmdev` command:

   ```
 # rmdev -d -l hdisk4
 hdisk4 deleted
   ```

   This command is valid for any SCSI disk. If your system is using SSA, then an additional step is required. Since SSA disks also define the device pdisk, the
corresponding pdisk device must be deleted as well. Use the SSA menus in SMIT to display the mapping between hdisk and pdisk. These menus can also be used to delete the pdisk device.

4. The disk can now be safely removed from your system.

Adding a new disk

Continuing the scenario from the previous section, this section describes how to add a new disk into a running environment. After hdisk4 has been removed, the system is now left with the following disks:

```
lsdev -Cc disk
hdisk0 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 30-58-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk3 Available 10-60-00-9,0 16 Bit SCSI Disk Drive
```

Use the following steps to add a new disk:

1. Plug in the new disk and run the configuration manager `cfgmgr` command. The `cfgmgr` command configures devices controlled by the Configuration Rules object class, which is part of the device configuration database. The `cfgmgr` command will see the newly inserted SCSI disk and create the corresponding device. Although the command requires no option, the `-v` flag specifies verbose output, which helps in troubleshooting, as shown in the following:

```
cfgmgr -v
cfgmgr is running in phase 2

Time: 0 LEDS: 0x538
Invoking top level program -- "/etc/methods/cfgprobe -c
/etc/drivers/coreprobe.ext"
Time: 0 LEDS: 0x539
Return code = 0
*** no stdout ****
*** no stderr ****

Time: 0 LEDS: 0x538
Invoking top level program -- "/etc/methods/defsys"
Time: 0 LEDS: 0x539
Return code = 0
***** stdout *****
sys0
......
......
```

The result is a new hdisk4 added to the system:

```
lsdev -Cc disk
```
hdisk0 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 30-58-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk3 Available 10-60-00-9,0 16 Bit SCSI Disk Drive
hdisk4 Available 10-60-00-12,0 16 Bit SCSI Disk Drive

2. The new hdisk must now be assigned to the volume group mirrorvg by using the LVM `extendvg` command:

```
extendvg mirrorvg hdisk4
```

3. To re-establish the mirror copy of the LV, use the `mklvcopy` command.

```
mklvcopy lvdb02 2 hdisk4
```

The number of copies of LV is now two, but the LV stat is still marked as `stale` because the LV copies are not synchronized with each other:

```
lsvg -l mirrorvg
mirrorvg:
 LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lvdb01 jfs 500 1000 2 open/syncd /u/db01
lvdb02 jfs 500 1000 2 open/stale /u/db02
loglv00 jfslog 1 1 1 open/syncd N/A
```

4. To get a fully synchronized set of copies of the LV lvdb02, use the `syncvg` command:

```
syncvg -p hdisk4
```

The `syncvg` command can be used with logical volumes, physical volumes, or volume groups. The synchronization process can be quite time consuming, depending on the hardware characteristics and the amount of data.

After the synchronization is finished, verify the logical volume state using either the `lsvg` or `lslv` command:

```
lsvg -l mirrorvg
mirrorvg:
 LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lvdb01 jfs 500 1000 2 open/syncd /u/db01
lvdb02 jfs 500 1000 2 open/syncd /u/db02
loglv00 jfslog 1 1 1 open/syncd N/A
```

The system is now back to normal.

### 7.3.2 Recovering an incorrectly removed disk

If a disk was incorrectly removed from the system, and the system has been rebooted, the `sync1vdm` command will need to be run to rebuild the logical volume control block, as shown in the following examples.
In the examples, a disk has been incorrectly removed from the system and the logical volume control block needs to be rebuilt.

The disks in the system before the physical volume was removed is shown in the following command output:

```
lsdev -Cc disk
hdisk0 Available 30-58-00-8,0 16 Bit SCSI Disk Drive
hdisk1 Available 30-58-00-9,0 16 Bit SCSI Disk Drive
hdisk2 Available 10-60-00-8,0 16 Bit SCSI Disk Drive
hdisk3 Available 10-60-00-9,0 16 Bit SCSI Disk Drive
```

The allocation of the physical volumes before the disk was removed are shown as follows:

```
lspv
hdisk0 000bc6fd63dc07a7 rootvg
hdisk1 000bc6fd675ee2 volg01
hdisk2 000bc6fd69812 volg01
hdisk3 000bc6fd6972f4 volg01
```

The logical volumes on the volume group:

```
lsvg -l volg01
volg01:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
logvol01 jfs 1000 1000 2 open/syncd /userfs01
loglv00 jfslog 1 1 1 open/syncd N/A
```

The logical volume distribution on the physical volumes is shown using the `lslv`
command:

```
lslv -l logvol01
logvol01:/userfs01
PV COPIES IN BAND DISTRIBUTION
```

The system after a reboot has the following physical volumes:

```
lspv
hdisk0 000bc6fd63dc07a7 rootvg
hdisk1 000bc6fd675ee2 volg01
hdisk3 000bc6fd6972f4 volg01
```

When trying to mount the file system on the logical volume, the error may look similar to the following example:

```
mount /userfs01
mount: 0506-324 Cannot mount /dev/logvol01 on /userfs01: There is an input or output error.
```
To synchronize the logical volume, the following command should be run:

```
synclvodm -v volg01
```

```
synclvodm: Physical volume data updated.
synclvodm: Logical volume logvol01 updated.
synclvodm: Warning, lv control block of loglv00 has been over written.
0516-622 synclvodm: Warning, cannot write lv control block data.
synclvodm: Logical volume loglv00 updated.
```

The system can now be repaired. If the file system data was spread across all the disks, including the failed disk, it may need to be restored from the last backup.

### 7.4 The AIX JFS

Similar to the LVM, most JFS problems can be traced to problems with the underlying physical disk.

As with volume groups, various JFS features have been added at different levels of AIX, which preclude those file systems being mounted if the volume group was imported on an earlier version of AIX. Such features include large file enabled file systems, file systems with non-default allocation group size, and JFS2.

#### 7.4.1 Creating a JFS

In a journaled file system (JFS), files are stored in blocks of contiguous bytes. The default block size, also referred to as fragmentation size in AIX, is 4096 bytes (4 KB). The JFS i-node contains an information structure of the file with an array of eight pointers to data blocks. A file that is less than 32 KB is referenced directly from the i-node.

A larger file uses a 4-KB block, referred to as an indirect block, for the addressing of up to 1024 data blocks. Using an indirect block, a file size of 1024 x 4 KB = 4 MB is possible.

For files larger than 4 MB, a second block, the double indirect block, is used. The double indirect block points to 512 indirect blocks, providing the possible addressing of 512 x 1024 x 4 KB = 2 GB files. Figure 7-2 on page 151 illustrates the addressing using double indirection.
AIX Version 4.2 and later supports even larger files by defining a new type of JFS named the "bigfile" file system. In the bigfile file system, the double indirect use references 128-KB blocks rather than 4-KB blocks. However, the first indirect block still points to a 4-KB block, so the large blocks are only used when the file size is above 4 MB. This provides a new maximum file size of just under 64 GB.

When creating a JFS, the structure is defined on either a new logical volume or an already defined logical volume. The parameters of a defined JFS can be displayed either using SMIT menus (smit jfs) or by using the lsjfs command:

```
lsjfs /u/testfs
MountPoint::Device::Vfs::Nodename::Type::Size::Options::AutoMount::Acct::OtherOptions::LvSize::FsSize::FragSize::Nbpi::Compress::Bf::AgSize:
/u/testfs:/dev/lv03:jfs:::425984:rw:yes:no::425984:425984:4096:4096:no:false:8:
```

The lsjfs command shows the JFS attributes directly using colon (:) and delimiter.
7.4.2 Increasing the file system size

In many instances, the size of a file system needs to be increased because the demand for storage has increased. In AIX, this is a common procedure, and it is possible to do by using the `chfs` command, as in the following example:

```
chfs -a size=+300000 /u/testfs
Filesystem size changed to 458752
```

This example shows how the file system testfs is extended with 300000 512-byte blocks. When the file system is extended, the logical volume holding the JFS is also extended, with the number of logical partitions that is needed to fulfill the space request. If the system does not have enough free space, the volume group can either be extended with an additional physical volume, or the size specified for the `chfs` command must be lowered so that it matches the number of free LPs.

7.4.3 File system verification and recovery

The `fsck` command checks and interactively repairs inconsistent file systems. You should run this command before mounting any file system. You must be able to read the device file on which the file system resides (for example, the `/dev/hd0` device).

Normally, the file system is consistent, and the `fsck` command merely reports on the number of files, used blocks, and free blocks in the file system. If the file system is inconsistent, the `fsck` command displays information about the inconsistencies found and prompts you for permission to repair them. If the file system cannot be repaired, restore it from backup.

Mounting an inconsistent file system may result in a system crash. If you do not specify a file system with the FileSystem parameter, the `fsck` command will check all the file systems with the attribute check=TRUE in `/etc/filesystems`.

**Note:** By default, the `/`, `/usr`, `/var`, and `/tmp` file systems have the check attribute set to false (check=false) in their `/etc/filesystems` stanzas. The attribute is set to false for the following reasons:

- The boot process explicitly runs the `fsck` command on the `/`, `/usr`, `/var`, and `/tmp` file systems.
- The `/`, `/usr`, `/var`, and `/tmp` file systems are mounted when the `/etc/rc` file is run. The `fsck` command will not modify a mounted file system, and `fsck` results on mounted file systems are unpredictable.
Fixing a bad superblock

If you receive one of the following errors from the `fsck` or `mount` commands, the problem may be a corrupted superblock, as shown in the following example:

```
fsck: Not an AIX3 file system
fsck: Not an AIXV3 file system
fsck: Not an AIX4 file system
fsck: Not an AIXV4 file system
fsck: Not a recognized file system type
mount: invalid argument
```

The problem can be resolved by restoring the backup of the superblock over the primary superblock using the following command (care should be taken to check with the latest product documentation before running this command):

```
dd count=1 bs=4k skip=31 seek=1 if=/dev/lv00 of=/dev/lv00
```

The following is an example of when the superblock is corrupted and copying the backup helps solve the problem:

```
mount /u/testfs
mount: 0506-324 Cannot mount /dev/lv02 on /u/testfs: A system call received a parameter that is not valid.
fsck /dev/lv02
Not a recognized filesystem type. (TERMINATED)
```

```
dd count=1 bs=4k skip=31 seek=1 if=/dev/lv02 of=/dev/lv02
1+0 records in.
1+0 records out.

fsck /dev/lv02

** Checking /dev/lv02 (/u/tes)
** Phase 0 - Check Log
log redo processing for /dev/lv02
** Phase 1 - Check Blocks and Sizes
** Phase 2 - Check Pathnames
** Phase 3 - Check Connectivity
** Phase 4 - Check Reference Counts
** Phase 5 - Check Inode Map
** Phase 6 - Check Block Map
8 files 2136 blocks 63400 free

Once the restoration process is complete, check the integrity of the file system by issuing the `fsck` command:

```
# fsck /dev/lv00
```
In many cases, restoration of the backup of the superblock to the primary superblock will recover the file system. If this does not resolve the problem, recreate the file system and restore the data from a backup.

7.4.4 Sparse file allocation

Some applications, particularly databases, maintain data in sparse files. Files that do not have disk blocks allocated for each logical block are called sparse files. If the file offsets are greater than 4 MB, then a large disk block of 128 KB is allocated. Applications using sparse files larger than 4 MB may require more disk blocks in a file system enabled for large files than in a regular file system.

In the case of sparse files, the output of the `ls` command is not showing the actual file size, but is reporting the number of bytes between the first and last blocks allocated to the file, as shown in the following example:

```
# ls -l /tmp/sparsefile
-rw-r--r--   1 root     system 100000000 Jul 16 20:57 /tmp/sparsefile
```

The `du` command can be used to see the actual allocation, since it reports the blocks actually allocated and in use by the file. Use `du -rs` to report the number of allocated blocks on disk.

```
# du -rs /tmp/sparsefile
256 /tmp/sparsefile
```

Note: The `tar` command does not preserve the sparse nature of any file that is sparsely allocated. Any file that was originally sparse before the restoration will have all space allocated within the file system for the size of the file. New AIX 5L options for the `backup` and `restore` command are useful for sparse files.

Using the `dd` command in combination with your own backup script will solve this problem.

7.4.5 Unmount problems

A file system cannot be unmounted if any references are still active within that file system. The following error message will be displayed:

```
Device busy
```

or

```
A device is already mounted or cannot be unmounted
```
The following situations can leave open references to a mounted file system.

- Files are open within a file system. These files must be closed before the file system can be unmounted. The `fuser` command is often the best way to determine what is still active in the file system. The `fuser` command will return the process IDs for all processes that have open references within a specified file system, as shown in the following example:

  ```bash
  # umount /home
  umount: 0506-349 Cannot unmount /dev/hd1: The requested resource is busy.
  # fuser -x -c /home
  /home: 11630
  # ps -fp 11630
  UID   PID  PPID   C    STIME    TTY  TIME CMD
  guest 11630 14992   0 16:44:51  pts/1  0:00 -sh
  # kill -1 11630
  # umount /home
  ``

  The process having an open reference can be killed by using the `kill` command (sending a SIGHUP), and the unmount can be accomplished. A stronger signal may be required, such as SIGKILL.

- If the file system is still busy and still cannot be unmounted, this could be due to a kernel extension that is loaded but exists within the source file system. The `fuser` command will not show these kinds of references, since a user process is not involved. However, the `genkex` command will report on all loaded kernel extensions.

- File systems are still mounted within the file system. Unmount these file systems before the file system can be unmounted. If any file system is mounted within a file system, this leaves open references in the source file system at the mount point of the other file system. Use the `mount` command to get a list of mounted file systems. Unmount all the file systems that are mounted within the file system to be unmounted.

### 7.4.6 Removing file systems

When removing a JFS, the file system must be unmounted before it can be removed. The command for removing file systems is `rmfs`.

In the case of a JFS, the `rmfs` command removes both the logical volume on which the file system resides and the associated stanza in the `/etc/filesystems` file. If the file system is not a JFS, the command removes only the associated stanza in the `/etc/filesystems` file, as shown in the following example:

```bash
lsvg -l testvg
testvg:
 LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
 loglv00 jfslog 1 1 1 open/syncd N/A
```
This example shows how the file system testfs is removed. The first attempt fails because the file system is still mounted. The associated logical volume lv02 is also removed. The jfslog remains defined on the volume group.

### 7.4.7 Different output from du and df commands

Sometimes `du` and `df` commands are used to get a free block value. `df` is used to report the total block count, and then the value returned by `du -s filesystem_name` is subtracted from that total to calculate the free block value. However, this method of calculation yields a value that is greater than the free block value reported by `df`. At AIX Version 4.1 and later, both `df` and `du` default to 512-byte units. Sample output from the `du` and `df` commands is below:

```
du -s /tmp
152 /tmp
df /tmp
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/hd3 24576 23320 6% 33 1% /tmp
```

Here (total from `df`) - (used from `du`) + (false free block count): 24576 - 152 = 24424.

24424 is greater than 23320. The reason for this discrepancy involves the implementation of `du` and `df`. `du -s` traverses the file tree, adding up the number of blocks allocated to each directory, symlink, and file as reported by the `stat()` system call. This is how `du` arrives at its total value. `df` looks at the file system disk block allocation maps to arrive at its total and free values.

### 7.4.8 Enhanced journaled file system

The enhanced journaled file system (JFS2) contains several architectural differences over the standard JFS, including:

- Variable number of i-nodes for enhanced journaled file system

  JFS2 allocates i-nodes as needed. Therefore, the number of i-nodes available is limited by the size of the file system itself.
Specifying file system block size

File system block size is specified during the file system's creation with the `crfs` and `mkfs` commands or by using the SMIT. The decision of file system block size should be based on the projected size of files contained by the file system.

Identifying file system block size

The file system block size value can be identified with the `lsfs` command or the System Management Interface Tool (SMIT). For application programs, the `statfs` subroutine can be used to identify the file system block size.

Compatibility and migration

The enhanced journaled file system (JFS2) is a new file system and is not compatible with AIX Version 4.

Device driver limitations

A device driver must provide disk block addressability that is the same or smaller than the file system block size.

Performance costs

Although file systems that use block sizes smaller than 4096 bytes as their allocation unit might require substantially less disk space than those using the default allocation unit of 4096 bytes, the use of smaller block sizes can incur performance degradation.

Increased allocation activity

Because disk space is allocated in smaller units for a file system with a block size other than 4096 bytes, allocation activity can occur more often when files or directories are repeatedly extended in size. For example, a write operation that extends the size of a zero-length file by 512 bytes results in the allocation of one block to the file, assuming a block size of 512 bytes. If the file size is extended further by another write of 512 bytes, an additional block must be allocated to the file. Applying this example to a file system with 4096-byte blocks, disk space allocation occurs only once, as part of the first write operation. No additional allocation activity is performed as part of the second write operation since the initial 4096-byte block allocation is large enough to hold the data added by the second write operation.

Increased block allocation map size

More virtual memory and file system disk space might be required to hold block allocation maps for file systems with a block size smaller than 4096 bytes. Blocks serve as the basic unit of disk space allocation, and the allocation state of each block within a file system is recorded in the file system block allocation map.
Understanding enhanced journaled file system size limitations

The maximum size for an enhanced journaled file system is architecturally limited to 4 Petabytes. Inodes are dynamically allocated by JFS2, so you do not need to consider how many inodes you may need when creating a JFS2 file system. You need to consider the size of the file system log.

Enhanced journaled file system log size issues

In most instances, multiple journaled file systems use a common log configured to be 4 MB in size. When file systems exceed 2 GB or when the total amount of file system space using a single log exceeds 2 GB, the default log size might not be sufficient. In either case, scale log sizes upward as the file system size increases. The JFS log is limited to a maximum size of 256 MB.

JFS2 file space allocation

File space allocation is the method by which data is apportioned physical storage space in the operating system. The kernel allocates disk space to a file or directory in the form of logical blocks. A logical block refers to the division of a file or directory contents into 512, 1024, 2048, or 4096 byte units. When a JFS2 file system is created the logical block size is specified to be one of 512, 1024, 2048, or 4096 bytes. Logical blocks are not tangible entities; however, the data in a logical block consumes physical storage space on the disk. Each file or directory consists of zero or more logical blocks.

Full and partial logical blocks

A file or directory may contain full or partial logical blocks. A full logical block contains 512, 1024, 2048, or 4096 bytes of data, depending on the file system block size specified when the JFS2 file system was created. Partial logical blocks occur when the last logical block of a file or directory contains less than the file system block size of data.

For example, a JFS2 file system with a logical block size of 4096 with a file of 8192 bytes is two logical blocks. The first 4096 bytes reside in the first logical block and the following 4096 bytes reside in the second logical block. Likewise, a file of 4608 bytes consists of two logical blocks. However, the last logical block is a partial logical block containing the last 512 bytes of the file's data. Only the last logical block of a file can be a partial logical block.

JFS2 file space allocation

The default block size is 4096 bytes. You can specify smaller block sizes with the mkfs command during a file system's creation. Allowable fragment sizes are 512, 1024, 2048, and 4096 bytes. You can use only one block's size in a file system.
The kernel allocates disk space so that only the last file system block of data receives a partial block allocation. As the partial block grows beyond the limits of its current allocation, additional blocks are allocated.

Block reallocation also occurs if data is added to logical blocks that represent file holes. A file hole is an "empty" logical block located prior to the last logical block that stores data. (File holes do not occur within directories.) These empty logical blocks are not allocated blocks. However, as data is added to file holes, allocation occurs. Each logical block that was not previously allocated disk space is allocated a file system block of space.

Additional block allocation is not required if existing data in the middle of a file or directory is overwritten. The logical block containing the existing data has already been allocated file system blocks.

JFS tries to maintain contiguous allocation of a file or directory's logical blocks on the disk. Maintaining contiguous allocation lessens seek time because the data for a file or directory can be accessed sequentially and found on the same area of the disk. The disk space required for contiguous allocation may not be available if it has already been written to by another file or directory.

The file system uses a bitmap called the block allocation map to record the status of every block in the file system. When the file system needs to allocate a new block, it refers to the block allocation map to identify which blocks are available. A block can only be allocated to a single file or directory at a time.

Extents

An extent is a sequence of contiguous file system blocks allocated to a JFS2 object as a unit. Large extents may span multiple allocation groups.

Every JFS2 object is represented by an i-node. I-nodes contain the expected object-specific information such as time stamps, file type (regular verses directory, etc.). They also contain a B+ tree to record the allocation of extents.

A file is allocated in sequences of extents. An extent is a contiguous variable-length sequence of file system blocks allocated as a unit. An extent may span multiple allocation groups. These extents are indexed in a B+ tree.

There are two values needed to define an extent, the length and the address. The length is measured in units of the file system block size. 24-bit value represents the length of an extent, so an extent can range in size from 1 to 224 -1 file system blocks. Therefore the size of the maximum extent depends on the file system block size. The address is the address of the first block of the extent. The address is also in units of file system blocks. It is the block offset from the beginning of the file system.

An extent-based file system combined with user-specified file system block size allows JFS2 to not have separate support for internal fragmentation. The user can configure the file system with a small file system block size (such as
512 bytes) to minimize internal fragmentation for file systems with large numbers of small size files.

In general, the allocation policy for JFS2 tries to maximize contiguous allocation by allowing a minimum number of extents, with each extent as large and contiguous as possible. This allows for larger I/O transfer resulting in improved performance.

- Data fragmentation

JFS2 supports fragmented file systems. Fragmentation saves disk space by allowing a logical block to be stored on the disk in units or fragments smaller than the full block size of 4096 bytes. In a fragmented file system, only the last logical block of files no larger than 32 KB is stored in this manner, so that fragmented support is only beneficial for file systems containing numerous small files.

The use of fragments increases the potential for fragmentation of disk free space. Fragments allocated to a logical block must be contiguous on the disk. A file system experiencing free space fragmentation might have difficulty locating enough contiguous fragments for a logical block allocation, even though the total number of free fragments may exceed the logical block requirements. The JFS2 alleviates free space fragmentation by providing the defragfs program, which defragments a file system by increasing the amount of contiguous free space. The disk space savings gained from fragments can be substantial, while the problem of free space fragmentation remains manageable.

AIX 5L introduced a feature to set all file systems in the rootvg as JFS2-type file systems, but the server must be capable of running a 64-bit kernel, since having all JFS2 file systems in rootvg requires 64-bit kernel enablement. In AIX 5L, the 64-bit kernel is installed only on 64-bit capable pSeries servers by default, but it is inactive.

**Note:** You cannot import a JFS2 file system into an AIX Version 4.3 or earlier system.

While installing a system with the complete overwrite option, you can enable the 64-bit kernel and JFS2. If this option is enabled, the installation task will create JFS2 file systems in the rootvg.

Use the following `ls1pp` command to determine if the 64-bit kernel is installed:

```bash
ls1pp -h bos.mp64
```

<table>
<thead>
<tr>
<th>Fileset</th>
<th>Level</th>
<th>Action</th>
<th>Status</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path: `/usr/lib/objrepos`

`bos.mp64`
To query if the 64-bit kernel is enabled, enter:

```
bootinfo -K
64
```

The -K flag is not a widely documented flag. The `getconf` command in AIX 5L Version 5.2 is intended to replace the currently unsupported `bootinfo` command. To get kernel information with the `getconf` command, enter:

```
getconf KERNEL_BITMODE
64
```

The following example is one of the many ways to determine the file system type by viewing the `/etc/filesystems` file:

```
/test:
 dev = /dev/testlv
 vfs = jfs2
 log = /dev/lv04
 mount = false
 account = false
```

The `vfs` shows that it is a `jfs2` file system.

Table 7-1 provides a comparison chart between the JFS2 and the standard JFS.

<table>
<thead>
<tr>
<th>Function</th>
<th>JFS2</th>
<th>JFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragments/block size</td>
<td>512–4096 blocks</td>
<td>512-4096 fragments</td>
</tr>
<tr>
<td>Architectural maximum file</td>
<td>1 PB</td>
<td>64 GB</td>
</tr>
<tr>
<td>Architectural maximum file system size</td>
<td>4 PB</td>
<td>1 TB</td>
</tr>
<tr>
<td>Maximum file size tested</td>
<td>1 TB</td>
<td>64 GB</td>
</tr>
<tr>
<td>Maximum file system size tested</td>
<td>16 TB</td>
<td>1 TB</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>Dynamic, limited by disk space</td>
<td>Fixed, set at file system creation</td>
</tr>
<tr>
<td>Directory organization</td>
<td>B-tree</td>
<td>Linear</td>
</tr>
<tr>
<td>Online defragmentation</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
The /proc file system

AIX 5L provides support of the /proc file system. This pseudo file system maps processes and kernel data structures to corresponding files. The output of the `mount` and `df` commands showing /proc is provided in the following examples:

<table>
<thead>
<tr>
<th>Mount</th>
<th>Mounted</th>
<th>Mounted Over</th>
<th>Vfs</th>
<th>Date</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>/</td>
<td>jfs</td>
<td>Sep 11 16:52</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>/usr</td>
<td>jfs</td>
<td>Sep 11 16:52</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>/var</td>
<td>jfs</td>
<td>Sep 11 16:52</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>/tmp</td>
<td>jfs</td>
<td>Sep 11 16:52</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>/home</td>
<td>jfs</td>
<td>Sep 11 16:53</td>
<td>rw, log=/dev/hd8</td>
<td></td>
</tr>
<tr>
<td>/proc</td>
<td>/proc</td>
<td>procfs</td>
<td>Sep 11 16:53</td>
<td>rw</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Df</th>
<th>Filesystem</th>
<th>512-blocks</th>
<th>Free</th>
<th>%Used</th>
<th>Iused</th>
<th>%Iused</th>
<th>Mounted on</th>
</tr>
</thead>
<tbody>
<tr>
<td>/dev/hd4</td>
<td>65536</td>
<td>27760</td>
<td>58%</td>
<td>2239</td>
<td>14%</td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>/dev/hd2</td>
<td>1507328</td>
<td>242872</td>
<td>84%</td>
<td>22437</td>
<td>12%</td>
<td>/usr</td>
<td></td>
</tr>
<tr>
<td>/dev/hd9var</td>
<td>32768</td>
<td>16432</td>
<td>50%</td>
<td>448</td>
<td>11%</td>
<td>/var</td>
<td></td>
</tr>
<tr>
<td>/dev/hd3</td>
<td>557056</td>
<td>538008</td>
<td>4%</td>
<td>103</td>
<td>1%</td>
<td>/tmp</td>
<td></td>
</tr>
<tr>
<td>/dev/hd1</td>
<td>32768</td>
<td>31608</td>
<td>4%</td>
<td>47</td>
<td>2%</td>
<td>/home</td>
<td></td>
</tr>
<tr>
<td>/proc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>/proc</td>
<td></td>
</tr>
</tbody>
</table>

The entry in the /etc/vfs file appears as follows:

```
lsvfs procfs
procfs 6 none none
```

Each process is assigned a directory entry in the /proc file system with a name identical to its process ID. In this directory, several files and subdirectories are created corresponding to internal process control data structures. Most of these structures...
files are read-only, but some of them can also be written to and be used for process control purposes.

The ownership of the files in the /proc file system is the same as for the processes they represent. Therefore, regular users can only access /proc files that belong to their own processes. For example, a process is waiting for standard input. When you look at an active process, a lot of the information would constantly change:

```bash
errpt -a | more
.....
.....
ps -ef | grep errpt
 root 12586 17594 1 16:53:00 pts/3 0:00 grep errpt
 root 22214 8882 0 16:49:39 pts/1 0:00 errpt -a
ls -al /proc/22214
total 0
 dr-xr-xr-x 1 root system 0 Sep 17 16:56 .
 dr-xr-xr-x 1 root system 0 Sep 17 16:56 ..
 -rw------- 1 root system 0 Sep 17 16:56 as
 -r-------- 1 root system 128 Sep 17 16:56 cred
 -r-------- 1 root system 128 Sep 17 16:56 ctl
 dr-xr-xr-x 1 root system 0 Sep 17 16:56 lwp
 -r-------- 1 root system 0 Sep 17 16:56 map
 dr-x------ 1 root system 0 Sep 17 16:56 object
 -r--r--r-- 1 root system 448 Sep 17 16:56 psinfo
 -r-------- 1 root system 1024 Sep 17 16:56 sigact
 -r-------- 1 root system 1520 Sep 17 16:56 status
 -r--r--r-- 1 root system 0 Sep 17 16:56 sysent
```

Table 7-2 provides the functions of the pseudo files listed in the previous output.

<table>
<thead>
<tr>
<th>Pseudo file name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>as</td>
<td>Read/write access to address space</td>
</tr>
<tr>
<td>cred</td>
<td>Credentials</td>
</tr>
<tr>
<td>ctl</td>
<td>Write access to control process, for example, stop or resume</td>
</tr>
<tr>
<td>lwp directory</td>
<td>Kernel thread information</td>
</tr>
<tr>
<td>map</td>
<td>Virtual address map</td>
</tr>
<tr>
<td>object directory</td>
<td>Map file names</td>
</tr>
<tr>
<td>psinfo</td>
<td>Information for the ps command; readable by everyone</td>
</tr>
<tr>
<td>sigact</td>
<td>Signal status</td>
</tr>
</tbody>
</table>
7.4.10 Disk quota

The disk quota system allows you to control the number of files and data blocks that can be allocated to users or groups. The quota system can be defined for individual users or groups, and is maintained for each journaled file system.

The disk quota system establishes limits based on three parameters that can be changed with the `edquota` command:
- User's or group's soft limits
- User's or group's hard limits
- Quota grace period

The soft limit defines the number of 1-KB disk blocks or files below which the user must remain. The hard limit defines the maximum amount of disk blocks or files the user can accumulate under the established disk quotas. The quota grace period allows the user to exceed the soft limit for a short period of time (the default value is one week).

The disk quota system tracks user and group quotas in the `quota.user` and `quota.group` files that reside in the root directories of file systems enabled with quotas.

You should consider implementing the disk quota system under the following conditions:
- Your system has limited disk space.
- You require more file system security.
- Your disk-usage levels are large, such as at many universities.

Typically, only those file systems that contain user home directories and files require disk quotas. The disk quota system works only with the journaled file system.

<table>
<thead>
<tr>
<th>Pseudo file name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>Process state information, such as address, size of heap or stack</td>
</tr>
<tr>
<td>sysent</td>
<td>Information about system calls</td>
</tr>
</tbody>
</table>

Note: Because many editors and system utilities create temporary files in the `/tmp` file system, it must be free of quotas.
Setting up the disk quota

In the following example, a quota system is being set up for the /home file system.

1. To verify that you have the bos.sysmgt.quota fileset installed, enter:

```
lslpp -l |grep bos.sysmgt.quota
```

```
bos.sysmgt.quota 5.1.0.25 COMMITTED Filesystem Quota Commands
```

Determine which file system requires quotas. In this example, it is for /home file system.

2. Use the `chfs` command to include the userquota and groupquota quota configuration attributes in the /etc/filesystems file. To enable both user and group quotas on the /home file system, enter:

```
chfs -a "quota = userquota,groupquota" /home
```

The corresponding entry in the /etc/filesystems is displayed as follows:

```
/home:
 dev = /dev/hd1
 vfs = jfs
 log = /dev/hd8
 mount = true
 options = rw
 account = false
 quota = userquota,groupquota
```

3. Mount the specified file systems, if not previously mounted.

4. Set the desired quota limits for each user or group. Use the `edquota` command to create each user’s or group’s soft and hard limits for allowable disk space and maximum number of files. To set the quota for user quotausr, enter:

```
edquota -u quotausr
```

The `edquota` command also invokes the vi editor (or the editor specified by the EDITOR environment variable) on the temporary file so that quotas can be added and modified.

Quotas for user quotausr:

```
/home: blocks in use: 0, limits (soft = 100, hard = 150)
 inodes in use: 0, limits (soft = 200, hard = 250)
```

To set the quota for the entire group named quotagrp, enter:

```
edquota -g quotagrp
```

Modify the temporary file to set the limits:

Quotas for group quotagrp:
5. To enable the quota system with the `quotaon` command, enter:
   
   ```bash
 # quotaon -u /home
   ```

6. Use the `quotacheck` command to check the consistency of the quota files against actual disk usage:
   
   ```bash
 # quotacheck /home
   ```

### 7.5 Paging space

On AIX systems, the following list indicates possible problems associated with paging space:

- All paging spaces defined on one physical volume
- Page space nearly full
- Imbalance in allocation of paging space on physical volumes
- Fragmentation of a paging space in a volume group

#### 7.5.1 Recommendations for creating or enlarging paging space

Do not put more than one paging space logical volume on a physical volume.

All processes started during the boot process are allocated paging space on the default paging space logical volume (hd6). After the additional paging space logical volumes are activated, paging space is allocated in a round robin manner in 4-KB units. If you have paging space on multiple physical volumes and put more than one paging space on one physical volume, you are no longer spreading paging activity over multiple physical volumes.

Avoid putting a paging space logical volume on the same physical volume as a heavily active logical volume, such as that used by a database.

It is not necessary to put a paging space logical volume on each physical volume.

Make each paging space logical volume roughly equal in size. If you have paging spaces of different sizes and the smaller ones become full, you will no longer be spreading your paging activity across all of the physical volumes.
Do not extend a paging space logical volume into multiple physical volumes. If a paging space logical volume is spread over multiple physical volumes, you will not be spreading paging activity across all the physical volumes. If you want to allocate space for paging on a physical volume that does not already have a paging space logical volume, create a new paging space logical volume on that physical volume.

For best system performance, put paging space logical volumes on physical volumes that are each attached to a different disk controller.

### 7.5.2 Determining if more paging space is needed

Allocating more paging space than necessary results in unused paging space that is simply wasted disk space. If you allocate too little paging space, a variety of negative symptoms may occur on your system. To determine how much paging space is needed, use the following guidelines:

1. Enlarge paging space if any of the following messages appear on the console or in response to a command on any terminal:
   - INIT: Paging space is low
   - ksh: cannot fork no swap space
   - Not enough memory
   - Fork function failed
   - fork () system call failed
   - Unable to fork, too many processes
   - Fork failure - not enough memory available
   - Fork function not allowed. Not enough memory available.
   - Cannot fork: Not enough space

2. Enlarge paging space if the %Used column of the `lsps -s` output is greater than 80.

Use the `iostat`, `vmstat`, and `lsps` commands to determine if you need to make changes regarding paging space logical volumes:

```
iostat
vmstat
lsps
```

If you wish to remove a paging space from the system or reduce the size of a paging space, this should be performed in two steps. The first step in either case is to change the paging space so that it is no longer automatically used when the system starts. This is done with the `chps` command. For example:

```
chps -a n paging00
```
7.5.3 Reducing and removing paging space

In AIX Version 4.x, to remove a paging space you need to reboot the system, since there is no way to dynamically bring a paging space offline. Once the system reboots, the paging space will not be active. At this point, you can remove the paging space logical volume.

In AIX Version 4.x, to reduce the size of the paging space, you should remove the logical volume, and then create the new paging space with the desired size. The new paging space can be activated without having to reboot the machine using the `mkps` command.

Removing paging space can be done by using the following procedure involving the `chps` and the `rmps` commands.

**Note:** Removing default paging spaces incorrectly can prevent the system from restarting.

The paging space must be deactivated before it can be removed. A special procedure is required for removing the default paging spaces (hd6, hd61, and so on). These paging spaces are activated during boot time by shell scripts that configure the system. To remove one of the default paging spaces, these scripts must be altered and a new boot image must be created.

This scenario describes how to remove an existing paging space, paging00, from the system. This disk layout is as follows:

```
lspv -a
Page Space Physical Volume Volume Group Size %Used Active Auto Typ
paging00 hdisk2 testvg 3200MB 1 yes yes lv
hd6 hdisk0 rootvg 1040MB 1 yes yes lv
```

1. The paging00 paging space is automatically activated. Use the `chps` command to change its state:

   ```
 # chps -a n paging00
   ```

2. The paging space is in use; a reboot of the system is required. Make sure that the system dump device is still pointing to a valid paging space, as follows:

   ```
 # sysdumpdev -l
 primary /dev/hd6
 secondary /dev/sysdumpnull
 copy directory /var/adm/ras
 forced copy flag TRUE
 always allow dump FALSE
 dump compression OFF
   ```
3. Remove the paging00 paging space using the `rmps` command:

   ```
 # rmps paging00
 rmlv: Logical volume paging00 is removed.
   ```

If the paging space you are removing is the default dump device, you must change the default dump device to another paging space or logical volume before removing the paging space. To change the default dump device, use the `sysdumpdev -P -p /dev/new_dump_device` command.

In AIX 5L, you can use the `swapoff` command to move all pages out of a paging space that is to be removed. After pages are moved out, use the `rmps` command to remove the paging space. In the following example, paging00 is removed:

   ```
 # swapoff /dev/paging00
 # rmps paging00
 rmlv: Logical volume paging00 is removed.
   ```

With AIX 5L, managing paging space also became much simpler. You can reduce the size of paging space dynamically. For example, remove one logical partition from paging00 by running:

   ```
 # chps -d 1 paging00
 shrinkps: Temporary paging space paging01 created.
 shrinkps: Paging space paging00 removed.
 shrinkps: Paging space paging00 recreated with new size.
   ```

Rebooting of the server is not needed.

The `chps` command automatically creates the temporary paging spaces as needed in AIX 5L.

### 7.6 Command summary

The following sections review commands discussed in this chapter and the flags most often used.

#### 7.6.1 The `lsvg` command

The `lsvg` command sets the characteristics of a volume group. The command has the following syntax:

   ```
   ```

The most commonly used flag is provided in Table 7-3 on page 170.
Table 7-3  Commonly used flag of the lsvg command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-l</code></td>
<td>Lists the following information for each logical volume within the group specified by the VolumeGroup parameter:</td>
</tr>
<tr>
<td></td>
<td>LV - A logical volume within the volume group.</td>
</tr>
<tr>
<td></td>
<td>Type - Logical volume type.</td>
</tr>
<tr>
<td></td>
<td>LPs - Number of logical partitions in the logical volume.</td>
</tr>
<tr>
<td></td>
<td>PPs - Number of physical partitions used by the logical volume.</td>
</tr>
<tr>
<td></td>
<td>PVs - Number of physical volumes used by the logical volume.</td>
</tr>
<tr>
<td></td>
<td>Logical volume state - State of the logical volume. Opened/stale indicates the logical volume is open but contains partitions that are not current. Opened/syncd indicates the logical volume is open and synchronized. Closed indicates the logical volume has not been opened.</td>
</tr>
</tbody>
</table>

7.6.2 The chvg command

The `chvg` command sets the characteristics of a volume group. The command has the following syntax:

```
chvg [-a AutoOn { n | y }] [-c | -l] [-Q { n | y }] [-u] [-x { n | y }][-t [factor]] [-B] VolumeGroup
```

The most commonly used flag is provided in Table 7-4 on page 171.
The `importvg` command imports a new volume group definition from a set of physical volumes. The command has the following syntax:

```
importvg [-V MajorNumber] [-y VolumeGroup] [-f] [-c] [-x] |
[-L VolumeGroup] [-n] [-F] [-R] PhysicalVolume
```

The most commonly used flags are provided in Table 7-5.

### Table 7-5  Commonly used flags of the `importvg` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-y</code> <code>VolumeGroup</code></td>
<td>Specifies the name to use for the new volume group. If this flag is not used, the system automatically generates a new name. The volume group name can only contain the following characters: <code>A</code> through <code>Z</code>, <code>a</code> through <code>z</code>, <code>0</code> through <code>9</code>, or <code>_</code> (the underscore), <code>.</code> (the period), or <code>.</code> (the period). All other characters are considered invalid.</td>
</tr>
<tr>
<td><code>-f</code></td>
<td>Forces the volume group to be varied online.</td>
</tr>
</tbody>
</table>
7.6.4 The rmlvcopy command

The `rmlvcopy` command removes copies from each logical partition in the logical volume. The command has the following syntax:
```
rmlvcopy LogicalVolume Copies [PhysicalVolume ...]
```

7.6.5 The reducevg command

The `reducevg` command removes physical volumes from a volume group. When all physical volumes are removed from the volume group, the volume group is deleted. The command has the following syntax:
```
reducevg [-d] [-f] VolumeGroup PhysicalVolume ...
```

The most commonly used flags are provided in Table 7-6.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Deallocates the existing logical volume partitions and then deletes resultant empty logical volumes from the specified physical volumes. User confirmation is required unless the -f flag is added.</td>
</tr>
<tr>
<td>-f</td>
<td>Removes the requirement for user confirmation when the -d flag is used.</td>
</tr>
</tbody>
</table>

7.6.6 The rmdev command

The `rmdev` command removes a device from the system. The command has the following syntax:
```
rmdev -l Name [-d | -S] [-f File] [-h] [-q] [-R]
```

The most commonly used flags are provided in Table 7-7.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l Name</td>
<td>Specifies the logical device, indicated by the name variable, in the Customized Devices object class.</td>
</tr>
<tr>
<td>-d</td>
<td>Removes the device definition from the Customized Devices object class. This flag cannot be used with the -S flag.</td>
</tr>
</tbody>
</table>
7.6.7 The syncvg command

The **syncvg** command synchronizes logical volume copies that are not current. The command has the following syntax:

```
 syncvg [-f] [-i] [-H] [-P NumParallelLps] { -l | -p | -v } Name ...
```

The most commonly used flag is provided in Table 7-8.

**Table 7-8  Commonly used flag of the syncvg command**

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-p</td>
<td>Specifies that the name parameter represents a physical volume device name</td>
</tr>
</tbody>
</table>

7.7 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A file system shows the following output from the **df** command:

   ```
 Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
 /dev/hd3 57344 47888 17% 184 2% /tmp
 ``

 However, a long listing of the file /tmp/myfile shows the following:

 2066 -rwxrwxrwx 1 lucinda staff 100000000 May 07 14:41 /tmp/myfile

 Which of the following file types is /tmp/myfile?
 A. Dense
 B. Sparse
 C. Fragmented
 D. Compressed

2. A volume group vg00 has two 4.5-GB disk drives (hdisk4 and hdisk5). When a 9.1-GB disk (hdisk6) was added, the following error occurred:

 `0516-1162 extendvg: Warning, The Physical Partition Size of 16 requires the creation of 3258 partitions for hdisk6. The limitation for volume group rootvg is 1016 physical partitions per physical volume.`

 `0516-792 extendvg: Unable to extend volume group to the rootvg`
Which of the following commands should be used to successfully add the 9.1-GB drive to vg00?

A. `chvg -t -2 vg00`
B. `sync1vodm -v vg00`
C. `lqueryvg -Atp hdisk6`
D. `redefinevg -d hdisk6 vg00`

3. Which of the following should be avoided with regards to paging space?

A. Placing paging space on non-rootvg disk
B. Placing paging spaces on non-SCSI drives
C. Using paging space less than the RAM size
D. Using multiple paging spaces on the same drive

4. During a routine check of an error log, the system is receiving SSA errors. The error log reports an SSA link open failure error. The system is working fine, but the SSA errors keep repeating every 30 minutes. All of the following are steps to fix the error except:

A. Run `cfgmgr -v`
B. Check the cabling.
C. Run link verification.
D. Check the microcode for the SSA drive.

5. Which of the following statements best describes the relationship between a logical volume and a journaled file system?

A. Increasing the size of a logical volume also increases the size of the file system.
B. Increasing the size of a file system requires file systems to be unmounted first.
C. Increasing the size of a file system also increases the size of the logical volume when necessary.
D. Reducing the size of a logical volume requires reducing the size of the file system first.
6. Which of the following statements is *false* regarding the process for administering file systems?

A. A logical volume must be created prior to defining a file system.
B. A file system must be empty before it can be removed.
C. Defining a file system imposes a structure on a logical volume.
D. Removing a file system using rmfs automatically removes the underlying logical volume.

7.7.1 Answers

The following are the preferred answers to the questions provided in this section:

1. B
2. A
3. D
4. A
5. C
6. B

7.8 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Verify the maximum number of PPs on your system, using rootvg, as an example. What is the maximum disk size that can be added to your system?
2. If you have access to a test system that is equipped with a hot-swappable SCSI disk, try the disk replacement example in 7.3.1, “Replacing a disk” on page 144.
Network problem determination

The following topics are discussed in this chapter:

- Network interface problems
- Routing problems
- Name resolution problems
- NFS troubleshooting

This chapter discusses network problem source identification and resolution.
8.1 Network interface problems

If host name resolution does not work and you cannot ping any address in the routing table, the interface itself may be the culprit. The first step to determine if this is true should be to check the installed adapter types and states using the `lsdev -Cc adapter` and `lsdev -Cc if` commands, as shown in the following:

```
# lsdev -Cc adapter
pmc0   Available 01-A0 Power Management Controller
fda0   Available 01-C0 Standard I/O Diskette Adapter
ide0   Available 01-E0 ATA/IDE Controller Device
ide1   Available 01-F0 ATA/IDE Controller Device
....
ppa0   Available 01-D0 Standard I/O Parallel Port Adapter
ent0   Available 04-D0 IBM PCI Ethernet Adapter (22100020)
tok0   Available 04-01 IBM PCI Tokenring Adapter (14101800)
# lsdev -Cc if
en0   Available  Standard Ethernet Network Interface
et0   Defined    IEEE 802.3 Ethernet Network Interface
lo0   Available  Loopback Network Interface
tr0   Available  Token Ring Network Interface
```

As shown, there are two network adapters and four network interfaces. All interfaces can be administrated by either the `chdev` or the `ifconfig` command.

To determine the state of the interface, use the `ifconfig` command. The following examples show the en0 interface in the up, down, and detach state.

The en0 interface in the up state is shown in the following:

```
# ifconfig en0
en0:
  flags=e080863<UP,BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
    inet 10.47.1.1 netmask 0xffff0000 broadcast 10.47.255.255
```

The down state of the interface keeps the system from trying to transmit messages through that interface. Routes that use the interface are not automatically disabled.

```
# ifconfig en0 down
# ifconfig en0
en0:
  flags=e080862<BROADCAST,NOTRAILERS,RUNNING,SIMPLEX,MULTICAST,GROUPRT,64BIT>
    inet 10.47.1.1 netmask 0xffff0000 broadcast 10.47.255.255
```

The interface in the detach state is removed from the network interface list. If the last interface is detached, the network interface driver code is unloaded.

```
# ifconfig en0 detach
```
ifconfig en0
en0: flags=e080822<BROADCAST,NOTRAILERS,SIMPLEX,MULTICAST,GROUPRT,64BIT>

All changes made to the network interface as shown can also be made by the chdev command. Changes made by this command are permanent because they are made directly to the ODM database. To list the parameters of the network interface tr0 that you can change by the chdev command, enter:

```
# lsattr -El tr0
```

```
mtu           1492          Maximum IP Packet Size for This Device     True  
mtu_4         1492          Maximum IP Packet Size for This Device     True  
mtu_16        1492          Maximum IP Packet Size for This Device     True  
mtu_100       1492          Maximum IP Packet Size for This Device     True  
remmtu        576           Maximum IP Packet Size for REMOTE Networks True  
netaddr       9.3.240.59    Internet Address                           True  
state         up            Current Interface Status                   True  
arpu          on            Address Resolution Protocol (ARP)          True  
allcast       on            Confinite Broadcast to Local Token-Ring      True  
hwloop        off           Enable Hardware Loopback Mode              True  
netmask       255.255.255.0 Subnet Mask                                True  
security      none          Security Level                             True  
authority                   Authorized Users                           True  
broadcast       Broadcast Address                                True  
netaddr6                    N/A                                        True  
alias6                      N/A                                        True  
prefixlen                   N/A                                        True  
alias4                      N/A                                        True  
rfc1323                     N/A                                        True  
tcp_nodelay                 N/A                                        True  
tcp_sendspace               N/A                                        True  
tcp_recvspace               N/A                                        True  
tcp_mssdflt                 N/A                                        True  
```

For example, to set up the broadcast address for the tr0 interface, enter:

```
# chdev -l tr0 -a broadcast='9.3.240.255'
tr0 changed
```

To check the new value of the broadcast parameter, enter:

```
# lsattr -El tr0 -a broadcast
```

```
broadcast 9.3.240.255 Broadcast Address True
```

When you have a network performance problem and you suspect that the network interface could be the cause of it, you should check the interface statistics. To display the statistics for the en0 interface, enter:

```
# netstat -I en0
```

```
Name   Mtu  Network  Address          Ipkts  Ierrs  Opkts  Oerrs  Coll
en0    1500 link#2  8.0.5a.fc.d2.e1  28982   0     579545  0       0
en0    1500 10.47   server4_       28982   0     579545  0       0
```
As you can see, the output shows the number of input and output errors and the number of input and output packets.

Note: The collision count for Ethernet interfaces is not displayed by the `netstat` command. It always shows 0.

To see more detailed statistics, use the `entstat` command:

```bash
# entstat -d en0
```

ETHERNET STATISTICS (en0):

- **Device Type:** IBM PCI Ethernet Adapter (22100020)
- **Hardware Address:** 08:00:5a:fc:d2:e1
- **Elapsed Time:** 1 days 1 hours 21 minutes 29 seconds

Transmit Statistics:

- Packets: 579687
- Bytes: 49852606
- Interrupts: 0
- Transmit Errors: 0
- Packets Dropped: 0
- MAX Packets on S/W Transmit Queue: 2
- MAX Packets on S/W HW Transmit Queue: 2
- MAX Packets in S/W HW Transmit Queue: 0
- CURRENT S/W+H/W Transmit Queue Length: 0
- Broadcast Packets: 2327
- Multicast Packets: 0
- No Carrier Sense: 0
- DMA Underrun: 0
- Lost CTS Errors: 0
- Max Collision Errors: 0
- Late Collision Errors: 0
- Deferred: 34
- SQE Test: 0
- TIMEO: 0
- Single Collision Count: 4
- Multiple Collision Count: 12
- CURRENT HW Transmit Queue Length: 0

Receive Statistics:

- Packets: 55872
- Bytes: 4779893
- Interrupts: 55028
- Receive Errors: 0
- Packets Dropped: 0
- Bad Packets: 0

General Statistics:

- No mbuf Errors: 0
- Adapter Reset Count: 4
- Driver Flags: Up Broadcast Running
 - Simplex AlternateAddress 64BitSupport
IBM PCI Ethernet Adapter Specific Statistics:

--
Chip Version: 16
Packets with Transmit collisions:
1 collisions: 4
2 collisions: 1
3 collisions: 4
4 collisions: 1
5 collisions: 1
6 collisions: 2
7 collisions: 1
8 collisions: 1
9 collisions: 0
10 collisions: 1
11 collisions: 0
12 collisions: 0
13 collisions: 0
14 collisions: 0
15 collisions: 0

To test for dropped packets, use the ping command with the -f flag. The -f flag floods, or outputs, packets as fast as they come back or one hundred times per second, whichever is more. For every ECHO_REQUEST sent, a period is printed, while for every ECHO_REPLY received, a backspace is printed. This provides a rapid display of how many packets are being dropped. Only the root user can use this option.

8.2 Routing problems

If you are not able to ping by host name or IP address, you may have a routing problem.

First, check the routing tables as follows:

1. Use the netstat -rn command to show the content of your local routing table using IP addresses.

 # netstat -rn

 Routing tables
 Destination Gateway Flags Refs Use If PMTU Exp

 Route Tree for Protocol Family 2 (Internet):
 default 9.3.240.1 Uc 0 0 tr0 - -
 9.3.240/24 9.3.240.58 U 31 142091 tr0 - -
 10.47.1.2 9.3.240.59 UGH 0 2 tr0 - -
 127/8 127.0.0.1 UR 0 3 lo0 - -
 127.0.0.1 127.0.0.1 UH 3 761 lo0 - -
 195.116.119/24 195.116.119.2 U 2 406 en0 - -

 Route Tree for Protocol Family 24 (Internet v6):
 ::1 ::1 UH 0 0 lo0 16896 -

2. Check the netmask displayed and ensure that it is correct (ask the network administrator what it should be if you are unsure).

 # lsattr -El tr0 -a netmask -F value
 255.255.255.0
3. If there is a default route, attempt to ping it.

```bash
# ping 9.3.240.1
PING 9.3.240.1: (9.3.240.1): 56 data bytes
64 bytes from 9.3.240.1: icmp_seq=0 ttl=64 time=1 ms
64 bytes from 9.3.240.1: icmp_seq=1 ttl=64 time=0 ms
^C
-----9.3.240.1 PING Statistics-----
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0/0/1 ms
```

The `ping -c` command will limit the number of pings to the value specified after the `-c` flag.

```bash
# ping -c 1 server2
PING server2.itsc.austin.ibm.com: (9.3.240.57): 56 data bytes
64 bytes from 9.3.240.57: icmp_seq=0 ttl=255 time=0 ms
```

```bash
----server2.itsc.austin.ibm.com PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 0/0/0 ms
```

4. If you have more than one network interface, attempt to determine if any interfaces are working.

If you cannot ping your default route, either the default gateway is down, or your local network connection may be down. Attempt to ping all of the gateways listed in the routing table to see if any portion of your network is functioning.

If you cannot ping any host or router interface from among those listed in the routing table, try to ping your loopback interface lo0 with the following command:

```bash
# ping localhost
PING localhost: (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=255 time=1 ms
^C
----localhost PING Statistics----
1 packets transmitted, 1 packets received, 0% packet loss
round-trip min/avg/max = 1/1/1 ms
```

If the ping is successful, you have an adapter or network hardware problem or a routing problem. The `ping -f` (flood ping) command outputs packets as fast as they come back or one hundred times per second, whichever is more. The
command `ping -f` (flood ping) requires root access to the system. For every ECHO_REQUEST sent, a period '.' is printed, while for every ECHO_REPLY received, a backspace is printed. This provides a rapid display of how many packets are being dropped.

If the ping is not successful, you need to:

1. Ensure that the inetd process is actively using the `lssrc -g tcpip` command.
 - If inetd is not active, issue the `startsrc -s inetd` or `startsrc -g tcpip` command.

```
# lssrc -g tcpip
Subsystem         Group            PID     Status
routed           tcpip            5424    active
inetd            tcpip            6192    active
snmpd            tcpip            6450    active
gated            tcpip                    inoperative
named            tcpip                    inoperative
----- the output was edited for brevity -----  
```

2. Check the state of the loopback interface (lo0) with the `netstat -i` command. If you see `lo0*` in the output, check the `/etc/hosts` file for an uncommented local loopback entry, as follows:

```
# netstat -I lo0 -n
Name  Mtu   Network     Address Ipkts Ierrs    Opkts Oerrs  Coll
lo0* 16896 link#1 412934     0   414344     0     0
lo0* 16896 127         127.0.0.1 412934     0   414344     0     0
lo0* 16896 ::1 412934     0   414344     0     0
# grep localhost /etc/hosts
127.0.0.1 loopback localhost      # loopback (lo0) name/address
A splat (*) after the interface name in the output from the `netstat` command indicates that the interface is down. Use the following command to start the lo0 interface:

```
ifconfig lo0 inet 127.0.0.1 up
```

If you cannot reach a host that is in a different network, you can check the connection using the `traceroute` command. The `traceroute` command output shows each gateway that the packet traverses on its way to finding the target host. If possible, examine the routing tables of the last machine shown in the `traceroute` output to check if a route exists to the destination from that host. The last machine shown is where the routing is incorrectly set.

```
traceroute 9.3.240.56
traceroute to 9.3.240.56 (9.3.240.56), 30 hops max, 40 byte packets
 1 server4e (10.47.1.1) 1 ms 1 ms 0 ms
 2 server1 (9.3.240.56) 1 ms 1 ms 1 ms
```
If you are using the `route` command to change the routing table on your machine and you want this change to be permanent, insert the appropriate line in the `/etc/rc.net` file.

### 8.2.1 Dynamic or static routing

If you have a problem with the dynamic routing protocol, follow the procedure provided in this section.

If your system is set up to use the routed daemon:

1. Check if the routed daemon is running; if not, start it with the `startsrc -s routed` command.
2. If routed cannot identify the route through queries, check the `/etc/gateways` file to verify that a route to the target host is defined and that the target host is running the RIP.
3. Make sure that gateways responsible for forwarding packets to the host are up and that they are running the RIP (routed or gated active). Otherwise you will need to define a static route.
4. Run the routed daemon with the debug option to log information such as bad packets received. Invoke the daemon from the command line using the following command:
   ```
 startsrc -s routed -a "-d"
   ```
5. Run the routed daemon using the `-t` flag, which causes all packets sent or received to be written to standard output. When routed is run in this mode, it remains under the control of the terminal that started it. Therefore, an interrupt from the controlling terminal kills the daemon.

If your system is set up to use the gated daemon:

1. Check if gated is running; if not, start it with the `startsrc -s gated` command.
2. Verify that the `/etc/gated.conf` file is configured correctly and that you are running the correct routing protocols.
3. Make sure that the gateway on the source network is using the same protocol as the gateway on the destination network.
4. Make sure that the machine that you are trying to communicate with has a return route back to your host machine.

You should set static routes under the following conditions:

- The destination host is not running the same protocol as the source host, so it cannot exchange routing information.
Chapter 8. Network problem determination

185

The host must be reached by a distant gateway (a gateway that is on a different autonomous system than the source host). The RIP can be used only among hosts on the same autonomous system.

If you are using dynamic routing, you should not attempt to add static routes to the routing table using the route command.

As a very last resort, you may flush the routing table using the route -f command, which will cause all the routes to be removed and eventually replaced by the routing daemons. Since any networking that was functioning before will be temporarily cut off once the routes are removed, be sure no other users will be affected by this.

If your system is going to be configured as a router (it has two or more network interfaces), then it needs to be enabled as a router by the no command. The network option that controls routing from one network to another is ipforwarding and by default is disabled. To enable it, enter:

```
no -o ipforwarding=1
```

This is not a permanent setting and after the next system reboot it will be lost. To make this permanent, add this command to the end of the /etc/rc.net file.

Note: When you add the second network interface to your system, a new entry will appear in the routing table. This is a route associated with the new interface.

### 8.3 Name resolution problems

If network connections seem inexplicably slow sometimes but fast at other times, it is a good idea to check the name resolution configuration for your system. Do a basic diagnostic for name resolving. You can use either the host command or the nslookup command.

```
host dhcp240.itsc.austin.ibm.com
dhcp240.itsc.austin.ibm.com is 9.3.240.2
```

The name resolution can be served through either a remote DNS server or a remote NIS server. If one of them is down, you may have to wait until TCP timeout occurs. The name can be resolved by an alternate source, which can be a secondary name server or the local /etc/hosts file.

First check the /etc/netsvc.conf file and the NSORDER environment variable for your particular name resolution ordering. The NSORDER variable overrides the hosts settings in the /etc/netsvc.conf file. Check the /etc/resolv.conf file for the IP
address of the named server and try to ping it. If you can, then it is reachable. If not, try different name resolution ordering.

**Note:** When you can ping the name server, it does not mean that the named daemon is active on this system.

By default, resolver routines attempt to resolve names using BIND and DNS. If the /etc/resolv.conf file does not exist, or if BIND or DNS could not find the name, NIS is queried (if it is running). NIS is authoritative over the local /etc/hosts, so the search will end here if it is running. If NIS is not running, then the local /etc/hosts file is searched. If none of these services could find the name, then the resolver routines return with HOST_NOT_FOUND. If all of the services are unavailable, then the resolver routines return with SERVICE_UNAVAILABLE.

If you want to change the name resolution ordering so that NIS takes precedence over the BIND and DNS, your /etc/netsvc.conf file should look like the following example:

```
cat /etc/netsvc.conf
hosts = nis,bind
```

You can override this setting by using the NSORDER environment variable:

```
export NSORDER=localhost,bind
```

In this situation the /etc/hosts file will be examined for name resolution first.

### 8.3.1 The tcpdump and iptrace commands

You may need to see the real data crossing the wire to solve a problem. There are two commands that let you see every incoming and outgoing packet from your interface: tcpdump and iptrace.

The **tcpdump** command prints out the headers of packets captured on a specified network interface. The following example shows a telnet session between hosts 9.3.240.59 and 9.3.240.58:

```
tcpdump -i tr0 -n -I -t dst host 9.3.240.58
9.3.240.59.44183 > 9.3.240.58.23: S 1589597023:1589597023(0) win 16384 <mss 1452> [tos 0x10]
9.3.240.58.23 > 9.3.240.59.44183: S 1272672076:1272672076(0) ack 1589597024 win 15972 <mss 1452>
9.3.240.59.44183 > 9.3.240.58.23: . ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 1:16(15) ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: P 1:16(15) ack 1 win 15972 [tos 0x10]
9.3.240.59.44183 > 9.3.240.58.23: . ack 6 win 15972 [tos 0x10]
```
The first line indicates that TCP port 44183 on host 9.3.240.59 sent a packet to the telnet port (23) on host 9.3.240.58. The S indicates that the SYN flag was set. The packet sequence number was 1589597023 and it contained no data. There was no piggy-backed ack field, the available receive field win was 16384 bytes, and there was a max-segment-size (mss) option requesting a mss of 1452 bytes. Host 9.3.240.58 replies with a similar packet, except it includes a piggy-backed ack field for host 9.3.240.59 SYN. Host 9.3.240.59 then acknowledges the host 9.3.240.58 SYN. The period (.) means no flags were set. The packet contains no data, so there is no data sequence number. On the eleventh line, host 9.3.240.59 sends host 9.3.240.58 26 bytes of data. The PUSH flag is set in the packet. On the twelfth line, host 9.3.240.58 says it received data sent by host 9.3.240.59 and sends 54 bytes of data; it also includes a piggy-backed ack for sequence number 27.

The iptrace daemon records IP packets received from configured interfaces. Command flags provide a filter so that the daemon traces only packets meeting specific criteria. Packets are traced only between the local host on which the iptrace daemon is invoked and the remote host. To format iptrace output, run the ipreport command. The following example shows the query from host 9.3.240.59 to DNS server 9.3.240.2. The output from the nslookup command is shown in the following:

```
nslookup www.prokom.pl
Server: dhcp240.itsc.austin.ibm.com
Address: 9.3.240.2
Non-authoritative answer:
Name: mirror.prokom.pl
Address: 153.19.177.201
Aliases: www.prokom.pl
```

The data was captured by the iptrace command, similar to the following:

```
iptrace -a -P UDP -s 9.3.240.59 -b -d 9.3.240.2 /tmp/dns.query
```

The output form the iptrace command was formatted by the ipreport command, as follows:

```
TOK: ==== (81 bytes transmitted on interface tr0)==== 17:14:26.406601066
TOK: 802.5 packet
TOK: 802.5 MAC header:
```
TOK: access control field = 0, frame control field = 40
TOK: [ src = 00:04:ac:61:73:f7, dst = 00:20:35:29:0b:6d ]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: < DST = 9.3.240.2 > (dhcp240.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=59, ip_id=6417, ip_off=0
IP: ip_ttl=30, ip_sum=aecc, ip_p = 17 (UDP)
UDP: < source port=49572, < destination port=53(domain) >
UDP: [ udp length = 39 | udp checksum = 688d ]
DNS Packet breakdown:
  QUESTIONS:
  www.prokom.pl, type = A, class = IN

TOK: ****( 246 bytes received on interface tr0 )**** 17:14:26.407798799
TOK: 802.5 packet
TOK: access control field = 18, frame control field = 40
TOK: routing control field = 02c0, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 9.3.240.2 > (dhcp240.itsc.austin.ibm.com)
IP: < DST = 9.3.240.59 > (server4f.itsc.austin.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=222, ip_id=2824, ip_off=0
IP: ip_ttl=64, ip_sum=7cc3, ip_p = 17 (UDP)
UDP: < source port=53(domain), < destination port=49572 >
UDP: [ udp length = 202 | udp checksum = a7bf ]
DNS Packet breakdown:
  QUESTIONS:
  www.prokom.pl, type = A, class = IN
  ANSWERS:
  -> www.prokom.pl canonical name = mirror.prokom.pl
  -> mirror.prokom.pl internet address = 153.19.177.201
  AUTHORITY RECORDS:
  -> prokom.pl nameserver = phobos.prokom.pl
  -> prokom.pl nameserver = alfa.nask.gda.pl
  -> prokom.pl nameserver = amber.prokom.pl
  ADDITIONAL RECORDS:
  -> phobos.prokom.pl internet address = 195.164.165.56
  -> alfa.nask.gda.pl internet address = 193.19.200.187
  -> amber.prokom.pl internet address = 153.19.177.200

There are two packets shown in the ipreport output above (the key data is shown in boldface text). Every packet is divided into a few parts. Each part describes a different network protocol level. There are the token ring (TOK), IP, UDP, and the application (DNS) parts. The first packet is sent by host 9.3.240.59
and is a query about the IP address of the www.prokom.pl host. The second one is the answer.

8.4 NFS troubleshooting

Prior to starting any NFS debugging, it is necessary to ensure the underlying network is up and working correctly. It is also important to ensure that name resolution is functional and consistent across the network and that end-to-end routing is correct both ways.

8.4.1 General steps for NFS problem solving

The general steps for NFS problem solving are as follows:

1. Check for correct network connectivity and configuration as described in previous sections.

2. Check the following NFS configuration files on the client and server for content and permissions:
   - /etc/exports (servers only)
   - /etc/rc.tcpip
   - /etc/rc.nfs
   - /etc/filesystems (clients only)
   - /etc/inittab

3. Check that the following NFS daemons are active on the client and server.
   Server NFS daemons required:
   - portmap
   - biod
   - nfsd
   - rpc.mountd
   - rpc.statd
   - rpc.lockd
   Client NFS daemons required:
   - portmap
   - biod (these are dynamically created on AIX Version 4.2.1 and later)
   - rpc.statd
   - rpc.lockd
4. Initiate an iptrace (client, server, or network), reproduce the problem, then view the ipreport output to determine where the problem is.

8.4.2 NFS mount problems

Mount problems fall into one of the following categories:

- File system not exported, or not exported to a specific client.
  Correct server export list (/etc/exports)

- Name resolution different from the name in the export list. Normally, it is due to one of the following causes:
  - The export list uses a fully qualified name but the client host name is resolved without a network domain. Fully qualified names cannot be resolved. Mount permission is denied. Usually, this happens after upgrade activity and can be fixed by exporting to both forms of the name.
  - The client has two adapters using two different names and the export only specifies one. This problem can be fixed by exporting both names.
  - The server cannot do a lookuphostbyname or lookuphostbyaddr onto the client. To check, make sure the following commands both resolve to the same system:
    * host name
    * host ip_addr

- The file system mounted on the server after exportfs was run. In this case, the exportfs command is exporting the mount point and not the mounted file system. To correct this problem run:
  
  /usr/etc/exportfs -ua; /usr/etc/exportfs -a

  Then fix the /etc/filesystems file to mount the file system on boot, so it is already mounted when NFS starts from /etc/rc.nfs at system startup.

- Changes in the exports list, mounts, or somewhere else unexpectedly can sometimes lead to mountd getting confused. This usually happens following mounting, exporting, or because of mount point conflicts and similar errors. To correct this condition, mountd needs to be restarted by using the following commands:
  
  # stopsrc -s rpc.mountd
  # startsrc -s rpc.mountd

- The system date being extremely off on one or both machines is another source of mount problems. To fix this, it is necessary to set the correct date and time, then reboot the system.
In AIX Version 4, the socket size is set dynamically. Configurations using the `no` and `nfso` commands must be repeated every time the machine is booted. Add them in the `/etc/rc.net` or `/etc/rc.nfs` file immediately before the `nfsd` daemons are started and after the `biod` daemons are started. The position is crucial.

### 8.4.4 The `biod` and `nfsd` daemons

Starting with AIX 4.2.1, there is a single `nfsd` daemon and a single `biod` daemon, each of which is multi-threaded (multiple kernel threads within the process). Also, the number of threads is self-tuning in that it creates additional threads as needed. You can, however, tune the maximum number of `nfsd` threads by using
the \texttt{nfs\_max\_threads} parameter of the \texttt{nfso} command. You can also tune the maximum number of \texttt{biod} threads per mount via the \texttt{biod} mount option.

### 8.5 Command summary

The following are commands discussed in this chapter and the flags most often used.

#### 8.5.1 The \texttt{chdev} command

The \texttt{chdev} command changes the characteristics of a device. The command has the following syntax:

\begin{verbatim}
chdev -l Name [ -a \texttt{Attribute=Value} ... ]
\end{verbatim}

The most commonly used flags are provided in Table 8-1.

\begin{table}[h]
\centering
\begin{tabular}{|l|p{8cm}|}
\hline
\textbf{Flag} & \textbf{Description} \\
\hline
\texttt{-l Name} & Specifies the device logical name, specified by the name parameter, in the Customized Devices object class, whose characteristics are to be changed \\
\hline
\texttt{-a Attribute=Value} & Specifies the device attribute, value pairs used for changing specific attribute values \\
\hline
\end{tabular}
\end{table}

#### 8.5.2 The \texttt{exportfs} command

The \texttt{exportfs} command exports and unexports directories to NFS clients. The syntax of the \texttt{exportfs} command is:

\begin{verbatim}
exportfs [ -a ] [ -v ] [ -u ] [ -i ] [ -fFile ] [ -oOption [ ,Option ... ] ] [ Directory ]
\end{verbatim}

The most commonly used flags are provided in Table 8-2.

\begin{table}[h]
\centering
\begin{tabular}{|l|p{8cm}|}
\hline
\textbf{Flags} & \textbf{Description} \\
\hline
\texttt{-a} &Exports all filesets defined in /etc/exports \\
\hline
\texttt{-u} & Unexports the directories you specify; can be used with -a \\
\hline
\texttt{-o option} & Specifies optional characteristics for the exported directory \\
\hline
\end{tabular}
\end{table}
8.5.3 The ifconfig command

The `ifconfig` command configures or displays network interface parameters for a network using TCP/IP. The command has the following syntax:

```bash
ifconfig Interface [AddressFamily [Address [DestinationAddress]] [Parameters...]]
```

The most commonly used flags are provided in Table 8-3.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AddressFamily</td>
<td>Specifies which network address family to change.</td>
</tr>
<tr>
<td>Parameters</td>
<td>alias Establishes an additional network address for the interface.</td>
</tr>
<tr>
<td></td>
<td>delete Removes the specified network address.</td>
</tr>
<tr>
<td></td>
<td>detach Removes an interface from the network interface list.</td>
</tr>
<tr>
<td></td>
<td>down Marks an interface as inactive (down), which keeps the system from trying to transmit messages through that interface.</td>
</tr>
<tr>
<td></td>
<td>netmask Mask Specifies how much of the address to reserve for subdividing networks into subnetworks.</td>
</tr>
<tr>
<td></td>
<td>up Marks an interface as active (up). This parameter is used automatically when setting the first address for an interface.</td>
</tr>
<tr>
<td>Address</td>
<td>Specifies the network address for the network interface.</td>
</tr>
</tbody>
</table>

8.5.4 The iptrace command

The syntax of the `iptrace` command is:

```bash
iptrace [-a] [-e] [-PProtocol] [-iInterface] [-pPort] [-sHost [-b]] [-dHost [-b]] LogFile
```

Some useful `iptrace` flags are provided in Table 8-4.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Suppresses ARP packets</td>
</tr>
</tbody>
</table>
8.5.5 The lsattr command

The `lsattr` command displays attribute characteristics and possible values of attributes for devices in the system. The command has the following syntax:

```
lsattr -E -l Name [-a Attribute] ...
```

The most commonly used flags are provided in Table 8-5.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-E</code></td>
<td>Displays the attribute names, current values, descriptions, and user-settable flag values for a specific device</td>
</tr>
<tr>
<td><code>-l Name</code></td>
<td>Specifies the device logical name in the Customized Devices object class whose attribute names or values are to be displayed</td>
</tr>
<tr>
<td><code>-a Attribute</code></td>
<td>Displays information for the specified attributes of a specific device or kind of device</td>
</tr>
</tbody>
</table>

8.5.6 The netstat command

The `netstat` command shows network status. The command has the following syntax:

```
/bin/netstat [-n] [{ -r | -i | -l Interface }] [-f AddressFamily] [-p Protocol] [Interval]
```

The most commonly used flags are provided in Table 8-6.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-n</code></td>
<td>Shows network addresses as numbers</td>
</tr>
<tr>
<td><code>-r</code></td>
<td>Shows the routing tables</td>
</tr>
<tr>
<td><code>-i</code></td>
<td>Shows the state of all configured interfaces</td>
</tr>
</tbody>
</table>
8.5.7 The route command

The route command manually manipulates the routing tables. The command has the following syntax:

```
route Command [Family] [[-net | -host] Destination]
[-netmask [Address]] Gateway] [Arguments]
```

The most commonly used flags are provided in Table 8-7.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-I Interface</td>
<td>Shows the state of the configured interface specified by the interface variable</td>
</tr>
<tr>
<td>-f AddressFamily</td>
<td>Limits reports of statistics or address control blocks to those items specified by the AddressFamily variable</td>
</tr>
<tr>
<td>-p Protocol</td>
<td>Shows statistics about the value specified by the protocol variable</td>
</tr>
</tbody>
</table>

8.5.8 The tcpdump command

The syntax of the tcpdump command is:

```
tcpdump [-l] [-n] [-N] [-t] [-v] [-c Count] [-i Interface]
[-w File] [Expression]
```

The most useful tcpdump flags are provided in Table 8-8 on page 196.
Table 8-8 Commonly used flags of the tcpdump command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c Count</td>
<td>Exits after receiving Count packets</td>
</tr>
<tr>
<td>-n</td>
<td>Omits conversion of addresses to names</td>
</tr>
<tr>
<td>-N</td>
<td>Omits printing domain name qualification of host names</td>
</tr>
<tr>
<td>-t</td>
<td>Omits the printing of a time stamp on each dump line</td>
</tr>
<tr>
<td>-i Interface</td>
<td>Listens on Interface</td>
</tr>
</tbody>
</table>

8.6 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. When a user tries to ping a particular machine on the network, she gets the error 0821-069 ping: sendto: Cannot reach the destination network. Which of the following procedures should be performed next to determine the cause of the problem?
   A. netstat -in
   B. netstat -rn
   C. route -nf
   D. route refresh

2. When a ping -f is executed, which of the following is represented when the periods are displayed?
   A. The numbers of packets sent.
   B. The number of packets returned.
   C. The number of packets dropped.
   D. There is no representation that indicates that the program is functioning.

3. Which of the following commands should be used to determine if a network interface is active?
   A. netstat -a
   B. lsdev -Cc en0
   C. lsdev -l adapter
   D. lsdev -Cc if
4. Which of the following commands will start the named daemon?
   A. `refresh -a named`
   B. `startsrc -a named`
   C. `startsrc -s named`
   D. `refresh -a named`

5. A second network adapter has been configured on a system and network connectivity is lost. Which of the following actions should be performed to fix the problem?
   A. Check the routing.
   B. Replace the second network adapter.
   C. Check `/etc/services` for an incorrect entry.
   D. Add the route from the first card to the second.

6. Which of the following procedures is most appropriate to secure a system from remote intruders?
   A. Implement Network Information System (NIS).
   B. Restrict remote root access.
   C. Change the root password daily.
   D. Place the system in a secure location.

7. Intermittent network delays are occurring on a system. Using the information provided in Figure 8-1, which of the following actions should be performed to determine the cause of the problem?

```
netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16905 <Link> 7219 0 7219 0 0
lo0 16896 127 127.0.0.1 7219 0 7219 0 0
en0 1500 <Link> 10.0.5a.4f.32.9a 132313 3543 89425 0 0
en0 1500 129.35.56 129.35.56.160 132313 3543 89425 0 0
```

Figure 8-1  Case study

   A. `arp`
   B. `entstat -d`
   C. `netstat -rn`
   D. `errpt`
8. Which of the following options will *not* show if the interface on the local host is active?
   A. `lsattr`
   B. `lsdev`
   C. `entstat`
   D. `ifconfig`

9. A user is not able to ping any machines on the same network. Which of the following options is most likely causing the problem?
   A. The loopback is down.
   B. The routing table is wrong.
   C. The default gateway is wrong.
   D. The network interface is down.

10. All of the following options suggest why a file system cannot be mounted from a NFS server, except:
    A. The server is not running the rpc.mountd.
    B. The mountd subsystem must be refreshed.
    C. The date is incorrect on one or both machines.
    D. The file system was mounted after `exportfs` was run.

11. The network security team tells a system administrator to turn on promiscuous mode. Which command accomplishes this task?
    A. `iptrace -p`
    B. `iptrace -e`
    C. `iptrace -d`
    D. `iptrace -a`

12. What limits the number of packets sent to and received from a remote host using the `ping` command?
    A. `ping -d`
    B. `ping -D`
    C. `ping -c`
    D. `ping -q`
13. Assume that an AIX workstation has just been modified to be a DHCP client. Previously, the workstation had a static IP definition and was functioning on the network. A shutdown and restart of the workstation was performed which revealed that it did receive an address from the DHCP server. However, the workstation is unable to reach certain hosts on the network. Which of the following procedures should be performed next?

A. Set a default route using ifconfig.
B. Run the SMIT fast path smit route to finish the configuration.
C. Refresh the dhcpd daemon by sending it a SIGHUP.
D. Run the SMIT fast path smit usedhcp to finish the DHCP configuration.

14. Which of the following commands should be used to display collision errors on an Ethernet adapter?

A. errpt -a
B. netstat -i
C. entstat -d
D. lsattr -El en0

15. Which of the following commands records IP packets received from configured interfaces?

A. iptrace
B. entstat
C. tcpdump
D. traceroute
8.6.1 Answers

The following are the preferred answers to the questions provided in this section.

1. B
2. C
3. D
4. C
5. A
6. B
7. B
8. B
9. D
10. C
11. B
12. C
13. B
14. C
15. A

8.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Check the settings of your network interface with the `lsattr` command.
2. Check name resolution ordering of your system.
3. Try to resolve a few host names to IP addresses using either `nslookup` or `host` command.
System access and printer problem determination

The following topics are discussed in this chapter:

- User license problems
- Telnet problems
- System settings
- Tracing

It can be very frustrating when you cannot access a system. There are many reasons for this, despite a valid user account and the corresponding password. This chapter discusses some of the reasons why a system may have access problems and suggests some solutions for them.
9.1 User license problems

If it is not possible to log in to an AIX system because your session is disconnected after a login from the login prompt, an AIX license problem could exist.

The following are ways that a user can access the system, which requires an AIX Version 4 user license:

- Logins provided from a getty (from an active, local terminal)
- Logins provided using the `rlogin` or `rsh -l` command
- Logins provided using the `telnet` or `tn` command
- Logins provided through the Common Desktop Environment (visual login CDE)

All other ways of accessing a base AIX Version 4 system does not require AIX user licenses (for example, `ftp`, `rexec`, and `rsh` without the `-l` flag).

The `lslicense` command displays the number of fixed licenses and the status of the floating licensing, as in the following example:

```
lslicense
Maximum number of fixed licenses is 32.
Floating licensing is disabled.
```

To change the number of licenses, use the `smit chlicense` fast path. Figure 9-1 on page 203 shows the corresponding SMIT screen.
9.2 Telnet troubleshooting

If a telnet connection to an AIX system is not possible, there can be a number of causes, such as:

- No network connection.
- The inetd server is not running.
- The telnet subserver is not configured.
- There are slow login times because of name server problems.
- Telnet error.

In the following sections, these problem areas are discussed in further detail.

9.2.1 Network problems

If a telnet from a client shows the following error message, it is likely to be a network problem:

```
telnet server1
Trying...
```
telnet: connect: A remote host did not respond within the timeout period.

Try the ping command to see if the destination system can be reached. If you cannot ping the system, your problem is related to the network and it can either be the system itself or an access error to the network due to a router or gateway failure.

9.2.2 The telnet subserver

The telnet service is managed by a subserver controlled by the inetd super daemon. If a telnet session shows the following error message, use the following steps to analyze and recover the problem:

```
telnet server1
Trying...
telnet: connect: A remote host refused an attempted connect operation.
```

1. Check to see if the inetd subsystem is running by using the system resources controller (SRC) lssrc command.

```
lssrc -s inetd
Subsystem Group PID Status
inetd tcpip 7482 active
```

2. Check to see if the telnet subserver is defined.

```
grep telnet /etc/inetd.conf
telnet stream tcp6 nowait root /usr/sbin/telnetd telnetd
```

3. Start the telnet subserver using the SRC startsrc command with the -t option.

```
startsrc -t telnet
0513-124 The telnet subserver has been started.
```

Verify that the telnet subserver is running with the lssrc command.

```
lssrc -t telnet
Service Command Description Status
 telnet /usr/sbin/telnetd telnetd -a active
```

When the telnet subserver is running, a login prompt similar to the following is presented:

```
telnet server1
Trying...
Connected to server1.
[Escape character is '^['].
telnet (server1)
```

AIX Version 4
If the `telnet` command displays the following error, the telnet problem is likely to be related to the `/etc/services` file:

```
telnet server1
telnet: tcp/telnet: unknown service
```

The file might be corrupt or the telnet entry is missing. The following stanza should be present in the `/etc/services` file, mapping the telnet service to port 23:

```
grep telnet /etc/services
telnet 23/tcp
```

### 9.2.3 Slow telnet login

If the login with `telnet` takes a long time, for example, over two minutes, it is likely that the problem is related to the domain name system (DNS) name server resolution. On the server the telnet daemon is running, check the `/etc/resolv.conf` file.

The `/etc/resolv.conf` file defines the DNS name server information for local resolver routines. If the `/etc/resolv.conf` file does not exist, the DNS is not available and the system will attempt name resolution using the default paths, the `/etc/netsvc.conf` file (if it exists), or the NSORDER environment variable (if it exists).

When a DNS server is specified during TCP/IP configuration, a `/etc/resolv.conf` file is generated. Further configuration of the resolv.conf file can be done using the `smit resolv.conf` fast path.

Determine the IP address of your name server from the `/etc/resolv.conf` file. Then test if name resolution is working correctly using the `nslookup` command (to determine the IP address of your telnet client machine), with the host name as input. If the DNS name server does not respond, contact the network administrator to fix the problem or, alternatively, provide you with another name server. Additionally, change the name resolution order by either editing or creating the `/etc/netsvc.conf` file. Change the search order to be the same as the following example:

```
hosts=local, bind
```

This will force the system to use the `/etc/hosts` file for name resolution first. Enter a stanza for your telnet client machine and your login time should improve significantly.
9.2.4 Telnet error

If when attempting a telnet session it fails with error code 0403-031, this indicates that a fork function has failed due to insufficient memory and/or paging space on the server. Memory is most likely overcommitted and working pages are being released from real memory and filling the paging space. To prevent this we suggest tuning minfree, maxfree, maxperm, and minperm using the `vmtune` command, after the server has been rebooted, to free up the memory.

9.3 FTP troubleshooting

The `ftp`, `rcp`, and `tftp` commands rely on TCP/IP to establish direct connections from your local host to a remote host. Basic Network Utilities (BNU) can also use TCP/IP to provide direct connections with remote hosts.

9.3.1 File limits

If you are transferring a file over 2 GB in size, the following should be considered:

- In the target server's `/etc/security/limits` file, the default stanza identifies global limit. The fsize has to be larger than the file you are transferring or the limit can be set to unlimited with the `-1` option. Limits can be set at the user level. For example, the global fsize is set to unlimited (`-1`), but ftpuser fsize is set to 3 GB.

- Even if the limit is set to unlimited, the target server's file system has to be a large file enabled journaled file system. You can use the `smitty crjfsbf` fast path to create a large file enabled file system. Figure 9-2 on page 207 shows an example.
You can validate if a file system is large file enabled by checking the logical volume:

```
lsfs -q /dev/lv01
```

```
Name Nodename Mount Pt VFS Size Options
Auto Accounting /dev/lv01 -- /test jfs 32768 rw
```

Note that `bf: true` indicates that this is large-file enabled.

### 9.4 System settings

In some cases, specific system settings should be checked to resolve access problems. This section describes the most common cases.

#### 9.4.1 Adjusting AIX kernel parameters

Some applications need to run as a certain type of user, such as database applications. Depending on the implementation, some of these applications may require a large set of running processes. However, the number of processes per
user is limited and defined as an AIX kernel parameter. If you see the following error message, it is likely that you have reached the maximum possible number of processes per user:

0403-030 fork function failed too many processes exist

This can be changed using the `smit chgsys` fast path. Figure 9-3 shows the corresponding SMIT screen.

![SMIT screen for changing AIX operating system characteristics](image)

The same value can be changed using the `chdev` command on the device `sys0` by setting the attribute `maxuproc`. For example, type:

```
chdev -l sys0 -a maxuproc=200
sys0 changed
```

### 9.4.2 The `su` command

The `su` command changes user credentials to those of the root user or to the user specified by the name parameter, and then initiates a new session. The following functions are performed by the `su` command:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account checking</td>
<td>Validates that the user account that is enabled for the <code>su</code> command. Checks that the current user is in a group permitted to switch to this account with the <code>su</code> command, and that it can be used from the current controlling terminal.</td>
</tr>
</tbody>
</table>
User authentication  Validates the user’s identity by using the system-defined primary authentication methods for the user. If a password has expired, the user must supply a new password.

Credentials establishment  Establishes initial user credentials by using the values in the user database. These credentials define the user's access rights and accountability on the system.

Session initiation  If the minus (-) flag is specified, the su command initializes the user environment from the values in the user database and the /etc/environment file. When the - flag is not used, the su command does not change the directory.

Examine the following example for the use of the - flag. The su command is used with the - flag and, as shown in the following, the user environment is set for the user ostach:

```
id
uid=0(root) gid=0(system) groups=2(bin),3(sys),7(security),8(cron),10(audit)
su - ostach
$ id
uid=201(ostach) gid=1(staff)
$ env
LOGIN=ostach
LOGNAME=ostach
MAIL=/usr/spool/mail/ostach
USER=ostach
HOME=/home/ostach
PWD=/home/ostach
```

In the following example, the su command is used with - flag, which specifies that the process environment is to be set as if the user had logged in to the system using the login command. Nothing in the current environment is propagated to the new shell.

```
$ id
uid=201(ftpuser) gid=1(staff)
$ su - root
root's Password:
id
uid=0(root) gid=0(system)
groups=2(bin),3(sys),7(security),8(cron),10(audit),11(lp)
```

In the next example, the su command is used without the - flag, so the user ostach has an environment set for the root user.

```
id
```
uid=0(root) gid=0(system) groups=2(bin),3(sys),7(security),8(cron),10(audit)
# su ostach
$ id
uid=201(ostach) gid=1(staff)
$ env
LOGIN=ostach
LOGNAME=root
MAIL=/usr/spool/mail/root
USER=root
R_PORT=49213
HOME=/
PWD=/

Each time the su command is run, an entry is recorded in the /var/adm/sulog file. The /var/adm/sulog file records the following information: Date, time, system name, and login name. The /var/adm/sulog file also records whether the login attempt was successful: a plus sign (+) indicates a successful login, and a minus sign (-) indicates an unsuccessful login.

# cat /var/adm/sulog
SU 06/30 09:36 + pts/1 root-thomasc
SU 06/30 10:25 + pts/3 root-thomasc
SU 07/18 11:56 + pts/3 root-ostach
SU 07/18 13:05 + pts/3 root-ostach
SU 07/18 13:05 - pts/3 ostach-root
SU 07/18 13:06 - pts/3 ostach-thomasc

9.4.3 A full file system

When a file system on your system becomes full, it can cause logins to the system (using telnet), a directly connected TTY, or the system console to fail. The following message is typically displayed:

telnet problem 004 - 004 you must exect "login from the lowest login shell"

Or, on the system console, the following error message may be displayed:

3004-004 you must 'exec' login from the lowest login shell

Check that your file systems are not full, especially the / (root) file system. Use the df command to verify the status of free disk space on your file systems. If a file system is full, enlarge the file system using the chfs command.

If your file systems are not full, check to see if the following files are okay:

- /etc/utmp
- /etc/security/limits

210 IBM @server Certification Study Guide - AIX 5L Problem Determination Tools and Techniques
Check that the files exist, and that the permissions and ownerships are correct. If the problem persists, check to see if there is an APAR that addresses this or a similar problem.

### 9.5 Tracing

The trace system is a tool that allows you to capture the sequential flow of system activity or system events. Unlike a stand-alone kernel dump that provides a static snapshot of a system, the trace facility provides a more dynamic way to gather problem data.

Trace can be used to:
- Isolate, understand, and fix system or application problems.
- Monitor system performance.

The events that are traced are time stamped as they are written to a binary trace file named `/var/adm/ras/trcfile`.

There are trace events predefined in AIX and included in selected commands, libraries, kernel extensions, devices drivers, and interrupt handlers. A user can also define his own trace events in application code.

The trace facility generates a large amount of data. For example, a trace session capturing one second of events from an idle system gathered four thousand events. The amount of data depends on what events you trace and the CPU performance of the system.

The trace facility and commands are provided as part of the Software Trace Service Aids fileset named `bos.sysmgt.trace`.

**Note:** Before tracing events, it is important to have a strategy for what to trace, and the time the tracing is to be done.

Follow these steps to gather a useful trace:
1. Select the trace hook IDs for tracing.
2. Start the trace.
3. Recreate the problem.
4. Stop the trace.
5. Generate the trace report.
9.5.1 Trace hook IDs

The events traced are referenced by hook identifiers. Each hook ID uniquely refers to a particular activity that can be traced.

Hook IDs are defined in the /usr/include/sys/trchkid.h file. When tracing, you can select the hook IDs of interest by using the `trace -j` command, and exclude others that are not relevant to your problem by using the `trace -k` command.

The following example is extracted from the trchkid.h file:

```c
...#define HKWD_SYS_MKDIR 0x15600000
#define HKWD_SYS_MKNOD 0x15700000
#define HKWD_SYS_MNTCTL 0x15800000
#define HKWD_SYS_MOUNT 0x15900000
#define HKWD_SYS_NICE 0x15a00000
#define HKWD_SYS_OPEN 0x15b00000
#define HKWD_SYS_OPENX 0x15c00000
#define HKWD_SYS_OUNAME 0x15d00000
#define HKWD_SYS_PAUSE 0x15e00000
#define HKWD_SYS_PIPE 0x15f00000
#define HKWD_SYS_PLOCK 0x16000000
#define HKWD_SYS_PROFIL 0x16100000
#define HKWD_SYS_PTRACE 0x16200000
#define HKWD_SYS_READ 0x16300000
#define HKWD_SYS_READLINK 0x16400000
#define HKWD_SYS_READD 0x16500000
#define HKWD_SYS_REBOOT 0x16600000
#define HKWD_SYS_RENAME 0x16700000
#define HKWD_SYS_RMDIR 0x16800000
...```

When specifying the hook ID to the `trace` command, only the three left-most digits should be specified. From the preceding example, when the open system call is traced, the ID 15b must be specified.

Specifying relevant (or irrelevant) hook IDs can be difficult at this time since you do not know the actual cause of the problem. If source code access to the application is available or the developer is known, then this can be helpful for specifying useful hook IDs.

Note: Specifying useful hook IDs can reduce the amount of data significantly and make the analysis part of the problem easier.
9.5.2 Starting a trace

A trace can be started in background mode or interactive mode.

The usual way to perform a trace is in the background using the -a flag. An ampersand (&) is not necessary at the end of the command, as the trace command will spawn the trace daemon and return to the shell prompt immediately. The trace is stopped using the trcstop command.

To perform a trace in interactive mode, invoke the trace command with a list of events you want to monitor and the name of the trace log output file. The events are assigned numbers that are called trace hooks.

A typical command sequence may be as follows:

```
# trace -a -j 15b
# myprogram
# trcstop
```

This example traces only the open operating system that is made on the system.

Trace uses in-memory buffers to save the trace data. There are three methods of using the trace buffers:

- **Alternate mode** This is the default mode. All trace events will be recorded in the trace log file.
- **Circular mode** The trace events wrap within the in-memory buffers and are not captured in the trace log file until the trace data collection is stopped.
- **Single mode** The collection of trace events stops when the in-memory trace buffer fills up and the contents of the buffer are captured in the trace log file.

9.5.3 Trace reports

The binary /var/adm/ras/trcfile trace file contains all system events collected during the trace period. To obtain a readable format, this file needs to be translated using the trcrpt command, which generates an output report.

To write a formatted trace report to the /tmp/trace.out file, run the following command:

```
# trcrpt -o /tmp/trace.out
```

The output of the trace report file is usually very large, depending on the trace parameters and the system activity. Despite selecting a narrow time period for
your trace, the system may be tracing a large set of unrelated events, such as from the execution of other threads or interrupt handlers.

To generate a more concise report, a set of filters can be specified.

The `trcprt` command allows a large set of filters. The following types of filters are possible:

- Limit report on event hook IDs.
- Limit report on process IDs.
- Limit the report to a specific time.

The report format can be customized using the `trcprt -O` command with an option value. For example, adding the process ID of a calling process into the report can be created by the following command:

```
# trcprt -O pid=on -o /tmp/trace.out
```

9.5.4 Tracing example

The following describes how to use the trace facility to analyze a hung process.

In this example, an aixterm process is using 100 percent of one CPU. Figure 9-4 shows the output of a `topas` command display.

```
<table>
<thead>
<tr>
<th>Topas Monitor for host: server1</th>
<th>EVENTS/QUEUES</th>
<th>FILE/ITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon Jul 17 16:47:28 2000</td>
<td>Caunch</td>
<td>37</td>
</tr>
<tr>
<td>Time</td>
<td>Syscall</td>
<td>246</td>
</tr>
<tr>
<td>Kernel</td>
<td>Reads</td>
<td>7</td>
</tr>
<tr>
<td>User</td>
<td>Writes</td>
<td>2</td>
</tr>
<tr>
<td>Wait</td>
<td>Forks</td>
<td>0</td>
</tr>
<tr>
<td>Idle</td>
<td>Execs</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Runqueue</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Waitqueue</td>
<td>1.0</td>
</tr>
</tbody>
</table>

aixterm (19436)	100.0% PgSp: 0.4mb root
dtgreet (3144)	0.01 PgSp: 1.1mb root
syncd (3920)	0.01 PgSp: 0.0mb root
X (4458)	0.01 PgSp: 2.8mb root
gil (2064)	0.01 PgSp: 0.0mb root
xterm (10440)	0.01 PgSp: 0.5mb root
xterm (11880)	0.01 PgSp: 0.5mb root
ksh (26540)	0.01 PgSp: 0.2mb root
init (1)	0.01 PgSp: 0.6mb root
netm (1806)	0.01 PgSp: 0.0mb root
ksh (14360)	0.01 PgSp: 0.2mb root
candel (7740)	0.01 PgSp: 0.7mb root
sendmail (6572)	0.01 PgSp: 0.6mb root
cron (10586)	0.01 PgSp: 0.2mb root
PM (12900)	0.01 PgSp: 0.0mb root

Figure 9-4  Output display of the `topas` command

Press "h" for help screen.

Press "q" to quit program.
Since this system is a 4-way SMP, the overall CPU usage is only 25 percent. To analyze what is actually happening on this system, use the trace facility. Notice that the process ID of **aixterm** is 19436.

This **aixterm** command process seems to wait continuously; therefore, the tracing time is limited to one second.

Using the following command sequence, all system events for one second are traced:

```bash
trace -a; sleep 1; trcstop
```

It is not known what the **aixterm** process is doing since no event hook IDs can be specified at this point. The trace generates a raw trace file of the following size:

```bash
ls -l /var/adm/ras/trcfile
-rw-rw-rw- 1 root system 557152 Jul 17 14:27 /var/adm/ras/trcfile
```

Based on this file, a trace report can be generated with **trcrpt**. Since the process ID is known, you can use this information as a filter and limit the output of the report using the following commands:

```bash
trcrpt -p 19436 > /tmp/trace.out
ls -l /tmp/trace.out
-rw-r--r-- 1 root system 201014 Jul 17 14:31 /tmp/trace.out
```

The contents of the trace report is provided in the following example as an extracted part of the complete report (limited due to space constraints):

```
Mon Jul 17 14:27:27 2000
System: AIX server1 Node: 4
Machine: 000BC6FD4C00
Internet Address: 0903F038 9.3.240.56
The system contains 4 cpus, of which 4 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
```

```bash
trace -a
```

```
 ID ELAPSED_SEC DELTA_MSEC APPL SYSCALL KERNEL INTERRUPT
100 0.004256674 4.256674 DECREMENTER
 INTERRUPT iar=D031EB60 cpuid=FFFFFFFF
234 0.004258505 0.001831 clock: iar=D031EB60 lr=D036CA24 [2503 usec]
 Interrrupt iar=D036CA24 [2503 usec]
112 0.004260143 0.001638 lock: lock lock
 addr=352118 loc
k status=10000001 requested_mode=LOCK_READ return addr=2D80C name=0000.0000
```
The heading shows system information. The next section shows the parameters used to activate the `trace` command. In the next section, the actual report is provided, where each line is the event recorded. The first column shows the event hook IDs the system has performed.
From the output of this example, it appears that the `aixterm` process is hung up waiting for some kernel resources, as the only events the process is performing are lock and unlock operations. To go into deeper analysis of this problem, you would need to look into the program source code of the application you are tracing.

### 9.6 Managing mail logging

The `sendmail` command logs mail system activity through the syslogd daemon. The syslogd daemon must be configured and running for logging to occur. Specifically, the `/etc/syslog.conf` file should contain the uncommented line:

```
mail.debug /var/spool/mqueue/log
```

Refresh the syslogd daemon by typing the following at the command line:

```
refresh -s syslogd
```

0513-095 The request for subsystem refresh was completed successfully.

If the `/var/spool/mqueue/log` file does not exist, you must create it by typing the following command:

```
touch /var/spool/mqueue/log
```

The types of activities that the `sendmail` command puts into the log file are specified by the option in the `/etc/mail/sendmail.cf` file. (For versions earlier than AIX 5L Version 5.1, this file is `/etc/sendmail.cf`.)

Because information is continually appended to the end of the log, the file can become very large. Run the `/usr/lib/smdemon.cleanu` shell script to keep the file from growing too large.

If you suspect a problem, you can set traffic logging by using the `-X` flag. For example:

```
#/usr/sbin/sendmail -X /tmp/traffic -bd
```

This command logs all traffic in the `/tmp/traffic` file. This command logs a lot of data and should not be used during normal operations.

The `sendmail` command tracks the volume of mail being handled by each of the mailer programs that interface with it. These mailers are defined in the `/etc/mail/sendmail.cf` file. To start the accumulation of mailer statistics, create the `/etc/mail/statistics` file by typing the following:

```
touch /etc/mail/statistics
```
If the `sendmail` command encounters errors when trying to record statistics information, the command writes a message through the syslog subroutine. The `sendmail` command updates the information in the file each time it processes mail.

The statistics kept in the `/etc/mail/statistics` file are in a database format that cannot be read as a text file. To display the mailer statistics, type the following at the command line:

```
/usr/sbin/mailstats
```

This reads the information in the `/etc/mail/statistics` file, formats it, and writes it to standard output.

### 9.7 TTY troubleshooting

The following sections discuss various common TTY problems and their solutions.

The `/usr/bin/tty [-s]` command writes to standard output the full path name of your terminal. If your standard input is not a terminal and you do not specify the `-s` flag, you get the message **Standard input is not a tty**.

This chapter discusses some common TTY errors, recovery procedures, and also general TTY management commands.

#### 9.7.1 Respawning too rapidly errors

The system records the number of getty processes spawned for a particular TTY in a short time period. If the number of getty processes spawned in this time frame exceeds five, then the *Respawning Too Rapidly* error is displayed on the console and the port is disabled by the system.

The TTY stays disabled for about 19 minutes or until the system administrator enables the port again. At the end of 19 minutes, the system automatically enables the port, resulting in the spawning of a new getty process.

**Possible causes**

Possible causes are:

- Incorrect modem configuration
- A port is defined and enabled but no cable or device is attached to it
- Bad cabling or loose connection
- Noise on communication line
- Corruption of `/etc/environment` or `/etc/inittab` files
TTY configuration is corrupted
- Hardware is defective

**Recovery procedures**
Recovery procedures are:

- Correct modem configuration as per your modem configuration documentation.
- Disable the TTY, remove the TTY definition, or attach a device to the port.
  
  To disable the TTY definition use the `chdev` command as follows:
  
  ```
 #chdev -l ttyName -a Login=disable
  ```
  
  After running this command, the TTY does not become enabled after a system restart.

  To remove the TTY definition, disable the TTY port using the `pdisable` command:
  
  ```
 #pdisable ttyName
  ```

- Check cabling and that the correct part number is being used.
- Eliminate noise on communication line.
- In the `/etc/inittab` file, examine the TTY devices line. If the TTY is set to off, it is likely that the TTY port is not being used. If not, remove it or add a device to the port.
- Remove the corrupted TTY configuration.
- Locate the defective hardware using diag.

Refer to Table 9-1 for additional TTY commands.

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT fast path</th>
<th>Command or file</th>
<th>Web-based system manager management environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>List defined tty devices.</td>
<td><code>smit lsdtty</code></td>
<td><code>lsdev -C -c tty -H</code></td>
<td>Software -&gt; Devices -&gt; All Devices</td>
</tr>
<tr>
<td>Add a tty.</td>
<td><code>smit mktty</code></td>
<td><code>mkdev -t tty</code></td>
<td>Software -&gt; Devices -&gt; Overview and Tasks</td>
</tr>
</tbody>
</table>

Refer to Table 9-1 for additional TTY commands.
### 9.8 Printing

AIX PowerPC-based printing administrators must be assigned to the printq group to be able to manage printing subsystems. Users who are members of the printq administrative group can add print devices to the operating system, which can be used by the print subsystem. For detailed information on printing, see *Printing for Fun and Profit under AIX 5L*, SG24-6018.

#### 9.8.1 Local printing problem

The `lpstat` command displays information about the current status of the line printer. To display the status for all print queues, enter:

```
lpstat
```

<table>
<thead>
<tr>
<th>Task</th>
<th>SMIT fast path</th>
<th>Command or file</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move a tty.</td>
<td>smit movtty</td>
<td><code>chdev -l Name -p Parentname -w ConnectionLocation</code></td>
</tr>
<tr>
<td>Change a tty.</td>
<td>smit chtty</td>
<td><code>lsattr -l Name -E; chdev -l Name</code></td>
</tr>
<tr>
<td>Remove a tty.</td>
<td>smit rmtty</td>
<td><code>rmdev -l Name</code></td>
</tr>
<tr>
<td>Configure a defined tty.</td>
<td>smit mktty</td>
<td><code>mkdev -l Name</code></td>
</tr>
</tbody>
</table>

If the queue is up, check to see if the job is missing, make sure the printer is set up properly, etc. The `qchk` command displays the current status information regarding specified print jobs, print queues, or users. The basic syntax of the `qchk` command is:

```
qchk -P QueueName -# JobNumber -u OwnerName
```
9.8.2 Remote printing problem

Make sure the lpd daemon is active by running:

```
lssrc -s lpd
```

<table>
<thead>
<tr>
<th>Subsystem</th>
<th>Group</th>
<th>PID</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>lpd</td>
<td>spooler</td>
<td>36550</td>
<td>active</td>
</tr>
</tbody>
</table>

Check to see if the host name can be resolved, if the client has permission (/etc/hosts.lpd file) to print to the remote server, etc.

9.8.3 The /var file system

You must have enough room in the /var file system for print spools. If the space in /var is smaller than the file you are trying to print, increase the file system size using the smitty chjfs fast path. Spooling files makes copies of the file before sending them to the printer. For PowerPC-based printing, files are spooled to the /var/spool/lpq/qdaemon directory.

9.8.4 Default printing subsystem

The print subsystems have a lot in common in terms of architecture and yet are quit different in their approach to that architecture. All three subsystems pass the file to be printed through a series of filters that can make changes to the data, add setup information, and pass the data to the printed device.

Table 9-2 shows some of the similarities and differences between these print subsystems.

<table>
<thead>
<tr>
<th>Action or function</th>
<th>System V</th>
<th>PowerPC</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing from the command line and</td>
<td>Primary command is <strong>lp</strong> with <strong>lpr</strong> also available. The <strong>lp</strong></td>
<td>Primary</td>
<td>Primary command is <strong>pdpr</strong>; the <strong>-x</strong> flag is used to</td>
</tr>
<tr>
<td>flags passed</td>
<td>command has -o option for print command line printer setup.</td>
<td>commands are <strong>enq</strong> and <strong>qprt</strong>, but supports <strong>lp</strong> and <strong>lpr</strong> with slightly different commands. The <strong>lp</strong> and <strong>enq</strong> commands have -o options and <strong>qprt</strong> has direct options for printer setup.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td><strong>lpr</strong> with</td>
<td>attributes or options. <strong>enq</strong>, <strong>qprt</strong>, <strong>lp</strong>, and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>slightly</td>
<td><strong>lpr</strong> are also supported. Infoprint clients are also</td>
</tr>
<tr>
<td></td>
<td></td>
<td>different</td>
<td>available on some platforms.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>commands</td>
<td></td>
</tr>
</tbody>
</table>

Table 9-2 Comparison of print subsystem functions
<table>
<thead>
<tr>
<th>Action or function</th>
<th>System V</th>
<th>PowerPC</th>
<th>Infoprint Manager for AIX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Administration</td>
<td>Web-based System Manager and command line with <code>lpadmin</code>.</td>
<td>Web-based System Manager, SMIT, and command line commands like <code>lsvirprt</code>.</td>
<td>Java administrator and operator GUIs on AIX, Windows NT, and Windows 2000, AIX VSM GUI, limited SMIT, and command line.</td>
</tr>
<tr>
<td>Scheduler</td>
<td><code>lpsched</code></td>
<td><code>qdaemon</code></td>
<td><code>psserver</code></td>
</tr>
<tr>
<td>Printer or queue definition</td>
<td>Subdirectory of files in <code>/etc/lp/printers directory.</code></td>
<td>Stanza in <code>/etc/qconfig.</code></td>
<td>Object orientated: Information stored in objects in the <code>pserver</code>.</td>
</tr>
<tr>
<td>Job processing: stage one</td>
<td>Interface shell scripts: Information passed by parameters and three shell script arguments. The fifth parameter contains multiple print options passed by the <code>lp -o</code> options.</td>
<td>Backend programs: Information passed by libq subroutine calls and command line parameters. When piobe is the backend, a virtual printer is defined that fully supports printer setup.</td>
<td>Command line attributes are converted to Infoprint Manager attributes where appropriate; other attributes are passed to the backend.</td>
</tr>
<tr>
<td>Printer customization</td>
<td>Some is possible through the standard script and terminfo, but most often done through custom interface programs provided by printer manufacturers.</td>
<td>Uses virtual printer definitions built on predefined printer-specific files and customized through SMIT for user requirements.</td>
<td>Customizable using customer interfaces. IPDS printers are predefined by attachment type with specialized templates available for selected printers. AIX printers use internal printer definitions built on predefined printer-specific files.</td>
</tr>
<tr>
<td>Action or function</td>
<td>System V</td>
<td>PowerPC</td>
<td>Infoprint Manager for AIX</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>---------</td>
<td>---------------------------</td>
</tr>
<tr>
<td><strong>Print processing filters</strong></td>
<td>Called by interface script based on filter setup with lpfilt and by actually calling the filters in the shell script. Some filters are called by lpsched to convert files to PostScript automatically.</td>
<td>Formatting filters, such as pioformat, are called automatically based on the data type set up for the printer. Other filters are called by the piobe backend based on virtual printer attributes starting with f, and can be called by users from the command line. The enscript filter can be called automatically to convert text to PostScript.</td>
<td>Depends on type of incoming data and destination. Data stream transforms are called automatically based on the type of input data if the destination supports it. AIX formatting filters if the destination is supported by the PowerPC print subsystem.</td>
</tr>
<tr>
<td><strong>Output filters</strong></td>
<td>The shell script passes the setup and commands to output filters such as lp.cat and postio, which can talk directly with printers and handle errors.</td>
<td>The piobe backend passes data through pioout, which writes directly to the device. Errors are handled by communications through the qdaemon.</td>
<td>Secondary processes are provided to communicate with TCP/IP-attached printers using sockets, channel-attached printers, and PowerPC print filters.</td>
</tr>
<tr>
<td><strong>LPD/LPR remote printing</strong></td>
<td>Controlled by lpsched, which starts lpNet daemon.</td>
<td>Remote lpr jobs are sent by the qdaemon backend rembak and received by the lpd daemon. The lpd queues local jobs by calling enq.</td>
<td>In multi-server environments remote jobs are transferred between servers using sockets and RPCs.</td>
</tr>
</tbody>
</table>
Switching between subsystems

The option to change/show current print subsystems has been added to the top level Print Spooling menu in SMIT to allow switching between printing subsystems, as shown in Figure 9-5.

```
Print Spooling
Move cursor to desired item and press Enter.

AIX Print Mode Only:
Start a Print Job
Manage Print Jobs
List All Print Queues
Manage Print Queues
Add a Print Queue
Add an Additional Printer to an Existing Print Queue
Change / Show Print Queue Characteristics
Change / Show Printer Connection Characteristics
Remove a Print Queue
Manage Print Server
Programming Tools

AIX and System V Print Mode:

Change / Show Current Print Subsystem

F1=Help F2=Refresh F3=Cancel F8=Image
F9=Shell F10=Exit Enter=Do
```

Figure 9-5 Change/Show Current Print Subsystem option

The syntax for the command line option to switch between printer subsystems is:

```
switch.prt [-s print_subsystem] [-d]
```

The valid values for `print_subsystem` are AIX and SystemV. Running the command with the `-d` flag will display the current print subsystem.

For security reasons, this command is a front-end to the script `/usr/aix/bin/switch.prt.subsystem`, which will do the following when switching from PowerPC to SystemV printing:

- Ensure that you are not trying to switch to the current system.
- Check to see if all print jobs are terminated.
- Stop `qdaemon`, `writesrv`, and `lpd` daemons, and modifies `/etc/inittab` so that they do not restart if the system is rebooted. The `writesrv` daemon allows users to send messages to users on a remote system and receive responses from users on a remote system. The `lpd` daemon is the remote print server.
- Disable the SMIT menus.
- Switch the Web-based System Manager plug-ins.
Change the lock files from PowerPC to SystemV.
Remove AIX links and adds SystemV links for the duplicate commands.
Launch /usr/lib/lp/lpsched to start the SystemV print subsystem.

From time to time, you may need to remove old print files in order to free up space in /var file system. For example, execute the following command to remove print files older than seven days:

```
find /var/spool/lpd/qdir -mtime +7 -type f -exec rm -f {}
```

## 9.9 Command summary

The following sections provide the key commands discussed in this chapter.

### 9.9.1 The lslicense command

The *lslicense* command displays the number of fixed licenses and the status of the floating licensing. The command has the following syntax:

```
lslicense [-c]
```

### 9.9.2 The lssrc command

The *lssrc* command obtains the status of a subsystem, a group of subsystems, or a subserver. The command has the following syntax.

**Subsystem status:**

```
lssrc [-h Host] { -a | -g GroupName | [-l] -s Subsystem | [-l] -p SubsystemPID }
```

**Subserver status:**

```
lssrc [-h Host] [-l] -t Type [-p SubsystemPID] [-o Object] [-P SubserverPID]
```

Table 9-3 provides a list of commonly used flags and their descriptions.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>Lists the current status of all defined subsystems.</td>
</tr>
<tr>
<td>-g Group</td>
<td>Specifies a group of subsystems to get the status for. The command is unsuccessful if the GroupName variable is not contained in the subsystem object class.</td>
</tr>
</tbody>
</table>
9.9.3 The startsrc command

The `startsrc` command starts a subsystem, a group of subsystems, or a subserver. The command has the following syntax.

For subsystem:
```
startsrc [-a Argument] [-e Environment] [-h Host] {-s Subsystem | -g Group}
```

For subserver:
```
startsrc [-h Host] -t Type [-o Object] [-p SubsystemPID]
```

Table 9-4 provides a list of commonly used flags and their descriptions.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-s Subsystem</code></td>
<td>Specifies a subsystem to get the status for. The subsystem variable can be the actual subsystem name or the synonym name for the subsystem. The command is unsuccessful if the subsystem variable is not contained in the subsystem object class.</td>
</tr>
<tr>
<td><code>-t Type</code></td>
<td>Requests that a subserver send the current status of a subserver. The command is unsuccessful if the subserver type variable is not contained in the subserver object class.</td>
</tr>
</tbody>
</table>

9.9.4 The trace command

The `trace` command records selected system events. The command has the following syntax:
```
trace [-a [-g]] [-f | -l] [-b | -B] [-c] [-d] [-h] [-j Event [,Event]] [-k Event [,Event]] [-m Message] [-n] [-o] [-o-] [-s] [-L Size] [-T Size]startsrc [-a Argument] [-e Environment] [-h Host] {-s Subsystem | -g Group}
```

Table 9-4  Commonly used flags of the `startsrc` command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-s Subsystem</code></td>
<td>Specifies a subsystem to be started. The subsystem can be the actual subsystem name or the synonym name for the subsystem. The command is unsuccessful if the subsystem is not contained in the subsystem object class.</td>
</tr>
<tr>
<td><code>-t Type</code></td>
<td>Specifies that a subserver is to be started. The command is unsuccessful if type is not contained in the subserver object class.</td>
</tr>
</tbody>
</table>
Table 9-5 provides a list of commonly used flags and their descriptions.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a</td>
<td>The -a flag runs the trace daemon asynchronously (as a background task). Once trace has been started this way, you can use the trcon, trcoff, and trcstop commands to respectively start tracing, stop tracing, or exit the trace session. These commands are implemented as links to trace.</td>
</tr>
<tr>
<td>-j Event[,Event] or -k Event[,Event]</td>
<td>Specifies the user-defined events for which you want to collect (-j) or exclude (-k) trace data. The event list items can be separated by commas, or enclosed in double quotation marks and separated by commas or blanks. Note: The following events are used to determine the PID, the CPU ID, and the exec path name in the trcrpt report: 001 TRACE ON 002 TRACE OFF 106 DISPATCH 10C DISPATCH IDLE PROCESS 134 EXEC SYSTEM CALL 139 FORK SYSTEM CALL 465 KTHREAD CREATE If any of these events are missing, the information reported by the trcrpt command will be incomplete. Consequently, when using the -j flag, you should include all these events in the Event list; conversely, when using the -k flag, you should not include these events in the event list.</td>
</tr>
<tr>
<td>-o File</td>
<td>Writes the report to a file instead of to standard output.</td>
</tr>
</tbody>
</table>

9.9.5 The trcrpt command

The trcrpt command formats a report from the trace log. The command has the following syntax:

```
```

Table 9-6 provides a list of commonly used flags and their descriptions.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-o File</td>
<td>Writes the report to a file instead of to standard output.</td>
</tr>
</tbody>
</table>
9.10 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. Which of the following commands can be used to give more detailed information about a hung process?
   A. od  
   B. trace  
   C. proc  
   D. stream
2. When users try to telnet to the system, they get the error message connection refused. Which of the following commands should be run to verify that users can telnet into the system properly?
   A. lssrc -g tcp
   B. lssrc -g tcpip
   C. lssrc -s inetd
   D. lssrc -t telnet

3. When starting a system, a user does not get a login prompt at the console. However, the user can get a login using telnet from another machine. All of the following are probable solutions for this problem except:
   A. chdev
   B. chcons -a 'login=enable'
   C. Edit /etc/inittab.
   D. Reconfigure the network.

4. While attempting to log in, the following message was received:
   'All available login sessions are in use.'

Which of the following procedures should be performed first?
   A. Check /etc/security.
   B. Check /etc/password.
   C. Increase the number of AIX license users.
   D. Reboot the system into service mode and run fsck.

5. A customer is setting up the system as an Oracle DB server. While attempting to start all of the applications, the following error is received:
   User getting 0403-030 Fork function failed, too many processes already exist.

Which of the following commands should be used to correct the problem?
   A. chps -s'13' paging00
   B. lsattr -El sys0 I grep maxproc
   C. chdev -l sys0 -a maxproc=600
   D. mkps -s'20' -n'' -a'' oraclevg hdisk1
6. A user has the ability to ping the IP address of the printer, but cannot print to the printer. The print queue indicates that everything is fine. Which of the following commands should be performed to determine how to fix the print problem?
   A. Run `lpstat`.
   B. Check `enq -a`.
   C. Check `/etc/hosts`.
   D. Check `/etc/qconfig`.

7. The system has just been migrated from AIX Version 4.3.3 to AIX 5L Version 5.1. What is the default printing subsystem after the migration?
   A. AIX
   B. System V
   C. SCO UNIXWare 7
   D. BSD

8. Operator-attention messages from print commands are routed through which subsystem daemon?
   A. qdaemon
   B. lpd
   C. errdemon
   D. writesrv
9.10.1 Answers

The following are the preferred answers to the questions provided in this section.

1. B
2. D
3. D
4. C
5. C
6. C
7. A
8. D

9.11 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Verify the number of licenses available on your system.
2. List the AIX kernel parameters on your system by using the `lsattr` command on device sys0.
3. Perform a trace on your system to see what your system is actually doing. Limit the trace to only a few seconds.
4. Generate a report of the trace performed in the previous step, adding the option for showing the process ID in the report.
Performance problem determination

In this chapter the following topics are covered:

- Performance tuning flowchart
- Tools

Performance tuning issues, from a problem determination perspective, are concentrated around the skills of interpreting output from various commands. For a well-structured approach to such problems, most problem solvers work according to the flowchart shown in Figure 10-1 on page 234.
When investigating a performance problem, CPU constraint is probably the easiest to find. That is why most performance analysts start with checking for CPU constraints.
10.1 CPU-bound system

CPU performance problems can be handled in different ways. For example:

- Reschedule tasks to a less active time of the day or week.
- Change the priority of processes.
- Manipulate the scheduler to prioritize foreground processes.
- Implement Workload Manager.
- Buy more CPU power.

Whatever the solution finally will be, the way to the solution is usually the same: Identify the process (or groups of processes) that constrains the CPU. When working with CPU performance tuning problems, historical performance information for comparison reasons is useful, if such is available. A very useful tool for this task is the sar command.

10.1.1 The sar command

The sar command gathers statistical data about the system. Though it can be used to gather useful data regarding system performance, the sar command can increase the system load, which will worsen a pre-existing performance problem. The system maintains a series of system activity counters, which record various activities, such as fork rates. The sar command does not cause these counters to be updated or used; this is done automatically, regardless of whether the sar command runs. It merely extracts the data in the counters and saves it, based on the sampling rate specified to the sar command. There are three situations in which to use the sar command; they are discussed in the following sections.

Real-time sampling and display

To collect and display system statistic reports immediately, use the following command:

```
sar -u 2 5
```

```
AIX texmex 3 4 000691854C00 01/27/00
17:58:15 %usr %sys %wio %idle
17:58:17 43 9 1 46
17:58:19 35 17 3 45
17:58:21 36 22 20 23
17:58:23 21 17 0 63
17:58:25 85 12 3 0
Average 44 15 5 35
```

This example is from a single user workstation and shows the CPU utilization.
Display previously captured data

The -o and -f options (write and read to or from user given data files) allow you to visualize the behavior of your machine in two independent steps. This consumes less resources during the problem-reproduction period. You can move the binary to another machine, because the binary file contains all data the sar command needs.

```
sar -o /tmp/sar.out 2 5 > /dev/null
```

The previous command runs the sar command in the background, collects system activity data at two-second intervals for five intervals, and stores the (unformatted) sar data in the /tmp/sar.out file. The redirection of standard output is used to avoid a screen output.

The following command extracts CPU information from the file and outputs a formatted report to standard output:

```
sar -f /tmp/sar.out
```

```
AIX texmex 3 4 000691854C00 01/27/00
18:10:18 %usr %sys %wio %idle
18:10:20 9 2 0 88
18:10:22 13 10 0 76
18:10:24 37 4 0 59
18:10:26 8 2 0 90
18:10:28 20 3 0 77
Average 18 4 0 78
```

The captured binary data file keeps all information needed for the reports. Every possible sar report could, therefore, be investigated.

System activity accounting and the cron daemon

The sar command calls a process named sadc to access system data. Two shell scripts (/usr/lib/sa/sa1 and /usr/lib/sa/sa2) are structured to be run by the cron daemon and provide daily statistics and reports. Sample stanzas are included (but commented out) in the /var/spool/cron/crontabs/adm crontab file to specify when the cron daemon should run the shell scripts.

The following lines show a modified crontab for the adm user. Only the comment characters for the data collections were removed:

```
#===
SYSTEM ACTIVITY REPORTS
8am-5pm activity reports every 20 mins during weekdays.
activity reports every an hour on Saturday and Sunday.
6pm-7am activity reports every an hour during weekdays.
Daily summary prepared at 18:05.
#===
0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3 &
```

Collection of data in this manner is useful to characterize system usage over a period of time and to determine peak usage hours.

Another useful feature of the `sar` command is that the output can be specific for the usage of each processor in a multiprocessor environment, as seen in the following output. The last line is an average output:

```
sar -P ALL 2 1
AIX client1 3 4 000BC6D4C00 07/06/00
14:46:52 cpu %usr %sys %wio %idle
14:46:54 0 0 0 0 100
1 0 1 0 99
2 0 0 0 100
3 0 0 0 100
- 0 0 0 100
```

In general, if %usr plus %sys is consistently over 80 percent, then the system is CPU bound.

**System calls**

The `sar -c` command reports system calls.

```
sar -c 1 10
AIX server2 3 4 000FA17D4C00 06/30/00
09:33:04 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
09:33:05 1050 279 118 0.00 0.00 911220 5376749
09:33:06 186 19 74 0.00 0.00 3272 3226417
09:33:07 221 19 79 0.00 0.00 3272 3277806
09:33:08 2996 132 400 0.00 0.00 314800 2284933
09:33:09 3304 237 294 0.00 0.00 167733 848174
09:33:10 4186 282 391 0.00 0.00 228196 509414
09:33:11 1938 109 182 1.00 1.00 153703 1297872
09:33:12 3263 179 303 0.00 0.00 242048 1003364
09:33:13 2751 172 258 0.00 0.00 155082 693801
09:33:14 2827 187 285 0.00 0.00 174059 1155239
```
10.1.2 The vmstat command

The `vmstat` command reports statistics about kernel threads, virtual memory, disks, traps, and CPU activity. Reports generated by the `vmstat` command can be used to balance system load activity. These system-wide statistics (among all processors) are calculated as averages for values expressed as percentages, and as sums otherwise. For a CPU point of view, the highlighted two left-hand columns and the four highlighted right-hand columns provide useful data, as shown in the following example. The columns are discussed in the following sections.

```
vmstat 2
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pl po fr sr cy in sy cs us sy id wa
0 0 16998 14612 0 0 0 0 0 0 101 10 8 55 0 44 0
0 1 16998 14611 0 0 0 0 0 0 411 2199 54 0 0 99 0
0 1 16784 14850 0 0 0 0 0 0 412 120 51 0 0 99 0
0 1 16784 14850 0 0 0 0 0 0 412 88 50 0 0 99 0
```

The kthr columns
The kthr columns show how kernel threads are placed on various queues per second over the sampling interval.

The r column
The r column shows the average number of kernel threads waiting on the run queue per second. This field indicates the number of threads that can be run. This value should be less than five for non-SMP systems. For SMP systems, this value should be less than:

\[ 5 \times (N_{total} - N_{bind}) \]

Where \( N_{total} \) stands for the total number of processors, and \( N_{bind} \) for the number of processors that have been bound to processes, for example, with the `bindprocessor` command.

If this number increases rapidly, examine the applications. However, some systems may be running normally with 10 to 15 threads on their run queue, depending on the thread tasks and the amount of time they run.

The b column
The b column shows the average number of kernel threads in the wait queue per second. These threads are waiting for resources or I/O. Threads are also located in the wait queue when waiting for one of their thread pages to be paged in. This value is usually near zero. But, if the run-queue value increases, the wait queue normally also increases. If processes are suspended due to memory load...
control, the blocked column (b) in the `vmstat` command report indicates the increase in the number of threads rather than the run queue.

**The cpu columns**
The four right-hand columns are a breakdown, in percentage of CPU time used, of user threads, system threads, CPU idle time (running the wait process), and CPU idle time when the system had outstanding disk or NFS I/O requests.

**The us column**
The us column shows the percent of CPU time spent in user mode. A UNIX process can execute in either user mode or system (kernel) mode. When in user mode, a process executes within its application code and does not require kernel resources to perform computations, manage memory, or set variables.

**The sy column**
The sy column details the percentage of time the CPU was executing a process in system mode. This includes CPU resource consumed by kernel processes (kprocs) and others that need access to kernel resources. If a process needs kernel resources, it must execute a system call, and is thereby switched to system mode to make that resource available. For example, reading or writing of a file requires kernel resources to open the file, seek a specific location, and read or write data, unless memory mapped files are used.

**The id column**
The id column shows the percentage of time that the CPU is idle, or waiting, without pending local disk I/O. If there are no processes available for execution (the run queue is empty), the system dispatches a process called wait. On an SMP system, one wait process per processor can be dispatched. On a uniprocessor system, the process ID (PID) is usually 516. SMP systems will have an idle kproc for each processor. If the `ps` command report shows a high aggregate time for this process, it means there were significant periods of time when no other process was ready to run or waiting to be executed on the CPU. The system was therefore mostly idle and waiting for new tasks.

If there are no I/Os pending to a local disk, all time charged to wait is classified as idle time. In AIX Version 4.3.2 and earlier, an access to remote disks (NFS-mounted disks) is treated as idle time (with a small amount of sy time to execute the NFS requests) because there is no pending I/O request to a local disk. With AIX Version 4.3.3 and later, NFS goes through the buffer cache, and waits in those routines are accounted for in the wa statistics.

**The wa column**
The wa column details the percentage of time the CPU was idle with pending local disk I/O (this is also true for NFS-mounted disks in AIX Version 4.3.3 and
later). The method used in AIX Version 4.3.2 and earlier versions of the operating system can, under certain circumstances, give an inflated view of wa time on SMPs. In AIX Version 4.3.2 and earlier, at each clock interrupt on each processor (100 times a second per processor), a determination is made as to in which of the four categories (usr/sys/wio/idle) to place the last 10 ms of time. If any disk I/O is in progress, the wa category is incremented. For example, systems with just one thread doing I/O could report over 90 percent wa time regardless of the number of CPUs it has.

The change in AIX Version 4.3.3 is to only mark an idle CPU as wa if an outstanding I/O was started on that CPU. This method can report much lower wa times when just a few threads are doing I/O and the system is otherwise idle. For example, a system with four CPUs and one thread doing I/O will report a maximum of 25 percent wa time. A system with 12 CPUs and one thread doing I/O will report a maximum of 8.3 percent wa time.

Also, NFS now goes through the buffer cache, and waits in those routines are accounted for in the wa statistics.

A wa value over 25 percent could indicate that the disk subsystem might not be balanced properly, or it might be the result of a disk-intensive workload.

The faults columns
It may also be worthwhile to look at the faults columns, which provide information about process control, such as trap and interrupt rate.

The in column
In the in column is the number of device interrupts per second observed in the interval.

The sy column
In the sy column is the number of system calls per second observed in the interval. Resources are available to user processes through well-defined system calls. These calls instruct the kernel to perform operations for the calling process and exchange data between the kernel and the process. Because workloads and applications vary widely, and different calls perform different functions, it is impossible to define how many system calls per-second are too many. But typically, when the sy column raises over 10000 calls per second on a uniprocessor, further investigation is called for (on a SMP system, the number is 10000 calls per second per processor). One reason for this high number of calls per second could be polling subroutines like select(). For this column, it is advisable to have a baseline measurement that gives a count for a normal sy value.
The cs column
The cs column shows the number of context switches per second observed in the interval. The physical CPU resource is subdivided into logical time slices of 10 milliseconds each. Assuming a thread is scheduled for execution, it will run until its time slice expires, until it is preempted, or until it voluntarily gives up control of the CPU. When another thread is given control of the CPU, the context or working environment of the previous thread must be saved and the context of the current thread must be loaded. The operating system has a very efficient context switching procedure, so each switch is inexpensive in terms of resources. Any significant increase in context switches, such as when cs is a lot higher than the disk I/O and network packet rate, should be cause for further investigation.

If the system has low performance because of a lot of threads on the run queue or threads waiting for I/O, then ps command output will be useful in determining which process has used the most CPU resources.

10.1.3 The ps command
The ps command is a flexible tool for identifying the programs that are running on the system and the resources they are using. It displays statistics and status information about processes on the system, such as process or thread ID, I/O activity, and CPU and memory utilization.

The ps command output and CPU monitoring
Three of the possible ps command output columns report CPU usage, each in a different way, as provided in Table 10-1.

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Recent CPU time used for a process.</td>
</tr>
<tr>
<td>TIME</td>
<td>Total CPU time used by the process since it started.</td>
</tr>
<tr>
<td>%CPU</td>
<td>Total CPU time used by the process since it started, divided by the elapsed time since the process started. This is a measure of the CPU dependence of the program.</td>
</tr>
</tbody>
</table>

The C column
The C column can be generated by the -l flag and the -f flag. In this column, the CPU utilization of processes or threads is reported. The value is incremented each time the system clock ticks and the process or thread is found to be running. Therefore, it also can be said to be a process penalty for recent CPU usage. The value is decayed by the scheduler by dividing it by two once per
second. Large values indicate a CPU-intensive process and result in a lower process priority, while small values indicate an I/O-intensive process and result in a more favorable priority. In the following example, tctestprog is running, which is a CPU-intensive program. The `vmstat` command output shows that about 25 percent of the CPU is used by `usr` processes.

```
vmstat 2 3
```

```
+---+-----------+---------+---------+----------+-----------+
| r | b | avm | fre | re | pi | po | fr | cy | in | sy | cs | us | sy | id | wa |
+---+-----------+---------+---------+----------+-----------+
| 0 | 0 | 26468 | 51691 | 0 | 0 | 0 | 0 | 0 | 100 | 91 | 6 | 47 | 0 | 53 | 0 |
| 1 | 1 | 26468 | 51691 | 0 | 0 | 0 | 0 | 0 | 415 | 35918 | 237 | 26 | 2 | 71 | 0 |
| 1 | 1 | 26468 | 51691 | 0 | 0 | 0 | 0 | 0 | 405 | 70 | 26 | 25 | 0 | 75 | 0 |
```

The `ps` command is useful in this situation. The following formatting sorts the output so that the third column has the biggest value at the top, and shows only five lines from the total output.

```
ps -ef | sort +3 -r |head -n 5
```

```
+---+---+---+-----+---------+---------+---------+-------+---------+-----+---+---+---+---+---+---+
| UID | PID | PPID | C | STIME | TTY | TIME | CMD |
+---+---+---+-----+---------+---------+---------+-------+---------+-----+---+---+---+---+---+---+
| root | 22656 | 27028 | 101 | 15:18:31 | pts/11 | 7:43 | ./tctestprog |
| root | 14718 | 24618 | 5 | 15:26:15 | pts/17 | 0:00 | ps -ef |
| root | 4170 | 1 | 3 | Jun 15 | - 12:00 | /usr/sbin/syncd | 60 |
| root | 21442 | 24618 | 2 | 15:26:15 | pts/17 | 0:00 | sort +3 -r |
| root | 21442 | 24618 | 2 | 15:26:15 | pts/17 | 0:00 | sort +3 -r |
```

From the previous example, you can tell that tctestprog is the process with the most-used CPU in recent history.

**The TIME column**

The second value mentioned is the TIME value. This value is generated with all flags, and it shows the total execution time for the process. This calculation does not take into account when the process was started, as seen in the following output. The same test program is used again, and event, though the C column shows that the process gets a lot of CPU time, is not yet on top in the TIME column:

```
ps -ef | sort +3 -r |head -n 5
```

```
+---+---+---+-----+---------+---------+---------+-------+---------+-----+---+---+---+---+---+---+
| UID | PID | PPID | C | STIME | TTY | TIME | CMD |
+---+---+---+-----+---------+---------+---------+-------+---------+-----+---+---+---+---+---+---+
| root | 18802 | 27028 | 120 | 15:40:28 | pts/11 | 1:10 | ./tctestprog |
| root | 9298 | 24618 | 3 | 15:41:38 | pts/17 | 0:00 | ps -ef |
| root | 15782 | 24618 | 2 | 15:41:38 | pts/17 | 0:00 | head -n 5 |
| root | 24618 | 26172 | 2 | Jun 21 | pts/17 | 0:03 | ksh |
```

```
ps -e |head -n 1 ; ps -e|egrep -v "TIME|0:"|sort +2b -3 -n -r|head -n 10
```

```
+---+---+---+---+---+---+---+
| PID | TTY | TIME | CMD |
+---+---+---+---+---+---+---+
| 4170 | - | 12:01 | syncd |
| 4460 | - | 2:07 | X |
| 3398 | - | 1:48 | dtsession |
| 18802 | pts/11 | 1:14 | tctestprog |
```
The syncd, X, and dtsession are all processes that have been active since IPL; that is why they have accumulated more total TIME than the test program.

**The %CPU column**

The %CPU column, generated by the -u or -v flag, shows the percentage of time that the process has used the CPU since the process started. The value is computed by dividing the time the process uses the CPU by the elapsed time of the process. In a multi-processor environment, the value is further divided by the number of available CPUs, since several threads in the same process can run on different CPUs at the same time. Because the time base over which this data is computed varies, the sum of all %CPU fields can exceed 100 percent. In the following example, there are two ways to sort the extracted output from a system. The first example includes kprocs, for example, PID 516, which is a wait process. The other, more complex command syntax excludes such kprocs:

```
ps aux www |head -n 5
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 18802 25.0 1.0 4140 4160 pts/11 A 15:40:28 5:44 ./tctestprog
root 516 25.0 5.0 8 15136 - A Jun 15 17246:34 kproc
root 774 20.6 5.0 8 15136 - A Jun 15 14210:30 kproc
root 1290 5.9 5.0 8 15136 - A Jun 15 4077:38 kproc
```

```
ps gu |head -n1; ps gu|egrep -v "CPU|kproc"|sort +2b -3 -n -r |head -n 5
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 18802 25.0 1.0 4140 4160 pts/11 A 15:40:28 7:11 ./tctestprog
imnadm 12900 0.0 0.0 264 332 - A Jun 15 0:00 /usr/IMNSearch/ht
root 0 0.0 5.0 12 15140 - A Jun 15 4:11 swapper
root 1 0.0 0.0 692 764 - A Jun 15 0:28 /etc/init
root 3398 0.0 1.0 1692 2032 - A Jun 15 1:48 /usr/dt/bin/dtses
```

From the output, you can see that the test program, tctestprog, uses about 25 percent of available CPU resources since the process started.

Upon finding a run-away process, the next step in the analysis is to find out what exactly in the process uses the CPU. For this, a profiler is needed. The AIX profiler of preference is tprof.

### 10.1.4 The tprof command

The tprof command can be used for application tuning and for information collection of overall CPU utilization. The tprof command can be run over a time period to trace the activity of the CPU.

In the AIX operating system, an interrupt occurs periodically to allow a housekeeping kernel routine to run. This occurs 100 times per second. When the tprof command is invoked, it counts every such kernel interrupt as a tick. This
kernel routine records the process ID and the address of the instruction executing when the interrupt occurred and this information is used by the tprof command. The tprof command also records whether the process counter is in the kernel address space, the user address space, or the shared library address space.

In AIX 5L Version 5.1, the tprof command has been enhanced to do subroutine or method level profiling for Java applications. The Java Virtual Machine Profiling Interface (JVMPI), a new feature supported by Java 1.2 or later, has been enhanced to do class and method level profiling for Java applications. The -j flag was added to tprof to enable profiling for Java applications.

The tprof summary CPU utilization report
A summary ASCII report with the suffix .all is always produced. If no program is specified, the report is named __prof.all. If a program is specified, the report is named __program.all. This report contains an estimate of the amount of CPU time spent in each process that was executing while the tprof command was monitoring the system. This report also contains an estimate of the amount of CPU time spent in each of the three address spaces.

The files containing the reports are left in the working directory. All files created by the tprof command are prefixed by two underscores (_). In the following example, a generic report generated an output of:

```
tprof -x sleep 30
Starting Trace now
Starting sleep 30
System: AIX server3 Node: 4 Machine: 000BC6DD4C00

Trace is done now
30.907 secs in measured interval
 * Samples from __trc_rpt2
 * Reached second section of __trc_rpt2
```

In this case, sleep 30 points out to the tprof command to run for 30 seconds.

The total column
The total column in __prof.all is of interest. The first section indicates the use of ticks on a per-process basis.

```
Process PID TID Total Kernel User Shared Other
---------- ---- --- ------ -------- ------ ----
wait 516 517 3237 3237 0 0
 14746 13783 3207 3206 0 0
 13730 17293 3195 3195 0 0
```
wait 1032 1033 3105 3105 0 0
wait 1290 1291 138 138 0 0
swapper 0 3 10 7 3 0
trace 14156 5443 6 3 3 0
tprof 16000 14269 3 3 0 0
syncd 3158 4735 2 2 0 0
tprof 5236 16061 2 2 0 0
gil 2064 2839 1 1 0 0
gil 2064 3097 1 1 0 0
trace 15536 14847 1 1 0 0
sh 14002 16905 1 1 0 0
sleep 14002 16905 1 1 0 0
抱住 3 6480 6480 0 0 0
tctestprg 2 6402 1 6401 0 0
swapper 1 10 7 3 0 0
tprof 2 8 5 3 0 0
trace 2 4 4 0 0 0
gil 2 2 2 0 0 0

Each tick is 1/100 second. You can calculate the total amount of available ticks; for example, 30 seconds, times 100 ticks, make a total of 3000 ticks. This is according to theory, but when looking at the output, there are over 12000 total ticks. This is because the test system is a 4-way F50, so the available ticks are calculated in the following way:

Time (in seconds) x Number of available CPUs x 100

The user column

If the user column shows high values, application tuning might be necessary. In the output, you can see that both tctestprgs used about 3200 ticks, which is around 25 percent of the total number of available ticks. This is confirmed with ps auxww output:

# ps auxww
USER   PID %CPU %MEM  SZ RSS TTY STAT   STIME  TIME COMMAND
root 14020 25.0  0.0 300 320 pts/1 A 15:23:55 16:45 ./tctestprg
root 12280 25.0  0.0 300 320 pts/1 A 15:23:55 16:43 ./tctestprg

The freq column

The second section of the report includes the freq column, which has the total amount of ticks used by a specified type of process. Here the ticks used by all three wait processes are added together, and the two tctestprgs are added together. The total workload produced by one type of process is shown below (as well as the number of instances of the processes that are running):

<table>
<thead>
<tr>
<th>Process</th>
<th>FREQ</th>
<th>Total</th>
<th>Kernel</th>
<th>User</th>
<th>Shared</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>wait</td>
<td>3</td>
<td>6480</td>
<td>6480</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tctestprg</td>
<td>2</td>
<td>6402</td>
<td>1</td>
<td>6401</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>swapper</td>
<td>1</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>tprof</td>
<td>2</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>trace</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gil</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
10.2 Memory-bound system

Memory in AIX is handled by the Virtual Memory Manager (VMM). The VMM provides a method by which real memory appears larger than its true size. The virtual memory system is composed of real memory plus physical disk space, where portions of a memory region that are not currently in use are stored.

VMM maintains a list of free page frames that are used to accommodate pages that must be brought into memory. In memory-constrained environments, the VMM must occasionally replenish the free list by moving some of the current data from real memory. This is called page stealing. A page fault is a request to load a 4-KB data page from disk. A number of places are searched in order to find data.

First the data and instruction caches are searched. Next, the Translation Lookaside Buffer (TLB) is searched; this is an index of recently used virtual addresses with their page frame IDs. If the data is not in the TLB, the Page Frame Table (PTF) is consulted; this is an index for all real memory pages, and it is held in pinned memory. Since the table is large, there are indexes to this index. The Hash Anchor Table (HAT) links pages of related segments to get a faster entry point to the main PTF.

From the page stealer perspective, the memory is divided into computational memory and file memory. The page stealer tries to balance these two types of memory usage when stealing pages.

- Computational memory consists of pages that belong to the working segment or program text segment.
- File memory consists of the remaining pages. These are usually pages from the permanent data file in persistent memory.

When starting a process, a slot is assigned. When a process references a virtual memory page that is on the disk, the referenced page must be paged in, and probably one or more pages must be paged out, creating I/O traffic and delaying the startup of the process. AIX attempts to steal real memory pages that are unlikely to be referenced in the near future, using the page replacement algorithm. The page replacement algorithm can be manipulated.
If the system has too little memory, no RAM pages are good candidates to be paged out, as they will be reused in the near future. When this happens, continuous pagein and pageout occurs. This condition is called thrashing.

The `vmstat` command can help you recognize memory-bound systems.

### 10.2.1 The `vmstat` command

The `vmstat` command summarizes the total active virtual memory used by all of the processes in the system, as well as the number of real-memory page frames on the free list. Active virtual memory is defined as the number of virtual-memory working segment pages that have actually been touched. This number can be larger than the number of real page frames in the machine, because some of the active virtual-memory pages may have been written out to paging space.

When determining if a system might be short on memory or if some memory tuning needs to be done, run the `vmstat` command over a set interval and examine the pi and po columns on the resulting report. These columns indicate the number of paging space page-ins per second and the number of paging space page-outs per second, respectively. If the values are constantly non-zero, there might be a memory bottleneck. Having occasional non-zero values is not a concern, because paging is the main activity of virtual memory.

```
vmstat 2 10

 kthr memory page faults cpu
 ----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 1 3 113726 124 0 14 6 151 600 0 521 5533 816 23 13 7 57
 0 3 113643 346 0 2 1 6 208 690 0 585 2201 866 16 9 2 73
 0 3 113659 135 0 2 108 323 0 516 1563 797 25 7 2 66
 0 2 113661 122 0 3 2 120 375 0 516 1622 871 13 7 2 79
 0 3 113662 128 0 10 3 134 432 0 644 1434 948 22 7 4 67
 1 5 113858 238 0 3 1 146 422 0 599 5103 903 40 16 0 73
 0 3 113969 127 0 1 10 153 529 0 565 2006 823 19 8 3 70
 0 3 113983 125 0 3 1 153 424 0 559 2165 921 25 8 4 63
 0 3 113682 121 0 20 9 154 470 0 608 1569 1007 15 8 0 77
 0 4 113701 124 0 3 29 228 635 0 674 1730 1086 18 9 0 73
```

Notice the high I/O wait and the number of threads on the blocked queue. Most likely, the I/O wait is due to the paging in/out from paging space.

To determine if the system has performance problems with its VMM, examine the columns under memory and page.
The memory columns
The memory columns provide information about the real and virtual memory. Under memory for the `vmstat` command are two additional columns, `avm` and `fre`.

The `avm` column
The `avm` (Active Virtual Memory) column gives the average number of 4-KB pages that are allocated to paging space. The `avm` value can be used to calculate the amount of paging space assigned to executing processes.

```
Note: The `vmstat` command (avm column), `ps` command (SIZE, SZ), and other utilities report the amount of virtual memory actually accessed, but with delayed page space algorithm, the paging space may not get touched. The `svmon` command (up through AIX Version 4.3.2) shows the amount of paging space being used, so this value may be much smaller than the `avm` value of the `vmstat` command.
```

For more information on DPSA, see the IBM @server Certification Study Guide - AIX 5L Performance and System Tuning, SG24-6184.

The number in the `avm` field divided by 256 will yield the approximate number of megabytes (MB) allocated to the paging space system wide. Prior to AIX Version 4.3.2, the same information is reflected in the Percent Used column of the `lspS` -s command output or with the `svmon` -G command under the page space inuse field, pg.

The `fre` column
The `fre` column shows the average number of free memory pages. A page is a 4-KB area of real memory. The system maintains a buffer of memory pages, called the free list, that will be readily accessible when the VMM needs space. The minimum number of pages that the VMM keeps on the free list is determined by the `minfree` parameter of the `vmtune` command. When an application terminates, all of its working pages are immediately returned to the free list. Its persistent pages (files), however, remain in RAM and are not added back to the free list until they are stolen by the VMM for other programs. Persistent pages are also freed if the corresponding file is deleted.

For this reason, the `fre` value may not indicate all the real memory that can be readily available for use by processes. If a page frame is needed, then persistent pages related to terminated applications are among the first to be handed over to another program.

The page columns
The page columns show information about page faults and paging activity. These are averaged over the interval and given in units per second.
**The pi column**
The pi column details the number (rate) of pages paged in from paging space. Paging space is the part of virtual memory that resides on disk. It is used as an overflow when memory is over committed. Paging space consists of logical volumes dedicated to the storage of working set pages that have been stolen from real memory. When a stolen page is referenced by the process, a page fault occurs, and the page must be read into memory from paging space.

Due to the variety of configurations of hardware, software, and applications, there is no absolute number to look out for, but five page-ins per second per paging space should be the upper limit. This guideline should not be rigidly adhered to, but used as a reference. This field is important as a key indicator of paging-space activity. If a page-in occurs, there must have been a previous page-out for that page. It is also likely, in a memory-constrained environment, that each page-in will force a different page to be stolen and, therefore, paged out. But systems could also work fine when they have close to 10 pi per second for one minute and then work without any page-ins.

**The po column**
The po column shows the number (rate) of pages paged out to paging space. Whenever a page of working storage is stolen, it is written to paging space (if it does not yet reside in paging space or if it was modified). If not referenced again, it will remain on the paging device until the process terminates or disclaims the space. Subsequent references to addresses contained within the faulted-out pages results in page faults, and the pages are paged in individually by the system. When a process terminates normally, any paging space allocated to that process is freed. If the system is reading in a significant number of persistent pages (files), you might see an increase in po without corresponding increases in pi. This does not necessarily indicate thrashing, but may warrant investigation into data-access patterns of the applications.

**The fr column**
The fr column shows the number of pages that were freed per second by the page-replacement algorithm during the interval. As the VMM page-replacement routine scans the Page Frame Table (PFT), it uses criteria to select which pages are to be stolen to replenish the free list of available memory frames. The criteria includes both kinds of pages, working (computational) and file (persistent) pages. Just because a page has been freed, it does not mean that any I/O has taken place. For example, if a persistent storage (file) page has not been modified, it will not be written back to the disk. If I/O is not necessary, minimal system resources are required to free a page.

If the ratio of po to fr is greater than 1 to 6, this could indicate a thrashing system.
The sr column
The sr column shows the number of pages that were examined per second by
the page-replacement algorithm during the interval. The VMM page-replacement
code scans the PFT and steals pages until the number of frames on the free list
is at least the maxfree value. The page-replacement code might have to scan
many entries in the PFT before it can steal enough to satisfy the free list
requirements. With stable, unfragmented memory, the scan rate and free rate
might be nearly equal. On systems with multiple processes using many different
pages, the pages are more volatile and disjointed. In this scenario, the scan rate
might greatly exceed the free rate.

Memory is over committed when the ratio of fr to sr (fr: sr) is high. A fr: sr ratio of
1:4 means that for every page freed, four pages had to be examined. It is difficult
to determine a memory constraint based on this ratio alone, and what constitutes
a high ratio is workload/application dependent.

The cy column
The cy column shows the number of cycles per second of the clock algorithm.
The VMM uses a technique known as the clock algorithm to select pages to be
replaced. This technique takes advantage of a referenced bit for each page as an
indication of what pages have been recently used (referenced). When the
page-stealer routine is called, it cycles through the PFT, examining each page's
referenced bit. The cy column shows how many times per second the
page-replacement code has scanned the PFT. Because the free list can be
replenished without a complete scan of the PFT, and because all of the vmstat
command fields are reported as integers, this field is usually zero. If not, it
indicates a complete scan of the PFT, and the stealer has to scan the PFT again,
because fre is still under the maxfree value.

One way to determine the appropriate amount of RAM for a system is to look at
the largest value for avm reported by the vmstat command. Multiply that by 4 KB
to get the number of bytes, and then compare that to the number of bytes of RAM
on the system. Ideally, avm should be smaller than the total RAM. If not, some
amount of virtual memory paging will occur. How much paging occurs will
depend on the difference between the two values. Remember, the idea of virtual
memory is that it gives us the capability of addressing more memory than we
have (some of the memory is in RAM and the rest is in paging space). If there is
far more virtual memory than real memory, this could cause excessive paging,
which then results in delays. If avm is lower than RAM, then paging-space
paging could be caused by RAM being filled up with file pages. In that case,
tuning the minperm or maxperm values could reduce the amount of
paging-space paging. This can be done with the vmtune command.

Another useful command for memory performance problem determination is the
ps command.
10.2.2 The ps command

The `ps` command is a flexible tool for identifying the programs that are running on the system and the resources they are using. It displays statistics and status information about processes on the system, such as process or thread ID, I/O activity, CPU, and memory utilization.

The ps command output and memory usage monitoring

The `ps` command gives useful information on memory usage. The most useful output is presented in Table 10-2.

<table>
<thead>
<tr>
<th>Column</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIZE</td>
<td>The virtual size of the data section of the process in 1-KB units</td>
</tr>
<tr>
<td>RSS</td>
<td>The real-memory size of the process in 1-KB units</td>
</tr>
<tr>
<td>%MEM</td>
<td>The percentage of real memory used by this process</td>
</tr>
</tbody>
</table>

The `SIZE` column

The v flag generates the `SIZE` column. This is the virtual size (in paging space) in kilobytes of the data section of the process (displayed as SZ by other flags). This number is equal to the number of working segment pages of the process that have been touched times four. If some working segment pages are currently paged out, this number is larger than the amount of real memory being used. `SIZE` includes pages in the private segment and the shared-library data segment of the process, as shown in the following example:

```bash
ps av | sort +5 -r | head -n 5
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
25298 pts/10 A 0:00 0 2924 12 32768 159 0 0.0 0.0 smitty
13160 lft0 A 0:00 17 368 72 32768 40 60 0.0 0.0 /usr/sbin
27028 pts/11 A 0:00 90 292 416 32768 198 232 0.0 1.0 ksh
24618 pts/17 A 0:04 318 292 408 32768 198 232 0.0 1.0 ksh
```

The `RSS` column

The v flag also produces the `RSS` column, as seen in the previous example. This is the real-memory (resident set) size, in kilobytes, of the process. This number is equal to the sum of the number of working segment and code segment pages in memory times four. Remember that code segment pages are shared among all of the currently running instances of the program. If 26 `ksh` processes are running, only one copy of any given page of the `ksh` executable program would be in memory, but the `ps` command would report that code segment size as part of the RSS of each instance of the `ksh` program.
If you want to sort to the sixth column, you will get the output ordered using the RSS column, as shown in the following example:

```
ps av |sort +6 -r |head -n 5
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
21720 pts/1 A 0:00 1 288 568 32768 198 232 0.0 1.0 ksh
27028 pts/11 A 0:00 0 292 416 32768 198 232 0.0 1.0 ksh
24618 pts/17 A 0:04 318 292 408 32768 198 232 0.0 1.0 ksh
15698 pts/1 A 0:00 0 196 292 32768 52 60 0.0 0.0 ps av
```

**The %MEM column**

The %MEM column is generated by the u and v flags. This is calculated as the sum of the number of working segment and code segment pages in memory times four (that is, the RSS value), divided by the size of the real memory of the machine in KB, times 100, rounded to the nearest full percentage point. This value attempts to convey the percentage of real memory being used by the process. Unfortunately, like RSS, it tends to exaggerate the cost of a process that is sharing program text with other processes. Further, the rounding to the nearest percentage point causes all of the processes in the system that have RSS values under .005 times real memory size to have a %MEM of 0.0. For example:

```
ps au |head -n 1; ps au |egrep -v "RSS" | sort +3 -r |head -n 5
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 22750 0.0 21.0 21748 20812 pts/11 A 17:55:51 0:00 ./tctestprog2 root
root 21720 0.0 1.0 484 568 pts/1 A 17:16:14 0:00 ksh
root 25298 0.0 0.0 3080 12 pts/10 A Jun 16 0:00 smitty
root 27028 0.0 0.0 488 416 pts/11 A 14:53:27 0:00 ksh
root 24618 0.0 0.0 488 408 pts/17 A Jun 21 0:04 ksh
```

You can combine all these columns into one output by using the gv flags. For example:

```
ps gv|head -n 1; ps gv|egrep -v "RSS" | sort +6b -7 -n -r |head -n 5
PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
15674 pts/11 A 0:01 0 36108 36172 32768 5 24 0.6 24.0 ./tctestp
22742 pts/11 A 0:00 0 20748 20812 32768 5 24 0.0 14.0 ./backups
10256 pts/1 A 0:00 0 15628 15692 32768 5 24 0.0 11.0 ./tctestp
2064 - A 2:13 5 64 6448 xx 0 6392 0.0 4.0 kproc
1806 - A 0:20 0 16 6408 xx 0 6392 0.0 4.0 kproc
```

The columns from the previous output that are described in the following sections are also of interest.

**The PGIN column**

Number of page-ins caused by page faults. Since all I/O is classified as page faults, this is basically a measure of I/O volume.
**The TSIZ column**

Size of text (shared-program) image. This is the size of the text section of the executable file. Pages of the text section of the executable program are only brought into memory when they are touched, that is, branched to or loaded from. This number represents only an upper bound on the amount of text that could be loaded. The TSIZ value does not reflect actual memory usage.

**The TRS column**

Size of the resident set (real memory) of text. This is the number of code segment pages times four. This number exaggerates the memory usage of programs that have multiple instances running.

### 10.2.3 The svmon command

The `svmon` command provides a more in-depth analysis of memory usage. It is more informative, but also more intrusive, than the `vmstat` and `ps` commands. The `svmon` command captures a snapshot of the current state of memory. There are some significant changes in the flags and in the output from the `svmon` command between AIX Version 4.3.2 and AIX Version 4.3.3.

You can use four different reports to analyze the displayed information:

- **Global (-G)**
  
  Displays statistics describing the real memory and paging space in use for the whole system

- **Process (-P)**
  
  Displays memory usage statistics for active processes

- **Segment (-S)**
  
  Displays memory usage for a specified number of segments, or the top ten highest memory-usage processes, in descending order

- **Detailed Segment (-D)**
  
  Displays detailed information on specified segments

Additional reports are available in AIX Version 4.3.3 and later, as follows:

- **User (-U)**
  
  Displays memory usage statistics for the specified login names. If no list of login names is supplied, memory usage statistics display all defined login names.

- **Command (-C)**
  
  Displays memory usage statistics for the processes specified by the command name.
Workload Management Class (-W)
Displays memory usage statistics for the specified workload management classes. If no classes are supplied, memory usage statistics display all defined classes.

To support 64-bit applications, the output format of the `svmon` command was modified in AIX Version 4.3.3 and later. Additional reports are available in operating system versions later than AIX Version 4.3.3, as follows:

- Frame (-F)
Displays information about frames. When no frame number is specified, the percentage of used memory is reported. When a frame number is specified, information about that frame is reported.

- Tier (-T)
Displays information about tiers, such as the tier number, the superclass name when the -a flag is used, and the total number of pages in real memory from segments belonging to the tier.

10.2.4 The `schedtune` command

The `schedtune` command sets parameters for the CPU scheduler and virtual memory manager processing. With the `schedtune` command you can change the scheduler parameters at run time, and these changes will be cleared at the next reboot. Edit `rc.local` with any preferred `schedtune` settings and run the command from the `rc.local` file to use the changes. The `rc.local` file should be executed from `/etc/inittab`. When using this command, be sure you are comfortable with the appropriate tuning sections before using `schedtune` to change system parameters, as misuse of this command can cause performance degradation or operating system failure. When executing the `schedtune` command without flags, the current values will be shown:

```
/usr/samples/kernel/schedtune

<table>
<thead>
<tr>
<th>THRASH</th>
<th>SUSP</th>
<th>FORK</th>
<th>SCHED</th>
</tr>
</thead>
<tbody>
<tr>
<td>-h</td>
<td>-p</td>
<td>-m</td>
<td>-w</td>
</tr>
<tr>
<td>-e</td>
<td>-f</td>
<td>-d</td>
<td>-r</td>
</tr>
<tr>
<td>-t</td>
<td>-s</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYS PROC MULTI WAIT GRACE TICKS SCHED_D SCHED_R TIMESLICE MAXSPIN
0 4 2 1 2 10 16 16 1 16384

CLOCK -c

%usDELTA
100
```
Priority calculation parameters
The priority of most user processes varies with the amount of CPU time the
process has used recently. The CPU scheduler’s priority calculations are based
on two flags that are set with schedtune, -r and -d. The formula used by the
scheduler to calculate the amount to be added to a process’s priority value as a
penalty for recent CPU use is:

\[
\text{CPU penalty} = (\text{recently used CPU value of the process}) \times (r/32)
\]

The once-per-second recalculation of the recently used CPU value of each
process is:

\[
\text{new recently used CPU value} = (\text{old recently used CPU value of the process}) \times (d/32)
\]

Both -r and -d have default values of 16. This maintains the CPU scheduling
behavior of previous versions of the operating system.

Memory load control parameters
The operating system scheduler performs memory load control by suspending
when memory is over committed. Memory is considered over committed when
the following condition is met:

\[
p \times h s
\]

Where \( p \) is the number of pages written to paging space in the last second, \( h \) is
an integer specified by the -h flag, and \( s \) is the number of page steals that have
occurred in the last second.

A process is suspended when memory is over committed and the following
condition is met:

\[
r \times p f
\]

Where \( r \) is the number of repages that the process has accumulated in the last
second, \( p \) is an integer specified by the -p flag, and \( f \) is the number of page faults
that the process has experienced in the last second.

Time slice increment parameter
The schedtune command can also be used to change the amount the operating
system allows a given process to run before the dispatcher is called to choose
another process to run (time slice). The default value for this interval is a single
clock tick (10 milliseconds). The -t flag of the schedtune command allows the
user to specify the number of clock ticks by which the time length is to be
increased.
**schedtune limitations**

The `schedtune` command can only be executed by root. Changes made by the `schedtune` command last until the next reboot of the system. If a permanent change in VMM or time-slice parameters is needed, an appropriate `schedtune` command should be put in the `/etc/inittab` file.

**schedtune example one**

The following command will result in SCHED_R = 0 and SCHED_D = 0.5:

```
/usr/samples/kernel/schedtune -r 0
```

This would mean that the CPU penalty was always 0, making priority absolute. No background process would get any CPU time unless there were no dispatchable foreground processes at all, as background processes in `ksh` are started with adding 4 to the nice value of the parent shell. The priority values of the threads would effectively be constant, although they would not technically be fixed-priority threads.

**schedtune example two**

The following command would result in an effective SCHED_R = 1 and SCHED_D = 1:

```
/usr/samples/kernel/schedtune -r 32 -d 32
```

This would mean that long-running threads would reach a C value of 120 and remain there, contending on the basis of their nice values. New threads would have priority, regardless of their nice value, until they had accumulated enough time slices to bring them within the priority value range of the existing threads.

**schedtune example three**

The most likely reason to manipulate the values would be to make sure that background processes do not compete with foreground processes. By making SCHED_R smaller, you can restrict the range of possible priority values. For example:

```
/usr/samples/kernel/schedtune -r 5
```

(SCHED_R = 0.15625, SCHED_D = 0.5) would mean that a foreground process would never have to compete with a background process started with the command `nice -n 20`. The limit of 120 CPU time slices accumulated would mean that the maximum CPU penalty for the foreground process would be 18. In Figure 10-2 on page 257, this relationship is graphically shown. Because the CPU penalty will get a maximum value of 18, the foreground process with a nice value of 20 will always, when it needs, get CPU. On the other hand, the background process, with a nice value of 40, will use CPU only when the foreground process does not need the CPU.
**SCHED_R and SCHED_D guidelines**

The following discusses guidelines for tuning performance using SCHED_R and SCHED_D:

- Smaller values of SCHED_R narrow the priority range and the nice value has more of an impact on the priority.
- Larger values of SCHED_R widen the priority range and the nice value has less of an impact on the priority.
- Smaller values of SCHED_D decay CPU usage at a faster rate and can cause CPU-intensive threads to be scheduled sooner.
- Larger values of SCHED_D decay CPU usage at a slower rate and penalize CPU-intensive threads more (thus favoring interactive-type threads).

If you conclude that one or both parameters need to be modified to accommodate your workload, you can enter the `schedtune` command while logged on as root user. The changed values will persist until the next `schedtune` command that modifies them, or until the next system boot. Values can be reset to their defaults with the command `schedtune -d`, but remember that all
schedtune parameters are reset by that command, including VMM memory load control parameters. To make a change to the parameters that will persist across boots, add an appropriate line at the end of the /etc/inittab file.

Table 10-3  Some commonly used flags for the schedtune command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-d</td>
<td>Each process’s recently used CPU value is multiplied by d/32 once a second.</td>
</tr>
<tr>
<td>-r</td>
<td>A process’s recently used CPU value is multiplied by r/32 when the process’s priority value is calculated.</td>
</tr>
<tr>
<td>-t</td>
<td>Increases the duration of the time slice.</td>
</tr>
<tr>
<td>-m</td>
<td>Sets minimum multiprogramming level.</td>
</tr>
<tr>
<td>-p</td>
<td>Specifies the per-process criterion for determining which process to suspend.</td>
</tr>
</tbody>
</table>

10.3 Disk I/O bound system

The set of operating system commands, library subroutines, and other tools that allow you to establish and control logical volume storage is called the Logical Volume Manager (LVM). The Logical Volume Manager controls disk resources by mapping data between a more simple and flexible logical view of storage space and the actual physical disks. The LVM does this using a layer of device driver code that runs above traditional disk device drivers.

While an operating system’s file is conceptually a sequential and contiguous string of bytes, the physical reality might be very different. Fragmentation may arise from multiple extensions to logical volumes as well as allocation/release/reallocation activity within a file system. A file system is fragmented when its available space consists of large numbers of small clusters of space, making it impossible to write out a new file in contiguous blocks.

Access to files in a highly fragmented file system may result in a large number of seeks and longer I/O response times (seek latency dominates I/O response time). For example, if the file is accessed sequentially, a file placement that consists of many widely separated clusters requires more seeks than a placement that consists of one or a few large contiguous clusters.

If the file is accessed randomly, a placement that is widely dispersed requires longer seeks than a placement in which the file’s blocks are close together.
The VMM tries to anticipate the future need for pages of a sequential file by observing the pattern in which a program is accessing the file. When the program accesses two successive pages of the file, the VMM assumes that the program will continue to access the file sequentially, and the VMM schedules additional sequential reads of the file. This is called Sequential-Access Read Ahead. These reads are overlapped with the program processing, and will make the data available to the program sooner than if the VMM had waited for the program to access the next page before initiating the I/O. The number of pages to be read ahead is determined by two VMM thresholds:

- **minpgahead**: Number of pages read ahead when the VMM first detects the sequential access pattern. If the program continues to access the file sequentially, the next read ahead will be for 2 times minpgahead, the next for 4 times minpgahead, and so on until the number of pages reaches maxpgahead.

- **maxpgahead**: Maximum number of pages the VMM will read ahead in a sequential file.

If the program deviates from the sequential-access pattern and accesses a page of the file out of order, sequential read ahead is terminated. It will be resumed with minpgahead pages if the VMM detects a resumption of sequential access by the program. The values of minpgahead and maxpgahead can be set with the `vmtune` command.

To increase write performance, limit the number of dirty file pages in memory, reduce system overhead, and minimize disk fragmentation. The file system divides each file into 16-KB partitions. The pages of a given partition are not written to disk until the program writes the first byte of the next 16-KB partition. At that point, the file system forces the four dirty pages of the first partition to be written to disk. The pages of data remain in memory until their frames are reused, at which point no additional I/O is required. If a program accesses any of the pages before their frames are reused, no I/O is required.

If a large number of dirty file pages remains in memory and does not get reused, the sync daemon writes them to disk, which might result in abnormal disk utilization. To distribute the I/O activity more efficiently across the workload, write-behind can be turned on to tell the system how many pages to keep in memory before writing them to disk. The write-behind threshold is on a per-file basis, which causes pages to be written to disk before the sync daemon runs. The I/O is spread more evenly throughout the workload.

There are two types of write-behind: Sequential and random. The size of the write-behind partitions and the write-behind threshold can be changed with the `vmtune` command.
Normal files are automatically mapped to segments to provide mapped files. This means that normal file access bypasses traditional kernel buffers and block I/O routines, allowing files to use more memory when the extra memory is available (file caching is not limited to the declared kernel buffer area).

Because most writes are asynchronous, FIFO I/O queues of several megabytes can build up, which can take several seconds to complete. The performance of an interactive process is severely impacted if every disk read spends several seconds working its way through the queue. In response to this problem, the VMM has an option called I/O pacing that controls writes.

I/O pacing does not change the interface or processing logic of I/O. It simply limits the number of I/Os that can be outstanding against a file. When a process tries to exceed that limit, it is suspended until enough outstanding requests have been processed to reach a lower threshold.

Disk-I/O pacing is intended to prevent programs that generate very large amounts of output from saturating the system’s I/O facilities and causing the response times of less-demanding programs to deteriorate. Disk-I/O pacing enforces per-segment (which effectively means per-file) high and low water marks on the sum of all pending I/Os. When a process tries to write to a file that already has high water mark pending writes, the process is put to sleep until enough I/Os have completed to make the number of pending writes less than or equal to the low water mark. The logic of I/O-request handling does not change. The output from high-volume processes is slowed down somewhat.

When gathering information on I/O performance, the first command to use is normally the `iostat` command.

### 10.3.1 The `iostat` command

The `iostat` command is used for monitoring system input/output device loading by observing the time the physical disks are active in relation to their average transfer rates. The `iostat` command generates reports that can be used to change system configuration in order to better balance the input/output load between physical disks and adapters. The `iostat` command gathers its information on the protocol layer.

AIX Version 4.3.3 and AIX 5L Version 5.x have some significant changes to the output of the `iostat` command. These changes are similar to the changes described for the `vmstat` command found in “The wa column” on page 239.

**The TTY columns**

The two columns of TTY information (tin and tout) in the `iostat` output show the number of characters read and written by all TTY devices. This includes both real...
and pseudo TTY devices. Real TTY devices are those connected to an asynchronous port. Some pseudo TTY devices are shells, telnet sessions, and aixterm windows. Because the processing of input and output characters consumes CPU resources, look for a correlation between increased TTY activity and CPU utilization. If such a relationship exists, evaluate ways to improve the performance of the TTY subsystem. Steps that could be taken include changing the application program, modifying TTY port parameters during file transfer, or perhaps upgrading to a faster or more efficient asynchronous communications adapter.

The CPU columns
The CPU statistics columns (%user, %sys, %idle, and %iowait) provide a breakdown of CPU usage. This information is also reported in the vmstat command output in the columns labeled us, sy, id, and wa. For a detailed explanation for the values, see “The us column” on page 239, “The sy column” on page 239, “The id column” on page 239, and “The wa column” on page 239.

On systems running one application, a high I/O wait percentage might be related to the workload. On systems with many processes, some will be running while others wait for I/O. In this case, the %iowait can be small or zero because running processes hide some wait time. Although %iowait is low, a bottleneck can still limit application performance.

If the iostat command indicates that a CPU-bound situation does not exist, and %iowait time is greater than 20 percent, you might have an I/O or disk-bound situation. This situation could be caused by excessive paging due to a lack of real memory. It could also be due to unbalanced disk load, fragmented data, or usage patterns. For resolving such problems, a reorganization of logical volumes or a defragmentation of file systems might be necessary. For an unbalanced disk load, the same iostat report provides the necessary information. However, for information about file systems or logical volumes, which are logical resources, you must use tools such as the filemon or fileplace commands.

The drive reports
When you suspect a disk I/O performance problem, use the iostat command. To avoid the information about the TTY and CPU statistics, use the -d option. In addition, the disk statistics can be limited to certain disks by specifying the disk names. Remember that the first set of data represents all activity since system startup. In the following example, the data is collected between intervals:

```
iostat 1 2

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 6.2 16.3 0.0 83.6 0.0

" Disk history since boot not available. "
```
In such a case, statistics can be turned on with the following command:

```bash
chdev -l sys0 -a iostat=true
sys0 changed
```

**The disks column**

The disks column shows the names of the physical volumes. They are either hdisk or cd, followed by a number. If physical volume names are specified with the `iostat` command, only those names specified are displayed.

**The %tm_act column**

The %tm_act column indicates the percentage of time that the physical disk was active (bandwidth utilization for the drive) or, in other words, the total time disk requests are outstanding. A drive is active during data transfer and command processing, such as seeking a new location. The disk active time percentage is directly proportional to resource contention and inversely proportional to performance. As disk use increases, performance decreases, and response time increases.

In general, when the utilization exceeds 70 percent, processes are waiting longer than necessary for I/O to complete, because most UNIX processes block (or sleep) while waiting for their I/O requests to complete. Look for busy versus idle drives. Moving data from busy to idle drives can help alleviate a disk bottleneck. Paging to and from disk will contribute to the I/O load.

**The Kbps column**

The Kbps column indicates the amount of data transferred (read or written) to the drive in KB per second. This is the sum of Kb_read plus Kb_wrtn, divided by the seconds in the reporting interval.

**The tps column**

The tps column indicates the number of transfers per second that were issued to the physical disk. A transfer is an I/O request through the device driver level to the physical disk. Multiple logical requests can be combined into a single I/O request to the disk. A transfer is of indeterminate size.
**The Kb_read column**
The Kb_read column reports the total data (in KB) read from the physical volume during the measured interval.

**The Kb_wrtn column**
The Kb_wrtn column shows the amount of data (in KB) written to the physical volume during the measured interval.

Taken alone, there is no unacceptable value for any of the above fields, because statistics are too closely related to application characteristics, system configuration, and type of physical disk drives and adapters. Therefore, when you are evaluating data, look for patterns and relationships. The most common relationship is between disk utilization (%tm_act) and data transfer rate (tps).

To draw any valid conclusions from this data, you have to understand the application's disk data access patterns, such as sequential, random, or combination, as well as the type of physical disk drives and adapters on the system. For example, if an application reads/writes sequentially, you should expect a high disk transfer rate (Kbps) when you have a high disk busy rate (%tm_act). Columns Kb_read and Kb_wrtn can confirm an understanding of an application's read/write behavior. However, these columns provide no information on the data access patterns.

Generally, you do not need to be concerned about a high disk busy rate (%tm_act) as long as the disk transfer rate (Kbps) is also high. However, if you get a high disk busy rate and a low disk transfer rate, you may have a fragmented logical volume, file system, or individual file.

Discussions of disk, logical volume, and file system performance sometimes lead to the conclusion that the more drives you have on your system, the better the disk I/O performance. This is not always true because there is a limit to the amount of data that can be handled by a disk adapter. The disk adapter can also become a bottleneck. If all your disk drives are on one disk adapter, and your hot file systems are on separate physical volumes, you might benefit from using multiple disk adapters. Performance improvement will depend on the type of access.

To see if a particular adapter is saturated, use the `iostat` command and add up all the Kbps amounts for the disks attached to a particular disk adapter. For maximum aggregate performance, the total of the transfer rates (Kbps) must be below the disk adapter throughput rating. In most cases, use 70 percent of the throughput rate. In operating system versions later than AIX Version 4.3.3, the -a or -A option will display this information.
When looking for performance problems due to disk I/O, the next step is to find the file system causing the problem. This can be done with the filemon command.

### 10.3.2 The filemon command

The filemon command uses the trace facility to obtain a detailed picture of I/O activity during a time interval on the various layers of file system utilization, including the logical file system, virtual memory segments, LVM, and physical disk layers. Both summary and detailed reports are generated. Tracing is started by the filemon command, optionally suspended with the trcoff subcommand, resumed with the trcon subcommand, and terminated with the trcstop subcommand. As soon as tracing is terminated, the filemon command writes its report to stdout.

The following example shows the filemon command startup, writing the output report to a log file fmon.out, and then stopping the filemon command with the trcstop command.

```
filemon -o fmon.out -O all
Enter the "trcstop" command to complete filemon processing

trcstop
```

If a file is identified as the problem, the fileplace command can be used to see how the file is stored.

### 10.3.3 The fileplace command

The fileplace command displays the placement of a specified file within the logical or physical volumes containing the file. By default, the fileplace command lists, to standard output, the ranges of logical volume fragments allocated to the specified file.

### 10.3.4 The sar command

The sar command collects, reports, or saves system activity. The sar command writes to standard output the contents of selected cumulative activity counters in the operating system. The accounting system, based on the values in the number and interval parameters, writes information about the specified number
of times spaced at the specified intervals in seconds. If you suspect an I/O-bound system, run the command in the example:

```
sar -d 1 1
```

```
AIX server4 1 5 00015F8F4CD0 08/28/02
10:00:42 device %busy avque r+w/s blks/s avwait avserv
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
10:00:43 -2147483648 0.0 -2147483648 -2147483648 0.0
The -d flag reports activity for each block device (for example, disk or tape drive), with the exception of XDC disks and tape drives. When data is displayed, the device specification disk is generally used to represent a disk drive. The device specification used to represent a tape drive is machine dependent. The activity data reported is as follows. The following reports the portion of time the device was busy servicing a transfer request, and the average number of requests outstanding during that time.

\%
busy, avque

The following reports the number of read/write transfers from or to a device. The number of bytes is transferred in 512-byte units.

read/s, write/s, blks/s

The following reports the number of milliseconds per average seek:

avseek

10.4 Network I/O bound system

When performance problems arise, your system might be totally innocent, while the real culprit is buildings away. An easy way to tell if the network is affecting overall performance is to compare those operations that involve the network with
those that do not. If you are running a program that does a considerable amount of remote reads and writes and it is running slowly, but everything else seems to be running normally, then it is probably a network problem. Some of the potential network bottlenecks can be caused by the following:

- Client-network interface
- Network bandwidth
- Network topology
- Server network interface
- Server CPU load
- Server memory usage
- Server bandwidth
- Inefficient configuration

A large part of network tuning involves tuning TCP/IP to achieve maximum throughput. With the new high bandwidth interfaces such as Gigabit Ethernet, this has become even more important.

The first command to use for gathering information on network performance is the `netstat` command.

10.4.1 The netstat command

The `netstat` command is used to show network status. Traditionally, it is used more for problem determination than for performance measurement. However, the `netstat` command can be used to determine the amount of traffic on the network, which can help determine whether performance problems are due to network congestion.

The netstat -i command

The `netstat -i` command shows the state of all configured interfaces.

The following example shows the statistics for a workstation with an integrated Ethernet and a token-ring adapter:

```
# netstat -i
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Mtu</th>
<th>Network</th>
<th>Address</th>
<th>Ipks Ierrs</th>
<th>Opkts Oerrs</th>
<th>Coll</th>
</tr>
</thead>
<tbody>
<tr>
<td>lo0</td>
<td>16896</td>
<td><Link></td>
<td></td>
<td>144834</td>
<td>0</td>
<td>144946</td>
</tr>
<tr>
<td>lo0</td>
<td>16896</td>
<td>127</td>
<td>localhost</td>
<td>144834</td>
<td>0</td>
<td>144946</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td><Link>10.0.5a.4f.3f.61</td>
<td>658339</td>
<td>0</td>
<td>247355</td>
<td>0</td>
</tr>
<tr>
<td>tr0</td>
<td>1492</td>
<td>9.3.1</td>
<td>ah6000d</td>
<td>658339</td>
<td>0</td>
<td>247355</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td><Link>8.0.5a.d.a2.d5</td>
<td>0</td>
<td>0</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>en0</td>
<td>1500</td>
<td>1.2.3</td>
<td>1.2.3.4</td>
<td>0</td>
<td>0</td>
<td>112</td>
</tr>
</tbody>
</table>
The count values are summarized since system startup:

The Mtu column Maximum transmission unit; the maximum size of packets in bytes that are transmitted using the interface

The Ipkts column Total number of packets received

The Ierrs column Total number of input errors; for example, malformed packets, checksum errors, or insufficient buffer space in the device driver

The Opkts column Total number of packets transmitted

The Oerrs column Total number of output errors; for example, a fault in the local host connection or adapter output queue overrun

The Coll column Number of packet collisions detected

Tuning guidelines based on netstat -i

If the number of errors on input packets is greater than one percent of the total number of input packets (from the command `netstat -i`), that is:

\[Ierrs > 0.01 \times Ipkts \]

Then run the `netstat -m` command to check for a lack of memory.

If the number of errors during output packets is greater than one percent of the total number of output packets (from the command `netstat -i`), that is:

\[Oerrs > 0.01 \times Opkts \]

Then increase the send queue size (tx_que_size) for that interface. The size of the tx_que_size could be checked with the following command:

```
# lsattr -El adapter
```

If the collision rate is greater than 10 percent, that is:

\[Coll / Opkts > 0.1 \]

Then there is a high network utilization, and a reorganization or partitioning may be necessary. Use the `netstat -v` or `entstat` command to determine the collision rate.

The netstat -i -Z command

The `netstat -i -Z` command clears all the statistic counters for the `netstat -i` command to zero.
The netstat -m command

The netstat -m command displays the statistics recorded by the mbuf memory-management routines. The most useful statistics in the output of the netstat -m command are the counters that show the requests for mbufs denied and non-zero values in the failed column. If the requests for mbufs denied is not displayed, then this must be an SMP system running AIX Version 4.3.2 or later; for performance reasons, global statistics are turned off by default. To enable the global statistics, set the no parameter extended_netstats to 1. This can be done by changing the /etc/rc.net file and rebooting the system.

The following example shows the first part of the netstat -m output with extended_netstats set to 1:

```
# netstat -m
426 mbufs in use:
384 mbuf cluster pages in use
1642 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached

Kernel malloc statistics:

******* CPU 0 *******
By size    inuse  calls failed  delayed  free  hiwat  freed
32         92    187         0   0   36   1440    0
64         33    57         0   0   31    720    0
128        21    227        0   0   11   360    0
256        13   1602        0   0   19   864    0
512        30   125         0   0    2    90    0
1024       12   129         0   0    4   225    0
2048       1     3          0   0    1   225    0
4096       1     7          0   0    3   270    0
8192       2     43         0   0    1   22    0
16384      0     0          0   0   40   54    0
65536      1     1          0   0    0   2047    0

******* CPU 1 *******
By size    inuse  calls failed  delayed  free  hiwat  freed
32         87    313         0   0   41   1440    0
64         17    191         0   0   47    720    0
128        17    311         0   0   15   360    0
256        60    2497        0   0   20   864    0
512        62    406         0   0   10    90    0
1024       24    139         0   0    4   225    0
2048       1     3          0   0    1   225    0
```
CPU 2

<table>
<thead>
<tr>
<th>Size</th>
<th>Inuse</th>
<th>Calls Failed</th>
<th>Delayed</th>
<th>Free</th>
<th>Hiwat</th>
<th>Freed</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>31</td>
<td>335</td>
<td>0</td>
<td>0</td>
<td>97</td>
<td>1440</td>
</tr>
<tr>
<td>64</td>
<td>23</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>41</td>
<td>720</td>
</tr>
<tr>
<td>128</td>
<td>21</td>
<td>180</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>360</td>
</tr>
<tr>
<td>256</td>
<td>26</td>
<td>2593</td>
<td>0</td>
<td>0</td>
<td>22</td>
<td>864</td>
</tr>
<tr>
<td>512</td>
<td>39</td>
<td>350</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>1024</td>
<td>18</td>
<td>150</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>225</td>
</tr>
<tr>
<td>2048</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>225</td>
</tr>
<tr>
<td>4096</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>270</td>
</tr>
<tr>
<td>8192</td>
<td>1</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>54</td>
</tr>
</tbody>
</table>

CPU 3

<table>
<thead>
<tr>
<th>Size</th>
<th>Inuse</th>
<th>Calls Failed</th>
<th>Delayed</th>
<th>Memuse</th>
<th>Memmax</th>
<th>Mapb</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>43</td>
<td>188</td>
<td>0</td>
<td>109056</td>
<td>125440</td>
<td>0</td>
</tr>
<tr>
<td>64</td>
<td>49</td>
<td>109</td>
<td>0</td>
<td>786432</td>
<td>1068032</td>
<td>0</td>
</tr>
<tr>
<td>128</td>
<td>30</td>
<td>370</td>
<td>0</td>
<td>106272</td>
<td>121664</td>
<td>0</td>
</tr>
<tr>
<td>256</td>
<td>396</td>
<td>2483</td>
<td>0</td>
<td>2336</td>
<td>3488</td>
<td>0</td>
</tr>
<tr>
<td>512</td>
<td>26</td>
<td>186</td>
<td>0</td>
<td>1792</td>
<td>1792</td>
<td>0</td>
</tr>
<tr>
<td>1024</td>
<td>9</td>
<td>151</td>
<td>0</td>
<td>15552</td>
<td>15808</td>
<td>0</td>
</tr>
<tr>
<td>2048</td>
<td>386</td>
<td>390</td>
<td>0</td>
<td>2336</td>
<td>3488</td>
<td>0</td>
</tr>
<tr>
<td>4096</td>
<td>1</td>
<td>135</td>
<td>0</td>
<td>225</td>
<td>225</td>
<td>0</td>
</tr>
<tr>
<td>8192</td>
<td>0</td>
<td>32</td>
<td>0</td>
<td>225</td>
<td>225</td>
<td>0</td>
</tr>
<tr>
<td>16384</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>40</td>
<td>54</td>
<td>0</td>
</tr>
</tbody>
</table>

By type:
- mbuf: 426
- mcluster: 384
- socket: 280
- pcb: 93
- routetbl: 19
- ifaddr: 16
- mblk: 9
- mblkdata: 31
- strhead: 19
- strqueue: 35
- strmodsw: 24
- strsr: 0
- strsyncq: 42
- streams: 167
- devbuf: 1
- kernel tablemoun: 16
spec buf 1 0 0 0 128 128 0
locking 2 0 0 0 256 256 0
temp 8 6 0 0 10560 15168 0
mcast opts 0 0 0 0 0 128 0
mcast addr 3 0 0 0 192 192 0

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

If global statistics are not on, and you want to determine the total number of requests for mbufs denied, add up the values under the failed columns for each CPU. If the `netstat -m` command indicates that requests for mbufs or clusters have failed or been denied, then you may want to increase the value of `thewall` by using the `no -o thewall=NewValue` command.

Beginning with AIX Version 4.3.3, a delayed column was added. If the requester of an mbuf specified the `M_WAIT` flag, then if an mbuf was not available, the thread is put to sleep until an mbuf is freed and can be used by this thread. The failed counter is not incremented in this case; instead, the delayed column will be incremented. Prior to AIX Version 4.3.3, the failed counter was also not incremented, but there was no delayed column.

If the currently allocated amount of network memory is within 85 percent of `thewall`, you may want to increase `thewall`. If the value of `thewall` is increased, use the `vmstat` command to monitor total memory use to determine if the increase has had a negative impact on overall memory performance.

The netstat -v command

The `netstat -v` command displays the statistics for each Common Data Link Interface (CDLI) based device driver that is in operation. Interface-specific reports can be requested using the `tokstat`, `entstat`, `fddistat`, or `atmstat` commands.

Every interface has its own specific information and some general information. The most important output fields’ descriptions are provided in the following sections.

Transmit and Receive Errors

The Transmit and Receive Errors statistic provides the number of output/input errors encountered on this device. This field counts unsuccessful transmissions due to hardware or network errors. These unsuccessful transmissions could also slow down the performance of the system.
Max Packets on S/W Transmit Queue
The Max Packets on S/W Transmit Queue statistic shows the maximum number of outgoing packets ever queued to the software transmit queue. An indication of an inadequate queue size is if the maximum transmits queued equals the current queue size (tx_que_size). This indicates that the queue was full at some point.

To check the current size of the queue, use the `lsattr -El adapter` command (where `adapter` is, for example, tok0 or ent0). Because the queue is associated with the device driver and adapter for the interface, use the adapter name, not the interface name. Use the SMIT or the `chdev` command to change the queue size.

S/W Transmit Queue Overflow
The S/W Transmit Queue Overflow statistic shows the number of outgoing packets that have overflowed the software transmit queue. A value other than zero requires the same actions as when the Max Packets on S/W Transmit Queue reaches the tx_que_size. The transmit queue size must be increased.

Broadcast Packets
The Broadcast Packets statistic shows the number of broadcast packets received without any error. If the value for broadcast packets is high, compare it with the total received packets. The received broadcast packets should be less than 20 percent of the total received packets. If it is high, this could be an indication of a high network load; a solution would be to use multicasting. The use of IP multicasting enables a message to be transmitted to a group of hosts, instead of having to address and send the message to each group member individually.

DMA Overrun
The DMA Overrun statistic is incremented when the adapter is using DMA to put a packet into system memory and the transfer is not completed. There are system buffers available for the packet to be placed into, but the DMA operation failed to complete. This occurs when the MCA bus is too busy for the adapter to be able to use DMA for the packets. The location of the adapter on the bus is crucial in a heavily loaded system. Typically, an adapter in a lower slot number on the bus, by having the higher bus priority, is using so much of the bus that adapters in higher slot numbers are not being served. This is particularly true if the adapters in a lower slot number are ATM or SSA adapters.

Max Collision Errors
The Max Collision Errors statistic shows the number of unsuccessful transmissions due to too many collisions. The number of collisions encountered exceeded the number of retries on the adapter.
Late Collision Errors
The Late Collision Errors statistic shows the number of unsuccessful transmissions due to the late collision error.

Timeout Errors
The Timeout Errors statistic shows the number of unsuccessful transmissions due to adapter-reported timeout errors.

Single Collision Count
The Single Collision Count statistic shows the number of outgoing packets with a single (only one) collision encountered during transmission.

Multiple Collision Count
The Multiple Collision Count statistic shows the number of outgoing packets with multiple (2–15) collisions encountered during transmission.

Receive Collision Errors
The Receive Collision Errors statistic shows the number of incoming packets with collision errors during reception.

No mbuf Errors
The No mbuf Errors statistic shows the number of times that mbufs were not available to the device driver. This usually occurs during receive operations when the driver must obtain memory buffers to process inbound packets. If the mbuf pool for the requested size is empty, the packet will be discarded. Use the `netstat -m` command to confirm this, and increase the `thewall` parameter.

The No mbuf Errors value is interface specific and not identical to the requests for mbufs denied from the `netstat -m` output. Compare the values of the example for the commands `netstat -m` and `netstat -v` (the Ethernet and token-ring part).

Tuning guidelines based on netstat -v
To check for an overloaded Ethernet network, calculate (from the `netstat -v` command):

\[
\frac{(\text{Max Collision Errors} + \text{Timeout Errors})}{\text{Transmit Packets}}
\]

If the result is greater than five percent, reorganize the network to balance the load.

Another indication for a high network load is found in the output of the command `netstat -v`.
If the total number of collisions from the `netstat -v` output (for Ethernet) is greater than 10 percent of the total transmitted packets, using the following formula, the system may have a high network load:

\[
\frac{\text{Number of collisions}}{\text{Number of Transmit Packets}} > 0.1
\]

If the system suffers from extensive NFS load, the `nfsstat` command provides useful information.

10.4.2 The nfsstat command

NFS gathers statistics on types of NFS operations performed, along with error information and performance indicators. You can use the `nfsstat` command to identify network problems and observe the type of NFS operations taking place on your system. The `nfsstat` command displays statistical information about the NFS and Remote Procedure Call (RPC) interfaces to the kernel. You can also use this command to reinitialize this information. The `nfsstat` command splits its information into server and client parts. The following commands can be used to match a particular need:

- **nfsstat -r** (to see the application NFS statistics)

 The output is divided into server connection oriented and connectionless, as well as client connection oriented and connectionless.

- **nfsstat -s** (to see the server statistics)

 The NFS server displays the number of NFS calls received (calls) and rejected (badcalls) due to authentication, as well as the counts and percentages for the various kinds of calls made.

- **nfsstat -c** (to see the client statistics)

 The NFS client displays the number of calls sent and rejected, as well as the number of times a client handle was received (clgets) and a count of the various kinds of calls and their respective percentages. For performance monitoring, the `nfsstat -c` command provides information on whether the network is dropping UDP packets. A network may drop a packet if it cannot handle it. Dropped packets can be the result of the response time of the network hardware or software, or an overloaded CPU on the server. Dropped packets are not actually lost, because a replacement request is issued for them.

 A high badxid count implies that requests are reaching the various NFS servers, but the servers are too loaded to send replies before the client's RPC calls time out and are retransmitted. The badxid value is incremented each time a duplicate reply is received for a transmitted request (an RPC request retains its XID through all transmission cycles). Excessive retransmissions place an additional strain on the server, further degrading response time.
The retrans column displays the number of times requests were retransmitted due to a timeout in waiting for a response. This situation is related to dropped UDP packets. If the retrans number consistently exceeds five percent of the total calls in column one, it indicates a problem with the server keeping up with demand.

When going into more detailed output, the netpmon command, using a trace facility, is useful.

10.4.3 The netpmon command

The netpmon command monitors a trace of system events and reports on network activity and performance during the monitored interval. By default, the netpmon command runs in the background while one or more application programs or system commands are being executed and monitored. The netpmon command automatically starts and monitors a trace of network-related system events in real time.

10.5 Workload Manager (WLM)

WLM is designed to give system administrators more control over how the scheduler and the virtual memory manager (VMM) allocate resources to processes. This can be used to prevent different classes of jobs from interfering with each other and to allocate resources based on the requirements of different groups of users.

With WLM, you can create different classes of service for jobs, as well as specify attributes for those classes. These attributes specify minimum and maximum amounts of CPU, physical memory, and disk I/O throughput to be allocated to a class. WLM then assigns jobs automatically to classes using class assignment rules provided by a system administrator. These assignment rules are based on the values of a set of attributes for a process. Either the system administrator or a privileged user can also manually assign jobs to classes, overriding the automatic assignment.

Class definitions, class attributes, the shares and limits, and the automatic class assignment rules, can be entered using Web-based System Manager, SMIT, or the WLM command-line interface. These definitions and rules are kept in plain text files that can also be created or modified using a text editor.

The system administrator can specify the properties for the WLM subsystem by using either the Web-based System Manager graphical user interface, SMIT ASCII-oriented interface, the WLM command line interface, or by creating flat
ASCII files. The Web-based System Manager and SMIT interfaces use the WLM commands to record the information in the same flat ASCII files.

These files are named as follows:

<table>
<thead>
<tr>
<th>Classes</th>
<th>Description</th>
<th>Limits</th>
<th>Shares</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class definitions</td>
<td>Configuration description text</td>
<td>Class limits</td>
<td>Class target shares</td>
<td>Class assignment rules</td>
</tr>
</tbody>
</table>

These files are called the WLM property files. A set of WLM property files defines a WLM configuration. You can create multiple sets of property files, defining different configurations of workload management. These configurations are located in subdirectories of /etc/wlm. The WLM property files describing the superclasses of the Config configuration are the file's classes, description, limits, shares, and rules in /etc/wlm/Config. Then, the property files describing the subclasses of the superclass Super of this configuration are the file's classes, limits, shares, and rules in the directory /etc/wlm/Config/Super. Only the root user can start or stop WLM, or switch from one configuration to another.

The command to submit the WLM property files, \texttt{wlmcntrl}, and the other WLM commands allow users to specify an alternate directory name for the WLM properties files. This allows you to change the WLM properties without altering the default WLM property files.

A symbolic link, /etc/wlm/current, points to the directory containing the current configuration files. Update this link with the \texttt{wlmcntrl} command when you start WLM with a specified set of configuration files. The sample configuration files shipped with the operating system are in /etc/wlm/standard.

WLM configuration is performed through the preferred interface, the Web-based System Manager (Figure 10-3 on page 276), through a text editor and AIX commands, or through the AIX administration tool SMIT.
10.5.1 WLM concepts and architecture

The following sections outline the concepts provided with WLM on AIX 5L.

Classes

The central concept of WLM is the class. A class is a collection of processes (jobs) that has a single set of resource limits applied to it. WLM assigns processes to the various classes and controls the allocation of system resources among the different classes. For this purpose, WLM uses class assignment rules and per-class resource shares and limits set by the system administrator. The resource entitlements and limits are enforced at the class level. This is a way of defining classes of service and regulates the resource utilization of each class of applications to prevent applications with very different resource utilization patterns from interfering with each other when they are sharing a single server.

Hierarchy of classes

WLM allows system administrators to set up a hierarchy of classes with two levels by defining superclasses and subclasses. In other words, a class can
either be a superclass or a subclass. The main difference between superclasses and subclasses is the resource control (shares and limits):

- At the superclass level, the determination of resource entitlement (based on the resource shares and limits) is based on the total amount of each resource managed by WLM available on the machine.
- At the subclass level, the resource shares and limits are based on the amount of each resource allocated to the parent superclass.

The system administrator (the root user) can delegate the administration of the subclasses of each superclass to a superclass administrator (a non-root user), thus allocating a portion of the system resources to each superclass and then letting superclass administrators distribute the allocated resources among the users and applications they manage.

WLM supports 32 superclasses (27 user-defined plus five predefined). In turn, each superclass can have 12 subclasses (10 user-defined and two predefined, as shown in Figure 10-4). Depending on the needs of the organization, a system administrator can decide to use only superclasses or both superclasses and subclasses. An administrator can also use subclasses only for some of the superclasses.

Each class is given a name by the WLM administrator who creates it. A class name can be up to 16 characters long and can only contain uppercase and lowercase letters, numbers, and underscores (_). For a given WLM configuration, the names of all the superclasses must be different from one another, and the names of the subclasses of a given superclass must be different from one another. Subclasses of different superclasses can have the same name. The fully qualified name of a subclass is superclass_name.subclass_name.

In the remainder of this section, whenever the term class is used, it is applicable to both subclasses and superclasses. The following subsections describe both super and subclasses in greater detail, as well as the backward compatibility WLM provides to configurations of its first release.
Superclasses

A superclass is a class with subclasses associated with it. No process can belong to the superclass without also belonging to a subclass, either predefined or user defined. A superclass has a set of class assignment rules that determines which processes will be assigned to it. A superclass also has a set of resource limitation values and resource target shares that determine the amount of resources that can be used by processes belonging to it. These resources will be divided among the subclasses based on the resource limitation values and resource target shares of the subclasses.

Up to 27 superclasses can be defined by the system administrator. In addition, five superclasses are automatically created to deal with processes, memory, and CPU allocation, as follows:

- **Default superclass:** The default superclass is named Default and is always defined. All non-root processes that are not automatically assigned to a specific superclass will be assigned to the Default superclass. Other processes can also be assigned to the Default superclass by providing specific assignment rules.

- **System superclass:** This superclass has all privileged (root) processes assigned to it if they are not assigned by rules to a specific class, plus the pages belonging to all system memory segments, kernel processes, and kernel threads. Other processes can also be assigned to the System superclass. The default is for this superclass to have a memory minimum limit of one percent.

- **Shared superclass:** This superclass receives all the memory pages that are shared by processes in more than one superclass. This includes pages in shared memory regions and pages in files that are used by processes in more than one superclass (or in subclasses of different superclasses). Shared memory and files used by multiple processes that belong to a single superclass (or subclasses of the same superclass) are associated with that superclass. The pages are placed in the Shared superclass only when a process from a different superclass accesses the shared memory region or file. This superclass can have only physical memory shares and limits applied to it. It cannot have shares or limits for the other resource types, subclasses, or assignment rules specified. Whether a memory segment shared by the processes in the different superclasses is classified into the Shared superclass, or remains in the superclass it was initially classified into depends on the value of the localshm attribute of the superclass the segment was initially classified into.

- **Unclassified superclass:** The processes in existence at the time WLM is started are classified according to the assignment rules of the WLM configuration being loaded. During this initial classification, all the memory pages attached to each process are charged either to the superclass the
process belongs to (when not shared, or shared by processes in the same superclass) or to the Shared superclass, when shared by processes in different superclasses. However, there are a few pages that cannot be directly tied to any processes (and thus to any class) at the time of this classification, and this memory is charged to the Unclassified superclass; for example, pages from a file that has been closed. The file pages will remain in memory, but no process owns these pages; therefore, they cannot be charged to a specific class. Most of this memory will end up being correctly reclassified over time, when it is either accessed by a process, or freed and reallocated to a process after WLM is started. There are a few kernel processes, such as wait or Irud, in the Unclassified superclass. Even though this superclass can have physical memory shares and limits applied to it, WLM commands do not allow you to set shares and limits or specify subclasses or assignment rules on this superclass.

> **Unmanaged superclass:** A special superclass named Unmanaged will always be defined. No processes will be assigned to this class. This class will be used to accumulate the memory usage for all pinned pages in the system that are not managed by WLM. The CPU utilization for the waitprocs is not accumulated in any class. This is deliberate; otherwise, the system would always seem to be at 100 percent CPU utilization, which could be misleading for users when looking at the WLM or system statistics. This superclass cannot have shares or limits for any other resource types, subclasses, or assignment rules specified.

Subclasses
A subclass is a class associated with exactly one superclass. Every process in the subclass is also a member of the superclass. Subclasses only have access to resources that are available to the superclass. A subclass has a set of class assignment rules that determine which of the processes assigned to the superclass will belong to it. A subclass also has a set of resource limitation values and resource target shares that determine the resources that can be used by processes in the subclass. These resource limitation values and resource target shares indicate how much of the superclass’s target (the resources available to the superclass) can be used by processes in the subclass.

Up to 10 out of a total of 12 subclasses can be defined by the system administrator or by the superclass administrator for each superclass. In addition, two special subclasses, Default and Shared, are always defined in each superclass as follows:

> **Default subclass:** The default subclass is named Default and is always defined. All processes that are not automatically assigned to a specific subclass of the superclass will be assigned to the Default subclass. You can also assign other processes to the Default subclass by providing specific assignment rules.
- **Shared** subclass: This subclass receives all the memory pages used by processes in more than one subclass of the superclass. This includes pages in shared memory regions and pages in files that are used by processes in more than one subclass of the same superclass. Shared memory and files used by multiple processes that belong to a single subclass are associated with that subclass. The pages are placed in the Shared subclass of the superclass only when a process from a different subclass of the same superclass accesses the shared memory region or file. There are no processes in the Shared subclass. This subclass can only have physical memory shares and limits applied to it. It cannot have shares or limits for the other resource types or assignment rules specified.

Tiers

Tier configuration is based on the importance of a class relative to other classes in WLM. There are 10 available tiers, from 0 through to 9. Tier value 0 is the most important and value 9 is the least important. As a result, classes belonging to tier 0 will get resource allocation priority over classes in tier 1; classes in tier 1 will have priority over classes in tier 2; and so on. The default tier number, if the attribute is not specified, is 0.

The tier applies at both the superclass and subclass levels. Superclass tiers are used to specify resource allocation priority between superclasses, and subclass tiers are used to specify resource allocation priority between subclasses of the same superclass. There is no relationship between tier numbers of subclasses of different superclasses.

Tier separation, in terms of prioritization, is much more enforced in AIX 5L than in the previous release. A process in tier 1 will never have priority over a process in tier 0, since there is no overlapping of priorities in tiers. It is unlikely that classes in tier 1 will acquire any resources if the processes in tier 0 are consuming all the resources. This occurs because the control of leftover resources is much more restricted than in the AIX Version 4.3.3 release of WLM, as shown in Figure 10-5 on page 281.
Class attributes

In order to create a class, there are different attributes that are needed to have an accurate and well-organized group of classes. Figure 10-6 shows the SMIT panel for class attributes.

![Class attributes diagram]

General characteristics of a class

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>Class name</th>
<th>Description</th>
<th>Tier</th>
<th>Resource Set</th>
<th>Inheritance</th>
<th>User authorized to assign its processes to this class</th>
<th>Group authorized to assign its processes to this class</th>
<th>User authorized to administrate this class (Superclass only)</th>
<th>Group authorized to administrate this class (Superclass only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Entry Fields]</td>
<td>[]</td>
<td>[]</td>
<td>PE</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
<td>[]</td>
</tr>
</tbody>
</table>

Figure 10-6 SMIT with the class creation attributes screen
The sequence of attributes within a class (as shown in Figure 10-6 on page 281) is outlined below:

- **Class name**
 A unique class name with up to 16 characters. It can contain uppercase and lowercase letters, numbers, and underscores (_).

- **Description**
 An optional brief description about this class.

- **Tier**
 A number between 0 and 9, for class priority ranking. It will be the tier that this class will belong to. An explanation about tiers can be found in “Tiers” on page 280.

- **Resource Set**
 This attribute is used to limit the set of resources a given class has access to in terms of CPUs (processor set). The default, if unspecified, is `system`, which gives access to all the CPU resources available on the system.

- **Inheritance**
 The inheritance attribute indicates whether a child process should inherit its parent’s class or get classified according to the automatic assignment rules upon exec. The possible values are `yes` or `no`; the default is `no`. This attribute can be specified at both superclass and subclass level.

- **User and Group authorized to assign its processes to this class**
 These attributes are valid for all the classes. They are used to specify the user name and the group name of the user or group authorized to manually assign processes to the class. When manually assigning a process (or a group of processes) to a superclass, the assignment rules for the superclass are used to determine which subclass of the superclass each process will be assigned to.

- **User and Group authorized to administer this class**
 These attributes are valid only for superclasses. They are used to delegate the superclass administration to a user and group of users.

- **Localchm**
 Specifies whether memory segments that are accessed by processes in different classes remain local to the class they were initially assigned to, or if they go to the Shared class.

Segment authorization to migrate to the Shared class
With Workload Manager in earlier versions of AIX, whenever a memory segment is accessed by processes from different classes, the segment is reclassified as
Shared. This occurs because one of the classes sharing the memory segment would otherwise be penalized as the user of this resource while the others are not. The consequence of the segment moving to Shared is that users partially lose control of it. In AIX 5L, an attribute has been added at the class level to avert the automatic reclassification of the class. This attribute, localshm, if set to no, allows the segment to be reclassified to the Shared class. If it is set to yes, then it is not reclassified. From the command line, the command will be similar to that shown in the example below:

```
# mkclass -a tier=2 -a adminuser=wlmu6 -a localshm=yes -c shares=2\ 
-m shares=3 -d new_config super3
```

From the SMIT panels, general characteristics of a class panel will have the localshm option, as in the example shown in Figure 10-7.

![Figure 10-7 SMIT panel shows the additional localshm attribute](image)

Classification process

There are two ways to classify processes in WLM:

- **Automatic assignment** when a process calls the system call exec, using assignment rules specified by a WLM administrator. This automatic assignment is always in effect (cannot be turned off) when WLM is active. This is the most common method of assigning processes to the different classes.

- **Manual assignment** of a selected process or group of processes to a class by a user with the required authority on both the process and the target class.
This manual assignment can be done either by a WLM command, which could be invoked directly or through SMIT or Web-based System Manager, or by an application, using a function of the WLM Application Programming Interface. Manual assignment overrides automatic assignment.

10.5.2 Automatic assignment

The automatic assignment of processes to classes uses a set of class assignment rules specified by a WLM administrator. There are two levels of assignment rules:

- A set of assignment rules at the WLM configuration level used to determine which superclass a given process should be assigned to.
- A set of assignment rules at the superclass level used to determine which subclass of the superclass the process should be assigned to.

The assignment rules at both levels have exactly the same format.

When a process is created by fork, it remains in the same class as its parent. Usually, reclassification happens when the new process calls the system call exec. In order to classify the process, WLM starts by examining the top level rules list for the active configuration to find out which superclass the process should belong to. For this purpose, WLM takes the rules one at a time, in the order they appear in the file, and checks the current values for the process attributes against the values and lists of values specified in the rule. When a match is found, the process will be assigned to the superclass named in the first field of the rule. Then the rules list for the superclass is examined in the same way to determine which subclass of the superclass the process should be assigned to. For a process to match one of the rules, each of its attributes must match the corresponding field in the rule. The rules to determine whether the value of a process attribute matches the values in the field of the rules list are as follows:

- If the field in the rule has a value of hyphen (-), any value of the corresponding process attribute is a match.
- If the value of the process attribute (for all the attributes except type) matches one of the values in the list in a rule, and it is not excluded (prefaced by an exclamation point (!)), it is considered a match.
- When one of the values for the type attribute in the rule is comprised of two or more values separated by a plus sign (+), a process will be a match for this value only if its characteristics match all the values mentioned above.

As previously mentioned, at both superclass and subclass levels, WLM goes through the rules in the order in which they appear in the rules list, and classifies the process in the class corresponding to the first rule for which the process is a match.
match. This means that the order of the rules in the rules list is extremely important, and caution must be applied when modifying it in any way.

10.5.3 Manual assignment

Manual assignment is a feature introduced in AIX 5L WLM. It allows system administrators and applications to override, at any time, the traditional WLM automatic assignment (processes’ automatic classification based on class assignment rules) and force a process to be classified in a specific class.

The manual assignment can be made or canceled separately at the superclass level, the subclass level, or both. In order to manually assign processes to a class or cancel an existing manual assignment, a user must have the right level of privilege (that is, must be the root user, adminuser, or admingroup for the superclass or authuser and authgroup for the superclass or subclass). A process can be manually assigned to a superclass only, a subclass only, or to a superclass and a subclass of the superclass. In the latter case, the dual assignment can be done simultaneously (with a single command or API call) or at different times, possibly by different users.

A manual assignment will remain in effect (and a process will remain in its manually assigned class) until:

- The process terminates.
- WLM is stopped. When WLM is restarted, the manual assignments in effect when WLM was stopped are lost.
- The class the process has been assigned to is deleted.
- A new manual assignment overrides a prior one.
- The manual assignment for the process is canceled.

In order to assign a process to a class or cancel a prior manual assignment, the user must have authority both on the process and on the target class. These constraints translate into the following:

- The root user can assign any process to any class.
- A user with administration privileges on the subclasses of a given superclass (that is, the user or group name matches the attributes adminuser or admingroup of the superclass) can manually reassign any process from one of the subclasses of this superclass to another subclass of the superclass.
- A user can manually assign her own processes (same real or effective user ID) to a superclass or a subclass for which they have manual assignment privileges (that is, the user or group name matches the attributes authuser or authgroup of the superclass or subclass).
This defines three levels of privilege among the persons who can manually assign processes to classes, root being the highest. In order for a user to modify or cancel a manual assignment, the user must be at the same or a higher level of privilege as the person who issued the last manual assignment.

Class assignment rules

After the definition of a class, it is time to set up the class assignment rules so that WLM can perform its automatic assignment. The assignment rules are used by WLM to assign a process to a class based on the user, group, application path name, type of process, and application tag, or a combination of these five attributes.

The next sections describe the attributes that constitute a class assignment rule. All these attributes can contain a hyphen (-), which means that this field will not be considered when assigning classes to a process.

Class name

This field must contain the name of a class, which is defined in the class file corresponding to the level of the rules file we are configuring (either superclass or subclass). Class names can contain only uppercase and lowercase letters, numbers, and underscores (_), and can be up to 16 characters in length. No assignment rule can be specified for the system-defined classes Unclassified, Unmanaged, and Shared.

Reserved

Reserved for future use. Its value must be a hyphen (-), and it must be present in the rule.

User

The user name (as specified in the /etc/passwd file, LDAP, or in NIS) of the user owning a process can be used to determine the class to which the process belongs. This attribute is a list of one or more user names, separated by a comma (,). Users can be excluded by using an exclamation point (!) prefix. Patterns can be specified to match a set of user names using full Korn shell pattern matching syntax.

Applications that use the setuid permission to change the effective user ID they run under are still classified according to the user that invoked them. The processes are only reclassified if the change is done to the real user ID (UID).

Group

The group name (as specified in the /etc/group file, LDAP, or in NIS) of a process can be used to determine the class to which the process belongs. This attribute is a list composed of one or more groups, separated by a comma (,). Groups can
be excluded by using an exclamation point (!) prefix. Patterns can be specified to match a set of group names using full Korn shell pattern matching syntax.

Applications that use the `setgid` permission to change the *effective* group ID they run under are still classified according to the group that invoked them. The processes are only reclassified if the change is done to the *real* group ID (GID).

Application path names

The full path name of the application for a process can be used to determine the class to which a process belongs. This attribute is a list composed of one or more applications, separated by a comma (,). The application path names will be either full path names or Korn shell patterns that match path names. Application path names can be excluded by using an exclamation point (!) prefix.

Process type

In AIX 5L, the process type attribute is introduced as one of the ways to determine the class to which a process belongs. This attribute consists of a comma-separated list, with one or more combination of values, separated by a plus sign (+). A plus sign provides a logical *and* function, and a comma provides a logical *or* function. Table 10-4 provides a list of process types that can be used. (Note: 32bit and 64bit are mutually exclusive.)

<table>
<thead>
<tr>
<th>Attribute value</th>
<th>Process type</th>
</tr>
</thead>
<tbody>
<tr>
<td>32bit</td>
<td>The process is a 32-bit process.</td>
</tr>
<tr>
<td>64bit</td>
<td>The process is a 64-bit process.</td>
</tr>
<tr>
<td>plock</td>
<td>The process called plock() to pin memory.</td>
</tr>
<tr>
<td>fixed</td>
<td>The process has a fixed priority (SCHED_FIFO or SCHED_RR).</td>
</tr>
</tbody>
</table>

Application tags

In AIX 5L, the application tag attribute is introduced as one of the forms of determining the class to which a process belongs. This is an attribute meant to be set by WLM’s API, as a way to further extend the process classification possibilities. This process was created to allow differentiated classification for different instances of the same application. This attribute can have one or more application tags, separated by commas (,). An application tag is a string of up to 30 alphanumeric characters.

The classification is done by comparing the value of the attributes of the process at exec time against the lists of class assignment rules to determine which rule is a match for the current value of the process attributes.
The class assignment is done by WLM:

- When WLM is started for all the processes existing at that time
- Every time a process calls the system calls exec, setuid (and related calls), setgid (and related calls), setpri, and plock, once WLM is started

There are two default rules that are always defined (that is, hardwired in WLM). These are the default rules that assign all processes started by the user root to the System class, and all other processes to the Default class. If WLM does not find a match in the assignment rules list for a process, these two rules will be applied (the rule for System first), and the process will go to either System (UID root) or Default. These default rules are the only assignment rules in the standard configuration installed with AIX.

Table 10-5 is an example of classes with their respective attributes for assignment rules.

<table>
<thead>
<tr>
<th>Class</th>
<th>Reserved</th>
<th>User</th>
<th>Group</th>
<th>Application</th>
<th>Type</th>
<th>Tag</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>-</td>
<td>root</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>db1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>/usr/oracle/bin/db*</td>
<td>-</td>
<td>_db1</td>
</tr>
<tr>
<td>db2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>/usr/oracle/bin/db*</td>
<td>-</td>
<td>_db2</td>
</tr>
<tr>
<td>devlt</td>
<td>-</td>
<td>-</td>
<td>dev</td>
<td>-</td>
<td>32bit</td>
<td>-</td>
</tr>
<tr>
<td>VPs</td>
<td>-</td>
<td>bob,ted</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>acctg</td>
<td>-</td>
<td>-</td>
<td>acct*</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

In Table 10-5, the rule for Default class is omitted from the display, though this class’s rule is always present in the configuration. The rule for System is explicit, and has been put first in the file. This is deliberate so that all processes started by root will be assigned to the System superclass. By moving the rule for the System superclass further down in the rules file, the system administrator could have chosen to assign the root processes that would not be assigned to another class (because of the application executed, for example) to System only. In Table 10-5, with the rule for System on top, if root executes a program in /usr/oracle/bin/db* set, the process will be classified as System. If the rule for the System class was after the rule for the db2 class, the same process would be classified as db1 or db2, depending on the tag.

These examples show that the order of the rules in the assignment rules file is very important. The more specific assignment rules should appear first in the rules file, and the more general rules should appear last. An extreme example would be putting the default assignment rule for the Default class, for which every
process is a match, first in the rules file. That would cause every process to be assigned to the Default class (the other rules would, in effect, be ignored).

You can define multiple assignment rules for any given class. You can also define your own specific assignment rules for the System or Default classes. The default rules mentioned previously for these classes would still be applied to processes that would not be classified using any of the explicit rules.

10.5.4 Backward compatibility

As mentioned earlier, in the first release of WLM, the system default for the resource shares was one share. In AIX 5L, it is a hyphen (-), which means that the resource consumption of the class for this particular resource is not regulated by WLM. This changes the semantics quite a bit, and it is advisable that system administrators review their existing configurations and consider if the new default is good for their classes, or if they would be better off either setting up a default of one share (going back to the previous behavior) or setting explicit values for some of the classes.

In terms of limits, the first release of WLM only had one maximum, not two. This maximum limit was in fact a soft limit for CPU and a hard limit for memory. Limits specified for the old format, min percent-max percent, will have, in AIX 5L, the max interpreted as a softmax for CPU and both values of hardmax and softmax for memory. All interfaces (SMIT, AIX commands, and Web-based System Manager) will convert all data existing from its old format to the new one.

The disk I/O resource is new for the current version, so when activating the AIX 5L WLM with the configuration files of the first WLM release, the values for the shares and the limits will be the default ones for this resource. The system defaults are:

- shares = -
- min = 0 percent, softmax = 100 percent, hardmax = 100 percent

For existing WLM configurations, the disk I/O resource will not be regulated by WLM, which should lead to the same behavior for the class as with the first version.

10.5.5 Resource sets

WLM uses the concept of resource sets (or rsets) to restrict the processes in a given class to a subset of the system's physical resources. In AIX 5L, the physical resources managed are the memory and the processors. A valid resource set is composed of memory and at least one processor.
Figure 10-8 shows the SMIT panel where a resource set can be specified for a specific class.

General characteristics of a class

Type or select values in entry fields. Press Enter AFTER making all desired changes.

<table>
<thead>
<tr>
<th>Entry Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class name</td>
</tr>
<tr>
<td>Description</td>
</tr>
<tr>
<td>Tier</td>
</tr>
<tr>
<td>Resource Set</td>
</tr>
<tr>
<td>Inheritance</td>
</tr>
<tr>
<td>User authorized to assign its processes to this class</td>
</tr>
<tr>
<td>Group authorized to assign its processes to this class</td>
</tr>
<tr>
<td>User authorized to administrate this class</td>
</tr>
<tr>
<td>Group authorized to administrate this class</td>
</tr>
</tbody>
</table>

F1=Help F2=Refresh F3=Cancel F4=List
F5=Reset F6=Command F7=Edit F8=Image
F9=Shell F10=Exit Enter=Do

Figure 10-8 Resource set definition to a specific class

By default, the system creates one resource set for all physical memory, one for all CPUs, and one separate set for each individual CPU in the system. The lsrset command lists all resource sets defined. A sample output for the lsrset command follows:

lsrset -av
T Name Owner Group Mode CPU Memory Resources
r sys/sys0 root system r----- 4 511 sys/sys0
 sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
 sys/cpu.00000
r sys/node.00000 root system r----- 4 511 sys/sys0
 sys/node.00000 sys/mem.00000 sys/cpu.00003 sys/cpu.00002 sys/cpu.00001
 sys/cpu.00000
r sys/mem.00000 root system r----- 0 511 sys/mem.00000
r sys/cpu.00003 root system r----- 1 0 sys/cpu.00003
r sys/cpu.00002 root system r----- 1 0 sys/cpu.00002
r sys/cpu.00001 root system r----- 1 0 sys/cpu.00001
r sys/cpu.00000 root system r----- 1 0 sys/cpu.00000
10.5.6 rset registry

As mentioned previously, some resource sets in AIX 5L are created, by default, for memory and CPU. It is possible to create different resource sets by grouping two or more resource sets and storing the definition in the rset registry.

The rset registry services enable system administrators to define and name resource sets so that they can then be used by other users or applications. In order to alleviate the risks of name collisions, the registry supports a two-level naming scheme. The name of a resource set takes the form name_space/rset_name. Both the name space and rset_name may each be 255 characters in size, are case sensitive, and may contain only upper and lower case letters, numbers, underscores, and periods. The name space of sys is reserved by the operating system and used for rset definitions that represent the resources of the system.

The SMIT rset command has options to list, remove, or show a specific resource set used by a process and the management tools, as shown in Figure 10-9.

![SMIT main panel for resource set management](Figure 10-9)

To create, delete, or change a resource set in the rset registry, you must select the Manage Resource Set Database item in the SMIT panel. In this panel, it is also possible to reload the rset registry definitions to make all changes available to the system. Figure 10-10 on page 292 shows the SMIT panel for rset registry management.
To add a new resource set, you must specify a name space, a resource set name, and the list of resources. It is also possible to change the permissions for the owner and group of this rset. In addition, permissions for the owner, groups, and others can also be specified. Figure 10-11 on page 293 shows the SMIT panel for this task.
Whenever a new rset is created, deleted, or modified, a reload in the rset database is needed in order to make the changes effective.

After a WLM configuration has been defined by the system administrator, it can be made the active configuration using the \texttt{wlmcntrl} command. For example, to start WLM in active mode, enter:

\begin{verbatim}
wlmcntrl -a
\end{verbatim}

To validate if WLM is running, enter:

\begin{verbatim}
wlmcntrl -q
\end{verbatim}

1495-052 WLM is running

To stop WLM, enter:

\begin{verbatim}
wlmcntrl -o
\end{verbatim}

\section*{10.6 System debuggers}

This section highlights some of the tools used as system debuggers.
10.6.1 The dbx command

The dbx command provides an environment to debug and run programs. The dbx command provides a symbolic debug program for C, C++, and FORTRAN programs, allowing you to carry out operations such as the following:

- Examine object and core files.
- Provide an environment for running a program.
- Set breakpoints at selected statements or run the program one line at a time.
- Debug using symbolic variables and display them in their correct format.
- Hot-keying into the system debugger is a way to check for hung or busy systems.

An example of using the dbx command would be to identify which program has core dumped and where exactly it ended. Using dbx on the core file will tell you which program created the core file but may report that there is no program matching the core image. If you have an executable compiled with -g you might find out where the program crashed with the where subcommand. Copy the executable and the core file into one directory and run dbx on the executable and use the where subcommand. To display the full qualification of the given identifier use the which subcommand.

Table 10-6 lists further dbx subcommands.

Table 10-6 Sample dbx subcommands

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/</td>
<td>Searches forward in the current source file for a pattern</td>
</tr>
<tr>
<td>?</td>
<td>Searches backward in the current source file for a pattern</td>
</tr>
<tr>
<td>alias</td>
<td>Creates aliases for dbx subcommands</td>
</tr>
<tr>
<td>assign</td>
<td>Assigns a value to a variable</td>
</tr>
<tr>
<td>attribute</td>
<td>Displays information about all or selected attributes objects</td>
</tr>
<tr>
<td>call</td>
<td>Runs the object code associated with the named procedure or function</td>
</tr>
<tr>
<td>move</td>
<td>Changes the next line to be displayed</td>
</tr>
<tr>
<td>multiproc</td>
<td>Enables or disables multiprocess debugging</td>
</tr>
<tr>
<td>mutex</td>
<td>Displays information about all or selected mutexes</td>
</tr>
<tr>
<td>case</td>
<td>Changes how the dbx debug program interprets symbols</td>
</tr>
<tr>
<td>Subcommand</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>catch</td>
<td>Starts trapping a signal before that signal is sent to the application program</td>
</tr>
<tr>
<td>clear</td>
<td>Removes all stops at a given source line</td>
</tr>
<tr>
<td>cleari</td>
<td>Removes all breakpoints at an address</td>
</tr>
<tr>
<td>condition</td>
<td>Displays information about all or selected condition variables</td>
</tr>
<tr>
<td>cont</td>
<td>Continues application program execution from the current stopping point until the program finishes or another breakpoint is encountered</td>
</tr>
<tr>
<td>delete</td>
<td>Removes the traces and stops corresponding to the specified event numbers</td>
</tr>
<tr>
<td>detach</td>
<td>Continues execution of application and exits the debug program</td>
</tr>
<tr>
<td>display memory</td>
<td>Displays the contents of memory</td>
</tr>
<tr>
<td>down</td>
<td>Moves the current function down the stack</td>
</tr>
<tr>
<td>dump</td>
<td>Displays the names and values of variables in the specified procedure</td>
</tr>
<tr>
<td>edit</td>
<td>Starts an editor on the specified file</td>
</tr>
<tr>
<td>file</td>
<td>Changes the current source file to the specified file</td>
</tr>
<tr>
<td>func</td>
<td>Changes the current function to the specified procedure or function</td>
</tr>
<tr>
<td>goto</td>
<td>Causes the specified source line to be the next line run</td>
</tr>
<tr>
<td>map</td>
<td>Displays information about load characteristics of the application</td>
</tr>
<tr>
<td>next</td>
<td>Runs the application program up to the next source line</td>
</tr>
<tr>
<td>nexti</td>
<td>Runs the application program up to the next machine instruction</td>
</tr>
<tr>
<td>print</td>
<td>Prints the value of an expression or runs a procedure and prints the return code of that procedure</td>
</tr>
<tr>
<td>prompt</td>
<td>Changes the <code>dbx</code> command prompt</td>
</tr>
<tr>
<td>quit</td>
<td>Stops the <code>dbx</code> debug program</td>
</tr>
<tr>
<td>registers</td>
<td>Displays the values of all general-purpose registers, system-control registers, floating-point registers, and the current instruction register</td>
</tr>
<tr>
<td>rerun</td>
<td>Begins execution of an application with the previous arguments</td>
</tr>
</tbody>
</table>
The `kdb` command is an interactive utility for examining an operating system image or the running kernel (KDB). The `kdb` command interprets and formats control structures in the system and provides miscellaneous functions for examining a dump. Root permissions are required for execution of the `kdb` command on the active system. This is required because the special file `/dev/mem` is used. To invoke the `kdb` command on a system image file, enter:

```
kdb SystemImageFile
```

Where `SystemImageFile` is either a file name or the name of the dump device. The `kdb` command can also be used to determine if the system is hanging or busy by hot-keying into the `kdb` system debugger.

Table 10-7 on page 296 lists some of the sample `kdb` subcommands.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>return</td>
<td>Continues running the application program until a return to the specified procedure is reached</td>
</tr>
<tr>
<td>where</td>
<td>Displays a list of active procedures and functions</td>
</tr>
<tr>
<td>which</td>
<td>Displays the full qualification of the given identifier</td>
</tr>
<tr>
<td>help</td>
<td>Displays help information for <code>dbx</code> subcommands or topics</td>
</tr>
<tr>
<td>ignore</td>
<td>Stops trapping a signal before that signal is sent to the application program</td>
</tr>
<tr>
<td>list</td>
<td>Displays lines of the current source file</td>
</tr>
</tbody>
</table>

10.6.2 The `kdb` command

The `kdb` command is an interactive utility for examining an operating system image or the running kernel (KDB). The `kdb` command interprets and formats control structures in the system and provides miscellaneous functions for examining a dump. Root permissions are required for execution of the `kdb` command on the active system. This is required because the special file `/dev/mem` is used. To invoke the `kdb` command on a system image file, enter:

```
kdb SystemImageFile
```

Where `SystemImageFile` is either a file name or the name of the dump device. The `kdb` command can also be used to determine if the system is hanging or busy by hot-keying into the `kdb` system debugger.

Table 10-7 on page 296 lists some of the sample `kdb` subcommands.

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>h</td>
<td>Displays the list of valid subcommands. The help subcommand can be reduced at only one topic.</td>
</tr>
<tr>
<td>hist</td>
<td>The hist subcommand prints a history of user input. An argument can be used to specify the number of historical entries to display. Each historical entry can be recalled and edited for use with the usual control characters.</td>
</tr>
</tbody>
</table>
In the following example, the `kdb` command is used to look at the system dump.

```
# kdb /dev/dumplv
The specified kernel file is a MP kernel.
Preserving 981564 bytes of symbol table
First symbol __mulh
Component Names:
  1)  dmp_minimal [5 entries]
  2)  proc [295 entries]
  3)  thrd [757 entries]
  4)  ldr [2 entries]
  5)  errlg [3 entries]
  6)  bos [7 entries]
  7)  ipc [7 entries]
  8)  vmm [20 entries]
  9)  rtastrc [8 entries]
 10)  sscsidd [4 entries]
 11)  scdisk [10 entries]
 12)  lvm [2 entries]
 13)  tty [4 entries]
 14)  netstat [10 entries]
```

In the following example, the `kdb` command is used to look at the system dump.
Component Dump Table has 1143 entries

START END <name>
0000000000000000 0000000001D7CEC8 _system_configuration+000020
0000000002FF8A00 0000000002FF80A70 __ublock+000000
0000000002FF22FF4 0000000002FF22FF8 environ+000000
0000000002FF22FF8 0000000002FF22FFC errno+000000
00000000E0000000 00000000F0000000 ameseg+10000000

PFT:
id.................0007
raddr.....0000000002000000 eaddr.....0000000002000000
size..............00000000 align.............00000000
valid..1 ros....0 holes..0 io.....0 seg....1 wimg...2

PVT:
id.................0008
raddr.....00000000007D4000 eaddr.....0000000000000000
size..............00000000 align.............00000000
valid..1 ros....0 holes..0 io.....0 seg....1 wimg...2

Dump analysis on CHRP_SMP_PCI POWER_PC POWER_RS64III machine with 4 cpu(s)
(64-bit registers)
Processing symbol table...
.......................done
(0)> trace
Trace channel[0 - 7]: 7
Trace Channel 7 (0 entries)
(0)> f
pvthread+000100 STACK:
[0002BA94]waitproc+000264 (00000000 [??])
[0002A880]waitproc+000264 (00000000 [??])
[0006AC3C]procentry+000010 (??, ??, ??, ??)
(0)> trb
Usage: trb [CPU selector] [1-9]
CPU selector is '*' for all CPUs, 'cpu n' for CPU n, default is current CPU

Timer Request Block Information Menu
1. TRB Maintenance Structure - Routine Addresses
2. System TRB
3. Thread Specified TRB
4. Current Thread TRB's
5. Address Specified TRB
6. Active TRB Chain
7. Free TRB Chain
8. Clock Interrupt Handler Information
9. Current System Time - System Timer Constants
Please enter an option number: 8
10.7 Summary

The flowchart shown at the start of this chapter (Figure 10-1 on page 234) is used in the summary, now with some suggestions included (Figure 10-12).

![Performance tuning flowchart](image-url)
10.8 Command summary

The following section shows a summary of some of the commands and their flags used for CPU performance problem determination.

10.8.1 The sar command

The sar command collects, reports, or saves system activity information.

The syntax of the sar command:

```
/usr/sbin/sar [ { -A | [ -a ] [ -b ] [ -c ] [ -d ] [ -k ] [ -m ] [ -q ] [ -r ]
               [ -u ] [ -v ] [ -w ] } ] [ -P ProcessorIdentifier, ... | ALL ]
               [ -ehh [ :mm [ :ss ] ] ] [ -tFile ] [ -iSeconds ] [ -ofile ]
               [ -shh [ :mm [ :ss ] ] ] [ Interval [ Number ] ]
```

The most commonly used flags are provided in Table 10-8.

Table 10-8 Commonly used flags of the sar command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-u</td>
<td>Displays %idle, %sys, %usr, and %wio</td>
</tr>
<tr>
<td>-P ALL</td>
<td>Reports per-processor statistics for each individual processor, and globally for all processors</td>
</tr>
</tbody>
</table>

10.8.2 The ps command

The ps command shows the current status of the processes.

The syntax of the ps command is (X/Open, then Berkeley):

```
ps [ -A ] [ -N ] [ -a ] [ -d ] [ -e ] [ -f ] [ -k ] [ -l ] [ -F format]
    [ -o Format ] [ -c Clist ] [ -G Glist ] [ -g Glist ] [ -m ] [ -n NameList ]
    [ -p Plist ] [ -t Tlist ] [ -U Ulist ] [ -u Ulist ]
    [ -r ] [ -U ] [ -w ] [ -x ] [ l | s | u | v ] [ t Tty ]
    [ ProcessNumber ]
```

The most commonly used flags are provided in Table 10-9.

Table 10-9 Commonly used flags of the ps command

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-f</td>
<td>Full listing.</td>
</tr>
</tbody>
</table>
10.8.3 The netstat command

The netstat command shows the network status.

The syntax for the netstat command is as follows.

To display active sockets for each protocol or routing table information:

```
/bin/netstat [-n] [ { -A -a } | { -r -C -i -I Interface } ]
[ -f AddressFamily ] [ -p Protocol ] [ Interval ] [ System ]
```

To display the contents of a network data structure:

```
/bin/netstat [-m | -s | -ss | -u | -v ] [ -f AddressFamily ] [ -p Protocol ] [ Interval ] [ System ]
```

To display the packet counts throughout the communications subsystem:

```
/bin/netstat -D
```

To display the network buffer cache statistics:

```
/bin/netstat -c
```

To display the data link provider interface statistics:

```
/bin/netstat -P
```

To clear the associated statistics:

```
/bin/netstat [ -Zc | -Zi | -Zm | -Zs ]
```

The most commonly used flags are provided in Table 10-10.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-l</td>
<td>Long listing.</td>
</tr>
<tr>
<td>u</td>
<td>Displays user-oriented output. This includes the USER, PID, %CPU, %MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields.</td>
</tr>
<tr>
<td>v</td>
<td>Displays the PGIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU, and %MEM fields.</td>
</tr>
</tbody>
</table>
The `nfsstat` command displays statistical information about the Network File System (NFS) and Remote Procedure Call (RPC) calls.

The syntax of the `nfsstat` command is:
```
/usr/sbin/nfsstat [-c] [-s] [-n] [-r] [-z] [-m]
```

The most commonly used flags are provided in Table 10-11.

<table>
<thead>
<tr>
<th>Flags</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>Displays RPC information</td>
</tr>
<tr>
<td>-s</td>
<td>Displays server information</td>
</tr>
<tr>
<td>-c</td>
<td>Displays client information</td>
</tr>
</tbody>
</table>

10.9 Quiz

The following assessment questions help verify your understanding of the topics discussed in this chapter.

1. A system administrator is experiencing some performance problems. After running the `vmstat` command, the following output appeared:

```
          kthr     memory             page                faults        cpu
          ----- ----------- ------------------------ ------------ -----------
          r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa

2 0 44298  340  0  0  0  1  2  0 138  360  64  65  30  0  5
2 0 44298  358  0  0  0  1  2  0 138  360  64  65  30  0  5
2 0 44298  358  0  0  0  1  2  0 138  360  64  65  30  0  5
2 0 44298  358  0  0  0  1  2  0 138  360  64  65  30  0  5
2 0 44298  358  0  0  0  1  2  0 138  360  64  65  30  0  5
2 0 44245  358  0  0  0  1  2  0 138  360  64  65  30  0  5
```
Which of the following outputs best describes the cause of the problem?

A. The machine is CPU bound.
B. The machine needs memory optimized.
C. The machine requires more paging space.
D. A user program is causing unnecessary paging.

2. Which of the following commands should be used to observe the number of threads in the run queue?

A. `bf`
B. `iostat`
C. `filemon`
D. `vmstat`

3. Which of the following commands should be used to show the percentage of time that any given disk was busy?

A. `ps`
B. `tprof`
C. `iostat`
D. `vmstat`

4. Which WLM command will reload the assignment rules of the current running configuration into the kernel without reloading the class definitions?

A. `wlmcntrl -u -d config_dir`
B. `wlmcntrl -u -d ""`
C. `wlmcntrl -u config_dir`
D. `wlmcntrl -u -a`

5. In general, when the disk utilization exceeds a certain percentage, processes are waiting longer than necessary for I/O to complete because most UNIX processes block (or sleep) while waiting for their I/O requests to complete or be serviced by the interrupt handler. What is that percentage threshold?

A. 45 percent
B. 60 percent
C. 70 percent
D. 85 percent
6. Which command will show system calls and fork rates?
 A. sar -c
 B. vmtune
 C. vmstat
 D. svmon

7. A system appears to be experiencing network performance problems on the Ethernet adapter. A network engineer reports seeing an abnormally large number of collisions on the network. However, a `netstat -i` is run and shows 0 collisions. What does this statistic indicate?
 A. There are no collisions in the collision domain.
 B. There were no packet errors caused by collisions.
 C. The system did not generate any collisions.
 D. This statistic is not meaningful for detecting collisions.

8. Which of the following pieces of information is not included in the `tprost` report?
 A. Idle
 B. PID
 C. TID
 D. Kernel

9. Which WLM flag/option allows all classes to have access to the whole resource set of the system, regardless of whether they use a restricted resource set?
 A. `wlmcntr1 -d`
 B. `wlmcntr1 -p`
 C. `wlmcntr1 -g`
 D. `wlmcntr1 -o`
10.9.1 Answers

The following are the preferred answers to the questions provided in this section.

1. A
2. D
3. C
4. B
5. C
6. A
7. D
8. A
9. C
Software updates

This chapter covers the AIX software update procedures, including the following topics:

▶ An overview of the process
▶ Installing a software patch
▶ Software inventory
11.1 Overview

The biggest goal of all system administrators is to have an operating system running well with current software installed on it. Installation of software fixes is one of the actions an administrator must perform to keep a system error free. Software problems most often occur when changes have been made to the system, and either the prerequisites have not been met (for example, system firmware is not at the minimum required level) or instructions have not been followed exactly in order. You, as a system administrator, should carefully choose the methodology to maintain your software inventory.

11.1.1 Terminology

The following terms are useful for understanding software packaging:

Fileset
The smallest individually installable unit. It is a collection of files that provides a specific function. An example of a fileset is bos.net.tcp.nfs 4.3.3.0.

Fileset update
An individually installable update. Fileset updates either enhance or correct a defect in a previously installed fileset. An example of a fileset update is bos.net.tcp.nfs 4.3.3.10.

Package
Contains a group of filesets with a common function. It is a single, installable image. An example of a package is bos.net.

LPP
Licensed Program Product (LPP) is a complete software product collection, including all packages and filesets. For example, the Base Operating System (BOS) itself is an LPP, which is a collection of packages and filesets.

PTF
Program Temporary Fix (PTF). The PTF is an updated or fixed fileset (or group of filesets). Each fix has an Authorized Program Analysis Report (APAR) number.

11.1.2 Software layout

Each software component is divided into three parts that support code serving and diskless workstation:

root
The root part of a software product contains the part of the product that cannot be shared. In a client/server environment, these are the files for which there must be a unique copy for each client of a server. Most of the root software is associated with the configuration of the
machine or product. In a standard system, the root parts of a product are stored in the root (/) file tree. The /etc/objrepos directory contains the root part of an installable software product.

usr

The usr part of a software product contains the part of the product that can be shared by machines that have the same hardware architecture. Most of the software that is part of a product usually falls into this category. In a standard system, the usr parts of products are stored in the /usr file tree.

share

The share part of a software product contains the part of the product that can be shared among machines, even if they have different hardware architectures (this would include nonexecutable text or data files). For example, the share part of a product might contain documentation written in ASCII text or data files containing special fonts.

To verify that the root (/), /usr, and /usr/share parts of the system are valid with each other, use the following command:

```bash
lppchk -v
```

This command verifies that all software products installed on the / (root) file system are also installed on the /usr file system and, conversely, all the software products installed in the /usr file system are also installed on the / (root) file system.

11.1.3 Software states

The installed software or software update can stay in one of the following states:

- Applied
- Committed

If the service update was not committed during installation, then you must commit it after installation once you have decided that you will not be returning to the previous version of the software. Committing the updated version of the service deletes all previous versions from the system and recovers the disk space that was used to store the previous version. When you are sure that you want to keep the updated version of the software, you should commit it. To commit the files set bos.sysmgmt.trace that is currently applied but not committed, use:

```bash
installp -c bos.sysmgmt.trace
```
Note: Before installing a new set of updates, you should consider committing any previous updates that have not yet been committed.

If you decide to return to the previous version of the software, you must reject the updated version that was installed. Rejecting a service update deletes the update from the system and returns the system to its former state. A service update can only be rejected if it has not yet been committed. Once committed, there is no way to delete an update except by removing the entire fileset, or by force-installing the fileset back to a previous level.

When you install a base level fileset, it is automatically committed during installation. If you want to delete a fileset, it must be removed (as opposed to rejected) from the system. A fileset is always removed with all of its updates.

To display the installation and update history information for the bos.sysmgt.trace fileset, use:

```
# lslpp -h bos.sysmgt.trace
```

<table>
<thead>
<tr>
<th>Fileset</th>
<th>Level</th>
<th>Action</th>
<th>Status</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>/usr/lib/objrepos bos.sysmgt.trace</td>
<td>4.3.3.0</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/15/00</td>
<td>09:57:28</td>
</tr>
<tr>
<td></td>
<td>4.3.3.11</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/16/00</td>
<td>11:19:13</td>
</tr>
<tr>
<td>/etc/objrepos bos.sysmgt.trace</td>
<td>4.3.3.0</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/15/00</td>
<td>09:57:33</td>
</tr>
<tr>
<td></td>
<td>4.3.3.11</td>
<td>COMMIT</td>
<td>COMPLETE</td>
<td>06/16/00</td>
<td>11:19:14</td>
</tr>
</tbody>
</table>

As shown, the fileset bos.sysmgt.trace was once updated. It is now in the committed state at the fix level 4.3.3.11.

If something goes wrong during the software installation that causes the installation to be prematurely canceled or interrupted, a cleanup must be done. To do this, use `smitty maintain_software` or use the `installp` command:

```
installp -C
```

Figure 11-1 on page 311 shows how to clean up after an interrupted installation using SMIT.
11.2 Installing a software patch

Once you have AIX installed, you may want to upgrade or enhance the software on your system. To do this, there are two special bundles:

Update bundle
Collection of fixes and enhancements that update software products on the system. This will include updated filesets. For example, a fileset may be updated from 4.3.3.0 to 4.3.3.10. Applying an updated bundle will not change the level of the operating system.

Maintenance level bundle
Collection of fixes and enhancements that upgrade the operating system to the latest level. For example, a maintenance level bundle can upgrade the operating system from AIX Version 4.3.2 to AIX Version 4.3.3.

Software fixes are identified using one of the following conventions:

- `fileset:version.release.modification.fix`. Modification level is used to describe functional support. Fix levels describe a fix change.
- PTF number, such as U469083.
It is simple to obtain software updates for AIX. Check the following Web page and download what is required:

http://techsupport.services.ibm.com/support/rs6000.support/databases

11.2.1 Software patch installation procedure

Before installing optional software or service updates, complete the following prerequisites:

1. AIX BOS must be installed on your system.

2. The software you are installing is available on either CD-ROM, tape, or diskette; it is located in a directory on your system; or, if your computer is a configured Network Installation Management (NIM) client, it is in an available lpp_source resource.

3. If you are installing service updates and do not have a current backup of your system, back up your system before any installation.

4. If the file system has been modified, it is a good idea to back it up separately before updates are applied, since it is possible that the update process may replace configuration files.

5. Check if there is enough space in the file system.

6. Log in as a root user.

The easiest way to install software updates is SMIT. Use smitty install_update to access the installation menu. The appropriate menu is shown in Figure 11-2 on page 313.
Chapter 11. Software updates

The major menu options are as follows:

- **Install and Update from LATEST Available Software**

 This option allows you to install or update software from the latest level software available on the installation media.

- **Update Installed Software to the Latest Level**

 Enables you to update all currently installed filesets to the latest level available on the installation media. This option is also used to update currently installed software to a new maintenance level.

- **Update Software by Fix (APAR)**

 Enables you to install fileset updates that are grouped by some relationship and identified by a unique APAR. A fix to an APAR can consist of one or more fileset updates.

If you are more comfortable with a shell, all of this can be done using the installp or instfix command.

- To install all filesets within the bos.net software package (located in the /tmp/install.images directory) and expand file systems if necessary, enter:

 `installp -aX -d/tmp/install.images bos.net`
To install all filesets associated with fix IX38794 from the CD-ROM, enter:

```
instfix -k IX38794 -d /dev/cd0
```

Note: If you choose to apply the updates during installation (rather than committing them at installation time), you can still reject those updates later. If a particular update is causing problems on your system, you can reject that update without having to reject all the other updates that you installed. Once you are convinced that the updates cause no problems, you may want to commit those updates to retrieve the disk space that is used to save the previous levels of that software.

After you have installed a new fix, use the `lppchk` command to check if the installation was successful. The `lppchk` command verifies that files for an installable software product (fileset) match the Software Vital Product Data database information for file sizes, checksum values, or symbolic links. The useful flags are shown in Table 11-1.

Table 11-1 Commonly used flags of the lppchk command

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Performs a checksum operation on the input file list items and verifies that the checksum and the file size are consistent with the SWVPD database</td>
</tr>
<tr>
<td>-f</td>
<td>Checks that the file list items are present and that the file size matches the SWVPD database</td>
</tr>
<tr>
<td>-l</td>
<td>Verifies symbolic links for files, as specified in the SWVPD database</td>
</tr>
</tbody>
</table>

If you have been installing software using SMIT, the screen returns to the top of the list of messages that are displayed during installation. You can review the message list as described in the next step, or you can exit SMIT and review the `$HOME/smit.log` file.

After you check that the installation is successful, you should create a new boot image using the `bosboot` command:

```
bosboot -ad /dev/hdiskX
```
11.3 Software inventory

After all the software installations, you can check what is really installed with the \texttt{instfix} and \texttt{lslpp} commands.

1. To display the most recent level, state, description and all updates of the \texttt{bos.sysmgt.trace} fileset, run the following command:

 \begin{verbatim}
 # lslpp -La bos.sysmgt.trace
 \end{verbatim}

 \begin{tabular}{|l|l|l|l|}
 \hline
 Fileset & Level & State & Description \\
 \hline
 bos.sysmgt.trace & 4.3.3.0 & C & Software Trace Service Aids \\
 & 4.3.3.11 & C & Software Trace Service Aids \\
 ... & & & \\
 \hline
 \end{tabular}

2. To see whether fix IX78215 is installed or information about each fileset associated with it, run the following command:

 \begin{verbatim}
 # instfix -ik IX78215 -v
 \end{verbatim}

 IX78215 Abstract: trace allocates too much memory

 Fileset bos.sysmgt.trace:4.3.1.1 is applied on the system.
 All filesets for IX78215 were found.

3. To list maintenance level updates, enter:

 \begin{verbatim}
 # instfix -i -tp
 \end{verbatim}

 All filesets for 4.3.1.0_AIX_ML were found.
 All filesets for 4.3.2.0_AIX_ML were found.
 All filesets for 4.3.1.0_AIX_ML were found.
 All filesets for 4.3.2.0_AIX_ML were found.
 All filesets for 4.3.3.0_AIX_ML were found.

 Or run \texttt{instfix -i | grep ML}.

11.4 Command summary

This section shows a summary of some of the commands and their flags that are used for CPU performance problem determination.

11.4.1 The \texttt{lslpp} command

The \texttt{lslpp} command displays information about installed filesets or fileset updates. The command has the following syntax:

\begin{verbatim}
lslpp \{ -f | -h | -i | -L \} \[-a \] \{ FilesetName ... | FixID ... | all \}
\end{verbatim}

The most commonly used flags are provided in Table 11-2 on page 316.
The *installp* command installs available software products in a compatible installation package.

The most commonly used flags are provided in Table 11-3.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-ac</td>
<td>Commits</td>
</tr>
<tr>
<td>-g</td>
<td>Includes requisites</td>
</tr>
<tr>
<td>-N</td>
<td>Overrides saving of existing files</td>
</tr>
<tr>
<td>-q</td>
<td>Quiet mode</td>
</tr>
<tr>
<td>-w</td>
<td>Does not place a wildcard at end of fileset name</td>
</tr>
<tr>
<td>-X</td>
<td>Attempts to expand file system size if needed</td>
</tr>
<tr>
<td>-d</td>
<td>Inputs device</td>
</tr>
<tr>
<td>-I</td>
<td>List of installable filesets</td>
</tr>
<tr>
<td>-c</td>
<td>Commits an applied fileset</td>
</tr>
<tr>
<td>-C</td>
<td>Cleans up after a failed installation</td>
</tr>
<tr>
<td>-u</td>
<td>Uninstalls</td>
</tr>
</tbody>
</table>
11.4.3 The `instfix` command

The `instfix` command installs filesets associated with keywords or fixes. The command has the following syntax:

```
instfix [ -T ] [ -s String ] [ -k Keyword ] [ -d Device ] [ -i ]
```

The most commonly used flags are provided in Table 11-4.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-r</td>
<td>Rejects an applied fileset</td>
</tr>
<tr>
<td>-p</td>
<td>Preview of installation</td>
</tr>
<tr>
<td>-e</td>
<td>Defines an installation log</td>
</tr>
<tr>
<td>-F</td>
<td>Forces overwrite of same or newer version</td>
</tr>
</tbody>
</table>

11.4.4 The `lppchk` command

The `lppchk` command verifies files of an installable software product. The command has the following syntax:

```
lppchk { -c | -f | -l | -v } [ -O { [ r ] [ s ] [ u ] } ] [ ProductName [ FileList ... ] ]
```

The most commonly used flags are provided in Table 11-5.

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-c</td>
<td>Performs a checksum operation on the file list items and verifies that the checksum and the file size are consistent with the SWVPD database.</td>
</tr>
</tbody>
</table>
11.5 Quiz

The following assessment question helps verify your understanding of the topics discussed in this chapter.

1. A system administrator must determine if the operating system is in a consistent state or if it does not have the fileset installed correctly. Which of the following commands should be used?

 A. `lslpp -v`

 B. `ls1v -v`

 C. `lsvg -v`

 D. `lppchk -v`

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-f</code></td>
<td>Checks that the file list items are present and the file size matches the SWVPD database.</td>
</tr>
<tr>
<td><code>-l</code></td>
<td>Verifies symbolic links for files, as specified in the SWVPD database.</td>
</tr>
<tr>
<td><code>-O [r][s][u]</code></td>
<td>Verifies the specified parts of the program. The flags specify the following parts: root, share, and usr.</td>
</tr>
</tbody>
</table>
11.5.1 Answers

The following is the preferred answer to the question provided in this section.
1. D

11.6 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Use the various flags of the `lppchk` command to verify the checksum, the file sizes, symbolic links, and requisites of the software products installed.
2. Use the `lslpp` command to find out which fileset is used to package a given command.
3. Use the `instfix` command to list fixes installed on your system.
4. Use the FixDist utility to download AIX fixes.
5. Use the `lslpp` command to display state, description, and all updates of the filesets.
Online documentation

AIX 5L provides an optionally installable component for Web-based documentation: The Documentation Library Service. It allows you to search online HTML documents. It provides a search form that appears in your Web browser. When you type words into the search form, it searches for the words and then presents a search results page that contains links that lead to the documents that contain the target words.

You can set up one of your AIX systems to be the documentation server and all other systems as documentation clients. This will allow documentation to be installed on only one system, and all other systems can access this system without needing the documentation installed locally.

You need the following products and components installed for a complete set of services:

- For the client:
 - A Web browser
 - The bos.docsearch.client.* filesets (for AIX integration)
- For the documentation server (which may also act as a client):
 - The entire bos.docsearch package
 - The documentation libraries
 - A Web browser
– A Web server

The browser must be a forms-capable browser, and the Web server must be CGI compliant.

If you are planning on integrating your own documentation on the documentation server, you will also need to build the documents’ indexes.

Except for the end-user tasks described in 12.6, “Invoking the Documentation Library Service” on page 326, you need root authority to perform the installation and configuration tasks.

There are a variety of ways to install the documentation, Web server, and Document Library Service. You can use the Configuration Assistant TaskGuide, Web-Based Systems Management, or SMIT.

The easiest way for a non-technical user to install and configure Documentation Library Services is by using the Configuration Assistant TaskGuide. To run the Configuration Assistant TaskGuide, use the configassist command, then select the item titled Configure Online Documentation and Search.

If you would rather install Documentation Library Services manually, you can use SMIT.
12.1 Installing the Web browser

Use `smitty install` to install Netscape supplied on the AIX Version 5.1 Expansion Pack CD-ROM, as shown in Figure 12-1.

![Figure 12-1 Netscape filesets](image)

If you are installing the Netscape browser from other sources, or you are installing other Web browsers, follow the installation instructions that come with the software. Note that there will not be any records in the ODM if your product source is not in installp format.

12.2 Installing the Web server

You may install any CGI-compliant Web Server. The IBM HTTP Web server used here is supplied on the AIX Version 5.1 Expansion Pack CD-ROM. Figure 12-2 on page 324 shows the filesets installed.
If you are installing another Web server, follow the installation instructions that come with the software. Note that there will not be any records in the ODM if your product source is not in installp format.

12.3 Installing the Documentation Library Service

The Documentation Library Service is on AIX Version 5.1 installation CD-ROMs. Install the client portions for a client AIX image or install the entire bos.docsearch package for a documentation server. The following filesets are the prerequisites for other Documentation Library Service filesets (such as IMNSSearch):

- bos.docsearch.client.Dt
- bos.docsearch.client.com
- bos.docsearch.rte

For the documentation clients, you need only a Web browser. Installation of the bos.docsearch.client fileset will give you the CDE desktop icon and the docsearch command. Refer to 12.6, “Invoking the Documentation Library Service” on page 326, for further details.

Use smitty list_installed to check whether you have the document library filesets installed, as shown in Figure 12-3 on page 325.
Configuring the Documentation Library Service

Use either `wsm` or `smitty` to configure the Documentation Library Service. If you used the Configuration Assistant TaskGuide to install and configure the Documentation Library Service, you will not need to perform any further configuration.

For `wsm`, double-click the **Internet Environment** icon, or you can use `smitty web_configure` to configure the following:

- **Default browser**

 Type into the field the command that launches the browser that you want to be the default browser for all users on this computer, for example, `/usr/prod/bin/netscape`. This will set the `/etc/environment` variable `DEFAULT_BROWSER` to the string you type in.

- **Documentation and search server**

 You can define the Documentation Library Server location to be:

 - None (disabled)
– Remote computer
 Type the remote documentation server name. The default TCP/IP port
 address is 80. Change it to the port address used by the documentation
 server.
– Local (this computer)
 If you are using Lotus Domino Go Webserver or IBM HTTP Server in the
 default location, all the default settings of the cgi-bin directory and HTML
directory will have been filled in for you. If you are using other Web
servers, or you are not using the default location, you have to fill in your
cgi-bin directory and the HTML directory that the Web server requires.
You may change the port address used by the server. If you change the
port address, you have to use the same address for all of your
documentation clients.

12.5 Installing online manuals

You can either install the documentation information onto the hard disk or mount
the documentation CD-ROM in the CD-ROM drive. Mounting the CD-ROM will
save some amount of hard disk space, but it requires the CD-ROM to be kept in
the CD-ROM drive at all times. Also, searching the documentation from the
CD-ROM drive can be significantly slower (in some cases, up to 10 times slower)
than searching the information if it is installed on a hard disk.

Use smitty install_latest to install the online manuals onto the hard disk. The
fileset bos.docregister is a prerequisite for all online manuals. It will be
automatically installed the first time you install any online manuals, even if you
have not selected this fileset.

12.6 Invoking the Documentation Library Service

You must log out and log in again after the Documentation Library Service has
been configured so that you will pick up the environment variables set up during
the configuration.

If you are running the CDE desktop environment, double-click the
Documentation Library icon in the Application Manager window.

Alternatively, you can use the command docsearch to invoke the Documentation
Library Service. Your Web browser will start, and you should see the
Documentation Library Service page. Netscape is used as the default Web
browser for this discussion.
You can invoke the Documentation Library Service without installing the docsearch client component. In fact, you do not even need to invoke the Documentation Library Service from an AIX machine. You can do this by first invoking the browser and entering the following URL:

http://server_name[:port_number]/cgi-bin/ds_form

This URL points to a global search form on the document server where the name of the remote server is given in server_name. The port_number only needs to be entered if the port is not 80.

If you have not run Netscape previously, a series of informational messages and windows will be shown while Netscape is setting up the environment in your home directory. This is standard behavior for the first execution of Netscape. The messages will not be shown the next time you start Netscape.

The top part of the Documentation Library Service page allows you to specify your search criteria, and the bottom part shows what online manuals have been installed. Figure 12-4 on page 328 shows the Documentation Library Service page with only the command reference manuals and the programming guide manuals installed.
Figure 12-4 Documentation Library Service

If you have a problem starting the Documentation Library Service, check the following environment variables. These environment variables may be set, displayed, and changed using SMIT. Start smitty, select System Environments, then select Internet and Documentation Services.

- On the client machine:
 a. Invoke the Web browser manually and enter the URL http://server_name[:port_number]/cgi-bin/ds_form to ensure that the server is up and running.
 b. Ensure that the DEFAULT_BROWSER variable is set to the command for starting your Web browser. Use the command echo $DEFAULT_BROWSER to find out the command used in starting the browser. Test whether that command can bring up the browser by manually entering it on the command line.
 c. Ensure that the DOCUMENT_SERVER_MACHINE_NAME variable is set to the document server's host name or IP address.
d. Ensure that the DOCUMENT_SERVER_PORT variable is set to the port address used by the document server's port address.

► On the server machine:

Ensure that the DEFAULT_BROWSER variable is set to the command for starting your Web browser.

Use the command `echo $DEFAULT_BROWSER` to find out the command used in starting the browser. Test whether that command can bring up the browser by manually entering it on the command line.

1. Ensure that the DOCUMENT_SERVER_MACHINE_NAME variable is set to the local host name.

2. Ensure that the DOCUMENT_SERVER_PORT variable is set to the port address used by the local Web server.

3. Ensure that the CGI_DIRECTORY variable is set to the correct cgi-bin directory used by the local Web server.

4. Ensure that the DOCUMENT_DIRECTORY is set to the directory where the symbolic links doc_link and ds_images reside.

5. If you are not using the default directory, ensure that you have defined the necessary directory mapping in your Web server configuration file so that the directory can be resolved.

12.7 Exercises

The following exercises provide sample topics for self study. They will help ensure comprehension of this chapter.

1. Install a Web browser.

2. Install a Web server.

3. Install the Document Library Services fileset.

4. Install some online manuals.

6. Access the online manuals using the `docsearch` command and from a Web browser on other systems.
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABI</td>
<td>Application Binary Interface</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
</tr>
<tr>
<td>ACL</td>
<td>Access Control List</td>
</tr>
<tr>
<td>ADSM</td>
<td>ADSTAR Distributed Storage Manager</td>
</tr>
<tr>
<td>ADSTAR</td>
<td>Advanced Storage and Retrieval</td>
</tr>
<tr>
<td>AFPA</td>
<td>Adaptive Fast Path Architecture</td>
</tr>
<tr>
<td>AFS</td>
<td>Andrew File System</td>
</tr>
<tr>
<td>AH</td>
<td>Authentication Header</td>
</tr>
<tr>
<td>AIX</td>
<td>Advanced Interactive Executive</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>APAR</td>
<td>Authorized Program Analysis Report</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>ASCI</td>
<td>Accelerated Strategic Computing Initiative</td>
</tr>
<tr>
<td>ASCII</td>
<td>American National Standards Code for Information Interchange</td>
</tr>
<tr>
<td>ASR</td>
<td>Address Space Register</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AuditRM</td>
<td>Audit Log Resource Manager</td>
</tr>
<tr>
<td>AUI</td>
<td>Attached Unit Interface</td>
</tr>
<tr>
<td>AWT</td>
<td>Abstract Window Toolkit</td>
</tr>
<tr>
<td>BCT</td>
<td>Branch on CounT</td>
</tr>
<tr>
<td>BFF</td>
<td>Backup File Format</td>
</tr>
<tr>
<td>BI</td>
<td>Business Intelligence</td>
</tr>
<tr>
<td>BIND</td>
<td>Berkeley Internet Name Daemon</td>
</tr>
<tr>
<td>BIST</td>
<td>Built-In Self-Test</td>
</tr>
<tr>
<td>BLAS</td>
<td>Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>BLOB</td>
<td>Binary Large Object</td>
</tr>
<tr>
<td>BLV</td>
<td>Boot Logical Volume</td>
</tr>
<tr>
<td>BOOTP</td>
<td>Boot Protocol</td>
</tr>
<tr>
<td>BOS</td>
<td>Base Operating System</td>
</tr>
<tr>
<td>BSC</td>
<td>Binary Synchronous Communications</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>CAE</td>
<td>Computer-Aided Engineering</td>
</tr>
<tr>
<td>CAM</td>
<td>Computer-Aided Manufacturing</td>
</tr>
<tr>
<td>CATE</td>
<td>Certified Advanced Technical Expert</td>
</tr>
<tr>
<td>CATIA</td>
<td>Computer-Graphics Aided Three-Dimensional Interactive Application</td>
</tr>
<tr>
<td>CCM</td>
<td>Common Character Mode</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CDE</td>
<td>Common Desktop Environment</td>
</tr>
<tr>
<td>CDLI</td>
<td>Common Data Link Interface</td>
</tr>
<tr>
<td>CD-R</td>
<td>CD Recordable</td>
</tr>
<tr>
<td>CD-ROM</td>
<td>Compact Disk-Read Only Memory</td>
</tr>
<tr>
<td>CE</td>
<td>Customer Engineer</td>
</tr>
<tr>
<td>CEC</td>
<td>Central Electronics Complex</td>
</tr>
<tr>
<td>CFD</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>CGE</td>
<td>Common Graphics Environment</td>
</tr>
<tr>
<td>CHRP</td>
<td>Common Hardware Reference Platform</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CISPR</td>
<td>International Special Committee on Radio Interference</td>
</tr>
<tr>
<td>CLIO/S</td>
<td>Client Input/Output Sockets</td>
</tr>
<tr>
<td>CLVM</td>
<td>Concurrent LVM</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complimentary Metal-Oxide Semiconductor</td>
</tr>
<tr>
<td>CMP</td>
<td>Certificate Management Protocol</td>
</tr>
<tr>
<td>COFF</td>
<td>Common Object File Format</td>
</tr>
<tr>
<td>COLD</td>
<td>Computer Output to Laser Disk</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSID</td>
<td>Character Set ID</td>
</tr>
<tr>
<td>CSR</td>
<td>Customer Service Representative</td>
</tr>
<tr>
<td>CSS</td>
<td>Communication Subsystems Support</td>
</tr>
<tr>
<td>CSU</td>
<td>Customer Set-Up</td>
</tr>
<tr>
<td>CWS</td>
<td>Control Workstation</td>
</tr>
<tr>
<td>DAD</td>
<td>Duplicate Address Detection</td>
</tr>
<tr>
<td>DAS</td>
<td>Dual Attach Station</td>
</tr>
<tr>
<td>DASD</td>
<td>Direct Access Storage Device</td>
</tr>
<tr>
<td>DAT</td>
<td>Digital Audio Tape</td>
</tr>
<tr>
<td>DBCS</td>
<td>Double Byte Character Set</td>
</tr>
<tr>
<td>DBE</td>
<td>Double Buffer Extension</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
</tr>
<tr>
<td>DCE</td>
<td>Distributed Computing Environment</td>
</tr>
<tr>
<td>DDC</td>
<td>Display Data Channel</td>
</tr>
<tr>
<td>DDS</td>
<td>Digital Data Storage</td>
</tr>
<tr>
<td>DE</td>
<td>Dual-Ended</td>
</tr>
<tr>
<td>DES</td>
<td>Data Encryption Standard</td>
</tr>
<tr>
<td>DFL</td>
<td>Divide Float</td>
</tr>
<tr>
<td>DFP</td>
<td>Dynamic Feedback Protocol</td>
</tr>
<tr>
<td>DFS</td>
<td>Distributed File System</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DIMM</td>
<td>Dual In-Line Memory Module</td>
</tr>
<tr>
<td>DIP</td>
<td>Direct Insertion Probe</td>
</tr>
<tr>
<td>DIT</td>
<td>Directory Insertion Tree</td>
</tr>
<tr>
<td>DIVA</td>
<td>Digital Inference Voice Answer</td>
</tr>
<tr>
<td>DLT</td>
<td>Digital Linear Tape</td>
</tr>
<tr>
<td>DMA</td>
<td>Direct Memory Access</td>
</tr>
<tr>
<td>DMT</td>
<td>Directory Management Tool</td>
</tr>
<tr>
<td>DN</td>
<td>Distinguished Name</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Naming System</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>DOI</td>
<td>Domain of Interpretation</td>
</tr>
<tr>
<td>DOS</td>
<td>Disk Operating System</td>
</tr>
<tr>
<td>DPCL</td>
<td>Dynamic Probe Class Library</td>
</tr>
<tr>
<td>DRAM</td>
<td>Dynamic Random Access Memory</td>
</tr>
<tr>
<td>DS</td>
<td>Differentiated Service</td>
</tr>
<tr>
<td>DSA</td>
<td>Dynamic Segment Allocation</td>
</tr>
<tr>
<td>DSE</td>
<td>Diagnostic System Exerciser</td>
</tr>
<tr>
<td>DSMIT</td>
<td>Distributed SMIT</td>
</tr>
<tr>
<td>DSU</td>
<td>Data Service Unit</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminating Equipment</td>
</tr>
<tr>
<td>DW</td>
<td>Data Warehouse</td>
</tr>
<tr>
<td>EA</td>
<td>Effective Address</td>
</tr>
<tr>
<td>EC</td>
<td>Engineering Change</td>
</tr>
<tr>
<td>ECC</td>
<td>Error Checking and Correcting</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically Erasable Programmable Read Only Memory</td>
</tr>
<tr>
<td>EFI</td>
<td>Extensible Firmware Interface</td>
</tr>
<tr>
<td>EHD</td>
<td>Extended Hardware Drivers</td>
</tr>
<tr>
<td>EIA</td>
<td>Electronic Industries Association</td>
</tr>
<tr>
<td>EISA</td>
<td>Extended Industry Standard Architecture</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>ELA</td>
<td>Error Log Analysis</td>
</tr>
<tr>
<td>ELF</td>
<td>Executable and Linking Format</td>
</tr>
<tr>
<td>EMU</td>
<td>European Monetary Union</td>
</tr>
<tr>
<td>EOF</td>
<td>End of File</td>
</tr>
<tr>
<td>EPOW</td>
<td>Environmental and Power Warning</td>
</tr>
<tr>
<td>ERRM</td>
<td>Event Response resource manager</td>
</tr>
<tr>
<td>ESID</td>
<td>Effective Segment ID</td>
</tr>
<tr>
<td>ESP</td>
<td>Encapsulating Security Payload</td>
</tr>
<tr>
<td>ESSL</td>
<td>Engineering and Scientific Subroutine Library</td>
</tr>
<tr>
<td>ETML</td>
<td>Extract, Transformation, Movement, and Loading</td>
</tr>
<tr>
<td>F/C</td>
<td>Feature Code</td>
</tr>
<tr>
<td>F/W</td>
<td>Fast and Wide</td>
</tr>
<tr>
<td>FC</td>
<td>Fibre Channel</td>
</tr>
<tr>
<td>FCAL</td>
<td>Fibre Channel Arbitrated Loop</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communication Commission</td>
</tr>
<tr>
<td>FCP</td>
<td>Fibre Channel Protocol</td>
</tr>
<tr>
<td>FDDI</td>
<td>Fiber Distributed Data Interface</td>
</tr>
<tr>
<td>FDPR</td>
<td>Feedback Directed Program Restructuring</td>
</tr>
<tr>
<td>FDX</td>
<td>Full Duplex</td>
</tr>
<tr>
<td>FIFO</td>
<td>First In/First Out</td>
</tr>
<tr>
<td>FLASHEEPROM</td>
<td>Flash Erasable Programmable Read-Only Memory</td>
</tr>
<tr>
<td>FLIH</td>
<td>First Level Interrupt Handler</td>
</tr>
<tr>
<td>FMA</td>
<td>Floating point Multiply Add operation</td>
</tr>
<tr>
<td>FPR</td>
<td>Floating Point Register</td>
</tr>
<tr>
<td>FPU</td>
<td>Floating Point Unit</td>
</tr>
<tr>
<td>FRCA</td>
<td>Fast Response Cache Architecture</td>
</tr>
<tr>
<td>FRU</td>
<td>Field Replaceable Unit</td>
</tr>
<tr>
<td>FSRM</td>
<td>File System Resource Manager</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GAID</td>
<td>Graphic Adapter Interface</td>
</tr>
<tr>
<td>GAMESS</td>
<td>General Atomic and Molecular Electronic Structure System</td>
</tr>
<tr>
<td>GFS</td>
<td>General Parallel File System</td>
</tr>
<tr>
<td>GPR</td>
<td>General-Purpose Register</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>GUID</td>
<td>Globally Unique Identifier</td>
</tr>
<tr>
<td>HACMP</td>
<td>High Availability Cluster Multi Processing</td>
</tr>
<tr>
<td>HACWS</td>
<td>High Availability Control Workstation</td>
</tr>
<tr>
<td>HCON</td>
<td>IBM AIX Host Connection Program/6000</td>
</tr>
<tr>
<td>HCON</td>
<td>IBM AIX Host Connection Program/6000</td>
</tr>
<tr>
<td>HDX</td>
<td>Half Duplex</td>
</tr>
<tr>
<td>HFT</td>
<td>High Function Terminal</td>
</tr>
<tr>
<td>HIPPI</td>
<td>High Performance Parallel Interface</td>
</tr>
<tr>
<td>HIPS</td>
<td>High Performance Switch</td>
</tr>
<tr>
<td>HIPS LC-8</td>
<td>Low-Cost Eight-Port High Performance Switch</td>
</tr>
<tr>
<td>HMC</td>
<td>Hardware Management Console</td>
</tr>
<tr>
<td>HostRM</td>
<td>Host Resource Manager</td>
</tr>
<tr>
<td>HP</td>
<td>Hewlett-Packard</td>
</tr>
<tr>
<td>HPF</td>
<td>High Performance FORTRAN</td>
</tr>
<tr>
<td>HPSSDL</td>
<td>High Performance Supercomputer Systems Development Laboratory</td>
</tr>
<tr>
<td>HP-UX</td>
<td>Hewlett-Packard UNIX</td>
</tr>
<tr>
<td>HTML</td>
<td>Hyper-text Markup Language</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>I/O</td>
<td>Input/Output</td>
</tr>
<tr>
<td>I²C</td>
<td>Inter Integrated-Circuit Communications</td>
</tr>
<tr>
<td>IAR</td>
<td>Instruction Address Register</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines</td>
</tr>
<tr>
<td>ICCCM</td>
<td>Inter-Client Communications Conventions Manual</td>
</tr>
<tr>
<td>ICE</td>
<td>Inter-Client Exchange</td>
</tr>
<tr>
<td>ICElib</td>
<td>Inter-Client Exchange library</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IDE</td>
<td>Integrated Device Electronics</td>
</tr>
<tr>
<td>IDS</td>
<td>Intelligent Decision Server</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IHV</td>
<td>Independent Hardware Vendor</td>
</tr>
<tr>
<td>IIOP</td>
<td>Internet Inter-ORB Protocol</td>
</tr>
<tr>
<td>IJG</td>
<td>Independent JPEG Group</td>
</tr>
<tr>
<td>IKE</td>
<td>Internet Key Exchange</td>
</tr>
<tr>
<td>ILS</td>
<td>International Language Support</td>
</tr>
<tr>
<td>IM</td>
<td>Input Method</td>
</tr>
<tr>
<td>INRIA</td>
<td>Institut National de Recherche en Informatique et en Automatique</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol (OSI)</td>
</tr>
<tr>
<td>IPL</td>
<td>Initial Program Load</td>
</tr>
<tr>
<td>IPSec</td>
<td>IP Security</td>
</tr>
<tr>
<td>IrDA</td>
<td>Infrared Data Association (which sets standards for infrared support including protocols for data interchange)</td>
</tr>
<tr>
<td>IRQ</td>
<td>Interrupt Request</td>
</tr>
<tr>
<td>IS</td>
<td>Integrated Service</td>
</tr>
<tr>
<td>ISA</td>
<td>Industry Standard Architecture, Instruction Set Architecture</td>
</tr>
<tr>
<td>ISAKMP</td>
<td>Internet Security Association Management Protocol</td>
</tr>
<tr>
<td>ISB</td>
<td>Intermediate Switch Board</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated-Services Digital Network</td>
</tr>
<tr>
<td>ISMP</td>
<td>InstallSheild Multi-Platform</td>
</tr>
<tr>
<td>ISNO</td>
<td>Interface Specific Network Options</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>ISV</td>
<td>Independent Software Vendor</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>JBOD</td>
<td>Just a Bunch of Disks</td>
</tr>
<tr>
<td>JDBC</td>
<td>Java Database Connectivity</td>
</tr>
<tr>
<td>JFC</td>
<td>Java Foundation Classes</td>
</tr>
<tr>
<td>JFS</td>
<td>Journaled File System</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
</tr>
<tr>
<td>KDC</td>
<td>Key Distribution Center</td>
</tr>
<tr>
<td>L1</td>
<td>Level 1</td>
</tr>
<tr>
<td>L2</td>
<td>Level 2</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LANE</td>
<td>Local Area Network Emulation</td>
</tr>
<tr>
<td>LAPI</td>
<td>Low-Level Application Programming Interface</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LDIF</td>
<td>LDAP Directory Interchange Format</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>LFD</td>
<td>Load Float Double</td>
</tr>
<tr>
<td>LFT</td>
<td>Low Function Terminal</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>LID</td>
<td>Load ID</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory</td>
</tr>
<tr>
<td>LP</td>
<td>Logical Partition</td>
</tr>
<tr>
<td>LP64</td>
<td>Long-Pointer 64</td>
</tr>
<tr>
<td>LPI</td>
<td>Lines Per Inch</td>
</tr>
<tr>
<td>LPP</td>
<td>Licensed Program Product</td>
</tr>
<tr>
<td>LPR/LPD</td>
<td>Line Printer/Line Printer Daemon</td>
</tr>
<tr>
<td>LRU</td>
<td>Least Recently Used</td>
</tr>
<tr>
<td>LTG</td>
<td>Logical Track Group</td>
</tr>
<tr>
<td>LV</td>
<td>Logical Volume</td>
</tr>
<tr>
<td>LVCB</td>
<td>Logical Volume Control Block</td>
</tr>
<tr>
<td>LVD</td>
<td>Low Voltage Differential</td>
</tr>
<tr>
<td>LVM</td>
<td>Logical Volume Manager</td>
</tr>
<tr>
<td>MAP</td>
<td>Maintenance Analysis Procedure</td>
</tr>
<tr>
<td>MASS</td>
<td>Mathematical Acceleration Subsystem</td>
</tr>
<tr>
<td>MAU</td>
<td>Multiple Access Unit</td>
</tr>
<tr>
<td>MBCS</td>
<td>Multi-Byte Character Support</td>
</tr>
<tr>
<td>Mbps</td>
<td>Megabits Per Second</td>
</tr>
<tr>
<td>MBps</td>
<td>Megabytes Per Second</td>
</tr>
<tr>
<td>MCA</td>
<td>Micro Channel Architecture</td>
</tr>
<tr>
<td>MCAD</td>
<td>Mechanical Computer-Aided Design</td>
</tr>
<tr>
<td>MDI</td>
<td>Media Dependent Interface</td>
</tr>
<tr>
<td>MES</td>
<td>Miscellaneous Equipment Specification</td>
</tr>
<tr>
<td>MFLOPS</td>
<td>Million of Floating point Operations Per Second</td>
</tr>
<tr>
<td>MII</td>
<td>Media Independent Interface</td>
</tr>
<tr>
<td>MIP</td>
<td>Mixed-Integer Programming</td>
</tr>
<tr>
<td>MLR1</td>
<td>Multi-Channel Linear Recording 1</td>
</tr>
<tr>
<td>MMF</td>
<td>Multi-Mode Fibre</td>
</tr>
<tr>
<td>MODS</td>
<td>Memory Overlay Detection Subsystem</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations and acronyms 335
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OLAP</td>
<td>Online Analytical Processing</td>
</tr>
<tr>
<td>OLTP</td>
<td>Online Transaction Processing</td>
</tr>
<tr>
<td>ONC+</td>
<td>Open Network Computing</td>
</tr>
<tr>
<td>OOUI</td>
<td>Object-Oriented User Interface</td>
</tr>
<tr>
<td>OSF</td>
<td>Open Software Foundation, Inc.</td>
</tr>
<tr>
<td>OSL</td>
<td>Optimization Subroutine Library</td>
</tr>
<tr>
<td>OSLp</td>
<td>Parallel Optimization Subroutine Library</td>
</tr>
<tr>
<td>P2SC</td>
<td>POWER2 Single/Super Chip</td>
</tr>
<tr>
<td>PAM</td>
<td>Pluggable Authentication Mechanism</td>
</tr>
<tr>
<td>PAP</td>
<td>Privileged Access Password</td>
</tr>
<tr>
<td>PBLAS</td>
<td>Parallel Basic Linear Algebra Subprograms</td>
</tr>
<tr>
<td>PCI</td>
<td>Peripheral Component Interconnect</td>
</tr>
<tr>
<td>PDT</td>
<td>Paging Device Table</td>
</tr>
<tr>
<td>PDU</td>
<td>Power Distribution Unit</td>
</tr>
<tr>
<td>PE</td>
<td>Parallel Environment</td>
</tr>
<tr>
<td>PEDB</td>
<td>Parallel Environment Debugging</td>
</tr>
<tr>
<td>PEX</td>
<td>PHIGS Extension to X</td>
</tr>
<tr>
<td>PFS</td>
<td>Perfect Forward Security</td>
</tr>
<tr>
<td>PGID</td>
<td>Process Group ID</td>
</tr>
<tr>
<td>PHB</td>
<td>Processor Host Bridges</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>PID</td>
<td>Process ID</td>
</tr>
<tr>
<td>PIOFS</td>
<td>Parallel Input Output File System</td>
</tr>
<tr>
<td>PKR</td>
<td>Protection Key Registers</td>
</tr>
<tr>
<td>PMTU</td>
<td>Path MTU</td>
</tr>
<tr>
<td>POE</td>
<td>Parallel Operating Environment</td>
</tr>
<tr>
<td>POP</td>
<td>Power-On Password</td>
</tr>
<tr>
<td>POSIX</td>
<td>Portable Operating Interface for Computing Environments</td>
</tr>
<tr>
<td>POST</td>
<td>Power-On Self-test</td>
</tr>
<tr>
<td>POWER</td>
<td>Performance Optimization with Enhanced Risc (Architecture)</td>
</tr>
<tr>
<td>PPC</td>
<td>PowerPC</td>
</tr>
<tr>
<td>PPM</td>
<td>Piecewise Parabolic Method</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>PREP</td>
<td>PowerPC Reference Protocol</td>
</tr>
<tr>
<td>PSE</td>
<td>Portable Streams Environment</td>
</tr>
<tr>
<td>PSSP</td>
<td>Parallel System Support Program</td>
</tr>
<tr>
<td>PTX</td>
<td>Performance Toolbox</td>
</tr>
<tr>
<td>PV</td>
<td>Physical Volume</td>
</tr>
<tr>
<td>PVC</td>
<td>Permanent Virtual Circuit</td>
</tr>
<tr>
<td>PVID</td>
<td>Physical Volume Identifier</td>
</tr>
<tr>
<td>QMF</td>
<td>Query Management Facility</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>QP</td>
<td>Quadratic Programming</td>
</tr>
<tr>
<td>RAID</td>
<td>Redundant Array of Independent Disks</td>
</tr>
<tr>
<td>RAM</td>
<td>Random Access Memory</td>
</tr>
<tr>
<td>RAN</td>
<td>Remote Asynchronous Node</td>
</tr>
<tr>
<td>RAS</td>
<td>Reliability, Availability, and Serviceability</td>
</tr>
<tr>
<td>RDB</td>
<td>Relational Database</td>
</tr>
<tr>
<td>RDBMS</td>
<td>Relational Database Management System</td>
</tr>
<tr>
<td>RDISC</td>
<td>ICMP Router Discovery</td>
</tr>
<tr>
<td>RDN</td>
<td>Relative Distinguished Name</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RDP</td>
<td>Router Discovery Protocol</td>
</tr>
<tr>
<td>RFC</td>
<td>Request for Comments</td>
</tr>
<tr>
<td>RIO</td>
<td>Remote I/O</td>
</tr>
<tr>
<td>RIP</td>
<td>Routing Information Protocol</td>
</tr>
<tr>
<td>RIPL</td>
<td>Remote Initial Program Load</td>
</tr>
<tr>
<td>RISC</td>
<td>Reduced Instruction-Set Computer</td>
</tr>
<tr>
<td>RMC</td>
<td>Resource Monitoring and Control</td>
</tr>
<tr>
<td>ROLTP</td>
<td>Relative Online Transaction Processing</td>
</tr>
<tr>
<td>RPA</td>
<td>RS/6000 Platform Architecture</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Procedure Call</td>
</tr>
<tr>
<td>RPL</td>
<td>Remote Program Loader</td>
</tr>
<tr>
<td>RPM</td>
<td>Redhat Package Manager</td>
</tr>
<tr>
<td>RSC</td>
<td>RISC Single Chip</td>
</tr>
<tr>
<td>RSCT</td>
<td>Reliable Scalable Cluster Technology</td>
</tr>
<tr>
<td>RSE</td>
<td>Register Stack Engine</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource Reservation Protocol</td>
</tr>
<tr>
<td>RTC</td>
<td>Real-Time Clock</td>
</tr>
<tr>
<td>RVSD</td>
<td>Recoverable Virtual Shared Disk</td>
</tr>
<tr>
<td>SA</td>
<td>Secure Association</td>
</tr>
<tr>
<td>SACK</td>
<td>Selective Acknowledgments</td>
</tr>
<tr>
<td>SAN</td>
<td>Storage Area Network</td>
</tr>
<tr>
<td>SAR</td>
<td>Solutions Assurance Review</td>
</tr>
<tr>
<td>SAS</td>
<td>Single Attach Station</td>
</tr>
<tr>
<td>SBCS</td>
<td>Single-Byte Character Support</td>
</tr>
<tr>
<td>ScaLAPACK</td>
<td>Scalable Linear Algebra Package</td>
</tr>
<tr>
<td>SCB</td>
<td>Segment Control Block</td>
</tr>
<tr>
<td>SCSI</td>
<td>Small Computer System Interface</td>
</tr>
<tr>
<td>SCSI-SE</td>
<td>SCSI-Single Ended</td>
</tr>
<tr>
<td>SDLC</td>
<td>Synchronous Data Link Control</td>
</tr>
<tr>
<td>SDR</td>
<td>System Data Repository</td>
</tr>
<tr>
<td>SDRAM</td>
<td>Synchronous Dynamic Random Access Memory</td>
</tr>
<tr>
<td>SE</td>
<td>Single Ended</td>
</tr>
<tr>
<td>SEPBU</td>
<td>Scalable Electrical Power Base Unit</td>
</tr>
<tr>
<td>SGI</td>
<td>Silicon Graphics Incorporated</td>
</tr>
<tr>
<td>SGID</td>
<td>Set Group ID</td>
</tr>
<tr>
<td>SHLAP</td>
<td>Shared Library Assistant Process</td>
</tr>
<tr>
<td>SID</td>
<td>Segment ID</td>
</tr>
<tr>
<td>SIT</td>
<td>Simple Internet Transition</td>
</tr>
<tr>
<td>SKIP</td>
<td>Simple Key Management for IP</td>
</tr>
<tr>
<td>SLB</td>
<td>Segment Lookaside Buffer</td>
</tr>
<tr>
<td>SLIH</td>
<td>Second Level Interrupt Handler</td>
</tr>
<tr>
<td>SLIP</td>
<td>Serial Line Internet Protocol</td>
</tr>
<tr>
<td>SLR1</td>
<td>Single-Channel Linear Recording 1</td>
</tr>
<tr>
<td>SM</td>
<td>Session Management</td>
</tr>
<tr>
<td>SMB</td>
<td>Server Message Block</td>
</tr>
<tr>
<td>SMIT</td>
<td>System Management Interface Tool</td>
</tr>
<tr>
<td>SMP</td>
<td>Symmetric Multiprocessor</td>
</tr>
<tr>
<td>SMS</td>
<td>System Management Services</td>
</tr>
<tr>
<td>SNG</td>
<td>Secured Network Gateway</td>
</tr>
<tr>
<td>SOI</td>
<td>Silicon-on-Insulator</td>
</tr>
<tr>
<td>SP</td>
<td>IBM RS/6000 Scalable POWER parallel Systems</td>
</tr>
<tr>
<td>SP</td>
<td>Service Processor</td>
</tr>
<tr>
<td>SPCN</td>
<td>System Power Control Network</td>
</tr>
<tr>
<td>SPEC</td>
<td>System Performance Evaluation Cooperative</td>
</tr>
<tr>
<td>SPI</td>
<td>Security Parameter Index</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>SPM</td>
<td>System Performance Measurement</td>
</tr>
<tr>
<td>SPOT</td>
<td>Shared Product Object Tree</td>
</tr>
<tr>
<td>SPS</td>
<td>SP Switch</td>
</tr>
<tr>
<td>SPS-8</td>
<td>Eight-Port SP Switch</td>
</tr>
<tr>
<td>SRC</td>
<td>System Resource Controller</td>
</tr>
<tr>
<td>SRN</td>
<td>Service Request Number</td>
</tr>
<tr>
<td>SSA</td>
<td>Serial Storage Architecture</td>
</tr>
<tr>
<td>SSC</td>
<td>System Support Controller</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>STFDU</td>
<td>Store Float Double with Update</td>
</tr>
<tr>
<td>STP</td>
<td>Shielded Twisted Pair</td>
</tr>
<tr>
<td>SUID</td>
<td>Set User ID</td>
</tr>
<tr>
<td>SUP</td>
<td>Software Update Protocol</td>
</tr>
<tr>
<td>SVC</td>
<td>Switch Virtual Circuit</td>
</tr>
<tr>
<td>SVC</td>
<td>Supervisor or System Call</td>
</tr>
<tr>
<td>SWVPD</td>
<td>Software Vital Product Data</td>
</tr>
<tr>
<td>SYNC</td>
<td>Synchronization</td>
</tr>
<tr>
<td>TCE</td>
<td>Translate Control Entry</td>
</tr>
<tr>
<td>Tcl</td>
<td>Tool Command Language</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>Transmission Control Protocol/Internet Protocol</td>
</tr>
<tr>
<td>TCQ</td>
<td>Tagged Command Queuing</td>
</tr>
<tr>
<td>TGT</td>
<td>Ticket Granting Ticket</td>
</tr>
<tr>
<td>TLB</td>
<td>Translation Lookaside Buffer</td>
</tr>
<tr>
<td>TOS</td>
<td>Type Of Service</td>
</tr>
<tr>
<td>TPC</td>
<td>Transaction Processing Council</td>
</tr>
<tr>
<td>TPP</td>
<td>Toward Peak Performance</td>
</tr>
<tr>
<td>TSE</td>
<td>Text Search Engine</td>
</tr>
<tr>
<td>TSE</td>
<td>Text Search Engine</td>
</tr>
<tr>
<td>TTL</td>
<td>Time To Live</td>
</tr>
<tr>
<td>UCS</td>
<td>Universal Coded Character Set</td>
</tr>
<tr>
<td>UDB EEE</td>
<td>Universal Database and Enterprise Extended Edition</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>XLF</td>
<td>XL Fortran</td>
</tr>
<tr>
<td>XOM</td>
<td>X Output Method</td>
</tr>
<tr>
<td>XPM</td>
<td>X Pixmap</td>
</tr>
<tr>
<td>XSSO</td>
<td>Open Single Sign-on Service</td>
</tr>
<tr>
<td>XTF</td>
<td>Extended Distance Feature</td>
</tr>
<tr>
<td>XVFB</td>
<td>X Virtual Frame Buffer</td>
</tr>
</tbody>
</table>
Related publications

The publications listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information on ordering these publications, see “How to get IBM Redbooks” on page 343.

- AIX 5L Performance Tools Handbook, SG24-6039
- AIX Logical Volume Manager From A to Z: Introduction and Concepts, SG24-5432
- IBM @server Certification Study Guide - AIX 5L Communications, SG24-6186
- IBM @server Certification Study Guide - AIX 5L Installation and System Recovery, SG24-6183
- IBM @server Certification Study Guide - AIX 5L Performance and System Tuning, SG24-6184
- IBM @server Certification Study Guide - pSeries AIX System Administration, SG24-6191
- IBM @server Certification Study Guide - pSeries AIX System Support, SG24-6199
- IBM @server Certification Study Guide - pSeries HACMP for AIX, SG24-6187
- IBM @server Certification Study Guide - RS/6000 SP SG24-5348
- Managing AIX Server Farms, SG24-6606
- Printing for Fun and Profit under AIX 5L, SG24-6018
- Problem Solving and Troubleshooting in AIX 5L, SG24-5496
- TCP/IP Tutorial and Technical Overview, GG24-3376
Other resources

These publications are also relevant as further information sources:

- AIX Version 4.3 System Management Concepts: Operating System and Devices, SC23-4311
- AIX Version 5.0 Installation Guide, SC23-4112
- RS/6000 and pSeries PCI Adapter Placement Reference, SA38-0538
- SSA Adapters: User’s Guide and Maintenance Information, SA33-3272
- The following types of documentation are located through the Internet at the following URL:

 http://www-1.ibm.com/servers/eserver/pseries/library
 - User guides
 - System management guides
 - Application programmer guides
 - All commands reference volumes
 - Files reference
 - Technical reference volumes used by application programmers

Referenced Web sites

These Web sites are also relevant as further information sources:

- AIX software updates

 http://techsupport.services.ibm.com/support/rs6000.support/databases

- IBM Certification tests by number

- IBM eServer pSeries support

- IBM hardware documentation

- IBM Professional Certification Program Web site

 http://www.ibm.com/certify

- IBM Redbooks Web site

 http://www.redbooks.ibm.com
IBM TotalStorage
http://www.storage.ibm.com

http://www.opengroup.org/onlinepubs/9629799/toc.htm

SSA adapters - comprehensive and up-to-date information
http://www.storage.ibm.com/hardsoft/products/ssa

UNIX servers (pSeries) information

How to get IBM Redbooks

You can order hardcopy Redbooks, as well as view, download, or search for Redbooks at the following Web site:
ibm.com/redbooks

You can also download additional materials (code samples or diskette/CD-ROM images) from that site.

IBM Redbooks collections

Redbooks are also available on CD-ROMs. Click the CD-ROMs button on the Redbooks Web site for information about all the CD-ROMs offered, as well as updates and formats.
Index

Symbols
/dev/mem 83
/etc/exports 189
/etc/filesystems 128–129, 152, 189
/etc/filesystems file 165
/etc/gated.conf 184
/etc/gateways 184
/etc/hosts 185
/etc/initab 189
/etc/mail/sendmail.cf 217
/etc/netsvc.conf 185
/etc/qconfig 128
/etc/rc.nfs 189
/etc/rc.tcpip 189
/etc/resolv.conf 186, 205
/etc/security/limits 206, 210
/etc/services 205
/etc/syslog.pid 130
/etc/utmp 210
/proc
 see also proc pseudo file system 162
/unix 79
/usr/include/sys/syslog.h 130
/usr/include/sys/trchkid.h 212
/var/adm/ras/trcfile 211
/var/spool/cron/crontabs/root 128

Numerics
32bit, WLM process type 287
64bit
 WLM process type 287
64-bit kernel, JFS2 160
7020-40P 47
7248-43P 47

A
abend code 80
Accounting 128
acctdisk 129
adding a new disk 147
addressing exception 95
administration
workload manager 277
aixterm command 214
alog 25, 28
APAR 312–313
application path names (WLM) 287
application tags (WLM) 287
as pseudo file 163
assign disk to volume group 148
assignment rules (WLM) 284
ATMLE 34
attributes
 classes 281
attributes, localshm 283
automatic assignment (WLM) 283
automatic error log analysis - diagela 144

B
backup data 140
bigfile file system 151
bindprocessor 238
biod 189, 191
BIST 14–15
 LED 200 19
 LED 299 19
BLV 14
 how to recreate BLV 19
boot 25
 /etc/initab figure 31
 /mnt 24
 alog 28
 BIST 14–15
 BLV 14
 bootlist 16
 Config_Rules 23
 error log 35
 general boot order figure 14
 general overview 14
 generic device names 16
 how to recreate BLV 19
 magic number 26
 maintenance 16
 normal boot 21
 phase1 15, 22, 36
phase1 figure 23
phase2 15, 24, 36
phase2 figure1 24
phase2 figure2 25
phase3 15, 29, 37
POST 14-15
runlevel 32
service 16
service boot 21
service mode 50
SMS main menu figure 21
superblock 27
boot logical volume 14
bootinfo 23, 44
bootinfo command 161
bootlist 16, 22, 26
generic device names 16
bosboot 20, 26, 314
built in self test 15
bundle
 maintenance level bundle 311
 update bundle 311

cfgmgr 23, 30, 147
cfgmgr command 147
changes to the system 9
changing the bootlist on PCI systems 20
chdev 179
chfs command 152, 165, 210
chps command 167
CHRP 44
chrp 44
chvg command 143, 170
ckpacct 128
class
 inheritance 282
class assignment rules 286
class name (WLM) 286
classes 276
classification process 283
commands
 aixterm 214
 alog 25, 28
 bindprocessor 238
 bootinfo 23, 44, 161
 bootlist 16, 22, 26
 bosboot 20, 26, 314
Index

migratepv 53
mkclass 283
mklvcopy 148
mount 191
netpmom 274
netstat 179, 181, 266, 301
no 185, 268
ipforwarding 185
nslookup 185, 205
ping 181–182
ps 241, 251, 300
qchk 220
quotacheck 166
quotaon 166
redefinevg 141
reducevg 172
restbase 23
rmdev 172
rmlvcopy 146, 172
rmps 168
route 185
sar 235, 300
savebase 27, 31
shconf 74
snap 77, 95
startsrc 183, 204, 226
stopsrc 190
strings 83, 97
su 208
svmon 248, 253
swapoff 169
sync1vodm 141, 150
syncvg 30, 141, 148, 173
sysdumpdev 66–68, 70–71, 76–77, 98, 168
sysdumpstart 68, 100
tar 78
tcpdump 186
tee 94
topas 214
tprof 243
trace 211–212, 226
traceroute 183
trcoff 264
tricon 264
trcrpt 213, 227
trcstop 213, 264
uptime 39
varyonvg 138–139

vmstat 238, 247
vmtune 248
w 39
wlmctrnl 293
compatibility
workload manager 289
computational memory 246
Config_Rules 23
configuration, ODM 144
connection oriented 273
connectionless 273
core dump
checking error report 81
determine program responsible 82
locating core file 82
core dumps 81
CPU bound system 235
-crash command 79, 83
uses 83
crash subcommands 85
errpt 93
le 90
od 92
proc 90
output fields 91
set 94
stat 86
symptom 93
thread 91
output fields 92
trace 87
 exception structure 89
creating JFS 150
cred pseudo file 163
cvfs 157
crl pseudo file 163
customer relations 7

D
daemon
biod 189
gated 184
mountd 190
nfsd 189
portmap 189
routed 184
rpc.lockd 189
rpc.mountd 189
daemons
 shdaemon 73
telnetd 204
ypbind 33
ypserv 33
data
 logical volume manager 138
 logical volumes 139
 relocation 140
 volume group 138
Data fragmentation 160
data storage interrupt 95
database, ODM 144
date command 119
dbx 294
dd 28
dd command 138, 153
default route 33
default system error log 108
define the problem 8
deleting error log entries 125
determination process of a problem 8
device
 state
 available 45
 define 45
df command 156, 210
diag 47
 advanced diagnostics 48
 alter bootlist menu 18
 diagnostic routines 48
 function selection menu 17
 task selection 48
 disk maintenance 53
 SSA 53
 task selection menu 18
diagela - automatic error log analysis 144
diagnostic
 concurrent mode 47, 49
 CPU 50
 memory 50
 stand-alone
 from CD 51
 from disk 50
 MCA machines 50–51
 PCI machines 50–51
disk
 adding a new disk 147
 recovering an incorrectly removed disk 148
 remove the disk with rmdev 146
 removing bad disk 146
 replacement 144
disk bound 258
disk problems 137
diskusg 129
DNS 33–34
 server 185
dodisk 128–129
du 156
du command 156
dumpfile namelist 80
E
 E1F1 LEDs 52
edquota command 164
edquota commands 165
entstat 180
environment variable
 NSORDER 205
ercclear command 108, 127
 flags 125
 syntax 125
errdemon command 108–109
 flags 108
 syntax 108
error daemon 108
error log configuration database 110
error notification database 108
error report 107, 110
erpt 35, 38
 flag table 38
erprt command 81, 117
 commands
 erprt 145
 error log report 111
 error record template report 112
 flags 112
 syntax 111–112
exec() system call 284, 288
exportfs 190
extended_netstats 268
extending number of max PPs 143
extendvg command 148
Extents 159
F

figures
 boot phase1 23
 boot phase2 figure1 24
 boot phase2 figure2 25
changing AIX operating system parameters 208
 CPU penalty 257
diag alter bootlist menu 18
diag function selection menu 17
diag task selection menu 18
disk problem report form diagela 145
general boot order 14
licensed users 203
SMS main menu 21
topas display for trace example 214
file memory 246
file system
 fixing bad superblock 153
 full file system 210
 problems 137
 removing file systems 155
 unmount problems 154
 verification and recovery 152
file table 84
filemon 264
fileplace 264
files
 /dev/error 108
 /etc/exports 189
 /etc/filesystems 33, 152, 165, 189
 /etc/gated.conf 184
 /etc/gateways 184
 /etc/hosts 185
 /etc/inittab 15, 30–31, 189
 /etc/netsvc.conf 34, 185
 /etc/objrepos/errnotify 108
 /etc/rc.boot 15, 23–24
 /etc/rc.net 32–33, 191, 268
 /etc/rc.nfs 189, 191
 /etc/rc.tcpip 189
 /etc/resolv.conf 186, 205
 /etc/security/limits 206, 210
 /etc/services 205
 /etc/syslog.conf 130
 /etc/syslog.pid 130
 /etc/utmp 210
 /usr/include/sys/trchkid.h 212
 /usr/lib/sa/sa1 236
 /usr/lib/sa/sa2 236
 /var/adm/ras/conslog 31
 /var/adm/ras/errlog 108, 110
 /var/adm/ras/trcfile 211
 __prof.all 244
 quota.group 164
 quota.user 164
filesset update 308
find command 82
fixed 287
flag table 302
flood ping 182
fork 284
fork function failed
 adjusting kernel parameters 208
Format of the 103 code message 60
fragmentation 258
FRU Number 46
fsck 26
fsck command 152

G
gated 184
gateway 184
general boot overview 14
generic device names 16
genkex command 155
getconf command 161
getty 218
group (WLM) 286

H
handling crash output 94
hardware
diagnostic 46
inventory 43
platform
 CHRP 44
 chrp 44
 PREP 44
 RPA 44
 rs6k 44
 rs6ksmp 44
 rspec 44
HAT 246
high-water mark 260
hook IDs for trace 212
host 185, 190
host name resolution
telnet login problem 205
how to recreate BLV 19
hung process tracing 211

I
I/O pacing 260
IAR 88
ifconfig 178
importvg command 138, 141, 171
importvg problems
disk change 142
shared disk environment 143
increasing the file system size 152
information
collecting information from the user 8
collection information about the system 10
questions you should ask 9
i-node 150
inode table 84
installing
online manuals 326
installp 309–310, 313
instfix 313, 315
internal fragmentation 159
invalid dump 80
iostat 260
the %bm_act column 262
the CPU columns 261
the disks column 262
the Drive reports 261
the Kb_read column 263
the Kb_wrtm column 263
the Kbps column 262
the tps column 262
the TTY columns 260
ipforwarding 185
ipl_varyon 24
ipreport command 33
iptrace 186
iptrace command 33

J
JFS
bigfile file system 151
creating file system 150
fixing bad superblock 153
fsck command 152
increasing the file system size 152
i-node 150
removing file system 155
unmount problems 154
verification and recovery 152
JFS file system 150

K
kdb 296
kernel address 90
kernel description 84
kernel extension 90
kernel panic 95
kernel parameters
adjusting number of processes per user 207
kernel stack traceback 84
kernel trap 95

L
LED 58
LED codes
100 - 195 16, 58
200 19, 57
200 - 2E7 16
201 19
221 19
221 - 229 19
223 - 229 19
225 - 229 19
233 - 235 19
299 19, 58
511 23
518 24, 28
548 23
551 26
552 24, 26
553 30, 32
554 24, 26
555 24, 26
556 24, 26
557 24, 26
581 32
721 19
888 58
102 58
103 59–60
105 59
c31 32
common MCA LED code table 19
common MCA LED codes 58
MCA POST LED code table 37
phase2 LED code table 37
phase3 LED code table 37
LEDs E1F1 52
license problems 202
locked volume group 139
logform 26
logical volume
 mirrored copy with mklvcopy 148
 stale LV 148
logical volume manager 258
 AIX version level 142
 data 138
 logical volumes 139
 physical volume 138
 volume group 138
 importvg 141
 problems 137
 VGDA 138
 VGID 139
 VGSA 139
logical volumes
 data 139
 LVCB 139
 LVID 139
login
 problems with full file system 210
 problems with telnet 203
 problems with user license 202
low-water mark 260
LPP 308
lppchk 309, 314
lpstat command 220
lquerypv command 83
LR 88
lsattr 46, 179, 271
 tx_que_size 271
lscfg 44
lsdev 44, 178
lsfs 157
lsjfs command 151
lslicense command 202, 225
lspp 310, 315
lspc command 76
lspv command 142
lsset command 290
lssrc 183
lssrc command 204, 225
lsvg command 145, 169
LVCB - logical volume control block 139
 rebuild 141
LVDD 146
LVID - logical volume identifier 139
LVM 258
 fragmentation 258
 LVM problem determination 139
M
 magic number 26
 mail 217
 mail.debug 217
 maintenance 16
 maintenance level bundle 311
 maintenance mode 47
 manual assignment (WLM) 283
 map pseudo file 163
 maxfree 250
 maxperm 250
 maxpgahead 259
 maxuproc 208
 mbufs 268
 MCA 15
 BIST 14–15
 common MCA LED code table 19
 bootlist 16
 led codes 100 - 195 16
 led codes 200 - 2E7 16
 POST 14–15
 memory bound 246
 mergedev 25
 microcode download 52
 migratepv command 53
 minfree 248
 minperm 250
 minpgahead 259
 mirrored environment 144
 mkclass command 283
 mkfs 157
 mklvcopy command 148
 mkSysb tape 47
 monacct 128
 mount 191
 munted 190
 MST 87
 multiboot 21
N
name resolution
 diagnostic 185
 problems 185
namelist 80
netpmn 274
netstat 179, 181, 266, 301
 broadcast packets 271
 DMA overrun 271
 flag table 301
 late collision errors 272
 max collision errors 271
 max packets on S/W transmit queue 271
 mbufs 268
 multiple collision count 272
 no mbuf errors 272
 receive collision errors 272
 receive errors 270
 S/W transmit queue overflow 271
 single collision count 272
 the Coll column 267
 the lerrs column 267
 the lpkts column 267
 the Mtu column 267
 the Oerrs column 267
 the Opkts column 267
 timeout errors 272
 transmit errors 270
 tuning guidelines 267, 272
network bound 265
 thewall 270
 tuning guidelines 267
network interface
 collision count 180
 lo0 183
 loopback 183
 problems 178
 setup 179
 state
 detach 178
 down 178
 up 178
NFS
 problems
 mount 190
 troubleshooting 189
 nfs_socketsize 191
 nfsd 189, 191
 nfsstat 273, 302
 badcalls 273
 badxid 273
 clget 273
 retrans 274
NIS 33
 server 185
 no 185, 268
 extended_netstats 268
 ipforwarding 185
 thewall 270
 normal boot 21
 nslookup 185
 nslookup command 205
 NSORDER 34, 185
 NSORDER environment variable 205
 nulladm 128
O
 ODM 33, 144
 ODM - Object Data Manager 138–139
 corruption 141
 re-synchronization 140
P
 package 308
 page stealing 246
 page-replacement routine 249
 paging space 166
 determining need for more paging space 167
 recommendations 166
 removing 168
 panic string 86
 PCI 20
 changing bootlist 20
 Normal boot 21
 Service boot 21
 SMS main menu figure 21
 phase1 15, 22, 36
 /etc/rc.boot 23
 Config_Rules 23
 LED code 511 23
 LED code 548 23
 phase1 figure 23
 phase2 15, 24, 36
 /etc/rc.boot 24
 /mnt 24
 alog 28
 LED code 518 24, 28
LED code 551 26
LED code 552 24, 26
LED code 554 24, 26
LED code 555 24, 26
LED code 556 24, 26
LED code 557 24, 26
LED code table 37
phase2 figure1 24
phase2 figure2 25
phase3 15, 29, 37
/etc/inittab 31
LED c31 32
LED code 553 30, 32
LED code 581 32
LED code table 37
rc.boot 3 in inittab 31
runlevel 32
physical volume
adding a new disk 147
data 138
extending max PPs 143
PVID 138
recovering an incorrectly removed disk 148
ping 181–182
ping -f command 182
pinned memory 90
plock 287
plock() system call 288
port for telnet 205
portmap 189
POST 14–15
power on self test 15
PPs - extending the maximum number 143
PREP 44
Printing 220
problem
definition 8
determination process 8
questions you should ask 9
problem determination
LVM 139
problems
disk 137
importvg 141
system access with telnet 203
user license 202
proc pseudo file system
as pseudo file 163
cred pseudo file 163
cctl pseudo file 163
map pseudo file 163
psinfo pseudo file 163
sigact pseudo file 163
status pseudo file 164
sysent pseudo file 164
vfs entry 162
process
adjusting number of processes per user 207
hung process tracing 211
process penalty 241
process priority 242
process table 84, 90
process type (WLM) 287
ps 241, 251, 300
CPU related table 241
flag table 300
memory related output table 251
penalty 241
process priority 242
the %CPU column 243
the %MEM column 252
the C column 241
the fre column 248
the PGIN column 252
the RSS column 251
the SIZE column 251
the SZ column 251
the TIME column 242
the TRS column 253
the TSIZ column 253
pseudo files 163–164
psinfo pseudo file 163
PTF 246, 308, 311
PVID - physical volume identifier 138
PVID invalid 142
Q
qchk command 220
questions you should ask 9
quorum 138
quota.group file 164
quota.user file 164
quotacheck command 166
quotaon command 166
R
receive errors 270

Index 353
recent CPU usage 241
recovering an incorrectly removed disk 148
Redbooks Web site 343
Contact us xx
redefinevg command 141
reducevg command 172
commands
reducevg 146
relocation of data 140
remote procedure call 273
remote reboot 72
remove the disk with rmdev 146
removing bad disk 146
removing file systems 155
removing paging space 168
replacement of disk 144
replacing disk 144
report
filtering trace reports 214
reports
trace reports 213
resource sets (WLM) 289
restbase 23
RIP 185
rmdev command 172
rm1vcopy command 146, 172
rmps command 168–169
ROS Level 46
route 185
routed 184
routing
problems 181
tables 181
default 182
RPA 44
RPC 273
rpc.lockd 189
rpc.mountd 189
rpc.statd 189
rs6k 44
rs6ksmp 44
rset 291
rset registry 291
rsrp 44
runacct 128
runlevel 32

S
sar 235, 300
/usr/lib/sa/sa1 236
/usr/lib/sa/sa2 236
display previously captured data 236
flag table 300
real-time sampling and display 235
system activity accounting via cron daemon 236
savebase 31
savebase command 27
scenario
replacing a disk 144
schedtune 254
SCHED_R and SCHED_D guidelines 257
scheduler
CPU penalty figure 257
SCHED_R and SCHED_D guidelines 257
SCSI
adapter 49
bus analyzer 52
sendmail 217
sequential-access read ahead 259
Serial Storage Architecture (SSA) 54
service boot 16, 21
Service Request Number (SRN) 49
setgid() system call 288
setpri() system calls 288
setuid() system call 288
shconf command 74
shdaemon daemon 73
sigact pseudo file 163
single-user mode 47
smdemon.cleanu 217
smit dump 69
SMIT fast path
smit chgsys 208
smit chlicense 202
smit jfs 151
smit resolv.conf 205
smitty
install_update 312
maintain_software 310
ssraid 55
snap command 77, 95
flags 96
syntax 96
software
updates 307
software patch
 installation 312
software problems 9
software states
 applied 309
 committed 309–310
 reject 310
sparse file allocation 154
SRC 130
SRN 49–50, 59
SSA
 adapter
 information 55
 loop 54
 speed 54
deVICES 55
divide
disk 55
 SSA RAID 55
setup 54
SSA disk 146
stale logical volume 148
startsrc 183, 190
startsrc command 204, 226
startup 128
statfs 157
static routes 184
status pseudo file 164
stopsrc 190
strings command 83, 97
 flags 97
 syntax 97
su command 208
subclass 277
subserver
telnetd 204
superblock 27
 fixing bad superblock 153
superclass 277
svmon 248, 253
 command report 253
 detailed segment report 253
frame report 254
global report 253
process report 253
segment report 253
tier report 254
user report 253
workload management class report 254
swapoff command 169
syncivodm command 141, 150
syncvg 30
syncvg command 141, 148, 173
sysdumpdev 76
sysdumpdev command 66–68, 70–71, 76–77, 98, 168
 flags 99
 syntax 98
sysdumpstart command 68, 100
 flags 101
 syntax 100
sysent pseudo file 164
syslogd 130, 217
system access
 adjusting number of processes per user 207
 full file system 210
telenet problems 203
system calls
 exec() 284, 288
 plock() 288
 setgid() 288
 setpri() 288
 setuid() 288
system dump 65
 copy 77
 dump device configuration 66
 increase size 76
 pre-requisites 66
 examine with crash 84
 panic string 86
 routines 79
 starting dump 68
 command line 68
 key sequences 71
 reset button 70
 smit interface 69
 status check 74
 status codes 74, 100
system dumps
 reading 79
system events
 tracing 211
system hang 95
system resource controller - SRC
 lssrc 225
 lssrc command 204
 startsrc 226
 startsrc command 204
System Resource Controller (SRC) 130

T
 tables
 CPU related ps output 241
 errpt flags 38
 MCA LED codes 37
 memory related ps output table 251
 netstat flags 301
 nfsstat flags 302
 phase2 LED codes 37
 phase3 LED codes 37
 ps flags 300
 sar flags 300
 w flags 39
 tar command 78
 tcpdump 186
 tee command 94
 telnet
 name server resolution 205
 network problem 203
 port 23 205
 session 186
 slow telnet login 205
 start the telnet subserver 204
 system access problems 203
 telnet subserver 204
 thewall 270
 thread table 84
 three-digit display 57
 tick 243
 TLB 246
 topas command 214
 tprof 243
 __prof.all 244
 summary report 244
 the freq column 245
 the total column 244
 the user column 245
 trace
 buffers
 alternate mode 213
 circular mode 213
 single mode 213
 example 214
 filtering trace reports 214
 hook IDs 212
 reports 213
 start of trace 213
 trcrpt command 213
 trace command 211–212, 226
 traceroute 183
 tracing hung process 211
 transmit errors 270
 trcoff 264
 trcon 264
 trcrpt command 213
 trcrpt commands 227
 trcstop 264
 trcstop command 213
 TTY 218

U
 understanding the problem 8
 unmount problems 154
 update bundle 311
 uptime 39
 user (WLM) 286
 user license 202
 users view of a problem 8

V
 varyonvg command 138–139
 VGDA - volume group descriptor area 138
 VGID - volume group identifier 139
 VGSA - volume group status area 139
 view of a problem 8
 Virtual Memory Manager 246
 vital product data (VPD) 45
 VMM 246
 computational memory 246
 DPSA 248
 file memory 246
 hash anchor table 246
 high-water mark 260
 I/O pacing 260
 low-water mark 260
 maxfree 250
 maxperm 250
 maxpgahead 259
 minfree 248
 minperm 250
 minpgahead 259
 page frame table 246
 page stealing 246
 page-replacement routine 249
sequential-access read ahead 259
translation lookaside buffer 246
write-behind 259
vmmerlog structure 93
vmsstat 238, 247
the avm column 248
the b column 238
the cpu columns 239
the cs column 241
the cy column 250
the fault columns 240
the fr column 249
the id column 239
the in column 240
the kthr columns 238
the memory columns 248
the page columns 248
the pi column 249
the po column 249
the r column 238
the sr column 250
the sy column 239–240
the us column 239
the wa column 239
vmtune 248
 maxfree 250
 maxperm 250
 maxpgahead 259
 minfree 248
 minperm 250
 minpgahead 259
 random write-behind 259
 sequential write-behind 259
volume group
data 138
importvg 141
lock 139
redefinevg 141
VGDA 138
VGID 139
VGSA 139

W
w 39
 flag table 39
Web-based System Manager 10
WLM
 32bit 287

64bit 287
 fixed 287
 plock 287
wlm, localshm 283
wlm, shared memory segment 282
wlmcntrl command 293
Workload Manager
 class attributes 281
 classes 276
 inheritance 282
 subclass 277
 superclass 277
write-behind 259
 random 259
 sequential 259

Y
ypbind daemon 33
ypserv daemon 33
Developed specifically for the purpose of preparing for AIX certification

Makes an excellent companion to classroom education

For experienced AIX professionals

This IBM Redbook is designed as a study guide for professionals wishing to prepare for the AIX 5L Problem Determination Tools and Techniques certification exam as a selected course of study in order to achieve the IBM eServer Certified Advanced Technical Expert - pSeries and AIX 5L certification.

This IBM Redbook is designed to provide a combination of theory and practical experience needed for a general understanding of the subject matter. It also provides sample questions that will help in the evaluation of personal progress and provide familiarity with the types of questions that will be encountered on the exam.

This publication does not replace practical experience, nor is it designed to be a stand-alone guide for any subject. Instead, it is an effective tool that, when combined with education activities and experience, can be a very useful preparation guide for the exam. Whether you are planning to take the AIX 5L Problem Determination Tools and Techniques certification exam, or if you just want to validate your AIX skills, this redbook is for you.

This publication was updated to include the new content included in Test 235, which is based on AIX 5L Version 5.1.

For more information: ibm.com/redbooks