Linux on IBM eServer zSeries and S/390: Performance Toolkit for VM

Understanding Performance Toolkit for VM

Monitoring VM performance

Optimizing Linux guest performance

Gregory Geiselhart
Bruce Dailey
Dean DiTommaso
Bernard Royole Degieux
Klaus Egeler
Mario Held
Livio Sousa
Roger Thibault

ibm.com/redbooks
Linux on IBM @server zSeries and S/390: Performance Toolkit for VM

August 2004
Note: Before using this information and the product it supports, read the information in “Notices” on page ix.

This edition applies to z/VM Version 4 Release 4 and multiple Linux distributions. SUSE Linux Enterprise 8 (SLES8) and Red Hat Enterprise Linux 3 (RHEL 3) are used for examples in this publication.

© Copyright International Business Machines Corporation 2004. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
Contents

Notices ... ix
Trademarks .. x

Preface .. xi
The team that wrote this redbook. xi
Become a published author ... xiv
Comments welcome .. xiv

Chapter 1. Performance Toolkit for VM at a glance 1
1.1 Defining Performance Toolkit for VM 2
1.2 Starting Performance Toolkit for VM 4
1.3 Basic mode ... 5
 1.3.1 Redisplay facility ... 6
1.4 Monitor mode .. 8
1.5 Help facility ... 9
 1.5.1 Context-sensitive help 10
1.6 Displaying current and average data. 11
1.7 Sorting reported data .. 12
1.8 History performance analysis 13
 1.8.1 Simple history data files 15
 1.8.2 Extended trend files 16
1.9 Benchmark data analysis ... 16
1.10 Threshold monitoring .. 17
1.11 Variable correlation coefficient analysis 20
1.12 When to use Performance Toolkit for VM 20
 1.12.1 Performance Toolkit for VM overhead 20

Chapter 2. Navigating through Performance Toolkit for VM 23
2.1 Information available in Performance Toolkit for VM 24
2.2 General system data reporting 24
 2.2.1 CPU load ... 26
 2.2.2 Storage utilization ... 27
 2.2.3 Spool file overview 30
 2.2.4 LPAR data .. 32
 2.2.5 Shared segments .. 33
 2.2.6 System configuration 34
2.3 I/O data reporting ... 35
 2.3.1 I/O device load .. 36
 2.3.2 CP-owned disks ... 38
2.4 User data reporting .. 40
 2.4.1 User resource usage ... 41
 2.4.2 Linux systems ... 46
2.5 History data reporting ... 50
 2.5.1 Graphics selection .. 51
 2.5.2 History data files ... 55
 2.5.3 Benchmark displays .. 57
 2.5.4 Correlation coefficients 58
2.6 User-defined screens .. 60
 2.6.1 Defining a user data screen 61
 2.6.2 User-defined display selection 61
 2.6.3 User-defined performance screen 62
2.7 Using the Web interface ... 63

Chapter 3. Configuring Performance Toolkit for VM 65
3.1 Performance Toolkit for VM installation 66
 3.1.1 The 4VMPTK40 user ... 66
 3.1.2 The PERFSVM user ... 67
3.2 Performance Toolkit for VM control files 68
 3.2.1 FCONX $PROFILE .. 69
 3.2.2 The FCONTROL RESET command 76
 3.2.3 Printed reports ... 77
 3.2.4 Trend data collection 80
3.3 Sample PROFILE EXEC for PERFSVM 81
3.4 Performance Toolkit for VM operation 83
3.5 Tailoring Performance Toolkit for VM 84
 3.5.1 Tailor the FCONX $PROFILE control file 85
 3.5.2 Tailor the FCONX REPORTS control file 85
 3.5.3 Tailor the FCONX TRENDREC control file 85
3.6 Enabling remote access and monitoring 85
 3.6.1 Create the FCONRMT AUTHORIZ control file 86
 3.6.2 Create the FCONRMT SYSTEMS control file 87
3.7 Enabling data collection for Linux guests 88

Chapter 4. Remote access and monitoring 89
4.1 Remote monitoring with Performance Toolkit for VM 90
4.2 APPC/VM interface to Performance Toolkit for VM 91
 4.2.1 Implementing APPC/VM for a local system 91
 4.2.2 Using an alternate resource name 92
 4.2.3 Implementing APPC/VM for remote systems 93
4.3 Performance Toolkit for VM Web interface 95
 4.3.1 Web interface main selection menu 97
 4.3.2 Line graphic displays in the Web interface 98
Chapter 5. Understanding z/VM configuration 103
5.1 Commands to use for configuration information 104
5.2 System configuration screen .. 105
5.3 Storage layout ... 107
5.4 System settings .. 109
 5.4.1 Effect of the timer patch on Linux guest scheduling 109
 5.4.2 The QUICKDISP option 110
 5.4.3 Assigning processing share 111
5.5 System counters .. 113
5.6 Monitor settings .. 115
5.7 I/O configuration .. 116
5.8 Page and spool allocation ... 119
5.9 Spool file usage ... 121
5.10 User paging utilization ... 122
5.11 Virtual disks in storage ... 123

Chapter 6. Analyzing I/O and network performance 125
6.1 Analyzing I/O to DASD performance 126
6.2 Channel monitoring .. 126
6.3 Control unit monitoring .. 128
 6.3.1 Cache control unit overall performance 129
 6.3.2 Cache extended function performance 130
6.4 I/O device load ... 131
 6.4.1 Minidisk cache ... 135
6.5 Analyzing VM TCP/IP data ... 137
 6.5.1 Virtual switch activity 137
 6.5.2 TCP/IP Activity Log ... 138
 6.5.3 General TCP/IP data transfer log 139

Chapter 7. Understanding LPAR configuration 141
7.1 Collecting LPAR data ... 142
7.2 Displaying LPAR configuration and activity 142
7.3 Understanding LPAR options 144
 7.3.1 Shared or dedicated processors 145
 7.3.2 Shared or dedicated CHPIDs 146

Chapter 8. Monitoring Linux guests 147
8.1 Reporting Linux monitor data 148
 8.1.1 Installing DDS ... 148
 8.1.2 Configuring and starting DDS 150
 8.1.3 Registering Linux guests with Performance Toolkit for VM. 151
8.2 Viewing Linux performance data .. 152
 8.2.1 RMF DDS browser interface ... 154
 8.2.2 DDS Java client ... 155
8.3 Analyzing Linux guest memory utilization 155
 8.3.1 Comparing virtual machine size on memory usage 157
 8.3.2 Analyzing memory usage inside Linux guests 158
8.4 Analyzing Linux guest paging ... 159
 8.4.1 Using a VDISK as a Linux swap partition 160
 8.4.2 Effect of minidisk cache ... 161
 8.4.3 Effect of expanded storage ... 161
 8.4.4 Monitoring Linux guest paging 162
 8.4.5 Using a single minidisk swap partition 162
 8.4.6 Using four minidisk swap partitions 166
 8.4.7 Using a VDISK swap partition 168
8.5 Analyzing processor utilization 170
 8.5.1 Processor utilization for a Linux guest 171
 8.5.2 Shared and dedicated processors 173
 8.5.3 Running services and daemons 175

Chapter 9. RTM and PRF functions in Performance Toolkit for VM 177
 9.1 Equivalent RTM functions .. 178
 9.2 The RTM general display .. 178
 9.2.1 The Performance Toolkit for VM general display 179
 9.3 The RTM SLOG display .. 180
 9.3.1 Performance Toolkit for VM history files 180
 9.4 The RTM environment display .. 182
 9.4.1 Performance Toolkit for VM system configuration display ... 182
 9.5 The RTM user display ... 183
 9.5.1 The Performance Toolkit for VM user display 184
 9.6 The RTM idle user display .. 185
 9.6.1 The Performance Toolkit for VM idle user display 185
 9.7 The RTM I/O display ... 185
 9.7.1 The Performance Toolkit for VM I/O display 186
 9.8 Using the Virtual Machine Communication Facility 187
 9.9 Creating scheduled printed reports 187
 9.10 VMPRF functions .. 187
 9.10.1 Creating history data ... 188
 9.10.2 Processing historical data 188
 9.10.3 When to use MONSCAN ... 188
 9.10.4 When to use TRNDSCAN ... 190
 9.10.5 Reports .. 191

Chapter 10. Performance Toolkit for VM updates for function level 510 193
Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming techniques on various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application programming interface for the operating platform for which the sample programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy, modify, and distribute these sample programs in any form without payment to IBM for the purposes of developing, using, marketing, or distributing application programs conforming to IBM's application programming interfaces.
Trademarks

The following terms are trademarks of the International Business Machines Corporation in the United States, other countries, or both:

<table>
<thead>
<tr>
<th>ESCON®</th>
<th>RACF®</th>
<th>S/390®</th>
</tr>
</thead>
<tbody>
<tr>
<td>@server®</td>
<td>RAMAC®</td>
<td>SQL/DS™</td>
</tr>
<tr>
<td>@server®</td>
<td>Redbooks™</td>
<td>VTAM®</td>
</tr>
<tr>
<td>GDDM®</td>
<td>Redbooks (logo)™</td>
<td>z/OS®</td>
</tr>
<tr>
<td>IBM®</td>
<td>Resource Measurement Facility™</td>
<td>z/VM®</td>
</tr>
<tr>
<td>PR/SM™</td>
<td>RMF™</td>
<td>zSeries®</td>
</tr>
</tbody>
</table>

The following terms are trademarks of other companies:

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, and service names may be trademarks or service marks of others.
Preface

This IBM® Redbook introduces Performance Toolkit for VM, which provides real-time monitoring and historical performance analysis for multiple z/VM® systems. Offered as an optional z/VM feature, Performance Toolkit for VM is derived from the FCON/ESA program. It provides enhanced capabilities for system programmers, operators, and performance analysts to monitor and report performance data.

This redbook provides an overview of the functions and features of Performance Toolkit for VM. We present the major monitoring screens, show its configuration, and illustrate how to monitor remote z/VM systems from a central Performance Toolkit for VM server. Using this product, we explain how to monitor your z/VM system identify potential performance problems. We discuss critical systems setting and performance measurements to help understand z/VM configuration and subsystems.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world working at the International Technical Support Organization, Poughkeepsie Center.

Gregory Geiselhart is a Project Leader for Linux® on zSeries® at the International Technical Support Organization, Poughkeepsie Center.

Bruce Dailey is a software engineer with the z/VM development organization in the United States. For the past 10 years he has been lead developer and change team member for many VM performance products. He has a degree in mathematics from Illinois Institute of Technology and a Masters’ degree in Computer and Information Systems from Syracuse University. He has also written about and presented on using CMS Pipelines with SQL/DS™.

Dean DiTommaso is an Advisory Software Engineer in the IBM Systems and Technology Group, Endicott, NY. He joined IBM in 1980 after receiving a B.S. in Computer Science from the State University of New York at Potsdam. Dean has held positions in system software and application software development including project planning, project management, technical team leadership, and more recently in performance evaluation for z/VM. Dean has been recognized for his project management, team leadership, and design work.
Bernard Royole Degieux is a Certified Senior Product Services Specialist leading the z/VM EMEA Back Office in the Technical Support Center in France, part of Integrated Technology Services in IBM Global Services. He has more than 35 years in large-system support within IBM. His areas of expertise include Problem Determination on Large Systems, PR/SM™, and IBM Enterprise Storage Server.

Klaus Egeler is an IT Systems Management Specialist with IBM Global Services Germany. He has more than 15 years of experience as a VSE and VM systems programmer. He has worked with Linux for zSeries and S/390® for more than three years. He has contributed to several Linux-related IBM Redbooks™.

Mario Held is a Linux Performance Analyst in Germany, focused on Linux for zSeries. He works with the Linux Performance Team at the IBM Boeblingen Laboratory, and has four years of experience in the performance field. His areas of expertise include VM and other mainframe operating systems such as Linux on various platforms. He earned a degree in Chemical engineering in 1991.
Lívio Sousa is a Technical Sales Support member of the Linux for zSeries and S/390 projects team in Brazil. He has four years of experience in the operational systems field. He is in the last year of college and has been working at IBM since 2002, responsible for planning and implementation of new workload projects. He has contributed to other IBM Redbooks.

Roger Thibault is a VM support specialist with the IBM Support Centre (ISC) in Canada. He has been involved in almost all activities related to VM, from operations and application programming to performance, tuning, and system programming. He has contributed to several IBM Redbooks.

Figure 2 The Poughkeepsie Team, from left: Bernard Royole Degieux, Klaus Egeler, Roger Thibault, Gregory Geiselhart, Livio Sousa, Mario Held

Thanks to the following people for their contributions to this project:

Roy Costa, Al Schwab
International Technical Support Organization, Poughkeepsie Center

Dr. Juergen Doelle, Horst Hartmann, Mustafa Mesanovic, Jens Osterkamp, Thomas Weber, Holger Wolf
IBM Boeblingen Lab, Linux Performance Team, Germany
Become a published author

Join us for a two- to six-week residency program! Help write an IBM Redbook dealing with specific products or solutions, while getting hands-on experience with leading-edge technologies. You will team with IBM technical professionals, Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you'll develop a network of contacts in IBM development labs, and increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us. We want our Redbooks to be as helpful as possible. Send us your comments about this or other Redbooks in one of the following ways:

► Use the online Contact us review redbook form found at:

ibm.com/redbooks

► Send your comments in an e-mail to:

redbook@us.ibm.com

► Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
Performance Toolkit for VM at a glance

This chapter provides an overview of the functions and features of Performance Toolkit for VM. We discuss:

- Defining Performance Toolkit for VM
- Starting Performance Toolkit for VM
- Basic mode
- Monitor mode
- Help facility
- Displaying current and average data
- Sorting reported data
- History performance analysis
- Benchmark data analysis
- Threshold monitoring
- Variable correlation coefficient analysis
- When to use Performance Toolkit for VM

Details about specific Performance Toolkit for VM functions can be found in z/VM: Performance Toolkit, SC24-6062, which is available in the z/VM Internet library:

http://www.vm.ibm.com/library
1.1 Defining Performance Toolkit for VM

Performance Toolkit for VM is a global performance product that provides real-time monitoring functions and historical performance analysis for multiple z/VM systems (local or remote). It is the product replacement for VM Real Time Monitor (RTM/ESA) and VM Performance Reporting Facility (VMPRF). Figure 1-1 illustrates the functions that are provided by Performance Toolkit for VM relative to Real Time Monitor and VM Performance Reporting Facility.

The Performance Toolkit for VM program runs as a Conversational Monitor System (CMS) module called PERFKIT. It integrates many functions for data collection:

- Monitor data retrieval is recorded by the control program (CP) of VM and placed in the MONDCSS shared segment. It is connected to the CP service *MONITOR.
CP control blocks are examined to extract real-time data using DIAGNOSE x’04’ (which requires CP privilege class E).

Figure 1-2 illustrates operation of the PERFKIT module.

PERFKIT also has a Full Screen Operator Console (FCON) function to communicate with the CP *MSG service. The FCON function is also used to communicate with:

- VMCF and APPC/VM: For more information, see Chapter 4, “Remote access and monitoring” on page 89.
- Linux interface through TCP/IP: For more information, see Chapter 8, “Monitoring Linux guests” on page 147.
- Web server for individual Web browser on workstations: For more information, see 4.3, “Performance Toolkit for VM Web interface” on page 95.

For background on z/VM monitoring concepts, see Appendix A, “Monitoring for z/VM” on page 205.
1.2 Starting Performance Toolkit for VM

By default, Performance Toolkit for VM is enabled to run in the virtual machine of the PERFSVM user. It is started by using the PERFKIT command.

Note: Chapter 3, “Configuring Performance Toolkit for VM” on page 65 discusses the minidisk structure and steps that are required to start Performance Toolkit for VM from another VM user.

Figure 1-3 shows the command syntax for the PERFKIT command.

![PERFKIT command syntax](image)

Parameters passed to the PERFKIT command determine the initial mode of operation:

- **Basic mode**
 - If no parameter is supplied, Performance Toolkit for VM starts in basic mode (described in 1.3, “Basic mode” on page 5).

- **Help mode**
 - If the question mark (?) character or HELP parameter is supplied, Performance Toolkit for VM starts in help mode (described in 1.5, “Help facility” on page 9).

- **Navigation to a specific screen**
 - If a Performance Toolkit for VM subcommand is supplied, the monitor screen that is generated by the subcommand is displayed initially. Chapter 2, “Navigating through Performance Toolkit for VM” on page 23, introduces some of the available subcommands and associated monitor displays. For a complete list of all Performance Toolkit for VM subcommands, consult z/VM: Performance Toolkit, SC24-6062.
1.3 Basic mode

Figure 1-4 shows Performance Toolkit for VM basic mode.

![Screen layout image]

Note: Several subcommands may be specified as parameters (each separated by a semicolon (;) character. Stacked subcommands are executed in first-in, first-out order after execution of subcommands found in the FCONX $PROFILE initialization file. The initialization file is discussed in 3.2.1, “FCONX $PROFILE” on page 69.

Basic mode is the standard mode of operation. The command line accepts CP commands, CMS commands, and Performance Toolkit for VM subcommands.
Command output is displayed in the output area. The default command search order is:

1. Performance Toolkit for VM subcommand
2. CP command
3. CMS command

Tip: To change the command search order, see the FCONTROL SEARCH subcommand on page 74.

In basic mode, command output may be filtered. You can define message output to be suppressed. (Performance Toolkit for VM hides these messages.) Message output may also be redirected. For example, to route tape-related messages from to the tape operator (user ID `tapeop`), use the commands:

```
FC PROCESS CPMSG * ‘TAPE’ NODISP RER TAPEOP CPMSG
FC PROCESS CPAMSG * ‘HCPERP2215A’ RER TAPEOP CPMSG
```

Note: In large computing centers, the tape units are typically located some distance from the z/VM consoles. In many cases, there is a dedicated tape operator, and all tape-related messages should be directed to a console near the tape units. With message routing, Performance Toolkit for VM can act as the system console.

A limited automation capability is available with Performance Toolkit for VM. You can invoke REXX procedure triggered by a message or a string within a message.

1.3.1 Redisplay facility

The redisplay facility of Performance Toolkit for VM enables browsing through the accumulated console log or through a previous day’s logs. To enter the redisplay mode, press PF2 or enter the REDISP subcommand in basic mode. Figure 1-5 on page 7 shows features of the redisplay facility.
In this example, the redisplay facility is used to view the 20040315 CONLOG file (which is created by Performance Toolkit for VM while operating in basic mode). You can scroll through the redisplay screen using these subcommands:

- BACKWARD
- FORWARD
- TOP
- BOTTOM
- LEFT
- RIGHT

PF keys can also be used for scrolling.
1.4 Monitor mode

To start performance monitor mode, enter the MONITOR subcommand on the command line. This displays the Performance screen selection menu shown in Figure 1-6.

```
FCX124          Performance Screen Selection (FL440 VM63447)    Perf. Monitor

General System Data  I/O Data  History Data (by Time)
2. Storage utilization  12. Control units  32. History data files*
3. Storage subpools  13. I/O device load*  33. Benchmark displays*
5. System counters  15. Cache extend. func.*  35. System summary*
6. CP IUCV services  16. DASD I/O assist  36. Auxiliary storage
7. SPOOL file display*  17. DASD seek distance*  37. CP communications*
8. LPAR data  18. I/O prior. queueing*  38. DASD load
A. Shared data spaces  1A. I/O config. changes  3A. Paging activity
B. Virt. disks in stor.  21. User resource usage*  3B. Proc. load & config*
C. Transact. statistics  22. User paging load*  3C. Logical part. load
D. Monitor data  23. User wait states*  3D. Response time (all)*
E. Monitor settings  24. User response time*  3E. RSK data menu*
F. System settings  25. Resources/transact.*  3F. Scheduler queues
G. System configuration  26. User communication*  3G. Scheduler data
H. VM Resource Manager  27. Multitasking users*  3H. SFS/BFS logs menu*
I. Exceptions  28. User configuration*  3I. System log
K. User defined data*  29. Linux systems*  3K. TCP/IP data menu*

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).
Select performance screen with cursor and hit ENTER
```

```
Command ===>
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 1-6 The performance screen selection menu (MONITOR subcommand)

Submenus are grouped into General System Data, I/O Data, User Data, and History Data options.
The asterisk (*) character that follows a menu definition indicates that the menu contains subsequent submenus. You can drill down to submenus for more detailed information.

Several methods may be used to navigate:

- **Use the screen option number.**

 Type the desired option number on the command line and press the Enter key. For example, enter 8 on the command line to view LPAR data.

- **Use the sensitive select option.**

 Move the cursor over the desired option and press Enter.

- **Use the option subcommand name.**

 Enter the short path subcommand name for the selected screen and press Enter. We discuss some common subcommands in Chapter 2, “Navigating through Performance Toolkit for VM” on page 23.

In the Web interface for the Performance Toolkit for VM (described in 4.3, “Performance Toolkit for VM Web interface” on page 95), you can navigate using the mouse. Move the mouse to the desired option, and click the left mouse button to select that option.

Tip: Most Performance Toolkit for VM screens contain more information than initially displayed. To see additional data, use the PF7 and PF8 keys to scroll up and down; use PF10 and PF11 to scroll left and right.

1.5 Help facility

The master help menu shown in Figure 1-7 on page 10 is accessed using the PF1 key. Exit the menu using the PF3 key.
For help on a specific topic, place the cursor on the desired topic and press Enter.

1.5.1 Context-sensitive help

Help information is available for any field in a performance screen. Move the cursor to the field heading and press the HELP key (usually PF1). In most cases, a pop-up window displays the help text for the selected field.

Figure 1-8 on page 11 illustrates context-sensitive help for the %CPU field in the User Resource Usage screen (option 21, or the USER subcommand).
1.6 Displaying current and average data

Performance data screens show current data initially, based on the last monitor sample interval. The time interval on which the performance data is based
appears in the header line. Data is shown as either current values or average values. To switch modes:

- Enter the AVERAGE subcommand to see average data values.

 In average mode, displayed data are average values since the start of monitoring, or since the last data reset.

 Note: To reset data values, see the FCONTROL MONCOLL subcommand on page 71.

- Enter the CURRENT subcommand to see current data values.

 This is the default display mode for most performance screens. Displayed data is the value since the last measuring interval. Start and end time indicate the time the two samples were taken (the monitor sample interval for most options).

1.7 Sorting reported data

In many displays, data may be sorted by column. Sortable columns are indicated by the “.” character (period or full stop) above the column headers. The current sort order is indicated by a sequence of “_” characters above the column name. Figure 1-9 illustrates sort ordering.

```
Figure 1-9  Device screen sorted by disconnect time
```

```
<table>
<thead>
<tr>
<th>Addr Type</th>
<th>Label/ID</th>
<th>Links</th>
<th>ths</th>
<th>I/O</th>
<th>Avoid</th>
<th>Pend</th>
<th>Disc</th>
<th>Conn</th>
<th>Serv</th>
<th>Resp</th>
<th>CUWt</th>
<th>Qued</th>
</tr>
</thead>
<tbody>
<tr>
<td>5092 CTCA</td>
<td>&gt;PVM</td>
<td>1</td>
<td>.0</td>
<td>.0</td>
<td>3000</td>
<td>3000</td>
<td>3000</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>5090 CTCA</td>
<td>&gt;RSCS</td>
<td>1</td>
<td>.3</td>
<td>.3</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>1590 3390-3 LX4W02 CP</td>
<td>48</td>
<td>3</td>
<td>1.0</td>
<td>1.5</td>
<td>.2</td>
<td>.3</td>
<td>2.4</td>
<td>2.9</td>
<td>2.9</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>150C 3390-3 LX150C</td>
<td>0</td>
<td>3</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
<td>.1</td>
<td>.4</td>
<td>.6</td>
<td>.6</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
<tr>
<td>150E 3390-3 LX150E</td>
<td>0</td>
<td>3</td>
<td>.0</td>
<td>.0</td>
<td>.1</td>
<td>.1</td>
<td>.4</td>
<td>.6</td>
<td>.6</td>
<td>.0</td>
<td>.0</td>
<td>.0</td>
</tr>
</tbody>
</table>
```

In this example, the current sort order is on column Disc (the DASD disconnect time). Data may also be sorted on columns Addr, Device, Links, I/O, Avoid, Pend, Conn, Serv, Resp, CUWt, or Qued.

Sort order can be changed in two ways:

- Move the cursor to a screen variable in a sortable column and press Enter.
1.8 History performance analysis

In addition to real-time monitoring, Performance Toolkit for VM has the ability to collect, store, and analyze historic performance data. Figure 1-10 illustrates Performance Toolkit for VM data collection, analysis, and history file generation.

- Issue the **SORT column** subcommand. In this example, we use the SORT DISC subcommand to sort on disconnect time.
The figure depicts:

The FCONTROL MONCOLL CPMON command controls monitor data collection. Performance Toolkit for VM can analyze real-time data, as well as monitor data that was created using the MONWRITE utility:

– The FCONTROL MONCOLL CPMON DCSS command starts real-time analysis. Real-time data is collected from a shared segment (MONDCSS by default) and from CP control blocks.

– The FCONTROL MONCOLL CPMON DISK command causes Performance Toolkit for VM to read previously saved monitor data.

In both cases, monitor data is collected into the redisplay buffer and analyzed using the performance displays.

➤ The FCONTROL MONCOLL REDISP command sets the redisplay buffer size.

➤ The FCONTROL MONCOLL PERFLOG command writes monitor data to disk files. Performance Toolkit for VM can produce two types of monitor data files:

– Simple history files that contain overall system data. These are discussed in 1.8.1, “Simple history data files” on page 15.

– Extended trend files that contain both overall system data and performance data for specific users, processors, channels, and I/O devices. We discuss these in 1.8.2, “Extended trend files” on page 16.

Note: There is overhead associated with monitor data file collection, and monitor data files require additional DASD space. Save performance data files only if performing in-depth performance analysis. For extended trend files, save data only for users and devices that require detailed analysis.

The FCONTROL MONCOLL PERFLOG command enables you to control the start and stop times, and the active days for history data collection. For instance, it is possible to designate history data collection during only first shift (08:00 to 18:00) on weekdays (Monday to Friday).

Collected history data may be analyzed later by Performance Toolkit for VM (as discussed in 2.5, “History data reporting” on page 50). For details about the Performance Toolkit for VM commands for data collection, see the FCONTROL MONCOLL subcommand on page 71.
1.8.1 Simple history data files

Performance Toolkit for VM produces two types of simple data files:

- **Detailed data files** contain one record per monitor sample interval. The files are written to the A disk and are named `yyyymmdd` HISTLOG using the current date. Up to three generations of performance data are retained (using filetypes HISTLOG, HISTLOG1, and HISTLOG2). Filetypes are automatically renamed and the oldest generation (HISTLOG2) is deleted when a new date is created.

- **Summary data files** contain the same data fields as detailed data files, but are updated once per hour. The recorded values are computed averages for the one-hour period and written to the ACUM HISTSUM file on the A disk. Summary data is intended for performance trend analysis and capacity planning.

PERFLOG history files

In addition to HISTLOG and HISTSUM history data files, Performance Toolkit for VM supports the older PERFLOG and PERFSUM history data format:

- PERFLOG files correspond to HISTLOG detailed data files.
- PERFHIST files correspond to HISTSUM data files.

Note: PERFLOG and PERFHIST files are constructed exclusively from data in the redisplay buffer. In addition to data in the redisplay buffer, HISTLOG and HISTSUM files are built from *by time* logs available in real-time mode.

The type of history data format that is created is controlled by the FCONTROL SETTINGS HISTFILE command:

- The FCONTROL SETTINGS HISTFILE NEW command generates HISTLOG and HISTSUM history data format files.
- The FCONTROL SETTINGS HISTFILE OLD command generates PERFLOG and PERFSUM history data format files.
- The FCONTROL SETTINGS HISTFILE BOTH command generates both types of history data format files.

We recommend using the new history data format files (HISTLOG and HISTSUM).
1.8.2 Extended trend files

In addition to general system load information, extended trend files contain monitor data with detailed information about specific users, processors, channels, and I/O devices.

Note: Extended trend files are similar to Performance Reporting Facility (PRF) trend files; however, Performance Toolkit for VM and PRF trend files cannot be interchanged. In 9.10.2, “Processing historical data” on page 188, we discuss how PRF trend data analysis maps to Performance Toolkit for VM functions.

The FCONTROL MONCOLL RESET command (discussed in 3.2.2, “The FCONTROL RESET command” on page 76) controls when trend data is collected. In 3.2.4, “Trend data collection” on page 80, we discuss how to generate trend data files.

1.9 Benchmark data analysis

For detailed performance analysis of one or more users and/or I/O devices, use the benchmark feature of Performance Toolkit for VM. Benchmarking generates performance data for specific users or devices. Log files are generated for each benchmarked user and device log. These are updated each monitor interval. (The initial default interval is 60 seconds.)

To keep storage requirements and data collection overhead low, these logs are not automatically generated. To initiate benchmarking, use the FCONTROL BENCHMRK command. (Figure 1-11 on page 17 shows the syntax.) By default, logs are written into volatile storage; data may also be written to DASD.
1.10 Threshold monitoring

With Performance Toolkit for VM, it is possible to set thresholds for some key performance variables. This generates alert messages when the limit value is exceeded. Due to the complexity of large systems, a single value for a threshold is often not enough to determine whether a performance problem exists. Therefore, the threshold function of Performance Toolkit for VM enables you to define some additional parameters as prerequisites to make it more likely that an alert message will be generated only when a performance problem really exists.
Threshold monitoring is controlled using the FCONTROL LIMIT subcommand. Figure 1-12 shows the command syntax.

Performance values that can be used for threshold monitoring include:

- All performance variables that are included in the HISTLOG/HISTSUM performance history log files. For a complete list, see z/VM: Performance Toolkit, SC24-6062.
- Normalized CPU load (NORMCPU) and normalized logical CPU load (NORMLCPU).
- Device I/O request queue length (DVQUEUE).
- Device I/O response time (DVRESP).
- Missing interrupts for I/O devices.
- Channel busy percentage (%CHBUSY).

In addition to the actual threshold value, you can also define:

- The minimum amount of users expected in queue for class 1 (q1) and the total in-queue users for the classes 0, 2, and 3 (qx).
The time period in minutes that a problem must exist before a message is generated. You can specify a time interval used to repeat the message if the problem still exists.

The combination of these thresholds helps separate short peaks from real performance problems that need investigation. Figure 1-13 shows an example of different alert messages that are generated by threshold settings.

Note: An exceeded threshold is considered to be a problem only if both the q1 and the qx user count are at least as high as the specified minimum. For more detailed information, see 5.4, “System settings” on page 109.

<table>
<thead>
<tr>
<th>Time</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:37:00</td>
<td>FCXPER315A Cl1 time slice 2.002 exceeds limit 1.000 (Q1=01 Qx=02)</td>
</tr>
<tr>
<td>08:59:00</td>
<td>FCXUSL317A User LNXSU1 I/O/s 377 exceeded threshold 50.0 for 5 min.</td>
</tr>
<tr>
<td>09:51:00</td>
<td>FCXUST457A PERFKL1 60% active: may need higher priority</td>
</tr>
<tr>
<td>10:12:00</td>
<td>FCXPER315A % I/O wait (sys) 52 exceeds limit 50 (LNXRH1 .5 I/O/S)</td>
</tr>
<tr>
<td>10:27:00</td>
<td>FCXPER315A Cl1 time slice 2.002 exceeds limit 1.000 (Q1=01 Qx=03)</td>
</tr>
<tr>
<td>10:27:00</td>
<td>FCXPER315A % I/O wait (sys) 52 exceeds limit 50 (PERFROG .5 I/O/S)</td>
</tr>
<tr>
<td>12:00:00</td>
<td>MSG FROM PERFKL1: IT IS NOW 12:00H</td>
</tr>
<tr>
<td>12:32:00</td>
<td>FCXPER315A Cl1 time slice 2.000 exceeds limit 1.000 (Q1=01 Qx=02)</td>
</tr>
<tr>
<td>12:39:00</td>
<td>FCXPER315A Cl1 time slice 2.002 exceeds limit 1.000 (Q1=01 Qx=03)</td>
</tr>
<tr>
<td>12:50:00</td>
<td>FCXCHA318A Channel 48: 67% busy exceeds limit of 40%</td>
</tr>
<tr>
<td>13:03:00</td>
<td>FCXCHA318A Channel 49: 70% busy exceeds limit of 40%</td>
</tr>
<tr>
<td>13:28:00</td>
<td>FCXCHA318A Channel 75: 70% busy exceeds limit of 40%</td>
</tr>
<tr>
<td>14:39:00</td>
<td>FCXUSL317A User LNXSU2 I/O/s 574 exceeded threshold 50.0 for 5 min.</td>
</tr>
<tr>
<td>14:49:00</td>
<td>FCXUSL317A User LNXSU1 %CPU 33.9 exceeded threshold 30.0 for 5 min.</td>
</tr>
<tr>
<td>14:59:00</td>
<td>FCXUSL317A User LNXSU1 %CPU 56.7 exceeded threshold 30.0 for 15 min.</td>
</tr>
<tr>
<td>15:09:00</td>
<td>FCXUSL317A User LNXSU1 %CPU 37.1 exceeded threshold 30.0 for 25 min.</td>
</tr>
</tbody>
</table>

Alert messages are highlighted and do not automatically scroll. You can delete alert messages using the DELETE subcommand followed by the line number. (For example, to delete message lines 23 through 30, use the DEL 23-30 command.)
1.11 Variable correlation coefficient analysis

With Performance Toolkit for VM, it is possible to measure how one or more performance measurements change relative to a base measurement over time. This feature is referred to as *variable correlation coefficients*. Analysis is performed using performance data saved in HISTLOG and HISTSUM history files.

1.12 When to use Performance Toolkit for VM

You should run Performance Toolkit for VM as part of your normal running system configuration. There are a number of advantages in doing this:

- You can perform real-time monitoring of system performance with the ability to monitor individual virtual machines or system resources.
- You can set up automated processes to be invoked (such as application programs and REXX execs) based on events such as when thresholds set in FCONX $PROFILE are being exceeded.
- By enabling the collection of history data in FCONX $PROFILE, you can perform trend analysis and capacity planning.

1.12.1 Performance Toolkit for VM overhead

Generally, running Performance Toolkit for VM for real-time system monitoring results in very low system overhead. The CPU load for normal data collection with the default interval of 60 seconds will be considerably less than 1% of total CPU capacity (typically 0.1% to 0.2% on a system with 1000 users).

The actual CPU load that is generated by the Performance Toolkit for VM will vary depending on:

- The system environment being monitored (for example, the I/O configuration and number of monitored virtual machines)
- The monitor domains that have been enabled
- The time interval between monitor samples

Monitor domains

If CP monitor data collection has been enabled, Performance Toolkit for VM will collect all the data it can use. This can cause a considerable load if you have enabled EVENT data for all users on a large system. Records will be generated by CP and collected by Performance Toolkit for VM for each user transaction. The same is true when enabling EVENT SEEKS data for many disks. A large
number of monitor records will be generated (one record for each disk I/O operation), and all of these records will have to be processed by Performance Toolkit for VM.

Frequency of data collection

The monitor SAMPLE interval is used for all of the permanently collected data. Performance Toolkit for VM also uses this sample interval when collecting data from CP control blocks. The default interval is 60 seconds, but you can change it to a shorter or longer period. Setting a longer interval will reduce the data collection overhead for both CP and Performance Toolkit for VM, while setting a shorter interval will increase it. When viewing one of the detailed displays for users, I/O devices, or storage devices, you can force a new calculation of performance data by pressing the Enter key. Forcing calculations repeatedly over a short period of time will result in a proportional increase in the data collection overhead for the selected display.
Navigating through Performance Toolkit for VM

In this chapter, we discuss navigate through Performance Toolkit for VM and introduce some of the major monitoring screens. Topics that are covered include:

- Information available in Performance Toolkit for VM
- General system data reporting
- I/O data reporting
- User data reporting
- History data reporting
- User-defined screens
- Using the Web interface
2.1 Information available in Performance Toolkit for VM

Performance Toolkit for VM reports information on system behavior, performance, and configuration. Data reports are grouped into screens for:

- General system data reporting
- I/O data reporting
- User data reporting
- History data reporting
- User-defined screens

2.2 General system data reporting

Figure 2-1 on page 25 shows the group of general system data screens.
General System Data

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>CPU load and trans.</td>
<td>I/O Data</td>
</tr>
<tr>
<td>2.</td>
<td>Storage utilization</td>
<td>Storage utilization</td>
</tr>
<tr>
<td>4.</td>
<td>Priv. operations</td>
<td>32. History data files*</td>
</tr>
<tr>
<td>5.</td>
<td>System counters</td>
<td>33. Benchmark displays*</td>
</tr>
<tr>
<td>6.</td>
<td>CP IUCV services</td>
<td>34. Correlation coeff.</td>
</tr>
<tr>
<td>7.</td>
<td>SPOOL file display*</td>
<td>35. System summary*</td>
</tr>
<tr>
<td>8.</td>
<td>LPAR data</td>
<td>36. Auxiliary storage</td>
</tr>
<tr>
<td>9.</td>
<td>Shared segments</td>
<td>37. CP communications*</td>
</tr>
<tr>
<td>10.</td>
<td>Shared data spaces A</td>
<td>38. Auxiliary storage</td>
</tr>
<tr>
<td>12.</td>
<td>Shared data spaces C</td>
<td>3A. Paging activity</td>
</tr>
<tr>
<td>13.</td>
<td>System configuration G</td>
<td>3B. Proc. load & config*</td>
</tr>
<tr>
<td>14.</td>
<td>System configuration H</td>
<td>3C. Logical part. load</td>
</tr>
<tr>
<td>15.</td>
<td>System configuration I</td>
<td>3D. Response time (all)*</td>
</tr>
<tr>
<td>16.</td>
<td>System configuration I</td>
<td>3E. RSK data menu*</td>
</tr>
<tr>
<td>17.</td>
<td>System configuration K</td>
<td>3G. Scheduler data</td>
</tr>
<tr>
<td>18.</td>
<td>System configuration K</td>
<td>3H. SFS/BFS logs menu*</td>
</tr>
<tr>
<td>19.</td>
<td>System configuration K</td>
<td>3I. System log</td>
</tr>
<tr>
<td>20.</td>
<td>System configuration K</td>
<td>3K. TCP/IP data menu*</td>
</tr>
<tr>
<td>21.</td>
<td>System configuration K</td>
<td>3L. User communication</td>
</tr>
<tr>
<td>22.</td>
<td>System configuration K</td>
<td>3M. User wait states</td>
</tr>
</tbody>
</table>

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).

Select performance screen with cursor and hit ENTER

Command ===>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-1 General system data screens

We look further at these screens:

- CPU load (option 1)
- Storage utilization (option 2)
- Spool file overview (option 7)
- LPAR data (option 8)
- Shared segments (option 9)
- System configuration (option G)
2.2.1 CPU load

Select option 1 or execute the CPU subcommand to navigate to the CPU load screen that is shown in Figure 2-2.

<table>
<thead>
<tr>
<th>FCX100</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Interval 17:18:19 - 17:18:39</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Load</td>
<td>Vector Facility</td>
<td>Status or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROC</td>
<td>%CPU</td>
<td>%CP</td>
<td>%EMU</td>
<td>%WT</td>
</tr>
<tr>
<td>P00</td>
<td>21</td>
<td>0</td>
<td>21</td>
<td>79</td>
</tr>
<tr>
<td>P01</td>
<td>51</td>
<td>0</td>
<td>51</td>
<td>49</td>
</tr>
</tbody>
</table>

Total SSCH/RSCH 5/s Page rate .0/s Priv. instruct. 30/s
Virtual I/O rate 3/s XSTORE paging .0/s Diagnose instr. 26/s
Total rel. SHARE 3200 Tot. abs SHARE 6%

Queue Statistics: Q0 Q1 Q2 Q3 User Status:
VMDBKs in queue 3 1 0 2 # of logged on users 25
VMDBKs loading 0 0 0 0 # of dialled users 0
Eligible VMDBKs 0 0 0 # of active users 8
El. VMDBKs loading 0 0 0 # of in-queue users 6
Tot. WS (pages) 5109 153 0 30984 % in-Q users in PGWAIT 0
Expansion factor 1 1 1 % in-Q users in IOWAIT 30
85% elapsed time 112.2 14.03 112.2 673.3 % elig. (resource wait) 0

Transactions Q-Disp trivial non-trv User Extremes:

Command ===> F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-2 CPU load screen (option 1 or the CPU subcommand)

Important information that is provided on this screen includes:

- The number of processors that are available to the z/VM system.

 In this example, we see two processors:

 | P01 | The master processor |
 | P02 | The alternate processor |

 Data values are presented for each processor:

 - %CPU This value represents total CPU load expressed as a percentage.
 - %CP The percentage of time spent in supervisor state.
 - %EMU The percentage of time spent in emulation state. This corresponds to the amount of processor time spent executing under SIE control microcode. (This is also known as virtual CPU time).
%WT The percentage of time spent in wait state.

%SYS The percentage of time spent executing system services.

%LOGLD The total logical CPU load. This is calculated based on the sum of active processor time and processor wait time (not total elapsed time). The is calculated only for VM systems that are running in an LPAR. The value does not correctly reflect system load, but is a better indicator of CPU bottlenecks (as opposed to %CPU) value when running in an LPAR.

This screen also presents:

– The number of logged on users

 In this example, we note that there are 25 logged on users.

– The total absolute share

 The total sum of absolute share values for the 25 logged-on users is 3200.

– The total relative share

 The total sum of relative share values for the 25 logged-on users is 6%.

In 5.4.3, “Assigning processing share” on page 111, we look at assigning processor share values in detail.

► The virtual I/O rate

 Virtual I/O rate is the sum of I/O request rates for virtual machines.

► The page rate and XSTORE paging rate

 The page rate indicates total system paging rate; XSTORE paging is the rate of paging to expanded storage.

2.2.2 Storage utilization

Select option 2 or issue the STORAGE subcommand to navigate to the storage utilization display shown in Figure 2-3 on page 28.
Figure 2-3 Storage utilization screen (option 2 or the STORAGE subcommand)

<table>
<thead>
<tr>
<th>Main storage utilization:</th>
<th>XSTORE utilization:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total real storage</td>
<td>Total available</td>
</tr>
<tr>
<td>3'072MB</td>
<td>1'024MB</td>
</tr>
<tr>
<td>Total available</td>
<td>Att. to virt. machines</td>
</tr>
<tr>
<td>3'072MB</td>
<td>0KB</td>
</tr>
<tr>
<td>Offline storage frames</td>
<td>Size of CP partition</td>
</tr>
<tr>
<td>0kB</td>
<td>1'024MB</td>
</tr>
<tr>
<td>SYSGEN storage size</td>
<td>CP XSTORE utilization</td>
</tr>
<tr>
<td>3'072MB</td>
<td>0%</td>
</tr>
<tr>
<td>CP resident nucleus</td>
<td>Low threshold for migr.</td>
</tr>
<tr>
<td>2'928kB</td>
<td>1'200kB</td>
</tr>
<tr>
<td>Shared storage</td>
<td>XSTORE allocation rate</td>
</tr>
<tr>
<td>22'016kB</td>
<td>0/s</td>
</tr>
<tr>
<td>FREE storage pages</td>
<td>Average age of XSTORE blks</td>
</tr>
<tr>
<td>5'992kB</td>
<td>0s</td>
</tr>
<tr>
<td>FREE stor. subpools</td>
<td>Average age at migration</td>
</tr>
<tr>
<td>276kB</td>
<td>...s</td>
</tr>
<tr>
<td>Subpool stor. utilization</td>
<td></td>
</tr>
<tr>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>Total DPA size</td>
<td></td>
</tr>
<tr>
<td>2'033MB</td>
<td></td>
</tr>
<tr>
<td>Locked pages</td>
<td>Locked pages</td>
</tr>
<tr>
<td>20'924kB</td>
<td>20'924kB</td>
</tr>
<tr>
<td>Trace table</td>
<td>Trace table</td>
</tr>
<tr>
<td>700kB</td>
<td>700kB</td>
</tr>
<tr>
<td>Pageable</td>
<td>Pageable</td>
</tr>
<tr>
<td>2'012MB</td>
<td>2'012MB</td>
</tr>
<tr>
<td>Storage utilization</td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Tasks waiting for a frame</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tasks waiting for a page</td>
<td></td>
</tr>
<tr>
<td>0/s</td>
<td></td>
</tr>
<tr>
<td>V=R area:</td>
<td></td>
</tr>
<tr>
<td>Size defined</td>
<td>Min. size in XSTORE</td>
</tr>
<tr>
<td>0kB</td>
<td>0kB</td>
</tr>
<tr>
<td>FREE storage</td>
<td>Max. size in XSTORE</td>
</tr>
<tr>
<td>0kB</td>
<td>1'024MB</td>
</tr>
<tr>
<td>V=R recovery area in use</td>
<td>MDCACHE limit / user</td>
</tr>
<tr>
<td>...%</td>
<td>422'332kB</td>
</tr>
<tr>
<td>V=R user</td>
<td>Users with MDCACHE inserts</td>
</tr>
<tr>
<td>........</td>
<td>0</td>
</tr>
<tr>
<td>Paging / spooling activity:</td>
<td></td>
</tr>
<tr>
<td>Page moves <2GB for trans.</td>
<td>Page moves <2GB for trans.</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>Fast path page-in rate</td>
<td>Fast path page-in rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>Long path page-in rate</td>
<td>Long path page-in rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>Long path page-out rate</td>
<td>Long path page-out rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>Page read rate</td>
<td>Page read rate</td>
</tr>
<tr>
<td>2/s</td>
<td>2/s</td>
</tr>
<tr>
<td>Page write rate</td>
<td>Page write rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>Page read blocking factor</td>
<td>Page read blocking factor</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Page write blocking factor</td>
<td>Page write blocking factor</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Migrate-out blocking factor</td>
<td>Migrate-out blocking factor</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Paging SSCH rate</td>
<td>Paging SSCH rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>SPOOL read rate</td>
<td>SPOOL read rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
<tr>
<td>SPOOL write rate</td>
<td>SPOOL write rate</td>
</tr>
<tr>
<td>0/s</td>
<td>0/s</td>
</tr>
</tbody>
</table>

Enter 'FREesub' command for Free Storage Subpool details

Command ===> F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return
This screen provides information about:

- **Main storage utilization**

 In this example, 3 GB (3,072 MB) of main storage is defined to VM.

 Note: The apostrophe character (’) is used as punctuation between digits.

- **Expanded storage (XSTORE) utilization**

 The system has 1 GB (1,024 MB) of expanded storage defined.

- **Minidisk cache (MDCACHE) utilization**

 The maximum size of the minidisk cache is defined as 1 GB (1,024 MB). The actual size of the minidisk cache is 3 MB (3,484 KB).

- **Paging and spooling activity**

 The Page moves <2GB for trans. value indicates the rate at which main storage pages are moved below the 2 GB line for translation.

 Note: Pages must move below the 2 GB line when I/O operations are performed on data residing on the page.

- **VDISK usage**

 In this example, 30 main storage page frames are used by virtual disks. We look at VDISKs further in 5.11, “Virtual disks in storage” on page 123.
2.2.3 Spool file overview

Select option 7 or issue the SPOOL subcommand to see the spool file usage screen shown in Figure 2-3 on page 28.

Select 'P' to purge files, or enter 'SPool User' for user summary

The spool file overview screen is particularly useful when spool space utilization reaches a dangerous level (as indicated by the percentages that are shown on the DEVICE SYSOWN display, or the utilization percentage shown on the redisplay screen).

Note: When all available spool space becomes full, VM uses paging space to hold any additional spool files.

This screen provides information about:

- Summary of total spool space utilization
 Totals are provided for the number of files, number of blocks, and number of records.
Detailed list of spool files

Up to 100 of the largest spool files (ordered by descending file size) are displayed. Active spool files (those in use) are highlighted.

Files may be purged from this screen: Place the cursor over the spool file (in the S column), type P, and press Enter.

Note: CP privilege class D is required to purge files that are owned by other users.

User spool file usage

Use the STORAGE user subcommand to navigate to the user spool file overview display shown in Figure 2-5. (To select a user from the spool file overview screen, place the cursor over the desired user in the Owner-ID column and press Enter.)

<table>
<thead>
<tr>
<th>FCX121</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Status 16:19:50</th>
<th>Perf. Monitor</th>
</tr>
</thead>
</table>

Owner MAINT

SPOOL File Overview Reader Printer Punch System Total
Number of files 5 16 6 0 27
Number of blocks 31 25 6 0 62
Number of records 1176 599 105 0 1880

S OriginID File Class Que Ac Blocks Records Date Time Name Type
. DIRMAINT 0173 A PUN RDR 10 389 2004/03/03 11:13 USER MDISKMAP
. MAINT 0226 T CON PRT OU 10 518 2004/03/17 10:11
. DIRMAINT 0223 A PUN RDR 10 390 2004/03/15 17:38 USER MDISKMAP
. DIRMAINT 0217 A PUN RDR 9 355 2004/03/09 15:58 MAINT DIRECT
. DIRMAINT 0224 A PUN RDR 1 9 2004/03/15 17:38 USER GAPFILE
. DIRMAINT 0218 A PUN RDR 1 33 2004/03/09 15:59 PERFSVM DIRECT
. MAINT 0118 A PRT PRT 1 6 2004/02/26 12:12
. MAINT 0117 A PRT PRT 1 6 2004/02/26 10:56
. MAINT 0116 A PRT PRT 1 6 2004/02/26 10:33
. MAINT 0115 A PRT PRT 1 6 2004/02/26 10:11
. MAINT 0111 A PRT PRT 1 6 2004/02/26 08:27
. MAINT 0110 A PRT PRT 1 6 2004/02/25 18:53

Select 'P' to purge files

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-5 User spool file overview screen (subcommand SPOOL user)

This screen displays all spool files that are owned by a specific user. Purging files is also possible from this screen.
2.2.4 LPAR data

Select option 8 or execute the LPAR subcommand to see the LPAR data screen shown in Figure 2-6.

```
FCX126    CPU 2084 SER 96A3A Interval 17:40:33 - 17:41:33 Perf. Monitor

LPAR Data, Collected in Partition A19

Processor type and model : 2084-305
Nr. of configured partitions: 30
Nr. of physical processors : 8
Dispatch interval (msec) : dynamic

Partition Nr. #Proc Weight Wait-C Cap %Load CPU %Busy %Ovhd %Susp %VMld %Logld
     1   3.3   .1    ...    ...          ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...     ...
A14    25   1    10   NO   NO         .3    0     2.0    .1    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...
A15    26   1    10   NO   NO         ...   0     .0    .0    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...
A16    27   0    0    NO   NO         0     ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...
A17    28   0    0    NO   NO         0     ...    ...    ...    ...    ...    ...    ...    ...    ...    ...    ...
A18    29   1    10   NO   NO         ...   0     .0    .0    ...    ...    ...    ...    ...    ...    ...    ...    ...
A19    30   2    DED   YES  NO       25.0  0     100.0  .0    .1    .5   .5   .5   .5   .1   .5   .5   .5   .5   .5   .5   .5   ...
       1 100.0  .0    .0    .2    .2

General LPAR mgmt overhead                       2.0
Overall physical load                           41.1

Command ===>
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F10=Left  F11=Right  F12=Return
```

Figure 2-6 LPAR data screen (option 8 or the LPAR subcommand)

This screen presents information about the:

- Central Electronic Complex (CEC)

 The CEC is a model 2084-305 (IBM server® zSeries 990) with 30 defined LPARs, and configured with eight processors. The overall processing load on the CEC is 41.1%.

- Logical Partition (LPAR)

 This z/VM system runs in the A19 LPAR (configured with dynamic dispatching). The A19 LPAR is defined with two dedicated processors; CPU utilization is reported for each processor. The overhead associated with managing this LPAR is 2.0%.

 LPAR monitoring is discussed further in Chapter 7, “Understanding LPAR configuration” on page 141.
2.2.5 Shared segments

Select option 9 or issue the NSS subcommand to navigate to the shared segment screen shown in Figure 2-7.

```
<table>
<thead>
<tr>
<th>Segment</th>
<th>Spool</th>
<th>Creation</th>
<th>&lt;- Users -&gt;</th>
<th>&lt;------ Pages ------&gt;</th>
<th>&lt;-------- Rate per</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>File</td>
<td>Date</td>
<td>Share N-Shr</td>
<td>Savd NDat Res. XSTOR Trans Steal Pgrds</td>
<td></td>
</tr>
<tr>
<td>&gt;System&lt;</td>
<td>----</td>
<td>----</td>
<td>-- --</td>
<td>11     0 442 329 453 62 .043 .000 .000</td>
<td></td>
</tr>
<tr>
<td>CMS</td>
<td>120</td>
<td>2004/03/04</td>
<td>16 0 1298 0 1298 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSFILES</td>
<td>95</td>
<td>2003/06/18</td>
<td>3 0 768 0 630 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSPIPES</td>
<td>111</td>
<td>2004/02/18</td>
<td>20 0 256 0 256 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSVMLIB</td>
<td>110</td>
<td>2004/02/18</td>
<td>20 0 256 0 256 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>115</td>
<td>2004/02/18</td>
<td>2 0 120 917 477 560 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HELPSEG</td>
<td>118</td>
<td>2004/03/02</td>
<td>4 0 256 0 256 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTSEG</td>
<td>91</td>
<td>2003/06/18</td>
<td>20 0 768 0 768 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MONDCSS</td>
<td>97</td>
<td>2003/06/18</td>
<td>7 0 0 2048 11 0 .383 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLSAMENG</td>
<td>114</td>
<td>2004/02/18</td>
<td>4 0 256 0 128 0 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 2-7 Shared segments screen (option 9 or the NSS subcommand)

Shared segments are initially sorted in ascending segment name order. Segments that were active during the last interval are highlighted. In this example, we note activity in the MONDCSS shared segment (which is used to collect monitor records).
2.2.6 System configuration

Select option G or issue the SYSCONF subcommand to navigate to the system configuration screen shown in Figure 2-8.

```
FCX180  CPU 2084  SER 96A3A  System  Config.  Perf. Monitor

System History for VMLINUX4 (running in LPAR)
CP Level       z/VM Version 4.4.0, Service Level 0401 (64-bit)
Last Termination Time  .........
Last Termination Code  .........
Last IPL Time        2004/03/15 at 11:29:41
Time Zone Offset     -05:00:00 From Greenwich Mean Time
Checkpoint Volume    LX4RES
Warmstart Volume     LX4RES

Initial Status on 2004/03/15 at 17:35, Processor 2084-305
Real Proc.: Cap 1968, Total 10, Conf 5, Stby 0, Resvd 5
Log. Proc.: CAF 400, Total 2, Conf 2, Stby 0, Resvd 0, Ded 2, Shrd 0

<----- Processor ----->   Crypto Facility   <------- Vector Facility ------->
Num  Serial-Nr  Status    ID      Status    Installed  Connected  Operational
 0    196A3A    Online    ..      Offline      No         No          No
 1    196A3A    Online    ..      Offline      No         No          No

S/370 guests not supported

Command ===>
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 2-8 System configuration screen (option G or the SYSCONF subcommand)

Information that is available on this screen includes:

- This system is running z/VM 4.4 at release level 0401. VM is running in 64-bit mode.
- The initial status shows the date and time when monitoring was last activated. The processor type and model, as well as real, logical, and virtual CPU configuration, are also included.

System configuration is further discussed in 5.2, “System configuration screen” on page 105.
2.3 I/O data reporting

Figure 2-9 shows I/O data screens.

<table>
<thead>
<tr>
<th>General System Data</th>
<th>I/O Data</th>
<th>History Data (by Time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Storage utilization</td>
<td>12. Control units</td>
<td>32. History data files*</td>
</tr>
<tr>
<td>3. Storage subpools</td>
<td>13. I/O device load*</td>
<td>33. Benchmark displays*</td>
</tr>
<tr>
<td>5. System counters</td>
<td>15. Cache extend. func.*</td>
<td>35. System summary*</td>
</tr>
<tr>
<td>6. CP IUCV services</td>
<td>16. DASD I/O assist</td>
<td>36. Auxiliary storage</td>
</tr>
<tr>
<td>7. SPOOL file display*</td>
<td>17. DASD seek distance*</td>
<td>37. CP communications*</td>
</tr>
<tr>
<td>8. LPAR data</td>
<td>18. I/O prior. queueing*</td>
<td>38. DASD load</td>
</tr>
<tr>
<td>A. Shared data spaces</td>
<td>1A. I/O config. changes</td>
<td>3A. Paging activity</td>
</tr>
<tr>
<td>B. Virt. disks in stor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Transact. statistics</td>
<td>User Data</td>
<td>3B. Proc. load & config*</td>
</tr>
<tr>
<td>E. Monitor settings</td>
<td>22. User paging load*</td>
<td>3D. Response time (all)*</td>
</tr>
<tr>
<td>F. System settings</td>
<td>23. User wait states*</td>
<td>3E. RSK data menu*</td>
</tr>
<tr>
<td>G. System configuration</td>
<td>24. User response time*</td>
<td>3F. Scheduler queues</td>
</tr>
<tr>
<td>H. VM Resource Manager</td>
<td>25. Resources/transact.*</td>
<td>3G. Scheduler data</td>
</tr>
<tr>
<td>I. Exceptions</td>
<td>26. User communication*</td>
<td>3H. SFS/BFS logs menu*</td>
</tr>
<tr>
<td>J. User defined data*</td>
<td>27. Multitasking users*</td>
<td>3I. TCP/IP data menu*</td>
</tr>
<tr>
<td>K. User defined data*</td>
<td>28. User configuration*</td>
<td>3J. TCP/IP data menu*</td>
</tr>
<tr>
<td>L. User defined data*</td>
<td>29. Linux systems*</td>
<td>3K. TCP/IP data menu*</td>
</tr>
</tbody>
</table>

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).

Select performance screen with cursor and hit ENTER

Command ===>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-9 I/O data screens

We look further at:
- I/O device load (option 13)
- CP-owned disks (option 14)
2.3.1 I/O device load

Select option 13 or issue the DEVICE subcommand to navigate to the I/O device data screen shown in Figure 2-10.

Looking at the device at address 1550, we see:

- **Type**: Indicates that the device is a 3390 model 3 DASD.
- **Label**: Indicates that the disk label (VOLSER) is LX4W01.
- **ID**: Indicates that it is a CP-owned disk.
- **Links**: Indicates that there are 20 links to the minidisk.
- **Paths**: Shows that there are three paths to the minidisk.

We can drill down for detailed information about a specific device.

I/O device details

Two methods are available to get I/O device information:

- Move the cursor to the desired device and press Enter.
- Issue the DEVICE `addr` subcommand.
Figure 2-11 shows detailed data about the 1550 I/O device, which is owned by CP.

Figure 2-11 I/O device details screen (the IODEVICE 1550 subcommand)

Additional information that is available on this screen includes:

Last SEEK

Indicates that the last real seek operation was executed on cylinder 2294.

Status: MDCACHE USED

Indicates that minidisk cache is used for the device.
Path(s) to device Indicates that channel paths (CHPIDs) 74, 75, 48, and 49 are used to access the device.

Channel path status Indicates that CHPID 74 is offline; all others are online.

A detailed list of minidisks residing on the device is also supplied. Details about each minidisk includes:

- The start and end cylinders of the minidisk
- The minidisk owner
- The minidisks virtual address

2.3.2 CP-owned disks

Select option 14 or issue the DEVICE CPOWNED subcommand to navigate to the CP-owned I/O device data screen shown in Figure 2-12.
Performance of paging and spooling devices is a key factor for system performance. This screen is a good starting point when problems in that area are suspected.

Information on this screen includes:

- **PAGE slots available and PAGE slot utilization**

 In this example, there are 24120 available page slots, of which 19% are used.

- **SPOOL slots available and SPOOL slot utilization**

 There are 632880 available spool slots, of which 10% are used.

Note: When paging space is exhausted, VM will use page to spool space.

In Chapter 6, “Analyzing I/O and network performance” on page 125, we look at I/O device usage in detail.
2.4 User data reporting

Figure 2-13 shows the group of user data screens.

<table>
<thead>
<tr>
<th>FCX124</th>
<th>Performance Screen Selection (FL440 VM63447)</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>General System Data</td>
<td>I/O Data</td>
<td>History Data (by Time)</td>
</tr>
<tr>
<td>2. Storage utilization</td>
<td>12. Control units</td>
<td>32. History data files*</td>
</tr>
<tr>
<td>3. Storage subpools</td>
<td>13. I/O device load*</td>
<td>33. Benchmark displays*</td>
</tr>
<tr>
<td>5. System counters</td>
<td>15. Cache extend. func.*</td>
<td>35. System summary*</td>
</tr>
<tr>
<td>6. CP IUCV services</td>
<td>16. DASD I/O assist</td>
<td>36. Auxiliary storage</td>
</tr>
<tr>
<td>7. SPOOL file display*</td>
<td>17. DASD seek distance*</td>
<td>37. CP communications*</td>
</tr>
<tr>
<td>8. LPAR data</td>
<td>18. I/O prior. queueing*</td>
<td>38. DASD load</td>
</tr>
<tr>
<td>A. Shared data spaces</td>
<td>1A. I/O config. changes</td>
<td>3B. Proc. load & config*</td>
</tr>
<tr>
<td>B. Virt. disks in stor.</td>
<td>21. User resource usage*</td>
<td>3C. Logical part. load</td>
</tr>
<tr>
<td>C. Transact. statistics</td>
<td>22. User paging load*</td>
<td>3D. Response time (all)*</td>
</tr>
<tr>
<td>D. Monitor data</td>
<td>23. User wait states*</td>
<td>3E. RSK data menu*</td>
</tr>
<tr>
<td>E. Monitor settings</td>
<td>24. User response time*</td>
<td>3F. Scheduler queues</td>
</tr>
<tr>
<td>F. System settings</td>
<td>25. Resources/transact.*</td>
<td>3G. Scheduler data</td>
</tr>
<tr>
<td>G. System configuration</td>
<td>26. User communication*</td>
<td>3H. SFS/BFS logs menu*</td>
</tr>
<tr>
<td>H. VM Resource Manager</td>
<td>27. Multitasking users*</td>
<td>3I. System log</td>
</tr>
<tr>
<td>I. Exceptions</td>
<td>28. User configuration*</td>
<td>3J. TCP/IP data menu*</td>
</tr>
<tr>
<td>K. User defined data*</td>
<td>29. Linux systems*</td>
<td>3K. TCP/IP data menu*</td>
</tr>
<tr>
<td>A. Logical part. load</td>
<td>3L. User communication</td>
<td></td>
</tr>
<tr>
<td>B. Proc. load & config*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. Logical part. load</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Response time (all)*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. RSK data menu*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F. Scheduler queues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. Scheduler data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. SFS/BFS logs menu*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. System log</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J. TCP/IP data menu*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. TCP/IP data menu*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. User communication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M. User wait states</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).

Select performance screen with cursor and hit ENTER

Command ===>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-13 User data screens

We look further at these screens:

- User resource usage (option 21)
- Linux systems (option 29)
2.4.1 User resource usage

Select option 21 or issue the USER subcommand to navigate to the user resource usage screen shown in Figure 2-14.

<table>
<thead>
<tr>
<th>Userid</th>
<th>%CPU</th>
<th>TCPU</th>
<th>VCPU</th>
<th>Ratio</th>
<th>Total</th>
<th>DASD</th>
<th>Avoid</th>
<th>Diag98</th>
<th>UR</th>
<th>Pg/s</th>
<th>User Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>>System<</td>
<td>3.34</td>
<td>.668</td>
<td>.508</td>
<td>1.3</td>
<td>102</td>
<td>101</td>
<td>141</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>---,---,---</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>51.6</td>
<td>10.32</td>
<td>8.855</td>
<td>1.2</td>
<td>2267</td>
<td>2267</td>
<td>2267</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXRH3</td>
<td>24.0</td>
<td>4.796</td>
<td>4.066</td>
<td>1.2</td>
<td>4.7</td>
<td>4.7</td>
<td>1429</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU2</td>
<td>15.2</td>
<td>3.042</td>
<td>1.511</td>
<td>2.0</td>
<td>2.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL0,DIS</td>
</tr>
<tr>
<td>LNXRH1</td>
<td>14.1</td>
<td>2.825</td>
<td>2.333</td>
<td>1.2</td>
<td>1381</td>
<td>1376</td>
<td>1376</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL0,DIS</td>
</tr>
<tr>
<td>TCP/IP</td>
<td>13.0</td>
<td>2.598</td>
<td>1.165</td>
<td>2.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL0,DIS</td>
</tr>
<tr>
<td>TCPMAINT</td>
<td>.27</td>
<td>.054</td>
<td>.050</td>
<td>1.1</td>
<td>1.2</td>
<td>1.2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>DIRMAINT</td>
<td>.23</td>
<td>.046</td>
<td>.033</td>
<td>1.4</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU6</td>
<td>.22</td>
<td>.044</td>
<td>.030</td>
<td>1.5</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXRH2</td>
<td>.22</td>
<td>.044</td>
<td>.031</td>
<td>1.4</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXRH4</td>
<td>.22</td>
<td>.044</td>
<td>.031</td>
<td>1.4</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU3</td>
<td>.21</td>
<td>.041</td>
<td>.027</td>
<td>1.5</td>
<td>.1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU4</td>
<td>.21</td>
<td>.041</td>
<td>.028</td>
<td>1.5</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU5</td>
<td>.19</td>
<td>.037</td>
<td>.023</td>
<td>1.6</td>
<td>.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>PERFKLA</td>
<td>.12</td>
<td>.024</td>
<td>.023</td>
<td>1.0</td>
<td>.4</td>
<td>.3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFLIV</td>
<td>.11</td>
<td>.022</td>
<td>.021</td>
<td>1.0</td>
<td>.4</td>
<td>.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFROG</td>
<td>.11</td>
<td>.022</td>
<td>.020</td>
<td>1.1</td>
<td>.7</td>
<td>.6</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL0,DIS</td>
</tr>
<tr>
<td>PERFSVM</td>
<td>.10</td>
<td>.020</td>
<td>.019</td>
<td>1.1</td>
<td>.4</td>
<td>.3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFAPP</td>
<td>.08</td>
<td>.016</td>
<td>.015</td>
<td>1.1</td>
<td>.4</td>
<td>.4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
</tbody>
</table>

Select a user for user details or IDLEUSER for a list of idle users

Command ===>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 2-14 The user resource usage screen (option 21 or the USER subcommand)

Note: Active users are highlighted in this screen.

This screen presents an overview of CPU utilization and I/O activity for all logged-on users. Additional resource usage is available by scrolling right (press PF11). In the example, output is sorted by the CPU utilization (the %CPU column).

Monitoring may be performed for both:

- User class resource usage
- Specific user resource usage
User class resource usage
It is possible to define classes of users for each user-based monitoring screen. A user class is a collection of VM users that share a common user-defined characteristic (for example, a common guest operating system or common function). Class data values are calculated as the mean values for all users in the class (in both AVERAGE and CURRENT mode).

User classes are defined using FCONTROL UCLASS subcommand. In Example 2-1, we define user classes in the FCONX $PROFILE file. (See 3.2.1, “FCONX $PROFILE” on page 69 for further discussion.)

Example 2-1 Defining user classes in the FCONX $PROFILE

* Define user classes for which group averages are to be calculated*

* All users not in a a specific group
FC UCLASS * General
* All users for the Linux SUSE ids
FC UCLASS LNXSU* SUSE
* All users for the Linus RedHat ids
FC UCLASS LNXRH* RedHat
* All users for the Performance ToolKit ids
FC UCLASS PERF* ToolKit

In the example, we define four type of user classes:

SUSE Consists of VM users running a SUSE Linux distribution.
RedHat Consists of VM users running a Red Hat Linux distribution.
Toolkit Consists of VM users configured to run Performance Toolkit for VM.
General Consists of users not belonging to any other user class.

User classes may be defined from the command line, but these definitions are not permanent. (See the FCONTROL UCLASS subcommand on page 75.)

Note: User class definitions rely on a standard naming convention for VM users. In our example, we name VM users according to the convention:

- LNXSUxx are guests running a SUSE Linux distribution.
- LNXRHxx are guests running a Red Hat Linux distribution.
- PERFxxx are CMS guests enabled to run Performance Toolkit for VM.
- All other are guests are general VM users.
Figure 2-15 shows the user resource usage screen with user classes added.

```
FCX112  CPU 2084  SER 96A3A  Interval 11:17:04 - 11:18:04  Perf. Monitor
.       .       .       .       .       .       .       .       .
<----- CPU Load ------> <------- Virtual IO/s ------->
<Seconds->  T/V
Userid  %CPU  TCPU  VCPU  Ratio  Total  DASD  Avoid  Diag98  UR  Pg/s  User Status
>System<  4.33  2.599  2.576  1.0   4.8  4.8   3.2     .0   .0   .0  ---,---,---
User Class Data:
  General  .00  .000  .000  2.5   .0   .0   .0     .0   .0   .0  ---,---,---
  RedHat   4.42  2.649  2.366  1.1  52.9 52.9  36.6     .0   .0   .0  ---,---,---
  SUSE     49.8  29.85  29.72  1.0  30.8 30.8  20.3     .0   .0   .0  ---,---,---
  ToolKit  .00  .002  .002  1.1   .1   .1   .0     .0   .0   .0  ---,---,---
User Data:
  LNXSU1  96.0  57.57  57.50  1.0  15.0 15.0   6.8     .0   .0   .0  ESA,CL3,DIS
  LNXRH1  4.42  2.649  2.366  1.1  52.9 52.9  36.6     .0   .0   .0  ESA,CL3,DIS
  LNXSU2  3.55  2.131  1.944  1.1  46.6 46.6  33.9     .0   .0   .0  ESA,CL3,DIS
  PERFROG .01  .003  .002  1.5   .2   .2   .1     .0   .0   .0  ESA,---,DOR
  TCPIP   .01  .003  .001  3.0   .0   .0   .0     .0   .0   .0  ESA,CL0,DIS
  BROYLE  0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  DATAMOVE 0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  DIRMAINT 0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  DISKACNT 0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  EREP    0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  GCS     0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  OPERATOR 0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  OPERSYMP 0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  OP1     0   0   0   0     0   0   0     0   0   0  ESA,---,DOR
  PERFAPP .00  .002  .002  1.0   .1   .1   .0     .0   .0   .0  ESA,---,DOR
  PERFBER .00  .002  .002  1.0   .2   .2   .0     .0   .0   .0  ESA,---,DOR
```

Select a user for user details or IDLEUSER for a list of idle users
Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 2-15 The user resource usage screen with user classes (option 21 or the USER subcommand)

Note: Class sort order is alphabetical on class name (regardless of the selected screen sort order).

Specific user resource usage

To get detailed resource usage for a specific user, select the desired user from the resource usage screen or issue the **USER userid** subcommand. Figure 2-16 on page 44 illustrates detailed user resource usage for VM user LNXSU1.
<table>
<thead>
<tr>
<th>Field</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CPU</td>
<td>114%</td>
</tr>
<tr>
<td>Storage def.</td>
<td>128MB</td>
</tr>
<tr>
<td>Page fault rate</td>
<td>.0/s</td>
</tr>
<tr>
<td>Superv. CPU</td>
<td>34.4%</td>
</tr>
<tr>
<td>Resident <2GB</td>
<td>32208</td>
</tr>
<tr>
<td>Page read rate</td>
<td>.0/s</td>
</tr>
<tr>
<td>Emulat. CPU</td>
<td>80.0%</td>
</tr>
<tr>
<td>Resident >2GB</td>
<td>0</td>
</tr>
<tr>
<td>Page write rate</td>
<td>.0/s</td>
</tr>
<tr>
<td>VF total</td>
<td>Prog. WSET: 32198</td>
</tr>
<tr>
<td>Pgs moved >2GB</td>
<td>.0/s</td>
</tr>
<tr>
<td>VF overhead</td>
<td>Reserved pgs: 0</td>
</tr>
<tr>
<td>Main > XSTORE</td>
<td>.0/s</td>
</tr>
<tr>
<td>VF emulation</td>
<td>Locked pages: 10</td>
</tr>
<tr>
<td>XSTORE > main</td>
<td>.0/s</td>
</tr>
<tr>
<td>VF load rate</td>
<td>XSTORE dedic: OMB</td>
</tr>
<tr>
<td>XSTORE > DASD</td>
<td>.0/s</td>
</tr>
<tr>
<td>I/O rate</td>
<td>6343/s</td>
</tr>
<tr>
<td>DASD I/O rate</td>
<td>6343/s</td>
</tr>
<tr>
<td>DASD slots</td>
<td>0</td>
</tr>
<tr>
<td>SPOOL pg reads</td>
<td>.0/s</td>
</tr>
<tr>
<td>UR I/O rate</td>
<td>0.0/s</td>
</tr>
<tr>
<td>IUCV X-fer/s</td>
<td>.0/s</td>
</tr>
<tr>
<td>MDC insert rate</td>
<td>.0/s</td>
</tr>
<tr>
<td>Diag. X'98'</td>
<td>.0/s</td>
</tr>
<tr>
<td>Share</td>
<td>100</td>
</tr>
<tr>
<td>MDC I/O avoided</td>
<td>3.7/s</td>
</tr>
<tr>
<td>%CPU</td>
<td>Proc. 55.9</td>
</tr>
<tr>
<td>%CP</td>
<td>Proc. 18.3</td>
</tr>
<tr>
<td>%EM</td>
<td>Proc. 37.6</td>
</tr>
<tr>
<td>%VECT</td>
<td>Proc. 37.6</td>
</tr>
<tr>
<td>%VEMU</td>
<td>Proc. 37.6</td>
</tr>
<tr>
<td>VLD/S</td>
<td>Proc. 37.6</td>
</tr>
<tr>
<td>IO/S</td>
<td>Proc. 37.6</td>
</tr>
<tr>
<td>Status</td>
<td>Proc. ESA,P02,PSWT</td>
</tr>
<tr>
<td>BASE</td>
<td>128MB Priv</td>
</tr>
<tr>
<td>Data Space Name</td>
<td>Size Mode</td>
</tr>
<tr>
<td>BASE</td>
<td>PgRd/s 0.0</td>
</tr>
<tr>
<td>PgWr/s</td>
<td>0.0</td>
</tr>
<tr>
<td>XRd/s</td>
<td>0.0</td>
</tr>
<tr>
<td>XWr/s</td>
<td>0.0</td>
</tr>
<tr>
<td>Migr/s</td>
<td>0.0</td>
</tr>
<tr>
<td>Steal/s</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Information available on this screen includes:

- Total CPU indicates that the LNXSU1 user is using 114% of one processor.
- Superv. CPU indicates 34.4% percent of time was spent in supervisor (z/VM) state.
- **Emulat. CPU** (80.0% percentage) is virtual CPU time expressed as a percentage.
- **I/O rate** indicates on average, 6343 non-spooled I/O operations were attributed to the user in the last interval.
- **DASD I/O rate** indicates that all I/O operations (6343) occurred to disk in the last interval.
- **Storage def.** shows that the virtual storage size for the user is 128 MB.
- **Resident <2GB** indicates that 32208 main storage pages were resident below 2 GB at the end of the last measuring interval. This translates to all main storage for the user.
- **Resident >2GB** indicates that no main storage pages were resident above the 2 GB line at the end of the last measuring interval.
- **Share** indicates that the user is assigned the default relative share value (100).

Note: Relative shares are presented as numbers; absolute shares are presented as percentages.

- **MDC avoided** indicates that 3.7 I/O operations per second (in the last interval) were avoided because the data was found in the minidisk cache.
2.4.2 Linux systems

Select option 29 or issue the LINUX subcommand to navigate to the selectable Linux systems screen shown in Figure 2-17.

<table>
<thead>
<tr>
<th>FCX223</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Linux Systems</th>
<th>Perf. Monitor</th>
</tr>
</thead>
</table>

Selectable Linux Systems

| LNXSU1 | LNXSU2 | LNXSU3 | LNXSU4 | LNXSU5 |

Select a system for Linux details
Command ===> F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-17 The Linux systems selection screen (option 29 or the LINUX subcommand)

This screen displays the list of monitored Linux guests.

Note: The Linux virtual machines to monitor must be defined to Performance Toolkit for VM. In 3.7, “Enabling data collection for Linux guests” on page 88, we discuss how to define the Linux guests to monitor.
Linux details selection
Select Linux guest or issue the LINUX *username* subcommand to navigate to the Linux performance details selection screen shown in Figure 2-18.

<table>
<thead>
<tr>
<th>FCX224</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Interval 18:49:00 - 18:50:00</th>
<th>Perf. Monitor</th>
</tr>
</thead>
</table>

Linux Performance Data Selection for System **LNXSU1**

System Data
- **Processes created per second**: 0.116
- **Context switches per second**: 20.01
- **Apache: Requests per second**: 0.014
 - Bytes per request: 478
 - Busy threads: 1
 - Idle threads: 2
 - 404 Errors per minute: 3

$ Perform. Reports Description
- **LXCPU LNXSU1** CPU utilization details
- **LXMEM LNXSU1** Memory utilization & activity details
- **LXNETWRK LNXSU1** Network activity (overall & by device)
- **LXFILSYS LNXSU1** File system size and utilization

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-18 The Linux performance details selection screen (the LINUX LNXSU1 subcommand)

This screen presents basic CPU usage information for the selected guest including:
- Number of processes created per second
- Number of context switches per second

Detailed performance data is also available for the Linux guest:
- Linux CPU utilization (the LXCPU subcommand)
- Linux memory utilization (the LXMEM subcommand)
- Linux network activity (the LXNETWRK subcommand)
- Linux file system activity (the LXFILSYS subcommand)
Linux CPU utilization

Select the LXCPU screen or issue the `LXCPU username` subcommand to navigate to the Linux CPU utilization screen shown in Figure 2-19.

<table>
<thead>
<tr>
<th>Processor</th>
<th>Total</th>
<th>User</th>
<th>Kernel</th>
<th>Nice</th>
<th>Idle</th>
<th>TotTm</th>
<th>UserTm</th>
<th>KernTm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>50.51</td>
<td>50.23</td>
<td>0.27</td>
<td>0</td>
<td>49.48</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>cpu0</td>
<td>82.78</td>
<td>82.51</td>
<td>0.26</td>
<td>0</td>
<td>17.21</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>cpu1</td>
<td>18.26</td>
<td>17.98</td>
<td>0.28</td>
<td>0</td>
<td>81.73</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Note:
The data presented in this screen (as well as detailed performance data presented in any of the LX* screens) are the values reported from Linux itself. That is to say, the values are relative to the Linux virtual machine, not relative to overall z/VM utilization. For instance, 100% CPU utilization reported by Linux does not mean that the guest is using 100% of the processor resources that are available to z/VM.

In this screen, we see performance data related to CPU utilization in the Linux guest. CPU utilization is reported for all virtual processors that are defined to the guest (two in this case). Average utilization for all processors is also reported.

Specific CPU utilization for each process running in Linux is also presented. The displayed process name is the concatenation of the Linux process name and its process identifier (PID). Linux processes are sorted on CPU utilization.
information about specific processes is available by scrolling forward (by pressing the PF8 key) in the display.

Linux memory utilization

Select the LXMEM screen or issue the LXMEM *username* subcommand to navigate to the Linux CPU memory utilization screen shown in Figure 2-20.

<table>
<thead>
<tr>
<th>Process Name</th>
<th>VirtSize</th>
<th>ResidSet</th>
<th>MinPgFlt</th>
<th>MajPgFlt</th>
<th>MinPFltC</th>
<th>MajPFltC</th>
</tr>
</thead>
<tbody>
<tr>
<td>mcf_base.s390.1_845</td>
<td>101298k</td>
<td>79196</td>
<td>254</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>runspec.789</td>
<td>9981950</td>
<td>7700</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>sshd.429</td>
<td>5165060</td>
<td>2404</td>
<td>....</td>
<td>....</td>
<td>....</td>
<td>....</td>
</tr>
<tr>
<td>sshd.760</td>
<td>5074940</td>
<td>2392</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gpmddsrv.594</td>
<td>37204000</td>
<td>2252</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>gpmddsrv.595</td>
<td>37204000</td>
<td>2252</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In this screen, we see performance data that is related to memory utilization and swapping inside the Linux guest. Total memory utilization is categorized according to usage (total memory, cache memory, buffer memory, and free memory). Total swap space usage, page rate, and swap rate are reported.

The screen also memory utilization for each running process (sorted on resident memory size).
2.5 History data reporting

Figure 2-21 shows the group of history data screens.

![Figure 2-21 History data screens](image)

We look further at these screens:
- Graphics selection (option 31)
- History data files (option 32)
- Benchmark displays (option 33)
- Correlation coefficients (option 34)
2.5.1 Graphics selection

If the Graphical Data Display Manager product (GDDM®) is available, up to four redisplay variables may be displayed in graphical history plots. If GDDM is not available, history data can be displayed as simple EBCDIC plots.

Note: GDDM is required for generating graphics on the console of a virtual machine; however, no additional software is required when generating graphics with Web browsers using the Web interface.

Select option 31 or issue the GRAPHICS subcommand to navigate to the graphics selection shown in Figure 2-22.

![Figure 2-22 The graphic selection screen (option 31 or the GRAPHICS subcommand)](image)

To select graphics
- either key in your choice directly in the fields above
- or enter '?' in the first position of any field for which you want additional information. A detailed selection menu will then be shown with further explanations.

Hitting ENTER without any changes will start graphics creation.
The Data origin field specifies the source for graphic plots. To get a source data list to plot, specify a question mark character (?) and press Enter. Figure 2-23 shows the graphics source selection menu.

The selection menu shows all available history files. Select the STOrage option to plot the current session data values. When a data source is selected, the Data origin field reflects the current choice, as seen in Figure 2-24 on page 53.
Figure 2-24 Option 31 with a data source selected

Next, choose the data to display on the Y axis. Move the cursor to the variable selection for the Y axis, type a question mark, and press Enter. This presents a list of the possible variables to plot. Up to four unique variables may be plotted in one screen.

In our example, we choose the variables CPU and VIO/S to generate the plot shown in Figure 2-25 on page 54.
Figure 2-25 Graphic data plots using GDDM

GDDM data plots are a good way to analyze system behavior over a particular time range.
2.5.2 History data files

Select option 32 or issue the HISTDATA subcommand to navigate to the history file selection screen shown in Figure 2-26.

<table>
<thead>
<tr>
<th>S</th>
<th>Filename</th>
<th>Filetype</th>
<th>FM</th>
<th>Created</th>
<th>S</th>
<th>Filename</th>
<th>Filetype</th>
<th>FM</th>
<th>Created</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>ACUM</td>
<td>HISTSUM</td>
<td>A</td>
<td>2004/03/25</td>
<td>.</td>
<td>20040325</td>
<td>HISTLOG</td>
<td>A</td>
<td>2004/03/25</td>
</tr>
<tr>
<td>20040324</td>
<td>HISTLOG1</td>
<td>A</td>
<td></td>
<td>2004/03/24</td>
<td>20040324</td>
<td>HISTLOG1</td>
<td>D</td>
<td></td>
<td>2004/03/24</td>
</tr>
<tr>
<td>20040324</td>
<td>HISTLOG</td>
<td>D</td>
<td></td>
<td>2004/03/24</td>
<td>20040323</td>
<td>HISTLOG1</td>
<td>D</td>
<td></td>
<td>2004/03/23</td>
</tr>
<tr>
<td>20040323</td>
<td>HISTLOG2</td>
<td>A</td>
<td></td>
<td>2004/03/23</td>
<td>20040322</td>
<td>HISTLOG</td>
<td>D</td>
<td></td>
<td>2004/03/22</td>
</tr>
<tr>
<td>20040318</td>
<td>HISTLOG1</td>
<td>D</td>
<td></td>
<td>2004/03/18</td>
<td>20040317</td>
<td>HISTLOG2</td>
<td>D</td>
<td></td>
<td>2004/03/17</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>UCOMMLG1</td>
<td>D</td>
<td></td>
<td>2004/03/12</td>
<td>LNXSU1</td>
<td>USTATLG1</td>
<td>D</td>
<td></td>
<td>2004/03/12</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>UPAGELG1</td>
<td>D</td>
<td></td>
<td>2004/03/12</td>
<td>LNXSU1</td>
<td>USERLOG1</td>
<td>D</td>
<td></td>
<td>2004/03/12</td>
</tr>
<tr>
<td>20040312</td>
<td>HISTLOG1</td>
<td>D</td>
<td></td>
<td>2004/03/12</td>
<td>LNXSU1</td>
<td>UCOMMLG2</td>
<td>D</td>
<td></td>
<td>2004/03/11</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>USTATLG2</td>
<td>D</td>
<td></td>
<td>2004/03/11</td>
<td>LNXSU1</td>
<td>UPAGELG2</td>
<td>D</td>
<td></td>
<td>2004/03/11</td>
</tr>
</tbody>
</table>

Move cursor to the history data file you are interested in and
- enter 'G' to select the file for creating graphics
- just hit ENTER for viewing the data

The files are sorted in descending order by the date of creation.

Extended history data log

Select the desired log file or issue the REDHIST filename subcommand to navigate to the extended history file display screen shown in Figure 2-27 on page 56.
<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>El_Time</th>
<th>Samples</th>
<th>CPU</th>
<th>%US</th>
<th>%CP</th>
<th>%EM</th>
<th>%SY</th>
<th>%Spin</th>
<th>%WT</th>
<th>El_Time</th>
<th>Samples</th>
<th>CPU</th>
<th>%US</th>
<th>%CP</th>
<th>%EM</th>
<th>%SY</th>
<th>%Spin</th>
<th>%WT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004/03/24</td>
<td>19:51</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.1</td>
<td>2.2</td>
<td>1.6</td>
<td>1.5</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:51</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.4</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:51</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>2.8</td>
<td>2.0</td>
<td>1.5</td>
<td>1.3</td>
<td>.8</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:52</td>
<td>2.0</td>
<td>2.9</td>
<td>2.1</td>
<td>1.5</td>
<td>1.4</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:52</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.1</td>
<td>2.2</td>
<td>1.6</td>
<td>1.5</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:53</td>
<td>2.0</td>
<td>3.3</td>
<td>2.5</td>
<td>1.6</td>
<td>1.8</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:52</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:54</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.7</td>
<td>1.4</td>
<td>.9</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:53</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>2.8</td>
<td>1.9</td>
<td>1.5</td>
<td>1.3</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:55</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:53</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:56</td>
<td>2.0</td>
<td>3.3</td>
<td>2.4</td>
<td>1.6</td>
<td>1.7</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:54</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>2.8</td>
<td>2.0</td>
<td>1.5</td>
<td>1.3</td>
<td>.8</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:56</td>
<td>2.0</td>
<td>3.0</td>
<td>2.2</td>
<td>1.6</td>
<td>1.4</td>
<td>.9</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:55</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>2.9</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.8</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:56</td>
<td>2.0</td>
<td>2.8</td>
<td>2.0</td>
<td>1.5</td>
<td>1.3</td>
<td>.9</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:55</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.9</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:57</td>
<td>2.0</td>
<td>3.1</td>
<td>2.2</td>
<td>1.6</td>
<td>1.5</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:56</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.4</td>
<td>.8</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:57</td>
<td>2.0</td>
<td>3.0</td>
<td>2.1</td>
<td>1.6</td>
<td>1.4</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:57</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>2.9</td>
<td>2.1</td>
<td>1.6</td>
<td>1.3</td>
<td>.8</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:58</td>
<td>2.0</td>
<td>2.9</td>
<td>2.1</td>
<td>1.6</td>
<td>1.4</td>
<td>.8</td>
</tr>
<tr>
<td>2004/03/24</td>
<td>19:58</td>
<td>20.0</td>
<td>1</td>
<td>2.0</td>
<td>3.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.3</td>
<td>1.0</td>
<td>.0</td>
<td>197</td>
<td>2004/03/24</td>
<td>19:58</td>
<td>2.0</td>
<td>3.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*** End of File ***

Figure 2-27 The extended history data log screen (the REDHIST 20040324 HISTLOG1 A subcommand)

Important: This screen samples a lot of data, so scroll to the right with PF11 several times to see it all.
2.5.3 Benchmark displays

Select option 33 to navigate to the benchmark log file selection screen shown in Figure 2-28.

<table>
<thead>
<tr>
<th>Userid</th>
<th>Log File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNXSU1</td>
<td>USERLOG</td>
<td>User resource consumption log</td>
</tr>
<tr>
<td>LNXSU3</td>
<td>USERLOG</td>
<td>User resource consumption log</td>
</tr>
<tr>
<td>LNXSU4</td>
<td>USERLOG</td>
<td>User resource consumption log</td>
</tr>
<tr>
<td>1510</td>
<td>CACHDLOG</td>
<td>I/O device CU cache data log</td>
</tr>
<tr>
<td>1510</td>
<td>CACHELOG</td>
<td>Extended function cache data log</td>
</tr>
<tr>
<td>1510</td>
<td>CPOWNLOG</td>
<td>CPOWNed I/O device log</td>
</tr>
<tr>
<td>1510</td>
<td>DEVLOG</td>
<td>General I/O device performance log</td>
</tr>
</tbody>
</table>

We see that benchmark data is available for three user IDs (LNXSU1, LNXSU3, and LNXSU4), and for one I/O device (address 1510). The number of files and their content depends on the monitor domains that are activated for the user or device. Select a specific log file by moving the cursor over the file and pressing Enter. In Figure 2-28, we see the user resource consumption log for LNXSU1.
2.5.4 Correlation coefficients

With Performance Toolkit for VM, it is possible to measure how one or more performance measurements change relative to a base measurement over time. This feature is referred to as variable correlation coefficients. Analysis is performed using performance data that is saved in HISTLOG and HISTSUM history files.

A good correlation with the base variable is indicated by highlighting the appropriate entry and applying a color. The correlation coefficient is displayed using colors:

- **Yellow**: If the correlation coefficient is between 0.9 and 1.0
- **White**: If the correlation coefficient is between 0.8 and 0.9
- **Green**: For all other values
The data that is shown in this screen includes:

- Name of the history file that was used to generate the display.
- Name of the variable that was used as the base variable (against which the correlation coefficients for all of the other variables are calculated).
- Criteria that is applied when selecting performance data from the history file. Record selection can be based on an overall period (the From and To specifications), and can be restricted to a smaller subset by selecting only specific Days, Hours, or both.
- The coefficient for each correlated variable is expressed as a number between -1.0 and +1.0 with the following exceptions:
 - *ZERO* Indicates that all processed values were zero.
 - *CONS* Indicates that all values were constant during the selected period.
 - Indicates that an insufficient number of valid measurements was found to calculate a meaningful correlation.

The correlation coefficient for each variable is displayed, along with a short description of the variable.
2.6 User-defined screens

Custom performance data screens may be defined in Performance Toolkit for VM. User may add data columns from a variety of other screens to a customized performance screen.

From the main screen selection menu shown in Figure 2-31, option K navigates to the user-defined screen selection menu.

```
FCX124          Performance Screen Selection (FL440 VM63447)    Perf. Monitor

General System Data        I/O Data        History Data (by Time)
2. Storage utilization      12. Control units       32. History data files*
3. Storage subpools         13. I/O device load*  33. Benchmark displays*
5. System counters          15. Cache extend. func.* 35. System summary*
6. CP IUCV services         16. DASD I/O assist    36. Auxiliary storage
7. SPOOL file display*      17. DASD seek distance* 37. CP communications*
8. LPAR data                18. I/O prior. queueing* 38. DASD load
A. Shared data spaces       1A. I/O config. changes 3A. Paging activity
B. Virt. disks in stor.     User Data          3B. Proc. load & config*
C. Transact. statistics     User Data          3C. Logical part. load
D. Monitor data             21. User resource usage* 3D. Response time (all)*
E. Monitor settings         22. User paging load*  3E. RSK data menu*
F. System settings          23. User wait states*  3F. Scheduler queues
G. System configuration     24. User response time* 3G. Scheduler data
H. VM Resource Manager      25. Resources/transact.* 3H. SFS/BFS logs menu*
I. Exceptions               26. User communication* 3I. System log
K. User defined data*      29. Linux systems*     3K. TCP/IP data menu*
                   28. User configuration*  3L. User communication
Points to related or more detailed performance data can be found on displays marked with an asterisk (*).
Select performance screen with cursor and hit ENTER
Command ===> 
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 2-31 User-defined performance screen selections
2.6.1 Defining a user data screen

To define a screen, add the appropriate commands to the FCONX $PROFILE file. These commands define which fields from standard screens are included in the user-defined screen. Example 2-2 defines a new screen named SYSSTA.

Example 2-2 User screen definition

FC DEFSCRN SYSSTA LINE 2 TO 9 COPY CPU FROM 1
FC DEFSCRN SYSSTA LINE 11 TO 12 COPY DEVICE FROM 2
FC DEFSCRN SYSSTA LINE 13 TO 16 COPY DEVICE FROM 5
FC DEFSCRN SYSSTA LINE 18 TO 21 COPY CHANNEL FROM 1
FC DEFSCRN SYSSTA LINE 23 TO 23 COPY USTAT FROM 3
FC DEFSCRN SYSSTA LINE 24 TO 28 COPY USTAT FROM 5
FC DEFSCRN SYSSTA DESC Example screen for ITSO Redbook

Note: Defining user screens is discussed under the FCONTROL DEFSCRN subcommand on page 70.

2.6.2 User-defined display selection

Select option K or issue the UDEFMENU subcommand to navigate to the user-defined screen selection menu shown in Figure 2-30 on page 59.

Figure 2-32 The user-defined data selection screen (option K or the UDEFMENU subcommand)
2.6.3 User-defined performance screen

Select the SYSSTA screen or issue the SYSSTA subcommand to navigate to the user-defined screen shown in Figure 2-30 on page 59.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Load</td>
<td>Vector Facility</td>
<td>Status or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROC</td>
<td>%CPU</td>
<td>%CP</td>
<td>%EMU</td>
<td>%WT</td>
</tr>
<tr>
<td>P00</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>98</td>
</tr>
<tr>
<td>P01</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>99</td>
</tr>
</tbody>
</table>

Total SSCH/R SCH 5/s Page rate .0/s Priv. instruct. 286/s
Virtual I/O rate 3/s XSTORE paging .0/s Diagnose instr. 283/s
Total rel. SHARE 4100 Tot. abs SHARE 0%

--- Device Descr. --> Mdisk Pa- <-Rate/s-> <-------- Time (msec) --------> Req.
Addr Type Label/ID Links ths I/O Avoid Pend Disc Conn Serv Resp CUWt Qued
1590 3390-3 LX4W02 CP 57 3 1.0 .5 .2 .0 2.4 2.6 2.6 .0 .0
5090 CTCA >RSCS ... 1 .31 2000 .3 2000 2000 .0 .0
150F 3390-3 LX150F 2 3 .2 .0 .2 .2 1.5 1.9 1.9 .0 .0
1511 3390-3 LX1511 2 3 .2 .0 .2 .0 1.0 1.2 1.2 .0 .0

CHPID Chan-Group <%Busy> Channel %Busy Distribution 08:29:47-09:2
(Hex) Descr Qual Cur Ave 0-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80
7F ESCON 00 4 5 96 4 0 0 0 0 0
76 ESCON 00 3 3 99 1 0 0 0 0 0

Userid %ACT %RUN %CPU %LDG %PGW %IOW %SIM %TIW %CFW %TI %EL %DM %IOA %PGA
LNXRH1 100 0 20 0 0 0 0 80 0 0 0 0 0 0
LNXRH2 100 0 10 0 0 0 0 90 0 0 0 0 0 0
LNXRH3 100 0 10 0 0 0 0 90 0 0 0 0 0 0
LNXRH4 100 0 10 0 0 0 0 90 0 0 0 0 0 0
LNXSU1 100 0 20 0 0 0 0 80 0 0 0 0 0 0

User-defined screen - no HELP text available
Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 2-33 The user-defined performance screen (the SYSSTA subcommand)

Tip: In 9.2.1, “The Performance Toolkit for VM general display” on page 179, we show an example of using user-defined screens to present data in a manner similar to Real Time Monitor.
2.7 Using the Web interface

The Web interface of Performance Toolkit for VM is intended to provide a graphical user interface in a standard Web browser. This enables access to Performance Toolkit for VM with a minimum of prerequisites.

The interface is designed to work directly with the Store and Forward (S&F) logic implemented for APPC/VM data retrieval sessions. Any PERFSVM virtual machine that is configured as an S&F server can act as a Web server for Performance Toolkit for VM performance (provided it has access to TCP/IP). Web clients connect to such the Web server and receive response similar to the displays shown when connected using APPC/VM.

Note: In Chapter 4, “Remote access and monitoring” on page 89, we discuss how to implement the APPC interface to Performance Toolkit for VM.

We discuss the Web interface for Performance Toolkit for VM in 4.3, “Performance Toolkit for VM Web interface” on page 95.
Configuring Performance Toolkit for VM

This chapter covers configuration of Performance Toolkit for VM. We discuss:

- Performance Toolkit for VM installation
- Performance Toolkit for VM control files
- Sample PROFILE EXEC for PERFSVM
- Performance Toolkit for VM operation
- Tailoring Performance Toolkit for VM
- Enabling remote access and monitoring
- Enabling data collection for Linux guests
3.1 Performance Toolkit for VM installation

Performance Toolkit for VM is pre-installed on z/VM Release 4.4.0 systems. Two VM users are defined:

- The 4VMPTK40 user ID is used for installation and application of service.
- The PERFSVM user ID is used to run the PERFKIT module.

The control files that you need to get started are located on the 1CC disk. After the product has been enabled, you can begin using Performance Toolkit for VM and then tailor it to your needs.

3.1.1 The 4VMPTK40 user

Example 3-1 shows the 4VMPTK40 directory entry. Privilege class E is assigned so that the user can enable the product from the install user ID.

Example 3-1 The 4VMPTK40 directory entry

```
USER 4VMPTK40 XXXXXXXX 32M 32M EG
  IPL CMS
  MACHINE XA
  CONSOLE 0009 3215
  SPOOL 000C 2540 READER *
  SPOOL 000D 2540 PUNCH A
  SPOOL 000E 1403 A
  LINK $MAINT 0190 0190 RR
  LINK $MAINT 019E 019E RR
  LINK $MAINT 019D 019D RR
  LINK $MAINT 051D 051D RR
  LINK $MAINT 05E5 05E5 RR
  ACCOUNT xxxxxxxx
  MDISK 0191 3390 ssss 12 vvvvvv MR
  MDISK 02A2 3390 ssss 2  vvvvvv MR
  MDISK 02C2 3390 ssss 2  vvvvvv MR
  MDISK 02D2 3390 ssss 50 vvvvvv MR
  MDISK 02C4 3390 ssss 2  vvvvvv MR
  MDISK 0200 3390 ssss 10 vvvvvv MR
  MDISK 02A6 3390 ssss 2  vvvvvv MR
  MDISK 0201 3390 ssss 10 vvvvvv MR
  MDISK 02B2 3390 ssss 9  vvvvvv MR
  MDISK 01CC 3390 ssss 1  vvvvvv MR
  MDISK 0CCC 3390 ssss 1  vvvvvv MR
  MDISK 029D 3390 ssss 8  vvvvvv MR
```

Referencing the numbers in the output, disks that are defined to this user include:

1. The 191 disk defines the user’s CMS A-disk.
2. The 2A2 disk contains AUX files and software inventory tables that represent the service level of Performance Toolkit for VM currently in production.

3. The 2C2 disk contains serviced customizing files.

4. The 2D2 disk contains serviced files.

5. The 2C4 disk contains local modifications.

6. The 200 disk is the test build disk. This code is copied to the production build disk (201).

7. The 2A6 disk contains AUX files and software inventory tables that represent the test service level of Performance Toolkit for VM.

8. The 201 disk is the production build disk. This contains the executable code for Performance Toolkit for VM.

9. The 2B2 disk contains the base code shipped with Performance Toolkit for VM.

10. The 1CC disk contains IBM-supplied samples. These are used unless a corresponding copy is found on the CCC disk.

11. The CCC disk contains customized files. This disk is accessed before the 1CC disk (therefore these files are used to control Performance Toolkit for VM).

12. The 29D disk contains the help files for Performance Toolkit for VM.

3.1.2 The PERFSVM user

The directory entry for the PERFSVM machine is shown in Example 3-2. The privilege class is ABDEG, so PERFSVM running the PERFKit MODULE can be used as a VM operator's console.

Tip: If you only using Performance Toolkit for VM for performance monitoring, you can change the PERFSVM privilege class to EG. This prevents the user from issuing commands that are authorized only for an operator.

Example 3-2 The PERFSVM directory entry

```
USER PERFSVM PERFSVM 64M 512M ABDEG
MACHINE XA
XAUTOLOG AUTOLOG1
ACCOUNT xxxx
NAMESAVE MONDCSS
IUCV *MONITOR MSGLIMIT 255
IUCV *IDENT FCXRES00 GLOBAL
```
IUCV *IDENT FCXSYSTM GLOBAL
IUCV ALLOW
SHARE ABS 3%
IPL CMS
OPTION QUICKDSP
CONSOLE 0009 3215
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
LINK MAINT 19E 19E RR
LINK 4VMPTK40 200 200 RR
LINK 4VMPTK40 201 201 RR
LINK 4VMPTK40 1CC 1CC RR
LINK 4VMPTK40 CCC CCC RR
LINK 4VMPTK40 29D 29D RR
MDISK 191 3390 1007 060 440W02 MR READ WRITE MULTIPLE
MDISK 195 3390 1067 060 440W02 MR READ WRITE MULTIPLE

Notes about the directory entries:
1. The NAMESAVE MONDCSS option enables Performance Toolkit for VM to access the CP Monitor data.
2. The IUCV *IDENT entries define the resources that are used for remote data retrieval using APPC/VM. Additional configuration to enable the APPC/VM interface to Performance Toolkit for VM is discussed in 3.6, “Enabling remote access and monitoring” on page 85.
3. The SHARE ABS 3% is needed to ensure that Performance Toolkit for VM is dispatched long enough to collect the monitor data.
4. The OPTION QUICKDSP also ensures that PERFSVM will remain in the dispatch list to collect monitor data.
5. The LINKs to 4VMPTK40’s minidisks provide access to the control files and executable parts of Performance Toolkit for VM.
6. The MDISK 191 defines the A-disk for the PERFSVM service virtual machine.
7. The MDISK 195 defines a disk on which history data can be saved.

3.2 Performance Toolkit for VM control files

The files necessary to control Performance Toolkit for VM are located on 4VMPTK40 user’s 1CC disk. These can be modified and stored on the 4VMPTK40 user’s CCC disk for local tailoring.
3.2.1 FCONX $PROFILE

The FCONX $PROFILE file contains Performance Toolkit for VM commands to set up and control Performance Toolkit for VM operation. These commands may be entered directly on the command line or from the FCONX $PROFILE.

Descriptions of Performance Toolkit for VM commands are found in z/VM: Performance Toolkit, SC24-6062. The sample FCONX $PROFILE that is distributed with Performance Toolkit for VM is shown in “The sample FCONX $PROFILE” on page 212.

The FCONTROL subcommand
Performance Toolkit for VM can be tailored using the FCONTROL subcommand. Changes are typically added to the FCONX $PROFILE control file. Options to the FCONTROL subcommand (abbreviated as FC) include:

► ACTMSG
 This defines the number of CP action messages that are left pending at the top of the screen. For details about Performance Toolkit for VM screen layout, see 1.3, “Basic mode” on page 5.

► BENCHMRK
 This identifies devices or users for which detailed by-time logs are constructed (known as benchmarked). To get benchmark data for device 550 and user PERFSVM, use:

 FC BENCHMRK DEVICE 550 FILE 08:00 TO 17:00
 FC BENCHMRK USER PERFSVM

 Note: Benchmark files take additional space on the PERFSVM 191 disk.

For more about using benchmark performance data, see 1.9, “Benchmark data analysis” on page 16.

► COLOR
 This specifies extended color and highlighting for fields that are displayed by Performance Toolkit for VM. Allowed colors include:

 – BLUE
 – RED
 – PINK
 – GREEN
 – TURQUOIS
 – YELLOW
 – WHITE
BLINK, REVVIDEO, and UNDERLINE may also be specified for each color. For example, to set the input area to white with underlining, use:

```
FC COLOR INAREA WHITE UNDER
```

DEFLOG

This defines a new performance log screen based on fields from existing performance display screens. For example, to create a new data log named Sample consisting of six columns from the standard SYSTEM display, use:

```
FC DEFLLOG MYLOG H1 Sample log with some fields copied from SYSTEM screen
FC DEFLLOG MYLOG COL 12 LEN 5 COPY SYSTEM LINE 12 COL 34 NAME SieEx
FC DEFLLOG MYLOG COL 18 LEN 5 COPY SYSTEM LINE 12 COL 75 NAME SieInter
FC DEFLLOG MYLOG COL 25 LEN 13 COPY SYSTEM LINE 25 COL 67 NAME <NOXSTOR>
FC DEFLLOG MYLOG COL 39 LEN 13 COPY SYSTEM LINE 26 COL 26 NAME <XST-Rel>
FC DEFLLOG MYLOG COL 53 LEN 13 COPY SYSTEM LINE 26 COL 67 NAME <XST-Rel>
FC DEFLLOG MYLOG COL 67 LEN 13 COPY SYSTEM LINE 18 COL 26 NAME <AV_L_Req>
```

DEFSCRN

This defines a new performance screen using parts of other screens. For example, to create a display named SYSTSUM consisting of six fields (one from the CPU display, two from the DEVICE display, one from the CHANNEL display, and two from the USER display), use:

```
FC DEFSRN SYSTSUM LINE 1 'General System Data'
FC DEFSRN SYSTSUM LINE 2 TO 9 COPY CPU FROM 1
FC DEFSRN SYSTSUM LINE 11 TO 12 COPY DEVICE FROM 2
FC DEFSRN SYSTSUM LINE 13 TO 16 COPY DEVICE FROM 5
FC DEFSRN SYSTSUM LINE 18 TO 21 COPY CHANNEL FROM 1
FC DEFSRN SYSTSUM LINE 23 TO 23 COPY USER FROM 4
FC DEFSRN SYSTSUM LINE 24 TO 27 COPY USER FROM 6
```

GDDMSPEC

This defines colors and patterns for Graphical Data Display Manager (GDDM) graphs. For example, to customize the four available Y-axis variables, use:

```
FC GDDMSPEC VAR1 COL YELLOW PAT 5
FC GDDMSPEC VAR2 COL TURQUOIS PAT 14
FC GDDMSPEC VAR3 COL ORANGE PAT 12
FC GDDMSPEC VAR4 COL GREEN PAT 9
```

Note: If GDDM is not installed, simple plots are displayed. Graphics are also available from the Web interface and do not require GDDM.

For details about using GDDM graphics, see 2.5.1, “Graphics selection” on page 51.
This provides options to control monitor data collection:

- **REDISP** sets the number of lines that are reserved during initialization for use as performance redisplay buffer. For example, to reserve 720 lines for the redisplay buffer, use:

  ```
  FC MONCOLL REDISP 720
  ```

- **CPMON** controls whether the monitor data is collected from the MONDCSS buffer or from disk. For example, to indicate that performance data is to be read from the MONFILE DATA file on the 191 B-disk, use:

  ```
  FC MONCOLL CPMON DISK ON MONWRITE 191 B MONFILE DATA
  ```

 Note: Data is written to disk using the MONWRITE utility.

For details about how Performance Toolkit for VM collects monitor records, see “VM Monitor facility overview” on page 206.

- **RESET** specifies the time of the day Performance Toolkit for VM resets data and optionally creates printed reports and trend data. For example, to reset system counters at midnight, 08:30, 11:30, 13:30, and 16:30, use:

  ```
  FC MONCOLL RESET 00:00 08:30 11:30 13:30 16:30
  ```

- **PERFLOG** controls disposition of general performance data from the REDISP or REDHIST displays. For example, to save performance data written to the redisplay screen between the hours of 06:00 and 19:59 to disk, use:

  ```
  FC MONCOLL PERFLOG ON 06:00 19:59
  ```

 Note: Data is saved to a file name of the form `mmddyy PERFLOG A`. Up to three versions of the file are retained, using filetypes PREFLOG, PERFLOG1, and PERFLOG2.

- **VMCF** activates the Virtual Machine Communication Facility (VMCF) interface that allows other users to view data from the PERFSVM machine. For example, to enable VMCF, use:

  ```
  FC MONCOLL VMCF ON
  ```

 For details on using the VMCF interface, see Chapter 4, “Remote access and monitoring” on page 89.

- **WEBSERV** controls access to the PERFSVM virtual machine from the Internet. It defines the TCP/IP machine, TCP/IP port number, and user validation method used for Web access. For example, to activate the Web
Server function using TCP/IP port 81 with RACF® user authentication, use:

```
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST RACF
```

For details, see 4.3, “Performance Toolkit for VM Web interface” on page 95.

> **FORCEUSR**

This provides the ability to detect and optionally handle users who may be looping and therefore expending excessive system resources. For example, to exclude the users OP, VTAM®, VSCS®, RACF, and RSCS from being monitored and forced off, use:

```
FC FORCEUSR EXCLUDE OP VTAM* VSCS* RACF RSCS
```

Note: Care must be taken when using this capability. You could force a user ID that is needed for system operation such as RSCS. Or you could force a user and cause a loss of data.

> **LIMIT**

This defines thresholds for performance indicators. Messages are issued when these limits are exceeded (providing a warning that there may be performance problems on your system). For example, to set a threshold for normalized CPU load to 90% in a one-minute interval, use:

```
FC LIMIT NORMCPU 90 1/1 5/10 WEIGHT 1
```

For details about threshold monitoring, see 1.10, “Threshold monitoring” on page 17.

> **MAINTID**

This specifies the user ID to receive dumps in case of an abend of the PERFKIT module. For example, to send a dump to the MAINT user on VM system MYNODE, use:

```
FC MAINTID MAINT AT MYNODE
```

> **MAXREC**

This defines the number of records that are written to the CONLOG before issuing an intermediate close. The CONLOG may be incomplete after a VM system restart. For example, to retain 12 records in the CONLOG, use:

```
FC MAXREC 12
```

Note: Setting this value too low increases general overhead because the I/O will be done more frequently.
Chapter 3. Configuring Performance Toolkit for VM

- **MINPATHS**
 This defines the minimum number of channel paths to be active to selected I/O devices. A warning message is issued if the number of paths falls below this number. For example, to set the minimum channel paths to 2 for devices 600 through 61F, use:

 `FC MINPATHS 2 TO 600-61F LIMIT 0/60 WEIGHT 10`

- **MONCACHE**
 This defines the expected cache status for selected disks. A warning message is issued when the current status does not match the expected status. The status field in the CACHEXT display is set to red with reverse video to highlight the problem. For example, to activate general cache status and deactivate DASD fast write status for devices 720 through 724, use:

 `FC MONCACHE 720-724 AD* LIMIT 0/60 WEIGHT 10`

- **MSGCLEAR**
 This specifies whether CP and Performance Toolkit for VM messages are to be kept on the display when the screen is cleared by the CP CLEAR command, CLEAR PF-key, or PA2-key. For example, to clear all messages use:

 `FC MSGCLEAR ALL`

- **MSGWAIT**
 This specifies how many minutes a message to the operator is left pending before additional notification is given. For example, to define a five-minute delay, use:

 `FC MSGWAIT 5`

- **NUMBERS**
 This controls whether line numbers are to be shown on the left of the operators screen. For example, to disable line numbers, use:

 `FC NUMBERS OFF`

- **PFKEY**
 This defines program function keys for basic mode and performance monitor mode. For example, to define the HELP command to the PF1 key, use:

 `FC PFKEY SET 1 FUNCTION HELP`

- **PROCESS**
 This enables special processing for VM and Performance Toolkit for VM messages. Messages can be ignored and not displayed, be re-routed to another virtual machine, or cause a program to be stacked for execution. For
example, to process all CP messages from the RSCS service machine by displaying the message without the header, use:

```
FC PROCESS CPMSG * 'FROM RSCS' DISP CPMSGN
```

See z/VM: Performance Toolkit, SC24-6062 for more details.

- **RMTLINES**

 This controls the number of data lines that are retrieved in remote performance data mode. For example, to retrieve 50 lines, use:

  ```
  FC RMTLINES 50
  ```

- **SCROLL**

 This changes the timing for the basic mode console scrolling. For example, to scroll when 12 lines are received, use:

  ```
  FC SCROLL AUTO 12
  ```

- **SEARCH**

 This defines the command search order that is used when a non-Performance Toolkit for VM command is entered without a CP or CMS prefix. For example, to search CP first then search CMS, use:

  ```
  FC SEARCH CPCMS
  ```

- **SECUSER**

 This tells Performance Toolkit for VM to act as a secondary console for another virtual machine. For example, to disable the secondary console function, use:

  ```
  FC SECUSER OFF
  ```

- **SETEVENT**

 This enables execution of timer-driven events. It is primarily intended to help in automating tasks that are related to the PERFSVM machine. For example, to send a message to yourself at noon on weekdays, use:

  ```
  FC SETEVENT M-F 12:00 CP MSG * It is now 12:00h
  ```

- **SETTINGS**

 This controls the defaults for collection and identification of history and for by-time performance data. For example, to change the system name on your reports, use:

  ```
  FC SETTINGS SYSTEM This is a performance report for system XYZ
  ```
- **UCLASS**
 This enables groups of users for which separate averages are calculated to be defined. For example, to include your Linux machines in a class called LINUX, use:
  ```
  FC UCLASS LNX* LINUX
  ```

- **UPDTCMS**
 This determines how the screen is updated when a CMS command is executed. For example, to only update the screen after a CMS command has ended, use:
  ```
  FC UPDTCMS DELAYED
  ```

- **UPDTSCRN**
 This specifies whether console output lines are unstacked and inserted into the basic mode screen in any mode or only in basic mode. For example, to have PERFKIT unstack console output no matter what mode you are in, use:
  ```
  FC UPDTSCRN ANYMODE
  ```

- **USERBOTL**
 This defines the bottom line of the basic mode screen or the initial FCONRMT screen. For example, to change the line to just use F\text{n} for function keys, use:
  ```
  FC USERBOTL BASIC F1:Help F2:Redisplay F3:Quit F12:Return
  ```

- **USERHDR**
 This defines the top line that is displayed when no other commands or displays need to overlay it:
  ```
  FC USERHDR Performance Toolkit for VM
  ```

- **USERVAR**
 This enables definition of variables based on performance data fields for use in graphics or plots. For example, to create a variable called USERCP to display CP overhead that can be attributed to a user, use:
  ```
  FC USERVAR SET ESA USERCP = %CP - %SY.
  ```

- **USRLIMIT**
 This enables you to set thresholds for user resource consumption, and optionally reduce the offending user's relative share automatically:
  ```
  FC USRLIMIT * %CPU 30 5/10 WEIGHT 10
  ```

Additional commands to customize performance data
A set of commands is included as comments at the end of the FCONX $PROFILE that can be used to set the sort order for several commonly used displays. These are shown in Figure 3-1 on page 76.
Figure 3-1 Commands to customize sorting of performance data

The MONITOR command switches the PERFSVM machine from basic mode to monitor mode. When it is running unattended, you must execute the QUIT command to return the machine to basic mode. Commands are executed in the order in which they appear in the FCONX $PROFILE:

1. SORT USER %CPU
 This command causes the user report to be sorted by the %CPU column.

2. SORT DEV I/O
 This command causes the I/O report to be sorted by the I/O column.

3. SORT CACH I/O/S
 This command causes the cache report to be sorted by the I/Os column.

4. SORT UPAG READS
 This command causes the upage report to be sorted by the READS column.

The QUIT command

This command returns PERFKIT to basic mode. This is needed when the PERFSVM machine is AUTOLOGGED and runs unattended.

3.2.2 The FCONTROL RESET command

The timing of events (such as report generation, resetting counters, and generating trend files) is controlled by the FC RESET command. This can be entered on the command line, or included in the FCONX $PROFILE to be executed during initialization. Command format is a list of times, withheld time followed by a set of letters to indicate the action to perform:

- **R** Reset the counters.
P Print the reports that are specified in the FCONX REPORTS file. We look at report generation in 3.2.3, “Printed reports” on page 77.

T Create trend data. We look at trend data in 3.2.4, “Trend data collection” on page 80.

For example, to print reports and generate trend records at 8:00am and 4:00pm, use the command:

 FC RESET 08:00P 16:00PT

The FC RESET command is discussed further in 3.5, “Tailoring Performance Toolkit for VM” on page 84.

3.2.3 Printed reports

The content of printed reports is controlled by the FCONX REPORTS file (shown in Example 3-3). An asterisk (*) character in column 1 indicates that the report is commented out.

Example 3-3 FCONX REPORTS

--
* Performance Toolkit for VM Report Selection File *
* * *
* File format: *
* - Asterisks in column 1 indicate a comment card *
--

-General System Data--
* CPSERV
 CPU
* DSPACESH
* LPAR
* MONDATA
* MONSET
* NSS
* PRIVOP
* SPOOL
* SPOOL USER
 STORAGE
* SYSCONF
* SYSSET
 SYSTEM
* SYSTRANS
* VDISKS

* I/O Device Data---*
 CACHDBSE
CACHEXT
* CHANNEL
* CTLUNIT
* DEVCONF
DEVICE
DEVICE CPOWN
* FCHANNEL
* HIPSOCK
* IOASSIST
* IOCHANGE
LCHANNEL
* SEEKDIST
* SEEKLOC

-User Data--
* MT USERS
* SFS
* UCOMM (100
* UCONF (100
 UPAGE (100 PAGESIZE 29
* URESP (100
 USER (100 SORT %CPU
 USTAT (100
* UTRANS (100
* LINUX userid
* LX CPU userid
* LXFILSYS userid
* LX MEM userid
* LX NETWRK userid

-System Load by Time---
 AUXLOG
 BFSFILES
 BFSLOCKS
 BFSPIPES
 CORREL ACT
 CPS ALL
 CPS TOCP
 CPS TOVM
 CPS FAILS
 DASDLOG
 LPARLOG
 MDCACHE
 MDC STOR
 PROCLOG
 PAGELOG
 REDISP
 RESP ALL
 RESP UP
Note: Each report corresponds to a Performance Toolkit for VM subcommand. Several specific subcommands are introduced in Chapter 2, “Navigating through Performance Toolkit for VM” on page 23.

The number of generated reports can affect the amount of space that is needed on the 191 disk. Space for this minidisk may have to be increased to handle a large number of reports.
3.2.4 Trend data collection

The FC MONCOLL RESET `hh:mmT` command controls trend data generation. Trend data is machine-readable performance data that may be used by performance applications. Performance Toolkit for VM can accept trend data as input (enabling you to view performance from an earlier period).

The FCONX TRENDREC file shown in Example 3-4 controls which trend records are created.

Example 3-4 FCONX TRENDREC

```plaintext
*---------------------------------------------------------------*  
* Performance Toolkit for VM Trend File Definition. This file  *  
* defines the kind of records to be generated when a trend file *  
* build request is processed                                     *  
* ('T'-suffix appended to FC MONCOLL RESET times).               *  
*                                                                *  
* Always built:                                                  *  
* Number             Data                                       *  
* X'FC00'            System configuration data                  *  
* X'FC01'            General system load data                   *  
* X'FC02'            Processor load data                        *  
* X'FC03'            LPAR load data                             *  
* X'FC04'            Minidisk/Fulltrack cache data              *  
* X'FC05'            CP services activity data                  *  
* X'FC3A'            Overall user transact. and resp. time data  *  
* X'FC42'            User class resource usage & wait states     *  
* X'FC43'            Overall user resource usage & wait states   *  
* X'FC45'            User class transact. & response time        *  
* X'FC46'            Overall user trans. & response time         *  
*                                                                *  
* If an 'FCONX TRENDREC' file is found, the following optional   *  
* records are created only when explicitly requested with the   *  
* 'RECORDS' keyword:                                             *  
* Number    Keyword   Data                                       *  
* X'FC06'   CHANNEL   Channel                                    *  
* X'FC07'   "        Channel measurement facility               *  
* X'FC08'   "        Extended channel meas. facility            *  
* X'FC3C'   NSS       Shared segments                            *  
* X'FC3E'   DSPACES   Shared data spaces                         *  
* X'FC41'   USER      User resource usage and wait states        *  
* X'FC44'   USER      User transactions and response time        *  
* X'FC61'   DASD      General DASD data                          *  
* X'FC65'   "        DASD Cache data                            *  
* X'FC68'   "        DASD CP owned data (system areas)          *  
* X'FC71'   SEEKS     DASD seeks data                            *  
* X'FCA2'   SFS       SFS and BFS server data                   *  
* X'FCA4'   MTUSER    Multitasking users data                   *  
*---------------------------------------------------------------*
```
* X'FCA6’ TCPIP TCP/IP server data *
* X'FCA7’ TCPIP TCP/IP links data *
* X'FCA8’ RSK Reusable server kernel summary data *

* For the user related record types (DSPACES, USER, SFS, MTUSER, *
* TCPIP, RSK) record creation can be further restricted with the *
* USERID keyword, by defining that trend records should be built *
* only for the specified user IDs. Similarly, the DEVNO keyword *
* allows restricting trend record creation for DASD and SEEKS *
* records to the disks whose device numbers are explicitly *
* specified. *
* *
* Multiple USERID and DEVNO selection records are accepted. *

* General Trend Record Selection
RECORDS CHANNEL NSS DSPACES USER DASD SEEKS SFS MTUSER TCPIP RSK

* Specific User Selection (for USER, SFS, MTUSER and TCPIP Records)
* USERID userid1 userid2 userid3 userid4 ...
 USERID OPERATOR RSCS TCPIP VTAM RSKSERV

* Specific DASD Selection (for DASD and SEEKS Records)
* DEVNO devno1 devno2 devno3 devno4 ...
 DEVNO 0781 0782 0784 0786 0788
* DEVNO 0798 0799

In 3.5.3, “Tailor the FCONX TRENDREC control file” on page 85, we discuss how
to customize TREND data collection.

3.3 Sample PROFILE EXEC for PERFSVM

The PROFILE EXECsamp file shown in Example 3-5 on page 82 is provided
with Performance Toolkit for VM. This file is found on the 4VMPTK40 machine’s
2C2 disk and on the PERFSVM machine’s 191 disk (as the PROFILE EXEC). It
is executed automatically when the PERFSVM machine is started.

The exec provides access to the control files and executable parts of
Performance Toolkit for VM that are located on the 4VMPTK40 machine’s
minidisks.

Note: Performance Toolkit for VM also may be installed in the Shared File
System (SFS), in which case the exec will provide proper access to the SFS
directories.
Example 3-5 PROFILE EXECSAMP

/***@FC012BD*
* Determine if running from minidisk or SFS @FC012BD*
* and set up disk access accordingly @FC012BD*
***@FC012BD*/
'pipe cms q disk ',' /*@FC012BD*/
'| drop 1', /*@FC012BD*/
'| take 1', /*@FC012BD*/
'| spec 8.3 1', /*@FC012BD*/
'| var whatdisk' /*@FC012BD*/
if whatdisk = 'DIR' then /* access SFS Directories @FC012BD*/
do
 'SET FILEPOOL VMSYS:' /*@FC012BD*/
 'ACC VMSYS:4VMPTK40.PERFTK.PBUILD B' /* Production @FC012BD*/
 /* Production @FC012BD*/
 'ACC VMSYS:4VMPTK40.PERFTK.CUSCONFIG D' /* Customized @FC012BD*/
 /* Customized @FC012BD*/
 'ACC VMSYS:4VMPTK40.PERFTK.IBMCONFIG E' /* IBM Supplied @FC012BD*/
 /* IBM Supplied @FC012BD*/
 'ACC VMSYS:4VMPTK40.PERFTK.PERFTKHELP F' /* Help @FC012BD*/
 /* Help @FC012BD*/
end /*@FC012BD*/
else do /* access minidisks @FC012BD*/
 'ACC 201 B ' /* Production Disk @FC012BD*/
 /* Production @FC012BD*/
 'ACC CCC D ' /* Customized controls disk */
 /* Customized controls disk */
 'ACC 1CC E ' /* Sample controls disk */
 /* Sample controls disk */
 'ACC 29D F ' /* Help files @FC012BD*/
 /* Help files @FC012BD*/
end /*@FC012BD*/

/*** Once you have PERFKIT enabled and running uncomment the /**
/*** following comments **/
/* 'CP MONITOR SAMPLE ENABLE PROCESSOR' */
/* 'CP MONITOR SAMPLE ENABLE STORAGE' */
The commands that are needed to start the CP Monitor are commented out. When the PERFKIT command is running in basic mode, you can decide which monitor records to collect.

To customize monitor data collection:
1. Exit Performance Toolkit for VM using the PF12 key.
2. Edit the PROFILE EXEC using XEDIT to uncomment the specific MONITOR commands.
3. Save the changes and execute the PROFILE command. This starts monitor data collection and invokes the PERFKIT command.

3.4 Performance Toolkit for VM operation

When the Performance Toolkit for VM feature is ordered, you receive the Program Directory for Performance Toolkit for VM, GI10-4750. The program directory contains instructions to enable the product. When it is enabled, you can log on to the PERFSVM machine. If properly enabled, basic mode screen is started. Issue the MONITOR command to access the Performance Screen Selection menu.

To customize Performance Toolkit for VM operation:
1. Return to VM.
 - Press the P12 key to return to basic mode. Press the PF12 key two more times to return to VM.
2. Customize the PROFILE EXEC.
 - Edit the file using the XEDIT PROFILE EXEC command. Uncomment (remove the /* and */ characters) around the CP MONITOR commands to activate.
After all changes are made, issue the FFILE command to save the file.

3. Execute the new profile.

Issue the PROFILE command to run the PROFILE EXEC. This starts monitor data collection and executes the PERFKIT MODULE.

Note: After the MONITOR command is executed, two monitor intervals must pass before monitor data is available. Selections on the Performance Screen Selection menu are highlighted as data becomes available.

When navigating through performance screens, press the PF12 key to return to the selection screen. From the selection screen, PF12 returns to basic mode. In basic mode, enter the DISC command to disconnect and leave the PERFSVM machine running. Now you can tailor the controls to meet your needs.

3.5 Tailoring Performance Toolkit for VM

While the Performance Toolkit for VM is running, it accesses and stores monitor data in internal tables. When a screen is requested, it accesses the required data and displays it on the screen. When the FC MONCOLL RESET times are reached, it can create reports that are ready for printing, and history data is collected in FCXTREND files.

You can designate which printed reports and trend data are generated by Performance Toolkit for VM. Control files on the 4VMPTK40 user's minidisks define both the time and type of collected or reported data. To customize reports and trend data:

- Tailor the FCONX $PROFILE control file.
- Tailor the FCONX REPORTS control file.
- Tailor the FCONX TRENDREC control file.

Note: The CP MONITOR SAMPLE ENABLE APPLDATA ALL command is needed to view data from applications such as TCP/IP; other commands provide data about the system operation.
3.5.1 Tailor the FCONX $PROFILE control file

Copy the FCONX $PROFILE from the 4VMPTK40 user's 1CC disk to its CCC disk. Edit the copy on the CCC disk, customizing the FC MONCOLL RESET command.

Tip: If you want reporting by shift, change the entry to:

```
FC MONCOLL RESET 00:00PT 08:00PT 16:00PT
```

This creates reports and trend data at midnight, 08:00 (8AM), and 16:00 (4PM).

3.5.2 Tailor the FCONX REPORTS control file

Copy the FCONX REPORTS file from the 1CC to the CCC disk. Edit the copy on the CCC disk, selecting the reports for Performance Toolkit for VM to produce.

3.5.3 Tailor the FCONX TRENDREC control file

Copy the FCONX FCXTREND file from the 1CC disk to the CCC disk (renaming the file to FCONX TRENDREC). Edit the FCONX TRENDREC file, selecting the trend records that are to be produced.

Note: Trend records can be used later to examine system performance trends.

3.6 Enabling remote access and monitoring

Performance Toolkit for VM can be accessed from remote z/VM systems. In addition, an instance of Performance Toolkit for VM can monitor remote z/VM systems. In Chapter 4, “Remote access and monitoring” on page 89, we discuss remote access to Performance Toolkit for VM in detail.

To enabled and configure remote access and monitoring:

- Create the FCONRMT AUTHORIZ control file.
- Create the FCONRMT SYSTEMS control file.
3.6.1 Create the FCONRMT AUTHORIZ control file

Create the FCONRMT AUTHORIZ file on the PERFSVM user's 191 minidisk. Example 3-6 shows a sample remote authorization control file.

Example 3-6 Sample FCONRMT AUTHORIZ file

*Authorization file for local and remote performance data *
*retrieval and command execution *

*Need to setup as a S&F server for APPC connections. *

*Node-id User-id Authorized for
 | | |
NODE1 PERFSVM S&FSERV
NODE2 PERFSVM CMD DATA
NODE3 PERFSVM CMD DATA
NODE4 FCON CMD DATA
*

*The following allows ANYONE from the specified SYSTEMS *
to request DATA from the ID running PERFKIT *

NODE1 * DATA
NODE2 * DATA
*

* YOU ARE RESPONSIBLE FOR WHO YOU ALLOW TO EXECUTE COMMANDS*
The following ID's are allowed to request DATA and also *
execute COMMANDS on the ID running PERFKIT *

*Allow me CMD and DATA access
NODE1 MYUSERID CMD DATA
NODE2 MYUSERID CMD DATA
*
*Allow my backup CMD and DATA access
NODE1 MYBACKUP CMD DATA
NODE2 MYBACKUP CMD DATA
*
*Allow some users DATA and some command access
NODE1 USER1 DATA CPQRY
NODE1 USER2 DATA CPQRY

Regarding the numbered entries in the FCONRMT AUTHORIZ file:
1. Establishes NODE1 PERFSVM machine as the central collection point.
2. Enables NODE2 and NODE3 to access data and execute commands on the
 NODE1 PERFSVM user ID.

3. Enables the FCON machine on NODE4 (probably running FCON/ESA) data
 and command authority.

4. Enables all users on NODE1 and NODE2 to access performance data from
 the PERFSVM user ID.

5. Enables MYUSERID to access data and execute commands on the
 PERFSVM user ID.

 Note: Care must be taken when giving a user CMD authority. CMD
 authorization allows *any* command the PERFSVM user can execute to be
 issued from any user with CMD authority.

7. Gives USER1 and USER2 CPQRY and DATA authority. CPQRY authority
 enables key users to submit the CP INDICATE and CP QUERY commands.

 Note: The FCONRMT AUTHORIZ file may be edited from basic mode. To
 make changes take effect, use the FC RELOAD AUTHORIZ command to
 refresh the in storage copy.

3.6.2 Create the FCONRMT SYSTEMS control file

An instance of Performance Toolkit for VM can monitor up to 20 remote z/VM
systems. Each remote system needs an FCONRMT SYSTEMS file on the
PERFSVM user's 191 disk. A sample FCONRMT SYSTEMS file is shown in
Example 3-7.

Example 3-7 The FCONRMT SYSTEMS file

```
***********************************************************
* System Definition File for Remote Monitoring            *
***********************************************************
*Node-ID PERFKIT-ID VMTYPE   APPEND  Nickname          *
NODE1    PERFSVM    z/VM_440 N
NODE2    PERFSVM    z/VM_440 N
NODE3    PERFSVM    z/VM_440 N       FCXRES03
NODE4    FCONX      ESA
```
3.7 Enabling data collection for Linux guests

An FCONX LINUXUSR file (shown in Example 3-8) is needed to access data from the RMF/DDS interface on Linux systems. This should be created on the PERFSVM machine’s 191 disk.

Example 3-8 The FCONX LINUXUSR file

* INITIALIZATION FILE WITH IP ADDRESS DEFINITIONS FOR LINUX *
* SYSTEMS THAT MAY BE MONITORED *
* *
*LINUX ID IP ADDRESS FOR DDS INTERFACE
LINUX01 111.111.111:8080
LINUX02 222.222.222:8080
LINUX03 111.222.222:8080
LINUXTST 111.111.222:8080

Performance Toolkit for VM uses the specified IP address to access each Linux machine. The LINUX ID field is used as the machine name in Linux data displays. We discuss Performance Toolkit for VM monitoring for Linux guests further in Chapter 8, “Monitoring Linux guests” on page 147.
Remote access and monitoring

In this chapter, we describe monitoring remote z/VM systems using Performance Toolkit for VM. Topics include:

- Remote monitoring with Performance Toolkit for VM
- APPC/VM interface to Performance Toolkit for VM
- Performance Toolkit for VM Web interface
4.1 Remote monitoring with Performance Toolkit for VM

Remote systems can be accessed and monitored from a central server using Performance Toolkit for VM as illustrated in Figure 4-1.

In the figure, the Performance Toolkit for VM server running on system VMSYSA acts as a central data collector for systems VMSYSB, VMSYSC, and VMSYSD. Using APPC/VM VTAM support (AVS), configured users on the VMSYSA system can access Performance Toolkit for VM servers running on remote systems. Performance Toolkit for VM clients can also access a Performance Toolkit for VM server running on the local system. Using the Performance Toolkit for VM Web interface, remote systems can be monitored using the Web interface.

To enable remote access and monitoring, the remote systems to monitor are defined in the FCONRMT SYSTEMS control file. Users are authorized to access remote systems in the FCONRMT AUTHORIZ control file. See 3.6, “Enabling remote access and monitoring” on page 85 for details on creating these files.
4.2 APPC/VM interface to Performance Toolkit for VM

APPC (also as known as LU 6.2) was primarily designed to enable user-written programs to perform transactions in a client/server network. When both the client and server reside on the same VM system, APPC is implemented as APPC/VM and is based on Inter-User Communication Vehicle (IUCV) support.

APPC communication to between z/VM systems requires Transparent Services Access Facility (TSAF) or Communication Service (CS). If the system is part of an SNA network, use the APPC/VTAM Support (AVS) to translate APPC/VM protocol into APPC/VTAM. For details, see VM/ESA Connectivity Planning, Administration and Operation, SC24-5756.

The APPC/VM interface can be used to communicate with Performance Toolkit for VM from:

- Users on the local system (for example, USER1 In Figure 4-1 on page 90 accessing the Performance Toolkit for VM server on VMSYSA)
- Users on remote systems using an AVS gateway (in this case, USER1 accessing the Performance Toolkit for VM server on VMSYSB)

The Performance Toolkit for VM Web interface relies on the APPC/VM interface.

4.2.1 Implementing APPC/VM for a local system

The APPC/VM interface uses IUCV resources for communication. By default, Performance Toolkit for VM uses the global resource name FCXRES00 for APPC/VM communications. The directory entry for the PERFSVM user defines the FCXRES00 resource and authorizes IUCV communications for the user. (See 3.1.2, “The PERFSVM user” on page 67.)

To enable APPC/VM for a local system using the default FCXRES00 resource name:

1. Ensure that the resource is defined to the PERFSVM user, and that the user is authorized to use IUCV. Look for the following lines in the PERFSVM directory entry:

```
IUCV *IDENT FCXRES00 GLOBAL
IUCV ALLOW
```

2. Define authorized users in the FCONRMT AUTHORIZ file on the PERFSVM user’s A-disk. For details, see 3.6.1, “Create the FCONRMT AUTHORIZ control file” on page 86.

3. Activate the APPC/VM interface. Add the FC MONCOLL VMCF ON command to the FCONX $PROFILE file.
When Performance Toolkit for VM is started, look for the message:

```
FCXAPP5300  Connected to *IDENT for resource FCXRES00
```

This indicates that APPC/VM has been configured successfully. Error messages that are related to resource FCXSYSTM can be ignored. (This resource is used for communicating to remote systems.) If changes are made to the FCONRMT AUTHORIZATION file, changes can be activated using the FC RELOAD AUTHORIZATION command.

To establish a connection to the default FCXRES00 global resource, issue the FCONAPPC command from Performance Toolkit for VM basic mode.

4.2.2 Using an alternate resource name

An alternate resource name may be used instead of the default FCXRES00 name. Because APPC/VM relies on unique global resource names, an alternate name is required for each Performance Toolkit for VM IUCV resource. To use an alternate resource name:

1. Use a unique resource name in each PERFSVM user directory entry in place of the FCXRES00 name:

   ```
   IUCV *IDENT FCXRES01 GLOBAL
   IUCV ALLOW
   ```

 Note: In this example, we use FCXRES01 as an alternate resource name.

2. Map the new resource name to FCXRES00. In the SCOMDIR NAMES file, add the lines:

   ```
   :NICK.FCXRES00 :LUNAME.*IDENT
   :TPN.FCXRES01
   :SCEURITY.SAME
   ```

 Follow the steps that are listed in 4.2.1, “Implementing APPC/VM for a local system” on page 91 to activate the APPC/VM interface. Look for a message that the new resource name is connected to *IDENT as an indication of success.

 Use the FCONAPPC command (issued from Performance Toolkit for VM basic mode) to connect to the remote resource.
4.2.3 Implementing APPC/VM for remote systems

The APPC/VM interface can enable remote users to access Performance Toolkit for VM as illustrated in Figure 4-2.

Remote connections exist only between PERFSVM server machines. Users connect to the FCXSYSTM resource of their local PERFSVM machine. To access the Performance Toolkit for VM running on VMSYSB, USER1 on VMSYSA issues the FCONAPPC FCXSYSTM command. This connects USER1 to the FCXSYSTM resource on VMSYSA.

The APPC/VM interface that is managing the FCXSYSTM resource then presents a menu with a list of all remote systems. If VMSYSB is selected, a special Store and Forward connection request is generated by the PERFSVM machine on VMSYSA. The request is forwarded to the global resource for VMSYSB (FCXRES0B in the figure).

The PERFSVM machine on VMSYSB validates the request and verifies that PERFSVM is authorized to act as a Store and Forward server. A check is also performed to ensure that USER1 on VMSYSA is authorized for performance data retrieval. If authorized, USER1 can access VMSYSB just like a direct APPC/VM connection. The Store and Forward logic is completely transparent to the end user.
To enable the remote APPC/VM interface, the default PERFSVM user directory entry includes the FCXSYSTM resource definition:

```
IUCV *IDENT FCXSYSTM GLOBAL
```

Users first connect to this resource on the local server using the FCONAPPC FCXSYSTM command.

Each PERFSVM collector machine must also define a unique global resource for forwarded connection requests (FCXRES0A and FCXRES0B in Figure 4-2 on page 93). To define this resource, use the procedure that is outlined in 4.2.2, “Using an alternate resource name” on page 92.

Each Store and Forward server must define the available systems in the FCONRMT SYSTEMS file (described in 3.6.2, “Create the FCONRMT SYSTEMS control file” on page 87) and the authorized remote users in the FCONRMT AUTHORIZ file (described in 3.6.1, “Create the FCONRMT AUTHORIZ control file” on page 86).

Enter the FCONAPPC FCXSYSTM command in basic mode to produce the remote system selection screen shown in Figure 4-3.

```
FCX193      CPU 2084  SER 96A3A    (Intermediate Server)         VMSYSA

Systems Accessible via APPC/VM

System    Resource        System    Resource        System    Resource
VMSYSA    FCXRES00       VMSYSB    FCXRES0B        VMSYSC   FCXRES0C
VMITSO    FCXRESBE

Select the system to be monitored
Command ===> F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 4-3 System selection menu (the FCONAPPC FCXSYSTM command)

Position your cursor on the target and press Enter to monitor the remote system.
4.3 Performance Toolkit for VM Web interface

A Web interface is available in Performance Toolkit for VM. Using the Web interface, Performance Toolkit for VM screens are accessible from a standard Web browser.

Note: The PERFSVM virtual machine that acts as the Web server must be configured as a Store and Forward server using the procedure outlined in 4.2, “APPC/VM interface to Performance Toolkit for VM” on page 91.

Figure 4-4 shows the welcome page for the Web interface.

![Performance Toolkit for VM Web interface welcome page](image)

Figure 4-4 Performance Toolkit for VM Web interface welcome page

Click **Continue** to proceed to the Web server logon page shown in Figure 4-5 on page 96.
Remote Performance Monitoring Session Setup

Web Server Logon

You are connected to the data retrieval interface of the Performance Toolkit for VM on system VMLINUX4. Data retrieval authorization is based on your VM user identification on that system. Please enter your userid and password (CP).

VM UserID:

Password:

Submit

Desired screen layout:

Max. Data Lines: 24 Line length: 132

Up to 12 KB of data can be retrieved per selection, including all control information. Output may be truncated if space is insufficient for all lines.

Figure 4-5 Web server logon page

The logon page accepts a user ID and password for authentication (discussed in 4.3.4, “Web interface authentication” on page 100). At logon, the number of displayed lines and the length of each line can be controlled using the corresponding pull-down menu.
4.3.1 Web interface main selection menu

When authenticated, the Web interface main selection menu shown in Figure 4-6 is displayed.

![Web interface selection menu](image)

As shown in the figure, the Web interface presents a selection menu similar to the Performance Toolkit for VM main menu. Each selectable option links to a corresponding performance display. At the top of the page, a checkbox control enables the Auto-Refresh option. Online Help is available to describe command syntax and explain error messages.
4.3.2 Line graphic displays in the Web interface

The Web Interface can create line graphics with an extended list of options for current or history performance data using a Java™ applet. Figure 4-7 shows the graphics selection Web page (option 31 on the main Web page).

We provide the variables (Y-variables) to plot over time (X-variable):

- CPU
- IO/S
- VIO/S
- PG/S

Click Submit to view the resultant plot, as shown in Figure 4-8 on page 99.
4.3.3 Enabling the Web interface

To enable the Web interface:

1. Configure the PERFSVM machine as a Store and Forward server.
 Follow the procedure as outlined in 4.2, “APPC/VM interface to Performance Toolkit for VM” on page 91.

2. Connect the PERFSVM machine to the TCPIP machine.
 Choose a TCP/IP port number for the Web interface to use. By default, Performance Toolkit for VM attempts to use port 8081 to avoid conflicts with any existing Web server. (In this example, we reserve port 81 for PERFSVM.) In the PROFILE TCPIP file, add an entry to reserve the port:

 PORT
 81 TCP PERFSVM NOAUTOLOAD;
3. Select a user authentication method and activate the interface.

Several Web interface authentication methods are available, and we discuss these in 4.3.4, “Web interface authentication” on page 100. To activate the Web interface, add the specific FC MONCOLL WEBSERV ON command for your authentication method to the FCONX $PROFILE of the PERFSVM machine. When the PERFSVM and TCPIP machines are restarted, you should see messages similar to:

FCXAPP530I Connected to *IDENT for resource FCXRES00
FCXTCP571I Connected to TCP/IP server TCPIP on path 0003
FCXTCP575I Host IP address is 9.12.4.17:00081

To access Performance Toolkit for VM from the Web interface, access the URL for configured interface from a Web browser:

4.3.4 Web interface authentication

Web interface authentication is controlled using the IDTEST option of the FC MONCOLL WEBSERV command. Users may be authenticated using one of several methods:

► Standard VM user ID and password

By default, the Web interface expects user logon to use normal VM user IDs and passwords. To enable standard VM user ID authentication, use the command:

```
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST CP
```

Important: Do not use this method if clients outside your private network can access the Web interface.

► RACF authentication

With this method, the user ID and password are verified by RACF or the installed External Security Manager (ESM). To enable RACF authentication, use:

```
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST RACF
```

► FCONRMT PASSFILE authentication

User ID and password combinations can be specified in a separate password file on one of the PERFSVM minidisks. In this case, user IDs are defined only to the PERFSVM virtual machine. A compromised user ID and password allows an intruder access to performance data, but not to VM logon (as long as the defined user IDs do not exist as VM users). Figure 4-9 on page 101
shows a sample passfile. To enable FCONRMT PASSFILE authentication, use:

```
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST FILE
```

No Web authentication

Authentication may be bypassed. In this case, any user who is authorized for data retrieval in the FCONRMT AUTHORIZ file can retrieve performance data. To bypass authentication, use:

```
FC MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST OFF
```

Be aware that in every case, the user ID and password travel across the network (from client to server) in plain text.

<table>
<thead>
<tr>
<th>*User-ID</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>USER1</td>
<td>PASSWORD1</td>
</tr>
<tr>
<td>USER2</td>
<td>PASSWORD2</td>
</tr>
<tr>
<td>USER3</td>
<td>PASSWORD3</td>
</tr>
</tbody>
</table>

Figure 4-9 The FCONRMT PASSFILE
Understanding z/VM configuration

In this chapter we describe how to view the z/VM system configuration using Performance Toolkit for VM. We look at some of the important screens that show general VM configuration and monitoring data. We discuss:

- Commands to use for configuration information
- System configuration screen
- Storage layout
- System settings
- System counters
- Monitor settings
- I/O configuration
- Page and spool allocation
- Spool file usage
- User paging utilization
- Virtual disks in storage
5.1 Commands to use for configuration information

At this point, we assume the following:

- Performance Toolkit for VM is enabled.
- The monitor commands are uncommented from the PROFILE EXEC.
- The PROFILE EXEC was executed on the PERFSVM user ID.
- You are logged on to PERFSVM, and you are in MONITOR mode.

The performance screen selection menu is shown in Figure 5-1.

```
FCX124 Performance Screen Selection (FL440 VM63419) Perf. Monitor

General System Data  I/O Data  History Data (by Time)
2. Storage utilization  12. Control units  32. History data files*
3. Storage subpools  13. I/O device load*  33. Benchmark displays*
5. System counters  15. Cache extend. func.*  35. System summary*
6. CP IUCV services  16. DASD I/O assist  36. Auxiliary storage
7. SPOOL file display*  17. DASD seek distance*  37. CP communications*
8. LPAR data  18. I/O prior. queueing*  38. DASD load
A. Shared data spaces  1A. I/O config. changes  3A. Paging activity
B. Virt. disks in stor.  21. User resource usage*  3B. Proc. load & config*
C. Transact. statistics  22. User paging load*  3C. Logical part. load
D. Monitor data  23. User wait states*  3D. Response time (all)*
E. Monitor settings  24. User response time*  3E. RSK data menu*
F. System settings  25. Resources/transact.*  3F. Scheduler queues
G. System configuration  26. User communication*  3G. Scheduler data
H. VM Resource Manager  27. Multitasking users*  3H. SFS/BFS logs menu*
I. Exceptions  28. User configuration*  3I. System log
K. User defined data*  29. Linux systems*  3J. TCP/IP data menu*
L. User defined data*  2A. I/O config. changes  3K. User wait states

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).

Select performance screen with cursor and hit ENTER
Command ===>
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 5-1 Performance screen selection menu (the MONITOR subcommand)
From here, you can select a display by typing in the number or letter that is shown in the menu, or by placing your cursor anywhere on the desired display. You can also enter the subcommands directly:

- **SYSCONF** displays the system configuration (option G) as discussed in 5.2, “System configuration screen” on page 105.

- **STORAGE** displays storage layout (option 2) as discussed in 5.3, “Storage layout” on page 107.

- **SYSSET** displays the current system resources manager (SRM) settings (option F) as discussed in 5.4, “System settings” on page 109.

- **SYSTEM** displays system counters (option 5) as discussed in 5.5, “System counters” on page 113.

- **MONSET** displays which monitor types and domains are enabled (option E) as discussed in 5.6, “Monitor settings” on page 115.

- **DEVCONF** displays devices visible to z/VM (option 13) as discussed in 5.7, “I/O configuration” on page 116.

- **DEVICE CPOWNED** displays DASD with special areas, such as page and spool (option 14), as discussed in 5.8, “Page and spool allocation” on page 119.

- **SPOOL** displays spool files (option 7) as discussed in 5.9, “Spool file usage” on page 121.

- **UPAGE** displays how many pages reside in expanded storage (XSTORE) and DASD (option 22) as discussed in 5.10, “User paging utilization” on page 122.

- **VDISKS** displays virtual disk usage (option B) as discussed in 5.11, “Virtual disks in storage” on page 123.

Press PF12 to return to the main menu. You can also enter RETURN or MENU commands. Pressing PF1 opens online help. Scroll down to **performance monitor commands** for a complete list of the valid subcommands; then scroll to the desired command, place your cursor on it, and press Enter.

Note: All of the number and letter selections in the following sections refer to menu items on the monitor selection menu shown in Figure 5-1 on page 104.

5.2 System configuration screen

After entering the SYSCONF command (or selecting G), we navigate to the system configuration screen shown in Figure 5-2 on page 106.
Figure 5-2 System configuration display (option G or the SYSCONF command)

- The top portion of this display is very useful in determining the current software level and time of the last IPL.
- The middle portion shows the hardware Initial Status when the server was first started. This shows that our logical partition (LPAR) has 2 out of 3 processors configured, and the processors are shared.
- The bottom portion shows any changes that are made after the Initial Status. This requires that the monitor scheduler event be enabled first. The type of information that would be recorded here would be changes such as varying online or offline one of the three categories: processor, crypto facility, or vector facility.

Tip: The meaning of terms and abbreviations may not be obvious. For explanations, press the Help key, put your cursor on, for example, the last selection, Fields, and you see several categories. Scroll down to System config. for an explanation of the fields on this display. A faster alternative is to place the cursor anywhere on the system configuration screen, and press PF1.
5.3 Storage layout

After entering the STORAGE command (or selecting option 2), navigate to the display shown in Figure 5-3.

<table>
<thead>
<tr>
<th>FCX103</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Interval 10:28:15 - 10:29:15</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main storage utilization:</td>
<td>XSTORE utilization:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total real storage</td>
<td>2'048MB</td>
<td>Total available</td>
<td>1'024MB</td>
<td></td>
</tr>
<tr>
<td>Total available</td>
<td>2'048MB</td>
<td>Att. to virt. machines</td>
<td>0kB</td>
<td></td>
</tr>
<tr>
<td>Offline storage frames</td>
<td>0kB</td>
<td>Size of CP partition</td>
<td>1'024MB</td>
<td></td>
</tr>
<tr>
<td>SYSGEN storage size</td>
<td>2'048MB</td>
<td>CP XSTORE utilization</td>
<td>67%</td>
<td></td>
</tr>
<tr>
<td>CP resident nucleus</td>
<td>2'928kB</td>
<td>Low threshold for migr.</td>
<td>1'200kB</td>
<td></td>
</tr>
<tr>
<td>Shared storage</td>
<td>26'796kB</td>
<td>XSTORE allocation rate</td>
<td>0/s</td>
<td></td>
</tr>
<tr>
<td>FREE storage pages</td>
<td>7'380kB</td>
<td>Average age of XSTORE blks</td>
<td>0s</td>
<td></td>
</tr>
<tr>
<td>FREE stor. subpools</td>
<td>1'120kB</td>
<td>Average age at migration</td>
<td>...s</td>
<td></td>
</tr>
<tr>
<td>Subpool stor. utilization</td>
<td>93%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total DPA size</td>
<td>2'033MB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locked pages</td>
<td>22'708kB</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trace table</td>
<td>700kB</td>
<td>Min. size in XSTORE</td>
<td>0kB</td>
<td></td>
</tr>
<tr>
<td>Pageable</td>
<td>2'010MB</td>
<td>Max. size in XSTORE</td>
<td>1'024MB</td>
<td></td>
</tr>
<tr>
<td>Storage utilization</td>
<td>97%</td>
<td>Ideal size in XSTORE</td>
<td>444'096kB</td>
<td></td>
</tr>
<tr>
<td>Tasks waiting for a frame</td>
<td>2</td>
<td>Act. size in XSTORE</td>
<td>167'436kB</td>
<td></td>
</tr>
<tr>
<td>Tasks waiting for a page</td>
<td>0/s</td>
<td>Bias for XSTORE</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Min. size in main stor.</td>
<td>0kB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. size in main stor.</td>
<td>3'072MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ideal size in main stor.</td>
<td>26'768kB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Act. size in main stor.</td>
<td>22'584kB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bias for main stor.</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>V=R area:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size defined</td>
<td>0kB</td>
<td>MDCACHE limit / user</td>
<td>29'500kB</td>
<td></td>
</tr>
<tr>
<td>FREE storage</td>
<td>0kB</td>
<td>Users with MDCACHE inserts</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>V=R recovery area in use</td>
<td>...%</td>
<td>MDISK cache read rate</td>
<td>2/s</td>
<td></td>
</tr>
<tr>
<td>V=R user</td>
<td>........</td>
<td>MDISK cache write rate</td>
<td>....../s</td>
<td></td>
</tr>
<tr>
<td>Paging / spooling activity:</td>
<td></td>
<td>MDISK cache read hit rate</td>
<td>2/s</td>
<td></td>
</tr>
<tr>
<td>Page moves <2GB for trans.</td>
<td>1/s</td>
<td>MDISK cache read hit ratio</td>
<td>85%</td>
<td></td>
</tr>
<tr>
<td>Fast path page-in rate</td>
<td>10/s</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enter 'FREEsub' command for Free Storage Subpool details

Command ===> F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 5-3 Storage layout and utilization (part 1)

The output spans more than one screen, so if you wish to see the rest, press PF8 for the second portion of the storage layout, shown in Figure 5-4 on page 108.
Figure 5-4 Storage layout and utilization (part 2)

Note that, since the information spans less than two full screens, part of the data from the first screen is repeated on the second screen.

The interval (10:28:15 - 10:29:15), spanning one minute by default, is from the monitor settings and can be changed as required.

```
<table>
<thead>
<tr>
<th>Total DPA size</th>
<th>2'033MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locked pages</td>
<td>22'708kB</td>
</tr>
<tr>
<td>Trace 'table</td>
<td>700kB</td>
</tr>
<tr>
<td>Pageable</td>
<td>2'010MB</td>
</tr>
<tr>
<td>Storage utilization</td>
<td>97%</td>
</tr>
<tr>
<td>Tasks waiting for a frame</td>
<td>2</td>
</tr>
<tr>
<td>Tasks waiting for a page</td>
<td>0/s</td>
</tr>
</tbody>
</table>

### MDCACHE utilization:

- Min. size in XSTORE: 0kB
- Max. size in XSTORE: 1'024MB
- Ideal size in XSTORE: 444'096kB
- Act. size in XSTORE: 167'436kB

### V=R area:

- Size defined: 0kB
- FREE storage: 0kB
- V=R recovery area in use: ...%
- V=R user: ..........

### Paging / spooling activity:

- Page moves <2GB for trans.: 1/s
- Fast path page-in rate: 10/s
- Long path page-in rate: 1/s
- Long path page-out rate: 22/s
- Page read rate: 0/s
- Page write rate: 0/s
- Page read blocking factor: ...
- Page write blocking factor: ...
- Migrate-out blocking factor: ...
- Paging SSCH rate: 0/s
- SPOOL read rate: 0/s
- SPOOL write rate: 0/s

**MDISK cache read rate:** 2/s
**MDISK cache write rate:** ...../s
**MDISK cache read hit rate:** 2/s
**MDISK cache read hit ratio:** 85%

**VDISks:**

- System limit (blocks): Unlim.
- User limit (blocks): 500000
- Main store page frames: 0
- Expanded stor. pages: 35
- Pages on DASD: 0

Enter 'FREesub' command for Free Storage Subpool details
Command ===> F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```
5.4 System settings

After entering SYSSET (or selecting option F), we navigate to the system settings screen shown in Figure 5-5.

<table>
<thead>
<tr>
<th>FCX154</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>System Settings</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Scheduler Settings: 2004/03/03 at 17:01:52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPSLICE (minor) 5.000 msec.</td>
<td>IABIAS Intensity 90 Percent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hotshot T-slice 1.999 msec.</td>
<td>IABIAS Duration 2 Minor T-slices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPBUF Q1 32767 Openings</td>
<td>STORBUF Q1 Q2 Q3 125 % Main storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPBUF Q1 Q2 32767 Openings</td>
<td>STORBUF Q2 Q3 105 % Main storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSPBUF Q1 Q2 Q3 32767 Openings</td>
<td>STORBUF Q3 95 % Main storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUBUF Q1 Q2 Q3 100 % Paging exp.</td>
<td>Max. working set 9999 % Main storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUBUF Q2 Q3 75 % Paging exp.</td>
<td>Loading user 5 Pgrd / T-slice</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDUBUF Q3 60 % Paging exp.</td>
<td>Loading capacity 3 Paging expos.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Changed Scheduler Settings
Date Time Changed
..... No changes processed

Figure 5-5 System settings screen (option F or the SYSSET command)

The values that we have in this display are the default SRM settings. These are controlled via the CP SET SRM command. The bottom part reports settings changes if the monitor event scheduler is enabled.

Attention: The SRM defaults are usually adequate for normal CMS-intensive workloads, but some settings must be changed when running large Linux or z/OS® guests. Specifically, STORBUF and LDUBUF should be increased significantly. For details about virtual machine scheduling and SRM options, consult Linux on IBM® server zSeries and S/390: Performance Measurement and Tuning, SG24-6926.

5.4.1 Effect of the timer patch on Linux guest scheduling

The effect of the Linux timer patch can be graphically illustrated using Performance Toolkit for VM. Figure 5-6 on page 110 shows a graphic display using the Web interface that plots the number of virtual machines in Q1, Q2, and Q3 over time. In this case, the virtual machines are idle Linux guests.
In the example, each Linux guest initially runs with the timer patch disabled, and all Linux guests are classified as Q3. At 14:45, the time patch is enabled on the Linux guests. We see that the Q3 Linux guests are now classified as Q1.

5.4.2 The QUICKDISP option

If assigned the QUICKDISP option (either in the user directory or by using the SET QUICKDSP command), a virtual machine enters the dispatch list immediately without waiting in the eligible list. This option should be reserved for critical VM guests (such as TCP/IP or a critical production Linux system). Users with QUICKDISP enabled move immediately from the eligible to dispatch list (regardless of LDUBUF or STORBUF settings). In Figure 5-7 on page 111, we look at the effect of QUICKDISP on Linux guests.
Figure 5-7 QUICKDSP users are always in Q0

Linux guests with the QUICKDSP option enabled remain in the dispatch list as class 0 users.

5.4.3 Assigning processing share

Position in the eligible and the dispatch lists depends on the share setting that is assigned to a user. Share settings have an effect only when processor resources are overcommitted. Except when assigned a hard or soft limit, a virtual machine can receive more processor time than its share would normally allow, as long as no other virtual machine with a higher share is competing for processor.

Users with absolute share settings receive processor resources before other users. Users with relative share settings receive processor resources after absolute share users have been serviced.

Relative share settings

By default, all virtual machines are assigned a relative share of 100. To illustrate the effect of relative share settings, we run a CPU-intensive workload on three different Linux guests. The guests are assigned the default relative share value, and they run concurrently. Using the USER subcommand, we examine CPU utilization in Figure 5-8 on page 112.
In this example, we see each Linux guest (LNXSU1, LNXSU2, and LNXSU3) acquire roughly CPU utilization.

A virtual machine can gain more access to the processor by having a higher relative share assigned to it. Figure 5-9 illustrates this case.

We see the LNXSU1 virtual machine with its higher relative share setting (1000) now acquires higher CPU utilization. This comes at the expense of the LNXSU2 and LNXSU3 users (each with relative share settings of 100).
Absolute share settings
Absolute share settings guarantee a minimum portion of the total processor resource to a user. When a virtual machine becomes idle, any CPU time with an absolute share also has priority to get the remainder of unused CPU time from virtual machines becoming idle.

Absolute share should be assigned to the few critical users requiring immediate response time. By default, PERFSVM is an absolute share value of 3%.

5.5 System counters

Figure 5-10 shows the output from entering the SYSTEM command (or selecting option 5).

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real SSCH instructions</td>
<td>206</td>
<td>3.4</td>
<td>Real CSCH instructions</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Real HSCH instructions</td>
<td>0</td>
<td>0</td>
<td>El. time slice drops</td>
<td>22</td>
<td>.4</td>
</tr>
<tr>
<td>SVC instr. simulated</td>
<td>0</td>
<td>0</td>
<td>SVC interrupts reflectd</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SVC 76 reflected</td>
<td>0</td>
<td>0</td>
<td>Diagnose I/O requests</td>
<td>40</td>
<td>.7</td>
</tr>
<tr>
<td>FP external call simul.</td>
<td>0</td>
<td>0</td>
<td>FP partial executions</td>
<td>72</td>
<td>1.2</td>
</tr>
<tr>
<td>Fast-path SIGP simulat.</td>
<td>0</td>
<td>0</td>
<td>FP simul. of Diag.X'44'</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>FP successful x-lates</td>
<td>76</td>
<td>1.3</td>
<td>CCW chains not FP-elig.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fast-path aborts</td>
<td>12</td>
<td>.2</td>
<td>Total FP xlate attempts</td>
<td>88</td>
<td>1.5</td>
</tr>
<tr>
<td>Nr. of SIE executions</td>
<td>19961</td>
<td>332</td>
<td>Nr. of SIE intercepts</td>
<td>19894</td>
<td>331</td>
</tr>
<tr>
<td>Entries to enabled wait</td>
<td>18277</td>
<td>304</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage Management

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subpool FREE requests</td>
<td>2041</td>
<td>34.0</td>
<td>Total FREE requests</td>
<td>2045</td>
<td>34.1</td>
</tr>
<tr>
<td>V=R subpool FREE req.</td>
<td>0</td>
<td>0</td>
<td>Storage fast clears</td>
<td>92</td>
<td>1.5</td>
</tr>
<tr>
<td>Avail. list frame req.</td>
<td>179</td>
<td>3.0</td>
<td>Available list empty</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Demand scan 1st pass</td>
<td>0</td>
<td>0</td>
<td>Demand scan 2nd pass</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Demand scan emergency</td>
<td>0</td>
<td>0</td>
<td>Demand scan not satisf.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>System stor. pgs taken</td>
<td>0</td>
<td>0</td>
<td>Shared stor. pgs taken</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dispatch lst pgs stolen</td>
<td>0</td>
<td>0</td>
<td>Eligible lst pgs stolen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pgs from dormant users</td>
<td>0</td>
<td>0</td>
<td>Pages taken for FREE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fast PGINs from XSTORE</td>
<td>0</td>
<td>0</td>
<td>Slow PGINs from XSTORE</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>PGOUTs main to XSTORE</td>
<td>0</td>
<td>0</td>
<td>No XSTORE available</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>XSTORE allocations</td>
<td>0</td>
<td>0</td>
<td>XSTORE releases</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gbl cycl list searched</td>
<td>0</td>
<td>0</td>
<td>Migr. target time reset</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Migr thresh buf increas</td>
<td>0</td>
<td>0</td>
<td>Migr thresh buf lowered</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Page migr. from dormant</td>
<td>0</td>
<td>0</td>
<td>Dormant with page migr.</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 5-10 System counters screen: current values
As indicated, the data is for the one-minute interval shown, also referred to in Performance Toolkit for VM as CURRENT. Entering the AVERAGE command gives a message that the next screen refresh will show averages instead of current, as shown in Figure 5-11.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
<th>Operation</th>
<th>Count</th>
<th>Rate/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real SSCH instructions</td>
<td>48423</td>
<td>4.4</td>
<td>Real CSCH instructions</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>Real HSCH instructions</td>
<td>0</td>
<td>0.0</td>
<td>El. time slice drops</td>
<td>4289</td>
<td>0.3</td>
</tr>
<tr>
<td>SVC instr. simulated</td>
<td>10</td>
<td>0.0</td>
<td>SVC interrupts reflectd</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>SVC 76 reflected</td>
<td>0</td>
<td>0.0</td>
<td>Diagnose I/O requests</td>
<td>10950</td>
<td>1.0</td>
</tr>
<tr>
<td>FP external call simul.</td>
<td>0</td>
<td>0.0</td>
<td>FP partial executions</td>
<td>16729</td>
<td>1.5</td>
</tr>
<tr>
<td>Fast-path SIGP simulat.</td>
<td>0</td>
<td>0.0</td>
<td>FP simul. of Diag.X'44'</td>
<td>74375</td>
<td>6.8</td>
</tr>
<tr>
<td>FP successful x-lates</td>
<td>19389</td>
<td>1.7</td>
<td>CCW chains not FP-elig.</td>
<td>142</td>
<td>0.0</td>
</tr>
<tr>
<td>Fast-path aborts</td>
<td>2868</td>
<td>0.2</td>
<td>Total FP xlate attempts</td>
<td>22399</td>
<td>2.0</td>
</tr>
<tr>
<td>Nr. of SIE executions</td>
<td>4.87E6</td>
<td>451</td>
<td>Nr. of SIE intercepts</td>
<td>4.77E6</td>
<td>441</td>
</tr>
<tr>
<td>Entries to enabled wait</td>
<td>3.28E6</td>
<td>303</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Storage Management

Subpool FREE requests	1.56E6	145	Total FREE requests	1.57E6	145
V=R subpool FREE req.	0	0.0	Storage fast clears	100113	9.2
Avail. list frame req.	153515	14.2	Available list empty	0	0.0
Demand scan 1st pass	0	0.0	Demand scan 2nd pass	0	0.0
Demand scan emergency	0	0.0	Demand scan not satisf.	0	0.0
System stor. pgs taken	0	0.0	Shared stor. pgs taken	0	0.0
Dispatch lst pgs stolen	0	0.0	Eligible lst pgs stolen	0	0.0
Pgs from dormant users	0	0.0	Pages taken for FREE	0	0.0
Fast PGINs from XSTORE	0	0.0	Slow PGINs from XSTORE	0	0.0
PGOUTs main to XSTORE	0	0.0	No XSTORE available	0	0.0
XSTORE allocations	0	0.0	XSTORE releases	0	0.0
Glbl cycl list searched	0	0.0	Migr. target time reset	0	0.0
Migr thresh buf increas	0	0.0	Migr thresh buf lowered	0	0.0
Page migr. from dormant	0	0.0	Dormant with page migr.	0	0.0

FCXCMD511I AVERAGE data set, active for this display after next update

Figure 5-11 System counters: average values

Note the interval span change and the counter values. The FCXCMD511I message stays posted until your next interaction. To revert to the original setting, issue the CURRENT command.
5.6 Monitor settings

After entering the MONSET command (or selecting option E), we navigate to the screen shown in Figure 5-12.

![Figure 5-12 Monitor settings (option E or the MONSET command)](image)

The Initial settings correspond to the monitor commands that were uncommented from the PROFILE EXEC prior to invoking the PERFKIT MODULE. They do not include the enabling of the USER EVENT that was needed to display the system transaction statistics. As with system settings (the SYSSET command), the monitor event scheduler must be enabled in order to see the monitor settings changes in the bottom part of the display.
5.7 I/O configuration

Entering the DEVCONF command (or selecting option 18) produces the screen shown in Figure 5-13.

<table>
<thead>
<tr>
<th>Device-No</th>
<th>Subch.-ID</th>
<th>Type</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Unit</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>001C</td>
<td>0002</td>
<td>9032</td>
<td>7C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9032-02</td>
<td>Online</td>
</tr>
<tr>
<td>001D</td>
<td>0003</td>
<td>9032</td>
<td>7D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9032-02</td>
<td>Online</td>
</tr>
<tr>
<td>001E</td>
<td>0004</td>
<td>9032</td>
<td>7E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9032-03</td>
<td>Online</td>
</tr>
<tr>
<td>001F</td>
<td>0005</td>
<td>9032</td>
<td>7F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9032-05</td>
<td>Online</td>
</tr>
<tr>
<td>150C-1512</td>
<td>0052-0058</td>
<td>3390-3 (E)</td>
<td>.</td>
<td>75</td>
<td>48</td>
<td>49</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9393 RVA</td>
<td>Online</td>
</tr>
<tr>
<td>154C-1552</td>
<td>0092-0098</td>
<td>3390-3 (E)</td>
<td>.</td>
<td>75</td>
<td>48</td>
<td>49</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9393 RVA</td>
<td>Online</td>
</tr>
<tr>
<td>158C-1592</td>
<td>00D2-00D8</td>
<td>3390-3 (E)</td>
<td>.</td>
<td>75</td>
<td>48</td>
<td>49</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9393 RVA</td>
<td>Online</td>
</tr>
<tr>
<td>15CC-15D2</td>
<td>0112-0118</td>
<td>3390-3 (E)</td>
<td>.</td>
<td>75</td>
<td>48</td>
<td>49</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>.</td>
<td>9393 RVA</td>
<td>Online</td>
</tr>
<tr>
<td>2E20-2E2E</td>
<td>0396-03A4</td>
<td>OSA</td>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-01</td>
<td>Online</td>
</tr>
<tr>
<td>2E2F</td>
<td>03A5</td>
<td>OSA</td>
<td>05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-01</td>
<td>Online</td>
</tr>
<tr>
<td>5090-5093</td>
<td>0EF6-0EF9</td>
<td>CTCA</td>
<td>3F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3088</td>
<td>Online</td>
</tr>
<tr>
<td>5098-509B</td>
<td>0EFA-0EFD</td>
<td>CTCA</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3088</td>
<td>Online</td>
</tr>
<tr>
<td>5100-5103</td>
<td>0EFE-0F01</td>
<td>CTCA</td>
<td>3F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3088</td>
<td>Online</td>
</tr>
<tr>
<td>5108-510B</td>
<td>0FO2-0F05</td>
<td>CTCA</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3088</td>
<td>Online</td>
</tr>
<tr>
<td>7C00-7C0F</td>
<td>13A6-13B5</td>
<td>OSA</td>
<td>F0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-05</td>
<td>Online</td>
</tr>
<tr>
<td>7D00-7D0F</td>
<td>13B6-13C5</td>
<td>OSA</td>
<td>F1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-05</td>
<td>Online</td>
</tr>
<tr>
<td>7E00-7E0F</td>
<td>13C6-13D5</td>
<td>OSA</td>
<td>F2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-05</td>
<td>Online</td>
</tr>
<tr>
<td>7F00-7F0F</td>
<td>13D6-13E5</td>
<td>OSA</td>
<td>F3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1731-05</td>
<td>Online</td>
</tr>
<tr>
<td>9050</td>
<td>203A</td>
<td>3270-3</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3174-1D</td>
<td>Online</td>
</tr>
<tr>
<td>9051</td>
<td>203B</td>
<td>3270</td>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3174-1D</td>
<td>Online</td>
</tr>
</tbody>
</table>

Figure 5-13 Device configuration screen (option 18 or the DEVCONF command)

This displays the address ranges grouped by contiguous addresses and device types. This is a summary display, and nothing can be selected from it. To get a display where items are selectable, use the DEVICE command (or use option“13”) to get the output shown in Figure 5-14 on page 117.
Again, this data is presented by interval and the display refreshes automatically at the end of the interval. You can scroll up, down, left, and right.

For details of a particular device, place the cursor on the line where the device is listed and press Enter, or **DEVICE nnnn**, where *nnnn* is the device address.

A lot of useful information is included when displaying DASD devices. For instance, displaying DASD 1550 (from the previous panel) produces the screen shown in Figure 5-15 on page 118.
Detailed Analysis for Device 1550 (CP OWNED)

<table>
<thead>
<tr>
<th>Device type: 3390-3</th>
<th>Function pend.: .1ms</th>
<th>Device busy : 0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOLSER : LX4W01</td>
<td>Disconnected : 0ms</td>
<td>I/O contention: 0%</td>
</tr>
<tr>
<td>Nr. of LINKs: 14</td>
<td>Connected : 0.3ms</td>
<td>Reserved : 0%</td>
</tr>
<tr>
<td>Last SEEK : 2294</td>
<td>Service time : 0.4ms</td>
<td>SENSE SSCH : ...</td>
</tr>
<tr>
<td>SSCH rate/s : .0</td>
<td>Response time : 0.4ms</td>
<td>Recovery SSCH : ...</td>
</tr>
<tr>
<td>Avoided/s :</td>
<td>CU queue time : 0.0ms</td>
<td>Throttle del/s: ...</td>
</tr>
<tr>
<td>Status: MDCACHE USED</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Path(s) to device 1550: 74 75 48 49

Channel path status: OFF ON ON ON

Device	**Overall CU-Cache Performance**	**Split**
DIR ADDR VOLSER	IO/S %READ %RDHIT %WRHIT ICL/S BYP/S	IO/S %READ %RDHIT
51 1550 LX4W01	.0 0 0 0 0 0	.0 'NORMAL' I/O only

MDISK Extent	**Userid**	**Addr**	**IO/s**	**VSEEK**	**Status**	**LINK**	**VIO/s**	**%MDC**	**MDIO/s**
C 1588 - 1591 GCS	0191	.0	0 WR	1	.00	C	
C 1708 - 1716 P684096K	0401	.0	owner	C					
C 1717 - 1719 P684096K	0403	.0	owner	C					
C 1739 - 1739 RSCSDNS	0191	.0	0 RR	1	.00	C	
C 2068 - 2105 TCPMAINT	0591	.0	owner	C					
C 2106 - 2172 TCPMAINT	0592	.0	owner	C					

Command ==>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 5-15 Displaying DASD information

- The top section provides detailed device characteristics. The amount of information varies by device type.
- The middle indicates the paths to this device and whether they are physically on or off.
- The bottom section of a DASD device shows the active links, if any, with their location. If the minidisk is linked by a user ID other than the owner, then the real owner is identified.
5.8 Page and spool allocation

When you first install z/VM, your initial configuration has enough page and spool allocation for the installation process. In almost all cases, this is insufficient to run any kind of production workload, so you must increase these areas. Performance Toolkit for VM lets you find out how much space is out there and where it is located. First step is to execute the DEVICE CPOWNED command to navigate to screen shown in Figure 5-16.

> The top section shows the allocation types by size and percent used. Note that DUMP space is optional and defaults to SPOOL if it is not defined.

> The bottom section breaks down the allocations by volume and shows which cylinders they occupy.

Note: This command lists only CP-owned volumes that have at least one of the CP area types defined on them.

In a case in which we had too much spool in use, at this point we could use the SP00L user command to get a list that is sorted by spool occupancy as shown in Figure 5-17 on page 120.
The top user, PERFAPP, has only two files but, obviously, they are large. Put the
cursor on PERFAPP and press Enter to show its files in Figure 5-18.

Here you are given the opportunity to purge (P) one or both files.

Note: For instructions for adding page or spool space, see, “How to add page
space to a running z/VM system” on page 224.
5.9 Spool file usage

Off the monitor selection menu, option 7 (SPOOL command) displays the screen in Figure 5-19.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>All Files</td>
<td>SPOOL File Overview</td>
<td>Reader</td>
<td>Printer</td>
<td>Punch</td>
</tr>
<tr>
<td>Number of files</td>
<td>214</td>
<td>131</td>
<td>7</td>
<td>36</td>
</tr>
<tr>
<td>Number of blocks</td>
<td>78318</td>
<td>11584</td>
<td>10</td>
<td>10859</td>
</tr>
<tr>
<td>Number of records</td>
<td>2324710</td>
<td>492401</td>
<td>244</td>
<td>10789</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>File Owner-ID</th>
<th>File Class</th>
<th>Que</th>
<th>Ac</th>
<th>Blocks</th>
<th>Records Date</th>
<th>Time</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFAPP</td>
<td>A PRT RDR</td>
<td>11939</td>
<td>335643</td>
<td>2004/03/15 14:40</td>
<td>VMLINUX4</td>
<td>DUMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFAPP</td>
<td>A PRT RDR</td>
<td>11846</td>
<td>332721</td>
<td>2004/03/15 14:32</td>
<td>VMLINUX4</td>
<td>DUMP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXSU4</td>
<td>A PUN RDR</td>
<td>2584</td>
<td>100761</td>
<td>2004/03/22 19:07</td>
<td>SLES8</td>
<td>INITRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXSU1</td>
<td>A PUN RDR</td>
<td>2584</td>
<td>100761</td>
<td>2004/03/22 19:07</td>
<td>SLES8</td>
<td>INITRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A SYS</td>
<td>1796</td>
<td>1794</td>
<td>2004/03/19 07:27</td>
<td>SCEEX</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXRH1</td>
<td>A PUN RDR</td>
<td>1728</td>
<td>67359</td>
<td>2004/02/25 12:32</td>
<td>RHEL3</td>
<td>INITRD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A PUN RDR</td>
<td>1304</td>
<td>1302</td>
<td>2004/03/19 11:59</td>
<td>CMS</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A PUN RDR</td>
<td>1304</td>
<td>1302</td>
<td>2004/03/25 13:12</td>
<td>CMS</td>
<td>NSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXRH1</td>
<td>A PUN RDR</td>
<td>1009</td>
<td>39312</td>
<td>2004/02/25 12:32</td>
<td>RHEL3</td>
<td>KERNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A PUN RDR</td>
<td>866</td>
<td>863</td>
<td>2004/03/19 12:07</td>
<td>AD MBA320</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTPSERVE</td>
<td>T CON PRT OU</td>
<td>789</td>
<td>53123</td>
<td>2004/03/24 17:38</td>
<td>CMSFILES</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A SYS</td>
<td>772</td>
<td>770</td>
<td>2003/06/18 11:00</td>
<td>CMSFILES</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A SYS</td>
<td>772</td>
<td>770</td>
<td>2003/06/18 11:00</td>
<td>CMSFILES</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXSU4</td>
<td>A PUN RDR</td>
<td>747</td>
<td>29108</td>
<td>2004/03/17 10:19</td>
<td>SLES8</td>
<td>KERNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXSU1</td>
<td>A PUN RDR</td>
<td>747</td>
<td>29108</td>
<td>2004/03/22 19:07</td>
<td>SLES8</td>
<td>KERNEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSS</td>
<td>A SYS</td>
<td>425</td>
<td>422</td>
<td>2004/03/19 12:08</td>
<td>ADMPG213</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTM</td>
<td>A PRT PRT</td>
<td>376</td>
<td>14695</td>
<td>2004/03/12 08:00</td>
<td>ADMPG213</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTM</td>
<td>A PRT PRT</td>
<td>376</td>
<td>14699</td>
<td>2004/03/14 16:00</td>
<td>ADMPG213</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTM</td>
<td>A PRT PRT</td>
<td>376</td>
<td>14710</td>
<td>2004/03/13 16:00</td>
<td>ADMPG213</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VMRTM</td>
<td>A PRT PRT</td>
<td>376</td>
<td>14761</td>
<td>2004/03/12 16:00</td>
<td>ADMPG213</td>
<td>DCSS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Select 'P' to purge files, or enter 'SPool User' for user summary
Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 5-19 General system spool display (the SPOOL command)

This display is also sorted by size, but it includes all spool files and system definition files such as the named saved system (NSS) files, for example.
5.10 User paging utilization

To determine the number of pages that are currently on auxiliary storage, use the UPAGE command (or option 22), and scroll right (PF11) to display the screen shown in Figure 5-20.

<table>
<thead>
<tr>
<th>Userid</th>
<th>Owned</th>
<th>WSS</th>
<th>Lockd</th>
<th>Resrvd</th>
<th><2GB</th>
<th>>2GB</th>
<th>XSTOR</th>
<th>DASD</th>
<th>Size</th>
<th>Users</th>
</tr>
</thead>
<tbody>
<tr>
<td>>System<</td>
<td>.0</td>
<td>20765</td>
<td>18</td>
<td>0</td>
<td>13399</td>
<td>5642</td>
<td>3233</td>
<td>4652</td>
<td>165M</td>
<td>34</td>
</tr>
<tr>
<td>BROYOLE</td>
<td>0</td>
<td>111</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>96</td>
<td>86</td>
<td>95</td>
<td>64M</td>
<td></td>
</tr>
<tr>
<td>CMS1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>229</td>
<td>104</td>
<td>32M</td>
<td></td>
</tr>
<tr>
<td>DATAMOVE</td>
<td>0</td>
<td>224</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>209</td>
<td>1</td>
<td>316</td>
<td>16M</td>
<td></td>
</tr>
<tr>
<td>DIRMINT</td>
<td>0</td>
<td>513</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>487</td>
<td>293</td>
<td>1457</td>
<td>32M</td>
<td></td>
</tr>
<tr>
<td>DISKACNT</td>
<td>0</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>59</td>
<td>0</td>
<td>1237</td>
<td>32M</td>
<td></td>
</tr>
<tr>
<td>EREP</td>
<td>0</td>
<td>66</td>
<td>0</td>
<td>0</td>
<td>14</td>
<td>52</td>
<td>0</td>
<td>1228</td>
<td>32M</td>
<td></td>
</tr>
<tr>
<td>FTPSERVE</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1372</td>
<td>8</td>
<td>32M</td>
<td></td>
</tr>
<tr>
<td>GCS</td>
<td>0</td>
<td>52</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>52</td>
<td>16M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXRH1</td>
<td>0</td>
<td>34484</td>
<td>10</td>
<td>0</td>
<td>7914</td>
<td>20854</td>
<td>4034</td>
<td>14531</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXRH2</td>
<td>0</td>
<td>32287</td>
<td>10</td>
<td>0</td>
<td>16206</td>
<td>10728</td>
<td>6422</td>
<td>13265</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXRH3</td>
<td>0</td>
<td>34274</td>
<td>10</td>
<td>0</td>
<td>6901</td>
<td>21690</td>
<td>3886</td>
<td>15437</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXRH4</td>
<td>0</td>
<td>33340</td>
<td>10</td>
<td>0</td>
<td>6124</td>
<td>21688</td>
<td>4946</td>
<td>13275</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXSU1</td>
<td>0</td>
<td>110630</td>
<td>10</td>
<td>0</td>
<td>58697</td>
<td>51965</td>
<td>13958</td>
<td>0</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXSU2</td>
<td>0</td>
<td>131072</td>
<td>10</td>
<td>0</td>
<td>119643</td>
<td>7669</td>
<td>2686</td>
<td>0</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXSU3</td>
<td>0</td>
<td>131072</td>
<td>10</td>
<td>0</td>
<td>119780</td>
<td>9501</td>
<td>736</td>
<td>0</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXSU4</td>
<td>0</td>
<td>119776</td>
<td>10</td>
<td>0</td>
<td>89171</td>
<td>10718</td>
<td>20915</td>
<td>25878</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>LNXSU5</td>
<td>0</td>
<td>61569</td>
<td>10</td>
<td>0</td>
<td>26890</td>
<td>24461</td>
<td>47606</td>
<td>58798</td>
<td>512M</td>
<td></td>
</tr>
<tr>
<td>OPERATOR</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1249</td>
<td>32M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OP1</td>
<td>0</td>
<td>1249</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1249</td>
<td>32M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERFAPP</td>
<td>0</td>
<td>2385</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>2335</td>
<td>777</td>
<td>0</td>
<td>64M</td>
<td></td>
</tr>
<tr>
<td>PERFBER</td>
<td>0</td>
<td>1496</td>
<td>1</td>
<td>0</td>
<td>1493</td>
<td>25</td>
<td>121</td>
<td>0</td>
<td>64M</td>
<td></td>
</tr>
<tr>
<td>PERFKL</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>52</td>
<td>9</td>
<td>183</td>
<td>64M</td>
<td></td>
</tr>
<tr>
<td>PERFLL</td>
<td>0</td>
<td>2343</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>2328</td>
<td>57</td>
<td>861</td>
<td>64M</td>
<td></td>
</tr>
</tbody>
</table>

Select a user for user details

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 5-20 Pages on auxiliary storage (the UPAGE command)

The XSTOR and DASD columns show the number of pages that occupy those two areas. The >System< row shows the average pages per user. Because there are 34 users, multiply the page values by 34 to get the total pages per area.
5.11 Virtual disks in storage

After entering the VDISKS command (or selecting option B), we see the summary of VDISK usage by user shown in Figure 5-21.

<table>
<thead>
<tr>
<th>Userid</th>
<th>Devno</th>
<th>Blocks</th>
<th>LINKs</th>
<th>IO/s</th>
<th>Pgsl</th>
<th>Pgrds</th>
<th>Pgwr</th>
<th>X-rds</th>
<th>X-wrt</th>
<th>X-mig</th>
<th>Resid</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMS1</td>
<td>0191</td>
<td>50000</td>
<td>1</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>3</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>0456</td>
<td>500000</td>
<td>2</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>8160</td>
</tr>
</tbody>
</table>

This shows the number of 512K blocks of vdisk space in use for the interval. Note that user LNXSU1 has 500,000 blocks of 512 K, and currently, 8,160 pages are in main storage (65,280 blocks). You can select a user ID by placing the cursor on it and pressing Enter, which takes you to that user's virtual configuration panel (the USER command).
Chapter 6. Analyzing I/O and network performance

In this chapter, we discuss Performance Toolkit for VM screens that provide monitoring data that is useful in understanding performance of DASD I/O and network devices. Topics include:

- Analyzing I/O to DASD performance
- Channel monitoring
- Control unit monitoring
- I/O device load
- Analyzing VM TCP/IP data
6.1 Analyzing I/O to DASD performance

Most applications must be able to send or receive data to external devices. Global throughput depends on performance of input/output (I/O) operations. Using fast devices or running applications that group many data transfers in a single I/O operation are key to a responsive system.

Performance Toolkit for VM provides detailed measurements data for real direct access storage devices (DASDs). z/VM virtualizes many DASD operations using minidisk cache (MDC) and virtual disks (VDISKs). In this case, Performance Toolkit for VM provides only statistical data.

DASD devices are driven by a control unit that is attached to one or more channels. In addition to device capacity, overall DASD I/O performance depends on activity at the:

- Channel path
- Control unit
- Device

Using Performance Toolkit for VM, we can determine whether a bottleneck exists at any level.

6.2 Channel monitoring

The CHANNEL or LCHANNEL subcommand CHPID utilization. Both average and current values can be displayed (depending on the selected display mode). The percent busy time is computed as follows:

1. The time that a channel path is busy is collected by high-frequency sampling. (The default interval is two seconds.)

2. Monitor tests the channel path status. Status is reported as either *busy* or *not busy*.

3. The ratio of the busy counts to total tests is reported for each interval.

Performance Toolkit for VM reports the busy ratio either for the last interval (in CURRENT mode), or as an average from the start of sampling (for AVERAGE mode).

From a 3270 session, the display of the channel, control unit, or device does not provide all available data on a single screen. (Use the PF10 and PF11 function keys to shift left and right to see the rest of the data.) Alternatively, the Web interface presents all data on one display.
Figure 6-1 Channel load display (the CHANNEL command)

In the channel load display shown in Figure 6-1, we see that CHPIDs 48, 49, and 75 are very busy during the last interval (89-92%). These three CHPIDs are connected to the same storage subsystem. To reduce their utilization, consider adding additional CHPIDs for accessing the DASD devices.

I/O intensive tasks explain the high utilization rates. If these tasks are critical, you might consider:

- Adding one or more CHPIDs to the DASD devices.
- Move the volumes to different storage subsystems.
- Spread application data across more volumes accessed by different CHPIDs.
- Schedule tasks that access devices on these channels at other times.
You may encounter situations where real channel busy condition cannot be analyzed by Performance Toolkit for VM, such as:

- When running in an LPAR and the CHPIDs are shared with other partitions.
- If the path to the control unit includes an ESCON® Director (ESCD). The activity of the link (between the ESCD and the control unit) cannot be measured. If the configuration is not designed well, you could experience long pending times.
- When there is a channel extender that may prevent reporting the real channel busy percentage.

6.3 Control unit monitoring

Before analyzing DASD performance, it is important to understand your DASD configuration. DASDs may be shared with other partitions or systems. Here, the different subsystem IDs (SSID) corresponding to logical control units are part of the same storage subsystem. (Subsystem IDs 8950, 8951, 8952, and 8953 are part of a 9393 Ramac Virtual Array storage subsystem.) These IDs have been set in the hardware. Even if all device addresses can be accessed from any CHPID, the performance may depend on the placement of the volume. For example, in the IBM 2105 Enterprise Storage Subsystem, the volumes are part of groups of eight physical disks called *ranks*. These ranks are on SSA loops that are associated with logical control units. Even if you consider that all I/O operations are done through the cache, it important to spread the more active volumes on as many available logical control units as possible to maximize the performance.

There are three important values in the service time to be analyzed:

- **Pend** This is the time an initiated I/O operation spends in the channel subsystem waiting for an available path. Long pending times (greater than 1 ms) indicate a contention in channel path availability.

- **Disc** This is the time spent in the control unit waiting to send or receive data. This time is generally used for cache management or for seeking data on physical disks.

- **Conn** This is the time required to transfer data to and from the control unit. It is related to the channel speed.

Because a single I/O operation may consist of dozens of channel commands (CCWs), the time values in the three states are the average of the cumulated times for each I/O operation.
6.3.1 Cache control unit overall performance

Control unit performance data can be obtained by the CTLUNIT subcommand as shown in Figure 6-2.

Figure 6-2 Control unit performance display (the CTLUNIT command)

More data is available using PF11 to view the right side of the screen, as shown in Figure 6-3.

Figure 6-3 Control unit extended cache display
From the display, we see that 99% of subsystem device 8950 I/O operations are reads; subsystem devices 8952 and 8953 are performing mostly write operations. The control unit cache is performing well with nearly 100% cache hits.

6.3.2 Cache extended function performance

The CACHEX subcommand provides additional data on the control unit performance, which includes real device activity as shown in Figure 6-4.

<table>
<thead>
<tr>
<th>FCX177</th>
<th>CPU 2084</th>
<th>VMITSO</th>
<th>Interval 11:00:33 - 11:01:34</th>
<th>VMITSO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><---Device Descr.-- Stg C D D <-------- Rate/s --------> <--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ctrl A F U</td>
<td>Total Total Read Read Write <------ Hi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Addr Type VOLSER ID C W L ST Cache SCMBK N-Seq Seq FW Read Tot RdHt W</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1510 3390-3 LX4RES 8950 A A - 00 241.0 238.0 241.0 .0 .0 100 100 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1580D 3390-3 LI4RES 8952 A A - 00 223.7 221.4 61.0 .0 162.6 27 100 100 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15CF 3390-3 LN4RES 8953 A A - 00 222.9 220.8 60.0 .0 162.9 27 100 100 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1590 3390-3 LX4W02 8952 A A - 00 12.3 9.5 8.6 .0 3.6 70 100 100 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158F 3390-3 LN4W02 8952 A A - 00 7.5 6.3 4.6 .0 2.9 62 98 97 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>158E 3390-3 LI4W02 8952 A A - 00 7.2 6.2 4.6 .0 2.6 64 98 97 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150D 3390-3 LX150D 8950 A A - 00 .6 .6 .0 .0 .6 0 97 ..</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1512 3390-3 LX1512 8950 A A - 00 .5 .6 .0 .0 .5 0 100 .. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150F 3390-3 LX150F 8950 A A - 00 .4 .4 .0 .0 .4 0 100 .. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See also CACHDBSE for a cache performance summary

Command ===>

F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 6-4 Control unit extended cache display (the CACHEX command)

You can check the caching status in the CAC (for Control Unit Cache) and DFW (DASD Fast Write) columns. They should show state A (activated).
6.4 I/O device load

The DEVICE subcommand displays performance data at device level as shown in Figure 6-5.

<table>
<thead>
<tr>
<th>Device</th>
<th>CPU</th>
<th>VMITSO</th>
<th>Interval</th>
<th>VMITSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCX108</td>
<td>2084</td>
<td>VMITSO</td>
<td>11:02:33</td>
<td>VMITSO</td>
</tr>
</tbody>
</table>

Four columns to note include:

I/O

This indicates I/O operation rate per second. If it is too high, check which minidisks are currently used on the volume (by positioning the cursor on the line corresponding to the device number and pressing Enter). The high I/O rate should be considered with the average response time.

Select a device for I/O device details
The average response time depends on the type and the number of channel commands sent to the device. Multiply the response time by the I/O rate to obtain the device busy percentage.

Req. Qued When greater than zero, this indicates contention on the device (more than one application or CP using this device). You should analyze the reason for multiple concurrent access.

Busy This indicates the device-busy percentage. It is the best indicator of device performance.

To sort the device display by percentage use, move the cursor to the Busy column and press Enter. The sorted device list is shown in Figure 6-6.

<table>
<thead>
<tr>
<th>Device</th>
<th>Type</th>
<th>Label/ID</th>
<th>Links ths</th>
<th>Busy</th>
<th>READ</th>
<th>Cyls</th>
<th>SSCH Set/s</th>
<th>Dly/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1510</td>
<td>3390-3</td>
<td>LX4RES CP</td>
<td>205</td>
<td>3</td>
<td>0.00</td>
<td>97</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>158D</td>
<td>3390-3</td>
<td>>BLDCMS</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>98</td>
<td>27</td>
<td>485</td>
</tr>
<tr>
<td>15CF</td>
<td>3390-3</td>
<td>>BLDNUC</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>98</td>
<td>27</td>
<td>486</td>
</tr>
<tr>
<td>1590</td>
<td>3390-3</td>
<td>LX4W02 CP</td>
<td>63</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>39</td>
<td>299</td>
</tr>
<tr>
<td>150D</td>
<td>3390-3</td>
<td>LX150D</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>827</td>
</tr>
<tr>
<td>5090</td>
<td>CTCA</td>
<td>>RSCS</td>
<td>...</td>
<td>1</td>
<td>0.00</td>
<td>50</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>158F</td>
<td>3390-3</td>
<td>>BLDNUC</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>150F</td>
<td>3390-3</td>
<td>LX150F</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1092</td>
</tr>
<tr>
<td>158E</td>
<td>3390-3</td>
<td>>BLDCMS</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>33</td>
<td>10</td>
</tr>
<tr>
<td>1511</td>
<td>3390-3</td>
<td>LX1511</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>789</td>
</tr>
<tr>
<td>1512</td>
<td>3390-3</td>
<td>LX1512</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>251</td>
</tr>
<tr>
<td>154C</td>
<td>3390-3</td>
<td>LX154C</td>
<td>2</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>1170</td>
</tr>
<tr>
<td>15CD</td>
<td>3390-3</td>
<td>>BLDNUC</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>15CE</td>
<td>3390-3</td>
<td>>BLDCMS</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>150C</td>
<td>3390-3</td>
<td>LX150C</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>150E</td>
<td>3390-3</td>
<td>LX150E</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>154D</td>
<td>3390-3</td>
<td>LX154D</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>154E</td>
<td>3390-3</td>
<td>LX154E</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>154F</td>
<td>3390-3</td>
<td>LX154F</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>1550</td>
<td>3390-3</td>
<td>LX4W01 CP</td>
<td>44</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>1551</td>
<td>3390-3</td>
<td>LX1551</td>
<td>0</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>1552</td>
<td>3390-3</td>
<td>LX1552</td>
<td>1</td>
<td>3</td>
<td>0.00</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

Select a device for I/O device details

Figure 6-6 The DEVICE screen sorted on the Busy column
In this example, three devices are reported as busy:

- Address 1510 is a CP-owned volume containing many minidisks and system areas. To reduce utilization, we can move heavily accessed minidisks to another device.

- Addresses 158D and 15CF are dedicated to guests. In this case, we must analyze how the guest accesses the device in order to reduce utilization.

For detailed device information, use the DEVICE 1510 subcommand. The screen is shown in Figure 6-7 on page 134.
Figure 6-7 The DEVICE 1510 details screen

Active minidisks are highlighted in this screen. In this example, the OPERATNS virtual machine is the heaviest user of the MAINT 19E minidisk (reading from the minidisk that it has linked in read-only mode).
6.4.1 Minidisk cache

Minidisk cache (MDC), a feature of z/VM, can provide a significant I/O performance improvement. MDC uses real or expanded memory to cache data for virtual I/O operations (and thus avoid real I/O to DASD). MDC trades increased use of real and expanded memory for decreased DASD I/O.

MDC can be set on or off at the minidisk, volume, or system level using the CP SET MDCACHE command. MDC can be set to use 4 K record caching or normal full track caching. Full track caching is the default when MDC is set on without a parameter.

Important: We recommend using record MDC caching.

In the previous example, all I/O operations are all reads. In this case, no I/O operations have been fulfilled from the MDC (as indicated by the zero value in the Avoided/s field). In Figure 6-8 on page 136, we enable MDC and re-run the test.
We now see that all read operations are satisfied from the MDC as indicated by the 12k value in the Avoided/s field and the 0.2 value in the IO/s field (indicating that no real I/O operations occurred in the interval). With MDC enabled, a test that previously ran for 1.5 hours now runs in two minutes.
6.5 Analyzing VM TCP/IP data

The TCPMENU subcommand shown in Figure 6-9 (option 3K from the main menu) is the starting point for analyzing TCP/IP data.

<table>
<thead>
<tr>
<th>Server</th>
<th>Log File</th>
</tr>
</thead>
<tbody>
<tr>
<td>S Userid</td>
<td>Name Description</td>
</tr>
<tr>
<td>System</td>
<td>HIPSOCK Hipersocket channel activity</td>
</tr>
<tr>
<td>System</td>
<td>VSWITCH Virtual Switch activity</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPACTLG General TCP/IP activity log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPBPLOG TCP/IP buffer pools log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPCONF TCP/IP server configuration</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPIATLG General TCP/IP data transfer log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPDOSLG TCP/IP denial of service log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPICMP TCP/IP ICMP messages log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPICLOG TCP/IP I/O activity log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPLINKS TCP/IP links activity log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPSESS TCP/IP TCP and UDP sessions log</td>
</tr>
<tr>
<td>TCPIP</td>
<td>TCPUSERS TCP/IP users activity log</td>
</tr>
</tbody>
</table>

Select performance screen with cursor and hit ENTER
Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 6-9 TCP/IP data menu

Some displays report activity during the last monitor interval, and others maintain a history log.

6.5.1 Virtual switch activity

The VSWITCH command shown in Figure 6-10 displays virtual switch activity.

| Addr Userid | V Sec T_Byte T_Pack T_Disc R_Byte R_Pack R_Disc Write Read |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| System << 8 300 15381k 10414 .0 28968 554.4 .0 690.2 .0 |

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 6-10 Virtual switch display (the VSWITCH command)
6.5.2 TCP/IP Activity Log

General TCP/IP activity can be monitored using the TCPACCTLG command shown in Figure 6-11.

<table>
<thead>
<tr>
<th>FCX204</th>
<th>CPU 2084</th>
<th>VMITS0</th>
<th>Interval 16:30:07 - 17:44:47</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP/IP Activity Log for Server TCPIP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Interval</th>
<th><--- Connections/s ----></th>
<th><----- TCP Segments/s -------></th>
<th><----- ARP/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>End Time</td>
<td>Init Accept Fails Reset Recvd mit X-mit Error Reset Recvd X-mit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:42:27</td>
<td>2.900 .050 .000 .000 551.7 10345 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:42:47</td>
<td>2.950 .050 .000 .000 551.9 10334 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:43:07</td>
<td>2.950 .000 .000 .000 543.3 10196 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:43:27</td>
<td>2.800 .050 .000 .000 531.9 10048 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:43:47</td>
<td>2.950 .000 .000 .000 540.5 10252 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:44:07</td>
<td>2.900 .050 .000 .000 539.6 10333 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:44:27</td>
<td>2.950 .050 .000 .000 545.2 10308 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:44:47</td>
<td>2.950 .000 .000 .000 551.2 10403 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:45:07</td>
<td>2.700 .050 .000 .000 513.1 9539 .000 .000 .000 .000 .000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F10=Left F11=Right F12=Return

Figure 6-11 General TCP/IP activity (TCPACCTLG command)

Activity of the TCPIP2 server is given is given in number of connections from applications, from users or servers, and the transmission segments received or transmitted.
6.5.3 General TCP/IP data transfer log

TCP/IP data transfers can be monitored using the TCPDATLG command shown in Figure 6-12.

![Figure 6-12 TCP/IP data transfers (TCPDATLG command)](image)

With the TCP/IP data transfer log, you can check more details about how IP datagrams have been processed. Abnormal number of errors, unknown protocol, or discarded datagrams should alert you to useless traffic going to TCP/IP. Fragmentation should be avoided by defining the relevant Maximum Transmission Unit (MTU) parameter for the link.
Understanding LPAR configuration

In this chapter, we discuss using Performance Toolkit for VM to view the VM LPAR configuration and to obtain LPAR performance data. We discuss:

- LPAR options
- Shared and dedicated processors
- Shared and dedicated channels
- Processor weights
7.1 Collecting LPAR data

If your z/VM system runs in a logical partition (LPAR), Performance Toolkit for VM can provide LPAR performance data. Performance data for other defined LPARs is available only if the Global Performance Data Control option has been selected for the image profile on the Hardware Management Console. (This option is enabled by default.)

7.2 Displaying LPAR configuration and activity

LPAR configuration and load is obtained using the LPAR or LPARLOG subcommand. Figure 7-1 on page 143 shows the LPAR load screen.
Figure 7-1 The LPAR load screen (LPAR or LPARLOG subcommand)

From the display, we see:

- The processor type and model is a 2084-305 (an IBM zSeries 990).
- There are 30 defined partitions.
- There are eight available physical processors. These may be standard, Linux-only (IFL), or Interconnect Facility (ICF) processors. Information about the specific processor type is available at the Service Element (SE) or Hardware Management Console.
- The dispatching interval is set to dynamic (the default).
%Busy indicates the percentage of time a real processor is allocated to the logical processor. With dedicated processors, this percentage is 100%.

%Ovhd indicates the LPAR overhead for the partition.

%Susp indicates the portion of time spent waiting for a real processor to be allocated for running the workload.

%VMld indicates the processor load (meaning the real CPU load allocated to the logical processor).

%Logld (logical processor load) indicates the logical utilization of the partition. This corresponds to the results of the CP INDICATE LOAD command, and varies according to the load on other partitions processors are shared.

Type indicates the CPU type of the logical processors defined to the partition:
- CP for standard processors
- Spec (Special) for IFL or ICF processors

Performance Toolkit for VM is running in the A19 LPAR. The partition name is defined in the IOCP. Partition numbers are assigned starting from 1. The A19 LPAR is defined with two shared processors, and is assigned a weight of 10.

7.3 Understanding LPAR options

Logical partitions that are defined with dedicated processors do not compete for processor availability. In Figure 7-1 on page 143, partition A1B is defined with two dedicated processors (out of the eight available). Consequently, it always uses 25% of the total processor resource \((\frac{2}{8} = 25\%)\).

Partitions defined with shared processors compete for processor availability based on the relative weight assigned to the partition. Wait completion should be defined as NO in the partition definition.

When capping is OFF, a partition can receive more than its relative weight (if other partitions are not fully loaded). Weight values apply when the system is going to saturation. Changing weights and capping is dynamic using the Change LPAR Controls task from the CPC Operational customization tasks list on the HMC.

To see how your partition performs relative to its weight, monitor the %Susp value. This shows the percentage of elapsed time that the partition waits to receive CPU resource. If a high percentage value is observed, you can increase the LPAR weight, or you may allocate dedicated processors to the LPAR.
7.3.1 Shared or dedicated processors

To illustrate the effect of LPAR weight, we run a CPU-intensive workload. The z/VM LPAR is defined with two shared processors, and the LPAR weight is set relatively low. The CPU command shows processor utilization as in Figure 7-2.

Although each shared processor is reported as 81% busy, the reported logical load (the %LOGLD field) is 100%. The LPAR is limited by its weight. The 19% spent in the wait state (as reported in the %WT field) is time spent waiting for the

Figure 7-2 CPU utilization with shared processors
LPAR to get serviced. The reported User Extremes values are useful in identifying major resource consumers. (In this case, user LNXXSU1 is executing the benchmark).

7.3.2 Shared or dedicated CHPIDs

LPAR devices can be defined as shared CHPIDs in the IOCDS. The LCHANNEL subcommand displays channel activity relative to the partition. Figure 7-3 shows the LPAR channel screen.

<table>
<thead>
<tr>
<th>CHPID</th>
<th>Chan-Group</th>
<th><%Busy></th>
<th>---- Channel %Busy Distribution 08:29:59-10:15:59</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Hex)</td>
<td>Descr</td>
<td>Qual</td>
</tr>
<tr>
<td>05</td>
<td>FICON</td>
<td>00 Yes</td>
<td>1</td>
</tr>
<tr>
<td>48</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>1</td>
</tr>
<tr>
<td>75</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>1</td>
</tr>
<tr>
<td>00</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>01</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>02</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>03</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>06</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>07</td>
<td>FICON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>3E</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>3F</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>44</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>ESCON</td>
<td>00 Yes</td>
<td>0</td>
</tr>
<tr>
<td>F0</td>
<td>Hiper</td>
<td>00 Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>F1</td>
<td>Hiper</td>
<td>00 Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>F2</td>
<td>Hiper</td>
<td>00 Yes</td>
<td>n/a</td>
</tr>
<tr>
<td>F3</td>
<td>Hiper</td>
<td>00 Yes</td>
<td>n/a</td>
</tr>
</tbody>
</table>

Figure 7-3 The LPAR channel screen (LCHANNEL subcommand)

The shrd column reports the sharing status of the CHPID: Yes or No. To determine real channel activity, you should refer to the Activity monitoring function on the HMC.
Monitoring Linux guests

Performance Toolkit for VM can retrieve and display Linux internal performance data. This chapter provides an introduction to analyzing what goes on inside Linux guests. Topics include:

- Reporting Linux monitor data
- Viewing Linux performance data
- Analyzing Linux guest memory utilization
- Analyzing Linux guest paging
8.1 Reporting Linux monitor data

Performance Toolkit for VM can retrieve and display internal Linux performance data. The data is gathered by processes running in the Linux virtual machine and fed to Performance Toolkit for VM using the Distributed Data Server (DDS). DDS, which originally was written for use with Resource Measurement Facility™ (RMF™), is available at:

DDS operates as a server process running on Linux that feeds performance data to Performance Toolkit for VM over a TCP/IP connection as shown in Figure 8-1.

8.1.1 Installing DDS

In order to report Linux monitor data, each Linux guest that is to be monitored must first install and configure DDS. The DDS package is available at:

Server components exist for several SUSE versions. We use the `wget` command to obtain the SLES8 31-bit version supplied in the rmfpms_s390_SuSE8.tgz file as shown in Figure 8-2.

```
   => `rmfpms_s390_SuSE8.tgz'
Resolving ftp.software.ibm.com... done.
Connecting to ftp.software.ibm.com[9.17.216.104]:21... connected.
Logging in as anonymous ... Logged in!
==> SYST ... done.  ==> PWD ... done.
==> TYPE I ... done.  ==> CWD /eserver/zseries/zos/rmf ... done.
==> EPRT ...
Invalid EPRT.
==> PORT ... done.  ==> RETR rmfpms_s390_SuSE8.tgz ... done.
Length: 632,413 (unauthoritative)
100%[====================================] 632,413 683.93K/s ETA 00:00
21:56:34 (683.93 KB/s) - `rmfpms_s390_SuSE8.tgz' saved [632413]
```

Figure 8-2 Using the `wget` command to retrieve DDS

After it is downloaded, the package should be extracted to the `/opt` directory as shown in Figure 8-3.

```
# cd /opt
# tar -zxvf rmfpms_s390_SuSE8.tgz
rmfpms/
rmfpms/bin/
rmfpms/bin/df2
.
.
rmfpms/.rmfpms_config
rmfpms/rmfpms_s390_SuSE8.tgz
```

Figure 8-3 Extract DDS to the `/opt` directory
8.1.2 Configuring and starting DDS

Before starting DDS, configure the /opt/rmfpms/.rmfpms_config file. Set environment variables in the file to point to the /opt directory as shown in Figure 8-4.

```bash
export IBM_PERFORMANCE_REPO=$/opt/rmfpms
export IBM_PERFORMANCE_HOME=/opt/rmfpms/bin/
export IBM_PERFORMANCE_MINTIME=60
export LD_LIBRARY_PATH=$IBM_PERFORMANCE_HOME:$LD_LIBRARY_PATH
export APACHE_ACCESS_LOG=/var/log/httpd/access_log
export APACHE_SERVER=localhost
export APACHE_SERVER_PORT=80
```

Note: The environment variables that begin with APACHE_ are not required. These are used only if an Apache HTTP server runs on the guest and is to be monitored by DDS.

To start DDS, execute the rmfpms script found in the /opt/rmfpms/bin directory, as shown in Figure 8-5.

```bash
# /opt/rmfpms/bin/rmfpms start
Creating /opt/rmfpms/.rmfpms ... Starting performance gatherer backends ... DDServ: RMF-DDS-Server/Linux-Beta (Jan 26 2004) started. DDSrv: Functionality Level=2.008 DDSrv: Reading exceptions from gpmexsys.ini and gpmexusr.ini. DDSrv: Server will now run as a daemon process. done!
```

Note: DDS is a daemon that consumes CPU cycles when running. If no Linux monitoring is required, do not start DDS in order to save processing cycles.

When started, DDS listens on TCP port number 8803 (Figure 8-6 on page 151).
8.1.3 Registering Linux guests with Performance Toolkit for VM

Linux guests must be registered before Linux monitoring data can be made available to Performance Toolkit for VM. As discussed in 3.7, “Enabling data collection for Linux guests” on page 88, add the Linux guest to the FCONX LINUXUSR file on the PERFSVM 191 disk. Figure 8-7 shows registering five Linux guests.

<table>
<thead>
<tr>
<th>*Linux-ID</th>
<th>IP Address for DDS Interface:Port</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNXSU1</td>
<td>9.12.4.77:8803</td>
</tr>
<tr>
<td>LNXSU2</td>
<td>9.12.4.78:8803</td>
</tr>
<tr>
<td>LNXSU3</td>
<td>9.12.4.79:8803</td>
</tr>
<tr>
<td>LNXSU4</td>
<td>9.12.4.80:8803</td>
</tr>
<tr>
<td>LNXSU5</td>
<td>9.12.4.81:8803</td>
</tr>
</tbody>
</table>

To start Linux data collection, issue the FC MONCOLL LINUXUSR ON subcommand.
8.2 Viewing Linux performance data

After it is enabled, Linux monitor data can be viewed from option 29 of the Performance Toolkit for VM main screen. Figure 8-8 shows the main screen that is displayed in a Web browser.

Figure 8-8 Linux systems option (viewed from a Web browser)
Figure 8-9 shows Linux-specific monitor data that was obtained using the LNXMEM subcommand.
8.2.1 RMF DDS browser interface

Because DDS communicates using the HTTP protocol, it is possible to point a Web browser directory to a specific monitored Linux guest. Figure 8-10 shows the DDS browser interface.

![RMF DDS Browser Interface](Image)

Figure 8-10 The RMF DDS browser interface

Note that the URL points to a monitored guest using port 8803.
8.2.2 DDS Java client

A Java client is available to monitor Linux guests, and can be obtained for both Linux and Microsoft® Windows® workstations from the RMF FTP site at:

Download the gpmwinv2.exe file for Windows workstations. Figure 8-11 shows a sample screen from the Java client.

![Figure 8-11 DDS Java client](image)

8.3 Analyzing Linux guest memory utilization

Historically, Linux was developed on hardware architectures that offered high processor speeds relative to input/output (I/O) speed. As a result, the design of the Linux kernel tends to avoid real I/O operations whenever possible. This is accomplished primarily by allocating substantial portions of memory to buffers and cache. In fact, Linux attempts to use nearly all available memory as buffers...
or file system cache. Buffer caching and file system caching can improve the performance of a specific Linux guest, as long as memory resources are not overcommitted and heavily used. However, on a memory-constrained system aggressive caching and buffering in a Linux guest can reduce overall system performance when a large number of Linux guests compete for memory.

In a z/VM system, overcommitted memory is a normal situation. zSeries architecture is optimized for high-speed I/O operations. In this case, aggressive buffering to avoid I/O can be counterproductive when memory becomes scarce. Linux for zSeries employs the same general memory management scheme as Linux for other platforms, so Linux is unaware that it is running in a virtualized environment. To reduce contention for system memory, we must reduce buffering and caching in z/VM Linux guests. The best way to accomplish this is to reduce the virtual machine size of Linux guests.

Note: See *Linux on IBM @server zSeries and S/390: Performance Measurement and Tuning*, SG24-6926 for details about sizing Linux virtual machines. As a general rule, reduce memory size to the point where swapping in the guest first occurs. At that point, add an additional 10% to 20% memory. Define fast swap devices such as VDISK to reduce the negative effect of occasional swapping in small Linux guests.

Normally, multiple virtual machines are active on a z/VM system and seem to run simultaneously. Every guest runs in its own virtual machine. From the guest's perspective, it completely owns all of the resources (CPU, memory). But the CPU is shared over the time to run several z/VM processes and the processes, including the guest's. Each process needs to run a special amount of memory (in z/VM terms, working set size).

To be cost-effective, it is not unusual to overcommit a portion of resources. The applications can run only when their allocated memory is in main memory. In case of overcommitment of memory, not all pages belonging to all processes can be hosted in the main memory at the same time. Resource sharing is done by paging (bringing pages to the main memory as needed for the process to run and taking away pages that are not needed at the moment).

The overhead of paging is the price you pay for cost-effective dynamic resource balancing in z/VM. The amount of paging that occurs depends on the amount of total memory that is available for the guests, and the workload of each guest in ratio to the portion of the available memory. consider, too, the amount of work that has to be done at the same time. It is not possible to give “one size fits all” recommendations here, but the Performance Toolkit for VM may help to detect the bottlenecks and memory usage overall.
8.3.1 Comparing virtual machine size on memory usage

To illustrate memory usage in Linux guests, we use a benchmark to generate a memory-intensive workload. The workload is first run on a Linux guest that is defined with 1024 MB virtual memory. Later, we compare the results when run on a guest with 128 MB virtual memory size.

The USER LNXSU1 subcommand displays resource usage by the user, as shown in Figure 8-12. Both memory and VM paging activity are reported.

```
FCX115 CPU 2084 SER 96A3A Interval 17:34:30 - 17:34:31 Perf. Monitor

Detailed data for user LNXSU1
Total CPU :  73.6%  Storage def. :  1024MB  Page fault rate: .0/s
Superv. CPU : .0%  Resident <2GB: 859  Page read rate : .0/s
Emulat. CPU :  73.6%  Resident >2GB: 28536  Page write rate: .0/s
VF total : .....%  Proj. WSET :  29085  Pgs moved >2GB>: .0/s
VF overhead : .....%  Reserved pgs : 0  Main > XSTORE : .0/s
VF emulation: .....%  Locked pages : 10  XSTORE > main : .0/s
VF load rate: ...../s  XSTORE dedic.: 0MB  XSTORE > DASD : .0/s
I/O rate : ...../s  XSTORE pages : 0  SPOOL pg reads : .0/s
DASD I/O rate: ...../s  DASD slots : 1  SPOOL pg writes: .0/s
UR I/O rate : ...../s  IUCV X-fer/s : .0/s  MDC insert rate: .0/s
Diag. X'98' : ...../s  Share : 100  MDC I/O avoided: .0/s
*BLOCKIO : ...../s  Max. share : ...

#I/O active : 0  Active : 93%  PSW wait : 67%  I/O act. : 3%
Stacked blk : ..  Page wait : 0%  CF wait : 1%  Eligible : 0%
Stat.: ESA,P02,RNBL  I/O wait : 0%  Sim. wait: 0%  Runnable : 33%

Proc. %CPU %CP %EM %VECT %VOHD %VEMU VLD/S IO/S Status
Enter 'STOrage Display' for storage details
Command ===>
```

Figure 8-12 Memory usage for a 1024 MB Linux guest

This screen shows the guest virtual memory size is as expected (1024 MB). Note that the majority of the memory that is used by the guest resides above 2 GB (28536, as reported by the Resident >2GB column) and that the projected working set size is 29085 pages (seen in the Proj. WSET column). No paging activity is reported (the Page fault rate column).

Compare this to the results when the workload is run against a Linux guest that is defined with a 128 MB virtual machine size (Figure 8-13 on page 158).
For the smaller Linux guest, we see that the majority of resident memory pages (28346) now reside below 2 GB.

Note: For both the 1024 MB and 128 MB guest, no paging activity is reported. Benchmark timings indicate that there is no performance penalty in assigning a smaller virtual machine to the Linux guest. Reducing the size of the Linux guest reduces contention for overall system memory without affecting the performance of a single Linux guest.

8.3.2 Analyzing memory usage inside Linux guests

The previous screens provide a view of memory resource consumption from a VM perspective. To analyze how memory is utilized inside Linux, use the LXMEM subcommand. Figure 8-14 on page 159 shows memory usage from a Linux perspective using the LXMEM LNXSU1 command.

Note: Chapter 8, “Monitoring Linux guests” on page 147 includes configuring Performance Toolkit for VM to collect monitoring information from Linux.
Figure 8-14 Linux memory usage report by the LXMEM subcommand

This screen shows total memory size and how memory is used by the Linux kernel in a 1024 MB guest. For this guest, there is 1008 MB of available memory, and 126 MB is allocated for buffers and cache.

Note: The difference between the virtual machine size for the guest (1024MB) and the total memory size (1008 MB) is the amount of memory that is required for the Linux kernel.

The screen also presents information about memory usage for specific Linux processes. The displayed process name is the concatenation of the running process name and its process identifier (PID).

8.4 Analyzing Linux guest paging

As we reduce the virtual machine size of Linux guests in order to reduce contention for system memory, the probability an individual Linux guest may begin to swap during periods of high utilization increases. With Linux for zSeries,
we have several options when defining swap partitions to a Linux guest. In this section, we look at some of these options and illustrate how to monitor activity on Linux swap partitions using Performance Toolkit for VM.

8.4.1 Using a VDISK as a Linux swap partition

A VDISK is a temporary FBA minidisk allocated in z/VM main memory. Because VDISKs reside in main memory, I/O overhead is avoided and data access is faster than accessing real DASD. Using a VDISK swap partition has the potential for improving system performance. However, there are situations where VDISK swap partitions can degrade system performance. The decision to use VDISK swap partitions should be based on your system configuration:

▶ Large memory systems

For systems with large real memory, VDISK swap partitions can reduce Linux guest latency. The VDISK is a very fast I/O device when its disk blocks, implemented as pages in an address space, can remain memory-resident. When performing I/O to a VDISK, z/VM does not require the Linux guest’s buffers to reside below 2 GB. VDISKs might be appropriate if your system is memory-constrained below 2 GB, but has adequate memory above 2 GB.

Note: Using a VDISK does not change other Linux I/O behavior. Linux must still form and execute I/O commands to read and write the swap extent, and z/VM must still perform these I/O operations for the guest.

▶ Memory-constrained systems

Prior to z/VM 4.4.0, page faults that occurred on a VDISK memory page caused that page and any other associated pages to be brought into real memory below 2 GB. This could add to system memory contention below 2 GB. In z/VM 4.4.0, this behavior changed to bring VDISK memory pages to real memory 2 GB where possible.

Though the pages backing the VDISK blocks themselves are not created until referenced, the control blocks for dynamic address translation (primarily page tables and segment tables) are created when the VDISK is created. These control blocks are not pageable and must reside below 2 GB (a factor that can increase contention below 2 GB).

The VM memory management *steal processing* has a hierarchy of pages that it uses in trying to select the most appropriate pages. In that hierarchy, normal idle guest pages are chosen for steal more readily than VDISK pages (a virtual disk in memory page is really a system utility space and therefore is given preferential treatment). As Linux guests go idle, this hierarchy might have an undesirable
effect. Linux will determine an unused page and move it out to its swap disk (a VDISK). If the Linux guest goes idle, VM memory management will steal more aggressively from the guest pages (pages Linux decided it needed) and less aggressively from the VDISK (pages Linux decided it was safe to page out). This is counter to what good performance would dictate.

Again we mention that for VDISK I/O, z/VM does not pull the Linux guest’s swap file I/O buffers to below the real 2 GB line in order to do the I/O for the guest. If you are memory-constrained below 2 GB but rich above, VDISK might be particularly appropriate for you if not defined unnecessarily large.

Important: Since a VDISK resides in the z/VM main memory you should carefully consider how many VDISKs you really need. If your system is already memory-constrained, it is probably better not to use VDISKs.

8.4.2 Effect of minidisk cache

Minidisk cache is a z/VM feature that can provide a significant performance improvement to z/VM guests. The MDC feature uses real or expanded memory to cache data for virtual I/O, thus avoiding real I/O to DASD. MDC trades increased use of real and expanded memory for decreased DASD I/O.

Because paging to DASD increases as the amount of available real and expanded memory decreases, you should expect some increase in paging I/O when exploiting the MDC. An increase in paging is not necessarily bad. The total real DASD I/O rate and user state sampling can indicate whether the MDC benefits system performance. For example, if the MDC reduces real DASD I/O rate by 300 I/O operations per second and paging DASD I/O increases by 50 per second, there would be a net 250 I/O operations per second reduction.

Important: MDC can be enabled or disabled for each minidisk. MDC can be set to use 4 K record caching or normal full track caching. Full track caching is the default when MDC is set on without a parameter. We recommend using only MDC record caching.

8.4.3 Effect of expanded storage

While the configuration of some expanded memory may result in more paging, it often results in more consistent or better response time. VM paging algorithms are tuned for a hierarchy of paging devices:

- Expanded memory is a high-speed paging device.
- DASD is a slower paging device that performs block paging.
Expanded memory acts as a buffer for more active users as they switch between working sets. The more active users do not compete with users coming from a completely paged out scenario.

To illustrate, consider a scenario in which a programmer and a manager both log on to a z/VM system. The programmer issues commands to create software; the manager looks up a phone number, then talks on the phone for 20 minutes. If all real memory were allocated as z/VM main memory, the system would page less often. However, it will eventually page part of the programmer’s working set. When the manager gets off the phone and returns to the VM session, the programmer competes for memory pages with the manager’s working set on slower DASD. Using expanded storage, the programmer will page more; however, paging would most likely occur in expanded storage. This reduces contention with the manager’s working set (which likely resides on slower DASD). The programmer experiences slightly higher response times, but the response time is more consistent.

Note: The manager is likely to page to expanded memory for a short period of time before being paged out to DASD.

8.4.4 Monitoring Linux guest paging

To illustrate the effect of paging in a Linux guest, use a benchmark to cause swap partition activity on a Linux guest. In the tests, we use a SUSE Linux guest defined with a 128 MB virtual machine size. We monitor the guest’s resource usage with the USER command in several scenarios:

- Using a single minidisk swap partition
 In this scenario, we define a minidisk residing on a RAMAC® Virtual Array (RVA) as the Linux swap partition. We also look at the effect of the MDC on the swap device.

- Using four minidisk swap partitions
 In this scenario, we define four RVA minidisks as Linux swap partitions.

- Using a VDISK swap partition
 In this scenario, we define a single VDISK as the Linux swap partition.

8.4.5 Using a single minidisk swap partition

Figure 8-15 on page 163 shows the result of a single minidisk swap partition with MDC disabled. In this case, although the guest is defined with two virtual processors, the reported CPU utilization is 91%. This is due to the high I/O rate (147/s). In the device activity section, I/O activity is primarily to the swap partition.
(the 201 minidisk). The number of pages that were moved from above 2 GB to below 2 GB is shown in the pgs moved > 2GB field.

Figure 8-15 Using a single RVA minidisk Linux swap partition
Effect of MDC on Linux swapping

To illustrate the effect of the MDC on Linux swapping, we enabled the MDC for the Linux swap device (the 201 minidisk) and re-ran the test. Figure 8-16 on page 165 shows the results.

In this case, CPU utilization is much lower at 36.9%. The reported I/O rate is much higher at 1159/s. However, much of the real I/O operations are avoided, as reported in the MDC I/O avoided field.

Note: In this scenario, the workload throughput actually decreased. This is not reported in the user resource utilization screen, but is indicated by the longer elapsed time that is required for the test. From this observation, we conclude that enabling the minidisk cache for the swap partition actually degrades performance, so the access pattern for Linux swapping does not justify the cost of using the MDC.
Figure 8-16 Using a single RVA minidisk Linux swap partition with MDC enabled
8.4.6 Using four minidisk swap partitions

Figure 8-17 on page 167 examines the effect of using four Linux swap partitions.

As seen in the Device activity and status fields, I/O activity to the four swap devices (devices 0500, 0501, 0502, and 0503) is well-balanced. The system uses all four swap devices equally because they are defined with the same priority. The throughput for this scenario is somewhat faster than using a single-swap minidisk with MDC disabled.
Figure 8-17 Using four RVA minidisk Linux swap partitions
8.4.7 Using a VDISK swap partition

In this scenario, we define a VDISK swap device at 430000 blocks. Figure 8-18 reports resource usage.

```

Detailed data for user LNXSU1
Total CPU :  120%     Storage def. :  128MB     Page fault rate:  .0/s
Superv. CPU :  45.7%     Resident <2GB:  18234     Page read rate :  .0/s
Emulat. CPU :  74.2%     Resident >2GB:  14350     Page write rate:  .0/s
VF total :  ....%     Proj. WSET :  32573     Pgs moved >2GB>:  23.3/s
VF overhead :  ....%     Reserved pgs :  0     Main > XSTORE :  .0/s
VF emulation:  ....%     Locked pages :  10     XSTORE > main :  .0/s
VF load rate:  ..../s     XSTORE dedic. :  OMB     XSTORE > DASD :  .0/s
I/O rate :  9777/s     XSTORE pages :  0     SPOOL pg reads :  .0/s
DASD I/O rate:  9777/s     DASD slots :  0     SPOOL pg writes:  .0/s
UR I/O rate :  .0/s     IUCV X-fer/s :  .0/   MDC insert rate:  .0/s
Diag. X'98' :  .0/s     Share :  100     MDC I/O avoided:  .0/s
*BLOCK1O :  .0/s     Max. share :  ...

#I/O active :  0     Active :  91%     PSW wait :  68%     I/O act. :  3%
Stacked blk :  ..     Page wait :  0%     CF wait :  0%     Eligible :  0%
Stat.: ESA,P02,RNBL     I/O wait :  0%     Sim. wait:  0%     Runnable : 31%

Proc.  %CPU  %CP  %EM  %VECT  %VOHD  %VEMU  VLD/S  IO/S  Status
01  61.4  24.3  37.1  ...  ...  ...  ...  ...  ...  5100  ESA,P02,RNBL
02  58.5  21.4  37.1  ...  ...  ...  ...  ...  ...  4676  ESA,P02,RNBL

Data Space Name    Size    Mode    PgRd/s   PgWr/s   XRd/s   XWr/s   Migr/s   Steal/s
BASE                128MB    Priv    0.0      0.0      0.0      0.0      0.0      0.0

Device activity and status:
0009 3215 .0 000C 254R  CL *, EOF  NOH NCNT
000D 254P   CL A, CO 01, NOH NCNT 000E 1403  CL A, CO 01, NOH NCNT
0190 3390 .0 1510,RR, 107Cyl,---0 0191 3390 .0 15D2,WR, 20Cyl,---0
019D 3390 .0 1510,RR, 146Cyl,---0 019E 3390 .0 1510,RR, 250Cyl,---0
0201 3390 .0 150D,WR, 200Cyl,---0 0202 3390 .0 150D,WR,3138Cyl,>1285
0203 3390 .0 1552,WR,3338Cyl,>2936 O300 VDISK 9780 ----,WR,430000B,RS/RL
0450 3390 .0 15D2,WR, 450Cyl,---0 0592 3390 .0 1550,RR, 67Cyl,---0
3000 OSA .0 QD10->SW1  INT.MISS 3001 OSA .0 QD10->SW1 SYSTEM
3002 OSA .0 QD10->SW1  INT.MISS

Enter 'STOrage Display' for storage details
Command ===>
F1=Help  F4=Top  F5=Bot  F7=Bkwd  F8=Fwd  F12=Return
```

Figure 8-18 Using a single VDISK Linux swap partition
The I/O rate field reports nearly 10,000 I/O operations per second. This high value is possible because I/O is performed against the VDISK (virtual device 0300). The pgs moved >2GB field indicates that a large number of pages have been moved from above 2 GB to below 2 GB.

Note: This scenario has the highest workload throughput. In this case, the system configuration has ample memory to justify using a VDISK swap device.

We recommend using a VDISK swap device whenever possible. If you use a minidisk swap device, be sure the MDC is disabled for the device.
8.5 Analyzing processor utilization

To evaluate processor utilization, use the CPU command shown in Figure 8-19.

<table>
<thead>
<tr>
<th>FCX100</th>
<th>CPU 2084</th>
<th>SER 96A3A</th>
<th>Interval 20:35:33 - 20:36:33</th>
<th>Perf. Monitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Load</td>
<td>Vector Facility</td>
<td>Status or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROC</td>
<td>%CPU</td>
<td>%CP</td>
<td>%EMU</td>
<td>%WT</td>
</tr>
<tr>
<td>P00</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>P01</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Total SSCH/RSCH</td>
<td>Page rate</td>
<td>Priv. instruct.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2/s</td>
<td>.0/s</td>
<td>40/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Virtual I/O rate</td>
<td>XSTORE paging</td>
<td>Diagnose instr.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/s</td>
<td>.4/s</td>
<td>34/s</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total rel. SHARE</td>
<td>Tot. abs SHARE</td>
<td>User Status:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Queue Statistics:</td>
<td>Q0</td>
<td>Q1</td>
<td>Q2</td>
<td>Q3</td>
</tr>
<tr>
<td>VMDBKs in queue</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>VMDBKs loading</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Eligible VMDBKs</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Elig. VMDBKs loading</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tot. WS (pages)</td>
<td>0</td>
<td>29655</td>
<td>0</td>
<td>59111</td>
</tr>
<tr>
<td>Expansion factor</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>85% elapsed time</td>
<td>1.880</td>
<td>.235</td>
<td>1.880</td>
<td>11.28</td>
</tr>
<tr>
<td>Transactions Q-Disp</td>
<td>trivial</td>
<td>non-trv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average users</td>
<td>42.4</td>
<td>.0</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Trans. per sec.</td>
<td>.7</td>
<td>2.4</td>
<td>.5</td>
<td></td>
</tr>
<tr>
<td>Av. time (sec)</td>
<td>63.69</td>
<td>.018</td>
<td>1.077</td>
<td></td>
</tr>
<tr>
<td>UP trans. time</td>
<td>.018</td>
<td>1.077</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP trans. time</td>
<td>.000</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System ITR (trans. per sec. tot. CPU)</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emul. ITR (trans. per sec. emul. CPU)</td>
<td>.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 8-19 CPU utilization screen

This report shows CPU load on each processor defined to the LPAR (two in this case). This example illustrates a CPU-intensive workload running on a Linux guest (LNXSU1). The User Extremes column lists major resource consumers (in this case, the LNXSU1 guest consumes 99.4% of the available processor resources). This can be useful for identifying some types of malfunctions, such as runaway processes or looping applications.

Note: In this example, z/VM uses two dedicated processors. This can be recognized by the reported 100% CPU utilization for each processor.

The USER command reports CPU utilization by a specific VM user.
8.5.1 Processor utilization for a Linux guest

To inspect the processor consumption of a special Linux guest running under
z/VM, use from the “Performance Screen Selection - 29. Linux systems*”. The
screen mentioned belongs to the group “User Data”.

The Performance Toolkit for VM was developed in consideration of the
mechanisms under which z/VM virtual machines operate. From the Linux
perspective, tools such as top are not aware of z/VM underneath Linux, so they
report CPU consumption as if the processors were completely owned by the
Linux system.

The difference is illustrated by running a workload on two Linux guests on z/VM.
The CPU usage that is reported by z/VM for the Linux guests is approximately
half as much as the usage reported by Linux. The z/VM system has two real
CPUs; each guest can use both.
Figure 8-20 Performance Screen Selection - 21. User resource usage* for system LNXSU1

1. Percent of total CPU used (in this example, maximum theoretical value would be 200 percent for 2 CPUs)

2. Percent of supervisor CPU used
3. Percent of emulation mode CPU used (virtual CPU)
4. Processor number in form Pnn
5. Percent of total CPU used
6. Percent of emulation CPU used

Figure 8-21 top command output on Linux system LNXSU1

1. Percent usage of the two available processors from the Linux system LNXSU1 perspective

8.5.2 Shared and dedicated processors

In the mainframe environment, it is possible to share resources among systems, applications, and tasks. An LPAR or z/VM can be configured to use one or more CPUs as dedicated or shared CPUs.

The Linux system residing in an LPAR or on z/VM as a guest is not aware of any difference. But, in fact, longer time slices are given to z/VM and its running guests when processors are dedicated compared to when the processors are shared. If the processors are shared, their real share depends on several parameters such as processor weight, LPAR weight, service level, capping, and more. For details, read Chapter 7, “Understanding LPAR configuration” on page 141.

In the next experiment, we run a workload that stresses the processor. While the Performance Toolkit for VM knows about its CPU share, Linux is not aware that it is only partial owner of the CPUs. First we run on shared processors (Figure 8-22 on page 174).
Figure 8-22 Performance Screen Selection - 1. CPU load and trans.

1. Percent of total CPU used
2. Percent of emulated CPU used

Although each of the processors is reported as 81% busy, the logical load (%LOGLD) for each is 100%. This is because the LPAR is limited by its weight. The 19% spent in the wait state (%WT) is time waiting for the LPAR to get serviced.
1. Linux is using as much CPU resource as is available.

While the Performance Toolkit for VM shows the CPU at 81 percent each, the Linux system reports to have 100% of each CPU. Linux measures the time with jiffies, not in any case with the Time of Day (TOD) clock, but can only count and calculate jiffies when it is active. The values are much closer in z/VM and Linux if this experiment runs in a dedicated environment.

8.5.3 Running services and daemons

The installation of a Linux distribution brings a lot of applications onto a system. Some of these applications need a server or daemons to run. Linux itself has several daemons belonging to operating system functions. Some of them run after boot of the system by default (for example, the chron daemon). These servers and daemons should not run on a system if the belonging function or even application is not wanted or not in use. With recent distributions for /390 and zSeries, the number of started demons is minimized, so the situation has improved over the past couple of years.

In Linux, the command `ps -ef` shows the running tasks. In Performance Toolkit for VM, use General System Data - CPU load and trans.
RTM and PRF functions in Performance Toolkit for VM

This chapter provides an introduction to the Real Time Monitor (RTM) and Performance Reporting Facility (PRF) functions that available in Performance Toolkit for VM. In general, Performance Toolkit for VM covers most of the functions and reports that are available with RTM and PRF, plus a lot more. However, certain features are just not applicable. This chapter attempts to map RTM and PRF functions to their Performance Toolkit for VM equivalent. We discuss:

- Equivalent RTM functions
- The RTM general display
- The RTM SLOG display
- The RTM environment display
- The RTM user display
- The RTM idle user display
- The RTM I/O display
- Using the Virtual Machine Communication Facility
- Creating scheduled printed reports
- VMPRF functions
9.1 Equivalent RTM functions

This section covers some commonly used RTM commands and features. Find a quick summary of all RTM-to-Performance Toolkit for VM correspondence at:

We look at Performance Toolkit for VM screens that correspond to:

- The RTM general display
- The RTM SLOG display
- The RTM environment display
- The RTM user display
- The RTM idle user display
- The RTM I/O display
- Using the Virtual Machine Communication Facility (VMCF)

9.2 The RTM general display

Figure 9-1 shows the RTM general display (DISPLAY GENERAL).

```
+---------------------------------------------+  
| z/VM CPU2084 SERIAL 196A3A 3G DATE 03/11/04 START 10:21:00 END 10:21:30 |  
| <USERID> %CPU %CP %EM ISEC PAG WSS RES UR PGES SHARE VMSIZE TYP,CHR,STAT |  
| LNXSU5   1.4  .05 1.3  .50 .00 75K 75K   .0   1 100   1G VUS,DSC,DISP |  
| SYSTEM   .41 .41 .00 .00 .00  0 55K   .0  571 ..... 2G SYS, |  
| LNXSU1   .18 .08 .10 .06 .00 31K 31K   .0   0 100  128M VMS,DSC,DISP |  
| <--- DEVICE ---> <----- DEVICE RDEV DATA -------> <-- MEASUREMENT FACILITY --> |  
|                      *                         |  
| DEV TYPE VOLSER IOREQST SEC %Q %ER R %LK LNK PA %UT ACC FPT DCT CN %CN |  
| 1590 3390 LX4W02 35  1.00 .00 .00  56 3.35  3  0  0   2 .26 |  
| 154C 3390 LX154C 17  0.00 .00 .00  2 3.54  9  0  4   5 .29 |  
| 5090 CTCA 7  0.00 .00 .00  0 1 46 2.0S  0 2.0S  0.00 |  
| 158C 3390 LX4SP1 5  0.00 .00 .00  0 3.01  1  0  0   1 .01 |  
| <-------- CPU STATISTICS --------> <--- VECTOR ---> <STORAGE><XSTORE> |  
| NC %CPU %US %EM %WT %SY %SP XSI %SC NV %VT RSTR %ST PSEC %XS XSEC TTM |  
| - 2  2.5  .26 1.8 198 .41 .00 580 96 0  0  0  13  0  2  0 2.006 |  
| <= 2.6  .28 1.8 197 .45 .00 609 96 .. 0  0  0  13  0  2  0 2.766 |  
+-----------------------<-- 04 LOG ACTIONS INDICATED --+ 
```

Figure 9-1 RTM general display

This function merges data from user, I/O, and CPU information.
9.2.1 The Performance Toolkit for VM general display

As such, the Performance Toolkit for VM does not have a direct equivalent to the RTM general display. However, the FCONX $PROFILE file that is provided with it contains the user screen definition shown in Figure 9-2.

```c
*C DEFSRN GENERAL LINE 2 TO 2 COPY USER FROM 4
*C DEFSRN GENERAL LINE 3 TO 6 COPY USER FROM 6
*C DEFSRN GENERAL LINE 7 TO 7 COPY DEVICE FROM 2
*C DEFSRN GENERAL LINE 8 TO 11 COPY DEVICE FROM 5
*C DEFSRN GENERAL LINE 12 TO 19 COPY CPU FROM 1
```

Figure 9-2 Definitions for general user screen

Note: This screen definition is commented out by default. For details about defining a custom screen, see the DEFSRN subcommand on page 70.

Changing the comment character (*) to an F enables this definition. The GENERAL subcommand produces the output shown in Figure 9-3.

```

Userid %CPU TCPU VCPU Ratio Total DASD Avoid Diag98 UR Pg/s User Status
LNXSU5 1.47 .293 .281 1.0 .5 .5 .0 .0 .0 .0 ESA,CL3,DIS
LNXSU1 .18 .036 .019 1.9 .0 .0 .0 .0 .0 .0 ESA,CL3,DIS
PERFLIV .05 .009 .008 1.1 .8 .7 .3 .0 .0 .0 ESA,---,DOR
PERFROG .05 .009 .008 1.1 1.4 1.3 .5 .0 .0 .0 ESA,---,DOR

-------------------- Device Descr. ------ Mdisk Pa- <--Rate/s--> <----- Time (msec) -------> Req.
1590 3390-3 LX4W02 CP 56 3 1.9 1.4 .2 .2 2.2 2.6 2.6 .0 .00
154C 3390-3 LX154C 2 3 .6 .0 .2 .2 2.1 2.5 2.5 .0 .00
5090 CTCA >RSCS ... 1 .3 ... .1 2000 .3 2000 2000 .0 .00
150C 3390-3 LX150C 0 3 .1 .0 .2 .0 .4 .6 .6 .0 .00

CPU Load Vector Facility Status or
PROC %CPU %CP %EMU %WT %SYS %SP %SIC %LOGLD %VTOT %VEMU REST ded. User
P00 1 0 1 99 0 0 97 1 not installed Master
P01 1 0 1 99 0 0 98 1 not installed Alternate

Total SSCH/RSCH 6/s Page rate .0/s Priv. instruct. 41/s
Virtual I/O rate 8/s XSTORE paging .0/s Diagnose instr. 39/s
Total rel. SHARE 3300 Tot. abs SHARE 0%
```

Figure 9-3 The Performance Toolkit for VM version of the RTM general display

The information is quite similar to RTM output. Navigating to a custom screen is discussed in 2.6, “User-defined screens” on page 60.
9.3 The RTM SLOG display

Figure 9-4 shows the RTM system log display (DISPLAY SLOG LAST). The RTM system log display (DISPLAY SLOG LAST) is the main system log history. RTM supplies other history logs by invoking separate DISPLAY XLOG commands.

<table>
<thead>
<tr>
<th>TOD</th>
<th>z/VM</th>
<th>CPU2084 SERIAL 196A3A</th>
<th>3G DATE 03/11/04 START 10:18:24 END 11:28:30</th>
</tr>
</thead>
<tbody>
<tr>
<td>H:M</td>
<td>NC</td>
<td>%CPU %US %EM %WT %SY %SP XSI %SC NV %VT %OT RSTR %ST PSEC %XS XSEC TTM</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>2</td>
<td>2.4 2.5 1.6 198 .46 .00 563 98 0 0 0 0 15 0 2 0 5.002</td>
<td></td>
</tr>
<tr>
<td>1120</td>
<td>2</td>
<td>2.7 2.5 2.0 197 .42 .00 560 98 0 0 0 0 13 0 2 0 4.002</td>
<td></td>
</tr>
<tr>
<td>1121</td>
<td>2</td>
<td>2.4 2.6 1.6 198 .48 .00 563 97 0 0 0 0 15 0 2 0 5.049</td>
<td></td>
</tr>
<tr>
<td>1121</td>
<td>2</td>
<td>2.8 2.5 2.1 197 .42 .00 569 97 0 0 0 0 13 0 2 0 3.435</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>2</td>
<td>3.0 2.7 2.2 197 .52 .00 565 97 0 0 0 0 15 0 2 0 6.702</td>
<td></td>
</tr>
<tr>
<td>1122</td>
<td>2</td>
<td>3.2 2.5 2.5 197 .47 .00 560 98 0 0 0 0 13 0 2 0 6.670</td>
<td></td>
</tr>
<tr>
<td>1123</td>
<td>2</td>
<td>2.8 2.6 2.1 197 .48 .00 565 97 0 0 0 0 15 0 2 0 8.670</td>
<td></td>
</tr>
<tr>
<td>1123</td>
<td>2</td>
<td>2.7 2.5 2.0 197 .42 .00 555 98 0 0 0 0 13 0 2 0 5.088</td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td>2</td>
<td>2.8 2.5 2.1 197 .46 .00 565 97 0 0 0 0 15 0 2 0 4.961</td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td>2</td>
<td>2.7 2.5 2.0 197 .42 .00 558 98 0 0 0 0 13 0 2 0 5.502</td>
<td></td>
</tr>
<tr>
<td>1125</td>
<td>2</td>
<td>2.3 2.5 1.6 198 .46 .00 560 97 0 0 0 0 15 0 2 0 5.002</td>
<td></td>
</tr>
<tr>
<td>1125</td>
<td>2</td>
<td>2.7 2.5 2.0 197 .41 .00 552 98 0 0 0 0 13 0 2 0 4.802</td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td>2</td>
<td>2.3 2.5 1.6 198 .46 .00 563 98 0 0 0 0 15 0 2 0 4.961</td>
<td></td>
</tr>
<tr>
<td>1126</td>
<td>2</td>
<td>2.8 2.5 2.1 197 .42 .00 565 97 0 0 0 0 14 0 2 0 1.434</td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td>2</td>
<td>2.5 2.7 1.7 198 .46 .00 578 98 0 0 0 0 15 0 2 0 2.761</td>
<td></td>
</tr>
<tr>
<td>1127</td>
<td>2</td>
<td>3.2 3.1 2.4 197 .48 .00 610 97 0 0 0 0 14 0 2 0 9.336</td>
<td></td>
</tr>
<tr>
<td>1128</td>
<td>2</td>
<td>2.8 2.7 2.0 197 .47 .00 575 98 0 0 0 0 15 3 2 0 2.604</td>
<td></td>
</tr>
<tr>
<td>1128</td>
<td>2</td>
<td>2.3 2.5 1.7 198 .42 .00 555 98 0 0 0 0 13 0 2 0 5.502</td>
<td></td>
</tr>
<tr>
<td>AVG</td>
<td>.</td>
<td>2.7 2.6 2.0 197 .46 .00 573 97 . . 0 0 13 0 2 0 4.042</td>
<td></td>
</tr>
</tbody>
</table>

This is the main system log history. RTM supplies other history logs by invoking separate DISPLAY XLOG commands.

9.3.1 Performance Toolkit for VM history files

In Performance Toolkit for VM, the history log information is kept in a file. You reach the selection panel with option 32 from the selection screen or by entering HISTORY on the command line. Finally, selecting the latest HISTLOG file opens the extended data history log screen that is shown in Figure 9-5 on page 181.
The advantage of presenting the history log data in this manner is that to view other log data, simply scroll right or left using the PF keys. You do not have to issue separate commands as in RTM.
9.4 The RTM environment display

Figure 9-6 shows the RTM environment information (QUERY ENVIRON).

```
+-----------------------------------------------+
| z/VM   CPU2084 SERIAL 196A3A    3G DATE 03/11/04 START 17:07:07 END 17:07:37 |
+-----------------------------------------------+

z/VM Version 4 Release 4.0, service level 0401 (64-bit)
Generated at 02/18/04 09:53:36 EST
IPL at 03/08/04 09:36:44 EST

CMS LEVEL 20, Service Level 401

z/VM RTM Function Level 4.1.0

Cryptographic Facility Available - No

<table>
<thead>
<tr>
<th>IBM</th>
<th>2084-</th>
<th>Cap Adj</th>
<th>Total</th>
<th>Config</th>
<th>Standby</th>
<th>Reserve</th>
<th>Dedicated</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROCESSOR</td>
<td></td>
<td>10</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPAR</td>
<td>25</td>
<td>A19</td>
<td>400</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
```

Figure 9-6 RTM environment

9.4.1 Performance Toolkit for VM system configuration display

In Performance Toolkit for VM, option G (the SYSCONF subcommand) shown in Figure 9-7 on page 183 has most of the equivalent information.
More details about the LPAR configuration can be displayed by selecting option 8 or entering the LPAR subcommand.

9.5 The RTM user display

The RTM user display list (Figure 9-8 on page 184) shows users and their resource consumption (sorted in CPU usage order by default). This can be modified by using the ORDER command. The * character column headings indicate the sort order.
9.5.1 The Performance Toolkit for VM user display

Similarly, Performance Toolkit for VM has the USER subcommand (option 21) shown in Figure 9-9.

<table>
<thead>
<tr>
<th>Userid</th>
<th>%CPU</th>
<th>TCPU</th>
<th>VCPU</th>
<th>Ratio</th>
<th>Total</th>
<th>DASD</th>
<th>Avoid</th>
<th>Diag98</th>
<th>UR</th>
<th>Pg/s</th>
<th>User Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>>System<</td>
<td>0.07</td>
<td>0.15</td>
<td>0.12</td>
<td>1.2</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>---,---,---</td>
</tr>
<tr>
<td>LNXSU1</td>
<td>0.83</td>
<td>0.16</td>
<td>0.15</td>
<td>1.1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>LNXSU5</td>
<td>0.71</td>
<td>0.14</td>
<td>0.13</td>
<td>1.1</td>
<td>0.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL3,DIS</td>
</tr>
<tr>
<td>VMRTM</td>
<td>0.16</td>
<td>0.03</td>
<td>0.02</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFKLA</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFLIV</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFROG</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFSVM</td>
<td>0.04</td>
<td>0.00</td>
<td>0.00</td>
<td>1.1</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>PERFBER</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1.5</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,---,DOR</td>
</tr>
<tr>
<td>TCPIP</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
<td>3.0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL0,DIS</td>
</tr>
<tr>
<td>RSCS</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>...</td>
<td>0.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ESA,CL1,DIS</td>
</tr>
</tbody>
</table>

Note the underscores above the ordered field. Use the SORT command to change the default order. Also note that >System< is always first on the list.

Figure 9-8 RTM user display

Figure 9-9 Performance Toolkit for VM user display
9.6 The RTM idle user display

The RTM screen DISPLAY IDLE (Figure 9-10) lists idle users and how long they have been idle.

<table>
<thead>
<tr>
<th>USERID</th>
<th>IMIN</th>
<th>USERID</th>
<th>IMIN</th>
<th>USERID</th>
<th>IMIN</th>
<th>USERID</th>
<th>IMIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROYOLE</td>
<td>27</td>
<td>DATAMOVE</td>
<td>1</td>
<td>DIRMAINT</td>
<td>1</td>
<td>DISKACNT</td>
<td>1031</td>
</tr>
<tr>
<td>EREP</td>
<td>444</td>
<td>GCS</td>
<td>1385</td>
<td>HAIMO</td>
<td>1329</td>
<td>OPERATOR</td>
<td>1385</td>
</tr>
<tr>
<td>OP1</td>
<td>211</td>
<td>VMSERVR</td>
<td>1385</td>
<td>VMSERVS</td>
<td>1385</td>
<td>VMSERVU</td>
<td>1385</td>
</tr>
</tbody>
</table>

Figure 9-10 RTM idle users

9.6.1 The Performance Toolkit for VM idle user display

In Performance Toolkit for VM, use the IDLEUSER command shown in Figure 9-11.

<table>
<thead>
<tr>
<th>Userid</th>
<th>Idle</th>
<th>Userid</th>
<th>Idle</th>
<th>Userid</th>
<th>Idle</th>
<th>Userid</th>
<th>Idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>BROYOLE</td>
<td>31</td>
<td>DATAMOVE</td>
<td>0</td>
<td>DIRMAINT</td>
<td>0</td>
<td>DISKACNT</td>
<td>1035</td>
</tr>
<tr>
<td>EREP</td>
<td>448</td>
<td>GCS</td>
<td>4180</td>
<td>HAIMO</td>
<td>1333</td>
<td>OPERATOR</td>
<td>216</td>
</tr>
<tr>
<td>OP1</td>
<td>216</td>
<td>PVM</td>
<td>0</td>
<td>VMSERVR</td>
<td>4180</td>
<td>VMSERVS</td>
<td>4180</td>
</tr>
</tbody>
</table>

Figure 9-11 Performance Toolkit for VM idle users

Both RTM and Performance Toolkit for VM default to user ID order, but both have the capability to order by idle time.

9.7 The RTM I/O display

The RTM default for I/O display encompasses the total time since RTM was last reset. We use the interval option to facilitate comparison with Performance Toolkit for VM, DISPLAY I/O INTERVAL, as shown in Figure 9-12 on page 186.
9.7.1 The Performance Toolkit for VM I/O display

Under Performance Toolkit for VM, the command is simply I/O (or option 13) as shown in Figure 9-13.

Figure 9-13 Performance Toolkit for VM I/O display

As indicated, the default order is IOREQST.
9.8 Using the Virtual Machine Communication Facility

You can monitor performance with RTM and Performance Toolkit for VM from the server user IDs (by default, VMRTM and PERFSVM). You can also communicate via Virtual Machine Communication Facility (VMCF). The VMRTM product supplies the VMC Module, which either product can use. They can also use the vmc stage in CMS pipelines. Additionally, Performance Toolkit for VM supplies a VMCX Module, which uses the same mechanism as VMC but establishes a session with the service machine. This also works with VMRTM.

Performance Toolkit for VM includes two more methods of communicating with the service machine:

1. Advanced program-to-program communication (APPC) via the FCONAPPC command
2. A Web interface via TCP/IP

FCONAPPC is the recommended method. Each user ID must be authorized in the FCONX AUTHORIZ file. With the APPC connection, any user ID can use the full function of Performance Toolkit for VM. You can create an FCONX $PROFILE on the user's A-disk with the FC MONCOLL, FC USRLIMIT, and FC FORCEUSR commands commented out and with the FCONAPPC FCXRES00 (or whatever resource name you use) added. When PERFKIT is entered, it will automatically go to the performance selection menu.

9.9 Creating scheduled printed reports

With RTM commands SET PRINT ON and INTERVAL PRINT hh:mm, you can have a set of RTM reports generated at the times specified. The Performance Toolkit for VM command FC MONCOLL RESET hh:mmP (which can be included in the FCONX $PROFILE) can be used to generate the reports requested from the FCONX REPORTS file at the specified times. You should increase the space on your A-disk to make room for the additional reports.

9.10 VMPRF functions

This section covers some commonly used VMPRF features. A quick summary of all VMPRF-to-Performance Toolkit for VM correspondence is available from the VM home page at:

9.10.1 Creating history data

VMPRF is used to process data from the CP MONITOR. It can be run automatically on a daily basis to create printed reports and machine-readable data in the form of trend and summary records. It can also be used to process specific time periods to analyze performance problems. Performance Toolkit for VM can be used to create the printed reports and machine-readable trend data as it processes, eliminating the need for regularly scheduled processing.

9.10.2 Processing historical data

Performance Toolkit for VM can be used to process:

- CP MONITOR data
- Performance Toolkit for VM TREND data

The MONSCAN fn ft fm command is used to process a monitor data file. On the Performance Screen Selection panel, MONSCAN appears in the upper right corner where the system ID is found when monitoring performance on a real-time basis. MONSCAN enables you to step through the data an interval at a time using the NEXTSAMP subcommand. If you do not need averages and want to skip to a certain time period, you can use SKIPSAMP hh:mm yyymmdd to skip to the time that you are interested in. Most Performance Toolkit for VM reports are available using MONSCAN, but some reports that rely on internal CP control blocks for data that is not available in the monitor records are not available using MONSCAN. Performance Toolkit for VM can also process machine-readable files that it has created using the TRNDSCAN command.

9.10.3 When to use MONSCAN

Use MONSCAN when you want to process existing monitor data, and to identify past activity or previously reported problems. If you are already collecting monitor data, then you can invoke PERFKIT from an authorized user ID and issue the MONSCAN fn ft fm command. The monitor selection screen appears with a subset of the selections highlighted (Figure 9-14 on page 189).
Monitor Scan

General System Data I/O Data History Data (by Time)
2. Storage utilization 12. Control units 32. History data files*
3. Storage subpools 13. I/O device load* 33. Benchmark displays*
5. System counters 15. Cache extend. func.* 35. System summary*
6. CP IUCV services 16. DASD I/O assist 36. Auxiliary storage
7. SPOOL file display* 17. DASD seek distance* 37. CP communications*
8. LPAR data 18. I/O prior. queueing* 38. DASD load
A. Shared data spaces 1A. I/O configuration changes 3A. Paging activity
B. Virt. disks in stor. 1B. I/O config. changes 3B. Proc. load & config*
C. Transact. statistics User Data 3C. Logical part. load
D. Monitor data 21. User resource usage* 3D. Response time (all)*
E. Monitor settings 22. User paging load* 3E. RSK data menu*
F. System settings 23. User wait states* 3F. Scheduler queues
G. System configuration 24. User response time* 3G. Scheduler data
H. VM Resource Manager 25. Resources/transact.* 3H. SFS/BFS logs menu*
I. Exceptions 26. User communication* 3I. System log
K. User defined data* 27. Multitasking users* 3K. TCP/IP data menu*
28. User configuration* 3L. User communication
K. User defined data* 29. Linux systems* 3M. User wait states

Pointers to related or more detailed performance data can be found on displays marked with an asterisk (*).

Command ==>>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 9-14 Monitor selection screen during MONSCAN

Note Monitor Scan in the upper right corner, which identifies what type of data you are looking at. The data is accessible one interval at a time, which means that when you make a selection, the starting interval of this monitor data file initially shows no information. You can step through each interval by using the NEXTSAMP command, or go to a particular interval by issuing SKIPSAMP hh:mm. For example, we select option 35 (or use the SYSSUMLG command) and issue a series of NEXTSAMP commands to build the screen in Figure 9-15 on page 190.
This historical data shows us that on March 22, 2004, between 14:29 and 14:31, the CPU rate was fairly high. Using this information as a basis, you can review other data, such as option 21 (the USER subcommand) to see which users were most CPU intensive during this period.

9.10.4 When to use TRNDSCAN

By definition, monitor trend data is long intervals over long periods of time. Because of the large amounts of data that is required to illustrate the features of executing TRNDSCAN, no sample output is included. Trend data indicates what particular resource usage is increasing over time. So, in essence, trend data...
analysis is more for capacity planning than for performance and tuning. For example, if your paging rate has been rising steadily, then you might consider (among other things):

- Adding more page volumes
- Using faster DASD for paging
- Increasing your main storage
- Reconfiguring your XSTORE
- Reducing certain guests’ virtual storage size
- Spreading the workload over shifts

TRNDSCAN has the same command syntax as MONSCAN, and also uses NEXTSAMP, but SKIPSAMP uses yyyymmdd because trend data deals with information over several days.

9.10.5 Reports

VMPRF has separate reports depending on how they are sorted. For example, the PRF008 USER_RESOURCE_UTILIZATION is sorted by CPU PCT, and the PRF054 USER_RESOURCE_UTILIZATION_BY_USERID is the same report sorted by USERID. The equivalent Performance Toolkit for VM report is the USER report (option 21 from the selection menu). The second row contains a series of dots and an underscore. Place the cursor over the column you want to use for sorting and press Enter to sort the report by that column. Therefore, in addition to sorting by user ID or %CPU, you could also sort by TOTAL Virtual I/Os or any other field showing a dot.
Performance Toolkit for VM
updates for function level 510

This chapter covers updates to Performance Toolkit for VM that are available with Function Level 510 of Performance Toolkit for VM. We discuss:

- Performance Toolkit for VM changes for FL510
- Performance Toolkit for VM installation changes
- Control file changes for FL510
- Performance Toolkit for VM PRF support
- New Linux reports using CP Monitor data from Linux
- New SCSI device report
10.1 Performance Toolkit for VM changes for FL510

There have been changes to the Performance Toolkit for VM FL510 installation along with improvements in the following areas:

- Provide support similar to VMPRF
- Ease migration from VMPRF
- Utilize new CP Monitor application data from Linux
- Report on new SCSI devices

10.2 Performance Toolkit for VM installation changes

Performance Toolkit for VM FL510 is pre-installed on z/VM Release 5.1.0 systems. The 5VMPTK10 user ID is for installation and application of service. The PERFSVM user ID runs the PERFKIT module. The control files that are needed to get started are located on the 5VMPTK10 2C2 and 1CC disks. After the product has been enabled, you can begin using Performance Toolkit for VM and then tailor it to your needs.

Figure 10-1 on page 195 shows the 5VMPTK10 directory entry. Privilege class E is assigned so that the user can enable the product from the install user ID.
Disks that are defined to this user include:

1. The 191 disk defines the user's CMS A-disk.

2. The 2A2 disk contains AUX files and software inventory tables that represent the service level of Performance Toolkit for VM currently in production.

3. The 2C2 disk contains serviced customizing files.

4. The 2D2 disk contains serviced files.

5. The 2C4 disk contains local modifications.

6. The 200 disk is the test build disk. This code is copied to the production build disk (201).

7. The 2A6 disk contains AUX files and software inventory tables that represent the test service level of Performance Toolkit for VM.

8. The 201 disk is the production build disk. This contains the executable code for Performance Toolkit for VM.

9. The 2B2 disk contains the base code that shipped with Performance Toolkit for VM.
10. The 1CC disk contains customized files. The control files that are needed for Performance Toolkit for VM are located on this disk.

11. The 29D disk contains the help files for Performance Toolkit for VM.

The directory entry for the PERFSVM machine is shown in Figure 10-2. The privilege class is ABDEG, so PERFSVM running the PERFKIT MODULE can be used as a VM operator's console. If you are only going to use it for performance monitoring you can change it to class EG. This will prevent you from entering commands that only an operator should issue.

```
USER PERFSVM  PERFSVM 64M 512M ABDEG
MACHINE XA
XAUTOLOG AUTOLOG1
ACCOUNT xxxx
NAMESAVE MONDCSS
IUCV *MONITOR MSGLIMIT 255
IUCV *IDENT FCXRES00 GLOBAL
IUCV *IDENT FCXSYSTM GLOBAL
IUCV ALLOW
SHARE ABS 3% 1
 IPL CMS
OPTION QUICKDSP
CONSOLE 0009 3215
SPOOL 000C 2540 READER *
SPOOL 000D 2540 PUNCH A
SPOOL 000E 1403 A
LINK MAINT 190 190 RR
LINK MAINT 19D 19D RR
LINK MAINT 19E 19E RR
LINK 5VMPTK10 200 200 RR 5
LINK 5VMPTK10 201 201 RR
LINK 5VMPTK10 1CC 1CC RR
LINK 5VMPTK10 29D 29D RR
MDISK 191 3390 1007 060 440W02 MR READ WRITE MULTIPLE 6
MDISK 195 3390 1067 060 440W02 MR READ WRITE MULTIPLE 7
```

Figure 10-2 The PERFSVM directory entry for FL510

Information about the directory entries:

1. The NAMESAVE MONDCSS option enables Performance Toolkit for VM to access the CP Monitor data.

2. IUCV *IDENT entries define the resource that is used for FCONAPPC access to the Performance Toolkit for VM display screens from other user IDs.

3. SHARE ABS 3% is needed to assure that Performance Toolkit for VM is dispatched long enough to collect the monitor data.
4. OPTION QUICKDSP also ensures that Performance Toolkit for VM will be dispatched long enough.

5. The LINKs to 5VMPTK10 minidisks provide access to the control files and executable parts of Performance Toolkit for VM.

6. The MDISK 191 defines the PERFSVM machine’s A-disk.

7. The MDISK 195 defines a disk on which history data can be saved.

The PROFILE EXECSAMP has also been updated to reflect the changes to the minidisks that are used for the control files.

10.3 Control file changes for FL510

The files that are necessary to control Performance Toolkit for VM are located on 5VMPTK10 users 1CC disk. These can be modified and kept on the 1CC disk for local tailoring. The latest serviced copy of each is kept on the 2C2 disk. For any permanent changes to control files, you should use the VMSES/E local modification instructions found in Guide for Automated Installation and Service, SC24-6099. This will create an update on the 2C4 disc and alert you when service is applied to a control file. The 1CC disk will be used by the PERFSVM machine.

10.3.1 FCONX $PROFILE change

The FCONX $PROFILE file contains Performance Toolkit for VM commands to set up and control how the Performance Toolkit for VM will operate. The FC MONCOLL RESET command has been changed to reflect the new summary file creation similar to VMPRF SUMMARY files. You can now use S as a suffix to tell PERFKIT to create a summary file at the specified time. You can specify all (P, T, and S — print, trend, and summary) at one time or use a separate set of times for each. See Figure 10-3 on page 199 for an example.

10.3.2 Performance Toolkit for VM report changes

Changes have been made to these Linux reports:

- LXCPU
- LXNET
- LXPROC

They can be entered without specifying a user ID. This produces the new screen with an entry for each Linux user ID that is producing APPLDATA. From these new screens you can now select more details by user ID. See 10.5, “Using APPLDATA from Linux” on page 200 for more details.
10.3.3 FCONX TRENDREC change

The FCONX TRENDREC file has been updated to include saving the high-level Linux data that is available from the CP MONITOR APPLDATA that can be provided by Linux. FCA9 records can be created by specifying LINUX in the FCONX TRENDREC file.

10.3.4 New FCONX SUMREC

The new FCONX SUMREC file is similar to the FCONX TRENDREC file. It is used to control which records are to be included in the new summary files. This also includes the new LINUX parameter.

10.4 Performance Toolkit for VM PRF support

One of the products that Performance Toolkit for VM replaces is the PRF feature. To provide this support, Performance Toolkit for VM has been changed in the following ways:

- New BATCH parameter to run in batch mode similar to VMPRF
- New VMPRF parameter to help migrate from VMPRF control files
- New support for machine-readable summary files

The preferred way to create reports, trend files, and summary files is to use the FC MONCOLL RESET command in the FCONX $PROFILE while PERFKIT is running, eliminating the need for batch processing similar to VMPRF. The new BATCH parameter is used to run PERFKIT in batch mode. The format of the BATCH option of the PERFKIT command is:

```
PERFKIT BATCH profilefn profileft profilefm DISK mondfn mondfm
```

In this example, *profilefn*, *profileft*, and *profilefm* stand for the filename, filetype, and filemode of the file that contains the controls for PERFKIT in the same format as the FCONX $PROFILE that is used for real-time processing. The monitor data that is to be processed is specified using *mondfn*, *mondfm*, and *mondfm*.

If you need to recreate a set of reports and do not need to step through the intervals using the MONSCAN command, then PERFKIT BATCH can be used to create reports and machine-readable trend and summary reports. A RUNFILE similar to that produced by VMPRF will also be created with any error or informational messages.

The new VMPRF parameter can be used to help you migrate to using PERFKIT to create reports, trend files, and summary files while it is running on a real-time basis. The VMPRF parameter reads the VMPRF format control files and converts
and uses them in a BATCH mode run. The format of the VMPRF option of the PERFKIT command is:

```
PERFKIT VMPRF masterfn masterft masterfm DISK mondatafn mondataft mondatafm
```

In this example, `masterfn`, `masterft`, and `masterfm` are the filename, filetype, and filemode of a VMPRF MASTER file. PERFKIT running with the VMPRF parameter, which is supported only as a migration aid, uses the VMPRF MASTER file to create a reports file (of file type FCXEQUIV) for PERFKIT with the “best fit” report for each VMPRF report. It can contain more than one entry for each report.

After you have run this you can use it as a base to create an FCONX REPORTS file for use with your normal PERFKIT execution. A RUNFILE is also produced that includes the FC MONCOLL RESET commands that were generated by the VMPRF parameter. This can be copied into the FCONX $PROFILE and used to create the reports, trend files, and summary files while PERFKIT is running. If your VMPRF SETTINGS file contains the following code, PERFKIT VMPRF will generate the output shown in Figure 10-3:

```
summary
 maxusers 6000
 bytime   60
 reportdasd 15

trend
 maxusers 6000
 bytime   480
 reportdasd 150
```

```
FC MONCOLL RESET 00:00:00R_T 08:00:00T 16:00:00T (MERGE
FC MONCOLL RESET 00:00:00R_S 01:00:00S 02:00:00S 03:00:00S 04:00:00S
FC MONCOLL RESET 05:00:00S 06:00:00 07:00:00S 08:00:00S 09:00:00S
FC MONCOLL RESET 10:00:00S 11:00:00S 12:00:00S 13:00:00S 14:00:00
FC MONCOLL RESET 15:00:00S 16:00:00S 17:00:00S 18:00:00S 19:00:00S
FC MONCOLL RESET 20:00:00S 21:00:00T 22:00:00S 23:00:00S 23:59:59S (MERGE
```

Figure 10-3 FC MONCOLL RESET generated by VMPRF option

You can copy this from the RUNFILE into the FCONX $PROFILE to generate the hourly summary records and trend records by shift.

VMPRF provides separate trend and summary files containing machine-readable data that can be accumulated over different intervals. With FL510, Performance Toolkit for VM provides this capability thru the FC MONCOLL RESET command (described with a time and an S; see 10.3.1, “FCONX $PROFILE change” on page 197).
VMPRF includes trend and summary reports in the VMPRF REPORTS file. Performance Toolkit for VM uses the TRENDREC and SUMREC files to specify what trend and summary records to produce. Use these files for your trend and summary selection. The RUNFILE will provide a message to use this file and that no equivalent report entry will be generated.

Performance Toolkit for VM uses the FC UCLASS command to identify users of groups that you want to report. The VMPRF UCLASS file must be converted into FC UCLASS statements in the FCONX $PROFILE.

10.5 Using APPLDATA from Linux

With the 2.4 kernel and the S/390 patch, Linux machines running on VM can now create monitor data that is included with z/VM monitor data. This reduces the overhead of waking the Linux machine up at regular intervals to collect data from the RMF PM interface.

A new selection screen is shown from option 29 (Figure 10-4). The first entry is for access to the RMF PM data that was available on earlier releases. This can be used to access detailed data for any systems that are specified in the FCONX LINUXUSR file, including Linux systems not on this VM system. It also has entries for high-level data for CPU, memory, and network.

<table>
<thead>
<tr>
<th>FCX242</th>
<th>CPU 2064</th>
<th>SER 51524</th>
<th>Linux Displays</th>
<th>Perf. Monitor</th>
</tr>
</thead>
</table>

- Linux screens selection
- S Display Description
 . LINUX RMF PM system selection menu
 . LXCPU Summary CPU activity display
 . LXMEM Summary memory util. & activity display
 . LXNETWRK Summary network activity display

Select performance screen with cursor and hit ENTER
Command ===>
F1=Help F4=Top F5=Bot F7=Bkwd F8=Fwd F12=Return

Figure 10-4 Linux selection screen
Select the LXCPU entry to view the Linux CPU screen that is shown in Figure 10-5. This screen contains a line for each Linux system that is providing MONITOR APPLDATA. If the user ID is highlighted, it can be selected for more detail using the RMF PM interface. You must supply an IP address for this Linux system with a name that matches the VM user ID on this system for that Linux machine in the FCONX LINUXUSR file. **LXCPU userid** can still be used to go directly to the RMF PM data for the specified user ID.

<table>
<thead>
<tr>
<th>FCX243</th>
<th>Run 2004/03/25 14:53:34</th>
<th>LXCPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linux CPU Utilization Summary

<table>
<thead>
<tr>
<th>From 2004/03/25 14:51:48</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMLINUX4</td>
</tr>
<tr>
<td>To 2004/03/25 14:52:26</td>
</tr>
<tr>
<td>CPU 2084 SN 96A3A</td>
</tr>
<tr>
<td>For 39 Secs 00:00:39</td>
</tr>
<tr>
<td>This is a performance report for system XYZ</td>
</tr>
<tr>
<td>z/VM V.4.4.0 SLU 0401</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linux Utilization (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CPU</td>
</tr>
<tr>
<td>Processes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Userid</th>
<th>CPUs</th>
<th>TotCPU</th>
<th>User Kernel</th>
<th>Nice</th>
<th>IRQ</th>
<th>SoftIRQ</th>
<th>IOWait</th>
<th>Idle</th>
<th>Runabl</th>
<th>Waiting</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>System<</td>
<td>2.0</td>
<td>103.4</td>
<td>102.5</td>
<td>1.0</td>
<td>.0</td>
<td>...</td>
<td>...</td>
<td>96.6</td>
<td>2.0</td>
<td>...</td>
<td>60.0</td>
</tr>
<tr>
<td>1.00</td>
<td>.49</td>
<td>.19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNXSU1</td>
<td>2</td>
<td>103.4</td>
<td>102.5</td>
<td>1.0</td>
<td>.0</td>
<td>...</td>
<td>...</td>
<td>96.6</td>
<td>2</td>
<td>...</td>
<td>60</td>
</tr>
<tr>
<td>1.00</td>
<td>.49</td>
<td>.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 10-5 Linux CPU screen
Selecting the LXMEM entry displays the Linux memory screen (Figure 10-6). This screen contains an entry for each Linux system that is providing MONITOR APPLDATA. If a line is highlighted, RMF PM details are available for this Linux system, as with LXCPU detailed data.

![Figure 10-6 Linux memory screen](image)
The LXNETWRK selection is used to look at high-level Linux network data (Figure 10-7). As with the LXCPU and LXMEM screens, there is one line per Linux system and you can get more detailed data from RMF PM, if you select the highlighted line for the system you want.

<table>
<thead>
<tr>
<th>FCX245</th>
<th>Run 2004/03/25 14:53:50</th>
<th>LXNETWRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Linux Network Activity Summary

From 2004/03/25 14:51:48
VMLINUX4
To 2004/03/25 14:52:26
CPU 2084 SN 96A3A
For 39 Secs 00:00:39
This is a performance report for system XYZ
z/VM V.4.4.0 SLU 0401

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Userid</td>
<td>>System<</td>
<td>3.0</td>
<td>16.82</td>
<td>13.90</td>
<td>803</td>
<td>2913</td>
<td>.000</td>
</tr>
<tr>
<td>LNNS1</td>
<td></td>
<td>3.0</td>
<td>16.82</td>
<td>13.90</td>
<td>803</td>
<td>2913</td>
<td>.000</td>
</tr>
</tbody>
</table>

Figure 10-7 Linux network screen

The memory and CPU screens contain more than 80 bytes of data per system. You can use the PF10 and PF11 keys to scroll left and right to view it.
10.6 New reports for SCSI DASD

z/VM 5.1.0 supports use of SCSI DASD. A new report for these devices is available with Performance Toolkit for VM FL510. This report uses the new monitor records that z/VM provides for these devices.

<table>
<thead>
<tr>
<th>Device</th>
<th>Block Size</th>
<th>Read Transfers</th>
<th>Write Transfers</th>
<th>Seeks</th>
<th>Read Rate</th>
<th>Write Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBCD</td>
<td>512</td>
<td>0</td>
<td>357.6</td>
<td>.0000</td>
<td>129.9</td>
<td>423.0</td>
</tr>
<tr>
<td>OBCE</td>
<td>512</td>
<td>0</td>
<td>360.2</td>
<td>.0000</td>
<td>125.4</td>
<td>411.3</td>
</tr>
</tbody>
</table>

Figure 10-8 SCSI screen

10.7 Summary of changes for FL510

With FL510, Performance Toolkit for VM provides:

- Support for the new Linux APPLDATA
- Support for the new SCSI monitor data
- Migration support from VMPRF
- New summary output files similar to VMPRF
- Support for BATCH processing

Performance Toolkit for VM FL510 is available with z/VM 5.1.0.
Monitoring for z/VM

This appendix introduces VM monitoring concepts. We discuss:

- VM Monitor facility overview
- Types of available monitor data
- Using the CP MONITOR command
VM Monitor facility overview

The VM Control Program (CP) has a Monitor facility to collect system performance data. The data can be used to:

- Provide an understanding of system operation
- Analyze system resources usage
- Diagnose performance bottlenecks

Monitored resources include processors, storage, Input/Output devices, and the paging subsystem. You can control the amount of data and the type of data that is collected.

The CP MONITOR command controls monitoring:

1. A Conversational Monitor System (CMS) virtual machine running an application program connects to the CP *MONITOR System Service to initiate the data link with CP.
2. The monitor system service collects monitor data during CP operation and stores it in a user-defined saved segment in the form of monitor records.
3. An application running on the CMS virtual machine retrieves and processes monitor records from the saved segment.

MONWRITE is a CP utility supplied with z/VM. It establishes the communication links with CP, retrieves monitor records from the saved segment, and stores the records (on disk, in a CMS file, or on tape). An application program can read the monitor records from the file and perform data reduction on the performance data.

Figure A-1 on page 207 shows the process steps to collect monitor data.
The illustrated steps are:

1. The CP MONITOR command controls the type, amount, and nature of the collected data.

2. An application program running in a CMS virtual machine connects to the CP *MONITOR system service (establishing a data link with CP).

3. The monitor facility collects performance data during CP operations and stores it in the form of monitor records into a saved segment (MONDCSS).

4. The MONWRITE utility retrieves monitor records from the saved segment, processes them, and stores them on disk or tape.

5. The Performance Toolkit for VM application reads data from the saved segment for displaying real-time performance characteristics. Performance Toolkit for VM can also process monitor data written to disk or tape by MONWRITE.
A word about the monitor system service (*MONITOR)

The monitor system service (*MONITOR) notifies connected virtual machines when records are created by the z/VM monitor facility. The CP monitor collects statistics about the z/VM system operation based on the user’s selections. These statistics are stored in a user-defined saved segment in the form of monitor records as discussed earlier. The statistics are grouped into sets called domains. Domains correspond to areas of the system for which information of interest is sampled or events of interest take place. The monitor records are shown by domain number.

The collection of system statistics and their storage in monitor records is controlled by the MONITOR SAMPLE and MONITOR EVENT commands. *MONITOR provides virtual machines with the location of monitor records. Details about the *MONITOR system service are found in z/VM: Performance, SC24-5999.

Types of available monitor data

CP Monitor collects data during system operation and stores (or “reports”) the data in a saved segment in the form of monitor records.

Two types of monitor data are collected:

- Event data
 Event data is collected and reported each time a designated system event occurs. The reported data represents system status at the time the event occurs. For example, to monitor the DASD device at address 1234, use the MONITOR ENABLE EVENT I/O DEVICE 1234 command. Events recorded for the device include VARY ON, VARY OFF, ATTACH, and DETACH.

- Sample data
 Sample data is reported at the end of a designated time interval. Two varieties of sample data are collected:
 - Single-sample data
 Single-sample data is collected and reported once (at the end of the time interval). Some of the data represents system status at the time of collection; other data represents accumulated counters, states, or elapsed times since the start of sampling.
 - High-frequency sample data
 High-frequency data is collected more frequently than reported. At each high-frequency sampling time, the collected data is added to the corresponding counters. The data is reported once at the end of the time
interval (along with single-sample data) and represents the accumulated counter or state values since the start of high-frequency sampling.

Use the CP MONITOR command to select the types of data to collect. You can also control the time interval for single sampling and the rate for high-frequency sampling.

A set of data called configuration data is collected and reported immediately whenever at least one virtual machine connects to *MONITOR and the CP MONITOR START command is issued.

Note: These steps may occur in any order.

Monitor data is categorized into several data domains:

- **Domain 0 - System domain**
 Contains information about system-wide resource usage and consists of only sample data.

- **Domain 1 - Monitor domain**
 Contains information about the installation configuration such as processors, paging, storage, and I/O. This domain consists of both sample and event data.

- **Domain 2 - Scheduler domain**
 Contains information about scheduler queues, workload flow through the scheduler, and resource allocation strategies of the scheduler and dispatcher. This domain consists of only event data.

- **Domain 3 - Storage domain**
 Contains information about use of real, virtual, expanded, and auxiliary storage. This domain consists of both sample and event data.

- **Domain 4 - User domain**
 Contains information about virtual machines such as scheduling status, virtual I/O usage, and logon/logoff events. This domain consists of both sample and event data.

- **Domain 5 - Processor domain**
 Contains information related to work that is dispatched to a given processor, and other data related to processor usage. This domain consists of both sample and event data.
- Domain 6 - I/O domain
 Contains information about I/O requests, error recovery, interrupts, and other
 information for real devices. Consists of both sample and event data.

- Domain 7 - Seek domain
 Contains information about DASD seek operations and consists of only event
 data.

- Domain 10 - Application data domain
 Contains application data copied from a virtual machine’s storage (when that
 storage has been defined to CP for collecting application-generated monitor
data). This domain consists of both sample and event data.

Using the CP MONITOR command

Using the CP MONITOR command, you can:

- Create a profile for event and sample data collection. Select the domains and
 the elements within the domain (such as user IDs, device numbers, device
 types, classes, and volume identifiers).

- Specify the time interval for single-sample data collection and the rate for
 high-frequency sample data collection.

- Start event and sample data monitoring based on the profiles established.

- Stop event and sample data monitoring.

- Partition the saved segment into sample area and event area. Within each
 area, you can further partition it into one area for configuration records and
 the other for data records.

- Specify the maximum time a user has to reply to an IUCV send for
 configuration data.

Use the CP QUERY MONITOR command to view existing monitor settings. This
provides information about event and sample recording, configuration areas, and
configuration time limits. Further details concerning the use of these and other
CP commands can be found in the publication *z/VM CP Command and Utility
Reference*, SC24-6008.
Performance Toolkit for VM sample files

This appendix contains a listing of the sample files distributed with Performance Toolkit for VM.
The sample FCONX $PROFILE

Example B-1 shows the FCONX $PROFILE sample file that is distributed with Performance Toolkit for VM. We discuss the file purpose and commands in 3.2.1, “FCONX $PROFILE” on page 69.

Example: B-1 The FCONX $PROFILE sample file

* *
** Initialization profile for ‘Performance Toolkit for VM’. **
* This file is intended for customizing operation by including *
* the necessary ‘FCONTROL’ commands: *
* *
* FCONTROL ... *
* *
* .. ACTMSG *
* .. AUTOREFR *
* .. BENCHMRK *
* .. COLOR *
* .. DEFLOG *
* .. DEFSCRN *
* .. FORCEUSR *
* .. GDDMSPEC *
* .. LIMIT *
* .. MAINTID *
* .. MAXREC *
* .. MINPATHS *
* .. MODEL *
* .. MONCACHE *
* .. MONCOLL *
* .. MSGCLEAR *
* .. MSGWAIT *
* .. NUMBERS *
* .. PFKEY *
* .. PROCESS *
* .. RMTLINES *
* .. SCROLL *
* .. SEARCH *
* .. SECUSER *
* .. SETEVENT *
* .. SETTINGS *
* .. TIMSTAMP *
* .. UCLASS *
* .. UPDTCMS *
* .. UPDTSCRN *
* .. USERBOTL *
* .. USERHDR *
*
* .. USERVAR
* .. USRLIMIT
 *
* See User's Guide or 'HELP' text for command syntax and
* meaning of arguments.
* Other commands can also be included, but they will be
* executed only once PERFKIT is fully initialized.
*

* Define number of CP action messages to be left pending *
* at top of screen (default is 10 messages) *

FC ACTMSG 10
*

* Define I/O devices and/or users for which detailed by-time logs *
* are to be built (requires additional space in your virtual *
* storage; activate only when needed) *

*C BENCHMRK DEVICE 550 FILE 08:00 TO 17:00
*C BENCHMRK USER PERFSVM
*

* Define extended highlighting and colors to be used *

FC COLOR TOPDAT BLUE
FC COLOR TOPSCRL TURQUOIS
FC COLOR TOPSECU TURQUOIS
FC COLOR TOPSTAT YELLOW
FC COLOR NUMBERS BLUE
FC COLOR ERRMSG RED
FC COLOR ARROW WHITE
FC COLOR INAREA WHITE UNDER
FC COLOR BOTLINE TURQUOIS
FC COLOR TOFEOF WHITE
FC COLOR INRED WHITE
FC COLOR CPMSG GREEN REV
FC COLOR CPWNG YELLOW REV
FC COLOR CPMSGN WHITE
FC COLOR CPOUT BLUE
FC COLOR CPAMSG YELLOW
FC COLOR CPEMSG RED
FC COLOR CPIMSG YELLOW
FC COLOR CPSCIF GREEN
FC COLOR VMOUT GREEN
*
Define a new performance log screen, using parts of other performance screens.

```
FC DEFLOG MYLOG H1 Sample log with some fields copied from SYSTEM screen
FC DEFLOG MYLOG COL 12 LEN 5 COPY SYSTEM LINE 12 COL 34 NAME SieEx
FC DEFLOG MYLOG COL 18 LEN 5 COPY SYSTEM LINE 12 COL 75 NAME SieInter
FC DEFLOG MYLOG COL 25 LEN 13 COPY SYSTEM LINE 25 COL 67 NAME <-No-XSTORE->
FC DEFLOG MYLOG COL 39 LEN 13 COPY SYSTEM LINE 26 COL 26 NAME <-XST-Alloc->
FC DEFLOG MYLOG COL 53 LEN 13 COPY SYSTEM LINE 26 COL 67 NAME <XST-Release>
FC DEFLOG MYLOG COL 67 LEN 13 COPY SYSTEM LINE 18 COL 26 NAME <AV_List_Req>
```

```
*C DEFLOG MYLOG2 H1 Sample log with fields from STORAGE / RESPALL / USER / DEV
*C DEFLOG MYLOG2 COL 12 LEN 6 COPY STORAGE LINE 26 COL 74 NAME MDC-Rd
*C DEFLOG MYLOG2 COL 20 LEN 6 COPY STORAGE LINE 27 COL 74 NAME MDC-Wr
*C DEFLOG MYLOG2 COL 28 LEN 6 COPY STORAGE LINE 28 COL 74 NAME MDC-Ht
*C DEFLOG MYLOG2 COL 36 LEN 5 COPY STORAGE LINE 29 COL 74 NAME MDC-%
*C DEFLOG MYLOG2 COL 44 LEN 5 COPY RESPALL LINE LAST COL 12 NAME Trv-s
*C DEFLOG MYLOG2 COL 51 LEN 5 COPY RESPALL LINE LAST COL 24 NAME NTr-s
*C DEFLOG MYLOG2 COL 58 LEN 8 COPY USE LOC 'FTPS' ATC 3 COL 2 NAME Userid
*C DEFLOG MYLOG2 COL 68 LEN 6 COPY DEV LOC '0700' ATC 3 COL 14 NAME Serial
*C DEFLOG MYLOG2 FILE 08:30 TO 16:30
```

Define a new performance screen, using parts of other performance screens.

```
FC DEFSCRN SYSSUM LINE 2 TO 9 COPY CPU FROM 1
FC DEFSCRN SYSSUM LINE 11 TO 12 COPY DEVICE FROM 2
FC DEFSCRN SYSSUM LINE 13 TO 16 COPY DEVICE FROM 5
FC DEFSCRN SYSSUM LINE 18 TO 21 COPY CHANNEL FROM 1
FC DEFSCRN SYSSUM LINE 23 TO 23 COPY USER FROM 4
FC DEFSCRN SYSSUM LINE 24 TO 27 COPY USER FROM 6
```

```
* Define a GENERAL screen
```

```
*C DEFSCRN GENERAL LINE 2 TO 2 COPY USER FROM 4
*C DEFSCRN GENERAL LINE 3 TO 6 COPY USER FROM 6
*C DEFSCRN GENERAL LINE 7 TO 7 COPY DEVICE FROM 2
*C DEFSCRN GENERAL LINE 8 TO 11 COPY DEVICE FROM 5
*C DEFSCRN GENERAL LINE 12 TO 19 COPY CPU FROM 1
```

```
* Define colors and shading patterns for GDDM graphics
```

```
FC GDDMSPEC VAR1 COL YELLOW PAT 5
FC GDDMSPEC VAR2 COL TURQUOIS PAT 14
```
Appendix B. Performance Toolkit for VM sample files

FC GDDMSPEC VAR3 COL ORANGE PAT 12
FC GDDMSPEC VAR4 COL GREEN PAT 9

* Indicate whether perf. data are to be collected continuously, even while not in perf. monitor mode, and other performance monitor related information (valid for privilege class ‘E’ only)*
The ‘FC MONCOLL ON’ statement MUST precede any ‘FC FORCEUSR’, ‘FC LIMIT’ and ‘FC USRLIMIT’ commands.

FC MONCOLL REDISP 720
* Following command for MONITOR data extraction from disk file
*C MONCOLL CPMON DISK ON MONWRITE 191 B MONFILE DATA
* Following command for MONITOR data extraction from MONDCSS segment
FC MONCOLL CPMON DCSS ON MONDCSS
FC MONCOLL RESET 00:00 08:30 11:30 13:30 16:30
FC MONCOLL PERFLOG ON 06:00 19:59
* Following command activates VMCF data retrieval interface
*C MONCOLL VMCF ON
* Following command activates Internet interface
*C MONCOLL WEBSERV ON TCPIP TCPIP 81 IDTEST RACF

* Define thresholds when idle users, and users in a CPU loop or an I/O loop are to receive warnings and are to be forced off the system. CAUTION: use ‘TEST’ mode first, or specify FORCE limit of ‘0’ to make sure that the exclude list is complete, and no service machines are going to be forced!

* Set size of EXCLUDE table
FC FORCEUSR EXCLMAX 200
* Define users which are NOT to be forced
FC FORCEUSR EXCLUDE OP VTAM* VSCS* RACF RSCS
FC FORCEUSR EXCLUDE MVS* VMUTIL
* Define loop detection criteria
*C FORCEUSR SETLIM CPULoop MINCPU 10 WSSDELTA 1 MAXWSS 10000
*C FORCEUSR SETLIM IOLoop MINIO 500 WSSDELTA 4 MAXWSS 10000
*C FORCEUSR SETLIM WSSLoop WSSDELTA 15 MAXWSS 10000
* Define warning and FORCE thresholds (in minutes)
*C FORCEUSR IDLE NODISC TEST LIMIT 30/40
*C FORCEUSR IDLE DISC LIMIT 17/20
FC FORCEUSR IDLE OFF
*C FORCEUSR CPULoop ALL LIMIT 5/0
FC FORCEUSR CPULoop OFF
*C FORCEUSR IOLoop ALL LIMIT 5/0
FC FORCEUSR IOLoop OFF
*C FORCEUSR WSSLoop ALL LIMIT 15/20
FC FORCEUSR WSSLoop OFF

* Set thresholds for some key performance indicators *
* (can be set only if permanent perf. data collection has *
* previously been activated) *

FC LIMIT NORMCPU 90 1/1 5/10 WEIGHT 1
FC LIMIT C1ES 1.00 1/1 5/10 WEIGHT 20
FC LIMIT %IQ 50 1/1 5/10 WEIGHT 1
FC LIMIT %PQ 30 0/0 5/10 WEIGHT 1
FC LIMIT %SPSL 80 0/0 1/10 WEIGHT 40
FC LIMIT %PGSL 80 0/0 1/10 WEIGHT 40
FC LIMIT %CHBUSY 40 1/1 5/10 WEIGHT 5
FC LIMIT DVQUEUE .40 1/1 5/10 WEIGHT 1
FC LIMIT DVRESP 30 1/1 5/10 WEIGHT 1
FC LIMIT MISSINT 0 0/0 5/10 WEIGHT 10

* Define destination ID for PERFKIT dumps, in case of an abend *

*C MAINTID MAINT AT mynode

* Define number of records to be written before CLOSE *
* (default is 10 records) *

FC MAXREC 12

* Set thresholds for automatic channel path monitoring *

*C MINPATHS 2 TO 600-61F LIMIT 0/60 WEIGHT 50
*C MINPATHS 2 TO 720-73F LIMIT 0/60 WEIGHT 50
*C MINPATHS 4 TO 840-85F LIMIT 0/60 WEIGHT 20

* Activate monitoring of cache status for selected disks *

C MONCACHE 720-724 AD LIMIT 0/60 WEIGHT 10
C MONCACHE 725-72F AA LIMIT 0/60 WEIGHT 10
*C MONCACHE 730-73F A** LIMIT 0/60 WEIGHT 5

* Specify action to be taken when CLEAR command is executed, *
* or PA2 or CLEAR key hit (CP messages and/or PERFKIT action *
* messages to be cleared too?) *

FC MSGCLEAR ALL

* Define delay in minutes for messages to be left on screen until
* warning message is displayed (initial value: OFF)

*C MSGWAIT 5
*

* Specify whether line numbers are to be inserted on left side

FC NUMBERS OFF
*

* Define program function keys
* Note that the ‘FUNCTION’ definitions just repeat the initial
* definitions, they have been included only to illustrate the
* use of the ‘FC PFKEY’ command.

* Definitions for common functions (basic, redisplay and monitor)
FC PFKEY SET 1 FUNCTION HELP
FC PFKEY SET 2 FUNCTION REDISP
FC PFKEY SET 3 FUNCTION QUIT
FC PFKEY SET 4 FUNCTION TOP
FC PFKEY SET 5 FUNCTION BOTTOM
FC PFKEY SET 6 FUNCTION SAVE
FC PFKEY SET 7 FUNCTION BACKWARD
FC PFKEY SET 8 FUNCTION FORWARD
FC PFKEY SET 9 FUNCTION PRINT
FC PFKEY SET 10 FUNCTION LEFT
FC PFKEY SET 11 FUNCTION RIGHT
FC PFKEY SET 12 FUNCTION RETURN
*
* Definitions for commands to be executed in basic mode
FC PFKEY SET 4 BASMODE MONITOR
*C PFKEY SET 5 BASMODE ...
FC PFKEY SET 11 BASMODE ?
*
* Definitions for commands to be executed in performance monitor mode
*C PFKEY SET 3 MONMODE ...
*

* Allow special processing for some kinds of output lines

FC PROCESS CPMSG * FROM RSCS* DISP CPMSGN
*C PROCESS CPO * LOGON* NODISP
*C PROCESS CPO * LOGOFF* NODISP
*C PROCESS CPO * RECONNECT* NODISP
*C PROCESS CPO * DSCONNECT* NODISP
*C PROCESS CPO * DISCONNECT* NODISP
*C PROCESS CPO 51 ‘FORCED’ DISPLAY CPO
*C PROCESS CPMSG 'BAND' | 'TAPE' REROUTE TAPEOP CPMSGN
*C PROCESS ERRMSG 9 'A' REROUTE OPERATOR CPMSGN
*

* Set default number of output lines to be retrieved in remote performance data retrieval mode *

*C RMTLINES 50
*

* Define scroll mode *

FC SCROLL AUTO 12
*

* Define command search order *

FC SEARCH CPCMS
*

* Define USERID for which we are acting as secondary console *

FC SECUSER OFF
*

* Define timer events *

FC SETEVENT M-F 12:00 CP MSG * It is now 12:00h
*

* General definitions for controlling history file creation and print output format *

FC SETTINGS HISTFILE NEW
*C SETTINGS MAXDEVS 50
*C SETTINGS MAXUSERS 50
FC SETTINGS PAGESIZE 60
FC SETTINGS SYSTEM This is a performance report for system XYZ
*C SETTINGS SYSTEMID XYZ
*

* Control insertion of time-stamp in front of output lines *

*C TIMESTAMP ON
*

* Define user classes for which group averages are to be calculated *

*C UCLASS * General
C UCLASS VSE Guests
C UCLASS MVS Guests
*C UCLASS RSCS Service
*C UCLASS VSCS Service
*C UCLASS VTAM Service
*

* Define screen update mode while CMS command is active *

FC UPDTCMS DELAYED
*

* Define screen update mode: ANYMODE will let messages be inserted *
* into the BASIC mode screen even while the program is operating *
* in another mode. *

FC UPDTSCRN ANYMODE
*

* Define user data to be inserted into bottom line *

*C USERBOTL BASIC PF4: MON PF12: ?
*

* Define user data to be used as default header info *

FC USERHDR Performance Toolkit for VM
*

* Define user variables which you often need as input for graphics *
* (GRAPHxxx or PLOTxxx commands). The following are just a few *
* simple examples to show how it works: *

* USERCP = CP 'overhead' which can be attributed to users *
FC USERVAR SET ESA USERCP = %CP - %SY
FC USERVAR SET USERCP DESC USER %CP
* USERINQ = the total number of in-queue users (dispatch+eligible lists)
FC USERVAR SET ESA USERINQ = Q1 + Qx + E1 + Ex
FC USERVAR SET USERINQ = Q1 + Qx + E1 + Ex
FC USERVAR SET USERINQ DESC USERS IN-Q
* CPU/TR = amount of CPU used per transaction (trivial + non-trivial), *
* in milliseconds
FC USERVAR SET ESA ‘CPU/TR’ = CPU*100 / (‘TR/S’+’NT/S’)
FC USERVAR SET ‘CPU/TR’ DESC CPU MSEC/TR
*

* Set user load thresholds (can be set only when permanent *
* perf. data collection has previously been activated) *

FC USRLIMIT * %CPU 30 5/10 WEIGHT 10
FC USRLIMIT * IO/S 50 5/10 WEIGHT 10
*

* Execute other commands for customizing PERFKIT *

* The example sorts users in %CPU load sequence, and I/O devices *
* in I/O rate sequence. Remove the asterisks to activate it (works *
* only with prov. class ‘E’, causes exit from PERFKIT otherwise) *
*MONITOR
* SORT USER %CPU
* SORT DEV I/O
* SORT CACH IO/S
* SORT UPAG READS
*QUIT
* End of example for sorting
*
* End of Performance Toolkit for VM profile

For details, see:
1. the FCONTROL ACTMSG subcommand on page 69
2. the FCONTROL BENCHMRK subcommand on page 69
3. the FCONTROL COLOR subcommand on page 69
4. the FCONTROL DEFLOG subcommand on page 70
5. the FCONTROL DEFSCRN subcommand on page 70
6. the FCONTROL GDDMSPEC subcommand on page 70
7. the FCONTROL MONCOLL subcommand on page 71
8. the FCONTROL FORCEUSR subcommand on page 72
9. the FCONTROL LIMIT subcommand on page 72
10. the FCONTROL MAINTID subcommand on page 72
11. the FCONTROL MAXREC subcommand on page 72
12. the FCONTROL MINPATHS subcommand on page 73
13. the FCONTROL MONCACHE subcommand on page 73
14. the FCONTROL MSGCLEAR subcommand on page 73
15. the FCONTROL MSGWAIT subcommand on page 73
16. the FCONTROL NUMBERS subcommand on page 73
17. the FCONTROL PFKEY subcommand on page 73
18. the FCONTROL PROCESS subcommand on page 73
19. the FCONTROL RMTLINES subcommand on page 74
20. the FCONTROL SCROLL subcommand on page 74
21. the FCONTROL SEARCH subcommand on page 74
22. the FCONTROL SECUSER subcommand on page 74
23. the FCONTROL SETEVENT subcommand on page 74
24. the FCONTROL SETTINGS subcommand on page 74
25. the FCONTROL UCLASS subcommand on page 75
26. the FCONTROL UPDTCMS subcommand on page 75
27. the FCONTROL UPDTSCRN subcommand on page 75
28. the FCONTROL USERBOTL subcommand on page 75
29. the FCONTROL USERHDR subcommand on page 75
30. the FCONTROL USERVAR subcommand on page 75
31. the FCONTROL USRLIMIT subcommand on page 75
32. “Additional commands to customize performance data” on page 75
Adding VM page space

This appendix explains how to dynamically add page space to z/VM without system interruption. Note that the process is the same for adding spool space.

This appendix covers the following steps:

- Verifying the current space allocation
- Formatting a volume for CP
- Allocating the page area
- Adding the volume to the list of CP-owned DASD
- Validating the CP-owned addition
- Verifying that the page space was detected by CP
- Making the dynamic change permanent in the SYSTEM CONFIG file
- Optional:
 - Adding new page volume to MAINT’s directory as a full pack minidisk
 - Adding cylinder zero of the new page volume to the $ALLOC$ directory
 - Adding the new page area to the $PAGE$ directory
How to add page space to a running z/VM system

One of the first things you will want to do on your newly installed z/VM system is to add more page space. And since the Linux code usually comes as large spool files, your spool space may also need to be increased. The only difference between the two is the type of space during allocation: page vs spool (spol).

Example C-1 shows output performed from the MAINT user ID. We are adding an entire volume as page space. Comments are in *italics*, preceded by an asterisk (*). Commands and keyboard responses are in **bold**, preceded by -->.

Example: C-1 Adding page space

* First we verify what is allocated

--> q alloc map

<table>
<thead>
<tr>
<th>EXTENT</th>
<th>RDEV</th>
<th>START</th>
<th>END</th>
<th>TOTAL</th>
<th>IN USE</th>
<th>HIGH</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LI4RES</td>
<td>158D</td>
<td>1</td>
<td>20</td>
<td>20</td>
<td>1</td>
<td>2</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DRCT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ACTIVE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>78</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TDISK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79</td>
<td>256</td>
<td>32040</td>
<td>19170</td>
<td>31680</td>
<td>59%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SPOOL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>257</td>
<td>390</td>
<td>24120</td>
<td>538</td>
<td>568</td>
<td>2%</td>
</tr>
<tr>
<td>Ready; T=0.01/0.01 13:22:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Now we get a free volume and attach to ourself

--> q da fre

DASD 3730 LX4PG1

Ready; T=0.01/0.01 13:23:43

--> att 3730 *

DASD 3730 ATTACHED TO MAINT 3730 WITH DEVCTL

Ready; T=0.01/0.01 13:23:49

* Now we format with CPFMTXA

--> cpfmtxa 3730 li4pag

CPFMTXA:
FORMAT WILL ERASE CYLINDERS 00000-03338 ON DISK 3730

DO YOU WANT TO CONTINUE? (YES | NO)

--> yes

HCPCCF6209I INVOKING ICKDSF.
ICK030E DEFINE INPUT DEVICE: FN FT FM, "CONSOLE", OR "READER" CONSOLE
ICK031E DEFINE OUTPUT DEVICE: FN FT FM, "CONSOLE", OR "PRINTER" CONSOLE
ICKDSF - CMS/XA/ESA DEVICE SUPPORT FACILITIES 17.0
TIME: 13:24:10
03/18/04 PAGE 1

ENTER INPUT COMMAND:
CPVOL FMT MODE(ESA) UNIT(3730) VOLID(LI4PAG) NOVFY -
ENTER INPUT COMMAND:
RANGE(0,3338)
ICK00700I DEVICE INFORMATION FOR 3730 IS CURRENTLY AS FOLLOWS:
 PHYSICAL DEVICE = 3390
 STORAGE CONTROLLER = 3990
 STORAGE CONTROL DESCRIPTOR = EC
 DEVICE DESCRIPTOR = 0A
 ADDITIONAL DEVICE INFORMATION = 71002160
ICK04000I DEVICE IS IN SIMPLEX STATE
ICK00091I 3730 NED= 3390.B3C.IBM.91.000001322245
ICK091I 3730 NED= 3390.B3C.IBM.91.000001322245
ICK03020I CPVOL WILL PROCESS 3730 FOR VM/ESA MODE
ICK03090I VOLUME SERIAL = LX4PG1
ICK03022I FORMATTING THE DEVICE WITHOUT FILLER RECORDS
ICK03011I CYLINDER RANGE TO BE FORMATTED IS 0 - 3338
ICK003D REPLY U TO ALTER VOLUME 3730 CONTENTS, ELSE T
ICK03000I CPVOL REPORT FOR 3730 FOLLOWS:
 FORMATTING OF CYLINDER 0 STARTED AT: 13:24:13
 FORMATTING OF CYLINDER 100 ENDED AT: 13:24:42
 //
 //
 FORMATTING OF CYLINDER 3300 ENDED AT: 13:37:26
 FORMATTING OF CYLINDER 3338 ENDED AT: 13:37:42

VOLUME SERIAL NUMBER IS NOW = LI4PAG

CYLINDER ALLOCATION CURRENTLY IS AS FOLLOWS:
 TYPE START END TOTAL
 ---- ----- --- -----
 PERM 0 3338 3339

ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
 13:38:43 03/18/04

ENTER INPUT COMMAND:
 END

ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

ENTER ALLOCATION DATA
 TYPE CYLINDERS

* After the format completes, CPFMTXA asks for allocation information.
* We leave cylinder zero as PERM to preserve the label and map.

-> page 1 3338
-> end

HCPCCF6209I INVOKING ICKDSF.
ICK030E DEFINE INPUT DEVICE: FN FT FM, "CONSOLE", OR "READER"
 CONSOLE
ICK031E DEFINE OUTPUT DEVICE: FN FT FM, "CONSOLE", OR "PRINTER"
 CONSOLE
ICKDSF - CMS/XA/ESA DEVICE SUPPORT FACILITIES 17.0
03/18/04 PAGE 1

ENTER INPUT COMMAND:
 CPVOL ALLOC MODE(ESA) UNIT(3730) VFY(LI4PAG) -

ENTER INPUT COMMAND:
 TYPE((PAGE,1,3338))

ICK00700I DEVICE INFORMATION FOR 3730 IS CURRENTLY AS FOLLOWS:
 PHYSICAL DEVICE = 3390
 STORAGE CONTROLLER = 3990
 STORAGE CONTROL DESCRIPTOR = EC
 DEVICE DESCRIPTOR = 0A
 ADDITIONAL DEVICE INFORMATION = 71002160

ICK04000I DEVICE IS IN SIMPLEX STATE
ICK00091I 3730 NED= 3390.B3C.IBM.91.000001322245
ICK091I 3730 NED= 3390.B3C.IBM.91.000001322245
ICK03020I CPVOL WILL PROCESS 3730 FOR VM/ESA MODE
ICK03090I VOLUME SERIAL = LI4PAG
ICK03024I DEVICE IS CURRENTLY FORMATTED WITHOUT FILLER RECORDS
ICK003D REPLY U TO ALTER VOLUME 3730 CONTENTS, ELSE T
U
ICK03000I CPVOL REPORT FOR 3730 FOLLOWS:

CYLINDER ALLOCATION CURRENTLY IS AS FOLLOWS:
<table>
<thead>
<tr>
<th>TYPE</th>
<th>START</th>
<th>END</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERM</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PAGE</td>
<td>1</td>
<td>3338</td>
<td>3338</td>
</tr>
</tbody>
</table>

ICK00001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
13:40:17 03/18/04

ENTER INPUT COMMAND:
 END

ICK00002I ICKDSF PROCESSING COMPLETE. MAXIMUM CONDITION CODE WAS 0

* Note that CP does not yet know the label was changed:
 -> q v 3730
DASD 3730 ON DASD 3730 R/W LX4PG1 SUBCHANNEL = 0047
Ready; T=0.02/0.04 13:41:43

* Once we detach it, CP will recognize the label change
 -> det 3730
DASD 3730 DETACHED
Ready; T=0.01/0.01 13:47:57

Ready; T=0.01/0.01 13:48:02
Now we need to tell CP about this new space by adding it to the CPOWN list:

```
-> q cpown
Slot  Vol-ID  Rdev  Type   Status
 1  LI4RES  158D  Own    Online and attached
 2  LI4W01  15CE  Own    Online and attached
 3  LI4W02  158E  Own    Online and attached
 4  ------  ----  -----  Reserved
 5  ------  ----  -----  Reserved
 6  ------  ----  -----  Reserved
Ready; T=0.01/0.01 13:48:55
```

* Slot 4 is available, so we can define it there:

```
-> define cpown slot 4 li4pag
Ready; T=0.01/0.01 13:49:17
```

* Now we attach to “system” and verify the status:

```
-> att 3730 system
DASD 3730 ATTACHED TO SYSTEM LI4PAG
Ready; T=0.01/0.01 13:49:30
```

```
-> q cpown
Slot  Vol-ID  Rdev  Type   Status
 1  LI4RES  158D  Own    Online and attached
 2  LI4W01  15CE  Own    Online and attached
 3  LI4W02  158E  Own    Online and attached
 4  LI4PAG  3730  Own    Online and attached
 5  ------  ----  -----  Reserved
 6  ------  ----  -----  Reserved
Ready; T=0.01/0.01 13:49:33
```

* Finally, we check that the page space is now available:

```
-> q alloc map
EXTENT EXTENT % ALLOCATION
VOLID  RDEV  START END TOTAL IN USE HIGH USED TYPE
------- ----- ----- ----- ----- ------- ------ ---- --------------
LI4RES 158D   1  20  20   1  2  5% DRCT ACTIVE
 29    78    50   0   0  0% TDISK
 79   256  32040 19173 31680 59% SPOOL
 257   390  24120   538   568  2% PAGE
LI4PAG 3730   1 3338 600840   0   0  0% PAGE
Ready; T=0.01/0.01 13:49:52
```
Making the dynamic change permanent

In order for the above change to stay in effect across IPLs, you must change the following line in the SYSTEM CONFIG file:

```
CP_Owned   Slot   4  RESERVED to CP_Owned   Slot   4  LI4PAG
```

To accomplish this, execute the following commands:

- `cprelease a`
- `link * cf1 cf1 mr`
- `access cf1 e`
- `xedit system config e`
- Make the change to slot 4 and file
- `detach cf1`
- `cpaccess maint cf1 a sr`

Tip: When adding spool space dynamically, it is safer to update the SYSTEM CONFIG before you start. This way, if you have an outage and files got created in the new spool area, the warm and checkpoint areas will now have pointers to these files and will find them on the new spool area at the next IPL.

Optional steps

When your system is installed, the CP-owned volumes are defined to the MAINT user ID as full pack minidisks, at virtual addresses 123, 124, and so on. The advantage is that you do not have to attach these volumes, because you can already work with them at these virtual addresses. You can do the same with your new page volume by adding this line to MAINT's directory:

```
MDISK 126 3390 000 END LI4PAG MR
```

Also, there are some placeholder user IDs for CP areas, and for cylinder zero of CP-owned volumes. If you are running with DIRMAINT, they are no longer required, as DIRMAINT now detects these areas. If you wish to define your new volume to these user IDs, add the following line to the $ALLOC$ user ID:

```
MDISK A04 3390 000 001 LI4PAG R
```

And add the following line to the $PAGE$ user ID:

```
MDISK A04 3390 001 END LI4PAG R
```
Sample tools

This appendix provides some sample EXECs that can complement Performance Toolkit for VM.

Attention: This code is delivered as is. Use or adapt it as you see fit.
Sample monitoring EXECs

The following EXECs are included for your convenience:

- The PAG EXEC, which adds up and displays how many pages reside in XSTORE and DASD, similar to what can be derived by Performance Toolkit for VM on the UPAGE subcommand (option 22).
- The SHARE EXEC, which adds the user's relative and absolute share, and derives how much CPU the default share of 100 is currently worth.

Attention: In general, running these EXECs requires privilege class E.

The PAG EXEC

The PAG EXEC shown in Example D-1 uses the output of the INDICATE PAGING ALL command to add up auxiliary storage pages.

Example: D-1 PAG EXEC to count pages on XSTORE and DASD

```/*+----------------------------------------------------------------+
   | Count page occupancy in XSTORE and DASD                        |
   | SG24-6059                                           2004-03-25 |
   +----------------------------------------------------------------+/*/

"pipe cp ind pag all|", /* Get info from INDicate cmd */
   "split|", /* Split to get single records */
   "locate //|", /* Locate lines with pages */
   "change // //|", /* Separate XSTORE from DASD */
   "stem pag." /* Load data in stem variable */

xstore=0;dasd=0 /* Initialize totals */

Do i=1 to pag.0 /* Loop through each record */
   xst=Word(pag.i,1) /* Get XSTORE count */
   das=Word(pag.i,2) /* Get DASD count */
   xstore=xstore+xst /* Update XSTORE total */
   dasd=dasd+das /* Update DASD total */

End /* Display results */

Say pag.0 "users;" xstore "pages on XSTORE;" dasd "pages on DASD".
```

Example D-2 shows sample output when invoking the PAG EXEC.

Example: D-2 Running the PAG EXEC

```pag
34 users; 109838 pages on XSTORE; 158173 pages on DASD.
Ready; T=0.01/0.01 14:21:42
```
The SHARE EXEC

The SHARE EXEC shown in Example D-3 uses the output of the QUERY NAMES command to query each user's relative or absolute share setting, and derive the current CPU allocation for the default share of 100.

Example: D-3 SHARE EXEC to evaluate CPU value for user with default share of 100

/*+--+
| Add up relative and absolute shares, and calculate the CPU % |
| for a default relative share of 100 |
| SG24-6059 2004-03-25 |
+--+*/

"pipe cp q n |", /* Get the userids */
 "split /,|", /* Make them one per line */
 "nfind VSM |", /* Remove VSM (duplicate) */
 "specs /Q SHARE/ 1 w1 nw |", /* Build command */
 "cp |", /* Give to CP */
 "find USER |", /* Lines beginning with 'USER' */
 "specs 34-* 1 |", /* Get the share value */
 "stem share." /* Load data in stem variable */
Say share.0 "users." /* Show how many users */
TotPct=0;TotRel=0;Abs=0;Rel=0 /* Initialize counters */
Do i=1 To share.0 /* Start loop */
 If Datatype(share.i,"N") Then Do /* If numeric, then relative */
 TotRel=TotRel+share.i /* Add to total relative */
 Rel=Rel+1 /* Increment Relative users */
 End
 Else Do /* Not numeric, then absolute */
 Parse var share.i pct "%" /* Get number portion */
 TotPct=TotPct+pct /* Add to total absolute */
 Abs=Abs+1 /* Increment Absolute users */
 End
 TotPct=TotPct+1 /* One line per processor */
 "pipe cp q proc |", /* Check how many real CPUs */
 "count lines |", /* Store in variable cpu */
 "var cpu" /* Show results */
Say "Total Absolute =" TotPct"% ("Abs "users)"
Say "Remainder =" 100-TotPct"%"
Say "Total Relative =" TotRel " ("Rel "users)"
Say "Relative 100 =" Strip(Format((100-TotPct)*(100/TotRel),2,3)"%")
Say "Real Processors=" cpu
Example D-4 shows sample output when invoking the SHARE EXEC.

Example: D-4 Running the SHARE EXEC

```
share
34 users.
Total Absolute = 21% (7 users)
Remainder     = 79%
Total Relative = 11300  (27 users)
Relative 100 = 0.699%
Real Processors= 2
Ready; T=0.01/0.01 14:27:46
```

Attention: The number of processors is shown in the output because the CPU percentage that is calculated applies to each CPU. There is no provision for taking LIMITSOFT or LIMITHARD options into consideration.

Sample VMCX front end

The PERF EXEC shown in Example 10-1 provides a PF key driven front end to the Performance Toolkit for VM VMCX MODULE.

Example 10-1 The PERF EXEC

```
/*+----------------------------------------------------------------+
 | Performance Toolkit for VM - front end EXEC to VMCX MODULE      |
 | SG24-6059                                           2004-03-25 |
 +----------------------------------------------------------------+*/
Arg in     /* Optional monitor menu sel. */
H="1DE8"x  /* Terminal highlight "on" */
L="1D60"x  /* Terminal highlight "off" */
"GLOBALV SELECT PERFTK GET PERFSVM"  /* Get optional name of server */
If perfsvm="" Then perfsvm="PERFSVM"  /* If none, set to default */
"pipe cp q pf | stem pf."  /* Save all current PFKs */
"CP SET PF3  IMMED QUIT"  /* Set to mimic PerfTK PFKs */
"CP SET PF4  IMMED TOP"
"CP SET PF5  IMMED BOT"
"CP SET PF7  IMMED BACK"
"CP SET PF8  IMMED FORW"
"CP SET PF10 IMMED LEFT"
"CP SET PF11 IMMED RIGHT"
"CP SET PF12 IMMED MENU"
"VMFCLEAR"  /* Clear and show info */
Say " About to establish"H"VMCF"L"connection with"H||perfsvm L
Say
Say " During this VMCF session, the following PF keys are in effect:"
Say
```

The EXEC does the following:

- Saves your current PF key settings
- Sets the PF keys to be similar to running in monitor mode on the PERFSVM user ID
- Displays the PF key settings
- Invokes VMCX with an optional argument
- Restores the original PF key settings when done

Note: The user ID that invokes this EXEC is assumed to have been defined previously in the FCONRMT AUTHORIZ file, and the FC MONcoll Vmcf ON command must be in effect.

Example D-5 shows sample output from invoking the PERF EXEC.

Example: D-5 Running the PERF EXEC

About to establish VMCF connection with PERFSVM

During this VMCF session, the following PF keys are in effect:

4=TOP 5=BOT 7=BACK 8=FORW 10=LEFT 11=RIGHT 12=MENU 3=QUIT

Note: Scrolling PF keys are not in effect on all displays.

Press Enter to continue...

Following selection will be executed: CPU
After pressing Enter, the monitor CPU screen would be displayed via the VMCX interface. To terminate the VMCX connection, press the PF3 key or enter QUIT and clear the screen.

Tip: To bypass the need to clear the screen when the PF3 (QUIT) key is pressed, use the `CP TERM MORE 0 0` command.
Related publications

The publications that are listed in this section are considered particularly suitable for a more detailed discussion of the topics covered in this redbook.

IBM Redbooks

For information about ordering these publications, see “How to get IBM Redbooks” on page 236. Note that some of the documents that are referenced here may be available in softcopy only.

- *Linux for S/390*, SG24-4987
- *Linux on IBM @server zSeries and S/390: Distributions*, SG24-6264
- *Linux on IBM @server zSeries and S/390: ISP/ASP Solutions*, SG24-6299
- *Linux on IBM @server zSeries and S/390: Performance Measurement and Tuning*, SG24-6926

Other publications

These publications are also relevant as further information sources:

- *z/VM: CP Command and Utility Reference*, SC24-6008
- *Linux for zSeries and S/390 Device Drivers and Installation Commands*, LNUX-1303
- *z/VM: Performance*, SC24-5999
- *z/VM: Performance Toolkit*, SC24-6062
- *z/VM: CP Planning and Administration*, SC24-6043
- *VM/ESA Connectivity Planning, Administration, and Operation*, SC24-5756
Online resources

These Web sites and URLs are also relevant as further information sources:

- IBM developerWorks Linux for zSeries and S/390 home page

- RMF PM download page

- Real Time Monitor commands and corresponding Performance Toolkit for VM commands

- VMPRF reports and corresponding Performance Toolkit for VM reports

How to get IBM Redbooks

You can search for, view, and download Redbooks, Redpapers, Hints and Tips, draft publications, and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
Abbreviations and acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPC</td>
<td>advanced program-to-program communication</td>
</tr>
<tr>
<td>AVS</td>
<td>APPC/VM VTAM support</td>
</tr>
<tr>
<td>CCW</td>
<td>channel command word</td>
</tr>
<tr>
<td>CEC</td>
<td>central electronic complex</td>
</tr>
<tr>
<td>CMS</td>
<td>Conversational Monitor System</td>
</tr>
<tr>
<td>CP</td>
<td>control program</td>
</tr>
<tr>
<td>DASD</td>
<td>direct access storage device</td>
</tr>
<tr>
<td>DDS</td>
<td>Distributed Data Server</td>
</tr>
<tr>
<td>ESM</td>
<td>external security manager</td>
</tr>
<tr>
<td>I/O</td>
<td>input/output</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>ITSO</td>
<td>International Technical Support Organization</td>
</tr>
<tr>
<td>IUCV</td>
<td>inter-user communication vehicle</td>
</tr>
<tr>
<td>LPAR</td>
<td>logical partition</td>
</tr>
<tr>
<td>MDC</td>
<td>minidisk cache</td>
</tr>
<tr>
<td>NSS</td>
<td>named saved system</td>
</tr>
<tr>
<td>PID</td>
<td>process identifier</td>
</tr>
<tr>
<td>PRF</td>
<td>Performance Reporting Facility</td>
</tr>
<tr>
<td>RMF</td>
<td>resource measurement facility</td>
</tr>
<tr>
<td>RTM</td>
<td>Real Time Monitor</td>
</tr>
<tr>
<td>SFS</td>
<td>shared file system</td>
</tr>
<tr>
<td>SRM</td>
<td>system resources manager</td>
</tr>
<tr>
<td>SSID</td>
<td>subsystem identifier</td>
</tr>
<tr>
<td>TSAF</td>
<td>transparent services access facility</td>
</tr>
<tr>
<td>VDISK</td>
<td>virtual disk</td>
</tr>
<tr>
<td>VMCF</td>
<td>virtual machine communication facility</td>
</tr>
</tbody>
</table>
Index

Symbols

- **MONITOR** 2, 206

Numerics

- 4VMPTK40 66
- 5VMPTK10 194

A

- add page space 224
 - making the change permanent 228
- apostrophe (’) 29
- APPC 187
- APPC/VM interface 91–94
 - alternate resource name 92
 - for a local system 91
 - for remote systems 93
 - resource name 91
 - Store and Forward server 93
- APPLDATA 200
- asterisk (*) 179
 - in menu definitions 9
- AVERAGE command 12, 114

B

- basic mode
 - command search order 6
- benchmark data 57
- benchmark log file screen 57
- benchmarks 16
- by time logs 15

C

- CACHEX 130
- CCW 128
- CHANNEL command 126
- context-sensitive help 10–11
- correlation coefficient 20, 58
- CP-owned I/O device data screen 38
- CPU command 26, 145, 170
- CPU load 20, 26–27
- CPU utilization, measuring 41
- CTLUNIT 129
- CURRENT command 12, 114
- current software level 106

D

- data collection
 - frequency 21
- DDS 148
 - browser interface 154
 - configuring 150
 - installation 148–149
 - operation 148
 - port number 150
 - starting 150
- DELETE command 19
- Detailed data files 15
- DEVCONF command 105, 116
- DEVICE command 36, 116–117, 131, 133–134
- DEVICE CPOWNED command 38, 105, 119
- DEVICE SYSOWN 30

F

- FCON 3
- FCONAPPCC 92
 - FCXSYSYM 93
- FCONRMT AUTHORIZ 86, 90, 94, 101
- FCONRMT PASSFILE 100
- FCONRMT SYSTEMS 87, 90, 94
- FCXCTRL 69
 - ACTMSG 69
 - BENCHMRK 16, 69
 - COLOR 69
 - DEFLOG 70
 - DEFSCRN 70
 - FORCEUSR 72
 - GDDMSPEC 70
 - LIMIT 18, 72
 - MAINTID 72
 - MAXREC 72
 - MINPATHS 73
 - MONCACHE 73
 - MONCOLL 71, 85
 - CPMON 14, 71
LPAR data screen 32
LPAR weight 145
LPARLOG 142
LXCPU 48
LXFILSYS 47
LXMEM 49, 158
LXNETWRK 47

M
MDC 164
See minidisk cache
measuring CPU utilization 41
measuring I/O activity 41
memory
required for Linux kernel 159
memory usage
analyzing inside Linux guests 158–159
comparing resource usage 157–158
Linux guest 155
menu
navigating methods 9
MENU command 105
minidisk 38
minidisk cache 37, 126, 161
minidisk swap partition
multiple 166–167
single 162–163
MONCOLL command
to reset data values 12
MONDCSS 207
MONITOR 8, 104, 206
ENABLE 208
EVENT 208
SAMPLE 208
START 209
monitor data 208
analyzing 14
configuration data 209
domains 209
application data 210
I/O 210
monitor 209
processor 209
scheduler 209
seek 210
storage 209
system 209
user 209

N
navigation
scrolling with keys 9
using option number 9
using sensitive select 9
using subcommand name 9
NEXTSAMP 188–189
NSS 33

O
overhead 20

P
PAG EXEC 230
paging 159–169
monitoring Linux guest paging 162
PERF EXEC 232
PERFKIT 2
basic mode 5
BATCH 198
command syntax for 4
module 3
starting Performance Toolkit for VM 4
VMPRF parameter 198
PERFLOG history files 15
performance screen selection 25
Performance Toolkit for VM
APPC/VM interface 91–94
basic mode 4–7
benchmark data analysis 16–17
control files 68–81
correlation coefficient 58
data collection for Linux guests 88
data reports 24–59
defining 2–3
displaying current and average data 11–12
general display 179
help facility 9–11
 context-sensitive help 10–11
help mode 4
history files 55–56, 180–181
history performance analysis 13–16
 extended trend files 16
 PERFLOG history files 15
 simple data files 15
I/O data reporting 35–39
installation 66–68
monitor mode 8–9
navigation to a specific screen 4
operation 83–84
overhead 20–21
redisplay facility 6–7
 scrolling commands 7
remote access and monitoring 85–87
remote monitoring 90
sorting reported data 12–13
starting 4–5
tailoring 84–85
threshold monitoring 17–19
user data reporting 40
user-defined screens 60–62, 70
variable correlation coefficients 20
Web interface 63, 95–101, 187
when to use 20–21
PERFSVM 66
 directory entry 67
 FL510 version 196
 PROFILE EXEC 81
PF keys for scrolling screen 9
port choice 99
PRF support 198
PRF trend files 16
processor utilization 170–175
PROFILE TCPIP 99
ps -ef command 175
real-time data
 analyzing 14
Red Hat Linux user class 42
Redbooks Web site 236
 Contact us xiv
REDHIST command 55
REDISP command 6
RETURN command 105
RMF
 DDS browser interface 154
RTM 2
 DISPLAY
 GENERAL 178
 I/O INTERVAL 185
 IDLE 185
 SLOG 180
 XLOG 180
 functions 178
 INTERVAL PRINT 187
 ORDER 183
 QUERY
 ENVIRON 182
 SET
 PRINT ON 187
 system log display 180
 RTM environment display 182
 RTM I/O display 185
 RTM idle user display 185
 RTM user display 183
S
SCOMDIR NAMES file 92
screen
 FCX001 19
 FCX100 26, 170
 FCX102 113–114
 FCX103 28, 107
 FCX107 127
 FCX108 12, 36, 117, 131–132, 186
 FCX109 38, 119
 FCX110 37, 118, 134
 FCX112 41, 43, 184
 FCX113 122
 FCX115 44, 157, 165, 172
 FCX119 30, 121
 FCX120 120
 FCX121 31, 120
 FCX124 8, 50

Q
QUERY MONITOR command 210
QUERY NAMES command 231
question mark character (?) 4
QUICKDISP option 110

R
Real Time Monitor
 See RTM
FCX126 32
FCX128 51
FCX131 116
FCX133 33
FCX147 123
FCX148 62, 179
FCX149 115
FCX154 109
FCX160 55
FCX162 58
FCX173 57
FCX176 129
FCX177 130
FCX180 34, 106, 183
FCX193 94
FCX194 59
FCX195 56, 181
FCX203 137
FCX204 138
FCX205 139
FCX213 61
FCX223 46
FCX224 47
FCX229 49, 159
FCX230 48
FCX238 185
FCX240 137
FCX242 200
FCX243 201
FCX244 202
FCX245 203
FCX248 204

 scrolling the screen 9
 SET QUICKDSP command 110
 SET SRM command 109
 SHARE
 ABSOLUTE 113
 RELATIVE 111
 SHARE EXEC 230–231
 SHARE settings 111
 shared segment screen 33
 SKIPSAMP command 188
 syntax 191
 SORT command 13, 184
 sort ordering 12
 SPOOL command 30, 105, 119, 121
 spool file 121
 spool file overview display 31
 spool file usage screen 30–31

 STORAGE command 27, 31, 105, 107
 storage utilization screen 27–29
 subcommand syntax 5
 summary data files 15
 SUSE Linux user class 42
 swap partition 160
 SYSCONF command 34, 105, 182
 SYSSET command 105, 109, 115
 SYSSTA command 62
 SYSSUMMLG command 189
 SYSTEM command 105, 113
 system configuration screen 34

 T
 TCPACTLG 138
 TCPDATLG 139
 TCPMENU 137
 TERM 234
 threshold monitoring
 performance values 18
 thresholds 17, 72
 TRNDSCAN command 188, 190
 syntax 191

 U
 UDEFMENU command 61
 UPAGE command 105, 122, 230
 USER 41, 123, 157, 162, 184
 user class 42
 resource usage 42
 USER command 111
 user data screens
 defining 61
 user resource usage screen 41, 43
 user-defined performance screen 62
 user-defined screen menu 61

 V
 variable correlation coefficients 20, 58
 VDISKS command 105, 123
 virtual disk (VDISK) 123, 126
 as Linux swap partition 160
 Virtual Machine Communication Facility
 See VMCF
 VM Real Time Monitor 2
 See also RTM
 VMCF 187
VMCX 233
VMPRF 2, 187–191, 198
VSWITCH 137

W
Web interface 95–101
 authentication 100–101
 enable 99
 line graphics 98
 logon page 96
 main selection menu 97
 port number 99
 welcome page 95
wget command 149
working set size 156

Z
z/VM
 system configuration 103–123
This IBM Redbook discusses Performance Toolkit for VM, a performance monitoring and analysis tool for z/VM. Derived from the earlier FCON/ESA product, Performance Toolkit for VM enables system administrators to collect and analyze VM performance data. Both real-time and history data can be processed by Performance Toolkit for VM, and it provides most of the functions that are available in Real Time Monitor (TRTM) and Performance Reporting Facility (PRF).

In this book, we present an overview of the functions and features of Performance Toolkit for VM. We show how to navigate through its major monitoring screens and configure it. We also describe configuration for monitoring remote z/VM systems. Using examples, we illustrate how to monitor your z/VM system to identify potential performance problems. Major performance factors for running Linux guests under z/VM are discussed.