
ibm.com/redbooks

AIX 5L Performance
Tools Handbook

Budi Darmawan
Charles Kamers
Hennie Pienaar

Janet Shiu

Efficient use of AIX 5L performance
monitoring and tuning tools

In-depth understanding of AIX
system performance issues

Statistical report
interpretation explained

Front cover

AIX 5L Performance Tools Handbook

August 2003

International Technical Support Organization

SG24-6039-01

© Copyright International Business Machines Corporation 2001, 2003. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

Second Edition (August 2003)

This edition applies to Version 5, Release 2 of AIX 5L.

Note: Before using this information and the product it supports, read the information in
“Notices” on page xxi.

Contents

Figures . xvii

Tables . xix

Notices . xxi
Trademarks . xxii

Preface . xxiii
The team that wrote this redbook. xxiv
Become a published author . xxv
Comments welcome. xxv

Summary of changes .xxvii
August 2003, Second Edition .xxvii

Part 1. AIX 5L performance tools. 1

Chapter 1. Introduction to AIX performance monitoring and tuning 3
1.1 Performance expectation . 4
1.2 CPU performance . 5

1.2.1 Initial advice . 5
1.2.2 Processes and threads . 6
1.2.3 Scheduling . 7
1.2.4 SMP performance . 9

1.3 Memory performance . 12
1.3.1 Initial advice . 12
1.3.2 Memory segments. 13
1.3.3 Paging mechanism . 14
1.3.4 Memory load control mechanism . 15
1.3.5 Paging space allocation policies . 15
1.3.6 Memory leaks . 17
1.3.7 Shared memory. 17

1.4 Disk I/O performance . 18
1.4.1 Initial advice . 18
1.4.2 Disk subsystem design approach . 19
1.4.3 Bandwidth-related performance considerations 19
1.4.4 Disk design . 20
1.4.5 Logical Volume Manager concepts . 24

1.5 Network performance . 31

© Copyright IBM Corp. 2001, 2003. All rights reserved. iii

1.5.1 Initial advice . 31
1.5.2 TCP/IP protocols . 33
1.5.3 Network tunables . 34

1.6 Kernel tunables . 43
1.6.1 Tunables commands. 43
1.6.2 Tunable files . 45

1.7 The /proc file system . 46

Chapter 2. Getting started . 53
2.1 Tools and filesets . 54
2.2 Tools by resource matrix . 57
2.3 Performance tuning approach . 60

2.3.1 CPU bound system . 60
2.3.2 Memory bound system . 62
2.3.3 Disk I/O bound system . 63
2.3.4 Network I/O bound system . 65

Part 2. Multi-resource monitoring and tuning tools. 67

Chapter 3. The fdpr command . 71
3.1 fdpr . 72

3.1.1 Information about measurement and sampling. 75
3.2 Examples for fdpr . 76

Chapter 4. The iostat command . 81
4.1 iostat . 82

4.1.1 Information about measurement and sampling. 83
4.2 Examples for iostat . 83

4.2.1 System throughput report . 84
4.2.2 tty and CPU utilization report . 88
4.2.3 Disk utilization report . 89
4.2.4 Disk utilization report for MPIO . 90
4.2.5 Adapter throughput report . 91

Chapter 5. The netpmon command . 93
5.1 netpmon . 94

5.1.1 Information about measurement and sampling. 95
5.2 Examples for netpmon . 96

5.2.1 Process statistics . 99
5.2.2 FLIH and SLIH CPU statistics . 101
5.2.3 TCP socket call statistics . 102
5.2.4 Detailed statistics . 103

Chapter 6. Performance Diagnostic Tool (PDT) . 105

iv AIX 5L Performance Tools Handbook

6.1 PDT . 106
6.1.1 Information about measurement and sampling. 106

6.2 Examples for PDT . 106
6.2.1 Editing the configuration files . 108
6.2.2 Using reports generated by PDT. 111
6.2.3 Creating a PDT report manually . 114

Chapter 7. The perfpmr command . 115
7.1 perfpmr . 116

7.1.1 Information about measurement and sampling. 116
7.1.2 Building and submitting a test case. 120

7.2 Examples for perfpmr . 124

Chapter 8. The ps command . 127
8.1 ps. 128

8.1.1 Information about measurement and sampling. 130
8.2 Examples for ps. 131

8.2.1 Displaying the top 10 CPU-consuming processes 131
8.2.2 Displaying the top 10 memory-consuming processes. 132
8.2.3 Displaying the processes in order of being penalized. 133
8.2.4 Displaying the processes in order of priority 134
8.2.5 Displaying the processes in order of nice value 134
8.2.6 Displaying the processes in order of real memory use 135
8.2.7 Displaying the processes in order of I/O . 136
8.2.8 Displaying WLM classes . 137
8.2.9 Viewing threads. 137

Chapter 9. The sar command . 139
9.1 sar . 140

9.1.1 Information about measurement and sampling. 142
9.2 Examples for sar . 142

9.2.1 Monitoring one CPU at a time . 142
9.2.2 Collecting statistics by using cron . 146
9.2.3 Displaying access time system routines . 149
9.2.4 Monitoring buffer activity for transfers, access, and caching 150
9.2.5 Monitoring system calls . 151
9.2.6 Monitoring activity for each block device. 153
9.2.7 Monitoring kernel process activity . 154
9.2.8 Monitoring the message and semaphore activities 155
9.2.9 Monitoring the kernel scheduling queue statistics. 156
9.2.10 Monitoring the paging statistics . 157
9.2.11 Monitoring the processor utilization. 158
9.2.12 Monitoring tty device activity . 160
9.2.13 Monitoring kernel tables . 160

 Contents v

9.2.14 Monitoring system context switching activity. 162

Chapter 10. The schedo and schedtune commands 165
10.1 schedo. 166

10.1.1 Recommendations and precautions . 167
10.2 Examples for schedo. 168

10.2.1 Displaying current settings . 168
10.2.2 Tuning CPU parameters . 169
10.2.3 Tuning memory parameters . 171

10.3 schedtune . 177

Chapter 11. The topas command . 179
11.1 topas . 180

11.1.1 Information about measurement and sampling 181
11.2 Examples for topas . 181

11.2.1 Common uses of the topas command . 181
11.2.2 Using subcommands. 185
11.2.3 Monitoring CPU usage . 187
11.2.4 Monitoring disk problem . 189

Chapter 12. The truss command . 191
12.1 truss. 192

12.1.1 Information about measurement and sampling 197
12.2 Examples for truss. 197

12.2.1 Using truss . 197
12.2.2 Using the summary output . 198
12.2.3 Monitoring running processes . 200
12.2.4 Analyzing file descriptor I/O . 202
12.2.5 Checking program parameters . 205
12.2.6 Checking program environment variables. 205
12.2.7 Tracking child processes. 206
12.2.8 Checking user library call . 209

Chapter 13. The vmstat command . 211
13.1 vmstat . 212

13.1.1 Information about measurement and sampling 213
13.2 Examples for vmstat . 213

13.2.1 Virtual memory activity . 213
13.2.2 Forks report. 219
13.2.3 Interrupts report. 220
13.2.4 VMM statisics report . 221
13.2.5 Sum structure report . 224
13.2.6 I/O report . 226

vi AIX 5L Performance Tools Handbook

Chapter 14. The vmo, ioo, and vmtune commands 229
14.1 vmo . 230

14.1.1 Information about measurement and sampling 231
14.1.2 Recommendations and precautions for vmo. 235

14.2 Examples for vmo . 235
14.3 ioo . 239

14.3.1 Information about measurement and sampling 241
14.3.2 Recommendations and precautions . 246

14.4 Examples for ioo . 246
14.4.1 Displaying I/O setting . 247
14.4.2 Changing tunable values. 249
14.4.3 Logical volume striping . 249
14.4.4 Increasing write activity throughput . 251

14.5 vmtune. 251

Chapter 15. Kernel tunables commands . 255
15.1 tuncheck . 256

15.1.1 Examples for tuncheck . 256
15.2 tunrestore . 258

15.2.1 Examples for tunrestore . 259
15.3 tunsave . 260

15.3.1 Examples for tunsave . 261
15.4 tundefault. 264

15.4.1 Examples for tundefault . 264
15.5 tunchange . 265

15.5.1 Examples for tunchange . 266

Chapter 16. Process-related commands . 267
16.1 procwdx . 268
16.2 procfiles . 268
16.3 procflags . 270
16.4 proccred . 270
16.5 procmap . 271
16.6 procldd. 272
16.7 procsig. 273
16.8 procstack . 274
16.9 procstop. 275
16.10 procrun . 275
16.11 procwait . 276
16.12 proctree . 276

Part 3. CPU-related performance tools . 279

Chapter 17. The alstat and emstat commands . 281

 Contents vii

17.1 Alignment and emulation exception . 282
17.2 alstat . 283

17.2.1 Information about measurement and sampling 283
17.2.2 Examples for alstat . 283
17.2.3 Detecting and resolving alignment problems 285

17.3 emstat . 285
17.3.1 Information about measurement and sampling 286
17.3.2 Examples for emstat . 286
17.3.3 Detecting and resolving emulation problems 288

Chapter 18. The bindintcpu and bindprocessor commands. 289
18.1 bindintcpu . 290

18.1.1 Examples for bindintcpu . 290
18.2 bindprocessor . 292

18.2.1 Information about measurement and sampling 292
18.2.2 Examples for bindprocessor . 293

Chapter 19. The gprof, pprof, prof, and tprof commands 297
19.1 CPU profiling tools. 298

19.1.1 Comparison of tprof versus prof and gprof 299
19.2 gprof . 300

19.2.1 Information about measurement and sampling 301
19.2.2 Profiling with the fork and exec subroutines 301
19.2.3 Examples for gprof . 302

19.3 pprof . 309
19.3.1 Information about measurement and sampling 309
19.3.2 Examples for pprof . 311

19.4 prof . 320
19.4.1 Information about measurement and sampling 321
19.4.2 Examples for prof . 322

19.5 tprof . 324
19.5.1 Information about measurement and sampling 326
19.5.2 Examples for tprof . 329

Chapter 20. The nice and renice commands . 349
20.1 nice . 350

20.1.1 Information about measurement and sampling 350
20.2 Examples for nice . 351

20.2.1 Reducing the priority of a process. 352
20.2.2 Improving the priority of a process . 352

20.3 renice. 352
20.3.1 Information about measurement and sampling 353

20.4 Examples for renice. 353

viii AIX 5L Performance Tools Handbook

Chapter 21. The time and timex commands . 355
21.1 time . 356

21.1.1 Information about measurement and sampling 356
21.1.2 Examples for time . 356

21.2 timex . 357
21.2.1 Information about measurement and sampling 357
21.2.2 Examples for timex . 358

Part 4. Memory-related performance tools . 363

Chapter 22. The ipcs command . 365
22.1 ipcs . 366

22.1.1 Information about measurement and sampling 366
22.1.2 Examples for ipcs . 366

Chapter 23. The rmss command . 379
23.1 rmss. 380

23.1.1 Information about measurement and sampling 381
23.1.2 Recommendations and precautions . 382
23.1.3 Examples for rmss . 382

Chapter 24. The svmon command . 387
24.1 svmon . 388

24.1.1 Information about measurement and sampling 391
24.1.2 Examples for svmon . 393

Part 5. Disk I/O–related performance tools. 455

Chapter 25. The filemon command . 457
25.1 filemon. 458

25.1.1 Information about measurement and sampling 459
25.1.2 Examples for filemon. 462

Chapter 26. The fileplace command . 479
26.1 fileplace . 480

26.1.1 Information about measurement and sampling 480
26.1.2 Examples for fileplace . 481
26.1.3 Analyzing the physical report . 483

Chapter 27. The lslv, lspv, and lsvg commands . 501
27.1 lslv . 502
27.2 lspv . 502
27.3 lsvg . 503
27.4 Examples for lslv, lspv, and lsvg . 505

27.4.1 Using lslv . 512

 Contents ix

27.4.2 Using lspv . 513
27.4.3 Using lsvg . 515
27.4.4 Acquiring more disk information . 516

Chapter 28. The lvmstat command . 519
28.1 lvmstat . 520

28.1.1 Information about measurement and sampling 520
28.1.2 Examples for lvmstat. 521

Part 6. Network-related performance tools. 531

Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands. . . 539
29.1 atmstat. 540

29.1.1 Information about measurement and sampling 540
29.1.2 Examples for atmstat . 541

29.2 entstat . 546
29.2.1 Information about measurement and sampling 547
29.2.2 Examples for entstat . 548

29.3 estat. 552
29.3.1 Information about measurement and sampling 552
29.3.2 Examples for estat . 552

29.4 fddistat. 555
29.4.1 Information about measurement and sampling 556
29.4.2 Examples for fddistat. 556

29.5 tokstat . 560
29.5.1 Information about measurement and sampling 561
29.5.2 Examples for tokstat . 562

Chapter 30. TCP/IP packet tracing tools . 567
30.1 Network packet tracing tools . 568
30.2 iptrace . 569

30.2.1 Information about measurement and sampling 571
30.3 ipreport . 572

30.3.1 Information about measurement and sampling 573
30.4 ipfilter . 573

30.4.1 Information about measurement and sampling 574
30.4.2 Protocols and header type options . 574

30.5 Examples for iptrace, ipreport, and ipfilter. 574
30.5.1 TCP packets . 575
30.5.2 UDP packets . 576
30.5.3 UDP domain name server requests and responses 577

30.6 Examples for ipreport . 578
30.6.1 Using ipreport with tcpdump . 578
30.6.2 Using ipreport with iptrace. 579

x AIX 5L Performance Tools Handbook

30.7 Examples for ipfilter . 582
30.7.1 Tracing TCP/IP traffic . 583
30.7.2 NFS tracing . 584
30.7.3 TCP tracing . 585
30.7.4 UDP tracing. 586
30.7.5 ICMP tracing . 586
30.7.6 IPX tracing. 586
30.7.7 ALL protocol tracing . 587

30.8 tcpdump. 587
30.8.1 Information about measurement and sampling 589

30.9 Examples for tcpdump. 594
30.10 trpt . 612

30.10.1 Information about measurement and sampling 613
30.11 Examples for trpt . 613

30.11.1 Displaying all stored trace records . 614
30.11.2 Displaying source and destination addresses 615
30.11.3 Displaying packet-sequencing information 616
30.11.4 Displaying timers at each point in the trace 616
30.11.5 Printing trace records for a single protocol control block 617

Chapter 31. The netstat command. 619
31.1 netstat . 620

31.1.1 Information about measurement and sampling 622
31.1.2 Examples for netstat . 624

Chapter 32. The nfso command . 645
32.1 nfso . 646

32.1.1 Information about measurement and sampling 648
32.2 Examples for nfso . 648

32.2.1 Listing all of the tunables and their current values 648
32.2.2 Displaying characteristics of all tunables 649
32.2.3 Displaying and changing a tunable with the nfso command 651
32.2.4 Resetting a tunable value to its default . 652
32.2.5 Displaying help information about a tunable 652
32.2.6 Permanently changing an nfso tunable . 652
32.2.7 Changing a tunable after reboot . 653

Chapter 33. The nfsstat command. 655
33.1 nfsstat . 656

33.1.1 Information about measurement and sampling 656
33.2 Examples for nfsstat . 657

33.2.1 NFS server RPC statistics. 657
33.2.2 NFS server NFS statistics . 659
33.2.3 NFS client RPC statistics . 660

 Contents xi

33.2.4 NFS client NFS statistics. 661
33.2.5 Statistics on mounted file systems . 662

Chapter 34. The no command . 665
34.1 no . 666
34.2 Examples for no . 667

Part 7. Tracing performance problems . 675

Chapter 35. The curt command . 677
35.1 curt . 678

35.1.1 Information about measurement and sampling 679
35.2 Examples for curt . 680

Chapter 36. The gennames, genld, genkld, genkex, and gensyms
commands . 703

36.1 Offline generation tools . 704
36.2 gennames . 704

36.2.1 Information about measurement and sampling 705
36.2.2 Examples for gennames . 705

36.3 genld . 710
36.3.1 Information about measurement and sampling 710
36.3.2 Examples for genld . 710

36.4 genkld . 712
36.4.1 Information about measurement and sampling 712
36.4.2 Examples for genkld . 712

36.5 genkex. 713
36.5.1 Information about measurement and sampling 713
36.5.2 Examples for genkex. 713

36.6 gensyms . 715
36.6.1 Information about measurement and sampling 715
36.6.2 Examples for gensyms . 715

Chapter 37. The locktrace command. 719
37.1 locktrace . 720

37.1.1 Information about measurement and sampling 720
37.1.2 Examples for locktrace . 721

Chapter 38. The stripnm command . 723
38.1 stripnm. 724

38.1.1 Information about measurement and sampling 724
38.2 Examples for stripnm. 725

Chapter 39. The splat command . 729
39.1 splat . 730

xii AIX 5L Performance Tools Handbook

39.1.1 Information about measurement and sampling 732
39.2 Examples for splat . 735

39.2.1 Execution summary. 735
39.2.2 Gross lock summary . 736
39.2.3 Per-lock summary . 737
39.2.4 AIX kernel lock details . 739
39.2.5 PThread synchronizer reports . 749

Chapter 40. The trace, trcnm, and trcrpt commands 759
40.1 trace . 760

40.1.1 Information about measurement and sampling 764
40.1.2 Terminology used for trace . 765
40.1.3 Ways to start and stop trace . 767
40.1.4 Examples for trace . 770

40.2 trcnm . 775
40.2.1 Information about measurement and sampling 776
40.2.2 Examples for trcnm . 776

40.3 trcrpt . 777
40.3.1 Information about measurement and sampling 781
40.3.2 Examples for trcrpt . 781

Part 8. Additional performance topics . 783

Chapter 41. APIs for performance monitoring . 785
41.1 Perfstat API . 786

41.1.1 Compiling and linking . 786
41.1.2 Subroutines . 787

41.2 System Performance Measurement Interface . 805
41.2.1 Compiling and linking . 806
41.2.2 SPMI data organization . 806
41.2.3 Subroutines . 808
41.2.4 Examples for SPMI . 813

41.3 Performance Monitor API . 818
41.3.1 Performance Monitor data access . 819
41.3.2 Compiling and linking . 820
41.3.3 Subroutines . 820
41.3.4 Examples for PM API . 820

41.4 Resource Monitoring and Control . 824
41.4.1 RMC commands . 825
41.4.2 Information about measurement and sampling 826
41.4.3 Examples for RMC . 828

41.5 Miscellaneous performance monitoring subroutines 842
41.5.1 Compiling and linking . 842
41.5.2 Subroutines . 842

 Contents xiii

41.5.3 Combined example . 858

Chapter 42. Workload Manager tools . 861
42.1 WLM tools overview . 862
42.2 wlmstat . 862

42.2.1 Information about measurement and sampling 864
42.2.2 Examples for wlmstat . 865

42.3 wlmmon / wlmperf . 872
42.3.1 Information about the xmwlm and xmtrend daemons 873
42.3.2 Information about measurement and sampling 875
42.3.3 Exploring the graphical windows. 875

Chapter 43. Performance Toolbox Version 3 for AIX 891
43.1 Introduction . 892
43.2 xmperf . 894

43.2.1 Information about measurement and sampling 897
43.2.2 Examples . 904

43.3 3D monitor . 909
43.3.1 Information about measurement and sampling 912
43.3.2 Examples . 915

43.4 jazizo . 918
43.4.1 Syntax of xmtrend . 918
43.4.2 Syntax of jazizo . 919
43.4.3 Information about measurement and sampling 919

Part 9. Appendixes . 933

Appendix A. Source code examples . 935
perfstat_dump_all.c . 936
perfstat_dude.c. 940
spmi_dude.c . 949
spmi_data.c . 953
spmi_file.c . 959
spmi_traverse.c . 961
dudestat.c . 965
cwhet.c . 968

Appendix B. Trace hooks . 973
AIX 5L trace hooks . 974

Abbreviations and acronyms . 983

Related publications . 987
IBM Redbooks . 987

xiv AIX 5L Performance Tools Handbook

Other publications . 987
Online resources . 988
How to get IBM Redbooks . 989

Index . 991

 Contents xv

xvi AIX 5L Performance Tools Handbook

Figures

1-1 Physical partition mapping . 25
14-1 Sequential read-ahead. 242
30-1 Schematic flow during TCP open. 598
30-2 Schematic flow during TCP close . 599
39-1 Lock states. 742
40-1 The trace facility . 766
42-1 Initial screen when wlmperf and wlmmon are started 876
42-2 The WLM_Console tab down menu. 877
42-3 The open log option from the tab down bar . 877
42-4 The WLM table visual report . 878
42-5 The CPU, memory, and disk I/O tab down menu 878
42-6 The bar-graph-style visual report . 880
42-7 The order of the snapshot visual report colored bulbs 880
42-8 The snapshot visual report. 881
42-9 The Selected tab down menu . 881
42-10 The time window for setting trend periods . 882
42-11 The table visual report with trend values shown 883
42-12 The bar-graph style report showing a trend . 884
42-13 The snapshot visual report showing the trend 885
42-14 Advanced option under the Selected tab down menu 886
42-15 The Advanced Menu options shown in graphical form 887
42-16 The class/tier option from the selected tab down menu. 888
42-17 The snapshot report showing only the Red WLM class. 889
43-1 The initial xmperf window. 898
43-2 The Mini Monitor window . 898
43-3 Aged data moved to the left . 899
43-4 The Utilities tab down menu. 900
43-5 The Analysis tab down menus . 901
43-6 The Controls tab down menu. 901
43-7 The Recording tab down menu . 901
43-8 The Console Recording options. 902
43-9 Cautionary window when recording an instrument 902
43-10 Console Recording tab down menu: End Recording option 902
43-11 Options under the initial xmperf window File tab down menu 903
43-12 The Playback window . 903
43-13 The playback monitor. 904
43-14 Naming the user-defined console . 904
43-15 Choose the Edit Console menu . 905

© Copyright IBM Corp. 2001, 2003. All rights reserved. xvii

43-16 Dynamic Data Supplier Statistics window . 905
43-17 The Change Properties of a Value window . 906
43-18 The final console monitoring CPU idle time . 907
43-19 The Edit Console tab down menu . 907
43-20 The Modify Instrument menu options. 908
43-21 The Style & Stacking menu option. 908
43-22 Menu options from the Edit Value tab down menu 908
43-23 An example of a CPU usage instrument . 909
43-24 Initial 3dmon screen . 913
43-25 3-D window from 3dmon showing the statistics of a host 914
43-26 CPU statistics displayed by 3dmon after modifying 3dmon.cf 916
43-27 3dmon graph showing disk activity for multiple hosts 917
43-28 The jazizo opening window . 921
43-29 The File tab down menu . 921
43-30 The Open Recording File window in jazizo . 922
43-31 Metric Selection window . 923
43-32 The Metric Selection window showing metric selections 924
43-33 The Time Selection window . 925
43-34 The Stop Hour and Start Hour tab down menus 925
43-35 Adjusting the month in the jazizo Time Selection window 926
43-36 Adjusting days in the jazizo Time Selection window 926
43-37 The jazizo window . 927
43-38 The jazizo Edit tab down menu . 928
43-39 The Graph Selection window of the jazizo program 928
43-40 The trend of the metric can be displayed by jazizo 929
43-41 The View tab down menu . 930
43-42 The Report tab down menu . 930
43-43 Tabular statistical output that can be obtained from jazizo 930
43-44 The File tab down menu when closing jazizo 931

xviii AIX 5L Performance Tools Handbook

Tables

1-1 TCP/IP layers and protocol examples . 34
1-2 Network tunables minimum values for best performance 36
1-3 Other basic network tunables . 37
2-1 Commands/tools, pathnames, and filesets . 54
2-2 Performance tools by resource matrix . 57
7-1 Files created by perfpmr . 123
10-1 Current effective priority calculated where sched_R is four 173
10-2 Current effective priority calculated where sched_R is 16 174
10-3 The CPU decay factor using the default sched_D value of 16 175
10-4 The CPU decay factor using a sched_D value of 31 175
12-1 Machine faults . 194
12-2 Signals . 195
30-1 Some important protocols . 570
30-2 Selection from /etc/services . 570
30-3 ipfilter header types and options . 574
34-1 Suggested minimum buffer and MTU sizes for adapters. 671
35-1 Minimum trace hooks required for curt . 679
39-1 Trace hooks required for splat . 732
39-2 PThread read/write lock report. 752
41-1 Interface types from if_types.h . 801
41-2 Column explanation . 813
42-1 Output of wlnstat -v . 867

© Copyright IBM Corp. 2001, 2003. All rights reserved. xix

xx AIX 5L Performance Tools Handbook

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2001, 2003. All rights reserved. xxi

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX 5L™
AIX®
DB2®
ESCON®
^™
ibm.com®

IBM®
NetView®
Nways®
POWER3™
POWER4™
pSeries™

PTX®
Redbooks (logo) ™
Redbooks™
RS/6000®
Tivoli®
z/OS®

The following terms are trademarks of other companies:

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

SET, SET Secure Electronic Transaction, and the SET Logo are trademarks owned by SET Secure
Electronic Transaction LLC.

Other company, product, and service names may be trademarks or service marks of others.

xxii AIX 5L Performance Tools Handbook

Preface

This IBM Redbook takes an insightful look at the performance monitoring and
tuning tools that are provided with AIX® 5L™. It discusses the usage of the tools
as well as the interpretation of the results by using many examples.

This book is meant as a reference for system administrators and AIX technical
support professionals so they can use the performance tools in an efficient
manner and interpret the outputs when analyzing an AIX system’s performance.

The individual performance tools discussed in this book are organized according
to the resources for which they provide information:

� Part 1, “AIX 5L performance tools” on page 1 introduces the reader to the
process of AIX performance analysis.

� Part 2, “Multi-resource monitoring and tuning tools” on page 67 discusses
tools that provide information about multiple resources.

� Part 3, “CPU-related performance tools” on page 279 discusses tools that
provides information about CPU resources.

� Part 4, “Memory-related performance tools” on page 363 discusses tools that
provides information about system memory usage.

� Part 5, “Disk I/O–related performance tools” on page 455 discusses tools that
provides information about disk I/O performance.

� Part 6, “Network-related performance tools” on page 531 discusses tools that
provides information about network monitoring.

� Part 7, “Tracing performance problems” on page 675 explains AIX trace and
trace-related tools that can be used to monitor all system resources.

� Part 8, “Additional performance topics” on page 783 discusses additional
topics such as API for performance monitoring, Workload Manager tools, and
performance toolbox for AIX.

© Copyright IBM Corp. 2001, 2003. All rights reserved. xxiii

The team that wrote this redbook
This book was produced by a team of specialists from around the world working
at the International Technical Support Organization, Austin Center.

Budi Darmawan is a Project Leader at the International Technical Support
Organization, Austin Center. He writes extensively and teaches IBM classes
worldwide on all areas of performance management and database
administration. Before joining the ITSO four years ago, Budi worked in the
Integrated Technology Services Department of IBM Indonesia as a solution
architect. His current interests are performance and availability management,
Tivoli® systems management products, z/OS® systems management, and
business intelligence.

Charles Kamers is a Technical Support Analyst for HSBC Bank Brazil. He has
been worked in technical support, mainly for RS/6000® and pSeries™ servers,
since 1999. His areas of expertise include AIX, PSSP, HACMP, Linux, and
storage solutions. He holds a degree as a Data Processing Technologist.

Hennie Pienaar is a Senior Education Specialist for IBM South Africa and has
worked at IBM for seven years. He has eight years of experience in AIX and
UNIX. His areas of expertise include Tivoli, Linux, AIX, and security. He has
taught extensively in these areas.

xxiv AIX 5L Performance Tools Handbook

Janet Shiu is an HPC Technical Architect with 20 years of experience in
high-performance computing. She holds a Ph.D. in Physics from the University of
Pittsburgh. Her areas of expertise include architecting HPC solutions for various
industry segments, project management, benchmarking, optimization, and
performance tuning.

Thanks to the following people for their contributions to this project:

Keigo Matsubara, Betsy Thaggard
International Technical Support Organization, Austin Center

Luc Smolder
IBM Austin

Diana Gfoerer, Thomas Braunbeck, Stuart Lane, Bjorn Roden, Nigel Trickett
Original authors of the AIX 5L Performance Tools Handbook, SG24-6039

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You will team with IBM technical professionals,
Business Partners, and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you will develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks™ to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

 Preface xxv

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/

� Send your comments in an e-mail to:

redbook@us.ibm.com

� Mail your comments to:

IBM® Corporation, International Technical Support Organization
Dept. JN9B Building 003 Internal Zip 2834
11400 Burnet Road
Austin, Texas 78758-3493

xxvi AIX 5L Performance Tools Handbook

http://www.redbooks.ibm.com/contacts.html

Summary of changes

This section describes the technical changes made in this edition of the book and
in previous editions. This edition may also include minor corrections and editorial
changes that are not identified.

Summary of Changes
for AIX 5L Performance Tools Handbook, SG24-6039-01
as created or updated on August 11, 2003.

August 2003, Second Edition
This revision reflects the addition, deletion, or modification of new and changed
information described below.

New information
� Kernel tunables commands that manipulate tunables stanzas for AIX

initialization parameters
� Commands that relate to the /proc filesystems
� New commands, such as vmo, ioo, and schedo, that replace the vmtune and

schedtune commands

Changed information
� Additional information about the tprof command
� Various enhancements of performance-related commands
� Direct link from the list of commands in Chapter 2, “Getting started” on

page 53 into the appropriate section

© Copyright IBM Corp. 2001, 2003. All rights reserved. xxvii

xxviii AIX 5L Performance Tools Handbook

Part 1 AIX 5L
performance
tools

This book discusses AIX 5L performance tools and their use. The original edition
of this book was developed with AIX 5L Version 5.2 in mind, and we have
extended the discussion to include several tool enhancements, such as the
tunables and proc filesystem tools.

This project was performed at the ITSO Austin Center using several machines
with AIX 5L operating systems. The configurations were:

� IBM ^ pSeries 690, a Regatta server, partitioned with 4 CPUs and 4
GB of memory as our primary test machine. This machine is called lpar05.

Part 1

© Copyright IBM Corp. 2001, 2003. All rights reserved. 1

� IBM RS/6000 model F80 as our Workload Manager node. This machine is
called wlmhost.

� IBM RS/6000 43P, on which we installed AIX 5L version 5.1, as a comparison
machine.

All of these machines were connected via an Ethernet LAN environment. We
also attached the F80 with token-ring and ATM adapter for the network
performance discussion.

The document is divided into these parts:

� Part 1, “AIX 5L performance tools” on page 1 is the primary discussion about
AIX performance concepts and a listing of the available performance tools.

� Part 2, “Multi-resource monitoring and tuning tools” on page 67 discusses
monitoring tools for multiple resources, which are useful in providing an initial
indication of a problem and pinpointing the problem area.

� Specific performance tools for each major resources are discussed in:

– Part 3, “CPU-related performance tools” on page 279

– Part 4, “Memory-related performance tools” on page 363

– Part 5, “Disk I/O–related performance tools” on page 455

– Part 6, “Network-related performance tools” on page 531

� Part 7, “Tracing performance problems” on page 675 shows the available
tracing tools for debugging performance problems

� Part 8, “Additional performance topics” on page 783 discusses miscellaneous
topics such as:

– APIs that can be used to create a performance monitoring program

– Workload Manager tools

– AIX Performance Toolbox

2 AIX 5L Performance Tools Handbook

Chapter 1. Introduction to AIX
performance monitoring and
tuning

The performance of a computer system is based on human expectations and the
ability of the computer system to fulfill these expectations. The objective for
performance tuning is to match expectations and fulfillment. The path to
achieving this objective is a balance between appropriate expectations and
optimizing the available system resources. The discussion consists of:

� What the human perceived as the performance is discussed in 1.1,
“Performance expectation” on page 4.

� What can be actually tuned from the systems is categorized into CPU,
memory, disk, and network as discussed in:

– 1.2, “CPU performance” on page 5

– 1.3, “Memory performance” on page 12

– 1.4, “Disk I/O performance” on page 18

– 1.5, “Network performance” on page 31

� The new tuning feature for AIX 5L Version 5.2 is discussed in 1.6, “Kernel
tunables” on page 43 and 1.7, “The /proc file system” on page 46.

1

© Copyright IBM Corp. 2001, 2003 3

1.1 Performance expectation
The performance tuning process demands great skill, knowledge, and
experience, and it cannot be performed by only analyzing statistics, graphs, and
figures. The human aspect of perceived performance must not be neglected if
results are to be achieved. Performance tuning will also usually have to take into
consideration problem determination aspects as well as pure performance
issues.

Expectations can often be classified as either:

Throughput expectations Throughput is a measure of the amount of work
performed over a period of time.

Response time expectations Response time is the time elapsed between
when a request is submitted and when the
response from that request is returned.

The performance tuning process can be initiated for a number of reasons:

� To achieve optimal performance in a newly installed system
� To resolve performance problems resulting from the design (sizing) phase
� To resolve performance problems occurring in the runtime (production) phase

Performance tuning on a newly installed system usually involves setting some
base parameters for the operating system and applications. The sections in this
chapter describe the characteristics of different system resources and provide
some advice regarding their base tuning parameters if applicable.

Limitations originating from the sizing phase either limit the possibility of tuning,
or incur greater cost to overcome them. The system may not meet the original
performance expectations because of unrealistic expectations, physical problems
in the computer environment, or human error in the design or implementation of
the system. In the worst case adding or replacing hardware might be necessary.
It is therefore highly advised to be particularly careful when sizing a system to
allow enough capacity for unexpected system loads. In other words, do not
design the system to be 100 percent busy from the start of the project. More
information about system sizing can be found in the redbook Understanding IBM
^ pSeries Performance and Sizing, SG24-4810.

When a system in a productive environment still meets the performance
expectations for which it was initially designed, but the demands and needs of
the utilizing organization have outgrown the system’s basic capacity,
performance tuning is performed to avoid and/or delay the cost of adding or
replacing hardware.

4 AIX 5L Performance Tools Handbook

Remember that many performance-related issues can be traced back to
operations performed by somebody with limited experience and knowledge who
unintentionally restricted some vital logical or physical resource of the system.

1.2 CPU performance
This section gives an overview of the operations of the kernel and CPU. An
understanding of the way processes and threads operate within the AIX
environment is required to successfully monitor and tune AIX for peak CPU
throughput.

Systems that experience performance problems are sometimes constrained less
by hardware limitations than by the way applications are written or the way the
operating system is tuned. Threads that are waiting on locks can cause a
significant degradation in performance.

1.2.1 Initial advice
We recommend that you not make any changes to the CPU scheduling
parameters until you have had experience with the actual workload. In some
cases the workload throughput can benefit from adjusting the scheduling
thresholds. See Chapter 10, “The schedo and schedtune commands” on
page 165 for more details about monitoring and changing these values and
parameters.

The discussion of the CPU performance and scheduling is divided into:

� 1.2.2, “Processes and threads” on page 6, which discusses the concepts of
threads as the primary processing unit and shows how the priority of a thread
is calculated.

� 1.2.3, “Scheduling” on page 7 discusses various scheduling policies and
scheduling-related concepts.

� 1.2.4, “SMP performance” on page 9 discusses issues related to Symmetrical
Multiprocessor (SMP) machines.

For more information about CPU scheduling, refer to:

� AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices, available online at:

http://publib16.boulder.ibm.com/pseries/en_US/aixbman/admnconc/admnconc.htm

� AIX 5L Version 5.2 Performance Management Guide, available online at:

http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/p
rftungd.htm

 Chapter 1. Introduction to AIX performance monitoring and tuning 5

http://publib16.boulder.ibm.com/pseries/en_US/aixbman/admnconc/admnconc.htm
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/prftungd.htm
http://publib16.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixbman/prftungd/prftungd.htm

1.2.2 Processes and threads
The following defines the differences between threads and processes:

Processes A process is an activity within the system that is started
with a command, a shell script, or another process.

Threads A thread is an independent flow of control that operates
within the same address space as other independent
flows of controls within a process. A kernel thread is a
single sequential flow of control.

Kernel threads are owned by a process. A process has one or more kernel
threads. The advantage of threads is that you can have multiple threads running
in parallel on different CPUs on an SMP system.

Applications can be designed to have user level threads that are scheduled to
work by the application or by the pthreads scheduler in libpthreads. Multiple
threads of control allow an application to service requests from multiple users at
the same time. Application threads can be mapped to kernel threads in a 1:1 or
an n:1 relation.

The kernel maintains the priority of the threads. A thread’s priority can range
from zero to 255. A zero priority is the most favored and 255 is the least favored.
Threads can have a fixed or non-fixed priority. The priority of fixed priority threads
does not change during the life of the thread, while non-fixed priority threads can
have their maximum priority changed by changing its nice value with the nice or
the renice commands.

Thread aging
When a thread is created, the CPU usage value is zero. As the thread
accumulates more time on the CPU, the usage increments. The CPU usage of a
process is initally zero. The CPU usage increases by one after each clock
interrupt (every 10 ms) and will increment up to 120, which prevents high CPU
usage threads from monopolizing the CPU.

The CPU usage can be shown with the ps -ef command, looking at the C
column of the output (see 8.2.3, “Displaying the processes in order of being
penalized” on page 133).

Every second, the scheduler ages the thread using the following formula:

CPU usage = CPU usage*(D/32)

Where D is the decay value as set by schedo -o sched_D

If the D parameter is set to 32, the thread usage will not decrease. The default of
16 will enable the thread usage to decrease, giving it more time on the CPU.

6 AIX 5L Performance Tools Handbook

Calculating thread priority
The kernel calculates the priority for non-fixed priority threads using a formula
that includes the following:

base priority The base priority of a thread is 40.

nice value The nice value defaults to 20 for foreground processes
and 24 for background processes. This can be changed
using the nice or renice command. See Chapter 20, “The
nice and renice commands” on page 349.

r The CPU penalty factor. The default for r is 16. This value
can be changed with the schedo command.

D The CPU decay factor. The default for D is 16. This value
can be changed with the schedo command.

C CPU usage as discussed in “Thread aging” on page 6.

p_nice This is called the niced priority. It is calculated as from:
p_nice = base priority + nice value

x_nice The “extra nice” value.
If the niced priority for a thread (p_nice) is larger than 60,
then the following formula applies:
x_nice = p_nice * 2 - 60
If the niced priority for a thread (p_nice) is equal or less
than 60, the following formula applies:
x_nice = p_nice

X The xnice factor is calculated as: (x_nice + 4) / 64.

The thread priority is finally calculated based on the following formula:

Priority = (C * r/32 * X) + x_nice

Using this calculation method, note the following:

� With the default nice value of 20, the xnice factor is 1, no affect to the priority.
When the nice value is bigger than 20, it had greater effect on the x_nice
compared to the lower nice value.

� Smaller values of r reduce the impact of CPU usage to the priority of a thread;
therefore the nice value has more of an impact on the system.

1.2.3 Scheduling
The following scheduling policies apply to AIX:

SCHED_RR The thread is time-sliced at a fixed priority. If the thread is
still running when the time slice expires, it is moved to the
end of the queue of dispatchable threads. The queue the

 Chapter 1. Introduction to AIX performance monitoring and tuning 7

thread will be moved to depends on its priority. Only root
can schedule using this policy.

SCHED_OTHER This policy only applies to non-fixed priority threads that
run with a time slice. The priority gets recalculated at
every clock interrupt. This is the default scheduling policy.

SCHED_FIFO This is a non-preemptive scheduling scheme except for
higher priority threads. Threads run to completion unless
they are blocked or relinquish the CPU of their own
accord. Only fixed priority threads use this scheduling
policy. Only root can change the scheduling policy of
threads to use SCHED_FIFO.

SCHED_FIFO2 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue if it was only
asleep for a short period of time.

SCHED_FIFO3 Fixed priority threads use this scheduling policy. The
thread is put at the head of the run queue whenever it
becomes runnable, but it can be preempted by a higher
priority thread.

The following section describes important concepts in scheduling.

Run queues
Each CPU has a dedicated run queue. A run queue is a list of runnable threads,
sorted by thread priority value. There are 256 thread priorities (zero to 255).
There is also an additional global run queue where new threads are placed.

When the CPU is ready to dispatch a thread, the global run queue is checked
before the other run queues are checked. When a thread finishes its time slice on
the CPU, it is placed back on the runqueue of the CPU it was running on. This
helps AIX to maintain processor affinity. To improve the performance of threads
that are running with SCHED_OTHER policy and are interrupt driven, you can
set the environmental variable called RT_GRQ to ON. This will place the thread
on the global run queue. Fixed priority threads will be placed on the global run
queue if you run schedo -o fixed_pri_global=1.

Time slices
The CPUs on the system are shared among all of the threads by giving each
thread a certain slice of time to run. The default time slice of one clock tick
(10 ms) can be changed using schedo -o timeslice. Sometimes increasing the
time slice improves system throughput due to reduced context switching. The
vmstat and sar commands show the amount of context switching. In a high value
of context switches, increasing the time slice can improve performance. This
parameter should, however, only be used after a thorough analysis.

8 AIX 5L Performance Tools Handbook

Mode switching
There are two modes that a CPU operates in: kernel mode and user mode. In
user mode, programs have read and write access to the user data in the process
private region. They can also read the user text and shared text regions, and
have access to the shared data regions using shared memory functions.
Programs also have access to kernel services by using system calls.

Programs that operate in kernel mode include interrupt handlers, kernel
processes, and kernel extensions. Code operating in this mode has read and
write access to the global kernel address space and to the kernel data in the
process region when executing within the context of a process. User data within
the process address space must be accessed using kernel services.

When a user program access system calls, it does so in kernel mode. The
concept of user and kernel modes is important to understand when interpreting
the output of commands such as vmstat and sar.

1.2.4 SMP performance
In an SMP system, all of the processors are identical and perform identical
functions:

� Any processor can run any thread on the system. This means that a process
or thread ready to run can be dispatched to any processor, except the
processes or threads bound to a specific processor using the bindprocessor
command.

� Any processor can handle an external interrupt except interrupt levels bound
to a specific processor using the bindintcpu command. Some SMP systems
use a first fit interrupt handling in which an interrupt always gets directed to
CPU0. If there are multiple interrupts at a time, the second interrupt is
directed to CPU1, the third interrupt to CPU2, and so on. A process bound to
CPU0 using the bindprocessor command may not get the necessary CPU
time to run with best performance in this case.

� All processors can initiate I/O operations to any I/O device.

Cache coherency
All processors work with the same virtual and real address space and share the
same real memory. However, each processor may have its own cache, holding a
small subset of system memory. To guarantee cache coherency the processors
use a snooping logic. Each time a word in the cache of a processor is changed,
this processor sends a broadcast message over the bus. The processors are
“snooping” on the bus, and if they receive a broadcast message about a modified
word in the cache of another processor, they need to verify if they hold this
changed address in their cache. If they do, they invalidate this entry in their

 Chapter 1. Introduction to AIX performance monitoring and tuning 9

cache. The broadcast messages increase the load on the bus, and invalidated
cache entries increase the number of cache misses. Both reduce the theoretical
overall system performance, but hardware systems are designed to minimize the
impact of the cache coherency mechanism.

Processor affinity
If a thread is running on a CPU and gets interrupted and redispatched, the thread
is placed back on the same CPU (if possible) because the processor’s cache
may still have lines that belong to the thread. If it is dispatched to a different CPU,
the thread may have to get its information from main memory. Alternatively, it can
wait until the CPU where it was previously running is available, which may result
in a long delay.

AIX automatically tries to encourage processor affinity by having one run queue
per CPU. Processor affinity can also be forced by binding a thread to a processor
with the bindprocessor command. A thread that is bound to a processor can run
only on that processor, regardless of the status of the other processors in the
system. Binding a process to a CPU must be done with care, as you may reduce
performance for that process if the CPU to which it is bound is busy and there are
other idle CPUs in the system.

Locking
Access to I/O devices and real memory is serialized by hardware. Besides the
physical system resources, such as I/O devices and real memory, there are
logical system resources, such as shared kernel data, that are used by all
processes and threads. As these processes and threads are able to run on any
processor, a method to serialize access to these logical system resources is
needed. The same applies for parallelized user code.

The primary method to implement resource access serialization is the usage of
locks. A process or thread has to obtain a lock prior to accessing the shared
resource. The process or thread has to release this lock after the access is
completed. Lock and unlock functions are used to obtain and release these
locks. The lock and unlock operations are atomic operations, and are
implemented so that neither interrupts nor threads running on other processors
affect the outcome of the operation. If a requested lock is already held by another
thread, the requesting thread has to wait until the lock becomes available.

There are two ways for a thread to wait for a lock:

� Spin locks

A spin lock is suitable for a lock held only for a very short time. The thread
waiting on the lock enters a tight loop wherein it repeatedly checks for the
availability of the requested lock. No useful work is done by the thread at this
time, and the processor time used is counted as time spent in system (kernel)

10 AIX 5L Performance Tools Handbook

mode. To prevent a thread from spinning forever, it may be converted into a
sleeping lock. An upper limit for the number of times to loop can be set using:

– The schedo -o maxpspin command
The maxspin parameter is the number of times to spin on a kernel lock
before sleeping. The default value of the n parameter for multiprocessor
systems is 16384, and 1 (one) for uniprocessor systems. Refer to
Chapter 10, “The schedo and schedtune commands” on page 165 for
more details about the schedo command.

– The SPINLOOPTIME environment variable
The value of SPINLOOPTIME is the number of times to spin on a user lock
before sleeping. This environment variable applies to the locking provided
by libpthreads.a.

– The YIELDLOOPTIME environment variable
Controls the number of times to yield the processor before blocking on a
busy user lock. The processor is yielded to another kernel thread,
assuming there is another runnable kernel thread with sufficient priority.
This environment variable applies to the locking provided by libpthreads.a.

� Sleeping locks

A sleeping lock is suitable for a lock held for a longer time. A thread
requesting such a lock is put to sleep if the lock is not available. The thread is
put back to the run queue if the lock becomes available. There is an additional
overhead for context switching and dispatching for sleeping locks.

AIX provides two types of locks, which are:

� Read-write lock

Multiple readers of the data are allowed, but write access is mutually
exclusive. The read-write lock has three states:

– Exclusive write

– Shared read

– Unlocked

� Mutual exclusion lock

Only one thread can access the data at a time. Others threads, even if they
want only to read the data, have to wait. The mutual exclusion (mutex) lock
has two states:

– Locked

– Unlocked

Both types of locks can be spin locks or sleeping locks.

 Chapter 1. Introduction to AIX performance monitoring and tuning 11

Programmers in a multiprocessor environment should decide on the number of
locks for shared data. If there is a single lock then lock contention (threads
waiting on a lock) can occur often. If this is the case, more locks will be required.
However, this can be more expensive because CPU time must be spent locking
and unlocking, and there is a higher risk for a deadlock.

As locks are necessary to serialize access to certain data items, the heavy usage
of the same data item by many threads may cause severe performance
problems. In 19.5.2, “Examples for tprof” on page 329, we show an example of
such a problem caused by a user-level application.

Refer to the AIX 5L Version 5.2 Performance Management Guide for further
information about multiprocessing.

1.3 Memory performance
In a multi-user, multi-processor environment, the careful control of system
resources is paramount. System memory, whether paging space or real memory,
when not carefully managed can result in poor performance and even program
and application failure. The AIX operating system uses the Virtual Memory
Manager (VMM) to control real memory and paging space on the system.

1.3.1 Initial advice
We recommend that you do not make any VMM changes until you have had
experience with the actual workload. Note that many parameters of the VMM can
be monitored and tuned with the vmo command, described in Chapter 14, “The
vmo, ioo, and vmtune commands” on page 229.

The discussion in this section is about:

� 1.3.2, “Memory segments” on page 13
� 1.3.3, “Paging mechanism” on page 14
� 1.3.4, “Memory load control mechanism” on page 15
� 1.3.5, “Paging space allocation policies” on page 15
� 1.3.6, “Memory leaks” on page 17
� 1.3.7, “Shared memory” on page 17

To learn more about how the VMM works, refer to:

� AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.2 Performance Management Guide

12 AIX 5L Performance Tools Handbook

1.3.2 Memory segments
A segment is 256 MB of contiguous virtual memory address space into which an
object can be mapped. Virtual memory segments are partitioned into fixed sizes
known as pages. Each page is 4096 bytes (4 KB) in size. A page in a segment
can be in real memory or on disk where it is stored until it is needed. Real
memory is divided into 4-KB page frames.

Simply put, the function of the VMM is to manage the allocation of real memory
page frames and to resolve references from a program to virtual memory pages.
Typically, this happens when pages are not currently in memory or do not exist
when a process makes the first reference to a page of its data segment.

The amount of virtual memory used can exceed the size of the real memory of a
system. The function of the VMM from a performance point of view is to:

� Minimize the processor use and disk bandwidth resulting from paging
� Minimize the response degradation from paging for a process

Virtual memory segments can be of three types:

� Persistent segments

Persistent segments are used to hold file data from the local filesystems.
Because pages of a persistent segment have a permanent disk storage
location, the VMM writes the page back to that location when the page has
been changed if it can no longer be kept in memory. When a persistent page
is opened for deferred update, changes to the file are not reflected on
permanent storage until an fsync subroutine operation is performed. If no
fsync subroutine operation is performed, the changes are discarded when the
file is closed. No I/O occurs when a page of a persistent segment is selected
for placement on the free list if that page has not been modified. If the page is
referenced again later, it is read back in.

� Working segments

These segments are transitory and only exist during use by a process.
Working segments have no permanent storage location, so they are stored in
paging space when real memory pages must be freed.

� Client segments

These segments are saved and restored over the network to their permanent
locations on a remote file system rather than being paged out to the local
system. CD-ROM page-ins and compressed pages are classified as client
segments. JFS2 pages are also mapped into client segments.

 Chapter 1. Introduction to AIX performance monitoring and tuning 13

1.3.3 Paging mechanism
The VMM maintains a list of free memory page frames available to satisfy a page
fault. This list is known as the free list. The VMM uses a page replacement
algorithm. This algorithm is used to determine which pages in virtual memory will
have their page frames reassigned to the free list.

When the number of pages in the free list becomes low, the page stealer is
invoked. The page stealer is a mechanism that evaluates the Page Frame Table
(PFT) entries looking for pages to steal. The PFT contains flags that indicate
which pages have been referenced and which have been modified.

If the page stealer finds a page in the PFT that has been referenced, then it will
not steal the page, but rather will reset the reference flag. The next time that the
page stealer passes this page in the PFT, if it has not been referenced, it will be
stolen. Pages that are not referenced when the page stealer passes them the
first time are stolen.

When the modify flag is set on a page that has not been referenced, it indicates
to the page stealer that the page has been modified since it was placed in
memory. In this instance, a page out is called before the page is stolen. Pages
that are part of a working segment are written to paging space, while pages of
persistent segments are written to their permanent locations on disk.

There are two types of page fault:

� a new page fault, where the page is referenced for the first time
� a repage fault, where pages have already been paged out before

The stealer keeps track of the pages paged out, by using a history buffer that
contains the IDs of the most recently paged-out pages. The history buffer also
serves the purpose of maintaining a balance between pages of persistent
segments and pages of working segments that get paged out to disk. The size of
the history buffer is dependent on the amount of memory in the system; a
memory size of 512 MB requires a 128 KB history buffer.

When a process terminates, its working storage is released and pages of
memory are freed up and put back on the free list. Files that have been opened
by the process can, however, remain in memory.

On an SMP system, the lrud kernel process is responsible for page
replacement. This process is dispatched to a CPU when the minfree parameter
threshold is reached. The minfree and maxfree parameters are set using the vmo
command; see “The page replacement algorithm” on page 232 for more details.
In the uniprocessor environment, page replacement is handled directly within the
scope of the thread running.

14 AIX 5L Performance Tools Handbook

The page replacement algorithm is most effective when the number of repages is
low. The perfect replacement algorithm would eliminate repage faults completely
and would steal pages that are not going to be referenced again.

1.3.4 Memory load control mechanism
If the number of active virtual memory pages exceeds the amount of real
memory pages, paging space is used for those pages that cannot be kept in real
memory. If an application accesses a page that was paged out, the VMM loads
this page from the paging space into real memory. If the number of free real
memory pages is low at this time, the VMM also needs to free another page in
real memory before loading the accessed page from paging space. If the VMM
only finds computational pages to free, it is forced to page out those pages to
paging space. In the worst case the VMM always needs to page out a page to
paging space before loading another page from paging space into memory. This
condition is called thrashing. In a thrashing condition, processes encounter a
page fault almost as soon as they are dispatched. None of the processes make
any significant progress and the performance of the system deteriorates.

The operating system has a memory load control mechanism that detects when
the thrashing condition is about to start. Once thrashing is detected, the system
starts to suspend active processes and delay the start of any new processes.
The memory load control mechanism is disabled by default on systems with
more than 128 MB of memory. For more information about the load control
mechanism and the schedo command, refer to 10.2.3, “Tuning memory
parameters” on page 171.

1.3.5 Paging space allocation policies
The operating system supports three paging space allocation policies:

� Late Paging Space Allocation (LPSA)

With the LPSA, a paging slot is only allocated to a page of virtual memory
when that page is first touched. The risk involved with this policy is that when
the process touches the file, there may not be sufficient pages left in paging
space.

� Early Paging Space Allocation (EPSA)

This policy allocates the appropriate number of pages of paging space at the
time that the virtual memory address range is allocated. This policy ensures
that processes do not get killed when the paging space of the system gets
low. To enable EPSA, set the environment variable PSALLOC=early. Setting
this policy ensures that when the process needs to page out, pages will be
available. The recommended paging space size when adopting the EPSA
policy is at least four times the size of real memory.

 Chapter 1. Introduction to AIX performance monitoring and tuning 15

� Deferred Paging Space Allocation (DPSA)

This is the default policy in AIX 5L Version 5.2. The allocation of paging space
is delayed until it is necessary to page out, so no paging space is wasted with
this policy. Only once a page of memory is required to be paged out will the
paging space be allocated. This paging space is reserved for that page until
the process releases it or the process terminates. This method saves huge
amounts of paging space. To disable this policy, the vmo command’s defps
parameter can be set to 0 (zero) with vmo -o defps=0. If the value is set to
zero then the late paging space allocation policy is used.

Tuning paging space thresholds
When paging space becomes depleted, the operating system attempts to
release resources by first warning processes to release paging space, and then
by killing the processes. The vmo command is used to set the thresholds at which
this activity will occur. The vmo tunables that affect paging are:

npswarn The operating system sends the SIGDANGER signal to all active
processes when the amount of paging space left on the system
goes below this threshold. A process can either ignore the signal or
it can release memory pages using the disclaim() subroutine.

npskill The operating system will begin killing processes when the amount
of paging space left on the system goes below this threshold.
When the npskill threshold is reached, the operating system sends
a SIGKILL signal to the youngest process. Processes that are
handling a SIGDANGER signal and processes that are using the
EPSA policy are exempt from being killed.

nokilluid By setting the value of the nokilluid value to 1 (one), the root
processes will be exempt from being killed when the npskill
threshold is reached. User identifications (UIDs) lower than the
number specified by this parameter are not killed when the npskill
parameter threshold is reached.

For more information about the setting these parameters, refer to Chapter 14,
“The vmo, ioo, and vmtune commands” on page 229.

When a process cannot be forked due to a lack of paging space, the scheduler
will make five attempts to fork the process before giving up and putting the
process to sleep. The scheduler delays 10 clock ticks between each retry. By
default, each clock tick is 10 ms. This results in 100 ms between retries. The
schedo command has a pacefork value that can be used to change the number of
times the scheduler will retry a fork.

16 AIX 5L Performance Tools Handbook

To monitor the amount of paging space, use the lsps command. The -s flag
should be issued rather than the -a flag of the lsps command because the former
includes pages in paging space reserved by the EPSA policy.

1.3.6 Memory leaks
Systems have been known to run out of paging space because of memory leaks
in long-running programs that are interactive applications. A memory leak is a
program error where the program repeatedly allocates memory, uses it, and then
neglects to free it. The svmon command is useful in detecting memory leaks. Use
the svmon command with the -i flag to look for processes or groups of processes
whose working segments are continually growing. For more information about
the svmon command, refer to Chapter 24, “The svmon command” on page 387.

1.3.7 Shared memory
Memory segments can be shared between processes. Using shared memory
avoids buffering and system call overhead. Applications reduce the overhead of
read and write system calls by manipulating pointers in these memory segments.
Both files and data in shared segments can be shared by multiple processes and
threads, but the synchronization between processes or threads must be done at
the application level.

By default, each shared memory segment or region has an address space of
256 MB, and the maximum number of shared memory segments that the
process can access at the same time is limited to 11. Using extended shared
memory increases this number to more than 11 segments and allows shared
memory regions to be any size from 1 byte up to 256 MB. Extended shared
memory is available to processes that have the variable EXTSHM set to ON (that
is, EXTSHM=ON in their process environment). The restrictions of extended
shared memory are:

� I/O is restricted in the same way as for memory regions.

� Raw I/O is not supported.

� They cannot be used as I/O buffers where the unpinning of buffers occurs in
an interrupt handler.

� They cannot be pinned using the plock() subroutine.

 Chapter 1. Introduction to AIX performance monitoring and tuning 17

1.4 Disk I/O performance
A lot of attention is required when the disk subsystem is designed and
implemented. For example, you will need to consider the following:

� Bandwidth of disk adapters and system bus
� Placement of logical volumes on the disks
� Configuration of disk layouts
� Operating system settings, such as striping or mirroring
� Performance implementation of other technologies, such as SSA

1.4.1 Initial advice
We recommend that you do not make any changes to the default disk I/O
parameters until you have had experience with the actual workload. Note,
however, that you should always monitor the I/O workload and will very probably
need to balance the physical and logical volume layout after runtime experience.

There are two performance-limiting aspects of the disk I/O subsystem that must
be considered:

� Physical limitations
� Logical limitations

A poorly performing disk I/O subsystem usually will severely penalize overall
system performance.

Physical limitations concern the throughput of the interconnecting hardware.
Logical limitations concern limiting both the physical bandwidth and the resource
serialization and locking mechanisms built into the data access software1. Note
that many logical limitations on the disk I/O subsystem can be monitored and
tuned with the ioo command. See Chapter 14, “The vmo, ioo, and vmtune
commands” on page 229 for details.

For further information, refer to:

� AIX 5L Version 5.2 Performance Management Guide

� AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.2 System Management Guide: Operating System and
Devices

� RS/6000 SP System Performance Tuning Update, SG24-5340

1 Usually to ensure data integrity and consistency (such as file system access and mirror consistency updating).

18 AIX 5L Performance Tools Handbook

1.4.2 Disk subsystem design approach
For many systems, the overall performance of an application is bound by the
speed at which data can be accessed from disk and the way the application
reads and writes data to the disks. Designing and configuring a disk storage
subsystem for performance is a complex task that must be carefully thought out
during the initial design stages of the implementation. Some of the factors that
must be considered include:

� Performance versus availability

A decision must be made early on as to which is more important; I/O
performance of the application or application integrity and availability.
Increased data availability often comes at the cost of decreased system
performance and vice versa. Increased availability also may result in larger
amounts of disk space being required.

� Application workload type

The I/O workload characteristics of the application should be fairly well
understood prior to implementing the disk subsystem. Different workload
types most often require a different disk subsystem configuration in order to
provide acceptable I/O performance.

� Required disk subsystem throughput

The I/O performance requirements of the application should be defined up
front, as they will play a large part in dictating both the physical and logical
configuration of the disk subsystem.

� Required disk space

Prior to designing the disk subsystem, the disk space requirements of the
application should be well understood.

� Cost

While not a performance-related concern, overall cost of the disk subsystem
most often plays a large part in dictating the design of the system. Generally,
a higher-performance system costs more than a lower-performance one.

1.4.3 Bandwidth-related performance considerations
The bandwidth of a communication link, such as a disk adapter or bus,
determines the maximum speed at which data can be transmitted over the link.
When describing the capabilities of a particular disk subsystem component,
performance numbers typically are expressed in maximum or peak throughput,
which often do not realistically describe the true performance that will be realized
in a real world setting. In addition, each component most will likely have different
bandwidths, which can create bottlenecks in the overall design of the system.

 Chapter 1. Introduction to AIX performance monitoring and tuning 19

The bandwidth of each of the following components must be taken into
consideration when designing the disk subsystem:

� Disk devices

The latest SCSI and SSA disk drives have maximum sustained data transfer
rates of 14-20 MB per second. Again, the real world expected rate will most
likely be lower depending on the data location and the I/O workload
characteristics of the application. Applications that perform a large amount of
sequential disk reads or writes will be able to achieve higher data transfer
rates than those that perform primarily random I/O operations.

� Disk adapters

The disk adapter can become a bottleneck depending on the number of disk
devices that are attached and their use. While the SCSI-2 specification allows
for a maximum data transfer rate of 20 MBps, adapters based on the
UltraSCSI specification are capable of providing bandwidth of up to 40 MBps.
The SCSI bus used for data transfer is an arbitrated bus. In other words, only
one initiator or device can be sending data at any one time. This means the
theoretical maximum transfer rate is unlikely to be sustained. By comparison,
the IBM SSA adapters use a non-arbitrated loop protocol, which also
supports multiple concurrent peer-to-peer data transfers on the loop. The
current SSA adapters are capable of supporting maximum theoretical data
transfer rates of 160 MBps.

� System bus

The system bus architecture used can further limit the overall bandwidth of
the disk subsystem. Just as the bandwidth of the disk devices is limited by the
bandwidth of the disk adapter to which they are attached, the speed of the
disk adapter is limited by the bandwidth of the system bus. The industry
standard PCI bus is limited to a theoretical maximum of either 132 MBps
(32-bit @ 33MHz) or 528 MBps (64-bit @ 66MHz).

1.4.4 Disk design
A disk consists of a set of flat, circular rotating platters. Each platter has one or
two sides on which data is stored. Platters are read by a set of non-rotating, but
positionable, read or read/write heads that move together as a unit. The following
terms are used when discussing disk device block operations:

Sector An addressable subdivision of a track used to record one
block of a program or data. On a disk, this is a contiguous,
fixed-size block. Every sector of every disk is exactly 512
bytes.

Track A circular path on the surface of a disk on which information
is recorded and from which recorded information is read; a

20 AIX 5L Performance Tools Handbook

contiguous set of sectors. A track corresponds to the
surface area of a single platter swept out by a single head
while the head remains stationary.

Head A positionable entity that can read and write data from a
given track located on one side of a platter. Usually a disk
has a small set of heads that move from track to track as a
unit.

Cylinder The tracks of a disk that can be accessed without
repositioning the heads. If a disk has n number of vertically
aligned heads, a cylinder has n number of vertically aligned
tracks.

Disk access times
The three components that make up the access time of a disk are:

Seek A seek is the physical movement of the head at the end of
the disk arm from one track to another. The time for a seek
is the time needed for the disk arm to accelerate, to travel
over the tracks to be skipped, to decelerate, and finally to
settle down and wait for the vibrations to stop while
hovering over the target track. The total time the seeks take
is variable. The average seek time is used to measure the
disk capabilities.

Rotational This is the time that the disk arm has to wait while the disk
is rotating underneath until the target sector approaches.
Rotational latency is, for all practical purposes except
sequential reading, a random function with values uniformly
between zero and the time required for a full revolution of
the disk. The average rotational latency is taken as the time
of a half revolution. To determine the average latency, you
must know the number of revolutions per minute (RPM) of
the drive. By converting the RPMs to revolutions per second
and dividing by 2, we get the average rotational latency.

Transfer The data transfer time is determined by the time it takes for
the requested data block to move through the read/write
arm. It is linear with respect to the block size. The average
disk access time is the sum of the averages for seek time
and rotational latency plus the data transfer time (normally
given for a 512-byte block). The average disk access time
generally overestimates the time necessary to access a
disk; typical disk access time is 70 percent of the average.

 Chapter 1. Introduction to AIX performance monitoring and tuning 21

Disks per adapter bus or loop
Discussions of disk, logical volume, and file system performance sometimes lead
to the conclusion that the more drives you have on your system, the better the
disk I/O performance. This is not always true because there is a limit to the
amount of data that can be handled by a disk adapter, which can become a
bottleneck. If all your disk drives are on one disk adapter and your hot file
systems are on separate physical volumes, you might benefit from using multiple
disk adapters. Performance improvement will depend on the type of access.

Using the proper number of disks per adapter is essential. For both SCSI and
SSA adapters the maximum number of disks per bus or loop should not exceed
four if maximum throughput is needed and can be utilized by the applications. For
SCSI the limiting factor is the bus, and for SSA it is the adapter.

The major performance issue for disk drives is usually application-related; that is,
whether large numbers of small accesses (random) or smaller numbers of large
accesses (sequential) will be made. For random access, performance generally
will be better using larger numbers of smaller-capacity drives. The opposite
situation exists for sequential access (use faster drives or use striping with a
larger number of drives).

Physical disk buffers
The Logical Volume Manager (LVM) uses a construct called a pbuf (physical
buffer) to control a pending disk I/O. A single pbuf is used for each I/O request,
regardless of the number of pages involved. AIX creates extra pbufs when a new
physical volume is added to the system. When striping is used, you need more
pbufs because one I/O operation causes I/O operations to more disks and,
therefore, more pbufs. When striping and mirroring is used, even more pbufs are
required. Running out of pbufs reduces performance considerably because the
I/O process is suspended until pbufs are available again. Increase the number of
pbufs with the ioo command (see “I/O tuning parameters” on page 245);
however, pbufs are pinned so that allocating many pbufs increases the use of
memory.

A special note should be given to adjusting the number of pbufs on systems with
many disks attached or available with the ioo command. The number of pbufs
per active disk should be twice the queue depth of the disk or 32, whatever is
greater. The default maximum number of pbufs should not exceed a total of
65536.

The script in Example 1-1 on page 23 extracts the information for each disk and
calculates a recommendation for ioo -o hd_pbuf_cnt. The script does not take
into account multiple Serial Storage Architecture (SSA) pdisks or hdisks using
vpath. It uses the algorithm shown in Example 1-2 on page 23.

22 AIX 5L Performance Tools Handbook

Example 1-1 ioo_calc_puf.sh

1 #!/bin/ksh
2 integer max_pbuf_count=65535
3 integer hd_pbuf_cnt=128
4 integer current_hd_pbuf_cnt=$(ioo -o hd_pbuf_cnt|awk ‘{print $3;exit}’)
5 lsdev -Cc disk -Fname|
6 while read disk;do
7 integer queue_depth=$(lsattr -El $disk -aqueue_depth -Fvalue)
8 ((pbuf_to_add=queue_depth*2))
9 if ((pbuf_to_add < 32));then
10 pbuf_to_add=32
11 fi
12 if (((hd_pbuf_cnt+pbuf_to_add) > max_pbuf_count));then
13 ((pbuf_to_add=max_pbuf_count-hd_pbuf_cnt))
14 fi
15 ((hd_pbuf_cnt+=pbuf_to_add))
16 done
17 if ((current_hd_pbuf_cnt < hd_pbuf_cnt));then
18 print "Run ioo -o hd_pbuf_cnt $hd_pbuf_cnt to change from
$current_hd_pbuf_cnt to $hd_pbuf_cnt"
19 else
20 print "The current hd_pbuf_cnt ($current_hd_pbuf_cnt) is OK"
21 fi

The algorithm in Example 1-2 is used for setting pbufs.

Example 1-2 Algorithm used for setting pbufs

max_pbuf_count = 65535
hd_pbuf_cnt 128
for each disk {

pbuf_to_add = queue_depth * 2
if (pbuf_to_add < 32)

pbuf_to_add = 32
if ((hd_pbuf_cnt + pbuf_to_add) > max_pbuf_count)

pbuf_to_add = max_pbuf_count - hd_pbuf_cnt
hd_pbuf_cnt += pbuf_to_add

}

Note that more buffers might have to be increased on a large server system. On
large server systems, you should always monitor the utilization with the ioo
command and adjust the parameter values appropriately. File system buffers for
LVM require that the change is made before the filesystem is mounted. See “I/O

Note: The script in Example 1-1 cannot be used for disks with multiple
connections.

 Chapter 1. Introduction to AIX performance monitoring and tuning 23

tuning parameters” on page 245 for more details about monitoring and changing
these values and parameters.

1.4.5 Logical Volume Manager concepts
Many modern UNIX operating systems implement the concept of a Logical
Volume Manager (LVM) that can be used to logically manage the distribution of
data on physical disk devices. The AIX LVM is a set of operating system
commands, library subroutines, and other tools used to control physical disk
resources by providing a simplified logical view of the available storage space.
Unlike other LVM offerings, the AIX LVM is an integral part of the base AIX
operating system provided at no additional cost.

Within the LVM, each disk or physical volume (PV) belongs to a volume group
(VG). A volume group is a collection of 1 to 32 physical volumes (1 to 128 in the
case of a big volume group), which can vary in capacity and performance. A
physical volume can belong to only one volume group at a time. A maximum of
255 volume groups can be defined per system.

When a volume group is created, the physical volumes within the volume group
are partitioned into contiguous, equal-sized units of disk space known as
physical partitions. Physical partitions are the smallest unit of allocatable storage
space in a volume group. The physical partition size is determined at volume
group creation, and all physical volumes that are placed in the volume group
inherit this size. The physical partition size can range from 1 MB to 1024 MB, but
must be a power of two. If not specified, the default physical partition size in AIX
is 4 MB for disks up to 4 GB, but it must be larger for disks greater than 4 GB due
to the fact that the LVM, by default, will only track up to 1016 physical partitions
per disk (unless you use the -t option with mkvg, which reduces the maximum
number of physical volumes in the volume group). In AIX 5L Version 5.2, the
minimum PP size needed is determined by the operating system if the default
size of 4 MB is specified.

Use of LVM policies
Deciding on the physical layout of an application is one of the most important
decisions to be made when designing a system for optimal performance. The
physical location of the data files is critical to ensuring that no single disk, or
group of disks, becomes a bottleneck in the I/O performance of the application. In
order to minimize their impact on disk performance, heavily accessed files should
be placed on separate disks, ideally under different disk adapters. There are
several ways to ensure even data distribution among disks and adapters,
including operating system level data striping, hardware data striping on a
Redundant Array of Independent Disks (RAID), and manually distributing the
application data files among the available disks.

24 AIX 5L Performance Tools Handbook

The disk layout on a server system is usually very important to determine the
possible performance that can be achieved from disk I/O.

The AIX LVM provides a number of facilities or policies for managing both the
performance and availability characteristics of logical volumes. The policies that
have the greatest impact on performance are intra-disk allocation, inter-disk
allocation, I/O scheduling, and write-verify policies.

Intra-disk allocation policy
The intra-disk allocation policy determines the actual physical location of the
physical partitions on disk. A disk is logically divided into the following five
concentric areas as shown in Figure 1-1:

� Outer edge
� Outer middle
� Center
� Inner middle
� Inner edge

Figure 1-1 Physical partition mapping

Due to the physical movement of the disk actuator, the outer and inner edges
typically have the largest average seek times and are a poor choice for
application data that is frequently accessed. The center region provides the
fastest average seek times and is the best choice for paging space or
applications that generate a significant amount of random I/O activity. The outer
and inner middle regions provide better average seek times than the outer and
inner edges, but worse seek times than the center region.

(Outer) Edge

(Outer) Middle

Center

Inner Edge

Inner Middle

 Chapter 1. Introduction to AIX performance monitoring and tuning 25

As a general rule, when designing a logical volume strategy for performance, the
most performance-critical data should be placed as close to the center of the disk
as possible. There are, however, two notable exceptions:

� Applications that perform a large amount of sequential reads or writes
experience higher throughput when the data is located on the outer edge of
the disk due to the fact that there are more data blocks per track on the outer
edge of the disk than the other disk regions.

� Logical volumes with Mirrored Write Consistency (MWC) enabled should also
be located at the outer edge of the disk, as this is where the MWC cache
record is located.

When the disks are set up in a RAID5 configuration, the intra-disk allocation
policy will not have any benefits to performance.

Inter-disk allocation policy
The inter-disk allocation policy is used to specify the number of disks that contain
the physical partitions of a logical volume. The physical partitions for a given
logical volume can reside on one or more disks in the same volume group
depending on the setting of the range option. The range option can be set by
using the smitty mklv command and changing the RANGE of physical volumes
menu option.

� The maximum range setting attempts to spread the physical partitions of a
logical volume across as many physical volumes as possible in order to
decrease the average access time for the logical volume.

� The minimum range setting attempts to place all of the physical partitions of a
logical volume on the same physical disk. If this cannot be done, it will attempt
to place the physical partitions on as few disks as possible. The minimum
setting is used for increased availability only, and should not be used for
frequently accessed logical volumes. If a non-mirrored logical volume is
spread across more than one drive, the loss of any of the physical drives will
result in data loss. In other words, a non-mirrored logical volume spread
across two drives will be twice as likely to experience a loss of data as one
that resides on only one drive.

The physical partitions of a given logical volume can be mirrored to increase data
availability. The location of the physical partition copies is determined by setting
the Strict option with the smitty mklv command called Allocate each logical
partition copy. When Strict = y, each physical partition copy is placed on a
different physical volume. When Strict = n, the copies can be on the same
physical volume or different volumes. When using striped and mirrored logical
volumes in AIX 4.3.3 and above, there is an additional partition allocation policy
known as superstrict. When Strict = s, partitions of one mirror cannot share the

26 AIX 5L Performance Tools Handbook

same disk as partitions from a second or third mirror, further reducing the
possibility of data loss due to a single disk failure.

In order to determine the data placement strategy for a mirrored logical volume,
the settings for both the range and Strict options must be carefully considered.
As an example, consider a mirrored logical volume with range setting of minimum
and a strict setting of yes. The LVM would attempt to place all of the physical
partitions associated with the primary copy on one physical disk, with the mirrors
residing on either one or two additional disks, depending on the number of copies
of the logical volume (2 or 3). If the strict setting were changed to no, all of the
physical partitions corresponding to both the primary and mirrors would be
located on the same physical disk.

I/O-scheduling policy
The default for logical volume mirroring is that the copies should use different
disks. This is both for performance and data availability. With copies residing on
different disks, if one disk is extremely busy, then a read request can be
completed using the other copy residing on a less busy disk. Different I/O
scheduling policies can be set for logical volumes. The different I/O scheduling
policies are as follows:

Sequential The sequential policy results in all reads being issued to
the primary copy. Writes happen serially, first to the
primary disk; only when that is completed is the second
write initiated to the secondary disk.

Parallel The parallel policy balances reads between the disks. On
each read, the system checks whether the primary is
busy. If it is not busy, the read is initiated on the primary. If
the primary is busy, the system checks the secondary. If it
is not busy, the read is initiated on the secondary. If the
secondary is busy, the read is initiated on the copy with
the fewest number of outstanding I/Os. Writes are initiated
concurrently.

Parallel/sequential The parallel/sequential policy always initiates reads on the
primary copy. Writes are initiated concurrently.

Parallel/round-robin The parallel/round-robin policy is similar to the parallel
policy except that instead of always checking the primary
copy first, it alternates between the copies. This results in
equal utilization for reads even when there is never more
than one I/O outstanding at a time. Writes are initiated
concurrently.

 Chapter 1. Introduction to AIX performance monitoring and tuning 27

Write-verify policy
When the write-verify policy is enabled, all write operations are validated by
immediately performing a follow-up read operation of the previously written data.
An error message will be returned if the read operation is not successful. The use
of write-verify enhances the integrity of the data but can drastically degrade the
performance of disk writes.

Mirror write consistency (MWC)
The Logical Volume Device Driver (LVDD) always ensures data consistency
among mirrored copies of a logical volume during normal I/O processing. For
every write to a logical volume, the LVDD2 generates a write request for every
mirror copy. If a logical volume is using mirror write consistency, then requests for
this logical volume are held within the scheduling layer until the MWC cache
blocks can be updated on the target physical volumes. When the MWC cache
blocks have been updated, the request proceeds with the physical data write
operations. If the system crashes in the middle of processing, a mirrored write
(before all copies are written) MWC will make logical partitions consistent after a
reboot.

MWC Record The MWC Record consists of one disk sector. It identifies which
logical partitions may be inconsistent if the system is not shut
down correctly.

MWC Check The MWC Check (MWCC) is a method used by the LVDD to
track the last 62 distinct Logical Track Groups (LTGs) written to
disk. By default, an LTG is 32 4-KB pages (128 KB). AIX 5L
supports LTG sizes of 128 KB, 256 KB, 512 KB, and 1024 KB.
MWCC only makes mirrors consistent when the volume group is
varied back online after a crash by examining the last 62 writes to
mirrors, picking one mirror, and propagating that data to the other
mirrors. MWCC does not keep track of the latest data; it only
keeps track of LTGs currently being written. Therefore, MWC
does not guarantee that the latest data will be propagated to all
of the mirrors. It is the application above LVM that has to
determine the validity of the data after a crash.

There are three different states for the MWC:

Disabled (off) MWC is not used for the mirrored logical volume. To maintain
consistency after a system crash, the logical volumes file system
must be manually mounted after reboot, but only after the syncvg
command has been used to synchronize the physical partitions
that belong to the mirrored logical partition.

2 The scheduler layer (part of the bottom half of LVDD) schedules physical requests for logical operations and handles
mirroring and the MWC cache.

28 AIX 5L Performance Tools Handbook

Active MWC is used for the mirrored logical volume and the LVDD will
keep the MWC record synchronized on disk. Because every
update will require a repositioning of the disk write head to
update the MWC record, it can cause a performance problem.
When the volume group is varied back online after a system
crash, this information is used to make the logical partitions
consistent again.

Passive MWC is used for the mirrored logical volume but the LVDD will
not keep the MWC record synchronized on disk. Synchronization
of the physical partitions that belong to the mirrored logical
partition will be updated after IPL. This synchronization is
performed as a background task (syncvg). The passive state of
MWC only applies to big volume groups. Big volume groups can
accommodate up to 128 physical volumes and 512 logical
volumes. To create a big volume group, use the mkvg -B
command. To change a regular volume group to a big volume
group, use the chvg -B command.

The type of mirror consistency checking is important for maintaining data
accuracy even when using MWC. MWC ensures data consistency, but not
necessarily data accuracy.

Log logical volume
The log logical volume should be placed on a different physical volume from the
most active file system. Placing it on a disk with the lowest I/O utilization will
increase parallel resource usage. A separate log can be used for each file
system. However, special consideration should be taken if multiple logs must be
placed on the same physical disk, which should be avoided if possible.

The general rule to determine the appropriate size for the JFS log logical volume
is to have 4 MB of JFS log for each 2 GB of file system space. The JFS log is
limited to a maximum size of 256 MB.

Note that when the size of the log logical volume is changed, the logform
command must be run to reinitialize the log before the new space can be used.

nointegrity
The mount option nointegrity bypasses the use of a log logical volume for the file
system mounted with this option. This can provide better performance as long as
the administrator knows that the fsck command might have to be run on the file
system if the system goes down without a clean shutdown.

mount -o nointegrity /filesystem

 Chapter 1. Introduction to AIX performance monitoring and tuning 29

To make the change permanent, either add the option to the options field in
/etc/filesystems manually or do it with the chfs command as follows (in this case
for the file system):

chfs -a options=nointegrity,rw /filesystem

JFS2 inline log
In AIX 5L, log logical volumes can be either of JFS or JFS2 types, and are used
for JFS and JFS2 file systems respectively. The JFS2 file system type allows the
use of a inline journaling log. This log section is allocated within the JFS2 itself.

Paging space
If paging space is needed in a system, performance and throughput always
suffer. The obvious conclusion is to eliminate paging to paging space as much as
possible by having enough real memory available for applications when they
need it. Paging spaces are accessed in a round-robin fashion, and the data
stored in the logical volumes is of no use to the system after a reboot/IPL.

The current default paging-space-slot-allocation method, Deferred Page Space
Allocation (DPSA), delays allocation of paging space until it is necessary to page
out the page.

Some rules of thumb when it comes to allocating paging space logical volumes
are:

� Use the disk or disks that are least utilized.
� Do not allocate more than one paging space logical volume per physical disk.
� Avoid sharing the same disk with log logical volumes.
� If possible, make all paging spaces the same size.

Because the data in a page logical volume cannot be reused after a reboot/IPL,
the MWC is disabled for mirrored paging space logical volumes when the logical
volume is created.

Recommendations for performance optimization
As with any other area of system design, when deciding on the LVM policies, a
decision must be made as to which is more important; performance or
availability. The following LVM policy guidelines should be followed when
designing a disk subsystem for performance:

� When using LVM mirroring:

– Use a parallel write-scheduling policy.

– Allocate each logical partition copy on a separate physical disk by using
the Strict option of the inter-disk allocation policy.

� Disable write-verify.

30 AIX 5L Performance Tools Handbook

� Allocate heavily accessed logical volumes near the center of the disk.

� Use an intra-disk allocation policy of maximum in order to spread the physical
partitions of the logical volume across as many physical disks as possible.

1.5 Network performance
Tuning network utilization is a complex and sometimes very difficult task. You
need to know how applications communicate and how the network protocols
work on AIX and other systems involved in the communication. The only general
recommendation for network tuning is that Interface Specific Network Options
(ISNO) should be used and buffer utilization should be monitored. Some basic
network tunables for improving throughput can be found in Table 1-2 on page 36.
Note that with network tuning, indiscriminately using buffers that are too large
can reduce performance.

To learn more about how the different protocols work, refer to:

� Chapter 34, “The no command” on page 665

� Chapter 32, “The nfso command” on page 645

� AIX 5L Version 5.2 Performance Management Guide

� AIX 5L Version 5.2 System Management Guide: Communications and
Networks

� AIX 5L Version 5.2 System Management Guide: Operating System and
Devices

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject, and a good starting point
is RFC 1180 A TCP/IP Tutorial. A short overview of the TCP/IP protocols can be
found in 1.5.2, “TCP/IP protocols” on page 33. Information about the network
tunables, including network adapter tunables, is provided in 1.5.3, “Network
tunables” on page 34.

1.5.1 Initial advice
The knowledge of the network topology used is necessary to understand and
detect possible performance bottlenecks on the network. This includes
information about the routers and gateways used, the Maximum Transfer Unit

 Chapter 1. Introduction to AIX performance monitoring and tuning 31

http://www.rs6000.ibm.com/support/sp/perf
http://www.rfc-editor.org/

(MTU) used on the network path between the systems, and the current load on
the networks used. This information should be well documented, and access to
these documents needs to be guaranteed at any time.

AIX offers a wide range of tools to monitor networks, network adapters, network
interfaces, and system resources used by the network software. These tools are
covered in detail in Chapter 6, “Network-related performance tools” on page 531.
Use these tools to gather information about your network environment when
everything is functioning correctly. This information will be very useful in case a
network performance problem arises, because a comparison between the
monitored information of the poorly performing network and the earlier
well-performing network helps to detect the problem source. The information
gathered should include:

� Configuration information from the server and client systems

A change in the system configuration can be the cause of a performance
problem. Sometimes such a change may be done by accident, and finding the
changed configuration parameter to correct it can be very difficult. The snap
-a command can be used to gather system configuration information. Refer to
the AIX 5L Version 5.2 Commands Reference, SBOF-1877 for more
information about the snap command.

� The system load on the server system

Poor performance on a client system is not necessarily a network problem. If
case the server system is short on local resources, such as CPU or memory,
it may be unable to answer the client’s request in the expected time. The
perfpmr tool can be used to gather this information. Refer to Chapter 7, “The
perfpmr command” on page 115 for more information.

� The system load on the client system

The same considerations for the server system apply to the client system. A
shortage of local resources, such as CPU or memory, can slow down the
client’s network operation. The perfpmr tool can be used to gather this
information; refer to Chapter 7, “The perfpmr command” on page 115 for
more information.

� The load on the network

The network usually is a resource shared by many systems. Poor
performance between two systems connected to the network may be caused
by an overloaded network, and this overload could be caused by other
systems connected to the network. There are no native tools in AIX to gather

32 AIX 5L Performance Tools Handbook

information about the load on the network itself. Tools such as Sniffer,
DatagLANce Network Analyzer, and Nways® Workgroup Manager can
provide such information. Detailed information about the network
management products IBM offers can be found at:

http://www.networking.ibm.com/netprod.html

However, tools such as ping or traceroute can be used to gather turnaround
times for data on the network. The ftp command can be used to transfer a
large amount of data between two systems using /dev/zero as input and
/dev/null as output, and registering the throughput. This is done by opening an
ftp connection, changing to binary mode, and then executing the ftp sub
command that transfers 10000 * 32 KB over the network. :

put “| dd if=/dev/zero bs=32k count=10000” /dev/null

� Network interface throughput

The commands atmstat, estat, entstat, fddistat, and tokstat can be used
to gather throughput data for a specific network interface. The first step would
be to generate a load on the network interface. Use the example above, ftp
using dd to do a put. Without the count=10000 the ftp put command will run
until it is interrupted.

While ftp is transferring data, issue the command sequence:

entstat -r en2;sleep 100;entstat en2>/tmp/entstat.en2

It is used to reset the statistics for the network interface, in our case en2
(entstat -r en2), wait 100 seconds (sleep 100), and then gather the
statistics for the interface (entstat en2>/tmp/entstat.en2). Refer to
Chapter 29, “atmstat, entstat, estat, fddistat, and tokstat commands” on
page 539 for details on these commands.

� Output of network monitoring commands on both the server and client

The output of the commands should be part of the data gathered by the
perfpmr tool. However, the perfpmr tool may change, so it is advised to
control the data gathered by perfpmr to ensure that the outputs of the netstat
and nfsstat commands are included.

1.5.2 TCP/IP protocols
Application programs send data by using one of the Internet Transport Layer
Protocols, either the User Datagram Protocol (UDP) or the Transmission Control
Protocol (TCP). These protocols receive the data from the application, divide it
into smaller pieces called packets, add a destination address, and then pass the
packets along to the next protocol layer, the Internet Network layer.

The Internet Network layer encloses the packet in an Internet Protocol (IP)
datagram, adds the datagram header and trailer, decides where to send the

 Chapter 1. Introduction to AIX performance monitoring and tuning 33

http://www.networking.ibm.com/netprod.html

datagram (either directly to a destination or else to a gateway), and passes the
datagram on to the Network Interface layer.

The Network Interface layer accepts IP datagrams and transmits them as frames
over a specific network hardware, such as Ethernet or token-ring networks.

For more detailed information about the TCP/IP protocol, refer AIX 5L Version
5.2 System Management Guide: Communications and Networks, and TCP/IP
Tutorial and Technical Overview, GG24-3376.

To interpret the data created by programs such as the iptrace and tcpdump
commands, formatted by ipreport, and summarized with ipfilter, you need to
understand how the TCP/IP protocols work together. See Chapter 30, “TCP/IP
packet tracing tools” on page 567. Table 1-1 is a short, top-down reminder of
TCP/IP protocols hierarchy.

Table 1-1 TCP/IP layers and protocol examples

1.5.3 Network tunables
In most cases you need to adjust some network tunables on server systems.
Most of these settings concern different network protocol buffers. You can set
these buffer sizes systemwide with the no command (refer to Chapter 34, “The no
command” on page 665), or use the Interface Specific Network Options3 (ISNO)
for each network adapter. For more details about ISNO, see AIX 5L Version 5.2
System Management Guide: Communications and Networks and AIX 5L Version
5.2 Commands Reference, SBOF-1877.

The change will only apply to the specific network adapter if you have enabled
ISNO with the no command as in the following example:

no -o use_isno=1

TCP/IP Layer Protocol Examples

Application Telnet, FTP, SMTP, LPD

Transport TCP, UDP

Internet Network IP, ICMP, IGMP, ARP, RARP

Network Interface Ethernet, token-ring, ATM, FDDI, SP Switch

Hardware Physical network

3 There are five ISNO parameters for each supported interface; rfc1323, tcp_nodelay, tcp_sendspace, tcp_recvspace,
and tcp_mssdflt. When set, the values for these parameters override the systemwide parameters of the same names that
had been set with the no command. When ISNO options are not set for a particular interface, systemwide options are
used. Options set by an application for a particular socket using the setsockopt subroutine override the ISNO options and
systemwide options set by using the chdev, ifconfig, and no commands.

34 AIX 5L Performance Tools Handbook

If different network adapter types with a big difference of MTU sizes are used in
the system, using ISNO to tune each network adapter for best performance is the
preferred way. For example with Ethernet adapters using an MTU of 1500 and an
ATM adapter using an MTU of 65527 installed.

Document the current values before making any changes, especially if you use
ISNO to change the individual interfaces. Example 1-3 shows how to use the
lsattr command to check the current settings for an network interface, in this
case token-ring:

Example 1-3 Using lsattr to check adapter settings

lsattr -H -El tr0 -F"attribute value"
attribute value

mtu 1492
mtu_4 1492
mtu_16 1492
mtu_100 1492
remmtu 576
netaddr 10.3.2.164
state up
arp on
allcast on
hwloop off
netmask 255.255.255.0
security none
authority
broadcast
netaddr6
alias6
prefixlen
alias4
rfc1323 0
tcp_nodelay
tcp_sendspace 16384
tcp_recvspace 16384
tcp_mssdflt

The highlighted part in the Example 1-3 output indicates the ISNO options.
Before applying ISNO settings to interfaces by using the chdev command, you
can use ifconfig to set them on each adapter. Should you for some reason need
to reset them and are unable to log in to the system, the values will not be
permanent and will not be activated after IPL. For this reason it is not
recommended to set ISNO values using ifconfig in any system startup scripts
that are started by init.

 Chapter 1. Introduction to AIX performance monitoring and tuning 35

Network buffer tuning
The values in Table 1-2 are settings that have proved to give the highest network
throughput for each network type. A general rule is to set the TCP buffer sizes to
10 times the MTU size, but as can be seen in the following table, this is not
always true for all network types.

Table 1-2 Network tunables minimum values for best performance

Device Speed
Mbit

MTU tcp
sendspace

tcpa

recvspace

a. If an application sends only a small amount of data and then waits for a re-
sponse, the performance may degrade if the buffers are too large, especially
when using large MTU sizes. It might be necessary to either tune the sizes further
or disable the Nagle algorithm by setting tcp_nagle_limit to 0 (zero).

sb_max rfc
1323

Ethernet 10 1500 16384 16384 32768 0

Ethernet 100 1500 16384 16384 32768 0

Ethernet 1000 1500 131072 65536 131072 0

Ethernet 1000 9000 131072 65536 262144 0

Ethernet 1000 9000 262144 131072 262144 1

ATM 155 1500 16384 16384 131072 0

ATM 155 9180 65536 65536 131072 1

ATM 155 65527 655360 655360 1310720 1

FDDI 100 4352 45056 45056 90012 0

SPSW - 65520 262144 262144 1310720 1

SPSW2 - 65520 262144 262144 1310720 1

HiPPI - 65536 655360 655360 1310720 1

HiPS - 65520 655360 655360 1310720 1

ESCON® - 4096 40960 40960 81920 0

Token-ring 4 1492 16384 16384 32768 0

Token-ring 16 1492 16384 16384 32768 0

Token-ring 16 4096 40960 40960 81920 0

Token-ring 16 8500 65536 65536 131072 0

36 AIX 5L Performance Tools Handbook

Other network tunable considerations
Table 1-3 shows some other network tunables that should be considered and
other ways to calculate some of the values in Table 1-2 on page 36.

Table 1-3 Other basic network tunables

tunable name Comment

thewall Use the default or if network errors occura, set manually to a
higher value. no -o thewall shows the current setting.

tcp_pmtu_discover Disable Path Maximum Transfer Unit (PMTU) discovery by setting
this option to 0 (zero) if the server communicates with more than
64 other systemsb. This option enables TCP to dynamically find
the largest size packet to send through the network, which will be
as big as the smallest MTU size in the network.

sb_max Could be set to slightly less than thewall, or at two to four times
the size of the largest value for tcp_sendspace, tcp_recvspace,
udp_sendspace, and udp_recvspace.
This parameter controls how much buffer space is consumed by
buffers that are queued to a sender’s socket or to a receiver’s
socket. A socket is just a queuing point, and it represents the file
descriptor for a TCP session. tcp_sendspace, tcp_recvspce,
udp_sendspace, and udp_recvspace parameters cannot be set
larger than sb_max.
The system accounts for socket buffers used based on the size of
the buffer, not on the contents of the buffer. For example, if an
Ethernet driver receives 500 bytes into a 2048-byte buffer and
then this buffer is placed on the applications socket awaiting the
application reading it, the system considers 2048 bytes of buffer
to be used. It is common for device drivers to receive buffers into
a buffer that is large enough to receive the adapter’s maximum
size packet. This often results in wasted buffer space, but it would
require more CPU cycles to copy the data to smaller buffers.
Because the buffers often are not 100 percent full of data, it is
best to have sb_max to be at least twice as large as the TCP or
UDP receive space. In some cases for UDP it should be much
larger.
Once the total buffers on the socket reach the sb_max limit, no
more buffers will be allowed to be queued to that socket.

tcp_sendspace This parameter mainly controls how much buffer space in the
kernel (mbuf) will be used to buffer data that the application
sends. Once this limit is reached, the sending application will be
suspended until TCP sends some of the data, and then the
application process will be resumed to continue sending.

 Chapter 1. Introduction to AIX performance monitoring and tuning 37

tcp_recvspace This parameter has two uses. First, it controls how much buffer
space may be consumed by receive buffers. Second, TCP uses
this value to inform the remote TCP how large it can set its
transmit window to. This becomes the “TCP Window size.” TCP
will never send more data than the receiver has buffer space to
receive the data into. This is the method by which TCP bases its
flow control of the data to the receiver.

udp_sendspace Always less than udp_recvspace but never greater than 65536
because UDP transmits a packet as soon as it gets any data and
IP has an upper limit of 65536 bytes per packet.

udp_recvspace Always greater than udp_sendspace and sized to handle as
many simultaneous UDP packets as can be expected per UDP
socket. For single parent/multiple child configurations, set
udp_recvspace to udp_sendspace times the maximum number of
child nodes if UDP is used, or at least 10 times udp_sendspace.

tcp_mssdflt This setting is used for determining MTU sizes when
communicating with remote networks. If not changed and MTU
discovery is not able to determine a proper size, communication
degradationc may occur.
The default value for this option is 512 bytes and is based on the
convention that all routers should support 576 byte packets.
Calculate a proper size by using the following formula; MTU - (IP
+ TCP header)d.

ipqmaxlen Could be set to 512 when using file sharing with applications such
as GPFS.

tcp_nagle_limit Could be set to 0 to disable the Nagle Algorithm when using large
buffers.

fasttimo Could be set to 50 if transfers take a long time due to delayed
ACKs.

rfc1323 This option enables TCP to use a larger window size, at the
expense of a larger TCP protocol header. This enables TCP to
have a 4 GB window size. For adapters that support a 64K MTU
(frame size), you must use RFC1323 to gain the best possible
TCP performance.

a. It is set automatically by calculating the amount of memory available.
b. In a heterogeneous environment the value determined by MTU discovery can
be way off.
c. When setting this value, make sure that all routing equipment between the
sender and receiver can handle the MTU size; otherwise they will fragment the
packets.

tunable name Comment

38 AIX 5L Performance Tools Handbook

To document all network interfaces and important device settings, you can
manually check all interface device drivers with the lsattr command as is shown
in Example 1-4.

Basic network adapter settings
Network adapters should be set to utilize the maximum transfer capability of the
current network given available system memory. On large server systems (such
as database server or Web servers with thousands of concurrent connections),
you might need to set the maximum values allowed for network device driver
queues if you use Ethernet or token-ring network adapters. However, note that
each queue entry will occupy memory at least as large as the MTU size for the
adapter.

To find out the maximum possible setting for a device, use the lsattr command
as shown in the following examples. First find out the attribute names of the
device driver buffers/queues that the adapter uses. (These names can vary for
different adapters.) Example 1-4 is for an Ethernet network adapter interface
using the lsattr command.

Example 1-4 Using lsattr on an Ethernet network adapter interface

lsattr -El ent0
busmem 0x1ffac000 Bus memory address False
busintr 5 Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True
use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

d. The size depends on the original MTU size and if RFC1323 is enabled or not.
If RFC1323 is enabled, then the IP and TCP header is 52 bytes, if RFC1323 is not
enabled, the IP and TCP header is 40 bytes.

 Chapter 1. Introduction to AIX performance monitoring and tuning 39

Example 1-5 shows what it might look like on a token-ring network adapter
interface using the lsattr command.

Example 1-5 Using lsattr on a token-ring network adapter interface

lsattr -El tok0
busio 0x7fffc00 Bus I/O address False
busintr 3 Bus interrupt level False
xmt_que_size 16384 TRANSMIT queue size True
rx_que_size 512 RECEIVE queue size True
ring_speed 16 RING speed True
attn_mac no Receive ATTENTION MAC frame True
beacon_mac no Receive BEACON MAC frame True
use_alt_addr no Enable ALTERNATE TOKEN RING address True
alt_addr 0x ALTERNATE TOKEN RING address True
full_duplex yes Enable FULL DUPLEX mode True

To find out the maximum possible setting for a device attribute, use the lsattr
command with the -R option on each of the adapters’ queue attributes as in
Example 1-6.

Example 1-6 Using lsattr to find out attribute ranges for a network adapter interface

lsattr -Rl ent0 -a tx_que_size
512...16384 (+1)
lsattr -Rl ent0 -a rx_que_size
512
lsattr -Rl tok0 -a xmt_que_size
32...16384 (+1)
lsattr -Rl tok0 -a rx_que_size
32...512 (+1)

In the example output, for the Ethernet adapter the maximum values for
tx_que_size and rx_que_size are 16384 and 512. For the token-ring adapter the
maximum values in the example output above for xmt_que_size and rx_que_size
is are also 16384 and 512. When only one value is shown it means that there is
only one value to use and it cannot be changed. When an ellipsis (...) separates
values it means an interval between the values surrounding the dotted line in
increments shown at the end of the line within parenthesis, such as in the
example above (+1), which means by increments of one.

To change the values so that they will be used the next time the device driver is
loaded, use the chdev command as shown in Example 1-7. Note that with the -P
attribute, the changes will be effective after the next IPL.

Example 1-7 Using chdev to change a network adapter interface attributes

chdev -l ent0 -a tx_que_size=16384 -a rx_que_size=512 -P
ent0 changed

40 AIX 5L Performance Tools Handbook

chdev -l tok0 -a xmt_que_size=16384 -a rx_que_size=512 -P
tok0 changed

The commands atmstat, entstat, fddistat, and tokstat can be used to monitor
the use of transmit buffers for a specific network adapter. Refer to Chapter 29,
“atmstat, entstat, estat, fddistat, and tokstat commands” on page 539 for more
details about these commands.

The MTU sizes for a network adapter interface can be examined by using the
lsattr command and the mtu attribute as in Example 1-8, which shows the tr0
network adapter interface.

Example 1-8 Using lsattr to examine the possible MTU sizes for a network adapter

lsattr -R -a mtu -l tr0
60...17792 (+1)

The minimum MTU size for token-ring is 60 bytes and the maximum size is just
over 17 KB. Example 1-9 shows the allowable MTU sizes for Ethernet (en0).

Example 1-9 Using lsattr to examine the possible MTU sizes for Ethernet

lsattr -R -a mtu -l en0
60...9000 (+1)

Note that 9000 as a maximum MTU size is only valid for Gigabit Ethernet; 1500 is
still the maximum for 10/100 Ethernet.

Resetting network tunables to their default
Should you need to set all no tunables back to their default value, the following
commands are one way to do it:

no -a | awk '{print $1}' | xargs -t -i no -d {}
no -o extendednetstats=0

Some high-speed adapters have ISNO parameters set by default in the ODM
database. Review the AIX 5L Version 5.2 System Management Guide:
Communications and Networks for individual adapters default values, or use the
lsattr command with the -D option as in Example 1-10 on page 42.

Attention: The default value for the network option extendednetstats is 1
(one) to enable the collection of extended network statistics. Normally these
extended network statistics should be disabled using the command no -o
extendednetstats=0. Refer to Chapter 31, “The netstat command” on
page 619 and Chapter 34, “The no command” on page 665 for more
information about the effects of the extendednetstats option.

 Chapter 1. Introduction to AIX performance monitoring and tuning 41

Example 1-10 Using lsattr to list default values for a network adapter

lsattr -HD -l ent0
attribute deflt description user_settable

busmem 0 Bus memory address False
busintr Bus interrupt level False
intr_priority 3 Interrupt priority False
rx_que_size 512 Receive queue size False
tx_que_size 8192 Software transmit queue size True
jumbo_frames no Transmit jumbo frames True
media_speed Auto_Negotiation Media Speed (10/100/1000 Base-T Ethernet) True
use_alt_addr no Enable alternate ethernet address True
alt_addr 0x000000000000 Alternate ethernet address True
trace_flag 0 Adapter firmware debug trace flag True
copy_bytes 2048 Copy packet if this many or less bytes True
tx_done_ticks 1000000 Clock ticks before TX done interrupt True
tx_done_count 64 TX buffers used before TX done interrupt True
receive_ticks 50 Clock ticks before RX interrupt True
receive_bds 6 RX packets before RX interrupt True
receive_proc 16 RX buffers before adapter updated True
rxdesc_count 1000 RX buffers processed per RX interrupt True
stat_ticks 1000000 Clock ticks before statistics updated True
rx_checksum yes Enable hardware receive checksum True
flow_ctrl yes Enable Transmit and Receive Flow Control True
slih_hog 10 Interrupt events processed per interrupt True

The deflt column shows the default values for each attribute. Example 1-11
shows how to use them on an Ethernet network adapter interface.

Example 1-11 Using lsattr to list default values for a network interface

lsattr -HD -l en0
attribute deflt description user_settable

mtu 1500 Maximum IP Packet Size for This Device True
remmtu 576 Maximum IP Packet Size for REMOTE Networks True
netaddr Internet Address True
state down Current Interface Status True
arp on Address Resolution Protocol (ARP) True
netmask Subnet Mask True
security none Security Level True
authority Authorized Users True
broadcast Broadcast Address True
netaddr6 N/A True
alias6 N/A True
prefixlen N/A True
alias4 N/A True
rfc1323 N/A True
tcp_nodelay N/A True

42 AIX 5L Performance Tools Handbook

tcp_sendspace N/A True
tcp_recvspace N/A True
tcp_mssdflt N/A True

Default values should be listed in the deflt column for each attribute. If no value
is shown, it means that there is no default setting.

1.6 Kernel tunables
Starting with AIX 5L Version 5.2, there is a more consistent method of tuning the
AIX kernel parameters. Rather than having commands that work in different
ways, new commands such as schedo, vmo, and ioo were added and some old
commands such ad no and nfso were enhanced. Also, the tuning capabilities are
now implemented in System Management Interface (SMIT) panels. The
parameter values are now stored in stanza files in the directory /etc/tunables.

The discussion here consists of:

� 1.6.1, “Tunables commands” on page 43
� 1.6.2, “Tunable files” on page 45

1.6.1 Tunables commands
The commands that manipulate these tuning parameters are:

� New commands: vmo and ioo (which replaced vmtune) and schedo (which
replaced schedtune). The ioo, vmo, and schedo commands reside in /usr/sbin
and are part of the bos.perf.tune fileset, which is installable from the AIX base
installation media.

See Chapter 14, “The vmo, ioo, and vmtune commands” on page 229 for
further information about vmo and ioo commands.

See 10.1, “schedo” on page 166 for further information aboutthe schedo
tuning command.

� Enhanced old commands, such as no and nfso. The no command resides in
/usr/sbin and is part of the bos.net.tcp.client fileset, which is installable from
the AIX base installation media. The nfso command resides in /usr/sbin and
is part of the bos.net.nfs.client fileset, which is installable from the AIX base
installation media.

See Chapter 32, “The nfso command” on page 645 for further information
about the nfso tuning command.

See Chapter 34, “The no command” on page 665 for further information
about the no tuning command.

 Chapter 1. Introduction to AIX performance monitoring and tuning 43

The no, nfso, vmo, ioo, and schedo tuning commands all support this syntax:

command [-p|-r] {-o tunable[=newvalue]}
command [-p|-r] {-d tunable}
command [-p|-r] -D
command [-p|-r] -a
command -h tunable
command -L [tunable]

Flags
-p Applies changes for current and next reboot.

-r Applies changes for next reboot only.

-o tunable[=newvalue]Displays the value or sets tunable to newvalue.

-d tunable Resets tunable to default value.

-D Resets all tunables to their default value.

-a Displays current, reboot (when used in conjunction with
-r) or permanent (when used in conjunction with -p)
value for all tunable parameters.

-h [tunable] Displays help about tunable parameter.

-L [tunable] Lists the characteristics of one or all tunables, one per
line.

-x [tunable] Provides a comma-separated result similar to the -L,
appropriate for loading into a spreadsheet.

Permanent kernel-tuning changes are achieved by centralizing the reboot values
for all tunable parameters in the /etc/tunables/nextboot stanza file. When a
system is rebooted, the values in the /etc/tunables/nextboot file are applied
automatically.

The following commands are used to manipulate the nextboot file and other files
containing a set of tunable parameter values:

� tunsave: Saves tunable values to a stanza file.
� tunrestore: Restores all of the parameters from a file.
� tuncheck: Must be used to validate a file created manually.
� tundefault: Used to force reset of all tuning parameters to their default value.
� tunchange: Updates stanzas in tunables files.

The tunsave, tunrestore, tuncheck, tundefault, and tunchange commands
reside in /usr/sbin and are part of the bos.perf.tune fileset, which is installable
from the AIX base installation media. For more information about these
commands, refer to Chapter 15, “Kernel tunables commands” on page 255.

44 AIX 5L Performance Tools Handbook

1.6.2 Tunable files
All of the tunable parameters manipulated by the tuning commands (no, nfso,
vmo, ioo, and schedo) have been classified into six categories:

Dynamic The parameter can be changed at any time.

Static The parameter can never be changed.

Reboot The parameter can only be changed during reboot.

Bosboot The parameter can only be changed by running bosboot
and rebooting the machine.

Connect The parameter only applies to future socket connections,
changes of this type of parameter automatically restart
inetd

Mount The parameter changes are only effective for future file
systems or directory mounts.

Incremental The parameter can only be incremented, except at boot
time.

The main page for each of the five tuning commands contains the complete list of
all parameters manipulated by each of the commands, and for each parameter,
its type, range, default value, and any dependencies on other parameters.

These files under /etc/tunables are used for storing these tunable parameters:

nextboot This file is automatically applied at boot time. The bosboot
command also gets the value of Bosboot-type tunables
from this file. It contains all tunable settings made
permanent. See Example 1-12 on page 46.

lastboot This file is automatically generated at boot time. It
contains the full set of tunable parameters with their
values after the last boot. Default values are marked with
DEFAULT VALUE.

The lastboot.log is automatically generated at boot time. It contains the logging of
the creation of the lastboot file, such as:

� Any parameter changes made

� Any parameter changes that could not be made (for example, if the nextboot
file was created manually and not validated with tuncheck)

Tunable files can be created and modified using one of the following options:

� Using smit or Web-based System Manager to:

– Modify the next reboot value for tunable parameters

 Chapter 1. Introduction to AIX performance monitoring and tuning 45

– Ask to save all current values for next boot

– Ask to use an existing tunable file at the next reboot

All of these actions will update the /etc/tunables/nextboot file. A new file in the
/etc/tunables directory can also be created to save all current or all nextboot
values.

� Using the tuning commands (ioo, vmo, schedo, no, or nfso) with the -p or -r
options, which will update the /etc/tunables/nexboot file.

� A new file in the /etc/tunables directory can also be created directly with an
editor or copied from another machine. Running tuncheck [-r | -p] -f must
then be done on that file.

� Using the tunsave command to create or overwrite files in the /etc/tunables
directory.

� Using the tunrestore -r command to update the nextboot file.

An example of the nextboot file is provided in Example 1-12.

Example 1-12 nextboot file

vmo:
 maxfree = "128"
 minfree = "120"

ioo:
 maxpgahead = "8"

no:
 ipforwarding = "0"

nfso:
 nfs_v3_vm_bufs = "5000"

schedo:
 sched_R = "16"

1.7 The /proc file system
The /proc file system is created with the initial installation of AIX 5L Version 5.1
and later. It is a pseudo file system that maps processes and kernel data
structures to corresponding files and contains state information about processes
and threads in the system.

46 AIX 5L Performance Tools Handbook

Example 1-13 shows the output of the mount and df commands showing /proc.

Example 1-13 proc filesystems attributes

lpar05:/>> mount
 node mounted mounted over vfs date options
-------- --------------- --------------- ------ ------------ ---------------

/dev/hd4 / jfs Apr 21 16:45 rw,log=/dev/hd8
/dev/hd2 /usr jfs Apr 21 16:45 rw,log=/dev/hd8
/dev/hd9var /var jfs Apr 21 16:45 rw,log=/dev/hd8
/dev/hd3 /tmp jfs Apr 21 16:45 rw,log=/dev/hd8
/dev/hd1 /home jfs Apr 21 16:45 rw,log=/dev/hd8
/proc /proc procfs Apr 21 16:45 rw
/dev/hd10opt /opt jfs Apr 21 16:45 rw,log=/dev/hd8
/dev/lv00 /home/db2inst1 jfs Apr 21 16:45 rw,log=/dev/loglv00
/dev/lv02 /home/db2as jfs Apr 21 16:45 rw,log=/dev/loglv00
/dev/lv03 /home/db2fenc1 jfs Apr 21 16:45 rw,log=/dev/loglv00
/dev/lv06 /work jfs Apr 21 16:46 rw,log=/dev/loglv02

lpar05:/>> df -k
Filesystem 1024-blocks Free %Used Iused %Iused Mounted on
/dev/hd4 32768 13164 60% 1675 11% /
/dev/hd2 4882432 2446384 50% 54536 5% /usr
/dev/hd9var 491520 420880 15% 679 1% /var
/dev/hd3 327680 205596 38% 155 1% /tmp
/dev/hd1 32768 7000 79% 344 5% /home
/proc - - - - - /proc
/dev/hd10opt 425984 405724 5% 282 1% /opt
/dev/lv00 1048576 974164 8% 435 1% /home/db2inst1
/dev/lv02 131072 117880 11% 75 1% /home/db2as
/dev/lv03 32768 31700 4% 17 1% /home/db2fenc1
/dev/lv06 1048576 1015612 4% 17 1% /work

Each process is assigned a directory entry in the /proc file system with a name
identical to its process ID. In this directory, several files and subdirectories are
created corresponding to internal process control data structures. Most of these
files are read-only, but some of them can also be written to and be used for
process control purposes. In addition, if a process becomes a zombie, most of its
associated /proc files disappear from the directory structure.

The /proc files contain data that presents the state of processes and threads in
the system. This state is constantly changing while the system is operating. To
lessen the load on system performance caused by reading /proc files, the /proc
filesystem does not stop system activity while gathering the data for those files. A
single read of a /proc file generally returns a coherent and fairly accurate
representation of process or thread state. However, because the state changes
as the process or thread runs, multiple reads of /proc files may return
representations that show different data and therefore appear to be inconsistent
with each other.

 Chapter 1. Introduction to AIX performance monitoring and tuning 47

An atomic representation is a representation of the process or thread at a single
and discrete point in time. If you want an atomic snapshot of process or thread
state, stop the process and thread before reading the state. There is no
guarantee that the data is an atomic snapshot for successive reads of /proc files
for a running process. In addition, a representation is not guaranteed to be
atomic for any I/O applied to the address space file. The contents of any process
address space might be simultaneously modified by a thread of that process or
any other process in the system.

The content of the /proc/pid directory is shown in Example 1-14.

Example 1-14 Content of /proc/pid

lpar05:/proc/454698>> ls -la
total 8
-rw------- 1 root system 0 Apr 24 13:20 as
-r-------- 1 root system 128 Apr 24 13:20 cred
--w------- 1 root system 0 Apr 24 13:20 ctl
lr-x------ 22 root system 0 Apr 2 16:34 cwd ->
/usr/WebSphere/AppServer/
dr-x------ 1 root system 0 Apr 24 13:20 fd
dr-xr-xr-x 1 root system 0 Apr 24 13:20 lwp
-r-------- 1 root system 0 Apr 24 13:20 map
dr-x------ 1 root system 0 Apr 24 13:20 object
-r--r--r-- 1 root system 448 Apr 24 13:20 psinfo
-r-------- 1 root system 12288 Apr 24 13:20 sigact
-r-------- 1 root system 1520 Apr 24 13:20 status
-r--r--r-- 1 root system 0 Apr 24 13:20 sysent

The following are the files and directories that exist for each process in the /proc
filesystem:

/proc/pid Directory for the process PID.

/proc/pid/as Address space of process PID.

/proc/pid/cred Contains a description of the credentials associated
with the process.

/proc/pid/ctl Control file for process PID.

/proc/pid/cwd A link that provides access to the current working
directory of the process. Any process can access the

Important: Multiple structure definitions are used to describe the /proc files. A
/proc file may contain additional information other than the definitions
presented here. In future releases of the operating system, these structures
may grow by the addition of fields at the end of the structures.

48 AIX 5L Performance Tools Handbook

current working directory of the process through this
link, provided it has the necessary permissions.

/proc/pid/fd Contains files for all open file descriptors of the
process.

/proc/pid/map Address space map info for process PID.

/proc/pid/object Directory for objects for process PID.

/proc/pid/psinfo Process status info for process PID.

/proc/pid/sigact Signal actions for process PID.

/proc/pid/status Status of process PID.

/proc/pid/sysent System call information for process PID.

Some of the files relate to a specific threads within the process. Those are:

/proc/pid/lwp/tid Directory for thread TID

/proc/pid/lwp/tid/lwpctl Control file for thread TID

/proc/pid/lwp/tid/lwpsinfo Process status info for thread TID

/proc/pid/lwp/tid/lwpstatusStatus of thread TID

The pseudo file named as enables you to access the address space of the
process, and as it can be seen by the rw (read/write) access flags, you can read
and write to the memory belonging to the process.

It should be understood that only the user regions of the process’s address can
be written to under /proc. Also, a copy of the address space of the process is
made while tracing under /proc. This is the address space that can be modified.
This is done when the as file is closed; the original address space is unmodified.

The cred file provides information about the credentials associated with this
process. Writing to the ctl file enables you to control the process; for example, to
stop or to resume it. The map file allows access to the virtual address map of the
process. Information usually shown by the ps command can be found in the
psinfo file, which is readable for all system users. The current status of all signals
associated with this process is recorded in the sigact file. State information for
this process, such as the address and size of the process heap and stack
(among others), can be found in the status file. Finally, the sysent file allows you
to check for the system calls available to this process.

The object directory contains files with names as they appear in the map file.
These files correspond to files mapped in the address space of the process. The
content of the /proc/pid/object directory is shown in Example 1-15 on page 50.

 Chapter 1. Introduction to AIX performance monitoring and tuning 49

Example 1-15 Content of /proc/pid/object

lpar05:/proc/454698/object>> ls -la
total 38760
dr-x------ 1 root system 0 Apr 24 13:58 .
dr-xr-xr-x 1 root system 0 Apr 24 13:58 ..
-rwxr-xr-x 1 root system 45835 Nov 11 10:15 a.out
-r--r--r-- 1 bin bin 5926092 Mar 6 23:38 jfs.10.5.16392
-r-xr-xr-x 1 bin bin 6785519 Sep 19 2002 jfs.10.5.4132
-r-xr-xr-x 1 bin bin 10993 Sep 15 2002 jfs.10.5.4144
-r--r--r-- 1 bin bin 909148 Sep 20 2002 jfs.10.5.4159
-r-xr-xr-x 1 bin bin 60890 Sep 15 2002 jfs.10.5.4188
-rwxr-xr-x 1 root system 2548621 Nov 11 10:15 jfs.10.5.530543
-rw-r--r-- 1 root system 35088 Nov 11 19:52 jfs.10.5.539133
-rwxr-xr-x 1 root system 134782 Nov 11 10:15 jfs.10.5.540408
-rwxr-xr-x 1 root system 364159 Nov 11 10:15 jfs.10.5.540410
-rwxr-xr-x 1 root system 2716599 Nov 11 10:15 jfs.10.5.540414
-rwxr-xr-x 1 root system 71838 Nov 11 10:15 jfs.10.5.540417
-rwxr-xr-x 1 root system 9738 Nov 11 10:15 jfs.10.5.540418
-rwxr-xr-x 1 root system 45336 Nov 11 10:15 jfs.10.5.540419
-rwxr-xr-x 1 root system 104961 Nov 11 10:15 jfs.10.5.540420
-rwxr-xr-x 1 root system 45835 Nov 11 10:15 jfs.10.5.604167

The a.out file always represents the executable binary file for the program
running in the process itself because the example program is written in C and
must use the C runtime library, as indicated by the other file references. To get
the actual corresponding file names from the symbolic file, use the ls command
to get the major and minor device numbers, and the inode number that can be
queried using the ncheck command. The example that we use checks whether
jfs.10.5.4132 is used to find a file belonging to an inode in a specific file system.

Example 1-16 To check inode number and correspondent file

lpar05:/proc/454698/object>> ls -l /dev/hd2
brw-rw---- 1 root system 10, 5 Apr 2 15:03 /dev/hd2

lpar05:/proc/454698/object>> ncheck -i 4132 /dev/hd2
/dev/hd2:
4132 /ccs/lib/libc.a

The lwp directory has subdirectory entries for each kernel thread running in the
process. The term lwp stands for lightweight process and is the same as the term
thread used in the AIX documentation. It is used in the context of the /proc file
system to keep a common terminology with the /proc implementation of other
operating systems. The names of the subdirectories are the thread IDs. The
program has threads, as shown in the output of the ps command. Therefore, only
the content of one of these thread directoris is shown in Example 1-17 on
page 51.

50 AIX 5L Performance Tools Handbook

Example 1-17 Displaying threads with the ps command

lpar05:/proc/454698/object>> ps -mo THREAD -p 454698
USER PID PPID TID S CP PRI SC WCHAN F TT BND COMMAND
... (lines omitted)...
 - - - 979177 S 0 60 1 f10000879000ef40 8410400 - - -
 - - - 983271 S 0 60 1 f10000879000f040 8410400 - - -
 - - - 991463 S 0 60 1 f1000089c1684a00 400400 - - -
 - - - 995567 S 0 60 1 f1000089c16dc200 400400 - - -
 - - - 999661 S 0 60 1 f1000089c1684200 400400 - - -
 - - - 1003761 S 0 60 1 f1000089c16dca00 400400 - - -
 - - - 1007857 S 0 60 1 f10000879000f640 8410400 - - -
 - - - 1024171 S 0 60 1 f10000879000fa40 8410400 - - -
lpar05:/proc/454698/lwp>> cd 1024171
lpar05:/proc/454698/lwp/1024171>> ls -la
total 0
dr-xr-xr-x 1 root system 0 Apr 24 16:25 .
dr-xr-xr-x 1 root system 0 Apr 24 16:25 ..
--w------- 1 root system 0 Apr 24 16:25 lwpctl
-r--r--r-- 1 root system 120 Apr 24 16:25 lwpsinfo
-r-------- 1 root system 1200 Apr 24 16:25 lwpstatus

The lwpctl, lwpsinfo, and lwpstatus files contain thread-specific information to
control this thread, for the ps command, and about the state, similar to the
corresponding files in the /proc/pid directory. As an example of what can be
obtained from reading these files, Example 1-18 shows the content of the cred
file.

Example 1-18 Using the od command to show the content of the cred file

lpar05:/proc/454698>> ls -l cred
-r-------- 1 root system 128 Apr 24 16:45 cred
lpar05:/proc/454698>> od -x cred
0000000 0000 0000 0000 0000 0000 0000 0000 0000
*
0000160 0000 0000 0000 0007 0000 0000 0000 0000
0000200 0000 0000 0000 0002 0000 0000 0000 0003
0000220 0000 0000 0000 0007 0000 0000 0000 0008
0000240 0000 0000 0000 000a 0000 0000 0000 000b
0000260

The output in the leftmost column shows the byte offset of the file in octal
representation. The remainder of the lines are the actual content of the file in
hexadecimal notation. Even if the directory listing shows the size of the file to be
128 bytes or 0200 bytes in octal, the actual output is 0260 or 176 bytes in size.
This is due to the dynamic behavior of the last field in the corresponding
structure. The digit 7 in the 0160 line specifies the number of groups the user ID
running this process belongs to. Because every user ID is at least part of its

 Chapter 1. Introduction to AIX performance monitoring and tuning 51

primary group, but possibly belongs to a number of other groups that cannot be
known in advance, only space for the primary group is reserved in the cred data
structure. In this case, the primary group ID is zero because the user ID running
this process is root. Reading the complete content of the file, nevertheless,
reveals all of the other group IDs the user currently belongs to. The group IDs in
this case (2, 3, 7, 8, 0xa (10), and 0xb (11)) map to the groups bin, sys, security,
cron, audit, and lp. This is exactly the set of groups the user ID root belongs to by
default.

The /proc/pid#/fd directory contains files for all the open file descriptors of the
process. As seen in the example, each entry is a decimal number that
corresponds to an open file descriptor in the process. Any directories are
displayed as links. Example 1-19 shows the directory layout for a process.

Example 1-19 Using the ls command

lpar05:/proc/454698/fd>> ls -l
total 149032
... (lines omitted)...
c--------- 1 root system 21, 1 Apr 24 17:17 0
-rw-r--r-- 1 root system 0 Apr 2 17:06 1
-r-xr-xr-x 1 root system 6538 Jul 9 2002 10
-r--r--r-- 1 root system 2425671 Nov 11 19:38 100
-r--r--r-- 1 root system 135580 Nov 11 21:50 101
-r--r--r-- 1 root system 24815 Nov 11 22:35 102
-r--r--r-- 1 root system 15052 Nov 11 19:39 103
-r--r--r-- 1 root system 417110 Oct 11 2001 104
-r--r--r-- 1 root system 1201599 Sep 24 2002 105
-r--r--r-- 1 root system 41007 Nov 11 21:49 106
-r--r--r-- 1 root system 557450 Nov 11 19:01 107
-r--r--r-- 1 root system 1154258 Nov 11 19:06 108
-r--r--r-- 1 root system 82298 Nov 11 19:03 109
-r-xr-xr-x 1 root system 315235 Oct 9 2002 11
-r--r--r-- 1 root system 1883329 Oct 18 2002 110
-r--r--r-- 1 root system 3173 Nov 11 19:02 111
-r--r--r-- 1 root system 124331 Nov 11 19:02 112
-r--r--r-- 1 root system 174782 Nov 11 19:03 113
-r--r--r-- 1 root system 383415 Nov 11 19:03 114
-r--r--r-- 1 root system 342484 Sep 3 2002 115
-r--r--r-- 1 root system 67138 Mar 1 2001 116

52 AIX 5L Performance Tools Handbook

Chapter 2. Getting started

This chapter is intended as a starting point. It contains listings of all of the
common and most useful AIX tools for resolving and monitoring performance
issues. The quick-lookup tables in this chapter are intended to assist the user in
finding the required command for monitoring a certain system resource and to
provide the user with information about which AIX fileset a tool might belong to.

When facing a performance problem on a system, an approach must be chosen
in order to analyze and resolve the problem. The topas command is an AIX
performance monitoring tool that gives an overview of all of the system resources
and can therefore very well be used as a starting point for performance analysis.

The discussions in this chapter are:

� 2.1, “Tools and filesets” on page 54

� 2.2, “Tools by resource matrix” on page 57

� 2.3, “Performance tuning approach” on page 60, which shows the user the
recommended approach to resolving a performance problem, starting with
topas, and guides the user through the performance analysis task.

2

© Copyright IBM Corp. 2001, 2003 53

2.1 Tools and filesets
The intention of this section is to give you an list of all the performance tools
discussed in this book together with the path that is used to call the command
and the fileset the tool is part of.

Many of the performance tools are located in filesets that obviously would contain
them, such as bos.perf.tools or perfagent.tools. However, some are located in
filesets that are not quite as obvious. You will often find that this fileset is not
installed on a system because it does not obviously contain performance tools.

One example is the vmtune and schedtune commands, which are both part of the
bos.adt.samples fileset. However, starting with AIX 5.2, schedtune and vmtune
are only scripts that call the new commands vmo, ioo, and schedo. For more
information see Chapter 14, “The vmo, ioo, and vmtune commands” on page 229
and Chapter 10, “The schedo and schedtune commands” on page 165.

Table 2-1 lists the tools discussed in this book, their full path name, and their
fileset information.

Table 2-1 Commands/tools, pathnames, and filesets

Command / Tool Full path name Fileset name / URL

3D monitor /usr/bin/3dmon perfmgr.network

alstat /usr/bin/alstat bos.perf.tools

atmstat /usr/bin/atmstat devices.common.IBM.atm.rte

bindintcpu /usr/sbin/bindintcpu devices.chrp.base.rte

bindprocessor /usr/sbin/bindprocessor bos.mp

curt /usr/bin/curt bos.perf.tools

emstat /usr/bin/emstat bos.perf.tools

entstat /usr/bin/entstat devices.common.IBM.ethernet.rte

estat /usr/lpp/ssp/css/css ssp.css

fddistat /usr/bin/fddistat devices.common.IBM.fddi.rte

fdpr /usr/bin/fdpr perfagent.tools

filemon /usr/bin/filemon bos.perf.tools

fileplace /usr/bin/fileplace bos.perf.tools

genkex /usr/bin/genkex bos.perf.tools

54 AIX 5L Performance Tools Handbook

genkld /usr/bin/genkld bos.perf.tools

genld /usr/bin/genld bos.perf.tools

gennames /usr/bin/gennames bos.perf.tools

gprof /usr/bin/gprof bos.adt.prof

ioo /usr/sbin/ioo bos.perf.tune

iostat /usr/bin/iostat bos.acct

ipcs /usr/bin/ipcs bos.rte.control

ipfilter /usr/bin/ipfilter bos.perf.tools

ipreport /usr/sbin/ipreport bos.net.tcp.server

iptrace /usr/sbin/iptrace bos.net.tcp.server

jazizo (PTX) /usr/bin/jazizo perfmgr.analysis.jazizo

locktrace /usr/bin/locktrace bos.perf.tools

lslv /usr/sbin/lslv bos.rte.lvm

lspv /usr/sbin/lspv bos.rte.lvm

lsvg /usr/sbin/lsvg bos.rte.lvm

lvmstat /usr/sbin/lvmstat bos.rte.lvm

netpmon /usr/bin/netpmon bos.perf.tools

netstat /usr/bin/netstat bos.net.tcp.client

nfso /usr/sbin/nfso bos.net.nfs.client

nfsstat /usr/sbin/nfsstat bos.net.nfs.client

nice /usr/bin/nice bos.rte.control

no /usr/sbin/no bos.net.tcp.client

PDT /usr/sbin/perf/diag_tool bos.perf.diag_tool

perfpmr - ftp://ftp.software.ibm.com/aix/
tools/perftools/perfpmr/

Perfstat API - bos.perf.libperfstat

Performance Monitor
API

- bos.pmapi.lib

Command / Tool Full path name Fileset name / URL

 Chapter 2. Getting started 55

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/

pprof /usr/bin/pprof bos.perf.tools

prof /usr/bin/prof bos.adt.prof

ps /usr/bin/ps bos.rte.control

renice /usr/bin/renice bos.rte.control

Resource Monitoring
and Control

- rsct.core.*

rmss /usr/bin/rmss bos.perf.tools

sar /usr/sbin/sar bos.acct

schedo /usr/sbin/schedo bos.perf.tune

splat /usr/bin/splat bos.perf.tools

System Performance
Measurement
Interface

- perfagent.tools, perfagent.server

stripnm /usr/bin/stripnm bos.perf.tools

svmon /usr/bin/svmon bos.perf.tools

tcpdump /usr/sbin/tcpdump bos.net.tcp.server

time /usr/bin/time bos.rte.misc_cmds

timex /usr/bin/timex bos.acct

tokstat /usr/bin/tokstat devices.common.IBM.tokenring.rte

topas /usr/bin/topas bos.perf.tools

tprof /usr/bin/tprof bos.perf.tools

trace /usr/bin/trace bos.sysmgt.trace

trcnm /usr/bin/trcnm bos.sysmgt.trace

trcrpt /usr/bin/trcrpt bos.sysmgt.trace

trpt /usr/sbin/trpt bos.net.tcp.server

truss /usr/bin/truss bos.sysmgt.serv_aid

vmstat /usr/bin/vmstat bos.acct

vmo /usr/sbin/vmo bos.perf.tune

Command / Tool Full path name Fileset name / URL

56 AIX 5L Performance Tools Handbook

2.2 Tools by resource matrix
Table 2-2 contains a list of the AIX monitoring and tuning tools and what system
resources (CPU, Memory, Disk I/O, Network I/O) they obtain statistics for. Tools
that are used by trace, that post-process the trace output, or that are directly
related to trace, are denoted in the Trace Tools column. Tools that are useful for
application development are checked in the Application column.

Table 2-2 Performance tools by resource matrix

wlmmon /usr/bin/wlmmon perfagent.tools

wlmperf /usr/bin/wlmperf perfmgr.analysis.jazizo

wlmstat /usr/sbin/wlmstat bos.rte.control

xmperf (PTX®) /usr/bin/xmperf perfmgr.network

Command / Tool Full path name Fileset name / URL

Command CPU Memory Disk I/O Network
I/O

Trace
Tools

Applica-
tion

alstat x

atmstat x

bindintcpu x

bindprocessor x

curt x x

emstat x

entstat x

estat x

fddistat x

fdpr x

filemon x x

fileplace x

genkex x

genkld x

genld x

 Chapter 2. Getting started 57

gennames x

gprof x x

ioo x

iostat x x

ipcs x x

ipfilter x

ipreport x

iptrace x

locktrace x x

lslv x

lspv x

lsvg x

lvmstat x

netpmon x x x

netstat x

nfso x

nfsstat x

nice x

no x

PDT x x x x

perfpmr x x x x x

Perfstat API x x x x

Performance
Monitor API

x x

pprof x x

prof x x

ps x x

Command CPU Memory Disk I/O Network
I/O

Trace
Tools

Applica-
tion

58 AIX 5L Performance Tools Handbook

Performance
Toolbox Version 3
for AIX

x x x x x

renice x

Resource
Monitoring and
Control

x x x x

rmss x

sar x x x x

schedo x x

splat x x x

System
Performance
Measurement
Interface

x x x x

stripnm

svmon x

tcpdump x

time x

timex x

tokstat x

topas x x x x

tprof x x x

trace x x x x x

trcnm x

trcrpt x

trpt x x

truss x

vmstat x x x

Command CPU Memory Disk I/O Network
I/O

Trace
Tools

Applica-
tion

 Chapter 2. Getting started 59

2.3 Performance tuning approach
In this section, we discuss a typical initial approach to solve a performance
problem. To determine which of the monitored performance values are high in a
particular environment, it is necessary to gather the performance data on the
system during an optimal performance state. This baseline performance
information is very useful to have in case of a performance problem on the
system. The perfpmr command can be used to gather this information. However,
a screen snapshot of topas provides a brief overview of all of the major
performance data that makes it easier to compare the values gathered on the
well-performing system to the values shown if performance is low.

2.3.1 CPU bound system
The output of topas in Example 2-1 shows the fields that are used to decide
whether the system is CPU bound.

Example 2-1 topas output with highlighted CPU statistics

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836

vmo x

wlmmon x x x x

wlmperf x x x x

wlmstat x x x x

Command CPU Memory Disk I/O Network
I/O

Trace
Tools

Applica-
tion

Note: In the following sections we rate the values of the topas output such as
a high number of system calls. High, in this context, means that the value
shown on the topas output of the currently low-performing system is higher
than the value of the baseline performance data.

However, the values shown in the outputs of topas in the following sections do
not necessary reflect a performance problem. The outputs in our examples
are only used to highlight the fields of interest.

In any case all four major resources (CPU, memory, disk I/O, and network)
need to be checked when the performance of a system is analyzed.

60 AIX 5L Performance Tools Handbook

Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

The fields of interest are:

Kernel The CPU time spent in system (kernel) mode. The tprof or trace
commands can be used for further problem determination of why
the system spends more time than normal in system mode.

User The CPU time spent in user mode. If the consumption is much
higher than shown in the baseline, a user process may be looping.
The output of topas may show this process in the process part
(PID field for process ID). In case there are many active processes
on the system and more than one looping user process, the tprof
or trace command can be used to find these looping processes.

Cswitch The number of context switches per second; this may vary.
However, if this value is high, then the CPU system time also
should be higher than normal. The trace command can be used
for further investigation on the context switches.

Syscall The number of system calls per second. If this value is higher than
usual, the CPU system time also should be higher than normal.
The tprof or trace commands can be used for further investigation
on the system calls.

Forks The number of fork system calls per second. See Execs below.

Execs The number of exec system calls per second. If the number of fork
or exec system calls is high, then the CPU system time also should

 Chapter 2. Getting started 61

be higher than normal. A looping shell script that executes a
number of commands may be the cause for the high fork and exec
system calls. It may not be easy to find this shell script using the ps
command. The AIX trace facility can be used for further
investigation.

Runqueue The number of processes ready to run. If this number is high, either
the number of programs run on the system increased (the load put
on the system by the users), or there are fewer CPUs to run the
programs. The sar -P ALL command should be used to see how all
CPUs are used.

PID The process ID. Useful in case of a runaway process that causes
CPU user time to be high. If there is a process using an unusually
high amount of CPU time, the tprof -t command can be used to
gather information about this process. If it is a runaway process,
killing this process will reduce the high CPU usage and may solve
the performance problem.

2.3.2 Memory bound system
The output of topas in Example 2-2 shows the fields that are used to decide
whether the system is memory bound.

Example 2-2 topas output with highlighted memory statistics

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help

62 AIX 5L Performance Tools Handbook

dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

These are the fields of interest:

Steals This is the number of page steals per second by the VMM. If the
system needs real memory, the VMM scans for the least
referenced pages to free them. The vmstat command provides a
statistic about the number of pages scanned. If a page to be stolen
contains changed data, this page need to be written back to disk.
Refer to PgspOut below. If the Steals value gets high, further
investigation is necessary. There could be a memory leak in the
system or an application. The ps command can be used for a brief
monitoring of memory usage of processes. The svmon command
can be used to gather more-detailed memory usage information
about the processes suspected to leak memory.

PgspIn This is the number of paging space page ins per second. These
are previously stolen pages read back from disk into real memory.

PgspOut This is the number of paging space page outs per second. If a
page is selected to be stolen and the data in this page is changed,
then the page must be written to paging space. (An unchanged
page does not need to be written back.)

% Used The amount of used paging space. A good balanced system
should not page; at least the page outs should be 0 (zero).
Because of memory fragmentation, the amount of paging space
used will increase on a newly started system over time. (It should
be notable for the first few days.) However, if the amount of paging
space used increases constantly, a memory leak may be the
cause, and further investigations using ps and svmon are
necessary. The load on the disks holding the paging space will
increase if paging space ins (read from disk) and paging space
outs (write to disk) increase.

2.3.3 Disk I/O bound system
The output of topas in Example 2-3 shows the fields that are used to decide
whether the system is disk I/O bound.

Example 2-3 topas output with highlighted disk I/O statistics

Topas Monitor for host: wlmhost EVENTS/QUEUES FILE/TTY
Fri May 11 11:28:06 2001 Interval: 2 Cswitch 64 Readch 353
 Syscall 211 Writech 7836
Kernel 0.6 | | Reads 16 Rawin 0
User 99.3 |############################| Writes 6 Ttyout 0

 Chapter 2. Getting started 63

Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 8
 Runqueue 4.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
tr0 8.3 6.1 9.2 0.3 8.0
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 511
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 46.5
hdisk0 0.0 2.0 0.0 0.0 2.0 PgspIn 0 % Noncomp 53.6
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 49.6
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
Unmanaged 0 23 0 Sios 0 Size,MB 1024
Unclassified 0 0 0 % Used 13.1
 NFS (calls/sec) % Free 86.8
Name PID CPU% PgSp Class ServerV2 0
dc 43564 25.0 0.3 System ClientV2 0 Press:
dc 21566 25.0 0.3 System ServerV3 0 "h" for help
dc 41554 25.0 0.3 VPs ClientV3 0 "q" to quit
dc 23658 24.2 0.3 System

These are the fields of interest:

Wait The CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and
asynchronous I/O is not in use. An I/O causes the process to block
(or sleep) until the I/O is complete.

Disk The name of the physical device.

Busy% The percentage of time that the disk drive was active. A high busy
percentage could be caused by random disk access. The disk’s
throughput may be low even if the percentage busy value is high. If
this number is high for one or multiple devices, the iostat
command can be used to gather more precise information. In case
of paging activity the disk holding the paging logical volumes are
used more than normal and the cause for the higher paging activity
should be investigated. The filemon command can be used to
gather information about the logical volume accessed to keep the
disks busy and the process accessing the logical volume. The
fileplace command can be used to gather information about the
accessed files. All of this information can be used to redesign the
layout of the logical volume and the file system. The trace
command can be used to gather information about the application’s
access pattern to the data on disk, which may be useful in case a
redesign of the application is possible.

64 AIX 5L Performance Tools Handbook

KBPS The total throughput of the disk in kilobytes per second. This value
is the sum of KB-Read and KB-Writ. If this value is high, the iostat,
filemon, and fileplace commands can be used to gather detailed
data. A redesign of the logical volume or volume group may be
necessary to improve I/O throughput.

TPS The number of transfers per second or I/O requests to a disk drive.

KB-Read The number of kilobytes read per second. Refer to the field KBPS.
The system’s total number of read system calls per second is
shown in the Reads field. The system’s total number of read
characters per second is shown in the Readch field. Both Reads and
Readch can be used to estimate the data block size transferred per
read.

KB-Writ The number of kilobytes written per second. Refer to the field KBPS.
The system total number of write system calls per second is shown
in the Writes field. The system total number of written characters
per second is shown in the Writech field. Both Writes and Writech
can be used to estimate the data block size transferred per write.

2.3.4 Network I/O bound system
The following output of topas in Example 2-4 shows the fields that are used to
decide whether the system is network I/O bound.

Example 2-4 topas output with highlighted network I/O and nfs statistics

Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Thu May 15 17:35:41 2003 Interval: 2 Cswitch 2867 Readch 11.8M
 Syscall 2000 Writech 11.8M
Kernel 2.7 |# | Reads 757 Rawin 0
User 4.2 |# | Writes 758 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 93.0 |########################## | Execs 0 Namei 0
 Runqueue 0.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
en0 6808.5 6027 9026 270.0 13347.0
lo0 0.0 0 0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 2047
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 15.2
hdisk0 0.0 0.0 0 0.0 0.0 PgspIn 0 % Noncomp 1.8
hdisk1 0.0 0.0 0 0.0 0.0 PgspOut 0 % Client 2.3
 PageIn 0
Name PID CPU% PgSp Owner PageOut 0 PAGING SPACE
ftp 315570 4.9 0.6 root Sios 0 Size,MB 512
xmgc 90156 0.1 0.0 root % Used 1.5
dd 307250 0.0 0.1 root NFS (calls/sec) % Free 98.4
dd 274486 0.0 0.1 root ServerV2 0

 Chapter 2. Getting started 65

syncd 127062 0.0 0.6 root ClientV2 0 Press:
rmcd 225418 0.0 2.2 root ServerV3 0 "h" for help
telnetd 278752 0.0 0.6 root ClientV3 0 "q" to quit
IBM.Servi 319652 0.0 1.1 root

These are the fields of interest for network performance:

Network Shows the network interface.

KBPS Transferred amount of data over the interface in KB per second.
This is the sum of KB-In and KB-Out. If this is lower than expected,
further investigation is necessary. Network-related resource
bottlenecks such as CPU, disk I/O, or memory could be the cause.
Tools and procedures to put maximum load on the network and
reach the maximum possible transfer rates should be in place. The
ftp put command shown in 1.5, “Network performance” on
page 31 can be used. The netstat command as well as the
interface statistics commands atmstat, entstat, estat, fddistat,
and tokstat can be used to monitor network resources on the local
system. The netpmon command provides detailed usage statistics
for all network-related functions of the system. However, a
monitoring of the remote systems as well as the network may be
necessary to detect possible throughput limiting problems there.

I-Pack Received packets per second. With the value of received bytes per
second (KB-In), the average packet size can be calculated.

O-Pack Sent packets per second. With the value of sent bytes per second
(KB-Out) the average packet size can be calculated.

KB-In Amount of data received on the interface per second.

KB-In Amount of data sent on the interface per second.

For NFS performance, topas shows only the number of NFS server and client
calls for both NFS V2 and NFS V3. This data can only provide a quick overview
of the NFS usage. The nfsstat command should be used to get more details
about the NFS operations used and to gather RPC statistics.

Note: Detecting the root cause of a low network throughput is not easy. A
shortage of resources on the local system can be the cause, such as an mbuf
low condition (netstat -m), a busy CPU that prevents the execution of network
code at the necessary speed, or slow disk I/O unable to deliver the necessary
data fast enough. Test tools and procedures that use only a small amount of
local resources to produce a high network load can help to detect problems on
the network or the remote systems.

66 AIX 5L Performance Tools Handbook

Part 2 Multi-resource
monitoring and
tuning tools

This part describes tools for monitoring and tuning multiple system resources.
The commands listed are not specific to CPU, disk, memory, or network
resources. They may be used across one or more of those resources. Some of
the commands may report on CPU, the Virtual Memory Manager (VMM), and
disk I/O, while others may report statistics on CPU and network activities. Refer
to the sections referenced below for specific information about the individual
tools.

� Monitoring tools:

– The iostat command described in Chapter 4, “The iostat command” on
page 81 is used to monitor system input/output device loading by

Part 2

© Copyright IBM Corp. 2001, 2003. All rights reserved. 67

observing the time the physical disks are active in relation to their average
transfer rates. It also reports on CPU use.

– The netpmon command described in Chapter 5, “The netpmon command”
on page 93 is used to monitor a trace of system events on network activity
and performance and the CPU consumption of network activities.

– The PDT tool described in Chapter 6, “Performance Diagnostic Tool (PDT)”
on page 105 attempts to identify performance problems automatically by
collecting and integrating a wide range of performance, configuration, and
availability data.

– The perfpmr command described in Chapter 7, “The perfpmr command”
on page 115 is a set of utilities that builds a test case by running many of
the commands featured in this book. The test case contains the necessary
information to assist in analyzing performance issues.

– The ps command described in Chapter 8, “The ps command” on page 127
is used to produce a list of processes on the system with specific
information about, for instance, the CPU use of these processes.

– The sar command described in Chapter 9, “The sar command” on
page 139 is used to report on CPU use, I/O, and other system activities.

– The topas command described in Chapter 11, “The topas command” on
page 179 is used to monitor a broad spectrum of system resources such
as CPU use, CPU events and queues, memory and paging use, disk
performance, network performance, and NFS statistics. It also reports
system resource consumption by processes assigned to different
Workload Manager (WLM) classes.

– The truss command described in Chapter 11, “The topas command” on
page 179 is used to track a process’s system calls, received signals, and
incurred machine faults.

– The vmstat command described in Chapter 13, “The vmstat command” on
page 211 is used to report statistics about kernel threads, virtual memory,
disks, and CPU activity.

� Tuning tools:

– The fdpr command described in Chapter 3, “The fdpr command” on
page 71 is used for improving execution time and real memory use of
user-level application programs and libraries.

– The schedo command described in Chapter 10, “The schedo and
schedtune commands” on page 165 is used to set criteria of thrashing,
process suspension, time slices, and the length of time that threads can
spin on locks. A sample compatibility script called schedtune exists.

– The vmo and ioo command described in Chapter 14, “The vmo, ioo, and
vmtune commands” on page 229 is used to change the characteristics of

68 AIX 5L Performance Tools Handbook

the Virtual Memory Manager (VMM) such as page replacement, persistent
file reads and writes, file system buffer structures (bufstructs), Logical
Volume Manager (LVM) buffers, raw input/output, paging space,
parameters, page deletes, and memory pinned parameters. A sample
compatibility script called vmtune exists.

 69

70 AIX 5L Performance Tools Handbook

Chapter 3. The fdpr command

The fdpr (Feedback Directed Program Restructuring) command is a
performance tuning utility for improving execution time and real memory use of
user-level application programs and libraries. The fdpr command can perform
different actions to achieve these goals, such as removing unnecessary
instructions and reordering of code and data. The fdpr program optimizes the
executable image of a program by collecting information about the behavior of
the program while the program is used for some typical workload, and then
creates a new version of the program that is optimized for that workload.

fdpr resides in /usr/bin and is part of the perfagent.tools fileset, which is
installable from the AIX base installation media.

3

© Copyright IBM Corp. 2001, 2003 71

3.1 fdpr
The fdpr command builds an optimized executable program in three distinct
phases:

� Phase 1: Create an instrumented executable program.
� Phase 2: Run the instrumented program and create the profile data.
� Phase 3: Generate the optimized executable program file.

If not specified, all three phases are run. This is equal to the -123 flags.

Depending on the phase to be executed by the fdpr command, the syntax of the
fdpr command can be as follows:

� Most common use:

fdpr -p ProgramFile -x Command

� Syntax to use with phase 1 and 3 flags:

fdpr -p ProgramFile [-M Segnum] [-fd Fdesc] [-o OutputFile]
[-armemberArchiveMemberList] [OptimizationFlags] [-map] [-disasm]
[-profcount] [-v] [-s [-1 | -3]] [-x WorkloadCommand]

� Syntax to use with phase 2 flag:

fdpr -p ProgramFile [-M Segnum] [-fd Fdesc] [-o OutputFile]
[-armemberArchiveMemberList] [OptimizationFlags] [-map] [-disasm]
[-profcount] [-v] [-s [-2 | -12 | -23]] -x WorkloadCommand

The following is the syntax for the optimization flags:

[[-Rn] | [-R0 | -R1 | -R2 | -R3]] [-nI] [-tb] [-pc] [-pp] [-bt]
[-toc] [-O2] [-O3] [-nop] [-opt_fdpr_glue] [-inline] [-i_resched]
[-killed_regs] [-RD] [-full_saved_regs_calls] [-trunc_tb] [-tocload
|-aggressive_tocload] [-regs_release] [-ret_prologs] [-volatile_regs]
[-propagate] [-regs_redo] [-ptrgl_opt] [-dcbt_opt]

Optimization flags
-1, -2, -3 Specifies the phase to run. The default is to run all three

phases (-123). The -s flag must be used when running
separate phases so that the succeeding phases can
access the required intermediate files. The phases must
be run in order (for example, -1, then -2, then -3, or -1,
then -23). The -2 flag must be used along with the
invocation flag -x.

-M SegNum Specifies where to map shared memory for profiling. The
default is 0x30000000. Specify an alternate shared
memory address if the program to be reordered or any of
the command strings invoked with the -x flag use

72 AIX 5L Performance Tools Handbook

conflicting shared memory addresses. Typical alternative
values are 0x40000000, 0x50000000, and so on up to
0xC0000000.

-fd Fdesc Specifies which file descriptor number is to be used for
the profile file that is mapped to the above shared memory
area. The default of Fdesc is set to 1999.

-o OutFile Specifies the name of the output file from the optimizer.
The default is ProgramFile.fdpr

-p ProgramFile Contains the name of the executable program file, shared
object file, or shared library containing shared objects or
executables to optimize. This program must be an
unstriped executable.

-x Command Specifies the command used for invoking the
instrumented program. All of the arguments after the -x
flag are used for the invocation. The -x flag is required
when the -s flag is used with the -2 flag.

-armember amList Lists archive members to be optimized within a shared
archive file specified by the -p flag. If -armember is not
specified, all members of the archive file are optimized.
The entries in amList should be separated by spaces.

-profcount Prints the profiling counters into a suffixed .counters file.

-disasm Prints the disassembled version of the input program into
a suffixed .dis file.

-map Prints a map of basic blocks with their respective old and
new addresses into a suffixed .map file.

-s Specifies that temporary files created by the fdpr
command cannot be removed. This flag must be used
when running fdpr in separate phases.

-v Enables verbose output.

-Rn Copies input to output instead of invoking the optimizer.
The -Rn flag cannot be used with the -R0, -R1, -R2, or
-R3 flags.

-R0,-R1,-R2, -R3 Specifies the level of optimization. -R3 is the most
aggressive optimization. The default is -R0. Refer to AIX
5L Version 5.2 Commands Reference, SBOF-1877, for
more information about the optimization levels.

-nI Does not permit branch reversing.

-tb Forces the restructuring of traceback tables in reordered
code. If -tb is omitted, traceback tables are automatically

 Chapter 3. The fdpr command 73

included only for C++ applications using a try and catch
mechanism.

-pc Preserves CSECT boundaries. Effective only with -R1
and -R3.

-pp Preserves procedures boundaries. Effective only with -R1
and -R3.

-toc Enable TOC pointer modifications. Effective only with -R0
and -R2.

-bt Enables branch table modifications. Effective only with
-R0 and -R2.

-O3 Switches on the following optimization flags:
-nop, -opt_fdpr_glue, -inline, -i_resched, -killed_regs, -RD,
-aggressive_tocload, -regs_release, -ret_prologs.

-inline Performs inlining of hot functions.

-nop Removes NOP instructions from reordered code.

-opt_fdpr_glue Optimizes hot BBs in FDPR glue during code reordering.

-killed_regs Avoids storing instructions for registers within callee
functions’ prologs that are later killed by the calling
function.

-regs_release Eliminates store/restore instructions in the function’s
prolog/epilog for non-frequently used registers within the
function.

-tocload Replaces an indirect load instruction via the TOC with an
add immediate instruction.

-aggressive_tocload Performs the -tocload optimization, and reduces the TOC
size by removing redundant TOC entries.

-RD Performs static data reordering in the .data and .bss
sections.

-i_resched Performs instruction rescheduling after code reordering.

-ret_prologs Optimizes functions prologs that terminate with a
conditional branch instruction directly to the function’s
epilog.

74 AIX 5L Performance Tools Handbook

3.1.1 Information about measurement and sampling
The fdpr command builds an optimized executable by applying advanced
optimization techniques using three distinct phases to optimize the source
executable. These three phases are:

� In phase one, fdpr creates an instrumented executable program.
The source executable is saved as __ProgramFile.save, and a new and
instrumented version, named __ProgramFile.instr, is built.

� In Phase two, fdpr runs the instrumented version of the executable, and
profiling data is collected. This profiling data is stored in the file named
__ProgramFile.prof. The executable needs to be run with typical input data to
reflect normal use and to enable fdpr to find the code parts to improve.

� In Phase three, fdpr uses the profiled information collected in phase two to
reorder the executable. This reordering includes tasks such as:

– Packing together highly executed code sequences

– Recoding conditional branches to improve hardware branch prediction

– Moving less-used code sections out of line

– Inlining of hot functions

– Removing NOP instructions from reordered code

The compiler flag -qfdpr can be used to have the compiler add additional
information into the executable that assists fdpr in reordering the executable.
However, if the -qfdpr compiler flag is used, only those object modules compiled
with this flag are reordered by fdpr. The reordered executable generated by fdpr
provides a certain degree of debugging capability. Refer to AIX 5L Version 5.2
Commands Reference for more information about the fdpr command.

Attention: The fdpr command applies advanced optimization techniques that
may result in programs that do not behave as expected. Programs that are
reordered using this tool should be used with due caution and should be
rigorously retested with, at a minimum, the same test suite used to test the
original program in order to verify expected functionality. The reordered
program is not supported by IBM.

 Chapter 3. The fdpr command 75

3.2 Examples for fdpr
Example 3-1 shows a source code of the C program that will be optimized using
fdpr.

Example 3-1 C program used to show code instrumentation by fdpr

#include <stdio.h>
#include <errno.h>
#include <unistd.h>
#include <stdlib.h>

main(argc, argv, envp)
 int argc;
 char **argv;
 char **envp;
{
 int x;
 x=atoi(argv[1]);
 if (x) {
 printf ("then part\n");
 } else {
 fprintf (stderr, "else part\n");
 } /* endif */
 exit (0);
}

This program converts the parameter passed to it into an integer and, depending
on the value, the then or else part of the if instruction is executed. For easy
identification of the then and else part in the assembler code, a printf in the
then part and an fprintf in the else part is used. The code is compiled using:

cc -qfdpr -qlist c.c

The shell script in Example 3-2 is used to instrument the program.

Example 3-2 Shell script c.sh used to instrument the program with fdpr

#/usr/bin/ksh
let x=0
while [$x -lt 5000]
do
 ./a.out $x 2>/dev/null 1>/dev/null
 let x=x+1
done

The program a.out is called and the loop counter $x is passed as the parameter.
This way the else part of the example program gets executed only once and the
then part gets executed 4999 times.

76 AIX 5L Performance Tools Handbook

Example 3-3 shows how the fdpr command is used to optimize the program. The
output indicates that the code is being reordered.

Example 3-3 Running fdpr

$ fdpr -p a.out -R3 -disasm -x ./c.sh
FDPR 5.2.0: The fdpr tool has the potential to alter the expected
behavior of a program. The resulting program will not be supported by IBM.
The user should refer to the fdpr document
for additional information.
Reading Input Executable File...
Recognizing CSECTs in Executable File...
Identifying the Basic Blocks...
54 Basic Blocks identified.
Instrumenting Input Executable File...
trampoline size 116
instrumented 100% of code
trampoline code and 1 trampolines were built, max 116 entries in 000001D0
10000150 <-- code[0] <-- 100005EC: size = 000004A0
100005F0 <-- trmp[0] <-- 100007BC: size = 000001D0, used 75% (88 in 116)
100007C0 <-- code[1] <-- 100012EC: size = 00000B2C
Writing output file /home/res1/fdpr_D/__a.out.instr...
Recognizing CSECTs in Executable File...
Identifying the Basic Blocks...
54 Basic Blocks identified.
Reading Profiling Information...
Maximal profiling counter 5000
Average profiling counter 1574.074219
2 NOP instructions found
Printing disassembly code into file __a.out.save.dis...
Reordering the Code...
999)conditional jumps removed due to new code order (total executions removed..
The Code Reordering completed...
Writing output file /home/res1/fdpr_D/a.out.fdpr...

The result of the disassembled instruction in Example 3-4 shows that fdpr
captures branch information for optimization.

Example 3-4 Content of __a.out.save.dis

.__start {PR} (0x10000150): # New BB:

.........more lines ...
0x10000380: 0x48000079: bl 0x100003f8 /* .atoi */
0x10000384: # New BB: 0x10000384(size 16 proc 2 exec 5000)
 0x10000384: 0x80410014: l r2,20(r1)
 0x10000388: 0x2c030000: cmpi cr0,r3,0
 0x1000038c: 0x90610040: st r3,64(r1)
 0x10000390: 0x41820014: beq cr0,0x100003a4 # 12,bit2
0x10000394: # New BB: 0x10000394(size 8 proc 2 exec 4999)
 0x10000394: 0x387f0010: cal r3,16(r31)

 Chapter 3. The fdpr command 77

 0x10000398: 0x48000089: bl 0x10000420 /* .printf */
0x1000039c: # New BB: 0x1000039c(size 8 proc 2 exec 4999)
0x1000039c: 0x80410014: l r2,20(r1)
 0x100003a0: 0x48000018: b 0x100003b8
L11: # New BB: 0x100003a4(size 16 proc 2 exec 1)
 0x100003a4: 0x80620050: l r3,80(r2) /* _iob */
 0x100003a8: 0x389f001c: cal r4,28(r31)
 0x100003ac: 0x38630040: cal r3,64(r3)
 0x100003b0: 0x48000099: bl 0x10000448 /* .fprintf */
0x100003b4: # New BB: 0x100003b4(size 4 proc 2 exec 1)
 0x100003b4: 0x80410014: l r2,20(r1)
L12: # New BB: 0x100003b8(size 8 proc 2 exec 5000)
 0x100003b8: 0x38600000: lil r3,0x0
 0x100003bc: 0x480000b5: bl 0x10000470 /* .exit */
.......more lines

The alternate shell script in Example 3-5 is now used to instrument the program.

Example 3-5 Alternate shell script c.sh2 to instrument the program

#!/usr/bin/ksh
let x=1
while [$x -lt 5000]
do
 ./a.out 0 2>/dev/null 1>/dev/null
 let x=x+1
done
./a.out 1

This shell script runs the ./a.out 0 command 4999 times and ./a.out 1 only
once. Using this shell script with the fdpr command to instrument the small C
program shown on Example 3-1 on page 76. We use the following command:

$fdpr -p a.out -R3 -disasm -x ./c.sh2

Now the output __a.out.save.dis is shown in Example 3-6. It shows that fdpr
captures different branch information for optimizing and restructuring the code.

Example 3-6 Content of __a.out.save.dis with c.sh2

.__start {PR} (0x10000150): # New BB.....

.... more lines
0x10000388: 0x2c030000: cmpi cr0,r3,0
 0x1000038c: 0x90610040: st r3,64(r1)
 0x10000390: 0x41820014: beq cr0,0x100003a4 # 12,bit2
0x10000394: # New BB: 0x10000394(size 8 proc 2 exec 1)
 0x10000394: 0x387f0010: cal r3,16(r31)
 0x10000398: 0x48000089: bl 0x10000420 /* .printf */
0x1000039c: # New BB: 0x1000039c(size 8 proc 2 exec 1)
 0x1000039c: 0x80410014: l r2,20(r1)

78 AIX 5L Performance Tools Handbook

 0x100003a0: 0x48000018: b 0x100003b8
L11: # New BB: 0x100003a4(size 16 proc 2 exec 4999)
 0x100003a4: 0x80620050: l r3,80(r2) /* _iob */
 0x100003a8: 0x389f001c: cal r4,28(r31)
 0x100003ac: 0x38630040: cal r3,64(r3)
 0x100003b0: 0x48000099: bl 0x10000448 /* .fprintf */
0x100003b4: # New BB: 0x100003b4(size 4 proc 2 exec 4999)
 0x100003b4: 0x80410014: l r2,20(r1)
L12: # New BB: 0x100003b8(size 8 proc 2 exec 5000)
..... more line.......

Keep in mind that the performance gain from fdpr depends on the way the
program is run during instrumentation. The degree of performance improvement
from the fdpr-optimized executable depends largely on how closely the
production workload is imitated by the instrumented program.

 Chapter 3. The fdpr command 79

80 AIX 5L Performance Tools Handbook

Chapter 4. The iostat command

The iostat command is used for monitoring system input/output device load by
observing the time the physical disks are active in relation to their average
transfer rates. The iostat command generates reports that can be used to
determine an imbalanced system configuration to better balance the I/O load
between physical disks and adapters.

The primary purpose of the iostat tool is to detect I/O bottlenecks by monitoring
the disk utilization (% tm_act field). iostat can also be used to identify CPU
problems, assist in capacity planning, and provide insight into solving I/O
problems. Armed with both vmstat and iostat, you can capture the data required
to identify performance problems related to CPU, memory, and I/O subsystems.

iostat resides in /usr/bin and is part of the bos.acct fileset, which is installable
from the AIX base installation media.

4

© Copyright IBM Corp. 2001, 2003 81

4.1 iostat
The syntax of the iostat command is:

iostat [-s] [-a] [-d|-t] [-T] [-m] [PhysicalVolume ...] [Interval [Count]]

Flags
-a specifies adapter throughput report
-s specifies system throughput report
-t specifies tty/cpu report only
-T specifies time stamp
-d displays only the disk utilization report
-m reports Path statistics by device and for all paths

The following conditions exist:

� The -t and -d are mutually exclusive; they cannot both be specified.

� The -s and -a flags can both be specified to display both the system and
adapter throughput reports.

� If the -a flag is specified with the -t flag, the tty and CPU report is displayed
followed by the adapter throughput report. Disk utilization reports of the disks
connected to the adapters will not be displayed after the adapter throughput
report.

� If the -a flag is specified with the -d flag, the tty and CPU report will not be
displayed. If the PhysicalVolume parameter is specified, the disk utilization
report of the specified Physical volume will be printed under the
corresponding adapter to which it belongs.

Parameters
Interval Specifies the update period — the amount of time

between each report — in seconds. The first report
contains statistics for the time since system startup (boot).
Each subsequent report contains statistics collected
during the interval since the previous report.

Count Specifies the number of iterations. This can be specified
in conjunction with the Interval parameter. If Count is
specified, the value of Count determines the number of
reports generated at Interval seconds apart. If the Interval
is specified without the Count parameter, the command
generates reports continuously.

PhysicalVolume Specifies disks or paths. This can specify one or more
alphabetic or alphanumeric physical volumes. If the
PhysicalVolume parameter is specified, the tty and CPU

82 AIX 5L Performance Tools Handbook

reports are displayed and the disk report contains
statistics for the specified drives. If a specified logical
drive name is not found, the report lists the specified
name and displays the message Disk is not Found.

If no logical drive names are specified, the report contains statistics for all
configured disks and CD-ROMs. If no drives are configured on the system, no
disk report is generated. The first character in the PhysicalVolume parameter
cannot be numeric.

4.1.1 Information about measurement and sampling
The iostat command generates four types of reports:

� tty and CPU utilization
� Disk utilization
� System throughput
� Adapter throughput

Each subsequent sample in the report covers the time since the previous
sample. All statistics are reported each time the iostat command is run. The
report consists of a tty and CPU header row followed by a row of tty and CPU
statistics. CPU statistics are calculated systemwide as averages among all
processors.

The iostat command keeps a history of disk input/output activity shown in
“Enabling disk input/output statistics” on page 90. Information about the disks
and which disks are attached to which adapters are stored in the Object
Database Manager (ODM).

Measurement is done as specified by the parameters in the command line issued
by the user.

4.2 Examples for iostat
The following sections show reports generated by iostat.

Note: The first set of iostat output contains the cumulative data from the last
boot to the start of the iostat command.

 Chapter 4. The iostat command 83

4.2.1 System throughput report
This system throughput report is generated if the -s flag is specified and provides
statistics for the entire system. It has the format shown in Example 4-1. The fields
Kbps, tps, Kb_read, and Kb_wrtn are accumulated totals for the entire system.

Example 4-1 System throughput report

iostat -s
tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.0 0.0 33.0 11.8 10.1 45.1

System: lpar05
Kbps tps Kb_read Kb_wrtn

2774.1 367.1 18156 9592

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdisk1 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdisk5 0.0 0.0 0.0 0 0
hdisk6 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

The following values are displayed:

� Statistic for tty

tin Shows the total number of characters read by the
system for all ttys.

tout Shows the total number of characters written by the
system to all ttys.

You will see few input characters and many output characters. On the other
hand, applications such as vi result in a smaller difference between the
number of input and output characters. Analysts using modems for
asynchronous file transfer may notice the number of input characters
exceeding the number of output characters. Naturally, this depends on
whether the files are being sent or received relative to the measured system.

84 AIX 5L Performance Tools Handbook

Because the processing of input and output characters consumes CPU
resources, look for a correlation between increased TTY activity and CPU
utilization. If such a relationship exists, evaluate ways to improve the
performance of the TTY subsystem. Steps that could be taken include
changing the application program, modifying TTY port parameters during file
transfer, or perhaps upgrading to a faster or more efficient asynchronous
communications adapter.

� Average CPU usage

% user Shows the percentage of CPU resources spent in user
mode. A UNIX process can execute in user or system
mode. When in user mode, a process executes within
its own code and does not require kernel resources.
On an SMP system, the % user is averaged across all
CPUs.

% sys Shows the percentage of CPU utilization that occurred
while executing at the system level (kernel). On an
SMP system, the % sys is averaged across all CPUs.
This includes CPU resources consumed by kernel
processes (kprocs) and others that need access to
kernel resources. For example, the reading or writing
of a file requires kernel resources to open the file, seek
a specific location, and read or write data. A UNIX
process accesses kernel resources by issuing system
calls. A high number of system calls in relation to user
utilization can be caused by applications inefficiently
performing disk I/O or misbehaving shell scripts such
as a shell script stuck in a loop, which can generate a
large number of system calls. If you encounter this,
look for penalized processes. Run the ps -eaf
command and look under the C column for processes
that are penalized. Refer to 8.2.3, “Displaying the
processes in order of being penalized” on page 133 for
more information.

Typically, the CPU is pacing (the system is CPU bound) if the sum of user and
system time exceeds 90 percent of CPU resources on a single-user system
or 80 percent on a multi-user system. This condition could mean that the CPU
is the limiting factor in system performance.

 Chapter 4. The iostat command 85

A factor when evaluating CPU performance is the size of the run queue
(provided by the vmstat command, see 13.2.1, “Virtual memory activity” on
page 213). In general, as the run queue increases, users will notice
degradation (an increase) in response time.

% idle Shows the percentage of time that the CPU or CPUs
were idle and the system did not have an outstanding
disk I/O request. The % idle column shows the
percentage of CPU time spent idle, or waiting, without
pending local disk I/O. If there are no processes on the
run queue, the system dispatches a special kernel
process called wait. On an SMP system, the % idle is
averaged across all CPUs.

% iowait Shows the percentage of time that the CPU or CPUs
were idle during which the system had an outstanding
disk I/O request. On an SMP system, the % iowait is
averaged across all CPUs.

The iowait state is different from the idle state in that at least one process is
waiting for local disk I/O requests to complete. Unless the process is using
asynchronous I/O, an I/O request to disk causes the calling process to block
(or sleep) until the request is completed. Once a process's I/O request
completes, it is placed on the run queue. On systems running a primary
application, a high I/O wait (iowait) percentage may be related to workload. In
this case, there may be no way to overcome the problem.

When you see a high iowait percentage, you need to investigate the I/O
subsystem to try to eliminate any potential bottlenecks. It could beinsufficient
memory, in which case the disk(s) containing paging space may be busy
while paging and you are likely to see a higher run queue as threads are
waiting for the CPU. An inefficient I/O subsystem configuration, or an
application handling input/output inefficiently can also result in higher
%iowait.

A %iowait percentage is not necessarily a bad thing. For example, if you are
copying a file, you will want to see the disk as busy as possible. In this
scenario, a higher %tm_act with good disk throughput would be desirable over
a disk that is only 50 %tm_act.

If an application is writing sequential files, then the write behind algorithm will
write pages to disk. With large sequential writes, the %iowait will be higher,
but the busy disk does not block the application because the application has
already written to memory. The application is free to continue processing and
is not waiting on the disk. Similarly, when sequential reads are performed, the

86 AIX 5L Performance Tools Handbook

%iowait can increase as the pages are read in, but this does not effect the
application because only the pages that are already read into memory are
made available to the application and read ahead is not dependant on the
application.

Understanding the I/O bottleneck and improving the efficiency of the I/O
subsystem requires more data than iostat can provide. However, typical
solutions might include:

– Limiting the number of active logical volumes and file systems placed on a
particular physical disk. The idea is to balance file I/O evenly across all
physical disk drives.

– Spreading a logical volume across multiple physical disks. This is useful
when a number of different files are being accessed. Use the lslv -m
command to see how volume groups are placed on physical disks.

– Creating multiple Journaled File System (JFS) logs for a volume group
and assigning them to specific file systems. (This is beneficial for
applications that create, delete, or modify a large number of files,
particularly temporary files.)

– Backing up and restoring file systems to reduce fragmentation.
Fragmentation causes the drive to seek excessively and can be a large
portion of overall response time.

– Adding additional drives and rebalancing the existing I/O subsystem.

� Disk activity status

% tm_act Indicates the percentage of time the physical disk was
active (bandwidth utilization for the drive). The %
tm_act column shows the percentage of time the
volume was active. This is the primary indicator of a
bottleneck. Any % tm_act over 70 percent may be
considered a potential bottleneck.

A drive is active during data transfer and command
processing, such as seeking to a new location. The
disk-use percentage is directly proportional to
resource contention and inversely proportional to
performance. As disk use increases, performance
decreases and the time it takes for the system to
respond to user requests increases. In general, when
a disk’s use (% tm_act) exceeds 70 percent,
processes may be waiting longer than necessary for
I/O to complete because most UNIX processes block
(or sleep) while waiting for their I/O requests to
complete.

 Chapter 4. The iostat command 87

Kbps Indicates the amount of data transferred (read or
written) to the drive in KB per second.

tps Indicates the number of transfers per second that were
issued to the physical disk. A transfer is an I/O request
at the device driver level to the physical disk. As
physical I/O (read or write, to or from the disk) is
expensive in terms of performance, in order to reduce
the amount of physical I/O to the disk(s), multiple
logical requests (reads and writes from the application)
can be combined into a single physical I/O. A transfer
is of an indeterminate size.

Kb_read The total number of KB read.

Kb_wrtn The total number of KB written.
Kb_read and Kb_wrtn combined should not exceed 70
percent of the disk or adapter’s throughput to avoid
saturation.

With the -s flag is specified, a system-header row is displayed followed by a line
of statistics for the entire system. The hostname of the system is printed in the
system-header row. It provides the statistics since boot time.

If you run iostat specifying an interval, for example iostat -s 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -s 2 5 to display five reports of statistics every two
seconds, then the first report will represent the I/O activity since boot time and
the subsequent reports will reflect the amount of I/O on the system over the last
interval.

What the report is telling us
The above report shows 45.1 percent iowait. This should be investigated further.
By looking at % tm_act, we know we are having performance hits on hdisk0,
hdisk1, hdisk2, and hdisk3. This is because % tm_act is more than 70 percent.
We need to run filemon, refer to “Analyzing the physical volume reports” on
page 464 to see why the disks are busy. For example, some files may have a lot
of I/O, or disks may be seeking. The vmstat command (refer to 13.2.1, “Virtual
memory activity” on page 213) may report high paging.

4.2.2 tty and CPU utilization report
The first report generated by the iostat command is the tty and CPU utilization
report. The CPU values are global averages among all processors. The I/O wait
state is defined systemwide and not per processor.

88 AIX 5L Performance Tools Handbook

This information is updated at regular intervals by the kernel (typically 60 times
per second). The tty report provides a collective account of characters per
second received from all terminals on the system as well as the collective count
of characters output per second to all terminals on the system. Example 4-2
shows the tty and CPU utilization report.

Example 4-2 tty and CPU utilization report

iostat -t
tty: tin tout avg-cpu: % user % sys % idle % iowait
 1.5 9846.3 26.9 1.3 70.6 1.1

4.2.3 Disk utilization report
The disk utilization report, generated by the iostat command, provides statistics
on a per physical disk basis. Statistics for CD-ROM devices are also reported.

A disk header column is displayed followed by a column of statistics for each disk
that is configured. If the PhysicalVolume parameter is specified, only those
names specified are displayed. Example 4-3 shows the disk utilization report.

Example 4-3 Disk utilization report

iostat -d
Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 92.4 451.9 100.9 1000 3520
hdisk1 88.2 447.9 100.2 964 3516
hdisk3 76.7 1090.7 94.7 9632 1278
hdisk5 0.0 0.0 0.0 0 0
hdisk6 0.0 0.0 0.0 0 0
hdisk8 0.0 0.0 0.0 0 0
hdisk9 0.0 0.0 0.0 0 0
hdisk2 74.1 783.6 71.3 6560 1278
hdisk10 0.0 0.0 0.0 0 0
hdisk7 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

If iostat -d is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -d 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, such as iostat -d 2 5 to display five reports of statistics every two
seconds, then the first report will represent the I/O activity since boot time and
the subsequent reports will reflect the amount of I/O on the system over the last
interval.

 Chapter 4. The iostat command 89

4.2.4 Disk utilization report for MPIO
For Enterprise Storage Server (ESS) machines, the vpaths will be treated as
disks and hdisks will be treated as Paths. Internally, the vpaths are actually disks
and hdisks are the paths to them. For multi-path input-output (MPIO) enabled
devices, the path name will be represented as Path0, Path1, Path2 and so on.
The numbers 0, 1, 2, and so on are the path IDs provided by the lspath
command. Since paths to a device can be attached to any adapter, the adapter
report will report the path statistics under each adapter. The disk name will be a
prefix to all of the paths. For all MPIO-enabled devices, the adapter report will
print the path names as hdisk10_Path0, hdisk0_Path1, and so on. For all ESS
Machines, the adapter report will print the path names as vpath0_hdisk3,
vpath10_hdisk25, and so on.

If you use iostat -m, you can see input/output statistics on MPIO as shown in
Example 4-4. However, we do not have redundant path in our setup. Therefore
only a single path is identified for both SCSI drives.

Example 4-4 Output of iostat -m

lpar05:/>> iostat -m

tty: tin tout avg-cpu: % user % sys % idle % iowait
 0.2 12.4 8.8 3.7 57.8 29.8

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1 0.0 0.2 0.0 12631 13276

Paths: % tm_act Kbps tps Kb_read Kb_wrtn
Path0 0.0 0.3 0.0 25262 26552

Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0 43.4 1301.4 96.3 64838983 142530689

Paths: % tm_act Kbps tps Kb_read Kb_wrtn
Path0 43.4 2602.9 192.5 129677967 285061379

Enabling disk input/output statistics
To improve performance, the collection of disk input/output statistics may have
been disabled. For large system configurations where a large number of disks is
configured, the system can be configured to avoid collecting physical disk
input/output statistics when the iostat command is not executing. If the system
is configured in this manner, then the first disk report displays the message Disk
History Since Boot Not Available instead of the disk statistics. Subsequent
interval reports generated by the iostat command contain disk statistics
collected during the report interval. Any tty and CPU statistics after boot are
unaffected if a system management command is used to re-enable disk

90 AIX 5L Performance Tools Handbook

statistics-keeping. The first iostat command report displays activity from the
interval starting at the point that disk input/output statistics were enabled.

To enable the collection of this data, enter:

chdev -l sys0 -a iostat=true

To display the current settings, enter:

lsattr -E -l sys0 -a iostat

If disk input/output statistics are enabled, the lsattr command will display:

iostat true Continuously maintain DISK I/O history True

If disk input/output statistics are disabled, the lsattr command will display:

iostat false Continuously maintain DISK I/O history True.

4.2.5 Adapter throughput report
If the -a flag is specified, an adapter-header row is displayed followed by a line of
statistics for the adapter. This will be followed by a disk-header row and the
statistics of all of the disks and CD-ROMs connected to the adapter. The adapter
throughput report shown in Example 4-5 is generated for all of the disk adapters
connected to the system. Each adapter statistic reflects the performance of all
ofthe disks attached to it.

Example 4-5 Adapter throughput report

iostat -a
tty: tin tout avg-cpu: % user % sys % idle % iowait
 1.8 7989.0 21.9 1.2 76.0 0.9

Adapter: Kbps tps Kb_read Kb_wrtn
scsi2 4.5 0.5 14429 920

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk0_Path0 0.0 4.5 0.5 14429 920
hdisk1_Path0 0.0 0.0 0.0 0 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 0.0 0.0 0 0

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
cd0 0.0 0.0 0.0 0 0

Note: Some system resources are consumed in maintaining disk I/O history
for the iostat command.

 Chapter 4. The iostat command 91

If iostat -a is run as is, then the statistics since boot time are displayed.

If you run iostat specifying an interval, for example iostat -a 5 to display
statistics every five seconds, or you run iostat specifying an interval and a
count, for example iostat -a 2 5 to display five reports of statistics every two
seconds, then the first report represents the I/O activity since boot time and the
subsequent reports reflect the amount of I/O on the system over the last interval.

Tip: It is useful to run iostat when your system is under load and performing
normally. This gives a baseline to determine future performance problems with
the disk, CPU, and tty subsystems.

You should run iostat again when:

� Your system is experiencing performance problems.

� You make hardware or software changes to the disk subsystem.

� You make changes to the AIX Operating System, such as installing,
upgrades, and changing the disk tuning parameters using ioo.

� You make changes to your application.

92 AIX 5L Performance Tools Handbook

Chapter 5. The netpmon command

The netpmon command makes use of the trace utility to monitor network activity.
Because of this, only root and members of the system group can run this
command. The netpmon command reports on network activity over the monitoring
period.

The netpmon command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

5

Note: The netpmon command does not work with NFS 3 and is only supported
on POWER-based platforms.

© Copyright IBM Corp. 2001, 2003 93

5.1 netpmon
The syntax of the netpmon command is:

netpmon [-o File] [-d] [-T n] [-P] [-t] [-v] [-O ReportType ...]
[-i Trace_File -n Gennames_File]

Flags
-d Starts the netpmon command, but defers tracing until the

trcon command has been executed by the user. By
default, tracing is started immediately.

-i Trace_File Reads trace records from the trace file produced with the
trace command instead of a live system. The trace file
must be rewritten first in raw format using the trcpt -r
command. This flag cannot be used without the -n flag.

-n Gennames_File Reads necessary mapping information from the file
Gennames_File produced by the gennames command.
This flag is mandatory when the -i flag is used.

-o File Writes the reports to the specified File instead of to
standard output.

-O ReportType ... Produces the specified report types. Valid report type
values are:

cpu CPU use
dd Network device-driver I/O
so Internet socket call I/O
nfs NFS I/O
all All of the above (the default value)

-P Pins monitor process in memory. This flag causes the
netpmon text and data pages to be pinned in memory for
the duration of the monitoring period. This flag can be
used to ensure that the real-time netpmon process does
not run out of memory space when running in a
memory-constrained environment.

-t Prints CPU reports on a per-thread basis.

-T n Sets the kernel’s trace buffer size to n bytes. The default
size is 64000 bytes. The buffer size can be increased to
accommodate larger bursts of events, if any. (A typical
event record size is on the order of 30 bytes.)

94 AIX 5L Performance Tools Handbook

-v Prints extra information in the report. All processes and all
accessed remote files are included in the report instead of
only the 20 most active processes and files.

5.1.1 Information about measurement and sampling
Once netpmon is started, it runs in the background until it is stopped by issuing
the trcstop command. The netpmon command reports on network-related
activity over the monitoring period. If the default settings are used, the trace
command is invoked automatically by the netpmon command. Alternately,
netpmon has an option -d flag to switch the trace on at a later time using the trcon
command. When the trace is stopped by issuing the trcstop command, the
netpmon command outputs its report and exits. Reports are either displayed on
standard output by default or can be redirected to a file with the -f flag.

The netpmon command monitors a trace of a specific number of trace hooks. The
trace hooks include NFS, cstokdd, and ethchandd. When the netpmon command
is issued with the -v flag, the trace hooks used by netpmon are listed.
Alternatively, you can run the trcevgrp -l netpmon command to receive a list of
trace hooks that are used by netpmon.

The netpmon command can also be used offline with the -i flag specifing the trace
file and a -n flag to specify the gennames file. The gennames command is used to
create this file. Refer to 36.2, “gennames” on page 704 for more information
about gennames.

Reports are generated for the CPU use, the network device driver I/O, Internet
socket calls, and Network File System (NFS) I/O information.

CPU use The netpmon command reports on the CPU use by
threads and interrupt handlers. The command
differentiates between CPU use on
network-related activity and other CPU use.

Network Device Driver I/O The netpmon command monitors I/O statistics
through network adapters.

Note: The trace driver in the kernel uses double buffering, so actually two
buffers of size n bytes will be allocated. These buffers are pinned in memory,
so they are not subject to paging.

 Chapter 5. The netpmon command 95

Internet Socket Calls The netpmon command monitors the read, recv,
recvfrom, write, send, and sendto subroutines on
the Internet socket. Per-process reports on the
following protocols are created:

� Internet Control Message Protocol (ICMP)

� Transmission Control Protocol (TCP)

� User Datagram Protocol (UDP)

NFS I/O The netpmon command monitors read and write
subroutines on client NFS files, Remote Procedure
Calls (RPC) requests on NFS clients, and NFS
server read and write requests.

If network-intensive applications are being monitored, the netpmon command
may not be able to capture all of the data. This occurs when the trace buffers are
full. The following message is displayed:

Trace kernel buffer overflowed

The size of the trace buffer can be increased by using the -T flag. Using the
offline mode is the most reliable way to limit buffer overflows. This is because
trace is much more efficient in processing and logging than the trace-based
utilities filemon, netpmon, and tprof.

In memory-constrained environments, the -P flag can be used to pin the text and
data pages of the netpmon process in memory so they cannot be swapped out.

5.2 Examples for netpmon
In the test scenario, a file of approximately 100 MB was transferred between two
servers. The /home file system of the one server is remotely mounted to the
other server via NFS. This scenario has been set up to obtain trace results for the
copy operation between the servers. The command in Example 5-1 on page 97
was used to obtain the netpmon information.

Note: Only one trace can be run on a system at a time. If an attempt is made
to run a second trace, this error message will be displayed:

0454-072 The trace daemon is currently active. Only one trace session
 may be active at a time.

96 AIX 5L Performance Tools Handbook

Example 5-1 The netpmon command used to monitor NFS transfers

netpmon -o nmon1.out -O nfs

Enter the "trcstop" command to complete netpmon processing

Once the netpmon command is running, start the network activity to be
monitored. Once the network activity that is being monitored is completed, run
the trcstop command to stop the trace, as shown in Example 5-2.

Example 5-2 Stopping netpmon

trcstop
[netpmon: Reporting started]
[netpmon: Reporting completed]
[netpmon: 162.629 secs in measured interval]

The output that was generated by the netpmon command in Example 5-1 can be
seen in Example 5-3. This output will only display nfs statistics, as the -O option
was used with nfs. The RPC statistics as well as the total calls are displayed for
the server wlmhost.

Example 5-3 The netpmon command output data for NFS

Fri May 25 19:08:12 2001
System: AIX server1 Node: 5 Machine: 000BC6FD4C00

==

NFS Client RPC Statistics (by Server):

Server Calls/s

wlmhost 31.02
--
Total (all servers) 31.02

==

Detailed NFS Client RPC Statistics (by Server):

SERVER: wlmhost
calls: 16594
 call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420

COMBINED (All Servers)
calls: 16594

 Chapter 5. The netpmon command 97

 call times (msec): avg 108.450 min 1.090 max 2730.069 sdev 102.420

Example 5-4 shows the netpmon command providing a full compliment of report
types. When the -O flag is not issued, the default of all is assumed.

Example 5-4 The netpmon command providing a full listing on all report types

server1> netpmon -o nmon2.out -v

Enter the "trcstop" command to complete netpmon processing

/usr/sbin/trace -a -T 256000 -o - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,103,101,104,465,
467,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,352,320,321,30A,
30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7,2DA,2DB,2EA,2EB,252,216,211,107,
212,215,213
Moving this process to the background.
The following script generates network traffic.
ftp wlmhost
Connected to wlmhost.
220 wlmhost FTP server (Version 4.1 Sun Apr 8 07:45:00 CDT 2001) ready.
Name (wlmhost:root): root
331 Password required for root.
Password:
230 User root logged in.
ftp> cd /home/nmon
250 CWD command successful.
ftp> mput big*
mput big.? y
200 PORT command successful.
150 Opening data connection for big..
226 Transfer complete.
107479040 bytes sent in 68.91 seconds (1523 Kbytes/s)
local: big. remote: big.
ftp>
trcstop
[netpmon: Reporting started]

[netpmon: Reporting completed]

[netpmon: 1545.477 secs in measured interval]

The full listing for the netpmon command is shown for the duration of the ftp
transfer operation in Example 5-4. It has been broken up into sections for clarity.
The sections are broken up into process statistics, First Level Interrupt Handler
(FLIH) and Second Level Interrupt Handler (SLIH) statistics, network
device-driver statistics, TCP socket call statistics, and detailed statistics.

98 AIX 5L Performance Tools Handbook

5.2.1 Process statistics
Example 5-5 below shows the process statistics for the netpmon command’s full
report.

Example 5-5 The netpmon command verbose output showing process information

Sun May 27 11:46:52 2001
System: AIX server1 Node: 5 Machine: 000BC6FD4C00

trace -a -T 256000 -o - -j
000,000,001,002,003,005,006,106,10C,139,134,135,100,200,102,
103,101,104,465,467,46A,00A,163,19C,256,255,262,26A,26B,32D,32E,2A7,2A8,351,
352,320,321,30A,30B,330,331,334,335,2C3,2C4,2A4,2A5,2E6,2E7,2DA,2DB,2EA,2EB,
252,216,211,107,212,215,213
TIME: 0.000000000 TRACE ON pid 7254 tid 0x82a9
 channel 990982013
TIME: 120.467389060 TRACE OFF
...(lines omitted)...
Process CPU use Statistics:

 Network
Process PID CPU Time CPU % CPU %
--
ypbind 10580 17.9523 3.726 0.000
ftp 19060 12.6495 2.625 1.146
netpmon 17180 2.5410 0.527 0.000
UNKNOWN 16138 0.5125 0.106 0.000
syncd 6468 0.2858 0.059 0.000
dtgreet 4684 0.2294 0.048 0.000
UNKNOWN 18600 0.1940 0.040 0.000
UNKNOWN 5462 0.1929 0.040 0.000
wlmsched 2580 0.1565 0.032 0.000
gil 2322 0.1057 0.022 0.022
aixterm 16050 0.0915 0.019 0.005
swapper 0 0.0468 0.010 0.000
X 5244 0.0428 0.009 0.000
lrud 1548 0.0404 0.008 0.000
trcstop 19062 0.0129 0.003 0.000
init 1 0.0112 0.002 0.000
ksh 18068 0.0080 0.002 0.000
rpc.lockd 11872 0.0070 0.001 0.000
nfsd 10326 0.0064 0.001 0.001
netpmon 14922 0.0034 0.001 0.000
netm 2064 0.0032 0.001 0.001
rmcd 15744 0.0028 0.001 0.000
IBM.FSrmd 14714 0.0027 0.001 0.000
snmpd 4444 0.0023 0.000 0.000
trace 19058 0.0019 0.000 0.000
xmgc 1806 0.0015 0.000 0.000

 Chapter 5. The netpmon command 99

sendmail 6236 0.0010 0.000 0.000
cron 9822 0.0009 0.000 0.000
hostmibd 8514 0.0007 0.000 0.000
IBM.AuditRMd 16516 0.0007 0.000 0.000
IBM.ERrmd 5080 0.0006 0.000 0.000
syslogd 6974 0.0005 0.000 0.000
PM 13932 0.0004 0.000 0.000
UNKNOWN 7254 0.0004 0.000 0.000
UNKNOWN 5460 0.0003 0.000 0.000
UNKNOWN 5464 0.0003 0.000 0.000
rtcmd 9032 0.0001 0.000 0.000
shdaemon 15480 0.0001 0.000 0.000
--
Total (all processes) 35.1103 7.286 1.175
Idle time 459.0657 95.268

This example shows the trace command that produced the output. The
command was asynchronous, as can be seen by the use of the -a flag. The
buffer size was increased to 256 KB with the -T flag and, more important, the
output was redirected to the standard output by using the -o - flag. The list of
trace hooks follows the -j flag. For more information about the trace command
flags, refer to the trace command in 40.1, “trace” on page 760

Under the heading Process CPU use Statistics, the following headings can be
seen:

Process The name of the process that is being monitored

PID The process identification number

CPU Time The total CPU time used

CPU % The CPU time as a percentage of total time

Network CPU % The percentage of CPU time spent on executing
network-related tasks

In Example 5-5 on page 99, the -v flag was used, so more than 20 processes are
displayed. At the bottom of the Process CPU use Statistics output, the Total
CPU and total Idle time is displayed. It can be seen from the process statistics
that the ftp transfer used 12.6 seconds of CPU time. The total CPU time as seen
from the bottom of the process statistics table is 494 seconds. This equates to
2.6 percent of the CPU total time spent executing this command.

100 AIX 5L Performance Tools Handbook

5.2.2 FLIH and SLIH CPU statistics
Example 5-6 shows a report of the FLIH and SLIH CPU use statistics. The report
is an extract from the full netpmon report.

Example 5-6 The full netpmon report showing FLIH and SLIH statistics

First Level Interrupt Handler CPU use Statistics:

 Network
FLIH CPU Time CPU % CPU %
--
PPC decrementer 1.8355 0.381 0.000
external device 0.9127 0.189 0.185
data page fault 0.0942 0.020 0.000
queued interrupt 0.0286 0.006 0.000
instruction page fault 0.0061 0.001 0.000
--
Total (all FLIHs) 2.8770 0.597 0.186

==

Second Level Interrupt Handler CPU use Statistics:
--
 Network
SLIH CPU Time CPU % CPU %
--
cstokdd 2.7421 0.569 0.569
s_scsiddpin 0.0045 0.001 0.000
gxentdd 0.0026 0.001 0.001
unix 0.0001 0.000 0.000
--
Total (all SLIHs) 2.7494 0.571 0.570

Additional information about first-level and second-level interrupt handlers is
shown in the report. The statistics that are displayed under these headings are:

FLIH The description of the first-level interrupt handler

SLIH The description of the second level interrupt handler

CPU Time The total amount of time used by the interrupt handler

CPU % The CPU time used by this interrupt handler as a percentage
of total CPU time.

Network CPU % The percentage of total time that this interrupt handler
executed for a network-related process.

 Chapter 5. The netpmon command 101

At the bottom of the first-level and second-level interrupt handler reports, the total
amount of CPU use for the specific level of interrupt handler is displayed. Note
that in the SLIH column, the statistics for cstokdd are displayed. This is the time
that the CPU spent handling interrupts from the token-ring adapter (which may
have had traffic other than the ftp transfer data). Hence these CPU use statistics
cannot be regarded as the statistics for the ftp transfer.

5.2.3 TCP socket call statistics
Example 5-7 is an extract from the full verbose output of the netpmon command.
The extract shows the TCP socket call statistics.

Example 5-7 Extract from the full netpmon report showing socket call statistics

TCP Socket Call Statistics (by Process):
--
 ------ Read ----- ----- Write -----
Process PID Calls/s Bytes/s Calls/s Bytes/s
--
ftp 19060 0.30 1202 13.51 892186
aixterm 16050 0.81 26 2.27 142
--
Total (all processes) 1.10 1227 15.78 892328

A socket report is also provided under the heading Detailed TCP Socket Call
Statistics (by Process). The details for the ftp transfer are shown in the first
line of this report. Use the process identification (PID) to identify the correct ftp
transfer. Note that over the same monitoring period, there could be more than
one ftp transfer running. The following fields are displayed in this report:

Process This is the name of the process

PID This is the process identification number

Read Calls/s This is the number of read, recv, and recvfrom subroutines
made per second by this process on sockets of this type

Read Bytes/s The number of bytes per second requested by the read, recv,
and recvfrom subroutine calls

Write Calls/s The number of write, send, and sendto subroutine calls per
second made by this process on this socket type

Write Bytes/s The number of bytes per second written to this process to
sockets of this protocol type

102 AIX 5L Performance Tools Handbook

5.2.4 Detailed statistics
Example 5-8 shows the detailed netpmon statistics, which are an extract from the
netpmon full report.

Example 5-8 Extract from the netpmon full report showing detailed statistics

Detailed Second Level Interrupt Handler CPU use Statistics:

SLIH: cstokdd
count: 43184
 cpu time (msec): avg 0.063 min 0.008 max 0.603 sdev 0.028

SLIH: s_scsiddpin
count: 221
 cpu time (msec): avg 0.020 min 0.009 max 0.044 sdev 0.009

SLIH: gxentdd
count: 122
 cpu time (msec): avg 0.021 min 0.011 max 0.024 sdev 0.002

SLIH: unix
count: 12
 cpu time (msec): avg 0.010 min 0.003 max 0.013 sdev 0.003

COMBINED (All SLIHs)
count: 43539
 cpu time (msec): avg 0.063 min 0.003 max 0.603 sdev 0.028

==

Detailed Network Device-Driver Statistics:
--

DEVICE: token ring 0
recv packets: 37383
 recv sizes (bytes): avg 63.5 min 50 max 1514 sdev 44.1
 recv times (msec): avg 0.008 min 0.005 max 0.048 sdev 0.003
 demux times (msec): avg 0.046 min 0.005 max 0.569 sdev 0.024
xmit packets: 74328
 xmit sizes (bytes): avg 1508.3 min 50 max 1514 sdev 89.0
 xmit times (msec): avg 35.348 min 0.130 max 7837.976 sdev 164.951

Detailed TCP Socket Call Statistics (by Process):

PROCESS: ftp PID: 19060
reads: 36

 Chapter 5. The netpmon command 103

 read sizes (bytes): avg 4021.3 min 4000 max 4096 sdev 39.9
 read times (msec): avg 5.616 min 0.030 max 72.955 sdev 15.228

writes: 1628
 write sizes (bytes): avg 66019.2 min 6 max 66346 sdev 4637.1
 write times (msec): avg 38.122 min 0.115 max 542.537 sdev 14.785

PROCESS: aixterm PID: 16050
reads: 97
 read sizes (bytes): avg 32.0 min 32 max 32 sdev 0.0
 read times (msec): avg 0.030 min 0.021 max 0.087 sdev 0.009
writes: 273
 write sizes (bytes): avg 62.8 min 28 max 292 sdev 55.7
 write times (msec): avg 0.092 min 0.052 max 0.209 sdev 0.030

PROTOCOL: TCP (All Processes)
reads: 133
 read sizes (bytes): avg 1111.8 min 32 max 4096 sdev 1772.6
 read times (msec): avg 1.542 min 0.021 max 72.955 sdev 8.302
writes: 1901
 write sizes (bytes): avg 56547.3 min 6 max 66346 sdev 23525.1
 write times (msec): avg 32.661 min 0.052 max 542.537 sdev 19.107

Note that the values in the detailed report show the average, minimum,
maximum, and standard deviation values for the process, FLIH and SLIH,
network device driver, and TCP socket call statistics over the monitored period.

104 AIX 5L Performance Tools Handbook

Chapter 6. Performance Diagnostic
Tool (PDT)

The Performance Diagnostic Tool (PDT) package attempts to identify
performance problems automatically by collecting and integrating a wide range of
performance, configuration, and availability data. The data is regularly evaluated
to identify and anticipate common performance problems. PDT assesses the
current state of a system and tracks changes in workload and performance.

PDT data collection and reporting are easily enabled, and no further
administrator activity is required. While many common system performance
problems are of a specific nature, PDT also attempts to apply some general
concepts of well-performing systems to search for problems. Some of these
concepts are:

� Balanced use of resources
� Operation within bounds
� Identified workload trends
� Error-free operation
� Changes investigated
� Appropriate setting of system parameters

The PDT programs reside in /usr/sbin/perf/diag_tool and are part of the
bos.perf.diag_tool fileset, which is installable from the AIX base installation
media.

6

© Copyright IBM Corp. 2001, 2003 105

6.1 PDT
To start the PDT configuration, enter:

/usr/sbin/perf/diag_tool/pdt_config

The pdt_config is a menu-driven program. Refer to 6.2, “Examples for PDT” on
page 106 for its use.

To run the master script, enter:

/usr/sbin/perf/diag_tool/Driver_ <profile>

The master script, Driver_, only takes one parameter: the name of the collection
profile for which activity is being initiated. This name is used to select which _.sh
files to run. For example, if Driver_ is executed with $1=daily, then only those .sh
files listed with a daily frequency are run. Check the respective control files to
see which .sh files are driven by which profile names.

daily Collection routines for those _.sh files that belong to the
daily profile. Normally this is only information gathering.

daily2 Collection routines for those _.sh files that belong to the
daily2 profile. Normally this is only reporting on
previously collected information.

offweekly Collection routines for those _.sh files that belong to the
offweekly profile.

6.1.1 Information about measurement and sampling
The PDT package consists of a set of shell scripts that invoke AIX commands.
When enabled, the collection and reporting scripts will run under the adm user.

The master script, Driver_, is started by the cron daemon entry
PDT:cron;Daemons:cron;cron; Monday through Friday at 9:00 and 10:00 in the
morning and every Sunday at 21:00 unless changed manually by editing the
crontab entries. Each time the Driver_ script is started it runs with different
parameters.

6.2 Examples for PDT
To start PDT, run the following command and use the menu-driven configuration
program to perform the basic setup:

/usr/sbin/perf/diag_tool/pdt_config

106 AIX 5L Performance Tools Handbook

As pdt_config has a menu-driven interface, follow the menus. Example 6-1
shows the main menu.

Example 6-1 PDT customization menu

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

First check the current setting by selecting 1, as shown in Example 6-2.

Example 6-2 PDT current setting

current PDT report recipient and severity level
root 3

________________PDT customization menu__________________

1) show current PDT report recipient and severity level
2) modify/enable PDT reporting
3) disable PDT reporting
4) modify/enable PDT collection
5) disable PDT collection
6) de-install PDT
7) exit pdt_config
Please enter a number:

Example 6-2 states level 3 reports are to be made and sent to the root user on
the local system. To check whether root has a mail alias defined, run the
following command:

grep ^root /etc/aliases

If nothing is returned, the mail should be delivered to the local node. If there is a
return value, it is used to provide an alternate destination address. For example:

root:pdt@collector.itso.ibm.com,"|/usr/bin/cat >>/tmp/log"

This shows that mail for the root user is routed to another user on another host,
in this case the user pdt on host collector.itso.ibm.com®, and the mail will also be
appended to the /tmp/log file.

 Chapter 6. Performance Diagnostic Tool (PDT) 107

By default, the Driver_ program reports are generated with severity level 1 with
only the most serious problems identified. Severity levels 2 and 3 are more
detailed. By default, the reports are mailed to the adm user, but can be changed
to root or not sent at all.

The configuration program updates the adm user’s crontab file. Check the
changes made by using the cronadm command as in Example 6-3.

Example 6-3 Checking the PDT crontab entry

cronadm cron -l adm|grep diag_tool
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

It could also be done by using grep on the crontab file as shown in Example 6-4.

Example 6-4 Another way of checking the PDT crontab entry

grep diag_tool /var/spool/cron/crontabs/adm
0 9 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily
0 10 * * 1-5 /usr/sbin/perf/diag_tool/Driver_ daily2
0 21 * * 6 /usr/sbin/perf/diag_tool/Driver_ offweekly

The daily parameter makes the Driver_ program collect data and store it in the
/var/perf/tmp directory. The programs that do the actual collecting are specified in
the /var/perf/cfg/diag_tool/.collection.control file. These programs are also
located in the /usr/sbin/perf/diag_tool directory.

The daily2 parameter makes the Driver_ program create a report from the
/var/perf/tmp data files and e-mails it to the recipient specified in the
/var/perf/cfg/diag_tool/.reporting.list file. The PDT_REPORT is the formatted
version, and the .SM_RAW_REPORT is the unformatted report file.

6.2.1 Editing the configuration files
Some configuration files for PDT should be edited to better reflect the needs of a
specific system.

Finding PDT files and directories
PDT analyzes files and directories for systematic growth in size. It examines only
those files and directories listed in the file /var/perf/cfg/diag_tool/.files. The format
of the .files file is one file or directory name per line. The default content of this
file is as shown in Example 6-5 on page 109.

108 AIX 5L Performance Tools Handbook

Example 6-5 .files file

/usr/adm/wtmp
/var/spool/qdaemon/
/var/adm/ras/
/tmp/

You can use an editor or just append using the command print filename >>
.files to modify this file to track files and directories that are important to your
system.

Monitoring hosts
PDT tracks the average ECHO_REQUEST delay to hosts whose names are listed in
the /var/perf/cfg/diag_tool/.nodes file. This file is not shipped with PDT (which
means that no host analysis is performed by default), but may be created by the
administrator. The file should contain a hostname or TCP/IP address for each
host that is to be monitored (pinged). Each line in the .nodes file should only
contain either a hostname or IP address. In the following example, we will
monitor the connection to the Domain Name Server (DNS). Example 6-6 shows
how to check which nameserver a DNS client is using by examining the
/etc/resolv.conf file.

Example 6-6 ./etc/resolv.conf file

awk '/nameserver/{print $2}' /etc/resolv.conf
9.3.4.2

To monitor the nameserver shown in the example, the .nodes file could contain
the IP address on a separate line, as in Example 6-7.

Example 6-7 .nodes file

cat .nodes
9.3.4.2

Changing thresholds
The file /var/perf/cfg/diag_tool/.thresholds contains the thresholds used in
analysis and reporting. These thresholds have an effect on PDT report
organization and content. Example 6-8 is the content of the default file.

Example 6-8 .thresholds default file

grep -v ^# .thresholds
DISK_STORAGE_BALANCE 800
PAGING_SPACE_BALANCE 4
NUMBER_OF_BALANCE 1
MIN_UTIL 3
FS_UTIL_LIMIT 90

 Chapter 6. Performance Diagnostic Tool (PDT) 109

MEMORY_FACTOR .9
TREND_THRESHOLD .01
EVENT_HORIZON 30

The settings in the example are the default values. The thresholds are:

DISK_STORAGE_BALANCE The SCSI controllers having the largest and smallest
disk storage are identified. This is a static size, not the
amount allocated or free.The default value is 800. Any
integer value between zero (0) and 10000 is valid.

PAGING_SPACE_BALANCE The paging spaces having the largest and the smallest
areas are identified. The default value is 4. Any integer
value between zero (0) and 100 is accepted. This
threshold is presently not used in analysis and
reporting.

NUMBER_OF_BALANCE The SCSI controllers having the greatest and fewest
number of disks attached are identified.The default
value is one (1). It can be set to any integer value from
zero (0) to 10000.

MIN_UTIL Applies to process utilization. Changes in the top three
CPU consumers are only reported if the new process
had a utilization in excess of MIN_UTIL. The default
value is 3. Any integer value from zero (0) to 100 is
valid.

FS_UTIL_LIMIT Applies to journaled file system utilization. Any integer
value between zero (0) and 100 is accepted.

MEMORY_FACTOR The objective is to determine whether the total amount
of memory is adequately backed up by paging space.
The formula is based on experience and actually
compares MEMORY_FACTOR * memory with the average
used paging space. The current default is .9. By
decreasing this number, a warning is produced more
frequently. Increasing this number eliminates the
message altogether. It can be set anywhere between
.001 and 100.

TREND_THRESHOLD Used in all trending assessments. It is applied after a
linear regression is performed on all available historical
data. This technique basically draws the best line
among the points. The slope of the fitted line must
exceed the last_value * TREND_THRESHOLD. The
objective is to try to ensure that a trend, however
strong its statistical significance, has some practical

110 AIX 5L Performance Tools Handbook

significance. The threshold can be set anywhere
between 0.00001 and 100000.

EVENT_HORIZON Also used in trending assessments. For example, in
the case of file systems, if there is a significant (both
statistical and practical) trend, the time until the file
system is 100 percent full is estimated. The default
value is 30, and it can be any integer value between
zero (0) and 100000.

6.2.2 Using reports generated by PDT
Example 6-9 shows the default-configured level 3 report. It is an example of what
will be delivered by e-mail every day.

Example 6-9 PDT sample e-mail report

Performance Diagnostic Facility 1.0

 Report printed: Fri Apr 4 11:14:27 2003

 Host name: lpar05
 Range of analysis includes measurements
 from: Hour 10 on Friday, April 4th, 2003
 to: Hour 11 on Friday, April 4th, 2003

 Notice: To disable/modify/enable collection or reporting
 execute the pdt_config script as root

------------------------ Alerts ---------------------

I/O CONFIGURATION
 - Note: volume hdisk1 has 14112 MB available for allocation
 while volume hdisk0 has 8032 MB available

PAGING CONFIGURATION
- Physical Volume hdisk1 (type: SCSI) has no paging space defined

 - All paging spaces have been defined on one Physical volume (hdisk0) I/O
I/O BALANCE

 - Phys. volume cd0 is not busy
 volume cd0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 volume hdisk1, mean util. = 0.00 %

PROCESSES
- First appearance of 15628 (ksh) on top-3 cpu list

 (cpu % = 7.10)

 Chapter 6. Performance Diagnostic Tool (PDT) 111

 - First appearance of 19998 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 15264 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 7958 (java) on top-3 cpu list

FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 92 %

----------------------- System Health ---------------
SYSTEM HEALTH

 - Current process state breakdown:
 74.20 [99.5 %] : active
 0.40 [0.5 %] : zombie
 74.60 = TOTAL
 [based on 1 measurement consisting of 10 2-second samples]
-------------------- Summary -------------------------
 This is a severity level 3 report
 No further details available at severity levels > 3

The PDT_REPORT, at level 3, will have the following report sections:

� Alerts
� Upward Trends
� Downward Trends
� System Health
� Other
� Summary

And subsections such as the following:

� I/O CONFIGURATION
� PAGING CONFIGURATION
� I/O BALANCE
� PROCESSES
� FILE SYSTEMS
� VIRTUAL MEMORY

Example 6-10 shows the raw information from the .SM_RAW_REPORT file that
is used for creating the PDT_REPORT file.

Example 6-10 .SM_RAW_REPORT file

H 1 | Performance Diagnostic Facility 1.0
H 1 |

H 1 | Report printed: Fri Apr 4 10:00:00 2003
H 1 |

H 1 | Host name: lpar05

112 AIX 5L Performance Tools Handbook

H 1 | Range of analysis includes measurements

H 1 | from: Hour 10 on Friday, April 4th, 2003

H 1 | to: Hour 11 on Friday, April 4th, 2003
H 1 |
...(lines omitted)...

The script in Example 6-11 shows how to extract report subsections from the
PDT_REPORT file. In this example it displays all subsections in turn.

Example 6-11 Script to extract subsections

#!/bin/ksh

set -A tab "I/O CONFIGURATION" "PAGING CONFIGURATION" "I/O BALANCE" \
 "PROCESSES" "FILE SYSTEMS" "VIRTUAL MEMORY"

for string in "${tab[@]}";do
 grep -p "$string" /var/perf/tmp/PDT_*
done

Example 6-12 shows a sample output from the script in Example 6-11 using the
same data as in Example 6-9 on page 111.

Example 6-12 Output from extract subsection script

I/O CONFIGURATION
 - Note: volume hdisk1 has 14112 MB available for allocation
 while volume hdisk0 has 8032 MB available

PAGING CONFIGURATION
 - Physical Volume hdisk1 (type: SCSI) has no paging space defined
 - All paging spaces have been defined on one Physical volume (hdis

I/O BALANCE
 - Phys. volume cd0 is not busy
 volume cd0, mean util. = 0.00 %
 - Phys. volume hdisk1 is not busy
 volume hdisk1, mean util. = 0.00 %

PROCESSES
 - First appearance of 15628 (ksh) on top-3 cpu list
 (cpu % = 7.10)
 - First appearance of 19998 (java) on top-3 cpu list
 (cpu % = 24.40)
 - First appearance of 15264 (java) on top-3 cpu list
 (cpu % = 24.40)

 Chapter 6. Performance Diagnostic Tool (PDT) 113

 - First appearance of 7958 (java) on top-3 cpu list
 (cpu % = 24.40)

FILE SYSTEMS
 - File system hd2 (/usr) is nearly full at 92 %

6.2.3 Creating a PDT report manually
As an alternative to using the periodic report, any user can request a current
report from the existing data by executing

/usr/sbin/perf/diag_tool/pdt_report #

where # is a severity number from one (1) to three (3). The report is produced
with the given severity (if none is provided, it defaults to one) and is written to
standard output. Generating a report in this way does not cause any change to
the /var/perf/tmp/PDT_REPORT files.

Running PDT collection manually
In some cases, you might want to run the collection manually or by other means
than using cron. You simply run the Driver_ script with options as in the cronfile.
The following example will perform the basic collection:

/usr/sbin/perf/diag_tool/Driver_ daily

114 AIX 5L Performance Tools Handbook

Chapter 7. The perfpmr command

perfpmr consists of a set of utilities that build a test case containing the
necessary information to assist in analyzing performance issues. It is primarily
designed to assist IBM software support, but is also useful as a documentation
tool for your system.

As perfpmr is updated frequently, it is not distributed on AIX media. It can be
downloaded from ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
— use the version that is appropriate for your AIX level. For our case, the file that
we need is distributed in:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf52/perf52.tar.Z

7

© Copyright IBM Corp. 2001, 2003 115

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf52/perf52.tar.Z

7.1 perfpmr
The syntax of the perfpmr command is:

perfpmr.sh [-PDgfnpsc][-F file][-x file][-d sec] monitor_seconds

Flags
-P Preview only - show scripts to run and disk space needed.

-D Run perfpmr the original way without a perfpmr.cfg file.

-g Do not collect gennames output.

-f If gennames is run, specify gennames -f

-n Used if no netstat or nfsstat is desired.

-p Used if no pprof collection is desired while monitor.sh
running.

-s Used if no svmon is desired.

-c Used if no configuration information is desired.

-F File use file as the perfpmr cfg file - default is perfpmr.cfg

-x File only execute file found in perfpmr installation
directory.

-d sec is time to wait before starting collection period, default
is delay_seconds 0

-s Used if svmon outout is not required.

Parameters
monitor_seconds Collection period in seconds. The minimum period is 60

seconds.

Use perfpmr.sh 600 for a standard collection period of 600 seconds.

7.1.1 Information about measurement and sampling
Unless you run the shell scripts separately, perfpmr.sh 600 executes the following
shell scripts to obtain a test case. You can also run these scripts on their own.
Refer to “Running perfpmr” on page 123 for details.

config.sh Collects configuration information into a report called
config.sum.

emstat.sh time Builds a report called emstat.int on emulated
instructions. The time parameter must be greater than or
equal to 60.

116 AIX 5L Performance Tools Handbook

filemon.sh time Builds a report called filemon.sum on file I/O. The time
parameter does not have any restrictions.

iostat.sh time Builds two reports on I/O statistics: a summary report
called iostat.sum and an interval report called iostat.int.
The time parameter must be greater than or equal to 60.

iptrace.sh time Builds a raw Internet Protocol (IP) trace report on
network I/O called iptrace.raw. You can convert the
iptrace.raw file to a readable ipreport file called
iptrace.int using the iptrace.sh -r command. The time
parameter does not have any restrictions.

monitor.sh time Invokes system performance monitors and collects
interval and summary reports:

lsps.after Contains lsps -a and lsps -s output
after monitor.sh was run. Used to report
on paging space use.

lsps.before Contains lsps -a and lsps -s output
before monitor.sh was run. Used to
report on paging space use.

nfsstat.int Contains nfsstat -m and nfsstat
-csnr output before and after
monitor.sh was run. Used to report on
Network File System use and
configuration.

monitor.int Contains samples by interval using ps
-efk (showing active processes before
and after monitor.sh was run). It also
contains sadc, sar -A, iostat, vmstat,
and emstat output.

monitor.sum Contains samples by summary using ps
-efk (showing changes in ps output for
active processes before and after
monitor.sh was run). It also contains
sadc, sar -A, iostat, vmstat, and
emstat outputs.

pprof.trace.raw Contains the raw trace for pprof.

psb.elfk Contains a modified ps -elk output
before monitor.sh was run.

svmon.after Contains svmon -G and svmon -Pns
output and top segments use by
process with the svmon -S command

 Chapter 7. The perfpmr command 117

after monitor.sh was run. Used to report
on memory use.

svmon.before Contains svmon -G and svmon -Pns
output and top segment use by process
with the svmon -S command before
monitor.sh was run. Used to report on
memory use.

vmstati.after Contains vmstat -i output after
monitor.sh was run. Used to report on
I/O device interrupts.

vmstati.before Contains vmstat -i output before
monitor.sh was run. Used to report on
I/O device interrupts.

netstat.sh [-r] time Builds a report on network configuration and use called
netstat.int containing tokstat -d of the token-ring
interfaces, entstat -d of the Ethernet interfaces,
netstat -in, netstat -m, netstat -rn, netstat -rs,
netstat -s, netstat -D, and netstat -an before and
after monitor.sh was run. You can reset the Ethernet
and token-ring statistics and re-run this report by
running netstat.sh -r 60. The time parameter must be
greater than or equal to 60.

nfsstat.sh time Builds a report on NFS configuration and use called
netstat.int containing nfsstat -m, and nfsstat -csnr
before and after nfsstat.sh was run. The time parameter
must be greater than or equal to 60.

pprof.sh time Builds a file called pprof.trace.raw that can be formatted
with the pprof.sh -r command. Refer to 19.3.2,
“Examples for pprof” on page 311 for more details. The
time parameter does not have any restrictions.

ps.sh time Builds reports on process status (ps). ps.sh creates the
following files:

psa.elfk A ps -elfk listing after ps.sh was run.

psb.elfk A ps -elfk listing before ps.sh was run.

ps.int Active processes before and after ps.sh was
run.

ps.sum A summary report of the changes between
when ps.sh started and finished. This is useful

118 AIX 5L Performance Tools Handbook

for determining what processes are consuming
resources.

The time parameter must be greater than or equal to 60.

sar.sh time Builds reports on sar. sar.sh creates the following files:

sar.int Output of commands sadc 10 7 and sar -A
sar.sum A sar summary over the period sar.sh was run

The time parameter must be greater than or equal to 60.

tcpdump.sh int.time The int. parameter is the name of the interface; for
example, tr0 is token-ring. Creates a raw trace file of a
TCP/IP dump called tcpdump.raw. To produce a
readable tcpdump.int file, use the tcpdump.sh -r
command. The time parameter does not have any
restrictions.

tprof.sh time Creates a tprof summary report called tprof.sum. Used
for analyzing memory use of processes and threads.
You can also specify a program to profile by specifying
the tprof.sh -p program 60 command,which enables
you to profile the executable-called program for 60
seconds. The time parameter does not have any
restrictions.

trace.sh time Creates the raw trace files (trace*) from which an ASCII
trace report can be generated using the trcrpt
command or by running trace.sh -r. This command
creates a file called trace.int that contains the readable
trace. Used for analyzing performance problems. The
time parameter does not have any restrictions.

vmstat.sh time Builds reports on vmstat: a vmstat interval report called
vmstat.int and a vmstat summary report called
vmstat.sum. The time parameter must be greater than
or equal to 60.

Due to the volume of data trace collects, the trace will only run for five seconds
(by default), so it is possible that it will not be running when the performance
problems occur on your system, especially if performance problems occur for
short periods. In this case, it would be advisable to run the trace by itself for a
period of 15 seconds when the problem is present. The command trace.sh 15
runs a trace for 15 seconds.

An RS/6000 SP can produce a test case of 135 MB, with 100 MB just for the
traces. This size can vary considerably depending on system load. If you run the
trace on the same system with the same workload for 15 seconds, then you
could expect the trace files to be approximately 300 MB in size.

 Chapter 7. The perfpmr command 119

One raw trace file per CPU is produced. The files are called trace.raw-0,
trace.raw-1, and so forth for each CPU. An additional raw trace file called
trace.raw is also generated. This is a master file that has information that ties in
the other CPU-specific traces. To merge the trace files together to form one raw
trace file, run the following commands:

trcrpt -C all -r trace.raw > trace.r
rm trace.raw*

7.1.2 Building and submitting a test case
You may be asked by IBM to supply a test case for a performance problem or you
may wish to run perfpmr.sh for your own requirements (for example, to produce
a base line for detecting future performance problems). In either case,
perfpmr.sh is the tool to collect performance data. Even if your performance
problem is attributed to one component of your system, such as the network,
perfpmr.sh is still the way to send a test case because it contains other
information that is required for problem determination. Additional information for
problem determination may be requested by IBM software support.

There are five stages to building and sending a test case. These steps must be
completed when you are logged in as root. The steps are listed as follows:

� Prepare to download perfpmr
� Download perfpmr
� Install perfpmr
� Run perfpmr
� Upload the test case

Preparing for perfpmr
These filesets should be installed before running perfpmr.sh:

� bos.acct
� bos.sysmgt.trace
� perfagent.tools
� bos.net.tcp.server
� bos.adt.include
� bos.adt.samples

Note: IBM releases Maintenance Levels for AIX. These are a collection of
Program Temporary Fixes (PTFs) used to upgrade the operating system to the
latest level, but remaining within your current release. Often these, along with
the current version of micro-code for the disks and adapters, have
performance enhancement fixes. You may therefore wish to load these.

120 AIX 5L Performance Tools Handbook

Downloading perfpmr
The perfpmr is downloadable from:

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

Using a browser, download the version that is applicable to your version of AIX.
The file size should be under 1 MB.

If you have downloaded perfpmr to a PC, transfer it to the system in binary mode
using ftp, placing it in an empty directory.

Installing perfpmr
Uncompress and extract the file with the tar command. The directorycontains:

� Install
� PROBLEM.INFO
� README
� config.sh
� emstat.sh
� filemon.sh
� getdate
� getevars
� iostat.sh
� iptrace.sh
� lsc
� memfill
� monitor.sh
� netstat.sh
� nfsstat.sh
� perfpmr.cfg
� perfpmr.sh
� pprof.sh
� ps.sh
� pstat.sh
� sar.sh
� setpri
� setsched
� svmon
� tcpdump.sh
� tprof.sh
� trace.sh
� vmstat.sh

Important: Always download a new copy of perfpmr in case of changes. Do
not use an existing pre-downloaded copy.

 Chapter 7. The perfpmr command 121

ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr

In the directory you will notice files ending in .sh. These are shell scripts that may
be run separately. Normally these shell scripts are run automatically by running
perfpmr.sh. Read the README file to find any additional steps that may be
applicable to your system.

Install perfpmr by running ./Install. This will replace the following files in the
/usr/bin directory with symbolic links to the files in the directory where you
installed perfpmr:

� config.sh
� curt
� emstat.sh
� filemon.sh
� getevars
� hd_pbuf_cnt.sh
� iostat.sh
� iptrace.sh
� lsc
� monitor.sh
� netstat.sh
� nfsstat.sh
� perfpmr.sh
� pprof.sh
� ps.sh
� sar.sh
� setpri
� tcpdump.sh
� tprof.sh
� trace.sh
� utld
� vmstat.sh

The output of the installation procedure will be similar to Example 7-1.

Example 7-1 perfpmr installation screen

./Install

(C) COPYRIGHT International Business Machines Corp., 2000

 PERFPMR Installation started...

 PERFPMR Installation completed.

122 AIX 5L Performance Tools Handbook

Running perfpmr
There are two scenarios to consider when running perfpmr.

� If your system is performing poorly for long periods of time and you can
predict when it runs slow, then you can run ./perfpmr.sh 600.

� In some situations, a system may perform normally but will run slow at various
times of the day. If you run perfpmr.sh 600 then there is a chance that
perfpmr might not have captured the performance slowdown. In this case you
could run the scripts manually when the system is slow and use a longer
time-out period: for example, a trace.sh 15 will perform a trace for 15
seconds instead of the default five seconds. We would still need a perfpmr.sh
600 to be initially run before running individual scripts. This will ensure that all
of the data and configuration have been captured.

After executing perfpmr.sh, it creates the files in Table 7-1.

Table 7-1 Files created by perfpmr

Attention: If you are using HACMP, then you may want to extend the Dead
Man Switch (DMS) time-out or shut down HACMP prior to collecting perfpmr
data to avoid accidental failovers.

config.sum crontab_l devtree.out

errpt_a etc_security_limits filemon.sum

genkex.out genkld.out gennames.out

getevars.out iptrace.raw lsps.after

lsps.before lsrset.out monitor.int

monitor.sum netstat.int nfsstat.int

perfpmr.int pprof.trace.raw psa.elfk

psb.elfk psemo.after psemo.before

svmon.after svmon.before tcpdump.raw

tprof.csyms tprof.ctrc tprof.out

tprof.sum trace.crash.inode trace.fmt

trace.inode trace.j2.inode trace.maj_min2lv

trace.nm trace.raw trace.raw-0

trace.raw-1 trace.raw-10 trace.raw-11

trace.raw-12 trace.raw-13 trace.raw-14

 Chapter 7. The perfpmr command 123

Uploading the test case
The directory also contains a file called PROBLEM.INFO that must be
completed. Bundle the files together using the tar command and upload the file
to IBM as documented in the README files.

7.2 Examples for perfpmr
Example 7-2 is an example of running perfpmr.sh 600.

Example 7-2 Running perfpmr.sh

perfpmr.sh 600
C) COPYRIGHT International Business Machines Corp., 2000

 PERFPMR: perfpmr.sh Version 520 2003/02/24
 PERFPMR: Parameters passed to perfpmr.sh: 600
 PERFPMR: Data collection started in foreground (renice -n -20)

 TRACE.SH: Starting trace for 5 seconds
 TRACE.SH: Data collection started
 TRACE.SH: Data collection stopped
 TRACE.SH: Trace stopped
 TRACE.SH: Trcnm data is in file trace.nm
 TRACE.SH: /etc/trcfmt saved in file trace.fmt
 TRACE.SH: Binary trace data is in file trace.raw

 MONITOR: Capturing initial lsps and vmstat data
 MONITOR: Starting system monitors for 600 seconds.
 MONITOR: Waiting for measurement period to end....

trace.raw-15 trace.raw-2 trace.raw-3

trace.raw-4 trace.raw-5 trace.raw-6

trace.raw-7 trace.raw-8 trace.raw-9

trace.syms tunables_lastboot tunables_lastboot.log

tunables_nextboot vfs.kdb vmstat_v.after

vmstat_v.before vmstati.after vmstati.before

vnode.kdb w.int

Tip: After you have installed perfpmr you can run it at any time to make sure
that all of the files described above are captured. By doing this, you can be
confident that you will get a full test case.

124 AIX 5L Performance Tools Handbook

 MONITOR: Capturing final lsps and vmstat data
 MONITOR: Generating reports....
 MONITOR: Network reports are in netstat.int and nfsstat.int
 MONITOR: Monitor reports are in monitor.int and monitor.sum

 IPTRACE: Starting iptrace for 10 seconds....
0513-059 The iptrace Subsystem has been started. Subsystem PID is 28956.
0513-044 The iptrace Subsystem was requested to stop.
 IPTRACE: iptrace collected....
 IPTRACE: Binary iptrace data is in file iptrace.raw

 FILEMON: Starting filesystem monitor for 60 seconds....
 FILEMON: tracing started
 FILEMON: tracing stopped
 FILEMON: Generating report....

 TPROF: Starting tprof for 60 seconds....
 TPROF: Sample data collected....
 TPROF: Generating reports in background (renice -n 20)
 TPROF: Tprof report is in tprof.sum

 CONFIG.SH: Generating SW/HW configuration
WLM is running
 CONFIG.SH: Report is in file config.sum

PERFPMR: Data collection complete.

Tip: It is useful to run perfpmr when your system is under load and performing
normally. This gives you a baseline to determine future performance problems.

You should run perfpmr again when:

� Your system is experiencing performance problems.

� You make hardware changes to the system.

� You make any changes to your network configuration.

� You make changes to the AIX Operating System, such as when you install
upgrades or tune AIX.

� You make changes to your application.

 Chapter 7. The perfpmr command 125

126 AIX 5L Performance Tools Handbook

Chapter 8. The ps command

The ps (Process Status) command produces a list of processes on the system
that can be used to determine how long a process has been running, how much
CPU resource the processes are using, and whether processes are being
penalized by the system. It also shows how much memory processes are using,
how much I/O a process is performing, the priority and nice values for the
process, and who created the process.

The ps executable resides in /usr/bin and is part of the bos.rte.commands fileset,
which is installed by default from the AIX base installation media.

8

© Copyright IBM Corp. 2001, 2003 127

8.1 ps
The syntax of the ps command depends on the standard being used:

� X/Open standard

ps [-ARNaedfklm] [-n namelist] [-F Format] [-o specifier[=header],...][-p
proclist][-G|-g grouplist] [-t termlist] [-U|-u userlist] [-c classlist]

� Berkeley standard

ps [a] [c] [e] [ew] [eww] [g] [n] [U] [w] [x] [l | s | u |
v] [t Tty] [ProcessNumber]

The following flags are all preceded by a - (minus sign):

-A Writes information about all processes to standard output.

-a Writes information about all processes except the session leaders
and processes not associated with a terminal to standard output.

-c Clist Displays only information about processes assigned to the
Workload Manager (WLM) classes listed in the Clist variable. The
Clist variable is either a comma separated list of class names or a
list of class names is enclosed in double quotation marks (" ") that
are separated from one another by a comma, by one or more
spaces, or both.

-d Writes information to standard output about all processes except
the session leaders.

-e Writes information to standard output about all processes except
the kernel processes.

-F Format Equivalent to the -o Format flag.

-f Generates a full listing.

-G Glist Writes information to standard output only about processes that
are in the process groups listed for the Glist variable. The Glist
variable is either a comma-separated list of process group
identifiers or a list of process group identifiers enclosed in double
quotation marks (" ") and separated from one another by a comma
or by one or more spaces.

-g Glist Equivalent to the -G Glist flag.

-k Lists kernel processes.

-l Generates a long listing.

-m Lists kernel threads as well as processes. Output lines for
processes are followed by an additional output line for each kernel
thread. This flag does not display thread-specific fields (bnd,

128 AIX 5L Performance Tools Handbook

scount, sched, thcount, and tid) unless the appropriate -o Format
flag is specified.

-N Gathers no thread statistics. With this flag, ps simply reports those
statistics that can be obtained by not traversing through the threads
chain for the process.

-n NameList Specifies an alternative system name-list file in place of the default.
This flag is not used by AIX.

-o Format Displays information in the format specified by the Format variable.
Multiple field specifiers can be specified for the Format variable.
The Format variable is either a comma-separated list of field
specifiers or a list of field specifiers enclosed within a set of " "
(double-quotation marks) and separated from one another by a
comma, one or more spaces, or both. Each field specifier has a
default header. The default header can be overridden by
appending an = (equal sign) followed by the user-defined text for
the header. The fields are written in the order specified on the
command line in column format. The field widths are specified by
the system to be at least as wide as the default or user-defined
header text. If the header text is null (such as if -o user= is
specified), the field width is at least as wide as the default header
text. If all header fields are null, no header line is written.

-p Plist Displays only information about processes with the process
numbers specified for the Plist variable. The Plist variable is either
a comma-separated list of Process ID (PID) numbers or a list of
process ID numbers enclosed in double quotation marks (" ") and
separated from one another by a comma, one or more spaces, or
both.

-t Tlist Displays only information about processes associated with the
workstations listed in the Tlist variable. The Tlist variable is either a
comma separated list of workstation identifiers or a list of
workstation identifiers enclosed in double quotation marks (" ") and
separated from one another by a comma, one or more spaces, or
both.

-U Ulist Displays only information about processes with the user ID
numbers or login names specified in the Ulist variable. The Ulist
variable is either a comma-separated list of user IDs or a list of user
IDs enclosed in double quotation marks (" ") and separated from
one another by a comma and one or more spaces. In the listing,
the ps command displays the numerical user ID unless the -f flag is
used, in which case the command displays the login name. See
also the u flag.

-u Ulist Equivalent to the -U Ulist flag.

 Chapter 8. The ps command 129

The following options are not preceded by a - (minus sign):

a Displays information about all processes with terminals (ordinarily
only the user’s own processes are displayed).

c Displays the command name, as stored internally in the system for
purposes of accounting, rather than the command parameters,
which are kept in the process address space.

e Displays the environment as well as the parameters to the
command, up to a limit of 80 characters.

ew Wraps display from the e flag one extra line.

eww Wraps display from the e flag as many times as necessary.

g Displays all processes.

l Displays a long listing of the F, S, UID, PID, PPID, C, PRI, NI, ADDR, SZ,
PSS, WCHAN, TTY, TIME, and CMD fields.

n Displays numerical output. In a long listing, the WCHAN field is
printed numerically rather than symbolically. In a user listing, the
USER field is replaced by a UID field.

s Displays the size (SSIZ) of the kernel stack of each process (for use
by system maintainers) in the basic output format. This value is
always 0 (zero) for a multi-threaded process.

t tty Displays processes whose controlling tty is the value of the tty
variable, which should be specified as printed by the ps command;
that is, 0 for terminal /dev/tty0, lft0 for /dev/lft0, and pts/2 for
/dev/pts/2.

u Displays user-oriented output. This includes the USER, PID, %CPU,
%MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND fields.

v Displays the PGIN, SIZE, RSS, LIM, TSIZ, TRS, %CPU, and %MEM fields.

w Specifies a wide-column format for output (132 columns rather than
80). If repeated (for example, ww), uses arbitrarily wide output. This
information is used to decide how much of long commands to print.

x Displays processes with no terminal.

8.1.1 Information about measurement and sampling
The ps command is useful for determining:

� How long a process has been running on the system
� How much CPU resource a process is using
� If processes are being penalized by the system
� How much memory a process is using

130 AIX 5L Performance Tools Handbook

� How much I/O a process is performing
� The priority and nice values for the process
� Who created the process

8.2 Examples for ps
The following examples can be used to analyze performance problems using ps.

8.2.1 Displaying the top 10 CPU-consuming processes
The commands in Example 8-1 are useful for determining the top 10 processes
that are consuming the most CPU. The aux flags of the ps command display
USER, PID, %CPU, %MEM, SZ, RSS, TTY, STAT, STIME, TIME, and COMMAND
fields. The sort -rn +2 is a reverse-order numeric sort of the third column, which
is %CPU. The head -10 displays only the first 10 processes.

Example 8-1 Displaying the top 10 CPU-consuming processes

ps aux | head -1; ps aux | sort -rn +2 | head -10
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 1290 24.7 0.0 12 12 - A Apr 01 2659:37 wait
root 1032 24.6 0.0 12 12 - A Apr 01 2649:17 wait
root 516 24.6 0.0 12 12 - A Apr 01 2650:22 wait
root 774 24.5 0.0 12 12 - A Apr 01 2634:07 wait
root 43268 0.1 0.0 1524 1544 pts/7 A 09:25:36 1:16 topas
root 37522 0.1 0.0 224 252 pts/4 A 17:14:37 4:57 /usr/WebSphere/Ap
root 5676 0.1 0.0 68 68 - A Apr 01 12:04 gil
root 44426 0.0 0.0 416 440 - A 09:25:04 0:00 telnetd -a
root 44230 0.0 0.0 416 440 - A 09:16:55 0:00 telnetd -a
root 43930 0.0 0.0 416 440 - A 09:16:09 0:00 telnetd -a

The wait processes listed in the report show that this system is mainly idle.
There are four wait processes, one for each CPU. You can determine how many
processors your system has by running the lsdev -Cc processor command.

Example 8-2 Displaying number of processors in the system

#lsdev -Cc processor
proc18 Available 00-18 Processor
proc19 Available 00-19 Processor
proc22 Available 00-22 Processor
proc23 Available 00-23 Processor

 Chapter 8. The ps command 131

In Example 8-3, a test program called cpu was started and, as can be observed,
processes 31758, 14328, and 33194 used more CPU than wait. The report
displays the %CPU column sorted in reverse numerical order. %CPU represents the
percentage of time the process was actually consuming CPU resource in relation
to the life of the process.

Example 8-3 Displaying the top 10 CPU-consuming processes

ps aux | head -1 ; ps aux | sort -rn +2 | head
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 31758 24.7 2.0 4156 4152 pts/8 A 13:58:33 4:53 cpu 5
root 14328 24.5 2.0 4156 4152 pts/8 A 13:58:33 4:50 cpu 5
root 33194 24.3 2.0 4156 4152 pts/8 A 13:58:33 4:47 cpu 5
root 516 24.2 5.0 8 11536 - A May 11 9573:27 wait
root 1290 24.1 5.0 8 11536 - A May 11 9528:52 wait
root 774 24.1 5.0 8 11536 - A May 11 9521:18 wait
root 1032 24.0 5.0 8 11536 - A May 11 9494:31 wait
root 31256 11.2 2.0 4156 4152 pts/8 A 13:58:33 2:13 cpu 5
root 25924 11.2 2.0 4208 4204 pts/8 A 13:58:33 2:13 cpu 5
root 31602 1.6 0.0 1172 944 pts/10 A 10:37:21 13:29 xmwlm

8.2.2 Displaying the top 10 memory-consuming processes
The following command line is useful for determining the percentage of real
memory (size of working segment and the code-segment combined together)
used by the process. The report shown in Example 8-4 displays the %MEM column
sorted in reverse numerical order.

Example 8-4 Displaying the top 10 memory-consuming processes using RSS

ps aux | head -1 ; ps aux | sort -rn +3 | head
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 32788 0.0 3.0 16 24160 - A Mar 28 0:00 mmkproc
root 32308 0.0 3.0 16 24160 - A Mar 28 0:00 mmkproc
root 27616 0.0 3.0 76 24220 - A Mar 28 3:58 vsdkp
root 24534 0.0 3.0 16 24160 - A Mar 28 0:00 mmkproc
root 22714 0.0 3.0 16 24160 - A Mar 28 0:07 nfsWatchKproc
root 18600 0.0 3.0 16 24160 - A Mar 28 0:00 cash
root 17546 0.0 3.0 20 24164 - A Mar 28 0:05 aump
root 12918 0.0 3.0 16 24160 - A Mar 28 0:13 jfsz
root 11928 0.0 3.0 16 24160 - A Mar 28 0:00 PM
root 7526 0.0 3.0 20 24164 - A Mar 28 0:00 rtcmd

Another way to determine memory use is to use the command line in
Example 8-5 on page 133. The SZ represents the virtual size in kilobytes of the
data section of the process. (This is sometimes displayed as SIZE by other flags).
This number is equal to the number of working-segment pages of the process

132 AIX 5L Performance Tools Handbook

that have been touched (that is, the number of paging-space slots that have been
allocated) times four. File pages are excluded. If some working-segment pages
are currently paged out, this number is larger than the amount of real memory
being used. The report displays the SZ column sorted in reverse numerical order.

Example 8-5 Displaying the top 10 memory-consuming processes using SZ

ps -ealf | head -1 ; ps -ealf | sort -rn +9 | head
 F S UID PID PPID C PRI NI ADDR SZ WCHAN STIME TTY TIME CMD
 240001 A root 4712 5944 0 181 20 f19e 6836 30b50f10 May 20 - 4:58 /usr/lpp/X11/bin/X -WjfP7a
 240001 A root 27146 3418 0 181 20 a4d7 5296 * 13:10:57 - 0:05 /usr/sbin/rsct/bin/IBM.FSrmd
 200001 A root 33744 24018 0 181 20 c739 3856 May 22 pts/5 17:02 xmperf
 240001 A root 17042 3418 0 181 20 53ca 3032 May 20 - 3:01 /usr/opt/ifor/bin/i4llmd -b -n
 200001 A root 19712 26494 5 183 24 412a 2880 May 21 pts/9 27:32 xmperf
 40001 A root 17548 17042 0 181 20 7bcf 2644 309ceed8 May 20 - 0:00 /usr/opt/ifor/bin/i4llmd -b -n
 240401 A root 28202 4238 0 181 20 418a 2452 May 21 - 0:09 dtwm
 240001 A root 16048 3418 0 181 20 4baa 2356 * May 22 - 0:03 /usr/sbin/rsct/bin/IBM.HostRMd
 240001 A root 4238 6196 0 181 20 9172 2288 May 21 - 0:10 /usr/dt/bin/dtsession
 240001 A root 17296 3418 0 181 20 fbdf 2160 * May 20 - 0:00 /usr/sbin/rsct/bin/IBM.ERrmd

8.2.3 Displaying the processes in order of being penalized
The following command line is useful for determining which processes are being
penalized by the Virtual Memory Manager. See 1.2.2, “Processes and threads”
on page 6 for details about penalizing processes. The maximum value for the C
column is 120. The report in Example 8-6 displays the C column sorted in reverse
numerical order.

Example 8-6 Displaying the processes in order of being penalized

ps -eakl | head -1 ; ps -eakl | sort -rn +5
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 1290 0 120 255 -- b016 8 - 8570:28 wait
 303 A 0 1032 0 120 255 -- a815 8 - 8540:22 wait
 303 A 0 774 0 120 255 -- a014 8 - 8568:09 wait
 303 A 0 516 0 120 255 -- 9813 8 - 8590:49 wait
 303 A 0 0 0 120 16 -- 9012 12 - 3:53 swapper
 240001 A 0 25828 1 34 187 24 2040 1172 30bf6fd8 - 27:25 xmwlm
 200001 A 0 36434 25250 4 181 20 da3e 460 pts/4 0:00 ps
 240001 A 0 25250 29830 2 181 20 59ef 1020 pts/4 0:01 ksh
 200001 A 0 36682 25250 2 181 20 69c9 300 30b4a6fc pts/4 0:00 sort
 200001 A 0 34898 25250 2 181 20 4b6a 236 3098fce0 pts/4 0:00 head
...(lines omitted)...

Ignoring the wait processes, which will always show 120, the xmwlm process is
being penalized by the CPU. When this occurs, the process is awarded less CPU
time, thereby stopping xmwlm from monopolizing the CPU and giving more time
to the other processes.

 Chapter 8. The ps command 133

8.2.4 Displaying the processes in order of priority
The command line in Example 8-7 is useful for listing processes by order of the
CPU priority. The report displays the PRI column sorted in numerical order. Refer
to Chapter 20, “The nice and renice commands” on page 349 for details on
priority.

Example 8-7 Displaying the processes in order of priority

ps -eakl | sort -n +6 | head
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 0 0 120 16 -- 9012 12 - 3:54 swapper
 303 A 0 1548 0 0 16 -- d81b 12 - 21:11 lrud
 303 A 0 2580 0 0 16 -- b036 16 849970 - 4:23 wlmsched
 40201 A 0 5420 1 0 17 20 8130 40 * - 0:00 dog
 303 A 0 2064 0 0 36 -- 9833 16 - 0:10 netm
 303 A 0 2322 0 0 37 -- a034 64 * - 1:37 gil
 40303 A 0 9306 0 0 38 -- f27e 152 * - 0:00 j2pg
 40303 A 0 7244 0 0 50 -- 2284 16 - 0:00 jfsz
 303 A 0 1806 0 0 60 -- 502a 16 35028158 - 0:04 xmgc

The report shows that swapper, lrud, and wlmsched have the highest priority.

8.2.5 Displaying the processes in order of nice value
The command line in Example 8-8 is useful for determining processes by order
of nice value. The report displays the NI column sorted in numerical order. Refer
to Chapter 20, “The nice and renice commands” on page 349 for details on
priority. The report displays the NI column sorted in reverse numerical order.

Example 8-8 Displaying the processes in order of nice value

ps -eakl | sort -n +7
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 303 A 0 0 0 120 16 -- 9012 12 - 0:28 swapper
 303 A 0 516 0 120 255 -- 9813 8 - 1462:08 wait
 303 A 0 774 0 120 255 -- a014 8 - 1352:04 wait
 303 A 0 1032 0 120 255 -- a815 8 - 1403:23 wait
 303 A 0 1290 0 120 255 -- b016 8 - 1377:28 wait
 303 A 0 1548 0 1 16 -- d81b 12 - 1:50 lrud
 303 A 0 1806 0 0 60 -- 502a 16 30066198 - 0:00 xmgc
...(lines omitted)...
 40303 A 0 5972 0 0 38 -- fa7f 152 * - 0:00 j2pg
 40001 A 0 3918 4930 0 60 20 91b2 944 - 0:00 dtlogin
...(lines omitted)...
 40001 A 0 4930 1 0 60 20 a995 424 - 0:00 dtlogin
 10005 Z 0 29762 27922 1 68 24 0:00 <defunct>
 200001 A 0 20804 19502 1 68 24 4b2b 804 30b35fd8 pts/2 2:39 xmtrend
 200001 A 0 22226 26070 86 116 24 b6b4 572 pts/10 3:01 dc

134 AIX 5L Performance Tools Handbook

 200001 A 0 27922 25812 85 115 24 782e 572 pts/10 4:40 dc
 200001 A 0 28904 23776 2 69 24 46ca 268 pts/8 3:14 seen+done
 200001 A 0 30446 23776 2 69 24 7ecd 268 pts/8 3:09 seen+done
 200001 A 0 30964 23776 3 68 24 66ce 268 pts/8 3:12 seen+done
 200001 A 0 31218 23776 3 69 24 96d0 268 pts/8 2:58 seen+done
...(lines omitted)...

In the report, the NI values are sometimes displayed as --. This is because the
processes do not have a nice value, as they are running at a fixed priority.

Displaying the processes in order of time
The command in Example 8-9 is useful for determining processes by order of
CPU time. This is the total accumulated CPU time for the life of the process. The
report displays the TIME column sorted in reverse numerical order.

Example 8-9 Displaying the processes in order of time

ps vx | head -1 ; ps vx | grep -v PID | sort -rn +3 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 516 - A 9417:11 0 8 11780 xx 0 11772 24.3 2.0 wait
 1290 - A 9374:49 0 8 11780 xx 0 11772 24.2 2.0 wait
 774 - A 9367:13 0 8 11780 xx 0 11772 24.2 2.0 wait
 1032 - A 9342:08 0 8 11780 xx 0 11772 24.1 2.0 wait
10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
 1548 - A 21:11 0 12 11784 xx 0 11772 0.1 2.0 lrud
 6476 - A 16:18 2870 316 184 xx 2 4 0.0 0.0 /usr/sbin
16262 - A 6:24 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/
 2580 - A 4:33 0 16 11780 xx 0 11772 0.0 2.0 wlmsched

The report shows that wait has accumulated the most CPU time. If we were to
run our test program called CPU as in Example 8-3 on page 132 which creates a
CPU bottleneck, then the wait process would still feature at the top of the report
because the test system is normally idle and the wait processes would therefore
have accumulated the most time.

8.2.6 Displaying the processes in order of real memory use
Example 8-10 shows the command for determining processes by order of RSS
value. (The RSS value is the size of working segment and the code segment
combined together in memory in 1 KB units). The report displays the RSS column
sorted in reverse numerical order.

Example 8-10 Displaying the processes in order of RSS

ps vx | head -1 ; ps vx | grep -v PID | sort -rn +6 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND

 Chapter 8. The ps command 135

34958 pts/6 A 1:29 20 87976 88004 32768 21 28 0.6 17.0 java wlmp
 9306 - A 0:00 174 152 11916 32768 0 11772 0.0 2.0 j2pg
 2322 - A 1:43 0 64 11832 xx 0 11772 0.0 2.0 gil
26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
10580 - A 0:00 8 20 11792 32768 0 11772 0.0 2.0 rtcmd
24564 - A 0:06 1 32 11788 32768 0 11772 0.0 2.0 rpc.lockd
13418 - A 0:01 0 16 11788 32768 0 11772 0.0 2.0 PM
10836 - A 115:40 106 16 11788 32768 0 11772 0.3 2.0 kbiod
 2064 - A 0:11 120 16 11788 xx 0 11772 0.0 2.0 netm
 1806 - A 0:04 12 16 11788 xx 0 11772 0.0 2.0 xmgc

The report shows that the process java wlmp is using the most memory.

8.2.7 Displaying the processes in order of I/O
The command in Example 8-11 is useful for determining processes by order of
PGIN value. PGIN represents the number of page ins caused by page faults.
Because all AIX I/O is classified as page faults, this value represents the
measure of all I/O volume.

The report displays the PGIN column sorted in reverse numerical order.

Example 8-11 Displaying the processes in order of PGIN

ps vx | head -1 ; ps vx | grep -v PID | sort -rn +4 | head -10
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 26640 - A 67:26 25972 32 11796 32768 0 11772 1.1 2.0 nfsd
 16262 - A 6:25 4074 1112 1320 32768 1922 724 0.0 0.0 /usr/opt/
 6476 - A 16:19 2870 316 184 xx 2 4 0.0 0.0 /usr/sbin
 5176 - A 3:20 1970 3448 788 xx 2406 196 0.0 0.0 /usr/lpp/
 12202 - A 1:00 1394 2152 640 32768 492 44 0.0 0.0 dtwm
 15506 - A 0:23 1025 16260 5200 32768 58 48 0.0 1.0 /usr/sbin
 6208 - A 0:40 910 2408 532 32768 99 12 0.0 0.0 /usr/dt/b
 5954 - A 0:05 789 2844 324 32768 179 0 0.0 0.0 /usr/sbin

Important: Because the values in the RSS column contain shared working
memory, you cannot add the entries in the RSS column for all processes to
ascertain the amount of memory used on your system. For example, the ksh
process can consume about 1 KB of memory and each user can be running at
least one ksh, but this does not mean that for 300 users logged in, all ksh
processes will be using a minimum of 300 KB of memory. This is because ksh
uses share memory, enabling all ksh processes to access the same memory.
Refer to Chapter 22, “The ipcs command” on page 365 for details about
memory use.

136 AIX 5L Performance Tools Handbook

 16778 - A 0:00 546 724 648 32768 1922 340 0.0 0.0 /usr/opt/
 8290 - A 0:04 420 740 592 32768 75 76 0.0 0.0 /usr/sbin

The report shows that the nfsd process is producing the most I/O.

8.2.8 Displaying WLM classes
Example 8-12 shows how Workload Manager (WLM) classes can be displayed.
In WLM, you can categorize processes into classes. When you run the ps
command with the -o class option, you will see the class displayed.

Example 8-12 Displaying WLM classes

ps -a -o pid,user,class,pcpu,pmem,args
 PID USER CLASS %CPU %MEM COMMAND
...(lines omitted)...
20026 root System 0.0 0.0 ps -a -o pid,user,class,pcpu,pmem,arg
21078 root System 0.0 0.0 wlmstat 1 100
...(lines omitted)...

8.2.9 Viewing threads
The ps command enables you to access information relating to the threads
running for a particular process. For example, if we wanted to ascertain that
particular threads are bound to a CPU, we could use the command in
Example 8-13. Threads are bound using the bindprocessor command. Refer to
18.2, “bindprocessor” on page 292 for more details.

Example 8-14 on page 138 demonstrates how to use ps to see if threads are
bound to a CPU. As each processor has a wait process that is bound to each
active CPU on the system, we will use the wait process as an example.

To check how many CPUs are installed on our system we can use the following
command.

Example 8-13 Determining the number of installed processors

lsdev -Cc processor
proc0 Available 00-00 Processor
proc1 Available 00-01 Processor
proc2 Available 00-02 Processor
proc3 Available 00-03 Processor

 Chapter 8. The ps command 137

From the output, we know that there will be four wait processes (assuming all
CPUs are enabled). We can determine the Process IDs (PID) of the wait
processes using the following command.

Example 8-14 Determining the PID of wait processes

ps vg | head -1 ; ps vg | grep -w wait
 PID TTY STAT TIME PGIN SIZE RSS LIM TSIZ TRS %CPU %MEM COMMAND
 516 - A 1397:04 0 8 12548 xx 0 12540 21.2 3.0 wait
 774 - A 1393:52 0 8 12548 xx 0 12540 21.2 3.0 wait
 1032 - A 1392:39 0 8 12548 xx 0 12540 21.1 3.0 wait
 1290 - A 1395:14 0 8 12548 xx 0 12540 21.2 3.0 wait

The output tells us that wait processes PIDs are 516, 774, 1032, and 1290. We
can therefore determine whether the threads are actually bound as we would
expect by using the command line in Example 8-15.

Example 8-15 Wait processes bound to CPUs

ps -mo THREAD -p 516,774,1032,1290
 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAN
 root 516 0 - A 120 255 1 - 303 - 0 wait
 - - - 517 R 120 255 1 - 3000 - 0 -
 root 774 0 - A 120 255 1 - 303 - 1 wait
 - - - 775 R 120 255 1 - 3000 - 1 -
 root 1032 0 - A 120 255 1 - 303 - 2 wait
 - - - 1033 R 120 255 1 - 3000 - 2 -
 root 1290 0 - A 120 255 1 - 303 - 3 wait
 - - - 1291 R 120 255 1 - 3000 - 3 -

The example shows that the wait processes are indeed bound to CPUs. Each of
the wait processes has an associated thread. In AIX (starting from version 4),
with the exception of init, Process IDs (PIDs) have even numbers, and Threads
IDs (TIDs) have odd numbers.

138 AIX 5L Performance Tools Handbook

Chapter 9. The sar command

The sar command is used to gather statistical information about your system —
cpu, queuing, paging, file access, and more — that can help determine system
performance. The sar command can have an impact on system performance.

The sar command can be used for:

� Collecting real-time information
� Displaying previously captured data
� Collecting data using cron

sar resides in /usr/sbin and is part of the bos.perf.tools fileset, which is installable
from the AIX base installation media.

9

© Copyright IBM Corp. 2001, 2003 139

9.1 sar
The syntax of the sar command is:

sar [{ -A | [-a] [-b] [-c] [-d][-k] [-m] [-q] [-r] [-u]
[-V] [-v] [-w] [-y] }] [-P ProcessorIdentifier, ... | ALL]
[-ehh [:mm [:ss]]] [-fFile] [-iSeconds] [-oFile]
[-shh [:mm [:ss]]] [Interval [Number]]

Flags
-A Without the -P flag, using the -A flag is equivalent to

specifying -abcdkmqruvwy. When used with the -P flag, the
-A is equivalent to specifying -acmuw.

-a Reports use of file access routines specifying how many
times per second several of the file access routines have
been called. When used with the -P flag, the information is
provided for each specified processor. Otherwise it is
provided only systemwide.

-b Reports buffer activity for transfers, accesses, and cache
(kernel block buffer cache) hit ratios per second. Access to
most files bypasses kernel block buffering and therefore
does not generate these statistics. However, if a program
opens a block device or a raw character device for I/O,
traditional access mechanisms are used, making the
generated statistics meaningful.

-c Reports system calls. When used with the -P flag, the
information is provided for each specified processor;
otherwise, it is provided only systemwide.

-d Reports activity for each block device.

-e hh[:mm[:ss]] Sets the ending time of the report. The default ending time
is 18:00.

-f File Extracts records from File (created by -o File flag). The
default value of the File parameter is the current daily data
file, /var/adm/sa/sadd.

-i Seconds Selects data records at intervals as close as possible to
the number specified by the Seconds parameter.
Otherwise, the sar command reports all seconds found in
the data file.

-k Reports kernel process activity.

-m Reports message (sending and receiving) and semaphore
(creating, using, or destroying) activities per second. When

140 AIX 5L Performance Tools Handbook

used with the -P flag, the information is provided for each
specified processor. Otherwise it is provided only
systemwide.

-o File Saves the readings in the file in binary form. Each reading
is in a separate record, and each record contains a tag
identifying the time of the reading.

-P ProcessorIdentifier, ... | ALL
Reports per-processor statistics for the specified
processor or processors. Specifying the ALL keyword
reports statistics for each individual processor, and globally
for all processors of the flags that specify the statistics to
be reported; only the -a, -c, -m, -u, and -w flags are
meaningful with the -P flag.

-q Reports queue statistics.

-r Reports paging statistics.

-s hh[:mm[:ss]] Sets the starting time of the data, causing the sar
command to extract records time-tagged at, or following,
the time specified. The default starting time is 08:00.

-u Reports per-processor or systemwide statistics. When
used with the -P flag, the information is provided for each
specified processor; otherwise, it is provided only
systemwide. Because the -u flag information is expressed
as percentages, the systemwide information is simply the
average of each individual processor's statistics. Also, the
I/O wait state is defined systemwide and not per processor.

-V Reads the files created by sar on other operating system
versions. This flag can only be used with the -f flag.

-v Reports status of the process, kernel-thread, inode, and
file tables.

-w Reports system switching activity. When used with the -P
flag, the information is provided for each specified
processor; otherwise, it is provided only systemwide.

-y Reports tty device activity per second.

 Chapter 9. The sar command 141

9.1.1 Information about measurement and sampling
The sar command only formats input generated by the sadc command (sar data
collector). The sadc command acquires statistics mainly from the Perfstat kernel
extension (kex) (see 41.1, “Perfstat API” on page 786). The operating system
contains a number of counters that are incremented as various system actions
occur. The various system counters include:

� System unit utilization counters
� Buffer use counters
� Disk and tape I/O activity counters
� tty device activity counters
� Switching and subroutine counters
� File access counters
� Queue activity counters
� Interprocess communication counters

The sadc command samples system data a specified number of times at a
specified interval measured in seconds. It writes in binary format to the specified
output file or to stdout. When neither the measuring interval nor the interval
number are specified, a dummy record, which is used at system startup to mark
the time when the counter restarts from zero (0), will be written.

9.2 Examples for sar
When starting to look for a potential performance bottleneck, we need to find out
more about how the system uses CPU, memory, and I/O. For these resource
areas we can use the sar command.

9.2.1 Monitoring one CPU at a time
Example 9-1 shows the use of the sar command with the -P flag.

Example 9-1 Individual CPUs can be monitored separately

sar -P 3 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:47:52 cpu %usr %sys %wio %idle
17:48:02 3 16 31 6 47
17:48:12 3 10 19 7 65
17:48:22 3 32 57 4 7

Average 3 20 35 5 40

142 AIX 5L Performance Tools Handbook

In this output we ran the sar command to display utilization information for the
fourth CPU (number 3), three intervals 10 seconds apart. When using the -P flag
you must specify the CPU number, starting with 0,1,2,3 etc. for CPU 1,2,3,4,
respectively.

You can monitor mulitiple CPUs by specifing the CPU numbers separated by a
comma (,), and then followed by the interval and count values as shown in
Example 9-2.

Example 9-2 Individual CPUs can be monitored together

sar -P 0,1,2,3 10 2

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:46:33 cpu %usr %sys %wio %idle
17:46:43 0 29 71 0 0
 1 39 61 0 0
 2 35 65 0 0
 3 36 64 0 0
17:46:53 0 19 51 1 29
 1 45 47 0 8
 2 15 53 1 31
 3 27 40 1 32
17:47:03 0 18 46 1 36
 1 22 43 0 34
 2 20 49 1 30
 3 41 42 1 16

Average 0 22 56 1 22
 1 35 50 0 14
 2 23 56 1 20
 3 35 48 1 16

In the output above you see that the load was fairly evenly spread among the four
CPUs. For more information about the sar output columns in the example above,
see 9.2.11, “Monitoring the processor utilization” on page 158.

When using the -P you can also display CPU information for all of the CPUs by
using the ALL string, as in Example 9-3, where you would normally specify the
CPU number(s) to be monitored.

Example 9-3 CPU utilization per CPU or systemwide statistics

sar -P ALL 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:48:33 cpu %usr %sys %wio %idle

 Chapter 9. The sar command 143

17:48:43 0 24 75 0 1
 1 34 64 1 2
 2 37 60 0 2
 3 31 68 0 2
 - 32 66 0 2
17:48:55 0 37 51 1 12
 1 27 39 1 33
 2 19 46 1 35
 3 25 43 1 31
 - 27 45 1 28
17:49:06 0 27 73 0 0
 1 36 64 0 0
 2 33 67 0 0
 3 40 60 0 0
 - 34 66 0 0

Average 0 30 65 0 5
 1 32 55 1 12
 2 29 57 0 13
 3 32 56 0 12
 - 31 58 0 11

As can be seen in Example 9-3 on page 143, the ALL argument was used to
display usage information for all of the CPUs, with three intervals of 10 seconds.
The last line of each time stamp shows the average CPU usage for all of the
CPUs for that time stamp; it is denoted by a dash (-) The last stanza of the ouput
gives the average utilization for each CPU for the duration of the monitoring.

When using the -A flag, sar enables most of the report flags to be combined. The
-A flag without -P flag is equivalent to using the -abcdkmqruvwy flags. Using the
-A and -P flags together is the same as the -acmuw flags. Example 9-4 shows
the sar command with the abcdkmqruvwy option.

Example 9-4 Using sar -abckmqruvwy

sar -abckmqruvwy 1

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:24:13 iget/s lookuppn/s dirblk/s
 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
 ksched/s kproc-ov kexit/s
 msg/s sema/s
 runq-sz %runocc swpq-sz %swpocc
 slots cycle/s fault/s odio/s
 %usr %sys %wio %idle
 proc-sz inod-sz file-sz thrd-sz
 cswch/s

144 AIX 5L Performance Tools Handbook

 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:24:14 8 1585 0
 0 0 0 0 0 0 0 0
 43575 1352 545 313.67 313.67 1753704 95040
 0 0 0
 0.00 0.00
 1.0 100
 117421 0.00 15483.93 8.63
 1 25 0 74
 39/262144 279/358278 188/853 47/524288
 1943
 0 0 816 0 0 0

As can be seen from the example, when using too many flags the output will
become more difficult to read. Example 9-5 shows the sar -A report, which is
similar to the output above but includes the block device I/O report.

Example 9-5 Using sar -A

sar -A 1

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:25:20 iget/s lookuppn/s dirblk/s
 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
 device %busy avque r+w/s blks/s avwait avserv
 ksched/s kproc-ov kexit/s
 msg/s sema/s
 runq-sz %runocc swpq-sz %swpocc
 slots cycle/s fault/s odio/s
 %usr %sys %wio %idle
 proc-sz inod-sz file-sz thrd-sz
 cswch/s
 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s

18:25:21 345 10067 2327
 0 0 0 0 0 0 0 0
 80720 15088 965 402.77 395.38 10975227 612103
 hdisk0 0 0.0 1 9 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 5 0.0 65 295 0.0 0.0
 hdisk3 5 0.0 64 292 0.0 0.0
 hdisk2 5 0.0 65 296 0.0 0.0
 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 5 0.0 64 293 0.0 0.0
 hdisk15 5 0.0 65 296 0.0 0.0
 hdisk7 5 0.0 64 293 0.0 0.0

 Chapter 9. The sar command 145

 hdisk8 0 0.0 7 39 0.0 0.0
 hdisk4 5 0.0 64 293 0.0 0.0
 hdisk17 1 0.0 24 98 0.0 0.0
 hdisk11 0 0.0 1 28 0.0 0.0
 hdisk6 2 0.0 33 133 0.0 0.0
 hdisk14 5 0.0 64 292 0.0 0.0
 hdisk5 5 0.0 64 293 0.0 0.0
 hdisk13 5 0.0 65 297 0.0 0.0
 hdisk10 0 0.0 0 1 0.0 0.0

 2 0 2
 0.00 0.00
 55.0 100
 117353 0.00 21257.27 1545.50
 10 48 2 39
 177/262144 525/358278 517/853 185/524288
 2552
 0 0 920 0 0 0

9.2.2 Collecting statistics by using cron
You can collect statistical information by editing the crontab entries of sar. The
user adm’s crontab stores entries for sar. The lines that contain scripts sa1 and
sa2 must be uncommented by deleting the # character at the beginning of the
line as shown in Example 9-6. Remember to use the crontab -e command to
edit the crontab file, as this automatically updates the cron.

Example 9-6 System default crontab entries for the adm user

cronadm cron -l adm
...(lines omitted)...
#===
SYSTEM ACTIVITY REPORTS
8am-5pm activity reports every 20 mins during weekdays.
activity reports every an hour on Saturday and Sunday.
6pm-7am activity reports every an hour during weekdays.
Daily summary prepared at 18:05.
#===
0 8-17 * * 1-5 /usr/lib/sa/sa1 1200 3 &
0 * * * 0,6 /usr/lib/sa/sa1 &
0 18-7 * * 1-5 /usr/lib/sa/sa1 &
5 18 * * 1-5 /usr/lib/sa/sa2 -s 8:00 -e 18:01 -i 3600 -ubcwyaqvm &

� The first line runs the sa1 command between 8 a.m. and 5 p.m. (17), Monday
(1) through Friday (5), for 20 minutes (1200 seconds), three times an hour (3).

� The second line also runs the sa1 command, but only on Saturdays (6) and
Sundays (0) and then only once every hour.

146 AIX 5L Performance Tools Handbook

� The third line runs the sa1 command every hour between 6 p.m. (18) and 7
a.m, from Monday (1) through Friday (5).

� The fourth line runs the sa2 command every Monday (1) through Friday (5), at
five (5) minutes past six (18) p.m .

The sa1 commands create binary files in the /var/adm/sa directory, and the sa2
command creates an ASCII report in the same directory. The files are named
saDD, where DD stands for day of month, so on the 21st the file name will be sa21.

In addition to commenting out the lines in the crontab file for the adm user as
shown in the previous example, a dummy record must be inserted into the
standard system activity daily data file in the /var/adm/sa directory at the time of
system start by uncommenting the corresponding sadc lines in the /etc/rc file:

/usr/bin/su - adm -c /usr/lib/sa/sadc /usr/adm/sa/sa`date +%d`

For 24x7 operations, it is better to just collect the statistical information in binary
format, and when needed use sar to create reports from the binary files. The
following command enables only the statistical collection:

0 * * * * /usr/lib/sa/sa1 1200 3 &

To create reports from the files created in the /var/adm/sa directory, run the sar
command with the -f flag, as shown in Example 9-7.

Example 9-7 Using sar with the -f flag

sar -f /var/adm/sa/sa23

AIX wlmhost 2 5 000BC6AD4C00 04/07/03

00:00:01 %usr %sys %wio %idle
00:20:01 2 1 0 97
00:40:01 2 1 0 97
01:00:01 2 1 0 97
01:20:01 2 1 0 98

Average 2 1 0 97

By using the -s and -e flags with the sar command the starting time (-s) and
ending time (-e) can be specified and the report will show the recorded statistics
between the starting and ending time only, as shown in Example 9-8.

Example 9-8 Using sar with the -f, -s, and -e flags

sar -f /var/adm/sa/sa23 -s00:00 -e01:00

AIX lpar05 2 5 000BC6AD4C00 04/07/03

00:00:01 %usr %sys %wio %idle

 Chapter 9. The sar command 147

00:20:01 2 1 0 97
00:40:01 2 1 0 97

Average 2 1 0 97

The output only reports statistics between 00:00 and 01:00 from the file created
on the 23rd of the month.

To use a customized sa1 script that names the binary statistical collection files
with year and month instead of only by day, create a script such as the one in
Example 9-9 and run it with cron instead of the sa1 command (here called
sa1.custom).

Example 9-9 The sa1.custom script

expand -4 sa1.custom|nl
1 DATE=`date +%d`
2 NEWDATE=`date +%Y%m%d`
3 ENDIR=/usr/lib/sa
4 DFILE=/var/adm/sa/sa$DATE
5 NEWDFILE=/var/adm/sa/sa$NEWDATE
6 cd $ENDIR
7 if [$# = 0]; then
8 $ENDIR/sadc 1 1 $NEWDFILE
9 else
10 $ENDIR/sadc $* $NEWDFILE
11 fi
12 ln -s $NEWDFILE $DFILE >/dev/null 2>&1

The sa1.custom script creates files named saYYYYMMDD instead of only saDD. It
also creates a symbolic link from the saYYYYMMDD file to a file named saDD. By
doing this, other commands that expect to find a saDD file in the /var/adm/sa
directory will still do so. These files are also easy to save to a backup server
because they can be retrieved by using their filename and thus are unique, and
you will not risk losing them if, for example, the backup “class”1 for these files
does not permit enough versions to save the required number of saDD files.

Note: if collection and analysis of the workload should be performed for more
than a month, you need to save the binary statistical collection files from the
/var/adm/sa directory elsewhere and rename them with the year and month in
addition to the day. The sa2 command will remove files older than seven days
when it is run. The sa1 command will overwrite existing files with the same day
number in the /var/adm/sa directory.

1 Class in this context refers to a collection of rules and file specifications that specify what, when, and how to back up
files.

148 AIX 5L Performance Tools Handbook

9.2.3 Displaying access time system routines
Example 9-10 shows the use of the sar command with the -a flag to display file
access system routines.

Example 9-10 Using sar -a

sar -a 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:06:31 iget/s lookuppn/s dirblk/s
18:06:41 1441 22212 6534
18:06:51 412 6415 2902
18:07:01 1353 20375 5268

Average 1072 16377 4913

The output shows 1072 calls per second for inode lookup routines, 16377 lookups
per second to find a file entry using a pathname (low level file system routine),
and 4913 512-byte directory reads per second to find a file name (2.4 MBs read).

The sar -a report has the following format:

dirblk/s Number of 512-byte blocks read per second by the
directory search routine to locate a directory entry for a
specific file.

iget/s Calls per second to any of several inode2 lookup routines
that support multiple file system types. The iget routines
return a pointer to the inode structure of a file or device.

lookuppn/s Calls per second to the directory search routine that finds
the address of a vnode3 given a path name.

Example 9-11 shows how the different CPUs use the file access system routines.

Example 9-11 Using sar -a

sar -aP ALL 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:07:36 cpu iget/s lookuppn/s dirblk/s
18:07:46 0 29 693 81
 1 56 569 181

2 An inode is an index node reference number (inode number), which is the file system internal representation of a file.
The inode number identifies the file, not the file name.
3 A vnode is either created or used again for every reference made to a file by path name. When a user attempts to open
or create a file, if the VFS containing the file already has a vnode representing that file, a use count in the vnode is
incremented, and the existing vnode is used. Otherwise, a new vnode is created.

 Chapter 9. The sar command 149

 2 34 667 162
 3 40 604 118
 - 162 2564 554
18:07:56 0 124 1882 556
 1 141 2163 682
 2 137 2257 614
 3 117 2046 546
 - 520 8367 2400
18:08:06 0 77 1090 276
 1 118 1525 383
 2 67 1041 275
 3 68 1229 312
 - 327 4855 1238

Average 0 77 1222 305
 1 105 1419 415
 2 79 1322 350
 3 75 1293 325
 - 336 5261 1397

The last line of each time stamp and the average part of the report show the
average for all CPUs. They are denoted by a dash (-).

9.2.4 Monitoring buffer activity for transfers, access, and caching
Example 9-12 shows the use of the sar command with the -b flag to find out
more about buffer activity and utilization.

Example 9-12 Using sar -b

sar -b 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

17:13:18 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
17:13:28 1 284 100 0 0 0 0 0
17:13:38 1 283 100 0 0 0 0 0
17:13:48 1 283 100 0 0 0 0 0

Average 1 283 100 0 0 0 0 0

In the example, the read cache efficiency is 100 * (283 - 1) / 283 or 99.64
(approximately 100 percent as shown).

The sar -b report has the following format:

bread/s, bwrit/s Reports the number of block I/O operations per second.
These I/Os are generally performed by the kernel to

150 AIX 5L Performance Tools Handbook

manage the block buffer cache area, as discussed in the
description of the lread/s and lwrit/s values.

lread/s, lwrit/s Reports the number of logical I/O requests per second.
When a logical read or write to a block device is
performed, a logical transfer size of less than a full block
size may be requested. The system accesses the physical
device units of complete blocks, and buffers these blocks
in the kernel buffers that have been set aside for this
purpose (the block I/O cache area). This cache area is
managed by the kernel, so that multiple logical reads and
writes to the block device can access previously buffered
data from the cache and require no real I/O to the device.
Application read and write requests to the block device
are reported statistically as logical reads and writes. The
block I/O performed by the kernel to the block device in
management of the cache area is reported as block reads
and block writes.

pread/s, pwrit/s Reports the number of I/O operations on raw devices per
second. Requested I/O to raw character devices is not
buffered as it is for block devices. The I/O is performed to
the device directly.

%rcache, %wcache Reports caching effectiveness (cache hit percentage).
This percentage is calculated as:

100 * (lreads - breads) / lreads

9.2.5 Monitoring system calls
Example 9-13 shows the sar command being used with the -c flag to display
system call statistics.

Example 9-13 Using sar -c

sar -c 10 3

AIX lpar05 1 5 00040B1F4C00 04/07/03

18:04:30 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:04:40 30776 9775 841 95.42 95.22 2626011 1319494
18:04:50 52742 14190 1667 168.81 168.33 4208049 2781644
18:05:00 83248 25785 2334 266.34 265.57 6251254 3632468

Average 55592 16584 1614 176.87 176.39 4362015 2578121

 Chapter 9. The sar command 151

The output shows that the system did an average of about 177 fork system calls
to create new processes. The system also performed 10 times as many read
system calls per second than write system calls, but only read 1.7 times more
data. This is calculated by dividing the rchar/s by the wchar/s, 4362015 / 2578121
= 1.69. However the average transfer size for the read system calls was about
260 bytes (4362015 / 16584 = 263.02) and the average transfer size for the write
system calls was approximately 1600 bytes (2578121 / 1614 = 1597.34).

The sar -c report has the following format:

exec/s Reports the total number of exec system calls

fork/s Reports the total number of fork system calls

sread/s Reports the total number of read system calls

swrit/s Reports the total number of write system calls

rchar/s Reports the total number of characters transferred by
read system calls

wchar/s Reports the total number of characters transferred by
write system calls

scall/s Reports the total number of system calls

To display system call information per CPU, use the -P flag with the -c flag as in
Example 9-14.

Example 9-14 Using sar -c

sar -cPALL 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:05:05 cpu scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
18:05:15 0 18276 6313 399 53.66 66.50 706060 459381
 1 17527 3898 474 64.65 58.89 2714377 827040
 2 16942 3211 578 63.17 56.56 1196307 1042826
 3 18786 4589 507 66.83 66.13 1161274 870102
 - 71420 17914 1965 248.22 247.64 5856025 3217526
18:05:25 0 23951 11926 601 42.08 56.63 1933828 796038
 1 18926 4965 658 62.67 61.39 1341808 1133376
 2 19277 6462 545 67.51 61.37 1094918 833909
 3 21008 6788 640 75.40 68.80 1164796 951693
 - 83076 30068 2440 248.44 248.24 5515219 3709782
18:05:35 0 20795 7932 426 55.35 67.92 805022 500341
 1 21442 4615 718 62.14 67.39 2425419 1292411
 2 17528 3939 504 77.17 66.21 1122280 873226
 3 18983 3310 648 78.04 71.46 1375725 1176041
 - 78535 19718 2286 273.23 272.84 5692685 3823642

152 AIX 5L Performance Tools Handbook

Average 0 21006 8722 475 50.36 63.69 1148012 585170
 1 19299 4493 617 63.15 62.56 2159898 1084462
 2 17917 4539 542 69.28 61.38 1137801 916592
 3 19591 4894 598 73.43 68.80 1234002 999354
 - 77676 22566 2230 256.63 256.24 5688003 3583571

As before, the last line of each time stamp displays the average, and the last
stanza displays the average of all of the data collected per CPU.

9.2.6 Monitoring activity for each block device
Example 9-15 shows the use of the sar command with the -d flag. This will
display information about each block device with the exception of tape drives.

Example 9-15 Using sar -d

sar -d 10 3

AIX bolshoi 1 5 00040B1F4C00 05/20/01

17:58:08 device %busy avque r+w/s blks/s avwait avserv

17:58:18 hdisk0 0 0.0 1 8 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 3 0.0 39 176 0.0 0.0
 hdisk3 3 0.0 38 174 0.0 0.0
 hdisk2 3 0.0 39 177 0.0 0.0
 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 3 0.0 38 175 0.0 0.0
 hdisk15 3 0.0 38 176 0.0 0.0
 hdisk7 3 0.0 38 175 0.0 0.0
 hdisk8 0 0.0 4 23 0.0 0.0
 hdisk4 3 0.0 38 174 0.0 0.0
 hdisk17 1 0.0 14 58 0.0 0.0
 hdisk11 0 0.0 1 16 0.0 0.0
 hdisk6 1 0.0 19 79 0.0 0.0
 hdisk14 3 0.0 38 174 0.0 0.0
 hdisk5 3 0.0 38 175 0.0 0.0
 hdisk13 3 0.0 39 177 0.0 0.0
 hdisk10 0 0.0 0 0 0.0 0.0

...(lines omitted)...

Average hdisk0 0 0.0 1 10 0.0 0.0
 hdisk1 0 0.0 0 0 0.0 0.0
 hdisk12 15 0.0 171 764 0.0 0.0
 hdisk3 15 0.0 160 721 0.0 0.0
 hdisk2 15 0.0 168 750 0.0 0.0

 Chapter 9. The sar command 153

 hdisk9 0 0.0 0 0 0.0 0.0
 hdisk16 16 0.0 169 759 0.0 0.0
 hdisk15 15 0.0 170 760 0.0 0.0
 hdisk7 16 0.0 168 753 0.0 0.0
 hdisk8 0 0.0 10 62 0.0 0.0
 hdisk4 15 0.0 167 753 0.0 0.0
 hdisk17 5 0.0 61 247 0.0 0.0
 hdisk11 0 0.0 4 74 0.0 0.0
 hdisk6 7 0.0 89 358 0.0 0.0
 hdisk14 15 0.0 168 752 0.0 0.0
 hdisk5 15 0.0 167 750 0.0 0.0
 hdisk13 15 0.0 171 767 0.0 0.0
 hdisk10 0 0.0 0 1 0.0 0.0

Notice that the output displays block device activity for every specified time
interval. The last column, as before, displays the averages.

The sar -d report has the following format:

%busy The portion of time the device was busy servicing a transfer
request

avque The average number of requests in the queue

r+w/s Number of read and write requests per second

blks/s Number of bytes transferred in 512-byte blocks per second

avwait The average time each request waits in the queue before it is
serviced

avserv The average time taken for servicing a request

9.2.7 Monitoring kernel process activity
Example 9-16 shows the use of the sar command with the -k flag to find out more
about kernel process activity.

Example 9-16 Using sar -k

sar -k 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

22:57:45 ksched/s kproc-ov kexit/s
22:57:55 0 0 0
22:58:05 0 0 0
22:58:15 0 0 0

Average 0 0 0

154 AIX 5L Performance Tools Handbook

The sar -k report has the following format:

kexit/s Reports the number of kernel processes terminating per
second.

kproc-ov/s Reports the number of times kernel processes could not
be created because of enforcement of process threshold
limit per second.

ksched/s Reports the number of kernel processes assigned to
tasks per second.

A kernel process (kproc) exists only in the kernel protection domain. It is created
using the creatp and initp kernel services.

9.2.8 Monitoring the message and semaphore activities
Example 9-17 uses the sar command with the -m flag to display message and
semaphore utilization.

Example 9-17 Using sar -m

sar -m 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

17:03:45 msg/s sema/s
17:03:50 0.00 2744.71
17:03:55 0.00 2748.94
17:04:00 0.00 2749.15

Average 0.00 2747.60

Message queues and semaphores are used by processes to communicate with
each other. See 22.1, “ipcs” on page 366 for more information about working with
and managing Inter Process Communication (IPC) resources using the ipcs
command.

The sar -m report has the following format:

msg/s The number of IPC message primitives per second.
sema/s The number of IPC semaphore primitives per second.

Using the -P flag with the sar -m flag displays message queue and semaphore
information per CPU.

Example 9-18 Using sar -m

sar -mPALL 10 3
AIX lpar05 2 5 000BC6AD4C00 04/07/03

 Chapter 9. The sar command 155

17:04:49 cpu msg/s sema/s
17:04:54 0 0.00 638.17
 1 0.00 706.14
 2 0.00 712.38
 3 0.00 694.84
 - 0.00 2746.03
17:04:59 0 0.00 639.11
 1 0.00 708.95
 2 0.00 712.35
 3 0.00 699.20
 - 0.00 2754.35
17:05:04 0 0.00 640.93
 1 0.00 704.97
 2 0.00 710.16
 3 0.00 689.15
 - 0.00 2739.90

Average 0 0.00 639.40
 1 0.00 706.68
 2 0.00 711.63
 3 0.00 694.39
 - 0.00 2746.76

As before, the last line of each interval displays the average for that interval,
denoted with a dash (-), and the last column displays the average for the
collection period.

9.2.9 Monitoring the kernel scheduling queue statistics
Example 9-19 shows the use of the sar command with the -q flag to find out
more about kernel scheduling queues:

Example 9-19 Using sar -q

sar -q 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

18:02:02 runq-sz %runocc swpq-sz %swpocc
18:02:12 23.8 100 2.9 70
18:02:22 35.0 100 8.0 100
18:02:32 13.0 100 3.0 30

Average 23.9 97 5.5 65

The output tells us that the run queue had approximately 24 threads ready to run
(runq-sz), on average, and was occupied 97 percent of the time (% runocc).

156 AIX 5L Performance Tools Handbook

If the system is idle the output would appear as in Example 9-20.

Example 9-20 Using sar -q

sar -q 2 4

AIX lpar05 2 5 00040B1F4C00 04/07/03

16:44:35 runq-sz %runocc swpq-sz %swpocc
16:44:37
16:44:39
16:44:41
16:44:43

Average

A blank value in any column indicates that the associated queue is empty.

The sar -q report has the following format:

runq-sz The average number of kernel threads in the run queue
(the r column reported by vmstat is the actual value)

%runocc The percentage of the time that the run queue is occupied

swpq-sz Tthe average number of kernel threads waiting for
resources or I/O (the b column reported by vmstat is the
actual value)

%swpocc The percentage of the time the swap queue is occupied

9.2.10 Monitoring the paging statistics
Example 9-21 uses the the sar command with the -r flag will display paging
statistics.

Example 9-21 Using sar -r

sar -r 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:57:16 slots cycle/s fault/s odio/s
17:57:26 117419 0.00 15898.29 2087.03
17:57:36 117419 0.00 6051.20 1858.52
17:57:46 117419 0.00 13186.44 1220.44

Average 117419 0 11718 1722

 Chapter 9. The sar command 157

The output shows that there was approximately 460 MB of free space on the
paging spaces in the system (117419 * 4096 / 1024 / 1024 = 458) during our
measurement interval.

The sar -r report has the following format:

cycle/s Reports the number of page replacement cycles per
second (equivalent to the cy column reported by vmstat).

fault/s Reports the number of page faults per second. This is not
a count of page faults that generate I/O because some
page faults can be resolved without I/O.

slots Reports the number of free 4096-byte pages on the
paging spaces.

odio/s Reports the number of non-paging disk I/Os per second.

9.2.11 Monitoring the processor utilization
Example 9-22 uses the sar command with the -u to display processor utilization.

Example 9-22 Using sar -u

sar -u 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:54:58 %usr %sys %wio %idle
17:55:08 30 57 1 12
17:55:18 29 57 1 12
17:55:28 26 43 1 29

Average 29 53 1 18

The output shows that the system spent 29% in user mode, 53% in system mode,
and 1% waiting for IO requests, and was idle 18% of the time.

The output in Example 9-23 displays per-CPU utilization using the -u and -P
flags.

Example 9-23 Using sar -u

sar -uPALL 10 3
AIX lpar05 2 5 00040B1F4C00 04/07/03

17:55:49 cpu %usr %sys %wio %idle
17:55:59 0 38 51 1 9
 1 27 43 1 29
 2 24 45 1 31
 3 25 46 0 29

158 AIX 5L Performance Tools Handbook

 - 28 46 1 25
17:56:09 0 26 74 0 0
 1 40 60 0 0
 2 33 67 0 0
 3 40 60 0 0
 - 35 65 0 0
17:56:19 0 12 38 1 50
 1 18 37 1 44
 2 56 33 1 10
 3 13 37 1 48
 - 26 36 1 37

Average 0 25 54 1 20
 1 28 47 1 24
 2 38 48 0 14
 3 26 48 0 26
 - 30 49 1 21

The last line of each time stamp and the average part of the report show the
average for all CPUs; they are denoted by a dash (-). The output above shows
that the system load was fairly evenly distributed among the CPUs.

The sar -u report has the following format:

%idle Reports the percentage of time the CPU(s) were idle with
no outstanding disk I/O requests (equivalent to the id
column reported by vmstat).

%sys Reports the percentage of time the CPU(s) spent in
execution at the system (or kernel) level (equivalent to the
sy column reported by vmstat).

%usr Reports the percentage of time the CPU(s) spent in
execution at the user (or application) level (equivalent to
the us column reported by vmstat).

%wio Reports the percentage of time the CPU(s) were idle
during which the system had outstanding disk/NFS I/O
request(s). Equivalent to the wa column reported by
vmstat.

 Chapter 9. The sar command 159

9.2.12 Monitoring tty device activity
Using the sar command with the -y flag displays information about tty device
utilization, as shown in Example 9-24.

Example 9-24 Using sar -y

sar -y 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

23:01:17 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
23:01:27 2 0 51 0 0 0
23:01:37 1 0 446 0 0 0
23:01:47 1 0 360 0 0 0

Average 2 0 286 0 0 0

The output above shows that this system only wrote, on average, 286 characters
to terminal devices during our measurement interval. Terminal devices can be
directly attached through the tty devices (/dev/tty) or through PTY device drivers
(/dev/pty or /dev/pts) for network connections with terminal emulation.

The sar -y report has the following format:

canch/s Reports tty canonical input queue characters per second.
This field is always zero (0) for AIX Version 4 and later.

mdmin/s Reports tty modem interrupts per second.

outch/s Reports tty output queue characters per second (similar
to the tout column, but per second, reported by iostat).

rawch/s Reports tty input queue characters per second (similar to
the tin column, but per second, reported by iostat).

revin/s Reports tty receive interrupts per second.

xmtin/s Reports tty transmit interrupts per second.

9.2.13 Monitoring kernel tables
Using the sar command with the -v flag displays kernel table utilization, as shown
in Example 9-25.

Example 9-25 Using sar -v

sar -v 10 3

AIX lpar05 2 5 00040B1F4C00 04/07/03

17:52:58 proc-sz inod-sz file-sz thrd-sz

160 AIX 5L Performance Tools Handbook

17:53:08 248/262144 641/358248 709/853 256/524288
17:53:18 227/262144 632/358248 642/853 235/524288
17:53:28 42/262144 282/358248 192/853 50/524288

The sar -v report has the following format:

file-sz Reports the number of entries in the kernel file table. The
column is divided into two parts:

file-size The number of open files in the
system (the currently used size of the
file entry table). Note that a file may be
open multiple times (multiple file
opens for one inode).

file-size-max The maximum number of files that
have been open since IPL (high
watermark).

The file entry table is allocated dynamically, so the
file-size-max value signifies a file entry table with
file-size-max entries available, and only file-size
entries used.

inod-sz Reports the number of entries in the kernel inode table.
The column is divided into two parts:

inode-size The current number of active (open)
inodes.

inode-size-max The maximum number of inodes
allowed. This value is calculated at
system boot time based on the
amount of memory in the system

proc-sz Reports the number of entries in the kernel process table.
The column is divided into two parts:

proc-size The current number of processes
running on the system.

proc-size-max The maximum number of processes
allowed. Maximum value depends
on whether it is a 32-bit or 64-bit
system (NPROC).

thrd-sz Reports the number of entries in the kernel thread table.
The column is divided into two parts:

thread-size The current number of active
threads.

thread-size-max The maximum number of threads
allowed. Maximum value depends

 Chapter 9. The sar command 161

on whether it is a 32-bit or 64-bit
system (NTHREAD).

The current limits for some of the kernel tables (per process) can be found using
the shell built in function ulimit, as shown in Example 9-26.

Example 9-26 Using ulimit

ulimit -a
time(seconds) unlimited
file(blocks) 2097151
data(kbytes) 131072
stack(kbytes) 32768
memory(kbytes) 32768
coredump(blocks) 2097151
nofiles(descriptors) 2000

9.2.14 Monitoring system context switching activity
Using the sar command with the -w flag displays information about context
switching between threads. Context switching happens when a multi-process
operating system stops running one process or thread and starts another. By
default, CPU time is allocated to threads in 10 ms chunks.

Example 9-27 Using sar -w

sar -w 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

23:00:46 cswch/s
23:00:56 516
23:01:06 599
23:01:16 307

Average 474

The output shows that there were 474 context switches per second on average
during the measurement interval.

The sar -w report has the following format:

cswch/s Reports the number of context switches per second
(equivalent to the cs column reported by vmstat).

162 AIX 5L Performance Tools Handbook

Using the -P flag with the -w flag displays the number of context switches per
second for the different CPUs as shown in Example 9-28.

Example 9-28 Using sar -w

sar -wP ALL 10 3

AIX lpar05 2 5 000BC6AD4C00 04/07/03

23:04:18 cpu cswch/s
23:04:28 0 212
 1 140
 2 152
 3 125
 - 625
23:04:38 0 186
 1 119
 2 111
 3 82
 - 494
23:04:48 0 66
 1 60
 2 52
 3 30
 - 210

Average 0 154
 1 106
 2 106
 3 79
 - 443

The last line of each time stamp is denoted by a dash (-) and the last stanza
displays the averages.

 Chapter 9. The sar command 163

164 AIX 5L Performance Tools Handbook

Chapter 10. The schedo and schedtune
commands

The schedtune program is being phased out and will not be supported in future
releases. It is being replaced by the schedo command. In AIX 5.2, a compatibility
script calling schedtune is provided to help the transition.

The schedo and schedtune commands can only be executed by root to manage
CPU scheduler tunable parameters.

These commands set or display current or next boot values for all scheduler
tuning parameters. The schedo command can also make permanent changes or
defer changes until the next reboot. Whether the command sets or displays a
parameter is determined by the accompanying flag. The -o flag performs both
actions. It can either display the value of a parameter or set a new value for a
parameter.

The schedo resides in /usr/bin/schedo and is part of the bos.perf.tune fileset. The
schedtune resides in /usr/samples/kernel and is part of the bos.adt.samples
fileset. Both are installable from the AIX base installation media.

10

Attention: Incorrect changes of scheduling parameters can cause
performance degradation or operating-system failure. Refer to AIX 5L Version
5.2 Performance Management Guide before using these tools.

© Copyright IBM Corp. 2001, 2003 165

10.1 schedo
The schedo command can be invoked with the following syntaxes:

schedo [-p | -r] { -o tunable[=Newvalue] | -d tunable | -D | -a }
schedo {-? | -h [tunable]}

Flags
-h tunable Displays help about the tunable parameter.

-d tunable Resets tunable to its default value. If a tunable is currently not
set to its default value, and -r is not used in combination, it will
not be changed but a warning is displayed.

-o tunable Displays the value or sets tunable to a new value.

-a Displays the current, reboot (when used in conjunction with -r) or
permanent (when used in conjunction with -p) value for all
tunable parameters, one per line in pairs Tunable=Value. For the
permanent option, a value is only displayed for a parameter if its
reboot and current values are equal. Otherwise NONE displays
as the value.

-D Resets all tunables to their default value.

-p Makes changes apply to both current and reboot values, when
used in combination with -o, -d, or -D; that is, turns on the
updating of the /etc/tunables/nextboot file in addition to the
updating of the current value.

-r Makes changes apply to reboot values when used in
combination with -o, -d, or -D; that is, turns on the updating of
the /etc/tunables/nextboot file.

-L [tunable] Lists the characteristics of one or all tunables, one per line. It
specifies the current value, default value, next reboot value,
minimum and maximum values, and its unit and type. The
current set of parameters managed by schedo only includes
Dynamic types.

-x [tunable] Generates tunable characteristics in a comma-separated value
for loading into a spreadsheet.

AIX uses different scheduler policies:

SCHED_OTHER This is the default AIX scheduling policy. This scheduler
policy only applies to threads with a non-fixed priority. A
threads priority is recalculated after each clock interrupt.

SCHED_RR This policy only applies to threads running with a fixed
priority. Threads are time sliced. Once the time slice

166 AIX 5L Performance Tools Handbook

expires, the thread is moved to the back of the queue of
threads of this same priority.

SCHED_FIFO This scheduler policy applies to fixed priority threads
owned by the root user only. A thread runs until
completion unless blocked or unless it gives up the CPU
voluntarily.

SCHED_FIFO2 This scheduler policy enables a thread that sleeps for a
short period of time to resume at the head of the queue
rather than the tail of the queue. The length of time the
thread sleeps is determined by the schedo -o affinity_lim.

SCHED_FIFO3 With this scheduler policy, whenever a thread becomes
runnable, it moves to the head of its run queue.

10.1.1 Recommendations and precautions
The following section provides suggestions and precautions when using the
schedo command.

� Setting the CPU decay factor sched_D to a low value will force the current
effective priority value of the process down. A CPU-intensive process
therefore will achieve more CPU time at the expense of the interactive
process types. When the sched_D is set high, then CPU-intensive processes
are less favored because the priority value will decay less the longer it runs.
The interactive type processes will be favored in this case. It is therefore
important to understand the nature of the processes that are running on the
system before adjusting this value.

� When the value of sched_R is set high, the nice value, as set by the nice
command, has less effect on the process, which means that CPU-intensive
processes that have been running for some time will have a lower priority than
interactive processes.

� The smaller the value of v_repage_hi, the closer to thrashing the system gets
before process suspension starts. Conversely, if the value is set too high,
processes may become suspended needlessly.

� It is not recommended that the v_min_process value is set lower than 2 (two).
Even though this is permitted, the result is that only one user processes will
be permitted when suspension starts.

Important: The schedo command should be used with caution. The use of
inappropriate values can seriously impair the performance of the system.
Always keep a record of the current value settings before making changes.

 Chapter 10. The schedo and schedtune commands 167

� Setting the value of the v_sec_wait high results in unnecessarily poor
response times from suspended processes. The system’s processors could
be idle while the suspended processes wait for the delay set by the
v_sec_wait . Ultimately, this will result in poor performance.

10.2 Examples for schedo
This section presents a collection of sample usages of the schedo command.

10.2.1 Displaying current settings
The schedo -L command displays the current, default, and reboot settings as
shown in Example 10-1.

Example 10-1 Using schedo to display the current, default, and reboot values

schedo -L
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
v_repage_hi 0 0 0 0 2047M D
--
v_repage_proc 4 4 4 0 2047M D
--
v_sec_wait 1 1 1 0 2047M seconds D
--
v_min_process 2 2 2 0 2047M processes D
--
v_exempt_secs 2 2 2 0 2047M seconds D
--
pacefork 10 10 10 10 2047M clock ticks D
--
sched_D 16 16 16 0 32 D
--
sched_R 16 16 16 0 32 D
--
timeslice 1 1 1 0 2047M clock ticks D
--
maxspin 16K 16K 16K 1 4095M spins D
--
%usDelta 100 100 100 0 100 D
--
affinity_lim 7 7 7 0 100 dispatches D
--
idle_migration_barrier 4 4 4 0 100 sixteenth D
--
fixed_pri_global 0 0 0 0 1 boolean D

168 AIX 5L Performance Tools Handbook

--

n/a means parameter not supported by the current platform or kernel

Parameter types:
 S = Static: cannot be changed
 D = Dynamic: can be freely changed
 B = Bosboot: can only be changed using bosboot and reboot
 R = Reboot: can only be changed during reboot
 C = Connect: changes are only effective for future socket connections
 M = Mount: changes are only effective for future mountings
 I = Incremental: can only be incremented

Value conventions:
 K = Kilo: 2^10 G = Giga: 2^30 P = Peta: 2^50
 M = Mega: 2^20 T = Tera: 2^40 E = Exa: 2^60

10.2.2 Tuning CPU parameters
This example deals with tuning the schedo parameters that affect the CPU. In
Example 10-2, the schedo parameters that have an effect on the CPU are shown
in bold.

Example 10-2 The schedo CPU flags

#schedo -a
v_repage_hi = 0

 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 16
 timeslice = 1
 maxspin = 16384
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0

In order to correctly tune the schedo parameters, it is necessary to understand
the nature of the workload that is running on the system, such as whether the
processes are CPU-intensive or interactive.

 Chapter 10. The schedo and schedtune commands 169

Thread prioritizing and aging
The priority of most user processes varies with the amount of CPU time the
process has used recently. The CPU scheduler’s priority calculations are based
on two parameters that are set with schedo: sched_R and sched_D. The
sched_R and sched_D values are in 1/32 seconds. Both r (sched_R parameter)
and d (sched_D parameter) have default values of 16.

See 1.2.2, “Processes and threads” on page 6 for a detailed usage of these
parameters in calculating priority and aging.

Time slice
The default time slice is one clock tick. One clock tick equates to 10 ms. The time
slice value can be changed using schedo -o timeslice=.... Context switching
sometimes decreases by setting timeslice to a higher value.

Fixed priority threads
The schedo command can be used to force all fixed priority threads to be placed
on the global run queue. The global run queue is examined for runnable threads
before the individual processor’s run queues are examined. A thread that is on
the global run queue will be dispatched to a CPU prior to threads on the CPU’s
run queue when that CPU becomes available if that thread has a better priority
than the threads on the CPU’s local run queue. The syntax for this is schedo -o
fixed_pri_global=1.

Fork retries
The schedo -o pacefork command displays the number of clock ticks to delay
before retrying a failed fork() call. If a fork() subroutine fails due to a lack of
paging space, then the system will wait until the specified number of clock ticks
have elapsed before retrying. The default value is 10. Because the duration of
one clock tick is 10 ms, the system will wait 100 ms by default.

Lock tuning
When a thread needs to acquire a lock, if that lock is held by another thread on
another CPU, then the thread will spin on the lock for a length of time before it
goes to sleep and puts itself on an event run queue waiting for the lock to be
released. The value of the maxspin from schedo -o maxspin command
determines how many iterations the thread will check the lock word to see if the
lock is available. On SMP systems, this value is defaulted to 16384 as in the next
example. In the case of an upgrade to a faster system, it should be realized that
the duration for spinning on a lock will be less than on a slower system for the
same maxspin value. The spin on a lock parameter can be changed using the
schedo -o maxspin=...command.

170 AIX 5L Performance Tools Handbook

10.2.3 Tuning memory parameters
This section deals with the schedo command values that affect memory, which
are highlighted in Example 10-3.

Example 10-3 The schedo command’s memory-related parameters

schedo -a
v_repage_hi = 0

 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 16
 timeslice = 1
 maxspin = 16384
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0

The load control mechanism is used to suspend processes when the available
memory is overcommitted. Pages are stolen as they are needed from Least
Recently Used (LRU) pages. Pages from the suspended processes are the most
likely to be stolen. The intention of memory load control is to smooth out
infrequent peaks in memory demand to minimize the chance of thrashing taking
place. It is not intended as a mechanism to cure systems that have inadequate
memory. Certain processes are exempt from being suspended, such as kernel
processes and processes with a fixed priority below 60.

Thrashing
Using the output of the vmstat command as referenced in Chapter 13, “The
vmstat command” on page 211, the system is said to be thrashing when:

po/fr > 1/h

where:

po Number of page writes
fr Number of page steals
h The schedo -o v_repage_hi value

Note: On systems with a memory size greater than 128 MB, the size of the
schedo -o v_repage_hi value by default is 0 (zero). On systems where the
memory is less than 128 MB, the default value is set to 6 (six). When
v_repage_hi is set to 0 (zero), then the load control mechanism is disabled.

 Chapter 10. The schedo and schedtune commands 171

On a server with 128 MB of memory or less with the default settings, the system
is thrashing when the ratio of page writes to page steals is greater than one to
six. The value of h in the equation above, which can be changed by the schedo
-o v_repage_hi=..., therefore has the function of determining at which point the
system is said to be thrashing.

If the algorithm detects that memory is overcommitted, then the values
associated with the v_min_process, v_repage_proc, v_sec_wait, and
v_exempt_secs are used. If the load control mechanism is disabled, then these
values are ignored.

v_min_process This value sets the minimum number of active processes
that are exempt from suspension. Active processes are
defined as those that are runnable and waiting for page
I/O. Suspended processes and processes waiting for
events are not considered active processes. The default
value is 2 (two). To increase this value defeats the object
of the load control mechanism’s ability to suspend
processes. To decrease this value means that fewer
processes are active when the mechanism starts
suspending processes. In large systems, setting this
value above the default may result in better performance.

v_repage_proc This value sets the per-process criterion used to
determine which processes to suspend depending on the
rate of thrashing of each individual process. The default
value is set to four and implies that the process can be
suspended when the ratio of repages to page faults is
greater than four.

v_sec_wait This value sets the time delay until the process can
become active again after the system is no longer
thrashing. The default value is 1 (one) second. Setting this
value high will result in an unnecessarily poor response
time from suspended processes.

v_exempt_secs This value is used to exempt a recently suspended
process from being suspended again for a period of time.
The default value is 2 (two) seconds.

When the CPU penalty factor sched_R is large, the nice value assigned to a
thread has less effect. When the CPU penalty factor is small, the nice value
assigned to the thread has more effect. This is shown in the following example. In
Example 10-4 on page 173, the sched_R value is set to 4 (four). The nice value
has a low impact on the value of the current effective priority, as can be seen in
Table 10-1 on page 173.

172 AIX 5L Performance Tools Handbook

Example 10-4 sets CPU penalty factor to 4 using the schedo command.

Example 10-4 CPU penalty factor of four using the schedo command

schedo -o sched_R=4
Setting sched_R to 4
schedo -a

v_repage_hi = 0
 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 4
 timeslice = 1
 maxspin = 16384
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0

The result of changing the sched_R value to 4 (four) is tabulated in Table 10-1.
Values are obtained from this calculation:

cp = bp + nv + (C * r/32)
= 40 + 20 + (100 * 4/32)
= 72

Table 10-1 Current effective priority calculated where sched_R is four

Time Current
effective
priority

sched_R Clock ticks
consumed
(count)

0 (initial value) 60 4 0

10 ms 60 4 1

20 ms 60 4 2

30 ms 60 4 3

40 ms 60 4 4

1000 ms 72 4 100

 Chapter 10. The schedo and schedtune commands 173

In Example 10-5, the sched_R is set to 16; the nice value has less effect on the
current effective priority of the thread as can be seen in Table 10-2. The CPU
penalty factor is set to 16 using the schedo command.

Example 10-5 CPU penalty factor of 16 using the schedo command

schedo -o sched_R=16
Setting sched_R to 16
schedo -a
 v_repage_hi = 0
 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 16
 timeslice = 1
 maxspin = 1638
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0

With the default value of 16, the current effective priority will be as in Table 10-2.
Values are obtained from this calculation:

cp = bp + nv + (C * r/32)
= 40 + 20 + (100 * 16/32)

 = 110

Table 10-2 Current effective priority calculated where sched_R is 16

Even though the calculation allows for the priority value to exceed 126, the kernel
will cap it at this value.

Time Current
effective
priority

sched_R Clock ticks
consumed
(count)

0 60 16 0

10 ms 60 16 1

20 ms 61 16 2

30 ms 61 16 3

40 ms 62 16 4

1000 ms 110 16 100

174 AIX 5L Performance Tools Handbook

In the next example, the effect of the CPU decay factor can be seen. In
Table 10-3, the swapper wakes up at 1000 ms and sets the value of CPU use
count to 50. The current effective priority is significantly affected by the CPU
decay factor.

Cnew = C * d/32
= 100 * 16/32
= 50

Table 10-3 The CPU decay factor using the default sched_D value of 16

When the sched_D value is set to 31 as in Table 10-4, then the impact of the
CPU decay factor has less effect on the current effective priority value. With the
decay factor set in this way, interactive-type threads are favored over
CPU-intensive threads.

Cnew = C * d/32
= 100 * 31/32
= 97

Table 10-4 The CPU decay factor using a sched_D value of 31

The changes made using the schedo command will be lost on a reboot, unless
the -p or -r flag is used to preserved the values for reboot.

Time Current
effective
priority

sched_R Clock ticks
consumed
(count)

sched_D

990 ms 72 4 99 16

1000 ms 72 4 100 16

1010 ms 66 4 50 16

1020 ms 67 4 60 16

Time Current
effective
priority

sched_R Clock ticks
consumed
(count)

sched_D

990 ms 72 4 99 31

1000 ms 72 4 100 31

1010 ms 72 4 96 31

1020 ms 72 4 97 31

 Chapter 10. The schedo and schedtune commands 175

Example 10-7 uses the schedo -o maxspin=n command to improve system
performance where there is lock contention. If there is inode lock contention on,
for example, database files within a logical volume, this can be reduced by an
increase in the maxspin value, provided that CPU use is not too high. Faster
CPUs spin on a lock for a shorter period of time than slower CPUs because of
maxspin is used up more quickly.

As can be seen in Example 10-6, the default value for spin on a lock is 16384 on
SMP systems. This value is usually too low, and it should be set about four times
the default value. Run the command in the example below to increase the value.
Example 10-7 shows the schedo output after the change. Example 10-6 shows
maxspin’s default value before setting.

Example 10-6 Default maxspin value displayed by schedo

schedo -a
v_repage_hi = 0

 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 16
 timeslice = 1
 maxspin = 16384
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0
idle_migration_barrier = 4
 fixed_pri_global = 0

Example 10-7 shows how to change maxspin with schedo command.

Example 10-7 The new maxspin value set by schedo -o maxspin=n command

schedo -o maxspin=65536
Setting maxspin to 65536
schedo -a
 v_repage_hi = 0
 v_repage_proc = 4
 v_sec_wait = 1
 v_min_process = 2
 v_exempt_secs = 2
 pacefork = 10
 sched_D = 16
 sched_R = 16
 timeslice = 1

176 AIX 5L Performance Tools Handbook

 maxspin = 65536
 %usDelta = 100
 affinity_lim = 7
idle_migration_barrier = 4
 fixed_pri_global = 0

10.3 schedtune

The syntax of the schedtune command is:

schedtune [-D] | [-h n][-p n][-w n][-m n][-e n][-f n][-r n][-d n][-t n]
[-s n][-c n][-a n][-b n][-F n]

If no flags are specified, schedo -a is called to display the current values.
Otherwise the following flags apply:

-D Restores the default values.

-h n Calls schedo -o v_repage_hi=n to change the systemwide
criterion used to determine when process suspension begins
and ends.

-p n Calls schedo -o v_repage_proc=n to change the per-process
criterion used to determine which processes to suspend.

-w n Calls schedo -o v_sec_wait=n to set the number of seconds to
wait after thrashing ends before adding processes back into the
mix.

-m n Calls schedo -o v_min_process=n to set the minimum
multiprogramming level.

-e n Calls schedo -o v_exempt_seconds=n to set the time until a
recently suspended and resumed process is eligible for
re-suspension.

-f n Calls schedo -o pacefork=n to set the number of clock ticks to
delay before retrying a failed fork call.

-r n Calls schedo -o sched_R=n to set the rate at which to accumulate
CPU usage.

Note: This command in AIX 5L Version 5.2 is just a sample compatibility script
that calls the schedo command.

 Chapter 10. The schedo and schedtune commands 177

-d n Calls schedo -o sched_D=n to set the factor used to decay CPU
usage.

-t n Calls schedo -o timesplice=n to set the number of 10ms time
slices.

-s n Calls schedo -o maxspin=n to set the number of times to spin on
a lock before sleeping.

-c n Calls schedo -o %usDelta=n to control the adjustment of the
clock drift.

-a n Calls schedo -o affinity_lim=n to set the number of context.

-b n Calls schedo -o idle_migration_barrier=n to set the idle
migration barrier.

-F n Calls schedo -o fixed_pri_global=n to keep fixed priority
threads in the global run queue.

-? Displays a brief description of the command and its parameters.

178 AIX 5L Performance Tools Handbook

Chapter 11. The topas command

The topas command is a performance monitoring tool that is ideal for broad
spectrum performance analysis. The command is capable of reporting on local
system statistics such as CPU use, CPU events and queues, memory and
paging use, disk performance, network performance, and NFS statistics. It can
report on the top hot processes of the system as well as on Workload Manager
(WLM) hot classes. The WLM class information is only displayed when WLM is
active. The topas command defines hot processes as those processes that use a
large amount of CPU time. The topas command does not have an option for
logging information. All information is real time.

The topas command requires the perfagent.tools fileset to be installed on the
system. The topas command resides in /usr/bin and is part of the bos.perf.tools
fileset that is obtained from the AIX base installable media.

11

Note: In order to obtain a meaningful output from the topas command, the
screen or graphics window must support a minimum of 80 characters by 24
lines. If the display is smaller than this, then parts of the output become
illegible.

© Copyright IBM Corp. 2001, 2003 179

11.1 topas
The syntax of the topas command is as follows.

topas [-d number_of_monitored_hot_disks]
[-h show help information]
[-i monitoring_interval_in_seconds]
[-n number_of_monitored_hot_network_interfaces]
[-p number_of_monitored_hot_processes]
[-w number_of_monitored_hot_WLM classes]
[-c number_of_monitored_hot_CPUs]
[-P show full-screen process display]
[-W show full-screen WLM display]

Flags
-d Specifies the number of disks to be displayed and monitored. The

default value of two is used by the command if this value is omitted
from the command line. In order that no disk information is displayed,
the value of zero must be used. If the number of disks selected by this
flag exceeds the number of physical disks in the system, then only the
physically present disks will be displayed. Because of the limited space
available, only the number of disks that fit into the display window are
shown. The disks by default are listed in descending order of kilobytes
read and written per second KBPS. This can be changed by moving
the cursor to an alternate disk heading (for example, Busy%).

-h Used to display the topas help.

-i Sets the data collection interval and is given in seconds. The default
value is two.

-n Used to set the number of network interfaces to be monitored. The
default is two. The number of interfaces that can be displayed is
determined by the available display area. No network interface
information will be displayed if the value is set to zero.

-p Used to display the top hot processes on the system. The default value
of 20 is used if the flag is omitted from the command line. To omit top
process information from the displayed output, the value of this flag
must be set to zero. If there is no requirement to determine the top hot
processes on the system, then this flag should be set to zero as this
function is the main contributor of the total overhead of the topas
command on the system.

-w Specifies the number of WLM classes to be monitored. The default
value of two is assumed if this value is omitted. The classes are
displayed as display space permits. If this value is set to zero, then no
information about WLM classes will be displayed. If the WLM daemons

180 AIX 5L Performance Tools Handbook

are not active on the system, then this flag may be omitted. Setting this
flag to a value greater than the number of available WLM classes
results in only the available classes being displayed.

-P Used to display the top hot processes on the system in greater detail
than is displayed with the -p flag. Any of the columns can be used to
determine the order of the list of processes. To change the order,
simply move the cursor to the appropriate heading.

-W Splits the full screen display. The top half of the display shows the top
hot WLM classes in detail, and the lower half of the screen displays the
top hot processes of the top hot WLM class.

11.1.1 Information about measurement and sampling
The topas command makes use of the System Performance Measurement
Interface (SPMI) Application Program Interface (API) for obtaining its information.
By using the SPMI API, the system overhead is kept to a minimum. The topas
command uses the perfstat library call to access the perfstat kernel extensions.

In instances where the topas command determines values for system calls, CPU
clicks, and context switches, the appropriate counter is incremented by the kernel
and the mean value is determined over the interval period set by the -i flag. Other
values such as free memory are merely snapshots at the interval time.

The sample interval can be selected by the user by using the -i flag option. If this
flag is omitted in the command line, then the default of two seconds is used.

11.2 Examples for topas
In this section, we discuss some usage examples of the topas command.

11.2.1 Common uses of the topas command
Example 11-1 shows the standard topas command and its output. The system
host name is displayed on the left hand side on the top line of the screen. The
line below shows the time and date as well as the sample interval used for
measurement.

Example 11-1 The default topas display

topas
Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Mon Apr 7 14:01:03 2003 Interval: 2 Cswitch 236 Readch 0
 Syscall 343 Writech 102
Kernel 1.2 | | Reads 0 Rawin 0

 Chapter 11. The topas command 181

User 25.1 |####### | Writes 1 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 73.6 |##################### | Execs 0 Namei 31
 Runqueue 3.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
en0 0.5 3.5 1.5 0.4 0.1
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 0 Real,MB 8191
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 9.1
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 2.3
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
http 25 0 0 Sios 0 Size,MB 2048
java 0 2 0 % Used 9.1
 NFS (calls/sec) % Free 90.8
Name PID CPU% PgSp Class ServerV2 0
sh 23728 24.9 0.3 http ClientV2 0 Press:
java 15712 0.3 0.2 java ServerV3 0 "h" for help
topas 25764 0.1 1.4 System ClientV3 0 "q" to quit
rmcd 19870 0.1 2.1 System

CPU utilization statistics
CPU utilization is graphically and numerically displayed below the date and time
and is split up into a percentage of idle, wait, user, and kernel time:

Idle time The percentage of time when the processor is performing no tasks.

Wait time The percentage of time when the CPU is waiting for the response
of an input output device such as a disk or network adapter.

User time The percentage of time when the CPU is executing a program in
user mode.

Kernel time The percentage of time when the CPU is running in kernel mode.

Network interface statistics
The following network statistics are available over the monitoring period:

Network The name of the interface adapter.

KBPS Reports total throughput of the interface in kilobytes per second.

I-Pack Reports the number of packets received per second.

O-Pack Reports the number of packets sent per second.

KB-In Reports the number of kilobytes received per second.

KB-Out Reports the number of kilobytes sent per second.

182 AIX 5L Performance Tools Handbook

Disk drive statistics
The following disk drive statistics are available:

Disk The name of the disk drive.

Busy% Reports the percentage of time that the disk drive was active.

KBPS Reports the total throughput of the disk in kilobytes per second.
This value is the sum of KB-Read and KB-Writ.

TPS Reports the number of transfers per second or I/O requests to a
disk drive.

KB-Read Reports the number of kilobytes read per second.

KB-Writ Reports the number of kilobytes written per second.

WLM statistics
The following WLM statistics are available:

WLM-Class The name of the WLM class.

CPU% The average CPU utilization of the WLM class over the monitoring
interval

Mem% The average memory utilization of the WLM class over the
monitoring interval

Disk-I/O% The average percent of disk I/O of the WLM class over the
monitoring interval

Process statistics
The top hot processes are displayed with the following headings:

Name The name of the process. Where the number of characters in the
process name exceeds nine, the name will be truncated. No
pathname details for the process are displayed.

PID Shows the process identification number for the process. This is
useful when a process needs to be stopped.

CPU% Reports on the CPU time utilized by this process.

PgSp Reports on the paging space allocated to this process.

Owner Displays the owner of the process.

Event and queue statistics
This part of the report is on the top right-hand side of the topas display screen. It
reports on select system global events and queues over the sampling interval:

Cswitch Reports the number of context switches per second.

 Chapter 11. The topas command 183

Syscall Reports the total number of system calls per second.

Reads Reports the number of read system calls per second.

Writes Reports the number of write system calls per second.

Forks Reports the number of fork system calls per second.

Exec Reports the number of exec system calls per second.

Runqueue Reports the average number of threads that were ready to run, but
were waiting for a processor to become available.

Waitqueue Reports the average number of threads waiting for paging to
complete.

File and tty statistics
The file and tty part of the topas screen is located on the extreme right-hand side
at the top. The reported items are listed below.

Readch Reports the number of bytes read through the read system call per
second.

Writech Reports the number of bytes written through the write system call
per second.

Rawin Reports the number of bytes read in from a tty device per second.

Ttyout Reports the number of bytes written to a tty device per second.

Igets Reports the number of calls per second to the inode lookup routines.

Namei Reports the number of calls per second to the path lookup routine.

Dirblk Reports on the number of directory blocks scanned per second by
the directory search routine.

Paging statistics
There are two parts of the paging statistics reported by topas. The first part is
total paging statistics. This simply reports the total amount of paging available on
the system and the percentages free and used. The second part provides a
breakdown of the paging activity. The reported items and their meanings are
listed below.

Faults Reports the number of faults.

Steals Reports the number of 4 KB pages of memory stolen by the Virtual
Memory Manager per second.

PgspIn Reports the number of 4 KB pages read in from the paging space
per second.

PgspOut Reports the number of 4 KB pages written to the paging space per
second.

184 AIX 5L Performance Tools Handbook

PageIn Reports the number of 4 KB pages read per second.

PageOut Reports the number of 4 KB pages written per second.

Sios Reports the number of input/output requests per second issued by
the Virtual Memory Manager.

Memory statistics
The memory statistics are listed below.

Real Shows the actual physical memory of the system in megabytes.

%Comp Reports real memory allocated to computational pages.

%Noncomp Reports real memory allocated to non-computational pages.

%Client Reports on the amount of memory that is currently used to cache
remotely mounted files.

NFS statistics
Statistics for client and server calls per second are displayed.

11.2.2 Using subcommands
When the topas screen is displayed, these subcommands and their functions are
available:

a Always reverts to the default topas screen (Example 11-1 on
page 181).

c Toggles CPU display between off, cumulative, and busiest CPU.

d Toggles disk display between off, total disk activity, and busiest disks.

f When the cursor is over a WLM class name, this option shows the top
processes of this class in the WLM window.

h Provides online help.

n Toggles network display between off, cumulative, and busiest interface.

p Toggles the top hot process list on and off.

P Toggles between the full top process screen, which is the same as the
-P option from the topas command line. The top 20 processes are
displayed showing the following information:

USER User name

PID Process identification

PPID Parent process identification

PRI Priority given to the process

 Chapter 11. The topas command 185

NI Nice value for the process

TIME Accumulative CPU time

CPU% Percentage of time that the CPU has been busy with this
process during the sample period

COMMANDThe name of the process

The full processor screen is shown in Example 11-2.

Example 11-2 The full process topas screen

Topas Monitor for host: lpar05 Interval: 2 Mon Apr 7 15:21:13 2003

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 12082 34750 255 24 32 7 32 5:25 57.5 0 0 java
root 15480 34750 255 24 32 7 32 5:41 57.0 0 0 java
root 4902 0 16 41 4 0 5 0:57 0.0 0 0 lrud
root 5160 0 60 41 4 0 4 0:08 0.0 0 0 xmgc
root 5418 0 36 41 4 0 4 0:02 0.0 0 0 netm
root 5676 0 37 41 14 0 17 7:31 0.0 0 0 gil
root 5934 0 16 41 2 0 4 0:02 0.0 0 0 wlmsched
root 6502 0 50 41 2 0 4 0:00 0.0 0 0 jfsz
root 6678 11198 60 20 58 66 81 0:00 0.0 0 0 snmpmibd
root 7132 1 60 20 8 2 8 0:00 0.0 0 0 uprintfd
root 7266 0 60 20 2 0 4 0:00 0.0 0 0 kbiod
root 7498 0 60 20 2 0 4 0:00 0.0 0 0 lvmbb
root 7748 0 60 20 5 0 5 0:00 0.0 0 0 rtcmd
nobody 8346 16434 60 20 91 82 749 0:00 0.0 0 0 httpd
db2as 8516 1 60 20 413 52 419 0:21 0.0 0 0 db2dasrrm
root 8798 23410 60 20 90 56 103 0:00 0.0 0 0 ksh
root 9118 1 60 20 2 0 4 0:00 0.0 0 0 random
root 9268 11198 60 20 164 10 297 0:00 0.0 0 0 portmap
root 9916 11198 60 20 5 0 16 0:00 0.0 0 0 srcd
root 10178 36810 60 20 91 18 91 0:00 0.0 0 0 telnetd

q This option is used to exit the topas performance tool.

r This option is used to refresh the screen.

w This option toggles the WLM section of the display on and off.

W This option toggles the full WLM display on and off; see Example 11-3.

Example 11-3 Typical display from using the W subcommand

Topas Monitor for host: lpar05 Interval: 2 Mon Apr 7 15:23:38 2003
WLM-Class (Active) CPU% Mem% Disk-I/O%
java 46 26 0
http 0 0 0
System 0 4 0

186 AIX 5L Performance Tools Handbook

Shared 0 0 0
Default 0 0 0
Unmanaged 0 3 0
Unclassified 0 1 0

==
 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 15480 34750 207 24 32 7 32 7:53 99.8 0 0 java
root 12082 34750 225 24 32 7 32 7:36 99.8 0 0 java
root 21914 14920 58 41 465 12 465 0:01 0.5 0 0 topas
root 5160 0 60 41 4 0 4 0:08 0.0 0 0 xmgc
root 5418 0 36 41 4 0 4 0:02 0.0 0 0 netm
root 5676 0 37 41 14 0 17 7:31 0.0 0 0 gil
root 5934 0 16 41 2 0 4 0:02 0.0 0 0 wlmsched
root 6502 0 50 41 2 0 4 0:00 0.0 0 0 jfsz
root 6678 11198 60 20 58 66 81 0:00 0.0 0 0 snmpmibd
root 7132 1 60 20 8 2 8 0:00 0.0 0 0 uprintfd
root 7266 0 60 20 2 0 4 0:00 0.0 0 0 kbiod

11.2.3 Monitoring CPU usage
Some common uses of the topas command are given in Example 11-4.

Example 11-4 Excessive CPU % user use indicated by topas

Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Mon Apr 7 15:29:36 2003 Interval: 2 Cswitch 235 Readch 5952
 Syscall 477 Writech 794
Kernel 0.1 | | Reads 7 Rawin 0
User 99.8 |############################| Writes 1 Ttyout 0
Wait 0.0 | | Forks 0 Igets 0
Idle 0.0 | | Execs 0 Namei 51
 Runqueue 5.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0
en0 1.2 6.9 0.9 0.4 0.8
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 26 Real,MB 8191
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 31.9
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 2.3
hdisk1 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
 PageIn 0
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 0 PAGING SPACE
java 0 0 0 Sios 0 Size,MB 2048
http 0 0 0 % Used 9.2
 NFS (calls/sec) % Free 90.7
Name PID CPU% PgSp Class ServerV2 0
sh 27920 25.0 0.3 http ClientV2 0 Press:
sh 23770 25.0 0.4 Default ServerV3 0 "h" for help

 Chapter 11. The topas command 187

java 12082 25.0 0.1 java ClientV3 0 "q" to quit
java 15480 24.9 0.1 java

In Example 11-4 on page 187, it can be seen that the CPU percentage use is
excessively high. This typically indicates that one or more processes are hogging
CPU time. The next step to analyzing the problem would be to press the P
subcommand key for a full list of top hot processes. Example 11-5 shows this
output.

Example 11-5 Full process display screen shows processes hogging CPU time

Topas Monitor for host: lpar05 Interval: 2 Mon Apr 7 15:36:11 2003

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
root 12082 34750 240 24 32 7 32 19:10 99.7 0 0 java
root 15480 34750 231 24 32 7 32 19:27 99.7 0 0 java
nobody 23770 21454 71 24 24 56 101 7:06 99.7 0 0 sh
nobody 27922 21454 71 24 24 56 111 0:40 99.7 0 0 sh
root 5418 0 36 41 4 0 4 0:02 0.0 0 0 netm
root 5676 0 37 41 14 0 17 7:31 0.0 0 0 gil
root 5934 0 16 41 2 0 4 0:02 0.0 0 0 wlmsched
root 6502 0 50 41 2 0 4 0:00 0.0 0 0 jfsz
root 6678 11198 60 20 58 66 81 0:00 0.0 0 0 snmpmibd
root 7132 1 60 20 8 2 8 0:00 0.0 0 0 uprintfd
root 7266 0 60 20 2 0 4 0:00 0.0 0 0 kbiod
root 7498 0 60 20 2 0 4 0:00 0.0 0 0 lvmbb
root 7748 0 60 20 5 0 5 0:00 0.0 0 0 rtcmd
nobody 8346 16434 60 20 91 82 749 0:00 0.0 0 0 httpd
db2as 8516 1 60 20 413 52 419 0:21 0.0 0 0 db2dasrrm
root 8798 23410 60 20 90 56 103 0:00 0.0 0 0 ksh
root 9118 1 60 20 2 0 4 0:00 0.0 0 0 random
root 9268 11198 60 20 164 10 297 0:00 0.0 0 0 portmap
root 9916 11198 60 20 5 0 16 0:00 0.0 0 0 srcd
root 10178 36810 60 20 91 18 91 0:00 0.0 0 0 telnetd

The first four processes are responsible for maximum CPU use. These four
processes could also be seen on the default topas display.

Example 11-6 on page 189 shows topas CPU statistics obtained on a server with
two CPUs and 68 GB of real memory. As can be seen, the CPU wait time is
consistently high. This indicates that the CPU is spending a large amount of time
waiting for an I/O operation to complete. This could indicate such problems as
insufficient available real memory space resulting in excessive paging, or even a
hardware problem on a disk. Further investigation is required to determine
exactly where the problem is.

188 AIX 5L Performance Tools Handbook

Example 11-6 topas used to initially diagnose the source of a bottleneck

Kernel 12.2 |###
User 9.3 |###
Wait 30.3 |#########
Idle 48.0 |############### 41

The topas command can be regarded as the starting point to resolving most
performance problems. As an example, it might be useful to check the amount of
paging activity on the system. The topas command also provides hard disk and
network adapter statistics that can be useful for finding I/O bottlenecks. These
topas statistics should be examined to determine whether a single disk or
adapter is responsible for the abnormally high CPU wait time.

11.2.4 Monitoring disk problem
In Example 11-7, topas is used to monitor a system. The CPU percentage wait
is more than 23 percent and has consistently been at this level or higher. hdisk1
is close to 100 percent busy and has a high transfer rate. The other disks on the
system are not at all busy. If this condition persisted, this scenario might suggest
that a better distribution of data across the disks is required. It is recommended,
however, to investigate further using a tool such as filemon, which is covered in
Chapter 25, “The filemon command” on page 457.

Example 11-7 Monitoring disk problems with topas

Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Mon Apr 7 16:37:57 2003 Interval: 2 Cswitch 353 Readch 3498.0K
 Syscall 2154 Writech 3498.1K
Kernel 1.2 | | Reads 874 Rawin 0
User 0.1 | | Writes 875 Ttyout 0
Wait 23.8 |####### | Forks 0 Igets 0
Idle 74.7 |##################### | Execs 0 Namei 37
 Runqueue 0.0 Dirblk 0
Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 1.0
en0 0.4 6.0 0.5 0.3 0.1
lo0 0.0 0.0 0.0 0.0 0.0 PAGING MEMORY
 Faults 111 Real,MB 8191
Disk Busy% KBPS TPS KB-Read KB-Writ Steals 0 % Comp 9.5
hdisk1 99.7 6991.9 224.1 3502.0 3489.9 PgspIn 0 % Noncomp 5.7
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
 PageIn 875
WLM-Class (Active) CPU% Mem% Disk-I/O% PageOut 874 PAGING SPACE
System 1 8 32 Sios 383 Size,MB 2048
java 0 2 0 % Used 9.1
 NFS (calls/sec) % Free 90.8
Name PID CPU% PgSp Class ServerV2 0
rw 25846 1.1 0.0 System ClientV2 0 Press:

 Chapter 11. The topas command 189

topas 21978 0.0 1.4 System ServerV3 0 "h" for help
java 15712 0.0 0.2 java ClientV3 0 "q" to quit
java 32414 0.0 0.4 java

190 AIX 5L Performance Tools Handbook

Chapter 12. The truss command

The truss command tracks a process's system calls, received signals, and
incurred machine faults. The application to be examined is either specified on the
command line of the truss command, or truss can be attached to one or more
already running processes.

The executable for truss resides in /usr/bin and is part of the
bos.sysmgt.serv_aid fileset, which is installable from the AIX base installation
media.

12

© Copyright IBM Corp. 2001, 2003 191

12.1 truss
The syntax of the truss command is:

truss [-f] [-c] [-a] [-e] [-i] [{ -t | -x} [!] Syscall [...]]
[-s [!] Signal [...]] [-m [!] Fault [...]]
[{ -r | -w} [!] file descriptor [...]]
[-o Outfile] {Command| -p pid [. . .]}

truss [-f] [-c] [-a] [-l] [-d] [-D] [-e] [-i]
[{ -t | -x} [!] Syscall [...]] [-s [!] Signal [...]]
[{ -m }[!] Fault [...]] [{ -r | -w} [!] FileDescriptor [...]]
[{ -u } [!]LibraryName [...]:: [!]FunctionName [...]]
[-o Outfile] {Command| -p pid [. . .]}

Flags
-a Displays the parameter strings that are passed in each

executed system call.

-c Counts tracked system calls, faults, and signals rather
than displaying the results line by line. A summary report
is produced after the tracked command terminates or
when truss is interrupted. If the -f flag is also used, the
counts include all tracked Syscalls, Faults, and Signals for
child processes.

-d A time stamp will be included with each line of output.
Time displayed is in seconds relative to the beginning of
the trace. The first line of the trace output will show the
base time from which the individual time stamps are
measured. By default time stamps are not displayed.

-D Delta time, displayed on each line of output, represents
the time elapsed since the last reported event for the LWP.

-e Displays the environment strings that are passed in each
executed system call.

-f Follows all children created by the fork system call and
includes their signals, faults, and system calls in the
output. Normally only the first-level command or process
is tracked. When the -f flag is specified, the process ID is
included with each line of output to show which process
executed the system call or received the signal.

-i Keeps interruptible sleeping system calls from being
displayed. Certain system calls on terminal devices or
pipes, such as open and kread, can sleep for indefinite
periods and are interruptible. Normally, truss reports
such sleeping system calls if they remain asleep for more

192 AIX 5L Performance Tools Handbook

than one second. The system call is then reported a
second time when it completes. The -i flag causes such
system calls to be reported only upon completion.

-l Displays the thread ID of the responsible LWP process
along with truss output. By default LWP ID is not
displayed in the output.

-m [!] Fault Machine faults to track or exclude. Listed machine faults
must be separated from each other by a comma. Faults
may be specified by name or number (see the
sys/procfs.h header file or Table 12-1 on page 194). If the
list begins with the "!" symbol, the specified faults are
excluded from being displayed with the output. The
default is -mall.

-o Outfile Designates the file to be used for the output. By default,
the output goes to standard error.

-p Interprets the parameters to truss as a list of process IDs
(PIDs) of existing processes rather than as a command to
be executed. truss takes control of each process and
begins tracing it, provided that the user ID and group ID of
the process match those of the user, or that the user is a
privileged user.

-r [!] file descriptor Displays the full contents of the I/O buffer for each read on
any of the specified file descriptors. The output is
formatted 32 bytes per line, and shows each byte either
as an ASCII character (preceded by one blank) or as a
two-character C language escape sequence for control
characters, such as horizontal tab (\t) and newline (\n). If
ASCII interpretation is not possible, the byte is shown in
two-character hexadecimal representation. The first 16
bytes of the I/O buffer for each tracked read are shown,
even in the absence of the -r flag. The default is -r!all.

-s [!] Signal Permits listing Signals to examine or exclude. Those
signals specified in a list (separated by a comma) are
tracked. The output reports the receipt of each specified
signal even if the signal is being ignored, but not blocked,
by the process. Blocked signals are not received until the
process releases them. Signals may be specified by
name or number (see sys/signal.h or Table 12-2 on
page 195). If the list begins with the "!" symbol, the listed
signals are excluded from being displayed with the output.
The default is -s all.

 Chapter 12. The truss command 193

-t [!] Syscall Includes or excludes system calls from the tracked
process. System calls to be tracked must be specified in a
list and separated by commas. If the list begins with an "!"
symbol, the specified system calls are excluded from the
output. The default is -tall.

-u Traces dynamically loaded user level function calls from
user libraries. The LibraryName and FunctionName are
comma-separated lists that can include name-matching
metacharacters *, ?, [] with the same meanings as
interpreted by the shell but as applied to the library or
function name spaces, and not to files.

-w [!] file descriptor Displays the contents of the I/O buffer for each write on
any of the listed file descriptors (see -r for more details).
The default is -w!all.

-x [!] Syscall Displays data from the specified parameters of tracked
system calls in raw format, usually hexadecimal rather
than symbolically. The default is -x!all.

The -m flag enables tracking of machine faults. Machine fault numbers are
analogous to signal numbers. These correspond to hardware faults. Table 12-1
describes the numbers or names to use with the -m flag to specify machine
faults. This information was be extracted from the /usr/include/sys/procfs.h
(defualt location) file.

Table 12-1 Machine faults

Symbolic fault
name

Fault ID Fault description

FLTILL 1 Illegal instruction

FLTPRIV 2 Privileged instruction

FLTBPT 3 Breakpoint instruction

FLTTRACE 4 Trace trap (single-step)

FLTACCESS 5 Memory access (for example alignment)

FLTBOUNDS 6 Memory bounds (invalid address)

FLTIOVF 7 Integer overflow

FLTIZDIV 8 Integer zero divide

FLTFPE 9 Floating-point exception

FLTSTACK 10 Unrecoverable stack fault

194 AIX 5L Performance Tools Handbook

Table 12-2 describes the numbers or names to use with the -s flag to specify
signals. This list can also be accessed in the /usr/include/sys/signal.h file.

Table 12-2 Signals

FLTPAGE 11 Recoverable page fault (no signal)

Symbolic signal
name

Signal ID Signal description

SIGHUP 1 Hangup, generated when terminal disconnects

SIGINT 2 Interrupt, generated from terminal special char

SIGQUIT 3 Quit, generated from terminal special char

SIGILL 4 Illegal instruction (not reset when caught)

SIGTRAP 5 Trace trap

SIGABRT 6 Abort process

SIGEMT 7 EMT instruction

SIGFPE 8 Floating point exception

SIGKILL 9 Kill

SIGBUS 10 Bus error (specification exception)

SIGSEGV 11 Segmentation violation

SIGSYS 12 Bad argument to system call

SIGPIPE 13 Write on a pipe with no one to read it

SIGALRM 14 Alarm clock timeout

SIGTERM 15 Software termination signal

SIGURG 16 Urgent condition on I/O channel

SIGSTOP 17 Stop

SIGTSTP 18 Interactive stop

SIGCONT 19 Continue

SIGCHLD 20 Sent to parent on child stop or exit

SIGTTIN 21 Background read attempted from control terminal

Symbolic fault
name

Fault ID Fault description

 Chapter 12. The truss command 195

SIGTTOU 22 Background write attempted to control terminal

SIGIO 23 I/O possible, or completed

SIGXCPU 24 CPU time limit exceeded

SIGXFSZ 25 File size limit exceeded

SIGMSG 27 Input data is in the ring buffer

SIGWINCH 28 Window size changed

SIGPWR 29 Power-fail restart

SIGUSR1 30 User defined signal 1

SIGUSR2 31 User defined signal 2

SIGPROF 32 Profiling time alarm

SIGDANGER 33 System crash imminent; free up some page space

SIGVTALRM 34 Virtual time alarm

SIGMIGRATE 35 Migrate process

SIGPRE 36 Programming exception

SIGVIRT 37 AIX virtual time alarm

SIGALRM1 38 m:n condition variables

SIGWAITING 39 m:n scheduling

SIGCPUFAIL 59 Predictive de-configuration of processors

SIGKAP 60 Keep alive poll from native keyboard

SIGGRANT SIGKAP Monitor mode granted

SIGRETRACT 61 Monitor mode should be relinguished

SIGSOUND 62 Sound control has completed

SIGSAK 63 Secure attention key

SIGIOINT SIGURG Printer to backend error signal

SIGAIO SIGIO Base LAN I/O

SIGPTY SIGIO PTY I/O

Symbolic signal
name

Signal ID Signal description

196 AIX 5L Performance Tools Handbook

12.1.1 Information about measurement and sampling
The truss command executes a specified command, or attaches to listed
process IDs, and produces a report of the system calls, received signals, and
machine faults a process incurs. Each line of the output report is either the Fault
or Signal name, or the Syscall name with parameters and return values.

The subroutines defined in system libraries are not necessarily the exact system
calls made to the kernel. The truss command does not report these subroutines
but, rather, the underlying system calls they make. When possible, system call
parameters are displayed symbolically using definitions from relevant system
header files. For path name pointer parameters, truss displays the string being
pointed to. By default, undefined system calls are displayed with their name, all
eight possible arguments, and the return value in hexadecimal format.

The command truss retrieves a lot of the information about processes from the
/proc filesystem. The /proc filesystem is a pseudo device that will return
information from the kernel structures depending on the structure of the files that
are read. For more information see 1.7, “The /proc file system” on page 46 and
Chapter 16, “Process-related commands” on page 267.

12.2 Examples for truss
The truss command can generate large amounts of output, so you should
reduce the number of system calls you are tracing or attach truss to a running
process only for a limited amount of time.

12.2.1 Using truss
One way to use truss is to start by checking the general application flow, then
use a summary output as provided with the -c flag. To pinpoint the most
important system calls in the application flow, indicate these specifically with the
-t flag. Example 12-1 on page 198 shows the flow of using the date command.

SIGIOT SIGABRT Abort (terminate) process

SIGCLD SIGCHLD Old death of child signal

SIGLOST SIGIOT Old BSD signal

SIGPOLL SIGIO Another I/O event

Symbolic signal
name

Signal ID Signal description

 Chapter 12. The truss command 197

Example 12-1 Using truss with the date command

truss date
execve("/usr/bin/date", 0x2FF22BF8, 0x2FF22C00) argc: 1
kioctl(1, 22528, 0x00000000, 0x00000000) = 0
Tue Apr 8 11:42:45 CDT 2003
kwrite(1, 0xF01B5168, 29) = 29
kfcntl(1, F_GETFL, 0x00000000) = 2
kfcntl(2, F_GETFL, 0xF01B5168) = 2
_exit(0)

We can see that after the program has been loaded and the initial setup has
been performed, the date program’s use of subroutines gets translated into
kioctl for the collection of the current time, and the display of the date uses a
kwrite system call.

12.2.2 Using the summary output
In the following example we ran dd and used truss to do a summary report about
what dd is doing when it reads and writes. This is especially interesting because
dd splits itself with the fork system call and has a child process. First we use the
-c flag only as is shown in Example 12-2.

Example 12-2 Using truss with the dd command

truss -c dd if=/dev/zero of=/dev/null bs=512 count=1024
1024+0 records in
1024+0 records out
signals ------------
SIGCHLD 1
total: 1

syscall seconds calls errors
kfork .00 1
execve .00 1
_exit .00 1
kwaitpid .00 1
_sigaction .00 10
close .00 6
kwrite .00 1034
kread .02 2050
kioctl .00 2 2
open .00 2
statx .00 3
shmctl .00 6 6
shmdt .00 3
shmat .00 3
shmget .00 3

198 AIX 5L Performance Tools Handbook

_pause .00 1 1
pipe .00 3
kfcntl .00 2
 ---- --- ---
sys totals: .04 3132 9
usr time: .00
elapsed: .04

As the example shows, dd performs a fork, and the number of system calls
during its execution is 3132. However, including the child processes (-f) in the
calculation gives a different result from the same run, as shown in Example 12-3.

Example 12-3 Using truss with the dd command including child processes

truss -fc dd if=/dev/zero of=/dev/null bs=512 count=1024

1024+0 records in
1024+0 records out
signals ------------
SIGCHLD 1
total: 1
syscall seconds calls errors
kfork .00 1
execve .00 1
_exit .00 2
kwaitpid .00 1
_sigaction .00 13
close .00 12
kwrite .00 3089
kread .04 3076
kioctl .00 2 2
open .00 2
statx .00 3
shmctl .00 9 6
shmdt .00 6
shmat .00 6
shmget .00 3
_pause .00 1 1
pipe .00 3
kfcntl .00 4
 ---- --- ---
sys totals: .04 6234 9
usr time: .00
elapsed: .04

The example shows that the total number of system calls made on behalf of the
dd program was in fact 6234 because we included all processes that were

 Chapter 12. The truss command 199

necessary for it to perform its task in the statistical output. Because these two
samples were run on a AIX system with other loads at the same time, you can
disregard the reported time statistics as they are not important here.

12.2.3 Monitoring running processes
In Example 12-4, we track a running process . The process is known and it
performs random seeks on one file and random seeks on the other file, then it
reads a block from one file and writes it to the other, changing blocksizes and the
file to read from and write to randomly.

Example 12-4 Extract of sample read_write.c program

expand -4 read_write.c|nl
...(lines omitted)...
90 while (1) {
91 bindex = (random()%12);
92 j = random()%2;
93 if (lseek(fd[j],(random()%FILE_SIZE), SEEK_SET) < 0) {
94 perror("lseek 1");
95 exit(-1);
96 }
97 if (lseek(fd[j==0?1:0],(random()%FILE_SIZE), SEEK_SET) < 0) {
98 perror("lseek 2");
99 exit(-1);
100 }
101 if (read(fd[j],buf,bsize[bindex]) <= 0) {
102 perror("read");
103 exit(-1);
104 }
105 if (write(fd[j==0?1:0],buf,bsize[bindex]) <= 0) {
106 perror("write");
107 exit(-1);
108 }
...(line omitted)...

When using truss to track the running process, we can see the seeks, reads, and
writes as in the extracted output in Example 12-5. The running process name is
read_write.

Example 12-5 Using truss on a running process1

ps -Fpid,args|grep read_write|awk '!/grep/{print $1}'
19534
truss -t lseek,kread,kwrite -p 19534|nl
1 lseek(3, 919890044, 0) = 919890044

1 Instead of two lines to run the command we could use one: truss -t lseek,kread,kwrite -p $(ps -Fpid,args | grep
read_write | awk '!/grep/{print $1}') | nl

200 AIX 5L Performance Tools Handbook

2 lseek(4, 757796945, 0) = 757796945
3 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64
4 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 64) = 64
5 lseek(4, 906212625, 0) = 906212625
6 lseek(3, 332914556, 0) = 332914556
7 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 128) = 128
8 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 128) = 128
9 lseek(4, 241598273, 0) = 241598273
10 lseek(3, 848068334, 0) = 848068334
11 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
12 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
13 lseek(3, 717721518, 0) = 717721518
14 lseek(4, 314891145, 0) = 314891145
15 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
16 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 131072) = 131072
17 lseek(3, 1016755287, 0) = 1016755287
18 lseek(4, 922527047, 0) = 922527047
19 kread(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
20 kwrite(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
21 lseek(4, 476810507, 0) = 476810507
22 lseek(3, 117563634, 0) = 117563634
23 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
24 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 512) = 512
25 lseek(4, 624368317, 0) = 624368317
26 lseek(3, 980376023, 0) = 980376023
27 kread(4, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1024) = 1024
28 kwrite(3, "\0\0\0\0\0\0\0\0\0\0\0\0".., 1024) = 1024
...(lines omitted)...

In lines 1 and 2 in the truss output , you see the lseek subroutine with the first
parameter being the file descriptor used in the program; the second parameter,
the byte offset in the file; and the third, the seek operation. This corresponds to
the source lines 93 and 97 that call the lseek system call. On line 3 the kread is
tracked with the first parameter as the file descriptor, the second parameter the
read buffer sent to the program (in this case all hex 0), and the third parameter
being the buffer size (block size), in this case 64 bytes. This corresponds with the
read system call on line 101 in the source program. Line 4 shows the path for the
kwrite, which translates into line 105 in the source program. The first parameter
is the file descriptor, the second parameter is the write buffer and the third is the
buffer size to write (block size), which is 64 bytes, as for the read system call.

Note that the lseek system calls position the file pointers at different offsets in the
two files before the read and write commence. Buffer sizes (block sizes) will
vary; in the output shown they vary between 64, 128, 131072, 512, and 1024 bytes.

Depending on which system calls truss tracks and how the program is written,
the output format can vary. The code in Example 12-6 on page 202 and truss

 Chapter 12. The truss command 201

output in Example 12-7 show a possible result of using fprintf to write output
from a program.

Example 12-6 Sample program for fprintf

1 #include <stdio.h>
2 main()
3 {
4 fprintf(stderr,"this is from %s, %s %s %s\n","fprintf","yes","it","is");
5 }

To track the program with truss:

truss -o truss.out -tkwrite fprintftest

truss will give an output similar to the one in Example 12-7.

Example 12-7 truss output for fprintf

expand truss.out|nl
1 kwrite(2, " t h i s i s f r o m".., 13) = 13
2 kwrite(2, " f p r i n t f", 7) = 7
3 kwrite(2, " , ", 2) = 2
4 kwrite(2, " y e s", 3) = 3
5 kwrite(2, " ", 1) = 1
6 kwrite(2, " i t", 2) = 2
7 kwrite(2, " ", 1) = 1
8 kwrite(2, " i s", 2) = 2
9 kwrite(2, "\n", 1) = 1

12.2.4 Analyzing file descriptor I/O
With truss you can also track what a program is reading and writing; that is, you
can actually track the content of the read and write buffers. Instead of including
debug statements in a program that shows input and output buffers (read and
write), you can use truss instead.

Read file descriptors
The small program in Example 12-8 reads 24 bytes from the process file
descriptor 0 (standard input) on line 4.

Example 12-8 Sample read program (readit)

1 main ()
2 {
3 char buf[24];
4 read(0,buf,sizeof(buf));
5 }

202 AIX 5L Performance Tools Handbook

The truss output (formatted with the expand and nl commands) will look similar
to the output shown in Example 12-9.

Example 12-9 truss output from the sample read program (readit)

echo "hello world\c"|truss -r0 readit 2>&1|expand|nl
1 execve("./readit", 0x2FF22B9C, 0x2FF22BA4) argc: 1
2 kread(0, 0x2FF22B30, 24) = 12
3 h e l l o w o r l d
4 kfcntl(1, F_GETFL, 0xF06C2968) = 1
5 kfcntl(2, F_GETFL, 0xF06C2968) = 1
6 _exit(0)

The command line writes the sentence hello world to standard input (stdin) of
the truss/readit pipe. truss will track file descriptor 0 (stdin) with the -r flag and
we direct the output from truss (from stderr or file descriptor 2) to stdin for the
next pipe to the expand and nl commands (for formatting of the output only). On
line 2 of the truss output you see the kread system call that is created by the
read on line 4 in Example 12-6 on page 202. The first parameter to kread is file
descriptor 0, the second is the read buffer address, and the third is the number of
bytes to read. On the end of the line is the return code from the kread system
call, which is 11. (This is the actual number of bytes read.) On line 3 you see the
content of the read buffer containing our hello world string2.

Write file descriptors
The following small program writes a string of bytes (the number of bytes to write
is determined by the length of the string in this case) to process file descriptor 1
(standard output) on line 4 in Example 12-10.

Example 12-10 Sample write program

1 main ()
2 {
3 char *buf = "abcdefghijklmnopqrstuvxyz0123456789\0";
4 write(1,buf,strlen(buf));
5 }

The truss output (formatted with the expand and nl commands) will look similar
to the output shown in Example 12-11.

Example 12-11 truss output from the sample write program

truss -w1 writeit 2>&1 >/dev/null|expand|nl
1 execve("./writeit", 0x2FF22BF0, 0x2FF22BF8) argc: 1
2 kwrite(1, 0x20000488, 35) = 35
3 a b c d e f g h i j k l m n o p q r s t u v x y z 0 1 2 3 4 5 6

2 The echo command would normally add a newline (\n) to the end of a string, but since we added \c at the end of the
string, it did not.

 Chapter 12. The truss command 203

4 7 8 9
5 kfcntl(1, F_GETFL, 0x00000000) = 67108865
6 kfcntl(2, F_GETFL, 0x00000000) = 1
7_exit(0)

truss will track file descriptor 1 (stdout) with the -w flag, and we direct the output
from truss (from stderr or file descriptor 2) to stdin for the next pipe to the expand
and nl commands (for formatting of the output only). Note that we discard the
output from the writeit program itself (>/dev/null). On line 2 of the truss
output, you see the kwrite system call that is created by the read on line 4 in
Example 12-6 on page 202. The first parameter to kwrite is file descriptor 1, the
second is the write buffer address (0x20000488), and the third parameter is the
number of bytes to write (35). On the end of the line is the return code from the
kwrite system call, which is 35; this is the actual number of bytes written. On line
3 and 4 you see the content of the write buffer containing our string that was
declared on line 3 in the source program in the Example 12-6 on page 2023.

Combining different flags
Example 12-12 shows how to use truss by combining different flags to track our
sample write program. We use the -t flag to only track the kwrite system call, the
-w flag will show detailed output from the write buffers to all file descriptors (all),
and the -x flag will show us the raw data of the options to the kwrite system call
(in hex).

Example 12-12 truss output using combined flags for the writeit sample program

truss -xkwrite -tkwrite -wall writeit 2>&1 >/dev/null|expand|nl
1 kwrite(0x00000001, 0x20000488, 0x00000023) = 0x00000023
2 a b c d e f g h i j k l m n o p q r s t u v x y z 0 1 2 3 4 5 6
3 7 8 9

On line 1 of the truss output you see the kwrite system call that is created by
the read on line 4 in the Example 12-6 on page 202. The first parameter to
kwrite is file descriptor 1 (in hex 0x00000001), the second is the write buffer
address (in hex 0x20000488), and the third parameter is the number of bytes to
write (in hex 0x00000023). On the end of the line is the return code from the
kwrite system call, which is 35 (in hex 0x00000023); this is the actual number of
bytes written. On lines 2 and 3 you see the content of the write buffer containing
our string that was declared on line 3 in the source program in the Example 12-6
on page 202.

3 The \0 in the bufferstring is just to make sure that the end of the string ends with binary zero, which indicates the end of
a byte string in the C programming language.

204 AIX 5L Performance Tools Handbook

12.2.5 Checking program parameters
To check the parameters passed to the program when it was started, you can use
the -a flag with truss. This can be done if you start a program and track it with
truss, but you can do it on a running process as well. In Example 12-13 we use
truss to track the system calls loaded by the /etc/init.

Example 12-13 Using truss to track system calls

truss -a -p 1
psargs: /etc/init
_pause() (sleeping...)
_pause() Err#4 EINTR
 Received signal #20, SIGCHLD [caught]
kwaitpid(0x2FF229D0, -1, 5, 0x00000000, 0x00000000) = 348298
open("/etc/security/monitord_pipe", O_RDWR|O_NONBLOCK) Err#2 ENOENT
kwaitpid(0x2FF229D0, -1, 5, 0x00000000, 0x00000000) = 0
ksetcontext_sigreturn(0x2FF22A70, 0x00000000, 0x20029C8C, 0x0000D0B2,
0x00000000
, 0x00000000, 0x00000000, 0x00000000)
incinterval(0, 0x2FF22DC8, 0x2FF22DD8) = 0
statx("/etc/inittab", 0x200295E8, 76, 0) = 0
sigprocmask(0, 0x2FF22A00, 0x00000000) = 0
lseek(0, 0, 0) = 0
kread(0, "\0\0\0\0\0\0\0\0\0\0\0\0".., 648) = 648
lseek(0, 0, 1) = 648
kread(0, "\0\0\0\0\0\0\0\0\0\0\0\0".., 648) = 648
lseek(0, 0, 1) = 1296
kread(0, "\0\0\0\0\0\0\0\0\0\0\0\0".., 648) = 648
lseek(0, 0, 1) = 1944
kread(0, "\0\0\0\0\0\0\0\0\0\0\0\0".., 648) = 648
lseek(0, 0, 1) = 2592
. . . (lines omitted) . . .
^CPstatus: process is not stopped

Because the process we tracked was init with process ID 1, truss reported that
the process was not stopped when we discontinued tracking by using CTRL + C
to stop truss. The output shown after psargs: is the parameters that the program
got when it was started with one of the exec subroutines. In this case it was only
the program name itself, which is always the first parameter (/etc/init).

12.2.6 Checking program environment variables
To check the environment variables that are set for a program when it is started,
you can use the -e flag with truss. This can be done if you start a program and
track it with truss. If you only want to see the environment in the truss output,
you must include the exec system call that the process uses. In Example 12-14
on page 206 it is the execve system call that is used by the date command.

 Chapter 12. The truss command 205

Example 12-14 Using truss to display the environment of a process

truss -e -texecve date 2>&1 >/dev/null|expand|nl
1 execve("/usr/bin/date", 0x2FF22B94, 0x2FF22B9C) argc: 1
2 envp: _=/usr/bin/truss LANG=en_US LOGIN=root VISUAL=vi
3
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java130/jre/bin:/
usr/java130/bin:/usr/vac/bin:/usr/samples/kernel:/usr/vac/bin:.:
4 LC__FASTMSG=true CGI_DIRECTORY=/var/docsearch/cgi-bin EDITOR=vi
5 LOGNAME=root MAIL=/usr/spool/mail/root LOCPATH=/usr/lib/nls/loc
6 PS1=root@wlmhost:$PWD: DOCUMENT_SERVER_MACHINE_NAME=localhost
7 USER=root AUTHSTATE=compat DEFAULT_BROWSER=netscape
8 SHELL=/usr/bin/ksh ODMDIR=/etc/objrepos DOCUMENT_SERVER_PORT=49213
9 HOME=/ TERM=ansi MAILMSG=[YOU HAVE NEW MAIL]
10 ITECONFIGSRV=/etc/IMNSearch PWD=/home/roden/src
11 DOCUMENT_DIRECTORY=/usr/docsearch/html TZ=CST6CDT
12 PROJECTDIR=/home/roden ENV=//.kshrc
13 ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
14 A__z=! LOGNAME
15 NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

We discard the output from the date command and format the output with the
expand and nl command. The environment variables are displayed between lines
2 and 15 in the output above. To monitor a running process environment use the
ps command as in Example 12-15 that uses the current shells PID ($$). Refer to
Chapter 8, “The ps command” on page 127 for more details.

Example 12-15 Using ps to check another process environment

ps euww $$
USER PID %CPU %MEM SZ RSS TTY STAT STIME TIME COMMAND
root 34232 0.0 0.0 1020 1052 pts/15 A 11:21:18 0:00 -ksh TERM=vt220
AUTHSTATE=compat SHELL=/usr/bin/ksh HOME=/ USER=root
PATH=/usr/bin:/etc:/usr/sbin:/usr/ucb:/usr/bin/X11:/sbin:/usr/java130/jre/bin:/
usr/java130/bin:/usr/vac/bin TZ=CST6CDT LANG=en_US LOCPATH=/usr/lib/nls/loc
LC__FASTMSG=true ODMDIR=/etc/objrepos ITECONFIGSRV=/etc/IMNSearch
ITECONFIGCL=/etc/IMNSearch/clients ITE_DOC_SEARCH_INSTANCE=search
DEFAULT_BROWSER=netscape DOCUMENT_SERVER_MACHINE_NAME=localhost
DOCUMENT_SERVER_PORT=49213 CGI_DIRECTORY=/var/docsearch/cgi-bin
DOCUMENT_DIRECTORY=/usr/docsearch/html LOGNAME=root LOGIN=root
NLSPATH=/usr/lib/nls/msg/%L/%N:/usr/lib/nls/msg/%L/%N.cat

12.2.7 Tracking child processes
Another way to use truss is to track the interaction between a parent process
and child processes. Example 12-16 on page 207 shows how to monitor a
running process (/usr/sbin/inetd) and, while doing the tracking, opening a
telnet session.

206 AIX 5L Performance Tools Handbook

Example 12-16 Using truss to track child processes

truss -a -f -tkfork,execv -p 6716
6716: psargs: /usr/sbin/inetd
6716: kfork() = 29042
29042: kfork() = 26546
26546: kfork() = 20026
26546: (sleeping...)
26546: kfork() = 20028
26546: kfork() = 20030
26546: (sleeping...)
^CPstatus: process is not stopped
Pstatus: process is not stopped
Pstatus: process is not stopped

The left column shows the process ID that each output belongs to. The lines that
start with 6716 are the parent process (inetd) because we used -p 6716 to start
the tracking from this process ID. On the far right in the output is the return code
from the system call, and for kfork it is the process ID of the spawned child. (The
parent part of kfork will get a return code of zero.) The next child with process ID
29042 is the telnet daemon, as can be seen by using the ps command as in the
sample output in Example 12-17.

Example 12-17 Using ps to search for process ID

ps -eFpid,args|grep 29042|grep -v grep
29042 telnetd -a

The telnet daemon performs a fork system call as well (after authenticating the
login user) and the next child is 26546, which is the authenticated users’ login
shell as can be seen by using the ps command as in Example 12-18.

Example 12-18 Using ps to search for process ID

ps -eFpid,args|grep 26546|grep -v grep
26546 -ksh

We can see in the truss output that the login shell (ksh) is forking as well, which
is one of the primary things that shells do. To illustrate a point about shells, we
track it while we run the ps, ls, date, and sleep commands one after the other in
our login shell. truss shows us that the shell did a fork system call every time, as
can be seen in the output in Example 12-19.

Example 12-19 Using truss to track ksh with ps, ls, date, and sleep

truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh
26546: kfork() = 29618
26546: kfork() = 29620

 Chapter 12. The truss command 207

26546: kfork() = 29622
26546: kfork() = 29624
26546: (sleeping...)
^CPstatus: process is not stopped

In the example, process ID 29618 is the ps command, process ID 29620 is the ls
command, process ID 29622 is the date command, and process ID 29624 is the
sleep command.

Example 12-20 shows how many forks are done by running the make command
to compile one program with the cc compiler from the same shell.

Example 12-20 Using truss to track ksh with make

truss -a -f -tkfork,execv -p 26546
26546: psargs: -ksh
26546: kfork() = 26278
26278: kfork() = 29882
29882: kfork() = 28388
29882: kfork() = 28390
29882: kfork() = 28392
28392: kfork() = 29342
26546: (sleeping...)
^CPstatus: process is not stopped

It took six processes to compile one program by using make and cc. By using the
summary output with the -c flag to truss, it nicely summarizes for us, as
Example 12-21 shows.

Example 12-21 Using truss to track ksh with make and use summarized output

truss -c -a -f -tkfork,execv -p 26546
psargs: -ksh
^CPstatus: process is not stopped
syscall seconds calls errors
kfork .00 6
 ---- --- ---
sys totals: .00 6 0
usr time: .00
elapsed: .00

The output confirms that the ksh/make process tree performed six fork system
calls to handle the make command for this compile.

208 AIX 5L Performance Tools Handbook

12.2.8 Checking user library call
In AIX 5L Version 5.2, the truss command can check library call to user
subroutines. Example 12-22 shows the trace of malloc subroutine from running
the ls command.

Example 12-22 User subrouting trace

truss -u libc.a::malloc ls
execve("/usr/bin/ls", 0x2FF22B80, 0x2FF22B88) argc: 1
sbrk(0x00000000) = 0x20000EA8
sbrk(0x00000008) = 0x20000EA8
sbrk(0x00010010) = 0x20000EB0
getuidx(4) = 0
getuidx(2) = 0
getuidx(1) = 0
getgidx(4) = 0
getgidx(2) = 0
getgidx(1) = 0
__loadx(0x01000080, 0x2FF1E940, 0x00003E80, 0x2FF228D0, 0x00000000) = 0xD0079130
->libc.a:malloc(0xc)
<-libc.a:malloc() = 20001058 0.000000
->libc.a:malloc(0x188)
<-libc.a:malloc() = 20001078 0.000000
->libc.a:malloc(0x40)
<-libc.a:malloc() = 20001208 0.000000
->libc.a:malloc(0x3c)
<-libc.a:malloc() = 20001258 0.000000
__loadx(0x01000180, 0x2FF1E930, 0x00003E80, 0xF015DDF0, 0xF015DD20) = 0x20011378
__loadx(0x07080000, 0xF015DDC0, 0xFFFFFFFF, 0x20011378, 0x00000000) = 0x20012210
. . . (lines omitted) . . .

 Chapter 12. The truss command 209

210 AIX 5L Performance Tools Handbook

Chapter 13. The vmstat command

The vmstat command is very useful for reporting statistics about kernel threads,
virtual memory, disks, and CPU activity. Reports generated by the vmstat
command can be used to balance system load activity. These systemwide
statistics (among all processors) are calculated as averages for values
expressed as percentages or, otherwise, as sums.

The vmstat command resides in /usr/bin and is part of the bos.acct fileset, which
is installable from the AIX base installation media.

13

© Copyright IBM Corp. 2001, 2003 211

13.1 vmstat
The syntax of the vmstat command is:

vmstat [-fsiItv] [Drives] [Interval [Count]]

Flags
-f Reports the number of forks since system startup.

-s Writes to standard output the contents of the sum structure, which
contains an absolute count of paging events since system
initialization. The -s option is exclusive of the other vmstat command
options. These events are described in 13.2, “Examples for vmstat”
on page 213.

-i Displays the number of interrupts taken by each device since system
startup.

-I Displays an I/O-oriented view with the new columns, p under heading
kthr, and columns fi and fo under heading page instead of the
columns re and cy in the page heading.

-t Prints the time stamp next to each line of output of vmstat. The time
stamp is displayed in the HH:MM:SS format, but it will not be printed
if the -f, -s, or -i flags are specified.

-v Writes to standard output various statistics maintained by the Virtual
Memory Manager. The -v flag can only be used with the -s flag.

Both the -f and -s flags can be entered on the command line, but the system will
only accept the first flag specified and override the second flag.

If the vmstat command is invoked without flags, the report contains a summary of
the virtual memory activity since system startup. If the -f flag is specified, the
vmstat command reports the number of forks since system startup. The Drives
parameter specifies the name of the physical volume.

Parameters
Drives hdisk0, hdisk1, and so forth. Disk names can be listed using the lspv

command. RAID disks will appear as one logical disk drive.

Interval Specifies the update period (in seconds).

Count Specifies the number of iterations.

The Interval parameter specifies the amount of time in seconds between each
report. The first report contains statistics for the time since system startup.
Subsequent reports contain statistics collected during the interval since the
previous report. If the Interval parameter is not specified, the vmstat command

212 AIX 5L Performance Tools Handbook

generates a single report and then exits. The Count parameter can only be
specified with the Interval parameter. If the Count parameter is specified, its
value determines the number of reports generated and the number of seconds
apart. If the Interval parameter is specified without the Count parameter, reports
are continuously generated. A Count parameter of 0 is not allowed.

13.1.1 Information about measurement and sampling
The kernel maintains statistics for kernel threads, paging, and interrupt activity,
which the vmstat command accesses through the use of the knlist subroutine
and the /dev/kmem pseudo-device driver. The disk input/output statistics are
maintained by device drivers. For disks, the average transfer rate is determined
by using the active time and number of transfers information. The percent active
time is computed from the amount of time the drive is busy during the report.

The vmstat command generates five types of reports:

� Virtual memory activity
� Forks
� Interrupts
� Sum structure
� Input/Output

13.2 Examples for vmstat
This section shows examples and descriptions of the vmstat reports.

13.2.1 Virtual memory activity
The vmstat command writes the virtual memory activity to standard output. It is a
very useful report because it gives a good summary of the system resources on
a single line. Example 13-1 shows the virtual memory report. The first line of this
report should be ignored because it is an average since the last system reboot.

Example 13-1 Virtual memory report

vmstat 2 5
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
r b avm fre re pi po fr sr cy in sy cs us sy id wa
 0 0 51696 49447 0 0 0 6 36 0 104 188 65 0 1 97 2
 0 0 51698 49445 0 0 0 0 0 0 472 1028 326 0 1 99 0
 0 0 51699 49444 0 0 0 0 0 0 471 990 327 0 1 99 0
 0 0 51700 49443 0 0 0 0 0 0 473 992 330 0 1 99 0
 0 0 51701 49442 0 0 0 0 0 0 469 986 329 0 0 99 0

 Chapter 13. The vmstat command 213

The reported fields are:

kthr Indicates the number of kernel thread state changes per second over
the sampling interval.

r Average number of threads on the run queues per second. These
threads are only waiting for CPU time and are ready to run. Each
thread has a priority ranging from zero to 127. Each CPU has a run
queue for each priority; therefore there are 128 run queues for each
CPU. Threads are placed on the appropriate run queue. Refer to 1.2.2,
“Processes and threads” on page 6 for more information about thread
priorities. The run queue reported by vmstat is across all run queues
and all CPUs. Each CPU has its own run queue. The maximum you
should see this value increase to is based on the following formula:
5 x (Nproc - Nbind), where Nproc is the number of active processors
and Nbind is the number of active processors bound to processes with
the bindprocessor command.

b Average number of threads on block queue per second. These threads
are waiting for resource or I/O. Threads are also located in the wait
queue (wa) when scheduled, but are waiting for one of their threads
pages to be paged in. On an SMP system there will always be one
thread on the block queue. If compressed file systems are used, then
there will be an additional thread on the block queue.

memory Information about the use of virtual and real memory. Virtual pages are
considered active if they have been accessed. A page is 4096 bytes.

avm Active Virtual Memory (avm) indicates the number of virtual pages
accessed. This is not an indication of available memory.

fre This indicates the size of the free list. A large portion of real memory is
utilized as a cache for file system data. It is not unusual for the size of
the free list to remain small. The VMM maintains this free list. The free
list entries point to buffers of 4 K pages that are readily available when
required. The minimum number of pages is defined by minfree. See
“The page replacement algorithm” on page 232 for more information.
The default value is 120. If the number of the free list drops below that
defined by minfree, then the VMM steals pages until maxfree+8 is
reached. Terminating applications release their memory, and those
frames are added back to the free list. Persistent pages (files) are not
added back to the free list. They remain in memory until the VMM

Note: A high number on the run queue does not necessarily translate to a
performance slowdown because the threads on the run queue may not require
much processor time and will therefore be quick to run, thereby clearing the
run queue quickly.

214 AIX 5L Performance Tools Handbook

steals their pages. Persistent pages are also freed when their
corresponding file is deleted. A small value of fre could cause the
system to start thrashing due to overcommitted memory. This does not
indicate the amount of unused memory.

Page Information about page faults and paging activity. These are averaged
over the interval and given in units per second.

re The number of reclaims per second. During a page fault, when the
page is on the free list and has not been reassigned, this is considered
a reclaim because no new I/O request has been initiated. It also
includes the pages last requested by the VMM for which I/O has not
been completed or those prefetched by VMM’s read-ahead mechanism
but hidden from the faulting segment.

pi Indicates the number of page in requests. Those are pages that have
been paged to paging space and are paged into memory when
required by way of a page fault. Normally you would not want to see
more than five sustained pages per second (as a rule of thumb)
reported by vmstat as paging (particularly page in (pi)) effects
performance. A system that is paging data in from paging space results
in slower performance because the CPU has to wait for data before
processing the thread. A high value of pi may indicate a shortage of
memory or indicate a need for performance tuning. See vmo for more
information.

po The number of pages out process. The number of pages per second
that is moved to paging space. These pages are paged out to paging
space by the VMM when more memory is required. They will stay in
paging space and be paged in if required. A terminating process will
disclaim its pages held in paging space, and pages will also be freed
when the process gives up the CPU (is preempted). po does not
necessarily indicate thrashing, but if you are experiencing high paging
out (po) then it may be necessary to investigate the application vmo
command parameters minfree and max free, and the environmental
variable PSALLOC. For an overview of “Performance Overview of the
Virtual Memory Manager (VMM),” refer to:

http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm

fr Number of pages freed. When the VMM requires memory, VMM’s
page-replacement algorithm is employed to scan the Page Frame
Table (PFT) to determine which pages to steal. If a page has not been
referenced since the last scan, it can be stolen. If there has been no I/O

Note: As of AIX Version 4, reclaims are no longer supported as the algorithm
is costly in terms of performance. Normally the delivered value will be zero.

 Chapter 13. The vmstat command 215

http://www16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm

for that page then the page can be stolen without being written to disk,
thus minimizing the effect on performance.

sr Represents pages scanned by the page-replacement algorithm. When
page stealing occurs (when fre of vmstat goes below minfree of vmo),
the pages in memory are scanned to determine which can be stolen.

Example 13-2 shows high pi and po indicating high paging. Note that the wa
column is high, indicating we are waiting on the disk I/O, probably for paging.
Note the ratio of fr:sr as the page stealers are looking for memory to steal and
the number of threads on the b queue waiting for data to be paged in. Also note
how wa is reduced when the page stealers have completed stealing memory, and
how the fre column increases as a result of page stealing.

Example 13-2 An example of high paging

kthr memory page faults cpu
----- ----------- ------------------------ ------------ ---------------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 2 3 298565 163 0 14 58 2047 8594 0 971 217296 1286 23 26 17 34
 2 2 298824 124 0 29 20 251 352 0 800 248079 1039 22 28 22 29
 1 7 300027 293 0 15 6 206 266 0 1150 91086 479 7 14 9 69
 0 13 300233 394 0 1 0 127 180 0 894 6412 276 2 2 0 96
 0 14 300453 543 0 4 0 45 82 0 793 5976 258 1 2 0 97
 0 14 301488 329 0 2 2 116 179 0 803 6806 282 1 3 0 96
 0 14 302207 435 0 5 4 112 159 0 821 12349 402 2 3 0 95
 3 9 301740 2240 0 70 9 289 508 0 963 187874 1089 19 31 6 44
 1 4 271719 30561 0 39 0 0 0 0 827 203604 1217 21 31 19 30
 3 2 269996 30459 0 16 0 0 0 0 764 182351 1387 18 25 34 23

cy This refers to the page replacement algorithm. The value refers to the
number of times the page replacement algorithm does a complete
cycle through memory looking for pages to steal. If this value is greater
than zero, this means severe memory shortages.

The page stealer steals memory until maxfree is reached; see “The
page replacement algorithm” on page 232 for more details. This
usually occurs before the memory has been completely scanned,
hence the value will stay at zero. However if the page stealer is still
looking for memory to steal and the memory has already been
scanned, then the cy value will increment to one. Each scan will
increment cy until maxfree has been satisfied, at which time page
stealing will stop and cy will be reset to zero.

Note: Look for a large ratio of fr to sr (fr:sr),which could indicate
overcommitted memory. A high ratio shows that the page stealer has to work
hard to find memory to steal.

216 AIX 5L Performance Tools Handbook

You are more likely to see the cy value increment when there is less
physical memory installed, as it takes a shorter time for memory to be
completely scanned and memory shortage is more likely.

Faults Trap and interrupt rate averages per second over the sampling interval.

in Number of device or hardware interrupts per second observed in the
interval. An example of an interrupt would be the 10 ms clock interrupt
or a disk I/O completion. Due to the clock interrupt, the minimum value
you see is 100.

sy Number of system calls per second. These are resources provided by
the kernel for the user processes and data exchange between the
process and the kernel. This reported value can vary depending on
workloads and on how the application is written, so it is not possible to
determine a value for this. Any value of 10,000 and more should be
investigated.

cs Kernel thread context switches per second. A CPU’s resource is
divided into 10 ms time slices and a thread will run for the full 10 ms or
until it gives up the CPU (is preempted). When another thread gets
control of the CPU, the previous thread’s contexts and working
environments must be saved and the new thread’s contexts and
working environment must be restored. AIX handles this efficiently. Any
significant increase in context switches should be investigated. See
“Time slice” on page 170 for details about the timeslice parameter.

cpu Breakdown of percentage use of CPU time. The columns us, sy, id, and
wa are averages over all of the processors. I/O wait is a global statistic
and is not processor specific.

us User time. This indicates the amount of time a program is in user
mode. Programs can run in either user mode or system mode. In user
mode, the program does not require the resources of the kernel to
manage memory, set variables, or perform computations.

sy System time indicates the amount of time a program is in system
mode; that is, processes using kernel processes (kprocs) and others
that are using kernel resources. Processes requiring the use of kernel
services must switch to service mode to gain access to the services,
such as to open a file or read/write data.

Tip: You should run vmstat when your system is busy and performing to
expectations so you can determine the average number of system calls for
your system.

 Chapter 13. The vmstat command 217

id CPU idle time. This indicates the percentage of time the CPU is idle
without pending I/O. When the CPU is idle, it has nothing on the run
queue. When there is a high aggregate value for id, it means there was
nothing for the CPU to do and there were no pending I/Os. A process
called wait is bound to every CPU on the system. When the CPU is
idle, and there are no local I/Os pending, any pending I/O to a Network
File System (NFS) is charged to id.

wa CPU wait. CPU idle time during which the system had at least one
outstanding I/O to disk (whether local or remote) and asynchronous I/O
was not in use. An I/O causes the process to block (or sleep) until the
I/O is complete. Upon completion, it is placed on the run queue. A wa
of over 25 percent could indicate a need to investigate the disk I/O
subsystem for ways to improve throughput, such as load balancing.
Refer to Chapter 26, “The fileplace command” on page 479 for
information about placement of files.

vmstat marks an idle CPU as wait I/O (wio) if an outstanding I/O was started on
that CPU. With this method, vmstat will report lower wio times when more
processors are installed, just a few threads are doing I/O, and the system is
otherwise idle. For example, a system with four CPUs and one thread doing I/O
will report a maximum of 25 percent wio time. A system with 12 CPUs and one
thread doing I/O will report a maximum of eight percent wio time. Network File
System (NFS) client reads/writes go through the Virtual Memory Manager
(VMM), and the time that NFS block I/O daemons (biods) spend in the VMM
waiting for an I/O to complete is reported as I/O wait time.

Example 13-3 Virtual memory report

kthr memory page faults cpu
----- ----------- ---------------------------- ----------------- -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
 4 13 2678903 254 0 0 0 7343 29427 0 6111 104034 17964 22 18 18 42
 6 14 2678969 250 0 0 0 7025 26692 0 6253 216943 17678 29 28 10 33
 8 13 2678969 244 0 0 0 6625 28218 0 6295 273936 17639 32 29 9 30
 8 13 2678969 252 0 0 0 5731 23555 0 5828 264980 16325 35 26 8 31
 8 13 2678970 256 0 0 0 6571 35508 0 6209 278478 18161 34 29 8 28
 6 13 2678970 246 0 0 0 7527 58083 0 6658 214601 20039 31 26 10 33

Note: A CPU bottleneck could occur if us and sy combined together add up to
approximately 80 percent or more.

Important: wa occurs when the CPU has nothing to do and is waiting for at
least one I/O request. Therefore, wa does not necessarily indicate a
performance bottleneck.

218 AIX 5L Performance Tools Handbook

10 13 2679402 197 0 0 0 7882 54975 0 6482 285458 18026 40 31 5 25
 8 16 2679431 249 0 0 0 9535 40808 0 6582 283539 16851 39 32 5 24
10 13 2679405 255 0 0 0 8328 41459 0 6256 264752 15318 39 32 5 24
 9 15 2678982 255 0 0 0 8240 36591 0 6300 244263 17771 32 29 8 31

In Example 13-3 on page 218, you can observe the following:

� The block queue is high.

� There is no paging. If paging was occurring on the system you can tune
minfree and maxfree. See 14.1.2, “Recommendations and precautions for
vmo” on page 235 for details.

� As can be seen by the fr:sr ratio, the page stealers are working hard to find
memory, and, as pi is zero, the memory is being stolen successfully without
the need for paging.

� There is a lot of context switching, so tuning time slices with schedo could be
beneficial. See “Time slice” on page 170 for more details.

� us+sy does not exceed 80 percent, so the system is not CPU bound

� There is I/O wait (wa) when the system is not idle. Tuning the disk I/O or NFS
(if the system has NFS) could be beneficial. Looking for lock contention in file
systems could also be beneficial. Look for busy file I/O with the filemon
command. See “Analyzing the physical volume reports” on page 464 for more
details.

To comment on any other columns in the report, you would need a baseline that
was made when the system was performing normally.

13.2.2 Forks report
This writes to standard output the number of forks since the last system startup.
(A fork is the creation of a new process.) You would not usually want to see more
than three forks per second. Use the sar -P ALL -c 5 2 command to monitor
the number of forks per second. See 9.2.5, “Monitoring system calls” on
page 151 for more details.

You can monitor the number of forks per second by running this command every
minute and making sure the change between the outputs does not exceed 180.
An example is shown in Example 13-4.

Example 13-4 Forks report

vmstat -f
 34770 forks

 Chapter 13. The vmstat command 219

13.2.3 Interrupts report
This writes to standard output the number of interrupts per device since the last
system startup. Subsequent iterations of vmstat within the same command, as in
Example 13-5, produce the number of interrupts for the previous iteration.
Example 13-5 produces an interrupt report with a delay of two seconds, three
times.

Example 13-5 Interrupt report

vmstat -i 2 3
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 12093 i_hwassist_int(1c9468)
 3 1 hardware 106329 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 651315 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 9494 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 4 1 hardware 402 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 1540 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 0 i_hwassist_int(1c9468)
 3 1 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 11 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 4 1 hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)
priority level type count module(handler)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bc18)
 0 15 hardware 0 /usr/lib/drivers/planar_pal_chrp(195f770)
 0 254 hardware 0 i_hwassist_int(1c9468)
 3 1 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 3 3 hardware 7 /usr/lib/drivers/pci/cstokdd(1a99104)
 3 10 hardware 0 /usr/lib/drivers/pci/s_scsiddpin(198bb10)
 4 1 hardware 0 /usr/lib/drivers/isa/kbddd_chrp(1ac0710)
 4 12 hardware 0 /usr/lib/drivers/isa/msedd_chrp(1ac6890)

The reported fields are as follows:

priority This refers to the interrupt priority as defined in
/usr/include/sys/intr.h The priorities range from zero to 11,
where zero means fully disabled and 11 means fully
enabled. (Anyone can interrupt the CPU.) The lower the
priority number, the higher the priority. If the CPU is in

220 AIX 5L Performance Tools Handbook

interrupt mode at priority 10 when if a priority three
interrupt occurs on that CPU, then the interrupt handler for
priority 10 is pre-empted. If, for example, a CPU is at
priority zero or one and a priority nine interrupt comes in,
then the priority nine interrupt will get queued and only
gets processed after the previous interrupt has finished its
processing.

The priority can be important as higher-priority interrupts
may stop the CPU from servicing other, lower-priority
interrupts for other services. For example, the streams
drivers that handle Ethernet traffic may not be serviced,
which in turn may fill the network buffers, causing other
problems. The problem is compounded if the higher
priority thread stays running on the CPU for a long time.
Normally, high-priority interrupts are serviced within a
short time frame to prevent this happening, but it is not
always possible to overcome this because the priority is
not tunable. In this case, on an SMP system, you could
bind specific interrupts to specific CPUs using the
bindintcpu command. Refer to Chapter 18, “The
bindintcpu and bindprocessor commands” on page 289
for more details. This would ensure that the interrupts
were serviced within the required time frame.

level Refers to the bus interrupt level that you can see on a
device when doing an lsattr -El <device> command.
The level is not a tunable parameter. It is set by IBM
development.

type Indicates the type of interface.

count The number of interrupts for that device/interrupt handler.

module(handler) The device driver software.

There are no recommendations for analyzing the interrupt report. Be aware of
how many interrupts to expect on your system; if you notice a higher number
than usual, investigate the device as shown in module handler further.

13.2.4 VMM statisics report
Reports various statistics maintained by the Virtual Memory Manager.
Example 13-6 displays VMM statistics.

Example 13-6 VMM statistics

vmstat -v
 2097152 memory pages

 Chapter 13. The vmstat command 221

 2042335 lruable pages
 1906992 free pages
 1 memory pools
 62216 pinned pages
 80.1 maxpin percentage
 20.0 minperm percentage
 80.0 maxperm percentage
 2.0 numperm percentage
 42511 file pages
 0.0 compressed percentage
 0 compressed pages
 0.0 numclient percentage
 80.0 maxclient percentage
 0 client pages
 0 remote pageouts scheduled
 0 pending disk I/Os blocked with no pbuf
 2898524 paging space I/Os blocked with no psbuf
 371909 filesystem I/Os blocked with no fsbuf
 0 client filesystem I/Os blocked with no fsbuf
 0 external pager filesystem I/Os blocked with no fsbuf

To explain the outputs :

memory pages Size of real memory in number of 4 KB pages.

lruable pages Number of 4 KB pages considered for replacement. This
number excludes the pages used for VMM internal pages
and the pages used for the pinned part of the kernel text.

free pages Number of free 4 KB pages.

memory pools Tuning parameter (managed using vmo) specifying the
number of pools.

pinned pages Number of pinned 4 KB pages.

maxpin percentage Tuning parameter (managed using vmo) specifying the
percentage of real memory that can be pinned.

minperm percentage Tuning parameter (managed using vmo) in percentage of
real memory. This specifies the point below which file
pages are protected from the re-page algorithm.

maxperm percentage Tuning parameter (managed using vmo) in percentage of
real memory. This specifies the point above which the
page stealing algorithm steals only file pages.

file pages Number of 4 KB pages currently used by the file cache.

compressed percentage
Percentage of memory used by compressed pages.

222 AIX 5L Performance Tools Handbook

compressed pages Number of compressed memory pages.

numclient percentagePercentage of memory occupied by client pages.

maxclient percentageTuning parameter (managed using vmo) specifying the
maximum percentage of memory that can be used for
client pages.

client pages Number of client pages.

remote pageouts scheduled
Number of pageouts scheduled for client filesystems.

pending disk I/Os blocked with no pbuf
Number of pending disk I/O requests blocked because no
pbuf was available. Pbufs are pinned memory buffers
used to hold I/O requests at the logical volume manager
layer.

paging space I/Os blocked with no psbuf
Number of paging space I/O requests blocked because
no psbuf was available. Psbufs are pinned memory
buffers used to hold I/O requests at the virtual memory
manager layer.

filesystem I/Os blocked with no fsbuf
Number of filesystem I/O requests blocked because no
fsbuf was available. Fsbuf are pinned memory buffers
used to hold I/O requests in the filesystem layer.

client filesystem I/Os blocked with no fsbuf
Number of client filesystem I/O requests blocked because
no fsbuf was available. NFS (Network File System) and
VxFS (Veritas) are client filesystems. Fsbuf are pinned
memory buffers used to hold I/O requests in the
filesystem layer.

external pager filesystem I/Os blocked with no fsbuf
Number of external pager client filesystem I/O requests
blocked because no fsbuf was available. JFS2 is an
external pager client filesystem. Fsbuf are pinned memory
buffers used to hold I/O requests in the filesystem layer.

 Chapter 13. The vmstat command 223

13.2.5 Sum structure report
This writes to standard output the contents of the sum structure, which contains
an absolute count of paging events since system initialization as shown in
Example 13-7. The -s option is exclusive of the other vmstat command options.

Example 13-7 Sum structure report

vmstat -s
 18379397 total address trans. faults
 8004558 page ins
 5294063 page outs
 87355 paging space page ins
 699899 paging space page outs
 0 total reclaims
 6139830 zero filled pages faults
 3481200 executable filled pages faults
 61905822 pages examined by clock
 493 revolutions of the clock hand
 11377921 pages freed by the clock
 315896 backtracks
 0 lock misses
 7178736 free frame waits
 3 extend XPT waits
 3665717 pending I/O waits
 12920977 start I/Os
 7766830 iodones
 81362747 cpu context switches
 134805028 device interrupts
 0 software interrupts
 0 traps
 253117680 syscalls

This report is not generally used for resolving performance issues. It is, however,
useful for determining the how much paging and the type of paging during
benchmarking.

These events are described as follows:

address translation faults
Incremented for each occurrence of an address
translation page fault. I/O may or may not be required to
resolve the page fault. Storage protection page faults
(lock misses) are not included in this count.

page ins Incremented for each page read in by VMM. The count is
incremented for page ins from paging space and file
space. Along with the page out statistic, this represents
the total amount of real I/O initiated by the VMM.

224 AIX 5L Performance Tools Handbook

page outs Incremented for each page written out by the VMM. The
count is incremented for page outs to page space and for
page outs to file space. Along with the page referenced,
this represents the total amount of real I/O initiated by
VMM.

paging space page ins
Incremented for VMM-initiated page ins from paging
space only.

paging space page outs
Incremented for VMM initiated page outs to paging space
only.

total reclaims Incremented when an address translation fault can be
satisfied without initiating a new I/O request. This can
occur if the page has been previously requested by VMM
but the I/O has not yet completed, or if the page was
pre-fetched by VMM’s read-ahead algorithm but was
hidden from the faulting segment, or if the page has been
put on the free list and has not yet been reused.

zero-filled page faults
Incremented if the page fault is to working storage and
can be satisfied by assigning a frame and zero-filling it.

executable-filled page faults
Incremented for each instruction page fault.

pages examined by the clock
VMM uses a clock-algorithm to implement a pseudo Least
Recently Used (LRU) page replacement scheme. Pages
are aged by being examined by the clock. This count is
incremented for each page examined by the clock.

revolutions of the clock hand
Incremented for each VMM clock revolution (that is, after
each complete scan of memory).

pages freed by the clock
Incremented for each page the clock algorithm selects to
free from real memory.

backtracks Incremented for each page fault that occurs while
resolving a previous page fault (the new page fault must
be resolved first and then initial page faults can be
backtracked).

lock misses VMM enforces locks for concurrency by removing
addressability to a page. A page fault can occur due to a

 Chapter 13. The vmstat command 225

lock miss, and this count is incremented for each such
occurrence.

free frame waits Incremented each time a process is waited by VMM while
free frames are gathered.

extend XPT waits Incremented each time a process is waited by VMM due
to a commit in progress for the segment being accessed.

pending I/O waits Incremented each time a process is waited by VMM for a
page-in I/O to complete.

start I/Os Incremented for each read or write I/O request initiated by
VMM. This count should equal the sum of page-ins and
page-outs.

iodones Incremented at the completion of each VMM I/O request.

CPU context switches Incremented for each CPU context switch (dispatch of a
new process).

device interrupts Incremented on each hardware interrupt.

software interrupts Incremented on each software interrupt. A software
interrupt is a machine instruction similar to a hardware
interrupt that saves some state and branches to a service
routine. System calls are implemented with software
interrupt instructions that branch to the system call
handler routine.

traps Not maintained by the operating system.

syscalls Incremented for each system call.

13.2.6 I/O report
Example 13-8 shows the I/O report in which the vmstat command writes to
standard output the I/O activity since system startup.

Example 13-8 I/O report

vmstat -It 2 10
 kthr memory page faults cpu time
-------- ----------- ------------------------ ------------ ----------- --------
 r b p avm fre fi fo pi po fr sr in sy cs us sy id wa hr mi se
 0 0 0 51694 49443 6 3 0 0 8 48 106 199 64 0 1 96 3 17:43:55
 0 0 0 51697 49440 0 0 0 0 0 0 469 991 332 0 0 99 0 17:43:57
 0 0 0 51698 49439 0 0 0 0 0 0 468 980 320 0 1 99 0 17:43:59
 0 0 0 51699 49438 0 0 0 0 0 0 468 989 327 0 0 99 0 17:44:01
 0 0 0 51700 49437 0 0 0 0 0 0 470 992 331 0 0 99 0 17:44:03
 0 0 0 51702 49435 0 0 0 0 0 0 471 989 327 0 1 99 0 17:44:05
 0 0 0 51703 49434 0 0 0 0 0 0 469 993 329 0 0 99 0 17:44:08

226 AIX 5L Performance Tools Handbook

 0 0 0 51704 49433 0 0 0 0 0 0 471 969 320 0 0 99 0 17:44:10
 0 0 0 51705 49432 0 0 0 0 0 0 468 986 325 0 1 99 0 17:44:12
 0 0 0 51706 49431 0 0 0 0 0 0 470 995 331 0 0 99 0 17:44:14

Refer to 13.2.1, “Virtual memory activity” on page 213 for an explanation of
report fields not listed here.

The reported fields are described as follows:

p Number of threads waiting on actual physical I/O to raw
logical volumes as opposed to files within a file system

fi File page ins per second

fo File page outs per second

hr The hour that the last sample completed

mi The minute that the last sample completed

se The second that the last sample completed

Note: The first line of this report should be ignored because it is an average
since the last system reboot.

Tip: It is useful to run vmstat when your system is under load and performing
normally as a baseline to determine future performance problems.

You should run vmstat again when:

� Your system is experiencing performance problems.

� You make hardware or software changes to the system.

� You make changes to the AIX Operating System; for example, when
installing upgrades or changing the disk tuning parameters using vmo,
ioo, or schedo.

� You make changes to your application.

� Your average workload changes; for example, when you add or remove
users.

 Chapter 13. The vmstat command 227

228 AIX 5L Performance Tools Handbook

Chapter 14. The vmo, ioo, and vmtune
commands

The vmtune sample program is being phased out and will not be supported in
future releases. It is being replaced by the vmo command (for all pure VMM
parameters) and the ioo command (for all I/O-related parameters) that can be
used to set most of the parameters that were previously set by vmtune. For
AIX 5L Version 5.2, a compatibility script calling vmo and ioo is provided to help
the transition.

The vmtune script resides in /usr/samples/kernel and is part of the
bos.adt.samples fileset, which is installable from the AIX base installation media.

The vmo and ioo commands reside in /usr/sbin and are part of the bos.perf.tune
fileset, which is installable from the AIX base installation media.

14

© Copyright IBM Corp. 2001, 2003 229

14.1 vmo
The syntaxes of the vmo command are:

vmo [-p | -r] { -o Tunable [= Newvalue]}
vmo [-p | -r] {-d Tunable }
vmo [-p | -r] -D
vmo [-p | -r] -a
vmo -?
vmo -h Tunable
vmo -L [Tunable]
vmo -x [Tunable]

Multiple options for -o, -d, and -L are allowed.

Flags
-? Displays the vmo command usage statement.

-h Tunable Displays help about the tunable parameter.

-a Displays current, reboot (when used in conjunction with
-r), or permanent (when used in conjunction with -p) value
for all tunable parameters, one per line in pairs Tunable =
Value.

-d Tunable Resets tunable to its default value.

-D Resets all tunables to their default value.

-o Tunable[=Newvalue] Displays the value or sets tunable to newvalue.

-p When used in combination with -o, -d, or -D, makes
changes apply to both current and reboot values and
updates the /etc/tunables/nextboot file in addition to the
updating of the current value. These combinations cannot
be used on Bosboot type parameters because their
current value cannot be changed.

-r When used in combination with -o, -d, or -D, makes
changes apply to reboot values and updates the
/etc/tunables/nextboot file. If any parameter of type
Bosboot is changed, the user will be prompted to run
bosboot.

-L [Tunable] Lists the characteristics of one or all tunables, one per
line, indicating the current, default, minimum, and
maximum values and the tunable types.

-x [tunable] Generates tunable characteristics in a comma-separated
format for loading into a spreadsheet.

230 AIX 5L Performance Tools Handbook

The current set of parameters managed by vmo only includes Dynamic and
Bosboot types.

In the execution:

� Any attempt to change (with -o, -d, or -D) a parameter of type Bosboot without
-r, will result in an error or warning message.

� Displaying a parameter (with -a or -o) with the -p displays a value when the
current and reboot values are equal; otherwise NONE is displayed as the value.

14.1.1 Information about measurement and sampling
The vmo command is responsible for displaying and adjusting the parameters
used by the Virtual Memory Manager (VMM). This command sets or displays
current or next boot values for all Virtual Memory Manager tuning parameters.
This command can also make permanent changes or defer changes until the
next reboot. Whether the command sets or displays a parameter is determined
by the accompanying flag. The -o flag performs both actions. It can either display
the value of a parameter or set a new value for a parameter.

The Virtual Memory Manager (VMM) maintains a list of free real-memory page
frames. These page frames are available to hold virtual-memory pages needed
to satisfy a page fault. When the number of pages on the free list falls below that
specified by the minfree parameter, the VMM begins to steal pages to add to the
free list. The VMM continues to steal pages until the free list has at least the
number of pages specified by the maxfree parameter.

If the number of file pages (permanent pages) in memory is less than the number
specified by the minperm% parameter, the VMM steals frames from either
computational or file pages, regardless of repage rates. If the number of file
pages is greater than the number specified by the maxperm% parameter, the
VMM steals frames only from file pages. Between the two, the VMM normally
steals only file pages, but if the repage rate for file pages is higher than the
repage rate for computational pages, computational pages are stolen as well.

You can also modify the thresholds that are used to decide when the system is
running out of paging space. The npswarn parameter specifies the number of
paging-space pages available at which the system begins warning processes
that paging space is low. The npskill parameter specifies the number of
paging-space pages available at which the system begins killing processes to
release paging space.

 Chapter 14. The vmo, ioo, and vmtune commands 231

Memory pools
The mempools value is used to subdivide the memory into pools. The parameter
mempools has a range from 1 (one) to, but not more than, the value of the
number of CPUs in the system. For example, if there are four CPUs in a system,
then the maximum value of mempools is 4 (four). Setting the value to 0 (zero),
restores the default number. In some circumstances, such as when most, but not
all, of the system memory is in use, better performance can be obtained by
setting this value to 1 (one).

The page replacement algorithm
When the number of pages on the free list is less than minfree, the page
replacement algorithm attempts to free up memory pages. The algorithm
continues until the number of pages in the free list exceeds the maxfree value.

The value of minfree specifies the minimum number of frames on the free list
before the VMM starts to steal pages. The value can range from eight to 819200.
The default value is dependant on the amount of memory in the system and is
calculated as the maxfree value minus eight. In multiprocessor systems, there
may be a number of memory pools. Each memory pool has its own minfree and
maxfree value. The values displayed by the vmo command are the sum of the
minfree and maxfree values of all of the pools.

The maxfree value determines at what point the VMM stops stealing pages. The
value of maxfree can range from 16 to 204800 but must be greater than the value
of minfree. The maxfree value can be determined as follows:

maxfree = lesser of (number of memory pages / 128 or 128)

For many systems, these default values may not be optimal. Assuming that the
system has 512 MB of memory, the minfree and maxfree values are the defaults
of 120 and 128 respectively. When only (4096 * 120) bytes of memory are on the
free list, only then will the page replacement algorithm free pages. This value
equates to less than 0.5 MB of memory and will typically be too low. If the
memory demand continues after the minfree value is reached, then processes
could even be suspended or killed. When the number of free pages equals or
exceeds the value of maxfree, then the algorithm will no longer free pages. This
value is (4096 * 128) bytes, which equates to 0.5 MB. As can be seen, insufficient
pages will have been freed up on a system with 512 MB.

Important: The vmo command is operating system version specific. Using the
incorrect version of the vmo command can produce inconsistent results or
result in the operating system becoming inoperable. Later versions of the OS
also support new options that are unavailable on older versions.

232 AIX 5L Performance Tools Handbook

The page replacement algorithm subdivides the entire system real memory into
sections called buckets. The lrubucket parameter specifies the number of pages
per bucket. Instead of the page replacement algorithm checking the entire real
memory of the system for free frames, it searches one bucket at a time. The page
replacement algorithm searches a bucket for free frames and on the second pass
checks the same bucket, and any unreferenced pages will be stolen. This speeds
up the rate at which pages to be stolen are found. The default value for lrubucket
is 131,072 pages, which equates to 512 MB of real memory.

Pinning memory
The maxpin value determines the maximum percentage of real memory pages
that can be pinned. The maxpin value must be greater than one and less than
100. The default value for maxpin is 80 percent. Always ensure that the kernel
and kernel extensions can pin enough memory as needed; as such, it is not
advisable to set the maxpin value to an extremely low number such as one.

The v_pinshm parameter is a Boolean value that, if set to 1 (one), will force
pages in shared memory to be pinned by the VMM. This occurs only if the
application set the SHM_PIN flag. If the value is set to 0 (zero: the default), then
shared memory is not pinned.

File system caching
The AIX operating system leaves in memory pages that have been read or
written to. If these file pages are requested again, this saves an I/O operation.
The minperm and maxperm values control the level of this file system caching.
The thresholds set by maxperm and minperm can be considered as:

� If the percentage of file pages in memory exceeds maxperm, only file pages
are taken by the page replacement algorithm.

� If the percentage of file pages in memory is less than minperm, both file
pages and computational pages are taken by the page replacement
algorithm.

� If the percentage of file pages in memory is in the range between minperm
and maxperm, the page replacement algorithm steals only the file pages
unless the number of file repages is higher than the number of computational
repages.

Computational pages can be defined as working storage segments and program
text segments. File pages are defined as all other page types usually persistent
and client pages.

Note: Ensure that at least 4 MB of real memory is left unpinned for the kernel
when the maxpin value is changed.

 Chapter 14. The vmo, ioo, and vmtune commands 233

In some instances, the application may cache pages itself. Therefore there is no
need for the file system to cache pages as well. In this case, the values of
minperm and maxperm can be set low. For more information about adjusting
these values, see “The page replacement algorithm” on page 232.

When set to 1 (one), the strict_maxperm value causes the maxperm parameter
to be a hard limit. This parameter is very useful where double buffering occurs,
such as in the case of a database on a JFS file system. The database may be
doing its own caching while the VMM may be caching the same pages. When
this value is set to 0 (zero), the maxperm value is only required when page
replacements occur.

The defps parameter is used to enable or disable the Deferred Page Space
Allocation (DPSA) policy. Setting this parameter to a value of 1 (one) enables
DPSA, and setting it to 0 (zero) disables it. The DPSA policy can be disabled to
prevent paging space from becoming overcommitted. With DPSA, the disk block
allocation of paging space is delayed until it is necessary to page out the page,
which results in no wasted paging space allocation. Paging space can, however,
be wasted when a page in real memory needs to be paged out and then paged
back in. That paging space will be reserved for this process until either the page
is no longer required by the process or the process exits.

If defps is disabled, the Late Paging Space Allocation (LPSA) policy is used.
Using the LPSA, paging space is only allocated if memory pages are touched
(modified somehow). However, the paging space pages are not assigned to a
process until the memory pages are paged out. A process might find no paging
space available if another process uses all of the paging space because paging
space was not allocated.

Large page parameters
The lgpg_regions value specifies the number of large pages to reserve. This is
required when the shmget() call uses the SHM_LGPAGE flag. The application
has to support SHM_LGPAGE when calling shmget(). This improves
performance when there are many Translation Look-Aside Buffer (TLB) misses
and large amounts of memory are being accessed.

The lgpg_size parameter sets the size in bytes of the hardware-dependant large
pages used for the implementation of the shmget() system call. The lgpg_size
and lgpg_regions parameters both must be set to enable this function.

234 AIX 5L Performance Tools Handbook

JFS2 and NFS client pages
A new maxclient% option is available in AIX 5L Version 5.2. This option is tunable
using the vmo -o maxclient%=Number command. This value determines the point
at which the page replacement algorithm starts to free client pages. The value is
a percentage of total memory. This value is important for JFS2 and NFS where
client pages are used.

14.1.2 Recommendations and precautions for vmo
Do not attempt to use an incorrect version of the vmo command on an operating
system. Invoking the incorrect version of the vmo command can result in the
operating system failing. The functionality of the vmo command also varies
between versions of the operating system.

14.2 Examples for vmo
Example 14-1 displays all reboot values for virtual memory tuning.

Example 14-1 Display all reboot values for virtual Memory Manager tuning parameters

#/usr/sbin/vmo -r -a
memory_frames = 2097152

 maxfree = 128
 minfree = 120
 minperm% = 20
 minperm = 408467
 maxperm% = 80
 maxperm = 1633868
 strict_maxperm = 0
 maxpin% = 80
 maxpin = 1677722
 maxclient% = 80
 lrubucket = 131072
 defps = 1
 nokilluid = 0
 numpsblks = 524288
 npskill = 4096
 npswarn = 16384
 v_pinshm = 0
pta_balance_threshold = 50
 pagecoloring = 0
 framesets = 2
 mempools = 1
 lgpg_size = 16777216
 lgpg_regions = 20
 num_spec_dataseg = 0

 Chapter 14. The vmo, ioo, and vmtune commands 235

spec_dataseg_int = 512
 memory_affinity = 0

Example 14-2 shows the use of vmo -L to dislay the current, default, and reboot
settings.

Example 14-2 Displaying tunable attributes using vmo -L

vmo -L
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
memory_frames 768K 768K 4KB pages S
--
pinnable_frames 677112 677112 4KB pages S
--
maxfree 128 128 128 16 200K 4KB pages D
 minfree
 memory_frames
--
minfree 120 120 120 8 200K 4KB pages D
 maxfree
 memory_frames
--
minperm% 20 20 20 1 100 % memory D
 maxperm%
--
minperm 137664 137664 S
--
maxperm% 80 80 80 1 100 % memory D
 minperm%
 maxclient%
--
maxperm 550659 550659 S
--
strict_maxperm 0 0 0 0 1 boolean D
--
maxpin% 80 80 80 1 99 % memory D
 pinnable_frames
 memory_frames
--
maxpin 629146 629146 S
--
maxclient% 80 80 80 1 100 % memory D
 maxperm%
--
lrubucket 128K 128K 128K 64K 4KB pages D
--
defps 1 1 1 0 1 boolean D

236 AIX 5L Performance Tools Handbook

--
nokilluid 0 0 0 0 2047M uid D
--
numpsblks 128K 128K 4KB pages S
--
npskill 1K 1K 1K 1 131071 4KB pages D
--
npswarn 4K 4K 4K 0 131071 4KB pages D
--
v_pinshm 0 0 0 0 1 boolean D
--
pta_balance_threshold n/a 50 50 1 99 % pta segment R
--
pagecoloring n/a 0 0 0 1 boolean B
--
framesets 2 2 2 1 10 B
--
mempools 1 1 1 1 2 B
--
lgpg_size 0 0 0 0 256M bytes B
 lgpg_regions
--
lgpg_regions 0 0 0 0 B
 lgpg_size
--
num_spec_dataseg 0 0 0 0 B
--
spec_dataseg_int 512 512 512 0 B
--
memory_affinity 1 1 1 0 1 boolean B
--

n/a means parameter not supported by the current platform or kernel

Parameter types:
 S = Static: cannot be changed
 D = Dynamic: can be freely changed
 B = Bosboot: can only be changed using bosboot and reboot
 R = Reboot: can only be changed during reboot
 C = Connect: changes are only effective for future socket connections
 M = Mount: changes are only effective for future mountings
 I = Incremental: can only be incremented

Value conventions:
 K = Kilo: 2^10 G = Giga: 2^30 P = Peta: 2^50
 M = Mega: 2^20 T = Tera: 2^40 E = Exa: 2^60

 Chapter 14. The vmo, ioo, and vmtune commands 237

Example 14-3 shows the setting of mempools value and the message.

Example 14-3 Changing the mempools tunable

/usr/sbin/vmo -o mempools
mempools = 0
/usr/sbin/vmo -r -o mempools=4
Warning: bosboot must be called and the system rebooted for the mempools change
to take effe
Run bosboot now? [y/n] y

bosboot: Boot image is 16773 512 byte blocks.
Changes will take effect only at next reboot
/usr/sbin/vmo -r -o mempools
mempools = 4

Example 14-4 shows the adjustment of minperm and maxperm values.

Example 14-4 Changing minperm and maxperm tunables

vmo -o minperm% -o maxperm%
minperm% = 20
maxperm% = 50
vmo -o minperm%=10 -o maxperm%=40
Setting minperm% to 10
Setting maxperm% to 40

Example 14-5 shows how to turn on v_pinshm for the next reboot.

Example 14-5 Turning on v_pinshm for the next reboot

vmo -r -o v_pinshm=1
Setting v_pinshm to 1 in nextboot file
Changes will take effect only at next reboot

Example 14-6 shows the setting of 16 MB large pages.

Example 14-6 Reserving 16MB large pages

vmo -r -o lgpg_regions=20 -o lgpg_size=16777216
Setting lgpg_size to 16777216 in nextboot file
Setting lgpg_regions to 20 in nextboot file
Warning: some changes will take effect only after a bosboot and a reboot
Run bosboot now? y

bosboot: Boot image is 18212 512 byte blocks.
Warning: changes will take effect only at next reboot

238 AIX 5L Performance Tools Handbook

14.3 ioo
The following syntax applies to the ioo command:

ioo [-p | -r] { -o Tunable [=NewValue] }
ioo [-p | -r] { -d Tunable}
ioo [-p | -r] -D
ioo [-p | -r] -a
ioo -?
ioo -h Tunable
ioo -L [Tunable]
ioo -x [Tunable]

Flags
-? Displays the ioo command usage statement.

-h Displays help about the specified tunable parameter.

-a Displays current, reboot (when used in conjunction with
-r), or permanent (when used in conjunction with -p) value
for all tunable parameters, one per line in pairs
tunable = value. For the permanent option, a value is only
displayed for a parameter if its reboot and current values
are equal. Otherwise NONE displays as the value.

-d Resets a tunable to its default value. If a tunable needs to
be changed (that is, if it is not set to its default value) and
is of type Bosboot or Reboot, or if it is of type Incremental
and has been changed from its default value, and -r is not
used in combination, it is not changed but a warning
displays.

-D Resets all tunables to their default value. If tunables
needing to be changed are of type Bosboot or Reboot, or
are of type Incremental and have been changed from their
default value, and -r is not used in combination, they are
not changed but a warning displays.

-o Tunable[=Newvalue]
Displays the value or sets tunable to newvalue. If a
tunable needs to be changed (because the specified
value is different from the current value), and is of type
Bosboot or Reboot, or if it is of type Incremental and its
current value is bigger than the specified value, and -r is
not used in combination, it will not be changed but a
warning will be displayed instead.

When -r is used in combination without a new value, the
nextboot value for tunable is displayed. When -p is used in

 Chapter 14. The vmo, ioo, and vmtune commands 239

combination without a new value, a value is displayed only
if the current and next boot values for tunable are the
same. Otherwise NONE is displayed as the value.

-p When used in combination with -o, -d, or -D, makes
changes apply to both current and reboot values (that is,
turns on the updating of the /etc/tunables/nextboot file in
addition to the updating of the current value). These
combinations cannot be used on Reboot and Bosboot
type parameters becasue their current value cannot be
changed.

When used with -a or -o without specifying a new value,
values are displayed only if the current and next boot
values for a parameter are the same. Otherwise NONE is
displayed as the value.

-r When used in combination with -o, -d, or -D, makes
changes apply to reboot values (for example, turns on the
updating of the /etc/tunables/nextboot file). If any
parameter of type Bosboot is changed, the user will be
prompted to run bosboot.

When used with -a or -o without specifying a new value,
next boot values for tunables are displayed instead of
current values.

-L Lists the characteristics of one or all tunables, one per
line, indicating the current, default, minimum and
maximum values and the tunable types

-x [tunable] Generates tunable characteristics in a comma-separated
format for loading into a spreadsheet.

The current set of parameters managed by ioo only includes Dynamic,
Incremental, and Mount types. In the execution:

� Any change (with -o, -d or -D) to a parameter of type Mount will result in a
message being displayed to warn the user that the change is only effective for
future mountings.

� Any attempt to change (with -o, -d, or -D) a parameter of type Bosboot or
Reboot without -r will result in an error message.

� Any attempt to change (with -o, -d, or -D but without -r) the current value of a
parameter of type Incremental with a new value smaller than the current value
will result in an error message.

� Displaying a parameter (with -a or -o) with the -p displays a value when the
current and reboot values are equal, otherwise NONE is displayed as the value.

240 AIX 5L Performance Tools Handbook

14.3.1 Information about measurement and sampling
The ioo command sets or displays current or next boot values for all input/output
tuning parameters. This command can also make permanent changes or defer
changes until the next reboot. Whether the command sets or displays a
parameter is determined by the accompanying flag. The -o flag performs both
actions. It can either display the value of a parameter or set a new value for a
parameter.

If a process appears to be reading sequentially from a file, the values specified
by the minpgahead parameter determine the number of pages to be read ahead
when the condition is first detected. The value specified by the maxpgahead
parameter sets the maximum number of pages that are read ahead, regardless
of the number of preceding sequential reads.

The operating system enables tuning of the number of file system bufstructs
(numfsbuf) and the amount of data processed by the write-behind algorithm
(numclust).

The default ioo values may differ on different machine configurations as well as
on different AIX releases. The machine’s workload and the effects of the ioo
tunables should be considered before changing anything.

Sequential read-ahead
The minpgahead value is the value at which sequential read-ahead begins. The
value can range from 0 (zero) to 4096, and must be a power of two. The default
value is 2 (two).

The maxpgahead is the maximum number of pages that can be read ahead. The
value of maxpgahead can be in the range of zero to 4096. The value must be
equal to or greater than minpgahead. The default value is 8 (eight).

Figure 14-1 on page 242 shows an illustration of sequential read ahead. Each of
the blocks in the diagram represents a 4 KB page. These pages are numbered
zero through 23. The steps of sequential read-ahead are described under the
labels A through F. The labels A through F also indicate the sequence of page

Important: The ioo command is operating system version specific. Using the
incorrect version of the ioo command can produce inconsistent results or
result in the OS becoming inoperable. Later versions of the OS also support
new options that are unavailable on older versions.

 Chapter 14. The vmo, ioo, and vmtune commands 241

reads. Pages are read ahead when the VMM detects a sequential pattern. Read
ahead is triggered again when the first page in a group of previously read ahead
pages is accessed by the application. In the example, minpgahead is set to 2
(two) while maxpgahead is set to 8 (eight).

Figure 14-1 Sequential read-ahead

A The first page of the file is read in by the program. After this
operation, VMM makes no assumptions as to whether the file access
is random or sequential.

B When page number one is the next page read in by the program,
VMM assumes that access is sequential. VMM schedules
minpgahead pages to be read in as well. Therefore the access at
point B in Figure 14-1results in three pages being read.

C When the program accesses page two next, VMM doubles the value
of page ahead from two to four and schedules the pages four to
seven to be read.

D When the program accesses page four next, VMM doubles the value
of page ahead from four to eight, and pages eight through 15 are
scheduled to be read.

E When the program accesses page eight next, VMM determines that
the read-ahead value is equal to maxpgahead and schedules pages
16 through 23 to be read.

F VMM will continue to read maxpgahead pages ahead as long as the
program accesses the first page of the previous read-ahead group.
Sequential read-ahead will be terminated when the program
accesses a page other than the first page of the next read-ahead
group.

242 AIX 5L Performance Tools Handbook

If the program were to deviate from the sequential-access pattern and access a
page of the file out of order, sequential read-ahead would be terminated. It would
be resumed with minpgahead pages if the VMM detected that the program
resumed sequential access.

The minpgahead and maxpgahead values can be changed by using options -o in
the ioo command. If you are contemplating changing these values, keep in mind:

� The values should be from the set: 0, 1, 2, 4, 8, 16, and so on. The use of
other values may have adverse performance or functional effects.

– Values should be powers of 2 because of the doubling algorithm of the
VMM.

– Values of maxpgahead greater than 16 (reads ahead of more than 64 KB)
exceed the capabilities of some disk device drivers. In such a case, the
read size stays at 64 KB.

– Higher values of maxpgahead can be used in systems where the
sequential performance of striped logical volumes is of paramount
importance.

� A minpgahead value of 0 effectively defeats the mechanism. This can
adversely affect performance. However, it can be useful in some cases where
I/O is random, but the size of the I/Os cause the VMM’s read-ahead algorithm
to take effect. Another case where turning off page-ahead is useful is the case
of NFS reads on files that are locked. On these types of files, read-ahead
pages are typically flushed by NFS so that reading ahead is not helpful. NFS
and the VMM have been changed, starting with AIX 4.3.3, to automatically
turn off VMM read-ahead if it is operating on a locked file.

� The maxpgahead values of 8 or 16 yield the maximum possible sequential I/O
performance for non-striped file systems.

� The buildup of the read-ahead value from minpgahead to maxpgahead is
quick enough that for most file sizes there is no advantage to increasing
minpgahead.

� The Sequential Read-Ahead can be tuned separately for JFS and Enhanced
JFS. JFS Page Read-Ahead can be tuned with minpgahead and
maxpgahead whereas j2_minPageReadAhead and j2_maxPageReadAhead
are used for Enhanced JFS.

Note: Due to limitations in the kernel, the maxpgahead value should not
exceed 512. The difference between minfree and maxfree should always be
equal to or greater than the value of maxpgahead.

 Chapter 14. The vmo, ioo, and vmtune commands 243

VMM write-behind
Write-behind involves asynchronously writing modified pages in memory to disk
after reaching a threshold rather than waiting for the syncd daemon to flush the
pages to disk. This is done to limit the number of dirty pages in memory, reduce
system overhead, and minimize disk fragmentation. There are two types of
write-behind: sequential and random.

Sequential write-behind
The numclust value determines the number of 16 KB clusters to be processed by
the VMM sequential write-behind algorithm. The value can be set as an integer
greater than zero. The default value is one. The write-behind algorithm will write
modified pages in memory to disk after the threshold set by numclust is reached
rather than waiting for the syncd daemon to flush the pages if the write pattern is
sequential. The advantages of using the write-behind algorithm are:

� The algorithm reduces the number of dirty pages in memory.

� It reduces the system overhead because the syncd daemon will have fewer
pages to write to disk.

� It minimizes disk fragmentation because entire clusters are written to the disk
at a time.

The numclust values can be changed by using -o options in the ioo command.

For enhanced JFS, the j2_nPagesPerWriteBehindCluster value is used to specify
the number of pages to be scheduled at one time, rather than the number of
clusters. The default number of pages is 8.

The j2_nPagesPerWriteBehindCluster values can be changed by using -o
options in the ioo command.

Random write-behind
The maxrandwrt option specifies the threshold number of pages for random page
writes to accumulate in real memory before being flushed to disk by the
write-behind algorithm. The default value for maxrandwrt is zero, which disables
the random write-behind algorithm. Applications may write randomly to memory
pages. In this instance, the sequential page write-behind algorithm will not be
able to flush dirty memory pages to disk. If the application has written a large
number of pages to memory, then when the syncd daemon flushes memory to
disk, the disk I/O may become excessive. To counter this effect, the random
write-behind algorithm will wait until the number of pages modified for a file
exceeds the maxrandwrt threshold. From this point, all subsequent dirty pages
are scheduled to be written to disk. The pages below the maxrandwrt are flushed
to disk by the syncd daemon.

The maxrandwrt values can be changed by using -o options in the ioo command.

244 AIX 5L Performance Tools Handbook

For enhanced JFS, the j2_nRandomCluster and j2_maxRandomWrite values are
used to tune random write-behind. Both options have a default of 0. The
j2_maxRandomWrite option has the same function for enhanced JFS as
maxrandwrt does for JFS. That is, it specifies a limit for the number of dirty pages
per file that can remain in memory. The j2_nRandomCluster option specifies how
many clusters apart two consecutive writes must be in order to be considered
random.

The j2_nRandomCluster and j2_maxRandomWrite values can be changed by
using -o options in the ioo command.

The syncd daemon
The default value of the sync_release_ilock is 0 (zero). At zero, the inode lock will
be held and the data is flushed and committed, and only then is the lock
released. If the sync_release_ilock is set to a non-zero value, then the syncd
daemon will flush all dirty memory pages to disk without using the inode lock.
The lock is then used to commit the data. This minimizes the time that the inode
lock is held during the sync operation. This is a Boolean variable; setting it to 0
(zero) disables it, and any other non-zero value enables it. A performance
improvement may be achieved if the sync_release_ilock parameter is set to a
value of 1 (one) on systems with a large amount of memory and a large number
of page updates. These types of systems typically have high I/O peaks when the
syncd daemon flushes memory.

The sync_release_ilock values can be changed by using -o options in the ioo
command.

I/O tuning parameters
The numfsbufs value specifies the number of file system buffer structures. This
value must be greater than 0 (zero). If there are insufficient free buffer structures,
the VMM will put the process on a wait list before starting I/O. To determine
whether the value of numfsbufs is too low, use the vmstat -a command and
monitor the fsbufwaitcnt value displayed. This value is incremented each time
an I/O operation has to wait for a file system buffer structure.

Note: Not all applications meet the requirements for random and sequential
write-behind. In this instance, the syncd daemon will flush dirty memory pages
to disk.

Note: When the numfsbufs value is changed, it is necessary to unmount and
mount the file system again for the changes to take effect.

 Chapter 14. The vmo, ioo, and vmtune commands 245

The j2_nBufferPerPagerDevice value specifies the number of file system
bufstructs for Enhanced JFS. If the kernel must wait for a free bufstruct, it puts
the process on a wait list before the start I/O is issued and will wake it up once a
bufstruct has become available. May be appropriate to increase if striped logical
volumes or disk arrays are being used. To determine whether it is necessary for
the value of j2_nBufferPerPagerDevice to change, use the vmstat -v command
and monitor if the xpagerbufwaitcnt increases fast. The default value is 512.

The lvm_bufcnt value specifies the number of LVM buffers for raw I/O. This value
can range from 1 (one) to 64 and has a default of 9 (nine). Extremely large
volumes of I/O are required to cause a bottleneck at the LVM layer. The number
of “uphysio” buffers can be increased to overcome this bottleneck. Each uphysio
buffer is 128 KB. If I/O operations are larger than 128 KB * 9, then a value larger
than the default value of nine should be used.

The pd_npages value determines the number of pages that should be deleted in
one chunk from real memory when a file is deleted (that is, the pages are deleted
in a single VMM critical section with interrupts disabled to INTPAGER). By
default, all pages of a file can be removed from memory in one critical section if
the file was deleted from disk. To ensure fast response time for real-time
applications, this value can be reduced so that a smaller chunk of pages is
deleted before returning from the critical section.

The hd_pbuf_cnt value determines the number of pbufs assigned to the LVM.
This value is sometimes referred to the as numpbuf. The pbufs are pinned
memory buffers used to hold I/O requests that are pending at the LVM layer.
When changing this value, the new value must be higher than the previously set
value. The value can only be reset by a reboot.

14.3.2 Recommendations and precautions
Do not attempt to use an incorrect version of the ioo command on an operating
system. Invoking the incorrect version of the ioo command can result in failure of
the operating system. The functionality of the ioo command also varies between
versions of the operating system.

14.4 Examples for ioo
This section shows some examples of the use of the ioo command.

Note: If the value of hd_pbuf_cnt is set too high, the only way to reset the
value is with a reboot. The value cannot be set lower than the current value.

246 AIX 5L Performance Tools Handbook

14.4.1 Displaying I/O setting
Example 14-7 shows all of the tunable values and characteristics using the ioo
command.

Example 14-7 Showing ioo tunables characteristics

/usr/sbin/ioo -L
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
minpgahead 2 2 2 0 4K 4KB pages D
 maxpgahead
--
maxpgahead 8 8 8 0 4K 4KB pages D
 minpgahead
--
pd_npages 64K 64K 64K 1 512K 4KB pages D
--
maxrandwrt 0 0 0 0 512K 4KB pages D
--
numclust 1 1 1 0 2047M 16KB/cluster D
--
numfsbufs 196 196 196 1 2047M M
--
sync_release_ilock 0 0 0 0 1 boolean D
--
lvm_bufcnt 9 9 9 1 64 128KB/buffer D
--
j2_minPageReadAhead 2 2 2 0 128 4KB pages D
--
j2_maxPageReadAhead 8 8 8 0 128 4KB pages D
--
j2_nBufferPerPagerDevice 512 512 512 0 2047M M
--
j2_nPagesPerWriteBehindCluster
 32 32 32 0 128 D
--
j2_maxRandomWrite 0 0 0 0 128 4KB pages D
--
j2_nRandomCluster 0 0 0 0 2047M 16KB clusters D
--
hd_pvs_opn 1 1 S
--
hd_pbuf_cnt 640 640 640 0 2047M I
--

n/a means parameter not supported by the current platform or kernel

Parameter types:

 Chapter 14. The vmo, ioo, and vmtune commands 247

 S = Static: cannot be changed
 D = Dynamic: can be freely changed
 B = Bosboot: can only be changed using bosboot and reboot
 R = Reboot: can only be changed during reboot
 C = Connect: changes are only effective for future socket connections
 M = Mount: changes are only effective for future mountings
 I = Incremental: can only be incremented

Value conventions:
 K = Kilo: 2^10 G = Giga: 2^30 P = Peta: 2^50
 M = Mega: 2^20 T = Tera: 2^40 E = Exa: 2^60

Example 14-8 shows all of the reboot values for ioo that will be used on the next
boot of the system.

Example 14-8 Showing all reboot values for ioo

ioo -r -a
....................minpgahead = 2
 maxpgahead = 8
 pd_npages = 65536
 maxrandwrt = 0
 numclust = 1
 numfsbufs = 186
 sync_release_ilock = 0
 lvm_bufcnt = 9
 j2_minPageReadAhead = 2
 j2_maxPageReadAhead = 8
 j2_nBufferPerPagerDevice = 512
j2_nPagesPerWriteBehindCluster = 32
 j2_maxRandomWrite = 0
 j2_nRandomCluster = 0
 hd_pvs_opn = 2
 hd_pbuf_cnt = 384

Specific help on each tunable can be displayed using the -h flag as shown in
Example 14-9.

Example 14-9 Displaying help on j2_nPagesPerWriteBehindCluster

ioo -h j2_nPagesPerWriteBehindCluster
Specifies the number of pages per cluster processed by Enhanced JFS's write
behind algorithm. Default: 8. Useful to increase if there is a need to keep
more pages in RAM before scheduling them for I/O when the I/O pattern is
sequential. May be appropriate to increase if stripped logical volumes or disk
arrays are being used.

248 AIX 5L Performance Tools Handbook

14.4.2 Changing tunable values
You can set dynamic tunables using the -o option. Example 14-10 shows that the
sync_release_ilock is turned on dynamically.

Example 14-10 Activating sync_release_ilock

ioo -o sync_release_ilock=1
Setting sync_release_ilock to 1

Sometimes you may want to defer the tunable changes to the next reboot as
shown in Example 14-11 where we set the maxrandwrt to 4.

Example 14-11 Setting maxrandwrt to 4 after the next reboot

ioo -r -o maxrandwrt=4
Setting maxrandwrt to 4 in nextboot file
Warning: changes will take effect only at next reboot

Example 14-12 shows resetting all tunables to default value.

Example 14-12 Restoring all ioo tunable parameters to default

ioo -p -D
Setting minpgahead to 2 in nextboot file
Setting maxpgahead to 8 in nextboot file
Setting pd_npages to 65536 in nextboot file
Setting maxrandwrt to 0 in nextboot file
Setting numclust to 1 in nextboot file
Setting numfsbufs to 196 in nextboot file
Setting sync_release_ilock to 0 in nextboot file
Setting lvm_bufcnt to 9 in nextboot file
Setting j2_minPageReadAhead to 2 in nextboot file
Setting j2_maxPageReadAhead to 8 in nextboot file
Setting j2_nBufferPerPagerDevice to 512 in nextboot file
Setting j2_nPagesPerWriteBehindCluster to 32 in nextboot file
Setting j2_maxRandomWrite to 0 in nextboot file
Setting j2_nRandomCluster to 0 in nextboot file
Setting hd_pbuf_cnt to 640 in nextboot file
Setting sync_release_ilock to 0

14.4.3 Logical volume striping
The following provides suggestions about ioo and logical volume striping.
Sequential and random accesses benefit from disk striping. The following
technique for configuring striped disks is recommended:

� Spread the logical volume across as many physical volumes as possible.

� Use as many adapters as possible for the physical volumes.

 Chapter 14. The vmo, ioo, and vmtune commands 249

� Create a separate volume group for striped logical volumes.

� Do not mix striped and non-striped logical volumes in the same physical
volume.

� All physical volumes should be the same size within a set of striped logical
volumes.

� Set the stripe unit size to 64 KB.

� Set the value of minpgahead to 2 (two).

� Set the value of maxpgahead to 16 times the number of disks.

� Ensure that the difference between maxfree and minfree is equal to or
exceeds the value of maxpgahead.

Setting the minpgahead and maxpgahead values as noted causes page-ahead
to be done in units of the stripe-unit size, which is 64 KB times the number of disk
drives, resulting in the reading of one stripe unit from each disk drive for each
read-ahead operation. We will also need to set the minfree and maxfree
tunables.

First, we acquire the tunable values as shown in Example 14-13.

Example 14-13 Displaying minpgahead, maxpgahead, minfree, and maxfree values

ioo -L minpgahead -L maxpgahead
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
minpgahead 2 2 2 0 4K 4KB pages D
 maxpgahead
--
maxpgahead 8 8 8 0 4K 4KB pages D
 minpgahead
--
vmo -L minfree -L maxfree
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
maxfree 128 128 128 16 200K 4KB pages D
 minfree
 memory_frames
--
minfree 120 120 120 8 200K 4KB pages D
 maxfree
 memory_frames
--

250 AIX 5L Performance Tools Handbook

Assuming that three disks are to be striped, the commands in Example 14-14 are
used to set the ioo and vmo parameters.

Example 14-14 Setting ioo minpgahead and maxpgahead values

ioo -o minpgahead=2
Setting minpgahead to 2
ioo -o maxpgahead=32
Setting maxpgahead to 32
vmo -o maxfree=152
Setting maxfree to 152

14.4.4 Increasing write activity throughput
If the striped logical volumes are on raw logical volumes and writes larger than
1.125 MB are anticipated, the value of the lvm_bufcnt parameter should be
increased with the command ioo -o lvm_bufcnt=10 in order to increase
throughput of the write activity. This is shown in Example 14-15.

Example 14-15 Increasing lvm_bufcnt with the ioo command

ioo -o lvm_bufcnt=10
Setting lvm_bufcnt to 10

14.5 vmtune

The syntax of the vmtune command is:

vmtune [-a]
vmtune [-A]
vmtune [-b numfsbuf] [-B hd_pbuf_cnt] [-c numclust] [-C 0 | 1]

[-d 0 |1] [-f minfree] [-F maxfree] [-g lgpg_regions] [-h 0 | 1]
[-i Number][-j Number] [-k npskill] [-l lrubucket] [-L Number]
[-m mempools] [-M maxpin] [-n nokilluid] [-N pd_npages]
[-p minperm%] [-P maxperm%][-q Number] [-Q Number] [-r MinPgAhead]
[-R MaxPgAhead] [-s 0|1][-S 0 | 1] [-t maxclient%][-T Number]
[-u lvm_bufcnt] [-v framesets][-V Number] [-w npswarn]
[-W maxrandwrt] [-y 0|1] [-z Number] [-Z Number] [-?]

Flags
-a Calls vmo -a and ioo -a to display the current values for

all statistic counters.

Note: This command in AIX 5L Version 5.2 is just a sample compatibility script
that calls the vmo or ioo commands.

 Chapter 14. The vmo, ioo, and vmtune commands 251

-A Calls vmstat -v to display the current statistic counters.

-b Number Calls ioo -o numfsbuf=Number to set the number of file
systems.

-B Number Calls ioo -o hd_pbuf_cnt=Number to set the number of
pbufs used by the LVM.

-c Number Calls ioo -o numclust=Number to set the number of 16 KB
clusters processed by write behind.

-C [0|1] 0|1 accepted, but not directly supported. Use vmo -r -o
pagecoloring= 0|1 to disable/enable page coloring for
specific hardware platforms.

-d [0|1] 0|1 calls vmo -o defps=0|1 to turn on and off deferred
paging space allocation.

-f Number Calls vmo -o minfree=Number to set the number of frames
on the free list.

-F Number Calls vmo -o maxfree=Number to set the number of frames
on the free list at which stealing is to stop.

-g Number Use vmo -r -o lgpg_regions=Number to set the size, in
bytes, of the hardware-supported large pages.

-h [0|0] Calls vmo -o strict_maxperm=0|1 to specify whether
maxperm% should be hard limit.

-i Number Number accepted, but not directly supported. Use vmo -r
-o spec_dataseg_int=Number to set the interval to use
when reserving the special data segidentifiers.

-j Number Calls ioo -o j2_nPagesPerWriteBehindCluster=Number
to set the number of pages per write-behind cluster.

-J Number Calls ioo -o j2_maxRandomWrite=Number to set the
random-write threshold count.

-k Number Calls vmo -o npskill=Number to set the number of paging
space pages at which processes begin to be killed.

-l Number Calls vmo -o lruBucket=Number to set the size of the least
recently used page replacement bucket size.

-L Number Accepted, but not directly supported. Use vmo -r -o
lgpg_Region= Number -o lgpg_size=Size to set the
number of large pages to be reserved.

-m Number Accepted, but not directly supported. Use vmo -r -o
mempools=Number to set the number of memory pools.

-M Calls vmo -omaxpin=Number to set the maximum
percentage of real memoy that can be pinned.

252 AIX 5L Performance Tools Handbook

-n Number Calls vmo -o nokilluid=Number to specify the uid range of
processes that should not be killed when paging space is
low.

-N Number Calls ioo -o pd_npages=Number to set the number of
pages that should be deleted in one chunk from RAM
when a file is deleted.

-p Number Calls vmo -o minperm%=Number to set the point below
which file pages are protected from the repage algorithm.

-P Number Calls vmo -o maxperm%=Number to set the point above
which the page stealing algorithm steals only file pages.

-q Number Calls ioo -o j2_minPageReadAhead=Number to set the
minimum number of pages to read ahead.

-Q Number Calls ioo -o j2_maxPageReadAhead=Number to set the
maximum number of pages to read ahead.

-r Number Calls ioo -o minpageahead=Number to set the number of
pages with which sequential read-ahead starts.

-R Number Calls ioo -o maxpageahead=Number to set the minimum
number of pages to be read ahead.

-s [0|1] Calls ioo -o sync_release_illock=0|1 to enable the
code that minimizes the time spent holding inode lock
during sync.

-S [0|1] Calls vmo -o v_pinshm=0|1 to enable the SHM_PIN flag
on the shmget system call.

-t Number Calls vmo -o maxclient%=Number to set the point above
which the page stealing algorithm steals only client file
pages.

-T Number Calls vmo -o pta_balance_threshold=Number to set the
point at which a new pta segment will be alocated.

-u Number Calls vmo -o lvm_bufcnt=Number to set the number of
LVM buffers for raw physical I/Os.

-v Number Accepted, but not directly supported. Use vmo -r -o
framesets= Number to set the number of framesets per
mempool.

-V Number Accepted, but not directly supported. Use vmo -r -o
num_spec_dataseq= Number to set the number of reserved
special data segment IDs.

 Chapter 14. The vmo, ioo, and vmtune commands 253

-w Number Calls vmo -o npswarn=Number to set a threshold for
random writes to accumulate in RAM before pages are
synched to disk using a write-behind algorithm.

-W Number Calls ioo -o maxrandwrt=Number to set the number of free
paging-space pages at which SIGDANGER is sent to
processes.

-y [0|1] Use vmo -r -o Memory_Affinity=[0|1] to enable
memory affinity on certain hardware.

-z Number Calls ioo -o j2_nRandonCluster=Number to set random
write threshold distance.

-Z Number Calls ioo -o j2_nBufferPerPagerDevice=Number to set
the number of buffers per pager device.

-? Displays a description of the command and its flags.

254 AIX 5L Performance Tools Handbook

Chapter 15. Kernel tunables commands

This chapter discusses commands for manipulating kernel tunable files. These
commands are supported for AIX 5L Version 5.2. The commands discussed here
are:

tuncheck Used to validate a file.

tunrestore Used to restore all parameters from a file.

tunsave Used to save current tunable parameter values into a file.

tundefault Used to force all tuning parameters to be reset to their
default value.

tunchange Used to update a stanza in the tunables file.

The tunsave, tunrestore, tuncheck, tundefault, and tunchange commands
reside in /usr/sbin and are part of the bos.perf.tune fileset, which is installable
from the AIX base installation media.

For discussion on kernel tunables refer to 1.6, “Kernel tunables” on page 43.

15

© Copyright IBM Corp. 2001, 2003 255

15.1 tuncheck
The syntax of the tuncheck command is:

tuncheck [-r|-p] -f Filename

Flags
-r Checks filename in a boot context.

-p Checks filename in both current and boot context.

-f Filename Specifies the name of the tunable file to be checked.

If -p or -r are not specified, Filename is checked according to the current context.

The tuncheck command is used to validate a tunable file. All tunables listed in the
specified file are checked for range and dependencies. If a problem is detected, a
warning is issued.

There are two types of validation:

current context Checks to see whether the tunable file could be applied
immediately. Tunables not listed in Filename are
interpreted as current values. The checking fails if a
tunable of type Incremental is listed with a smaller value
than its current value; it also fails if a tunable of type
Bosboot or Reboot is listed with a different value than its
current value.

next boot context Checks to see whether the tunable file could be applied
during a reboot, that is, if it could be a valid nextboot file.
Decreasing a tunable of type Incremental is allowed. If a
tunable of type Bosboot or Reboot is listed with a different
value than its current value, a warning is issued but the
checking does not fail.

Additionally, warnings are issued if the tunable file contains unknown stanzas, or
unknown tunables in a known stanza. However, that does not make the checking
fail.

15.1.1 Examples for tuncheck
Example 15-1 shows that nextboot file can be applied immediately.

Example 15-1 Checking nextboot file using tuncheck -f command

tuncheck -f nextboot
Checking successful

256 AIX 5L Performance Tools Handbook

Example 15-2 shows that the nextboot file can be applied during a reboot.

Example 15-2 Checking nextboot file using tuncheck -r -f command

tuncheck -r -f nextboot
Checking successful

The content of the mytunable file is shown in Example 15-3.

Example 15-3 Content of the mytunable file

info:
 AIX_level = "5.2.0.5"
 Kernel_type = "MP64"
 Last_validation = "2003-04-22 12:04:26 CDT (current, reboot)"

vmo:
 maxfree = "128"
 minfree = "120"
 maxperm%= "50"
 maxclient%="60"

ioo:
 maxpgahead = "8"

no:
 ipforwarding = "0"

nfso:
 nfs_v2_vm_bufs = "5000"

In Example 15-4, we use the mytunable file from Example 15-3 to check whether
this file can be applied immediately and after a reboot. The tuncheck command
issued a message because dependencies exist between maxperm% and
maxclient% tunable parameter. The other tuning parameters were done
successfully.

Example 15-4 Using tuncheck -p -f command to check a tunable file

tuncheck -p -f mytunable
Setting maxpgahead to 8 in nextboot file
Setting maxpgahead to 8
invalid tunable value 50
value for tunable maxperm% must be greater than or equal to value of maxclient%
tunable
Setting maxfree to 128 in nextboot file
Setting minfree to 120 in nextboot file
Setting maxfree to 128
Setting minfree to 120
Checking failed

 Chapter 15. Kernel tunables commands 257

Messages should have been provided

We changed the maxclient value from 60 to 50 to resolve the dependency. The
tuncheck command shows that all parameters were checked successfully, as
shown in Example 15-5.

Example 15-5 Using tuncheck -p -f command with a new maxclient value

tuncheck -p -f mytunable
Setting maxpgahead to 8 in nextboot file
Setting maxpgahead to 8
Setting maxfree to 128 in nextboot file
Setting minfree to 120 in nextboot file
Setting maxperm% to 50 in nextboot file
Setting maxclient% to 50 in nextboot file
Setting maxfree to 128
Setting minfree to 120
Setting maxperm% to 50
Setting maxclient% to 50
Checking successful

15.2 tunrestore
The tunrestore command is used to restore all tunable parameters values from
a file in /etc/tunables. The syntax of the tunrestore command is:

tunresore [-r] -f Filename
tunrestore -R

Flags
-r Checks filename in a boot context.

-f Filename Specifies the name of the tunable file to be checked.

-R Restores /etc/tunables/nextboot during boot process; can
only be run from /etc/inittab

Note: If you create a tunable file with an editor or by copying a file from
another machine, you must run the tuncheck command to validate it.

Note: The command tunrestore -R can only be called from /etc/inittab

258 AIX 5L Performance Tools Handbook

A new tunable file called /etc/tunables/lastboot is automatically generated after a
reboot. That file has all the tunables listed with numerical values. The values
representing default values are marked with the comment DEFAULT VALUE. Its info
stanza includes the checksum of the /etc/tunables/lastboot.log file to ensure that
pairs of lastboot and lastboot.log files can be identified and verified.

Any problem found or change made is logged in the /etc/tunables/lastboot.log
file. A new /etc/tunables/lastboot file is always created with the list of current
values for all parameters.

If filename does not exist, an error message displays. If the nextboot file does not
exist, an error message displays if -r was used. If -R was used, all of the tuning
parameters of a type other than Bosboot will be set to their default value, and a
nextboot file containing only an info stanza will be created. A warning will also be
logged in the lastboot.log file.

Except when -r is used, parameters requiring a call to bosboot and a reboot are
not changed, but an error message is displayed to indicate that they could not be
changed. When -r is used, if any parameter of type Bosboot needs to be
changed, the user will be prompted to run bosboot. Parameters missing from the
file are simply left unchanged, except when -R is used, in which case missing
parameters are set to their default values. If the file contains multiple entries for a
parameter, only the first entry will be applied, and a warning will be displayed or
logged (if called with -R).

15.2.1 Examples for tunrestore
In Example 15-6 we restored the system with all tunable values in the
/etc/tunables/mytunable file (shown in Example 15-3 on page 257) with the
maxclient% changed to 50.

Example 15-6 Using tunrestore -f command

lpar05:/etc/tunables>> tunrestore -f mytunable
Setting maxfree to 128
Setting minfree to 120
Setting maxperm% to 50
Setting maxclient% to 50
Setting maxpgahead to 8

Example 15-7 shows how to validate the /etc/tunables/mytunable file and make it
the new nextboot file.

Example 15-7 Using tunrestore -r -f command

lpar05:/etc/tunables>> tunrestore -r -f mytunable
Setting maxpgahead to 8 in nextboot file
Changes will take effect only at next reboot

 Chapter 15. Kernel tunables commands 259

Setting maxfree to 128 in nextboot file
Setting minfree to 120 in nextboot file
Setting maxperm% to 50 in nextboot file
Setting maxclient% to 50 in nextboot file
Changes will take effect only at next reboot
Checking successful

Example 15-8 shows the content of the new nextboot file.

Example 15-8 Example nexboot file after tunrestore -f -r mytunable

info:
 AIX_level = "5.2.0.5"
 Kernel_type = "MP64"
 Last_validation = "2003-04-22 15:47:22 CDT (reboot)"

vmo:
 maxfree = "128"
 minfree = "120"
 maxperm%= "50"
 maxclient%="50"

ioo:
 maxpgahead = "8"

no:
 ipforwarding = "0"

nfso:
 nfs_v2_vm_bufs = "5000"

15.3 tunsave
The tunsave command saves all tunable parameter values into a file.

The syntax of the tunsave command is:

tunsave [-a|-A] -f|-F Filename [-d Description]

Flags
-a Saves all tunable parameters, including those that are set

to their default value. These parameters are saved with
the special value DEFAULT.

-A Saves all tunable parameters, including those that are set
to their default value. These parameters are saved

260 AIX 5L Performance Tools Handbook

numerically, and a comment (# DEFAULT VALUE) is
appended to the line to flag them.

-d (Description) Specifies the text to use for the Description
field. Special characters must be escaped or quoted
inside the Description field.

-f (Filename) Specifies the name of the tunable file where
the tunable parameters are saved. If Filename already
exists, an error message prints. The Filename is relative
to /etc/tunables.

-F (Filename) Specifies the name of the tunable file where
the tunable parameters are saved. If Filename already
exists, the existing file is overwritten. The Filename is
relative to /etc/tunables.

15.3.1 Examples for tunsave
In Example 15-9 we save all tunable parameters, including those that are set to
their default value.

Example 15-9 Using tunsave -af command

lpar05:/etc/tunables>> tunsave -af mytunable

Example 15-10 shows the content of the mytunable file.

Example 15-10 Content of the mytunable file

lpar05:/etc/tunables>> cat mytunable
(...lines omitted ...)
vmo:
 memory_frames = "DEFAULT"
 maxfree = "DEFAULT"
 minfree = "DEFAULT"
 minperm% = "DEFAULT"
 minperm = "DEFAULT"
 maxperm% = "50"
 maxperm = "DEFAULT"
 strict_maxperm = "DEFAULT"
 maxpin% = "DEFAULT"
 maxpin = "DEFAULT"
 maxclient% = "50"
 lrubucket = "DEFAULT"
 defps = "DEFAULT"

Note: If the mytunable file already exists, this message will appear:

tunsave: mytunable already exists, use -F to overwrite it

 Chapter 15. Kernel tunables commands 261

 nokilluid = "DEFAULT"
 numpsblks = "DEFAULT"
 npskill = "DEFAULT"
(...lines omitted ...)

Example 15-10 on page 261 illustrates that all of the parameters that have
default value in the system show DEFAULT, and those parameters that we changed
in the system show the current value, such as maxperm% and maxclient%.

To save all tunables, including those that are set to their default value using all
numerical values, but flag the default values with the comment DEFAULT VALUE
with the tunsave command, the command in Example 15-11 can be used:

Example 15-11 Using the tunsave command to save tunables

lpar05:/etc/tunables>> tunsave -AF mytunable

The content of the mytunable file is shown in Example 15-12.

Example 15-12 Content of the mytunable file

lpar05:/etc/tunables>> cat mytunable
(...lines omitted ...)
vmo:
 memory_frames = "2097152" # DEFAULT VALUE
 maxfree = "128" # DEFAULT VALUE
 minfree = "120" # DEFAULT VALUE
 minperm% = "20" # DEFAULT VALUE
 minperm = "403988" # DEFAULT VALUE
 maxperm% = "50"
 maxperm = "1009970" # DEFAULT VALUE
 strict_maxperm = "0" # DEFAULT VALUE
 maxpin% = "80" # DEFAULT VALUE
 maxpin = "1677722" # DEFAULT VALUE
 maxclient% = "50"
 lrubucket = "131072" # DEFAULT VALUE
 defps = "1" # DEFAULT VALUE
 nokilluid = "0" # DEFAULT VALUE
 numpsblks = "1048576" # DEFAULT VALUE
 npskill = "8192" # DEFAULT VALUE
 npswarn = "32768" # DEFAULT VALUE
 v_pinshm = "0" # DEFAULT VALUE
 framesets = "0"
 mempools = "0"
 lgpg_size = "16777216"
 lgpg_regions = "0" # DEFAULT VALUE
 num_spec_dataseg = "0" # DEFAULT VALUE
(...lines omitted ...)

262 AIX 5L Performance Tools Handbook

As you can see in the previous example, those parameters that were changed on
the system, such as maxclient%, framesets, mempools, and lgpg_size, do not
show the comment # DEFAULT VALUE.

Use the tunsave command to change the description field in the mytunable file,
as shown in Example 15-13.

Example 15-13 Changing the description field in the mytunable file

lpar05:/etc/tunables>> tunsave -d "new tunable file" -f mytunable
lpar05:/etc/tunables>> cat mytunable
info:
 Description = "new tunable file"
 AIX_level = "5.2.0.5"
 Kernel_type = "MP64"
 Last_validation = "2003-04-22 18:41:04 CDT (current, reboot)"
(...lines omitted ...)

In Example 15-14, we saved all tunables different from their default value into the
/etc/tunables/mytunable file.

Example 15-14 Using the tunsave -f command

lpar05:/etc/tunables>> tunsave -f mytunable

The content of the mytunable file is shown in Example 15-15.

Example 15-15 Content of mytunable file.

lpar05:/etc/tunables>> cat mytunable
info:
 Description = "tunsave -f mytunable"
 AIX_level = "5.2.0.5"
 Kernel_type = "MP64"
 Last_validation = "2003-04-22 18:48:03 CDT (current, reboot)"

schedo:

vmo:
 maxperm% = "50"
 maxclient% = "50"
 framesets = "0"
 mempools = "0"
 lgpg_size = "16777216"
 spec_dataseg_int = "0"

ioo:
 hd_pbuf_cnt = "1152"

no:

 Chapter 15. Kernel tunables commands 263

 extendednetstats = "1"

nfso:
 nfs_v2_vm_bufs = "5000"
 nfs_v3_vm_bufs = "5000"

15.4 tundefault
The tundefault command is used to force all tuning parameters to be reset to
their default value. The syntax is:

tundefault [-p | -r]

Flags
-p Makes the changes permanent by reseting all tunable

parameters to their default values and updateing the
/etc/tunables/nextboot file.

-r Defers the reset to the default value until the next reboot.
This clears stanza(s) in the /etc/tunables/nextboot file,
and if necessary, proposes bosboot and warns that a
reboot is needed.

This resets all AIX tunable parameters to their default value, except for
parameters of type Bosboot and Reboot, and parameters of type Incremental set
at values larger than their default value, unless -r was specified. Error messages
are displayed for any parameter change impossible to make.

15.4.1 Examples for tundefault
To permanently reset all tunable parameters to their default values, use the
tundefault command as shown in Example 15-16.

Example 15-16 Reseting all tunable parameters to their default values

tundefault -p

All of the tuning commands are launched with -Dp flags. This resets all tunable
parameters to their default value and updates the /etc/tunables/nextboot file. This
command completely and permanently resets all tunable parameters to their
default values.

264 AIX 5L Performance Tools Handbook

Example 15-17 shows how to defer the resetting of all tunable parameters until
the next boot using the tundefault command.

Example 15-17 Using tundefault command

tundefault -r

Calls all tuning commands with -Dr. This clears all of the stanzas in the
/etc/tunables/nextboot file and, if necessary, proposes bosboot and displays a
message warning that a reboot is necessay to make the changes effective.

Use the tundefault command without parameters or flags, as in Example 15-18,
to reset all tunable parameters to their default value, except the parameters of
type Bosboot and Reboot, and parameters of type Incremental set values bigger
than their default value.

Example 15-18 tundefault command

tundefault

15.5 tunchange
The tunchange command is used to update the stanzas in the tunables file. The
syntax is:

tunchange -f Filename (-t Stanza ({-o Parameter[=Value]}|-D) | -m Filename2)

Flags
-f filename Tunable file to be changed, relative to /etc/tunables.

-t Stanza Command stanza name; can be vmo, ioo, schedo, nfso, or
no.

-o Parameter[=value] Provides the tunable and value pair to update.

-D Change the values into the default value.

-m Filename2 Merge Filename2 into Filename.

This command unconditionally changes the stanza without validating the
parameter. Use this with caution.

 Chapter 15. Kernel tunables commands 265

15.5.1 Examples for tunchange
Example 15-19 shows an example of modifying the nextboot file to set a schedo
parameter pacefork to 10.

Example 15-19 Modifying the stanza directly

$ tunchange -f nextboot -t schedo -o pacefork=10
$ cat /etc/tunables/nextboot
IBM_PROLOG_BEGIN_TAG
This is an automatically generated prolog.
#
bos520 src/bos/usr/sbin/perf/tune/nextboot 1.1
#
Licensed Materials - Property of IBM
#
(C) COPYRIGHT International Business Machines Corp. 2002
All Rights Reserved
#
US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
IBM_PROLOG_END_TAG

vmo:

schedo:
 pacefork = "10"

266 AIX 5L Performance Tools Handbook

Chapter 16. Process-related commands

The following commands work with the content of the /proc filesystem:

procwdx Prints the current working directory of processes.
procfiles Reports information about all file descriptors opened by

processes.
procflags Prints the /proc tracing flags, the pending and held

signals, and other /proc status information for each thread
in the specified processes.

proccred Prints the credentials (effective, real, saved user IDs, and
group IDs) of processes.

procmap Prints the address space map of processes.
procldd Lists the dynamic libraries loaded by processes, including

shared objects explicitly attached using dlopen().
procsig Lists the signal actions defined by processes.
procstack Prints the hexadecimal addresses and symbolic names

for each of the stack frames of the current thread in
processes.

procstop Stops processes on the PR_REQUESTED event.
procrun Starts a process that has stopped on the

PR_REQUESTED event.
procwait Waits for all of the specified processes to terminate.
proctree Prints the process tree containing the specified process

IDs or users.

16

© Copyright IBM Corp. 2001, 2003 267

16.1 procwdx
The procwdx command prints the current working directory of processes. The
syntax of the procwdx command is:

procwdx [-F] [ProcessID] ...

Flags
-F Forces procwdx to take control of the target process even

if another process has control.

Parameters
ProcessID Specifies the process ID.

Examples
Example 16-1 shows the current working directory of the processes.

Example 16-1 Displaying the current working directory of process 454698

lpar05:/>> procwdx 454698
454698: /usr/WebSphere/AppServer/

16.2 procfiles
The procfiles command reports information about all file descriptors opened by
process. The syntax of the procfiles command is:

procfiles [-F] [-n][ProcessID] ...

Flags

-F Forces procfiles to take control of the target process
even if another process has control.

-n Prints the names of the files referred to by file descriptors.

Parameters
ProcessID Specifies the process ID.

Examples
Example 16-2 on page 269 shows information about the file descriptors opened
by process.

268 AIX 5L Performance Tools Handbook

Example 16-2 Getting file descriptors information for process 454698

lpar05:/>> procfiles 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
 Current rlimit: 32000 file descriptors
 0: S_IFCHR mode:00 dev:10,4 ino:12631 uid:0 gid:0 rdev:21,1
 O_RDWR
 1: S_IFREG mode:0644 dev:10,5 ino:620777 uid:0 gid:0 rdev:0,0
 O_WRONLY size:0
 2: S_IFREG mode:0644 dev:10,5 ino:620778 uid:0 gid:0 rdev:0,0
 O_RDWR size:0
 3: S_IFIFO mode:00 dev:65535,65535 ino:623087800 uid:0 gid:0 rdev:0,0
 O_RDONLY
 4: S_IFREG mode:0555 dev:10,5 ino:540329 uid:0 gid:0 rdev:9,24962

 5: S_IFREG mode:0555 dev:10,5 ino:540499 uid:0 gid:0 rdev:9,22707

 6: S_IFREG mode:0555 dev:10,5 ino:540493 uid:0 gid:0 rdev:9,21313

 7: S_IFREG mode:0555 dev:10,5 ino:540397 uid:0 gid:0 rdev:9,16584

 8: S_IFREG mode:0555 dev:10,5 ino:539399 uid:0 gid:0 rdev:8,27459

 9: S_IFREG mode:0555 dev:10,5 ino:539400 uid:0 gid:0 rdev:8,27504

 10: S_IFREG mode:0555 dev:10,5 ino:539401 uid:0 gid:0 rdev:8,28736
... (lines omitted)...

Example 16-3 shows all information about the file descriptors opened by the
process and prints the names of the files referred to by file descriptors.

Example 16-3 Getting file descriptors information and names for process 454698

lpar05:/>> procfiles -n 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
 Current rlimit: 32000 file descriptors
 0: S_IFCHR mode:00 dev:10,4 ino:12631 uid:0 gid:0 rdev:21,1
 O_RDWR name:/dev/pts/1
 1: S_IFREG mode:0644 dev:10,5 ino:620777 uid:0 gid:0 rdev:0,0
 O_WRONLY size:0
name:/usr/WebSphere/AppServer/logs/server1/native_stdout.log
 2: S_IFREG mode:0644 dev:10,5 ino:620778 uid:0 gid:0 rdev:0,0
 O_RDWR size:0
name:/usr/WebSphere/AppServer/logs/server1/native_stderr.log
 3: S_IFIFO mode:00 dev:65535,65535 ino:623087800 uid:0 gid:0 rdev:0,0
 O_RDONLY name:Cannot be retrieved
 4: S_IFREG mode:0555 dev:10,5 ino:540329 uid:0 gid:0 rdev:9,24962

 Chapter 16. Process-related commands 269

 5: S_IFREG mode:0555 dev:10,5 ino:540499 uid:0 gid:0 rdev:9,22707

 6: S_IFREG mode:0555 dev:10,5 ino:540493 uid:0 gid:0 rdev:9,21313

 7: S_IFREG mode:0555 dev:10,5 ino:540397 uid:0 gid:0 rdev:9,16584

 8: S_IFREG mode:0555 dev:10,5 ino:539399 uid:0 gid:0 rdev:8,27459

 9: S_IFREG mode:0555 dev:10,5 ino:539400 uid:0 gid:0 rdev:8,27504
... (lines omitted)...

16.3 procflags
The procflags command prints the /proc tracing flags, with the pending and held
signals, and other /proc status information for each thread in the specified
process. The syntax of the procflags command is:

procflags [-r] [ProcessID] ...

Flags
-r Displays the current machine registers state if a process

is stopped in an event of interest.

ProcessID Specifies the process ID.

Examples
Example 16-4 shows the state of a process.

Example 16-4 Using procflags to get state information of the 454698 process

lpar05:/>> procflags 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
data model = _ILP32 flags = PR_FORK
/876673: flags = PR_ASLEEP | PR_NOREGS
... (lines omitted)...

16.4 proccred
The proccred command prints the credentials (effective, real, saved user IDs,
and group IDs) of processes. The syntax of the proccred command is:

proccred [ProcessID] ...

270 AIX 5L Performance Tools Handbook

Parameters
ProcessID Specifies the process ID

Examples
Example 16-5 shows the credentials of a process.

Example 16-5 Displaying credentials for process 454698

lpar05:/>> proccred 454698
454698: e/r/suid=0 e/r/sgid=0

16.5 procmap
The procmap command prints the address space map of processes. It displays
the starting address and size of each of the mapped segments in the process. It
gets all necessary information from the /proc/pid/map files. The syntax of the
procmap command is:

procmap [-F] [ProcessID] ...

Flags
-F Forces procmap to take control of the target process even

if another process has control.

Parameters
ProcessID Specifies the process ID

Examples
Example 16-6 shows output from the procmap command.

Example 16-6 Displaying the address space of process 454698

lpar05:/>> procmap 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
10000000 25K read/exec java

30000a33 2K read/write java

d3b9d000 6K read/exec
/usr/WebSphere/AppServer/java/jre/bin/liborb.a

42cc5e28 0K read/write
/usr/WebSphere/AppServer/java/jre/bin/liborb.a

 Chapter 16. Process-related commands 271

d3b8c000 46K read/exec
/usr/WebSphere/AppServer/java/jre/bin/libnet.a

426e2cd8 1K read/write
/usr/WebSphere/AppServer/java/jre/bin/libnet.a

d3b98000 19K read/exec
/usr/WebSphere/AppServer/bin/libWs50ProcessManagement.so

424601bc 0K read/write
/usr/WebSphere/AppServer/bin/libWs50ProcessManagement.so
... (lines omitted)...

16.6 procldd
The procldd command lists the dynamic libraries loaded by processes, including
shared objects explicitly attached using dlopen(). All necessary information is
gathered from the /proc/pid/map files. The syntax of the procldd command is:

procldd [-F] [ProcessID] ...

Flags
-F Forces procldd to take control of the target process even

if another process has control.

Parameters
ProcessID Specifies the process ID.

Examples
Example 16-7 shows the list of dynamic libraries loaded by a process.

Example 16-7 Output from procldd command using process 454698

lpar05:/>> procldd 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
/usr/WebSphere/AppServer/java/jre/bin/liborb.a
/usr/WebSphere/AppServer/java/jre/bin/libnet.a
/usr/WebSphere/AppServer/bin/libWs50ProcessManagement.so
/usr/WebSphere/AppServer/java/jre/bin/libjitc.a
/usr/WebSphere/AppServer/java/jre/bin/libzip.a
/usr/WebSphere/AppServer/java/jre/bin/libhpi.a
/usr/WebSphere/AppServer/java/jre/bin/libxhpi.a
/usr/WebSphere/AppServer/java/jre/bin/libjava.a
/usr/WebSphere/AppServer/java/jre/bin/classic/libjvm.a

272 AIX 5L Performance Tools Handbook

/usr/lib/libbsd.a
/usr/lib/libpthreads.a
/usr/lib/libC.a

16.7 procsig
The procsig command lists the signal actions defined by processes. The syntax
of the procsig command is:

procsig [ProcessID] ...

Parameters
ProcessID Specifies the process ID.

Examples
Example 16-8 shows all signal actions defined for a process.

Example 16-8 Output from procsig command for process 454698

lpar05:/>> procsig 454698
454698 :/usr/WebSphere/AppServer/java/bin/java -Xbootclasspath/p:/usr/WebSphere
/AppServ
HUP caught RESTART | SIGINFO
INT caught RESTART | SIGINFO
QUIT caught RESTART | SIGINFO
ILL caught RESTART | SIGINFO
TRAP caught RESETHAND
ABRT caught RESTART | SIGINFO
EMT caught RESTART | SIGINFO
FPE caught RESTART | SIGINFO
KILL default RESTART
BUS caught RESTART | SIGINFO
SEGV caught RESTART | SIGINFO
SYS caught RESTART | SIGINFO
PIPE ignored
ALRM default
TERM caught RESTART | SIGINFO
URG default
STOP default
TSTP default
CONT default
CHLD default
TTIN ignored RESETHAND
TTOU ignored RESETHAND
IO default
XCPU caught RESTART | SIGINFO

 Chapter 16. Process-related commands 273

XFSZ caught RESTART | SIGINFO
MSG default
WINCH default
PWR default
USR1 default
USR2 caught RESTART | SIGINFO
PROF default
DANGER default
VTALRM default
MIGRATE default
PRE default RESTART
VIRT default
ALRM1 default
WAITING default RESTART
CPUFAIL default
KAP default
RETRACT default
SOUND default
SAK default

16.8 procstack
The procstack command prints the hexadecimal addresses and symbolic names
for each of the stack frames of the current thread in processes. The syntax of the
procstack command is:

procstack [-F] [ProcessID] ...

Flag
-F Forces procstack to take control of the target process

even if another process already has control.

Parameter
ProcessID Specifies the process ID.

Example
Example 16-9 shows the current stack of a process.

Example 16-9 Output from procstack command for process 643298

lpar05:/>> procstack 643298
643298 : /usr/java131/jre/bin/java -Xms1024m -Xmx1024m VBDMemBlot 2000000
d41eb494 HashedAndMovedSize (?, ?) + 78
d41e76d8 reverseHandlesAndUpdateForwardRefs (?, ?, ?) + 51c
d41eb68c compactHeap (?, ?, ?) + 17c

274 AIX 5L Performance Tools Handbook

d41ef920 gc0_locked (?, ?, ?, ?) + 173c
d4218468 gc_locked (?, ?, ?, ?) + 40
d41f3920 gc0 (?, ?, ?, ?) + 2fc
d41f41cc manageAllocFailure (?, ?, ?) + 3a0
d41bd75c lockedHeapAlloc (?, ?, ?, ?, ?) + 4ac
d41bf090 realObjAlloc (?, ?, ?, ?) + 15c
d41c0214 targetedAllocMiddlewareArray (?, ?, ?, ?) + 9c
d42da8fc _jit_anewarray_quick (?, ?, ?, ?, ?) + 50
d42daa60 _jit_anewarray (?, ?, ?, ?, ?) + 94
75195618 ???????? (30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0,
0, 20, 745125e0, 0, 30319370, 0, 29, 0, 0, 20, 745125e0, 0, 30319370, 0, 29, 0)

16.9 procstop
The procstop command stops processes on the PR_REQUESTED event. The
syntax of the procstop command is:

procstop [ProcessID] ...

Parameter
ProcessID Specifies the process ID.

Example
Example 16-10 shows the stop process on the PR_REQUESTED event.

Example 16-10 Stop process 622654 using the procstop command

lpar05:/>> procstop 622654

16.10 procrun
The procrun command starts processes stopped by the previous command,
procstop. The syntax of the procrun command is:

procrun [ProcessID] ...

Parameter
ProcessID Specifies the process ID.

 Chapter 16. Process-related commands 275

Example
Example 16-11 shows how to restart a process that was stopped on the
PR_REQUESTED event.

Example 16-11 Restart process 622654 using the procrun command

lpar05:/>> procrun 622654

16.11 procwait
The procwait command waits for all of the specified processes to terminate. The
syntax of the procwait command is:

procwait [-v] [ProcessID] ...

Flag
-v Specifies verbose output. Reports terminations to

standard output.

Parameter
ProcessID Specifies the process ID.

Example
Example 16-12 wait for a exit process and display the status.

Example 16-12 Using procwait command for process 569540

lpar05:/>> procwait -v 569540
569540 : terminated, exit status 0

16.12 proctree
The proctree command prints the process tree containing the specified process
IDs or users. The child processes are indented from their respective parent
processes. An argument of all digits is taken to be a process ID; otherwise it is
assumed to be a user login name. The default action is to report on all
processes, except children of process 0.

The syntax of the proctree command is:

proctree [-a] [{ ProcessID | User }]

276 AIX 5L Performance Tools Handbook

Flags
-a Include children of process 0 in the display. The default is

to exclude them.

Parameters
ProcessID Specifies the process ID.
User Specifies the User.

Examples
Example 16-13 displays the ancestors and all of the children of a process.

Example 16-13 Displaying process 159936 using proctree command

lpar05:/>> proctree 159936
159936 /usr/sbin/srcmstr
 106556 /usr/sbin/aixmibd
 123060 /usr/sbin/muxatmd
 131174 /usr/sbin/rpc.lockd
 155856 /usr/sbin/snmpmibd
 172154 /usr/sbin/inetd
 467096 telnetd -a
 430148 -ksh
 471164 telnetd -a
 434186 -ksh
 626732 proctree 159936
 594124 telnetd -a
 532602 -ksh
 569560 telnetd -a
 565396 -ksh
 209092 /usr/sbin/hostmibd
 213164 /usr/sbin/snmpd
 217146 /usr/sbin/portmap
 221312 /usr/sbin/syslogd
 262272 /usr/sbin/biod 6
 266370 /usr/sbin/nfsd 3891
 274566 /usr/sbin/rpc.mountd
 278664 /usr/sbin/rpc.statd
 286866 /usr/sbin/qdaemon
 290962 /usr/sbin/writesrv
 307360 /usr/sbin/rsct/bin/rmcd -r
 344234 /usr/sbin/rsct/bin/ctcasd
 360640 /usr/sbin/rsct/bin/IBM.ERrmd
 377024 /usr/sbin/rsct/bin/IBM.AuditRMd
 389330 /usr/sbin/rsct/bin/IBM.FSrmd
 401610 /usr/sbin/rsct/bin/IBM.ServiceRMd
 405704 /usr/sbin/rsct/bin/IBM.CSMAgentRMd

 Chapter 16. Process-related commands 277

Example 16-14 displays the ancestors and children of a process, including
children of process 0.

Example 16-14 Displaying process 159936 using proctree -a command

lpar05:/>> proctree -a 159936
1 /etc/init
 159936 /usr/sbin/srcmstr
 106556 /usr/sbin/aixmibd
 123060 /usr/sbin/muxatmd
 131174 /usr/sbin/rpc.lockd
 155856 /usr/sbin/snmpmibd
 172154 /usr/sbin/inetd
 467096 telnetd -a
 430148 -ksh
 471164 telnetd -a
 434186 -ksh
 626734 proctree -a 159936
 594124 telnetd -a
 532602 -ksh
 569560 telnetd -a
 565396 -ksh
 209092 /usr/sbin/hostmibd
 213164 /usr/sbin/snmpd
 217146 /usr/sbin/portmap
 221312 /usr/sbin/syslogd
 262272 /usr/sbin/biod 6
 266370 /usr/sbin/nfsd 3891
 274566 /usr/sbin/rpc.mountd
 278664 /usr/sbin/rpc.statd
 286866 /usr/sbin/qdaemon
 290962 /usr/sbin/writesrv
 307360 /usr/sbin/rsct/bin/rmcd -r
 344234 /usr/sbin/rsct/bin/ctcasd
 360640 /usr/sbin/rsct/bin/IBM.ERrmd
 377024 /usr/sbin/rsct/bin/IBM.AuditRMd
 389330 /usr/sbin/rsct/bin/IBM.FSrmd
 401610 /usr/sbin/rsct/bin/IBM.ServiceRMd
 405704 /usr/sbin/rsct/bin/IBM.CSMAgentRMd

278 AIX 5L Performance Tools Handbook

Part 3 CPU-related
performance
tools

This part describes tools for monitoring the performance-relevant data and
statistics for CPU resource. It also contains information about tools that can be
used to tune CPU usage.

Other commands that provide statistics on CPU usage that are not listed in this
chapter may appear in other chapters of this book such as Chapter 2,
“Multi-resource monitoring and tuning tools” on page 67 and Chapter 7, “Tracing
performance problems” on page 675.

Part 3

© Copyright IBM Corp. 2001, 2003. All rights reserved. 279

This part contains detailed information about the following CPU monitoring and
tuning tools:

� CPU monitoring tools:

– The alstat command, described in 17.2, “alstat” on page 283, is used to
monitor Alignment exception statistics.

– The emstat command, described in 17.3, “emstat” on page 285, is used to
monitor Emulation statistics.

– The gprof command, described in 19.2, “gprof” on page 300, is used to
profile applications, showing details of time spent in routines.

– The pprof command, described in 19.3, “pprof” on page 309, is used to
monitor processes and threads.

– The prof command, described in 19.4, “prof” on page 320, is used to
profile applications, showing details of time spent in routines.

– The time command, described in 21.1, “time” on page 356, is used to
report the real time, user time, and system time taken to execute a
command.

– The timex command, described in 21.2, “timex” on page 357, is used
report the real time, user time, and system time taken to execute a
command. It also reports on I/O statistics, context switches, and run queue
status, among other statistics.

– The tprof command, described in 19.5, “tprof” on page 324, is used to
profile the system or an application.

� CPU tuning tools:

– The bindintcpu and bindprocessor commands, described in Chapter 18,
“The bindintcpu and bindprocessor commands” on page 289, is used bind
an interrupt or a process to a specific CPU.

– The nice and renice commands, described in Chapter 20, “The nice and
renice commands” on page 349, are used to adjust the initial priority of a
command.

280 AIX 5L Performance Tools Handbook

Chapter 17. The alstat and emstat
commands

The alstat command displays alignment exception statistics. The emstat
command displays emulation exception statistics.

The emstat and alstat commands reside in /usr/bin and are part of the
bos.perf.tools fileset, which is installable from the AIX base installation media.
The alstat command is a symbolic link to emstat.

17

© Copyright IBM Corp. 2001, 2003 281

17.1 Alignment and emulation exception
Alignment exceptions may occur when the processor cannot perform a memory
access due to an unsupported memory alignment offset (such as a floating point
double load from an address that is not a multiple of eight). However, some types
of unaligned memory references may be corrected by some processors and do
not generate an alignment exception. See 17.2.3, “Detecting and resolving
alignment problems” on page 285 for more information.

Many platforms simply abort a program with alignment problems. AIX catches
these exceptions and “fixes” them so legacy applications are still able to be run.
You may pay a performance price for these operating system "fixes" and should
correct them permanently so they do not recur.

Emulation exceptions can occur when some legacy applications or libraries that
contain instructions that have been deleted and are being executed on newer
processors.

These instructions may cause illegal instruction program exceptions. The
operating system kernel has emulation routines that catch these exceptions and
emulate the older instruction(s) to maintain program functionality, potentially at
the expense of performance. The emulation exception count since the last time
the machine was rebooted and the count in the current interval are displayed.

Emulation can cause a severe degradation in performance, and an emulated
instruction can cause hundreds of instructions to be generated to emulate it.
Refer to 17.3.3, “Detecting and resolving emulation problems” on page 288,
which shows what can be done to resolve emulation problems.

The user can, optionally, display alignment exception statistics or individual
processor emulation statistics. The default output displays statistics every
second. The sampling interval and number of iterations can also be specified.

If a system is underperforming after applications are transferred or ported to a
new system, then emulation exceptions and memory alignment should be
checked.

Tip: When diagnosing performance problems, you should always check for
emulated instructions and alignment exceptions as they can cause the
performance of the system to degrade.

282 AIX 5L Performance Tools Handbook

17.2 alstat
This is the syntax of the alstat command:

alstat [[-e] | [-v]] [interval] [count]

Flags
-e Displays emulation stats.
-v Specifies verbose (per-CPU) stats.

Parameters
interval Specifies the update period (in seconds).
count Specifies the number of iterations.

17.2.1 Information about measurement and sampling
The alstat command displays alignment exception statistics. The default output
displays statistics every second. The sampling interval and number of iterations
can also be specified by the user.

In terms of performance, alignment exceptions are costly. Alignment exceptions
could indicate that an application is not behaving well. Applications causing an
increase in the alstat count are less disciplined in memory model, or perhaps
the data structures do not map well between architectures when the applications
are ported between different architectures. The kernel and the kernel extensions
may also be ported and exhibit alignment problems. alstat looks for structures
and memory allocations that do not fall on eight-bytes boundaries.

After identifying a high alignment exception rate, tprof should be used to isolate
where the alignment exception is occurring.

17.2.2 Examples for alstat
Example 17-1 shows a system with alignment exceptions as displayed by the
alstat command without options. Each interval will be one second long.

Example 17-1 An example of the output of alstat

alstat
Alignment Alignment

 SinceBoot Delta
 8845591 0
 8845591 0
 8845591 0

 Chapter 17. The alstat and emstat commands 283

 8845591 0
 8845591 0

The report shows these columns:

Alignment SinceBoot The total number of alignment exceptions since start-up
plus the number for the last interval.

Alignment Delta The number of alignment exceptions for the last interval.

To display emulation and alignment exception statistics every two seconds for a
total of five times, use the command as in Example 17-2.

Example 17-2 Displaying emulation and alignment statistics per time and interval

alstat -e 2 5

Alignment Alignment Emulation Emulation
SinceBoot Delta SinceBoot Delta
70091846 0 21260604 0
72193861 2102015 23423104 2162500
74292759 2098898 25609796 2186692
76392234 2099475 27772897 2163101
78490284 2098050 29958509 2185612

Because the alstat and emstat commands make use of the same binaries, you
the output of Example 17-2 will be the same as emstat -a; refer to 17.3.2,
“Examples for emstat” on page 286.

The report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus the number in the previous interval.

Emulation Delta The number of emulated instructions in the previous
interval.

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus the number in the previous interval.

Alignment Delta The number of alignment exceptions in the previous
interval.

To display alignment statistics every five seconds for each processor, use the
command shown in Example 17-3.

Example 17-3 Displaying emulation for each processor

alstat -v 5

 This produces the following output:

284 AIX 5L Performance Tools Handbook

 Alignment Alignment Alignment Alignment
 SinceBoot Delta Delta00 Delta01
 88406295 0 0 0
 93697825 5291530 0 5291530
 98930330 5232505 5232505 0
 102595591 3665261 232697 3432564
 102595591 0 0 0

The report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions since
start-up plus number in the last interval.

Alignment Delta The number of alignment exceptions in the previous
interval for all CPUs.

Alignment Delta00 The number of current alignment exceptions in the
previous interval for CPU0.

Alignment Delta01 The number of current alignment exceptions in the
previous interval for CPU1.

17.2.3 Detecting and resolving alignment problems
Alignment is usually attributed to legacy applications or libraries, kernels, or
kernel extensions that have been ported to different platforms. alstat indicates
that an alignment problem exists. Once you have used the alstat command to
identify a high alignment exception rate, the best course of action would be to
recompile your application.

17.3 emstat
The syntax of the emstat command is:

emstat [[-a] | [-v]] [interval] [count]

Flags
-a Displays alignment stats.
-v Specifies verbose (per-CPU) stats.

These are the parameters:

interval Specifies the update period (in seconds).
count Specifies the number of iterations.

 Chapter 17. The alstat and emstat commands 285

17.3.1 Information about measurement and sampling
Instructions that have been removed from earlier architectures are caught by the
operating system and those instructions are emulated. The emulated exceptions
count is reported by the emstat command. The default output displays statistics
every second. The sampling interval and number of iterations can also be
specified by the user.

The first line of the emstat output is the total number of emulations detected since
the system was rebooted. The counters are stored in per-processor structures.

An average rate of more than 1000 emulated instructions per second may cause
a performance degradation. Values of 100,000 or more per second will certainly
cause performance problems.

17.3.2 Examples for emstat
Example 17-4 shows a system with emulation as displayed by the emstat
command with no options. This will display emulations once per second.

Example 17-4 An example of the output of emstat

emstat

emstat total count emstat interval count
 3236560 3236560
 3236580 20
 3236618 38
 3236656 38
 3236676 20
 3236714 38
 3236752 38
 3236772 20
 3236810 38
 3236848 38
emstat total count emstat interval count
 3236868 20
 3236906 38
 3236944 38
 3236964 20
 3237002 38
 3237040 38
...

The report has the following columns:

emstat total count The total number of emulated instructions since
start-up plus that of the last interval.

286 AIX 5L Performance Tools Handbook

emstat interval count The first line of the report is the total number of
emulated instructions since start-up. Subsequent
lines show the number of emulations in the last
interval.

To display emulation and alignment exception statistics every two seconds, a
total of five times, use the command shown in Example 17-5.

Example 17-5 Displaying emulation and alignment statistics per time and interval

emstat -a 2 5

 Alignment Alignment Emulation Emulation
 SinceBoot Delta SinceBoot Delta
 21260604 0 70091846 0
 23423104 2162500 72193861 2102015
 25609796 2186692 74292759 2098898
 27772897 2163101 76392234 2099475
 29958509 2185612 78490284 2098050

The report has the following columns:

Alignment SinceBoot The sum of the number of alignment exceptions
since start-up plus that of the last interval

Alignment Delta The number of alignment exceptions in the last
interval

Emulation SinceBoot The sum of the number of emulated instructions
since start-up plus that of the last interval

Emulation Delta The number of emulated instructions in the last
interval

To display emulation statistics every five seconds for each processor, use the
command in Example 17-6. Because alstat and emstat use the same binaries,
using the alstat -e command will produce the same output.

Example 17-6 Displaying emulation for each processor

emstat -v 5

Emulation Emulation Emulation Emulation
 SinceBoot Delta Delta00 Delta01
 88406295 0 0 0
 93697825 5291530 0 5291530
 98930330 5232505 5232505 0
 102595591 3665261 232697 3432564
 102595591 0 0 0

 Chapter 17. The alstat and emstat commands 287

The report has the following columns:

Emulation SinceBoot The sum of the number of emulated instructions since
start-up plus that of the last interval

Emulation Delta The number of emulated instructions in the previous
interval for all CPUZ

Emulation Delta00 The number of emulated instructions in the previous
interval for cpu0.

Emulation Delta01 The number of emulated instructions in the previous
interval for cpu1

17.3.3 Detecting and resolving emulation problems
Emulation is usually attributed to legacy applications or libraries that contain
instructions that have been deleted from newer processor architectures.

Emulation occurs when programs have been compiled for specific architecture.
For example, a program compiled for the 601 processor will produce emulation
problems on a 604-based processor because the 604 chip has to emulate
instructions for the 601 processor to maintain program functionality. To maintain
functionality across the processors, a program must be compiled for common
architecture with -qarch=com as flags for the cc compiler. Alternatively, the
program may be compiled for a specific chip set. If you are a software vendor,
then you can compile with a common architecture to avoid having multiple ports
of the same code.

288 AIX 5L Performance Tools Handbook

Chapter 18. The bindintcpu and
bindprocessor commands

The bindintcpu and bindprocessor commands are used in Symmetrical
Multiprocessor (SMP) systems to dedicate a specific processor. The bindintcpu
command is used to direct an interrupt from a specific hardware device, at a
specific interrupt level, to a specific CPU number or numbers. The bindprocessor
command is used to bind or unbind the threads of a process to a processor on an
SMP system.

The bindintcpu command is only applicable to certain hardware types. Once an
interrupt level has been directed to a CPU, all interrupts on that level will be
directed to that CPU until directed otherwise by the bindintcpu command.

Only a user with root authority can bind an interrupt to a processor or a thread of
a process of which it is not the owner to a processor.

The bindintcpu command resides in /usr/sbin and is part of the
devices.chrp.base.rte fileset, which is installable from the AIX base installation
media. The bindprocessor command resides in /usr/sbin and is part of the
bos.mp fileset, which is installed by default on SMP systems when installing AIX.

18

© Copyright IBM Corp. 2001, 2003 289

18.1 bindintcpu
The syntax of the bindintcpu command is:

bindintcpu <level> <cpu> [<cpu>...]

Parameters
level The bus interrupt level.

cpu The specific CPU number. You may be able to bind an interrupt
to more than one CPU.

18.1.1 Examples for bindintcpu
The bindintcpu command can be useful for redirecting an interrupt to a specific
processor. If the threads of a process are bound to a specific CPU using the
bindprocessor command, this process could be continually disrupted by an
interrupt from a device. Refer to 18.2, “bindprocessor” on page 292 for more
details on the bindprocessor command.

This continual interruption can become a performance issue if the CPU is
frequently interrupted. To overcome this, an interrupt that is continually
interrupting a CPU can be redirected to a specific CPU or CPUs other than the
CPU where the threads are bound. Assuming that the interrupt is from the
Ethernet adapter ent1, the following procedure can be performed.

To determine the interrupt level for a specific device, the lsattr command can be
used as in Example 18-1. Here we see that the interrupt level is 548.

Example 18-1 How to determine the interrupt level of an adapter

lsattr -El ent1
busmem 0xe8030000 Bus memory address False
rom_mem 0xe8000000 ROM memory address False
busintr 548 Bus interrupt level False
intr_priority 3 Interrupt priority False
txdesc_que_sz 512 TX Descriptor Queue Size True
rxdesc_que_sz 512 RX Descriptor Queue Size True
tx_que_sz 8192 Software TX Queue Size True

Note: Not all hardware supports one interrupt level binding to multiple CPUs,
and an error may therefore result when using bindintcpu on some systems. It
is recommended to specify only one CPU per interrupt level. If an interrupt
level is redirected to CPU0, then this interrupt level cannot be redirected to
another CPU by the bindintcpu command until the system has been
rebooted.

290 AIX 5L Performance Tools Handbook

rxbuf_pool_sz 1024 Receive Buffer Pool Size True
media_speed Auto_Negotiation Media Speed True
use_alt_addr no Enable Alternate Ethernet Address True
alt_addr 0x000000000000 Alternate Ethernet Address True
tx_preload 1520 TX Preload Value True
ipsec_offload no IPsec Offload True
rx_checksum no Enable RX Checksum Offload True
large_send no Enable TCP Large Send Offload True
slih_hog 10 Interrupt Events per Interrupt True
rx_hog 1000 RX Descriptors per RX Interrupt True
poll_link no Enable Link Polling True
poll_link_timer 500 Time interval for Link Polling True

To determine which CPUs are available on the system, the bindprocessor
command can be used as in Example 18-2.

Example 18-2 The bindprocessor command shows available CPUs

bindprocessor -q
The available processors are: 0 1 2 3

In order to redirect the interrupt level 548 to CPU1 on the system, use the
bindintcpu command as follows:

bindintcpu 548 1

All interrupts from bus interrupt level 548 will be handled by the processor CPU1.
The other CPUs of the system will no longer be required to service interrupts
from this interrupt level.

In Example 18-3, the system has four CPUs. These CPUs are CPU0, CPU1,
CPU2, and CPU3. If a non-existent CPU number is entered, an error message is
displayed.

Example 18-3 Incorrect CPU number selected in the bindintcpu command

bindintcpu 548 3 4
Invalid CPU number 4
Usage: bindintcpu <level> <cpu> [<cpu>...]
 Assign interrupt at <level> to be delivered only to the indicated cpu(s).

The vmstat command can be used as shown in Example 18-4 to obtain interrupt
statistics.

Example 18-4 Use the vmstat command to determine the interrupt statistics

vmstat -i
priority level type count module(handler)
 0 2 hardware 4189 i_hwassist_int(267880.16)
 3 70 hardware 460 /usr/lib/drivers/pci/s_scsiddpin(205cdc8.16)

 Chapter 18. The bindintcpu and bindprocessor commands 291

 3 74 hardware 225 /usr/lib/drivers/pci/s_scsiddpin(205cdc8.16)
 3 547 hardware 372445 /usr/lib/drivers/pci/scentdd(210f144.16)
 3 548 hardware 10062 /usr/lib/drivers/pci/scentdd(210f144.16)
 3 565 hardware 7532668 /usr/lib/drivers/pci/s_scsiddpin(205cdc8.16)

The column heading level shows the interrupt level, and the column heading
count gives the number of interrupts since system startup. For more information,
refer to 13.1, “vmstat” on page 212.

18.2 bindprocessor
The syntax of the bindprocessor command is:

bindprocessor Process [ProcessorNum] | -q | -u Process

Flags
-q Displays the processors that are available.

-u Unbinds the threads of the specified process.

Parameters
Process This is the process identification number (PID) for the

process to be bound to a processor.

[ProcessorNum] This is the processor number as specified from the output
of the bindprocessor -q command. If the parameter
ProcessorNum is omitted, then the thread of a process
will be bound to a randomly selected processor.

18.2.1 Information about measurement and sampling
The bindprocessor command uses the bindprocessor kernel service to bind or
unbind a kernel thread to a processor. The bindprocessor kernel service binds a
single thread or all threads of a process to a processor. Bound threads are forced
to run on that processor. Processes are not bound to processors; the kernel
threads of the process are bound. Kernel threads that are bound to the chosen
processor, remain bound until unbound by the bindprocessor command or until
they terminate. New threads that are created using the thread_create kernel
service become bound to the same processor as their creator.

The bindprocessor command uses logical, not physical processor, numbers.

292 AIX 5L Performance Tools Handbook

18.2.2 Examples for bindprocessor
To display the available processors, the command in Example 18-5 can be used.

Example 18-5 Displaying available processors with the bindprocessor command

bindprocessor -q
The available processors are: 0 1 2 3

In Example 18-6, there are four CPU-intensive processes consuming all of the
CPU time on all four of the available processors. This scenario may result in a
poor response time for other applications on the system. The example shows a
topas output where there is a high CPU usage on all available CPUs. Refer to
11.1, “topas” on page 180 for more information. The process list at the bottom of
the topas output shows the processes that are consuming the CPU time. The
process identification numbers (PID) for the processes obtained from the topas
command can be used with the bindprocessor command.

Example 18-6 Topas showing top processes consuming all CPU resources

Topas output shows high CPU usage
Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Tue Apr 8 09:42:19 2003 Interval: 2 Cswitch 215 Readch 0
 Syscall 275 Writech 72
CPU User% Kern% Wait% Idle% Reads 0 Rawin 0
cpu2 100.0 0.0 0.0 0.0 Writes 0 Ttyout 0
cpu0 100.0 0.0 0.0 0.0 Forks 0 Igets 0
cpu3 100.0 0.0 0.0 0.0 Execs 0 Namei 0
cpu1 100.0 0.0 0.0 0.0 Runqueue 13.5 Dirblk 0
 Waitqueue 0.0
Network KBPS I-Pack O-Pack KB-In KB-Out
en0 0.0 0.5 0.5 0.0 0.0 PAGING MEMORY
lo0 0.0 0.0 0.0 0.0 0.0 Faults 0 Real,MB 8191
 Steals 0 % Comp 9.7
Disk Busy% KBPS TPS KB-Read KB-Writ PgspIn 0 % Noncomp 25.9
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
hdisk1 0.0 0.0 0.0 0.0 0.0 PageIn 0
 PageOut 0 PAGING SPACE
WLM-Class (Active) CPU% Mem% Disk-I/O% Sios 0 Size,MB 2048
Default 97 0 0 % Used 9.1
java 0 2 0 NFS (calls/sec) % Free 90.8
http 0 0 0 ServerV2 0
System 0 29 0 ClientV2 0 Press:
Shared 0 0 0 ServerV3 0 "h" for help
Unmanaged 0 3 0 ClientV3 0 "q" to quit
Unclassified 0 1 0

The top 8 processors are displayed :
Topas Monitor for host: lpar05 Interval: 2 Tue Apr 8 09:49:01 2003

 Chapter 18. The bindintcpu and bindprocessor commands 293

 DATA TEXT PAGE PGFAULTS
USER PID PPID PRI NI RES RES SPACE TIME CPU% I/O OTH COMMAND
res1 24680 1 153 24 12 12 12 7:44100.0 0 0 cwhet_c
res1 17970 1 153 24 12 12 12 7:45100.0 0 0 cwhet_d
res1 31492 1 153 24 12 12 12 7:46100.0 0 0 cwhet_a
res1 34244 1 153 24 12 12 12 7:46100.0 0 0 cwhet_b
root 5418 0 36 41 4 0 4 0:03 0.0 0 0 netm
root 5676 0 37 41 14 0 17 7:52 0.0 0 0 gil
root 5934 0 16 41 2 0 4 0:10 0.0 0 0 wlmsched
root 6502 0 50 41 2 0 4 0:00 0.0 0 0 jfsz

The bindprocessor commands in Example 18-7 are used to bind the threads of
the top processes in Example 18-6 on page 293 to CPU1.

Example 18-7 The bindprocessor command used to bind processes to a CPU

bindprocessor 24690 1
bindprocessor 27970 1
bindprocessor 31492 1
bindprocessor 34244 1

Example 18-8 shows statistics obtained from the topas command output for CPU
and processes after the bindprocessor command was used to bind the threads
of the top four processes seen in Example 18-6 on page 293 to CPU1. Ultimately
the length of time that the four processes will run for on CPU1 will be longer than
if they were left to run on all four processors.

Example 18-8 bindprocessor command used to bind processes to a processor

Topas Monitor for host: lpar05 EVENTS/QUEUES FILE/TTY
Tue Apr 8 09:54:47 2003 Interval: 2 Cswitch 322 Readch 2
 Syscall 289 Writech 126
CPU User% Kern% Wait% Idle% Reads 1 Rawin 0
cpu1 100.0 0.0 0.0 0.0 Writes 1 Ttyout 0
cpu3 0.0 0.0 0.0 100.0 Forks 0 Igets 0
cpu0 0.0 0.0 0.0 100.0 Execs 0 Namei 0
cpu2 0.0 0.0 0.0 100.0 Runqueue 4.0 Dirblk 0
 Waitqueue 0.0
Network KBPS I-Pack O-Pack KB-In KB-Out
en0 0.4 4.0 1.0 0.3 0.1 PAGING MEMORY
lo0 0.0 0.0 0.0 0.0 0.0 Faults 0 Real,MB 8191
 Steals 0 % Comp 9.2
Disk Busy% KBPS TPS KB-Read KB-Writ PgspIn 0 % Noncomp 25.9
hdisk0 0.0 0.0 0.0 0.0 0.0 PgspOut 0 % Client 0.5
hdisk1 0.0 0.0 0.0 0.0 0.0 PageIn 0
 PageOut 0 PAGING SPACE
WLM-Class (Active) CPU% Mem% Disk-I/O% Sios 0 Size,MB 2048
Default 25 0 0 % Used 9.1
java 0 2 0 NFS (calls/sec) % Free 90.8

294 AIX 5L Performance Tools Handbook

http 0 0 0 ServerV2 0
System 0 29 0 ClientV2 0 Press:
Shared 0 0 0 ServerV3 0 "h" for help
Unmanaged 0 3 0 ClientV3 0 "q" to quit
Unclassified 0 1 0

Name PID CPU% PgSp Class
cwhet_c 24680 6.2 0.0 Default
cwhet_b 34244 6.2 0.0 Default
cwhet_a 31492 6.2 0.0 Default
cwhet_d 17970 6.2 0.0 Default
java 15712 0.0 0.2 java
topas 21914 0.0 1.7 System
gil 5676 0.0 0.0 System
db2dasrrm 8516 0.0 1.6 Default

 Chapter 18. The bindintcpu and bindprocessor commands 295

296 AIX 5L Performance Tools Handbook

Chapter 19. The gprof, pprof, prof, and
tprof commands

This chapter discusses CPU profiling tools that are available in AIX 5L. The
output of these tools can be used for analyzing the behavior of a system or a
program at a given time period. This is very useful for:

� Providing a baseline of CPU activity
� Debugging performance problems and bottlenecks

19

© Copyright IBM Corp. 2001, 2003 297

19.1 CPU profiling tools
The gprof command produces an execution profile of C, Pascal, FORTRAN, or
COBOL programs (with or without the source). The effect of called routines is
incorporated into the profile of each caller. The gprof command is useful in
identifying how a program consumes CPU resource. To find out which functions
(routines) in the program are using the CPU, you can profile the program with the
gprof command. gprof is a subset of the prof command.

The gprof command is useful for determining the following:

� Shows how much CPU time a program uses
� Helps to identify active areas of a program
� Profiles a program by routine
� Profiles parent-child

The gprof command resides in /usr/ccs/bin/gprof, is linked from /usr/bin/gprof,
and is part of the bos.adt.prof fileset, which is installable from the AIX base
installation media.

A similar profiler, named xprofiler, providing a Graphical User Interface (GUI) is
available as part of the IBM Parallel Environment for AIX. The xprofiler can be
used to profile both serial and parallel applications. From the xprofiler GUI, the
same command line flags as for gprof can be used. The xprofiler command
resides in /usr/lpp/ppe.xprofiler/bin, is linked to /usr/bin, and is part of the
ppe.xprofiler fileset, which is installable from the IBM Parallel Environment
installation media.

The pprof command reports on all kernel threads running within an interval using
the trace utility. The pprof command is useful for determining the CPU usage for
processes and their associated threads.

The pprof command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

The prof command displays object file profile data. This is useful for determining
where in an executable most of the time is spent. The prof command interprets
profile data collected by the monitor subroutine for the object program file (a.out
by default).

The prof command resides in /usr/ccs/bin, is linked from /usr/bin, and is part of
the bos.adt.prof fileset, which is installable from the AIX base installation media.

The tprof command reports CPU usage for individual programs and the system
as a whole. This command is a useful tool for anyone with a Java, C, C++, or

298 AIX 5L Performance Tools Handbook

FORTRAN program that might be CPU-bound and who wants to know which
sections of the program are most heavily using the CPU.

The tprof command can charge CPU time to object files, processes, threads,
subroutines (user mode, kernel mode, and shared library), and even to source
lines of programs or individual instructions. Charging CPU time to subroutines is
called profiling and charging CPU time to source program lines is called
micro-profiling.

For subroutine-level profiling, the tprof command can be run without modifying
executable programs (that is, no recompilation with special compiler flags is
necessary). This is still true if the executables have been striped, unless the back
tables have also been removed. However, recompilation is required to get a
micro-profile, unless a listing file is already available. To perform micro-profiling
on a program, either the program should be compiled with -g and the source files
should be accessible to tprof or the program should be compiled with -qlist and
either both the object listing files and the source files or just the object listing files
should be accessible to tprof. To take full advantage of tprof micro-profiling
capabilities, it is best to provide both the .lst and the source file.

The tprof command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

19.1.1 Comparison of tprof versus prof and gprof
The most significant differences between these three commands is that tprof
collects data with no impact on the execution time of the programs being profiled
and works on optimized and striped binaries without any need for recompilation
except to generate micro-profiling reports. Neither gprof nor prof have
micro-profiling capabilities or work on optimized or striped binaries, but they do
require special compilation flags and induce a slowdown in the execution time
that can be significant.

The prof and gprof tools are standard, supported profiling tools on many UNIX
systems, including in AIX 5L. Both prof and gprof provide subprogram profiling
and exact counts of the number of times every subprogram is called. The gprof
command also provides a very useful call graph showing the number of times
each subprogram was called by a specific parent and the number of times each
subprogram called a child. The tprof command provides neither subprogram call
counts nor call graph information.

All of these tools, tprof, prof, and gprof commands, obtain the CPU
consumption estimates for each subprogram by sampling the program counter of
the user program.

 Chapter 19. The gprof, pprof, prof, and tprof commands 299

19.2 gprof
The syntax of the gprof command is:

gprof [-b][-s][-z][-e Name][-E Name][-f Name][-F Name][-L PathName][gmon.out .]

Flags
-b Suppresses the printing of a description of each field in the

profile. This is very useful when you have learned what the
descriptions for each field are.

-E Name Suppresses the printing of the graph profile entry for routine
Name and its descendants, similar to the -e flag, but excludes the
time spent by routine Name and its descendants from the total
and percentage time computations.

-e Name Suppresses the printing of the graph profile entry for routine
Name and all of its descendants (unless they have other
ancestors that are not suppressed). More than one -e flag can be
given. Only one routine can be specified with each -e flag.

-F Name Prints the graph profile entry of the routine Name and its
descendants similar to the -f flag, but uses only the times of the
printed routines in total time and percentage computations. More
than one -F flag can be given. Only one routine can be specified
with each -F flag. The -F flag overrides the -E flag.

-f Name Prints the graph profile entry of the specified routine Name and
its descendants. More than one -f flag can be given. Only one
routine can be specified with each -f flag.

-L PathName Uses an alternate pathname for locating shared objects.

-s Produces the gmon.sum profile file, which represents the sum of
the profile information in all of the specified profile files. This
summary profile file may be given to subsequent executions of
the gprof command (using the -s flag) to accumulate profile data
across several runs of an a.out file.

-z Displays routines that have zero usage (as indicated by call
counts and accumulated time).

These are the parameters:

Name Suppresses reporting or displays profile of the Name routine.
PathName Pathname for locating shared objects.
gmon.out Call graph profile file.

300 AIX 5L Performance Tools Handbook

19.2.1 Information about measurement and sampling
The profile data is taken from the call graph profile file (gmon.out by default)
created by programs compiled with the cc command using the -pg flags. These
flags also link in versions of library routines compiled for profiling, and read the
symbol table in the named object file (a.out by default), correlating it with the call
graph profile file. If more than one profile file is specified, the gprof command
output shows the sum of the profile information in the given profile files.

The -pg flag causes the compiler to insert a call to the mcount subroutine into the
object code generated for each recompiled function of your program. During
program execution, each time a parent calls a child function, the child calls the
mcount subroutine to increment a distinct counter for that.

The gprof command produces three items:

� A listing showing the functions sorted according to the time they represent,
including the time of their call-graph descendents. (See “Detailed function
report” on page 302.) Below each function entry are its (direct) call-graph
children, with an indication of how their times are propagated to this function.
A similar display above the function shows how the time of the function and
the time of its descendents are propagated to its (direct) call-graph parents.

� A flat profile (see “Flat profile” on page 305) similar to that provided by the
prof command (19.4, “prof” on page 320). This listing gives total execution
times and call counts for each of the functions in the program, sorted by
decreasing time. The times are then propagated along the edges of the call
graph. Cycles are discovered, and calls into a cycle are made to share the
time of the cycle. Cycles are also shown, with an entry for the cycle as a
whole and a listing of the members of the cycle and their contributions to the
time and call counts of that cycle.

� A summary of cross-references found during profiling. (See “Listing of cross
references” on page 306.)

19.2.2 Profiling with the fork and exec subroutines
Profiling using the gprof command is problematic if your program runs the fork or
exec subroutine on multiple, concurrent processes. Profiling is an attribute of the
environment of each process, so if you are profiling a process that forks a new
process, the child is also profiled. However, both processes write a gmon.out file
in the directory from which you run the parent process, overwriting one of them.

Note: Symbols from C++ object files have their names demangled before they
are used.

 Chapter 19. The gprof, pprof, prof, and tprof commands 301

tprof is recommended for multiple-process profiling. See 19.5, “tprof” on
page 324 for more details.

If you must use the gprof command, one way around this problem is to call the
chdir subroutine to change the current directory of the child process. Then, when
the child process exits, its gmon.out file is written to the new directory.

19.2.3 Examples for gprof
This section shows an example of the gprof command in use. Two scenarios are
shown: one is when the source code of the program we wish to profile is
available and the other is when it is unavailable.

Profiling when the source code is available
The following example uses the source file cwhet.c, which is a standard
benchmarking program. The source code is provided in “cwhet.c” on page 968.

The first step is to compile the cwhet.c source code into a binary using:

xlc -o cwhet_pg -pg -qarch=auto -qtune=auto -lm -O3 cwhet.c

Then create the gmon.out file, which will be used by gprof, by running cwhet:

cwhet_pg

Then run gprof on the executable using:

gprof cwhet_g > cwhet_pg.gprof

Detailed function report
Now the cwhet_pg.gprof file can be examined. Lines in the report have been
removed to keep the report to a presentable size in Example 19-1.

Example 19-1 Output of gprof run on cwhet with source

$ cat cwhet_pg.gprof
...(lines omitted)...
granularity: each sample hit covers 4 byte(s) Time: 1060.13 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

 186.94 692.05 1/1 .__start [2]
[1] 82.9 186.94 692.05 1 .main [1]
 164.69 0.00 140000000/140000000 .mod3 [3]
 154.18 0.00 1920000000/1920000000 .cos [5]
 134.64 0.00 930000000/930000000 .log [6]
 90.87 0.00 930000000/930000000 .exp [7]

302 AIX 5L Performance Tools Handbook

 66.03 0.00 640000000/640000000 .atan [8]
 56.24 0.00 640000000/640000000 .sin [9]
 18.43 0.00 1865032704/1865032704 .mod9 [10]
 6.97 0.00 400065408/400065408 .mod8 [11]
 0.00 0.00 10/10 .pout [20]

 <spontaneous>
[2] 82.9 0.00 878.99 .__start [2]
 186.94 692.05 1/1 .main [1]
 0.00 0.00 1/1 .exit [33]
...(lines omitted)...

In the example, the first index [1] in the left-hand column shows that the .main
function is the current function. It was started by .__start (the parent function is
above the current function), and it, in turn, calls .mod3 and .mod8 (the child
functions are beneath the current function). All time of .main is propagated to
.__start (in this case 186.94s). The self and descendents columns of the
children of the current function should add up to the descendents’ entry for the
current function.

The following descriptions apply to the report in Example 19-1 on page 302.

The sum of self and descendents is the major sort for this listing. The following
fields are included:

index The index of the function in the call graph listing, as an aid
to locating it

%time The percentage of the total time of the program
accounted for by this function and its descendents

self The number of seconds spent in this function itself

descendents The number of seconds spent in the descendents of this
function on behalf of this function

called The number of times this function is called (other than
recursive calls)

self The number of times this function calls itself recursively

name The name of the function, with an indication of its
membership in a cycle, if any

index The index of the function in the call graph listing, as an aid
to locating it

 Chapter 19. The gprof, pprof, prof, and tprof commands 303

The following parent listings are included:

self1 The number of seconds of this function’s self time that is
due to calls from this parent.

descendents1 The number of seconds of this function’s descendent time
that is due to calls from this parent.

called2 The number of times this function is called by this parent.
This is the numerator of the fraction that divides up the
function’s time to its parents.

total1 The number of times this function was called by all of its
parents. This is the denominator of the propagation
fraction.

parents The name of this parent, with an indication of the parent’s
membership in a cycle, if any.

index The index of this parent in the call graph listing as an aid
in locating it.

The following children listings are included:

self1 The number of seconds of this child’s self time that is due
to being called by this function.

descendent1 The number of seconds of this child’s descendent’s time
that is due to being called by this function.

called The number of times this child is called by this function.
This is the numerator of the propagation fraction for this
child. Static-only parents and children are indicated by a
call count of zero.

total1 The number of times this child is called by all functions.
This is the denominator of the propagation fraction.

children The name of this child and an indication of its
membership in a cycle, if any.

index The index of this child in the call graph listing, as an aid to
locating it.

cycle listings The cycle as a whole is listed with the same fields as a
function entry. Below it are listed the members of the
cycle, and their contributions to the time and call counts of
the cycle.

1 This field is omitted for parents (or children) in the same cycle as the function. If the function (or child) is a member of a
cycle, the propagated times and propagation denominator represent the self time and descendent time of the cycle as a
whole.

304 AIX 5L Performance Tools Handbook

Flat profile
The flat profile sample is the second part of the cwhet_pg.gprof report.
Example 19-2 is a flat file produced by the gprof command.

Example 19-2 Flat profile report of profiled cwhet.c

$ cat cwhet_pg.gprof
...(lines omitted)...
granularity: each sample hit covers 4 byte(s) Total time: 1060.13 seconds

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 17.6 186.94 186.94 1 186940.00 878990.00 .main [1]
 15.5 351.63 164.69 140000000 0.00 0.00 .mod3 [3]
 15.2 512.46 160.83 .__mcount [4]
 14.5 666.64 154.18 1920000000 0.00 0.00 .cos [5]
 12.7 801.28 134.64 930000000 0.00 0.00 .log [6]
 8.6 892.15 90.87 930000000 0.00 0.00 .exp [7]
 6.2 958.18 66.03 640000000 0.00 0.00 .atan [8]
 5.3 1014.42 56.24 640000000 0.00 0.00 .sin [9]
 1.7 1032.85 18.43 1865032704 0.00 0.00 .mod9 [10]
 0.7 1039.82 6.97 400065408 0.00 0.00 .mod8 [11]
 0.6 1046.63 6.81 .qincrement [12]
 0.6 1053.41 6.78 .qincrement1 [13]
 0.6 1060.13 6.72 .__stack_pointer [14]
 0.0 1060.13 0.00 44 0.00 0.00 .mf2x2 [15]

...(lines omitted)...

The example shows the flat profile, which is less complex than the call-graph
profile. It is very similar to the output of prof. See 19.4, “prof” on page 320. The
primary columns of interest are the self seconds and the calls columns, as
these reflect the CPU seconds spent in each function and the number of times
each function was called. The self ms/call is the amount of CPU time used by
the body of the function itself, and total ms/call means time in the body of the
function plus any descendent functions called.

To enhance performance you would normally investigate the functions at the top
of the report. You should also consider how many calls are made to the function.
Sometimes it may be easier to make slight improvements to a frequently called
function than to make extensive changes to a piece of code called once.

These descriptions apply to the flat profile report in Example 19-2:

% time The percentage of the total running time of the program
used by this function.

cumulative seconds A running sum of the number of seconds accounted for by
this function and those listed above it.

 Chapter 19. The gprof, pprof, prof, and tprof commands 305

self seconds The number of seconds accounted for by this function
alone. This is the major sort for this listing.

calls The number of times this function was invoked, if this
function is profiled. Otherwise this column remains blank.

self ms/call The average number of milliseconds spent in this function
per call, if this function is profiled. Otherwise this column
remains blank.

total ms/call The average number of milliseconds spent in this function
and its descendents per call, if this function is profiled.
Otherwise this column remains blank.

name The name of the function. This is the minor sort for this
listing. The index shows the location of the function in the
gprof listing. If the index is in parentheses it shows where
it would appear in the gprof listing if it were to be printed.

Listing of cross references
A cross-reference index, as shown in Example 19-3, is the last item produced
summarizing the cross references found during profiling.

Example 19-3 Cross-references index report of profiled cwhet.c

$ cat cwhet_pg.gprof
...(lines omitted)...
Index by function name

 [27] .__flsbuf [7] .exp [36] .moncontrol
 [28] .__ioctl [24] .free [37] .monitor
 [4] .__mcount [25] .free_y [16] .myecvt
 [17] .__nl_langinfo_std [26] .free_y_heap [19] .nl_langinfo
 [14] .__stack_pointer [34] .ioctl [20] .pout
 [18] ._doprnt [35] .isatty [38] .pre_ioctl
 [29] ._findbuf [6] .log [21] .printf
 [30] ._flsbuf [1] .main [12] .qincrement
 [31] ._wrtchk [22] .mf2x1 [13] .qincrement1
 [32] ._xflsbuf [15] .mf2x2 [9] .sin
 [8] .atan [3] .mod3 [23] .splay
 [5] .cos [11] .mod8
 [33] .exit [10] .mod9

The report is an alphabetical listing of the cross references found during profiling.

Profiling when the source code is unavailable
If you do not have the source code for your program (in this case cwhet.c, which
can be seen in “cwhet.c” on page 968.) then you can profile using the gprof
command without recompiling, but you will still need the object for cwhet. You

306 AIX 5L Performance Tools Handbook

must be able to relink your program modules with the appropriate compiler
command (for example, cc for C program source files). If you do not recompile,
you do not get call frequency counts, although the flat profile is still useful without
them. The following sequence explains how to perform the profiling:

The first step is to compile cwhet.c source into a binary using:

cc -c -o cwhet.o cwhet.c

We then rename the source code:

mv cwhet.c cwhet.c_disappaer

Re-link the object file with the -pg option:

cc -pg -lm cwhet.o -L/lib -L/usr/lib -o cwhet_nosrc

Then create the gmon.out (which will be used by gprof) by running cwhet_nosrc
as follows:

cwhet_nosrc > cwhet.out

Then run gprof on the executable using:

gprof cwhet_nosrc > cwhet_nosrc.gprof

You will get the following error, which can be ignored:

Warning: mon.out file has no call counts. Program possibly not compiled with
profiled libraries.

Now the cwhet_nosrc.gprof file can be examined. Example 19-4 shows an
excerpt of the file. Lines in the report have been removed to keep the report to a
presentable size.

Example 19-4 Report of profiled cwhet.c without call counts

$ cat cwhet_nosrc.gprof
... (lines omitted)...

granularity: each sample hit covers 4 byte(s) Time: 1063.20 seconds

 called/total parents
index %time self descendents called+self name index
 called/total children

 <spontaneous>
[1] 26.3 279.25 0.00 .main [1]

 <spontaneous>
[2] 18.5 196.95 0.00 .mod3 [2]

 Chapter 19. The gprof, pprof, prof, and tprof commands 307

 <spontaneous>
[3] 11.5 122.04 0.00 .log [3]

 <spontaneous>
[4] 9.9 105.77 0.00 .sqrt [4]

....(line omitted)

 <spontaneous>
[8] 4.8 51.20 0.00 .mod9 [8]

 <spontaneous>
[9] 2.9 30.43 0.00 .mod8 [9]

... (lines omitted)...
the gprof listing if it were to be printed.
^L

granularity: each sample hit covers 4 byte(s) Total time: 1063.20 seconds

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 26.3 279.25 279.25 .main [1]
 18.5 476.20 196.95 .mod3 [2]
 11.5 598.24 122.04 .log [3]
 9.9 704.01 105.77 .sqrt [4]
 9.3 802.58 98.57 .cos [5]
 8.8 896.14 93.56 .exp [6]
 6.0 960.13 63.99 .atan [7]
 4.8 1011.33 51.20 .mod9 [8]
 2.9 1041.76 30.43 .mod8 [9]
 2.0 1063.19 21.43 .sin [10]
 0.0 1063.20 0.01 .nl_langinfo [11]
^L
Index by function name

 [7] .atan [1] .main [11] .nl_langinfo
 [5] .cos [2] .mod3 [10] .sin
 [6] .exp [9] .mod8 [4] .sqrt
 [3] .log [8] .mod9

In this example, look at the first index [1] in the left-hand column. This shows
that the .main function is the current function. It, in turn, calls .mod3, mod8, and
.mod9 (the child functions are beneath the current function).

308 AIX 5L Performance Tools Handbook

As can be seen by comparing Example 19-4 on page 307 with the one generated
in Example 19-1 on page 302, where the source code was available, the report
does not produce statistics on the average number of milliseconds spent in a
function per call and its descendents’ per call.

19.3 pprof
The syntax of the pprof command is:

pprof { <time> | -I <pprof.flow file> | -i <tracefile> | -d } [-s]
[-n] [-f] [-p] [-T <size>] [-v]

Flags
-I Generate reports from a previously generated pprof.flow.

-i Generate reports from a previously generated tracefile.

-d Waits for the user to execute trcon and trcstop commands
from the command line.

-T Sets trace kernel buffer size (default 32000 bytes).

-v Verbose mode (print extra details).

-n Just generate pprof.namecpu.

-f Just generate pprof.famcpu and pprof.famind.

-p Just generate pprof.cpu.

-s Just generate pprof.start.

-w Just generate pprof.flow.

Parameters
time Amount of seconds to trace the system

pprof.flow file Name of the previously generated pprof.flow file

tracefile Name of the previously generated trace file

size Kernel buffer size (default 32000 bytes)

19.3.1 Information about measurement and sampling
The pprof command reports on all kernel threads running within an interval using
the trace utility. The raw process information is saved in the file; five reports are
are also generated.

 Chapter 19. The gprof, pprof, prof, and tprof commands 309

The following types of reports are produced by pprof:

� pprof.cpu

Lists all kernel-level threads sorted by actual CPU time. Contains:

– Process Name
– Process ID
– Parent Process ID
– Process State at Beginning and End
– Thread ID
– Parent Thread ID
– Actual CPU Time
– Start Time
– Stop Time
– The difference between the Stop time and the Start time

� pprof.start

Lists all kernel threads sorted by start time. Contains:

– Process Name
– Process ID
– Parent Process ID
– Process State Beginning and End
– Thread ID
– Parent Thread ID
– Actual CPU Time
– Start Time
– Stop Time
– The difference between the Stop time and the Start time

� pprof.namecpu

Lists information about each type of kernel thread (all executable with the
same name). Contains:

– Process Name
– Number of Threads
– CPU Time
– % of Total CPU Time

� pprof.famind

Lists all processes grouped by families (processes with a common ancestor).
Child process names are indented with respect to the parent. Contains:

– Start Time
– Stop Time
– Actual CPU Time
– Process ID
– Parent Process ID

310 AIX 5L Performance Tools Handbook

– Thread ID
– Parent Thread ID
– Process State at Beginning and End
– Level
– Process Name

� pprof.famcpu

Lists the information for all families (processes with a common ancestor). The
Process Name and Process ID for the family is not necessarily the ancestor.
Contains:

– Start Time
– Process Name
– Process ID
– Number of Threads
– Total CPU Time

The trace hooks used by pprof are 000, 001, 002, 003, 005, 006, 135, 106, 10C,
134, 139, 465, 467, and 00A. This can be seen when you run the pprof
command: if you excute ps, it will display a trace process running, tracking those
trace hooks. See Appendix B, “Trace hooks” on page 973 for details of the trace
hooks used.

The trace process is automatically started and stopped by pprof if you are not
postprocessing an existing trace file.

19.3.2 Examples for pprof
To profile the CPU or CPUs of a system for 60 seconds, use the pprof 60
command to generate the reports shown in this section.

The pprof.cpu report
Example 19-5 shows the pprof.cpu file produced when running the pprof 60
command.

Example 19-5 The pprof.cpu report

cat pprof.cpu

 Pprof CPU Report

 Sorted by Actual CPU Time

 From: Thu Apr 10 16:39:12 2001
 To: Thu Apr 10 16:40:12 2001

 Chapter 19. The gprof, pprof, prof, and tprof commands 311

E = Exec'd F = Forked
X = Exited A = Alive (when traced started or stopped)
C = Thread Created

 Pname PID PPID BE TID PTID ACC_time STT_time STP_time STP-STT
========= ===== ===== === ===== ===== ======== ======== ======== ========
 dc 25294 19502 AA 39243 0 32.876 0.005 60.516 60.511
 dc 26594 26070 AA 45947 0 29.544 0.020 60.521 60.501
 cpu 27886 29420 AA 48509 0 29.370 0.011 60.532 60.521
 cpu 29156 29420 AA 49027 0 29.119 0.000 60.529 60.529
 cpu 28134 29420 AA 40037 0 28.629 0.008 60.532 60.525
 cpu 29420 26326 AA 47483 0 26.157 0.015 60.526 60.511
 dc 25050 21710 AA 36785 0 24.466 0.005 60.504 60.499
 cpu 28646 29420 AA 48767 0 17.772 0.013 60.514 60.501
 dc 26834 25812 AA 46187 0 17.654 0.023 60.494 60.471
seen+done 28904 23776 EA 48005 40515 0.932 29.510 60.533 31.023
 X 4224 4930 AA 5493 0 0.849 0.210 44.962 44.751
 xmtrend 20804 19502 AA 31173 0 0.754 0.305 59.665 59.360
seen+done 30964 23776 EA 50575 40515 0.749 33.780 60.533 26.753
seen+done 31218 23776 EA 50829 40515 0.635 36.328 60.533 24.205
 aixterm 24786 5510 AA 40257 0 0.593 0.215 42.394 42.179
seen+done 30446 23776 EA 49799 40515 0.544 35.124 60.513 25.389
 java 22376 23036 AA 33523 0 0.358 42.416 44.957 2.541
 netm 1548 0 AA 1549 0 0.144 41.582 60.533 18.952
...(lines omitted)...
 gil 2322 0 AA 3355 0 0.022 0.100 60.359 60.259
 trcstop 30188 -1 EA 49541 0 0.020 60.510 60.534 0.024
sadc 18272 22170 AX 33265 0 0.007 49.282 49.309 0.028
 trace 30444 30186 AX 49797 0 0.007 0.001 0.005 0.004
 nfsd 10068 1 AA 16777 0 0.006 0.069 60.148 60.079
 ksh 28902 23776 FE 48003 40515 0.006 19.230 19.238 0.008
 j2pg 5972 0 AA 11875 0 0.005 30.123 58.400 28.277
 j2pg 5972 0 AA 11123 0 0.004 29.963 57.532 27.569
 j2pg 5972 0 AA 9291 0 0.004 30.875 60.234 29.359
 j2pg 5972 0 AA 8533 0 0.004 30.063 57.722 27.659
...(lines omitted)...
 pprof 29930 26326 AA 49283 0 0.000 0.000 0.000 0.000
 ========
 242.116

The following values are displayed for this report:

Pname The name of the process.

PID The Process ID as it would appear with the ps command.

PPID The Parent Process ID (the process to which it belongs).

312 AIX 5L Performance Tools Handbook

BE The thread when profiling with pprof began (B) and when profiling
ended (E). The following options apply to this field:

E The thread was executed.

F The process was forked.

X The process exited.

A The process was alive (when traced started or stopped).

C The thread was created.

TID Thread ID.

PTID Parent Thread ID; that is, which thread it belongs to.

ACC_time Actual CPU time in milliseconds.

STT_time Process starting time in milliseconds.

STP_time Process stop time in milliseconds.

STP-STT Process stop time less the process start time.

This report lists all kernel level threads sorted by actual CPU time, showing that
the processes called dc and cpu were consuming the most CPU time. By looking
at the process ID, 25294, we can see that the STP-STT is 60.511 ms and the
ACC_time is 32.876 ms, indicating that since the process started, 50 percent of
that time has been used running on the CPU. The report also shows with (BE=AA)
that the thread was active both at the beginning of the trace and at the end.

The most important fields in this report are ACC_time and STP-STT. If the CPU
time (ACC_TIME) was high in proportion to the length of time the thread was
running (STP-STT), as is this case for the dc and cpu processes in the above
example, then the process should be investigated further with the gprof
command to look at the amount of CPU time the functions of the process are
using. This will help in any diagnosis to improve performance of the process.
Refer to Chapter 19, “The gprof, pprof, prof, and tprof commands” on page 297
for more details.

In the report above, you will see that some of the process names are listed as
UNKNOWN and the PPID is -1. This is because pprof reports on all kernel threads
running within an interval using the trace utility. If some processes had executed
or the thread had been created before trace utility started, their processes’ name
and PPID would not be caught in thread record hash tables that are read by
pprof. In this case, pprof would assign -1 as PPID to those processes.

The pprof.start report
Example 19-6 on page 314 shows the pprof.start file produced when running the
pprof 60 command.

 Chapter 19. The gprof, pprof, prof, and tprof commands 313

Example 19-6 The pprof.start report

cat pprof.start

 Pprof START TIME Report

 Sorted by Start Time

 From: Thu Apr 10 16:39:12 2001
 To: Thu Apr 10 16:40:12 2001

E = Exec'dF = Forked
X = ExitedA = Alive (when traced started or stopped)
C = Thread Created

 Pname PID PPID BE TID PTID ACC_time STT_time STP_time STP-STT
============ ====== ====== == ====== ====== ======== ======== ======== =======
 cpu 29156 29420 AA 49027 0 29.119 0.000 60.529 60.529
 pprof 29930 26326 AA 49283 0 0.000 0.000 0.000 0.000
 UNKNOWN 29672 -1 EA 47739 0 0.000 0.001 0.005 0.004
 UNKNOWN 28386 -1 EA 48253 0 0.000 0.001 0.001 0.000
 UNKNOWN 28386 -1 CA 50313 48253 0.012 0.001 57.780 57.780
 trace 30444 30186 AX 49797 0 0.007 0.001 0.005 0.004
 dc 25050 21710 AA 36785 0 24.466 0.005 60.504 60.499
 dc 25294 19502 AA 39243 0 32.876 0.005 60.516 60.511
 cpu 28134 29420 AA 40037 0 28.629 0.008 60.532 60.525
 init 1 0 AA 259 0 0.011 0.010 49.379 49.369
 cpu 27886 29420 AA 48509 0 29.370 0.011 60.532 60.521
 cpu 28646 29420 AA 48767 0 17.772 0.013 60.514 60.501
 cpu 29420 26326 AA 47483 0 26.157 0.015 60.526 60.511
 dc 26594 26070 AA 45947 0 29.544 0.020 60.521 60.501
 dc 26834 25812 AA 46187 0 17.654 0.023 60.494 60.471
 nfsd 10068 1 AA 16777 0 0.006 0.069 60.148 60.079
 i4llmd 17552 9034 AA 5979 0 0.121 0.069 60.450 60.381
 java 22376 23036 AA 37949 0 0.129 0.091 60.310 60.219
 gil 2322 0 AA 3355 0 0.022 0.100 60.359 60.259
 gil 2322 0 AA 2839 0 0.025 0.175 60.147 59.972
 X 4224 4930 AA 5493 0 0.849 0.210 44.962 44.751
 aixterm 24786 5510 AA 40257 0 0.593 0.215 42.394 42.179
 ksh 23776 24786 AA 40515 0 0.046 0.220 39.129 38.909
 gil 2322 0 AA 2581 0 0.024 0.230 60.379 60.149
 swapper 0 0 AA 3 0 0.052 0.238 59.757 59.520
 gil 2322 0 AA 3097 0 0.024 0.240 59.939 59.699
 syncd 5690 1 AA 7239 0 0.135 0.275 0.498 0.223
 UNKNOWN 30960 -1 EX 50571 0 0.000 0.275 0.285 0.009
 xmtrend 20804 19502 AA 31173 0 0.754 0.305 59.665 59.360

314 AIX 5L Performance Tools Handbook

...(lines omitted)...
 ========
 242.116

This report lists all kernel level threads sorted by start time. It shows the process
and thread status at the beginning of the trace.

For a description of the report fields and analysis, refer to “The pprof.cpu report”
on page 311.

The pprof.namecpu report
Example 19-7 shows the pprof.namecpu file produced when running the
pprof 60 command.

Example 19-7 The pprof.namecpu report

cat pprof.namecpu

 Pprof PROCESS NAME Report

 Sorted by CPU Time

 From: Thu Apr 10 16:39:12 2001
 To: Thu Apr 10 16:40:12 2001

 Pname #ofThreads CPU_Time %
 ======== ========== ======== ========
 cpu 5 131.047 54.126
 dc 4 104.540 43.178
 seen+done 4 2.860 1.181
 X 1 0.849 0.351
 xmtrend 1 0.754 0.311
 aixterm 2 0.594 0.245
 java 3 0.489 0.202
 netm 2 0.146 0.060
 syncd 1 0.135 0.056
 i4llmd 2 0.121 0.050
 ksh 6 0.113 0.047
 gil 5 0.095 0.039
 UNKNOWN 7 0.073 0.030
 j2pg 17 0.068 0.028
 swapper 1 0.052 0.021
 dtwm 1 0.050 0.021
 snmpd 1 0.034 0.014
 trcstop 1 0.020 0.008
 ls 1 0.020 0.008

 Chapter 19. The gprof, pprof, prof, and tprof commands 315

 init 1 0.011 0.005
 ttsession 1 0.008 0.003
 trace 1 0.007 0.003
 sadc 1 0.007 0.003
 rpc.lockd 3 0.007 0.003
 nfsd 3 0.006 0.002
 bsh 1 0.004 0.002
 dtstyle 1 0.002 0.001
 IBM.AuditRMd 1 0.001 0.000
 cron 1 0.001 0.000
 rmcd 2 0.001 0.000
 sendmail 1 0.001 0.000
 PM 1 0.000 0.000
 pprof 1 0.000 0.000
 IBM.ERrmd 1 0.000 0.000
 rtcmd 1 0.000 0.000
 hostmibd 1 0.000 0.000
 ========== ======== ========
 87 242.116 100.000

This report lists information about each type of kernel thread using these fields:

Pname The name of the process
#ofThreads The number of threads created by the process
CPU_Time The amount of CPU time consumed by the thread
% The percentage of CPU time consumed by the thread

The report shows that the cpu and dc processes are using the most CPU time.
Each line of the report represents all processes called Pname on the system. For
example, the five threads called cpu are combined to show as one in the report.
The number of threads per process is shown under the #ofThreads column.

The pprof.famind report
Example 19-8 shows the pprof.famind file produced when running the pprof 60
command.

Example 19-8 The pprof.famind report

 Pprof PROCESS FAMILY Report - Indented

 Sorted by Family and Start Time

 From: Thu Apr 10 16:39:12 2001
 To: Thu Apr 10 16:40:12 2001

E = Exec'd F = Forked
X = Exited A = Alive (when traced started or stopped)
C = Thread Created

316 AIX 5L Performance Tools Handbook

 STT STP ACC PID PPID TID PTID BE LV PNAME
 ======= ======= ======= ===== ===== ===== ===== == == ==============

 0.010 49.379 0.011 1 0 259 0 AA 0 init
 0.238 59.757 0.052 0 0 3 0 AA 0 swapper

 0.000 60.529 29.119 29156 29420 49027 0 AA 2 .. cpu
 0.008 60.532 28.629 28134 29420 40037 0 AA 2 .. cpu
 0.011 60.532 29.370 27886 29420 48509 0 AA 2 .. cpu
 0.013 60.514 17.772 28646 29420 48767 0 AA 2 .. cpu
 0.015 60.526 26.157 29420 26326 47483 0 AA 1 . cpu

 0.000 0.000 0.000 29930 26326 49283 0 AA 2 .. pprof

 0.001 0.005 0.000 29672 -1 47739 0 EA 2 .. UNKNOWN

 0.001 0.001 0.000 28386 -1 48253 0 EA 2 .. UNKNOWN
 0.001 57.780 0.012 28386 -1 50313 48253 CA 2 ..- UNKNOWN

 0.001 0.005 0.007 30444 30186 49797 0 AX 2 .. trace

 0.005 60.504 24.466 25050 21710 36785 0 AA 2 .. dc

 0.005 60.516 32.876 25294 19502 39243 0 AA 2 .. dc

 0.020 60.521 29.544 26594 26070 45947 0 AA 2 .. dc

 0.023 60.494 17.654 26834 25812 46187 0 AA 2 .. dc

 0.069 60.148 0.006 10068 1 16777 0 AA 2 .. nfsd
 7.453 7.453 0.000 10068 1 17035 0 AA 2 .. nfsd
 7.537 38.046 0.000 10068 1 17289 0 AA 2 .. nfsd

 0.069 60.450 0.121 17552 9034 5979 0 AA 2 .. i4llmd
 14.930 14.930 0.000 5204 17552 26071 0 AA 3 ... i4llmd

 0.091 60.310 0.129 22376 23036 37949 0 AA 2 .. java
 42.410 44.948 0.002 22376 23036 36885 0 AA 2 .. java
 42.416 44.957 0.358 22376 23036 33523 0 AA 2 .. java

 0.100 60.359 0.022 2322 0 3355 0 AA 2 .. gil
 0.175 60.147 0.025 2322 0 2839 0 AA 2 .. gil
 0.230 60.379 0.024 2322 0 2581 0 AA 2 .. gil
 0.240 59.939 0.024 2322 0 3097 0 AA 2 .. gil

 0.210 44.962 0.849 4224 4930 5493 0 AA 2 .. X

 Chapter 19. The gprof, pprof, prof, and tprof commands 317

This report includes the following fields:

STT The process start time.

STP The process stop time.

ACC The actual CPU time.

PID The Process ID as it would appear with the ps command.

PPID The Parent Process ID; that is, which process it belongs to.

TID The Thread ID.

PTID The Parent Thread ID; that is, which thread it belongs to.

BE The state of the thread when profiling with pprof began (B) and
when profiling ended (E). The following options apply to this field:

E The thread was Executed.

F The process was Forked.

X The process Exited.

A The process was alive (when trace started or stopped).

C The thread was Created.

LV The run level has the value of 0 - 9. It tells the init command to
place the system in one of the run levels 0-9. When the init
command requests a change to run levels 0-9, it kills all processes
at the current run levels, then starts any processes associated with
the new run levels. The value of these levels:

0-1 Reserved for future use of the operating system.

2 Contains all of the terminal processes and daemons that are
run in the multiuser environment. In the multiuser environment,
the /etc/inittab file is set up so that the init command creates
a process for each terminal on the system. The console device
driver is also set to run at all run levels so the system can be
operated with only the console active.

3-9 Can be defined according to the user’s preferences.

More about run levels can be found in AIX 5L Version 5.2
Commands Reference Volume 5 for the telinit command or at:
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/telinit.
htm

PNAME The name of the process.

The report shows the processes sorted by their ancestors (parents) and process
name. It is useful for determining which processes have forked other processes.

318 AIX 5L Performance Tools Handbook

http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/telinit.htm

By looking at the ACC column, you can ascertain how much CPU time was
consumed by the process.

The pprof.famcpu report
Example 19-9 shows the pprof.famcpu file produced when running the pprof 60
command.

Example 19-9 The pprof.famcpu report

 Pprof PROCESS FAMILY SUMMARY Report

 Sorted by CPU Time

 From: Tue May 29 16:39:12 2001
 To: Tue May 29 16:40:12 2001

 Stt-Time Pname PID #Threads Tot-Time
 ======== ==================== ===== ======== ========
 0.0000 cpu 29156 5 131.047
 0.0051 dc 25294 1 32.876
 0.0201 dc 26594 1 29.544
 0.0048 dc 25050 1 24.466
 0.0226 dc 26834 1 17.654
 0.2151 aixterm 24786 12 3.584
 0.2101 X 4224 1 0.849
 0.3051 xmtrend 20804 1 0.754
 0.0912 java 22376 3 0.489
 41.5815 netm 1548 1 0.144
 0.2751 syncd 5690 1 0.135
 0.0690 i4llmd 17552 2 0.121
 0.1001 gil 2322 4 0.095
 29.6299 j2pg 5972 17 0.070
 0.2376 swapper 0 1 0.052
 16.3183 UNKNOWN 30708 1 0.050
 12.2293 dtwm 23240 1 0.050
 6.9476 snmpd 7746 1 0.034
 60.5083 UNKNOWN 30188 2 0.022
 0.0006 UNKNOWN 28386 2 0.012
 0.0101 init 1 1 0.011
 49.2815 sadc 18272 2 0.010
 0.4880 UNKNOWN 30962 1 0.010
 42.3540 ttsession 20172 1 0.008
 0.4748 rpc.lockd 8016 3 0.007
 0.0009 trace 30444 1 0.007
 0.0690 nfsd 10068 3 0.006
 0.8952 netm 2064 1 0.002
 42.3864 dtstyle 4844 1 0.002
 7.6887 rmcd 6464 2 0.001

 Chapter 19. The gprof, pprof, prof, and tprof commands 319

 11.0259 sendmail 9832 1 0.001
 48.1527 cron 11370 1 0.001
 42.3944 aixterm 16872 1 0.001
 7.4702 IBM.AuditRMd 17034 1 0.001
 8.0185 gil 1806 1 0.000
 2.3701 IBM.ERrmd 17302 1 0.000
 37.2309 hostmibd 10582 1 0.000
 4.9364 PM 13676 1 0.000
 0.2752 UNKNOWN 30960 1 0.000
 0.5870 rtcmd 8258 1 0.000
 0.0005 UNKNOWN 29672 1 0.000
 0.0001 pprof 29930 1 0.000
 ======== ========

 87 242.116

This report lists the processes with a common ancestor and shows them sorted
by their ancestors (parents). It is useful for determining how many threads per
process are running and how much CPU time the threads are consuming.

The following fields are listed:

Stt-Time The process starting time
Pname The name of the process
PID The Process ID as it would appear with the ps command
#Threads Number of threads created by the process
Tot-Time The process stop time less the process start time

19.4 prof
The syntax of the prof command is:

prof [-t | -c | -a | -n] [-o | -x] [-g] [-z] [-h] [-s] [-S]
[-v][-L PathName] [Program] [-m MonitorData ...]

Flags
The mutually exclusive flags -a, -c, -n, and -t determine how the prof command
sorts the output lines; if multiple flags are specified, it uses only the first one:

-a Sorts by increasing symbol address
-c Sorts by decreasing number of calls
-n Sorts alphabetically by symbol name
-t Sorts by decreasing percentage of total time (default)

The mutually exclusive flags o and x specify how to display the address of each
symbol monitored. If multiple flags are specified, it uses only the first one.

-o Displays each address in octal, along with the symbol name

320 AIX 5L Performance Tools Handbook

-x Displays each address in hexadecimal, along with the symbol
name

Additional flags:

-g Includes non-global symbols (static functions).

-h Suppresses the heading normally displayed on the report. This
is useful if the report is to be processed further.

-L PathName Uses alternate path name for locating shared objects.

-m MonitorData Takes profiling data from MonitorData instead of mon.out.

-s Produces a summary file called mon.sum. This is useful when
more than one profile file is specified.

-S Displays a summary of monitoring parameters and statistics on
standard error.

-v Suppresses all printing and sends a graphic version of the
profile to standard output for display by the plot filters. When
plotting, low and high numbers (by default, zero and 100) can
be given to cause a selected percentage of the profile to be
plotted with accordingly higher resolution.

-z Includes all symbols in the profile range, even if associated
with zero calls and zero time.

Parameters
PathName Specifies the alternate path name for locating shared objects.

Refer to the -L flag.

Program The name of the object file name to profile.

MonitorData Takes profiling data from MonitorData instead of mon.out.

19.4.1 Information about measurement and sampling
The prof command reads the symbol table in the Program object file and
correlates it with the profile file (mon.out by default). The prof command displays,
for each external text symbol, the percentage of execution time spent between
the address of that symbol and the address of the next, the number of times that
function was called, and the average number of milliseconds per call.

Note: Symbols from C++ object files have their names demangled before they
are used.

 Chapter 19. The gprof, pprof, prof, and tprof commands 321

To tally the number of calls to a function, you must have compiled the file using
the cc command with the -p flag. The -p flag causes the compiler to insert a call
to the mcount subroutine into the object code generated for each recompiled
function of your program. While the program runs, each time a parent calls a
child function the child calls the mcount subroutine to increment a distinct counter
for that parent-child pair. Programs not recompiled with the -p flag do not have
the mcount subroutine inserted and therefore keep no record of which function
called them.

The -p flag also arranges for the object file to include a special profiling startup
function that calls the monitor subroutine when the program begins and ends.
The call to the monitor subroutine when the program ends actually writes the
mon.out file. Therefore, only programs that explicitly exit or return from the main
program cause the mon.out file to be produced.

The location and names of the objects loaded are stored in the mon.out file. If
you do not select any flags, prof will use these names. You must specify a
program or use the -L option to access other objects.

19.4.2 Examples for prof
The examples in this section use the cwhet.c program that is shown in “cwhet.c”
on page 968.

The first step of creating the following examples explaining prof is to compile the
cwhet.c source into a binary using:

cc -o cwhet -p -lm cwhet.c

The -p flag of the cc compiler creates profiling support.

Then run cwhet. It creates mon.out, which prof will use for post processing. Run
prof on the executable using:

prof -xg -s > cwhet.prof

This command creates two files:

cwhet.prof The cwhet.prof file, as specified in the command line, is shown in
the following example.

Note: Imported external routine calls, such as a call to a shared library
routine, have an intermediate call to local glink code that sets up the call to the
actual routine. If the timer clock goes off while running this code, time is
charged to a routine called routine.gl, where routine is the routine being called.
For example, if the timer goes off while in the glink code to call the printf
subroutine, time is charged to the printf.gl routine.

322 AIX 5L Performance Tools Handbook

mon.sum This is a summary report.

The cwhet.prof report
Example 19-10 shows the cwhet.prof file produced when running prof.

Example 19-10 The cwhet.prof report

cat cwhet.prof
Address Name Time Seconds Cumsecs #Calls msec/call
10000868 .main 28.3 0.63 0.63 1 630.0
100005e8 .mod8 26.0 0.58 1.21 8990000 0.0001
10001528 .__mcount 7.6 0.17 1.38
10002930 .sqrt 7.2 0.16 1.54
10000550 .mod9 7.2 0.16 1.70 6160000 0.0000
10002328 .log 5.8 0.13 1.83 930000 0.0001
10001e20 .cos 4.5 0.10 1.93 1920000 0.0001
10000688 .mod3 4.5 0.10 2.03 140000 0.0007
100026a0 .exp 2.7 0.06 2.09 930000 0.0001
10002088 .atan 2.2 0.05 2.14 640000 0.0001
10001660 .qincrement1 1.8 0.04 2.18
10001688 .qincrement 1.8 0.04 2.22
10001be8 .sin 0.4 0.01 2.23 640000 0.0000
100007ac .pout 0.0 0.00 2.23 10 0.0
d24d4ab4 .__nl_langinfo_std 0.0 0.00 2.23 10 0.0
d24db95c .free 0.0 0.00 2.23 2 0.0
d24dd99c .isatty 0.0 0.00 2.23 1 0.0
d24ddf04 .__ioctl 0.0 0.00 2.23 1 0.0
d24de0c8 .pre_ioctl 0.0 0.00 2.23 1 0.0
d24de3f0 .ioctl 0.0 0.00 2.23 1 0.0
d24df8e8 ._flsbuf 0.0 0.00 2.23 90 0.0
..... (more lines).....

In this example, we can see that most of the calls are to the .mod8 and .mod9
routines; notice the time spent for each call. You could look at the .mod8 and
.mod9 routines from the source code to see whether they could be rewritten more
efficiently, or use the inline option in compiler to increase the performance.

The following columns are reported:

Address The virtual address where the function is located

Name The name of the function

Time The percentage of the total running time of the time
program used by this function

Seconds The number of seconds accounted for by this function
alone

 Chapter 19. The gprof, pprof, prof, and tprof commands 323

Cumsecs A running sum of the number of seconds accounted for by
this function

#Calls The number of times this function was invoked, if this
function is profiled

msec/call The average number of milliseconds spent in this function
and its descendents per call, if this function is profiled

19.5 tprof
The syntax of the tprof command is:

tprof [-c] [-C { all | CPUList }] [-d] -D] [-e] [-F] [-j] [-k]
[-l] [-m ObjectsList] [-M SourcePathList] [-p ProcessList]
[-P { all | PIDsList }] [-s][-S SearchPathList] [-t] [-T BufferSize]
[-u] [-v] [-V VerboseFileName] [-z]
{{ -r RootString } | { [-A { all | CPUList }] [-r RootString] -x Program } }

In this syntax diagram, the following applies:

� All of the list type inputs are separated by a comma except for pathlist, which
is separated by a colon.

� Per-CPU profiling mode is automatically disabled while running in realtime
mode.

� Microprofiling is automatically disabled if per-CPU profiling is turned on.

� If the -x flag is specified without the -A flag, tprof runs in realtime mode.

� If the -x flag is specified with the -A flag, tprof runs in automated offline
mode.

� If the -x flag is omitted tprof runs in post-processing mode or manual offline
mode, depending on the presence of cooked files and the -F flag.

Flags
-A {all | CPUList}Turns on automatic offline mode. No argument turns off

per-CPU tracing. all enables tracing of all CPUs. CPUList is a
comma separated list of CPU IDs to be traced.

-c Turns on generation of cooked files.

-C all | CPU Turns on per-CPU profiling. Specify all to generate profile
reports for all CPUs. CPU numbers should be separated with a
comma if you give a CPUlist (for example, 0,1,2). Per-CPU
profiling is possible only if per-CPU trace is either on (in
automated offline mode), or has been used (in manual offline
mode). It is not possible at all in online mode.

324 AIX 5L Performance Tools Handbook

-d Turns on deferred tracing mode (defers data collection until
trcon is called).

-D Turns on detailed profiling, which displays CPU usage by
instruction offset under each subroutine.

-e Turns on kernel extension profiling.

-F Overwrites cooked files if they exist. If used without the -x flag,
this forces the manual offline mode.

-j Turns on Java class and methods of profiling.

-k Enables kernel profiling.

-l Enables long names reporting. By default tprof truncates the
subroutine, program, and source file names if they do not fit
into the available space in the profiling report. This flag
disables truncation.

-m ObjectsList Enables micro-profiling of objects in the comma-separated list
Objectlist. Executables, shared libraries, and kernel extensions
can be micro-profiled. Specify the archive name for libraries
and kernel extensions. To enable micro-profiling of programs,
user mode profiling (-u) must be turned on. To enable
micro-profiling of shared libraries, shared library profiling (-s)
must be turned on. To enable micro-profiling of kernel
extensions, kernel extension profiling (-e) must be turned on.

-M PathList Specifies the source path list. The PathList is a
colon-separated list of paths that are searched for source files
and .lst files that are required for micro-profiling. By default the
source path list is the object search path list.

-p ProcessList Enables process-level profiling of the process names specified
in the ProcessList. ProcessList is a comma-separated list of
process names. Process level profiling is enabled only if at
least one of the profiling modes (-u,-s,-k,-e, or -j) is turned on.

-P {all | PIDList} Enables process-level profiling of all processes encountered or
for processes specified with PIDList, a comma-separated list of
process IDs. Process level profiling is enabled only if at least
one of the profiling modes (-u,-s,-k,-e, or -j) is turned on.

-r RootString Specifies the RootString. tprof input and report files all have
names in the form of RootString.suffix. If -r is not specified,
RootString defaults to the program name specified with the -x
flag.

-s Enables shared library profiling.

 Chapter 19. The gprof, pprof, prof, and tprof commands 325

-S PathList Specifies the object search PathList, a colon-separated list of
paths that are searched for executables, shared libraries, and
kernel extensions. The default object search PathList is the
environment path list ($PATH).

-t Enables thread level profiling. If -p or -P are not specified with
the -t flag, -t is equivalent to -P all -t. Otherwise, it enables
thread level reporting for the selected processes. Thread level
profiling is enabled only if at least one of the profiling modes
(-u,-s,-k,-e, -j) is enabled.

-T BufferSize Specifies the trace BufferSize. This flag has meaning only in
real-time or automated offline modes.

-u Enables user mode profiling.

-v Enables verbose mode.

-V File Stores the verbose output in the specified File.

-x Specifies the program to be executed by tprof. Data collection
stops when the program completes or trace is manually
stopped with either trcoff or trcstop. The -x flag must be the
last flag in the list of flags specified in tprof. By default the
program name is the RootString used for the filenames unless
overridden by the -r flag.

-z Enables compatibility mode with the previous version of tprof.
By default CPU usage is only reported in percentages. When
-z is used, tprof also reports ticks. This flag also adds the
Address and Bytes columns in subroutine reports.

19.5.1 Information about measurement and sampling
In the AIX operating system, a decrementer interrupt is issued whenever a timer
expires on one of the processors. At least one timer per processor is active. The
granularity of this timer is 10 milliseconds, and it is used to run a housekeeping
kernel routine. However, if high-resolution timers are used, a decrementer
interrupt is issued each time a high-resolution timer expires. This increases the
number of decrementer interrupts per second.

The formula for the decrementer interrupts is:

di/sec = (#CPUs * 100) + et

where:

di/sec Decrementer interrupts per second
#CPU Number of processors
et Decrementer interrupts issued by expired high-resolution timers

326 AIX 5L Performance Tools Handbook

The tprof command uses this decrementer interrupt to record the Process ID
(PID) and the address of the instruction executing when the interrupt occurs.
Using these data pairs (PID + Address), the tprof command can charge CPU
time to processes, threads, subroutines, and source code lines. Refer to
Example 19-11 for an example of the trace data used by tprof. Source code line
profiling is called micro profiling.

The tprof command gathers a sample each time the decrementer interrupt is
issued. This may not be sufficiently accurate for short programs. However, the
accuracy is sufficient for programs running several minutes or longer.

The tprof command uses the AIX trace facility. Only one user can use the AIX
trace facility at a time. Thus, only one tprof command can be active in the
system at a time.

The tprof command can run in the following four modes:

� Realtime or online: Using the -x and without -A, it generates the profile report
immediately for the currently running system.

� Automated offline: Using -A and -x, it generates the symbolic list and the trace
file. If -c is specified, the resulting files are .csyms and .ctrc files, which means
cooked (processed) files.

� Manual offline: Using the syms and trc files, with -F flag (to force manual
offline) and without -x or -A. The syms file can be generated by tprof or
gensyms commands.

� Post-processing: Using the cooked csyms and ctrc files to generate profiling
report.

Example 19-11 shows how tprof used the trace hook 234 to gather the
necessary data.

Example 19-11 Trace data used by tprof

Mon Jun 4 15:16:22 2001
System: AIX datahost Node: 5
Machine: 000BC6AD4C00
Internet Address: 010301A4 1.3.1.164
The system contains 4 cpus, of which 4 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

/usr/bin/trace -a -C all

ID PROCESS CPU PID TID ELAPSED KERNEL INTERRUPT

 Chapter 19. The gprof, pprof, prof, and tprof commands 327

 (... lines omitted ...)

100 wait 3 1290 1291 0.002359 DECREMENTER INTERRUPT iar=25C88 cpuid=03
234 wait 3 1290 1291 0.002364 clock: iar=25C88 lr=26BF0
100 wait 3 1290 1291 0.002879 DECREMENTER INTERRUPT iar=25CAC cpuid=03
234 wait 3 1290 1291 0.002880 clock: iar=25CAC lr=26BF0 [516 usec]
100 wait 0 516 517 0.004866 DECREMENTER INTERRUPT iar=26BA8 cpuid=00
234 wait 0 516 517 0.004868 clock: iar=26BA8 lr=26BF0 [1988 usec]
100 wait 1 774 775 0.007352 DECREMENTER INTERRUPT iar=26BCC cpuid=01
234 wait 1 774 775 0.007355 clock: iar=26BCC lr=26BF0 [2486 usec]
100 ksh 2 4778 34509 0.009856 DECREMENTER INTERRUPT iar=22C5C cpuid=02
234 ksh 2 4778 34509 0.009860 clock: iar=22C5C lr=22BB0 [2505 usec]

 (... lines omitted ...)

100 ksh 3 13360 42871 0.012359 DECREMENTER INTERRUPT iar=D01D4260 cpuid=03
234 ksh 3 13360 42871 0.012361 clock: iar=D01D4260 lr=D01C722C [2501 usec]

 (... lines omitted ...)

100 wait 0 516 517 0.014862 DECREMENTER INTERRUPT iar=25D54 cpuid=00
234 wait 0 516 517 0.014864 clock: iar=25D54 lr=26BF0 [2502 usec]

 (... lines omitted ...)

100 wait 1 774 775 0.017356 DECREMENTER INTERRUPT iar=25D40 cpuid=01
234 wait 1 774 775 0.017360 clock: iar=25D40 lr=26BF0 [2495 usec]
100 wait 2 1032 1033 0.019861 DECREMENTER INTERRUPT iar=25D30 cpuid=02
234 wait 2 1032 1033 0.019865 clock: iar=25D30 lr=26BF0 [2505 usec]
100 wait 3 1290 1291 0.022355 DECREMENTER INTERRUPT iar=25CAC cpuid=03
234 wait 3 1290 1291 0.022358 clock: iar=25CAC lr=26BF0 [2492 usec]
100 wait 0 516 517 0.024857 DECREMENTER INTERRUPT iar=25E50 cpuid=00
234 wait 0 516 517 0.024858 clock: iar=25E50 lr=26BF0 [2500 usec]

 (... lines omitted ...)

This example shows trace hook 100 for the decrementer interrupt. However,
tprof only uses the trace hook 234. Focusing on the decrementer interrupts and
following trace hook 234 for CPU number 3 shows that the second interrupt at
0.002879 was not issued by the normal 10 millisecond timer. A high resolution
timer was causing this decrementer interrupt. The interrupts for the 10 ms timer
for this processor were issued at 0.002359, 0.012359, and 0.022355.

328 AIX 5L Performance Tools Handbook

19.5.2 Examples for tprof
This section shows some examples for using tprof.

The tprof report
The tprof report is divided into sections and subsections. Some sections are
created depending on the flags specified, such as kernel routines (-k), kernel
extension (-e), shared libraries (-s), Java profiling enabled (-j), user mode
profiling enabled(-u). The report file is has the suffix .prof from the root string.
The root string is by default the command name that is being profiled. The report
in the .prof file contains:

� Summary report section

– CPU usage summary by process name
– CPU usage summary by threads (tid)

� Global profile section, which pertains to the execution of all processes on
system. Parts of this section are activated by specific flags as indicated in the
parentheses.

– CPU usage of user mode routines (-u)
– CPU usage of kernel routines (-k)
– CPU usage summary for kernel extensions (-e)
– CPU usage of each kernel extension's subroutines. (-e)
– CPU usage summary for shared libraries (-s)
– CPU usage of each shared library's subroutines. (-s)
– CPU usage of each Java class. (-j)
– CPU usage of each Java methods of each Java class. (-j)

� Process and thread level profile sections. There is one section for each
process or thread.

– CPU usage of user mode routines for this process/thread
– CPU usage of kernel routines for this process/thread.
– CPU usage summary for kernel extensions for this process/thread.
– CPU usage of each kernel extension's subroutines for this process/thread.
– CPU usage summary for shared libraries for this process/thread.
– CPU usage of each shared library's subroutines for this process/thread.
– CPU usage of each Java class for this process/thread.
– CPU usage of Java methods of each Java class for this process/thread.

The summary report section is always present in the RootString.prof report file.
Based on the profiling flags the various subsections of the global profile section
can be turned on and off.

The process and thread level profile sections are created for processes and
threads selected with the -p, -P, and -t flags. The subsections present within each

 Chapter 19. The gprof, pprof, prof, and tprof commands 329

of the per-process or per-thread sections are identical to the subsections present
in the global section, they are selected using the profiling flags (-u,-s,-k,-e,-j).

Optionally, when tprof is called with the -C flag, it also generates per-CPU
profiling reports. The generated tprof reports have the same structure and are
named using the convention: RootString.prof-cpuid.

Global profiling with tprof
In this example, we use tprof to perform global profiling over 20 seconds of time.
The tprof command is invoked with sleep command as a timer. We show this for
online, offline, and post-processing modes.

Online profiliing
Example 19-12 shows the use of the tprof command to profile the system by
using tprof -kes -x sleep 20 to create the summary report for the whole
system. This report includes profile information for kernel (-k), shared library (-s),
and kernel extensions (-e). The -x sleep 20 is used to control the sample time of
the tprof command, 20 seconds in this case.

Example 19-12 Running tprof to profile the system

tprof -kes -x sleep 20
Wed Apr 9 14:33:24 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Starting Command sleep 20
stopping trace collection.
Generating sleep.prof.

The result is the file sleep.prof in the current directory. The content of sleep.prof
is shown in Example 19-13.

Example 19-13 Result of tprof in sleep.prof

Process Freq Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
wait 4 49.68 49.68 0.00 0.00 0.00
cwhet_a 1 25.00 0.00 25.00 0.00 0.00
cwhet_c 1 25.00 0.00 25.00 0.00 0.00
/usr/bin/topas 1 0.22 0.21 0.00 0.01 0.00
/usr/bin/sh 3 0.03 0.02 0.01 0.00 0.00
5 2 0.02 0.01 0.00 0.01 0.00
/usr/bin/trcstop 1 0.01 0.01 0.00 0.00 0.00
db2dasrrm 1 0.01 0.00 0.00 0.01 0.00
/usr/bin/tprof 1 0.01 0.00 0.00 0.01 0.00
gil 1 0.01 0.01 0.00 0.00 0.00
======= ==== ===== ====== ==== ====== =====
Total 16 100.00 49.94 50.02 0.05 0.00

330 AIX 5L Performance Tools Handbook

Process PID TID Total Kernel User Shared Other
======= === === ===== ====== ==== ====== =====
cwhet_a 21770 53081 25.00 0.00 25.00 0.00 0.00
cwhet_c 8826 73389 25.00 0.00 25.00 0.00 0.00
wait 516 517 24.95 24.95 0.00 0.00 0.00
wait 1290 1291 24.54 24.54 0.00 0.00 0.00
/usr/bin/topas 23970 8407 0.22 0.21 0.00 0.01 0.00
wait 1032 1033 0.17 0.17 0.00 0.00 0.00
wait 774 775 0.02 0.02 0.00 0.00 0.00
5 0 68403 0.01 0.00 0.00 0.01 0.00
/usr/bin/sh 34774 50721 0.01 0.01 0.00 0.00 0.00
/usr/bin/sh 25640 69131 0.01 0.00 0.01 0.00 0.00
/usr/bin/sh 25638 69129 0.01 0.01 0.00 0.00 0.00
db2dasrrm 8516 10879 0.01 0.00 0.00 0.01 0.00
gil 5676 6451 0.01 0.01 0.00 0.00 0.00
/usr/bin/tprof 18046 76375 0.01 0.00 0.00 0.01 0.00
/usr/bin/trcstop 34776 50723 0.01 0.01 0.00 0.00 0.00
5 0 17663 0.01 0.01 0.00 0.00 0.00
======= === === ===== ====== ==== ====== =====
Total 100.00 49.94 50.02 0.05 0.00

 Total Samples = 8775 Total Elapsed Time = 21.94s

 Total % For All Processes (KERNEL) = 49.93

Subroutine % Source
========== ====== ======
.waitproc_find_run_queue 35.54 rnel/proc/dispatch.c
.waitproc 12.59 rnel/proc/dispatch.c
.h_cede_native 0.76 nel/ml/POWER/stubs.c
.h_cede 0.72 hcalls.s
.memset_overlay 0.09 low.s
.upd_vminfo 0.08 rnel/vmm/vmgetinfo.c
h_get_term_char_end_point 0.05 hcalls.s
.trchook 0.02 trchka.s
pcs_glue 0.02 vmvcs.s
.unlock_enable_mem 0.01 low.s
.nlcLookup 0.01 bos/kernel/lfs/nlc.c
.pfslowtimo 0.01 kernel/uipc/domain.c
.vnop_rdwr 0.01 s/kernel/lfs/vnops.c

 Total % For All Processes (KEX) = 0.01

Kernel Ext %
========== ======
/usr/lib/drivers/ldterm[ldterm32] 0.01

 Profile: /usr/lib/drivers/ldterm[ldterm32]

 Chapter 19. The gprof, pprof, prof, and tprof commands 331

 Total % For All Processes (/usr/lib/drivers/ldterm[ldterm32]) = 0.01

Subroutine % Source
========== ====== ======
.ldtty_putc 0.01 ers/ldterm[ldterm32]

 Total % For All Processes (SH-LIBs) = 0.05

Shared Object %
============= ======
/usr/lib/libtrace.a[shr.o] 0.01
/usr/WebSphere/AppServer/java/jre/bin/classic/libjvm.a/ 0.01
/usr/lib/libxcurses.a[shr4.o] 0.01
/usr/lib/libpthreads.a[shr_xpg5.o] 0.01

 Profile: /usr/lib/libtrace.a[shr.o]

 Total % For All Processes (/usr/lib/libtrace.a[shr.o]) = 0.01

Subroutine % Source
========== ====== ======
.eread 0.01 btrace/trcgetevent.c

 Profile: /usr/WebSphere/AppServer/java/jre/bin/classic/libjvm.a/

 Total % For All Processes
(/usr/WebSphere/AppServer/java/jre/bin/classic/libjvm.a/) = 0.01
..... (more lines)......

Offline profiling
To perform profiling similar to Example 19-12 on page 330 but use offline
processing, -A is specified for tprof to run in automated offline mode. Three files
are generated with the trc, prof, and syms extensions, as shown in
Example 19-14.

Example 19-14 Gather the data to run tprof in offline mode

tprof -A -x sleep 20
Starting Command sleep 20
stopping trace collection.
Wed Apr 9 15:06:10 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Generating sleep.trc
Generating sleep.prof
Generating sleep.syms
ls -l
total 19260
-rw-r--r-- 1 root system 1889 Apr 9 15:06 sleep.prof
-rw-r--r-- 1 root system 9542925 Apr 9 15:06 sleep.syms

332 AIX 5L Performance Tools Handbook

-rw-rw-rw- 1 root system 315212 Apr 9 15:06 sleep.trc

The generated files can be reprocessed in manual offline to generate the report
later. This process is shown in Example 19-15.

Example 19-15 Run tprof in offline mode

tprof -r sleep -kes
Wed Apr 9 15:06:10 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Generating sleep.prof

Now we have the necessary sleep.prof, which is shown in Example 19-16.

Example 19-16 Offline mode sleep.prof

Process Freq Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
cwhet_d 1 25.00 0.00 25.00 0.00 0.00
cwhet_a 1 24.99 0.00 24.99 0.00 0.00
cwhet_b 1 24.98 0.00 24.98 0.00 0.00
cwhet_c 1 24.93 0.00 24.93 0.00 0.00
/usr/bin/topas 1 0.07 0.05 0.00 0.02 0.00
.....(more lines)....
/usr/bin/sh 25200 34045 0.01 0.01 0.00 0.00 0.00
wlmsched 5934 7225 0.01 0.01 0.00 0.00 0.00
======= === === ===== ====== ==== ====== =====
Total 100.00 0.08 99.90 0.02 0.00

 Total Samples = 8756 Total Elapsed Time = 21.89s

 Total % For All Processes (KERNEL) = 0.07

Subroutine % Source
========== ====== ======
.memset_overlay 0.03 low.s
pcs_glue 0.01 vmvcs.s
.lock_done 0.01 low.s

.... (more lines).....

Post-processing with tprof
Example 19-17 shows that if the -c flag is also specified, then RootString.prof,
RootSring.csyms, and RootString.ctrc are generated for post-processing mode.

Example 19-17 tprof example using -c flag for post-processing

tprof -c -A -x sleep 20
Starting Command sleep 20

 Chapter 19. The gprof, pprof, prof, and tprof commands 333

stopping trace collection.
Wed Apr 9 15:14:57 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Generating sleep.ctrc
Generating sleep.prof
Generating sleep.csyms
tprof -r sleep
Wed Apr 9 15:14:57 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Generating sleep.prof

Example 19-18 shows the %CPU accumulated for the kernel routines from the
file sleep.prof.

Example 19-18 Accumulated %CPU in kernel routines

Total % For All Processes (KERNEL) = 49.93

Subroutine % Source
========== ====== ======
.waitproc_find_run_queue 35.54 rnel/proc/dispatch.c
.waitproc 12.59 rnel/proc/dispatch.c
.h_cede_native 0.76 nel/ml/POWER/stubs.c
.h_cede 0.72 hcalls.s
.memset_overlay 0.09 low.s
.upd_vminfo 0.08 rnel/vmm/vmgetinfo.c
h_get_term_char_end_point 0.05 hcalls.s
.trchook 0.02 trchka.s
pcs_glue 0.02 vmvcs.s
.unlock_enable_mem 0.01 low.s
.nlcLookup 0.01 bos/kernel/lfs/nlc.c
.pfslowtimo 0.01 kernel/uipc/domain.c
.vnop_rdwr 0.01 s/kernel/lfs/vnops.c

Example 19-19 shows the %CPU accumulated for the kernel extensions.

Example 19-19 Accumulated %CPU in kernel extensions

Total % For All Processes (KEX) = 0.01

Kernel Ext %
========== ======
/usr/lib/drivers/ldterm[ldterm32] 0.01

 Profile: /usr/lib/drivers/ldterm[ldterm32]

 Total % For All Processes (/usr/lib/drivers/ldterm[ldterm32]) = 0.01

Subroutine % Source

334 AIX 5L Performance Tools Handbook

========== ====== ======
.ldtty_putc 0.01 ers/ldterm[ldterm32]

Single and multiple process level profiling
Example 19-20 shows the command used for single process profiling and
extracting the user mode profile using the -u flag.

Example 19-20 Example of single process level profiling

#tprof -u -p workload -x workload

Example 19-21 shows the profiling for the startall.sh shell command, which
invokes the send and receive commands. The output file startall.prof contains
two process level profile sections: send and receive. Both shared library (-s) and
kernel extention (-e) profiles are enabled.

Example 19-21 Example of multiple process level profiling

cat startall.sh
#!/bin/sh
send
receive
exit 0

tprof -se -p send,receive -x startall.sh

Profiling an application
The tprof command can be used to profile any application. No recompiling or
relinking of the application is necessary. To take the full advantage of tprof
microprofiling capability, it is best to provide both .lst and source files. A report
similar to the summary report is generated. If -m is specified, tprof generates
micro-profiling reports with the name RootSring.source.mprof, where source is
the source file name. The micro-profiling report contains a hot line profile section,
which has all of the line numbers from the source file executed by profiling
samples sorted by CPU usage. In addition, it contains a source line profile
section for each of the functions in the source file that have CPU usage. This
section contains the source line number, CPU usage, and source code.

First we generate the object file and the listing of the application using a modified
cwhet source provided in “cwhet.c” on page 968. The command that is used is:

xlc -qarch=auto -qtune=auto -o cwhet_100K -g -qsource -qlist -lm -O3
-qstrict cwhet_100K.c
xlc -qarch=auto -qtune=auto -o cwhet_100K -lm -O3 -qstrict cwhet_100K.c

 Chapter 19. The gprof, pprof, prof, and tprof commands 335

Example 19-22 shows the commands used to run tprof to profile an application
with -m flag. As shown, it generates the cwhet_100K.prof and
cwhet_100K.cwhet_100K.c.mprof.

Example 19-22 Microprofiling of an application

tprof -m ./cwhet_100K -u -x "cwhet_100K >/dev/null"
Wed Apr 9 16:30:42 2003
System: AIX 5.2 Node: lpar05 Machine: 0021768A4C00
Starting Command cwhet_100K >/dev/null
stopping trace collection.
Generating cwhet_100K.prof
Generating cwhet_100K.cwhet_100K.c.mprof
ls -ltr
-rw-r--r-- 1 root system 76006 Apr 9 16:29 cwhet_100K.lst
-rwxr-xr-x 1 root system 48118 Apr 9 16:29 cwhet_100K
-rw-r--r-- 1 root system 3974 Apr 9 16:30 cwhet_100K.prof
-rw-r--r-- 1 root system 135921 Apr 9 16:30 cwhet_100K.cwhet_100K.c.mprof

Example 19-23 shows the resulting microprofiling output in
cwhet_100K.cwhet_100K.c.mprof.

Example 19-23 Output of microprofiling an application

Hot Line Profile of cwhet_100K.c

 Line % PID
 156 6.04 ALL
 153 1.79 ALL
 0 1.77 ALL
 166 1.32 ALL
 114 0.89 ALL
 160 0.70 ALL
 183 0.26 ALL
 181 0.19 ALL
 184 0.11 ALL
 182 0.09 ALL
----- (lines omitted)

 Line % Source

 0 1.77 -
 - 0000BC lwz 8082001C 1 L4A gr4=.t(gr2,0)
 - 0000C0 lfd C8230018 1 LFL fp1=(*)double(gr3,24)
 - 0000C4 lwz 80A20018 1 L4A gr5=.t2(gr2,0)
....... (lines omitted).........
 - 000CD0 stw 90980000 1 ST4A i(gr24,0)=gr4
 154 - -
 - CL.265:
 - 000CB0 add 7C13A214 1 A gr0=gr19,gr20

336 AIX 5L Performance Tools Handbook

 155 - -
 - 000CB8 add 7C130214 1 A gr0=gr19,gr0
 156 6.04 -
 6.04 000CB4 ori 62740000 1 LR gr20=gr19
 157 - -
 - 000CBC subf 7C140050 1 S gr0=gr0,gr20
 - 000CC0 subf 7E740050 1 S gr19=gr0,gr20
 - 000CCC stw 92720000 1 ST4A k(gr18,0)=gr19
 158 - -
....... (lines omitted)....................................
 193 - y = t * (x + y);
 - 000078 fadd FC40102A 4 AFL fp2=fp0,fp2,fcr
 - 00007C fmul FC2100B2 4 MFL fp1=fp1,fp2,fcr
 194 - *z = (x + y) / t2;
 - 000064 lwz 80620018 1 L4A gr3=.t2(gr2,0)
.........(lines omitted)
Total % for .mod9 = 0.64

 Line % Source

 200 - e1[j] = e1[k];
 - 000000 lwz 80620004 1 L4A gr3=.k(gr2,0)
 - 000004 lwz 80820008 1 L4A gr4=.j(gr2,0)
 - 000008 lwz 80C2000C 1 L4A gr6=.e1(gr2,0)
 - 000010 lwz 80040000 1 L4A gr0=j(gr4,0)
 - 000014 lwz 80630000 1 L4A gr3=k(gr3,0)

The output of the cwhet_100K.lst is shown in Example 19-24.

Example 19-24 Output of microprofiling an application

--------(lines omitted)|
 149 | /**** Module 10: Integer Arithmetic ****/
 150 |
 151 | j = 2;
 152 | k = 3;
 153 | for (i = 1; i <= n10; i++) {
 154 | j = j + k;
 155 | k = j + k;
 156 | j = k - j;
 157 | k = k - j - j;
 158 | }
 159 | #ifdef POUT
 160 | pout(n10, j, k, x1, x2, x3, x4);
--------(lines omitted)|
 188 | /**** Module 8 Routine ****/
 189 | mod8(x, y, z)
 190 | double x, y, *z;
 191 | {

 Chapter 19. The gprof, pprof, prof, and tprof commands 337

 192 | x = t * (x + y);
 193 | y = t * (x + y);
 194 | *z = (x + y) / t2;
 195 | }
 196 |
...... (lines omitted)

 83| CL.265:
 154| 000CB0 add 7C13A214 1 A gr0=gr19,gr20
 156| 000CB4 ori 62740000 1 LR gr20=gr19
 155| 000CB8 add 7C130214 1 A gr0=gr19,gr0
 157| 000CBC subf 7C140050 1 S gr0=gr0,gr20
 157| 000CC0 subf 7E740050 1 S gr19=gr0,gr20
 0| 000CC4 bc 4320FFEC 0 BCT ctr=CL.265,

The output of the cwhet_100K.prof is shown in Example 19-25. Notice the
profiling at subroutine and function level.

Example 19-25 Output of microprofiling an application

Process Freq Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
wait 4 77.75 77.75 0.00 0.00 0.00
./cwhet_100K 1 21.94 0.00 21.94 0.00 0.00
/usr/bin/topas 1 0.09 0.09 0.00 0.00 0.00
..... (lines omitted)..............................
Profile: ./cwhet_100K

 Total % For All Processes (./cwhet_100K) = 21.94

Subroutine % Source
========== ====== ======
.main 13.33 cwhet_100K.c
.log 2.18 r/ccs/lib/libm/log.c
.exp 1.48 r/ccs/lib/libm/exp.c
.mod3 1.21 cwhet_100K.c
.cos 1.12 r/ccs/lib/libm/cos.c
.mod8 0.97 cwhet_100K.c
.atan 0.70 /ccs/lib/libm/atan.c
.mod9 0.64 cwhet_100K.c
.sin 0.31 r/ccs/lib/libm/sin.c

This example shows the routines and source codes where CPU is consumed, the
outputs sort the routines, and source line by %CPU usage. The hot lines and the
source code profiles can be used to improve the performance of the application.

338 AIX 5L Performance Tools Handbook

Reporting CPU usage by ticks
The tprof command by default gives CPU usage in percentages, and flag -z
reports CPU usage in ticks. Example 19-26 shows the use of the -z flag to
display the CPU ticks for source lines sorted by time ticks instead of CPU
percentage that was shown in Example 19-22 on page 336.

Example 19-26 tprof reports CPU in ticks

tprof -z -m ./cwhet_100K -u -x "cwhet_100K >/dev/null"
Hot Line Profile of cwhet_100K.c
more cwhet_100K.cwhet_100K.c.mprof
..... (lines omitted)
 Line Ticks PID
 156 379 ALL
 0 128 ALL
 153 110 ALL
 166 82 ALL
 114 58 ALL
..... (lines omitted)

#more cwhet_100K.prof
Process FREQ Total Kernel User Shared Other
======= ==== ===== ====== ==== ====== =====
wait 3 3378 3378 0 0 0
cwhet_10M 2 1601 0 1601 0 0
./cwhet_100K 1 1406 0 1406 0 0
/usr/bin/topas 2 10 7 0 3
....... (lines omitted)

Profiling of Java applications
The -j flag turns on Java classes and methods of profiling. Example 19-27 shows
a profiling report with a new column named Java.

Example 19-27 Example shows profiling a Java application

tprof -j -x "cd /JavaTools; /usr/java131/jre/bin/java -Xms1024m -Xmx1024m
VBDMemBlot 5000”
cat cd.prof
Process Freq Total Kernel User Shared Other Java
======= ==== ===== ====== ==== ====== ===== ====
wait 4 74.83 74.83 0.00 0.00 0.00 0.00
/usr/java131/jre/bin/java 1 24.61 0.03 0.00 0.12 24.46 0.00
/usr/bin/tprof 1 0.18 0.02 0.00 0.16 0.00 0.00
.......(lines omitted)
Total 61 100.00 75.18 0.02 0.34 24.46 0.00

Process PID TID Total Kernel User Shared Other Java
======= === === ===== ====== ==== ====== ===== ====
131/jre/bin/java 23396 77831 24.61 0.03 0.00 0.12 24.46 0.00

 Chapter 19. The gprof, pprof, prof, and tprof commands 339

wait 1290 1291 24.47 24.47 0.00 0.00 0.00 0.00
wait 516 517 23.96 23.96 0.00 0.00 0.00 0.00
...... (line omitted)

Using tprof to detect a resource bottleneck
In this example the main user application of a company, sem_app, is used on
smaller Uni Processor (UP) systems with up to 100 users per system. However,
maintaining all of these systems is no longer possible and the decision was made
to replace all 20 UP server systems with one SMP server. During the switch from
the old UP server systems to the new SMP server, which is done on a
step-by-step basis, the performance on the new SMP server goes down as more
users start to use it. With half of the users moved to the new SMP server the
performance of the user application is very slow.

The first step of the solution is to run vmstat and iostat on the new SMP server
system to detect possible CPU or I/O bottlenecks. The iostat command shows
no bottleneck with disk I/O. In fact, most of the disks are idle. Only the CPU
usage with more than 80 percent reported in system (kernel) mode and less than
10 percent in user mode, with a few percent CPU left in idle, gives a first
indication of the problem source. The system spends too much CPU time in
kernel subroutines. The output of the vmstat command in this situation is shown
in Example 19-28.

Example 19-28 Output of the vmstat command on CPU bound system

vmstat 1 10
kthr memory page faults cpu
----- ----------- ------------------------ ------------ -----------
 r b avm fre re pi po fr sr cy in sy cs us sy id wa
517 0 73041 67983 0 0 0 0 0 0 462 1728 76642 11 86 3 0
418 0 73043 67981 0 0 0 0 0 0 450 1377 79056 9 87 4 0
962 0 73045 67979 0 0 0 0 0 0 446 1399 91215 8 88 4 0
198 0 73047 67977 0 0 0 0 0 0 441 1493 78038 13 82 5 0

The CPU time spent in system (kernel) mode is more than 80 percent. The
number of threads on the run queue is between 198 and 962. The number of
context switches is very high. However, with this number of threads on the run
queue it is not unusual to have some context switches.

The tprof command is used to determine the reason why the CPU time spent in
system mode gets this high and to determine what causes this behavior.

The tprof -z -kes -x sleep 5 command is used to collect the process
summary for all processes. The data collected by tprof is shown in
Example 19-29 on page 341.

340 AIX 5L Performance Tools Handbook

Example 19-29 Output of tprof on a CPU bound system

Process PID TID Total Kernel User Shared Other
 ======= === === ===== ====== ==== ====== =====
 tprof 547514 563769 91 19 58 14 0
 wait 516 517 41 41 0 0 0
 wait 774 775 37 37 0 0 0
 wait 1290 1291 36 36 0 0 0
 wait 1032 1033 32 32 0 0 0
 sem_app 430374 446371 7 3 4 0 0
 swapper 0 3 6 6 0 0 0
 sem_app 431406 447403 6 5 1 0 0
 sem_app 116366 132107 5 5 0 0 0
 sem_app 132106 148103 5 5 0 0 0
 sem_app 157390 173131 5 5 0 0 0
 sem_app 183966 199707 5 2 3 0 0

 (... lines omitted ...)

 sem_app 544928 560669 1 1 0 0 0
 sem_app 546476 562217 1 1 0 0 0
 PID.547774 547774 562481 1 1 0 0 0
 sleep 547774 562481 1 1 0 0 0
 ======= === === ===== ====== ==== ====== =====
 Total 2071 1944 112 15 0

 Process FREQ Total Kernel User Shared Other
 ======= === ===== ====== ==== ====== =====
 sem_app 1142 1798 1744 54 0 0
 wait 4 146 146 0 0 0
 tprof 1 91 19 58 14 0
 trclogio 1 22 22 0 0 0
 swapper 1 6 6 0 0 0
 gil 2 3 3 0 0 0
 aixterm 2 2 1 0 1 0
 wlmsched 1 1 1 0 0 0
 PID.547774 1 1 1 0 0 0
 sleep 1 1 1 0 0 0
 ======= === ===== ====== ==== ====== =====
 Total 1156 2071 1944 112 15 0

 Total System Ticks: 2071 (used to calculate function level CPU)

 Total Ticks For All Processes (KERNEL) = 1943

 Chapter 19. The gprof, pprof, prof, and tprof commands 341

 Subroutine Ticks % Source Address Bytes
 ============= ===== ==== ======== ======== ======
 .slock_ppc 690 33.3 simple_lock.c 1df990 354
 .e_block_thread 505 24.4 sleep2.c 425d8 548
 .e_assert_wait 190 9.2 sleep2.c 42eb8 18c
 .sunlock_ppc 124 6.0 simple_lock.c 1df898 f8
 .waitproc_find_run_queue 91 4.4 dispatch.c 25c88 210
 .kwakeup 86 4.2 sleep.c 438f0 1c0
 .waitproc 55 2.7 dispatch.c 26b54 12c
 .compare_and_swap 31 1.5 low.s a4c0 100
 .disable_lock 30 1.4 low.s 9004 2fc
 .atomic 28 1.4 ipc/sem.c 465e64 8bc
 .my_csa 18 0.9 low.s b408 20
 .exbcopy_ppc 16 0.8 misc_ppc.s 1d2dc0 bc
 .e_sleep_thread 14 0.7 sleep2.c 43044 118
 .simple_unlock_mem 13 0.6 low.s 9918 1e8
 .simple_lock 12 0.6 low.s 9500 400
 .uiocopyout_ppc 8 0.4 copyx_ppc.s 1d4720 2a0

 (... lines omitted ...)

There are 1142 user processes sem_app active on the system. These processes
account for the most time spent in system mode, which is 1744 time ticks out of
1944 time ticks. The most-used kernel subroutines are from the systems lock
management functions. There is a subroutine named .atomic out of the source
file ipc/sem.c.

The next steps are to find out whether the application is using semaphores, and
whether the application is using only a few, causing all 1142 processes to fight for
these semaphores.

To show the relationship between the number of users running the application
sem_app and the CPU usage, a monitoring script that runs every five minutes
counts the number of user processes named sem_app, runs the sar command for
a short time, and stores this data into a file installed on the system. To start
clean, the system is rebooted.

The script used to collect the data is shown in Example 19-30.

Example 19-30 Script to monitor CPU bound system

#!/usr/bin/ksh

OUTFILE=/var/adm/ras/server.load
TIME=300

while true
do

342 AIX 5L Performance Tools Handbook

 date >>$OUTFILE
 UPROC=`ps -ef|grep sem_app|wc -l`
 echo "$UPROC sem_app processes in process table" >>$OUTFILE
 sar -quw 1 3 >>$OUTFILE
 echo "===" >>$OUTFILE
 sleep $TIME
done

Example 19-31 is an extract of the data collected by the monitoring script.

Example 19-31 Output of the monitoring script

(... lines omitted ...)

Mon May 21 7:15:07 CDT 2001
 8 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:15:08 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

07:15:09 9.0 100
 53 4 0 43
 5672

07:15:10 3.0 100
 57 4 0 39
 5631

07:15:11 9.0 100
 61 2 0 37
 5642

Average 7.0 94
Average 57 3 0 40
Average 5648

(... lines omitted ...)

Mon May 21 7:35:25 CDT 2001
 17 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:35:29 runq-sz %runocc swpq-sz %swpocc

 Chapter 19. The gprof, pprof, prof, and tprof commands 343

 %usr %sys %wio %idle
 cswch/s

07:35:30 17.0 100
 49 9 0 42
 11052

07:35:31 17.0 100
 49 7 0 44
 11047

07:35:32 17.0 100
 48 7 0 45
 11090

Average 17.0 94
Average 49 8 0 44
Average 11063

 (... lines omitted ...)

Mon May 21 7:55:59 CDT 2001
 34 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

07:56:02 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

07:56:03 9.0 100
 54 15 0 30
 19753

07:56:04 22.0 100
 54 14 0 32
 19761

07:56:05 32.0 100
 56 15 0 29
 19636

Average 21.0 94
Average 55 15 0 30
Average 19717

(... lines omitted ...)

344 AIX 5L Performance Tools Handbook

Mon May 21 8:15:45 CDT 2001
 67 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:15:49 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:15:50 31.0 100
 49 40 0 11
 45493

08:15:51 89.0 100
 52 34 0 14
 45075

08:15:52 80.0 100
 54 36 0 10
 46057

Average 66.7 94
Average 52 37 0 12
Average 45540

 (... lines omitted ...)

Mon May 21 8:30:13 CDT 2001
 123 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:30:16 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:30:17 115.0 100
 53 44 0 3
 53857

08:30:18 86.0 100
 55 41 0 4
 53593

08:30:19 122.0 100
 50 45 0 5
 54206

 Chapter 19. The gprof, pprof, prof, and tprof commands 345

Average 107.7 94
Average 52 43 0 4
Average 53886

 (... lines omitted ...)

Mon May 21 8:45:21 CDT 2001
 263 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

08:45:24 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

08:45:25 172.0 100
 45 51 0 3
 63418

08:45:26 249.0 100
 46 50 0 4
 63738

08:45:27 119.0 100
 45 52 0 3
 64341

Average 180.0 93
Average 46 51 0 3
Average 63832

 (... lines omitted ...)

Mon May 21 9:00:23 CDT 2001
 499 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

09:00:27 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

09:00:28 307.0 100
 35 64 0 1
 68880

346 AIX 5L Performance Tools Handbook

09:00:29 262.0 100
 35 64 0 1
 66714

09:00:30 278.0 100
 31 67 0 1
 67414

Average 282.3 93
Average 34 65 0 1
Average 67664

 (... lines omitted ...)

Mon May 21 9:26:33 CDT 2001
 976 sem_app processes in process table

AIX wlmhost 1 5 000BC6AD4C00 05/21/01

09:26:37 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
 cswch/s

09:26:38 347.0 100
 9 87 0 5
 76772

09:26:39 436.0 100
 7 89 0 4
 74820

09:26:40 635.0 100
 10 87 0 3
 76949

Average 472.7 92
Average 8 88 0 4
Average 76194

 (... lines omitted ...)

This output shows that CPU time spent in system mode increases as more
sem_app user applications are running. At about 500 user processes the CPU
time spent in system mode is 65 percent and the time spent in user mode is
down to 34 percent. Even more dramatic are the values with close to 1000 user

 Chapter 19. The gprof, pprof, prof, and tprof commands 347

processes running on the system. Only 8 percent CPU time is spent in user
mode, but 88 percent CPU time is spent in system mode.

The application supplier is contacted and this turned out to be true. The
application does a fork() and the parent and child processes are using a
semaphore to synchronize with each other. However, the key used for the
semget() subroutine is a hard-coded positive number that causes all sem_app
programs to access the same systemwide semaphore. A change in the program
source to use the IPC_PRIVATE key solved the problem.

348 AIX 5L Performance Tools Handbook

Chapter 20. The nice and renice
commands

The nice command enables a user to adjust the dispatching priority of a
command. Non-root authorized users can only degrade the priority of their own
commands. A user with root authority can improve the priority of a command as
well. A process, by default, has a nice value of 20. Numerically increasing this
value results in degraded priority of the threads in this process. Therefore, to
request lower priority you would increase the nice value from anything between
21 and 39 by specifying an increment value of between 0 (zero) and 19. To
decrease the nice value anywhere downward of 20, the increment value would
be -1 (one) to -20.

The renice command is used to change the nice value of one or more processes
that are running on a system. The renice command can also change the nice
values of a specific process group.

The nice and renice commands reside in /usr/bin and are part of the
bos.rte.control fileset, which is installed by default from the AIX base installation
media.

20

© Copyright IBM Corp. 2001, 2003 349

20.1 nice
The syntax of the nice command is:

nice [-Increment| -n Increment] Command [Argument ...]

Flags
-Increment Moves a command’s priority up or down. You can specify a

positive or negative number. Positive increment values degrade
priority, and negative increment values improve priority. Only
users with root authority can specify a negative increment. If
you specify an increment value that would cause the nice value
to exceed the range of 0 (zero) to 39, the nice value is set to
the value of the limit that was exceeded.

-n Increment This flag is equivalent to the -Increment flag.

The -n flag and the - flag are synonymous.

Parameters
Increment A decimal integer in the range of -1 to -20 is used to improve

the priority of a command. A decimal integer in the range of 0
(zero) to 19 is used to degrade the priority of a command.

Command This is the actual command that will run with the modified nice
value.

Argument ... This is the argument of the command that will be running with
the modified nice value.

20.1.1 Information about measurement and sampling
The nice command changes the value of the priority of a thread by changing the
nice value of its process, which is used to determine the overall priority of that
thread. A child process will inherit the nice value from the parent process. The
nice value can be viewed using the -l flag with the ps command. See Chapter 8,
“The ps command” on page 127. The nice values are displayed under the
column heading NI. Threads with numerically lower nice values (higher priotiry)
tend to run ahead of those with higher values (lower priority). Only users with root
authority can change the priority of a command to an improved value (lower
value of nice). Any attempt by any other user does not change the nice value.

350 AIX 5L Performance Tools Handbook

The priority of a thread is not only determined by the nice value, but also by the
schedo parameters if they have been set. Specifically, the sched_D option with
the schedo command, the decay value of a thread, and the sched_R penalty
factor of a thread can affect the priority of a thread. Refer to 10.1, “schedo” on
page 166 for more information about the schedo command.

Background processes that are run from the korn shell (ksh) will automatically
have four added to their nice value. If, for example, a thread were to be run with its
default nice value in background mode, then the nice value would actually be 24.

When a thread is running, the default scheduler policy is SCHED_OTHER. This
means that the more CPU time a process gets the more it gets penalized. As the
CPU usage increases for this thread, the priority value increases until it reaches
a maximum value. The thread, therefore, becomes less favored to run again as
CPU usage increases. See 10.1, “schedo” on page 166 for definitions of the
scheduling types.

20.2 Examples for nice
The nice value for a user process that is started in the foreground is (by default)
20, as can be seen in Example 20-1.

Example 20-1 Default nice value

ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 0 18892 14224 2 61 20 af15 1012 pts/3 0:00 ksh
 200001 A 0 20646 18892 4 62 20 a714 444 pts/3 0:00 ps

The priority of a process is listed in the PRI column of the ps output. As shown in
Example 20-1 the priority of the ps command is calculated to be 62. Because it
has used some CPU time, the priority has been degraded by two. At the instance
of launch the process’ priority was 60. As with the nice value the higher the PRI
value of a thread process the lower the priority.

If the process is launched in the background, the nice value is 24 by default, as
demonstrated in Example 20-2.

Example 20-2 Default nice value, background

ps -l &
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

Tip: 1.2.2, “Processes and threads” on page 6 explains how process priorities
are calculated on AIX.

 Chapter 20. The nice and renice commands 351

240001 A 0 18892 14224 1 60 20 af15 1012 7030ae44 pts/3 0:01 ksh
 200001 A 0 23462 18892 4 70 24 9f13 448 pts/3 0:00 ps

As stated before, if a process is started in the background, four is added to the
nice value. Due to the increased nice value, the PRI value of the process (70) is
also adjusted from 62 in the previous example. Remember that the higher the
PRI value, the lower the priority.

20.2.1 Reducing the priority of a process
The priority of the process can be reduced by increasing the nice value. When
using the nice command without any increment, it increase the nice value of a
process with 10. Example 20-3 shows that we change the ps command.

Example 20-3 Using the nice command

lpar05:/>> nice ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 200001 A 0 23446 32122 2 65 30 19982 1296 pts/6 0:00 ps
 240001 A 0 32122 28162 0 60 20 f991e 588 pts/6 0:00 ksh

You can specify the increment, such as:

nice -10 ps -l

20.2.2 Improving the priority of a process
The priority of a process can be improved by decreasing the nice value. To
decrease the nice value by 10, enter:

nice --10 ps -l

Example 20-4 shows the output of the command. The priority of the process is
improved and is now 51 (lower numerical value means higher priority).

Example 20-4 Decreasing the nice value

lpar05:/>> nice --10 ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 200001 A 0 13904 18892 3 51 10 3706 512 pts/3 0:00 ps
 240001 A 0 18892 14224 0 60 20 af15 1012 pts/3 0:01 ksh

20.3 renice
The syntax of the renice command is:

renice [-n Increment] [-g | -p | -u] ID ...

352 AIX 5L Performance Tools Handbook

Flags
-g Interprets all IDs as unsigned decimal integer process group

IDs.

-n Increment Specifies the number to add to the nice value of the process.
The value of Increment can only be a decimal integer from -20
to 20. Positive increment values degrade priority. Negative
increment values require appropriate privileges and improve
priority.

-p Interprets all IDs as unsigned integer process IDs. The -p flag
is the default if you specify no other flags.

-u Interprets all IDs as user name or numerical user IDs.

Parameters
ID Where the -p option is used, this will be the value of the

process identification number (PID). In the case where the -g
flag is used, the value of ID will be the process group
identification number (PGID). Finally, where the -u flag is used,
this value denotes the user identification number (UID).
Alternately, when using the -u flag, the user’s name can also be
used as the argument.

Increment A decimal integer in the range of -1 to -20 is used to improve
the priority of a command. A decimal integer in the range of 0
(zero) to 20 is used to degrade the priority of a command.

20.3.1 Information about measurement and sampling
The priority of a thread that is currently running on the system can be changed by
using the renice command to change the nice value for the process that contains
the thread. The nice value can be displayed by using -l flag with the ps command.
See Example 20-5 on page 354 for a detailed output of the ps -l command. Any
user can use the renice command on any of his own running processes to
decrease the nice value. A user with root authority can increase or decrease the
nice value of any process.

For detailed information about how thread priorities are calculated on AIX refer to
1.2.2, “Processes and threads” on page 6.

20.4 Examples for renice
The following examples show the use of the -n Increment flag applied by a user
with root authority.

 Chapter 20. The nice and renice commands 353

In Example 20-5, we run ps -l. It can be seen that the thread with PID 18220
(sleep) is initially running with a nice value of 24. This is a typical value for a
thread spawned from the korn shell that is running in the background.

Example 20-5 The effect of the nice value on priority

ps -l
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 68 24 f31b 236 30bf65d8 pts/7 0:00 sleep

In the next step, the renice command is used to increase the nice value of the
process by 10 and therefore degrades its priority, as shown in Example 20-6.

Example 20-6 Degrading a thread’s priority using renice

renice -n 10 -p 18220
ps -lu fred
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 88 34 f31b 236 30bf65d8 pts/7 0:00 sleep

After this, the nice value is displayed as 34. The root user then invokes the
renice command again using an increment value of -20 as shown in
Example 20-7.

Example 20-7 Improving a thread’s priority using renice

renice -n -20 -p 18220
ps -lu fred
 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
 240001 A 207 17328 19766 0 67 20 d2fe 1016 70023a44 pts/7 0:00 ksh
 200001 A 207 18220 17328 0 54 14 f31b 236 30bf65d8 pts/7 0:00 sleep

The result is that the nice value for this thread now decreases to 14 and the
priority of the thread improves.

Refer to 1.2.2, “Processes and threads” on page 6 for detailed information about
calculating a thread’s priority.

354 AIX 5L Performance Tools Handbook

Chapter 21. The time and timex
commands

The time command reports the real time, the user time, and the system time
taken to execute a command. This command can be useful for determining the
length of time a command takes to execute. To use this tool effectively, it is
necessary to have a second report generated on the system for comparison. It is
also important to take into consideration the workload on the system at the time
the command is run.

The timex command reports the real time, user time, and system time to execute
a command. Additionally, the timex command has the capability of reporting
various statistics for the command being executed. The timex command can
output the same information that can be obtained from the sar command by
using the -s flag. The output of the timex command is sent to standard error.

The time command resides in /usr/bin and is part of the bos.rte.misc_cmds
fileset. The timex command resides in /usr/bin and is part of the bos.acct fileset.
Both are installable from the AIX base installation media.

21

Attention: The time command mentioned here is found in /usr/bin. If the time
command is executed without the pathname, then the shell’s own time
command will be executed.

© Copyright IBM Corp. 2001, 2003 355

21.1 time
The syntax of the time command is:

/usr/bin/time [-p] Command [Argument ...]

Flags
-p Writes the timing output to standard error. Seconds are expressed

as a floating-point number with at least one digit following the radix
character.

Parameters
Command The command that will be timed by the time command.
Argument The command’s arguments.

21.1.1 Information about measurement and sampling
The time command simply counts the CPU ticks from when the command that
was entered as an argument is started until that command completes.

21.1.2 Examples for time
In Example 21-1, the time command is used to determine the length of time to
calculate 9999999.

Example 21-1 Using the time command to determine the duration of a calculation

/usr/bin/time bc <<! >/dev/null
> 999^9999
> !
real 0m27.55s
user 0m27.24s
sys 0m0.28s

The result shows that the CPU took 27.55 seconds of real time to calculate the
answer. The output of the command has purposely been redirected to /dev/null
so that the answer to the calculation is not displayed. The time values are
displayed because the time command forces its output to standard error, which is
the screen display. The time results are split into 0.28 seconds of system time
and 27.24 seconds of user time.

System time This is the time that the CPU spent in kernel mode.
User time This is the time the CPU spent in user mode.
Real time This is the elapsed time.

356 AIX 5L Performance Tools Handbook

On SMP systems, the real time reported can be less than the sum of the user
and system times. The reason that this can occur is that the process threads can
be executed over multiple CPUs. The user time displayed by the time command
in this case is derived from the sum of all of the CPU user times. In the same way,
the system time as displayed by the time command is derived from the sum of all
of the CPU system times.

21.2 timex
The syntax of the timex command is:

timex [-o] [-p] [-s] Command

Flags
-o Reports the total number of blocks read or written, and total

characters.

-p Lists process accounting records for a command and all of its
children. The number of blocks read or written and the number of
characters transferred are reported. The -p flag takes the f, h, k,
m, r, and t arguments defined in the acctcom command to modify
other data items.

-s Reports total system activity during the execution of the
command. All data items listed in the sar command are reported.

Parameters
Command The command that the timex command will time and determine

process statistics for.

21.2.1 Information about measurement and sampling
The timex -s command uses the sar command to acquire additional statistics.
The output of the timex command, when used with the -s flag, produces a report
similar to the output obtained from the sar command with various flags. For
further information, refer to 9.1, “sar” on page 140. Because the sar command is
intrusive, the timex -s command is also intrusive. The data reported by the
timex -s command may not precisely reflect the behavior of a program in an
unmonitored system. Using the time or timex commands to measure the user or
system time of a string of commands, connected by pipes, entered on the
command line is not recommended. A potential problem is that syntax oversights
can cause the time or timex commands to measure only one of the commands
and no error will be indicated. The syntax is technically correct; however the time
or timex command may not measure the entire command.

 Chapter 21. The time and timex commands 357

21.2.2 Examples for timex
Example 21-2 shows the format of the timex -s command.

Example 21-2 The timex command showing sar-like output with the -s flag

timex -s bc <<! >/dev/null
> 999^9999
> !
real 27.33
user 27.20
sys 0.12

AIX wlmhost 1 5 000BC6AD4C00 05/07/01

08:12:44 %usr %sys %wio %idle
08:13:11 23 0 0 76

08:12:44 bread/s lread/s %rcache bwrit/s lwrit/s %wcache pread/s pwrit/s
08:13:11 0 0 0 0 0 0 0 0

08:12:44 slots cycle/s fault/s odio/s
08:13:11 241210 0.00 10.52 0.00

08:12:44 rawch/s canch/s outch/s rcvin/s xmtin/s mdmin/s
08:13:11 0 0 0 0 0 0

08:12:44 scall/s sread/s swrit/s fork/s exec/s rchar/s wchar/s
08:13:11 1786 77 960 0.09 0.13 265227 1048

08:12:44 cswch/s
08:13:11 280

08:12:44 iget/s lookuppn/s dirblk/s
08:13:11 0 8 0

08:12:44 runq-sz %runocc swpq-sz %swpocc
08:13:11 1.0 100

08:12:44 proc-sz inod-sz file-sz thrd-sz
08:13:11 90/262144 473/42034 655/853 166/524288

08:12:44 msg/s sema/s
08:13:11 0.00 0.00

358 AIX 5L Performance Tools Handbook

The following fields hold the information that sar displays when used with the -a
flag. This information pertains to the use of file system access routines:

dirblk/s Number of 512-byte blocks read by the directory search
routine to locate a directory entry for a specific file.

iget/s Calls to any of several inode lookup routines that support
multiple file system types. The iget routines return a
pointer to the inode structure of a file or device.

lookuppn/s Calls to the directory search routine that finds the address
of a vnode given a path name.

The following fields from the timex -s report show the sar -b equivalent
information. The information pertains to buffer activity for transfers, access and
caching:

bread/s, bwrit/s Reports the number of block I/O operations. These I/Os
are generally performed by the kernel to manage the
block buffer cache area, as discussed in the description of
the lread/s value.

lread/s, lwrit/s Reports the number of logical I/O requests. When a
logical read or write to a block device is performed, a
logical transfer size of less than a full block size may be
requested. The system accesses the physical device units
of complete blocks and buffers these blocks in the kernel
buffers that have been set aside for this purpose (the
block I/O cache area). This cache area is managed by the
kernel so that multiple logical reads and writes to the
block device can access previously buffered data from the
cache and require no real I/O to the device. Application
read and write requests to the block device are reported
statistically as logical reads and writes. The block I/O
performed by the kernel to the block device in
management of the cache area is reported as block reads
and block writes.

pread/s, pwrit/s Reports the number of I/O operations on raw devices.
Requested I/O to raw character devices is not buffered, as
it is for block devices. The I/O is performed to the device
directly.

%rcache, %wcache Reports caching effectiveness (cache hit percentage).
This percentage is calculated as: [100x(lreads - breads)/
lreads].

 Chapter 21. The time and timex commands 359

The following fields displayed by timex -s command are the equivalent of the
sar -c command. The information is not processor specific:

exec/s, fork/s Reports the total number of fork and exec system calls.

sread/s, swrit/s Reports the total number of read/write system calls.

rchar/s, wchar/s Reports the total number of characters transferred by
read/write system calls.

scall/s Reports the total number of system calls.

The following fields of the timex -s command show the same information as the
sar -m command. The fields show the message and semaphore information for
the process:

msg/s Reports the number of IPC message primitives.

sema/s Reports the number of IPC semaphore primitives.

The following fields are the timex -s commands equivalent to the sar -q output.
The queue statistics for the process are displayed:

runq-sz Reports the average number of kernel threads in the run
queue.

%runocc Reports the percentage of the time the run queue is
occupied.

swpq-sz Reports the average number of kernel threads waiting to
be paged in.

%swpocc Reports the percentage of the time the swap queue is
occupied.

The following timex -s output fields show paging statistics. The output is similar
to that from the sar -r command. However, information displayed is for the
process executed as the timex -s argument:

cycle/s Reports the number of page replacement cycles per
second.

fault/s Reports the number of page faults per second. This is not
a count of page faults that generate I/O because some
page faults can be resolved without I/O.

slots Reports the number of free pages on the paging spaces.

odio/s Reports the number of non–paging disk I/Os per second.

360 AIX 5L Performance Tools Handbook

The following fields of the timex -s command are the process equivalent of the
sar -u command. The fields display CPU usage:

%usr Reports the percentage of time the CPU or CPUs spent in
execution at the user (or application) level.

%sys Reports the percentage of time the CPU or CPUs spent in
execution at the system (or kernel) level.

%wio Reports the percentage of time the CPU or CPUs were
idle while the system had outstanding disk/NFS I/O
requests.

%idle Reports the percentage of time the CPU or CPUs were
idle with no outstanding disk I/O requests.

The following fields show the status of the kernel process, kernel thread, inode,
and file tables. This output from the timex command is the equivalent of the sar
-v command except that the timex output is process-specific:

file-sz, inod-sz, proc-sz , thrd-sz Reports the number of entries in use for each
table.

The following timex -s field shows the system switch activity and is the process
equivalent of the sar -w command:

pswch/s Reports the number of context switches per second.

The following fields of the timex -s command are the process equivalent of the
sar - y command. The fields show tty device activity per second for the process:

canch/s Reports tty canonical input queue characters. This field is
always 0 (zero) for AIX Version 4 and later versions.

mdmin/s Reports tty modem interrupts.

outch/s Reports tty output queue characters.

rawch/s Reports tty input queue characters.

revin/s Reports tty receive interrupts.

xmtin/s Reports tty transmit interrupts.

 Chapter 21. The time and timex commands 361

362 AIX 5L Performance Tools Handbook

Part 4 Memory-related
performance
tools

This part describes the tools that tune and monitor the performance data and
statistics relevant to memory. Other memory-related commands not listed here
might appear in the Chapter 2, “Multi-resource monitoring and tuning tools” on
page 67.

This part contains detailed information about the following memory monitoring
and tuning tools:

� The ipcs command described in Chapter 22, “The ipcs command” on
page 365 is used to report the status information of active Inter Process
Communications (IPC) facilities.

Part 4

© Copyright IBM Corp. 2001, 2003. All rights reserved. 363

� The rmss command described in Chapter 23, “The rmss command” on
page 379 is used to ascertain the effects of reducing the amount of available
memory on a system without the need to physically remove memory from the
system.

� The svmon command described in Chapter 24, “The svmon command” on
page 387 is useful for determining which processes, users, programs, and
segments are consuming the most paging space and real and virtual memory.

364 AIX 5L Performance Tools Handbook

Chapter 22. The ipcs command

The ipcs command reports status information about active Inter Process
Communication (IPC) facilities. If you do not specify any flags, the ipcs command
writes information in a short form about currently active message queues, shared
memory segments, and semaphores.

This command is not a performance tool per se, but it can be useful in the
following two scenarios:

� For application developers who use IPC facilities and need to verify the
allocation and monitoring of IPC resources

� For system administrators who need to clean up after an application program
that uses IPC mechanisms that have failed to release previously allocated
IPC facilities1

ipcs resides in /usr/bin and is part of the bos.rte.control fileset, which is installed
by default from the AIX base installation media.

Other commands related to ipcs are ipcrm and slibclean. Consult AIX 5L
Version 5.2 Commands Reference for more information about these commands.

22

1 Terminating a process with the SIGTERM signal prevents orderly cleanup of the process resources such as shared
memory segments.

© Copyright IBM Corp. 2001, 2003 365

22.1 ipcs
The syntax of the ipcs command is:

ipcs [-m] [-q] [-s] [-a | -b -c -o -p -t] [-CCoreFile] [-N Kernel]

Flags
-a Uses the -b, -c, -o, -p, and -t flags.

-b Reports the maximum number of bytes in messages on
queue for message queues, the size of segments for
shared memory, and the number of semaphores in each
semaphores set.

-c Reports the login name and group name of the user who
made the facility.

-CCoreFile Uses the file specified by the CoreFile parameter in place
of the /dev/mem file.

-m Reports information about active shared memory
segments.

-NKernel Uses the specified Kernel. (The /usr/lib/boot/unix file is the
default.)

-o Reports message queue and shared memory segment
information.

-p Reports process number information.

-q Reports information about active message queues.

-s Reports information about active semaphore set.

-t Reports time information.

22.1.1 Information about measurement and sampling
The ipcs command uses /dev/mem to obtain information about IPC facilities in
the system. The sampling is performed once every time the command is run, but
ipcs executes as a user process and the IPC information can change while ipcs
is running, so the information it gives is guaranteed to be accurate only at the
time it was retrieved.

22.1.2 Examples for ipcs
Examples for using the ipcs command follow.

366 AIX 5L Performance Tools Handbook

Checking IPC message queues
You can use ipcs to check IPC message queues, semaphores, and shared
memory. The default report shows basic information about all three IPC facilities,
as shown in Example 22-1.

Example 22-1 Using the ipcs command

ipcs
IPC status from /dev/mem as of Wed May 23 17:25:03 CDT 2001
T ID KEY MODE OWNER GROUP
Message Queues:
q 0 0x4107001c -Rrw-rw---- root printq

Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm
m 131078 0xffffffff --rw-rw---- root system
m 7 0x0d05320c --rw-rw-rw- root system
m 393224 0x7804129c --rw-rw-rw- root system
m 262153 0x780412e3 --rw-rw-rw- root system
m 393226 0xffffffff --rw-rw---- root system
m 393227 0xffffffff --rw-rw---- root system
Semaphores:
s 262144 0x580508f9 --ra-ra-ra- root system
s 1 0x440508f9 --ra-ra-ra- root system
s 131074 0xe4663d62 --ra-ra-ra- imnadm imnadm
s 3 0x62053142 --ra-r--r-- root system
...(lines omitted)...
s 20 0xffffffff --ra------- root system
s 21 0xffffffff --ra------- root system

The default ipcs report column headings and meanings are:

T The type of facility. There are three facility types:

q Message queue
m Shared memory segment
s Semaphore

ID The identifier for the facility entry.

KEY The key used as a parameter to the msgget subroutine, the semget
subroutine, or the shmget subroutine to make the facility entry.

 Chapter 22. The ipcs command 367

MODE The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows. The first two characters
can be any of the following:

R If a process is waiting on a msgrcv system call.
S If a process is waiting on a msgsnd system call.
D If the associated shared memory segment has been removed. It

disappears when the last process attached to the segment
detaches from it.

C If the associated shared memory segment is to be cleared when
the first attach is run.

- If the corresponding special flag is not set.

The next nine characters are interpreted as three sets of 3 bits
each. The first set refers to the owner’s permissions, the next to
permissions of others in the user group of the facility entry, and the
last to all others. Within each set, the first character indicates
permission to read, the second character indicates permission to
write or alter the facility entry, and the last character is currently
unused. The permissions are indicated as follows:

r If read permission is granted
w If write permission is granted
a If alter permission is granted
- If the indicated permission is not granted

OWNER The login name of the owner of the facility entry.

GROUP The name of the group that owns the facility entry.

Checking processes that use shared memory
To find out which processes use shared memory, we can use the -m (memory)
and -p (processes) flags together, shown in Example 22-2.

Example 22-2 Using ipcs -mp

ipcs -mp
IPC status from /dev/mem as of Thu May 24 23:30:47 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
m 6 0xffffffff --rw-rw---- root system 5202 5202
m 7 0x7804129c --rw-rw-rw- root system 17070 20696
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046

368 AIX 5L Performance Tools Handbook

The output shows one shared memory segment that is used by the SPMI API
library is 0x7804129c (see 41.2, “System Performance Measurement Interface”
on page 805 for more details about SPMI API), the process ID of the process that
created this shared memory segment is 17070, and the PID that last used it is
20696. To examine the process with process ID 17070, use the ps command (see
Chapter 8, “The ps command” on page 127 for more details), as shown in
Example 22-3 below.

Example 22-3 Using ps

ps -eo comm,pid,user,group|grep 17070
topas 17070 root system

As can be seen from the ps output above, it is the topas command that uses the
0x7804129c shared memory segment and it is run by the root user in the system
group, which is the same user in the same group that owns the shared memory
segment as shown by the ipcs command in Example 22-2 on page 368. To
identify all users who use the shared memory segment, use the -S option with
ipcs and the svmon. Refer to “Removing an unused shared memory segment” on
page 370.

The column headings and the meaning of the columns in a ipcs report with the
-p flag are:

T The type of facility. There are three facility types:

q Message queue
m Shared memory segment
s Semaphore

ID The identifier for the facility entry.

KEY The key used as a parameter to the msgget subroutine, the semget
subroutine, or the shmget subroutine to make the facility entry.

MODE The facility access modes and flags. The mode consists of 11
characters that are interpreted as follows. The first two characters
could be:

R If a process is waiting on a msgrcv system call.
S If a process is waiting on a msgsnd system call.
D If the associated shared memory segment has been removed. It

disappears when the last process attached to the segment
detaches from it.

C If the associated shared memory segment is to be cleared when
the first attach is run.

- If the corresponding special flag is not set.

The next nine characters are interpreted as three sets of 3 bits
each. The first set refers to the owner’s permissions, the next to

 Chapter 22. The ipcs command 369

permissions of others in the user group of the facility entry, and the
last to all others. Within each set, the first character indicates
permission to read, the second character indicates permission to
write or alter the facility entry, and the last character is currently
unused. The permissions are indicated as follows:

r If read permission is granted
w If write permission is granted
a If alter permission is granted
- If the indicated permission is not granted

OWNER The login name of the owner of the facility entry.

GROUP The name of the group that owns the facility entry.

CPID The PID of the creator of the shared memory entry.

LPID The PID of the last process to attach or detach the shared memory
segment.

Removing an unused shared memory segment
If a process that has allocated shared memory does not explicitly detach it before
terminating, it can be identified with ipcs and then removed by using the ipcrm
and slibclean commands. The ipcrm command will detach the specified shared
memory identifier. The shared memory segment and data structure associated
with it are also removed after the last detach operation. The key of a shared
memory segment is changed to IPC_PRIVATE when the segment is removed until
all processes attached to the segment detach from it. The slibclean command
will remove any currently unused modules in kernel and library memory.

To look for shared memory segments not used by a no process, use the ipcs
with the -mpS flags as in Example 22-4. Note that the segment ID (SID) is
reported after each shared memory line.

Example 22-4 Using ipcs -mpS to view shared memory

ipcs -mpS
IPC status from /dev/mem as of Mon Jun 4 17:42:51 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5180 5180

SID :
0x9c1
...(lines omitted)...
m 393226 0x7804129c --rw-rw-rw- root system 17048 17048

SID :
0x9d33

370 AIX 5L Performance Tools Handbook

Then use the svmon command to check whether there are any processes that use
the shared memory segments shown in the ipcs output. Use the -l and -S flag
with the svmon command as shown in Example 22-5.

Example 22-5 Using svmon -lS to check processes using segments

svmon -lS 9d33

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 9d33 c work shmat/mmap 398 0 0 398
 pid(s)=17048

If there are process IDs (PIDs) reported on the pid(s) line, check if the
processes still exist with the ps command as Example 22-6 shows.

Example 22-6 Using ps -u to check for active processes

ps -p 17048
 PID TTY TIME CMD
 17048 - 0:04 topas

In this example the PID (17048) still exists. If ps only shows the column headers, it
is safe to use the ipcrm command to remove each unused shared memory
segment:

ipcrm -M 0x7804129c

The ipcrm command removes the shared memory segment 0x7804129c. After
this has been done, use the slibclean command:

slibclean

Neither the ipcrm nor slibclean command should display any messages when
executed properly.

Using a shared memory segment
For more detailed information about how to program IPC facilities, review the
General Programming Concepts: Writing and Debugging Programs and
especially the section “Creating a Shared Memory Segment with the shmat
Subroutine” before using shared memory segments in application programs.

Note: To check all shared memory segments at once, use the command:

ipcs -mS|awk '/^0x/{print substr($1,3)}'|xargs -i svmon -lS {}

 Chapter 22. The ipcs command 371

Example shared memory program
Example 22-7 shows a sample program that manages a single shared memory
segment.

Example 22-7 Example shared memory segment program

1 #include <stdio.h>
2 #include <signal.h>
3 #include <sys/types.h>
4 #include <sys/ipc.h>
5 #include <sys/shm.h>
6 #define IPCSZ 4096
7 static int idfile = 0;
8 static char *idpath = NULL;
9 static key_t ipckey = 0;
10 static int ipcid = 0;
11 static char *ipcdata = NULL;
12 void
13 cleanup(int s)
14 {
15 if (ipcid && ipcdata) {
16 /*
17 * The shmdt subroutine detaches from the data segment of the
18 * calling process the shared memory segment.
19 */
20 if (shmdt(ipcdata) < 0) {
21 perror("shmdt");
22 }
23 /*
24 * Once created, a shared memory segment is deleted only when the
25 * system reboots or by issuing the ipcrm command or using the
26 * shmctl subroutine.
27 */
28 if (shmctl(ipcid,IPC_RMID,(void *)ipcdata) < 0) {
29 perror("shmctl");
30 }
31 }
32 close(idfile);
33 remove(idpath);
34 _cleanup ();
35 _exit (0);
36 }
37 main()
38 {
39 /*
40 * Create a unique shared memory id, this is very important!
41 */
42 if ((idpath = tempnam("/tmp","IPC:")) == NULL) {
43 perror("tempnam");

372 AIX 5L Performance Tools Handbook

44 exit(1);
45 }
46 if ((idfile = creat(idpath,0)) < 0) {
47 perror("creat");
48 exit(2);
49 }
50 if ((ipckey = ftok(idpath,random()%128)) < 0) {
51 perror("ftok");
52 exit(3);
53 }
54 /*
55 * We make sure that we clean up the shared memory that we use
56 * before we terminate the process. atexit() is called when
57 * the process is normally terminated, and we trap signals
58 * that a terminal user, or program malfunction could
59 * generate and cleanup then as well.
60 */
61 atexit(cleanup);
62 signal(SIGINT,cleanup);
63 signal(SIGTERM,cleanup);
64 signal(SIGSEGV,cleanup);
65 signal(SIGQUIT,cleanup);
66 /*
67 * IPC_CREAT Creates the data structure if it does not already exist.
68 * IPC_EXCL Causes the shmget subroutine to be unsuccessful if the
69 * IPC_CREAT flag is also set, and the data structure already exists.
70 */
71 if ((ipcid = shmget(ipckey,IPCSZ,IPC_CREAT|IPC_EXCL|0700)) < 0) {
72 perror("shmget");
73 exit(4);
74 }
75 if ((ipcdata = (char *)shmat(ipcid,0,0)) < 0) {
76 perror("shmat");
77 exit(5);
78 }
79 /*
80 * Work with the shared memory segment...
81 */
82 bzero(ipcdata,IPCSZ);
83 strcpy(ipcdata,"Hello World!");
84 printf("ipcdata\t: %s\n",ipcdata);
85 bzero(ipcdata,IPCSZ);
86 strcpy(ipcdata,"Dude!");
87 printf("ipcdata\t: %s\n",ipcdata);
88 }

 Chapter 22. The ipcs command 373

The program performs in three steps. The first step is the setup part where the
unique shared memory key and the shared memory segment are created. This is
done from line 42 to line 78. The ftok subroutine creates the 32-bit key ID by
putting together the file’s inode number, the file system device number, and the
numeric ID used in the call. Be aware that in the case of two identical file systems
where the same numeric ID is used to call ftok, ftok will return the same
number when used in either system.

The second step is the actual data manipulation part. This is between line 82 and
87. The third step is the housekeeping part where all allocated resources from
the setup part are removed, released, and freed. This is performed entirely in the
cleanup() subroutine on lines 15 to 35.

Example 22-8 shows the result of the example program that stores text in the
shared memory and then uses the printf subroutine to display the stored text.

Example 22-8 Sample program run

shm
ipcdata : Hello World!
ipcdata : Dude!

Example 22-9 below shows how the ipcs -mp and ps -p PID command reports
look while our sample program is running.

Example 22-9 Checking our shared memory program while running

ipcs -mp
IPC status from /dev/mem as of Fri May 25 01:41:26 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
m 131078 0xffffffff D-rw-rw---- root system 5204 6252
m 262151 0x3d070079 --rw------- root system 23734 23734
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046

ps -p 5204,23734
 PID TTY TIME CMD
 5204 - 0:00 rmcd
 23734 pts/4 0:00 shm

374 AIX 5L Performance Tools Handbook

In the output, the ps command checks the shared memory segment’s two owner
PIDs (5204 and 23734). The PID 23734 was our program’s process with ID 262151
and key 0x3d070079. Example 22-10 shows the output of ipcs -mp and ps -p PID
after the sample program has ended.

Example 22-10 Checking our shared memory program

ipcs -mp
IPC status from /dev/mem as of Fri May 25 01:46:50 CDT 2001
T ID KEY MODE OWNER GROUP CPID LPID
Shared Memory:
m 0 0x580508f9 --rw-rw-rw- root system 5428 5428
m 1 0xe4663d62 --rw-rw-rw- imnadm imnadm 14452 14452
m 2 0x9308e451 --rw-rw-rw- imnadm imnadm 14452 14452
m 3 0x52e74b4f --rw-rw-rw- imnadm imnadm 14452 14452
m 4 0xc76283cc --rw-rw-rw- imnadm imnadm 14452 14452
m 5 0x298ee665 --rw-rw-rw- imnadm imnadm 14452 14452
m 262150 0xffffffff --rw-rw---- root system 5206 5206
m 8 0x0d05320c --rw-rw-rw- root system 19440 23046
ps -p 23734
 PID TTY TIME CMD

The output above shows that neither our shared memory segment nor the
process that created and used it, exists any more.

Checking processes that use semaphores
Some applications based on a process model use semaphores to communicate
numeric information between applications, such as status between child and
parent processes. That is not using thread programming but the traditional UNIX
style using the fork system call to split a process to execute in parallel in an SMP
environment. In Example 22-11 we become aware of the fact that there are large
amounts of semaphore activity per second by examining a sar report.

Example 22-11 sar report

sar -m 5 3

AIX wlmhost 1 5 000BC6AD4C00 05/28/01

17:40:43 msg/s sema/s
17:40:48 0.00 1352.21
17:40:53 0.00 1359.46
17:40:58 0.00 1353.09

Average 0.00 1354.93

 Chapter 22. The ipcs command 375

We now use the ipcs command with the -tas flags to check which user(s) are
using semaphores. Note that the -t flag shows the time when the last semaphore
operation was completed. This is why we prefix the ipcs report with the current
system time by using the date command as shown in Example 22-12.

Example 22-12 ipcs -tas

date;ipcs -tas
Mon May 28 17:47:55 CDT 2001
IPC status from /dev/mem as of Mon May 28 17:43:02 CDT 2001
T ID KEY MODE OWNER GROUP CREATOR CGROUP NSEMS OTIME CTIME
Semaphores:
s 262144 0x580508f9 --ra-ra-ra- root system root system 1 17:17:21 17:17:21
...(lines omitted)...
s 13 0x010530ab --ra------- root system root system 1 17:28:24 17:28:24
s 14 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:29:53 17:29:44
s 15 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:30:51 17:30:42
...(lines omitted)...
s 185 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:54:55 17:54:47
s 186 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:55:04 17:54:55
s 187 0xffffffff --ra-ra-ra- baluba staff baluba staff 1 17:55:12 17:55:04

In the example output above we see that there are almost 200 semaphores on
the system, created (the CREATOR column) by the baluba user. Now we can use
the ps command to identify which programs this user is running, as shown in
Example 22-13.

Example 22-13 ps command

ps -fu baluba
 UID PID PPID C STIME TTY TIME CMD
 baluba 14830 16412 66 17:55:54 pts/3 0:00 batchsync
 baluba 15784 4618 0 17:28:21 pts/3 0:00 -ksh
 baluba 16412 15784 66 17:55:54 pts/3 0:00 batchsync

The user is only running a command called batchsync, and its start time
coincides with semaphore 186 in the previous output. To investigate further what
the batchsync application is doing we could use other tools such as tprof (see
19.5, “tprof” on page 324) and truss (see Chapter 12, “The truss command” on
page 191). The final example uses truss to monitor what system calls the
batchsync application is executing. Note that because the batchsync process is
restarted very frequently (the start time shown with the ps command is more
related to the last semaphores created than the first), we use shell scripting to
catch the process ID while it is still active, as shown in Example 22-14.

Example 22-14 Using truss

truss -c -p $(ps -f -opid=,comm= -u baluba|awk '/batchsync/{print $1}')
syscall seconds calls errors

376 AIX 5L Performance Tools Handbook

_exit .00 2
__semop .24 8677
kfcntl .00 4
 ---- --- ---
sys totals: .25 8683 0
usr time: 8.54
elapsed: 8.79

The ps command reports the process ID and command name for the user and
pipes it to awk, which separates the process ID for the user and the batchsync
application name. The process IDs are then used by truss to monitor and count
what system calls the application performs and the number of calls made. As can
be seen in the output above, there were 8677 calls made to semop during our
tracking with truss.

To clean up all used semaphores if the application does not, execute the ipcrm
command, as in Example 22-15, for the specified user.

Example 22-15 ipcrm

ipcs -s|awk '/baluba/{print $2}'|xargs -ti ipcrm -s {}
...(lines omitted)...
ipcrm -s 348
ipcrm -s 349

First we use ipcs to report all semaphores, then awk to only print the specified
user’s semaphore IDs, and finally the xargs command to execute one ipcrm for
each semaphore ID in the pipe.

 Chapter 22. The ipcs command 377

378 AIX 5L Performance Tools Handbook

Chapter 23. The rmss command

The rmss (Reduced-Memory System Simulator) command is used to ascertain
the effects of reducing the amount of available memory on a system without the
need to physically remove memory from the system. It is useful for system sizing,
as you can install more memory than is required and then use rmss to reduce it.
Using other performance tools, the effects of the reduced memory can be
monitored. The rmss command has the ability to run a command multiple times
using different simulated memory sizes and produce statistics for all of those
memory sizes.

The rmss command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

23

© Copyright IBM Corp. 2001, 2003 379

23.1 rmss
The syntax of the rmss command is:

rmss -c MemSize
rmss -r
rmss -p
rmss [-d MemSize][-f MemSize][-n NumIterations][-o OutputFile]
[-s MemSize] Command

Flags
-c MemSize Changes the simulated memory size to the MemSize value,

which is an integer or decimal fraction in units of megabytes.
The MemSize variable must be between 4 MB and the real
memory size of the machine. However, it is not
recommended to reduce the simulated memory size to under
256 MB on a uniprocessor system. For systems containing
larger amounts of memory, such as 16 GB to 32 GB, it is not
recommended to reduce the simulated memory size to less
than 1 GB due to inherent system structures such as the
kernel. There is no default for this flag.

-d MemSize Specifies the increment or decrement between memory
sizes to be simulated. The MemSize value is an integer or
decimal fraction in units of megabytes. If the -d flag is
omitted, the increment will be 8 MB. Many systems produced
have a large amount of memory. Therefore, it is
recommended that when testing, you test in increments or
decrements of 128 MB.

-f MemSize Specifies the final memory size. You should finish testing the
simulated system by executing the command being tested at
a simulated memory size given by the MemSize variable,
which is an integer or decimal fraction in units of megabytes.
The MemSize variable may be set between 4 MB and the
real memory size of the machine. However, for systems
containing larger amounts of memory, for example 16 GB to
32 GB, it is not recommended to reduce the simulated
memory size to under 1 GB due to inherent system
structures such as the kernel. If the -f flag is omitted, the final
memory size will be 8 MB.

-n NumIterations Specifies the number of times to run and measure the
command, at each memory size. There is no default for the
-n flag. If the -n flag is omitted during rmss command
initialization, the rmss command will determine how many
iterations of the command being tested are necessary to

380 AIX 5L Performance Tools Handbook

accumulate a total run time of 10 seconds, and then run the
command that many times at each memory size.

-o OutputFile Specifies the file into which to write the rmss report. If the -o
flag is omitted, then the rmss report is written to the file
rmss.out. In addition, the rmss report is always written to
standard output.

-p Displays the current simulated memory size.

-r Resets the simulated memory size to the real memory size
of the machine.

-s MemSize Specifies the starting memory size. Start by executing the
command at a simulated memory size specified by the
MemSize variable, which is an integer or decimal fraction in
units of megabytes. The MemSize variable must be between
4 MB and the real memory size of the machine. If the -s flag
is omitted, the starting memory size will be the real memory
size of the machine. It is difficult to start at a simulated
memory size of less than 8 MB, because of the size of
inherent system structures such as the kernel.

Parameters
Command Specifies the command to be run and measured at each

memory size. The Command parameter may be an
executable or shell script file, with or without command line
arguments. There is no default command.

The rmss command must be run as the root user or a user who is part of the
system group.

23.1.1 Information about measurement and sampling
Using the rmss command, you can measure the effects of limiting the amount of
memory on the system.

Effective memory is reduced by stealing free page frames from the list of free
frames maintained by the Virtual Memory Manager. These frames are kept in a
pool of unusable frames and returned to the free list when effective memory is
increased by rmss. The rmss command also adjusts other data structures and
system variables that must be maintained at different memory settings.

Important: Before running rmss, note the schedo parameters and disable
v_repage_hi.

 Chapter 23. The rmss command 381

The reports are generated to a file as specified by the -o option of the command
line. It is advisable to run any tests at least twice (specify 2 or greater as a
parameter for the -n option).

Measurements are taken on the completion of each executable or shell script as
specified in the command line.

The rmss command reports “usable” real memory. rmss may report a different
size than the size you specify. This is because the system may either have bad
memory or rmss is unable to steal memory that is already pinned by the operating
system such as by device drivers.

23.1.2 Recommendations and precautions
There are no problems with setting the memory size too high as you cannot
exceed the maximum installed memory size. However, setting the memory size
too low can lead to the following problems:

� Severe degradation of performance
� System hang
� High paging

You can recover from this scenario by following the procedure described in
“Resetting the simulated memory size” on page 383

It is recommended that you do not set the simulated memory size of a
uniprocessor system to less than 256 MB. For larger systems containing more
than 16 GB of memory, the recommendation is that you reduce the simulated
memory size to less than 256 MB.

This command is effective immediately and does not require a reboot. Any
changes made are not permanent and will be lost upon rebooting.

23.1.3 Examples for rmss
This section shows examples of the most important report outputs with a detailed
description of the output.

It is important to run the application multiple times for each memory size as this
will eliminate the following scenarios:

� rmss can clear a large amount of memory, and the first time you run your
application you may experience a longer run time while your application loads
files. Also on subsequent runs of the application, as the program is already
loaded, shorter run times may be experienced.

382 AIX 5L Performance Tools Handbook

� Due to other factors within a complex UNIX environment, such as AIX, it may
not be possible to produce the same run times as the previous program run.

Changing the simulated memory size
Simulated memory size can be changed (between 8 MB and total memory on the
system) with the command shown in Example 23-1. In this case the simulated
memory size is set to 512 MB.

Example 23-1 Changing simulated memory size

rmss -c 512
Simulated memory size changed to 512 Mb.

Displaying the simulated memory size
To display the simulated memory size, use the command shown in
Example 23-2.

Example 23-2 Displaying simulated memory size

rmss -p
Simulated memory size is 512 Mb.

Resetting the simulated memory size
To reset the simulated memory size to the system’s installed memory size, use
the command shown in Example 23-3.

Example 23-3 Resetting simulated memory size

rmss -r
Simulated memory size changed to 4096 Mb.

Testing an executable run time with rmss
To investigate the performance of the command cc -O foo.c with memory sizes
512, 384, and 256 MB, run and measure the command twice at each memory
size, then write the report to the cc.rmss.out file, and enter:

rmss -s 512 -f 256 -d 128 -n 2 -o cc.rmss.out cc -O foo.c

To investigate the performance of shell_script.sh with different memory sizes
from 256 MB to 512 MB, by increments of 64 MB; run and measure
shell_script.sh twice at each memory size; and write the report to the rmss.out
file, enter the following:

rmss -s 256 -f 512 -d 64 -n 2 -o rmss.out shell_script.sh

 Chapter 23. The rmss command 383

When any combination of the -s, -f, -d, -n, and -o flags is used, the rmss
command runs as a driver program, which executes a command multiple times
over a range of memory sizes and displays statistics describing the commands
performance of the command at each memory size.

The following command sequence was performed to generate the example
output shown in Example 23-4.

1. Create a 128 MB file called 128MB_file.

2. Create a shell script called shell_script.sh containing:

tar cvf /dev/null 128MB_file > /dev/null 2>&1

3. Run the command:

rmss -s 256 -f 1024 -d 128 -n 2 -o rmss.out shell_script.sh

Example 23-4 Screen output from rmss

cat rmss.out

Hostname: bolshoi.itso.ibm.com
Real memory size: 4096 Mb
Time of day: Sun May 20 15:57:20 2001
Command: shell_script.sh

Simulated memory size initialized to 256 Mb.

Number of iterations per memory size = 1 warmup + 2 measured = 3.

Memory size Avg. Pageins Avg. Response Time Avg. Pagein Rate
(megabytes) (sec.) (pageins / sec.)
--
256 9.5 0.4 26.2
384 7.0 0.3 20.4
512 6.0 0.3 17.6
640 5.5 0.3 16.1
768 7.0 0.3 20.4
896 3.0 0.3 9.1
1024 2.5 0.3 7.6
Simulated final memory size.

The first few lines of the report gives general information, including the name of
the machine that the rmss command was running on, the real memory size of that
machine, the time and date, and the command that was being measured. The
next two lines give informational messages that describe the initialization of the
rmss command. Here, the rmss command displays that it has initialized the
simulated memory size to 256 MB, which was the starting memory size given

384 AIX 5L Performance Tools Handbook

with the -s flag. Also, the rmss command prints out the number of iterations that
the command will be run at each memory size. Here, the command is to be run
three times at each memory size; once to warm up and twice when its
performance is measured. The number of iterations was specified by the -n flag.

The lower part of the report provides the following for each memory size the
command was run at:

� The memory size, along with the average number of page-ins that occurred
while the command was run

� The average response time of the command

� The average page-in rate that occurred when the command was run

Note: The average page-ins and average page-in rate values include all
page-ins that occurred while the command was run, not just those initiated by
the command.

 Chapter 23. The rmss command 385

386 AIX 5L Performance Tools Handbook

Chapter 24. The svmon command

The svmon command captures a snapshot of virtual memory, so it is useful for
determining which processes, user programs, and segments are consuming the
most real, virtual, and paging space memory. The svmon command can also do
tier and class reports on Workload Manager.

The svmon command invokes the svmon_back command, which does the actual
work.

The svmon command resides in /usr/bin directory and the svmon_back command
resides in the /usr/lib/perf directory. Both are part of the bos.perf.tools fileset.

24

© Copyright IBM Corp. 2001, 2003 387

24.1 svmon
The syntax of the svmon command is:

svmon -G [-i Interval [NumIntervals]] [-z]
svmon -U [LogName1...LogNameN] [-r] [-n | -s] [-w | -f -c]

[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-j] [-d] [-z] [-m] [-q]

svmon -C Command1...CommandN [-r] [-n | -s] [-w | -f | -c]
[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-j] [-d] [-z] [-m] [-q]

svmon -W [ClassName1...ClassNameN] [-e] [-r] [-n | -s]
[-w | -f | -c] [-t Count] [-u | -p | -g | -v]
[-i Interval [NumIntervals]] [-l] [-j] [-d] [-z] [-m] [-q]

svmon -T [Tier1...TierN] [-a SupClassName] [-x] [-e] [-r]
[-u | -p | -g | -v] [-n | -s] [-w | -f | -c] [-t Count]
[-i Interval [NumIntervals]] [-l] [-z] [-m]

svmon -P [PID1... PIDN] [-r [-n | -s] [-w | -f | -c] [-t Count]
[-u | -p | -g | -v] [-i Interval [NumIntervals]] [-l] [-j] [-z]
[-m] [-q]

svmon -S [SID1...SIDN] [-r] [-n | -s] [-w | -f | -c]
[-t Count] [-u | -p | -g | -v] [-i Interval [NumIntervals]]
[-l] [-j] [-z] [-m] [-q]

svmon -D SID1..SIDN [-b] [-i Interval [NumIntervals]] [-z] [-q]
svmon -F [Frame1..FrameN] [-i Interval [NumIntervals]] [-z] [-q]

Flags
If no command line flag is given, then the -G flag is the default.

-a SupClassName Restricts the scope to the subclasses of the
SupClassName class parameter (in the Tier
report -T). The parameter is a superclass name.
No list of class is supported.

-b Shows the status of the reference and modified
bits of all displayed frames (detailed report -D).
Once shown, the reference bit of the frame is
reset. When used with the -i flag it detects which
frames are accessed between each interval. This
flag should be used with caution because of its
performance impacts.

-c Indicates that only client segments are to be
included in the statistics. By default all segments
are analyzed.

-C Command1...CommandN Displays memory usage statistics for the
processes running the command. All commands

388 AIX 5L Performance Tools Handbook

are strings that contain the exact basename of an
executable file.

-d Displays the memory statistics of the processes
belonging to a given entity (user name or
command name).

-D SID1...SIDN Displays memory-usage statistics for segments
SID1...SIDN and a detail status of all frames of
each segment.

-e Displays the memory-usage statistics of the
subclasses of the Class parameter in the
Workload Class report -W and in the Tier report
-T. The class parameter of -W or -a must be a
superclass name.

-f Indicates that only persistent segments (files) are
to be included in the statistics. By default all
segments are analyzed.

-F [Frame1...FrameN] Displays the status of frames Frame1...FrameN,
including the segments that they belong to. If no
list of frames is supplied, the percentage of
memory used is displayed.

-g Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages reserved or used on paging space. This
flag, together with the segment report, shifts the
non-working segment at the end of the sorted list.

-G Displays a global report.

-i Interval [NumIntervals] Instructs the svmon command to display statistics
repetitively. Statistics are collected and printed
every Interval seconds. NumIntervals is the
number of repetitions; if not specified, svmon runs
until user interruption (Ctrl-C).

-j Shows, for each persistent segment, the file path
referred. Note: This flag should be used with
caution because of its potential performance
impacts (especially with svmon -S).

-l Shows, for each displayed segment, the list of
process identifiers that use the segment and,
according to the type of report, the entity name
(login, command, tier, or class) the process
belongs to. For special segments a label is
displayed instead of the list of process identifiers.

 Chapter 24. The svmon command 389

-m Displays both source segment and mapping
segment information when a segment is mapping
a source segment. The default is to display only
information about the mapping segment.

-n Indicates that only non-system segments are to
be included in the statistics. By default all
segments are analyzed.

-p Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages pinned.

-P [PID1... PIDN] Displays memory usage statistics for processes
PID1...PIDN. PID is a decimal value. If no list of
process IDs (PIDs) is supplied, memory usage
statistics are displayed for all active processes.

-q Filters results regarding whether they deal with
large pages or not. Additionally, it displays large
page metrics.

-r Displays the range(s) within the segment pages
that have been allocated. A working segment
may have two ranges because pages are
allocated by starting from both ends and moving
toward the middle.

-s Indicates that only system segments are to be
included in the statistics. By default all segments
are analyzed.

-S [SID1...SIDN] Displays memory-usage statistics for segments
SID1...SIDN. SID is a hexadecimal value. If no list
of segment IDs (SIDs) is supplied, memory
usage statistics are displayed for all defined
segments.

-t Count Displays memory-usage statistics for the top
Count object to be printed.

-T [Tier1...TierN] Displays memory-usage statistics for all classes
of the tier numbers Tier1...TierN. If no list of tiers
is supplied, memory usage statistics are
displayed for all defined tiers.

-u Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages in real memory. This is the default sorting
criteria if none of the following flags is present: -p,
-g, and -v.

390 AIX 5L Performance Tools Handbook

-U [LogName1...LogNameN]Displays memory usage statistics for the login
names LogName1...LogNameN. LogName is an
exact login name string. If no list of login
identifiers is supplied, memory usage statistics
are displayed for all defined login identifiers.

-v Indicates that the information to be displayed is
sorted in decreasing order by the total number of
pages in virtual space. This flag in conjunction
with the segment report shifts the non-working
segment at the end of the sorted list.

-w Indicates that only working segments are to be
included in the statistics. By default all segments
are analyzed.

-W [Clnm1...ClnmN] Displays memory usage statistics for the
workload management class Clnm1...ClnmN.
Clnm is the exact name string of a class. For a
subclass, the name should have the form
superclassname.subclassname. If no list of class
names is supplied, memory usage statistics are
displayed for all defined class names.

-x Displays memory usage statistics for segments
for every class of a tier in the Tier report -T.

-z Displays the maximum memory size dynamically
allocated by svmon during its execution.

-q Reports only large page segments. In that case,
global metrics are only related to these large
page segments.

Parameters
Interval Statistics are collected and printed every Interval

seconds.

NumIntervals The number of repetitions; if not specified, svmon
runs until user interruption, Ctrl-C.

24.1.1 Information about measurement and sampling
When invoked, svmon captures a snapshot of the current contents of real, paging,
and virtual memory, and summarizes the contents. Note that virtual pages
include both real memory and paging space pages except for the -G report.
Refer to “Analyzing the global report” on page 398.

 Chapter 24. The svmon command 391

The svmon command runs in the foreground as a normal user process. Because it
can be interrupted while collecting data, it cannot be considered to be a true
snapshot of the memory. svmon reports are based on virtual counters from the
Virtual Memory Manager (VMM) for statistical analysis, and these might not
always be current with the actual utilization. For these reasons you should be
careful when analyzing the information received from running svmon snapshots
on very busy systems with many processes because the data might have been
updated by VMM while svmon is running.

svmon can be started either to take single snapshots or measure information at
intervals. However, be aware that svmon can take several minutes to complete
some functions, depending on the options specified and the system load.
Because of this, the observed interval may be longer than what has been
specified with the -i option.

Because processes and files are managed by VMM, and VMM’s view of memory
is as a segmented space, almost all of the svmon reports will concern segment
usage and utilization. To gain the most benefits from the svmon reports you
should understand what segments are and how they are used.

Segments
When a process is loaded into memory, its different parts (such as stack, heap,
and program text) will be loaded into different segments. The same is true for
files that are opened through the filesystem or are explicitly mapped.

A segment is a set of pages. It is the basic object used to report the memory
consumption. Each segment is 256 MB of memory. The statistics reported by
svmon are expressed in terms of pages. A page is a 4 KB block of virtual memory,
while a frame is a 4 KB block of real memory. A segment can be used by multiple
processes at the same time.

A segment belongs to one of the five following types:

persistent Used to manipulate Journaled File System (JFS) files and
directories

working Used to implement the data areas of processes and
shared memory segments

client Used to implement some virtual file systems such as
Network File System (NFS), the CD-ROM file system, and
the Journaled File System 2 (J2)

mapping Used to implement the mapping of files in memory

real memory map Used to access the I/O space from the virtual address
space

392 AIX 5L Performance Tools Handbook

Note that a 64-bit system uses a different segmentation layout than a 32-bit
system. Different segments are used for storing specific objects, such as process
data and explicitly mapped files.

A dash (-) in the paging space utilization column indicates that the segment does
not use paging space. For example, work segments use paging space, but
persistent and client segments do not because they are read again from their
stored location if the frames they occupied are freed. There are exceptions, such
as when a mapped file is opened in a deferred update mode. A working segment
will be stored on paging space because it is dynamic data and has no
corresponding persistent storage area.

For more information about VMM and segmented memory usage, refer to:

� 1.3, “Memory performance” on page 12

� AIX 5L Version 5.2 System Management Concepts: Operating System and
Devices

� AIX 5L Version 5.2 System Management Guide: Operating System and
Devices

� AIX 5L Version 5.2 Performance Management Guide

� The svmon command in the AIX 5L Version 5.2 Commands Reference,
Volume 5

24.1.2 Examples for svmon
Example 24-1 shows the default display when running svmon. To monitor on a
continual basis, use the -i option flag with an interval number and a count
number. For example, svmon -i 5 12 takes a snapshot every five seconds,
repeating 12 times. The default report from svmon, when run without option flags,
shows systemwide memory utilization.

Example 24-1 svmon without options

lpar05:/>> svmon
 size inuse free pin virtual
memory 2097152 1155740 941412 134457 710778
pg space 524288 204410

 work pers clnt lpage
pin 134457 0 0 0
in use 526635 368039 261066 0

In the first part of the output, usually we are most interested in the number of real
memory pages that are inuse and free, as shown on the memory line. The
number of pg space pages that are inuse show how many pages are actually in

 Chapter 24. The svmon command 393

use on the paging space(s). Other lines display information regarding pinned and
used pages related to working, persistent, and client segments.

Determining which processes are using the most real memory
To list the the process that is using the most real memory, run svmon with the -P
and -u flags as shown in Example 24-2. Use the -t flag with x to display the top x
processes. Output is sorted in decreasing order on the number of pages in real
memory.

Example 24-2 Output from svmon -uP -t 3

svmon -Pu -t 3|grep -p Pid|grep '^.*[0-9]'
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 27952 java 247278 2520 4278 253857 N Y N
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 22966 IBM.CSMAgentR 8590 2529 5015 15621 N Y N
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 21718 aixterm 8557 2513 4278 15062 N N N

This output shows that the Java process uses the most memory. To calculate the
amount of memory, multiply the in use value by 4096 (one page). Note that the
system supports two virtual page sizes: traditional 4k pages and (since AIX 5.1
with the 5100-02 Recommended Maintenance package)16MB large pages.

Determining which processes use the most paging space
Run svmon with the -P and -g flags to list the top paging space consumers in
decreasing order. Example 24-3 shows the top three processes.

Example 24-3 svmon -gP -t 3

svmon -gP -t 3 |grep -p Pid|grep '^.*[0-9]'
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 18330 rmcd 8241 2517 5020 15433 N Y N
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 22966 IBM.CSMAgentR 8590 2530 5015 15621 N Y N
 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 23736 IBM.ERrmd 8066 2523 4886 15321 N Y N

The first process, rmcd, consumes the most paging space. The Pgsp field shows
the number of 4 KB pages reserved or used in paging space by this process.

A Pgsp number that grows but never decreases may indicate a memory leak in
the program. In this example, the rmcd process uses 5020 * 4096 = 20561920
bytes or 20 MB paging space.

394 AIX 5L Performance Tools Handbook

Displaying memory used by a WLM class
Use the -W flag with svmon to find out how much memory is used by processes
belonging to a WLM class. Example 24-4 shows information about the shared
memory segments.

Example 24-4 svmon -W shared

#svmon -W Shared
===
Superclass Inuse Pin Pgsp Virtual
Shared 5164 0 1488 8184
 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 b0036 - work - 3444 0 26 6019
 b8037 - work - 551 0 954 1436
 980f3 - pers /dev/hd2:4132 - 412 0 - -
 c0038 - work - 177 0 278 416
 40268 - pers /dev/hd2:4895 - 171 0 - -
 60 - work - 127 0 212 265
 30266 - pers /dev/hd2:4916 - 91 0 - -
 800f0 - pers /dev/hd2:6251 - 54 0 - -
 382e7 - work - 35 0 15 43
 c01d8 - pers /dev/hd2:4199 - 33 0 - -
 48109 - pers /dev/hd2:4194 - 27 0 - -
 d81fb - pers /dev/hd2:4200 - 15 0 - -
 38387 - pers /dev/hd2:338012 - 12 0 - -
 10142 - pers /dev/hd2:4188 - 8 0 - -
 f03fe - pers /dev/hd2:336117 - 3 0 - -
 d829b - pers /dev/hd2:4151 - 2 0 - -
 40048 - work - 2 0 3 5
 e01dc - work - 0 0 0 0

Finding out most utilized segments
With the -S option, svmon sorts segments by memory usage and displays the
statistics for the top memory-usage segments. Example 24-5 shows the top 10
memory users by segment, by using the -t flag.

Example 24-5 svmon -S

#svmon -S -t 10

 Vsid Esid Type Description LPage Inuse Pin PgspVirtual
 128a2 - work - 65536 0 0 65536
 5a8ab - work - 65536 0 0 65536
 30246 - work - 65529 65529 0 65529
 328a6 - work - 65259 0 0 65259
 8a8b1 - work - 35759 0 0 35759
 80010 - work page frame table - 30480 30480 0 30480
 90012 - work kernel pinned heap - 25949 8115 54754 60395
 15e0 - pers /dev/hd1:6197 - 19671 0 - -

 Chapter 24. The svmon command 395

 928b2 - work - 6979 0 0 6979
 88011 - work misc kernel tables - 6684 0 4706 10410

Finding out what files a process or command is using
With svmon, persistent segment data (files and directory) display in device:inode
format. The ncheck command maps device:inode to a file system and file name.
Example 24-6 shows a sample report using svmon with the -p flag.

Example 24-6 svmon -pP

svmon -pP 30752

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 30752 java 247008 2520 4278 253551 N Y N

 Vsid Esid Type Description LPage Inuse Pin PgspVirtual
 0 0 work kernel seg - 4327 2511 4252 8303
 7a8af - work - 23 7 0 23
 a28b4 2 work process private - 32 2 0 32
 906d2 1 pers code,/dev/hd2:34861 - 7 0 - -
 328a6 3 work working storage - 65259 0 0 65259
 4a8a9 8 work working storage - 0 0 0 0
 a8a1 f work shared library data - 105 0 0 105
 528aa a work working storage - 0 0 0 0
 c85b9 - pers /dev/hd2:12302 - 1 0 - -
 5a8ab 5 work working storage - 65536 0 0 65536
 128a2 4 work working storage - 65536 0 0 65536
 828b0 9 work working storage - 0 0 0 0
 8a8b1 6 work working storage - 35759 0 0 35759
 b0036 d work shared library text - 3444 0 26 6019
 928b2 7 work working storage - 6979 0 0 6979
 9a8b3 b mmap mapped to sid d14fa - 0 0 - -

Finding out which segments use paging space
To display information segments sorted by usage on paging space, use the svmon
command with the -S and -g flags, as shown Example 24-7.

Example 24-7 svmon -gS

svmon -Sg
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 90012 - work kernel pinned heap - 25949 8115 54754 60395
 88011 - work misc kernel tables - 6701 0 4706 10423
 0 - work kernel seg - 4327 2511 4252 8303
 5004a - work - 5605 5605 3309 8914
 b8037 - work - 592 0 954 1477
 582cb - work - 0 0 653 653
 b8437 - work - 287 2 573 730

396 AIX 5L Performance Tools Handbook

 7800f - work page table area - 513 2 524 526
 88391 - work - 82 2 524 536
 420 - work - 8 2 482 487
 c0478 - work - 14 2 393 398
 904f2 - work - 9 2 381 387
 c8479 - work - 48 2 374 418
 10442 - work - 46 2 367 381
 90052 - work - 49 2 363 385
 40348 - work - 9 2 352 354
 20544 - work - 9 2 345 351
 20264 - work - 71 2 345 390
 28305 - work - 111 2 342 420
 40188 - work - 47 2 337 348
 c8339 - work - 23 2 336 345
 48309 - work - 32 2 334 364

We can use the -D option to display frame information about each segment.
Example 24-8 displays segment Vsid 420.

Example 24-8 svmon -D sid

lpar05:/>> svmon -D 12862

Segid: 12862
Type: persistent
LPage: N
Address Range: 0..1828

 Page Frame Pin ExtSegid ExtPage
 1828 1631094 N - -
 1705 961115 N - -
 1706 1631368 N - -
 1707 1869959 N - -
 1708 1631392 N - -
 1709 1116454 N - -
 1710 1436745 N - -
 1711 1116458 N - -
 1712 580493 N - -
 1713 1789220 N - -
 1714 897149 N - -
 1715 1493724 N - -
 1716 311427 N - -
 1717 1675108 N - -
....(lines omitted).....

The output shows that the segment is a persistent segment. To compare the -D
output with -S and -r, as is shown in Example 24-9 on page 398, we view a
similar report of the frame address range (0..1828).

 Chapter 24. The svmon command 397

Example 24-9 svmon -rS sid

lpar05:/>> svmon -rS 12862

 Vsid Esid Type Description LPage Inuse Pin Pgsp virtual
 12862 - pers /dev/hd2:319685 - 913 0 - -
 Addr Range: 0..1828
stdin: END

If we use the -F option to look at the frame itself (as in Example 24-10), we
monitor whether it is referenced or modified, but only over a very short interval.

Example 24-10 svmon -F

svmon -F 93319 -i 1 5

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 Y Y 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 Y N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

 Frame Segid Ref Mod Pincount State Swbits
 93319 3ba7 N N 0/0 In-Use 88000004

Analyzing the global report
To monitor system memory utilization with svmon, use the -G flag. Example 24-11
shows the used and free sizes of real and virtual memory in the system.

Example 24-11 svmon -G

svmon -G
 size inuse free pin virtual
memory 131047 26602 104445 13786 38574
pg space 262144 14964

 work pers clnt
pin 13786 0 0
in use 20589 444 5569

398 AIX 5L Performance Tools Handbook

The column headings in a global report are:

memory Specifies statistics describing the use of real memory, including:

size Number of real memory frames (size of real memory). This
includes any free frames that have been made unusable by
the memory sizing tool, the rmss command.

inuse Number of frames containing pages.

free Number of frames free of all memory pools.

pin Number of frames containing pinned pages.

virtual Number of pages allocated in the system virtual space for
working segments only (not all segment types).

stolen Number of frames stolen by rmss and marked unusable by
the VMM.

pg space Specifies statistics describing the use of paging space.

size Size of paging space.

inuse Number of paging space pages used.

pin Specifies statistics on the subset of real memory containing pinned
pages, including:

work Number of frames containing working segment pinned pages.

pers Number of frames containing persistent segment pinned
pages.

clnt Number of frames containing client segment pinned pages.

in use Specifies statistics on the subset of real memory in use, including:

work Number of frames containing working segment pages.

pers Number of frames containing persistent segment pages.

clnt Number of frames containing client segment pages.

To show systemwide memory utilization, run svmon without any flags or only with
the -G flag as shown in Example 24-12.

Example 24-12 svmon with the -G flag

svmon -G
 size inuse free pin virtual
memory 131047 41502 89545 16749 62082
pg space 262144 29622

 work pers clnt
pin 16749 0 0
in use 39004 2498 0

 Chapter 24. The svmon command 399

In the first part of the output we usually are most interested in the number of real
memory pages that are inuse and free, as shown on the memory line. The
number of pg space pages that are inuse is pages that are actually in use on the
paging space(s). The last line, in use, shows the utilization of different memory
segment types (work, pers, and clnt). Note that clnt indicates both NFS and
JFS2 cached file pages (this actually includes CD-ROM filesystems) while the
pers column shows cached JFS file pages.

Example 24-13 illustrates how the report looks when using the rmss command
(see Chapter 23, “The rmss command” on page 379) to limit available memory
for test purposes in the system. Note the additional column stolen.

Example 24-13 svmon report when using rmss

rmss -s 128 $(whence svmon) -G

Hostname: wlmhost
Real memory size: 512 Mb
Time of day: Thu May 24 22:27:13 2001
Command: /usr/bin/svmon-G

Simulated memory size initialized to 128 Mb.
 size inuse free pin virtual stolen
memory 131047 117619 13428 13784 134214 95584
pg space 262144 14964

 work pers clnt
pin 13784 0 0
in use 116211 445 963

Analyzing memory utilization per user
The -U flag can be used with svmon to monitor users’ memory utilization. The
following series of examples shows how svmon reports the memory usage for a
process by using the different optional flags with the -U flag. Without any user
specification, the -U option reports on all users.

The column headings in a user report are:

User Indicates the user name.

Inuse Indicates the total number of pages in real memory in
segments that are used by the user.

Pin Indicates the total number of pages pinned in segments
that are used by the user.

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the user.

400 AIX 5L Performance Tools Handbook

Virtual Indicates the total number of pages allocated in the
process virtual space.

Vsid Indicates the virtual segment ID, which identifies a unique
segment in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays
for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment: pers indicates a
persistent segment, work means a working segment, clnt
means a client segment, map means a mapped segment,
and rmap means a real memory mapping segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format <device>:<inode>,
such as /dev/hd1:123.

working Data areas of processes and shared
memory segments, dependent on the role of
the segment based on the VSID and ESID.

mapping Mapped to source segment IDs.
client NFS, CD-ROM, and JFS2 files, dependent

on the role of the segment based on the
VSID and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

 Chapter 24. The svmon command 401

The segments used by the processes are separated into three categories:

SYSTEM Segments shared by all processes.

EXCLUSIVE Segments used by the set of processes belonging to the
specified user.

SHARED Segments shared by several users.

The global statistics for the specified user is the sum of each of the following
fields: Inuse, Pin, Pgsp, and Virtual of the segment categories SYSTEM,
EXCLUSIVE, and SHARED.

Source segment and mapping segment
The optional -m flag displays source segment and mapping segment information,
as shown in Example 24-14.

Example 24-14 svmon -U user -m

svmon -U hennie -m

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8164 2515 4278 14645 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2511 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2511 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 184 4 0 171

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
a2a54 2 work process private - 95 2 0 95
aaa55 2 work process private - 35 2 0 35
6aa4d f work shared library data - 22 0 0 22
9aa53 f work shared library data - 19 0 0 19
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -
ea0dd - pers /dev/hd2:204925 - 1 0 - -
7aa4f - pers /dev/hd1:4164 - 1 0 - -
1a0e3 - pers /dev/hd2:206940 - 1 0 - -
f20de - pers /dev/hd2:204932 - 1 0 - -
ba0d7 - pers /dev/hd2:204911 - 1 0 - -

402 AIX 5L Performance Tools Handbook

...
SHARED segments Inuse Pin Pgsp Virtual
 3653 0 26 6171

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3597 0 26 6171
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -
700ee - pers /dev/hd2:2 - 1 0 - -

Displaying segments for all processes belonging to a user
The optional -d flag displays, for a given entity, the memory statistics of the
processes belonging to the specified user. When the -d flag is specified, the
statistics are followed by the information about all processes run by the specified
user. The svmon command displays information about the segments used by
these processes. This set of segments is separated into three categories;
segments that are flagged system by the Virtual Memory Manager (VMM),
segments that are only used by the set of processes belonging to the specified
user, and segments that are shared among several users (Example 24-15).

Example 24-15 svmon -U user -d

lpar05:/hennie/svmon>> svmon -U hennie -d

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8196 2516 4278 14682 N

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 20058 ksh 8124 2514 4278 14619 N N N
 31962 find 8024 2514 4278 14565 N N N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2512 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2512 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 189 4 0 180

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
a2a54 2 work process private - 95 2 0 95
aaa55 2 work process private - 44 2 0 44
6aa4d f work shared library data - 22 0 0 22

 Chapter 24. The svmon command 403

9aa53 f work shared library data - 19 0 0 19
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -
7aa4f - pers /dev/hd1:4164 - 1 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3680 0 26 6199

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3625 0 26 6199
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -

Showing other processes that also use segments
The optional -l flag shows, for each displayed segment, the list of process
identifiers that use the segment and the user the process belongs to. For special
segments a label is displayed instead of the list of process identifiers. With the -l
flag specified, each shared segment is followed by the list of process identifiers
that use the segment. Besides the process identifier, the user who started it is
also displayed, as shown in Example 24-16.

Example 24-16 svmon -U user -l

lpar05:/hennie/svmon>> svmon -U hennie -l

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8147 2513 4278 14642 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2511 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2511 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 118 2 0 117

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
a2a54 2 work process private - 95 2 0 95
6aa4d f work shared library data - 22 0 0 22
7aa4f - pers /dev/hd1:4164 - 1 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3702 0 26 6222

404 AIX 5L Performance Tools Handbook

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3648 0 26 6222
 Shared library text segment
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
 pid:36880 user: root
 pid:35244 user: res1
 pid:32664 user: res1
 pid:29512 user: root
 pid:28316 user: root
 pid:25240 user: root
 pid:22690 user: root
 pid:22350 user: root
 pid:20058 user: hennie
 pid:15422 user: root

Displaying the total number of virtual pages
The optional -v flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages). It is shown in Example 24-17 for
the user called hennie.

Example 24-17 svmon -U user -v

lpar05:/hennie/svmon>> svmon -U hennie -v

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8147 2513 4278 14642 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2511 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2511 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 118 2 0 117

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
a2a54 2 work process private - 95 2 0 95
6aa4d f work shared library data - 22 0 0 22
7aa4f - pers /dev/hd1:4164 - 1 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3702 0 26 6222

 Chapter 24. The svmon command 405

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3648 0 26 6222
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -

Displaying total number of reserved paging space pages
The optional -g flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging
space, as shown in Example 24-18.

Example 24-18 svmon -U user -g

lpar05:/hennie/svmon>> svmon -U hennie -g

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8224 2515 4278 14699 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2511 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2511 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 193 4 0 174

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2a56 2 work process private - 35 2 0 35
8aa51 f work shared library data - 19 0 0 19
a2a54 2 work process private - 98 2 0 98
6aa4d f work shared library data - 22 0 0 22
7aa4f - pers /dev/hd1:4164 - 1 0 - -
90212 - pers /dev/hd2:8231 - 1 0 - -
f1dfe - pers /dev/hd2:401971 - 4 0 - -
48349 - pers /dev/hd2:331860 - 1 0 - -
9de1 - pers /dev/hd2:372747 - 1 0 - -
11de2 - pers /dev/hd2:372748 - 1 0 - -
19de3 - pers /dev/hd2:372749 - 1 0 - -
21de4 - pers /dev/hd2:372750 - 1 0 - -
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3704 0 26 6222

406 AIX 5L Performance Tools Handbook

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3648 0 26 6222
700ee - pers /dev/hd2:2 - 1 0 - -
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -

Displaying by total number of pinned pages
The optional -p flag indicates that the displayed information is sorted in
decreasing order by the total number of pages pinned, as Example 24-19 shows.

Example 24-19 svmon -U user -p

lpar05:/hennie/svmon>> svmon -U hennie -p

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 8215 2515 4278 14694 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2511 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2511 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 184 4 0 169

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
a2a54 2 work process private - 98 2 0 98
8aa51 2 work process private - 30 2 0 30
696ed - pers /dev/hd2:149613 - 1 0 - -
f807f - pers /dev/hd2:30737 - 1 0 - -
7aa4f - pers /dev/hd1:4164 - 1 0 - -
b2a56 f work shared library data - 19 0 0 19
6aa4d f work shared library data - 22 0 0 22
d96db - pers /dev/hd2:92324 - 1 0 - -
305a6 - pers /dev/hd2:61464 - 1 0 - -
980b3 - pers /dev/hd2:2048 - 2 0 - -
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3704 0 26 6222

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
f80df - pers /dev/hd4:2 - 1 0 - -
700ee - pers /dev/hd2:2 - 1 0 - -

 Chapter 24. The svmon command 407

b0036 d work shared library text - 3648 0 26 6222
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -

Displaying by total number of real memory pages
The optional -u flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory, as shown in
Example 24-20.

Example 24-20 svmon -U user -u

lpar05:/hennie/svmon>> svmon -U hennie -u

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 207777 2527 4278 214251 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4350 2519 4252 8326

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2512 4252 8303
5a82b - work - 23 7 0 23

...
lpar05:/hennie/svmon>> svmon -U hennie -u

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 247424 2527 4278 253903 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4350 2519 4252 8326

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2512 4252 8303
5a82b - work - 23 7 0 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 239364 8 0 239355

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 65536 0 0 65536
c2a58 5 work working storage - 65536 0 0 65536
6284c 3 work working storage - 65259 0 0 65259
105c2 6 work working storage - 35759 0 0 35759
caa59 7 work working storage - 6979 0 0 6979

408 AIX 5L Performance Tools Handbook

2a60 f work shared library data - 105 0 0 105
d15ba 2 work process private - 44 2 0 44
a2a54 2 work process private - 34 2 0 34
....(line omitted)....
...
SHARED segments Inuse Pin Pgsp Virtual
 3710 0 26 6222

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3648 0 26 6222
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
906d2 1 pers code,/dev/hd2:34861 - 7 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -

Displaying only client segments
The optional -c flag indicates that only client segments are to be included in the
statistics. Note that Example 24-21 shows that the specified user does not use
any client segments.

Example 24-21 svmon -U user -c

lpar05:/hennie/svmon>> svmon -U hennie -c

===
User Inuse Pin Pgsp Virtual LPageCap
hennie 10 0 0 0 N

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 10 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
32a86 - clnt - 10 0 - -
lpar05:/hennie/svmon>>

Example 24-22 shows a user reading files in a JFS2 filesystem.

Example 24-22 svmon -U user -c

lpar05:/>> svmon -U pieter -c

===
User Inuse Pin Pgsp Virtual LPageCap
pieter 201024 0 0 0 N

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 201024 0 0 0

 Chapter 24. The svmon command 409

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
814f0 - clnt - 201024 0 - -

Displaying only persistent segments
The optional -f flag indicates that only persistent segments (files) are to be
included in the statistics, as shown in Example 24-23.

Example 24-23 svmon -U user -f

lpar05:/>> svmon -U gerda -f

===
User Inuse Pin Pgsp Virtual LPageCap
gerda 69 0 0 0 N

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 13 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -
a80f5 - pers /dev/hd2:4112 - 4 0 - -
5856b - pers /dev/hd1:2111 - 1 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 56 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
700ee - pers /dev/hd2:2 - 1 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -

Displaying only working segments
The optional -w flag indicates that only working segments are to be included in
the statistics, as shown in Example 24-24.

Example 24-24 svmon -U user -w

lpar05:/>> svmon -U myra -w

===
User Inuse Pin Pgsp Virtual LPageCap
myra 7852 2514 4278 14395 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2510 4252 8303

410 AIX 5L Performance Tools Handbook

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4327 2510 4252 8303

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 171 4 0 171

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
82a90 2 work process private - 95 2 0 95
b85b7 2 work process private - 35 2 0 35
62a8c f work shared library data - 22 0 0 22
6c14d f work shared library data - 19 0 0 19

...
SHARED segments Inuse Pin Pgsp Virtual
 3354 0 26 5921

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3354 0 26 5921
lpar05:/>>

Displaying only system segments
The optional -s flag indicates that only system segments are displayed in the
output, as shown in Example 24-25.

Example 24-25 svmon -U user -s

lpar05:/>> svmon -U myra -s

===
User Inuse Pin Pgsp Virtual LPageCap
myra 4327 2510 4252 8303 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2510 4252 8303

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4327 2510 4252 8303

Displaying only non-system segments
The optional -n flag indicates that only non-system segments are to be included
in the statistics, as shown in Example 24-26 on page 412.

 Chapter 24. The svmon command 411

Example 24-26 svmon -U user -n

lpar05:/>> svmon -U bettie -n

===
User Inuse Pin Pgsp Virtual LPageCap
bettie 3588 4 26 6088 N

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 178 4 0 167

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
82a90 2 work process private - 95 2 0 95
6c14d 2 work process private - 31 2 0 31
62a8c f work shared library data - 22 0 0 22
e14dc f work shared library data - 19 0 0 19
b8057 1 pers code,/dev/hd2:6230 - 8 0 - -
980b3 - pers /dev/hd2:2048 - 2 0 - -
b85b7 - pers /dev/hd1:2118 - 1 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3410 0 26 5921

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3354 0 26 5921
800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
f80df - pers /dev/hd4:2 - 1 0 - -
700ee - pers /dev/hd2:2 - 1 0 - -

Displaying allocated page ranges within segments
The optional -r flag displays the range(s) within the segment pages that have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving toward the middle. With the -r
flag specified, each segment is followed by the range(s) within the segment
where pages have been allocated, as shown in Example 24-27.

Example 24-27 svmon -U user -r

lpar05:/>> svmon -U bettie -r

===
User Inuse Pin Pgsp Virtual LPageCap
bettie 7926 2514 4278 14395 N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4327 2510 4252 8303

412 AIX 5L Performance Tools Handbook

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4327 2510 4252 8303
 Addr Range: 0..27833

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 189 4 0 171

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 82a90 2 work process private - 95 2 0 95
 Addr Range: 0..151 : 65306..65535
 e14dc 2 work process private - 35 2 0 35
 Addr Range: 0..431 : 65304..65535
 62a8c f work shared library data - 22 0 0 22
 Addr Range: 0..3296
 6c14d f work shared library data - 19 0 0 19
 Addr Range: 0..3296
 b8057 1 pers code,/dev/hd2:6230 - 8 0 - -
 Addr Range: 0..7
....(lines omitted)...
...
SHARED segments Inuse Pin Pgsp Virtual
 3410 0 26 5921

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 b0036 d work shared library text - 3354 0 26 5921
 Addr Range: 0..60123
 800f0 1 pers code,/dev/hd2:6251 - 54 0 - -
 Addr Range: 0..55
 f80df - pers /dev/hd4:2 - 1 0 - -
 Addr Range: 0..0
 700ee - pers /dev/hd2:2 - 1 0 - -
 Addr Range: 0..0

Analyzing processes reports
The -P flag can be used with svmon to monitor process memory utilization. In the
following series of examples, svmon reports the memory usage for a process by
using the different optional flags with the -P flag. Without any process specified,
the -P option reports on all processes.

The column headings in a process report are:

Pid Indicates the process ID.

Command Indicates the command the process is running.

 Chapter 24. The svmon command 413

Inuse Indicates the total number of pages in real memory in
segments that are used by the process.

Pin Indicates the total number of pages pinned in segments that
are used by the process.

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the process.

Virtual Indicates the total number of pages allocated in the process
virtual space.

64-bit Indicates whether the process is a 64-bit process (Y) or a
32-bit process (N).

Mthrd Indicates whether the process is multi-threaded (Y) or not (N).

Vsid Indicates the virtual segment ID. Identifies a unique segment
in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can be
obtained through the -P flag applied on each of the process
identifiers using the segment. A '-' also displays for
segments used to manage open files or multi-threaded
structures because these segments are not part of the user
address space of the process.

Type Identifies the type of the segment; pers indicates a persistent
segment, work indicates a working segment, clnt indicates a
client segment, map indicates a mapped segment and rmap
indicates a real memory mapping segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format <device>:<inode>, such
as /dev/hd1:123.

working Data areas of processes and shared memory
segments dependent on the role of the
segment based on the VSID and ESID.

mapping Mapped to source segment IDs.

client NFS, CD-ROM, and J2 files, dependent on the
role of the segment based on the VSID and
ESID.

414 AIX 5L Performance Tools Handbook

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by this
segment. This field is relevant only for working segments.

Virtual Indicates the number of pages allocated for the virtual space
of the segment.

When process information is displayed, svmon displays information about all
segments used by the process.

Displaying source segment and mapping segment information
The optional -m flag displays source segment and mapping segment information,
as shown in Example 24-28.

Example 24-28 svmon -P pid -m

lpar05:/>> svmon -P 24832 -m

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 247169 2519 4278 253459 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 65536 0 0 65536
c2a58 5 work working storage - 65536 0 0 65536
6284c 3 work working storage - 65259 0 0 65259
105c2 6 work working storage - 35759 0 0 35759
caa59 7 work working storage - 6979 0 0 6979
0 0 work kernel seg - 4327 2510 4252 8303
b0036 d work shared library text - 3360 0 26 5927
d14fa - pers /dev/hd2:41157 - 246 0 - -
2a60 f work shared library data - 105 0 0 105
b14d6 2 work process private - 32 2 0 32
5a82b - work - 23 7 0 23
906d2 1 pers code,/dev/hd2:34861 - 7 0 - -
10862 a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
ba837 8 work working storage - 0 0 0 0
lpar05:/>>

 Chapter 24. The svmon command 415

Showing other processes that use segments
The optional -l flag shows, for each displayed segment, the list of process
identifiers that use the segment. For special segments a label is displayed
instead of the list of process identifiers, as shown in Example 24-29.

Example 24-29 svmon -P pid -l

lpar05:/>> svmon -P 24832 -l

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 246923 2519 4278 253459 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 65536 0 0 65536
 pid(s)=24832
c2a58 5 work working storage - 65536 0 0 65536
 pid(s)=24832
6284c 3 work working storage - 65259 0 0 65259
 pid(s)=24832
105c2 6 work working storage - 35759 0 0 35759
 pid(s)=24832
caa59 7 work working storage - 6979 0 0 6979
 pid(s)=24832
0 0 work kernel seg - 4327 2510 4252 8303
 System segment
b0036 d work shared library text - 3360 0 26 5927
 Shared library text segment
2a60 f work shared library data - 105 0 0 105
 pid(s)=24832
b14d6 2 work process private - 32 2 0 32
 pid(s)=24832
5a82b - work - 23 7 0 23
 System segment
906d2 1 pers code,/dev/hd2:34861 - 7 0 - -
 pid(s)=30752, 24832
6158c 9 work working storage - 0 0 0 0
 pid(s)=24832
10862 a work working storage - 0 0 0 0
 pid(s)=24832
82810 b mmap mapped to sid d14fa - 0 0 - -
 pid(s)=24832
ba837 8 work working storage - 0 0 0 0
 pid(s)=24832

416 AIX 5L Performance Tools Handbook

Displaying by total number of virtual pages
The optional -v flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages), as shown in Example 24-30.

Example 24-30 svmon -P 22674 -v

lpar05:/>> svmon -P 24832 -v

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 246923 2519 4278 253459 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 65536 0 0 65536
c2a58 5 work working storage - 65536 0 0 65536
6284c 3 work working storage - 65259 0 0 65259
105c2 6 work working storage - 35759 0 0 35759
caa59 7 work working storage - 6979 0 0 6979
b0036 d work shared library text - 3360 0 26 5927
2a60 f work shared library data - 105 0 0 105
b14d6 2 work process private - 32 2 0 32
5a82b - work - 23 7 0 23
10862 a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
906d2 1 pers code,/dev/hd2:34861 - 7 0 - -

Displaying by total number of reserved paging space pages
The optional -g flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging
space, as shown in Example 24-31.

Example 24-31 svmon -P 22674 -g

lpar05:/>> svmon -P 24832 -g

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 199600 2521 51504 253553 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
c2a58 5 work working storage - 51222 0 14328 65536
6284c 3 work working storage - 51654 0 13632 65259
b2856 4 work working storage - 52054 0 13491 65536
105c2 6 work working storage - 31353 0 4407 35759
caa59 7 work working storage - 5844 0 1135 6979
b0036 d work shared library text - 3227 0 28 6021

 Chapter 24. The svmon command 417

2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 30 2 2 32
5a82b - work - 21 7 2 23
10862 a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
906d2 1 pers code,/dev/hd2:34861 - 6 0 - -

Displaying by total number of pinned pages
The optional -p flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned, shown in Example 24-32.

Example 24-32 svmon -P pid -p

lpar05:/>> svmon -P 24832 -p

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 183009 2519 67854 253560 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
5a82b - work - 21 7 2 23
b14d6 2 work process private - 29 2 3 32
caa59 7 work working storage - 5360 0 1619 6979
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
6284c 3 work working storage - 47001 0 18258 65259
10862 a work working storage - 0 0 0 0
105c2 6 work working storage - 29581 0 6178 35759
c2a58 5 work working storage - 46573 0 18963 65536
82810 b mmap mapped to sid d14fa - 0 0 - -
2a60 f work shared library data - 90 0 13 105
b0036 d work shared library text - 3050 0 28 6028
6158c 9 work working storage - 0 0 0 0
b2856 4 work working storage - 47237 0 18299 65536
ba837 8 work working storage - 0 0 0 0

Displaying by total number of real memory pages
The optional -u flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory, as shown in
Example 24-33 on page 419.

418 AIX 5L Performance Tools Handbook

Example 24-33 svmon -P pid -u

lpar05:/>> svmon -P 24832 -u

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 183020 2519 67854 253560 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
caa59 7 work working storage - 5360 0 1619 6979
b0036 d work shared library text - 3055 0 28 6028
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
5a82b - work - 21 7 2 23
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
6158c 9 work working storage - 0 0 0 0
10862 a work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
ba837 8 work working storage - 0 0 0 0

Displaying only client segments
The optional -c flag indicates that only client segments are to be included in the
statistics. Note that Example 24-34 shows that the specified process does not
use any client segments:

Example 24-34 svmon -P pid -c

lpar05:/>> svmon -P 24832 -c

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 0 0 0 0 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

Displaying only persistent segments
The optional -f flag indicates that only persistent segments (files) are to be
included in the statistics, as shown in Example 24-35.

Example 24-35 svmon -P pid -f

lpar05:/>> svmon -P 24832 -f

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 5 0 0 0 N Y N

 Chapter 24. The svmon command 419

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -

Displaying only working segments
The optional -w flag indicates that only working segments are to be included in
the statistics, as shown in Example 24-36.

Example 24-36 svmon -P pid -w

lpar05:/>> svmon -P 24832 -w

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 183017 2519 67854 253560 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
caa59 7 work working storage - 5360 0 1619 6979
b0036 d work shared library text - 3057 0 28 6028
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
5a82b - work - 21 7 2 23
10862 a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0

Displaying only system segments
The optional -s flag indicates that only system segments are to be included in the
statistics, as shown in Example 24-37.

Example 24-37 svmon -P pid -s

lpar05:/>> svmon -P 24832 -s

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 4089 2517 4493 8326 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4068 2510 4491 8303
5a82b - work - 21 7 2 23

420 AIX 5L Performance Tools Handbook

Displaying only non-system segments
The optional -n flag indicates that only non-system segments are to be included
in the statistics, as shown in Example 24-38.

Example 24-38 svmon -P pid -n

lpar05:/>> svmon -P 24832 -n

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 24832 java 178933 2 63361 245234 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
caa59 7 work working storage - 5360 0 1619 6979
b0036 d work shared library text - 3057 0 28 6028
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
10862 a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
ba837 8 work working storage - 0 0 0 0

Showing allocated page ranges within segments
The optional -r flag displays the range(s) within the segment pages that have
been allocated (shown in Example 24-39). A working segment may have two
ranges because pages are allocated by starting from both ends and moving
toward the middle.

Example 24-39 svmon -P pid -r

lpar05:/>> svmon -P 24832 -r

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
24832 java 183022 2519 67854 253560 N Y N

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
 Addr Range: 0..65375
caa59 7 work working storage - 5360 0 1619 6979
 Addr Range: 0..12922
b0036 d work shared library text - 3057 0 28 6028

 Chapter 24. The svmon command 421

 Addr Range: 0..60123
2a60 f work shared library data - 90 0 13 105
 Addr Range: 0..4572
b14d6 2 work process private - 29 2 3 32
 Addr Range: 65303..65535
5a82b - work - 21 7 2 23
 Addr Range: 0..49377
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
 Addr Range: 0..8
6158c 9 work working storage - 0 0 0 0
10862 a work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
ba837 8 work working storage - 0 0 0 0

Analyzing the command reports
The -C flag can be used with svmon to monitor a command’s memory utilization.
The following series of examples shows how svmon reports the memory usage for
commands by using the different optional flags with the -C flag.

The column headings in a command report are:

Command Indicates the command name.

Inuse Indicates the total number of pages in real memory in
segments that are used by the command (for all
processes running the command).

Pin Indicates the total number of pages pinned in segments
that are used by the command (for all processes running
the command).

Pgsp Indicates the total number of pages reserved or used on
paging space by segments that are used by the
command.

Virtual Indicates the total number of pages allocated in the virtual
space of the command.

Vsid Indicates the virtual segment ID. Identifies a unique
segment in the VMM.

Esid Indicates the effective segment ID. The Esid is only valid
when the segment belongs to the address space of the
process. When provided, it indicates how the segment is
used by the process. If the Vsid segment is mapped by
several processes but with different Esid values, then this
field contains '-'. In that case, the exact Esid values can
be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays

422 AIX 5L Performance Tools Handbook

for segments used to manage open files or multi-threaded
structures because these segments are not part of the
user address space of the process.

Type Identifies the type of the segment; pers indicates a
persistent segment, work indicates a working segment,
clnt indicates a client segment, map indicates a mapped
segment, and rmap indicates a real memory mapping
segment.

Description Gives a textual description of the segment. The content of
this column depends on the segment type and usage:

persistent JFS files in the format <device>:<inode>,
such as /dev/hd1:123.

working Data areas of processes and shared
memory segments, dependent on the role of
the segment based on the VSID and ESID.

mapping Mapped to source segment IDs.

client NFS, CD-ROM, and J2 files, dependent on
the role of the segment based on the VSID
and ESID.

rmapping I/O space mapping dependent on the role of
the segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this
segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by
this segment. This field is relevant only for working
segments.

Virtual Indicates the number of pages allocated for the virtual
space of the segment.

The segments used by the command are separated into three categories:

SYSTEM Segments shared by all processes.

EXCLUSIVE Segments used by the specified command (process).

SHARED Segments shared by several commands (processes).

The global statistics for the specified command is the sum of each of the
following fields; Inuse, Pin, Pgsp, and Virtual of the segment categories SYSTEM,
EXCLUSIVE, and SHARED.

 Chapter 24. The svmon command 423

Source segment and mapping segment
The optional -m flag displays source segment and mapping segment information
when a segment is mapping a source segment, as shown in Example 24-40.

Example 24-40 svmon -C command -m

lpar05:/>> svmon -C java -m

===
Command Inuse Pin Pgsp Virtual
java 362720 2528 127576 492789

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
7a8af - work - 23 7 0 23
5a82b - work - 21 7 2 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355550 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979
d14fa - pers /dev/hd2:41157 - 195 0 - -
a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
10862 a work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
528aa a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
4a8a9 8 work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0

424 AIX 5L Performance Tools Handbook

...
SHARED segments Inuse Pin Pgsp Virtual
 3058 0 28 6028

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3057 0 28 6028
c85b9 - pers /dev/hd2:12302 - 1 0 - -

All processes running a command
The -d flag reports information about all processes running the specified
command, then svmon displays information about the segments used by those
processes. This set of segments is separated into three categories: segments
flagged system by the VMM, segments only used by the set of processes running
the command, and segments shared between several command names, as
shown in Example 24-41.

Example 24-41 svmon -C command -d

lpar05:/>> svmon -C java -d

===
Command Inuse Pin Pgsp Virtual
java 362525 2528 127576 492789

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd LPage
 30752 java 186633 2519 64241 253560 N Y N
 24832 java 183022 2519 67854 253560 N Y N

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
7a8af - work - 23 7 0 23
5a82b - work - 21 7 2 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536

 Chapter 24. The svmon command 425

105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979
a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
4a8a9 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 3058 0 28 6028

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3057 0 28 6028
c85b9 - pers /dev/hd2:12302 - 1 0 - -

Other processes also using segments
The optional -l flag shows, for each displayed segment, the list of process
identifiers that use the segment and the command the process belongs to as
shown in Example 24-42. For special segments, a label is displayed instead of
the list of process identifiers. When the -l flag is specified, each segment in the
last category is followed by the list of process identifiers that use the segment.
Besides the process identifier, the command name it runs is also displayed.

Example 24-42 svmon -C command -l

lpar05:/>> svmon -C java -l

===
Command Inuse Pin Pgsp Virtual
java 362525 2528 127576 492789

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

426 AIX 5L Performance Tools Handbook

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
7a8af - work - 23 7 0 23
5a82b - work - 21 7 2 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979
a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
4a8a9 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 3058 0 28 6028

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3057 0 28 6028
 Shared library text segment
c85b9 - pers /dev/hd2:12302 - 1 0 - -
 pid:35052 cmd: ksh
 pid:30752 cmd: java
 pid:15750 cmd: ksh
 pid:15186 cmd: sleep

 Chapter 24. The svmon command 427

Total number of virtual pages
The optional -v flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages), as shown in Example 24-43.

Example 24-43 svmon -C command -v

lpar05:/>> svmon -C java -v

===
Command Inuse Pin Pgsp Virtual
java 362526 2528 127576 492789

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4068 2510 4491 8303
5a82b - work - 21 7 2 23
7a8af - work - 23 7 0 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b2856 4 work working storage - 47237 0 18299 65536
128a2 4 work working storage - 49778 0 15758 65536
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
328a6 3 work working storage - 51472 0 13787 65259
6284c 3 work working storage - 47001 0 18258 65259
8a8b1 6 work working storage - 25218 0 10541 35759
105c2 6 work working storage - 29581 0 6178 35759
caa59 7 work working storage - 5360 0 1619 6979
928b2 7 work working storage - 6028 0 951 6979
a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
4a8a9 8 work working storage - 0 0 0 0
10862 a work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
9a8b3 b mmap mapped to sid d14fa - 0 0 - -

428 AIX 5L Performance Tools Handbook

906d2 1 pers code,/dev/hd2:34861 - 5 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3059 0 28 6028

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3058 0 28 6028
c85b9 - pers /dev/hd2:12302 - 1 0 - -
lpar05:/>>

Total number of reserved paging space pages
The optional -g flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging
space, as shown in Example 24-44.

Example 24-44 svmon -C command -g

lpar05:/>> svmon -C java -g

===
Command Inuse Pin Pgsp Virtual
java 362526 2528 127576 492789

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
0 0 work kernel seg - 4068 2510 4491 8303
5a82b - work - 21 7 2 23
7a8af - work - 23 7 0 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
c2a58 5 work working storage - 46573 0 18963 65536
5a8ab 5 work working storage - 46866 0 18670 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
128a2 4 work working storage - 49778 0 15758 65536
328a6 3 work working storage - 51472 0 13787 65259
8a8b1 6 work working storage - 25218 0 10541 35759
105c2 6 work working storage - 29581 0 6178 35759
caa59 7 work working storage - 5360 0 1619 6979
928b2 7 work working storage - 6028 0 951 6979

 Chapter 24. The svmon command 429

2a60 f work shared library data - 90 0 13 105
a8a1 f work shared library data - 90 0 10 105
a28b4 2 work process private - 27 2 5 32
b14d6 2 work process private - 29 2 3 32
528aa a work working storage - 0 0 0 0
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
4a8a9 8 work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 3059 0 28 6028

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3058 0 28 6028
c85b9 - pers /dev/hd2:12302 - 1 0 - -
lpar05:/>>

Total number of pinned pages
The optional -p flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned, as Example 24-45 shows.

Example 24-45 svmon -C command -p

lpar05:/>> svmon -C java -p

===
Command Inuse Pin Pgsp Virtual
java 362570 2528 127576 492795

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4112 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4068 2510 4491 8303
5a82b - work - 21 7 2 23
7a8af - work - 23 7 0 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

430 AIX 5L Performance Tools Handbook

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual

b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
c2a58 5 work working storage - 46573 0 18963 65536
328a6 3 work working storage - 51472 0 13787 65259
caa59 7 work working storage - 5360 0 1619 6979
4a8a9 8 work working storage - 0 0 0 0
6284c 3 work working storage - 47001 0 18258 65259
528aa a work working storage - 0 0 0 0
105c2 6 work working storage - 29581 0 6178 35759
10862 a work working storage - 0 0 0 0
5a8ab 5 work working storage - 46866 0 18670 65536
a8a1 f work shared library data - 90 0 10 105
82810 b mmap mapped to sid d14fa - 0 0 - -
2a60 f work shared library data - 90 0 13 105
828b0 9 work working storage - 0 0 0 0
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
6158c 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
b2856 4 work working storage - 47237 0 18299 65536
ba837 8 work working storage - 0 0 0 0
128a2 4 work working storage - 49778 0 15758 65536

...
SHARED segments Inuse Pin Pgsp Virtual
 3103 0 28 6034

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
c85b9 - pers /dev/hd2:12302 - 1 0 - -
b0036 d work shared library text - 3102 0 28 6034

Total number of real memory pages
The optional -u flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory, as shown in
Example 24-46.

Example 24-46 svmon -C command -u

lpar05:/>> svmon -C java -u

===
Command Inuse Pin Pgsp Virtual
java 362617 2528 127576 492795

...

 Chapter 24. The svmon command 431

SYSTEM segments Inuse Pin Pgsp Virtual
 4113 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4069 2510 4491 8303
7a8af - work - 23 7 0 23
5a82b - work - 21 7 2 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979
a8a1 f work shared library data - 90 0 10 105 ba837
8 work working storage - 0 0 0 0
.....(lines omitted)............
528aa a work working storage - 0 0 0 0
...
SHARED segments Inuse Pin Pgsp Virtual
 3149 0 28 6034

 Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 b0036 d work shared library text - 3148 0 28 6034
 c85b9 - pers /dev/hd2:12302 - 1 0 - -

Client segments only
The optional -c flag indicates that only client segments are to be included in the
statistics. Example 24-47 shows that the specified process does not use any
client segments.

Example 24-47 svmon -C command -c

lpar05:/>> svmon -C java -c

===
Command Inuse Pin Pgsp Virtual
java 0 0 0 0
lpar05:/>>

432 AIX 5L Performance Tools Handbook

Example 24-48 shows that a command is using client segments. From the
following output we cannot know what kind of virtual file system it uses except
that it is only used by this command at the time of the snapshot.

Example 24-48 svmon -C command -c

svmon -cC dd

===
Command Inuse Pin Pgsp Virtual
dd 22808 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 22808 0 0 0

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ce59 - clnt 22808 0 - -

Persistent segments only
The optional -f flag indicates that only persistent segments (files) are to be
included in the statistics, as shown in Example 24-49.

Example 24-49 svmon -C command -f

lpar05:/>> svmon -C java -f

===
Command Inuse Pin Pgsp Virtual
java 6 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 5 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -

...
SHARED segments Inuse Pin Pgsp Virtual
 1 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
c85b9 - pers /dev/hd2:12302 - 1 0 - -

Working segments only
The optional -w flag indicates that only working segments are to be included in
the statistics, as shown in Example 24-50 on page 434.

 Chapter 24. The svmon command 433

Example 24-50 svmon -C command -w

lpar05:/>> svmon -C java -w

===
Command Inuse Pin Pgsp Virtual
java 362611 2528 127576 492795

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4113 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4069 2510 4491 8303
 7a8af - work - 23 7 0 23
 5a82b - work - 21 7 2 23

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355350 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979
a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
828b0 9 work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0
6158c 9 work working storage - 0 0 0 0
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
4a8a9 8 work working storage - 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 3148 0 28 6034

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3148 0 28 6034
lpar05:/>>

434 AIX 5L Performance Tools Handbook

System segments only
The optional -s flag indicates that only system segments are to be included in the
statistics, as shown in Example 24-51.

Example 24-51 svmon -C command -s

lpar05:/>> svmon -C java -s

===
Command Inuse Pin Pgsp Virtual
java 4113 2524 4493 8349

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4113 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4069 2510 4491 8303
7a8af - work - 23 7 0 23
5a82b - work - 21 7 2 23
lpar05:/>>

Non-system segments only
The optional -n flag indicates that only non-system segments are to be included
in the statistics, as shown in Example 24-52.

Example 24-52 svmon -C command -n

lpar05:/>> svmon -C java -n

===
Command Inuse Pin Pgsp Virtual
java 358504 4 123083 484446

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
8a8b1 6 work working storage - 25218 0 10541 35759
928b2 7 work working storage - 6028 0 951 6979
caa59 7 work working storage - 5360 0 1619 6979

 Chapter 24. The svmon command 435

a8a1 f work shared library data - 90 0 10 105
2a60 f work shared library data - 90 0 13 105
b14d6 2 work process private - 29 2 3 32
a28b4 2 work process private - 27 2 5 32
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
4a8a9 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 3149 0 28 6034

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3148 0 28 6034
c85b9 - pers /dev/hd2:12302 - 1 0 - -

Allocated page ranges within segments
The optional -r flag displays the range(s) within the segment pages that have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving toward the middle. When the -r
flag is specified, each segment is followed by the range(s) within the segment
where the pages have been allocated, as shown in Example 24-53.

Example 24-53 svmon -C command -r

lpar05:/>> svmon -C java -r

===
Command Inuse Pin Pgsp Virtual
java 362617 2528 127576 492795

...
SYSTEM segments Inuse Pin Pgsp Virtual
 4113 2524 4493 8349

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
 0 0 work kernel seg - 4069 2510 4491 8303
 Addr Range: 0..27833
7a8af - work - 23 7 0 23
 Addr Range: 0..49377
5a82b - work - 21 7 2 23
 Addr Range: 0..49377

436 AIX 5L Performance Tools Handbook

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 355355 4 123055 478412

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
328a6 3 work working storage - 51472 0 13787 65259
128a2 4 work working storage - 49778 0 15758 65536
b2856 4 work working storage - 47237 0 18299 65536
6284c 3 work working storage - 47001 0 18258 65259
5a8ab 5 work working storage - 46866 0 18670 65536
c2a58 5 work working storage - 46573 0 18963 65536
105c2 6 work working storage - 29581 0 6178 35759
 Addr Range: 0..65375
8a8b1 6 work working storage - 25218 0 10541 35759
 Addr Range: 0..65375
928b2 7 work working storage - 6028 0 951 6979
 Addr Range: 0..12922
caa59 7 work working storage - 5360 0 1619 6979
 Addr Range: 0..12922
a8a1 f work shared library data - 90 0 10 105
 Addr Range: 0..4572
2a60 f work shared library data - 90 0 13 105
 Addr Range: 0..4572
b14d6 2 work process private - 29 2 3 32
 Addr Range: 65303..65535
a28b4 2 work process private - 27 2 5 32
 Addr Range: 65303..65535
906d2 1 pers code,/dev/hd2:34861 - 5 0 - -
 Addr Range: 0..8
4a8a9 8 work working storage - 0 0 0 0
82810 b mmap mapped to sid d14fa - 0 0 - -
6158c 9 work working storage - 0 0 0 0
828b0 9 work working storage - 0 0 0 0
9a8b3 b mmap mapped to sid d14fa - 0 0 - -
10862 a work working storage - 0 0 0 0
ba837 8 work working storage - 0 0 0 0
528aa a work working storage - 0 0 0 0

...
SHARED segments Inuse Pin Pgsp Virtual
 3149 0 28 6034

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
b0036 d work shared library text - 3148 0 28 6034
 Addr Range: 0..60123
c85b9 - pers /dev/hd2:12302 - 1 0 - -
 Addr Range: 0..0

 Chapter 24. The svmon command 437

Analyzing segment utilization
The -S flag can be used with svmon to monitor segment utilization. The following
series of examples shows how svmon reports the memory usage for a process by
using the different optional flags with the -S flag.

The column headings in a segment report are:

Vsid Indicates the virtual segment ID. Identifies a unique segment in the
VMM.

Esid Indicates the effective segment ID. The Esid is only valid when the
segment belongs to the address space of the process. When
provided, it indicates how the segment is used by the process. If the
Vsid segment is mapped by several processes but with different
Esid values, then this field contains '-'. In that case, the exact Esid
values can be obtained through the -P flag applied on each of the
process identifiers using the segment. A '-' also displays for
segments used to manage open files or multi-threaded structures
because these segments are not part of the user address space of
the process.

Type Identifies the type of the segment: pers indicates a persistent
segment, work indicates a working segment, clnt indicates a client
segment, map indicates a mapped segment, and rmap indicates a
real memory mapping segment.

Description Gives a textual description of the segment. The content of this
column depends on the segment type and usage:

persistentJFS files in the format <device>:<inode>, such as
/dev/hd1:123.

working Data areas of processes and shared memory segments,
dependent on the role of the segment based on the
VSID and ESID.

mapping Mapped to source segment IDs.

client NFS, CD-ROM, and J2 files, dependent on the role of
the segment based on the VSID and ESID.

rmapping I/O space mapping dependent on the role of the
segment based on the VSID and ESID.

Inuse Indicates the number of pages in real memory in this segment.

Pin Indicates the number of pages pinned in this segment.

Pgsp Indicates the number of pages used on paging space by this
segment. This field is relevant only for working segments.

438 AIX 5L Performance Tools Handbook

Virtual Indicates the number of pages allocated for the virtual space of the
segment.

Without any segment specification the -S option reports on all segments as
shown in Example 24-54.

Example 24-54 svmon -S

lpar05:/>> svmon -S

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtua
6aa8d - pers /dev/lv01:17 - 166408 0 - -
814f0 - clnt - 150780 0 - -
30246 - work - 65529 65529 0 65529
4aa49 - clnt - 60354 0 - -
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
80010 - work page frame table - 30481 30480 0 30481
105c2 - work - 29581 0 6178 35759
90012 - work kernel pinned heap - 25409 9001 53920 60396
8a8b1 - work - 25218 0 10541 35759
82b50 - pers /dev/lv01:305233 - 21413 0 - -
.....(Lines ommited)....

Source segment and mapping segment
The optional -m flag displays source segment and mapping segment information,
as shown in Example 24-55.

Example 24-55 svmon -S -m

svmon -Sm
Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
814f0 - clnt - 150780 0 - -
30246 - work - 65529 65529 0 65529
4aa49 - clnt - 60354 0 - -
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
80010 - work page frame table - 30481 30480 0 30481
105c2 - work - 29581 0 6178 35759
90012 - work kernel pinned heap - 25434 9001 53920 60396
8a8b1 - work - 25218 0 10541 35759

 Chapter 24. The svmon command 439

82b50 - pers /dev/lv01:305233 - 21413 0 - -
8ab51 - clnt - 20577 0 - -
92b32 - pers /dev/lv01:305218 - 11704 0 - -
9ab33 - clnt - 10887 0 - -
cb6b9 - clnt - 8862 0 - -
2b20 - pers /dev/lv01:305209 - 8241 0 - -
ab21 - clnt - 7750 0 - -
..(lines omitted)...

Other processes also using segments
The optional -l flag shows, for each displayed segment, the list of process
identifiers that use the segment, as shown in Example 24-56. For special
segments a label is displayed instead of the list of process identifiers.

Example 24-56 svmon -S -l

svmon -Sl

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
 Unused segment
814f0 - clnt - 150780 0 - -
 Unused segment
30246 - work - 65529 65529 0 65529
 Unused segment
4aa49 - clnt - 60354 0 - -
 Unused segment
328a6 3 work working storage - 51472 0 13787 65259
 pid(s)=30752
128a2 4 work working storage - 49778 0 15758 65536
 pid(s)=30752
b2856 4 work working storage - 47237 0 18299 65536
 pid(s)=24832
6284c 3 work working storage - 47001 0 18258 65259
 pid(s)=24832
5a8ab 5 work working storage - 46866 0 18670 65536
 pid(s)=30752
c2a58 5 work working storage - 46573 0 18963 65536
 pid(s)=24832
80010 - work page frame table - 30481 30480 0 30481
 System segment

Total number of virtual pages
The optional -v flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in virtual space (virtual pages
include real memory and paging space pages), as shown in Example 24-57 on
page 441.

440 AIX 5L Performance Tools Handbook

Example 24-57 svmon -S -v

svmon -Sv

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
5a8ab - work - 46866 0 18670 65536
b2856 - work - 47237 0 18299 65536
128a2 - work - 49778 0 15758 65536
c2a58 - work - 46573 0 18963 65536
30246 - work - 65529 65529 0 65529
6284c - work - 47001 0 18258 65259
328a6 - work - 51472 0 13787 65259
90012 - work kernel pinned heap - 25446 9001 53920 60396
105c2 - work - 29581 0 6178 35759
8a8b1 - work - 25218 0 10541 35759
80010 - work page frame table - 30481 30480 0 30481
88011 - work misc kernel tables - 7238 0 5568 10839
5004a - work - 5605 5605 3309 8914
.....(lines omitted)..........

Total number of reserved paging space pages
The optional -g flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages reserved or used on paging
space, as shown in Example 24-58.

Example 24-58 svmon -S -g

lpar05:/>> svmon -Sg

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
90012 - work kernel pinned heap - 25452 9005 53920 60396
c2a58 - work - 46573 0 18963 65536
5a8ab - work - 46866 0 18670 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
128a2 - work - 49778 0 15758 65536
328a6 - work - 51472 0 13787 65259
8a8b1 - work - 25218 0 10541 35759
105c2 - work - 29581 0 6178 35759
88011 - work misc kernel tables - 7271 0 5568 10871
5004a - work - 5605 5605 3309 8914
caa59 - work - 5360 0 1619 6979
b8037 - work - 472 0 1014 1430
928b2 - work - 6028 0 951 6979
7800f - work page table area - 772 2 784 786
582cb - work - 0 0 653 653
b8437 - work - 266 2 614 748
88391 - work - 81 2 525 536
420 - work - 8 2 482 487

 Chapter 24. The svmon command 441

c0478 - work - 14 2 393 398
904f2 - work - 9 2 381 387
....(lines omitted).....

Total number of pinned pages
The optional -p flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages pinned, as Example 24-59 shows.

Example 24-59 svmon -S -p

svmon -Sp

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
30246 - work - 65529 65529 0 65529
80010 - work page frame table - 30481 30480 0 30481
90012 - work kernel pinned heap - 25457 9009 53920 60396
5004a - work - 5605 5605 3309 8914
28005 - work software hat - 1024 1024 0 1024
8001 - work segment table - 602 600 0 602
20004 - work kernel ext seg - 40 39 0 40
18003 - work page space disk map - 37 37 0 37
28365 - work - 16 8 15 25
104e2 - work - 11 7 13 22
...(lines omitted)...

Total number of real memory pages
The optional -u flag indicates that the information to be displayed is sorted in
decreasing order by the total number of pages in real memory, as shown in
Example 24-60.

Example 24-60 svmon -S -u

svmon -Su

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
814f0 - clnt - 150780 0 - -
30246 - work - 65529 65529 0 65529
4aa49 - clnt - 60354 0 - -
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
80010 - work page frame table - 30481 30480 0 30481
105c2 - work - 29581 0 6178 35759
90012 - work kernel pinned heap - 25457 9001 53920 60396
8a8b1 - work - 25218 0 10541 35759

442 AIX 5L Performance Tools Handbook

82b50 - pers /dev/lv01:305233 - 21413 0 - -
......(lines omitted)......

Client segments only
The optional -c flag indicates that only client segments are to be included in the
statistics. Note that client segments are not paged to paging space when the
frames they occupy are needed for another use, hence the dash (-) in the Pgsp
and Virtual columns, as shown in Example 24-61.

Example 24-61 svmon -S -c

svmon -Sc

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
814f0 - clnt - 150780 0 - -
4aa49 - clnt - 60354 0 - -
8ab51 - clnt - 20577 0 - -
9ab33 - clnt - 10887 0 - -
cb6b9 - clnt - 8862 0 -

Persistent segments only
The optional -f flag indicates that only persistent segments (files) are to be
included in the statistics. Note that persistent segments are not paged to paging
space when the frames they occupy are needed for another use, hence the dash
(-) in the Pgsp and Virtual columns as shown in Example 24-62.

Example 24-62 svmon -S -f

svmon -Sf

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
82b50 - pers /dev/lv01:305233 - 21413 0 - -
92b32 - pers /dev/lv01:305218 - 11704 0 - -
2b20 - pers /dev/lv01:305209 - 8241 0 - -
b2b36 - pers /dev/lv01:305220 - 6483 0 - -
52b2a - pers /dev/lv01:305214 - 5958 0 - -
42e48 - pers /dev/lv01:188427 - 5668 0 - -
a2b34 - pers /dev/lv01:305219 - 5636 0 - -
12b42 - pers /dev/lv01:305226 - 5396 0 - -
......(lines ommited)...........

Working segments only
The optional -w flag indicates that only working segments are to be included in
the statistics. Note that working segments are paged to paging space when the
frames they occupy are needed for another use, as shown in Example 24-63 on
page 444.

 Chapter 24. The svmon command 443

Example 24-63 svmon -S -w

svmon -Sw

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
30246 - work - 65529 65529 0 65529
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
80010 - work page frame table - 30481 30480 0 30481
105c2 - work - 29581 0 6178 35759
90012 - work kernel pinned heap - 25462 9009 53920 60396
8a8b1 - work - 25218 0 10541 35759
88011 - work misc kernel tables - 7316 0 5568 10903
928b2 - work - 6028 0 951 6979
5004a - work - 5605 5605 3309 8914
caa59 - work - 5360 0 1619 6979
...(lines ommited)....

System segments only
The optional -s flag indicates that only system segments are to be included in the
statistics. Note that system segments can be paged to paging space when the
frames they occupy are needed for another use, but the part that is pinned (Pin)
will not. In Example 24-64 you see that the kernel page frame table cannot be
paged out because its frame usage equals the pinned size (1792 and 1792).

Example 24-64 svmon -S -s

svmon -Ss

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
80010 - work page frame table - 30481 30480 0 30481
90012 - work kernel pinned heap - 25468 9001 53920 60396
88011 - work misc kernel tables - 7318 0 5568 10903
5004a - work - 5605 5605 3309 8914
 0 - work kernel seg - 4069 2510 4491 8303
400e8 - pers /dev/hd2:3 - 1731 0 - -
28005 - work software hat - 1024 1024 0 1024
7800f - work page table area - 772 2 784 786
ca839 - pers /dev/lv01:4 - 721 0 - -
......(lines omitted)...........

Non-system segments only
The optional -n flag indicates that only non-system segments are to be included
in the statistics as shown in Example 24-65 on page 445.

444 AIX 5L Performance Tools Handbook

Example 24-65 svmon -S -n

svmon -Sn

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
814f0 - clnt - 150780 0 - -
30246 - work - 65529 65529 0 65529
4aa49 - clnt - 60354 0 - -
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
105c2 - work - 29581 0 6178 35759
8a8b1 - work - 25218 0 10541 35759
82b50 - pers /dev/lv01:305233 - 21413 0 - -
......(lines omitted)..........

Allocated page ranges within segments
The optional -r flag displays the range(s) within the segment pages that have
been allocated. A working segment may have two ranges because pages are
allocated by starting from both ends and moving toward the middle, as shown in
Example 24-66.

Example 24-66 svmon -S segment -r

svmon -Sr

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
6aa8d - pers /dev/lv01:17 - 166408 0 - -
 Addr Range: 0..229232
814f0 - clnt - 150780 0 - -
 Addr Range: 0..229232
30246 - work - 65529 65529 0 65529
 Addr Range: 0..65528
4aa49 - clnt - 60354 0 - -
 Addr Range: 0..86655
328a6 - work - 51472 0 13787 65259
128a2 - work - 49778 0 15758 65536
b2856 - work - 47237 0 18299 65536
6284c - work - 47001 0 18258 65259
5a8ab - work - 46866 0 18670 65536
c2a58 - work - 46573 0 18963 65536
80010 - work page frame table - 30481 30480 0 30481
 Addr Range: 0..30719
105c2 - work - 29581 0 6178 35759
 Addr Range: 0..65375

 Chapter 24. The svmon command 445

90012 - work kernel pinned heap - 25480 9009 53920 60396
8a8b1 - work - 25218 0 10541 35759
 Addr Range: 0..65375
82b50 - pers /dev/lv01:305233 - 21413 0 -
.....(lines omitted).....

Analyzing detailed reports
The -D flag can be used with svmon to monitor detailed utilization. The following
series of examples shows how svmon reports the memory usage for a process by
using the different optional flags with the -D flag. Because the detailed report
shows all frames used by a segment, the output usually will be quite extensive.
The information shown for each frame comes from examining the Page Frame
Table (PFT) for the segment frames and reporting the same information that the
lrud kernel process would use when the number of free pages is lower than the
kernel minfree value. See Chapter 14, “The vmo, ioo, and vmtune commands” on
page 229 for more detail.

The column headings in a detailed report are:

Segid Indicates the virtual segment ID. Identifies a unique segment in
the VMM.

Type Identifies the type of the segment: pers indicates a persistent
segment, work indicates a working segment, clnt indicates a
client segment, map indicates a mapped segment, and rmap
indicates a real memory mapping segment.

LPage Indicates whether the segment uses large pages.

Size of page space allocation
Indicates the number of pages used on paging space by this
segment. This field is relevant only for working segments.

Virtual Indicates the number of pages allocated for the virtual space of
the segment.

Inuse Indicates the number of pages in real memory in this segment.

Page Page number relative to the virtual space. This page number can
be higher than the number of frames in a segment (65535) if the
virtual space is larger than a single segment (large file).

Frame Frame number in the real memory.

Pin Indicates whether the frame is pinned.

Ref Indicates whether the frame has been referenced by a process
(-b flag only).

Mod Indicates whether the frame has been modified by a process (-b
flag only).

446 AIX 5L Performance Tools Handbook

ExtSegid Extended segment identifier: This field is set only when the page
number is higher than the maximum number of frames in a
segment.

ExtPage Extended page number: This field is set only when the page
number is higher than the maximum number of frames in a
segment and indicates the page number within the extended
segment.

Segment details
Example 24-67 monitors details of segment 6aa8d showing the status of the
reference and modified bits of all displayed frames.

Example 24-67 svmon -D segment

#svmon -D 6aa8d

Segid: 6aa8d
Type: persistent
LPage: N
Address Range: 0..229232

 Page Frame Pin ExtSegid ExtPage
 0 859753 N - -
 1 822083 N - -
 2 375590 N - -
 3 903339 N - -
 4 859755 N - -
 5 919616 N - -
 6 859761 N - -
 7 586516 N - -
 8 859769 N - -
 9 586460 N - -
 10 859771 N - -
 12 859775 N - -
 13 472106 N - -
 14 859779 N - -
 15 2025902 N - -
 16 859793 N - -
 17 466674 N - -
....(pages omitted)....

Monitoring segment details during a time interval
Example 24-68 on page 448 monitors details of segment 9012 showing the
status of the reference and modified bits of all of the displayed frames that are
accessed between each interval. Once shown, the reference bit of the frame is
reset.

 Chapter 24. The svmon command 447

Example 24-68 svmon -D segment -b -i

svmon -D 9012 -b -i 5 3

Segid: 9012
Type: working
LPage: N
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

Segid: 9012
Type: working
LPage: N
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

Segid: 9012
Type: working
LPage: N
Address Range: 65338..65535
Size of page space allocation: 0 pages (0.0 Mb)
Virtual: 3 frames (0.0 Mb)
Inuse: 3 frames (0.0 Mb)

 Page Frame Pin Ref Mod ExtSegid ExtPage
 65339 771 Y Y Y - -
 65340 770 Y Y Y - -
 65338 4438 N Y Y - -

Analyzing frame reports
The -F flag can be used with svmon to monitor frame utilization. Example 24-69
on page 449 shows the use of the -F flag with no argument specified. The frame
report returns the percentage of real memory used in the system with the
reference flag set.

448 AIX 5L Performance Tools Handbook

Example 24-69 svmon -F

svmon -F
 Processing.. 100%
 percentage of memory used: 85.82%

Example 24-70 shows a comparison of the -F to -G output.

Example 24-70 Comparing -F and -G output

svmon -G
 size inuse free pin virtual
memory 131047 27675 103372 13734 38228
pg space 262144 14452

 work pers clnt
pin 13734 0 0
in use 21252 815 5608

svmon -F
 Processing.. 100%
 percentage of memory used: 88.85%

The used memory percentage from the -G output is 21.18 percent used (27675 /
131047) because the percentage of memory used in the -F report refers only to
frames with the reference flag set; that is, the sum of pages that are not eligible to
be released if the page stealer (lrud kproc) needs to allocate the frames for other
use. The -G report shows all memory that processes have allocated, either by
themselves or by the VMM for their use (such as shared libraries that needed to
be loaded and linked dynamically to the process in order for the process to be
loaded properly).

Specifying frame numbers
When frame numbers are specified with the -F option, the column headings in
the report are:

Frame Frame number in real memory.

Segid Indicates the virtual segment ID that the frame belongs to.

Ref Indicates whether the frame has been referenced by a process.

Mod Indicates whether the frame has been modified by a process.

Pincount Indicates the long-term pincount and the short-term pincount for the
frame.

State Indicates the state of the frame (Bad, In-Use, Free, I/O, PgAhead,
Hidden).

Swbits Indicates the status of the frame in the Software Page Frame Table.

 Chapter 24. The svmon command 449

ExtSegid Extended segment ID: This field will only be set when it belongs to
an extended segment.

LPage Indicates whether this frame belongs to a large page segment.

The information shown for the frame(s) comes from examining the Page Frame
Table (PFT) and reporting the same information that the lrud kernel process
would use when the number of free pages is lower than the kernel minfree value.
(See Chapter 14, “The vmo, ioo, and vmtune commands” on page 229 for more
about minfree.) In Example 24-71 we specify a frame to monitor , in this case
frame 815.

Example 24-71 svmon -F frame

lpar05:/>> svmon -F 2096915

Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
2096915 7804f Y Y 1/0 Hidden 88000000 - N
lpar05:/>>

Monitoring frames during a time interval
To monitor a frame over a specified interval, use the -i flag. In Example 24-72, we
monitor a frame on five-second intervals repeated three times.

Example 24-72 svmon -F frame -i

lpar05:/>> svmon -F 2096915 -i 2 3

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 2096915 7804f Y Y 1/0 Hidden 88000000 - N

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 2096915 7804f Y Y 1/0 Hidden 88000000 - N

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 2096915 7804f Y Y 1/0 Hidden 88000000 - N
lpar05:/>>

This example shows that frame 2096915 is both referenced and modified during
the time the trace was run.

Monitoring frame reuse between processes
The following sample starts by using the dd command to read the same file from
the JFS2 file system three times in a row. First we use the command report (-C)
to find out what segments the dd command is using, as shown in Example 24-73
on page 451.

450 AIX 5L Performance Tools Handbook

Example 24-73 svmon -cC dd

lpar05:/>> svmon -cC dd

===
Command Inuse Pin Pgsp Virtual
dd 106638 0 0 0

...
EXCLUSIVE segments Inuse Pin Pgsp Virtual
 106638 0 0 0

Vsid Esid Type Description LPage Inuse Pin Pgsp Virtual
4aa49 - clnt - 69618 0 - -
d417a - clnt - 37020 0 - -
lpar05:/>>

The output shows that segment 4aa49 is a client segment (used for the JFS2 file
system file pages). Example 24-74 shows how we use the virtual segment ID
(Vsid) to see what frames this segment has allocated with the detailed report
using the -D flag.

Example 24-74 svmon -D d65a

lpar05:/>> svmon -D 4aa49

Segid: 4aa49
Type: client
LPage: N
Address Range: 0..86655

 Page Frame Pin ExtSegid ExtPage
 0 135766 N - -
 2 859765 N - -
 3 586502 N - -
 4 859783 N - -
 6 859789 N - -
 7 465940 N - -
 8 859825 N - -
 9 434850 N - -
 10 859829 N - -
 11 436416 N - -
 12 859833 N - -
 14 859845 N - -
 15 470036 N - -
 16 859401 N - -
 17 641112 N - -
 18 859411 N - -
 19 641096 N - -

 Chapter 24. The svmon command 451

 20 859409 N - -
...(lines omitted)...

This output shows that frame 135766 is one of the frames that is used by this
segment. Now we can run the frame report (-F) continuously to monitor this
frame, as shown in Example 24-75.

Example 24-75 svmon -F -i 5

lpar05:/>> svmon -F 135766 -i 5

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 135766 4aa49 Y N 0/0 In-Use 88000004 - N

Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 135766 4aa49 N N 0/0 In-Use 88000004 - N

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 135766 4aa49 N N 0/0 In-Use 88000004 - N

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 135766 4aa49 Y N 0/0 In-Use 88000004 - N

 Frame Segid Ref Mod Pincount State Swbits ExtSegid LPage
 135766 4aa49 N N 0/0 In-Use 88000004 - N
...(lines omitted)...

The first report line shows that the frame is referenced by the dd command that
causes VMM to page in the JFS2 file system file into a frame. The next two report
lines show that the page scanning has removed the reference flag (can be freed
by the page stealer); this is shown as an N in the Ref column . We restart the dd
command, and the frame containing the JFS2 filesystem file data is reused by
the second dd command. (The files pages were already loaded in real memory.)
The next two lines show that the reference flag has been removed by the page
scanner again.

Note that the detailed segment report gives a similar output when both -D and -b
flags are used, as shown in Example 24-76.

Example 24-76 svmon -bD segment

lpar05:/>> svmon -bD 4aa49

Segid: 4aa49
Type: client
LPage: N
Address Range: 0..86655

452 AIX 5L Performance Tools Handbook

 Page Frame Pin Ref Mod ExtSegid ExtPage
 0 135766 N N N - -
 2 859765 N N N - -
 3 586502 N N N - -
 4 859783 N N N - -
 6 859789 N N N - -
 7 465940 N N N - -
 8 859825 N N N - -
 9 434850 N N N - -
 10 859829 N N N - -
 11 436416 N N N - -
 12 859833 N N N - -
 14 859845 N N N - -
 15 470036 N N N - -
 16 859401 N N N - -
 17 641112 N N N - -
 18 859411 N N N - -
 19 641096 N N N - -
...(lines omitted)...

 Chapter 24. The svmon command 453

454 AIX 5L Performance Tools Handbook

Part 5 Disk I/O–related
performance
tools

This part describes the tools to monitor the performance-relevant data and
statistics for disk I/O.

� The filemon command described in Chapter 25, “The filemon command” on
page 457 monitors a trace of file system and I/O system events, and reports
performance statistics for files, virtual memory segments, logical volumes,
and physical volumes.

� The fileplace command described in Chapter 26, “The fileplace command”
on page 479 displays the placement of a file’s logical or physical blocks within
a Journaled File System (JFS).

Part 5

© Copyright IBM Corp. 2001, 2003. All rights reserved. 455

� Chapter 27, “The lslv, lspv, and lsvg commands” on page 501 describes the
lslv command, which displays the characteristics and status of the logical
volume; the lspv command, which is useful for displaying information about
the physical volume, its logical volume content, and logical volume allocation
layout; and the lsvg command, which displays information about volume
groups.

� The lvmstat command described in Chapter 28, “The lvmstat command” on
page 519 reports input and output statistics for logical partitions, logical
volumes, and volume groups.

456 AIX 5L Performance Tools Handbook

Chapter 25. The filemon command

The filemon command monitors a trace of file-system and I/O-system events
and reports performance statistics for files, virtual memory segments, logical
volumes, and physical volumes. filemon is useful to those whose applications
are believed to be disk-bound and want to know where and why. For file-specific
layout and distribution, refer to Chapter 26, “The fileplace command” on
page 479.

Monitoring disk I/O with the filemon command is usually done when there is a
known performance issue regarding the I/O. The filemon command shows the
load on different disks, logical volumes, and files in great detail.

The filemon command resides in /usr/sbin and is part of the bos.perf.tools
fileset, which is installable from the AIX base installation media.

25

© Copyright IBM Corp. 2001, 2003 457

25.1 filemon
The syntax of the filemon command is:

filemon [-d] [-i Trace_File -n Gennames_File] [-o File] [-O Levels] [-P]
[-T n] [-u] [-v]

Flags
-i Trace_File Reads the I/O trace data from the specified Trace_File,

instead of from the real-time trace process. The filemon
report summarizes the I/O activity for the system and
period represented by the trace file. The -n option must
also be specified.

-n Gennames_File Specifies a Gennames_File for offline trace processing.
This file is created by running the gennames command and
redirecting the output to a file as follows. (The -i option
must also be specified.)

-o File Writes the I/O activity report to the specified File instead of
to the stdout file.

-d Starts the filemon command, but defers tracing until the
trcon command has been executed by the user. By
default, tracing is started immediately.

-T n Sets the kernel’s trace buffer size to n bytes. The default
size is 32,000 bytes. The buffer size can be increased to
accommodate larger bursts of events. (A typical event
record size is 30 bytes.).

-P Pins monitor process in memory. The -P flag causes the
filemon command’s text and data pages to be pinned in
memory for the duration of the monitoring period. This flag
can be used to ensure that the real-time filemon process
is not paged out when running in a memory-constrained
environment.

-v Prints extra information in the report. The most significant
effect of the -v flag is that all logical files and all segments
that were accessed are included in the I/O activity report
instead of only the 20 most active files and segments.

-O Levels Monitors only the specified file-system levels. Valid level
identifiers are:

lf Logical file level

vm Virtual memory level

458 AIX 5L Performance Tools Handbook

lv Logical volume level

pv Physical volume level

all Short for lf, vm, lv, and pv

The vm, lv, and pv levels are implied by default.

-u Reports on files that were opened prior to the start of the
trace daemon. The process ID (PID) and the file descriptor
(FD) are substituted for the file name.

25.1.1 Information about measurement and sampling
To provide a more complete understanding of file system performance for an
application, the filemon command monitors file and I/O activity at four levels:

Logical file system The filemon command monitors logical I/O operations
on logical files. The monitored operations include all
read, write, open, and lseek system calls, which may
or may not result in actual physical I/O depending on
whether the files are already buffered in memory. I/O
statistics are kept on a per-file basis.

Virtual memory system The filemon command monitors physical I/O
operations (that is, paging) between segments and
their images on disk. I/O statistics are kept on a
per-segment basis.

Logical volumes The filemon command monitors I/O operations on
logical volumes. I/O statistics are kept on a
per-logical-volume basis.

Physical volumes The filemon command monitors I/O operations on
physical volumes. At this level, physical resource
utilizations are obtained. I/O statistics are kept on a
per-physical-volume basis.

Any combination of the four levels can be monitored, as specified by the
command line flags. By default, the filemon command only monitors I/O
operations at the virtual memory, logical volume, and physical volume levels.
These levels are all concerned with requests for real disk I/O.

 Chapter 25. The filemon command 459

The filemon command monitors a trace of a specific number of trace hooks,
such as for file system and disk I/O . (See Chapter 40, “The trace, trcnm, and
trcrpt commands” on page 759 for more about the trace command and
tracehooks). You can list the trace hooks used by filemon by using the trcevgrp
command as in Example 25-1.

Example 25-1 Using trcevgrp

trcevgrp -l filemon
filemon - Hooks for FILEMON performance tool (reserved)
101,102,104,106,107,10B,10C,10D,12E,130,139,154,15B,163,19C,1BA,1BE,1BC,1C9,221
,222,232,3D3,45B

The filemon tracing of I/O is usually stopped by issuing the trcstop command; it
is when this is done that filemon writes the output. filemon tracing can be
paused by using the trcoff command and restarted by using the trcon
command. By default, filemon starts tracing immediately, but tracing may be
deferred until a trcon command is issued if the -d flag is used.

The filemon command can also process a trace file that has been previously
recorded by the trace facility. The file and I/O activity report will be based on the
events recorded in that file. In order to include all trace hooks that are needed for
filemon, use the -J filemon option when running the trace command.

General notes on interpreting the reports
Check for most active segments, logical volumes, and physical volumes in this
report. Check for reads and writes to paging space to determine if the disk
activity is true application I/O or is due to paging activity. Check for files and
logical volumes that are particularly active.

Value ranges
In some filemon reports there are different value ranges such as min, max, avg,
and sdev. The min represents the minimum value, the max represents the
maximum value, avg is the average, and sdev is the standard deviation, which
shows how much the individual response times deviated from the average. If the
distribution of response times is scattered over a large range, the standard
deviation will be large compared to the average response time.

Access pattern analysis
As the read sequences count approaches the reads count, file access is more
random. On the other hand, if the read sequence count is significantly smaller
than the reads count and the read sequence length is a high value, the file
access is more sequential. The same applies to the writes and write
sequences. Sequences are strings of pages that are read (paged in) or written
(paged out) consecutively. The seq. lengths is the length, in pages, of the
sequences.

460 AIX 5L Performance Tools Handbook

Fragmentation analysis
The amount of fragmentation in a logical volume or a file (blocks) cannot be
obtained directly from the filemon output.

The amount of fragmentation and sequentiality of a file can be obtained by using
the fileplace command on that file. (See Chapter 26, “The fileplace command”
on page 479.) However, if seek times are larger than the number of reads and
writes, there is more fragmentation and less sequentiality.

It is more difficult for a logical volume, which can be viewed as having two parts.
The first part is the logical partitions that constitute the logical volume. To
determine fragmentation on the logical volume, use the lslv command to
determine sequentiality and space efficiency. (Refer to Chapter 27, “The lslv,
lspv, and lsvg commands” on page 501.) The second part is the file system. This
part is more complex because a file system contains meta data areas such as
inode and data block maps, and, in the case of J2, it can also contain a inline
journaling log, and of course the data blocks that contain the actual file data.
Note that the output from filemon cannot be used to determine whether a file
system has many files that are fragmented.

Segments
The Most Active Segments report lists the most active files by file system and
inode. This report is useful in determining whether the activity is to a file system
(segtype is persistent), the JFS log (segtype is log), or to paging space (segtype
is working).

Unknown files
In some cases you will find references to unknown files. The mount point of the
file system and inode of the file can be used with the ncheck command to identify
these files:

ncheck -i <inode> <mount point>

Example 25-2 shows how this works.

Example 25-2 Checking filenames by using ncheck and inode number

ncheck -i 36910 /home
/home:
36910 /dude/out/bigfile

When using the ncheck command, both the mount point and the file path within
that mount point must be concatenated. In the example above this would be
/home/dude/out/bigfile.

 Chapter 25. The filemon command 461

25.1.2 Examples for filemon
The output from filemon can be quite extensive. To quickly find out if anything
needs attention, we filtered it with the awk command for most of our examples
below to extract specific summary tables from the filemon output file.

Starting the monitoring
Example 25-3 shows how to run filemon. To have filemon monitor I/O during a
time interval just run the sleep program with the specified amount of seconds
and then the trcstop program. Below we have used the all option, and then the
awk command to extract relevant parts of the complete report. Note that the
output will be put in the filemon.out file in Example 25-3.

Example 25-3 Using filemon

filemon -uo filemon.out -O all; sleep 60; trcstop

Enter the "trcstop" command to complete filemon processing

[filemon command: Reporting started]
[filemon command: Reporting completed]

[filemon command: 96.371 secs in measured interval]

Using different reports
The following is one way to use the analysis of one report as input to another
report to pinpoint possible bottlenecks and performance issues. In Example 25-4,
we start at the bottom and look at disk I/O, and extract a part of the report
generated by filemon, which is the Most Active Physical Volumes.

Example 25-4 Most Active Physical Volumes report

awk '/Most Active Physical Volumes/,/^$/' filemon.out
Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.24 16 50383 171.9 /dev/hdisk0 N/A
 0.08 68608 36160 357.4 /dev/hdisk1 N/A

This shows us that hdisk1 is more utilized than hdisk0, with almost twice the
amount of transferred data (KB/s). However hdisk0 is more utilized with 24
percent compared to eight percent for hdisk1 but this is mostly for writing
whereas hdisk1 has twice the amount of reading as it has writing. At this point
we could also examine the disks, volume groups, and logical volumes with static

462 AIX 5L Performance Tools Handbook

reporting commands such as lspv, lsvg, and lslv (Chapter 27, “The lslv, lspv,
and lsvg commands” on page 501). To get more detailed realtime information
about the usage of the logical volumes, extract the Most Active Logical Volumes
part from our previously created output file as shown in Example 25-5.

Example 25-5 Most Active Logical Volumes report

awk '/Most Active Logical Volumes/,/^$/' filemon.out
Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.22 0 37256 127.1 /dev/hd8 jfslog
 0.08 68608 36160 357.4 /dev/lv0hd0 N/A
 0.04 0 11968 40.8 /dev/hd3 /tmp
 0.01 0 312 1.1 /dev/hd4 /
 0.01 16 536 1.9 /dev/hd2 /usr
 0.00 0 311 1.1 /dev/hd9var /var Frag_Sz.= 512

The logical volume lv0hd0 is the most utilized for both reading and writing (but
still only at 8 percent utilization), so now we extract information about this
particular logical volume from the output file. Example 25-6 shows the report with
the summary part and a detailed section as well.

Example 25-6 Detailed output for a logical volume

awk '/VOLUME: \/dev\/lv0hd0/,/^$/' filemon.out
VOLUME: /dev/lv0hd0 description: N/A
reads: 1072 (0 errs)
 read sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
 read times (msec): avg 7.112 min 2.763 max 29.334 sdev 2.476
 read sequences: 1072
 read seq. lengths: avg 64.0 min 64 max 64 sdev 0.0
writes: 565 (0 errs)
 write sizes (blks): avg 64.0 min 64 max 64 sdev 0.0
 write times (msec): avg 7.378 min 2.755 max 13.760 sdev 2.339
 write sequences: 565
 write seq. lengths: avg 64.0 min 64 max 64 sdev 0.0
seeks: 1074 (65.6%)
 seek dist (blks): init 60288,
 avg 123.6 min 64 max 64000 sdev 1950.9
time to next req(msec): avg 89.512 min 3.135 max 1062.120 sdev 117.073
throughput: 357.4 KB/sec
utilization: 0.08

 Chapter 25. The filemon command 463

In this example note that the I/O is random because both the reads (1072) equal
the read sequences (1072), as does the writes and write sequences. To
determine which files were most utilized during our monitoring, the Most Active
Files report in Example 25-7 can be used.

Example 25-7 Most Active Files report

awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 337.3 2059 86358 0 fma.data /dev/hd2:342737
 176.7 2057 45244 0 fms.data /dev/hd2:342738
 45.6 1 1010 450 rlv0hd0
 9.6 2 2458 0 unix /dev/hd2:30988
 6.8 12 66140 0 errlog /dev/hd9var:2065
...(lines omitted)...

We now find the fma.data file, and by running the lsfs command we learn that
hd2 is the /usr filesystem, as shown in Example 25-8.

Example 25-8 Determining which filesystem uses a known logical volume

lsfs|awk '/\/dev\/hd2/{print $3}'
/usr

Then we can search for the file within the /usr filesystem as shown in
Example 25-9.

Example 25-9 Finding a file in a filesystem

find /usr -name fma.data
/usr/lpp/htx/rules/reg/hxeflp/fma.data

We now have both the filename and the path, so we can now check how the file
is allocated on the logical volume by using the fileplace command. (See
Chapter 26, “The fileplace command” on page 479.)

Analyzing the physical volume reports
The physical volume report is divided into three parts; the header, the physical
volume summary, and the detailed physical volume report. The header shows
when and where the report was created and the CPU utilization during the
monitoring period. To create only a physical volume report, issue the filemon
command as follows (we are using a six-second measurement period):

filemon -uo filemon.pv -O pv;sleep 6;trcstop

464 AIX 5L Performance Tools Handbook

Example 25-10 shows the full physical volume report. In the report, the disks are
presented in descending order of utilization. The disk with the highest utilization
is shown first.

Example 25-10 Physical volume report

Mon Jun 4 08:21:16 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 12.8%

Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.77 10888 1864 811.5 /dev/hdisk3 N/A
 0.36 7352 2248 610.9 /dev/hdisk2 N/A
..(lines omitted)...

--
Detailed Physical Volume Stats (512 byte blocks)
--

VOLUME: /dev/hdisk3 description: N/A
reads: 717 (0 errs)
 read sizes (blks): avg 15.2 min 8 max 64 sdev 11.9
 read times (msec): avg 12.798 min 0.026 max 156.093 sdev 19.411
 read sequences: 645
 read seq. lengths: avg 16.9 min 8 max 128 sdev 15.0
writes: 142 (0 errs)
 write sizes (blks): avg 13.1 min 8 max 56 sdev 9.2
 write times (msec): avg 16.444 min 0.853 max 50.547 sdev 8.826
 write sequences: 142
 write seq. lengths: avg 13.1 min 8 max 56 sdev 9.2
seeks: 786 (91.5%)
 seek dist (blks): init 0,
 avg 525847.9 min 8 max 4284696 sdev 515636.2
 seek dist (%tot blks):init 0.00000,
 avg 2.95850 min 0.00005 max 24.10632 sdev 2.90104
time to next req(msec): avg 14.069 min 0.151 max 75.270 sdev 14.015
throughput: 811.5 KB/sec
utilization: 0.77

VOLUME: /dev/hdisk2 description: N/A
reads: 387 (0 errs)
 read sizes (blks): avg 19.0 min 8 max 72 sdev 18.5
 read times (msec): avg 5.016 min 0.007 max 14.633 sdev 4.157
 read sequences: 235
 read seq. lengths: avg 31.3 min 8 max 384 sdev 58.1
writes: 109 (0 errs)

 Chapter 25. The filemon command 465

 write sizes (blks): avg 20.6 min 8 max 64 sdev 16.7
 write times (msec): avg 13.558 min 4.569 max 26.689 sdev 5.596
 write sequences: 109
 write seq. lengths: avg 20.6 min 8 max 64 sdev 16.7
seeks: 344 (69.4%)
 seek dist (blks): init 4340200,
 avg 515940.3 min 8 max 1961736 sdev 486107.7
 seek dist (%tot blks):init 24.41859,
 avg 2.90276 min 0.00005 max 11.03701 sdev 2.73491
time to next req(msec): avg 15.813 min 0.134 max 189.876 sdev 27.143
throughput: 610.9 KB/sec
utilization: 0.36

In Example 25-11, we only extract the physical volume summary section.

Example 25-11 Most Active Physical Volumes section

awk '/Most Active Physical Volumes/,/^$/' filemon.pv
Most Active Physical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.24 16 50383 171.9 /dev/hdisk0 N/A
 0.84 370680 372028 3853.4 /dev/hdisk1 N/A
 0.08 68608 36160 357.4 /dev/hdisk2 N/A

The disk with the highest transfer rate and utilization is hdisk3, which is 84
percent utilized (0.84) at a 3.8 MB transfer rate.

The fields, in the Most Active Physical Volumes report of the filemon command,
are interpreted as follows:

util Utilization of the volume (fraction of time busy). The rows
are sorted by this field in decreasing order.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total volume throughput, in kilobytes per second.

volume Name of volume.

description Type of volume.

To find out more detail about a specific disk, look further in the report generated
by filemon, as shown in Example 25-12.

Example 25-12 Detailed physical volume report section

grep -p "VOLUME:.*hdisk3" filemon.pv
VOLUME: /dev/hdisk3 description: N/A

466 AIX 5L Performance Tools Handbook

reads: 914 (0 errs)
 read sizes (blks): avg 24.0 min 8 max 64 sdev 21.8
 read times (msec): avg 4.633 min 0.275 max 14.679 sdev 4.079
 read sequences: 489
 read seq. lengths: avg 44.8 min 8 max 384 sdev 81.2
writes: 218 (0 errs)
 write sizes (blks): avg 21.3 min 8 max 64 sdev 17.6
 write times (msec): avg 15.552 min 4.625 max 32.366 sdev 5.686
 write sequences: 218
 write seq. lengths: avg 21.3 min 8 max 64 sdev 17.6
seeks: 707 (62.5%)
 seek dist (blks): init 4671584,
 avg 574394.4 min 8 max 2004640 sdev 484350.2
 seek dist (%tot blks):init 26.28301,
 avg 3.23163 min 0.00005 max 11.27840 sdev 2.72502
time to next req(msec): avg 10.279 min 0.191 max 175.833 sdev 15.355
throughput: 1137.4 KB/sec
utilization: 0.52

The output shows that the disk has had a 52% utilization during the measuring
interval, and that it is mostly random read and writes; 62.5% seeks for reads and
writes. You can also see that the read I/O is mixed between random and
sequential, but the writing is random.

The fields, in the Detailed Physical Volume report of the filemon command, are
interpreted as follows:

VOLUME Name of the volume.

description Description of the volume (describes contents, if
discussing a logical volume; and type, if dealing with a
physical volume).

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev) in
units of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences in
blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics.

 Chapter 25. The filemon command 467

write times (msec) The write-response time statistics.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences, in
blocks.

seeks Number of seeks that preceded a read or write request,
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics, in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This
seek distance is sometimes very large, so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) Seek distance statistics, in units of disk cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of
time, in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput, in Kilobytes per second.

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field, in decreasing order.

Analyzing the file report
The logical file report is divided into three parts: the header, the file summary,
and the detailed file report. The header shows when and where the report was
created and the CPU utilization during the monitoring period. To create only a
logical file report, issue the filemon command as follows (in this case using a
six-second measurement period):

filemon -uo filemon.lf -O lf;sleep 6;trcstop

Example 25-13 shows the full file report. In the report the file with the highest
utilization is in the beginning and then listed in descending order.

Example 25-13 File report

Mon Jun 4 09:06:27 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

TRACEBUFFER 2 WRAPAROUND, 18782 missed entries
Cpu utilization: 24.8%

18782 events were lost. Reported data may have inconsistencies or errors.

468 AIX 5L Performance Tools Handbook

Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 53.5 33 5478 0 file.tar /dev/datalv:17
 1.3 324 324 0 group /dev/hd4:4110
 1.2 0 150 0 pid=0_fd=15820
 0.6 163 163 0 passwd /dev/hd4:4149
 0.4 33 99 0 methods.cfg /dev/hd2:8492
 0.3 0 32 0 pid=0_fd=21706
...(lines omitted)...

--
Detailed File Stats
--

FILE: /data/file.tar volume: /dev/datalv (/data) inode: 17
opens: 33
total bytes xfrd: 56094720
reads: 5478 (0 errs)
 read sizes (bytes): avg 10240.0 min 10240 max 10240 sdev 0.0
 read times (msec): avg 0.090 min 0.080 max 0.382 sdev 0.017

...(lines omitted)...

In Example 25-14 we only extract the file summary section.

Example 25-14 Most Active Files report section

awk '/Most Active Files/,/^$/' filemon.out
Most Active Files
--
 #MBs #opns #rds #wrs file volume:inode
--
 180.8 1 0 46277 index.db /dev/hd3:107
 53.5 33 5478 0 file.tar /dev/datalv:17
 1.3 324 324 0 group /dev/hd4:4110
 1.2 0 150 0 pid=0_fd=15820
 0.6 163 163 0 passwd /dev/hd4:4149
...(lines omitted)...

We notice heavy reading (#rds) of the file.tar file and writing (#wrs) of the
index.db. The fields, in the Most Active Files report of the filemon command,
are interpreted as follows:

#MBS Total number of megabytes transferred to/from file. The
rows are sorted by this field in decreasing order.

 Chapter 25. The filemon command 469

#opns Number of times the file was opened during measurement
period.

#rds Number of read system calls made against file.

#wrs Number of write system calls made against file.

file Name of file (full path name is in detailed report).

volume:inode Name of volume that contains the file, and the files inode
number. This field can be used to associate a file with its
corresponding persistent segment, shown in the virtual
memory I/O reports. This field may be blank; for example,
for temporary files created and deleted during execution.

To find out more detail about a specific file, look further in the report generated by
filemon as shown in Example 25-15.

Example 25-15 Detailed File report section

grep -p "FILE:.*file.tar" filemon4.lf
FILE: /data/file.tar volume: /dev/datalv (/data) inode: 17
opens: 33
total bytes xfrd: 56094720
reads: 5478 (0 errs)
 read sizes (bytes): avg 10240.0 min 10240 max 10240 sdev 0.0
 read times (msec): avg 0.090 min 0.080 max 0.382 sdev 0.017

The fields in the detailed file report of the filemon command are interpreted as
follows:

FILE Name of the file. The full path name is given, if possible.

volume Name of the logical volume/file system containing the file.

inode Inode number for the file within its file system.

opens Number of times the file was opened while monitored.

total bytes xfrd Total number of bytes read/written to/from the file.

reads Number of read calls against the file.

read sizes (bytes) The read transfer-size statistics (avg/min/max/sdev) in
bytes.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

writes Number of write calls against the file.

write sizes (bytes) The write transfer-size statistics.

write times (msec) The write response-time statistics.

seeks Number of lseek subroutine calls.

470 AIX 5L Performance Tools Handbook

Analyzing the logical volume report
The logical volume report has three parts; the header, the logical volume
summary, and the detailed logical volume report. The header shows when and
where the report was created and the CPU utilization during the monitoring
period. To create only a logical volume report, issue the filemon command as
follows (in this case using a six-second measurement period):

filemon -uo filemon.lv -O lv;sleep 6;trcstop

Example 25-16 shows the full logical volume report. The logical volume with the
highest utilization is at the top, and the others are listed in descending order.

Example 25-16 Logical volume report

Mon Jun 4 09:17:45 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 13.9%

Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 0.78 10104 2024 761.1 /dev/lv05 jfs2
 0.39 10832 2400 830.4 /dev/lv04 jfs2
 0.04 0 128 8.0 /dev/hd2 /usr
...(lines omitted)...

--
Detailed Logical Volume Stats (512 byte blocks)
--
VOLUME: /dev/lv05 description: jfs2
reads: 727 (0 errs)
 read sizes (blks): avg 13.9 min 8 max 64 sdev 10.5
 read times (msec): avg 19.255 min 0.369 max 72.025 sdev 15.779
 read sequences: 587
 read seq. lengths: avg 17.2 min 8 max 136 sdev 16.7
writes: 162 (0 errs)
 write sizes (blks): avg 12.5 min 8 max 56 sdev 7.1
 write times (msec): avg 12.911 min 3.088 max 57.502 sdev 7.814
 write sequences: 161
 write seq. lengths: avg 12.6 min 8 max 56 sdev 7.1
seeks: 747 (84.0%)
 seek dist (blks): init 246576,
 avg 526933.0 min 8 max 1994240 sdev 479435.6
time to next req(msec): avg 8.956 min 0.001 max 101.086 sdev 13.560
throughput: 761.1 KB/sec
utilization: 0.78
...(lines omitted)...

 Chapter 25. The filemon command 471

In Example 25-17, we extract only the logical volume section.

Example 25-17 Most Active Logical Volumes report

awk '/Most Active Logical Volumes/,/^$/' filemon.out

Most Active Logical Volumes
--
 util #rblk #wblk KB/s volume description
--
 1.00 370664 370768 3846.8 /dev/hd3 /tmp
 0.02 0 568 2.9 /dev/hd8 jfslog
 0.01 0 291 1.5 /dev/hd9var /var Frag_Sz.= 512
 0.00 0 224 1.2 /dev/hd4 /
 0.00 0 25 0.1 /dev/hd1 /home Frag_Sz.= 512
 0.00 16 152 0.9 /dev/hd2 /usr

The logical volume hd3 with filesystem /tmp is fully utilized (100 percent) with a
3.8 MB transfer rate per second.

The fields in the Most Active Logical Volumes report of the filemon command are:

util Utilization of the volume (fraction of time busy). The rows
are sorted by this field, in decreasing order. The first
number, 1.00, means 100 percent.

#rblk Number of 512-byte blocks read from the volume.

#wblk Number of 512-byte blocks written to the volume.

KB/sec Total transfer throughput in kilobytes per second.

volume Name of volume.

description Contents of volume; either a filesystem name or logical
volume type (jfs, jfs2, paging, jfslog, jfs2log, boot, or
sysdump). Also, indicates if the file system is fragmented
or compressed.

To check the details of the highest utilized logical volumes, create a script as
shown in Example 25-18 (here we call it filemon.lvdetail) and then run it using the
filemon output file as input.

Example 25-18 Script filemon.lvdetail

#!/bin/ksh
file=${1:-filemon.out}
switch=${2:-0.20} # 20%

extract the summary table...
awk '/Most Active Logical Volumes/,/^$/' $file|
select logcal volumes starting from line 5 and no empty lines...

472 AIX 5L Performance Tools Handbook

awk 'NR>4&&$0!~/^$/{if ($1 >= switch)print $5}' switch=$switch|
while read lv;do

strip the /dev/ stuff and select the detail section.
awk '/VOLUME: \/dev\/'${lv##*/}'/,/^$/' $file

done

For our continuing example the result would appear as shown in Example 25-19.

Example 25-19 Logical volume detailed selection report

filemon.lvdetail filemon.out
VOLUME: /dev/lv05 description: jfs2
reads: 727 (0 errs)
 read sizes (blks): avg 13.9 min 8 max 64 sdev 10.5
 read times (msec): avg 19.255 min 0.369 max 72.025 sdev 15.779
 read sequences: 587
 read seq. lengths: avg 17.2 min 8 max 136 sdev 16.7
writes: 162 (0 errs)
 write sizes (blks): avg 12.5 min 8 max 56 sdev 7.1
 write times (msec): avg 12.911 min 3.088 max 57.502 sdev 7.814
 write sequences: 161
 write seq. lengths: avg 12.6 min 8 max 56 sdev 7.1
seeks: 747 (84.0%)
 seek dist (blks): init 246576,
 avg 526933.0 min 8 max 1994240 sdev 479435.6
time to next req(msec): avg 8.956 min 0.001 max 101.086 sdev 13.560
throughput: 761.1 KB/sec
utilization: 0.78

VOLUME: /dev/lv04 description: jfs2
reads: 510 (0 errs)
 read sizes (blks): avg 21.2 min 8 max 72 sdev 18.6
 read times (msec): avg 5.503 min 0.368 max 25.989 sdev 5.790
 read sequences: 265
 read seq. lengths: avg 40.9 min 8 max 384 sdev 73.4
writes: 110 (0 errs)
 write sizes (blks): avg 21.8 min 8 max 64 sdev 16.8
 write times (msec): avg 9.994 min 4.440 max 18.378 sdev 2.752
 write sequences: 101
 write seq. lengths: avg 23.8 min 8 max 64 sdev 18.6
seeks: 366 (59.0%)
 seek dist (blks): init 127264,
 avg 538451.3 min 8 max 2009448 sdev 504054.2
time to next req(msec): avg 12.842 min 0.003 max 187.120 sdev 23.317
throughput: 830.4 KB/sec
utilization: 0.39

 Chapter 25. The filemon command 473

The descriptions for the detailed output shown in the example are:

VOLUME Name of the volume.

description Description of the volume. Describes contents, if
discussing a logical volume, and type if dealing with a
physical volume.

reads Number of read requests made against the volume.

read sizes (blks) The read transfer-size statistics (avg/min/max/sdev) in
units of 512-byte blocks.

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
512-byte blocks that are read consecutively and indicate
the amount of sequential access.

read seq. lengths Statistics describing the lengths of the read sequences in
blocks.

writes Number of write requests made against the volume.

write sizes (blks) The write transfer-size statistics.

write times (msec) The write-response time statistics.

write sequences Number of write sequences. A sequence is a string of
512-byte blocks that are written consecutively.

write seq. lengths Statistics describing the lengths of the write sequences in
blocks.

seeks Number of seeks that preceded a read or write request,
also expressed as a percentage of the total reads and
writes that required seeks.

seek dist (blks) Seek distance statistics in units of 512-byte blocks. In
addition to the usual statistics (avg/min/max/sdev), the
distance of the initial seek operation (assuming block 0
was the starting position) is reported separately. This
seek distance is sometimes very large, so it is reported
separately to avoid skewing the other statistics.

seek dist (cyls) (Hard files only) Seek distance statistics, in units of disk
cylinders.

time to next req Statistics (avg/min/max/sdev) describing the length of
time, in milliseconds, between consecutive read or write
requests to the volume. This column indicates the rate at
which the volume is being accessed.

throughput Total volume throughput in kilobytes per second.

474 AIX 5L Performance Tools Handbook

utilization Fraction of time the volume was busy. The entries in this
report are sorted by this field, in decreasing order.

Analyzing the virtual memory segments report
The virtual memory report has three parts: the header, the segment summary,
and the detailed segment report. The header shows when and where the report
was created and the CPU utilization during the monitoring period. To create only
a virtual memory report, issue the filemon command as follows (in this case
using a six-second measurement period):

filemon -uo filemon.vm -O vm;sleep 6;trcstop

Example 25-20 shows the full virtual memory report, in which the segment with
the highest utilization is at the top, and the others are listed in descending order.

Example 25-20 Virtual memory report

Mon Jun 4 09:34:17 2001
System: AIX wlmhost Node: 5 Machine: 000BC6AD4C00

Cpu utilization: 7.0%

Most Active Segments
--
 #MBs #rpgs #wpgs segid segtype volume:inode
--
 1.8 416 50 2058ab page table
 1.4 301 57 8c91 page table
 1.3 286 52 4c89 page table
 1.3 311 23 2040a8 page table
 1.1 236 47 2068ad page table
 1.0 201 54 2050aa page table
 1.0 184 67 2048a9 page table
 0.7 123 46 2060ac page table
 0.0 0 7 2084 log
 0.0 3 0 ec9d ???
...(lines omitted)...

--
Detailed VM Segment Stats (4096 byte pages)
--

SEGMENT: 2058ab segtype: page table
segment flags: pgtbl
reads: 416 (0 errs)
 read times (msec): avg 3.596 min 0.387 max 24.262 sdev 3.500
 read sequences: 55
 read seq. lengths: avg 7.6 min 1 max 48 sdev 13.6
writes: 50 (0 errs)

 Chapter 25. The filemon command 475

 write times (msec): avg 9.924 min 2.900 max 14.530 sdev 2.235
 write sequences: 25
 write seq. lengths: avg 2.0 min 1 max 8 sdev 1.5

...(lines omitted)...

SEGMENT: 2084 segtype: log
segment flags: log
writes: 7 (0 errs)
 write times (msec): avg 12.259 min 7.381 max 15.250 sdev 2.499
 write sequences: 5
 write seq. lengths: avg 1.4 min 1 max 2 sdev 0.5

SEGMENT: ec9d segtype: ???
segment flags:
reads: 3 (0 errs)
 read times (msec): avg 0.964 min 0.944 max 0.981 sdev 0.015
 read sequences: 1
 read seq. lengths: avg 3.0 min 3 max 3 sdev 0.0

...(lines omitted)...

In Example 25-21 we only extract the segment section.

Example 25-21 Most Active Segments report

awk '/Most Active Segments/,/^$/' filemon.out
Most Active Segments
--
 #MBs #rpgs #wpgs segid segtype volume:inode
--
 15.1 2382 1484 2070ae page table
 14.3 2123 1526 2058ab page table
 14.1 1800 1802 672d page table
 13.9 2209 1353 6f2c page table
 13.9 2287 1261 2060ac page table
 13.4 2054 1383 2068ad page table
 12.2 1874 1242 2050aa page table
 11.6 1985 983 2048a9 page table
...(lines omitted)...

The fields in the Most Active Segments report of the filemon command are
interpreted as follows:

#MBS Total number of megabytes transferred to/from segment.
The rows are sorted by this field in decreasing order.

#rpgs Number of 4096-byte pages read into segment from disk.

#wpgs Number of 4096-byte pages written from segment to disk.

476 AIX 5L Performance Tools Handbook

segid Internal ID of segment.

segtype Type of segment: working segment, persistent segment,
client segment, page table segment, system segment, or
special persistent segments containing file system data
(log, root directory, .inode, .inodemap, .inodex,
.inodexmap, .indirect, .diskmap).

volume:inode For persistent segments, name of volume that contains
the associated file, and the files inode number. This field
can be used to associate a persistent segment with its
corresponding file, shown in the file I/O reports. This field
is blank for non-persistent segments.

A detailed segment report is shown in Example 25-22.

Example 25-22 Detailed segment report

grep -p "SEGMENT:.*\?\?\?" filemon.vm
SEGMENT: ec9d segtype: ???
segment flags:
reads: 3 (0 errs)
 read times (msec): avg 0.964 min 0.944 max 0.981 sdev 0.015
 read sequences: 1
 read seq. lengths: avg 3.0 min 3 max 3 sdev 0.0

The fields, in the Detailed VM Segment Stats report of the filemon command,
are interpreted as follows:

SEGMENT Internal segment ID.

segtype Type of segment contents.

segment flags Various segment attributes.

volume For persistent segments, the name of the logical volume
containing the corresponding file.

inode For persistent segments, the inode number for the
corresponding file.

reads Number of 4096-byte pages read into the segment (that
is, paged in).

read times (msec) The read response-time statistics (avg/min/max/sdev) in
milliseconds.

read sequences Number of read sequences. A sequence is a string of
pages that are read (paged in) consecutively. The number
of read sequences is an indicator of the amount of
sequential access.

 Chapter 25. The filemon command 477

read seq. lengths Statistics describing the lengths of the read sequences in
pages.

writes Number of pages written from the segment (paged out).

write times (msec) Write response time statistics.

write sequences Number of write sequences. A sequence is a string of
pages that are written (paged out) consecutively.

write seq.lengths Statistics describing the lengths of the write sequences in
pages.

In this example, filemon only shows a segment ID and does not indicate whether
it is a file, logical volume, or physical volume. To find out more about the segment
we use the svmon command (refer to Chapter 24, “The svmon command” on
page 387) as shown in Example 25-23.

Example 25-23 Using svmon to show segment information

svmon -S ec9d

 Vsid Esid Type Description Inuse Pin Pgsp Virtual
 ec9d - pers /dev/lv00:17 4 0 - -

In Example 25-23, the svmon command with the -S flag shows that segment ec9d
is a persistent segment, which means it is some kind of JFS file and it uses 4 *
4096 bytes of real memory (Inuse). To map the <device>:<inode>, shown above,
into a file system path name, use the ncheck command as in Example 25-24.

Example 25-24 Using ncheck

ncheck -i 17 /dev/lv00
/dev/lv00:
17 /read_write

The ncheck command shows the path name of a specified inode number within
the specified file system (logical volume). To obtain the full path name to the file
read_write (in the output above) we need the file system mount point, which can
be obtained by using the lsfs command as shown in Example 25-25.

Example 25-25 Using lsfs

lsfs /dev/lv00
Name Nodename Mount Pt VFS Size Options Auto Accounting
/dev/lv00 -- /tools jfs 32768 rw yes no

The absolute path to the read_write file is /tools/read_write.

478 AIX 5L Performance Tools Handbook

Chapter 26. The fileplace command

The fileplace command displays the placement of a file’s logical or physical
blocks within a Journaled File System (JFS), not Network File System (NFS) or
Enhanced Journaled File System (J2). Logically contiguous files in the file
system may be both logically and physically fragmented on the logical and
physical volume level, depending on the available free space at the time the file
and logical volume (file system) were created.

The fileplace command can be used to examine and assess the efficiency of a
file’s placement on disk and help identify those files that will benefit from
reorganization.

The fileplace command resides in /usr/bin and is part of the bos.perf.tools
fileset, which is installable from the AIX base installation media.

26

© Copyright IBM Corp. 2001, 2003 479

26.1 fileplace
The syntax of the fileplace command is:

fileplace [{ -l | -p } [-i] [-v]] File
fileplace [-m lvname]

Flags
-i Displays the indirect blocks for the file, if any. The indirect

blocks are displayed in terms of either their logical or
physical volume block addresses, depending on whether
the -l or -p flag is specified.

-l Displays file placement in terms of logical volume
fragments for the logical volume containing the file. The -l
and -p flags are mutually exclusive.

-p Displays file placement in terms of underlying physical
volume for the physical volumes that contain the file. If the
logical volume containing the file is mirrored, the physical
placement is displayed for each mirror copy. The -l and -p
flags are mutually exclusive.

-v Displays more information about the file and its
placement, including statistics on how widely the file is
spread across the volume and the degree of
fragmentation in the volume. The statistics are expressed
in terms of either the logical or physical volume fragment
numbers, depending on whether the -l or -p flag is
specified.

-m lvname Displays logical to physical map for a logical volume.

Parameters
File The file to display information about.

26.1.1 Information about measurement and sampling
The fileplace command extracts information about a file’s physical and logical
disposition from the JFS logical volume superblock and inode tables directly from
disk and displays this information in a readable form. If the file is newly created,
extended, or truncated, the file system information may not yet be on the disk

Note: If neither the -l flag nor the-p flag is specified, the -l flag is implied by
default. If both flags are specified, the -p flag is used.

480 AIX 5L Performance Tools Handbook

when the fileplace command is run. In this case use the sync command to flush
the file information to the logical volume.

Data on logical volumes (file systems) appears to be contiguous to the user but
can be discontiguous on the physical volume. File and file system fragmentation
can severely hurt I/O performance because it causes more disk arm movement.
To access data from a disk, the disk controller must first be directed to the
specified block by the LVM through the device driver. Then the disk arm must
seek the correct cylinder. After that the read/write heads must wait until the
correct block rotates under them. Finally the data must be transmitted to the
controller over the I/O bus to memory before it can be made available to the
application program. Of course some adapters and I/O architectures support
both multiple outstanding I/O requests and reordering of those requests, which in
some cases will be sufficient, but in most cases will not.

To assess the performance effect of file fragmentation, an understanding of how
the file is used by the application is required:

� If the application is primarily accessing this file sequentially, the logical
fragmentation is more important. At the end of each fragment read ahead
stops. The fragment size is therefore very important.

� If the application is accessing this file randomly, the physical fragmentation is
more important. The closer the information is in the file, the less latency there
is when accessing the physical data blocks.

26.1.2 Examples for fileplace
In Example 26-1 on page 482, the fileplace command lists to standard output
the ranges of logical volume fragments allocated to the specified file. The order in
which the logical volume fragments are listed corresponds directly to their order
in the file.

Attention: Avoid using fragmentation sizes smaller than 4096 bytes. Even
though it is allowed, it will increase the need for system administration and can
cause performance degradation in the I/O system. Fragmentation sizes
smaller than 4096 are only useful when a file system is used for files smaller
than the fragmentation size (<512, 1024, or 2048 bytes). If needed these
filesystems should be created separately and defragmented regularly by using
the defragfs command. If no other job control system is used in the system,
use cron to execute the command on a regular basis. One scenario in which it
could be appropriate is when an application creates many Simultaneous
Periphereal Operation Off Line (SPOOL) files, for example printer files that are
written once and read mainly one time (by the qdaemon).

 Chapter 26. The fileplace command 481

Example 26-1 Using fileplace

fileplace index.db

File: index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

The report shows that the majority of the file occupies a consecutive range of
blocks starting from 544 and ending at 974 (97.3%).

Analyzing the logical report
The logical report that the fileplace command creates with the -l flag (default)
displays the file placement in terms of logical volume fragments for the logical
volume containing the file. It is shown in Example 26-2.

Example 26-2 Using fileplace -l

fileplace -l index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

The fields, in the logical report of the fileplace command, are interpreted as:

File The name of the file being examined

Size The file size in bytes

Vol The name of the logical volume where the file is placed

Blk Size The block size in bytes for that logical volume

Frag Size The fragment size in bytes

Nfrags The number of fragments

Compress Whether the file system is compressed

Logical Fragments The logical block numbers where the file resides

482 AIX 5L Performance Tools Handbook

The Logical Fragments part of the report is interpreted as, from left to right:

Start The start of a consecutive block range

Stop The end of the consecutive block range

Nfrags Number of contiguous fragments in the block range

Size The number of bytes in the contiguous fragments

Percent Percentage of the block range compared with total file
size

Portions of a file may not be mapped to any logical blocks in the volume. These
areas are implicitly filled with null (0x00) by the file system when they are read.
These areas show as unallocated logical blocks. A file that has these holes will
show the file size to be a larger number of bytes than it actually occupies. Refer
to “Sparsely allocated files” on page 492.

26.1.3 Analyzing the physical report
The physical report that the fileplace command creates with the -p flag displays
the file placement in terms of underlying physical volume (or the physical
volumes that contain the file). If the logical volume containing the file is mirrored,
the physical placement is displayed for each mirror copy. The physical report is
shown in Example 26-3.

Example 26-3 Using fileplace -p

fileplace -p index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

The fields, in the physical report of the fileplace command, are interpreted as:

File The name of the file being examined

Size The file size in bytes

Vol The name of the logical volume where the file is placed

Blk Size The block size in bytes for that logical volume

Frag Size The fragment size in bytes

Nfrags The number of fragments

 Chapter 26. The fileplace command 483

Compress Whether the file system is compressed

Physical Address The physical block numbers where the file resides for
each mirror copy

The Physical Address part of the report are interpreted as, from left to right:

Start The start of a consecutive block range

Stop The end of the consecutive block range

PVol Physical volume where the block is stored

Nfrags Number of contiguous fragments in the block range

Size The number of bytes in the contiguous fragments

Percent Percentage of block range compared with total file size

Logical Fragment The logical block addresses corresponding to the physical
block addresses

Portions of a file may not be mapped to any physical blocks in the volume. These
areas are implicitly filled with null (0x00) by the file system when they are read.
These areas show as unallocated physical blocks. A file that has these holes will
show the file size to be a larger number of bytes than it actually occupies. Refer
to “Sparsely allocated files” on page 492.

Analyzing the physical address
The Logical Volume Device Driver (LVDD) requires that all disks are partitioned
in 512 bytes blocks. This is the physical disk block size, and is the basis for the
block addressing reported by the fileplace command. Refer to “Interface to
Physical Disk Device Drivers“ in AIX 5L Version 5.2 Kernel Extensions and
Device Support Programming Concepts for more details.

The XLATE ioctl operation translates a logical address (logical block number and
mirror number) to a physical address (physical device and physical block number
on that device). Refer to the “XLATE ioctl Operation” in AIX 5L Version 5.2 Files
Reference for more details.

Whatever the fragment size, a full block is considered to be 4096 bytes. In a file
system with a fragment size less than 4096 bytes, however, a need for a full block
can be satisfied by any contiguous sequence of fragments totalling 4096 bytes. It
does not need to begin on a multiple-of-4096-byte boundary. For more
information, refer to the AIX 5L Version 5.2 Performance Management Guide.

The primary performance hazard for file systems with small fragment sizes is
space fragmentation. The existence of small files scattered across the logical
volume can make it impossible to allocate contiguous or closely spaced blocks
for a large file. Performance can suffer when accessing large files. Carried to an

484 AIX 5L Performance Tools Handbook

extreme, space fragmentation can make it impossible to allocate space for a file,
even though there are many individual free fragments.

Another adverse effect on disk I/O activity is the number of I/O operations. For a
file with a size of 4 KB stored in a single fragment of 4 KB, only one disk I/O
operation would be required to either read or write the file. If the choice of the
fragment size was 512 bytes, eight fragments would be allocated to this file, and
for a read or write to complete, several additional disk I/O operations (disk seeks,
data transfers, and allocation activity) would be required. Therefore, for file
systems that use a fragment size of 4 KB, the number of disk I/O operations
might be far less than for file systems that employ a smaller fragment size.

Example 26-4 illustrates how the 512-byte physical disk block is reported by the
fileplace command.

Example 26-4 Using fileplace -p

fileplace -p file.log

File: file.log Size: 148549 bytes Vol: /dev/hd1
Blk Size: 4096 Frag Size: 512 Nfrags: 296 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 4693063 hdisk0 8 frags 4096 Bytes, 2.7% 0052039
 4693079 hdisk0 8 frags 4096 Bytes, 2.7% 0052055
 4693106 hdisk0 8 frags 4096 Bytes, 2.7% 0052082
 4693120 hdisk0 8 frags 4096 Bytes, 2.7% 0052096
 0829504-0829528 hdisk0 32 frags 16384 Bytes, 10.8% 1562432-1562456
 0825064-0825080 hdisk0 24 frags 12288 Bytes, 8.1% 1557992-1558008
 0825120 hdisk0 8 frags 4096 Bytes, 2.7% 1558048
 0825008-0825016 hdisk0 16 frags 8192 Bytes, 5.4% 1557936-1557944
 0824182 hdisk0 8 frags 4096 Bytes, 5.4% 1557110-1557118
 0829569-0829593 hdisk0 32 frags 16384 Bytes, 10.8% 1562497-1562521
 0829632-0829656 hdisk0 32 frags 16384 Bytes, 10.8% 1562560-1562584
 0829696-0829712 hdisk0 24 frags 12288 Bytes, 8.1% 1562624-1562640
 0829792-0829864 hdisk0 80 frags 40960 Bytes, 27.0% 1562720-1562792

In the following explanation we use the following line from the previous example:

0825008-0825016 hdisk0 16 frags 8192 Bytes, 5.4% 1557936-1557944

As the fragment size is less than 4096 bytes in this case, the start range is the
starting address of the 4096/FragSize contiguous blocks, and the end range is
nothing but the starting address of the 4096/FragSize contiguous blocks.

Hence from 0825008 to 08250015 is the first 4096-byte block, which is occupied by
the file (8 frags in this case), and from 08250016 to 08250023 is the next 4096-byte

 Chapter 26. The fileplace command 485

block that is occupied by the file (8 frags, totals up to 16 frags now). Note that the
actual range is 0825008–0850023, but instead 0825008–08250016 is displayed.

The reason why fileplace does not display the proper end physical address is
that AIX always tries to allocate the specified block size contiguously on the disk.
Hence, for a 4 KB block size, AIX will always look for eight contiguous 512-byte
blocks on the disk to allocate. Hence fileplace always displays the start and end
range in terms of block addressing.

So if the fragment size and block size are same, then fileplace display seems to
be meaningful output, but if the block size and fragment size are not the same,
then the output may be a little bit confusing. Actually fileplace always displays
the address ranges in terms of start and end address of a block and not a
fragment, even though the addressing is done based on fragments.

The formula fileplace uses to display the mapping of physical address, logical
address, and fragments is:

Number of fragments = (End Address - Start Address) + (Block Size / Frag Size)

For more information refer also to "Understanding Fragments" in AIX 5L Version
5.2 System Management Concepts: Operating System and Devices.

To illustrate the addressing, consider an example in AIX where the word size is
4 bytes, which means that addressing is done for each and every 4 bytes. This
example applies to the case of an array of the longlong type:

longlong word[10];

The starting address of word[0] is 123456. The display of the range of addresses
occupied by this array is:

Start Address: 123456
End Address: 123474
Total no. of words occupied: 20

However, if you calculate 123474 - 123456 + 1 = 19 words, this is one word less.
The end address is nothing but the address of word[10], which occupies two
words, so the actual formula in this case is:

(Endaddress - startaddress) + (Data size / wordsize)

With our example above it would be:

(123474 - 123456)+ (8 / 4) = 20 words

Analyzing the indirect block report
The fileplace -i flag will display any indirect block(s) used for the file in addition
to the default display or together with the -l, -p, or -v flags. Indirect block(s) are

486 AIX 5L Performance Tools Handbook

needed for files larger than 32 KB. An single indirect block is used for storing
addresses to data blocks when the inode’s number of data block addresses is not
sufficient. A double indirect block is used to store addresses to other blocks that
in their turn store addresses to data blocks. For more detail on the use of the
indirect block see AIX 5L Version 5.2 System User's Guide: Operating System
and Devices.

The only additional fields to the physical or logical reports, when the -i option is
used with fileplace, are interpreted as:

INDIRECT BLOCK The physical/logical address of a data block that
contains pointers (addresses) to data blocks.

DOUBLE INDIRECT BLOCK The physical/logical address of a block that contains
pointers (addresses) to other indirect blocks.

INDIRECT BLOCKS The physical/logical address of a data block(s) that
contains pointers (addresses) to data blocks.

In Example 26-5 using the logical report (-l), the indirect block’s logical address
is 24.

Example 26-5 Indirect block, logical view

fileplace -il index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

INDIRECT BLOCK: 00024

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

Example 26-6, using the physical report (-p), shows that the indirect block’s
physical address is 537144.

Example 26-6 Indirect block, physical view

fileplace -ip index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no

INDIRECT BLOCK: 537144

 Physical Addresses (mirror copy 1) Logical Fragment

 Chapter 26. The fileplace command 487

 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

Example 26-7, using the default logical report (-i), shows that the double indirect
block’s logical address is 01170, and the two currently existing indirect blocks’
logical addresses are 00029 and 01171.

Example 26-7 Double indirect block and indirect blocks

fileplace -i bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no

DOUBLE INDIRECT BLOCK: 01170
INDIRECT BLOCKS: 00029 01171

 Logical Fragment

 0000144-0000147 4 frags 16384 Bytes, 0.3%
 0000150-0001169 1020 frags 4177920 Bytes, 73.0%
 0001172-0001545 374 frags 1531904 Bytes, 26.8%

Analyzing the volume report
The volume report displays information about the file and its placement, including
statistics about how widely the file is spread across the volume and the degree of
fragmentation in the volume.

Logical report
In Example 26-8 the statistics are expressed in terms of logical fragment
numbers. This is the logical block’s placement on the logical volume, for each of
the logical copies of the file.

Example 26-8 Using fileplace -vl

fileplace -vl index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no
Inode: 17 Mode: -rw-r--r-- Owner: root Group: sys

 Logical Fragment

 0000016-0000023 8 frags 32768 Bytes, 1.8%
 0000025-0000028 4 frags 16384 Bytes, 0.9%
 0000544-0000974 431 frags 1765376 Bytes, 97.3%

488 AIX 5L Performance Tools Handbook

 443 frags over space of 959 frags: space efficiency = 46.2%

If the application primarily accesses this file sequentially, the logical
fragmentation is important. When VMM reads a file sequentially, by default it
uses read ahead. (For more information about tuning the read ahead size, see
“Sequential read-ahead” on page 241.) At the end of each fragment, read ahead
stops. The fragment size is therefore very important. High space efficiency
means that the file is less fragmented. In the example above, the file has only
46.2 percent space efficiency for the logical fragmentation. Because the file in
the example above is larger than 32 KB, it will never have 100 percent space
efficiency because of the use of the indirect block.

Space efficiency is calculated as the number of non-null fragments (N) divided by
the range of fragments assigned to the file (R) and multiplied by 100:

(N / R) * 100

Range is calculated as the highest assigned address (MaxBlk) minus the lowest
assigned address (MinBlk) plus 1:

MaxBlk - MinBlk + 1

In Example 26-9 we use the logical (-l), indirect (-i), and volume (-v) flags with
fileplace to show all interesting information from a logical point of view of a file.

Example 26-9 Using fileplace -liv

fileplace -liv bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no
Inode: 29 Mode: -rw-rw-r-- Owner: root Group: sys

DOUBLE INDIRECT BLOCK: 01170
INDIRECT BLOCKS: 00029 01171

 Logical Fragment

 0000144-0000147 4 frags 16384 Bytes, 0.3%
 0000150-0001169 1020 frags 4177920 Bytes, 73.0%
 0001172-0001545 374 frags 1531904 Bytes, 26.8%

 1398 frags over space of 1402 frags: space efficiency = 99.7%
 3 fragments out of 1398 possible: sequentiality = 99.9%

This file uses double indirection for data block addresses. Both space efficiency
and sequentiality are at very good levels (99.7 and 99.9 percent respectively).

 Chapter 26. The fileplace command 489

Example 26-10 shows a file with zero sequentiality. It is a sparse file (see
“Sparsely allocated files” on page 492) but the importance is the distance
between the allocated blocks (1204 and 1205).

Example 26-10 Zero sequentiality

fileplace -liv ugly.file

File: ugly.file Size: 512001 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 2 Compress: no
Inode: 182 Mode: -rw-r--r-- Owner: root Group: sys

INDIRECT BLOCK: 01218

 Logical Fragment

 unallocated 12 frags 49152 Bytes, 0.0%
 0001204 1 frags 4096 Bytes, 50.0%
 unallocated 112 frags 458752 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 50.0%

 2 frags over space of 2 frags: space efficiency = 100.0%
 2 fragments out of 2 possible: sequentiality = 0.0%

Physical report
In Example 26-11 the statistics are expressed in terms of physical volume
fragment numbers. This is the logical block placement on physical volume(s) for
each of the logical copies of the file.

Example 26-11 fileplace -vp

fileplace -vp index.db

File: /data/index.db Size: 1812480 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 443 Compress: no
Inode: 17 Mode: -rw-r--r-- Owner: root Group: sys

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0537136-0537143 hdisk1 8 frags 32768 Bytes, 1.8% 0000016-0000023
 0537145-0537148 hdisk1 4 frags 16384 Bytes, 0.9% 0000025-0000028
 0537664-0538094 hdisk1 431 frags 1765376 Bytes, 97.3% 0000544-0000974

 443 frags over space of 959 frags: space efficiency = 46.2%
 3 fragments out of 443 possible: sequentiality = 99.5%

If the application primarily accesses this file randomly, the physical fragmentation
is important. The closer the information is in the file, the less latency when
accessing the physical data blocks. High sequentiality means that the file’s

490 AIX 5L Performance Tools Handbook

physical blocks are allocated more contiguously. In the example above, the file
has a 99.5 percent sequentiality.

Sequential efficiency is defined as 1 minus the number of gaps (nG) divided by
number of possible gaps (nPG): 1 - (nG / nPG).

The number of possible gaps equals N minus 1:

nPG = N - 1

In Example 26-12, we use the physical (-p), indirect (-i), and volume (-v) flags to
fileplace to show us all of the interesting information from a physical point of
view of a file.

Example 26-12 Using fileplace -piv

fileplace -piv bolshoi.tar

File: bolshoi.tar Size: 5724160 bytes Vol: /dev/vg10lv1
Blk Size: 4096 Frag Size: 4096 Nfrags: 1398 Compress: no
Inode: 29 Mode: -rw-rw-r-- Owner: root Group: sys

DOUBLE INDIRECT BLOCK: 01714
INDIRECT BLOCKS: 00573 01715

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 0000688-0000691 hdisk10 4 frags 16384 Bytes, 0.3% 0000144-0000147
 0000694-0001713 hdisk10 1020 frags 4177920 Bytes, 73.0% 0000150-0001169
 0001716-0002089 hdisk10 374 frags 1531904 Bytes, 26.8% 0001172-0001545

 1398 frags over space of 1402 frags: space efficiency = 99.7%
 3 fragments out of 1398 possible: sequentiality = 99.9%

The output shows that this file uses double indirection for data block addresses.
Both space efficiency and sequentiality are at very good levels (99.7 and
99.9 percent respectively).

Example 26-13 shows a file with zero sequentiality. It is a sparse file (explained in
the next section), but the importance is the distance between the allocated blocks
(0538324 and 0538325).

Example 26-13 Zero sequentiality

fileplace -piv ugly.file

File: ugly.file Size: 512001 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 2 Compress: no
Inode: 182 Mode: -rw-r--r-- Owner: root Group: sys

 Chapter 26. The fileplace command 491

INDIRECT BLOCK: 538338

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 12 frags 49152 Bytes, 0.0% unallocated
 0538324 hdisk1 1 frags 4096 Bytes, 50.0% 0001204
 unallocated 112 frags 458752 Bytes, 0.0% unallocated
 0538325 hdisk1 1 frags 4096 Bytes, 50.0% 0001205

 2 frags over space of 2 frags: space efficiency = 100.0%
 2 fragments out of 2 possible: sequentiality = 0.0%

Sparsely allocated files
A file is a sequence of indexed blocks of arbitrary size. The indexing is
accomplished through the use of direct mapping or indirect index blocks from the
file inode as shown in Example 26-5 on page 487. Each index within a file’s
address range is not required to map to an actual data block.

A file that has one or more inode data block indexes that are not mapped to an
actual data block is considered sparsely allocated or called a sparse file. A
sparse file will have a size associated with it (in the inode), but it will not have all
of the data blocks allocated that match this size.

A sparse file is created when an application extends a file by seeking a location
outside the currently allocated indexes, but the data that is written does not
occupy all of the newly assigned indexes. The new file size reflects the farthest
write into the file.

A read to a section of a file that has unallocated data blocks results in a default
value of null (0x00) bytes being returned. A write to a section of a file that has
unallocated data blocks causes the necessary data blocks to be allocated and
the data written, but there may not be enough free blocks in the file system any
more. The result is that the write will fail. Database systems in particular maintain
data in sparse files.

The problem with sparse files occurs first when unallocated space is needed for
data being added to the file. Problems caused by sparse files can be avoided if
the file system is large enough to accommodate all of the file’s defined sizes, and
of course to not have any sparse files in the file system.

It is possible to check for the existence of sparse files within a file system by
using the fileplace command. Example 26-14 on page 493 shows how to use
the ls, du, and fileplace commands to identify that a file is not sparse.

492 AIX 5L Performance Tools Handbook

Example 26-14 Checking a file that is not sparse

ls -l happy.file
-rw-r--r-- 1 root sys 37 May 30 11:51 happy.file

du -k happy.file
4 happy.file

fileplace happy.file

File: happy.file Size: 37 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 0050663 1 frags 4096 Bytes, 100.0%

The example output above shows that the size of the file happy.file is 37 bytes,
but because the file system block (fragment) size is 4096 bytes and the smallest
allocation size in a file system is one (1) block, du and fileplace show that the
file actually uses 4 KB of disk space. Example 26-15 shows how the same type
of report could look if the file was sparse.

Example 26-15 Checking a sparse file

ls -l unhappy.file
-rw-r--r-- 1 root sys 512037 May 30 11:55 unhappy.file

du -k unhappy.file
4 unhappy.file

fileplace unhappy.file

File: unhappy.file Size: 512037 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 unallocated 125 frags 512000 Bytes, 0.0%
 0050665 1 frags 4096 Bytes, 100.0%

In the example output , the ls -l command shows the size information stored
about the unhappy.file file in the file’s inode record, which is the size in bytes
(512037). The du -k command shows the number of allocated blocks for the file
(in this case only one 4 KB block). The fileplace command shows how the
blocks (Logical Fragments) are allocated. In the fileplace output above there
are 125 unallocated blocks and one allocated at logical address 50665, so the
unhappy.file file is sparse.

 Chapter 26. The fileplace command 493

Creating a sparse file
To create a sparse file you can use the dd command with the seek option. In the
following examples we show how to check the file system utilization during the
process of creating a sparse file.

First we check the file system for our current directory with the df command to
see how much apparent space is available. Note the number of inodes that are
currently used (1659) to compare with the df output in Example 26-16.

Example 26-16 Using df

df $PWD
Filesystem 512-blocks Free %Used Iused %Iused Mounted on
/dev/datalv 655360 393552 40% 1659 3% /data

Then we use the dd command to seek within one byte (-1 in the calculation in the
Example 26-17) of the maximum allowed file size for our user. ulimit -f shows
the current setting, in this case the default of 2097151 bytes or 1 GB). The input
was just a new line character (\n) from the echo command. Now we have created
a sparse file.

Example 26-17 Creating a sparse file

echo|dd of=ugly.file seek=$(($(ulimit -f)-1))
0+1 records in.
0+1 records out.

Example 26-18 shows the examination of the file’s space utilization with the ls,
fileplace, and df commands. The first example below shows the output of the
ls command that displays the file’s inode byte counter. Note that the -s flag will
report the actual number of KB blocks allocated, as does the du command.

Example 26-18 Using ls on the sparse file

ls -sl ugly.file
4 -rw-r--r-- 1 root sys 1073740801 May 31 17:13 /test2/ugly.file

According to the ls output in the previous example, the file size is 1073740801
bytes but only 4 (1 KB) blocks. Now we know that this is a sparse file. In
Example 26-19 we use the fileplace -l command to look at the allocation in
detail, first from a logical view.

Example 26-19 Using fileplace -l on the sparse file

fileplace -l ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

494 AIX 5L Performance Tools Handbook

 Logical Fragment

 unallocated 262143 frags 1073737728 Bytes, 0.0%
 0000014 1 frags 4096 Bytes, 100.0%

The logical report above shows that logical block 14 is allocated for the file
occupying 4 KB, and the rest is unallocated. Example 26-20 shows the physical
view of the file using the fileplace -p command.

Example 26-20 Using fileplace -p on the sparse file

fileplace -p ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 262143 frags 1073737728 Bytes, 0.0% unallocated
 0631342 hdisk1 1 frags 4096 Bytes, 100.0% 0000014

The physical report shows that physical block 631342 is allocated for the logical
block 14 and it resides on hdisk1. Example 26-21 shows the volume report
(logical view) for the file using the fileplace -v command.

Example 26-21 Using fileplace -lv on the sparse file

fileplace -lv ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no
Inode: 18 Mode: -rw-r--r-- Owner: root Group: sys

 Logical Fragment

 unallocated 262143 frags 1073737728 Bytes, 0.0%
 0000014 1 frags 4096 Bytes, 100.0%

 1 frags over space of 1 frags: space efficiency = 100.0%
 1 fragment out of 1 possible: sequentiality = 100.0%

The volume report, for the logical view, shows that the file has 100 percent space
efficiency and sequentiality. The next and final fileplace command report on
this file (in Example 26-22 on page 496) shows the volume report for the physical
view of the file.

 Chapter 26. The fileplace command 495

Example 26-22 Using fileplace -pv on the sparse file

fileplace -pv ugly.file

File: ugly.file Size: 1073740801 bytes Vol: /dev/lv09
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no
Inode: 18 Mode: -rw-r--r-- Owner: root Group: sys

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 unallocated 262143 frags 1073737728 Bytes, 0.0% unallocated
 0631342 hdisk1 1 frags 4096 Bytes, 100.0% 0000014

 1 frags over space of 1 frags: space efficiency = 100.0%
 1 fragment out of 1 possible: sequentiality = 100.0%

The volume report above, for the physical view, also shows that the file has 100
percent space efficiency and sequentiality.

Sparse files in large file enabled file systems
File data in a large file enabled file system (after the file size has increased over 4
MBs) will use 32 contiguous 4 KB blocks (so-called large disk blocks) as opposed
to one 4 KB block for a normal JFS file system. To illustrate the point, we will
show a series of examples using the fileplace command to examine the
allocation of a file. First we verify that the file system is a large file system with
the lsfs command, then we create a file without data, and finally we examine the
inode information with the ls command and then the block allocation with the
fileplace command as shown in Example 26-23.

Example 26-23 Creating a file in a large file-enabled file system

lsfs -cq $PWD|tail -1
 (lv size 655360:fs size 655360:frag size 4096:nbpi 4096:compress no:bf true:ag 64)
>ugly.file
ls -sl ugly.file
 0 -rw-r--r-- 1 root sys 0 May 31 17:59 ugly.file
fileplace ugly.file

File: ugly.file Size: 0 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 0 Compress: no

 Logical Fragment

In the example above we see that it is indeed a large file enabled file system
because bf is true, the ls command shows zero blocks allocated, and the Size is
zero bytes as well. The fileplace command shows that the size is zero and that

496 AIX 5L Performance Tools Handbook

there are no blocks allocated. Now we seek 4 MB (4194304 bytes) to the new end
of the file and examine it again with the ls and fileplace commands as shown in
Example 26-24.

Example 26-24 Seeking 4 MB to the end of file

dd if=/dev/null of=ugly.file bs=1 seek=4194304
0+0 records in.
0+0 records out.
ls -sl ugly.file
 4 -rw-r--r-- 1 root sys 4194304 May 31 18:14 ugly.file
fileplace ugly.file

File: ugly.file Size: 4194304 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 1 Compress: no

 Logical Fragment

 unallocated 1023 frags 4190208 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 100.0%

In the output above the ls command shows four blocks allocated, and that the
size is 4 MB. The fileplace command shows that the size is 4 MB and that four
blocks (1 KB per block)is allocated. Now we add one byte to the file and examine
it again, as shown in Example 26-25.

Example 26-25 File size after adding one byte

echo >>ugly.file

ls -sl ugly.file
 132 -rw-r--r-- 1 root sys 4194305 May 31 18:19 ugly.file

fileplace ugly.file

File: ugly.file Size: 4194305 bytes Vol: /dev/datalv
Blk Size: 4096 Frag Size: 4096 Nfrags: 33 Compress: no

 Logical Fragment

 unallocated 1023 frags 4190208 Bytes, 0.0%
 0001205 1 frags 4096 Bytes, 3.0%
 0001218 32 frags 131072 Bytes, 97.0%

In the output above the ls command shows 132 blocks (1 KB per block) allocated,
and that the size is 4 MB and one byte. The fileplace command shows that the
size is 4 MB and one byte, and that there are 33 blocks (4 KB per block)
allocated. The byte we added to the file has caused 32 blocks (4 KB per block) to
be added because it is a large file system.

 Chapter 26. The fileplace command 497

Searching for sparse files
To find sparse files in file systems we can use the find command with the -ls flag.
Example 26-26 shows how this can be done.

Example 26-26 Using find to find sparse files

root@wlmhost:/data: find /test0 -type f -xdev -ls
 17 4 -rw-r--r-- 1 root sys 1 May 31 12:23 /test0/file
 18 4 -rw-r--r-- 1 root sys 1073740801 May 31 17:13 /test0/ugly.file

The second column is the allocated block size, the seventh column is the byte
size and the 11th column is the file name. In the output above it is obvious that
this will be time consuming if done manually because the find command lists all
files by using the -type f flag. Because we cannot limit the output further by only
using the find command, we do it with a script.

The script in Example 26-27 takes as an optional parameter the file system to
scan. If no parameter is given, it will list all file systems in the system with the
lsfs command (except /proc) and stores this in the fs variable. The find
command, on the last line in the script, searches all file systems specified in the
fs variable for files (-type f), does not traverse over file system boundaries
(-xdev), and lists inode information about the file (-ls). The output from the find
command is then examined by awk in the pipe. The awk command compares the
sizes of a normalized block and byte value and, if they do not match, awk will print
the filename, block, and byte sizes.

Example 26-27 Shell script to search for sparse files

:
fs=${1:-"$(lsfs -c|awk -F: 'NR>2&&!/\/proc/{print $1}')"}
find $fs -xdev -type f -ls 2>/dev/null|awk '{if (int($2*1024)<int($7/1024)) print $11,$2,$7}'

The awk built in int() function is used because awk returns floating point values
as the result of calculations, and the comparison should be done with integers.
Example 26-28 is sample output from running the script above.

Example 26-28 Sample output from sparse file search script

/home/mysp1 4 512000001
/tmp/mysp 4 512000001
...(lines omitted)...
/tmp/ugly.file 4 1073740801
/data/mysp3 128 1073740801
/test0/ugly.file 4 1073740801

498 AIX 5L Performance Tools Handbook

To find out how many sparse files the script found, just pipe the output to the wc
command with -l flag, or change the script to perform this calculation as well (it
was not included above for readability), as Example 26-29 shows.

Example 26-29 Enhanced shell script to search for sparse files

:
fs=${1:-"$(lsfs -c|awk -F: 'NR>2&&!/\/proc/{print $1}')"}
find $fs -xdev -type f -ls 2>/dev/null|
awk 'BEGIN{n=0}
 {if (int($2*1024)<int($7/1024)) {print $11,$2,$7;n++}}
 END{print "\nTotal no of sparse files",n}'

The variable n is incremented each time a file matching the calculation is found.
The sample output in Example 26-30 shows on the last line how many sparse
files the script found (110).

Example 26-30 Sample output from the enhanced sparse file search script

...(lines omitted)...
/test0/ugly.file 4 1073740801

Total no of sparse files 110

Displaying logical to physical map for a logical volume
Example 26-31 shows the use of -m flag to display logical to physical map of a
logical volume.

Example 26-31 Using -m flag

fileplace -m /dev/hd2
Device: /dev/hd2 Partition Size: 32 MB Block Size = 4096
Number of Partitions: 149 Number of Copies: 1

 Physical Addresses (mirror copy 1) Logical Fragment
 ---------------------------------- ----------------
 1794592-1810975 hdisk0 16384 blocks 67108864 Bytes, 1.3% 0000000-0016383
 1843744-2286111 hdisk0 442368 blocks 1811939328 Bytes, 36.2% 0016384-0458751
 2384416-2638367 hdisk0 253952 blocks 1040187392 Bytes, 20.8% 0458752-0712703
 1286688-1655327 hdisk0 368640 blocks 1509949440 Bytes, 30.2% 0712704-1081343
 2662944-2802207 hdisk0 139264 blocks 570425344 Bytes, 11.4% 1081344-1220607

 Chapter 26. The fileplace command 499

500 AIX 5L Performance Tools Handbook

Chapter 27. The lslv, lspv, and lsvg
commands

Many times it is useful to determine the layout of logical volumes on disks and
volume groups to identify whether rearranging or changing logical volume
definitions might be appropriate. Some of the commands that can be used are
lslv, lspv, and lsvg:

� The lslv command displays the characteristics and status of the logical
volume.

� The lspv command is useful for displaying information about the physical
volume, its logical volume content, and the logical volume allocation layout.

� The lsvg command displays information about volume groups.

The lslv, lsvg, and lspv commands read different Logical Volume Manager
(LVM) volume groups and logical volume descriptor areas from physical volumes.

When information from the Object Data Manager (ODM) Device Configuration
database is unavailable, some of the fields will contain a question mark (?) in
place of the missing data.

These commands resides in /usr/sbin and are part of the bos.rte.lvm fileset,
which is installed by default from the AIX base installation media.

27

© Copyright IBM Corp. 2001, 2003 501

27.1 lslv
The syntax of the lslv command is:

lslv [-L] [-l| -m] [-n DescriptorPV] LVname
lslv [-L] [-n DescriptorPV] -p PVname [LVname]

Flags
-L Specifies no waiting to obtain a lock on the volume

group. If the volume group is being changed, using the -L
flag gives unreliable data.

-l Lists the following fields for each physical volume in the
logical volume: PV, Copies, In band, Distribution

-m Lists the following fields for each logical partition: LPs,
PV1, PP1, PV2, PP2, PV3, PP3

-n PhysicalVolume Accesses information from the specific descriptor area of
the PhysicalVolume variable. The information may not be
current because the information accessed with the -n
flag has not been validated for the logical volumes. If you
do not use the -n flag, the descriptor area from the
physical volume that holds the validated information is
accessed and therefore the information that is displayed
is current. The volume group need not be active when
you use this flag.

-p PhysicalVolume Displays the logical volume allocation map for the
PhysicalVolume variable. If you use the LogicalVolume
parameter, any partition allocated to that logical volume
is listed by logical partition number.

Parameters
LogicalVolume The logical volume to examine.

27.2 lspv
The syntax of the lspv command is:

lspv [-L] [-M | -l | -p] [-n DescriptorPV] [-v VGid] PVname

Flags
-L Specifies no waiting to obtain a lock on the

volume group. Note that if the volume group is

502 AIX 5L Performance Tools Handbook

being changed, using the -L flag gives unreliable
data.

-l Lists the following fields for each logical volume
on the physical volume: LVname, LPs, PPs,
Distribution, Mount Point

-M Lists the following fields for each logical volume
on the physical volume: PVname, PPnum, LVname,
LPnum, Copynum, PPstate

-n DescriptorPhysicalVolume Accesses information from the variable
descriptor area specified by the
DescriptorPhysicalVolume variable. The
information may not be current because the
information accessed with the -n flag has not
been validated for the logical volumes. If you do
not use the -n flag, the descriptor area from the
physical volume that holds the validated
information is accessed, and therefore the
information displayed is current. The volume
group does not have to be active when you use
this flag.

-p Lists the following fields for each physical
partition on the physical volume: Range, State,
Region, LVname, Type, Mount point

-v VolumeGroupID Accesses information based on the volume
groupID variable. This flag is needed only when
the lspv command does not function due to
incorrect information in the Device Configuration
Database. The volume groupID variable is the
hexadecimal representation of the volume group
identifier, which is generated by the mkvg
command.

Parameters
PhysicalVolume The physical volume to examine.

27.3 lsvg
The syntax of the lsvg command is:

lsvg [-o] [[-L] -n PVname] | -p] volume group ...
lsvg [-L] [-i] [-M | -l | -p] VGname...

 Chapter 27. The lslv, lspv, and lsvg commands 503

Flags
-L Specifies no waiting to obtain a lock on the

volume group. If the volume group is being
changed, using the -L flag gives unreliable data.

-p Lists the following information for each physical
volume within the group specified by the volume
group parameter: Physical volume, PVstate,
Total PPs, Free PPs, Distribution

-l Lists the following information for each logical
volume within the group specified by the volume
group parameter: LV, Type, LPs, PPs, PVs, Logical
volume state, Mount point

-i Reads volume group names from standard
input.

-M Lists the following fields for each logical volume
on the physical volume: PVname, PPnum, LVname,
LPnum, Copynum, PPstate

-n DescriptorPhysicalVolume Accesses information from the descriptor area
specified by the DescriptorPhysicalVolume
variable. The information may not be current
because the information accessed with the -n
flag has not been validated for the logical
volumes. If you do not use the -n flag, the
descriptor area from the physical volume that
holds the most validated information is
accessed, and therefore the information
displayed is current. The volume group need not
be active when you use this flag.

-o Lists only the active volume groups (those that
are varied on). An active volume group is one
that is available for use.

Parameters
volume group The name of the volume group to examine.

504 AIX 5L Performance Tools Handbook

27.4 Examples for lslv, lspv, and lsvg
When starting to look for a potential I/O-related performance bottleneck, we often
need to find out more about the disks in use, such as their content and purpose.
Here are a few of the actions we need to perform:

� Determine the volume group the disks in question belong to.

� Determine the logical volume layout on the disks in question.

� Determine the logical volume layout of all of the disks in question on the
volume group.

To accomplish this we use mainly the lsvg, lspv, and lslv commands.

To monitor disk I/O we usually start with the iostat command (see Chapter 4,
“The iostat command” on page 81), which shows the load on different disks in
great detail. The output in Example 27-1 is the summary since boot time (if the
iostat attribute has been enabled for the sys0 logical device driver).

Example 27-1 Starting point with iostat

iostat -ad

Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 21.1 3.6 6018378 4343544

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1_Path0 0.0 0.2 0.0 103951 2004
hdisk0_Path0 1.0 20.1 3.4 5534703 4341540
cd0 0.0 0.8 0.2 379724 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi1 71.3 7.6 21588850 13463040

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2_Path0 2.1 38.5 3.4 12226787 6695708
hdisk3_Path0 3.1 32.8 4.2 9362063 6767332

This system has two SCSI adapters and two disks on each adapter. Since IPL
the disks have not been very active. To find out how long the statistics have been
gathering, use the uptime command as shown in Example 27-2.

Example 27-2 Using uptime

uptime
 11:57AM up 5 days, 1:13, 11 users, load average: 0.00, 0.00, 0.00

 Chapter 27. The lslv, lspv, and lsvg commands 505

The example tells us that the statistics have been collected over five days. Also
note that the output of iostat will show an average over 24 hours during that
time. We know that our system is only used during normal working hours so we
could check the current running statistics as in Example 27-3.

Example 27-3 Using iostat

iostat -ad 1 2
...(lines omitted)...
Adapter: Kbps tps Kb_read Kb_wrtn
scsi0 0.0 0.0 0 0

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk1_Path0 0.0 0.0 0.0 0 0
hdisk0_Path0 0.0 0.0 0.0 0 0
cd0 0.0 0.0 0.0 0 0

Adapter: Kbps tps Kb_read Kb_wrtn
scsi1 1834.2 192.8 1720 316

Paths/Disks: % tm_act Kbps tps Kb_read Kb_wrtn
hdisk2_Path0 47.7 1228.8 97.3 1260 104
hdisk3_Path0 61.3 605.4 95.5 460 212

And now we see that the system performs quite a bit of I/O on hdisk1, so we
should check how the layout is for these disks. First let’s find out what volume
groups the disks belong to in Example 27-4.

Example 27-4 Using lspv to examine the disk versus volume group mapping

lspv
hdisk0 000bc6adc9ee6b3a rootvg active
hdisk1 000bc6ade881de45 vg0 active
hdisk2 000bc6adc472a478 vg0 active
hdisk3 000bc6adc9ec9be3 vg0 active

The disks we are examining (hdisk2 and hdisk3) belong to the vg0 volume group.
Because the two disks belongs to the same volume group, we can go ahead and
list some information about the disks from the volume group perspective using
lsvg as shown in Example 27-5.

Example 27-5 Using lsvg to check the distribution

lsvg -p vg0
vg0:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 542 509 109..75..108..108..109
hdisk2 active 542 397 47..25..108..108..109
hdisk3 active 542 397 47..25..108..108..109

506 AIX 5L Performance Tools Handbook

Now we see that the disks have the same number of physical partitions, and
because volume groups have one physical partition size, they must be of the
same size.

The lsvg -p fields are interpreted as follows:

PV_NAME A physical volume within the group.

PV STATE State of the physical volume.

TOTAL PPs Total number of physical partitions on the physical
volume.

FREE PPs Number of free physical partitions on the physical volume.

FREE Distribution The number of physical partitions allocated within each
section of the physical volume: outer edge, outer middle,
center, inner middle, and inner edge of the physical
volume.

Now we can find out which logical volumes occupy the vg0 volume group, as
shown in Example 27-6.

Example 27-6 Using lsvg to get all logical volumes within the volume group

lsvg -l vg0
vg0:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
lv03 jfs2log 1 1 1 open/syncd N/A
lv04 jfs2 62 62 1 open/syncd /work/fs1
lv05 jfs2 62 62 1 open/syncd /work/fs2
lv06 jfs 62 124 2 closed/syncd N/A
lv07 jfs 63 63 3 closed/syncd N/A
datalv jfs 10 10 1 open/syncd /data
loglv00 jfslog 1 1 1 open/syncd N/A

This tells us that there are both JFS and JFS2 filesystems, a couple of logical
volumes without entries in /etc/filesystems (the mount point show up as N/A), and
that one logical volume is mirrored (lv06) and one logical volume is spread over
three disks (lv07). The output above also shows that we have two external log
logical volumes; lv03 that is used by JFS2 file systems and loglv00 that is used
by JFS file systems. The report does not tell us which of the file systems uses
which log logical volume, nor if any of them uses inline logs either.

The lsvg -l report has the following format:

LV NAME A logical volume within the volume group.

TYPE Logical volume type.

LPs Number of logical partitions in the logical volume.

 Chapter 27. The lslv, lspv, and lsvg commands 507

PPs Number of physical partitions used by the logical
volume.

PVs Number of physical volumes used by the logical
volume.

LV STATE State of the logical volume. Opened/stale indicates
that the logical volume is open but contains partitions
that are not current. Opened/syncd indicates that the
logical volume is open and synchronized. Closed
indicates that the logical volume has not been opened.

MOUNT POINT File system mount point for the logical volume, if
applicable.

At this point it would be a good idea to check which of the file systems are the
most used with the filemon (Chapter 25, “The filemon command” on page 457)
or lvmstat (Chapter 28, “The lvmstat command” on page 519) commands. For
instance, Example 27-7 with lvmstat shows the five busiest logical volumes.

Example 27-7 Checking busy logical volumes with lvmstat

lvmstat -v vg0 -c 5

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 2073116 7886628 5052576 25.91
 lv04 1592894 9036912 4985908 28.08
 lv03 2 0 8 0.00
 loglv00 0 0 0 0.00
 datalv 0 0 0 0.00

We can clearly see that both lv04 and lv05 are the most utilized logical volumes.
Now we need to get more information about the layout on the disks. If the
workload shows a significant degree of I/O dependency (although it has a lot of
I/O we cannot conclude the complete workload from the iostat or lvmstat
output only), we can investigate the physical placement of the files on the disk to
determine whether reorganization at some level would yield an improvement. To
view the placement of the partitions of logical volume lv04 within physical volume
hdisk2, the lslv command could be used as shown in Example 27-8.

Example 27-8 Using lslv -p

lslv -p hdisk2 lv04
hdisk2:lv04:/work/fs1
USED USED USED USED USED USED USED USED USED USED 1-10
USED USED USED USED USED USED USED USED USED USED 11-20
USED USED USED USED USED USED USED USED USED USED 21-30
USED USED USED USED USED USED USED USED USED USED 31-40
USED USED USED USED USED USED USED USED USED USED 41-50
USED USED USED USED USED USED USED USED USED USED 51-60

508 AIX 5L Performance Tools Handbook

USED USED FREE FREE FREE FREE FREE FREE FREE FREE 61-70
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 71-80
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 81-90
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 91-100
FREE FREE FREE FREE FREE FREE FREE FREE FREE 101-109

0001 0002 0003 0004 0005 0006 0007 0008 0009 0010 110-119
0011 0012 0013 0014 0015 0016 0017 0018 0019 0020 120-129
0021 0022 0023 0024 0025 0026 0027 0028 0029 0030 130-139
0031 0032 0033 0034 0035 0036 0037 0038 0039 0040 140-149
0041 0042 0043 0044 0045 0046 0047 0048 0049 0050 150-159
0051 0052 0053 0054 0055 0056 0057 0058 0059 0060 160-169
0061 0062 USED USED USED USED USED USED USED USED 170-179
USED USED USED USED USED USED USED USED USED USED 180-189
USED USED USED FREE FREE FREE FREE FREE FREE FREE 190-199
FREE FREE FREE FREE FREE FREE FREE FREE FREE FREE 200-209
FREE FREE FREE FREE FREE FREE FREE FREE 210-217
...(lines omitted)...

The USED label tells us that this partition is allocated by another logical volume,
the FREE label tells us that it is not allocated, and the numbers 0001-0062 indicate
that this belongs to the logical volume we wanted to check, in our case lv04. A
STALE partition (not shown in the example above) is a physical partition that
contains data you cannot use.

Example 27-9 shows a similar output from lspv to find out the intra disk layout of
logical volumes on hdisk2 and hdisk3.

Example 27-9 Using lspv to check the intra disk policy

lspv -l hdisk2;lspv -l hdisk3
hdisk2:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv06 62 62 62..00..00..00..00 N/A
lv04 62 62 00..62..00..00..00 /work/fs1
lv07 21 21 00..21..00..00..00 N/A
hdisk3:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
lv06 62 62 62..00..00..00..00 N/A
lv05 62 62 00..62..00..00..00 /work/fs2
lv07 21 21 00..21..00..00..00 N/A

Each of our hot file systems is allocated on a separate disk and on the same part
of the disks, and is contiguously allocated there. Example 27-10 on page 510
shows the intra disk layout in another, more readable, way with the lspv
command.

 Chapter 27. The lslv, lspv, and lsvg commands 509

Example 27-10 Using lspv to check the intra disk layout

lspv -p hdisk2;lspv -p hdisk3
hdisk2:
PP RANGE STATE REGION LV ID TYPE MOUNT POINT
 1-62 used outer edge lv06 jfs N/A
 63-109 free outer edge
110-171 used outer middle lv04 jfs2 /work/fs1
172-192 used outer middle lv07 jfs N/A
193-217 free outer middle
218-325 free center
326-433 free inner middle
434-542 free inner edge
hdisk3:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-62 used outer edge lv06 jfs N/A
 63-109 free outer edge
110-171 used outer middle lv05 jfs2 /work/fs2
172-192 used outer middle lv07 jfs N/A
193-217 free outer middle
218-325 free center
326-433 free inner middle
434-542 free inner edge

The output above shows us the same information. If we had a fragmented layout
for our logical volumes this would have meant that the disk arms would have to
move across the disk platter whenever the end of the first part of the logical
volume was reached. This is usually the case when file systems are expanded
during production and this is an excellent feature of Logical Volume Manager
Device Driver (LVMDD). After some time in production, the logical volumes must
be reorganized so that they occupy contiguous physical partitions. We can also
examine how the logical volume partitions are organized with the lslv command.
Example 27-11 shows a quick look at the two log logical volumes.

Example 27-11 Using lslv to check the logical volume disk layout

lslv -m lv04;lslv -m lv05
lv04:/work/fs1
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk2
0002 0111 hdisk2
...(lines omitted)...
0061 0170 hdisk2
0062 0171 hdisk2
lv05:/work/fs2
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk3
0002 0111 hdisk3
...(lines omitted)...

510 AIX 5L Performance Tools Handbook

0061 0170 hdisk3
0062 0171 hdisk3

The output simply shows what physical partitions are allocated for each logical
partition. In a more complex allocation it can be most useful to check the
locations used for different very active logical volumes, compare where they are
allocated on the disk, and, if possible, move the hot spots closer together.
Example 27-12 shows how the logical partitions are mapped against the physical
partitions on the disks for the two logical volumes (lv04 and lv05).

Example 27-12 Using lslv to check the logical volume partition allocation

lslv -m lv04;lslv -m lv05
lv04:/work/fs1
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk2
0002 0111 hdisk2
...(lines omitted)...
0072 0202 hdisk2
0073 0203 hdisk2
lv05:/work/fs2
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0110 hdisk3
0002 0111 hdisk3
...(lines omitted)...
0071 0201 hdisk3
0072 0202 hdisk3

The output tells us that the physical partitions are contiguous, there is only one
physical partition (PV1) for each logical partition (LP), and each logical volume has
all of its physical partitions on a single disk each (PV1).

The lslv -m report has the following format:

LPs Logical partition number.

PV1 Physical volume name where the logical partition's first
physical partition is located.

PP1 First physical partition number allocated to the logical
partition.

PV2 Physical volume name where the logical partition's
second physical partition (first copy) is located.

PP2 Second physical partition number allocated to the logical
partition.

PV3 Physical volume name where the logical partition’s third
physical partition (second copy) is located.

 Chapter 27. The lslv, lspv, and lsvg commands 511

PP3 Third physical partition number allocated to the logical
partition.

When looking at the two log volumes, lv03 and loglv00 in Example 27-13, we
know that they both use only one physical partition. This could be a good
allocation for each log logical volume, but it depends on where they are allocated.

Example 27-13 Using lslv to check the logical volumes partition distribution

lslv -l lv03;lslv -l loglv00
lv03:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 001:000:000 100% 000:001:000:000:000
loglv00:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk1 001:000:000 100% 000:001:000:000:000

Each log volume is properly allocated (100% IN BAND). This is simple because
each log logical volume only consists of one physical and logical partition in this
example. However, if this value is less than 100 percent, reorganization should
be in order. But they are a bit apart (physical partition 110 and 142) and each
time a JFS and J2 file system changes meta data, each log logical volume will
have to be updated, causing the disk arm to move from the log logical volume to
the file system and back to the log logical volume.

To continue examining the layout for our hot logical volumes lv04 and lv05, now
would be a good time to check what is going on in the file system. For this we
need to use filemon (Chapter 25, “The filemon command” on page 457) and
perhaps fileplace (Chapter 26, “The fileplace command” on page 479).

27.4.1 Using lslv
The lslv command displays the characteristics and status of the logical volume,
as Example 27-14 shows.

Example 27-14 Logical volume fragmentation with lslv

lslv -l hd6
hd6:N/A
PV COPIES IN BAND DISTRIBUTION
hdisk0 288:000:000 37% 000:108:108:072:000

As can be seen above, the lspv and lslv show the same distribution for the
logical volume hd6. The lslv command also shows that it has 288 LPs but no
additional copies. It also says that the intra-policy of center is only 37 % in band,
which means that 63 % is out of band (that is, not in the center).

512 AIX 5L Performance Tools Handbook

The lslv -l report has the following format:

PV Physical volume name.

COPIES These three fields are displayed:

– The number of logical partitions containing at least one
physical partition (no copies) on the physical volume

– The number of logical partitions containing at least two
physical partitions (one copy) on the physical volume

– The number of logical partitions containing three physical
partitions (two copies) on the physical volume

IN BAND The percentage of physical partitions on the physical volume
that belong to the logical volume and were allocated within the
physical volume region specified by intra-physical allocation
policy.

DISTRIBUTION The number of physical partitions allocated within each section
of the physical volume. The DISTRIBUTION shows how the
physical partitions are placed in each part of the intrapolicy; that
is: edge : middle : center : inner-middle : inner-edge

The higher the IN BAND percentage, the better the allocation efficiency. Each
logical volume has its own intra policy. If the operating system cannot meet this
requirement, it chooses the best way to meet the requirements.

27.4.2 Using lspv
The lspv command is useful for displaying information about the physical
volume, its logical volume content, and logical volume allocation layout, as
Example 27-15 shows.

Example 27-15 Logical volume fragmentation with lspv -l

lspv -l hdisk0
hdisk0:
LV NAME LPs PPs DISTRIBUTION MOUNT POINT
hd5 1 1 01..00..00..00..00 N/A
hd6 288 288 00..108..108..72..00 N/A

This example shows that the hd6 logical volume is nicely placed in the center
area of the disk, the distribution being 108 logical partitions in the center, 108
logical partitions in the outer middle, and 72 logical partitions in the inner middle
part of the disk.

 Chapter 27. The lslv, lspv, and lsvg commands 513

The lspv -l report has the following format:

LV NAME Name of the logical volume to which the physical partitions are
allocated.

LPs The number of logical partitions within the logical volume that
are contained on this physical volume.

PPs The number of physical partitions within the logical volume that
are contained on this physical volume.

DISTRIBUTION The number of physical partitions belonging to the logical
volume that are allocated within each of the following sections of
the physical volume: outer edge, outer middle, center, inner
middle, and inner edge of the physical volume.

MOUNT POINT File system mount point for the logical volume, if applicable.

Another way to use lspv is with the -p parameter as in Example 27-16.

Example 27-16 Logical volume fragmentation with lspv -p

lspv -p hdisk0
hdisk0:
PP RANGE STATE REGION LV NAME TYPE MOUNT POINT
 1-1 used outer edge hd5 boot N/A
 2-109 free outer edge
110-217 used outer middle hd6 paging N/A
218-325 used center hd6 paging N/A
326-397 used inner middle hd6 paging N/A
398-433 free inner middle
434-542 free inner edge

As shown in the output above, this output is easier to read.

The lspv -p report has the following format:

PP RANGE A range of consecutive physical partitions contained on a single
region of the physical volume.

STATE The current state of the physical partitions; free, used, stale, or
vgda.

REGION The intra-physical volume region in which the partitions are
located.

LV ID The name of the logical volume to which the physical partitions
are allocated.

TYPE The type of the logical volume to which the partitions are
allocated.

MOUNT POINT File system mount point for the logical volume, if applicable.

514 AIX 5L Performance Tools Handbook

27.4.3 Using lsvg
The lsvg command is useful for displaying information about the volume group
and its logical and physical volumes.

First we need to understand the basic properties of the volume group, such as:

� Its general characteristics
� Its currently allocated size
� Its physical partition size
� Whether there are any STALE partitions
� How much space is already allocated
� How much is not allocated

Example 27-17 shows how to obtain this basic information about a volume group.

Example 27-17 Using lsvg to obtain volume group basics

lsvg -L datavg
VOLUME GROUP: datavg VG IDENTIFIER:
0021768a00004c00000000f
44fe55821
VG STATE: active PP SIZE: 32 megabyte(s)
VG PERMISSION: read/write TOTAL PPs: 542 (17344 megabytes)
MAX LVs: 256 FREE PPs: 312 (9984 megabytes)
LVs: 7 USED PPs: 230 (7360 megabytes)
OPEN LVs: 6 QUORUM: 2
TOTAL PVs: 1 VG DESCRIPTORS: 2
STALE PVs: 0 STALE PPs: 0
ACTIVE PVs: 1 AUTO ON: yes
MAX PPs per PV: 1016 MAX PVs: 32
LTG size: 128 kilobyte(s) AUTO SYNC: no
HOT SPARE: no BB POLICY: relocatable

The volume group shown in the example has six logical volumes and one disk
with a physical partition size of 32 MB.

We also need to find out which logical volumes are created on this volume group
and if they all are open and in use as shown in Example 27-18. If they are not
open and in use they might be old, corrupted and forgotten, or only used
occasionally, and if we were to need more space to reorganize the volume group
we might be able to free that space.

Example 27-18 Using lsvg to check the logical volume state

lsvg -l datavg
datavg:
LV NAME TYPE LPs PPs PVs LV STATE MOUNT POINT
loglv00 jfslog 1 1 1 open/syncd N/A
lv00 jfs 32 32 1 open/syncd /home/db2inst1

 Chapter 27. The lslv, lspv, and lsvg commands 515

lv01 jfs 63 63 1 open/syncd /install
lv02 jfs 4 4 1 open/syncd /home/db2as
lv03 jfs 1 1 1 open/syncd /home/db2fenc1
loglv01 jfs2log 1 1 1 open/syncd N/A
lv05 jfs 160 160 1 open/syncd /bigfs
fslv00 jfs2 19 19 1 open/syncd /jfs2

As the example above shows, there are six logical volumes with file systems and
two diff erent types of jfslog for each kind of jfs allocated in this volume group. We
can have two types of jfs: a journal file system or an Enhanced Journaled File
System (JFS2). For further information, refer to AIX 5L Version 5.2, System
Management Guide: Operating System and Devices.

Remember that the physical partition size was 32 MB, so even though the logs
logical volume only has one (1) logical partition it is a 32 MB partition.
Example 27-19 shows the disks that are allocated for this volume group.

Example 27-19 Using lsvg to determine disks allocated to the volume group

lsvg -p datavg
datavg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 542 261 90..00..00..62..109

So there is only one disk in this volume group and mirroring is not activated for
the logical volumes. When finding out information about volume groups it is often
necessary to know what kind of disks are being used to make up the volume
group. To examine disks we can use the lspv, lsdev, and lscfg commands.

27.4.4 Acquiring more disk information
Example 27-20 uses the lsdev command to obtain information about the types of
disks in the volume group .

Example 27-20 Using lsdev to examine a disk device

lsdev -Cl hdisk6
hdisk6 Available 10-70-L SSA Logical Disk Drive

The output tells us that it is an SSA logical disk. Example 27-21shows the
ssaxlate command to find out which physical disks belong to the logical disk.

Example 27-21 Using the ssaxlate command

ssaxlate -l hdisk6
pdisk0 pdisk2 pdisk1 pdisk3

516 AIX 5L Performance Tools Handbook

This shows that the logical disk hdisk6 is composed of four physical disks
(pdisk0-3) and could be some sort of SSA RAID configuration (the hdisks
consists of more than one pdisk). To find out, we used the ssaraid command as
in Example 27-22.

Example 27-22 Using ssaraid to check the logical disk

ssaraid -M|xargs -i ssaraid -l {} -Ihz -n hdisk6
#name id state size

hdisk6 156139E312C44CO good 36.4GB RAID-10 array

The output confirms that it is a RAID-defined disk. If it had not been, the output
would have looked similar to Example 27-23.

Example 27-23 Using ssaraid to check the logical disk

ssaraid -M|xargs -i ssaraid -l {} -Ihz -n hdisk6
#name id use member_stat size

pdisk5 000629D465DC00D system n/a 9.1GB Physical disk

To find all SSA-configured RAID disks controlled by SSA RAID managers in the
system, run the ssaraid command as shown in Example 27-24.

Example 27-24 More examples of the use of ssariad

ssaraid -M|xargs -i ssaraid -l {} -Ihz
#name id use member_stat size

pdisk0 000629D148ED00D member n/a 18.2GB Physical disk
pdisk1 000629D2781600D member n/a 18.2GB Physical disk
pdisk2 000629D278C500D member n/a 18.2GB Physical disk
pdisk3 000629D282C500D member n/a 18.2GB Physical disk
hdisk6 156139E312C44CO good 36.4GB RAID-10 array

In the example above only hdisk6 is a RAID-defined disk; the other pdisks are
only used as Just a Bunch Of Disks (JBODs).

 Chapter 27. The lslv, lspv, and lsvg commands 517

518 AIX 5L Performance Tools Handbook

Chapter 28. The lvmstat command

The lvmstat command reports input and output statistics for logical partitions,
logical volumes, and volume groups. lvmstat is useful in determining whether a
physical volume is becoming a hindrance to performance by identifying the
busiest physical partitions for a logical volume.

lvmstat can help identify particular logical volume partitions that are used more
than other partitions (hot spots or high-traffic partitions). If these partitions reside
on the same disk or are spread out over several disks, it may be necessary to
migrate them to new disks or, when the volume group only has one disk, put
them closer together on the same disk to reduce the performance penalty.

The lvmstat command resides in /usr/sbin and is part of the bos.rte.lvm fileset,
which is installed by default from the AIX base installation media.

28

© Copyright IBM Corp. 2001, 2003 519

28.1 lvmstat
The syntax of the lvmstat command is:

lvmstat {-l|-v} <name> [-e|-d] [-F] [-C] [-c count] [-s] [interval [iterations]]

Flags
-c Count Prints only the specified number of lines of statistics.

-C Causes the counters that keep track of the iocnt, Kb_read, and
Kb_wrtn to be cleared for the specified logical volume or volume
group.

-d Specifies that statistics collection should be disabled for the logical
volume or volume group specified.

-e Specifies that statistics collection should be enabled for the logical
volume or volume group specified.

-F Causes the statistics to be printed in colon-separated format.

-l Specifies the name of the stanza to list.

-s Suppresses the header from the subsequent reports when Interval is
used.

-v Specifies that the Name specified is the name of the volume group.

Parameters
Name Specifies the logical volume or volume group name to monitor.

Interval The Interval parameter specifies the amount of time, in seconds,
between each report. If Interval is used to run lvmstat more than
once, no reports are printed if the statistics did not change since the
last run. A single period (.) is printed instead.

Count If the Count parameter is specified, only the top Count lines of the
report are generated. If no Iterations parameter is specified,
lvmstat generates reports continuously.

28.1.1 Information about measurement and sampling
The lvmstat command generates reports that can be used to change logical
volume configuration to better balance the input and output load between
physical disks.

By default, the statistics collection is not enabled. Using the -e flag enables the
Logical Volume Device Driver (LVMDD) to collect the physical partition statistics
for each specified logical volume or the logical volumes in the specified volume

520 AIX 5L Performance Tools Handbook

group. Enabling the statistics collection for a volume group enables it for all
logical volumes in that volume group. On every I/O call done to the physical
partition that belongs to an enabled logical volume, the I/O count for that partition
is incremented by LVMDD. All data collection is done by the LVMDD, and the
lvmstat command reports on those statistics.

The first report section generated by lvmstat provides statistics concerning the
time since the statistical collection was enabled. Each subsequent report section
covers the time since the previous report. All statistics are reported each time
lvmstat runs. The report consists of a header row, followed by a line of statistics
for each logical partition or logical volume depending on the flags specified.

28.1.2 Examples for lvmstat
If the statistics collection has not been enabled for the volume group or logical
volume you wish to monitor, the output from lvmstat will look like Example 28-1.

Example 28-1 Using lvmstat without enabling statistics collection

lvmstat -v rootvg
0516-1309 lvmstat: Statistics collection is not enabled for this logical
device.
 Use -e option to enable.

To enable statistics collection for all logical volumes in a volume group (in this
case the rootvg volume group), use the -e option together with the -v <volume
group> flag as follows:

lvmstat -v rootvg -e

When you do not need to continue collecting statistics with lvmstat, it should be
disabled because it has an impact on system performance. To disable statistics
collection for all logical volumes in a volume group (in this case the rootvg volume
group), use the -d option together with the -v <volume group> flag as follows:

lvmstat -v rootvg -d

If there is no activity on the partitions of the monitored device, lvmstat will print a
period (.) for the time interval where no activity occurred. In Example 28-2 there
was no activity at all in the vg0 volume group:

Example 28-2 No activity

date;lvmstat -v vg0 1 10;print;date
Mon May 28 18:40:35 CDT 2001
..........
Mon May 28 18:40:45 CDT 2001

 Chapter 28. The lvmstat command 521

Monitoring logical volume utilization
Because the lvmstat command enables you to monitor the I/O on logical
partitions, it is a powerful tool to use when monitoring logical volume utilization.
In the following scenario we start by using lvmstat to list the volume group
statistics by using the -v <volume group> flag as is shown in Example 28-3.

Example 28-3 Using lvmstat with a volume group

lvmstat -v datavg

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 7449 4 118840 0.34
 fslv00 7366 16 626004 1.78
 datavg 31 24 100 0.00
 lv01 26 100 4 0.00
 lv02 11 28 16 0.00
 lv03 7 28 0 0.00
 lv00 7 28 0 0.00

This output shows that the most-utilized logical volumes since we turned on the
statistical collection are lv05 and fslv00. Example 28-4 shows the use of the -l
<logical volume> flag to look at the logical partition statistics for logical volume
lv05 and fslv00.

Example 28-4 Using lvmstat with a single logical volume

lvmstat -l lv05

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 2 1 2048 0 32768 0.09
 3 1 1920 0 30720 0.09
 1 1 1873 4 29624 0.08
 4 1 1608 0 25728 0.07
 5 1 0 0 0 0.00
 6 1 0 0 0 0.00
 7 1 0 0 0 0.00
 8 1 0 0 0 0.00
 9 1 0 0 0 0.00
 10 1 0 0 0 0.00
...(lines omitted)...
lvmstat -l fslv00

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 13 1 560 0 32768 0.09
 14 1 554 0 32768 0.09
 12 1 550 0 32768 0.09
 11 1 544 0 32768 0.09
 10 1 542 0 32640 0.09
 5 1 532 0 32768 0.09

522 AIX 5L Performance Tools Handbook

 4 1 443 0 32768 0.09
 2 1 442 0 32640 0.09
 1 1 422 16 36660 0.10
...(lines omitted)...

From the output we see that the most-utilized logical partition for the lv05 logical
volume is logical partition number 2, and logical partition number 13 for fslv00.

To continue our scenario, in Example 28-5 we use the migratelp command to
move the hot logical partitions of lv05 and fslv00 logical partition closer together
because the volume group only has one disk. (For more information about using
the migratelp command, refer to AIX 5L Version 5.2 Commands Reference.)

Example 28-5 Using lsvg to determine the number of disks in a volume group

lsvg -p datavg
datavg:
PV_NAME PV STATE TOTAL PPs FREE PPs FREE DISTRIBUTION
hdisk1 active 542 261 90..00..00..62..109

In Example 28-6 you can see the placement of the logical partitions for lv05 and
fslv00, which shows output from the lslv command.

Example 28-6 Using lslv to view the logical partition placement

lslv -m lv05
lv05:/bigfs
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0212 hdisk1
0002 0213 hdisk1
0003 0214 hdisk1
0004 0215 hdisk1
0005 0216 hdisk1
0006 0217 hdisk1
0007 0218 hdisk1
0008 0219 hdisk1
0009 0220 hdisk1
...(lines omitted)...

lslv -m fslv00
fslv00:/jfs2
LP PP1 PV1 PP2 PV2 PP3 PV3
0001 0091 hdisk1
0002 0092 hdisk1
0003 0093 hdisk1
0004 0094 hdisk1
0005 0095 hdisk1
0006 0096 hdisk1
0007 0097 hdisk1

 Chapter 28. The lvmstat command 523

0008 0098 hdisk1
0009 0099 hdisk1
0010 0100 hdisk1
0011 0101 hdisk1
0012 0102 hdisk1
0013 0103 hdisk1
0014 0104 hdisk1
...(lines omitted)...

This output also shows us which disk the partitions are allocated on. To illustrate
use of the migratelp command, we will move lv05 from physical partition 213 to
a free physical partition. First we must determine which partitions on the disk are
not in use. To do this we use the lspv command as in Example 28-7.

Example 28-7 Using lspv to determine whether a physical partition is free

lspv -M hdisk1| grep -
hdisk1:1-90
hdisk1:372-542

The output in this example shows us that physical partitions 1-90 and 372-542
are unused. So now we move lv05 logical partition 2 from physical partition 213
to physical partition 373, as shown in Example 28-8.

Example 28-8 Using migratelp

migratelp lv05/2 hdisk1/373
0516-1291 migratelp: Mirror copy 1 of logical partition 2 of logical volume
lv05 migrated to physical partition 373 of hdisk1.

First migratelp created a mirror copy of the logical partition, and then deleted the
original logical partition.

We can now easily verify that our logical partition has been moved to the desired
physical partitions, as shown in Example 28-9.

Example 28-9 Using lspv to verify physical/logical partition allocation

lspv -M hdisk1| grep 373
hdisk1:373 lv05:2

Monitoring all logical volumes in a volume group
To monitor all logical volumes in a volume group with lvmstat, use the -v
<volume group> flag as shown in Example 28-10 on page 525.

524 AIX 5L Performance Tools Handbook

Example 28-10 Using lvmstat on a volume group level

lvmstat -v rootvg

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 682478 16 8579672 16.08
 loglv00 0 0 0 0.00
 datalv 0 0 0 0.00
 lv07 0 0 0 0.00
 lv06 0 0 0 0.00
 lv04 0 0 0 0.00
 lv03 0 0 0 0.00

The lvmstat command report above is per logical volume statistics in the volume
group. The report has the following format:

Logical Volume The device name of the logical volume

iocnt Number of read and write requests

Kb_read The total number of kilobytes read

Kb_wrtn The total number of kilobytes written

Kbps The amount of data transferred in kilobytes per second

The output in Example 28-10 shows that lv05 is the most used of all of the logical
volumes in this volume group. To map the logical volume name to a file system (if
the logical volume has a stanza in /etc/filesystems), we use the lsfs command
as in Example 28-11.

Example 28-11 Using lsfs to determine file system name for a logical volume

lsfs -q /dev/lv05
Name Nodename Mount Pt VFS Size Options Auto Accounting
/dev/lv05 -- /work/fs2 jfs2 2359296 rw yes no
 (lv size: 2359296, fs size: 2359296, block size: 4096, sparse files: yes, inline log: yes, inline log size: 10240)

By using the -q flag with the lsfs command we get statistics that include the
logical volume information such as the file system name, logical volume name,
file system type, and fragmentation sizes. The file system for this logical volume
is /work/fs2, its size is 1.1 GB (2359296 / 2 / 1024 / 1024) with a 4 KB block size,
and it is a J2 file system with an inline log.

To monitor only the logical volumes in the volume group that has the highest
number of read and write requests (iocnt), use the -c # flag to the lvmstat
command, where # is the number of lines to display. In Example 28-12 on
page 526 we want to see the three highest-use logical volumes (lvmstat places
the logical volume with the highest iocnt at the top), and the number of
measurements will be five with a three-second interval (-sc 3 3 5).

 Chapter 28. The lvmstat command 525

Example 28-12 Using lvmstat on a volume group level with the highest iocnt

lvmstat -v vg0 -sc 3 3 5

Logical Volume iocnt Kb_read Kb_wrtn Kbps
 lv05 724778 32 9115128 17.06

 lv05 181 0 2012 631.71

 lv05 223 0 892 279.84

 lv05 379 0 1516 476.36

As can be seen in the output above, the first part is the summary for the volume
group because statistics collection was enabled. The following lines show the
logical volumes with the highest number of read and write requests (iocnt). We
can see that lv05 is the logical volume that has the most I/O during our
measurement.

Monitoring a single logical volume
To monitor a single logical volume with lvmstat you only need to use the -l
<logical volume> flag as in Example 28-13.

Example 28-13 Using lvmstat on a single logical volume

lvmstat -l lv05

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 37736 0 263036 0.50
 66 1 7960 0 199956 0.38
 71 1 7330 0 170024 0.32
 67 1 2835 0 64732 0.12
 65 1 1735 0 37704 0.07
 63 1 242 0 968 0.00
 64 1 179 0 716 0.00
 68 1 33 0 132 0.00
 62 1 27 0 108 0.00
 1 1 0 0 0 0.00
...(lines omitted)...
 70 1 0 0 0 0.00

lvmstat reports on each individual logical partition with a one-line output for each
as can be seen in the output above. The report has the following format:

Log_part Logical partition number
mirror# Mirror copy number of the logical partition
iocnt Number of read and write requests
Kb_read The total number of kilobytes read

526 AIX 5L Performance Tools Handbook

Kb_wrtn The total number of kilobytes written
Kbps The amount of data transferred in kilobytes per second

We now see that there is a group of partitions that are used the most, so we limit
our scope with the -c flag with the number of rows to show. lvmstat orders the list
top down based on the number of iocnt. In Example 28-14, which iterates once
every 60 seconds, we save the output in a file as well as display it onscreen with
the tee command.

Example 28-14 lvmstat run on a single logical volume with top 10 logical partitions

lvmstat -l lv05 -c 10 60|tee /tmp/lvmstat.out

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 67221 0 467148 0.89
 66 1 14066 0 353832 0.67
 71 1 12991 0 300912 0.57
 67 1 4951 0 113056 0.21
 65 1 3079 0 66788 0.13
 63 1 485 0 1940 0.00
 64 1 340 0 1360 0.00
 68 1 59 0 236 0.00
 62 1 48 0 192 0.00

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 3704 0 23432 369.23
 66 1 616 0 15408 242.79
 71 1 575 0 13128 206.86
 67 1 299 0 6612 104.19
 65 1 142 0 2932 46.20
 63 1 37 0 148 2.33
 64 1 30 0 120 1.89
 62 1 4 0 16 0.25
 68 1 4 0 16 0.25

Log_part mirror# iocnt Kb_read Kb_wrtn Kbps
 72 1 3258 0 21660 340.99
 71 1 736 0 17868 281.30
 66 1 612 0 15384 242.19
 67 1 222 0 5012 78.90
 65 1 132 0 2892 45.53
 64 1 13 0 52 0.82
 63 1 4 0 16 0.25
 62 1 2 0 8 0.13
 68 1 2 0 8 0.13
...(lines omitted)...

By looking at the utilization, we get a feel for how the logical volume is used. In
the output, access to logical partition 72 stands out, but logical partition 71 and 66

 Chapter 28. The lvmstat command 527

are very close when it comes to the amount of data that is written. To find out the
physical partition where each of these hot logical partitions is located on disk, we
use the lslv command.

Summarizing I/O utilization per physical partition
To summarize the physical partition utilization, we create and use a simple script
that we call lvmstat.sum, shown in Example 28-16. This script uses the saved
output file from our previous lvmstat command and summarizes the partition
utilization as shown in Example 28-15.

Example 28-15 Using a script to summarize most-used partitions

lvmstat.sum /tmp/lvmstat.out
Log_part mirror# iocnt Kb_read Kb_wrtn
 72 1 158860 0 1097940
 66 1 32470 0 815236
 71 1 30511 0 706512
 67 1 11696 0 266008
 65 1 7211 0 154420
 63 1 1249 0 4996
 64 1 897 0 3588
 68 1 131 0 524
 62 1 121 0 484

Note that we include the mirror number in the output because if the logical
volume is mirrored, we could find the right physical partition for the logical
partition. The output above shows us that the logical partitions that are most
used are consecutive from the logical volumes perspective, and all of them mirror
copy 1. However, it is interesting to note that the iocnt value for logical partition
72 is almost five times higher than the iocnt value for logical partition 66 but has
only 25% more written data. The lvmstat.sum script is shown in Example 28-16.

Example 28-16 lvmstat.sum script

1 cat $1|
2 (
3 printf "%-8s %8s %s %9s %9s\n" "Log_part" "mirror#" "iocnt" "Kb_read"
"Kb_wrtn"
4 awk '
5 $1~/[0-9]/&&i>=2{
6 iocnt[$1,$2]=iocnt[$1,$2]+$3
7 read[$1,$2]=read[$1,$2]+$4
8 write[$1,$2]=write[$1,$2]+$5
9 }
10 /Log/{i++}
11 END{
12 for (f in iocnt)
13 printf " %8s %8s%8s%10s%10s\n",

528 AIX 5L Performance Tools Handbook

14 substr(f,0,length(f)-1), substr(f,length(f)-1), iocnt[f],
read[f], write[f]
15 }' i=0 | sort -k3nr
16)

The lvmstat.sum script works by extracting the logical partition number, mirror
number, I/O count, KB read, and KB write values from the saved lvmstat output.
It will discard the first report section because it is the accumulation since the
statistical collection was enabled. (If it is set to a value higher than zero it will
include this report in the summary as well.) The awk command uses a table for
summarizing the I/O counts, KB read, and KB write for each logical partition
using the logical partition and the mirror number as indices. At the end (END
statement) it loops through the tables using the indices in the for loop and prints
the logical partition part of each index first, then the mirror number part of the
same index, and then the summarized I/O count, KB read, and KB write. When
awk has produced the output lines, we use the sort command to sort the output
using the summarized I/O count (third field) numerically and in reverse
(descending) order.

 Chapter 28. The lvmstat command 529

530 AIX 5L Performance Tools Handbook

Part 6 Network-related
performance
tools

This part describes the tools that monitor the performance-relevant data and
statistics for networks. This includes tools to:

� monitor the network adapters
� monitor the different layers of TCP/IP networks
� monitor the system resources used by the networking software
� trace data sent and received on the networks
� monitor Network File System (NFS) usage on client and server systems
� set and change network performance relevant system parameters

Part 6

© Copyright IBM Corp. 2001, 2003. All rights reserved. 531

Knowledge of the basics of network communication and the network protocols
used is required to understand the data gathered by the tools discussed in this
chapter. The AIX 5L Version 5.2 System User's Guide: Communications and
Networks provides the necessary information.

This part contains detailed information about these network monitoring and
tuning tools:

� Network adapter statistics monitoring tools, described in Chapter 29,
“atmstat, entstat, estat, fddistat, and tokstat commands” on page 539:

– The atmstat command is used to monitor Asynchronous Transfer Mode
(ATM) adapter statistics.

– The entstat command is used to monitor Ethernet adapter statistics.

– The estat command is used to monitor RS/6000 SP Switch adapter
statistics.

– The fddistat command is used to monitor the Fiber Distributed Data
Interface (FDDI) network adapter statistics.

– The tokstat command is used to monitor token-ring network adapter
statistics.

� The netstat command described in Chapter 31, “The netstat command” on
page 619 provides data and statistics for the different network layers, system
resources used by networks, and network configuration information such as:

– Statistics for the different network protocols used

– Statistics for the communications memory buffer (mbuf) usage

– Information about the configured network interfaces

– Routing information

� The no command discussed in Chapter 34, “The no command” on page 665
is used to display, set, and change the network parameters.

� Chapter 33, “The nfsstat command” on page 655 discusses the use of the
nfsstat command to monitor Remote Procedure Call (RPC) and NFS
statistics on NFS server and client systems.

� The nfso command described in Chapter 32, “The nfso command” on
page 645 is used to display, set, and change NFS variables and to remove file
locks from NFS client systems on an NFS server.

� To trace data sent to and received from the network, the following commands
can be used:

– The iptrace command discussed in “iptrace” on page 569 is used to
gather the data sent to and received from the network.

532 AIX 5L Performance Tools Handbook

– The ipfilter command described in “ipfilter” on page 573 can be used to
sort or extract a part of the data previously gathered by the iptrace
command.

– The tcpdump command discussed in “tcpdump” on page 587 is used to
gather and display packets sent to and received from the network.

– The ipreport command described in “ipreport” on page 572 is used to
format the data gathered by the iptrace or tcpdump commands.

– The trpt command discussed in “trpt” on page 612 can be used to trace
Transmission Control Protocol (TCP) sockets.

For more detailed information about the TCP/IP protocols, refer to:

� 1.5, “Network performance” on page 31<<QUESTION-Xref>>

� AIX 5L Version 5.2 Performance Management Guide

� AIX 5L Version 5.2 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� http://www.rs6000.ibm.com/support/sp/perf

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

There are also excellent books available on the subject but a good starting point
is RFC 1180: A TCP/IP Tutorial.

TCP/IP protocol and services tables
Table 1 is an extraction from the /etc/protocols file that shows some interesting
protocol types and their numeric value.

Table 1 grep -v ^# /etc/protocols

Symbolic
name

Numeric
ID

Protocol Description

ip 0 IP Dummy for the Internet Protocol

icmp 1 ICMP Internet control message protocol

igmp 2 IGMP Internet group multicast protocol

tcp 6 TCP Transmission control protocol

udp 17 UDP User datagram protocol

 533

http://www.rs6000.ibm.com/support/sp/perf
http://www.rfc-editor.org/

Table 2 is an extraction from the /etc/services file that shows some interesting
services, ports, and the protocol used on that port.

Table 2 Selection from /etc/services

ICMP message type table
Table 3 lists some Internet Control Message Protocol (ICMP) message types.
The table includes some of the more interesting message types. For a detailed
description of the message type and its specific ICMP packet format refer to the
appropriate Request For Comment (RFC).

Table 3 Some ICMP message types

Symbolic
name

Port Protocol Description

echo 7 tcp Used by the ping command

echo 7 udp Used by the ping command

ftp-data 20 tcp Used by the ftp command

ftp 21 tcp Used by the ftp command

telnet 23 tcp Used by the telnet command

smtp 25 tcp Used by the mail commands

domain 53 udp Used by nameserver commands

pop 109 tcp Used by postoffice mail commands

pop3 110 tcp Used by postoffice3 mail commands

exec 512 tcp Used by remote commands

login 513 tcp Used by remote commands

shell 514 tcp Used by remote commands

printer 515 tcp Used by print spooler commands

route 520 udp Used by router (routed) commands

Symbolic Numeric ID RFC

Echo Reply 0 RFC792

Destination Unreachable 3 RFC792

Source Quench 4 RFC792

Redirect 5 RFC792

534 AIX 5L Performance Tools Handbook

Packet header formats
The following are schematic layouts for the token-ring, Ethernet (V2 and 802.3),
IP, TCP, and UDP header formats. For a more thorough explanation of the
TCP/IP protocol headers, refer to the appropriate RFC and the “TCP/IP Protocols
chapter” in the AIX 5L Version 5.2 System Management Guide: Communications
and Networks.

Token-ring frame header
In Table 4, the scale is in bytes (B).

Table 4 Token-ring frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1...
+-+
|S|A|F|DST |SRC |RI (0-30)
|D|C|C| | |
+-+
SD Starting delimiter
AC Access control
FC Frame control
DST Destination host address
SRC Source host address
RI Routing information. Can have variable length.

Ethernet V2 frame header
In Table 5 on page 536, the scale is in bytes (B).

Echo 8 RFC792

Router Advertisement 9 RFC1256

Router Solicitation 10 RFC1256

Time Exceeded 11 RFC792

Parameter Problem 12 RFC792

Time stamp 13 RFC792

Time Stamp Reply 14 RFC792

Information Request 15 RFC792

Information Reply 16 RFC792

Traceroute 30 RFC1393

Symbolic Numeric ID RFC

 535

Table 5 Ethernet V2 frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PA |DST |SRC |L |
| | | |N |
+-+
PA Preamble
DST Destination host address
SRC Source host address
LN Length of client protocol data

Ethernet 802.3 frame header
In Table 6, the scale is in bytes (B).

Table 6 Ethernet 802.3 frame header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
|PA |S|DST |SRC |T |
| |F| | |Y |
+-+
PA Preamble
SF Start frame delimiter
DST Destination host address
SRC Source host address
TY Type of client protocol

IP V4 (RFC 791) packet header
Table 7 illustrates the IP V4 header according to RFC 791. (Refer to this RFC at
http://www.rfc-editor.org/ for a detailed explanation.) The struct ip can be
found in /usr/include/netinet/ip.h. The first line shows the byte index; the second
line shows the bit index. The last byte for each row is on the right side of the
header layout.

Table 7 IP V4 (RFC 791) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
|Version| IHL |Type of Service| Total Length |
+-+4
| Identification |Flags| Fragment Offset |
+-+8
| Time to Live | Protocol | Header Checksum |
+-+12
| Source Address |

536 AIX 5L Performance Tools Handbook

http://www.rfc-editor.org/

+-+16
| Destination Address |
+-+20
| Options | Padding |
+-+24

TCP (RFC 793) packet header
Table 8 illustrates the TCP header according to RFC 793. (Refer to this RFC at
http://www.rfc-editor.org/ for a detailed explanation.) The struct tcphdr can
be found in /usr/include/netinet/tcp.h. The first line shows the byte index, and the
second line shows the bit index. The last byte for each row is on the right side of
the header layout.

Table 8 TCP (RFC 793) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
| Source Port | Destination Port |
+-+4
| Sequence Number |
+-+8
| Acknowledgment Number |
+-+12
Data		U	A	P	R	S	F	
Offset	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+-+16								
Checksum	Urgent Pointer							
+-+20								
Options	Padding							
+-+24								
data								
+-+28

UDP (RFC 768) packet header
Table 9 illustrates the UDP header according to RFC 768. (Refer to this RFC at
http://www.rfc-editor.org/ for a detailed explanation.) The struct udphdr can
be found in /usr/include/netinet/udp.h. The first line shows the byte index, and the
second line shows the bit index. The last byte for each row is on the right side of
the header layout.

Table 9 UDP (RFC 768) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+

 537

http://www.rfc-editor.org/
http://www.rfc-editor.org/

| Source Port | Destination Port |
+-+2
| Length | Checksum |
+-+4

ICMP (RFC 792) packet header
Table 10 illustrates the basic1 ICMP header according to RFC 792. (Refer to this
RFC at http://www.rfc-editor.org/ for a detailed explanation.) The struct
icmp6_hdr can be found in /usr/include/netinet/icmp6.h. The first line shows the
byte index, and the second line shows the bit index. The last byte for each row is
on the right side of the header layout. Refer to Table 3 on page 534 for more
information about the type field.

Table 10 ICMP (RFC 792) packet header

0 1 2 3
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

+-+
| Type | Code | Checksum |
+-+4
| unused |
+-+8
| Internet Header + 64 bits of Original Data Datagram |
+-+12

1 Various ICMP messages use different packet types.

538 AIX 5L Performance Tools Handbook

http://www.rfc-editor.org/

Chapter 29. atmstat, entstat, estat,
fddistat, and tokstat
commands

The atmstat, entstat, estat, fddistat, and tokstat commands are
performance monitoring tools that display device-driver statistics for the
associated (network) device, which are:

� Asynchronous Transfer Mode (ATM) device driver
� Ethernet device driver
� RS/6000 SP switch device driver
� Fiber Distributed Data Interface (FDDI) device driver
� Token-ring device driver

The atmstat, entstat, fddistat, and tokstat commands reside in /usr/sbin,
which is linked to /usr/bin. These commands are part of the
devices.common.IBM.atm.rte, devices.common.IBM.ethernet.rte,
devices.common.IBM.fddi.rte, and devices.common.IBM.tokenring.rte filesets,
which are installable from the AIX base operation system installation media.

The estat command resides in /usr/lpp/ssp/css/css and is part of the ssp.css
fileset, which is installable from the IBM Parallel System Support Programs
(PSSP) installation media.

29

© Copyright IBM Corp. 2001, 2003 539

29.1 atmstat
The syntax of the atmstat command is:

atmstat [-drt] <device name>

Flags
-d Displays detailed statistics.

-r Resets all statistics to their initial values. This flag can be
issued only by privileged users.

-t Toggles debug trace in some device drivers.

Parameters
Device_Name The name of the ATM device (for example, atm0). If an

invalid device name is specified, the atmstat command
produces an error message stating that it could not connect
to the device.

29.1.1 Information about measurement and sampling
The atmstat command used without flags provides generic statistics that consist
of transmit statistics, receive statistics, and general statistics. This includes
packets and bytes transmitted and received, information about hardware and
software queues usage, and error counters. If the -d flag is used, device-specific
statistics are displayed along with the device-driver statistics.

The atmstat command provides a snapshot of the device-driver statistics
collected by the Network Device Driver (NDD). The header file
/usr/include/sys/ndd.h defines the used data structure ndd_genstats as well as
the ioctl() operation NDD_GET_ALL_STATS, which is used to read the data from
the NDD. atmstat uses a device-dependent routine defined in the ODM to
display the device-specific statistics. This device-dependent routine is a
command that is executed using fork() and exec() out of atmstat. In a busy
system there may be some delay doing this. In case the system is running out of
resources (for example, low on memory), the necessary fork() may fail. All
device-dependent routines can be found using the command odmget -q
attribute=addl_stat PdAt. All statistic values displayed by atmstat are the
absolute values since startup or the last reset of these values, which is done by
using atmstat -r Device_Name.

540 AIX 5L Performance Tools Handbook

The device-driver statistics are read out of the NDD at execution time of atmstat.
The device-specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and atmstat exits. Using the -r flag, atmstat
first displays the current statistic values and then resets them.

The device-specific data for Microchannel (MCA) ATM and Peripheral
Component Interconnect (PCI) ATM adapters are different.

The output of the atmstat command consists of five sections: the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Refer to the AIX 5L Version 5.2
Commands Reference for a description of all output fields.

29.1.2 Examples for atmstat
The output of atmstat always shows the device-driver statistics. On request,
using the -d flag, more detailed data is displayed.

Example 29-1 shows the output of atmstat on an MCA system.

Example 29-1 Displaying ATM device-driver statistics on an MCA system

atmstat -d atm0

ATM STATISTICS (atm0) :
Device Type: Turboways 155 MCA ATM Adapter
Hardware Address: 40:00:30:31:00:31
Elapsed Time: 11 days 1 hours 36 minutes 43 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 3969322 Packets: 3852487
Bytes: 3011576880 Bytes: 731915050
Interrupts: 0 Interrupts: 3893792
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Cells Transmitted: 64225555 Cells Received: 17232251
Out of Xmit Buffers: 0 Out of Rcv Buffers: 0
Current HW Transmit Queue Length: 0 CRC Errors: 0
Current SW Transmit Queue Length: 0 Packets Too Long: 0
 Incomplete Packets: 0
 Cells Dropped: 0

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 541

General Statistics:

No mbuf Errors: 16
Adapter Loss of Signals: 0
Adapter Reset Count: 0
Driver Flags: Up Running Simplex
 64BitSupport
Virtual Connections in use: 12
Max Virtual Connections in use: 14
Virtual Connections Overflow: 0
SVC UNI Version: auto_detect

Turboways ATM Adapter Specific Statistics:

Packets Dropped - No small DMA buffer: 0
Packets Dropped - No medium DMA buffer: 0
Packets Dropped - No large DMA buffer: 0
Receive Aborted - No Adapter Receive Buffer: 0
Transmit Attempted - No small DMA buffer: 0
Transmit Attempted - No medium DMA buffer: 0
Transmit Attempted - No large DMA buffer: 0
Transmit Attempted - No MTB DMA buffer: 0
Transmit Attempted - No Adapter Transmit Buffer: 0
Max Hardware transmit queue length: 45
Small Mbuf in Use: 0
Medium Mbuf in Use: 0
Large Mbuf in Use: 66
Huge Mbuf in Use: 0
MTB Mbuf in Use: 0
Max Small Mbuf in Use: 0
Max Medium Mbuf in Use: 44
Max Large Mbuf in Use: 302
Max Huge Mbuf in Use: 0
MTB Mbuf in Use: 0
Small Mbuf overflow: 0
Medium Mbuf overflow: 0
Large Mbuf overflow: 16
Huge Mbuf overflow: 0
MTB Mbuf overflow: 0

Example 29-2 shows atmstat on a PCI system.

Example 29-2 Displaying ATM device-driver statistics on a PCI system

atmstat -d atm0

ATM STATISTICS (atm0) :
Device Type: IBM PCI 155 Mbps ATM Adapter (14104f00)
Hardware Address: 00:04:ac:ad:29:16

542 AIX 5L Performance Tools Handbook

Elapsed Time: 6 days 0 hours 45 minutes 0 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 171920 Packets: 171919
Bytes: 7953953 Bytes: 7145739
Interrupts: 0 Interrupts: 172154
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Cells Transmitted: 276313 Cells Received: 276306
Out of Xmit Buffers: 0 Out of Rcv Buffers: 0
Current HW Transmit Queue Length: 0 CRC Errors: 0
Current SW Transmit Queue Length: 0 Packets Too Long: 0
 Incomplete Packets: 0
 Cells Dropped: 13

General Statistics:

No mbuf Errors: 0
Adapter Loss of Signals: 0
Adapter Reset Count: 0
Driver Flags: Up Running Simplex

64BitSupport PrivateSegment
Virtual Connections in use: 15
Max Virtual Connections in use: 18
Virtual Connections Overflow: 0
SVC UNI Version: uni3.1

IBM PCI 155 Mbps ATM Adapter Specific Statistics:

Total 4K byte Receive Buffers: 96 Using: 64
Maximum 4K byte Receive Buffers used 96
Maximum Configurable 4K byte Receive Buffers 800

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real-time period that has elapsed since the last time
the statistics were reset.

Transmit and Receive
Packets

The number of packets successfully transmitted and
received by the device.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 543

Transmit and Receive
Bytes

The number of bytes successfully transmitted and
received by the device. These values and their related
packet counts can show how the system is using this
network adapter. For example, transmit and receive values
may be close to equal or they may differ by a huge margin.

Transmit and Receive
Interrupts

The number of transmit and receive interrupts received by
the driver from the adapter. If these counters increase fast,
then the number of interrupts to be handled by the
operating system may reach a level where overall system
performance may be affected. Other monitoring tools
vmstat can be used to control the interrupts per second
handled by the system.

Transmit and Receive
Cells

The number of cells transmitted by this device.

Out of Xmit Buffers The number of packets dropped because transmit buffers
are full. Tuning the adapter’s sw_txq_size value is required.
The lsattr -El atm0 command shows the current value
set for the adapters transmit queue size. lsattr -Rl atm0
-a sw_txq_size displays the possible values for
sw_txq_size. Use the chdev -l atm0 -a sw_txq_size=xxx
command to change this value.

Out of Rcv Buffers The number of packets dropped because of out of receive
buffers condition. If this counter is not zero, then the
rx_req_size parameter of the adapter may be changed. To
get the current rx_que_sive value, use the lsattr -El
atm0 command. If this adapter parameter is zero, which is
the default, then the calculation for receive buffers is based
on available communications memory buffer (mbufs). mbuf
tuning using the no command is required in this case. Refer
to Chapter 34, “The no command” on page 665 for more
details. If rx_que_size is not zero, then increasing it using
the chdev -l atm0 -a rx_que_size=nnn command could
be necessary. However, keep in mind that each receive
buffer requires memory and a further mbuf tuning may be
necessary.

Current HW Transmit
Queue Length

The current number of transmit packets on the hardware
queue.

544 AIX 5L Performance Tools Handbook

The Turboways ATM Adapter Specific Statistics in Example 29-1 on page 541
shows statistics for adapter buffer usage. This adapter uses mbufs in five fixed
sizes:

� Small mbufs are 256 bytes.
� Medium mbufs are 4096 bytes.
� Large mbufs are 8192 bytes.
� Huge mbufs are 16384 bytes.
� MTB mbufs are of variable size in the range of 32 KB to 1024 KB

In case any of the Mbuf overflow statistics are not zero, the corresponding
adapter parameter should be tuned. An overflow is not catastrophic. The device
driver will attempt to get the next smaller size of buffer. However, this is inefficient
and costs performance. The minimum and the maximum mbuf number allocated
by the adapter can be set using System Management Interface Tool (SMIT) by
running smitty chg_atm. For more information, see RS/6000 and Asynchronous
Transfer Mode, SG24-4796.

No mbuf Errors The number of times mbufs were not available to the
device driver. This usually occurs during receive
operations when the driver must obtain mbuf buffers to
process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as the additional
network load. The netstat command can be used to
confirm this. For details refer to Chapter 31, “The netstat
command” on page 619.

Driver Flag The neighborhood discovery daemon flags. It should not
be in Limbo state, which is an indication of a missing signal
on the adapter. The cables should be checked in this case.

Virtual Connections
in use

The number of virtual connections that are currently
allocated or in use.

Max Virtual
Connections in use

The maximum number of virtual connections allocated
since the last reset of the statistics.

Virtual Connections
Overflow

The number of virtual connection requests that have been
denied. If this is not zero, then an adjustment of the
adapter parameter max_vc may be necessary. Use lsattr
-El Device_Name (for example, lsattr -El atm0) to get the
current max_vc value. The lsattr -Rl atm0 -a max_vc
command can be used to see which values are permitted.
To change max_vc use the chdev -l atm0 -a max_vc=xxxx
command.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 545

The IBM PCI 155 Mbps ATM Adapter Specific Statistics part of Example 29-2
on page 542 shows the device-specific statistics for this adapter. These statistics
show the values for the 4 KB byte pre-mapped receive buffers, which are used for
Direct Memory Access (DMA) data transfers of mbufs from the adapter to the
system protocol stacks. The minimum number of buffers allocated by the adapter
is stored in ODM as the rv_buf4k_min attribute of the adapter. Use lsattr -El
atm0 to get the current value for this attribute. Setting the rv_buf4k_min attribute
to a higher value decreases the chance of running out of buffers when an
application has high bursts of small packets. The statistic field Maximum 4K byte
Receive Buffers used shows the high water mark for pre-mapped receive
buffers the system reached. Changing the rv_buf4k_min attribute value should
be done with care. SMIT or the chdev command can be used to change the
value.

Monitoring a ATM adapter on a regular basis using atmstat can find possible
problems before the users notice any slowdown. The problem can be taken care
of by redesigning the network layout or tuning either the adapter parameters
using the chdev command or the network options using the no command. (See
Chapter 34, “The no command” on page 665.)

29.2 entstat
The syntax of the entstat command is:

entstat [-drt] Device_Name

Flags
-d Displays all of the statistics, including the device-specific

statistics. Some adapters may not have any device-specific
statistics.

-r Resets all statistics to their initial values. This flag can only be
issued by privileged users.

-t Toggles debug trace in some device drivers.

Note: Changing ATM adapter parameters using smit chg_atm or the chdev
command is only possible if the adapter is not in use. Using the -P flag on the
chdev command stores the changes only in the ODM database. This is useful
for devices that cannot be made unavailable and cannot be changed while in
the available state. The changes can be applied to the device by restarting the
system.

546 AIX 5L Performance Tools Handbook

Parameters
Device_Name The name of the Ethernet device (for example, ent0). If an invalid

device name is specified, the entstat command produces an
error message stating that it could not connect to the device.

29.2.1 Information about measurement and sampling
The entstat command used without flags provides generic statistics that consist
of transmit statistics, receive statistics, and general statistics. This includes
packets and bytes transmitted and received, and information about hardware and
software queue usage as well as error counters. Using the -d flag displays
device-specific statistics as well as device-driver statistics.

The entstat command provides a snapshot of the device-driver statistics
collected by the NDD. The header file /usr/include/sys/ndd.h defines the used
data structure ndd_genstats as well as the ioctl() operation
NDD_GET_ALL_STATS, which is used to read the data from the NDD. entstat
uses a device-dependent routine defined in the ODM to display the
device-specific statistics. This device-dependent routine is a command that is
executed using fork() and exec() out of entstat. In a busy system there may be
some delay doing this. In case the system is running out of resources (for
example low on memory), the necessary fork() may fail. All device-dependent
routines can be found using the command odmget -q attribute=addl_stat
PdAt. All statistic values displayed by entstat are the absolute values since
startup or the last reset of these values, which is done by using entstat -r
Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens, a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the time elapsed since the reset.

The device-driver statistics are read out of the NDD at execution time of entstat.
The device-specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and entstat exits. If the -r flag is used,
entstat first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always zero.

The output of the entstat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Refer to the AIX 5L Version 5.2
Commands Reference for a description of all output fields.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 547

29.2.2 Examples for entstat
The output of entstat always shows the device-driver statistics. When using the
-d flag, the additional device-specific statistics are displayed. Some adapters may
not have any device-specific statistics.

Example 29-3 shows the entstat output including device-specific statistics.

Example 29-3 Displaying Ethernet device-driver statistics

entstat -d ent0

ETHERNET STATISTICS (ent0) :
Device Type: 10/100 Mbps Ethernet PCI Adapter II (1410ff01)
Hardware Address: 00:02:55:af:1a:72
Elapsed Time: 11 days 3 hours 19 minutes 51 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 2121360 Packets: 2493230
Bytes: 307990132 Bytes: 368003398
Interrupts: 0 Interrupts: 2493091
Transmit Errors: 0 Receive Errors: 1
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 37
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 1

Broadcast Packets: 71173 Broadcast Packets: 87040
Multicast Packets: 2 Multicast Packets: 2
No Carrier Sense: 0 CRC Errors: 0
DMA Underrun: 0 DMA Overrun: 0
Lost CTS Errors: 0 Alignment Errors: 0
Max Collision Errors: 0 No Resource Errors: 0
Late Collision Errors: 0 Receive Collision Errors: 1082
Deferred: 4554 Packet Too Short Errors: 1
SQE Test: 0 Packet Too Long Errors: 0
Timeout Errors: 0 Packets Discarded by Adapter: 0
Single Collision Count: 1723 Receiver Start Count: 0
Multiple Collision Count: 515
Current HW Transmit Queue Length: 1

General Statistics:

No mbuf Errors: 0
Adapter Reset Count: 1
Adapter Data Rate: 200
Driver Flags: Up Broadcast Running

Simplex AlternateAddress 64BitSupport

548 AIX 5L Performance Tools Handbook

ChecksumOffload PrivateSegment DataRateSet

10/100 Mbps Ethernet PCI Adapter II (1410ff01) Specific Statistics:
--
Link Status: Up
Media Speed Selected: 100 Mbps Full Duplex
Media Speed Running: 100 Mbps Full Duplex
Receive Pool Buffer Size: 1024
Free Receive Pool Buffers: 1024
No Receive Pool Buffer Errors: 0
Receive Buffer Too Small Errors: 0
Entries to transmit timeout routine: 0
Transmit IPsec packets: 0
Transmit IPsec packets dropped: 0
Receive IPsec packets: 0
Receive IPsec packets dropped: 0
Inbound IPsec SA offload count: 0
Transmit Large Send packets: 0
Transmit Large Send packets dropped: 0
Packets with Transmit collisions:
 1 collisions: 0 6 collisions: 0 11 collisions: 0
 2 collisions: 0 7 collisions: 0 12 collisions: 0
 3 collisions: 0 8 collisions: 0 13 collisions: 0
 4 collisions: 0 9 collisions: 0 14 collisions: 0
 5 collisions: 0 10 collisions: 0 15 collisions: 0

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real-time period that has elapsed since the last time
the statistics were reset. During error recovery, when a
hardware error is detected part of the statistics may be
reset. In this case another Elapsed Time is displayed in the
middle of the output reflecting the time elapsed since the
reset. In this example there was no such event so there is
no additional Elapsed Time displayed.

Transmit and Receive
Packets

The number of packets successfully transmitted and
received by the device.

Transmit and Receive
Bytes

The number of bytes successfully transmitted and
received by the device. These values and their related
packet count can show how the system is using this
network adapter. For example, transmit and receive
values may be close to equal, or they may differ by a huge
margin.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 549

Transmit and Receive
Interrupts

The number of transmit and receive interrupts received by
the driver from the adapter. If these counters increase fast,
then the number of interrupts to be handled by the
operating system may reach a level where overall system
performance may be affected. Other monitoring tools like
vmstat can be used to control the interrupts per second
handled by the system.

Max Packet on S/W
Transmit Queue

The maximum number of outgoing packets ever queued to
the software transmit queue. If this value reaches the
xt_que_size set for the adapter then the xt_que_size of the
adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El ent0, shows
the current adapter settings including xt_que_size. Use
SMIT or chdev to increase xt_que_size if necessary and
possible. The possible values allowed to set can be found
using the ODM as shown in Example 29-7 on page 565 or
the lsattr -Rl ent0 -a xt_que_size command.

S/W Transmit Queue
Overflow

The number of outgoing packets that overflowed the
software transmit queue. If this is not zero then you must
increase the transmit queue size xt_que_size, as shown in
the description for the field Max Packets on S/W Transmit
Queue.

Current S/W + H/W
Transmit Queue
Length

The number of pending outgoing packets on either the
software transmit queue or the hardware transmit queue.
This reflects the current load on the adapter. This is the
sum of the Current SW Transmit Queue Length and
Current HW Transmit Queue Length fields.

Broadcast Packets The number of broadcast packets transmitted and
received without any error. A high value compared to the
total transmitted and received packets indicates that the
system is sending and receiving many broadcasts.
Broadcasts increase network load and may increase the
load on all the other systems on the same subnetwork.

Receive Collision
Errors

The number of incoming packets with the collision errors
during the reception. This number, compared with number
of packets received, should stay low.

Single Collision
Count

The number of outgoing packets with single (only one)
collision encountered during transmission. This number,
compared with the number of packets transmitted, should
stay low.

Multiple Collision
Count

The summary of outgoing packets with multiple (up to 15)
collisions encountered during transmission.

550 AIX 5L Performance Tools Handbook

An increasing number of collisions could be caused by too much load on the
subnetwork. A split of this subnetwork into two or more subnetworks may be
necessary.

If the statistics for errors, such as the transmit errors, are increasing fast, these
errors should be corrected first. Some errors may be caused by hardware
problems. These hardware problems need to be fixed before any software tuning
is performed. The error counter should stay close to zero.

Sometimes it is useful to know how many packets an application or task sends or
receives. Use entstat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
entstat Device_Name again to get this information. An example for using
entstat to monitor Ethernet statistics during execution of one program is:

entstat -r ent0; ping -f 10.11.12.13 64 2048; entstat ent0

In other cases it may be of interest to collect Ethernet statistics for a fixed time
frame. This can be done using entstat as shown in the following command:

entstat -r ent0;sleep 300;entstat ent0

The numbers of packets, bytes, and broadcasts transmitted and received depend
on many factors, like the applications running on the system or the number of
systems connected to the subnetwork. There is no rule about how much is too
much. Monitoring an Ethernet adapter on a regular basis using entstat can point
out possible problems before users notice any slowdown. The problem can be
taken care of by redesigning the network layout or tuning the adapter parameters
using the chdev command, or tuning network options using the no command.
(See Chapter 34, “The no command” on page 665.)

Current HW Transmit
Queue Length

The number of outgoing packets currently on the hardware
transmit queue.

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbufs to
process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as additional network
load. The netstat command can be used to confirm this.
For details refer to Chapter 31, “The netstat command” on
page 619.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 551

29.3 estat
The syntax of the estat command is:

/usr/lpp/ssp/css/css/estat [-d -r] Device_Name

Flags
-d Displays all device-driver statistics, including the device-specific

statistics.

-r Resets all statistics to their initial values. This flag can only be
issued by privileged users.

Parameters
Device_Name The name of the switch device, for example css0. If an invalid

device name is specified, the estat command will produce an
error message stating that it could not connect to the device.

29.3.1 Information about measurement and sampling
The estat command used without flags provides generic statistics that consist of
transmit statistics, receive statistics, and general statistics. This includes packets
and bytes transmitted and received, and information about hardware and
software queue usage as well as error counters. If the -d flag is used,
device-specific statistics are displayed along with the device-driver statistics.
Currently device-specific statistics show only the current number of
communication windows opened by the adapter.

The estat command provides a snapshot of the device-driver statistics. The
output of the estat command consists of five sections; the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields.

Refer to the RS/6000 SP System Performance Tuning Update, SG24-5340 for
more detailed information about tuning an RS/6000 SP system, and the Internet
site http://techsupport.services.ibm.com/server/spperf/ for the latest
information about tuning topics for the RS/6000 SP system.

29.3.2 Examples for estat
The output of estat always shows the device-driver statistics. If the -d flag is
used, the device-specific statistics are also displayed.

552 AIX 5L Performance Tools Handbook

http://techsupport.services.ibm.com/server/spperf/

Example 29-4 shows the output of estat.

Example 29-4 Output of the estat command

/usr/lpp/ssp/css/estat -d css0

CSS STATISTICS (css0) :
Elapsed Time: 97 days 10 hours 6 minutes 36 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 9798614 Packets: 5439592
Bytes: 2529885036 Bytes: 600249096
Interrupts: 0 Interrupts: 5437107
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
Max Packets on S/W Transmit Queue: 0 Bad Packets: 0
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 0 Broadcast Packets: 0

General Statistics:

No mbuf Errors: 0

High Performance Switch Specific Statistics:
--
Windows open: 2

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real-time period that has elapsed since the last time
the statistics were reset. During error recovery, when a
hardware error is detected, part of the statistics may be
reset. In this case another Elapsed Time is displayed in the
middle of the output reflecting the time elapsed since the
reset. In this example there was no such event so there is
no additional Elapsed Time displayed.

Transmit and Receive
Packets

The number of packets successfully transmitted and
received by the device.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 553

Sometimes it is useful to know how many packets an application or task sends or
receives. Use /usr/lpp/ssp/css/estat -r Device_Name to reset the counters
to zero, then running the application or task. After the completion of the
application or task, run /usr/lpp/ssp/css/estat Device_Name again to get this
information. An example of using estat to monitor RS/6000 SP Switch statistics
during execution of one program is:

alias estat=/usr/lpp/ssp/css/estat
estat -r css0; ping -f 10.10.10.200 8000 1024;estat css0

Transmit and Receive
Bytes

The number of bytes successfully transmitted and
received by the device. These values and their related
packet count can show how the system is using this
network adapter. For example, transmit and receive
values may be close to equal, or they may differ by a huge
margin.

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbufs to
process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as additional network
load. The netstat command can be used to confirm this.
For details refer to Chapter 31, “The netstat command” on
page 619.

The RS/6000 SP switch adapter uses special
communications memory buffers for all packets greater
than 256 bytes. For better performance these buffer pools
are allocated in pinned kernel memory. The device driver
uses AIX mbufs only when these pinned buffer pools are
exhausted. Use the lsattr -El css0 command to get the
current buffer pool settings. The attribute fields are
rpoolsize for the receive buffer pool and spoolsize for the
send buffer pool. The buffer pool sizes can be changed
using the /usr/lpp/ssp/css/cghcss -l css0 -a
Attribute=Value command, where Attribute is either
rpoolsize or spoolsize and Value is the new buffer size in
bytes. On systems using the RS/6000 SP Switch, a
restart of the node is required to activate the new pool
settings. On systems using the RS/6000 SP Switch2 the
changes take place immediately.

554 AIX 5L Performance Tools Handbook

In other cases it may be of interest to collect RS/6000 SP Switch statistics for a
fixed time frame. This can be done using estat as shown in the following
commands:

alias estat=/usr/lpp/ssp/css/estat
estat -r css0;sleep 300;estat css0

The numbers of packets and bytes transmitted and received depend on many
factors, like the applications running on the system or the number of systems
connected to the subnetwork. There is no rule about how much is too much.
Monitoring an RS/6000 SP Switch adapter on a regular basis using estat can
point out possible problems before users notice any slowdown. The problem can
be taken care of by tuning the adapter parameters using the chgcss command or
tuning network options using the no command. (See Chapter 34, “The no
command” on page 665.)

Upcoming releases and versions of IBM PSSP may add new features and tools
for monitoring and tuning the RS/6000 SP Switch. New RS/6000 SP Switch
hardware may offer new monitoring and tuning options as well. For detailed and
up-to-date information about RS/6000 SP switch tuning, refer to
http://techsupport.services.ibm.com/server/spperf/ and the IBM Redbook
RS/6000 SP System Performance Tuning Update, SG24-5340.

29.4 fddistat
The syntax of the fddistat command is:

fddistat [-d -r -t] Device_Name

Flags
-d Displays all device-driver statistics, including the device-specific

statistics. Some FDDI adapters do not support the
device-specific statistic. In this case the output will be the same
as it would be without the -d flag.

-r Resets all the statistics back to their initial values. This flag can
only be issued by privileged users.

-t Toggles debug trace in some device drivers.

Parameters
Device_Name The name of the FDDI device, for example, fddi0. If an invalid

Device_Name is specified, the fddistat command produces an
error message stating that it could not connect to the device.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 555

http://techsupport.services.ibm.com/server/spperf/

29.4.1 Information about measurement and sampling
The fddistat command used without flags provides generic statistics that
consist of transmit statistics, receive statistics, and general statistics. This
includes packets and bytes transmitted and received, and information about
hardware and software queue usage as well as error counters. If the -d flag is
used, device-specific statistics are displayed along with the device-driver
statistics.

The fddistat command provides a snapshot of the device-driver statistics
collected by the NDD. The header file /usr/include/sys/ndd.h defines the used
data structure ndd_genstats. fddistat uses a device-dependent routine defined
in the ODM to display the device-specific statistics. This device-dependent
routine is a command that will be executed using fork() and exec() out of
fddistat. In a busy system there may be some delay doing this. If the system is
running out of resources (for example low on memory), the necessary fork() may
fail. All the device-dependent routines can be found using the command odmget
-q attribute=addl_stat PdAt. All statistic values displayed by fddistat are the
absolute values since startup or the last reset of these values, which is done by
using fddistat -r Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens, a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the time elapsed since the reset.

The device-driver statistics are read out of the NDD at execution time of
fddistat. The device-specific statistics are read from the device driver using the
ioctl() system call. The data gets displayed and fddistat exits. Using the -r flag,
fddistat first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always 0.

The output of the fddistat command consists of five sections: the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter-specific statistic fields. Refer to AIX 5L Version 5.2 Commands
Reference for a description of all output fields.

29.4.2 Examples for fddistat
The output of fddistat always shows the device-driver statistics as shown in
Example 29-5 on page 557. If the -d flag is used and the adapter supports it, the
device-specific statistics are displayed as well.

556 AIX 5L Performance Tools Handbook

Example 29-5 Using fddistat to display FDDI device-driver statistics

fddistat fddi0

FDDI STATISTICS (fddi0) :
Elapsed Time: 1 days 23 hours 24 minutes 55 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 61478352 Packets: 54719134
Bytes: 51091616874 Bytes: 81586386390
Interrupts: 1235849 Interrupts: 35205866
Transmit Errors: 1 Receive Errors: 0
Packets Dropped: 2751646 Packets Dropped: 2486
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 250
S/W Transmit Queue Overflow: 2751645
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 1340 Broadcast Packets: 87866
Multicast Packets: 2 Multicast Packets: 0

General Statistics:

No mbuf Errors: 36455

SMT Error Word: 00000000 SMT Event Word: 00000000
Connection Policy Violation: 0000 Port Event: 0000
Set Count Hi: 0000 Set Count Lo: 0000
Adapter Check Code: 0000 Purged Frames: 16263

ECM State Machine: IN
PCM State Machine Port A: ACTIVE
PCM State Machine Port B: ACTIVE
CFM State Machine Port A: THRU
CFM State Machine Port B: THRU
CF State Machine: THRU
MAC CFM State Machine: PRIMARY
RMT State Machine: RING_OP

Driver Flags: Up Broadcast Running
 Simplex AlternateAddress 64BitSupport

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 557

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real-time period that has elapsed since the last time
the statistics were reset. During error recovery, when a
hardware error is detected part of the statistics may be
reset. In this case another Elapsed Time is displayed in the
middle of the output reflecting the time elapsed since the
reset. In this example there was no such event so there is
no additional Elapsed Time displayed.

Transmit and Receive
Packets

The number of packets successfully transmitted and
received by the device.

Transmit and Receive
Bytes

The number of bytes successfully transmitted and
received by the device. These values and their related
packet count can show how the system is using this
network adapter. For example transmit and receive values
may be close to equal, or they may differ by a huge margin.

Transmit and Receive
Interrupts

The number of transmit and receive interrupts received by
the driver from the adapter. If these counters increase fast,
then the number of interrupts to be handled by the
operating system may reach a level where overall system
performance may be affected. Other monitoring tools like
vmstat can be used to control the interrupts per second
handled by the system.

Max Packet on S/W
Transmit Queue

The maximum number of outgoing packets ever queued to
the software transmit queue. If this value reaches the
xt_que_size set for the adapter then the xt_que_size of the
adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El fddi0, shows
the current adapter settings including xt_que_size. Use
SMIT or chdev to increase xt_que_size if necessary and
possible. The possible values allowed to set can be found
using the ODM as shown in Example 29-7 on page 565 or
the lsattr -Rl fddi0 -a xt_que_size command.

S/W Transmit Queue
Overflow

The number of outgoing packets that overflowed the
software transmit queue. If this is not zero then you need
to increase the transmit queue size xt_que_size, as shown
in the description for the field Max Packets on S/W
Transmit Queue.

Current S/W + H/W
Transmit Queue
Length

The number of pending outgoing packets on either the
software transmit queue or the hardware transmit queue.
This reflects the current load on the adapter. This is the
sum of the Current SW Transmit Queue Length and
Current HW Transmit Queue Length fields.

558 AIX 5L Performance Tools Handbook

If the statistics for errors, such as the transmit errors, are increasing fast they
should be corrected first; error counters should stay close to zero. Some errors
may be caused by hardware problems. These hardware problems must be fixed
before any software tuning is performed.

Example 29-5 on page 557 shows the output of fddistat on a system with two
different problems.

� The field S/W Transmit Queue Overflow shows a large number of overflows.
This is too high for the two days of Elapsed Time. The value 250 for the field
Max Packets on S/W Transmit Queue indicates that the tx_que_size for this
adapter may be set to 250. lsattr -El fddi0 and lsattr -Rl fddi0 -a
tx_que_size should be used to see if the transmit queue size can be
increased. SMIT or chdev should then be used to raise the value for
tx_que_size.

� The field No mbuf Errors indicates a shortage of mbufs. The netstat -m
command should be used to verify this; refer to Chapter 31, “The netstat
command” on page 619 for details about the netstat command and the
proper tuning in case of mbuf errors.

Broadcast Packets The number of broadcast packets transmitted and
received without any error. A high value compared to the
total transmitted and received packets indicates that the
system is sending and receiving many broadcasts.
Broadcasts increase network load, and may increase the
load on all other systems on the same subnetwork.

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbufs to
process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as additional network
load. The netstat command can be used to confirm this.
For details refer to Chapter 31, “The netstat command” on
page 619.

Some FDDI adapters for AIX use mbuf buffers for their
transmit queue. In this case Packets Dropped in the
transmit statistics could be caused by a No mbuf Errors
count greater than zero.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 559

Fixing the software transmit queue overflows and the mbuf errors will reduce, if
not eliminate, the dropped packets errors. Verification can be done by resetting
the FDDI device-driver statistics with fddistat -r fddi0, then running the
system normally for two days. After these two days another fddistat fddi0
output should be created and compared to the previous one.

Sometimes it is useful to know how many packets an application or task sends or
receives. Use fddistat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
fddistat Device_Name again to get this information. An example for using
fddistat to monitor FDDI statistics during execution of one program is:

fddistat -r fddi0; ping -f 10.10.10.10 64 1024; fddistat fddi0

In other cases it may be of interest to collect FDDI statistics for a fixed time
frame. This can be done using fddistat as shown in the following command:

fddistat -r fddi0;sleep 3600;fddistat fddi0

The numbers of packets, bytes, and broadcasts transmitted and received depend
on many factors, such as the applications running on the system or the number
of systems connected to the subnetwork. There is no rule about how much is too
much. Monitoring an FDDI adapter on a regular basis using fddistat can point
out possible problems before users notice any slowdown. The problem can be
taken care of by redesigning the network layout, or tuning the adapter
parameters using the chdev command or network options using the no command.
(See Chapter 34, “The no command” on page 665.)

29.5 tokstat
The syntax of the tokstat command is:

tokstat [-d -r -t] Device_Name

Flags
-d Displays all the device-driver statistics, including the

device-specific statistics.

-r Resets the statistics to their initial values. This flag can only be
issued by privileged users.

-t Toggles debug trace in some device drivers.

560 AIX 5L Performance Tools Handbook

Parameters
Device_Name The name of the token-ring device,such as tok0. If an invalid

device name is specified, the tokstat command produces an
error message stating that it could not connect to the device.

29.5.1 Information about measurement and sampling
The tokstat command used without flags provides generic statistics that consist
of transmit statistics, receive statistics, and general statistics. This includes
packets and bytes transmitted and received, information about hardware and
software queue usage as well as error counters. Using the -d flag displays
device-specific statistics in addition to the device-driver statistics.

The tokstat command provides a snapshot of the device-driver statistics
collected by the NDD. The header file /usr/include/sys/ndd.h defines the used
data structure ndd_genstats as well as the ioctl() operation
NDD_GET_ALL_STATS, which is used to read the data from the NDD. tokstat
uses a device-dependent routine defined in the ODM to display the
device-specific statistics. This device-dependent routine is a command that will
be executed using fork() and exec() out of tokstat. In a busy system there may
be some delay doing this. In case the system is running out of resources (for
example, low on memory), the necessary fork() may fail. All device-dependent
routines can be found using the command odmget -q attribute=addl_stat
PdAt. All statistic values displayed by tokstat are the absolute values since
startup or the last reset of these values, which is done by using tokstat -r
Device_Name.

Hardware error recovery may cause some statistic values to be reset. If this
happens, a second Elapsed Time is displayed in the middle of the statistic’s
output reflecting the time elapsed since the reset.

The device-driver statistics are read out of the NDD at execution time of tokstat.
The device-specific statistics are read from the device driver using the ioctl()
system call. The data gets displayed and tokstat exits. Using the -r flag, tokstat
first displays the current statistic values and then resets them.

Some adapters may not support a specific statistic. In this case the
non-supported statistic fields are always zero.

The output of the tokstat command consists of five sections: the title fields, the
transmit statistics fields, the receive statistics fields, the general statistics fields,
and the adapter specific statistic fields. Refer to the AIX 5L Version 5.2
Commands Reference for a description of all output fields.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 561

29.5.2 Examples for tokstat
The output of tokstat always shows the device-driver statistics. If the -d flag is
used, the device-specific statistics are displayed.

Example 29-6 shows the output of tokstat including the device-specific
statistics.

Example 29-6 Displaying token-ring device-driver statistics

tokstat -d tok0

TOKEN-RING STATISTICS (tok0) :
Device Type: IBM PCI Tokenring Adapter (14103e00)
Hardware Address: 00:60:94:8a:07:5b
Elapsed Time: 0 days 3 hours 27 minutes 47 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 48476 Packets: 67756
Bytes: 41102959 Bytes: 38439965
Interrupts: 13491 Interrupts: 67733
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 890
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 10 Broadcast Packets: 26634
Multicast Packets: 0 Multicast Packets: 4341
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running

AlternateAddress 64BitSupport ReceiveFunctionalAddr
16 Mbps

562 AIX 5L Performance Tools Handbook

IBM PCI Tokenring Adapter (14103e00) Specific Statistics:

Media Speed Running: 16 Mbps Half Duplex
Media Speed Selected: 16 Mbps Full Duplex
Receive Overruns : 0
Transmit Underruns : 0
ARI/FCI errors : 0
Microcode level on the adapter :00IHSS2B4
Num pkts in priority sw tx queue : 0
Num pkts in priority hw tx queue : 0
Open Firmware Level : 001PXHL00

The major fields of interest concerning performance and performance monitoring
are:

Elapsed Time The real-time period that has elapsed since the last time
the statistics were reset. During error recovery, when a
hardware error is detected, part of the statistics may be
reset. In this case another Elapsed Time is displayed in the
middle of the statistic’s output reflecting the time elapsed
since the reset. In this example there was no such event
so there is no additional Elapsed Time displayed.

Transmit and Receive
Packets

The number of packets successfully transmitted and
received by the device.

Transmit and Receive
Bytes

The number of bytes successfully transmitted and
received by the device. These values and their related
packet count can show how the system is using this
network adapter. For example transmit and receive values
may be close to equal, or they may differ by a huge margin.

Transmit and Receive
Interrupts

The number of transmit and receive interrupts received by
the driver from the adapter. If these counters increase fast,
then the number of interrupts to be handled by the
operating system may reach a level where overall system
performance may be affected. Other monitoring tools like
vmstat can be used to control the interrupts per second
handled by the system.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 563

Max Packet on S/W
Transmit Queue

The maximum number of outgoing packets ever queued to
the software transmit queue. If this value reaches the
xt_que_size set for the adapter then the xt_que_size of the
adapter is not set to an adequate value. The command
lsattr -El Device_Name, like lsattr -El tok0, shows
the current adapter settings including xt_que_size. Use
SMIT or chdev to increase xt_que_size if necessary and
possible. The possible values allowed to set can be found
using the ODM as shown in Example 29-7 on page 565 or
the lsattr -Rl tok0 -a xmt_que_size command.

S/W Transmit Queue
Overflow

The number of outgoing packets that overflowed the
software transmit queue. If this is not zero, you must
increase the transmit queue size xt_que_size, as shown in
the description for the field Max Packets on S/W Transmit
Queue.

Current S/W + H/W
Transmit Queue
Length

The number of pending outgoing packets on either the
software transmit queue or the hardware transmit queue.
This reflects the current load on the adapter. This is the
sum of the Current SW Transmit Queue Length and
Current HW Transmit Queue Length fields.

Broadcast Packets The number of broadcast packets transmitted and
received without any error. A high value compared to the
total transmitted and received packets indicates that the
system is sending and receiving many broadcasts.
Broadcasts increase network load, and may increase the
load on all other systems on the same subnetwork.

Current SW Transmit
Queue Length

The number of outgoing packets currently on the software
transmit queue.

Current HW Transmit
Queue Length

The number of outgoing packets currently on the hardware
transmit queue.

No mbuf Errors The number of times communications mbufs were not
available to the device driver. This usually occurs during
receive operations when the driver must obtain mbufs to
process inbound packets. If the mbuf pool for the
requested size is empty, the packet will be discarded. This
may cause retransmission by the sending system, which
increases load on the system as well as additional network
load. The netstat command can be used to confirm this.
For details refer to Chapter 31, “The netstat command” on
page 619.

564 AIX 5L Performance Tools Handbook

Example 29-7 shows how to get the possible xmt_que_size values for tok0.

Example 29-7 Get the possible xmt_que_size values for tok0

odmget -q name=tok0 CuDv
CuDv:

name = "tok0"
status = 1
chgstatus = 2
ddins = "pci/cstokdd"
location = "10-68"
parent = "pci0"
connwhere = "104"
PdDvLn = "adapter/pci/14103e00"

odmget -q 'uniquetype=adapter/pci/14103e00 and attribute=xmt_que_size' PdAt
PdAt:

uniquetype = "adapter/pci/14103e00"
attribute = "xmt_que_size"
deflt = "8192"
values = "32-16384,1"
width = ""
type = "R"
generic = "DU"
rep = "nr"
nls_index = 7

In Example 29-7 on page 565, the following happens:

� The first odmget reads the adapter data from ODM class CuDv. We need the
value of the PdDvLn field, which identifies the adapter in the PdAt class for the
second odmget.

� The second odmget shows the default value for xmt_que_size in the deflt
field and the possible values in the values field. In this sample the
xmt_que_size can be set to values between 32 and 16384 in steps by 1 using
the chdev command:

chdev -l tok -a xmt_que_size=16384 -P

If the statistics for errors, for example transmit errors, are increasing fast, then
these errors should be corrected first. Some errors may be caused by hardware
problems, which should be fixed before any software tuning is performed. These
error counters should stay close to zero.

Note: The chdev command cannot change an active adapter. Using the -P
flag forces chdev to only change the value in ODM. After the next reboot this
new value gets used.

 Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands 565

Sometimes it is useful to know how many packets an application or task sends or
receives. Use tokstat -r Device_Name to reset the counters to zero, then run
the application or task. After the completion of the application or task, run
tokstat Device_Name again to get this information. An example for using
tokstat to monitor token-ring statistics during execution of one program is:

tokstat -r tok0; ping -f 10.10.10.10 64 1024; tokstat tok0

In other cases it may be of interest to collect token-ring statistics for a fixed time
frame. This can be done using tokstat as shown in the following command:

tokstat -r tok0;sleep 300;tokstat tok0

The numbers of packets, bytes, and broadcasts transmitted and received depend
on many factors, such as the applications running on the system or the number
of systems connected to the subnetwork. There is no rule about how much is too
much. Monitoring a token-ring adapter on a regular basis using tokstat can point
out possible problems before users notice any slowdown. The problem can be
taken care of by redesigning the network layout or tuning the adapter parameters
using the chdev command or tuning network options using the no command. (See
Chapter 34, “The no command” on page 665.)

566 AIX 5L Performance Tools Handbook

Chapter 30. TCP/IP packet tracing tools

This chapter discusses network packet tracing tools. The tools consist of:

� IP packet tracing commands: iptrace, ipreport, and ipfilter
� TCP packet tracing commands: tcpdump and trpt

These commands reside in /usr/sbin and are part of the bos.net.tcp.server
fileset, which is installable from the AIX base installation media.

30

© Copyright IBM Corp. 2001, 2003 567

30.1 Network packet tracing tools
The iptrace command records Internet packets received from configured
network interfaces. Command flags provide a filter so that iptrace only traces
packets meeting specific criteria. Monitoring the network traffic with iptrace can
often be very useful in determining why network performance is not as expected.

The ipreport command formats the data file generated by iptrace. The
ipreport command generates a readable trace report from the specified trace
file created by the iptrace command. Monitoring the network traffic with iptrace
or tcpdump can often be very useful in determining why network performance is
not as expected. The ipreport command will format the binary trace reports
from either of these commands, or network sniffer, into an ASCII (or EBCDIC)
formatted file.

The ipfilter command sorts the output file created by the ipreport command,
provided the -r (for NFS/RPC reports) and -s (for all reports) flags have been
used in generating the report. The ipfilter command provides information
about NFS, UDP, TCP, IPX, and ICMP headers in table form. Information can be
displayed together, or separated by headers into different files. It can also provide
separate information about NFS calls and replies.

The tcpdump command prints out the headers of packets captured on a network
interface. The tcpdump command is a very powerful network packet trace tool that
allows a wide range of packet filtering criteria. These criteria can range from
simple trace-all options to detailed byte and bit level evaluations in packet
headers and data parts.

The trpt command performs protocol tracing on TCP sockets. Monitoring the
network traffic with trpt can be useful in determining how applications that use
the TCP connection oriented communications protocol perform.

For more detailed information about the TCP/IP protocols, refer to:

� 1.5, “Network performance” on page 31

� AIX 5L Version 5.2 Performance Management Guide

� AIX 5L Version 5.2 System Management Guide: Communications and
Networks

� TCP/IP Tutorial and Technical Overview, GG24-3376

� RS/6000 SP System Performance Tuning Update, SG24-5340

� Appropriate Request For Comment (RFC) at http://www.rfc-editor.org/

568 AIX 5L Performance Tools Handbook

http://www.rfc-editor.org/

30.2 iptrace
The syntax of the iptrace command is:

iptrace [-a] [-e] [-d Host [-b]] [-u][-s Host [-b]] [-p Port_list]
[-P Protocol_list] [-i Interface][-L Log_size] LogFile

Flags
-a Suppresses ARP packets.

-b Changes the -d or -s flags to bidirectional mode.

-d Host Records packets headed for the destination host specified
by the Host variable.

-e Enables promiscuous mode on network adapters that
support this function.

-i Interface Records packets received on the interface specified by the
Interface variable.

-L Log_size This option causes iptrace to log data such that the LogFile
is copied to LogFile.old at the start, and every time it
becomes approximately Log_size bytes long.

-P Protocol_list Records packets that use the protocol specified by the
Protocol_list variable.

-p Port_list Records packets that use the port number specified by the
Port_list variable.

-s Host Records packets coming from the source host specified by
the Host variable.

-u Unloads the kernel extension that was loaded by the iptrace
daemon at startup.

Parameters
LogFile Specifies the name of the file to save the results of the

network trace.

Snaplen Specifies the number of bytes of data from each packet.

Interface Network interface to listen for packets on.

Host If used with the -b and the -d flag, iptrace records packets
both going to and coming from the host specified by the
Host variable. The Host variable can be a host name or an
Internet address in dotted-decimal format.

Log_size When the output file for network trace data reaches
Log_size bytes, it is copied to LogFile.old. Using this flag is

 Chapter 30. TCP/IP packet tracing tools 569

also an indicator that the LogFile file should be copied to
LogFile.old at the start.

Protocol_list A list of protocol specifications to monitor. Several protocols
can be monitored by a comma-separated list of identifiers.
The Protocol_list variable can be a decimal number or name
from the /etc/protocols file.

Port_list A list of service/port specifications to monitor. Several
services/ports can be monitored by a comma-separated list
of identifiers. The Port_list variable can be a decimal number
or name from the /etc/services file.

TCP/IP protocol and services tables
Table 30-1 is an extraction from the /etc/protocols file that shows some
interesting protocol types and their numeric value.

Table 30-1 Some important protocols

Table 30-2 is an extraction from the /etc/services file that shows some interesting
services and ports, and the protocol used on those ports.

Table 30-2 Selection from /etc/services

Symbolic
name

Numeric
ID

Protocol Description

ip 0 IP Dummy for the Internet Protocol

icmp 1 ICMP Internet control message protocol

igmp 2 IGMP Internet group multicast protocol

tcp 6 TCP Transmission control protocol

udp 17 UDP User datagram protocol

Symbolic
name

Port Protocol Description

echo 7 tcp Used by the ping command

echo 7 udp Used by the ping command

ftp-data 20 tcp Used by the ftp command

ftp 21 tcp Used by the ftp command

telnet 23 tcp Used by the telnet command

smtp 25 tcp Used by the mail commands

domain 53 udp Used by nameserver commands

570 AIX 5L Performance Tools Handbook

30.2.1 Information about measurement and sampling
The iptrace command can monitor more than one network interface at the same
time, such as the SP Switch network interfaces, and not only one as with the
tcpdump command (see 30.8, “tcpdump” on page 587). With the iptrace
command the kernel copies the whole network packet to user space (to the
monitoring iptrace command) from the kernel space. This can result in a lot of
dropped packets, especially if the number of monitored interfaces has not been
limited by using the -i Interface option to reduce the number of monitored
interfaces.

Because network tracing can produce large amounts of data, it is important to
limit the network trace either by scope (what to trace) or amount (how much to
trace). Unlike the tcpdump command, the iptrace command does not offer many
options to reduce the scope of the network trace. The iptrace command also
relies on the ipreport command (see 30.3, “ipreport” on page 572) to format the
binary network trace data into a readable format (unlike tcpdump which can do
both). Note that the iptrace command will perform any filtering of packets in user
space and not in kernel space as the tcpdump command does (unless the -B flag
is used).

The iptrace command uses either the network trace kernel extension
(net_xmit_trace kernel service), which is the default method, or the Berkeley
Packet Filter (BPF) packet capture library to capture network packets (-u flag).
The iptrace command can either run as a daemon or under the System
Resource Controller (SRC).

For more information about the BPF, see “Packet Capture Library Subroutines” in
AIX 5L Version 5.2 Technical Reference: Communications, Volume 2.

pop 109 tcp Used by postoffice mail commands

pop3 110 tcp Used by postoffice3 mail commands

exec 512 tcp Used by remote commands

login 513 tcp Used by remote commands

shell 514 tcp Used by remote commands

printer 515 tcp Used by print spooler commands

route 520 udp Used by router (routed commands)

Symbolic
name

Port Protocol Description

 Chapter 30. TCP/IP packet tracing tools 571

For more information about the net_xmit_trace kernel service, see AIX 5L
Version 5.2 Technical Reference: Kernel and Subsystems, Volume 1.

30.3 ipreport
The syntax of the ipreport command is:

ipreport [-CenrsSvx1NT] [-c Count] [-j Pktnum] [-X Bytes] LogFile

Flags
-c Count Display Count number of packets.

-C Validate checksums.

-e Show EBCDIC instead of ASCII.

-j Pktnum Jump to packet number Pktnum.

-n Number of packets.

-N Do not do name resolution.

-r Decodes remote procedure call (RPC) packets.

-s Start lines with protocol indicator strings.

-S Input file was generated on a sniffer.

-T Input file is in tcpdump format.

-v Verbose.

-x Print packet in hex.

-X Bytes Limit hex dumps to bytes.

-1 Compatibility trace was generated on AIX V3.1.

Parameters
LogFile The LogFile parameter specifies the name of the file

containing the results of the Internet Protocol trace. This
file can be generated by the iptrace or tcpdump
commands.

Count Number of packets to display.

Bytes Number of bytes to display for hex dumps.

Pktnum Start reporting from packet number Pktnum.

572 AIX 5L Performance Tools Handbook

30.3.1 Information about measurement and sampling
The ipreport uses a binary input file from either the iptrace or tcpdump
commands1. Usually these network trace commands are executed in such a way
that they create a binary file that is then used by ipreport. The ipreport
command can, however, be used in a command pipeline with the tcpdump
command.

You must be aware that tracing and analyzing network traffic is not easy. You
should understand how different applications communicate, what protocols they
use, how these network protocols work, and what effect the network tunables
have on the protocols traffic flow.

For schematic information about frame and packet headers, refer to “Packet
header formats” on page 535.

30.4 ipfilter
The syntax of the ipfilter command is:

ipfilter [-f [u n t x c a]] [-s [u n t x c a]] [-n [-d milliseconds]]
ipreport_output_file

Flags
u n t x c a Specifies operation headers (UDP, NFS, TCP, IPX, and

ICMP, and ATM respectively).

-d milliseconds Only Call/Reply pairs whose elapsed time is greater than
milliseconds are to be shown.

-f [u n t x c] Selected operations are to be shown in ipfilter.all

-n Generates an nfs.rpt file.

-s [u n t x c] Separate files are to be produced for each of the selected
operations.

Parameters
milliseconds Call/Reply pairs whose elapsed time is greater than

milliseconds.

ipreport_output_file Name of file created by the ipreport command.

1 Or network sniffer device.

 Chapter 30. TCP/IP packet tracing tools 573

30.4.1 Information about measurement and sampling
ipfilter will read a file created by ipreport. The ipreport file has to be created
by using the -s or -rsn flag, which specifies that ipreport will prefix each line with
the protocol header. If no option flags are specified, ipfilter will generate a file
containing all protocols called ipfilter.all.

30.4.2 Protocols and header type options
Table 30-3 shows the mapping between protocol (header types) and the
generated output file depending on how the option flags are specified to the
ipfilter command:

Table 30-3 ipfilter header types and options

30.5 Examples for iptrace, ipreport, and ipfilter
To trace a specific network interface, use the -i option with the iptrace command
as shown in Example 30-1 to trace all traffic on the tr0 interface (token-ring).

Example 30-1 Using iptrace to trace a network interface

startsrc -s iptrace -a "-i tr0 /tmp/iptrace.tr0"&&
read &&
stopsrc -s iptrace

Example 30-2 shows a short output from the network trace started in the
previous example that shows the ECHO_REQUEST from 1.39.7.84 and the
ECHO_REPLY from 1.3.1.164 (probably someone was using the ping command).

Example 30-2 Using ipreport

ipreport -sn /tmp/iptrace.tr0
IPTRACE version: 2.0

Packet Number 1

Header Type Header type
option

Output filename (-s) Output filename (-f)

NFS (RPC) n ipfilter.nfs ipfilter.all

TCP t ipfilter.tcp ipfilter.all

UDP u ipfilter.udp ipfilter.all

ICMP c ipfilter.icmp ipfilter.all

IPX (PC protocol) x ipfilter.ipx ipfilter.all

574 AIX 5L Performance Tools Handbook

TOK: ====(106 bytes received on interface tr0)==== 16:20:46.509067872
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.39.7.84 > (sp3tr35.itso.ibm.com)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=16278, ip_off=0
IP: ip_ttl=245, ip_sum=6af1, ip_p = 1 (ICMP)
ICMP: icmp_type=8 (ECHO_REQUEST) icmp_id=12234 icmp_seq=3743

Packet Number 2
TOK: ====(106 bytes transmitted on interface tr0)==== 16:20:46.509234785
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:60:94:8a:07:5b, dst = 08:00:5a:fe:21:06]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.164 > (wlmhost)
IP: < DST = 1.39.7.84 > (sp3tr35.itso.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=84, ip_id=45289, ip_off=0
IP: ip_ttl=255, ip_sum=ef9d, ip_p = 1 (ICMP)
ICMP: icmp_type=0 (ECHO_REPLY) icmp_id=12234 icmp_seq=3743
...(lines omitted)...

30.5.1 TCP packets
Example 30-3 shows how to trace bi-directional (-b) TCP connections (-P tcp) to
and from system 1.1.1.114, suppressing ARP packets (-a) and saving the output
in a file (/tmp/iptrace.tcp). The iptrace command runs until the ENTER key is
pressed (read shell built-in function), and the stopsrc command stops the trace.
The double ampersand (&&) means that if the previous command was OK, then
execute the following command.

Example 30-3 Using iptrace to trace tcp to and from a system

startsrc -s iptrace -a "-a -b -P tcp -d 1.1.1.114 /tmp/iptrace.tcp"&&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 30-4 on page 576 shows.

 Chapter 30. TCP/IP packet tracing tools 575

Example 30-4 Using ipreport

ipreport -s /tmp/iptrace.tcp
IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 11:28:29.853288442
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=50183, ip_off=0 DF
IP: ip_ttl=128, ip_sum=21ad, ip_p = 6 (TCP)
TCP: <source port=2423, destination port=23(telnet) >
TCP: th_seq=357cdd86, th_ack=a0005f0b
TCP: th_off=5, flags<ACK>
TCP: th_win=17155, th_sum=3c19, th_urp=0
...(lines omitted)...

30.5.2 UDP packets
Example 30-5 shows how to trace bi-directional (-b) UDP connections (-P udp) to
and from system 1.1.1.114, suppressing ARP packets (-a) and saving the output
in a file (/tmp/iptrace.udp). The iptrace command runs until the ENTER key is
pressed (read shell built-in function), and the stopsrc command stops the trace.
The double ampersand (&&) means that if the previous command was OK, then
execute the following command.

Example 30-5 Using iptrace to trace udp to and from a system

startsrc -s iptrace -a “-a -b -P udp -d 1.1.1.114 /tmp/iptrace.udp” &&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 30-6 shows.

Example 30-6 Using ipreport

ipreport -s /tmp/iptrace.udp
IPTRACE version: 2.0

TOK: ====(202 bytes received on interface tr0)==== 11:30:03.808584556
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40

576 AIX 5L Performance Tools Handbook

TOK: [src = 80:60:94:87:0a:87, dst = c0:00:00:04:00:00]
TOK: routing control field = 8270, 0 routing segments
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 229.55.150.208 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=178, ip_id=50228, ip_off=0
IP: ip_ttl=10, ip_sum=658a, ip_p = 17 (UDP)
UDP: <source port=1346, <destination port=1345 >
UDP: [udp length = 158 | udp checksum = fbf5]
UDP: 00000000 24020209 0133064c 6f636174 65220100 |$....3.Locate"..|
UDP: 00000010 24020209 02330750 726f6475 63740c02 |$....3.Product..|
UDP: 00000020 24020209 03330547 686f7374 0c032402 |$....3.Ghost..$.|
UDP: 00000030 02090433 09436f6d 706f6e65 6e740c04 |...3.Component..|
UDP: 00000040 24020209 05330d43 6f6e6669 675f5365 |$....3.Config_Se|
UDP: 00000050 72766572 0c052402 02090633 044e616d |rver..$....3.Nam|
UDP: 00000060 650c0620 149c207f 9b2abcc2 0a50c17a |e..*...P.z|
UDP: 00000070 02de9f5f 1789e437 ef240202 09073309 |..._...7.$....3.|
UDP: 00000080 4368616c 6c656e67 650c0720 08f79efd |Challenge..|
UDP: 00000090 0bb44bf2 cb02 |..K... |
...(lines omitted)...

30.5.3 UDP domain name server requests and responses
Example 30-7 shows how to trace Domain Name Server (DNS) connections (-p
domain), suppressing ARP packets (-a) and saving the output in a file
(/tmp/iptrace.dns). The iptrace command runs until the ENTER key is pressed
(read shell built-in function), and the stopsrc command stops the trace. The
double ampersand (&&) means that if the previous command was OK, then
execute the following command).

Example 30-7 Using iptrace to trace DNS

startsrc -s iptrace -a "-a -p domain /tmp/iptrace.dns" &&
read &&
stopsrc -s iptrace

To obtain a readable report from the iptrace binary data, use the ipreport
command, as Example 30-8 on page 578 shows.

 Chapter 30. TCP/IP packet tracing tools 577

Example 30-8 Using ipreport

ipreport -s /tmp/iptrace.dns
IPTRACE version: 2.0

TOK: ====(90 bytes transmitted on interface tr0)==== 11:33:55.782893557
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 0, frame control field = 40
TOK: [src = 00:60:94:8a:07:5b, dst = 00:20:35:3f:7e:11]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.164 > (wlmhost)
IP: < DST = 1.3.1.2 > (dude.itso.ibm.com)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=68, ip_id=28279, ip_off=0
IP: ip_ttl=30, ip_sum=1987, ip_p = 17 (UDP)
UDP: <source port=33681, <destination port=53(domain) >
UDP: [udp length = 48 | udp checksum = adae]
DNS Packet breakdown:
 QUESTIONS:
 114.1.3.1.in-addr.arpa, type = PTR, class = IN
...(lines omitted)...

30.6 Examples for ipreport
In the following examples we show the use of ipreport with the iptrace and
tcpdump commands.

30.6.1 Using ipreport with tcpdump
To use ipreport on data from tcpdump, use the -T flag with ipreport as in
Example 30-9.

Example 30-9 Using ipreport with tcpdump

tcpdump -w - | ipreport -rsT - | more
TCPDUMP

TOK: ====(80 bytes on interface token-ring)==== 16:42:43.327359881
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:20:35:72:98:31]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.7.140 > (sox5.itso.ibm.com)
IP: < DST = 1.3.1.41 >

578 AIX 5L Performance Tools Handbook

IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1500, ip_id=23840, ip_off=0
IP: ip_ttl=57, ip_sum=442, ip_p = 6 (TCP)
IP: truncated-ip, 1442 bytes missing
IP: 00000000 043804fa a8fb14da 0937db32 50107d78 |.8.......7.2P.}x|
IP: 00000010 33330000 863fcc52 996d64f2 577d2c2c |33...?.R.md.W},,|
IP: 00000020 c5f7c26a 1eed |...j.. |
...(lines omitted)...

Using the tcpdump command with the -w - (dash) flags specifies that tcpdump
should write raw packets to stdout instead of parsing and printing them out. By
specifying a dash (-) as the input file to ipreport, it will read from stdin. The -rs
flags tells ipreport to start lines with protocol indicator strings and to be aware of
RPC packets.

30.6.2 Using ipreport with iptrace
Example 30-10 shows how to trace a bidirectional connection between a server
host and a client (remote node), save the network trace output in a file, wait for 30
seconds, and then stop the trace. After iptrace is stopped the ipreport
command is executed to generate a readable report excluding host name lookup,
only reporting on the 100 first packets starting from packet number 55, and
including RPC information.

Example 30-10 ipreport from iptrace input

startsrc -s iptrace -a "-a -b -d remotenode /tmp/iptrace.out" &&
> sleep 30 &&
> stopsrc -s iptrace
ipreport -c 100 -j 55 -v -N -rs /tmp/iptrace.out
IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 12:51:59.944658222
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 >
IP: < DST = 1.3.1.164 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=41714, ip_off=0 DF
IP: ip_ttl=128, ip_sum=42c2, ip_p = 6 (TCP)
TCP: <source port=4743, destination port=23(telnet) >
TCP: th_seq=d3b63f19, th_ack=eb301b27
TCP: th_off=5, flags<ACK>
TCP: th_win=16363, th_sum=2f08, th_urp=0

...(lines omitted)...

 Chapter 30. TCP/IP packet tracing tools 579

++++++ END OF REPORT ++++++

processed 154 packets
displayed 100 packets
Summary of RPC CALL packets

Example 30-11 shows the initiation of a TCP connection between two hosts
(from SRC to DST) on an Ethernet network.

Example 30-11 TCP initiation

ETH: ====(74 bytes received on interface en0)==== 12:22:05.191609117
ETH: [00:04:ac:ec:07:98 -> 00:04:ac:ec:08:d0] type 800 (IP)
IP: < SRC = 1.40.35.98 >
IP: < DST = 1.40.35.102 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=41626, ip_off=0
IP: ip_ttl=60, ip_sum=9309, ip_p = 6 (TCP)
TCP: <source port=34308, destination port=2049(shilp) >
TCP: th_seq=f47ddc71, th_ack=0
TCP: th_off=10, flags<SYN>
TCP: th_win=65535, th_sum=4b0a, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 1
TCP: nop
...(lines omitted)...

Note the request for message segment size of 1460. Example 30-12 is the reply
to the initiation request (note the SYN and ACK in the flags field).

Example 30-12 TCP initiation reply

ETH: ====(74 bytes transmitted on interface en0)==== 12:22:05.191741778
ETH: [00:04:ac:ec:08:d0 -> 00:04:ac:ec:07:98] type 800 (IP)
IP: < SRC = 1.40.35.102 >
IP: < DST = 1.40.35.98 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=60, ip_id=51148, ip_off=0
IP: ip_ttl=60, ip_sum=6dd7, ip_p = 6 (TCP)
TCP: <source port=2049(shilp), destination port=34308 >
TCP: th_seq=b29207af, th_ack=f47ddc72
TCP: th_off=10, flags<SYN | ACK>
TCP: th_win=59368, th_sum=5530, th_urp=0
TCP: mss 1460
TCP: nop
TCP: wscale 0
TCP: nop
...(lines omitted)...

580 AIX 5L Performance Tools Handbook

For a more information about the protocol headers, refer to “Packet header
formats” on page 535 and the TCP/IP Protocols chapter in the AIX 5L Version 5.2
System Management Guide: Communications and Networks.

Below we give a brief description of the ipreport report shown in the example
above:

First line A network frame summary line.

Second line Contains the destination and source Media Access
Control (MAC) addresses and the frame type number and
protocol in the following format:

##:##:##:##:##:## -> ##:##:##:##:##:##] type ### (X)

SRC The source (sender) of the packet.

DST The destination (receiver) for the packet.

source port The port that the sending service used to transmit the
application layer data from.

destination port The port that the receiving service uses to receive data.

ip_ The ip_ fields correspond to the IP header fields (see “IP
V4 (RFC 791) packet header” on page 536). For example,
the ip_len field is the size including all packet information,
the ip_hl is the IP header size, the ip_v is the IP version (4
or 6), and ip_p is the transport layer protocol (such as 1
for ICMP, 6 for TCP, and 17 for UDP). If the field is
“unknown internet protocol“ check the /etc/protocols file
and remove the comment (#) for the protocol line with the
matching ip_p number.

th_seq th_seq will be a large number for the first packet. After the
three-way handshake has established a TCP connection,
th_seq will equal the th_ack from the last packet from the
other system. A th_ack of zero indicates that this is the
first packet of the sequence. After this it will contain the
th_seq from the last system plus the number of data bytes
in the last packet.

th_win Indicates the number of bytes of receive buffer space
available from the message originator. If the th_win field is
zero (0), it means that the other side is not accepting any
more data for the moment.

 Chapter 30. TCP/IP packet tracing tools 581

flags The flags field contains the control bits to identify the
purpose of the packet. A brief explanation of some flags
and combinations:

SYN Synchronize the sequence numbers, packet
from the first part in the connection, and the
first part of initial connection setup three-way
handshake.

ACK Acknowledgement of receipt, and also the
third part of initial connection setup three-way
handshake from the first part in the
connection.

FIN Indicates that the sender has reached the
end of its byte stream.

PUSH Segment requests a PUSH (to deliver data).

URG Urgent pointer field is valid.

RST Resets the connection.

SYN|ACK Synchronize the sequence numbers and
acknowledge from the second part in the
connection, and the second part of initial
connection setup three-way handshake from
the second part in the connection.

FIN|ACK Acknowledge receipt, and the sender
indicates that it is finished with this
connection. Either part can indicate the
completion of a connection. However, data
may still be sent.

PUSH|ACK Acknowledge receipt and PUSH data to
application.

30.7 Examples for ipfilter
The ipfilter command summarizes TCP/IP traffic flow by using the ASCII
output created by the ipreport command. Because the ipreport command uses
input from either iptrace or tcpdump, these commands must first be used to
create a binary trace of the network communication. In the following examples
we show how to create the input file for ipfilter and then show the different
reports that ipfilter can produce.

582 AIX 5L Performance Tools Handbook

30.7.1 Tracing TCP/IP traffic
To trace TCP/IP traffic and use this as input to the ipfilter command, we can
use either the iptrace command, as shown in Example 30-13, or the tcpdump
command as shown in Example 30-14.

Example 30-13 Start and stop iptrace for ipreport and ipfilter

startsrc -s iptrace -a "-P tcp $PWD/iptrace.tcp"
0513-059 The iptrace Subsystem has been started. Subsystem PID is 19602.
stopsrc -s iptrace
0513-044 The iptrace Subsystem was requested to stop.
lssrc -s iptrace
Subsystem Group PID Status
 iptrace tcpip inoperative

The first command line starts the trace using the SRC to control the execution.
This makes it easier to stop the trace with the stopsrc command instead of using
ps and kill. In the example above we let iptrace create a file in the current
directory ($PWD).

The -w flags to the tcpdump command specifies that it should write raw packets to
stdout instead of parsing and printing them out. By specifying - as the input file to
ipreport, it will read from stdin. The -rs flags tells ipreport to start lines with
protocol indicator strings and to be aware of RPC packets.

Example 30-14 Using ipreport with tcpdump

tcpdump -vvSNs4096 -c 512 -w - tcp | ipreport -rsT - >$PWD/ipreport.tcp
tcpdump: listening on tr0
1261 packets received by filter
53 packets dropped by kernel

To create the ipreport file needed by ipfilter, run the ipreport command as
follows (still using the directory defined in the PWD environment variable as the
path to the input and output files for the commands):

ipreport -s $PWD/iptrace.out >$PWD/ipreport.tcp

Example 30-15 is a short extract from the ipreport.tcp file that we created with
the ipreport command for the iptrace created binary network trace output as
shown above in Example 30-13.

Example 30-15 ipreport output for ipfilter

IPTRACE version: 2.0

TOK: ====(62 bytes received on interface tr0)==== 12:51:53.809120113
TOK: 802.5 packet
TOK: 802.5 MAC header:

 Chapter 30. TCP/IP packet tracing tools 583

TOK: access control field = 10, frame control field = 40
TOK: [src = 00:60:94:87:0a:87, dst = 00:60:94:8a:07:5b]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 1.3.1.114 > (3b-043)
IP: < DST = 1.3.1.164 > (wlmhost)
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=40, ip_id=41691, ip_off=0 DF
IP: ip_ttl=128, ip_sum=42d9, ip_p = 6 (TCP)
TCP: <source port=4743, destination port=23(telnet) >
TCP: th_seq=d3b63f0b, th_ack=eb301af8
TCP: th_off=5, flags<ACK>
TCP: th_win=16410, th_sum=2f16, th_urp=0

...(lines omitted)...

As you can see, the lines are prefixed with a keyword for the protocol header type
the output of each line belongs to. TOK specifies the token-ring frame type from
the network interface layer, IP is the IP protocol from the network layer, and TCP
is the Transmission Control Protocol from the transport layer. (See
Example 30-15 on page 583.) The only difference between the ipreport output
for iptrace and tcpdump is the first line in the report file indicating the source of
the network trace data:

� iptrace has the header of IPTRACE version: 2.0
� tcpdump has the header of TCPDUMP

To generate a summarized report for all protocols using the ipreport output, run
the ipfilter command:

ipfilter /tmp/ipreport.out

To limit the report to NFS (RPC) only, use the -n flag:

ipfilter -n /tmp/ipreport.out

30.7.2 NFS tracing
Example 30-16 shows a sample output taken from nfs.rpt generated by
ipfilter -n. It can be used to get an overview of the NFS traffic.

Example 30-16 nfs.rpt

 NFS REPORT

 Elasped Milliseconds Cut Off= 0
 --------CALL------------------- ------REPLY-------------------
Transaction ID Request Status Packet Send Time (secs) Size Packet Send Time (secs) Size Elapsed msec
-------------- --------- -------- -------- ---------------- ----- ------- ---------------- ----- ------------
 224607473 NFSPROC3_GETATTR SUCCESS 0 53.233199 174 0 53.234672 178 0.000
 224607474 NFSPROC3_GETATTR SUCCESS 0 53.235347 174 0 53.236720 178 0.000
 224607475 NFSPROC3_GETATTR SUCCESS 0 53.253619 174 0 53.254668 178 0.000

584 AIX 5L Performance Tools Handbook

 224607476 NFSPROC3_GETATTR SUCCESS 0 53.255145 174 0 53.256369 178 0.000
 224607477 NFSPROC3_GETATTR SUCCESS 0 0.387394 174 0 0.388726 178 0.000
 224607478 NFSPROC3_GETATTR SUCCESS 0 24.852327 174 0 24.853634 178 0.000
 224607479 NFSPROC3_GETATTR SUCCESS 0 24.854309 174 0 24.855359 178 0.000
 224607480 NFSPROC3_GETATTR SUCCESS 0 24.855896 174 0 24.857220 178 0.000
 224607481 NFSPROC3_GETATTR SUCCESS 0 24.857594 174 0 24.858897 178 0.000
...(lines omitted)...

The nfs.rpt file (and the other ipfilter generated files) can either be analyzed by
browsing the file or by extracting selected parts of the information. The following
are a few examples of how to extract some interesting parts from the nfs.rpt file.
In all the examples below we exclude the header (lines 1 to 7) and all records for
UNKNOWN_PROC in the Request field.

The following sample commands extract ipfilter results for specific conditions:

� Extracts all records that have more than 0.0 in the Elapsed msec field:

awk '$10>0.0 && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

� Extracts all records that have a Size larger than 512 bytes:

awk '$9>512 && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

� Extracts all records that have Status of SUCCESS:

awk '$3!~/SUCCESS/ && $2!~/UNKNOWN_PROC/ && NR>7' nfs.rpt

� Extracts all records that have a Request type matching _READ:

awk '$2~/_READ/ && NR>7' nfs.rpt

30.7.3 TCP tracing
Example 30-17 shows a sample output taken from ipreport.tcp generated by
ipfilter -s t. It gives a good overview of the TCP packet flow.

Example 30-17 ipfilter.tcp

Operation Headers: TCP
 Ports

 pkt. Time Source Dest. Length Seq # Ack # Source Destination Net_Interface Operation

 22 18:06:44.509308 1.3.1.114 1.3.1.164 41, d3b5fa52, eb1263e6 4743, 23(telnet) tr0 TCP ACK PUSH
 23 18:06:44.509938 1.3.1.164 1.3.1.114 41, eb1263e6, d3b5fa53 23(telnet), 4743 tr0 TCP ACK PUSH
 26 18:06:44.668588 1.3.1.114 1.3.1.164 41, d3b5fa53, eb1263e7 4743, 23(telnet) tr0 TCP ACK PUSH
 27 18:06:44.669122 1.3.1.164 1.3.1.114 41, eb1263e7, d3b5fa54 23(telnet), 4743 tr0 TCP ACK PUSH
 30 18:06:44.782295 1.3.1.114 1.3.1.164 40, d3b5fa54, eb1263e8 4743, 23(telnet) tr0 TCP ACK
 33 18:06:44.827938 1.3.1.114 1.3.1.164 41, d3b5fa54, eb1263e8 4743, 23(telnet) tr0 TCP ACK PUSH
 34 18:06:44.828334 1.3.1.164 1.3.1.114 41, eb1263e8, d3b5fa55 23(telnet), 4743 tr0 TCP ACK PUSH
 35 18:06:44.913575 1.3.1.114 1.3.1.164 41, d3b5fa55, eb1263e9 4743, 23(telnet) tr0 TCP ACK PUSH
...(lines omitted)...

 Chapter 30. TCP/IP packet tracing tools 585

30.7.4 UDP tracing
Example 30-18 shows a sample output taken from ipreport.udp generated by
ipfilter -s u. It shows the UDP packet flow.

Example 30-18 ipreport.udp

Operation Headers: UDP
 Ports

 pkt. Time Source Dest. Length Seq # Ack # Source Destination Net_Interface Operation
--
-
 11 18:06:42.021652 1.3.1.114 221.55.150.208 178, 1346, 1345 tr0 UDP
 59 18:06:46.253304 1.3.1.144 1.3.1.255 265, 138(netbios- 138(netbios- tr0 UDP
 62 18:06:46.580319 1.3.1.103 221.55.150.208 178, 1346, 1345 tr0 UDP
 67 18:06:46.749541 1.3.1.164 1.3.1.2 73, 37310, 53(domain) tr0 UDP
 68 18:06:46.750645 1.3.1.2 1.3.1.164 149, 53(domain), 37310 tr0 UDP
 69 18:06:46.750974 1.3.1.164 1.3.1.2 53, 37311, 53(domain) tr0 UDP
 70 18:06:46.751848 1.3.1.2 1.3.1.164 129, 53(domain), 37311 tr0 UDP
 71 18:06:46.752215 1.3.1.164 1.3.1.2 73, 37312, 53(domain) tr0 UDP
 72 18:06:46.753022 1.3.1.2 1.3.1.164 149, 53(domain), 37312 tr0 UDP
 73 18:06:46.753331 1.3.1.164 1.3.1.2 53, 37313, 53(domain) tr0 UDP
 74 18:06:46.754269 1.3.1.2 1.3.1.164 129, 53(domain), 37313 tr0 UDP
 78 18:06:46.789004 1.3.1.164 1.3.1.2 68, 37314, 53(domain) tr0 UDP
 79 18:06:46.789946 1.3.1.2 1.3.1.164 163, 53(domain), 37314 tr0 UDP
...(lines omitted)...

30.7.5 ICMP tracing
Example 30-19 shows a sample output taken from ipreport.icmp generated by
ipfilter -s c. It shows the ICMP packet flow.

Example 30-19 ipfilter.icmp

Operation Headers: ICMP
 Ports

 pkt. Time Source Dest. Length Seq # Ack # Source Destination Net_Interface Operation
--
-
 1 18:06:40.734626 1.31.7.84 1.3.1.164 84, 0 0 tr0 ICMP
 2 18:06:40.734790 1.3.1.164 1.31.7.84 84, 0 0 tr0 ICMP
 3 18:06:40.818499 1.31.7.76 1.3.1.164 84, 0 0 tr0 ICMP
 4 18:06:40.818664 1.3.1.164 1.31.7.76 84, 0 0 tr0 ICMP
 7 18:06:41.733939 1.31.7.84 1.3.1.164 84, 0 0 tr0 ICMP
 8 18:06:41.734051 1.3.1.164 1.31.7.84 84, 0 0 tr0 ICMP
 9 18:06:41.817298 1.31.7.76 1.3.1.164 84, 0 0 tr0 ICMP
 10 18:06:41.817430 1.3.1.164 1.31.7.76 84, 0 0 tr0 ICMP
...(lines omitted)...

30.7.6 IPX tracing
Example 30-20 on page 587 shows a sample output taken from ipreport.ipx
generated by ipfilter -s x. It shows the IPX packet flow.

586 AIX 5L Performance Tools Handbook

Example 30-20 ipfilter.ipx

Operation Headers: IPX
 Ports

 pkt. Time Source Dest. Length Seq # Ack # Source Destination Net_Interface
Operation
--

 123 18:06:50.182097 0 0 58 0 0 tr0 IPX
 138 18:06:51.178240 0 0 58 0 0 tr0 IPX
 157 18:06:52.178317 0 0 58 0 0 tr0 IPX
 165 18:06:53.178040 0 0 58 0 0 tr0 IPX
...(lines omitted)...

30.7.7 ALL protocol tracing
Example 30-21 shows a sample output taken from ipreport.all generated by
ipfilter without parameters. It summarizes all protocols.

Example 30-21 ipfilter.all

Operation Headers: ICMP IPX NFS TCP UDP

 Ports

 pkt. Time Source Dest. Length Seq # Ack # Source Destination Net_Interface Operation

 1 18:06:40.734626 1.31.7.84 1.3.1.164 84, 0 0 tr0 ICMP
 2 18:06:40.734790 1.3.1.164 1.31.7.84 84, 0 0 tr0 ICMP
 3 18:06:40.818499 1.31.7.76 1.3.1.164 84, 0 0 tr0 ICMP
 4 18:06:40.818664 1.3.1.164 1.31.7.76 84, 0 0 tr0 ICMP
 5 18:06:40.832805 1.3.1.1 224.0.0.5 68, 0 0 tr0
 6 18:06:41.409446 [1.3.1.24] [1.3.1.188] 52 0 0 tr0 ARP
...(lines omitted)...
13258 18:07:07.581747 1.3.1.164 1.3.1.164 1492, b9d0c9e6, daad2ac1 35648, 20(ftp-data) lo0 TCP ACK
13259 18:07:07.581757 1.3.1.164 1.3.1.164 1492, b9d0cf92, daad2ac1 35648, 20(ftp-data) lo0 TCP ACK
13260 18:07:07.581820 1.3.1.164 1.3.1.164 1492, b9d0d53e, daad2ac1 35648, 20(ftp-data) lo0 TCP ACK
...(lines omitted)...
13381 18:07:14.592564 1.3.1.114 1.3.1.164 41, d3b5fac8, eb126778 4743, 23(telnet) tr0 TCP ACK PUSH
13382 18:07:14.593005 1.3.1.164 1.3.1.114 41, eb126778, d3b5fac9 23(telnet), 4743 tr0 TCP ACK PUSH
13383 18:07:14.638730 1.3.1.114 1.3.1.164 42, d3b5fac9, eb126779 4743, 23(telnet) tr0 TCP ACK PUSH
13384 18:07:14.639378 1.3.1.164 1.3.1.114 42, eb126779, d3b5facb 23(telnet), 4743 tr0 TCP ACK PUSH
 0 18:07:14.639378 0 0 0 0 0 ACK
...(lines omitted)...

30.8 tcpdump
The syntax of the tcpdump command is:

tcpdump [-defIlnNOpqStvx] [-c Count] [-i Interface] [-F File] [-r File]
[-w File] [-s Snaplen] [Expression]

Flags
-c Count Exits after receiving Count packets.

 Chapter 30. TCP/IP packet tracing tools 587

-d Dumps the compiled packet-matching code to standard
output, then stops.

-e Prints the link-level header on each dump line. If the -e
flag is specified, the link level header is printed out. On
Ethernet and token-ring, the source and destination
addresses, protocol, and packet length are printed.

-f Prints foreign internet addresses numerically rather than
symbolically.

-F File Uses File as input for the filter expression. The -F flag
ignores any additional expression given on the command
line.

-i Interface Listens on Interface. If unspecified, the tcpdump command
searches the system interface list for the lowest numbered
and configured interface that is up. This search excludes
loopback interfaces. For supported interfaces refer to
30.8.1, “Information about measurement and sampling”
on page 589.

-I (Capital i) Specifies immediate packet capture mode. The
-l flag does not wait for the buffer to fill up.

-l (Lowercase L) Buffers the standard out (stdout) line. This
flag is useful if you want to see the data while capturing it.

-n Omits conversion of addresses to names.

-N Omits printing domain name qualification of host names.
For example, the -N flag prints dude instead of
dude.itso.ibm.com.

-O Omits running the packet-matching code optimizer. This is
useful only if you suspect a bug in the optimizer.

-p Specifies that the interface not run in promiscuous mode.

-q Quiets output. The -q flag prints less protocol information
so output lines are shorter.

-r File Reads packets from File (which is created with the -w
option). Standard input is used if File is "-".

-s Snaplen Captures Snaplen bytes of data from each packet rather
than the default of 80. Eighty bytes is adequate for IP,
ICMP, TCP, and UDP but may truncate protocol
information from name server and NFS packets (see
below). Packets truncated because of a limited snapshot
are indicated in the output with [|proto], where proto is

588 AIX 5L Performance Tools Handbook

the name of the protocol level at which the truncation has
occurred.

-S Prints absolute rather than relative TCP sequence
numbers.

-t Omits the printing of a time stamp on each dump line.

-tt Prints an unformatted time stamp on each dump line.

-v Specifies slightly more verbose output. For example, the
time to live and the type of service information in an IP
packet is printed.

-w File Writes the raw packets to File rather than parsing and
printing them out. They can later be printed with the -r
flag. Standard output is used if File is "-".

-x Prints each packet (minus its link level header) in hex. The
smaller of the entire packet or Snaplen bytes will be
printed.

Parameters
Interface Network interface to listen for packets on.

File The File parameter specifies the name of the file to use as
input or output depending on optional flag specified.

Snaplen Specifies the number of bytes of data from each packet.

Expression Consists of one or more primitives.

30.8.1 Information about measurement and sampling
The output of the tcpdump command is protocol-dependent. The different
protocols that can be monitored are:

� Ethernet frames (ether)
� IP (ip)
� ARP and RARP (arp and rarp)
� TCP (tcp)
� UDP (udp)

Note: These are the protocol formats that tcpdump can interpret and analyze.
Because tcpdump can trace the IP protocol, it can trace other protocol types
as well, but it is left to the user to interpret the packet header. In some cases
tcpdump can also interpret the application-level packet headers, such as for
Domain Name Services (DNS).

 Chapter 30. TCP/IP packet tracing tools 589

The tcpdump command will only monitor one interface at a time (rather than
several, as the iptrace command can). Only Ethernet V2 (en) and Ethernet
802.3 (et), token-ring (tr), FDDI (fddi), ATM (at), and loopback (lo) interfaces
are supported to be monitored. For other interfaces the iptrace command can
be used (30.2, “iptrace” on page 569).

Access to monitor network traffic is controlled by the permissions on /dev/bpf#
special files because tcpdump uses the Berkeley Packet Filter (BPF) packet
capture library. (See “Packet Capture Library Subroutines” in AIX 5L Version 5.2
Technical Reference: Communications, Volume 2 for further information about
the BPF.) You can also check at http://www.tcpdump.org; however, the publicly
available tcpdump command differs from the supported tcpdump command
supplied with AIX.

You can specify the direction of the communication that is monitored, such as
simplex in one or the other direction or duplex for both directions. It is also
possible to monitor broadcast and multicast packets.

By default, all output lines are preceded by a time stamp. The time stamp is the
current clock time in the form of hh:mm:ss.frac.

The time stamps are as accurate as the kernels clock. The time stamp reflects
the time the kernel first saw the packet. No attempt is made to account for the
time lag between when the network (interface) device driver removed the packet
from the wire and when the kernel serviced the new packet interrupt. Time
Stamping can be turned off by specifying the -t flag.

Expressions
The Expression parameter consists of one or more primitives. Primitives usually
consist of an ID (name or number) preceded by one or more qualifiers. There are
three types of qualifier:

type Specifies the kind of device the ID name or number refers
to. Possible types are host, net, and port.

dir Specifies a particular transfer direction to or from ID.
Possible directions are src, dst, src or dst, and src and dst.

proto Restricts the match to a particular protocol. Possible proto
qualifiers are: ether, ip, arp, rarp, tcp, and udp. If there is no
proto qualifier, all protocols consistent with the type are
assumed.

In addition, there are some special primitive keywords that do not follow the
pattern: broadcast, multicast, less, greater, and arithmetic expressions. Note that
broadcast and multicast are only supported for the ether protocol type.

590 AIX 5L Performance Tools Handbook

http://www.tcpdump.org

Device types and transfer direction primitives
These primitives are allowed:

dst host Host True if the value of the IP (Internet Protocol) destination
field of the packet is the same as the value of the Host
variable, which may be either an address or a name.

src host Host True if the value of the IP source field of the packet is the
same as the value of the Host variable.

host Host True if the value of either the IP source or destination of
the packet is the same as the value of the Host variable.
Any of the above host expressions can be preceded with
the keywords ip, arp, or rarp, such as ip host Host.

dst net Net True if the value of the IP destination address of the
packet has a network number of Net.

src net Net True if the value of the IP source address of the packet
has a network number of Net.

net Net True if the value of either the IP source or destination
address of the packet has a network number of Net.

dst port Port True if the packet is TCP/IP or IP/UDP (Internet
Protocol/User Datagram Protocol) and has a destination
port value of Port. The port can be a number or a name
used in /etc/services. If a name is used, both the port
number and protocol are checked. If a number or
ambiguous name is used, only the port number is
checked.

src port Port True if the value of the Port variable is the same as the
value of the source port.

port Port True if the value of either the source or the destination
port of the packet is Port. Any of the above port
expressions can be preceded by the keywords tcp or udp
as in: tcp src port port

less Length True if the packet has a length less than or equal to the
Length variable.

greater Length True if the packet has a length greater than or equal to the
Length variable.

ip proto Protocol True if the packet is an IP packet of protocol type Protocol.
Protocol can be a number or one of the names icmp, udp,
or tcp. The identifiers tcp, udp, and icmp are considered
keywords and must be escaped using \ (backslash), such
as ip proto \tcp.

 Chapter 30. TCP/IP packet tracing tools 591

ip broadcast True if the packet is an IP broadcast packet. It checks for
the all-zeroes and all-ones broadcast conventions, and
looks up the local subnet mask.

ip multicast True if the packet is an IP multicast packet.

proto Protocol True if the packet is of type Protocol. Protocol can be a
number or a name like ip, arp, or rarp. These identifiers
are also keywords and must be escaped using a \
(backslash), such as proto \tcp.

Abbreviations
The following protocol abbreviations can be used:

ip, arp, rarp Abbreviations for proto directives

tcp, udp, icmp Abbreviations for ip proto directives

Arithmetic expressions
The following relational expressions can be used:

expr relop expr The relop is one of the following relational operators:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
= Equal to
!= Not equal to (exclamation point and equal sign)

The expr is an arithmetic expression composed of integer
constants (in standard C syntax) or binary operators, such
as:

+ Plus sign
- Minus sign
* Multiplication sign (asterisk)
/ Division sign (slash)
& Logical AND sign (ampersand)
| Logical OR sign (pipe)

The following operators can also be used in expressions:

len Length operator
[] Packet data accessors

592 AIX 5L Performance Tools Handbook

Combining primitives
More complex filter expressions are built up by using the words and, or, and not
(!) to combine primitives:

not / ! Negation
and Concatenation
or Alternation

Negation has highest precedence. Alternation and concatenation have equal
precedence and associate left to right. If an identifier is given without a keyword,
the most recent keyword is assumed. Primitives may be combined, but must be
escaped so that they are not interpreted by the shell:

\(a = b \)
“a = b”
‘a = b‘

Only the last example above will specify to the shell that the string between the
citation marks (‘) should not be parsed at all. The following show how to combine
primitives and use expressions to access data (in the 14th byte in the tcp header,
bits 7 and 8) in a packet:

‘'(tcp[13] & 6 != 0) or (tcp[13] & 7 != 0)'

Accessing data inside a packet
To access data inside the packet, use the following syntax:

proto [expr : size]

proto is one of the keywords ip, arp, rarp, tcp, or icmp, and indicates the protocol
layer for the index operation. The byte offset relative to the indicated protocol
layer is given by expr. The indicator size is optional and indicates the number of
bytes in the field of interest. It can be either one, two, or four, and defaults to one
byte. The length operator, indicated by the keyword len, gives the length of the
packet.

Note that addressing starts with zero (0) so, for example, byte 14 in a TCP packet
header would be written as tcp[13]. After the byte position the bit offset can be
specified by using & #, where # represents bit zero (0) to seven (7). When using
bit expressions the comparison is binary (zero or one). The following reminder
shows the bits and their corresponding value if the bit is on (1):

bit : 0 1 2 3 4 5 6 7
value : 1 2 4 8 16 32 64 128

You can use the bc command to convert between different bases, as shown in
Example 30-22 on page 594.

 Chapter 30. TCP/IP packet tracing tools 593

Example 30-22 Using the bc command to perform base conversion of numbers

print "obase=2\n90"|bc
1011001
print "obase=16\n90"|bc
5A

In the first example above the value 90 is converted to binary format and in the
second example the value 90 is converted to hexadecimal format.

30.9 Examples for tcpdump
Because network tracing can produce large amounts of data, it is important to
limit the network trace, either by scope (what to trace) or amount (how much to
trace). The tcpdump command offers many options to reduce the scope of the
network trace, unlike the iptrace command. (See 30.2, “iptrace” on page 569.)
The tcpdump can also display readable reports as well as saving binary output,
for formatting later, from the network trace data.

A good way to use tcpdump is to save the network trace to a file with the -w flag
and then analyze the trace by using different filtering options together with the -r
flag. The following example show how to run a basic tcpdump network trace,
saving the output in a file with the -w flag (on a Ethernet network interface):

tcpdump -w /tmp/tcpdump.en0 -i en0

To limit the number of traced packets, use the -c flag and specify the number,
such as in the following example that traces the first 128 packets (on a token-ring
network interface):

tcpdump -c 128 -w /tmp/tcpdump.tr0 -i tr0

To read the file produced by a previous tcpdump command above, use the -r flag
as shown below:

tcpdump -Snr /tmp/tcpdump.en0

Note that when reading the tcpdump trace we usually want to include both the
time stamp and the absolute sequence numbers, and use IP addresses and not
host and domain names. Note that tcpdump wraps relative sequence numbers
(and sometimes it shows the absolute anyway), which can make the analysis
more difficult. By displaying only absolute sequence numbers, this problem will
not occur.

594 AIX 5L Performance Tools Handbook

Using tcpdump with ipreport
The -w - flag for tcpdump specifies that it should write raw packets to stdout
instead of parsing and printing them out. By specifying - as the input file to
ipreport, it will read from stdin. The -rs flag tells ipreport to start lines with
protocol indicator strings and to be aware of RPC packets. Example 30-23 shows
how this can be done.

Example 30-23 Using ipreport with tcpdump

tcpdump -w - | ipreport -rsT - | more
TCPDUMP

TOK: ====(80 bytes on interface token-ring)==== 16:42:43.327359881
TOK: 802.5 packet
TOK: 802.5 MAC header:
TOK: access control field = 10, frame control field = 40
TOK: [src = 08:00:5a:fe:21:06, dst = 00:20:35:72:98:31]
TOK: 802.2 LLC header:
TOK: dsap aa, ssap aa, ctrl 3, proto 0:0:0, type 800 (IP)
IP: < SRC = 13.7.140 > (sox5.itso.ibm.com)
IP: < DST = 1.3.1.41 >
IP: ip_v=4, ip_hl=20, ip_tos=0, ip_len=1500, ip_id=23840, ip_off=0
IP: ip_ttl=57, ip_sum=442, ip_p = 6 (TCP)
IP: truncated-ip, 1442 bytes missing
IP: 00000000 043804fa a8fb14da 0937db32 50107d78 |.8.......7.2P.}x|
IP: 00000010 33330000 863fcc52 996d64f2 577d2c2c |33...?.R.md.W},,|
IP: 00000020 c5f7c26a 1eed |...j.. |
...(lines omitted)...

Monitoring TCP
For many performance-related TCP/IP communication cases the protocol to tune
is TCP. One way of quickly gathering information about how the TCP protocol
flow is performing on the local network is to limit the filtering scope by only
monitoring initiation and termination of TCP connections.

In Example 30-24 only packets with the TCP header field are monitored. For
clarity we reduce the output length by excluding the time stamp information.

Example 30-24 Using tcpdump with TCP to monitor start/stop packets

tcpdump -c 6 -vnIs1492 -i tr0 "tcp[13] & 7 != 0"
tcpdump: listening on tr0
20:44:55.884956867 1.3.1.47.3111 > 1.99.41.117.1352: S 2739718210:2739718210(0) win 64240 <mss
1361,nop,nop,sackOK> (DF)] (ttl 128, id 31407)
20:44:55.919483478 1.99.41.117.1352 > 1.3.1.47.3111: S 3917974983:3917974983(0) ack 2739718211
win 65535 <mss 1448>] (ttl 52, id 56924)
20:44:56.664665475 1.3.1.47.3106 > 1.99.140.15.1352: F 2738058183:2738058183(0) ack 819381945
win 64062 (DF)] (ttl 128, id 31418)

 Chapter 30. TCP/IP packet tracing tools 595

20:44:56.664858098 1.3.1.47.3107 > 1.14.3.93.1080: F 2738572850:2738572850(0) ack 4011668374
win 63132 (DF)] (ttl 128, id 31419)
20:44:56.665211657 1.3.1.47.3109 > 1.165.223.3.1352: F 2739075962:2739075962(0) ack 2156758289
win 63146 (DF)] (ttl 128, id 31420)
20:44:56.665288620 1.3.1.47.3110 > 1.3.1.7.1352: F 2739600920:2739600920(0) ack 16883503 win
63192 (DF)] (ttl 128, id 31421)
51 packets received by filter
0 packets dropped by kernel

The output above shows connection setup packets (marked lines with S in the
flags field) between host 1.3.1.47 and 1.99.41.117. Note that these are only the
first two steps of the TCP three-way handshake. (Refer to “Opening a TCP
connection” on page 597.)

The general format of a TCP protocol line is2:

SRC > DST: flags data-seqno ack win urg options

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is always
specified.

DST Indicates the destination address and port. This field is always
specified.

flags Specifies some combination of the flags S (SYN), F (FIN), P
(PUSH), and R (RST), or a single . (period) to indicate no flags. The
flags field is always specified.

data-seqno Describes the portion of sequence space covered by the data in this
packet. In ACK packets the data-seqno part can be split up into
FS:LS(NSN)

FS First sequence number to acknowledge

LS Last sequence number to acknowledge

NSN Next sequence number to use

ack Specifies (by acknowledgement) the sequence number of the next
data packet expected from the other direction on this connection.

win Specifies the number of bytes of receive buffer space available from
the other direction on this connection.

urg Indicates there is urgent data in the packet.

options Specifies TCP options enclosed in angle brackets.

2 Fields, except SRC, DST, and flags, depend on the contents of the packet’s TCP protocol header and are output only if
appropriate.

596 AIX 5L Performance Tools Handbook

Monitoring all TCP traffic
Example 30-25 shows how to use tcpdump to monitor all TCP traffic. In the
example, tcpdump will only report 10 packets (-c 10), read 14923 bytes from each
packet, exclude the time stamp (-t), reporting will be interactive (-I) for TCP (tcp)
protocol only, and will omit the domain name part of host names (-N):

Example 30-25 Using tcpdump to monitor TCP

tcpdump -c 10 -tNIs 1492 tcp
tcpdump: listening on tr0
3b-043.2423 > wlmhost.telnet: . ack 2684017960 win 16281 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684017960:2684018015(55) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 2684017960:2684018015(55) ack 897371828 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 55 win 16226 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684018015:2684018247(232) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 2684018015:2684018247(232) ack 897371828 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 232 win 15994 (DF)]
wlmhost.telnet > 3b-043.2423: P 2684018247:2684018473(226) ack 897371828 win 17424]
wlmhost.telnet > 3b-043.2423: P 232:458(226) ack 1 win 17424]
3b-043.2423 > wlmhost.telnet: . ack 2684018473 win 17424 (DF)]
34 packets received by filter
0 packets dropped by kernel

In the example above there are four packets with the IP does not fragment flag
set. This is marked with a trailing (DF). This flag is set in the D bit field as shown in
the schematic header layout for the IP V4 header. (See “IP V4 (RFC 791) packet
header” on page 536.)

Opening a TCP connection
When a TCP connection is opened a three-way handshake is performed, as
shown in Example 30-26.

Example 30-26 Using tcpdump to monitor TCP

tcpdump -tNIc 1492 “tcp port 23 and host dude.itso.ibm.com”
tcpdump: listening on tr0
...(lines omitted)...
bolshoi.32796 > wlmhost.telnet: S 563275966:563275966(0) win 16384 <mss 1452> (DF) [tos 0x10]
wlmhost.telnet > bolshoi.32796: S 3147194261:3147194261(0) ack 563275967 win 17424 <mss 1452>
(DF)]
bolshoi.32796 > wlmhost.telnet: . ack 3147194262 win 17424 (DF) [tos 0x10]
...(lines omitted)...
718 packets received by filter
0 packets dropped by kernel

3 Because the MTU size for this particular interface is set to 1492, no IP frames larger than 1492 bytes will be used by our
host (for Ethernet 10/100 this will be 1500). However, there may be frames on the token-ring that are larger than the local
MTU size sent by other systems with different sizes. Use commands such as netstat or ifconfig to determine the current
MTU size (the lsattr command shows the setting used when the network interface device driver was loaded).

 Chapter 30. TCP/IP packet tracing tools 597

Refer to “Monitoring TCP” on page 595 for an explanation of the output format in
the previous example.

The three-okway handshake can be described as follows (see Figure 30-1):

1. The initiator (bolshoi) sends a SYN packet to the party (wlmhost) that it wants
to connect to. The initial sequence number is 563275966 in the example above
(line 1 from bolshoi to wlmhost).

2. The receiving party (wlmhost) responds with its own SYN packet containing its
initial sequence number (line 2 from wlmhost to bolshoi). This packet also
contains an ACK flag to acknowledge the initiator’s SYN sequence number by
incrementing the current sequence number by one, which would be
563275967 (563275966 +1) in the example above.

3. The initiator acknowledges this SYN from the second party by sending a ACK
packet with no flag (.) indicator (line 3 from bolshoi to wlmhost) by
incrementing the current sequence number by one, which would be
3147194262 (3147194261 +1) in the example above.

Figure 30-1 Schematic flow during TCP open

Closing a TCP connection
To end a TCP connection, either of the two communication ends can send an
end of transmission segment (containing the FIN flag) when it has finished
transmitting data, as shown in Example 30-27.

Example 30-27 Using tcpdump to monitor TCP4

tcpdump -tNIc 1492 “tcp port 23 ”
tcpdump: listening on tr0
...(lines omitted)...
wlmhost.telnet > bolshoi.32785: F 1949791116:1949791116(0) ack 3641849741 win 17424 (DF)]
bolshoi.32785 > wlmhost.telnet: . ack 1949791117 win 17424 (DF) [tos 0x10]
bolshoi.32785 > wlmhost.telnet: F 3641849741:3641849741(0) ack 1949791117 win 17424 (DF) [tos
0x10]
wlmhost.telnet > bolshoi.32785: . ack 3641849742 win 17424 (DF)]
...(lines omitted)...

bolshoi wlmhost

bolshoi wlmhost

bolshoi wlmhostSYN

SYN/ACK

ACK

4 Note that the monitoring was interrupted by using the Ctrl-C key sequence (^C).

598 AIX 5L Performance Tools Handbook

718 packets received by filter
0 packets dropped by kernel

Refer to the explanation of Example 30-24 on page 595 for an explanation of the
output format above.

The normal four-way close can be described as follows (see Figure 30-2):

1. The initiator (wlmhost) sends a FIN packet to the other party (bolshoi). The
absolute sequence number is 1949791116 in the example above (line 1 from
wlmhost to bolshoi).

2. The receiving party (bolshoi) acknowledges the initiator’s FIN sequence
number by incrementing the current sequence number by one to 1949791117
(1949791116 +1) in the example above (line 2 from bolshoi to wlmhost).

3. The receiving party (bolshoi) sends it own FIN packet to the initiator (after the
application that is using the connection has closed the socket) with sequence
number 3641849741 in the example above (line 3 from bolshoi to wlmhost).

4. The initiator (wlmhost) acknowledges the receiving party’s FIN sequence
number by incrementing the current sequence number by one to 3641849742
(3641849741 +1) in the example above (line 4 from wlmhost to bolshoi).

Figure 30-2 Schematic flow during TCP close

Monitoring UDP packets
Example 30-28 on page 600 shows how to use tcpdump to monitor UDP traffic. In
the example, tcpdump will report only 10 packets (-c 10), read 1492 bytes from
each packet (-s 1492), exclude the time stamp (-t), reporting will be interactive (-I)
for UDP (udp) protocol only, and will omit the domain name part of host names
(-N).

wlmhost bolshoi

wlmhost bolshoi

wlmhost bolshoiFIN

ACK

wlmhost bolshoiACK

FIN

 Chapter 30. TCP/IP packet tracing tools 599

Example 30-28 Using tcpdump to monitor UDP

tcpdump -c 10 -tNIs 1492 udp
tcpdump: listening on tr0
snecac.1346 > 229.55.1.208.1345: udp 150]
wlmhost.33314 > dhcp001.domain: 29625+ PTR? 111.1.3.1.in-addr.arpa. (40)]
wlmhost.33314 > dhcp001.domain: 29625+ PTR? 111.1.3.1.in-addr.arpa. (40)]
dhcp001.domain > wlmhost.33314: 29625* 2/0/0 PTR snecac. (80)]
wlmhost.33315 > dhcp001.domain: 29626+ PTR? 208.150.1.229.in-addr.arpa. (45)]
wlmhost.33315 > dhcp001.domain: 29626+ PTR? 208.150.1.229.in-addr.arpa. (45)]
dhcp001.domain > wlmhost.33315: 29626 NXDomain 0/1/0 (118)]
wlmhost.33316 > dhcp001.domain: 29627+ PTR? 164.1.3.1.in-addr.arpa. (40)]
wlmhost.33316 > dhcp001.domain: 29627+ PTR? 164.1.3.1.in-addr.arpa. (40)]
dhcp001.domain > wlmhost.33316: 29627 NXDomain* 0/1/0 (135)]
65 packets received by filter
0 packets dropped by kernel

Some UDP services are recognized from the source or destination port number,
and the higher-level protocol information is printed. In particular, Domain Name
service requests and Sun RPC calls to NFS are recognized.

The general format of a UDP protocol line is:

SRC > DST: udp size

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is
always specified.

DST Indicates the destination address and port. This field is
always specified.

udp Indicates that it is a UDP datagram.

size Shows the user data packet’s size in bytes.

Monitoring UDP domain name server requests
Example 30-29 shows how to use tcpdump to monitor DNS requests. In the
example, tcpdump will report 10 packets (-c 10), read 143 bytes from each packet
(-s 143), exclude the time stamp (-t), reporting will be interactive (-I), DNS (port
domain) protocol only, and will omit the domain name part of host names (-N).

Example 30-29 Using tcpdump to monitor DNS5

tcpdump -tNIs 143 port domain
tcpdump: listening on tr0
wlmhost.33309 > dhcp001.domain: 33797+ A? www.ibm.com. (29)]
wlmhost.33309 > dhcp001.domain: 33797+ A? www.ibm.com. (29)]

5 Note that the monitoring was interrupted by using the Ctrl-C key sequence (^C).

600 AIX 5L Performance Tools Handbook

wlmhost.33310 > dhcp001.domain: 56418+ PTR? 2.1.3.1.in-addr.arpa. (38)]
wlmhost.33310 > dhcp001.domain: 56418+ PTR? 2.1.3.1.in-addr.arpa. (38)]
^C
434 packets received by filter
0 packets dropped by kernel

The example shows two different DNS queries: one is for a name to IP address
lookup, and the other type is for an IP address to name lookup (reverse lookup).

The two first packets have query ID 33797, have the recursive request flag set (+),
and are address (A) records 29 bytes in size. Both the query class (CC_IN) and
the query operation (Query) are omitted. The name to resolve is www.ibm.com.

The next two packets have query ID 56418, have the recursive request flag set
(+), and are IP address (PTR) records 38 bytes in size. Both the query class
(CC_IN) and the query operation (Query) are omitted. The address to resolve is
1.3.1.2 (reverse in the request).

DNS requests are formatted as6:

SRC > DST: id op? flags qtype qclass name (len)

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is always
specified.

DST Indicates the destination address and port. This field is always
specified.

id Specifies the identification number of the query

op Specifies the type of operation. The default is the query operation,
which will be omitted. If the type of operation had been anything
else, it would have been printed between the ID and the flags field.

flags A plus sign (+) indicates that the recursion desired flag is set.

qtype DNS query type.

qclass Query class. Will be omitted if CC_IN. Any other qclass will be
printed.

name Name to resolve in reverse order.

(len) Query length, not including the UDP and IP protocol headers.

Monitoring UDP name server responses
Example 30-30 on page 602 shows how to use tcpdump to monitor DNS
responses. tcpdump will only report 10 packets (-c 10), read 143 bytes from each

6 A few anomalies are checked, and may result in extra fields enclosed in square brackets.

 Chapter 30. TCP/IP packet tracing tools 601

packet (-s 143), exclude the time stamp (-t), reporting will be interactive (-I), DNS
(port domain) protocol only, and will omit the domain name part of host names
(-N).

Example 30-30 Using tcpdump to monitor DNS

tcpdump -tNIs 143 port domain
tcpdump: listening on tr0
dhcp001.domain > wlmhost.33360: 60043 2/2/2 CNAME 37.32.123.178.204.in-addr.arpa. (209)]
^C
434 packets received by filter
0 packets dropped by kernel

The packet has query ID 60043, two answer records, two DNS records, and two
authoritative answers. The resolved address type is CNAME and the address is
204.178.123.32 (reverse in the reply). The packet length is 209 bytes.

DNS replies are formatted as:

SRC > DST: id op rcode flags a/n/au type class data (len)

The following are the explanation of the fields:

SRC Indicates the source (host) address and port. This field is always
specified.

DST Indicates the destination address and port. This field is always
specified.

id Specifies the identification number of the query.

op Specifies the type of operation. The default is the query operation,
which will be omitted. If the type of operation had been anything
else, it would have been printed between the ID and the flags field.

rcode Response code, will be omitted if NoError. Any other rcode will be
printed.

flags An asterisk (*) indicates that the authoritative answer bit was set.
Other flag characters that might appear are - (recursion available,
RA, not set) and | (truncated message, TC, set). A plus sign (+)
indicates that the recursion desired flag is set.

a/n/au Answer records/Name server records/Authority records.

type DNS record type.

class DNS Record class. Will be omitted if CC_IN. Any other class will be
printed.

data Resolved reply.

(len) Response length, not including the UDP and IP protocol headers.

602 AIX 5L Performance Tools Handbook

Monitoring all packets
Example 30-31 shows how to use tcpdump to monitor all traffic on the default
interface (in this case tr0). In the example, tcpdump will only report 16 packets (-c
16), read 17792 bytes from each packet7, print absolute rather than relative TCP
sequence numbers (-S), verbose output (-v), not use DNS lookup for IP
addresses to names (-n), and the reporting should be interactive (-I).

Example 30-31 Using tcpdump to monitor all packets

tcpdump -c 16 -SIvns 17792
tcpdump: listening on tr0
19:08:08.148317911 1.3.1.106.1346 > 229.55.150.208.1345: udp 150] (ttl 10, id 24999)
19:08:08.230511146 1.3.1.114.2423 > 1.3.1.164.23: . ack 2686878608 win 16127 (DF)] (ttl 128, id
208)
19:08:08.325292354 0:6:29:1:72:4 80:1:43:0:0:0 0000 30:
 8000 0060 9480 4e20 0000 0000 8000 0060
 9480 4e20 8001 0000 1400 0200 0f00
19:08:08.341996876 1.3.1.75 > 224.1.1.5: OSPFv2-hello 48: rtrid 192.168.31.12 backbone E mask
255.255.255.0 int 10 pri 1 dead 40 dr 1.3.1.1 bdr 1.3.1.75 nbrs 1.3.1.1] [ttl 1] (id 53064)
19:08:08.441327515 1.39.7.76 > 1.3.1.164: icmp: echo request] (ttl 245, id 39306)
19:08:08.441440043 1.3.1.164 > 1.39.7.76: icmp: echo reply] (ttl 255, id 23286)
19:08:08.441742760 1.3.1.164 > 1.39.7.76: icmp: echo reply] (ttl 255, id 23286)
19:08:08.608477546 [|tokenring]
19:08:08.611070026 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41648)
19:08:08.625016191 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 56925)
19:08:08.625763165 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41649)
19:08:08.641570137 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57181)
19:08:08.642107452 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41650)
19:08:08.666561077 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57437)
19:08:08.667100392 1.3.187.140.137 > 1.3.1.20.137: udp 68] (ttl 127, id 41651)
19:08:08.683200443 1.3.1.20.137 > 1.3.187.140.137: udp 62] (ttl 128, id 57693)
17 packets received by filter
0 packets dropped by kernel

In the example the marked packets are of thesetypes (in top-down sequence):

� TCP packet
� Unknown protocol to tcpdump
� OSPF routing packet
� ICMP packet
� Truncated token-ring packet
� UDP packet

7 Note that this size will be copied from the kernel to the tcpdump command. Using smaller sizes reduces the risk of
losing traced packets due to the increase in overhead that large copies can induce.

 Chapter 30. TCP/IP packet tracing tools 603

Interpreting link-level headers
Example 30-32 shows how to use tcpdump to monitor all traffic on the token-ring
interface tr0. In the example, tcpdump will only report 6 packets (-c 6), exclude
the time stamp (-t), read 35 bytes from each packet (-s 35), only include the
link-level header (-e), and the reporting should be interactive (-I).

Example 30-32 Using tcpdump to monitor link-level headers

tcpdump -c 6 -tes 35
tcpdump: listening on tr0
0:40:aa:49:4b:1b 0:60:94:8a:7:5b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:40:aa:49:4b:1b 0:60:94:8a:7:5b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
0:60:94:8a:7:5b 0:40:aa:49:4b:1b ip 36: [|ip]
71 packets received by filter
0 packets dropped by kernel

In the example above the [|ip] indicates that the packet is an IP protocol packet
but was truncated by tcpdump.

The general format of a the token-ring link-level report is:

SRC DST proto len:

The following are the explanation of the fields:

SRC Source hardware address (MAC address)
DST Destination hardware address (MAC address)
proto The protocol type of the frame data
len The amount of data read from the frame8

Monitoring ARP packets
Example 30-33 shows how to use tcpdump to monitor ARP traffic on a network on
a host. In the example, tcpdump will report 10 ARP packets (-c 10) and exclude
the time stamp (-t), and reporting will be interactive (-I) for ARP (arp) on network
1.3.1 (net) and will omit the domain name part of host names (-N).

Example 30-33 Using tcpdump to monitor ARP

tcpdump -c 10 -t -N -I arp net 1.3.1
tcpdump: listening on tr0
arp who-has 1.3.1.188 tell ANALYZER
arp who-has 3b-043 tell itsont00
arp reply 3b-043 is-at 0:60:94:87:a:87
arp who-has 1.3.1.188 tell 1.3.1.1

8 If the frame data is less than the size specified with -s, then the size of the read frame is reported.

604 AIX 5L Performance Tools Handbook

arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 1.3.1.188 tell wlmhost
arp who-has 3b-043 tell itsont00
arp reply 3b-043 is-at 0:40:aa:49:49:d4
120 packets received by filter
0 packets dropped by kernel

Lines starting with arp who-has are ARP requests from hosts on the network.
Our hosts name is wlmhost, and there are four requests from our host to the
network to resolve the 1.3.1.188 IP address. Lines starting with arp reply are
replies to who-has requests. Lines with host names show hosts that the local
system can resolve, and lines with IP addresses show those hosts that the local
system cannot resolve.

Note in the output above that the host itsnt00 requests the IP address for host
3b-043 twice and each time it get a different MAC address. This can indicate
potential problems that can become a performance issue for the itsont00 host. If
the host does not have enough space available in its ARP tables, this can lead to
this behavior that will slow down communication with the itsont00 host. The
reason is that it will free up one ARP table entry each time it has to communicate
with a host that does not have a entry. If the itsont00 host communicates with
many other systems, this will lead to what is known as ARP cache thrashing. The
other issue is why the itsont00 host receives different MAC addresses for the
requested host (3b-043). One reason could be that the 3b-043 host uses multiple
network adapters (for performance or availability reasons). Another reason could
be that the hosts are on different networks with different routers, and at least two
routers believe that they are the preferred route between the networks and
therefore respond to ARP requests (proxy ARP). Yet a third reason could be that
apart from the host itself that replies to ARP requests, there are at least one
system on the network that acts like an ARP server but has the wrong MAC
address in its ARP table9.

Notes on ARP handling
When an application sends an Internet packet to one of the interface drivers, the
driver requests the appropriate address mapping. If the mapping is not in the
table, an ARP broadcast packet is sent through the requesting interface driver to
the hosts on the local area network. ARP requests are link-level broadcasts that
go only to the local physical net unless proxy ARP is enabled in a router/gateway.
ARP requests normally do not get forwarded through a router. For hosts
reachable only through a router, the originating host will ARP only for the
gateway, not for the end host.

9 When adding ARP table entries manually with the arp command and specifying the pub option, the local system will
respond to requests as a ARP server for this entry.

 Chapter 30. TCP/IP packet tracing tools 605

The kernel maintains the translation table (ARP table) between Internet
addresses and MAC addresses. The size of this table is made up of a hash table
and bucket entries in this table. The following tunables are used for the
translation table (refer to Chapter 34, “The no command” on page 665):

arptab_nb Specifies the number of hash lines in the ARP table.

arptab_bsiz Specifies the number of struct arptab entries in the hash
table (/usr/include/net/if_arp.h).

arpt_killc Specifies the time in minutes before a complete entry will
be deleted from the translation table.

arpqsize Specifies the maximum number of packets to queue while
waiting for ARP responses. The IP packet to send will be
linked to the at_hold pointer in the arptab struct.

IP addresses’ places in the translation table are determined first by the reminder
after a modulus operation is performed on the IP address (in hex) and by the size
of the hash table (the ARPTAB_HASH define in /usr/include/net/if_arp.h). The bucket
for the arptab struct is assigned sequentially, as is the bucket search (the
ARPTAB_LOOK define in /usr/include/net/if_arp.h).

Note that the translation table may run out of free bucket entries before all
buckets are filled with ARP entries. When an arp entry cannot be added to the
translation table, the least recently used dynamically added entry is discarded
(the at_timer variable in the arptab struct) includes the entry added by users.

When a packet to be sent to a host that does not have a mapping between IP
address and MAC address in the translation table, the packet will be linked to the
arptab struct entry for that IP address (the at_hold variable in the struct). This
ensures that the packet will be sent immediately when the ARP request is
returned with a IP address to MAC address mapping.

Using expressions
The tcpdump command has a powerful filtering mechanism; Example 30-34
illustrates how this can be used. Note that the indexing into packets is based
from zero, as per “Accessing data inside a packet” on page 593. To debug your
expression statements, use the -d flag as in the following example. (The output
was piped through the expand and nl commands for referentiality.)

Example 30-34 Using the decoding of expressions

tcpdump -d 'tcp[6] = 0xffffffff'|expand|nl
 1 (000) ldh [38]
 2 (001) jeq #0x800 jt 2 jf 10
 3 (002) ldb [49]
 4 (003) jeq #0x6 jt 4 jf 10
 5 (004) ldh [46]

606 AIX 5L Performance Tools Handbook

 6 (005) jset #0x1fff jt 10 jf 6
 7 (006) ldxb 4*([40]&0xf)
 8 (007) ldb [x + 46]
 9 (008) jeq #0xffffffff jt 9 jf 10
 10 (009) ret #80
 11 (010) ret #0

Monitoring initiation and termination of TCP connections
To monitor only initiation and termination of TCP connections, specify the
tcpdump command as in Example 30-35. (See “Monitoring all TCP traffic” on
page 597).

Example 30-35 Using tcpdump to monitor start and stop TCP packets

tcpdump -c 16 -NIs 160 -i tr0 “(tcp[13] & 7 != 0)"
tcpdump: listening on tr0
1.3.1.43.2308 > ss12.1080: F 1419758927:1419758927(0) ack 1649681797 win 17000 (DF)]
1.3.1.43.2310 > ss12.1080: S 1419967325:1419967325(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0 (DF)]
ss12.1080 > 1.3.1.43.2308: F 1649683845:1649683845(0) ack 1419758928 win 16060]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0]
1.3.1.43.2308 > ss12.1080: R 1419758928:1419758928(0) win 0]
ss12.1080 > 1.3.1.43.2310: S 1553633667:1553633667(0) ack 1419967326 win 16060 <mss 1460>]
3b-054.2364 > www.80: R 2201046150:2201046150(0) win 0 (DF)]
3b-054.2370 > 208.80: S 2210195146:2210195146(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
208.80 > 3b-054.2370: S 3491660221:3491660221(0) ack 2210195147 win 16384 <mss 1432>]
1.3.1.43.2310 > ss12.1080: R 1419967756:1419967756(0) win 0 (DF)]
1.3.1.43.2312 > ss12.1080: S 1420173609:1420173609(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
204.174.18.152.80 > 3b-054.2369: F 3488338654:3488338654(0) ack 2209986206 win 16384]
3b-054.2369 > 204.174.1.152.80: F 2209986206:2209986206(0) ack 3488338655 win 16480 (DF)]
3b-054.2371 > www.80: S 2210246478:2210246478(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.3.1.43.2310 > ss12.1080: R 1419967756:1419967756(0) win 0]
794 packets received by filter
0 packets dropped by kernel

In the output above the S is SYN, F is FIN, R is RST, and ack is ACK. In the SYN
packet the connection setup options start with win (TCP window size), which is
16384. The mss option is the Maximum Segment Size (MSS) which is 4016. The
next two options are nop (No operation). The last option is sackOK which is the
Selective ACKnowledgement (SACK). This negotiated option is useful for
recovering fast from multiple packet drops in a window of data, but it must be
negotiated because not all TCP implementations support it.

Short IP packets
To monitor IP packets shorter than 1492 bytes sent through gateway 1.3.1.1,
specify the tcpdump command as shown in Example 30-36 on page 608. Instead
of MTU discover, the example uses mss_dflt set to the currently used MTU size

 Chapter 30. TCP/IP packet tracing tools 607

(1492) in the system. Note also the possible usage of the length primitives to
monitor packet sizes (see “Expressions” on page 590), such as 'ip and len <
1492'.

Example 30-36 Using tcpdump to monitor small packets through gateways

tcpdump -tNIi tr0 -c 4 “host 1.3.1.1 and ip[2:2] < 1492”
tcpdump: listening on tr0
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
1.3.1.1 > itsoaus: icmp: redirect itsopok to host 1.3.1.75]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
33730 packets received by filter
0 packets dropped by kernel

The output shows that there are only routing packets that are shorter than our
specified size (1492) and no data packets. If there were shorter data packets, we
could investigate this further by checking the PMTU field in the route table with
netstat (Chapter 31, “The netstat command” on page 619), the mss_dflt with
the no command (Chapter 34, “The no command” on page 665), or the lsattr
command.

Example 30-37 assumes that we have found a data packet with a suspiciously
small size by using tcpdump sent from the local host to a destination on the tr0
interface.

Example 30-37 Checking TCP MSS

ifconfig tr0
tr0: flags=e0a0043<UP,BROADCAST,RUNNING,ALLCAST,MULTICAST,GROUPRT,64BIT>
 inet 1.3.1.164 netmask 0xffffff00 broadcast 1.3.1.255
 tcp_sendspace 16284 tcp_recvspace 16384 tcp_mssdflt 512 rfc1323 0

lsattr -El tr0 -a tcp_mssdflt
tcp_mssdflt N/A True

netstat -rn|head -2;netstat -rn|grep tr0
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups
default 1.3.1.1 UGc 0 0 tr0 - -
1.3.1/24 1.3.1.164 U 39 213259 tr0 - -
1.39.7.76 1.3.1.1 UGHW 0 6877 tr0 - 2
1.39.7.84 1.3.1.1 UGHW 0 6883 tr0 - 2
1.53.148.171 1.3.1.1 UGHW 1 44 tr0 - -
1.184.194.78 1.3.1.1 UGHW 1 973 tr0 - -
...(lines omitted)...

no -o tcp_mssdflt

608 AIX 5L Performance Tools Handbook

tcp_mssdflt = 512

Note that the order of precedence for how the MSS is set is used for the
commands in this output. To use these commands, we need to know which
interface and which IP address we are looking for. In the example, the ifconfig
and no commands show that the segment (packet) size to use when
communicating with remote networks (if the no variable subnetsarelocal is set to
zero) is 512 bytes.

Notes on subnetsarelocal
The subnetsarelocal tunable (refer to Chapter 34, “The no command” on
page 665) determines which MSS size to use. When subnetsarelocal is set to
one (1), all IP addresses are viewed as local network addresses except when the
IP network class address part is different. In that case it is considered a remote
IP address.

A class address First byte (#.0.0.0)
B class address First and second byte (#.#.0.0)
C class address First, second, and third byte (#.#.#.0)

For example: the hosts 1.6.6.1 and 1.6.7.2 with netmask 255.255.255.0 are
considered to be local but the hosts 1.6.6.1 and 2.6.7.2 with netmask
255.255.255.0 are considered to be remote when subnetsarelocal is set to one.

ICMP packets
To monitor all ICMP packets that are not echo requests or replies (not ping
packets), specify the tcpdump command as in Example 30-38 (refer to Table 3 on
page 534).

Example 30-38 Monitoring non-echo request/reply ICMP packets with tcpdump

tcpdump -tNIi tr0 -c 10 “icmp[0] != 8 and icmp[0] != 0”
tcpdump: listening on tr0
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
1.3.1.1 > m78lbf01: icmp: redirect 1.24.106.202 to host 1.3.1.75]
wlmhost > dhcp001: icmp: wlmhost udp port 33324 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33324 unreachable]
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
wlmhost > dhcp001: icmp: wlmhost udp port 33325 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33325 unreachable]
rtrgfr1 > alexaix: icmp: time exceeded in-transit [tos 0xc0]
wlmhost > dhcp001: icmp: wlmhost udp port 33326 unreachable]
wlmhost > dhcp001: icmp: wlmhost udp port 33326 unreachable]
1699 packets received by filter
0 packets dropped by kernel

 Chapter 30. TCP/IP packet tracing tools 609

The marked line in the output above indicates an ICMP route redirect. Normally a
route redirection is used by gateway hosts or routers to indicate, to the sender of
a packet that it has forwarded, that another preferred route to the destination of
the forwarded packet exists.

Other protocols from the IP header
To monitor other protocols it is possible to examine the IP headers protocol field
directly (see “TCP/IP protocol and services tables” on page 533) as in
Example 30-39 that only traces protocol number 89, which is the Open Shortest
Path First (OSPF) routing protocol.

Example 30-39 Using tcpdump to monitor other protocols

tcpdump -c 4 -qtNIs 120 -i tr0 'ip[9] = 89'
tcpdump: listening on tr0
 1.3.1.75 > ospf-all: OSPFv2-hello 48: rtrid 1.1.31.12 backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl
1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
 1.3.1.75 > ospf-all: OSPFv2-hello 48: rtrid 1.1.31.12 backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl
1]
 1.3.1.1 > ospf-all: OSPFv2-hello 48: backbone dr 1.3.1.1 bdr 1.3.1.75] [ttl 1]
1087 packets received by filter
0 packets dropped by kernel

Verbosity
The tcpdump command can display four levels of verbosity. The default, verbose
(-v), quick (-q), and quick verbose (-qv). (The other flags in the following example
are not important here.) The following short samples illustrate some of the
differences between these verbosity levels. Example 30-40 shows the default
output.

Example 30-40 Using default output

tcpdump -c 4 -tnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.69.1080 > 1.3.1.41.3357: FP 2600873504:2600874006(502) ack 5851629 win 16060]
1.3.1.41.3357 > 1.14.3.69.1080: F 5851629:5851629(0) ack 2600874007 win 16825 (DF)]
1.3.1.41.3361 > 1.14.3.69.1080: S 9308623:9308623(0) win 16384 <mss 4016,nop,nop,sackOK> (DF)]
1.14.3.69.1080 > 1.3.1.41.3361: S 3338953794:3338953794(0) ack 9308624 win 16060 <mss 1460>]
63 packets received by filter
0 packets dropped by kernel

Example 30-41 shows the output with the verbose flag (-v).

Example 30-41 Using verbose output

tcpdump -c 4 -vtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0

610 AIX 5L Performance Tools Handbook

1.14.3.69.1080 > 1.3.1.41.3382: S 983077529:983077529(0) ack 11986781 win 16060 <mss 1460>]
(ttl 54, id 2849)
1.14.3.69.1080 > 1.3.1.41.3382: F 983078259:983078259(0) ack 11987132 win 16060] (ttl 54, id
3696)
1.3.1.41.3382 > 1.14.3.69.1080: F 11987132:11987132(0) ack 983078260 win 16791 (DF)] (ttl 128,
id 65064)
1.3.1.41.3384 > 1.14.3.69.1080: S 12254776:12254776(0) win 16384 <mss 4016,nop,nop,sackOK>
(DF)] (ttl 128, id 65065)
43 packets received by filter
0 packets dropped by kernel

Example 30-42 shows the output with the quick flag (-q).

Example 30-42 Using quick output

tcpdump -c 4 -qtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.50.1080 > 1.3.1.130.1224: tcp 0]
1.3.1.130.1224 > 1.14.3.50.1080: tcp 0 (DF)]
1.3.1.41.3405 > 1.14.3.69.1080: tcp 0 (DF)]
1.3.1.41.3413 > 1.14.3.69.1080: tcp 0 (DF)]
38 packets received by filter
0 packets dropped by kernel

Example 30-43 shows the output with the quick verbose flags (-qv).

Example 30-43 Using quick verbose output

tcpdump -c 4 -qvtnIs 512 -i tr0 'tcp[13] & 7 != 0'
tcpdump: listening on tr0
1.14.3.69.1080 > 1.3.1.41.3370: tcp 0] (ttl 54, id 24025)
1.3.1.41.3203 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65347)
1.3.1.41.3370 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65348)
1.3.1.41.3407 > 1.14.3.69.1080: tcp 0 (DF)] (ttl 128, id 65354)
223 packets received by filter
0 packets dropped by kernel

Name resolution
The tcpdump command can display host addresses in three different ways. The
default is to display both the host and the domain part. With the -N flag only the
host part is displayed, and with the -n flag only the IP address is displayed and no
name resolution is performed at all. The other flags in the examples are not
important here. The following short example illustrates the differences between
these name resolution settings. The first example shows the default output. The
address part in the output above has been marked (host and domain name) in
Example 30-44 on page 612.

 Chapter 30. TCP/IP packet tracing tools 611

Example 30-44 Default name resolution

tcpdump -c 1 -ftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
3b-043.1897 > wlmhost.wow.ibm.telnet: tcp 0 (DF)] (ttl 128, id 57620)
11 packets received by filter
0 packets dropped by kernel

The address part in the previous output has been marked (host name) in
Example 30-45.

Example 30-45 Host names only

tcpdump -c 1 -NftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
3b-043.1896 > wlmhost.telnet: tcp 0 (DF)] (ttl 128, id 57466)
12 packets received by filter
0 packets dropped by kernel

The address part in the previous output has been marked (IP address) in
Example 30-46.

Example 30-46 IP addresses only

tcpdump -c 1 -nftIqvs 512 -i tr0 tcp
tcpdump: listening on tr0
1.14.4.71.1080 > 1.3.1.115.1068: tcp 8] (ttl 54, id 35696)
6 packets received by filter
0 packets dropped by kernel

30.10 trpt
The syntax of the trpt command is:

trpt [-a] [-f] [-j] [-pAddress]... [-s] [-t]

Flags
-a Prints the values of the source and destination addresses

for each packet recorded in addition to the normal output.

-f Follows the trace as it occurs, waiting briefly for additional
records each time the end of the log is reached.

-j Lists just the protocol control block addresses for which
trace records exist.

-pAddress Shows only trace records associated with the protocol
control block specified in hexadecimal by the Address

612 AIX 5L Performance Tools Handbook

variable. You must repeat the -p flag with each Address
variable specified.

-s Prints a detailed description of the packet-sequencing
information in addition to the normal output.

-t Prints the values for all timers at each point in the trace in
addition to the normal output.

Parameters
Address The Address variable is the hexadecimal address of the

TCP protocol control block to query for trace data.

30.10.1 Information about measurement and sampling
The trpt command queries the protocol control block (PCB) for TCP trace
records. This buffer is created when a socket is marked for debugging with the
setsockopt subroutine. The trpt command then prints a description of these
trace records.

In order for the trpt command to work, the TCP application that is to be
monitored must be able to set the SO_DEBUG flag with the setsockopt subroutine.
If this is not possible you can enable this option for all new sockets that are
created by using the no command with the sodebug option set to one:

no -o sodebug=1

Note that the SO_DEBUG flag will not be turned off for sockets that have this set
even when the sodebug option is set to zero.

For schematic information about frame and packet headers refer to of “Packet
header formats” on page 535.

30.11 Examples for trpt
The following examples show the output of trpt command after sodebug has
been set to one (1) with the no command, and a telnet session has been started
immediately thereafter. Note that all trpt reports query the stored TCP trace
records from the PCB. Only when trpt is used with the -f flag will it follow the
trace as it occurs (after it has displayed the currently stored trace records),
waiting briefly for additional records each time the end of the log is reached.

For a detailed description of the output fields of the trpt command, review the
command in AIX 5L Version 5.2 Commands Reference, Volume 5.

 Chapter 30. TCP/IP packet tracing tools 613

To list the PCB addresses for which trace records exist, use the -j parameter with
the trpt command as in Example 30-47.

Example 30-47 Using trpt -j

trpt -j
7064fbe8

You can check the PCB record with the netstat command as in Example 30-48.

Example 30-48 Using netstat -aA

netstat -aA|head -2;netstat -aA |grep 7064fbe8
Active Internet connections (including servers)
PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)
7064fbe8 tcp 0 0 wlmhost.32826 wlmhost.telnet ESTABLISHED

The report format of the netstat -aA column layout is:

PCB/ADDR Proto Recv-Q Send-Q Local Address Foreign Address (state)

The following are the explanation of the fields:

PCB/ADDR The PCB address

Proto Protocol

Recv-Q Receive queue size (in bytes)

Send-Q Send queue size (in bytes)

Local Address Local address

Foreign Address Remote address

(state) Internal state of the protocol

30.11.1 Displaying all stored trace records
When no option is specified, the trpt command prints all of the trace records
found in the system and groups them according to their TCP connection PCB.
Note that in the following examples, there is only one PCB opened with SO_DEBUG
(7064fbe8). Example 30-49 shows the output during initialization.

Example 30-49 Using trpt during Telnet initialization

trpt
7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT
365 CLOSED:user CONNECT -> SYN_SENT
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED

614 AIX 5L Performance Tools Handbook

365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED
365 ESTABLISHED:user SEND -> ESTABLISHED
...(lines omitted)...

Example 30-50 shows the result of the trpt command after the telnet session is
closed.

Example 30-50 Using trpt during telnet termination

trpt
...(lines omitted)...
591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

30.11.2 Displaying source and destination addresses
To print the values of the source and destination addresses for each packet
recorded in addition to the normal output, use the -a parameter with the trpt
command as in Example 30-51. The following example contains the same
information as the two examples in Example 30-49 on page 614 and
Example 30-50, but with additional details. The reason for showing the full report
is that it can be correlated with the examples mentioned. Note that even though
the telnet session has ended, the TCP trace buffer still contains the protocol
trace information (it was just a short connection).

Example 30-51 Using trpt -a

trpt -a

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)[fcbaf1a5..fcbaf1a9)@0(win=4000) <SYN> -> SYN_SENT
365 CLOSED:user CONNECT -> SYN_SENT
365 SYN_SENT:input (src=1.3.1.164,23, dst=1.3.1.164,32821)4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)[fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> ->
ESTABLISHED
365 ESTABLISHED:user SEND -> ESTABLISHED
...(lines omitted)...
591 ESTABLISHED:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input (src=1.3.1.164,23, dst=1.3.1.164,32821)4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output (src=1.3.1.164,32821, dst=1.3.1.164,23)fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

 Chapter 30. TCP/IP packet tracing tools 615

30.11.3 Displaying packet-sequencing information
To print a detailed description of the packet-sequencing information in addition to
the normal output, use the -s parameter with the trpt command as in the
Example 30-52. The following example contains the same information as
Example 30-49 on page 614 and Example 30-50 on page 615, but with
additional details.

Example 30-52 Using trpt -s

trpt -s

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED

rcv_nxt 0 rcv_wnd 0 snd_una 0 snd_nxt 0 snd_max 0
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 CLOSED:user CONNECT -> SYN_SENT
rcv_nxt 0 rcv_wnd 0 snd_una fcbaf1a5 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 0 snd_wl2 0 snd_wnd 0

365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
rcv_nxt 4b96e889 rcv_wnd 4410 snd_una fcbaf1a6 snd_nxt fcbaf1a6 snd_max fcbaf1a6
snd_wl1 4b96e889 snd_wl2 fcbaf1a6 snd_wnd 4410

...(lines omitted)...
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK

rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK
rcv_nxt 4b96e914 rcv_wnd 4410 snd_una fcbaf1d3 snd_nxt fcbaf1d4 snd_max fcbaf1d4
snd_wl1 4b96e913 snd_wl2 fcbaf1d3 snd_wnd 4410

30.11.4 Displaying timers at each point in the trace
To print the values for all timers at each point in the trace in addition to the normal
output, use the -t parameter with the trpt command as in Example 30-53. The
following example contains the same information as Example 30-49 on page 614
and Example 30-50 on page 615, but with additional details.

Example 30-53 Using trpt -t

trpt -t

7064fbe8:
365 CLOSED:user ATTACH -> CLOSED
365 SYN_SENT:output [fcbaf1a5..fcbaf1a9)@0(win=4000)<SYN> -> SYN_SENT

REXMT=6 (t_rxtshft=0), KEEP=150
365 CLOSED:user CONNECT -> SYN_SENT

616 AIX 5L Performance Tools Handbook

REXMT=6 (t_rxtshft=0), KEEP=150
365 SYN_SENT:input 4b96e888@fcbaf1a6(win=4410)<SYN,ACK> -> ESTABLISHED
365 ESTABLISHED:output fcbaf1a6@4b96e889(win=4410)<ACK> -> ESTABLISHED
365 ESTABLISHED:output [fcbaf1a6..fcbaf1b5)@4b96e889(win=4410)<ACK,PUSH> -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
365 ESTABLISHED:user SEND -> ESTABLISHED

REXMT=3 (t_rxtshft=0)
...(lines omitted)...

591 ESTABLISHED:output fcbaf1d3@4b96e913(win=4410)<ACK> -> ESTABLISHED
591 ESTABLISHED:input 4b96e913@fcbaf1d3(win=4410)<ACK,FIN> -> CLOSE_WAIT
591 CLOSE_WAIT:output fcbaf1d3@4b96e914(win=4410)<ACK> -> CLOSE_WAIT
591 LAST_ACK:output fcbaf1d3@4b96e914(win=4410)<ACK,FIN> -> LAST_ACK

REXMT=3 (t_rxtshft=0), 2MSL=1200
591 CLOSE_WAIT:user SHUTDOWN -> LAST_ACK

REXMT=3 (t_rxtshft=0), 2MSL=1200

30.11.5 Printing trace records for a single protocol control block
Example 30-54 shows the trace record for a single protocol control block.

Example 30-54 Display the trace record associated with a protocol control block

trpt -j
7057d1f0, 7089b9f0, 714ae5f0
trpt -p 7057d1f0

7057d1f0:
520 CLOSED:user ATTACH -> CLOSED
520 CLOSED:user SOCKADDR -> CLOSED
520 SYN_SENT:output [cd913597..cd91359b)@0(win=4000)<SYN> -> SYN_SENT
520 CLOSED:user CONNECT -> SYN_SENT
520 SYN_SENT:input dde23b65@cd913598(win=16d0)<SYN,ACK> -> ESTABLISHED
520 ESTABLISHED:output cd913598@dde23b66(win=4470)<ACK> -> ESTABLISHED
520 ESTABLISHED:output [cd913598..cd913660)@dde23b66(win=4470)<ACK,PUSH> ->
ESTABLISHED
520 ESTABLISHED:user SEND -> ESTABLISHED
520 ESTABLISHED:input dde23b66@cd913660(win=1920)<ACK> -> ESTABLISHED
521 ESTABLISHED:input [dde23b66..dde23bc6)@cd913660(win=1920)<ACK,PUSH> ->
ESTABLISHED
.... (lines omitted)...........

 Chapter 30. TCP/IP packet tracing tools 617

618 AIX 5L Performance Tools Handbook

Chapter 31. The netstat command

The netstat command is a monitoring tool that displays a wide range of network
status information. The netstat command is a useful tool for determining
network problems, and it can provide information about the network traffic, the
amount of data send and received by each protocol, and memory usage for
network buffers.

netstat resides in /usr/sbin/netstat, is linked to /usr/bin, and is part of the
bos.net.tcp.client fileset, which is installable from the AIX base installation media.

31

© Copyright IBM Corp. 2001, 2003 619

31.1 netstat
The syntax of the netstat command is:

netstat [-n] [{-A -a} | {-r -C -i -I Interface}]
[-f AddressFamily] [-p Protocol] [Interval] [System]

netstat [-m | -s | -ss | -u | -v] [-f AddressFamily]
[-p Protocol] [Interval] [System]

netstat -D
netstat -c
netstat -P
netstat [-Zc | -Zi | -Zm | -Zs]

Flags
-A Shows the address of any protocol control blocks

associated with the sockets. This flag acts with the default
display and is used for debugging purposes.

-a Shows the state of all sockets. Without this flag, sockets
used by server processes are not shown.

-c Shows the statistics of the Network Buffer Cache (NBC).
The NBC is a list of network buffers that contains data
objects that can be transmitted to networks. The NBC
grows dynamically as data objects are added to or
removed from it. The network buffer cache is used by
some network kernel interfaces for performance
enhancement on the network I/O. Currently the
send_file() system call, the Frca* family of system calls,
and the frcactrl command use the NBC.

-C Shows the routing tables, including the user-configured
and current costs of each route. The user-configured cost
is set using the -hopcount flag of the route command.
The current cost may be different from the
user-configured cost if dead gateway detection has
changed the cost of the route.

-D Shows the number of packets received, transmitted, and
dropped in the communications subsystem.

-f AddressFamily Limits reports of statistics or address control blocks to
those items specified by the AddressFamily variable.

-i Shows the state of all configured interfaces.

-I Interface Shows the state of the configured interface specified by
the Interface variable.

620 AIX 5L Performance Tools Handbook

-m Shows statistics recorded by the memory management
routines.

-n Shows network addresses as numbers. When this flag is
not specified, the netstat command interprets addresses
where possible and displays them symbolically. This flag
can be used with any of the display formats.

-p Protocol Shows statistics about the value specified for the Protocol
variable, which is either a well-known name for a protocol
or an alias for it. Some protocol names and aliases are
listed in the /etc/protocols file. A null response means that
there are no numbers to report. The program report of the
value specified for the Protocol variable is unknown if
there is no statistics routine for it.

-P Shows the statistics of the Data Link Provider Interface
(DLPI). If DLPI is not loaded, it displays the message:
can't find symbol: dl_stats

-r Shows the routing tables. When used with the -s flag, the
-r flag shows routing statistics.

-s Shows statistics for each protocol.

-ss Displays all the non-zero protocol statistics and provides a
concise display.

-u Displays information about domain sockets.

-v Shows statistics for CDLI-based communications
adapters. This flag causes the netstat command to run
the entstat, tokstat, fddistat, and atmstat commands.
No flags are issued to these commands. Refer to
Chapter 29, “atmstat, entstat, estat, fddistat, and tokstat
commands” on page 539 for more information about
these commands.

-Zc Clears network buffer cache statistics.

-Zi Clears interface statistics.

-Zm Clears network memory allocator statistics.

-Zs Clears protocol statistics. To clear statistics for a specific
protocol, use -p Protocol. For example, to clear TCP
statistics, enter netstat -Zs -p tcp.

Parameters
Interface The network interface, for example tok0.

 Chapter 31. The netstat command 621

AddressFamily The address family. The following address families are
recognized:

inet Indicates the AF_INET address family.

inet6 Indicates the AF_INET6 address family.

ns Indicates the AF_NS address family.

unix Indicates the AF_UNIX address family.

Protocol Limits the output to statistics for this protocol. The
protocol names and aliases are listed in the /etc/protocols
file.

Interval The interval in seconds the netstat command is run. The
data reported following the header line shows the
summary values collected since the last reset of these
counters. The other lines show the data for the time
interval only.

System The memory used by the current kernel. This is /unix
unless you are looking into a dump file.

31.1.1 Information about measurement and sampling
The netstat command reads from kernel memory. This is done during execution
time. The netstat -v command calls atmstat, entstat, fddistat, and tokstat
without parameters to display the adapter device-driver statistics. This includes:

� The display of active socket connections for each protocol. The local and
remote addresses, send and receive queue sizes, protocol, and state of the
protocol are displayed.

� The display of routing table information. The available routes and the status of
these routes are shown. Each route consists of a destination host or network
and the gateway to use to forward packets.

� The display of contents of a network data structure. Statistics recorded by the
memory management subroutines that show the usage of communications
memory buffers (mbufs) in the system and statistics for each protocol can be
displayed.

� The display of packet counts throughout the communications subsystem. This
shows the number of packets received, sent, and dropped in the
communication subsystem.

� The display of network buffer cache statistics. The NBC is currently used by
two pieces of code. One is the send_file() system call, which uses the NBC if
the SF_SYNC_CACHE flag is set. The second is the Fast Response Cache
Accelerator (FRCA), which is implemented by the FRCA kernel extension.

622 AIX 5L Performance Tools Handbook

This kernel extension is basically an HTTP get engine that runs in the kernel.
An API is provided as well as the frcactrl command to control and use
FRCA.

� The display of data link provider interface (DLPI) statistics. These statistics
are available only if DLPI is loaded.

� The reset of statistics. The interface, network buffer cache, mbufs, and
protocol statistics can be cleared.

Among the many outputs netstat can provide, only a few of them monitor the
system for performance. These are:

netstat -v Refer to Chapter 29, “atmstat, entstat, estat, fddistat, and tokstat
commands” on page 539 for detailed information about the outputs
of these commands.

netstat -in Lists the network interfaces including the Maximum Transmission
Unit (MTU), packets received and transmitted, and receive and
transmit errors for each interface.

netstat -rn The output of this command shows the current routing table used by
the system including the used Path Maximum Transfer Unit (PMTU).
For two hosts communicating across a path of multiple networks, a
transmitted packet becomes fragmented if its size is greater than
the smallest MTU of any network in the path. Because packet
fragmentation can result in reduced network performance, it is
desirable to avoid fragmentation by transmitting packets with a size
no greater than the smallest MTU in the network path.

netstat -m Displays statistics for the communications memory buffer (mbuf)
usage. Each processor has its own mbuf pool. If the network option
extendednetstats is set to 1, a summary of all processors is
collected and displayed. For performance reasons extendednetstats
is set to 0 (zero) in /etc/rc.net. Refer to Chapter 34, “The no
command” on page 665 for more information about the no
command. In a multiprocessor system only one processor can
update these summary values at a time, and this will block the other
processors trying to update these summary values.

netstat -s The output of this command shows detailed statistics for each
network protocol used. This includes packets sent and received,
packets dropped, and error counters. The netstat -p Protocol
command can be used to display the data only for this one protocol.
This is useful if you are only interested in the statistics for one
protocol, for example User Datagram Protocol (UDP). Using the
netstat -p udp command shows only the statistics for UDP.

 Chapter 31. The netstat command 623

netstat -D This command shows the count of packets transmitted and received
as well as the count for dropped packets for each layer in the
communications subsystem.

netstat -an The output of this command shows the state of all sockets including
the current sizes for their receive and send queues.

netstat -c This command provides statistics about the NBC usage.

For a detailed description of all other flags of the netstat command, refer to the
AIX 5L Version 5.2 Commands Reference.

31.1.2 Examples for netstat
In this section we show the outputs of the netstat commands useful for
performance monitoring and show which parts of these outputs should be
inspected first.

The network interfaces
First, the state of the configured network interfaces should be observed using the
netstat -in command. Example 31-1 shows the netstat -in command output.

Example 31-1 Output of the netstat -in command

netstat -in
Name Mtu Network Address Ipkts Ierrs Opkts Oerrs Coll
lo0 16896 link#1 182 0 188 0 0
lo0 16896 127 127.0.0.1 182 0 188 0 0
lo0 16896 ::1 182 0 188 0 0
en0 1500 link#2 2.60.8c.f5.1c.fc 956 0 994 0 0
en0 1500 9.49.59.128 9.49.59.163 956 0 994 0 0
tr0 1492 link#3 8.0.5a.d.97.16 5925 0 240 0 0
tr0 1492 9.49 9.49.7.84 5925 0 240 0 0
css0 65520 link#4 47517 0 93533 0 0
css0 65520 9.49.59.64 9.49.59.99 47517 0 93533 0 0

The following lists the columns in Example 31-1:

Name The name of the network interface. In this case there are
three network interfaces providing connections to three
different networks; en0, tr0, and css0. An interface
marked with a star, for example css0*, indicates that this
network interface is currently down and cannot be used
until it is set to the up state again using the ifconfig
Interface up command.

Mtu The MTU size set for each network interface.

624 AIX 5L Performance Tools Handbook

Network The network address and the adapter hardware address
for each network interface.

Address IP address of the network interfaces.

Ipkts Packets received on the network interface.

Ierrs Receive errors on this network interface.

Opkts Packets sent to the interface.

Oerrs Transmit errors on the interface.

Coll The number of collisions on the interface. The collision
count for Ethernet interfaces is not supported.

The network address and the IP address for each interface should be correct.
The MTU sizes for the network interfaces should be set to valid values. For
example, all systems connected to one local network should use the same MTU
on the network interface connecting them to this local network. The values for
Ierrs and Oerrs should be zero, and if they are not zero the value should be very
low and should not increase. The ratio between received packets and sent
packets shows how the network interfaces are used. The previous example
shows more packets received on the tr0 interface than this system sent. In case
this system is a client system and it connects to its server through the tr0
interface, the numbers in the sample are acceptable. However, it is a good idea to
take a closer look and find the reason why we received this much more data on
tr0 than we sent.

The numbers of the packets received and sent over all network interfaces shows
which interface gets used most. Some network traffic may be redirected to other
network interfaces to balance the load. This can be done by changing the routing
table by, for example, adding static host routes. However, you should always be
careful in changing routing information on a system, and be aware of any
changes on the other systems.

There are different ways to learn why the number of packets received on tr0 is 10
times higher than the number sent to this network interface. One is to run
netstat -s, but for that command all traffic over all interfaces is taken into
account. Another way is to start at the adapter and device driver layer using
netstat -v or the tokstat command and see if there are any unusual numbers.
Example 31-2 uses tokstat to check the token-ring device-driver statistics first.

Example 31-2 Output of tokstat tok0 command

tokstat tok0

TOKEN-RING STATISTICS (tok0) :
Device Type: Token-Ring High-Performance Adapter (8fa2)
Hardware Address: 08:00:5a:0d:97:16

 Chapter 31. The netstat command 625

Elapsed Time: 0 days 3 hours 28 minutes 9 seconds

Transmit Statistics: Receive Statistics:
-------------------- -------------------
Packets: 37355 Packets: 302050
Bytes: 4042801 Bytes: 24739052
Interrupts: 37353 Interrupts: 300777
Transmit Errors: 0 Receive Errors: 0
Packets Dropped: 0 Packets Dropped: 0
 Bad Packets: 0
Max Packets on S/W Transmit Queue: 27
S/W Transmit Queue Overflow: 0
Current S/W+H/W Transmit Queue Length: 0

Broadcast Packets: 11 Broadcast Packets: 257020
Multicast Packets: 2 Multicast Packets: 6992
Timeout Errors: 0 Receive Congestion Errors: 0
Current SW Transmit Queue Length: 0
Current HW Transmit Queue Length: 0

General Statistics:

No mbuf Errors: 0 Lobe Wire Faults: 0
Abort Errors: 0 AC Errors: 0
Burst Errors: 0 Frame Copy Errors: 0
Frequency Errors: 0 Hard Errors: 0
Internal Errors: 0 Line Errors: 0
Lost Frame Errors: 0 Only Station: 0
Token Errors: 0 Remove Received: 0
Ring Recovered: 0 Signal Loss Errors: 0
Soft Errors: 0 Transmit Beacon Errors: 0
Driver Flags: Up Broadcast Running
 AlternateAddress 64BitSupport ReceiveFunctionalAddr
 16 Mbps

This output of the tokstat command shows a very high number of broadcasts
received. Most of these broadcasts may not even be useful for this system. We
can perform a netstat -p udp command to see if there are datagrams dropped
due to no socket. Example 31-11 on page 637 shows this. Here, some personal
computers running Windows are connected to the net and sending many
broadcasts.

The commands iptrace and tcpdump, for example tcpdump -i tr0 ip
broadcast, should be used now to find the source or sources for all broadcasts.

626 AIX 5L Performance Tools Handbook

The network routing
After inspecting the network interfaces the systems routing information should be
validated. Wrong routing can result in poor performance. It is necessary to know
the network topology to understand the current route settings. Example 31-3
shows an example output of the netstat -rn command.

Example 31-3 Output of netstat -rn command

netstat -rn
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 9.49.8.1 UGc 0 0 tr0 - -
9.3.9.165 9.49.8.1 UGHW 1 2344 tr0 - -
9.49/20 9.49.7.84 U 7 1809 tr0 - -
9.49.59.64/26 9.49.59.99 U 2 869707 css0 - -
9.49.59.128/26 9.49.59.163 U 0 5545 en0 - -
9.23.123.33 9.49.8.1 UGHW 0 4 tr0 - 1
9.23.123.34 9.49.8.1 UGHW 1 31 tr0 - -
127/8 127.0.0.1 U 0 155 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

Destination The address of the destination network or host. The host
addresses are highlighted in the sample. The routes to these
hosts are cloned routes, which is indicated by the W in the Flags
column. All traffic to and from these hosts goes through the tr0
interface and the default gateway 9.49.8.1.

Gateway The gateway used to reach the destination. The highlighted
gateway addresses are the addresses of the network interfaces
of this system. In our example all network traffic to the
destination networks uses the interface connected to that
network.

Use The number of packets sent using that route. In our example the
most packets are sent to the css0 interface and the destination
was on that network. No gateway was used.

PMTU Path Maximum Transfer Unit used for that route. For two hosts
communicating across a path of multiple networks, a transmitted
packet becomes fragmented if its size is greater than the
smallest MTU of any network in the path. Because packet
fragmentation can result in reduced network performance, it is
desirable to avoid fragmentation by transmitting packets with a
size no greater than the smallest MTU in the network path.
In the example all data to the highlighted destinations is sent

 Chapter 31. The netstat command 627

through network interface tr0 to the default gateway 9.49.8.1. The
MTU size for tr0 is 1492. (Refer to Example 31-1 on page 624.)
To set a PMTU value, use either PMTU discovery, by using the no
-o tcp_pmut_discover and no -o udp_pmtu_discover
commands, or add a static route including a PMTU value, for
example route add -host 9.3.9.165 9.49.8.1 -mtu 512. The
MTU set using the route command has no affect on MTU for
applications using UDP. Refer to Chapter 34, “The no command”
on page 665 for more details about the use of the no command.

The next sample (Example 31-4) shows a netstat -rn output after the host route
to destination 9.3.9.165, including a PMTU of 512, was set using the route add
-host 9.3.9.165 9.49.8.1 -mtu 512 command.

Example 31-4 Output of netstat -rn including PMTU set to a fixed value

netstat -rn
Routing tables
Destination Gateway Flags Refs Use If PMTU Exp Groups

Route Tree for Protocol Family 2 (Internet):
default 9.49.8.1 UGc 0 0 tr0 - -
9.3.9.165 9.49.8.1 UGH 1 4980 tr0 512 -
9.49/20 9.49.7.84 U 7 2434 tr0 - -
9.49.59.64/26 9.49.59.99 U 0 969800 css0 - -
9.49.59.128/26 9.49.59.163 U 2 10561 en0 - -
9.23.123.34 9.49.8.1 UGHW 1 5882 tr0 - -
127/8 127.0.0.1 U 0 159 lo0 - -

Route Tree for Protocol Family 24 (Internet v6):
::1 ::1 UH 0 0 lo0 16896 -

Now all TCP traffic to destination 9.3.9.165 is broken up in packets of 512 bytes
or less.

Kernel malloc statistics
The various layers of the communication subsystem share common buffer pools,
the communications memory buffers (mbufs). The mbuf management facility
controls buffer sizes. The buffer pools consists of pinned kernel memory. Pointers
to mbufs passed from one layer of the communication subsystem to another
reduces mbuf management overhead and avoids copying of data.

Note: In the example, the PMTU size of 512 used for destination 9.3.9.165
does not reflect the optimum PMTU size to use. To set the PMTU size it is
necessary to know all MTU sizes on the networks your data travels to reach
the destination. Use the -mtu option to the route command with care.

628 AIX 5L Performance Tools Handbook

The maximum amount of memory the system can use for mbufs is defined in the
system configuration. Use the command lsattr -El sys0 -a maxmbuf to control
the current value set, and lsattr -Rl sys0 -a maxmbuf to see the possible
values. The maxmbuf value can be changed by using the chdev -l sys0 -a
maxmbuf=NewValue command. A change requires a reboot of the system to
become activated.

If maxmbuf in the system configuration is zero, then the network option thewall
defines the maximum amount of memory to be used. Use the no command to
control and change thewall. (Refer to Chapter 34, “The no command” on
page 665 for more information.) The thewall value is a runtime parameter and
can be changed at any time.

On a multiprocessor system each processor manages its own mbuf pool. This is
done to avoid unnecessary waits for locks that may occur if all processors are
using the same mbuf pool. The netstat -m command is used to observe the
system’s mbuf usage. Example 31-5 shows an example for the netstat -m
output on a multiprocessor system with the network option extendednetstats set
to zero.

Example 31-5 netstat -m output with extendednetstats=0

netstat -m

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
32 122 3425 0 0 134 1013 0
64 29 329 0 0 35 506 0
128 23 101446 0 0 233 253 11
256 147 591632 84 0 589 608 74
512 28 4942 0 0 28 63 0
1024 4 1714 0 0 4 158 0
2048 15 3940 149 0 153 158 104
4096 127 17943 0 0 88 190 0
8192 1 163 0 0 7 15 0
16384 0 253 0 0 38 38 2

******* CPU 1 *******
...lines omitted...statistics for other CPUs removed

By type inuse calls failed delayed memuse memmax mapb

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures

 Chapter 31. The netstat command 629

0 low priority mblk failures

The columns of the mbuf statistics per CPU are:

By size The size of the mbufs. Each processor’s mbuf pool is split up into
buckets between 32 and 16384 bytes.

inuse The number of mbufs in use for the given mbuf size.

calls The usage summary for the given mbuf size.

failed The failed requests to acquire an mbuf. This value should be zero.
If it is not zero then this number of requests for mbufs fails, causing
incoming packets to be dropped. Tuning the maxmbuf system
parameter or thewall network option is required.

delayed The number of delayed requests for mbufs. The requester of an
mbuf can specify the M_WAIT flag to get put to sleep if no mbuf is
available. The requester will be woken up if mbuf space becomes
available again. A user may notice a performance loss if the
application is waiting for a delayed mbuf request. This value should
stay zero.

free An application can free a previous requested mbuf. The mbuf stays
pinned in memory and can be used again. This avoids some
overhead in managing mbufs, which includes unpinning and
freeing the memory for general system usage.

hiwat If the number of buffers on the free list reaches this high water
mark, buffers from the free list are given back to the system. The
high water mark is scaled by the system based on the amount of
installed memory.

freed A mbuf given back to the system increments the freed count. If
these values consistently increase, the high water mark is too low,
which causes unnecessary memory management overhead. The
high water mark value cannot be changed.

Setting the network option extendednetstats to a value of one using the no -o
extendednetstats=1 command will enable netstat -m to provide additional
information. However, this will cost performance on a multiprocessor system and
should only be used to aid problem determination. Example 31-6 shows netstat
-m output on a multiprocessor system with extendednetstats enabled. When
enabling extended netstat a reboot is required for it to take effect.

Example 31-6 netstat -m output with extendednetstats=1

netstat -m

521 mbufs in use:
512 mbuf cluster pages in use

630 AIX 5L Performance Tools Handbook

2178 Kbytes allocated to mbufs
0 requests for mbufs denied
0 calls to protocol drain routines
0 sockets not created because sockthresh was reached

Kernel malloc statistics:

******* CPU 0 *******
By size inuse calls failed delayed free hiwat freed
... statistics for each CPU removed ...

By type inuse calls failed delayed memuse memmax mapb
mbuf 521 6048 0 0 133376 305408 0
mcluster 512 28 0 0 2097152 3149824 0
socket 20 28 0 0 19648 35392 0
pcb 6 9 0 0 416 1600 0
routetbl 24 0 0 0 2944 3584 0
ifaddr 16 0 0 0 1792 1792 0
mblk 7 422 0 0 896 119040 0
mblkdata 30 1 0 0 30720 151808 0
strhead 12 0 0 0 2304 5376 0
strqueue 11 0 0 0 5632 13312 0
strmodsw 16 0 0 0 1024 1024 0
strosr 0 0 0 0 0 512 0
strsyncq 17 0 0 0 1728 3712 0
streams 60 0 0 0 12224 17600 0
devbuf 0 0 0 0 0 528384 0
kernel tablemoun 17 0 0 0 86368 89440 0
spec buf 1 0 0 0 128 128 0
locking 2 0 0 0 256 256 0
temp 10 0 0 0 8640 16928 0
mcast opts 0 0 0 0 0 128 0
mcast addrs 3 0 0 0 192 192 0

Streams mblk statistic failures:
0 high priority mblk failures
0 medium priority mblk failures
0 low priority mblk failures

The summary statistic is displayed in the first part of the output. This includes
information about the current memory usage for mbufs. The value for requests
for mbufs denied should be zero. The value for sockets not created because
sockthresh was reached should also be zero. It indicates that allocation of
mbufs for a new socket connection failed. The network option sockthresh, which
defaults to 85, allows mbuf allocation to new sockets only if less than 85 percent
of the maximum mbuf space is in use. The value for sockthresh can be changed
using the no -o sockthresh=NewValue command.

 Chapter 31. The netstat command 631

At the end of the statistics output a detailed usage of mbufs per service is
displayed.

By type This column names the service, such as mbuf or socket.

inuse Shows the number of mbufs used by the specific service.

calls Show the usage count for mbufs by the specific service.

failed The failed mbuf requests for the specific services. These values
should be zero. If they are not zero, then tuning of the maxmbuf
system parameter or the thewall network option is necessary.

delayed The number of delayed mbuf requests. The requester of an mbuf
can specify the M_WAIT flag to get put to sleep if no mbuf is
available. The requester will be woken up if mbuf space becomes
available again. An user may notice a degradation of performance
if the application is waiting for a delayed mbuf request. These
values should stay at zero. If they are not zero, tuning of the
maxmbuf system parameter or the thewall network option is
necessary.

Statistics for each protocol
These statistics show detailed information including packet counts and error
counts for each protocol used on the system. The netstat -s command shows
the statistics for all protocols configured on the system as shown in
Example 31-7. Using netstat -p Protocol shows the statistics only for this one
protocol. We will show only the netstat -p Protocol outputs to keep the
examples smaller.

The netstat -p ip command displays statistics for the IP protocol.

Example 31-7 Output from the netstat -p ip command

netstat -p ip
ip:

2935539 total packets received
0 bad header checksums
0 with size smaller than minimum
0 with data size < data length
0 with header length < data size
0 with data length < header length
0 with bad options
0 with incorrect version number
0 fragments received
0 fragments dropped (dup or out of space)
0 fragments dropped after timeout
0 packets reassembled ok
2769505 packets for this host
38 packets for unknown/unsupported protocol

632 AIX 5L Performance Tools Handbook

0 packets forwarded
0 packets not forwardable
0 redirects sent
1624868 packets sent from this host
0 packets sent with fabricated ip header
0 output packets dropped due to no bufs, etc.
0 output packets discarded due to no route
1076 output datagrams fragmented
0 fragments created
1076 datagrams that can't be fragmented
165994 IP Multicast packets dropped due to no receiver
147 successful path MTU discovery cycles
46 path MTU rediscovery cycles attempted
1 path MTU discovery no-response estimate
2 path MTU discovery response timeouts
0 path MTU discovery decreases detected
152 path MTU discovery packets sent
0 path MTU discovery memory allocation failures
0 ipintrq overflows
0 with illegal source
0 packets processed by threads
0 packets dropped by threads
0 packets dropped due to the full socket receive buffer
0 dead gateway detection packets sent
0 dead gateway detection packet allocation failures
0 dead gateway detection gateway allocation failures

The IP protocol statistics show information about sent and received packets,
error counters, statistics regarding forwarding of packets, and MTU discovery.
The error counters should be zero or very low values compared with the received
and sent packets counters. Any unusually high number of bad header checksums,
packets with size smaller than minimum, packets with data size < data
length, packets with header length < data size, packets with data length
< header length, packets with bad options, or packets with incorrect
version number indicates a problem on the network. Some other system may
send such packets or there may be a hardware problem on the network. Tools
such as iptrace or tcpdump can be used to identify the source of these invalid
packets.

In case the system is set up to be a router, the fields packets forwarded, packets
not forwardable, and redirects sent will show this. The number of packets not
forwardable should be low. The netstat -rn should be used to see if all
destination networks are still reachable. Refer to “The network routing” on
page 627 for more information.

In Example 31-7 on page 632 there is a difference between the packets
received and packets for this host. No packets were forwarded. However,

 Chapter 31. The netstat command 633

there are some packets for unknown/unsupported protocol and IP Multicast
packets dropped due to no receiver, which means the systems received these
packets but no listener on the system is running to use them. The iptrace or the
tcpdump should show the source of these packets. Because such packets put
additional load on the system and the network, check if the configuration on the
source system for these packets is incorrect and, if so, correct it.

The netstat -p icmp command shows statistics for the Internet Control
Message Protocol (ICMP) protocol as shown in Example 31-8.

Example 31-8 Output of the netstat -p icmp command

netstat -p icmp
icmp:

22 calls to icmp_error
0 errors not generated because old message was icmp
Output histogram:

echo reply: 187807
destination unreachable: 22

0 messages with bad code fields
0 messages < minimum length
0 bad checksums
0 messages with bad length
Input histogram:

echo reply: 149
destination unreachable: 22
echo: 187811
time exceeded: 8

187807 message responses generated

The error counters in this output should stay close to zero. A value greater than
zero for the fields messages with bad code fields, messages < minimum length,
bad checksums, and messages with bad length are an indication of a network
problem. The tcpdump and iptrace command can be used for problem
determination.

The output for the netstat -p igmp command is part of the netstat -s output
and displays information for the Internet Group Multicast Protocol (IGMP) as
shown in Example 31-9.

Example 31-9 Output of netstat -p igmp command

netstat -p igmp
igmp:

8 messages received
0 messages received with too few bytes
0 messages received with bad checksum
0 membership queries received
0 membership queries received with invalid field(s)

634 AIX 5L Performance Tools Handbook

8 membership reports received
0 membership reports received with invalid field(s)
8 membership reports received for groups to which we belong
2 membership reports sent

This output is not very useful because there was not much traffic for the IGMP
protocol on this system. However, messages received with too few bytes and
messages received with bad checksum with values greater than zero point to
network problems. The tcpdump and iptrace commands can be used for further
problem determination.

TCP is the most widely used protocol on AIX systems. The netstat -p tcp
command shows the statistics for this network protocol, as shown in
Example 31-10.

Example 31-10 Output of netstat -p tcp command

netstat -p tcp
tcp:

1426798 packets sent
380151 data packets (115215459 bytes)
12 data packets (7860 bytes) retransmitted
1003361 ack-only packets (22553 delayed)
0 URG only packets
1 window probe packet
32137 window update packets
11136 control packets

2475620 packets received
314523 acks (for 115227991 bytes)
3966 duplicate acks
0 acks for unsent data
2343535 packets (3092077757 bytes) received in-sequence
195 completely duplicate packets (125439 bytes)
0 old duplicate packets
7 packets with some dup. data (6692 bytes duped)
4101 out-of-order packets (560796 bytes)
0 packets (0 bytes) of data after window
0 window probes
113 window update packets
2 packets received after close
0 packets with bad hardware assisted checksum
0 discarded for bad checksums
0 discarded for bad header offset fields
0 discarded because packet too short
7 discarded by listeners
23333 ack packet headers correctly predicted
2140489 data packet headers correctly predicted

3741 connection requests
3707 connection accepts

 Chapter 31. The netstat command 635

7444 connections established (including accepts)
9245 connections closed (including 29 drops)
0 connections with ECN capability
0 times responded to ECN
4 embryonic connections dropped
271572 segments updated rtt (of 271586 attempts)
0 segments with congestion window reduced bit set
0 segments with congestion experienced bit set
0 resends due to path MTU discovery
1 path MTU discovery termination due to retransmits
13 retransmit timeouts

0 connections dropped by rexmit timeout
4 fast retransmits

0 when congestion window less than 4 segments
0 newreno retransmits
0 times avoided false fast retransmits
1 persist timeout

0 connections dropped due to persist timeout
136 keepalive timeouts

135 keepalive probes sent
1 connection dropped by keepalive

0 times SACK blocks array is extended
0 times SACK holes array is extended
0 packets dropped due to memory allocation failure
0 connections in timewait reused
0 delayed ACKs for SYN
0 delayed ACKs for FIN
0 send_and_disconnects
0 spliced connections
0 spliced connections closed
0 spliced connections reset
0 spliced connections timeout
0 spliced connections persist timeout
0 spliced connections keepalive timeout

There are different performance areas to look at in this statistics output:

� The number of retransmits
Packets are dropped and a retransmission is performed. The cause for
dropped packets could be CRC errors, poor or noisy cables, not enough
receive buffers, remote node responding not in time, or that switches or
routers along the route are dropping packets. Retransmission of packets
could result in poor performance. The number of retransmissions should stay
low compared to the number of packets sent. The tcpdump and iptrace, as
well as performance monitoring of the receiving system, can be used to find
the cause of the retransmits. The receiving system may be low on mbufs and
drops the packets. Refer to Chapter 30, “TCP/IP packet tracing tools” on
page 567 for more information about the tcpdump and iptrace commands.

636 AIX 5L Performance Tools Handbook

� The number of delayed packets
This points to possible tcp_nodelay problems. tcp_nodelay specifies whether
TCP should follow the Nagle algorithm for deciding when to send data. By
default TCP will follow the Nagle algorithm. To disable this behavior,
applications can enable tcp_nodelay to force TCP to always send data
immediately. This can be done by the application. The Interface Specific
Network Options (ISNO) and the ifconfig and chdev commands can be used
to enable tcp_nodelay for each network interface. To use ISNO the network
option use_isno must be set to a value of one. This is done using the no -o
use_isno=1 command. To set tcp_nodelay for one network interface the
ifconfig and chdev commands are used, for example ifconfig en0
tcp_nodelay 1. The network option tcp_nagle_limit can be set to 1 (one)
using the command no -o tcp_nagle_limit=1 to disable the Nagle algorithm.
Refer to Chapter 34, “The no command” on page 665 for more details about
the no command.

� Packets received out of order
The sender transmits the packets in order, so there must be a reason why the
system receives the packets out of order. One reason could be dropped
packets due to our system is running out of mbufs. Problems with routing, for
example the incoming packets using different routes, can cause out of order
packets, or a router on the network path could be dropping packets. If the
number of out of order packets received reaches an unusually high number
compared with the total packets received, then further investigation is
necessary. The tcpdump and iptrace commands can be used, as well as the
ping -R and traceroute commands.

� The window probe
If the TCP window size of the receiving side of a connection is zero, then the
sending side stops transmitting data and waits for an update of the receiver’s
TCP window size. If the sender does not get this update it gets a timeout and
sends a window probe packet. This always has a negative impact on network
performance. The window probe packet value should remain at zero.
The windows probes field in the receive section of the output is the probes for
the TCP window size that the systems received. The consequences are the
same as on the sent side. Tuning the tcp_recvspace using the no command is
necessary if the window probe count gets too high. Refer to Chapter 34, “The
no command” on page 665 for more information.

The netstat -p udp command is used to display UDP protocol statistics, as
shown in Example 31-11.

Example 31-11 Output of netstat -p udp command

netstat -p udp
udp:

105925 datagrams received
0 incomplete headers

 Chapter 31. The netstat command 637

0 bad data length fields
0 bad checksums
22 dropped due to no socket
92472 broadcast/multicast datagrams dropped due to no socket
0 socket buffer overflows
13431 delivered
9930 datagrams output

The values for incomplete headers, bad data length fields, bad checksums,
and socket buffer overflows should stay at zero. Errors in the first three fields
point to network problems so further investigation is necessary using the tcpdump
and iptrace commands. For more information about these commands, refer to
Chapter 30, “TCP/IP packet tracing tools” on page 567. In case of socket buffer
overflows the network options sb_max, upd_sendspace, and udp_recvspace
should be checked using the no command. Refer to Chapter 34, “The no
command” on page 665 for more details. A high number of datagrams in the
broadcast/multicast datagrams dropped due to no socket field compared to
the total number of received datagrams points to a large number of broadcasts or
multicast datagrams on the network. Our system has no listener running for the
datagrams and the packets are dropped. The tcpdump -i Interface ip
broadcast will show the source of these broadcasts.

Communications subsystems statistics
The netstat -D command provides information about packets sent and received,
as well as sent and received packets dropped, as shown in Example 31-12. This
information is provided for the adapter (hardware), the device driver, the
demuxer, the protocols, and the network interfaces.

Example 31-12 Output of netstat -d command

netstat -D

Source Ipkts Opkts Idrops Odrops

ent_dev0 127506 92275 0 0
fddi_dev0 0 0 0 0
tok_dev0 1943877 182098 0 0

Devices Total 2071383 274373 0 0

ent_dd0 127506 92275 0 0
fddi_dd0 0 0 0 0
tok_dd0 1943877 182098 0 0

Drivers Total 2071383 274373 0 0

ascsi_dmx0 0 N/A 0 N/A

638 AIX 5L Performance Tools Handbook

ent_dmx0 127515 N/A 0 N/A
fddi_dmx0 0 N/A 0 N/A
tok_dmx0 1613875 N/A 330002 N/A

Demuxer Total 1741390 N/A 330002 N/A

IP 1948847 1866539 23107 23087
TCP 1084942 969481 0 0
UDP 559382 178335 44 0

Protocols Total 3593171 3014355 23151 23087

lo_if0 262 348 86 0
en_if0 127515 92283 0 0
tr_if0 1996638 228176 0 0
css_if0 1153430 1711417 0 3

Net IF Total 3277845 2032224 86 3

NFS/RPC Total N/A 909 0 0

(Note: N/A -> Not Applicable)

The netstat -D command provides an overview of the received packets in the
Ipkts column and sent packets in the Opkts column for the different network
layers. These can be used to get an idea about the usage of each network layer.
Balancing the load on different adapters may improve performance. The previous
example shows that the FDDI Adapter is not used at all. Moving some of the load
currently on the token-ring adapter to this FDDI adapter would be a good idea.

The Idrops and Odrops columns show the dropped packets. There is always a
reason for packets to be dropped. On the device level a shortage of mbufs can
cause these drops. Drops on the demux level indicate packets of an unsupported
protocol, such as IPX, are sent to the system. They cannot be processed and are
discarded. However, these packets will cost performance because they are
received by the adapter and passed to the device driver using mbufs and CPU
time. The iptrace command can be used to identify the source of such packets.
Further actions can be taken on the source system sending these packets to
reduce their number or stop them from being sent.

Dropped packets on the protocol layer should be taken care of by using the
netstat -p Protocol command to get more information about these dropped
packets. Refer to “Statistics for each protocol” on page 632.

 Chapter 31. The netstat command 639

To display the state of all sockets
The netstat -an command provides information about all active connections
including the protocol, local and foreign address, state of the connection, and
size of the receive and send queues. Example 31-13 shows an example for the
netstat -an command.

Example 31-13 Output of netstat -an command

netstat -an
Active Internet connections (including servers)
Proto Recv-Q Send-Q Local Address Foreign Address (state)
tcp4 0 2 9.49.7.84.23 9.3.9.165.36291 ESTABLISHED
tcp4 0 0 127.0.0.1.199 127.0.0.1.32860 ESTABLISHED
tcp4 0 0 127.0.0.1.32860 127.0.0.1.199 ESTABLISHED
tcp4 0 0 *.6680 *.* LISTEN
tcp4 0 0 *.2401 *.* LISTEN
tcp4 0 0 *.32803 *.* LISTEN
tcp4 0 0 127.0.0.1.199 127.0.0.1.32802 ESTABLISHED
tcp4 0 0 127.0.0.1.32802 127.0.0.1.199 ESTABLISHED
tcp4 0 0 *.199 *.* LISTEN
tcp4 0 0 *.12865 *.* LISTEN
tcp4 0 0 *.6681 *.* LISTEN
tcp4 0 17424 9.3.9.165.37773 9.3.9.165.20 ESTABLISHED
tcp 14520 0 9.3.9.165.20 9.3.9.165.37773 ESTABLISHED
tcp4 0 0 9.3.9.165.21 9.3.9.165.37772 ESTABLISHED
tcp 0 0 9.3.9.165.37772 9.3.9.165.21 ESTABLISHED
tcp4 0 0 *.37 *.* LISTEN
tcp4 0 0 *.13 *.* LISTEN
tcp4 0 0 *.19 *.* LISTEN
tcp4 0 0 *.9 *.* LISTEN
tcp4 0 0 *.7 *.* LISTEN
tcp 0 0 *.512 *.* LISTEN
tcp4 0 0 *.543 *.* LISTEN
tcp 0 0 *.513 *.* LISTEN
tcp4 0 0 *.544 *.* LISTEN
tcp 0 0 *.514 *.* LISTEN
tcp 0 0 *.23 *.* LISTEN
tcp 0 0 *.21 *.* LISTEN
tcp4 0 0 *.32772 *.* LISTEN
tcp4 0 0 *.905 *.* LISTEN
tcp4 0 0 *.904 *.* LISTEN
tcp4 0 0 *.111 *.* LISTEN
tcp4 0 0 *.25 *.* LISTEN
udp4 0 0 *.514 *.*
udp4 0 0 *.10002 *.*
udp4 0 0 *.10001 *.*
udp4 0 0 *.10000 *.*
udp4 0 0 9.49.7.84.123 *.*
udp4 0 0 9.49.59.163.123 *.*

640 AIX 5L Performance Tools Handbook

... lines omitted ...

Active UNIX domain sockets
SADR/PCB Type Recv-Q Send-Q Inode Conn Refs Nextref Addr
700edc00 dgram 0 0 137ac720 0 0 0 /dev/.SRC-unix/SRCgCedEo
7004d300
7004e600 dgram 0 0 13af1d20 0 7004dbc0 0 /dev/log
7004d100
70090c00 dgram 0 0 14d73d00 0 0 0 /dev/.SRC-unix/SRCb.edEb
7004df40
70098000 dgram 0 0 1428cd20 0 0 0 /dev/.SRC-unix/SRCNledEg
7004ddc0
70098c00 dgram 0 0 0 0 0 0
7004de00
700d4800 stream 0 0 14919fa0 0 0 0 /var/ha/soc/em.clsrv.cws3et
7004d780
70090e00 dgram 0 0 0 0 0 0
7004df80
700c1c00 dgram 0 0 14917660 0 0 0 /dev/.SRC-unix/SRCqQedEd
7004dd80
7004e800 dgram 0 0 151d03a0 0 0 0 /dev/SRC
7007f040
700c1e00 dgram 0 0 0 0 0 0
7004de40
700d4600 stream 0 0 0 7004d6c0 0 0
7004d700
700c1600 dgram 0 0 13231dc0 0 0 0 /dev/.SRC-unix/SRCvMedEe
7004dd00
... lines omitted ...

The data provided by the netstat -an command is very useful for determinating
connection problems. For performance monitoring, the number of connections
and the sizes of the receive and send queues are of interest. The number of
established connections, for example to port 80 on a system running a WEB
server, shows the current number of clients accessing this service.

The send and receive queue sizes are an indication of the current use of a
connection. In Example 31-13 on page 640, the ftp command to our own
token-ring adapter is running performing a put “|dd if=/dev/zero bs=64k
count=100000” /dev/null. So both the sending and receiving side of the
connection are on the system. The send and receive queues for the ftp data
connection using port 20 are filled, data is sent out and received. Repeated runs
of the netstat -an command may indicate stuck transmissions on connections if
the send queue stays at the same size. The receiving system should be
inspected to check the state of the connection there.

 Chapter 31. The netstat command 641

The network buffer cache
The netstat -c command provides statistics about the network buffer cache
(NBC) usage. Example 31-14 shows the output of the netstat -c command.

Example 31-14 Output of netstat -c command

Network Buffer Cache Statistics:

Current total cache buffer size: 756389056
Maximum total cache buffer size: 756389056
Current total cache data size: 636761915
Maximum total cache data size: 636761915
Current number of cache: 100016
Maximum number of cache: 100016
Number of cache with data: 100016
Number of searches in cache: 400113
Number of cache hit: 16
Number of cache miss: 200038
Number of cache newly added: 100016
Number of cache updated: 0
Number of cache removed: 0
Number of successful cache accesses: 100032
Number of unsuccessful cache accesses: 100022
Number of cache validation: 0
Current total cache data size in private segments: 1438760235
Maximum total cache data size in private segments: 1438760235
Current total number of private segments: 20000
Maximum total number of private segments: 20000
Current number of free private segments: 0
Current total NBC_NAMED_FILE entries: 100022
Maximum total NBC_NAMED_FILE entries: 100022

This example shows a NBC that is mostly written to, without many cache hits
reported. The number of newly added files to the cache are equal to the number
of total files in the cache. The reason could be an application just started using
the NBC. However, the cache hit count should go up soon. Or the cache is too
small for the application. The NBC is used by the send_file() system call if the
SF_SYNC_CACHE flag is set. It is also used by the FRCA. If neither of these is
used on a system, the values in the netstat -c output are 0 (zero).

The network options to control the NBC are:

nbc_limit Specifies the total maximum amount of memory in kilobytes
that can be used for the NBC. The default value is derived from
thewall. When the cache grows to this limit, the least-used
cache objects are flushed out of cache to make room for the
new ones.

642 AIX 5L Performance Tools Handbook

nbc_max_cache Specifies the maximum size of the cache object allowed in the
NBC without using the private segments in number of bytes,
the default being 131,072 (128K) bytes. A data object bigger
than this size is either cached in a private segment or is not
cached at all.

nbc_min_cache Specifies the minimum size of the cache object allowed in the
NBC in number of bytes, the default being one byte. A data
object smaller than this size is not put into the NBC.

nbc_pseg Specifies the maximum number of private segments that can
be created for the NBC. The default value is 0. When this
option is set at a non-zero value, a data object between the
size specified in nbc_max_cache and the segment size (256
MB) is cached in a private segment. A data object bigger than
the segment size is not cached at all. When the maximum
number of private segments exist, cache data in private
segments may be flushed for new cache data so that the
number of private segments do not exceed the limit. When
nbc_pseg is set to zero, all caches in private segments are
flushed.

nbc_pseg_limit Specifies the maximum amount of cached data allowed in
private segments in the NBC in kilobytes. The default value is
half of the total real memory size on the running system.
Because data cached in private segments are pinned by the
NBC, nbc_pseg_limit controls the amount of pinned memory
used for the NBC in addition to the network buffers in global
segments. When the amount of cached data reaches this limit,
cache data in private segments may be flushed for new cache
data so that the total pinned memory size does not exceed the
limit. When nbc_pseg_limit is set to zero, all caches in private
segments are flushed.

 Chapter 31. The netstat command 643

644 AIX 5L Performance Tools Handbook

Chapter 32. The nfso command

The nfso command enables the configuration of Network File System (NFS)
variables and removal of file locks from NFS client systems on the server. Prior to
changing NFS variables to tune NFS performance, monitor the load on the
system using the nfsstat, netstat, vmstat, and iostat commands.

The nfso command resides in /usr/sbin and is part of the bos.net.nfs.client
fileset, which is installable from the AIX base installation media.

32

© Copyright IBM Corp. 2001, 2003 645

32.1 nfso
The syntax of the nfso command is:

nfso [-p | -r] [-c] { -o Tunable[=Newvalue] }
nfso [-p | -r] { -d Tunable }
nfso [-p | -r] -D
nfso [-p | -r] -a [-c]
nfso -?
nfso -h Tunable
nfso -l Hostname
nfso [-c]
nfso -L [Tunable]
nfso -x [Tunable]

Multiple flags -o, -d, and -L are allowed.

Flags
-a Displays the current, reboot (when used in conjunction

with -r) or permanent (when used in conjunction with -p)
value for all tunable parameters, one perline in pairs
Tunable = Value. For the permanent options, a value is
only displayed for a parameter if its reboot and current
values are equal. Otherwise NONE displays as the value.

-c Changes the output format of the nfso command to
colon-deliniated format.

-d Tunable Sets the Tunable variable back to its default value. If a
tunable needs to be changed (that is, it is not set to its
default value) and is of type Bosboot or Reboot, or if it is
of type Incremental and has been changed from its
default value, and -r is not used in combination, it will not
be changed, and a warning displays instead.

-D Sets all tunable variables back to their default value. If
tunables needing to be changed are of type Bosboot or
Reboot, or are of type Incremental and have been
changed from their default value, and -r is not used in
combination, they will not be changed but warnings
display instead.

-h Tunable Displays help about the Tunable parameter.

-l HostName Enables a system administrator to release NFS file locks
on an NFS server. The HostName variable specifies the
host name of the NFS client that has file locks held at the
NFS server. The nfso -l command makes a remote

646 AIX 5L Performance Tools Handbook

procedure call to the NFS server's rpc.lockd network lock
manager to request the release of the file locks held by
the HostName NFS client.

If an NFS client has file locks held at the NFS server and
has been disconnected from the network and cannot be
recovered, the nfso -l command can be used to release
those locks so that other NFS clients can obtain similar file
locks for their purposes. Note that the nfso command can
be used to release locks only on the local NFS server.

-o Tunable[=NewValue]
Displays the value or sets Tunable to NewValue. If a
tunable needs to be changed (the specified value is
different from the current value), and is of type Bosboot or
Reboot, or if it is of type Incremental and its current value
is bigger than the specified value, and -r is not used in
combination, it will not be changed but a warning displays
instead. When -r is used in combination without a new
value, the nextboot value for the tunable displays. When -p
is used in combination without a NewValue, a value
displays only if the current and next boot values for the
tunable are the same. Otherwise NONE displays as the
value.

-p Makes changes apply to both current and reboot values,
when used in combination with -o, -d, or -D; that is, it turns
on the updating of the /etc/tunables/nextboot file in
addition to the updating of the current value. These
combinations cannot be used on Reboot and Bosboot
type parameters because their current value cannot be
changed.

When used with -a or -o without specifying a new value,
values are displayed only if the current and next boot
values for a parameter are the same. Otherwise NONE
displays as the value.

-r Makes changes apply to reboot values when used with -o,
-d, or -D; that is, it turns on the updating of the
/etc/tunables/nextboot file. If any parameter of type
Bosboot is changed, the user is prompted to run bosboot.

When used with -a or -o without specifying a new value,
next boot values for tunables display instead of current
values.

-L [Tunable] Lists the characteristics of one or all tunables, one per
line.

 Chapter 32. The nfso command 647

-x [tunable] Generates tunable characteristics in a comma-separated
format for loading into a spreadsheet.

-? Displays the usage statment.

Pre 5.2 compatibility mode considirations.
Pre 5.2 compatibility mode is controlled by the pre520tune attribute of sys0; see
Introduction to AIX 5L Version 5.2 tunable parameter setting in the AIX 5L
Version 5.2 Performance Management Guide. When running in pre 5.2
compatibility mode, reboot values for parameters, except those of type Bosboot,
are not really meaningful because in this mode they are not applied at boot time.

In pre 5.2 compatibility mode, setting reboot values to tuning parameters
continues to be achieved by imbedding calls to tuning commands in scripts called
during the boot sequence. Parameters of type Reboot can therefore be set
without the -r flag, so that existing scripts continue to work.

This mode is automatically turned ON when a machine is MIGRATED to AIX 5L
Version 5.2. For complete installations, it is turned OFF and the reboot values for
parameters are set by applying the content of the /etc/tunables/nextboot file
during the reboot sequence. Only in that mode are the -r and -p flags fully
functional. See AIX 5L Version 5.2 kernel tuning in the Performance Tools Guide
and Reference for details about the new 5.2 mode.

32.1.1 Information about measurement and sampling
The nfso command reads the NFS network variables from kernel memory and
writes changes to kernel memory of the running system. The values not equal to
the default values must be set after each system start. This can be done by
adding the necessary nfso variable values into the /etc/tunables/nextboot file.
Most changes performed by nfso take effect immediately.

32.2 Examples for nfso
This section shows some examples of the nfso command.

32.2.1 Listing all of the tunables and their current values
Example 32-1 on page 649 uses the nfso -a command to display the current
NFS network variables. This command should always be used to display and
store the current setting prior changing them.

648 AIX 5L Performance Tools Handbook

Example 32-1 Display and store in a file the current NFS network variables

nfso -a
 portcheck = 0
 udpchecksum = 1
 nfs_socketsize = 600000
 nfs_tcp_socketsize = 600000
 nfs_setattr_error = 0
 nfs_gather_threshold = 4096
 nfs_repeat_messages = 0
nfs_udp_duplicate_cache_size = 5000
nfs_tcp_duplicate_cache_size = 5000
 nfs_server_base_priority = 0
 nfs_dynamic_retrans = 1
 nfs_iopace_pages = 0
 nfs_max_connections = 0
 nfs_max_threads = 3891
 nfs_use_reserved_ports = 0
 nfs_device_specific_bufs = 1
 nfs_server_clread = 1
 nfs_rfc1323 = 0
 nfs_max_write_size = 32768
 nfs_max_read_size = 32768
 nfs_allow_all_signals = 0
 nfs_v2_pdts = 1
 nfs_v3_pdts = 1
 nfs_v2_vm_bufs = 1000
 nfs_v3_vm_bufs = 1000
 nfs_securenfs_authtimeout = 0
 nfs_v3_server_readdirplus = 1
: nfso: 1831-731 cannot contact local lockd.
 lockd_debug_level = -1
: nfso: 1831-730 cannot contact local statd.
 statd_debug_level = -1
: nfso: 1831-730 cannot contact local statd.
 statd_max_threads = -1

32.2.2 Displaying characteristics of all tunables
Example 32-2 displays the output when using the nfso command with the -L flag
to display all of the variables and their characteristics.

Example 32-2 Listing of nfso tunables

nfso -L
NAME CUR DEF BOOT MIN MAX UNIT TYPE
 DEPENDENCIES
--
portcheck 0 0 0 0 1 On/Off D

 Chapter 32. The nfso command 649

--
udpchecksum 1 1 1 0 1 On/Off D
--
nfs_socketsize 600000 600000 600000 40000 1M Bytes D
--
nfs_tcp_socketsize 600000 600000 600000 40000 1M Bytes D
--
nfs_setattr_error 0 0 0 0 1 On/Off D
--
nfs_gather_threshold 4K 4K 4K 512 8193 Bytes D
--
nfs_repeat_messages 0 0 0 0 1 On/Off D
--
nfs_udp_duplicate_cache_size
 5000 5000 5000 5000 100000 Req I
--
nfs_tcp_duplicate_cache_size
 5000 5000 5000 5000 100000 Req I
--
nfs_server_base_priority 0 0 0 31 125 Pri D
--
nfs_dynamic_retrans 1 1 1 0 1 On/Off D
--
nfs_iopace_pages 0 0 0 0 65535 Pages D
--
nfs_max_connections 0 0 0 0 10000 Number D
--
nfs_max_threads 3891 3891 3891 5 3891 Threads D
--
nfs_use_reserved_ports 0 0 0 0 1 On/Off D
--
nfs_device_specific_bufs 1 1 1 0 1 On/Off D
--
nfs_server_clread 1 1 1 0 1 On/Off D
--
nfs_rfc1323 0 0 0 0 1 On/Off D
--
nfs_max_write_size 32K 32K 32K 512 64K Bytes D
--
nfs_max_read_size 32K 32K 32K 512 64K Bytes D
--
nfs_allow_all_signals 0 0 0 0 1 On/Off D
--
nfs_v2_pdts 1 1 1 1 8 PDTs M
--
nfs_v3_pdts 1 1 1 1 8 PDTs M
--
nfs_v2_vm_bufs 1000 1000 1000 512 5000 Bufs I
--

650 AIX 5L Performance Tools Handbook

nfs_v3_vm_bufs 1000 1000 1000 512 5000 Bufs I
--
nfs_securenfs_authtimeout 0 0 0 0 60 Seconds D
--
nfs_v3_server_readdirplus 1 1 1 0 1 On/Off D
--
lockd_debug_level -1 0 0 0 10 Level D
--
statd_debug_level -1 0 0 0 10 Level D
--
statd_max_threads -1 50 50 1 1000 Threads D
--

n/a means parameter not supported by the current platform or kernel

Parameter types:
 S = Static: cannot be changed
 D = Dynamic: can be freely changed
 B = Bosboot: can only be changed using bosboot and reboot
 R = Reboot: can only be changed during reboot
 C = Connect: changes are only effective for future socket connections
 M = Mount: changes are only effective for future mountings
 I = Incremental: can only be incremented

Value conventions:
 K = Kilo: 2^10 G = Giga: 2^30 P = Peta: 2^50
 M = Mega: 2^20 T = Tera: 2^40 E = Exa: 2^60

Any change (with -o, -d, or -D) to a Mount parameter results in a message
warning the user that the change is only effective for future mountings. Any
attempt to change (with -o, -d, or -D but without -r) the current value of a
parameter of type Incremental with a new value smaller than the current value
results in an error message.

32.2.3 Displaying and changing a tunable with the nfso command
Example 32-3 displays the value of the nfs_dynamic_retrans variable by using
the -o flag, which can also be used to change a variable by assigning it to a
specific value.

Example 32-3 Displaying and changing a tunable

nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 1
nfso -o nfs_dynamic_retrans=0
Setting nfs_dynamic_retrans to 0

 Chapter 32. The nfso command 651

nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0

32.2.4 Resetting a tunable value to its default
Example 32-4 shows that a value was changed in Example 32-3 on page 651
can be reset to the default by using the -d flag.

Example 32-4 Restoring default tunable value

nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0
nfso -d nfs_dynamic_retrans
Setting nfs_dynamic_retrans to 1
nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 1

32.2.5 Displaying help information about a tunable
Using the -h flag with the nfso command displays information about that specific
variable, as shown in Example 32-5.

Example 32-5 Getting information about a tunable

nfso -h nfs_dynamic_retrans
nfs_dynamic_retrans: Specifies whether the NFS client should use a dynamic
retra nsmission algorithm to decide when to resend NFS requests to the server.
Default : 1; Range: 0 or 1. If this function is turned on, the timeo parameter
is only used in the first retransmission. With this parameter set to 1, the NFS
client will attempt to adjust its timeout behavior based on past NFS server
response. This allows for a floating timeout value along with adjusting the
transfer sizes used. All of this is done based on an accumulative history of
the NFS server's response time. In most cases, this parameter does not need to
be adjusted. There are some instances where the straightforward timeout
behavior is desired for the NFS client. In these cases, the value should be set
to 0 before mounting file systems.

32.2.6 Permanently changing an nfso tunable
When using the -p flag, permanent changes are made to a variable. It changes
the current value and makes an entry into the /etc/tunables/nextboot file.
Example 32-6 on page 653 displays the contents of the /etc/tunables/nextboot
file with no information about the nfs_dynamic_retrans varible. Then by executing
nfso -p with the -o flag to change the nfs_dynamic_retrans variable, a line was
added to /etc/tunables/nextboot file. This ensures that the variable is defined for
each reboot. It also changed the current value of the variable.

652 AIX 5L Performance Tools Handbook

Example 32-6 Permanently changing the nextboot file

nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 1
cat /etc/tunables/nextboot
ioo:
nfso:
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"
vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"

nfso -p -o nfs_dynamic_retrans=0
cat /etc/tunables/nextboot
ioo:
nfso:
 nfs_dynamic_retrans = "0"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"
vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"
nfso -o nfs_dynamic_rtrans
nfs_dynamic_retrans= 0

32.2.7 Changing a tunable after reboot
By using the -r flag the change to a varible will only take effect after a reboot. In
Example 32-7 we used the nfso command with the -r flag to have the variable
change after the reboot. First we displayed the value of the nfs_dyanmic_retrans
variable, which is set to 0, as it is in /etc/tunables/nextboot. We then ran nfso with
the -r flag. The current value of the variable has not changed, but the contents of
the /etc/tunables/nextboot have been updated.

Example 32-7 Changing a parameter after next reboot

nfso -o nfs_dynamic_retrans
nfs_dynamic_retrans= 0

cat /etc/tunables/nextboot
ioo:
nfso:
 nfs_dynamic_retrans = "0"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"
vmo:

 Chapter 32. The nfso command 653

 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"

nfso -ro nfs_dynamic_rtrans=1

nfso -o nfs_dynamic_rtrans
nfs_dynamic_rtrans=0

cat /etc/tunables/nextboot
ioo:
nfso:
 nfs_dynamic_retrans = "1"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"
vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"

654 AIX 5L Performance Tools Handbook

Chapter 33. The nfsstat command

The nfsstat command displays statistics about the Network File System (NFS)
and the Remote Procedure Call (RPC) interface to the kernel. You can also use
the nfsstat command to reinitialize this information.

The nfsstat command is a monitoring tool. Its output data can be used for
problem determination and performance tuning. The nfsstat command resides
in /usr/sbin and is part of the bos.net.nfs.client fileset, which is installable from
the AIX base installation media.

33

© Copyright IBM Corp. 2001, 2003 655

33.1 nfsstat
The syntax of the nfsstat command is:

/usr/sbin/nfsstat [-c] [-s] [-n] [-r] [-z] [-m]

Flags
-c Displays client information. Only the client side NFS and RPC

information is printed. Enables the user to limit the report to client data.
The nfsstat command provides information about the number of RPC
and NFS calls sent and rejected by the client. To print only client NFS
or RPC information, combine this flag with the -n or -r option.

-m Displays statistics for each NFS file system mounted along with the
server name and address, mount flags, current read and write sizes,
retransmission count, and the timers used for dynamic retransmission.

-n Displays NFS information. Prints NFS information for both the client
and server. To print only the NFS client or server information, combine
this flag with the -c and -s options.

-r Displays RPC information.

-s Displays server information.

-z Resets statistics. This flag is for use by the root user only and can be
combined with any of the flags above to zero-out particular sets of
statistics after printing them.

33.1.1 Information about measurement and sampling
The nfsstat command reads out statistic information collected by the NFS client
and the NFS server kernel extensions. This read is done at nfststat command
execution time. The nfsstat -z command is used to reset the statistics. For
details about the data structures used, refer to the system header files
/usr/include/nfs/nfs_fscntl.h and /usr/include/rpc/svc.h.

The nfsstat command displays server and client statistics for both RPC and
NFS. The -s (server), -c (client), -r (RPC), and -n (NFS) flags can be used to
display only a subset of all data.

The RPC statistics output consists of two parts: the first shows the statistics for
connection-oriented TCP RPC, the second shows the statistics for
connectionless User Datagram Protocol (UDP) RPC. The NFS statistics output is
also divided into two parts: the first shows the NFS version 2 statistics, and the
second shows the NFS version 3 statistics. The RPC statistics are useful for
detecting performance problems caused by time-outs and retransmissions. The

656 AIX 5L Performance Tools Handbook

NFS statistics show the usage count of file system operations, such as read(),
write(), and getattr(). These values show how the file system is used. This can
help to decide which tuning actions to perform to improve performance. The
nfsstat command can display information about each mounted file system.

33.2 Examples for nfsstat
In this section we take a closer look at each of the statistics nfsstat can provide:

� NFS server RPC statistics - the nfsstat -sr command.
� NFS server NFS statistics - the nfsstat -sn command.
� NFS client RPC statistics - the netstat -cr command.
� NFS client NFS statistics - the netstat -cn command.
� Statistics on mounted file systems - the nfsstat -m command

33.2.1 NFS server RPC statistics
The output in Example 33-1 shows the server RPC statistics created using the
nfsstat -sr command:

Example 33-1 Output of nfsstat -sr

nfsstat -sr

Server rpc:
Connection oriented
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
31197 0 0 0 0 10085 0
Connectionless
calls badcalls nullrecv badlen xdrcall dupchecks dupreqs
0 0 0 0 0 0 0

The output shows statistics for both connection-oriented (TCP) and
connectionless (UDP) RPC. In this example, NFS used TCP as the transport
protocol. The fields in this output are:

calls Total number of RPC calls received from clients.

badcalls Total number of calls rejected by the RPC layer. The rejects happen
because of failed authentication. The value should be zero.

nullrecv Number of times a RPC call was not available when it was thought to
be received.

badlen Packets truncated or damaged (number of RPC calls with a length
shorter than a minimum-sized RPC call). The value should stay at
zero. An increasing value may be caused by network problems.

 Chapter 33. The nfsstat command 657

xdrcall Number of RPC calls whose header could not be External Data
Representation (XDR) decoded. The value should stay at zero. An
increasing value may be caused by network problems.

dupchecks Number of RPC calls that require a look-up in the duplicate request
cache. Duplicate checks are performed for operations that cannot be
performed twice with the same result. If the first command succeeds
but the reply is lost, the client retransmits this request. This
retransmitted command will fail. An example of an operation that
cannot be performed twice with the same result is the rm command.
We want duplicate requests like these to succeed, so the duplicate
cache is consulted, and, if it is a duplicate request, the same
(successful) result is returned on the duplicate request as was
generated on the initial request.

These operations apply to duplicate checks: setattr(), write(),
create(), remove(), rename(), link(), symlink(), mkdir(), and rmdir().
Any instance of these is stored in the duplicate request cache.

The size of the duplicate request cache is controlled by the NFS
options nfs_tcp_duplicate_cache_size for the TCP network transport
and nfs_udp_duplicate_cache_size for the UDP network transport.
See Chapter 32, “The nfso command” on page 645 for information
regarding the NFS options nfs_tcp_duplicate_cache_size and
nfs_udp_duplicate_cache_size.

These NFS options need to be increased on a high volume NFS
server. Calculating the NFS operations per second and using four
times this value is a good starting point. The nfsstat -z; sleep 60;
nfsstat -sn command can be used to capture the number of NFS
operations per minute.

dupreqs Number of duplicate RPC calls found. This value gets increased
each time a duplicate RPC request, using the data from the duplicate
request cache, is found. An increasing value for dupreqs indicates
retransmissions of commands from clients. These retransmissions
can be caused by time-outs (the server did not answer in time) or
dropped packets on the client receiving side or server sending side.
Use the nfsstat -cr command to check for time-outs on the NFS
clients. Refer to 33.2.3, “NFS client RPC statistics” on page 660 for
more information about the nfsstat -cr command. Use the netstat
-in, netstat -s, netstat -v, and netstat -m commands to check for
dropped packets on both NFS client and NFS server.

The nfsstat -zsr; sleep 60; nfsstat -sr can be used to get the server RPC
statistics for one minute and to calculate the per-second values. Doing this on a
well-performing NFS sever during normal operation and storing this data will help
to verify NFS server load in case this server later shows an NFS performance

658 AIX 5L Performance Tools Handbook

problem. The cause for bad performance may be a temporary increased load
from one or more NFS clients.

33.2.2 NFS server NFS statistics
The NFS server NFS statistics can be used to determine the type of NFS
operation used most on the server. This helps to decide which tuning can be
performed to increase NFS server performance. For example, a high percentage
of write() calls may require disk and LVM tuning to increase write performance. A
high value of read() calls may require more RAM for file caching. There are no
rules of thumb, as tuning the NFS server depends on many factors such as:

� The amount of RAM installed
� The disk subsystem used
� The number of CPUs installed
� The CPU speed of the installed CPUs
� The number of NFS clients
� The networks used

Example 33-2 shows the output of the nfsstat -sn command.

Example 33-2 Output of nfsstat -sn command

nfsstat -sn

Server nfs:
calls badcalls public_v2 public_v3
809766 0 0 0
Version 2: (0 calls)
null getattr setattr root lookup readlink read
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 0 0% 0 0%
Version 3: (809765 calls)
null getattr setattr lookup access readlink read
1 0% 133491 16% 558 0% 227155 28% 15397 1% 0 0% 56636 6%
write create mkdir symlink mknod remove rmdir
172511 21% 67425 8% 558 0% 0 0% 0 0% 67486 8% 558 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 1023 0% 560 0% 2 0% 0 0% 0 0%
commit
66404 8%

This example shows a high usage of write. The reported 21 percent may still be
low enough not to worry about. However, the values for create (67425) and
remove (67486) are high and equal. This could be an indication of an NFS client

 Chapter 33. The nfsstat command 659

creating a high number of temporary files in the NFS file system. Creating these
temporary files in a local file system on the NFS client will reduce the load on the
NFS server. The NFS client performance (at least the performance of the
application creating the temporary files) will increase as well.

33.2.3 NFS client RPC statistics
The output in Example 33-3 shows the client RPC statistics created using the
command nfsstat -cr.

Example 33-3 Output of nfsstat -cr command

nfsstat -cr

Client rpc:
Connection oriented
calls badcalls badxids timeouts newcreds badverfs timers
1392748 0 0 0 0 0 0
nomem cantconn interrupts
0 0 0
Connectionless
calls badcalls retrans badxids timeouts newcreds badverfs
188030 0 13 0 0 0 0
timers nomem cantsend
11 0 0

The fields in this output are:

calls Total number of RPC calls made to NFS.

badcalls Total number of calls rejected by the RPC layer. The value should
be zero.

retrans Number of times a call had to be retransmitted due to a time-out
while waiting for a reply from the server. This is applicable only to
RPC over connectionless (UDP) transports. The NFS client had to
retransmit requests to the NFS server because the NFS server was
not responding in time. This could indicate an overloaded server,
dropped packets on the server, or dropped packets on the client.
Running the vmstat and iostat commands on the server should
show the load on the server. (Refer to Chapter 13, “The vmstat
command” on page 211 and Chapter 4, “The iostat command” on
page 81 for details on these commands.) Use the netstat -in,
netstat -s, netstat -v, and netstat -m commands on the server
and client to check for dropped packets. (Refer to Chapter 31, “The
netstat command” on page 619 for more information.)

660 AIX 5L Performance Tools Handbook

Dropped packets on the server could be caused by an overrun of
the network adapter transmit queue or a UDP socket buffer
overflow. Tuning the NFS option nfs_socketsize using the nfso
command in case of socket buffer overflows is required. Refer to
Chapter 32, “The nfso command” on page 645 for more information
about the nfso command.

badxid Number of times a reply from a server was received that did not
correspond to any outstanding call. This means the server is taking
too long to reply. Refer to the description for the retrans field.

timeouts Number of times a call timed-out while waiting for a reply from the
server. The same as for the retrans value applies. Refer to the
description in for the retrans field.

Increasing the NFS mount option timeo by using the smitty
chnfsmnt command should reduce the NFS client requests that
time out and are retransmitted. This reduces the load on the server
because the number of retransmitted requests decreases.
However, the performance improvement on the client is not very
high. If dynamic retransmission is used, the timeo value is only
used for the first retransmission timeout. Refer to 33.2.5, “Statistics
on mounted file systems” on page 662 for more details.

newcreds Number of times authentication information had to be refreshed.

badverfs Number of times a call failed due to a bad verifier in the response.

timers Number of times the calculated time-out value was greater than or
equal to the minimum specified time-out value for a call.

nomem Number of times a call failed due to a failure to allocate memory.

cantconn Number of times a call failed due to a failure to make a connection
to the server.

interrupts Number of times a call was interrupted by a signal before
completing.

cantsend Number of times a send failed due to a failure to make a
connection to the client.

33.2.4 NFS client NFS statistics
These statistics show the NFS clients’ usage for the various NFS calls. This
information can help in deciding the next steps to perform to increase
performance. Example 33-4 on page 662 was taken on the NFS client at the
same time the NFS Server Example 33-2 on page 659 was produced.

 Chapter 33. The nfsstat command 661

Example 33-4 Output of nfsstat -cn command

nfsstat -cn

Client nfs:
calls badcalls clgets cltoomany
1584182 0 0 0
Version 2: (188425 calls)
null getattr setattr root lookup readlink read
0 0% 95392 50% 0 0% 0 0% 11740 6% 0 0% 81068 43%
wrcache write create remove rename link symlink
0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0%
mkdir rmdir readdir statfs
0 0% 0 0% 223 0% 2 0%
Version 3: (1399306 calls)
null getattr setattr lookup access readlink read
0 0% 230820 16% 966 0% 393221 28% 26634 1% 0 0% 97536 6%
write create mkdir symlink mknod remove rmdir
296985 21% 116725 8% 966 0% 0 0% 0 0% 116786 8% 966 0%
rename link readdir readdir+ fsstat fsinfo pathconf
0 0% 0 0% 1771 0% 968 0% 4 0% 0 0% 0 0%
commit
114958 8%

Refer to 33.2.2, “NFS server NFS statistics” on page 659 for more information
and use of this statistic. The NFS clients nfsstat -cn example above shows the
same high count for file create and file remove as the server side in
Example 33-2 on page 659. There could be an application running, creating
temporary files in a NFS mounted file system. Moving these temporary files off of
NFS to a local file system will increase performance on this NFS client and
reduce load on the NFS server.

33.2.5 Statistics on mounted file systems
The nfsstat -m command displays statistics for each NFS mounted file system
on an NFS client system. This includes:

� Name of the file system
� Name of the server serving the file system
� Flags used to mount the file system
� Current timers used for dynamic retransmission

Example 33-5 is an example of the nfsstat -m output.

Example 33-5 Output of nfsstat -m command

nfsstat -m

/server1 from /server1:server1.itso.ibm.com

662 AIX 5L Performance Tools Handbook

 Flags:
vers=2,proto=udp,auth=unix,hard,intr,dynamic,rsize=8192,wsize=8192,retrans=5
 Lookups: srtt=7 (17ms), dev=3 (15ms), cur=2 (40ms)
 Reads: srtt=47 (117ms), dev=4 (20ms), cur=7 (140ms)
 All: srtt=10 (25ms), dev=7 (35ms), cur=4 (80ms)

This example shows one NFS file system mounted over /server1. The NFS
server serving this file system is server1.itso.ibm.com, and the directory name on
the server is /system1.

Flags The flags used to mount the NFS file system. Refer to the mount
command in AIX 5L Version 5.2 Commands Reference,
SBOF-1877 for more information.

srtt Smoothed round-trip time.

dev Estimated deviation.

cur Current backed-off time-out value.

The current timers used for dynamic retransmission are the numbers in
parentheses in the example output. These are the actual times in milliseconds.
Response times are shown for lookups, reads, writes, and a combination of all
operations (All). There was no write to this NFS file system, and so no respond
time values are shown for this function.

The dynamic retransmission can be turned off using the NFS option
nfs_dynamic_retrans. Refer to Chapter 32, “The nfso command” on page 645 for
more information. The default in AIX is that dynamic retransmission is used.

 Chapter 33. The nfsstat command 663

664 AIX 5L Performance Tools Handbook

Chapter 34. The no command

The Network Options (no) command is used to set the network attributes. The no
command can either display the network parameters or change them in the
kernel. It can also set a parameter back to its default value.

The no command resides in /usr/sbin and is part of the bos.net.tcp.client fileset,
which is installable from the AIX installation media.

34

Note: The no parameters are not saved, and so are lost on a reboot. To
ensure that the changes are permanent, add them to the
/etc/tunables/nextboot file.

© Copyright IBM Corp. 2001, 2003 665

34.1 no
The syntax of the no command is:

no [-p | -r] { -o Tunable[=NewValue] }
no [-p | -r] {-d Tunable }
no [-p | -r] { -D }
no -a
no -?
no -h [Tunable]
no -L [Tunable]
no -x [Tunable]

Flags
-a Displays current, reboot (when used in conjunction with

-r), or permanent (when used in conjunction with -p) value
for all tunable parameters, one per line in pairs Tunable =
Value. For the permanent options, a value only displays
for a parameter if its reboot and current values are equal.
Otherwise NONE displays as the value.

-d Tunable Resets Tunable its to default value. If Tunable needs to be
changed (that is, it is not set to its default value) and it is of
type Bosboot or Reboot, or if it is of type Incremental and
has been changed from its default value and -r is not used
in combination, it is not changed but a warning displays
instead.

-D Resets all tunables to their default value. If a tunable
needing to be changed are of type Bosboot or Reboot, or
if they are of type Incremental and have been changed
from their default value, and neither -p nor -r are used in
combination, they will not be changed but a warning
displayd instead.

-h Tunable Displays help about Tunable parameters.

-o Tunable[=NewValue]
Displays the value or sets the Tunable to NewValue. If a
tunable needs to be changed (the specified value is
different from the current value), and is of type Bosboot or
Reboot, or if it is of type Incremental and its current value
is bigger than the specified value, and -r is not used in
combination, it is not changed but a warning displays
instead.

When -r is used in combination without a new value, the
nextboot value for Tunable is displayed. When -p is used

666 AIX 5L Performance Tools Handbook

in combination without a new value, a value displays only
if the current and next boot values for tunable are the
same. Otherwise NONE displays as the value.

-p Makes changes apply to both current and reboot values
when used in combination with -o, -d, or -D (turns on
updating of the /etc/tunables/nextboot file in addition to
the updating of the current value). These combinations
cannot be used on Reboot and Bosboot type parameters
because their current value cannot be changed.

When used with -a or -o without specifying a new value,
values displays only if the current and next boot values for
a parameter are the same. Otherwise NONE displays as
the value.

-r Makes changes apply to reboot values when used in
combination with -o, -d, or -D (turns on the updating of the
/etc/tunables/nextboot file). If any parameter of type
Bosboot is changed, the user is prompted to run bosboot.
When used with -a or -o without specifying a new value,
next boot values for tunables display instead of the current
values.

-L Lists the characteristics of one or all tunables, one per
line.

-x [tunable] Generates tunable characteristics in a comma-separated
format for loading into a spreadsheet.

34.2 Examples for no
The output from the no -a command displays all of the no parameters, as seen in
Example 34-1.

Example 34-1 The no -a command displays the network tunables and their values

no -a
 arpqsize = 12
 arpt_killc = 20
 arptab_bsiz = 7
 arptab_nb = 73
 bcastping = 0
 clean_partial_conns = 0
 delayack = 0

Note: When using the -o flag do not enter space characters before or after the
equal sign. If you do, the command will fail.

 Chapter 34. The no command 667

 delayackports = {}
 dgd_packets_lost = 3
 dgd_ping_time = 5
 dgd_retry_time = 5
 directed_broadcast = 0
 extendednetstats = 0
 fasttimo = 200
 icmp6_errmsg_rate = 10
 icmpaddressmask = 0
ie5_old_multicast_mapping = 0
 ifsize = 256
 inet_stack_size = 16
 ip6_defttl = 64
 ip6_prune = 2
 ip6forwarding = 0
 ip6srcrouteforward = 1
 ipforwarding = 0
 ipfragttl = 60
 ipignoreredirects = 0
 ipqmaxlen = 100
 ipsendredirects = 1
 ipsrcrouteforward = 1
 ipsrcrouterecv = 0
 ipsrcroutesend = 1
 llsleep_timeout = 3
 lowthresh = 90
 main_if6 = 0
 main_site6 = 0
 maxnip6q = 20
 maxttl = 255
 medthresh = 95
 multi_homed = 1
 nbc_limit = 0
 nbc_max_cache = 0
 nbc_min_cache = 0
 nbc_pseg = 0
 nbc_pseg_limit = 131072
 ndp_mmaxtries = 3
 ndp_umaxtries = 3
 ndpqsize = 50
 ndpt_down = 3
 ndpt_keep = 120
 ndpt_probe = 5
 ndpt_reachable = 30
 ndpt_retrans = 1
 net_malloc_police = 0
 nonlocsrcroute = 0
 nstrpush = 8
 passive_dgd = 0

668 AIX 5L Performance Tools Handbook

 pmtu_default_age = 10
 pmtu_rediscover_interval = 30
 psebufcalls = 20
 psecache = 1
 pseintrstack = 12288
 psetimers = 20
 rfc1122addrchk = 0
 rfc1323 = 0
 rfc2414 = 0
 route_expire = 1
 routerevalidate = 0
 rto_high = 64
 rto_length = 13
 rto_limit = 7
 rto_low = 1
 sack = 0
 sb_max = 1048576
 send_file_duration = 300
 site6_index = 0
 sockthresh = 85
 sodebug = 0
 somaxconn = 1024
 strctlsz = 1024
 strmsgsz = 0
 strthresh = 85
 strturncnt = 15
 subnetsarelocal = 1
 tcp_bad_port_limit = 0
 tcp_ecn = 0
 tcp_ephemeral_high = 65535
 tcp_ephemeral_low = 32768
 tcp_finwait2 = 1200
 tcp_init_window = 0
 tcp_inpcb_hashtab_siz = 24499
 tcp_keepcnt = 8
 tcp_keepidle = 14400
 tcp_keepinit = 150
 tcp_keepintvl = 150
 tcp_limited_transmit = 1
 tcp_maxburst = 0
 tcp_mssdflt = 512
 tcp_nagle_limit = 65535
 tcp_ndebug = 100
 tcp_newreno = 1
 tcp_nodelayack = 0
 tcp_pmtu_discover = 1
 tcp_recvspace = 16384
 tcp_sendspace = 16384
 tcp_timewait = 1

 Chapter 34. The no command 669

 tcp_ttl = 60
 thewall = 131072
 udp_bad_port_limit = 0
 udp_ephemeral_high = 65535
 udp_ephemeral_low = 32768
 udp_inpcb_hashtab_siz = 24499
 udp_pmtu_discover = 1
 udp_recvspace = 42080
 udp_sendspace = 9216
 udp_ttl = 30
 udpcksum = 1
 use_isno = 1

You can use the command in Example 34-2 to change a network attribute with
the no command.

Example 34-2 Using the no command to change network parameters

no -o tcp_recvspace
tcp_recvspace = 16384
no -o tcp_recvspace=32768
no -o tcp_recvspace
tcp_recvspace = 32768

First the value of tcp_recvspace is displayed as being 16386 bytes (16 KB) by
using the no command with the -o flag. The value is then increased to 32768
bytes (32 KB). Notice that there is no space on either side of the equal sign in the
command to set the value of tcp_recvspace. If a space is inserted, the command
will fail with the error message shown in Example 34-3.

Example 34-3 Error message from the no command

no -o tcp_recvspace = 16384
Some parameters were not parsed.
Usage: no -h [tunable] | {-L [tunable]} | {-x [tunable]}
 no [-p|-r] (-a | {-o tunable})
 no [-p|-r] (-D | ({-d tunable} {-o tunable=value}))
 NOTE:

 1. The no commands can only be excuted by root.
 2. -r, -p and -C flags must be placed at the beginning of the command line.
 3. -r and -p are mutual exclusive.
 4. Display (-a,-o option) and modification (-o option=value, -d option, -D) flags
connot be mixed.
 5. -D flag can not mixed with other modification (-o option=value, -d option) flags.

Table 34-1 on page 671 shows a list of adapter types and the suggested
minimum buffer and MTU sizes.

670 AIX 5L Performance Tools Handbook

Table 34-1 Suggested minimum buffer and MTU sizes for adapters

Permanently change a variable
When you change the value of a variable, it is lost after a reboot. To ensure that a
change is permanent, use the no command with the -r or -p flags.

When using the -r flag to change the value of a variable, the variable will only be
changed after the next reboot. The reason for this is that the currently variable
value is not changed, but an entry is made into the /etc/tunables/nextboot file. In
Example 34-4 we displayed the contents of the /etc/tunables/nextboot file, and
there are no entries in the file related to the no command. We then displayed the
value of the ipforwarding variable; this is set to its default value of 0. After
executing the no -ro ipforwarding command, the variable value of the
ipforwarding is unchanged, but an entry is made in the /etc/tunables/nextboot file.

Example 34-4 Using no -r command to make variable changes

cat /etc/tunables/nextboot
ioo:

nfso:
 nfs_dynamic_retrans = "1"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"

Device Speed MTU tcp_sendspace tcp_recvspace sb_max rfc1323

Ethernet 10 Mbit 1500 16384 16384 32768 0

Ethernet 100 Mbit 1500 16384 16384 32768 0

Ethernet Gigabit 1500 65535 16384 131072 0

Ethernet Gigabit 9000 131072 65535 262144 0

Ethernet Gigabit 9000 131072 92160 262144 1

ATM 155 Mbit 1500 16384 16384 131072 0

ATM 155 Mbit 9180 65535 65535a

a. Certain values of tcp_recvspace and tcp_sendspace will result in poor performance on ATM
adapters. For example, an MTU size of 9180, a tcp_sendspace set to 16384, and a tcp_recvspace
set to 32768 or 65535 results in poor performance. Setting the tcp_sendspace and tcp_recvspace
both to 65535 results in a good performance. For best performance in this case, ensure that
tcp_sendspace is equal to or larger than tcp_recvspace.

131072 0

ATM 155 Mbit 65527 655360 655360b

b. The TCP window is only a 16 bit size. With ATM adapters with large MTU sizes of 32 KB or 64
KB, streaming may be poor. To overcome this 16 bit limit, set the value of rfc1323 to 1 (one).

1310720 1

FDDI 100 Mbit 4352 45056 45056 90012 0

 Chapter 34. The no command 671

vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"
no -o ipforwarding
ipforwarding = 0
no -ro ipforwarding=1
no -o ipforwarding
ipforwarding = 0
cat /etc/tunables/nextboot
ioo:

nfso:
 nfs_dynamic_retrans = "1"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"

vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"

no:
 ipforwarding = "1"

When using the -p flag to change a variable, the current value is updated and an
entry is made in the /etc/tunables/nextboot file. In Example 34-5 we use the no
command with the -p flag to permanantly change the value of a variable. In this
example we reset all of the no options to the defaults. The contents of the
/etc/tunables/nextboot file are displayed, and there are no entries for any no
variables. When running the no -o ipforwarding command, notice that the value
has been set to 0. When executing the no -po ipforwarding command, notice
that the /etc/tunables/nextboot file and the ipforwarding variable have been
updated.

Example 34-5 Using no -p to make variable changes

cat /etc/tunables/nextboot
ioo:

nfso:
 nfs_dynamic_retrans = "1"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"

vmo:
 maxperm% = "50"

672 AIX 5L Performance Tools Handbook

 maxclient% = "50"
 spec_dataseg_int = "0"
no -o ipforwarding
ipforwarding = 0
no -po ipforwarding=1
cat /etc/tunables/nextboot
ioo:

nfso:
 nfs_dynamic_retrans = "1"
 nfs_v3_vm_bufs = "5000"
 nfs_v2_vm_bufs = "5000"

vmo:
 maxperm% = "50"
 maxclient% = "50"
 spec_dataseg_int = "0"

no:
 ipforwarding = "1"
no -o ipforwarding
ipforwarding = 1

 Chapter 34. The no command 673

674 AIX 5L Performance Tools Handbook

Part 7 Tracing
performance
problems

This part describes the use of the AIX trace command and the tools that support
or post-process the output of it.

� The trace command, described in “trace” on page 760, is used to monitor
user and kernel subsystems statistics in detail.

� The trcrpt command, described in 40.3, “trcrpt” on page 777, is used to
format a raw trace file into a readable trace file.

� The trcnm command, described in 40.2, “trcnm” on page 775, is used to
generate a list of all symbols with their addresses defined in the kernel.

Part 7

© Copyright IBM Corp. 2001, 2003. All rights reserved. 675

� The gennames command, described in “gennames” on page 704, is used to
gather address mapping information necessary for other commands.

� The stripnm command, described in “stripnm” on page 724, produces an
output similar to the output generated by the gennames command, which is
required for using the tprof, filemon, netpmon, and pprof commands in
real-time mode.

� The genkex command, described in 36.5, “genkex” on page 713, extracts the
list of kernel extensions currently loaded into the system and displays the
address, size, and path name for each kernel extension in the list.

� The genkld command, described in 36.4, “genkld” on page 712, extracts the
list of shared objects for all processes currently loaded into the shared
segment and displays the address, size, and path name for each object on
the list.

� The genld command, described in 36.3, “genld” on page 710, collects the list
of all processes currently running on the system, and optionally reports the
list of loaded objects corresponding to each process.

� The curt command, described in Chapter 35, “The curt command” on
page 677, is a trace post processing tool that summarizes system utilization.
Usually you would look at the output of the curt command to get an overview
of the state of the system before analyzing the trace in detail.

� The locktrace command, described in Chapter 37, “The locktrace command”
on page 719, is used to determine which kernel locks will be traced by the
trace subsystem.

� The splat command, described in Chapter 39, “The splat command” on
page 729, is a trace post processing tool that produces kernel limple_lock
usage reports.

676 AIX 5L Performance Tools Handbook

Chapter 35. The curt command

The CPU Usage Reporting Tool (curt) takes an AIX trace file as input and
produces a number of statistics related to CPU utilization and process/thread
activity. These easy-to-read statistics enable quick and easy tracking of what
a specific application is doing. For information about trace, refer to Chapter 40,
“The trace, trcnm, and trcrpt commands” on page 759.

The curt command resides in /usr/bin and is part of the bos.perf.tools fileset that
is obtained from the AIX base installation media.

35

© Copyright IBM Corp. 2001, 2003 677

35.1 curt
The syntax for the curt command is:

curt -i inputfile [-o outputfile] [-n gennamesfile] [-m trcnmfile]
[-a pidnamefile] [-f timestamp] [-l timestamp] [-ehpstP] [-V]

Flags
-i inputfile Specifies the input AIX trace file to be analyzed.

-o outputfile Specifies an output file (default is stdout).

-n gennamesfile Specifies a names file produced by gennames.

-m trcnmfile Specifies a names file produced by trcnm.

-a pidnamefile Specifies a PID-to-process name mapping file.

-f timestamp Starts processing trace at time stamp seconds.

-l timestamp Stops processing trace at time stamp seconds.

-e Outputs elapsed time information for system calls.

-h Displays usage text (this information).

-p Shows ticks as trace processing progresses.

-s Outputs information about errors returned by system
calls.

-t Outputs detailed thread by thread information.

-P Outputs detailed pthread information.

Parameters

inputfile The AIX trace file that should be processed by curt.

gennamesfile The names file as produced by gennames.

trcnmfile The names file as produced by trcnm.

outputfile The names of the output file created by curt.

pidnamefile If the trace process name table is not accurate, or if
more descriptive names are desired, use the -a flag to
specify a PID to process name mapping file. This is a
file with lines consisting of a process ID (in decimal)
followed by a space, then an ASCII string to use as the
name for that process.

timestamp The time in seconds at which to start and stop the trace
file processing.

678 AIX 5L Performance Tools Handbook

35.1.1 Information about measurement and sampling
A raw (unformatted) system trace from AIX 5L is read by curt to produce
summaries on CPU utilization and either process or thread activity. This
summary information is useful for determining which application, system call, or
interrupt handler is using most of the CPU time and is a candidate to be
optimized to improve system performance.

Table 35-1 lists the minimum trace hooks required for curt. Using only these
trace hooks will limit the size of the trace file. However, other events on the
system may not be captured in this case. This is significant if you intend to
analyze the trace in more detail.

Table 35-1 Minimum trace hooks required for curt

HOOK ID Event Name Event Explanation

100 HKWD_KERN_FLIH Occurrence of a first-level interrupt,
such as an I/O interrupt, a data access
page fault, or a timer interrupt
(scheduler).

101 HKWD_KERN_SVC A thread has issued a system call.

102 HKWD_KERN_SLIH Occurrence of a second-level interrupt;
that is, first-level I/O interrupts are being
passed on to the second-level interrupt
handler who then is working directly
with the device driver.

103 HKWD_KERN_SLIHRET Return from a second-level interrupt to
the caller (usually a first-level interrupt
handler).

104 HKWD_KERN_SYSCRET Return from a system call to the caller
(usually a thread).

106 HKWD_KERN_DISPATCH A thread has been dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process has been dispatched.

119 HKWD_KERN_PIDSIG A signal has been sent to a process.

134 HKWD_SYSC_EXECVE An exec SVC has been issued by a
(forked) process.

135 HKWD_SYSC__EXIT An exit SVC has been issued by a
process.

139 HKWD_SYSC_FORK A fork SVC has been issued by a
process.

 Chapter 35. The curt command 679

Trace hooks 119 and 135 are used to report on the time spent in the exit() system
call. This is special because a process will enter it but will never return (because
the calling process terminates). However a SIGCHLD signal is sent to the parent
process of the exiting process, and this event is reflected in the trace by a
HKWD_KERN_PIDSIG trace hook. curt will match this trace hook with the exit()
system call trace hook (HKWD_KERN_SVC) and treat it as the system call
return for the exit() system call.

35.2 Examples for curt
To generate a trace to be used in the following examples, we perform the
following steps.

The first step is generate a system trace from the system. This can be done by
using the trace.sh script as supplied by perfpmr. See Chapter 7, “The perfpmr
command” on page 115 for details, or alternatively, you can run trace as shown
in Example 35-1 on page 681 (see 40.1.3, “Ways to start and stop trace” on
page 767 for details on the trace command).

Preparing to run curt is a four-stage process as follows:

1. Build the raw trace
This create the files listed in Example 35-1 on page 681, producing one raw
trace file per CPU. The files are called trace.raw-0, trace.raw-1, and so on for
each CPU. An additional raw trace file called trace.raw is also generated. This
is a master file that has information that ties in the other CPU-specific traces.

2. Merge the trace files
To merge the trace files together to form one raw trace file, run the trcrpt
command as shown in Example 35-1 on page 681.

3. Create the supporting files gennamesfile and trcnmfile
Neither the gennamesfile nor the trcnmfile file are necessary for curt to run.
However, if you provide one or both of those files, curt will output names for
system calls and interrupt handles instead of just addresses. The gennames

200 HKWD_KERN_RESUME A dispatched thread is being resumed
on the CPU.

210 HKWD_KERN_INITP A kernel process has been created.

38F HKWD_DR A processor has been added/removed.

465 HKWD_SYSC_CRTHREAD A thread_create SVC has been issued
by a process.

HOOK ID Event Name Event Explanation

680 AIX 5L Performance Tools Handbook

command output includes more information than the trcnm command output,
and so, while the trcnmfile will contain most of the important address to name
mapping data, a gennamesfile will enable curt to output more names,
especially interrupt handlers. gennames requires root authority to run. trcnm
can be run by any user.

4. Generate the curt output.

Example 35-1 Creating a trace file for curt to analyze

HOOKS="100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465"
SIZE="1000000"
export HOOKS SIZE
trace -n -C all -d -j $HOOKS -L $SIZE -T $SIZE -afo trace.raw
trcon ; sleep 5 ; trcstop
unset HOOKS SIZE
ls trace.raw*
trace.raw trace.raw-0 trace.raw-1 trace.raw-2 trace.raw-3
trcrpt -C all -r trace.raw > trace.r
rm trace.raw*
ls trace*
trace.r
gennames > gennames.out
trcnm > trace.nm

Alternatively, “-J curt” can be used in place of “-j $HOOKS” for the trace
command from Example 35-1.

Overview of the reports generated by curt
The following is an overview of the reports that can be generated by the curt
command.

� A report header with the trace file name, trace size, and date and time the
trace was taken. The header also includes the command used when the trace
was run.

� For each CPU (and a summary of all of the CPUs), processing time
expressed in milliseconds and as a percentage (idle and non-idle
percentages are included) for various CPU usage categories.

� Average thread affinity across all CPUs and for each individual CPU.

� The total number of process dispatches for each individual CPU.

� Information about the amount of CPU time spent in application and system
call (syscall) mode, expressed in milliseconds and as a percentage by thread,
process, and process type. Also included are the number of threads per
process and per process type.

 Chapter 35. The curt command 681

� Information about the amount of CPU time spent executing each kernel
process, including the idle process, expressed in milliseconds and as a
percentage of the total CPU time.

� Information about completed system calls that includes the name and
address of the system call, the number of times the system call was executed,
and the total CPU time expressed in milliseconds and as a percentage with
average, minimum, and maximum time the system call was running.

� Information about pending system calls (system calls for which the system
call return has not occurred at the end of the trace). The information includes
the name and address of the system call, the thread or process that made the
system call, and the accumulated CPU time the system call was running,
expressed in milliseconds.

� Information about the first level interrupt handlers (FLIHs) that includes the
type of interrupt, the number of times the interrupt occurred, and the total
CPU time spent handling the interrupt with average, minimum, and maximum
time. This information is given for all CPUs and for each individual CPU. If
there are any pending FLIHs (FLIHs for which the resume has not occurred at
the end of the trace), for each CPU the accumulated time and the pending
FLIH type is reported.

� Information about the second level interrupt handlers (SLIHs) that includes
the interrupt handler name and address, the number of times the interrupt
handler was called, and the total CPU time spent handling the interrupt with
average, minimum, and maximum time. This information is given for all CPUs
and for each individual CPU. If there are any pending SLIHs (SLIHs for which
the return has not occurred at the end of the trace), for each CPU the
accumulated time and the pending SLIH name and address is reported.

To create additional, specialized reports with curt, run the curt command using
the flags described below:

-e Produces a report that includes the statistics displayed in “The default
report” on page 683 and includes additional information about the System
Calls Summary Report. The additional information pertains to the total,
average, maximum, and minimum elapsed times a system call was
running. Refer to Example 35-13 on page 696 for this report.

-s Produces a report that includes the statistics displayed in “The default
report” on page 683, and includes a report on errors returned by system
calls. Refer to Example 35-14 on page 697 for this report.

-t Produces a report that includes the statistics displayed in “The default
report” on page 683, and includes a detailed report on thread status that
includes the amount of time the thread was in application and kernel mode,
what system calls the thread made, processor affinity, the number of times
the thread was dispatched, and to what CPU it was dispatched. The report

682 AIX 5L Performance Tools Handbook

also includes dispatch wait times and details of interrupts. Refer to
Example 35-15 on page 698 for this report.

-p Produces a report that includes a detailed report on process status that
includes the amount of CPU time the process was in application and
system call mode, which threads were in the process, and what system
calls the process made. Refer to Example 35-16 on page 700.

The default report
This section explains the default report created by curt, using the following
command:

curt -i trace.r -m trace.nm -n gennames.out -o curt.out

The curt output always includes this default report in its output. The default
report includes the following sessions:

� General Information
� System Summary
� Processor Summary
� Application Summary by TID
� Application Summary by PID
� Application Summary by Process Type
� Kproc Summary
� System Calls Summary
� Pending System Calls Summary
� FLIH Summary
� SLIH Summary

General information
The first information in the report is the time and date when this particular curt
command was run, including the syntax of the curt command line that produced
the report.

The General Information section also contains some information about the AIX
trace file that was processed by curt. This information consists of the trace file
name, size, and creation date. The command used to invoke the AIX trace facility
and gather the trace file is displayed at the end of the report.

A sample of this output is shown in Example 35-2.

Example 35-2 General information from curt.out

Run on Mon Apr 14 17:26:06 2003
Command line was:
curt -i trace.r -m trace.nm -n gennames.out -o curt.out

AIX trace file name = trace.r

 Chapter 35. The curt command 683

AIX trace file size = 3525612
AIX trace file created = Mon Apr 14 17:12:14 2003

Command used to gather AIX trace was:
 trace -n -C all -d -j 100,101,102,103,104,106,10C,119,134,135,139,200,210,38F,465 -L 1000000
-T 1000000 -afo trace.raw

System summary
The next part of the default output is the System Summary, shown in
Example 35-3.

Example 35-3 The System Summary report from curt.out

 System Summary

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 14998.65 73.46 92.98 APPLICATION
 591.59 2.90 3.66 SYSCALL
 48.33 0.24 0.30 KPROC
 486.19 2.38 3.00 FLIH
 49.10 0.24 0.30 SLIH
 8.83 0.04 0.05 DISPATCH (all procs. incl. IDLE)
 1.04 0.01 0.01 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 16182.69 79.26 100.00 CPU(s) busy time
 4234.76 20.74 IDLE
 ----------- ----------
 20417.45 TOTAL

 Avg. Thread Affinity = 0.99

This portion of the report describes the time spent by the system as a whole (all
CPUs) in various execution modes.

The System Summary has the following fields:

Processing total This column gives the total time in milliseconds for the
corresponding processing category.

Percent total time This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors. This includes whatever amount of time each
processor spent running the IDLE process.

684 AIX 5L Performance Tools Handbook

Percent busy This column gives the time from the first column as a
percentage of the sum of total trace elapsed time for all
processors without including the time each processor
spent executing the IDLE process.

Avg. Thread Affinity The Avg. Thread Affinity is the probability that a thread
was dispatched to the same processor that it last
executed on.

The possible execution modes or processing categories translate as follows:

APPLICATION The sum of times spent by all processors in User (that is,
non-supervisory or non-privileged) mode.

SYSCALL The sum of times spent by all processors doing System
Calls. This is the portion of time that a processor spends
executing in the kernel code providing services directly
requested by a user process.

FLIH The sum of times spent by all processors in FLIHs (first
level interrupt handlers). The FLIH time consists of the
time from when the FLIH is entered until the SLIH is
entered, then from when the SLIH returns back into the
FLIH until either dispatch or resume is called.

SLIH The sum of times spent by all processors in SLIHs
(second level interrupt handlers). The SLIH time consists
of the time from when a SLIH is entered until it returns.
Note nested interrupts may occur inside an SLIH. These
FLIH times are not counted as SLIH time but rather as
FLIH time as described above.

DISPATCH The sum of times spent by all processors in the AIX
dispatch code. The time starts when the dispatch code is
entered and ends when the resume code is entered. The
dispatch code corresponds to the OS, deciding which
thread will run next and doing the necessary
bookkeeping. This time includes the time spent
dispatching all threads (that is, includes the dispatch of
the IDLE process).

IDLE DISPATCH The sum of times spent by all processors in the AIX
dispatch code where the process being dispatched was
the IDLE process. Because it is the IDLE process being
dispatched, the overhead spent in dispatching is less
critical than other dispatch times where there is useful
work being dispatched. Because the Dispatch category
already includes the IDLE Dispatch category’s time, the

 Chapter 35. The curt command 685

IDLE Dispatch category’s time will not be included in
either of the total categories CPU busy time or TOTAL.

CPU(s) busy time The sum of times spent by all processors executing in
application, kernel, FLIH, SLIH, and dispatch modes.

IDLE The sum of times spent by all processors executing the
IDLE process.

TOTAL The sum of CPU(s) busy time and WAIT.

The System Summary in Example 35-3 on page 684 shows that the CPU spends
most of its time in application mode. We still have 4234.76 ms of idle time so we
know that we have enough CPU to run our applications. The Kproc Summary,
which can be seen in Example 35-8 on page 690, reports similar values. If there
was insufficient CPU power then we would not expect to see any wait time. The
Avg. Thread Affinity value is 0.99, showing good processor affinity (threads
returning to the same processor when they are ready to be re-run).

Processor summary
This part of the curt output follows the System Summary and is essentially the
same information but broken down on a processor-by processor basis. The same
description that was given for the System Summary applies here, except that the
phrase "sum of times spent by all processors" can be replaced by "time
spent by this processor". A sample of processor summary output is shown in
Example 35-4.

Example 35-4 The Processor Summary from curt.out

Processor Summary processor number 0

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 45.07 0.88 5.16 APPLICATION
 591.39 11.58 67.71 SYSCALL
 47.83 0.94 5.48 KPROC
 173.78 3.40 19.90 FLIH
 9.27 0.18 1.06 SLIH
 6.07 0.12 0.70 DISPATCH (all procs. incl. IDLE)
 1.04 0.02 0.12 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 873.42 17.10 100.00 CPU(s) busy time
 4232.92 82.90 IDLE
 ----------- ----------
 5106.34 TOTAL

 Avg. Thread Affinity = 0.98

686 AIX 5L Performance Tools Handbook

 Total number of process dispatches = 1620
 Total number of idle dispatches = 782

 Processor Summary processor number 1

 processing percent percent
 total time total time busy time
 (msec) (incl. idle) (excl. idle) processing category
 =========== =========== =========== ===================
 4985.81 97.70 97.70 APPLICATION
 0.09 0.00 0.00 SYSCALL
 0.00 0.00 0.00 KPROC
 103.86 2.04 2.04 FLIH
 12.54 0.25 0.25 SLIH
 0.97 0.02 0.02 DISPATCH (all procs. incl. IDLE)
 0.00 0.00 0.00 IDLE DISPATCH (only IDLE proc.)
 ----------- ---------- -------
 5103.26 100.00 100.00 CPU(s) busy time
 0.00 0.00 IDLE
 ----------- ----------
 5103.26 TOTAL

 Avg. Thread Affinity = 0.99

 Total number of process dispatches = 516
 Total number of idle dispatches = 0

Avg. Thread Affinity = 0.99

...(lines omitted)...

The Total number of process dispatches refers to how many times AIX
dispatched any non-IDLE process on this processor.

Application Summary by Thread ID (TID)
The Application Summary by Thread ID shows an output of all threads that were
running on the system during trace collection and their CPU consumption. The
thread that consumed the most CPU time during the trace collection is at the top
of the list. The report is shown in Example 35-5.

Example 35-5 Application Summary by Thread ID

Application Summary (by Tid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid Tid)
 ======== =========== ======= ======== =========== ======= ===================

 Chapter 35. The curt command 687

 4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418 32437)
 4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128 33557)
 4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894 28671)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390 28397)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584 32777)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916 33033)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580 30199)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154 34321)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424 31493)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992 32539)

 ...(lines omitted)...

The output has two main sections, of which one shows the total processing time
of the thread in milliseconds (processing total (msec)), and the other shows the
CPU time the thread has consumed, expressed as a percentage of the total CPU
time (percent of total processing time).

� Processing total (msec) section

combined The total amount of time, expressed in milliseconds,
that the thread was running in either application or
kernel mode.

application The amount of time, expressed in milliseconds, that
the thread spent in application mode.

syscall The amount of CPU time, expressed in milliseconds,
that the thread spent in system call mode.

� Percent of total processing time section

combined The amount of time the thread was running, expressed
as percentage of the total processing time.

application The amount of time the thread spent in application
mode, expressed as percentage of the total
processing time.

syacall The amount of CPU time that the thread spent in
system call mode, expressed as percentage of the
total processing time.

name (Pid Tid) The name of the process associated with the thread,
its process ID, and its thread ID.

The Application Summary by TID from curt shows an output of all threads that
were running on the system during the time of trace collection and their CPU
consumption as shown in Example 35-5 on page 687. The thread that consumed
the most CPU time during the time of the trace collection is on top of the list.

688 AIX 5L Performance Tools Handbook

We created a test program called cpu with CPU-intensive code. Example 35-5 on
page 687 shows that the CPU spent most of its time in application mode running
the cpu process. To learn more about this process, we could run the gprof
command (see Chapter 19, “The gprof, pprof, prof, and tprof commands” on
page 297) or other profiling tools to profile the process, or look directly at the
formatted trace file from the trcrpt command. (See 40.3, “trcrpt” on page 777.)

Application Summary by Process ID (PID)
The Application Summary (by PID) has the same content as the Application
Summary (by TID), except that the threads that belong to each process are
consolidated, and the process that consumed the most CPU time during the
monitoring period is at the beginning of the list.

In Example 35-6, the column name (PID)(Thread Count) shows the process
name, its process ID, and the number of threads that belong to this process and
that have been accumulated for this line of data.

Example 35-6 The Application and Kernel Summary (by PID) from curt.out

Application and Kernel Summary (by Pid)

 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (Pid)(Thread Count)
 ======== =========== ====== ======== =========== ====== ============================
4986.2355 4986.2355 0.0000 24.4214 24.4214 0.0000 cpu(18418)(1)
4985.8051 4985.8051 0.0000 24.4193 24.4193 0.0000 cpu(19128)(1)
4982.0331 4982.0331 0.0000 24.4009 24.4009 0.0000 cpu(18894)(1)
 83.8436 2.5062 81.3374 0.4106 0.0123 0.3984 disp+work(20390)(1)
 72.5809 2.7269 69.8540 0.3555 0.0134 0.3421 disp+work(18584)(1)
 69.8023 2.5351 67.2672 0.3419 0.0124 0.3295 disp+work(19916)(1)
 63.6399 2.5032 61.1368 0.3117 0.0123 0.2994 disp+work(17580)(1)
 63.5906 2.2187 61.3719 0.3115 0.0109 0.3006 disp+work(20154)(1)
 62.1134 3.3125 58.8009 0.3042 0.0162 0.2880 disp+work(21424)(1)
 60.0789 2.0590 58.0199 0.2943 0.0101 0.2842 disp+work(21992)(1)
...(lines omitted)...

Application Summary by process type
The Application Summary (by process type) consolidates all processes of the
same name and sorts them in descending order of combined processing time.

The name (thread count) column shows the name of the process and the
number of threads that belong to this process name (type) that were running on
the system during the monitoring period. It is shown in Example 35-7 on
page 690.

 Chapter 35. The curt command 689

Example 35-7 The Application Summary (by process type) from curt.out

 Application Summary (by process type)
 --
 -- processing total (msec) -- -- percent of total processing time --
 combined application syscall combined application syscall name (thread count)
 ======== =========== ======= ======== =========== ======= ==================
 14954.0738 14954.0738 0.0000 73.2416 73.2416 0.0000 cpu(3)
 573.9466 21.2609 552.6857 2.8111 0.1041 2.7069 disp+work(9)
 20.9568 5.5820 15.3748 0.1026 0.0273 0.0753 trcstop(1)
 10.6151 2.4241 8.1909 0.0520 0.0119 0.0401 i4llmd(1)
 8.7146 5.3062 3.4084 0.0427 0.0260 0.0167 dtgreet(1)
 7.6063 1.4893 6.1171 0.0373 0.0073 0.0300 sleep(1)

...(lines omitted)...

Kproc Summary by Thread ID (TID)
The Kproc Summary (by TID) shows an output of all kernel process threads that
were running on the system during the time of trace collection and their CPU
consumption. The thread that consumed the most CPU time during the time of
the trace collection is at the beginning of the list shown in Example 35-8.

Example 35-8 Kproc symmary by TID

 Kproc Summary (by Tid)

 -- processing total (msec) -- -- percent of total time --
 combined operation kernel combined operation kernel name (Pid Tid Type)
 ======== ========= ====== ======== ========= ====== ===================
 4232.9216 0.0000 4232.9216 20.7319 0.0000 20.7319 wait(516 517 W)
 30.4374 0.0000 30.4374 0.1491 0.0000 0.1491 lrud(1548 1549 -)

 ...(lines omitted)...

 Kproc Types

 Type Function Operation
 ==== ============================ ==========================
 W idle thread -

The Kproc Summary has the following fields:

name (Pid Tid Type) The name of the kernel process associated with the
thread, its process ID, its thread ID, and its type. The
kproc type is defined in the Kproc Types listing
following the Kproc Summary.

690 AIX 5L Performance Tools Handbook

processing total (msec) section

combined The total amount of CPU time, expressed in
milliseconds, that the thread was running in either
operation or kernel mode

operation The amount of CPU time, expressed in milliseconds,
that the thread spent in operation mode

kernel The amount of CPU time, expressed in milliseconds,
that the thread spent in kernel mode

percent of total time section

combined The amount of CPU time that the thread was running,
expressed as a percentage of the total processing time

operation The amount of CPU time that the thread spent in
operation mode, expressed as a percentage of the
total processing time

kernel The amount of CPU time that the thread spent in
kernel mode, expressed as a percentage of the total
processing time

Kproc Types section

Type A single letter to be used as an index into this listing

Function A description of the nominal function of this type of
kernel process

Syatem Calls Summary
The System Calls Summary provides a list of all system calls that were used on
the system during the monitoring period, as shown in Example 35-9. The list is
sorted by the total time in milliseconds consumed by each type of system call.

Example 35-9 The System Calls Summary from curt.out

 System Calls Summary

 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
======== =========== ====== ======== ======== ======== ================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 _poll(4e0ecc)

 Chapter 35. The curt command 691

 228 1.1583 0.01% 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 klseek(425a48)
...(lines omitted)...

The System Calls Summary has the following fields:

Count The number of times a system call of a certain type (see
SVC (Address)) has been used (called) during the
monitoring period

Total Time (msec) The total time the system spent processing these system
calls, expressed in milliseconds

% sys time The total time the system spent processing these system
calls, expressed as a percentage of the total processing
time

Avg Time (msec) The average time the system spent processing one
system call of this type, expressed in milliseconds

Min Time (msec) The minimum time the system needed to process one
system call of this type, expressed in milliseconds

Max Time (msec) The maximum time the system needed to process one
system call of this type, expressed in milliseconds

SVC (Address) The name of the system call and its kernel address

Pending System Calls Summary
The Pending System Calls Summary provides a list of all system calls that have
been executed on the system during the monitoring period but have not
completed. The list is sorted by TID. Example 35-10 displays the pending system
calls summary.

Example 35-10 Pending System Calls Summary from curt.out

 Pending System Calls Summary

 Accumulated SVC (Address) Procname (Pid Tid)
 Time (msec)
 ============ ========================= ==========================
 0.0656 _select(4e0ee4) sendmail(7844 5001)
 0.0452 _select(4e0ee4) syslogd(7514 8591)
 0.0712 _select(4e0ee4) snmpd(5426 9293)
 0.0156 kioctl(4e07ac) trcstop(47210 18379)

692 AIX 5L Performance Tools Handbook

 0.0274 kwaitpid(1cab64) ksh(20276 44359)
 0.0567 kread4259e8) ksh(23342 50873)
 ...(lines omitted)...

The Pending System Calls Summary has the following fields:

Accumulated Time(msec)The accumulated CPU time that the system spent
processing the pending system call, expressed in
milliseconds.

SVC (Address) The name of the system call and its kernel address.

Procname (Pid Tid) The name of the process associated with the thread
that made the system call, its PID, and the TID.

FLIH Summary
The FLIH Summary lists all first level interrupt handlers that were called during
the monitoring period, as shown in Example 35-11.

The Global Flih Summary lists the total of first level interrupts on the system,
while the Per CPU Flih Summary lists the first level interrupts per CPU.

Example 35-11 The Flih summaries from curt.out

 Global Flih Summary

 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 2183 203.5524 0.0932 0.0041 0.4576 31(DECR_INTR)
 946 102.4195 0.1083 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 12 1.6720 0.1393 0.0828 0.3366 32(QUEUED_INTR)
 1058 183.6655 0.1736 0.0039 0.7001 5(IO_INTR)

Per CPU Flih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =========
 635 39.8413 0.0627 0.0041 0.4576 31(DECR_INTR)
 936 101.4960 0.1084 0.0063 0.6590 3(DATA_ACC_PG_FLT)
 9 1.3946 0.1550 0.0851 0.3366 32(QUEUED_INTR)
 266 33.4247 0.1257 0.0039 0.4319 5(IO_INTR)

CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Flih Type
 (msec) (msec) (msec) (msec)

 Chapter 35. The curt command 693

 ====== =========== =========== =========== =========== =========
 4 0.2405 0.0601 0.0517 0.0735 3(DATA_ACC_PG_FLT)
 258 49.2098 0.1907 0.0060 0.5076 5(IO_INTR)
 515 55.3714 0.1075 0.0080 0.3696 31(DECR_INTR)
...(lines omitted)...

 Pending Flih Summary

 Accumulated Time (msec) Flih Type
 ======================== ================
 0.0123 5(IO_INTR)

 ...(lines omitted)...

The FLIH Summary report has the following fields:

Count The number of times a first level interrupt of a certain type
(see FLIH Type) occurred during the monitoring period.

Total Time (msec) The total time the system spent processing these first
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one first
level interrupt of this type, expressed in milliseconds.

Min Time (msec) The minimum time the system needed to process one first
level interrupt of this type, expressed in milliseconds.

Max Time (msec) The maximum time the system needed to process one
first level interrupt of this type, expressed in milliseconds.

Flih Type The number and name of the first level interrupt.

In Example 35-11 on page 693, the following are the FLIH types:

DATA_ACC_PG_FLT Data access page fault

QUEUED_INTR Queued interrupt

DECR_INTR Decrementer interrupt

IO_INTR I/O interrupt

SLIH Summary
The SLIH Summary lists all second level interrupt handlers that were called
during the monitoring period, as shown in Example 35-12.

The Global Slih Summary lists the total of second level interrupts on the system,
while the Per CPU Slih Summary lists the second level interrupts per CPU.

Example 35-12 The Slih summaries from curt.out

 Global Slih Summary

694 AIX 5L Performance Tools Handbook

 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 43 7.0434 0.1638 0.0284 0.3763 .copyout(1a99104)
 1015 42.0601 0.0414 0.0096 0.0913 .i_mask(1990490)

 Per CPU Slih Summary

CPU Number 0:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 8 1.3500 0.1688 0.0289 0.3087 .copyout(1a99104)
 258 7.9232 0.0307 0.0096 0.0733 .i_mask(1990490)

CPU Number 1:
 Count Total Time Avg Time Min Time Max Time Slih Name(Address)
 (msec) (msec) (msec) (msec)
 ====== =========== =========== =========== =========== =================
 10 1.2685 0.1268 0.0579 0.2818 .copyout(1a99104)
 248 11.2759 0.0455 0.0138 0.0641 .i_mask(1990490)

...(lines omitted)...

The SLIH Summary report has the following fields:

Count The number of times each SLIH was called during the
monitoring period.

Total Time (msec) The total time the system spent processing these second
level interrupts, expressed in milliseconds.

Avg Time (msec) The average time the system spent processing one
second level interrupt of this type, expressed in
milliseconds.

Min Time (msec) The minimum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Max Time (msec) The maximum time the system needed to process one
second level interrupt of this type, expressed in
milliseconds.

Slih Name (Address) The name and kernel address of the second level
interrupt.

 Chapter 35. The curt command 695

Report generated with the -e flag
The report generated with the -e flag includes the reports shown in “The default
report” on page 683, and also includes additional information in the System Calls
Summary report as shown in Example 35-13. The additional information pertains
to the total, average, maximum, and minimum elapsed times a system call was
running.

Example 35-13 curt output with the -e flag

curt -e -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...

System Calls Summary

Count Total % sys Avg Min Max Tot Avg Min Max SVC
 Time time Time Time Time ETime ETime Etime ETime (Address)
 (msec) (msec) (msec) (msec) (msec) (msec) (msec) (msec)
===== ======== ===== ====== ====== ====== ========== ========= ========= ========= ======================
 605 355.4475 1.74% 0.5875 0.0482 4.5626 31172.7658 51.5252 0.0482 422.2323 kwrite(4259c4)
 733 196.3752 0.96% 0.2679 0.0042 2.9948 12967.9407 17.6916 0.0042 265.1204 kread(4259e8)
 3 9.2217 0.05% 3.0739 2.8888 3.3418 57.2051 19.0684 4.5475 40.0557 execve(1c95d8)
 38 7.6013 0.04% 0.2000 0.0051 1.6137 12.5002 0.3290 0.0051 3.3120 __loadx(1c9608)
 1244 4.4574 0.02% 0.0036 0.0010 0.0143 4.4574 0.0036 0.0010 0.0143 lseek(425a60)
 45 4.3917 0.02% 0.0976 0.0248 0.1810 4.6636 0.1036 0.0248 0.3037 access(507860)
 63 3.3929 0.02% 0.0539 0.0294 0.0719 5006.0887 79.4617 0.0294 100.4802 _select(4e0ee4)
 2 2.6761 0.01% 1.3380 1.3338 1.3423 45.5026 22.7513 7.5745 37.9281 kfork(1c95c8)
 207 2.3958 0.01% 0.0116 0.0030 0.1135 4494.9249 21.7146 0.0030 499.1363 _poll(4e0ecc)
 228 1.1583 0.01% 0.0051 0.0011 0.2436 1.1583 0.0051 0.0011 0.2436 kioctl(4e07ac)
 9 0.8136 0.00% 0.0904 0.0842 0.0988 4498.7472 499.8608 499.8052 499.8898 .smtcheckinit(1b245a8)
 5 0.5437 0.00% 0.1087 0.0696 0.1777 0.5437 0.1087 0.0696 0.1777 open(4e08d8)
 15 0.3553 0.00% 0.0237 0.0120 0.0322 0.3553 0.0237 0.0120 0.0322 .smtcheckinit(1b245cc)
 2 0.2692 0.00% 0.1346 0.1339 0.1353 0.2692 0.1346 0.1339 0.1353 statx(4e0950)
 33 0.2350 0.00% 0.0071 0.0009 0.0210 0.2350 0.0071 0.0009 0.0210 _sigaction(1cada4)
 1 0.1999 0.00% 0.1999 0.1999 0.1999 5019.0588 5019.0588 5019.0588 5019.0588 kwaitpid(1cab64)
 102 0.1954 0.00% 0.0019 0.0013 0.0178 0.5427 0.0053 0.0013 0.3650 klseek(425a48)
...(lines omitted)...

 Pending System Calls Summary

 Accumulated Accumulated SVC (Address) Procname (Pid Tid)
 Time (msec) ETime (msec)
 ============ ============ ========================= =========================
 0.0855 93.6498 kread(4259e8) oracle(143984 48841)

 ...(lines omitted)...

The System Calls Summary in this example has the following fields in addition to
the default System Calls Summary displayed in Example 35-9 on page 691:

Tot ETime (msec) The total amount of time from when the system call was
started to its completion. This time will include any times

696 AIX 5L Performance Tools Handbook

spent servicing interrupts, running other processes, and
so forth.

Avg ETime (msec) The average amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.

Min ETime (msec) The minimum amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.

Max ETime (msec) The maximum amount of time from when the system call
was started to when it completed. This includes any time
spent servicing interrupts, running other processes, and
so forth.

The preceding example report shows that the maximum elapsed time for the
kwrite system call was 422.2323 msec, but the maximum CPU time was 4.5626
msec. If this amount of overhead time is unusual for the device being written to,
further analysis is needed.

Sometimes comparing the average elapsed time to the average execution time
shows that a certain system call is being delayed by something unexpected.
Other debug measures should be used to investigate further.

Report generated with the -s flag
The report generated with the -s flag includes the reports shown in “The default
report” on page 683 and includes reports on errors returned by system calls, as
shown in Example 35-14.

Example 35-14 curt output with the -s flag

curt -s -i trace.r -m trace.nm -n gennames.out -o curt.out
cat curt.out
...(lines omitted)...
 Errors Returned by System Calls

Errors (errorno : count : description) returned for System call:
socket_aio_dequeue(0x11e0d8)
 11 : 485 : "Resource temporarily unavailable"
 Errors (errorno : count : description) returned for System call:
connext(0x11e24c)
75 : 7 : "Socket is already connected"
...(lines omitted)...

 Chapter 35. The curt command 697

If a large number of errors of a specific type or on a specific system call point to a
system or application problem, other debug measures can be used to determine
and fix the problem.

Report generated with the -t flag
The report generated with the -t flag includes the reports shown in “The default
report” on page 683 as well as a detailed report on thread status that includes
the amount of time the thread was in application and kernel mode, what system
calls the thread made, processor affinity, the number of times the thread was
dispatched, and to what CPU it was dispatched. The report also includes
dispatch wait times and details of interrupts. It is shown in Example 35-15.

Example 35-15 curt output with the -t flag

...(lines omitted)...

Report for Thread Id: 48841 (hex bec9) Pid: 143984 (kex 23270)
 Process Name: oracle

 Total Application Time (ms): 70.324465
 Total Kernel Time (ms): 53.014910

 Thread System Call Data
 Count Total Time Avg Time Min Time Max Time SVC (Address)
 (msec) (msec) (msec) (msec)
 ======== =========== =========== =========== =========== ================
 69 34.0819 0.4939 0.1666 1.2762 kwrite(169ff8)
 77 12.0026 0.1559 0.0474 0.2889 kread(16a01c)
 510 4.9743 0.0098 0.0029 0.0467 times(f1e14)
 73 1.2045 0.0165 0.0105 0.0306 select(1d1704)
 68 0.6000 0.0088 0.0023 0.0445 lseek(16a094)
 12 0.1516 0.0126 0.0071 0.0241 getrusage(f1be0)

 No Errors Returned by System Calls

 Pending System Calls Summary

 Accumulated SVC (Address)
 Time (msec)
 ============ ==========================
 0.1420 kread(16a01c)

 processor affinity: 0.583333

 Dispatch Histogram for thread (CPUid : times_dispatched).
 CPU 0 : 23
 CPU 1 : 23
 CPU 2 : 9

698 AIX 5L Performance Tools Handbook

 CPU 3 : 9
 CPU 4 : 8
 CPU 5 : 14
 CPU 6 : 17
 CPU 7 : 19
 CPU 8 : 1
 CPU 9 : 4
 CPU 10 : 1
 CPU 11 : 4

 total number of dispatches: 131
 total number of redispatches due to interupts being disabled: 1
 avg. dispatch wait time (ms): 8.273515

 Data on Interrupts that Occured while Thread was Running
 Type of Interrupt Count
 =============================== ============================
 Data Access Page Faults (DSI): 115
 Instr. Fetch Page Faults (ISI): 0
 Align. Error Interrupts: 0
 IO (external) Interrupts: 0
 Program Check Interrupts: 0
 FP Unavailable Interrupts: 0
 FP Imprecise Interrupts: 0
 RunMode Interrupts: 0
 Decrementer Interrupts: 18
 Queued (Soft level) Interrupts: 15

...(lines omitted)...

The information in the threads summary includes:

Thread ID The TID of the thread.

Process ID The PID the thread belongs to.

Process Name The process name, if known, that the thread belongs to.

Total Application Time (ms)
The amount of time, expressed in milliseconds, that the
thread spent in application mode.

Total System Call Time (ms)
The amount of time, expressed in milliseconds, that the
thread spent in system call mode.

Thread System Call Data
A system call summary for the thread; this has the same
fields as the global System Call Summary. (See
Example 35-9 on page 691.) It also includes elapsed

 Chapter 35. The curt command 699

times if the -e flag is specified and error information if the
-s flag is specified.

Pending System Calls Summary
If the thread was executing a system call at the end of the
trace, a pending system call summary will be printed. This
has the Accumulated Time and Supervisor Call (SVC
Address) fields. It also includes elapsed time if the -e flag
is specified.

processor affinity The process affinity, which is the probability that, for any
dispatch of the thread, the thread was dispatched to the
same processor that it last executed on.

Dispatch Histogram for thread
Shows the number of times the thread was dispatched to
each CPU in the system.

total number of dispatches
The total number of times the thread was dispatched (not
including redispatches described below).

total number of redispatches
The number of redispatches due to interrupts being
disabled, which is when the dispatch disabled code is
forced to dispatch the same thread that is currently
running on that particular CPU because the thread had
disabled some interrupts. This is only shown if non-zero.

avg. dispatch wait time (ms)
The average dispatch wait time is the average elapsed
time for the thread from being undispatched and its next
dispatch.

Data on Interrupts This is a count of how many times each type of FLIH
occurred while this thread was executing.

Report generated with the -p flag
When a report is generated using the -p flag, it gives detailed information about
each process found in the trace. The following example shows the report
generated for the router process (PID 129190). A sample output is given in
Example 35-16.

Example 35-16 curt output with -p flag

...(lines omitted)...

 Process Details for Pid: 129190
 Process Name: router

700 AIX 5L Performance Tools Handbook

 7 Tids for this Pid: 245889 245631 244599 82843 78701 75347
 28941
 Total Application Time (ms): 124.023749
 Total System Call Time (ms): 8.948695

 Process System Call Data
 Count Total Time % sys Avg Time Min Time Max Time SVC (Address)
 (msec) time (msec) (msec) (msec)
 ======== =========== ====== ======== ======== ======== ================
 93 3.6829 0.05% 0.0396 0.0060 0.3077 kread(19731c)
 23 2.2395 0.03% 0.0974 0.0090 0.4537 kwrite(1972f8)
 30 0.8885 0.01% 0.0296 0.0073 0.0460 select(208c5c)
 1 0.5933 0.01% 0.5933 0.5933 0.5933 fsync(1972a4)
 106 0.4902 0.01% 0.0046 0.0035 0.0105 klseek(19737c)
 13 0.3285 0.00% 0.0253 0.0130 0.0387 semctl(2089e0)
 6 0.2513 0.00% 0.0419 0.0238 0.0650 semop(2089c8)
 3 0.1223 0.00% 0.0408 0.0127 0.0730 statx(2086d4)
 1 0.0793 0.00% 0.0793 0.0793 0.0793 send(11e1ec)
 9 0.0679 0.00% 0.0075 0.0053 0.0147 fstatx(2086c8)
 4 0.0524 0.00% 0.0131 0.0023 0.0348 kfcntl(22aa14)
 5 0.0448 0.00% 0.0090 0.0086 0.0096 yield(11dbec)
 3 0.0444 0.00% 0.0148 0.0049 0.0219 recv(11e1b0)
 1 0.0355 0.00% 0.0355 0.0355 0.0355 open(208674)
 1 0.0281 0.00% 0.0281 0.0281 0.0281 close(19728c)

 Pending System Calls Summary

 Accumulated SVC (Address) Tid
 Time (msec)
 ============ ========================= ================
 0.0452 select(208c5c) 245889
 0.0425 select(208c5c) 78701
 0.0285 select(208c5c) 82843
 0.0284 select(208c5c) 245631
 0.0274 select(208c5c) 244599
 0.0179 select(208c5c) 75347

 ...(lines omitted)...

The -p flag process information includes the process ID and name, and a count
and list of the TIDs belonging to the process. The total application and system
call time for all the threads of the process is given. It also includes summary
reports of all completed and pending system calls for the threads of the process.

 Chapter 35. The curt command 701

702 AIX 5L Performance Tools Handbook

Chapter 36. The gennames, genld,
genkld, genkex, and
gensyms commands

The gennames, genld, genkld, genkex, and gensyms commands extract information
from the running system for offline processing. They reside in /usr/bin and are
part of the bos.perf.tools fileset, which can be installed from the AIX base
installation media.

36

© Copyright IBM Corp. 2001, 2003 703

36.1 Offline generation tools
This chapter discusses various offline generation tools that extract information
from the current running system for offline processing:

� The gennames command gathers name-to-address mapping information
necessary for commands such as tprof, filemon, netpmon, pprof, and curt to
work in offline mode. This is useful when it is necessary to post-process a
trace file from a remote system or perform the trace data collection at one
time and post-process it at another time.

� The genld command collects the list of all processes currently running on the
system, and optionally reports the list of loaded objects corresponding to
each process.

� The genkld command extracts the list of shared objects for all processes
currently loaded into the shared segment and displays the virtual address,
size, and path name for each object on the list.

� The genkex command extracts the list of kernel extensions currently loaded
into the system and displays the address, size, and path name for each kernel
extension in the list.

� The gensyms command extracts name-to-address mapping that is necessary
for offline processing of other commands, such as tprof or splat.

36.2 gennames
The syntax of gennames is:

gennames [-f] filenames

Flags
-f In addition to the gennames output without the -f flag,

device information for logical and physical volumes and
the virtual file system information are printed. This
information is necessary for the filemon command to be
run in offline mode.

Parameters
filenames Optional list of program names for which the output of the

stripnm command must be collected to allow the usage of
the tprof command with the -p flag in offline mode.

The gennames command writes its output to standard output. For further use the
output must be redirected into a file.

704 AIX 5L Performance Tools Handbook

36.2.1 Information about measurement and sampling
The gennames command gathers the following information:

� The name-to-address mapping information for the currently running kernel
(/unix). The output is similar to the output of the stripnm /unix command.

� A list of all loaded kernel extensions. This list is similar to the output of the
genkex command. Refer to 36.5, “genkex” on page 713 for more information
about this command.

� A list of all loaded shared libraries. This list is similar to the output of the
genkld command. Refer to 36.4, “genkld” on page 712 for more information
about this command.

� The output of the stripnm command for all kernel extensions and libraries.
Refer to Chapter 38, “The stripnm command” on page 723 for more
information about this command.

� The process ID and process name for all of the loaded processes. The data
collected is similar to the data the genld command reports. Refer to 36.3,
“genld” on page 710 for more information about this command.

� The symbols defined in the system header file /usr/include/sys/lockname.h.

� The name-to-address mapping for optionally specified programs. The output
of the stripnm command is collected to allow subroutine breakdown with the
tprof command used in offline mode with any of the specified programs.
Refer to 38.1, “stripnm” on page 724 and 19.5, “tprof” on page 324 for more
information about these commands.

� The device information for logical and physical volumes and the virtual file
system information. This data is needed to run the filemon command in
offline mode.

36.2.2 Examples for gennames
Example 36-1 shows the use of the gennames command to gather information for
later use by commands such as tprof, filemon, netpmon, pprof, and curt.

Example 36-1 Gather gennames output

gennames >gennames.out

Attention: The output produced by the gennames command can exceed
300,000 lines and 4 MB — the size depends on the number of loaded shared
libraries and kernel extensions — so opening this file in an editor may take
some time.

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 705

Next we show small examples of the major sections in the output of the gennames
command.

The name-to-address mapping
The gennames command provides name-to-address mapping information for the
currently used kernel, the loaded kernel extensions, the loaded shared libraries,
and optionally the specified programs. Example 36-2 shows a part of the listing
for the kernel (/unix).

Example 36-2 Output of gennames showing the name-to-address mapping

gennames

gennames v1.1
 /unix | 00000000| 00000000| 0052b988| | |initialize
Symbols from /unix

 (... lines omitted ...)

../../../../../src/bos/kernel/net/llsleep.c| | file | |
| |
.llsleep | 1129384|unamex| | | |.text
.llsleep | 1129384|extern| | | |.text
.llsleep_timeout_rt | 1129800|unamex| | | |.text
.llsleep_timeout_rt | 1129800|extern| | | |.text
.llwakeup | 1129856|unamex| | | |.text
.llwakeup | 1129856|extern| | | |.text
_$STATIC | 1709080|unamex| | | |.text
llsleep | 1878320|extern| | | |.text
llsleep_timeout_rt | 1878332|extern| | | |.text
llwakeup | 1878344|extern| | | |.text

 (... lines omitted ...)

The first line for each module, in this example /unix, shows the file name
followed by the load address, the text section offset within the module, and the
module size. These values are hexadecimal numbers. The symbol address
offsets, for example for the function .llwakeup, are decimal values that represent
the offset values of the symbols in the object modules text segment. To calculate
the address of a symbol, use this equation start address + text offset + symbol
offset = address in memory. In the example above, the external function
.llwakeup is at offset 1129856. The load address and the text section offset of
/unix is zero. The resulting address for the .llwakeup symbol is 0 + 0 + 1129856
= 1129856. To verify this address, use the kdb sub command nm .llwakeup on
the same system. This returns the address for symbol .llwakeup in the running
kernel, in our case 0x113d80, that equals the above value (1129856).

706 AIX 5L Performance Tools Handbook

The list of loaded kernel extensions
The information in this output section can be compared to the output of the
genkex command. The only difference is that the gennames command integrates
the list of loaded kernel extensions information into the name-to-address
mapping listing. Example 36-3 shows the part for one kernel extension.

Example 36-3 Output of gennames showing the loaded kernel extensions

gennames

 (... lines omitted ...)

 /usr/lib/drivers/nfs.ext | 05988000| 00000100| 00077f58| | |initialize
Symbols from .__nfs.ext
.__nfs.ext | | file | | | |
.nfs_config | 0|extern| | | |.text
.init_kacl | 340|extern| | | |.text
.init_serv | 376|extern| | | |.text
.init_clnt | 616|extern| | | |.text
.fill_nfs_syms | 1460|extern| | | |.text
.init_nfs_syms | 1524|extern| | | |.text
.init_krpc | 2008|extern| | | |.text
.nfs_ulimit_64 | 2856|extern| | | |.text

 (... lines omitted ...)

In this example, the kernel extension /usr/lib/drivers/nfs.ext is loaded at
address 0x5988000. The size of the kernel extension is 0x77f58 bytes, and the
text offset is 0x100. This kernel extension file information is followed by the
name-to-address mapping information for this kernel extension.

The list of loaded shared libraries
The information in this output section can be compared to the output of the
genkld command. The only difference is that the gennames command integrates
the list of loaded shared libraries information into the name-to-address mapping
list. Example 36-4 shows part of the input for a shared library.

Example 36-4 Output of gennames showing the loaded shared libraries

gennames
/usr/lib/libXm.a[shr_32.o] | d2640100| 00000140| 002548a1| | |initialize
Symbols from .__shr_32.o
nl_langinfo | 0|extern| | | |
setlocale | 0|extern| | | |

 (... lines omitted ...)

dlsym | 0|extern| | | |

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 707

TOC | 254084|unamex| | | |.data
XtDisplayOfObject | 254084|unamex| | | |.data
XSetClipMask | 254088|unamex| | | |.data
XtWindowOfObject | 254092|unamex| | | |.data

 (... lines omitted ...)

For this example, the same applies as for Example 36-3 on page 707. However,
one small difference should be noted: The AIX operating system is using shared
objects. In our example, the whole /usr/lib/libXm.a is not loaded here. Only the
shared object module shr_32.o out of /usr/lib/libXm.a is loaded at the specific
address. There are more shared objects in /usr/lib/libXm.a, and each of them
is loaded separately as needed. The symbols with an offset value of zero, in the
example above nl_langinfo, setlocale and dlsym, are references from
/usr/lib/libXm.a[shr_32.o] to other shared objects. The dump -nv
/usr/lib/libXm.a | grep setlocale command can be used to find the object
file providing the setlocale function to /usr/lib/libXm.a[shr_32.o].

The list of loaded processes
In this section of the gennames command output, the process IDs and the names
of the processes currently running are listed. This section of the output of the
gennames command can be compared with the output of the genld command.
Example 36-5 shows a small section of this output.

Example 36-5 Output of gennames showing the loaded processes

gennames

 (... lines omitted ...)

Symbols from genld
Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init

Proc_pid: 516 Proc_name: wait

Proc_pid: 774 Proc_name: wait

Proc_pid: 1032 Proc_name: wait

Proc_pid: 1290 Proc_name: wait

 (... lines omitted ...)

708 AIX 5L Performance Tools Handbook

This example shows the list of processes in the output of the gennames command.
For each process the process ID and the name are displayed. Note that kernel
processes are included in this listing.

Physical and logical volume and file system information
The gennames -f command gathers additional data necessary for the offline
processing by the filemon command. The following additional data is gathered
(Example 36-6).

Example 36-6 Physical and logical volume and file system information gathered

Symbols from filesystems:
dev_id| path| mode| blocks| Description
a0000 | /dev/__vg10| 20600| 1048576|
a0008 | /dev/hd1| 60660| 5111808|/home Frag_Sz.= 512
a0009 | /dev/hd10opt| 60660| 65536|/opt Frag_Sz.= 512
a0005 | /dev/hd2| 60660| 1933312| /usr
a0007 | /dev/hd3| 60660| 1114112| /tmp
a0004 | /dev/hd4| 60660| 196608| /
a0001 | /dev/hd5| 60660| 32768| boot
a0002 | /dev/hd6| 60660| 2097152| paging
a0003 | /dev/hd8| 60660| 32768| jfslog

 (... lines omitted ...)

Symbols from vfs:
num |name | mount point
1 |/dev/hd4 | /
2 |/dev/hd2 | /usr
4 |/dev/hd9var | /var
5 |/dev/hd3 | /tmp
6 |/dev/hd1 | /home
7 |/proc | /proc
8 |/dev/hd10opt | /opt
9 |/dev/lv02 | /audit
10 |/dev/lv04 | /work/fs1
11 |/dev/lv05 | /work/fs2
12 |/dev/datalv | /data
13 |/dev/lv00 | /tools
14 |/dev/lv01 | /test0
15 |/dev/lv08 | /test1
16 |/dev/lv09 | /test2

The first part of the output shows the physical and logical volume information.
The columns in this part are:

dev_id Contains the major and minor device number of the
device. The values in the output are hexadecimal. The last

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 709

four digits are the minor number. The other digits are the
major number. In the above example, dev_id a0003
belongs to the logical volume /dev/hd8 and has the major
device number 10 (a) and the minor device number 3
(0003).

path Shows the full path name of the device.

mode Shows the file access mode bits of the device. The values
are defined in the system header file
/usr/include/sys/mode.h. In the example the 60660 for
/dev/hd8 translates to: Block special device, read and
write permission for owner and group.

blocks Shows the size of the physical or logical volume in blocks
of 512 bytes. The device /dev/hd8 in the example has the
size 32768 * 512 = 16 MB.

Description Shows the description for the physical or logical volume.
The logical volume /dev/hd8 in the example is a jfslog.

The second part of the output shown in Example 36-6 on page 709 contains the
name of the logical volume and the mount point for each volume during execution
time of the gennames command.

36.3 genld
The genld command has the following syntax:

genld [-l]

Flags
-l Reports the lists of loaded objects for each process running on the system.

36.3.1 Information about measurement and sampling
For each currently running process, the genld command prints a report
consisting of the process ID and name. With the -l flag (in Version 5.2B), genld
reports the loaded libraries.

36.3.2 Examples for genld
Example 36-7 shows output from genld.

Example 36-7 genld report

#genld

710 AIX 5L Performance Tools Handbook

Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init

Proc_pid: 4644 Proc_name: reaper

Proc_pid: 4902 Proc_name: lrud

Proc_pid: 5160 Proc_name: xmgc

Proc_pid: 5418 Proc_name: netm

Proc_pid: 5676 Proc_name: gil
...(lines omitted)...

As a root user, you can also get the loaded libraries for each process. This
feature requires you to install APAR IY43857 for AIX 5.1 or IY43859 for AIX 5.2.
The result of genld -l is shown in Example 36-8.

Example 36-8 The output of genld -l

genld -l
Proc_pid: 0 Proc_name: swapper

Proc_pid: 1 Proc_name: init
 10000000 850e init
 d0049000 2ba5d /usr/lib/libpthreads.a/shr_xpg5.o
 d0045000 38c7 /usr/lib/libpthreads.a/shr_comm.o
 d00750f8 846 /usr/lib/libcrypt.a/shr.o
 d01d6e00 1f36e9 /usr/lib/libc.a/shr.o

Proc_pid: 77862 Proc_name: lrud

Proc_pid: 81960 Proc_name: xmdetd

Proc_pid: 86058 Proc_name: vmptacrt

Proc_pid: 90156 Proc_name: xmgc

Proc_pid: 94254 Proc_name: netm

Proc_pid: 127082 Proc_name: cron
 10000000 988d cron
 d0085100 13f01 /usr/lib/libiconv.a/shr4.o
 d007c100 8a06 /usr/lib/libi18n.a/shr.o
 d0076000 2d81 /usr/lib/nls/loc/en_US
 d00750f8 846 /usr/lib/libcrypt.a/shr.o
 d01d6e00 1f36e9 /usr/lib/libc.a/shr.o

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 711

Proc_pid: 135282 Proc_name: errdemon
 10000000 15ff3 errdemon
 d0134000 1c6f3 /usr/lib/boot/bin/libcfg_chrp
 d0085100 13f01 /usr/lib/libiconv.a/shr4.o
 d007c100 8a06 /usr/lib/libi18n.a/shr.o
 d0076000 2d81 /usr/lib/nls/loc/en_US
 d00ac100 f72c /usr/lib/libcfg.a/shr.o
 d009a100 11da4 /usr/lib/libodm.a/shr.o
 d00750f8 846 /usr/lib/libcrypt.a/shr.o
 d01d6e00 1f36e9 /usr/lib/libc.a/shr.o

...(lines omitted)...

36.4 genkld
There is no flags or parameters for the genkld command.

36.4.1 Information about measurement and sampling
For shared objects loaded into the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the object, its starting address, and its size. This information is gathered
and reported by the genkld command.

36.4.2 Examples for genkld
Example 36-9 shows an example of running genkld.

Example 36-9 Using genkld

genkld
Virtual Address Size File
 d23c6d60 2397c /usr/lib/libtrace.a/shr.o
 d239b100 2a1e9 /usr/lib/libptools.a/shr.o
 d00c0000 284 /usr/lib/drivers/nfs.load/
 d24583c0 287aa /usr/lib/libxcurses.a/shr4.o
 d00e6000 28024 /usr/lib/libpthreads.a/shr.o
 d00c50f8 16ea /usr/lib/libpthreads_compat.a/shr.o
 d242a100 2d1f4 /usr/lib/libSpmi.a/spmishr.o
 d2410100 19961 /usr/lib/libwlm.a/shr.o
 d05ce100 356f8 /usr/lib/liblvm.a/shr.o
 d2398000 20c9 /usr/lib/nls/loc/C.im/
 d238f100 869c /usr/lib/libi18n.a/shr.o
 d00bd100 284a /usr/lib/libgair4.a/shr.o
 d00bc0f8 758 /usr/lib/libgaimisc.a/shr.o
 d235a100 1e209 /usr/lib/libXext.a/shr.o

712 AIX 5L Performance Tools Handbook

 d00b2100 951e /usr/lib/libXi.a/shr.o
 d2379100 1532c /usr/lib/libICE.a/shr.o
 d00a8100 94d8 /usr/lib/libSM.a/shr.o
 d0172100 4b18 /usr/lib/libIM.a/shr.o
 d015e100 13ef1 /usr/lib/libiconv.a/shr4.o
 d03b5100 f793b /usr/lib/libX11.a/shr4.o
...(lines omitted)...

The example contains the following columns:

Virtual Address Start of the virtual address in memory (in hex) where the
kernel extension resides. Use the svmon command for
more detailed information about virtual addresses.

Size Size in hex of the kernel extension.

File File from which the kernel extension is loaded.

If path names end with / (slash), then they are shared objects (as in the output of
the file command). If path names end without / (slash), then they are modules
of shared libraries.

If some shared libraries and shared objects are loaded more than once, then
there is an entry for each of them.

As kernel extensions may be loaded more than once, they may appear more
than once with different virtual addresses and different sizes.

36.5 genkex
There are no flags or parameters for the genkex command.

36.5.1 Information about measurement and sampling
For kernel extensions loaded into the system, the kernel maintains a linked list
consisting of data structures called loader entries. A loader entry contains the
name of the extension, its starting address, and its size. This information is
gathered and reported by the genkex command.

36.5.2 Examples for genkex
Example 36-10 shows the output from running genkex.

Example 36-10 genkex report

genkex
Virtual Address Size File

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 713

 6a40000 24d870 /etc/drivers/zcmem_ke
 216f300 6f40 /usr/lib/drivers/trcdd
 67cb000 24d870 /etc/drivers/zcmem_ke
 6557000 24d870 /etc/drivers/zcmem_ke
 62e3000 24d870 /etc/drivers/zcmem_ke
 216ba00 38f0 /usr/lib/drivers/bpf
 2169c00 1de4 /usr/lib/drivers/netintf
 2164c60 4f88 /usr/lib/drivers/perfvmmstat.mp
 215b8a0 93b0 /usr/lib/drivers/random
 618d000 7244c /usr/lib/drivers/nfs.ext
 215b550 334 /usr/lib/drivers/nfs_kdes.ext
 215b298 2b0 /usr/lib/drivers/syscalls64.ext
 5ecc000 24d870 /etc/drivers/zcmem_ke
 21557e0 5ab0 /usr/lib/perf/perfstat
 21534b0 2314 /usr/lib/drivers/aiopin
 214c5a0 6f08 /usr/lib/drivers/aio.ext
 214c3a8 1dc /usr/lib/drivers/smt_loadpin
 2148220 4180 /usr/lib/drivers/smt_load
 2142c00 5614 /usr/lib/drivers/vconsdd
 2132800 103e4 /usr/lib/drivers/ptydd
 2120ca0 11b40 /usr/lib/drivers/ldterm
 211ce20 3e70 /usr/lib/drivers/if_en
 5ccf000 ed460 /usr/lib/drivers/netinet
 211c680 78c /etc/drivers/scsesddpin
 211ab80 1ae4 /usr/lib/drivers/scsesdd
 2116e60 3d14 /etc/drivers/tapepin
 2111880 55c8 /usr/lib/drivers/tape
 210f320 2548 /usr/lib/drivers/eth_demux
 20f5a80 19898 /usr/lib/drivers/pci/scentdd
 20f2940 311c /etc/drivers/coreprobe.ext
... (lines omitted) ...

The columns in the example are:

Virtual Address Start of the virtual address in memory (in hex) where the
kernel extension resides.

Size Size in hex of the kernel extension.

File File from which the kernel extension is loaded.

As kernel extensions may be loaded more than once, they may appear more
than once with different virtual addresses and different sizes, but only if the file
has changed.

714 AIX 5L Performance Tools Handbook

The genkex output is useful for determining who owns the extension. In
Example 36-11, the /usr/lib/drivers/pci/scentdd kernel extension belongs to
fileset devices.pci.1410ff01.rte. If you experience problems with this kernel
extension, you can look at devices.pci.1410ff01.rte to determine the problem.

Example 36-11 Determining the owner of a kernel extension

genkex| grep ent
 20f5a80 19898 /usr/lib/drivers/pci/scentdd
lslpp -w /usr/lib/drivers/pci/scentdd
File Fileset Type
 --
 /usr/lib/drivers/pci/scentdd
 devices.pci.1410ff01.rte File

36.6 gensyms
The gensyms command has no parameters or flags.

36.6.1 Information about measurement and sampling
The gensyms command gathers name-to-address mapping information
necessary for the tprof command to work in offline mode. The information
gathered includes:

� the list of all loaded kernel extensions.

� the list of all loaded shared libraries.

� the list of all loaded processes.

� for /unix, all kernel extensions, libraries, and all object files corresponding to
processes, the output of the stripnm command is collected.

36.6.2 Examples for gensyms
Example 36-12 shows output from gensyms.

Example 36-12 Sample output of gensyms

Symlib/AIX Version 5.1.1.1 -- Jan 24 2003 08:14:36 - gensyms format
Using load addresses for text symbols
Kernel: 00000000 0074698c 00000000 /unix
Kernel_data: 00746990 02483068 00000000

Important: The output of gensyms can be very large. Redirect the output to a
disk file.

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 715

Kernel_validated: 1
Src: 64/low.s
00000000 t .low
00000000 T pin_obj_start
00000024 T start
00003000 T nonpriv_page
00003000 T g_copyr
00003100 T .mulh
00003180 T .mull
00003200 T .divss
00003280 T .divus
00003300 T .quoss
00003380 T .quous
00003400 T ._clear_lock
00003410 T ._clear_lock_mem
00003420 T ._check_lock
00003460 T .cs
000034a0 T cs
000034a8 T _clear_lock
000034b0 T _check_lock
000034b8 T cmp_swap_index
000034c0 T g_ksrval
000034c8 T Trconflag
000034e0 T _system_configuration
000035dc T utrchook_sc_index
000035e0 T __extension_status
00003600 T _system_TB_config
00003608 T tod
. . . (lines omitted) . . .
Src: misc.s
00013818 T panic
Src: execexit.s
00013830 T execexit
Src: trchka64.s
00013848 T trchook_on
Src: pinned_text_start.s
00014000 T pinned_text_start
Src: ../../../../../src/bos/kernel/si/pin_si.c
00014000 T .si_bcopy
00014050 T .si_bzero
Src: ../../../../../src/bos/kernel/proc/start.c
00014098 T .main_bs_proc
000141d8 T .strtwait_bs_proc
000142b4 T .init_sprgs
00014344 T .proc0init
0001453c T .proc0init_stack
000145f0 T .invoke_start_bs_proc
000148a8 T .init_cpu_flihs
00014988 T .init_flihs

716 AIX 5L Performance Tools Handbook

00014a0c T .si_context_init
Src: misc_ppc.s
00014b48 T .mttb
Src: ../../../../../src/bos/kernel/kdb/POWER/kdb_si.c
00014b5c T .trc_init
00014ba4 t .kdb_get_vtty
00014c04 t .kdb_free_dbg
00014c50 t .kdb_print_vmrmap
. . . (lines omitted) . . .

 Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands 717

718 AIX 5L Performance Tools Handbook

Chapter 37. The locktrace command

The locktrace command determines which kernel locks will be traced by the
trace subsystem. If a bosboot -L was run prior to rebooting the system, then
kernel lock tracing can be enabled or disabled for one or more individual lock
classes, or for all lock classes. If the bosboot -L was not run prior to a reboot,
then lock class tracing can either be enabled or disabled for all locks. Where the
bosboot -aL was not invoked, the trace events will not display the lock class
names for taken, missed, and released locks. By default lock tracing performed
by the trace subsystem is disabled.

The locktrace command resides in /usr/bin and is part of the bos.perf.tools
fileset, which is installable from the AIX base installation media.

37

Note: Before locktrace can be used, you must create, as root, a new boot
image with the -L option to enable lock instrumentation. Run the command:
bosboot -a -d /dev/hdiskx -L, where x is the number of the bootdisk.

© Copyright IBM Corp. 2001, 2003 719

37.1 locktrace
The syntax for the locktrace command is:

locktrace [-r ClassName | -s ClassName | -S | -R | -l]

Flags
-r classname Turn off lock tracing for all kernel locks belonging to the specified

class. This option always fails if bosboot -aL was not executed
prior to a reboot.

-s classname Turn on lock tracing for all kernel locks belonging to the specified
class. This option always fails if bosboot -aL has not been
executed prior to a reboot.

-R Turn off all lock tracing.

-S Turn on lock tracing for all locks regardless of their class
membership.

-l List kernel lock tracing current status.

37.1.1 Information about measurement and sampling
The tracing of locks can be extremely useful in providing crucial information
about how locks are being used, which are hot, which are in contention, and
which are degrading the system. However, trace hooks in already heavily used
lock routines cause the system to slow down. The locktrace command allows
lock trace hooks to be effectively inserted or completely removed dynamically
from the lock routines. If the system has been rebooted after a bosboot -L, finer
selectivity is provided by enabling and disabling lock trace hooks for specific
classes. This results in less or at least contolled system degradation from trace
hooks in a lock routine. The names of the lock classes can be found in the file
lockname.h, which is located in the /usr/include/sys directory. Example 37-1
shows a list of some of the class names that can be found in this file.

Example 37-1 An extract from the lockname.h file

...(lines omitted)...
#define MSG_LOCK_CLASS 120 /* IPC */
#define SEM_LOCK_CLASS 121 /* IPC */
#define SHM_LOCK_CLASS 122 /* IPC */
#define DEVNODE_LOCK_CLASS 123 /* LFS */
#define FFREE_LOCK_CLASS 124 /* LFS */
#define FIFOBUF_LOCK_CLASS 125 /* LFS */
#define FILOCK_LOCK_CLASS 126 /* LFS */
#define FOFF_LOCK_CLASS 127 /* LFS */

720 AIX 5L Performance Tools Handbook

#define FPTR_LOCK_CLASS 128 /* LFS */
#define GFS_LOCK_CLASS 129 /* LFS */
#define GPA_LOCK_CLASS 130 /* LFS */
#define PATH_LOCK_CLASS 131 /* LFS */
#define U_FD_CLASS 132 /* LFS */
#define U_FSO_CLASS 133 /* LFS */
#define VFS_LIST_LOCK_CLASS 134 /* LFS */
#define VFS_LOCK_CLASS 135 /* LFS */
#define VNODE_LOCK_CLASS 136 /* LFS */
...(lines omitted)...

37.1.2 Examples for locktrace
Example 37-2 shows the output when the locktrace command is run without the
bosboot -L command being run first and without the system being rebooted.

Example 37-2 locktrace error message when bosboot -L has not been run

locktrace -s MSG_LOCK_CLASS
locktrace: selective tracing not allowed without bosboot -L

Example 37-3 shows the use of the locktrace command to enable the trace
subsystem to trace the SEM_LOCK_CLASS lock type. The bosboot -aL command
has been run on the system and it has been rebooted prior to the locktrace
commands being run. The locktrace -l option shows which locks are enabled
for tracing. In the first case, all lock tracing is disabled. The locktrace -s
SEM_LOCK_CLASS command was used to enable the tracing of the SEM_LOCK_CLASS
lock class type. The locktrace -l command was used again to check which lock
classes are enabled for tracing.

Example 37-3 Enabling tracing of the SEM_LOCK_CLASS type

locktrace -l
lock tracing disabled for all classes

locktrace -s SEM_LOCK_CLASS
lock tracing enabled for class SEM_LOCK_CLASS

locktrace -l
lock tracing enabled for classes:
 SEM_LOCK_CLASS

 Chapter 37. The locktrace command 721

To disable the tracing of this class, use the command in Example 37-4. The
locktrace -r SEM_LOCK_CLASS command is used to disable the tracing of the
SEM_LOCK_CLASS lock type. The locktrace -R command could have been used,
but would disable tracing of all lock classes.

Example 37-4 Turning off tracing of the SEM_LOCK_CLASS

locktrace -r SEM_LOCK_CLASS
lock tracing disabled for class SEM_LOCK_CLASS

locktrace -l
lock tracing disabled for all classes

722 AIX 5L Performance Tools Handbook

Chapter 38. The stripnm command

The stripnm command extracts the symbol information from a specified object
file, executable, or archive library and prints it to standard output. If the input file
is an archive library, the command extracts the symbol information from each
object file contained in the archive. It can also be used to search for symbol
information in the /unix file. If the /unix file does not correspond to the currently
running kernel, a warning message is displayed. The stripnm command
produces an output similar to the output generated by the gennames command,
which is required for using the tprof, filemon, netpmon, and pprof commands in
real-time mode.

The stripnm command is similar to the nm command. However, it can extract
symbol information from striped executables whereas nm cannot.

The stripnm command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

38

© Copyright IBM Corp. 2001, 2003 723

38.1 stripnm
The syntax of stripnm is:

stripnm [-x|d] [-s][-z] File

Flags
-x Prints symbol address values in hexadecimal format.

-d Prints symbol address values in edcimal format. This is
the default with -z.

-s Forces to ignore symbol table.

-z Use the old format.

Parameter
File The name of the object or archive library file.

38.1.1 Information about measurement and sampling
If an executable is produced with optimization (-O), some of the information used
by stripnm is not included. In order for stripnm to work correctly with striped
optimized executables, the -q tbtable=full compiler option should be used in
addition to the -O option when compiling the executable.

The stripnm command (when run without the -s flag) prints the symbol table of a
specified object file to standard output. The file specified by the File parameter
can be a single object file or an archive library of object files. If the file specified
by the File parameter is an archive, a listing for each object file in the archive is
produced. If the symbol table has been striped from the object file, the stripnm
command extracts symbol names from the traceback tables (even if the -s flag is
not specified) and the loader section of the object file(s). If the traceback tables
do not exist, an error message is displayed.

Each symbol name is preceded by its address and one character representing
the symbol type (similar to nm output). When used with -z, the output format is
the same as it was before AIX 5.2; that is, each symbol name is followed by its
address (a series of blanks if the address is undefined) and the type of class and
section type. The address field can be displayed as a decimal (the default value
with -z, or when -d is used) or hexadecimal (the default value without -z, or if the
-x flag is used).

Source file names are also collected and reported by the stripnm command. All
of the symbols following a source file name line belong to the same source file

724 AIX 5L Performance Tools Handbook

until the next source file name line is encountered. For striped files, the source
file name is reported as being the object file name.

When run using the -s flag, the stripnm command ignores the symbol table if
present and always extracts routine names from the traceback tables and the
loader section of the object file(s).

When no symbol table is present or the -s flag is used, the stripnm command
also searches for glue code and pointer glue information. Both are sequences of
instructions found in the text section of the object file.

38.2 Examples for stripnm
Example 38-1 shows the output of the stripnm -sx /usr/bin/ls command.

Example 38-1 The output of the stripnm -sx /usr/bin/ls command

stripnm -sx /usr/bin/ls
.....(lines omitted).....
Using load addresses for text symbols
File-32: 10000000 10003aa8 00000100 /usr/bin/ls
Src: /usr/bin/ls
10000100 t .__start
100001c8 t .__threads_init
Src: glink.s
100002e0 t .__mod_init
Src: /usr/bin/ls
10000308 t .add_cache
10000448 t .cache_hit
10000500 t .ls_select
100005f4 t .getname
1000070c t .pmode
10000780 t .column
100009e0 t .pentry
100012c4 t .new_line
10001364 t .pprintf
10001650 t .pdirectory
1000192c t .pem
10001ac8 t .main
100023ec t .compar
10002530 t .makename
10002684 t .readdirs
10002860 t .savestr
1000291c t .gstat
Src: glink.s
10002fc0 t .malloc
10002fe8 t .catgets

 Chapter 38. The stripnm command 725

10003010 t .fprintf
10003038 t .exit
10003060 t .free
10003088 t .__flsbuf
100030b0 t ._getpwuid_shadow
100030d8 t .getgrgid
Src: /usr/bin/ls
10003100 t .strcpy
Src: glink.s
..... (lines omitted)

The example above uses the following fields:

� The first column shows the address in hexadecimal format.

� The second column shows the type of symbol, which can be:

A Global absolute symbol
a Local absolute symbol
B Global bss symbol
b Local bss symbol
D Global data symbol
d Local data symbol
T Global text symbol
t Local text symbol
U Undefined symbol

� The third column shows the symbol name.

Example 38-2 shows the use of “-z” flag to display output in old format.

Example 38-2 Old format output using -z on the stripnm command

stripnm -zsx /usr/bin/ls
Symbols from /usr/bin/ls

/usr/bin/ls | | file | | | |
.__start |0x10000100|unamex| | | |.text
.__threads_init |0x100001c8|unamex| | | |.text
glink.s | | file | | | |
.__mod_init |0x100002e0|unamex| | | |.text
/usr/bin/ls | | file | | | |
.add_cache |0x10000308|unamex| | | |.text
.cache_hit |0x10000448|unamex| | | |.text
.ls_select |0x10000500|unamex| | | |.text
.getname |0x100005f4|unamex| | | |.text
.pmode |0x1000070c|unamex| | | |.text
.column |0x10000780|unamex| | | |.text
.pentry |0x100009e0|unamex| | | |.text
.new_line |0x100012c4|unamex| | | |.text

726 AIX 5L Performance Tools Handbook

.pprintf |0x10001364|unamex| | | |.text

.pdirectory |0x10001650|unamex| | | |.text

.pem |0x1000192c|unamex| | | |.text

.main |0x10001ac8|unamex| | | |.text

.compar |0x100023ec|unamex| | | |.text

.makename |0x10002530|unamex| | | |.text

.readdirs |0x10002684|unamex| | | |.text

.savestr |0x10002860|unamex| | | |.text

.gstat |0x1000291c|unamex| | | |.text
glink.s | | file | | | |
.malloc |0x10002fc0|unamex| | | |.text
.catgets |0x10002fe8|unamex| | | |.text
.fprintf |0x10003010|unamex| | | |.text
.exit |0x10003038|unamex| | | |.text
....(lines omitted).......

This example has the following fields:

� The first column shows the name of the symbol.

� The second column lists the address of the symbol. No address is displayed if
the reference of the symbol is file.

� The third column shows the symbol’s reference. The possible values are:

file The symbol references a file name.
extern The symbol references a named external symbol.
unamex The symbol references an unnamed external symbol.

� The last column shows the section of the object the symbol belongs to. The
possible values are:

.text The text (code) section.

.data The data section.

.bss The uninitialized data section.

For detailed information about the Extended Common Object File Format
(XCOFF), refer to the AIX 5L Version 5.2 Files Reference.

 Chapter 38. The stripnm command 727

728 AIX 5L Performance Tools Handbook

Chapter 39. The splat command

The Simple Performance Lock Analysis Tool (splat) is a software tool that
generates reports on the use of synchronization locks. These include the simple
and complex locks provided by the AIX kernel as well as user-level mutexes,
read/write locks, and condition variables provided by the PThread library. splat is
not currently equipped to analyze the behavior of the VMM- and PMAP- locks
used in the AIX kernel.

The splat command resides in /usr/bin and is part of the bos.perf.tools fileset,
which is installable from the AIX base installation media.

39

© Copyright IBM Corp. 2001, 2003 729

39.1 splat
The syntax for the splat command is:

splat -i file [-n file] [-o file] [-d [bfta]] [-l address] [-c class]
[-s [acelmsS]] [-C cpus] [-S count] [-t start] [-T stop]

splat -h [topic]
splat -j

Flags
-i inputfile Specifies the AIX trace log file input.

-n namefile Specifies the file containing output of gennames or gensyms
command.

-o outputfile Specifies an output file (default is stdout).

-d detail Specifies the level of detail of the report.

-c class Specifies class of locks to be reported.

-l address Specifies the address for which activity on the lock will be
reported.

-s criteria Specifies the sort order of the lock, function, and thread.

-C CPUs Specifies the number of CPUs on the MP system that the
trace was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

-S count Specifies the number of items to report on for each
section. The default is 10. This gives the number of locks
to report in the Lock Summary and Lock Detail reports, as
well as the number of functions to report in the Function
Detail and threads to report in the Thread detail. (The -s
option specifies how the most significant locks, threads,
and functions are selected.)

-t starttime Overrides the start time from the first event recorded in
the trace. This flag forces the analysis to begin an event
that occurs starttime seconds after the first event in the
trace.

-T stoptime Overrides the stop time from the last event recorded in the
trace. This flag forces the analysis to end with an event
that occurs stoptime seconds after the first event in the
trace.

-j Prints the list of IDs of the trace hooks used by splat.

-h topic Prints a help message on usage or a specific topic.

730 AIX 5L Performance Tools Handbook

Parameters
inputfile The AIX trace log file input. This file can be a merge trace

file generated using trcrpt -r.

namefile File containing output of gennames or gensyms command.

outputfile File to write reports to.

detail The detail level of the report; can be either:

basic lock summary plus lock detail (the default)
function basic + function detail
thread basic + thread detail
all basic + function + thread detail

class Activity classes, which is a decimal value found in the file
/usr/include/sys/lockname.h.

address The address to be reported, given in hexadecimal.

criteria Order the lock, function, and thread reports by the
following criteria:

a Acquisitions
c Percent CPU time held
e Percent elapsed time held
l Lock address, function address, or thread ID
m Miss rate
s Spin count
S Percent CPU spin hold time (the default)
w Percent real wait time
W Average WaitQ depth

CPUs The number of CPUs on the MP system that the trace
was drawn from. The default is one. This value is
overridden if more CPUs are observed to be reported in
the trace.

count The number of locks to report in the Lock Summary and
Lock Detail reports, as well as the number of functions to
report in the Function Detail and threads to report in the
Thread detail. (The -s option specifies how the most
significant locks, threads, and functions are selected).

starttime The number of seconds after the first event recorded in
the trace that the reporting starts.

stoptime The number of seconds after the first event recorded in
the trace that the reporting stops.

 Chapter 39. The splat command 731

topic Help topics, which are:

� all
� overview
� input
� names
� reports
� sorting

39.1.1 Information about measurement and sampling
The splat command takes as input AIX trace log file or a set of log files for an
SMP trace, and preferably a names file produced by gennames. The procedure for
generating these files is shown in Chapter 40, “The trace, trcnm, and trcrpt
commands” on page 759. When you run trace you will usually use the flag -J
splat to capture the events analyzed by splat (or no -J flag, to capture all events).
The important trace hooks are shown in Table 39-1.

Table 39-1 Trace hooks required for splat

Hook ID Event name Event explanation

106 HKWD_KERN_DISPATCH The thread is dispatched from the
runqueue to a CPU.

10C HKWD_KERN_IDLE The idle process is been dispatched.

10E HKWD_KERN_RELOCK One thread is suspended while another
is dispatched; the ownership of a RunQ
lock is transferred from the first to the
second.

112 HKWD_KERN_LOCK The thread attempts to secure a kernel
lock; the subhook shows what
happened.

113 HKWD_KERN_UNLOCK A kernel lock is released.

38F Dynamic reconfiguration

46D HKWD_KERN_WAITLOCK The thread is enqueued to wait on a
kernel lock.

600 HKWD_PTHREAD_SCHEDUL
ER

Operations on a Scheduler Variable.

603 HKWD_PTHREAD_TIMER Operations on a Timer Variable.

605 HKWD_PTHREAD_VPSLEEP Operations on a Vpsleep Variable.

606 HKWD_PTHREAD_CONDS Operations on a Condition Variable.

732 AIX 5L Performance Tools Handbook

The execution, trace, and analysis intervals
In some cases you can use trace to capture the entire execution of a workload,
while other times you will only capture an interval of the execution. We
distinguish these as the execution interval and the trace interval. The execution
interval is the entire time that a workload runs. This interval is arbitrarily long for
server workloads that run continuously. The trace interval is the time actually
captured in the trace log file by trace. The length of this trace interval is limited
by how large of a trace log file will fit on the filesystem.

In contrast, the analysis interval is the portion of time that is analyzed by splat.
The -t and -T options tell splat to start and finish analysis some number of
seconds after the first event in the trace. By default splat analyzes the entire
trace, so this analysis interval is the same as the trace interval. Example 39-1 on
page 735 shows the reporting of the trace and analysis intervals.

You will usually want to capture the longest trace interval you can and analyze
the entire interval with splat in order to most accurately estimate the effect of
lock activity on the computation. The -t and -T options are usually used for
debugging purposes to study the behavior of splat across a few events in the
trace.

As a rule, either use large buffers when collecting a trace, or limit the captured
events to the ones needed to run splat.

Trace discontinuities
The splat command uses the events in the trace to reconstruct the activities of
threads and locks in the original system. It will not be able to correctly analyze all
of the events across the trace interval if part of the trace is missing because:

� Tracing was stopped at one point and restarted at a later point.

� One CPU fills its trace buffer and stops tracing, while other CPUs continue
tracing.

607 HKWD_PTHREAD_MUTEX Operations on a Mutex.

608 HKWD_PTHREAD_RWLOCK Operations on a Read/Write Lock.

609 HKWD_PTHREAD_GENERAL Operations on a PThread.

Hook ID Event name Event explanation

Note: As an optimization, splat stops reading the trace when it finishes its
analysis, so it will report the trace and analysis intervals as ending at the same
time even if they do not.

 Chapter 39. The splat command 733

� Event records in the trace buffer were overwritten before they could be copied
into the trace log file.

The policy of splat is to finish its analysis at the first point of discontinuity in the
trace, issue a warning message, and generate its report. In the first two cases
the warning message is:

TRACE OFF record read at 0.567201 seconds. One or more of the CPU’s has
stopped tracing. You may want to generate a longer trace using larger
buffers and re-run splat.

In the third case the warning message is:

TRACEBUFFER WRAPAROUND record read at 0.567201 seconds. The input trace has
some records missing; splat finishes analyzing at this point. You may want
to re-generate the trace using larger buffers and re-run splat.

Along the same lines, versions of the AIX kernel or PThread library that are still
under development may be incompletely instrumented, and so the traces will be
missing events. splat may not give correct results in this case.

Address-to-name resolution in splat
The lock instrumentation in the kernel and PThread library captures the
information for each lock event. Data addresses are used to identify locks;
instruction addresses are used to identify the point of execution. These
addresses are captured in the event records in the trace and used by splat to
identify the locks and the functions that operate on them.

However, these addresses are of little use for the programmer, who would rather
know the names of the lock and function declarations so they can be located in
the program source files. The conversion of names to addresses is determined
by the compiler and loader and can be captured in a file using the gennames or
gensyms utility. gennames also captures the contents of the file
/usr/include/sys/lockname.h, which declares classes of kernel locks. gensyms
captures the address to name translation of kernel and subroutines.

This gennames or gensyms output file is passed to splat with the -n option. When
splat reports on a kernel lock, it provides the best identification it can. A splat
lock summary is shown in Example 39-3 on page 737; the left column identifies
each lock by name if it can be determined, otherwise by class if it can be
determined, or by address if nothing better can be provided. The lock detail
shown in Example 39-4 on page 740 identifies the lock by as much of this
information as can be determined.

Kernel locks that are declared will be resolved by name. Locks that are created
dynamically will be identified by class if their class name is given when they are
created. Note that the libpthreads.a instrumentation is not equipped to capture

734 AIX 5L Performance Tools Handbook

names or classes of PThread synchronizers, so they are always identified only by
address.

39.2 Examples for splat
The report generated by splat consists of an execution summary, a gross lock
summary, and a per-lock summary, followed by a list of lock detail reports that
optionally includes a function detail and/or a thread detail report.

39.2.1 Execution summary
Example 39-1 shows a sample of the Execution summary. This report is
generated by default when using splat.

Example 39-1 Execution summary report

splat Cmd: splat -sa -da -S100 -i trace.rpt -n gennames.out -o splat.out

Trace Cmd: trace -C all -aj 600,603,605,606,607,608,609 -T 2000000 -L 20000000
 -o trace.bin
Trace Host: lpar05 (0021768A4C00) AIX 5.2
Trace Date: Mon Apr 21 09:55:22 2003

Elapsed Real Time:18.330873
Number of CPUs Traced: 1 (Observed):0
Cumulative CPU Time:18.330873

 start stop
 -------------------- --------------------
trace interval (absolute tics) 1799170309 2104623072
 (relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (relative secs) 0.000000 18.330873
analysis interval (absolute tics) 1799170309 2104623072
 (trace-relative tics) 0 305452763
 (self-relative tics) 0 305452763
 (absolute secs) 107.972055 126.302928
 (trace-relative secs) 0.000000 18.330873
 (self-relative secs) 0.000000 18.330873

The execution summary consists of the following elements:

� The command used to run splat.

� The trace command used to collect the trace.

 Chapter 39. The splat command 735

� The host that the trace was taken on.

� The date that the trace was taken on.

� The real-time duration of the trace in seconds.

� The maximum number of CPUs that were observed in the trace, the number
specified in the trace conditions information, and the number specified on the
splat command line. If the number specified in the header or command line is
less, the entry (Indicated: <value>) is listed. If the number observed in the
trace is less, the entry (Observed: <value>) is listed.

� The cumulative CPU time, equal to the duration of the trace in seconds times
the number of CPUs that represents the total number of seconds of CPU time
consumed.

� A table containing the start and stop times of the trace interval, measured in
tics and seconds, as absolute time stamps from the trace records, as well as
relative to the first event in the trace. This is followed by the start and stop
times of the analysis interval, measured in tics and seconds, as absolute time
stamps as well as relative to the beginning of the trace interval and the
beginning of the analysis interval.

39.2.2 Gross lock summary
Example 39-2 shows a sample of the gross lock summary report. This report is
generated by default when using splat.

Example 39-2 Gross lock summary

Unique Acquisitions Acq. or Passes % Total System
Total Addresses (or Passes) per Second ’spin’ Time
--------- ------------- ------------ -------------- ---------------

AIX (all) Locks: 523 523 1323045 72175.7768 0.003986
 RunQ: 2 2 487178 26576.9121 0.000000
 Simple: 480 480 824898 45000.4754 0.003986
 Complex: 41 41 10969 598.3894 0.000000
PThread CondVar: 7 6 160623 8762.4305 0.000000
 Mutex: 128 116 1927771 105165.2585 10.280745 *
 RWLock: 0 0 0 0.0000 0.000000

(’spin’ time goal <10%)

The gross lock summary report table consists of the following columns:

Total The number of AIX Kernel locks, followed by the number
of each type of AIX Kernel lock; RunQ, Simple, and
Complex. Under some conditions this will be larger than
the sum of the numbers of RunQ, Simple, and Complex

736 AIX 5L Performance Tools Handbook

locks because we may not observe enough activity on a
lock to differentiate its type. This is followed by the number
of PThread condition variables, the number of PThread
Mutexes, and the number of PThread Read/Write Locks.

Unique Addresses The number of unique addresses observed for each
synchronizer type. Under some conditions a lock will be
destroyed and re-created at the same address; splat
produces a separate lock detail report for each instance
because the usage may be quite different.

Acquisitions For locks, the total number of times acquired during the
(or Passes) analysis interval; for PThread condition-variables, the total

number of times the condition passed during the analysis
interval.

Acq. or Passes Acquisitions or passes per second, which is the total
(per second) number of acquisitions or passes divided by the elapsed

real time of the trace.

% Total System The cumulative time spent spinning on each synchronizer
‘spin’ Time type, divided by the cumulative CPU time, times 100

percent. The general goal is to spin for less than 10
percent of the CPU time; a message to this effect is
printed at the bottom of the table. If any of the entries in
this column exceed 10 percent, they are marked with an
asterisk (*).

39.2.3 Per-lock summary
Example 39-3 shows a sample of the per-lock summary report. This report is
generated by default when using splat.

Example 39-3 Per-lock summary report

100 max entries, Summary sorted by Acquisitions:

T Acqui-
y sitions Locks or Percent Holdtime

Lock Names, p or Passes Real Real Comb Kernel
Class, or Address e Passes Spins Wait %Miss %Total / CSec CPU Elapse Spin Symbol
********************** * ****** ***** **** ***** ****** ********* ******** ****** ******* *******
PROC_INT_CLASS.0003 Q 486490 0 0 0.0000 36.7705 26539.380 5.3532 100.000 0.0000 unix
THREAD_LOCK_CLASS.0012 S 323277 0 0 0.0000 24.4343 17635.658 6.8216 6.8216 0.0000 libc
THREAD_LOCK_CLASS.0118 S 323094 0 0 0.0000 24.4205 17625.674 6.7887 6.7887 0.0000 libc
ELIST_CLASS.003C S 80453 0 0 0.0000 6.0809 4388.934 1.0564 1.0564 0.0000 unix
ELIST_CLASS.0044 S 80419 0 0 0.0000 6.0783 4387.080 1.1299 1.1299 0.0000 unix
tod_lock C 10229 0 0 0.0000 0.7731 558.020 0.2212 0.2212 0.0000 unix
LDATA_CONTROL_LOCK.0000 S 1833 0 0 0.0000 0.1385 99.995 0.0204 0.0204 0.0000 unix
U_TIMER_CLASS.0014 S 1514 0 0 0.0000 0.1144 82.593 0.0536 0.0536 0.0000 netinet

(... lines omitted ...)
000000002FF22B70 L 368838 0 N/A 0.0000 100.000 9622.964 99.9865 99.9865 0.0000
00000000F00C3D74 M 160625 0 0 0.0000 14.2831 8762.540 99.7702 99.7702 0.0000

 Chapter 39. The splat command 737

00000000200017E8 M 160625 175 0 0.1088 14.2831 8762.540 42.9371 42.9371 0.1487
0000000020001820 V 160623 0 624 0.0000 100.000 1271.728 N/A N/A N/A
00000000F00C3750 M 37 0 0 0.0000 0.0033 2.018 0.0037 0.0037 0.0000
00000000F00C3800 M 30 0 0 0.0000 0.0027 1.637 0.0698 0.0698 0.0000

(... lines omitted ...)

The first line indicates the maximum number of locks to report (100 in this case,
but we only show 13 of the entries here) as specified by the -S 100 flag. It also
indicates that the entries are sorted by the total number of acquisitions or
passes, as specified by the -sa flag. Note that the various Kernel locks and
PThread synchronizers are treated as two separate lists in this report, so you
would get the top 100 Kernel locks sorted by acquisitions, followed by the top 100
PThread synchronizers sorted by acquisitions or passes.

The per-lock summary table consists of the following columns:

Lock Names, Class, The name, class, or address of the lock, depending on
or Address whether splat could map the address from a name file.

See “Address-to-name resolution in splat” on page 734
for an explanation.

Type The type of the lock, identified by one of the following
letters:

Q A RunQ lock
S A simple kernel lock
C A complex kernel lock
M A Pthread mutex
V A Pthread condition-variable
L A Pthread read/write lock

Acquisitions or Passes
The number of times the lock was acquired or the
condition passed during the analysis interval.

Spins The number of times the lock (or condition-variable) was
spun on during the analysis interval.

Wait The number of times a thread was driven into a wait state
for that lock or condition-variable during the analysis
interval.

%Miss The percentage of access attempts that resulted in a spin
as opposed to a successful acquisition or pass.

%Total The percentage of all acquisitions that were made to this
lock, out of all acquisitions to all locks of this type. Note
that all AIX locks (RunQ, simple, and complex) are treated
as being the same type for this calculation. The PThread

738 AIX 5L Performance Tools Handbook

synchronizers mutex, condition-variable, and read/write
lock are all distinct types.

Locks or Passes / CSec
The number of times the lock (or condition-variable) was
acquired (or passed) divided by the cumulative CPU time.
This is a measure of the acquisition frequency of the lock.

Real CPU The percentage of the cumulative CPU time that the lock
was held by an executing thread. Note that this definition
is not applicable to condition-variables because they are
not held.

Real Elapse The percentage of the elapsed real time that the lock was
held by any thread at all, whether running or suspended.
Note that this definition is not applicable to
condition-variables because they are not held.

Comb Spin The percentage of the cumulative CPU time that
executing threads spent spinning on the lock. Note that
the PThreads library currently uses waiting for
condition-variables, so there is no time actually spent
spinning.

Kernel Symbol The name of the kernel-extension or library (or /unix for
the kernel) that the lock was defined in. Note that this
information is not recoverable for PThreads.

39.2.4 AIX kernel lock details
By default, splat prints out a lock detail report for each entry in the summary
report. There are two types of AIX Kernel locks: simple and complex. We will
start by examining the contents of the simple lock report, and follow this with an
explanation of the additional information printed with a complex lock report.

The RunQ lock is a special case of the simple lock, although its pattern of usage
differs markedly from other lock types. splat distinguishes it from the other
simple locks to save you the trouble of figuring out why it behaves so uniquely.

Simple- and RunQ- lock details
Example 39-4 on page 740 shows a sample AIX SIMPLE lock report. The first
line starts with either [AIX SIMPLE Lock] or [AIX RunQ lock]. Below this is the
16-digit hexadecimal ADDRESS of the lock. If the gennames output-file allows, the
ADDRESS is also converted into a lock NAME and CLASS, and the containing
kernel-extension (KEX) is identified as well. The CLASS is printed with an
eight-hex-digit extension indicating how many locks of this class were allocated
prior to it.

 Chapter 39. The splat command 739

Example 39-4 AIX SIMPLE lock

[AIX SIMPLE Lock] CLASS: NETISR_LOCK_FAMILY.FFFFFFFF
ADDRESS: 0000000000535378 KEX: unix
NAME: netisr_slock
==
 | | | Percent Held (18.330873s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
471 | 0.000 0 0 0 |0.002584 0.002584 | 0.01 0.01 0.00 0.00
--
%Enabled 0.00 (0)|SpinQ Min Max Avg | WaitQ Min Max Avg
%Disabled 100.00 (471)|Depth 0 0 0 | Depth 0 0 0
--

 Lock Activity w/Interrupts Enabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 0 0.000000 0.000000 0.000000 0.000000
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

 Lock Activity w/Interrupts Disabled (mSecs)

 SIMPLE Count Minimum Maximum Average Total
 +++++++ ++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
 LOCK 471 0.001200 0.019684 0.005486 2.583943
 SPIN 0 0.000000 0.000000 0.000000 0.000000
 UNDISP 0 0.000000 0.000000 0.000000 0.000000
 WAIT 0 0.000000 0.000000 0.000000 0.000000
 PREEMPT 0 0.000000 0.000000 0.000000 0.000000

The statistics are:

Acquisitions The number of times the lock was acquired in the analysis
interval (this includes successful simple_lock_try() calls).

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into suspended
wait state waiting for the lock to come available.

Busy Count The number of simple_lock_try() calls that returned busy.

740 AIX 5L Performance Tools Handbook

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.

Elapsed The total number of elapsed seconds
that the lock was held by any thread at
all, whether running or suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative CPU
time that running threads spent
spinning while trying to acquire this
lock.

Real Wait The percentage of elapsed real time
that any thread waited to acquire this
lock. Note that if two or more threads
are waiting simultaneously, this wait
time will only be charged once. If you
want to know how many threads were
waiting simultaneously, look at the
WaitQ Depth statistics.

%Enabled The percentage of acquisitions of this lock that occurred
while interrupts were enabled. The total number of
acquisitions made while interrupts were enabled is in
parentheses.

%Disabled The percentage of acquisitions of this lock that occurred
while interrupts were disabled. In parentheses is the total
number of acquisitions made while interrupts were
disabled.

SpinQ The minimum, maximum, and average number of threads
spinning on the lock, whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average number of threads
waiting on the lock, across the analysis interval.

 Chapter 39. The splat command 741

The Lock Activity with Interrupts Enabled (mSecs) and Lock Activity with
Interrupts Disabled (mSecs) sections contain information about the time each
lock state is used by the locks.

Figure 39-1 shows the states that a thread can be in with respect to the given
simple or complex lock.

Figure 39-1 Lock states

The states are defined as follows:

(no lock reference) The thread is running, does not hold this lock, and is not
attempting to acquire this lock.

LOCK The thread has successfully acquired the lock and is
currently executing.

SPIN The thread is executing and unsuccessfully attempting to
acquire the lock.

UNDISP The thread has become undispatched while
unsuccessfully attempting to acquire the lock.

WAIT The thread has been suspended until the lock comes
available. It does not necessarily acquire the lock at that
time, instead going back to a SPIN state.

WAIT

UNDISP

SPIN LOCK

PREEMPT

The thread has
acquired the lock
in these states.

The thread is
attempting to
acquire the lock
in these states.

The thread is
executing in
these states.

The thread is
suspended in
these states.

no lock
reference

742 AIX 5L Performance Tools Handbook

PREEMPT The thread is holding this lock and has become
undispatched.

The Lock Activity sections of the report measure the intervals of time (in
milliseconds) that each thread spends in each of the states for this lock. The
columns report the number of times that a thread entered the given state,
followed by the maximum, minimum, and average time that a thread spent in the
state once entered, followed by the total time all threads spent in that state.
These sections distinguish whether interrupts were enabled or disabled at the
time the thread was in the given state.

A thread can acquire a lock prior to the beginning of the analysis interval and
release the lock during the analysis interval. When splat observes the lock being
released, it recognizes that the lock had been held during the analysis interval up
to that point and counts the time as part of the state-machine statistics. For this
reason the state-machine statistics can report that the number of times that the
LOCK state was entered may actually be larger than the number of acquisitions
of the lock that were observed in the analysis interval.

RunQ locks are used to protect resources in the thread management logic.
These locks are acquired a large number of times and are only held briefly each
time. A thread does not necessarily need to be executing to acquire or release a
RunQ lock. Further, a thread may spin on a RunQ lock, but it will not go into an
UNDISP or WAIT state on the lock. You will see a dramatic difference between
the statistics for RunQ versus other simple locks.

Function detail
Example 39-5 is an example of the function detail report. This report is obtained
by using the -df or -da options of splat. Note that we have split the three right
columns here and moved them below the table.

Example 39-5 Function detail report for the simple lock report

Acqui- Miss Spin Wait Busy Percent Held of Total Time
Function Name sitions Rate Count Count Count CPU Elapse Spin Wait
^^^^^^^^^^^^^^^^ ^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^
._thread_unlock 80351 0.00 0 0 0 1.13 1.13 0.00 0.00
.thread_waitlock 68 0.00 0 0 0 0.00 0.00 0.00 0.00

Return Address Start Address Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
000000000001A494 0000000000000000 0001A494

 Chapter 39. The splat command 743

The columns are defined as follows:

Function Name The name of the function that acquired or attempted to
acquire this lock (with a call to one of the functions
simple_lock, simple_lock_try, simple_unlock,
disable_lock, or unlock_enable), if it could be resolved.

Acquisitions The number times the function was able to acquire this
lock.

Miss Rate The percentage of acquisition attempts that failed.

Spin Count The number of unsuccessful attempts by the function to
acquire this lock.

Wait Count The number of times that any thread was forced to wait on
the lock, using a call to this function to acquire the lock.

Busy Count The number of times the function used tried to acquire the
lock without success (that is, calls to simple_lock_try()
that returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread that had acquired the
lock through a call to this function.

Elapse(d) The percentage of the elapsed real time
that the lock was held by any thread at
all, whether running or suspended, that
had acquired the lock through a call to
this function.

Spin The percentage of cumulative cpu time
that executing threads spent spinning
on the lock while trying to acquire the
lock through a call to this function.

Wait The percentage of elapsed real time
that executing threads spent waiting on
the lock while trying to acquire the lock
through a call to this function.

Return Address The return address to this calling function, in
hexadecimal.

Start Address The start address of the calling function, in hexadecimal.

Offset The offset from the function start address to the return
address, in hexadecimal.

744 AIX 5L Performance Tools Handbook

The functions are ordered by the same sorting criterion as the locks, controlled
by the -s option of splat. Further, the number of functions listed is controlled by
the -S parameter, with the default being the top 10 functions being listed.

Thread detail
Example 39-6 shows an example of the thread detail report. This report is
obtained by using the -dt or -da options of splat.

Note that at any point in time, a single thread is either running or it is not, and
when it runs, it only runs on one CPU. Some of the composite statistics are
measured relative to the cumulative CPU time when they measure activities that
can happen simultaneously on more than one CPU, and the magnitude of the
measurements can be proportional to the number of CPUs in the system. In
contrast, the thread statistics are generally measured relative to the elapsed real
time, which is the amount of time a single CPU spends processing and the
amount of time a single thread spends in an executing or suspended state.

Example 39-6 Thread detail report

 Acqui- Miss Spin Wait Busy Percent Held of Total Time
ThreadID sitions Rate Count Count Count CPU Elapsed Spin Wait
~~~~~~~~ ~~~~~~~~  ~~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~~ ~~~~~~ ~~~~~ ~~~~~

      517      1613    0.00 0      0      0 0.05 100.00   0.00  99.81
     5423      1569    0.00 0      0      0 0.06 100.00   0.00   0.00
     4877       504    0.00 0      0      0 0.01 100.00   0.00   0.00
     4183        79    0.00 0      0      0 0.00 100.00   0.00   0.00
        3        59    0.00 0      0      0 0.00 100.00   0.00   0.00
     2065        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2323        36    0.00 0      0      0 0.00 100.00   0.00   0.00
     2839        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     2581        33    0.00 0      0      0 0.00 100.00   0.00   0.00
     5425         8    0.00 0      0      0 0.00 100.00   0.00   0.00

The columns are defined as follows:

ThreadID The thread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.

 

 

 

 

 Chapter 39. The splat command 745



Busy Count The number of times this thread used try to acquire the 
lock, without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time consists of the following subfields:

CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Complex lock report
The AIX Complex lock supports recursive locking, where a thread can acquire 
the lock more than once before releasing it, as well as differentiating between 
write-locking, which is exclusive, from read-locking, which is not. The top of the 
complex lock report appears in Example 39-7.

Example 39-7   Complex lock report (top part)

[AIX COMPLEX Lock]                 CLASS:      TOD_LOCK_CLASS.FFFF
ADDRESS: 0000000000856C88          KEX: unix
NAME:            tod_lock
======================================================================================
         |                             |                  | Percent Held ( 15.710062s )
Acqui-   |  Miss  Spin   Wait   Busy   |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count  Count  |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
8763     |  0.000 0      0      0      |0.044070 0.044070 |  0.28   0.28   0.00   0.00
--------------------------------------------------------------------------------------
%Enabled    0.00 (       0)|SpinQ   Min   Max   Avg  | WaitQ    Min   Max   Avg
%Disabled 100.00 (    8763)|Depth   0     0     0    | Depth   0     0     0    
---------------------------|Readers 0     0     0    |Readers  0     0     0    
          Min   Max   Avg  |Writers 0     0     0    |Writers  0     0     0    
Upgrade   0     0     0    +-----------------------------------------------------------
Dngrade   0     0     0    |LockQ   Min   Max   Avg  |
Recursion 0     1     0    |Readers 0     1     0    |
--------------------------------------------------------------------------------------

 

 

 

 

746 AIX 5L Performance Tools Handbook



Note that this report begins with [AIX COMPLEX Lock]. Most of the entries are 
identical to the simple lock report, while some of them are differentiated by 
read/write/upgrade. For example, the SpinQ and WaitQ statistics include the 
minimum, maximum, and average number of threads spinning or waiting on the 
lock. They also include the minimum, maximum, and average number of threads 
attempting to acquire the lock for reading versus writing. Because an arbitrary 
number of threads can hold the lock for reading, the report includes the minimum, 
maximum, and average number of readers in the LockQ that holds the lock.

A thread may hold a lock for writing; this is exclusive and prevents any other 
thread from securing the lock for reading or for writing. The thread downgrades 
the lock by simultaneously releasing it for writing and acquiring it for reading; this 
enables other threads to acquire the lock for reading, as well. The reverse of this 
operation is an upgrade; if the thread holds the lock for reading and no other 
thread holds it as well, the thread simultaneously releases the lock for reading and 
acquires it for writing. The upgrade operation may require that the thread wait until 
other threads release their read-locks. The downgrade operation does not.

A thread may acquire the lock to some recursive depth; it must release the lock 
the same number of times to free it. This is useful in library code where a lock 
must be secured at each entry point to the library; a thread will secure the lock 
once as it enters the library, and internal calls to the library entry points simply 
re-secure the lock, and release it when returning from the call. The minimum, 
maximum, and average recursion depths of any thread holding this lock are 
reported in the table.

A thread holding a recursive write-lock is not allowed to downgrade it because 
the downgrade is intended to apply to only the last write-acquisition of the lock, 
and the prior acquisitions had a real reason to keep the acquisition exclusive. 
Instead, the lock is marked as being in the downgraded state, which is erased 
when the this latest acquisition is released or upgraded. A thread holding a 
recursive read-lock can only upgrade the latest acquisition of the lock, in which 
case the lock is marked as being upgraded. The thread will have to wait until the 
lock is released by any other threads holding it for reading. The minimum, 
maximum, and average recursion depths of any thread holding this lock in an 
upgraded or downgraded state are reported in the table.

The Lock Activity report also breaks down the time by whether the lock is being 
secured for reading, writing, or upgrading, as shown in Example 39-8.

Example 39-8   Complex lock report (lock activity)

Lock Activity w/Interrupts Enabled (mSecs)

  READ     Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       7179        0.001260       0.023825  0.005623 40.366684

 

 

 

 

 Chapter 39. The splat command 747



  SPIN          0        0.000000       0.000000 0.000000 0.000000
   UNDISP       0        0.000000       0.000000   0.000000 0.000000
  WAIT          0        0.000000       0.000000  0.000000 0.000000
  PREEMPT       0        0.000000       0.000000 0.000000 0.000000

  WRITE    Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK       1584        0.001380       0.008582       0.002338       3.703169
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

  UPGRADE  Count         Minimum        Maximum        Average          Total
  +++++++  ++++++  ++++++++++++++ ++++++++++++++ ++++++++++++++ ++++++++++++++
  LOCK          0        0.000000       0.000000 0.000000  0.000000
  SPIN          0        0.000000       0.000000 0.000000  0.000000
   UNDISP       0        0.000000       0.000000 0.000000  0.000000
  WAIT          0        0.000000       0.000000 0.000000  0.000000
  PREEMPT       0        0.000000       0.000000 0.000000  0.000000

Note that there is no time reported to perform a downgrade because this is 
performed without any contention. The upgrade state is only reported for the 
case where a recursive read-lock is upgraded; otherwise the thread activity is 
measured as releasing a read-lock and acquiring a write-lock.

The function- and thread- details also break down the acquisition, spin, and wait 
counts by whether the lock is to be acquired for reading or writing, as shown in 
Example 39-9.

Example 39-9   Complex lock report (function and thread detail)

Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
Function NameWrite Read Rate Write Read Write Read Count CPU ElapseSpin Wait 
^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^^^^^ 
.tstart 0 1912 0.00 0 0 0 0 0 0.07 0.07 0.00 0.00 
.clock 0 1911 0.00 0 0 0 0 0 0.05 0.05 0.00 0.00 

 Return Address   Start Address    Offset
^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^ ^^^^^^^^
000000000001AA54 0000000000000000 0001AA54
000000000001A494 0000000000000000 0001A494

 

 

 

 

748 AIX 5L Performance Tools Handbook



Acquisitions Miss Spin Count Wait Count Busy Percent Held of Total Time
ThreadID Write Read Rate Write Read Write Read Count CPU Elapse Spin Wait
~~~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
5423 1206 5484 0.00 0 0 0 0 0 0.24 0.24 0.00 0.00
4877 300 1369 0.00 0 0 0 0 0 0.03 0.03 0.00 0.00
517 54 242 0.00 0 0 0 0 0 0.01 0.01 0.00 0.00
4183 5 27 0.00 0 0 0 0 0 0.00 0.00 0.00 0.00

39.2.5 PThread synchronizer reports
By default, splat prints out a detailed report for each PThread entry in the
summary report. The PThread synchronizers come in three types; mutex,
read/write lock, and condition-variable. The mutex and read/write lock are related
to the AIX complex lock, so you will see similarities in the lock detail reports. The
condition-variable differs significantly from a lock, and this is reflected in the
report details.

The PThread library instrumentation does not provide names or classes of
synchronizers, so the addresses are the only way we have to identify them.
Under certain conditions the instrumentation is able to capture the return
addresses of the function-call stack, and these addresses are used with the
gennames output to identify the call-chains when these synchronizers are created.
Sometimes the creation and deletion times of the synchronizer can be
determined as well, along with the ID of the PThread that created them.
Example 39-10 shows an example of the header.

Example 39-10 PThread synchronizer report header

[PThread MUTEX] ADDRESS: 00000000F0049DE8
Parent Thread: 0000000000000001 creation time: 0.624240
Creation call-chain
==
00000000D00D9414 .pthread_mutex_lock
00000000D00E0D48 .pthread_once
00000000D01EC30C .__getgrent_tsd_callback
00000000D01D9574 ._libc_inline_callbacks
00000000D01D9500 ._libc_declare_data_functions
00000000D00EF400 ._pth_init_libc
00000000D00DCF78 .pthread_init
0000000010000318 .driver_addmulti
0000000010000234 .driver_addmulti
00000000D01D8E0C .__modinit
0000000010000174 .driver_addmulti

 Chapter 39. The splat command 749

Mutex reports
The PThread mutex is like an AIX simple lock in that only one thread can acquire
the lock and is like an AIX complex lock in that it can be held recursively. A
sample report is shown in Example 39-11.

Example 39-11 PThread mutex report

[PThread MUTEX] ADDRESS: 00000000F010A3C8
Parent Thread: 0000000000000001 creation time: 15.708728
Creation call-chain ==
00000000D00491BC .pthread_mutex_lock
00000000D0050DA0 .pthread_once
00000000D007417C .__odm_init
00000000D01D9600 ._libc_process_callbacks
00000000D01D8F28 .__modinit
000000001000014C .driver_addmulti
==
 | | | Percent Held (15.710062s)
Acqui- | Miss Spin Wait Busy | Secs Held | Real Real Comb Real
sitions | Rate Count Count Count |CPU Elapsed | CPU Elapsed Spin Wait
1 | 0.000 0 0 0 |0.000000 0.000000 | 0.00 0.00 0.00 0.00
--
Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0
Recursion 0 1 0

Besides the common header information and the [PThread MUTEX] identifier, this
report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The number of times a thread was forced into a
suspended wait state waiting for the lock to come
available.

Busy Count The number of trylock() calls that returned busy.

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that
the lock was held by an executing
thread.

750 AIX 5L Performance Tools Handbook

Elapsed The total number of elapsed seconds
that the lock was held, whether the
thread was running or suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU
time that the lock was held by an
executing thread.

Real Elapsed The percentage of the elapsed real time
that the lock was held by any thread at
all, either running or suspended.

Comb(ined) Spin The percentage of the cumulative cpu
time that running threads spent spinning
while trying to acquire this lock.

Real Wait The percentage of elapsed real time
that any thread was waiting to acquire
this lock. Note that if two or more
threads are waiting simultaneously, this
wait-time will only be charged once. If
you want to know how many threads
were waiting simultaneously, look at the
WaitQ Depth statistics.

Depth This field contains the following subfields:

SpinQ The minimum, maximum, and average
number of threads spinning on the lock,
whether executing or suspended,
across the analysis interval.

WaitQ The minimum, maximum, and average
number of threads waiting on the lock,
across the analysis interval.

Recursion The minimum, maximum, and average
recursion depth to which each thread
held the lock.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 39-12.

Example 39-12 PThread mutex report (thread detail)

Acqui- Miss Spin Wait Busy Percent Held of Total Time
 PThreadID sitions Rate Count Count Count CPU Elapse Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~  ~~~~~~   ~~~~~~   ~~~~~~
         1        1   0.0000      0      0      0   0.0001 0.0001 0.0000 0.0000

 

 

 

 

 Chapter 39. The splat command 751



The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock.

Miss Rate The percentage of acquisition attempts by the thread that 
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to 
secure the lock.

Wait Count The number of times this thread was forced to wait until 
the lock came available.

Busy Count The number of times this thread used try to acquire the 
lock without success (calls to simple_lock_try() that 
returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the elapsed real time 
that this thread executed while holding 
the lock.

Elapse(d) The percentage of the elapsed real time 
that this thread held the lock while 
running or suspended.

Spin The percentage of elapsed real time 
that this thread executed while spinning 
on the lock.

Wait The percentage of elapsed real time 
that this thread spent waiting on the 
lock.

Read/Write lock reports
The PThread read/write lock is like an AIX complex lock in that it can be acquired 
for reading or writing; writing is exclusive in that a single thread can only acquire 
the lock for writing, and no other thread can hold the lock for reading or writing at 
that point. Reading is not exclusive, so more than one thread can hold the lock 
for reading. Reading is recursive in that a single thread can hold multiple 
read-acquisitions on the lock. Writing is not. A sample report is shown in 
Table 39-2.

Table 39-2   PThread read/write lock report

[PThread RWLock]    ADDRESS:    000000002FF22B70
Parent Thread:  0000000000000001     creation time: 0.051140                
Creation call-chain ==================================================================
00000000100003D4    .driver_addmulti

 

 

 

 

752 AIX 5L Performance Tools Handbook



00000000100001B4    .driver_addmulti
=============================================================================
         |                     |                  | Percent Held (383.290027s )
Acqui-   |  Miss  Spin   Wait  |    Secs Held     |  Real  Real    Comb  Real
sitions  |  Rate  Count  Count |CPU      Elapsed  |  CPU  Elapsed  Spin  Wait
3688386  |  0.000 0      0  |383.2384 383.2384 | 99.99  99.99   0.00   0.00
--------------------------------------------------------------------------------------
                Readers                  Writers Total
Depth     Min   Max Avg            Min   Max   Avg           Min   Max Avg
LockQ     0     3688386 3216413  0     0     0 0     3688386 3216413
SpinQ     0     0 0 0     0     0 0     0 0    
WaitQ     0     0 0 0     0     0 0     0 0    

Besides the common header information and the [PThread RWLock] identifier, 
this report lists the following lock details:

Acquisitions The number of times the lock was acquired in the analysis 
interval.

Miss Rate The percentage of attempts that failed to acquire the lock.

Spin Count The number of unsuccessful attempts to acquire the lock.

Wait Count The current PThread implementation does not force 
threads to wait on read/write locks. What is reported here 
is the number of times a thread, spinning on this lock, is 
undispatched.

Seconds Held This field contains the following subfields:

CPU The total number of CPU seconds that 
the lock was held by an executing 
thread. If the lock is held multiple times 
by the same thread, only one hold 
interval is counted.

Elapsed The total number of elapsed seconds 
that the lock was held by any thread, 
whether the thread was running or 
suspended.

Percent Held This field contains the following subfields:

Real CPU The percentage of the cumulative CPU 
time that the lock was held by any 
executing thread.

Real Elapsed The percentage of the elapsed real time 
that the lock was held by any thread at 
all, either running or suspended.

 

 

 

 

 Chapter 39. The splat command 753



Comb(ined) Spin The percentage of the cumulative cpu 
time that running threads spent 
spinning while trying to acquire this 
lock.

Real Wait The percentage of elapsed real time 
that any thread was waiting to acquire 
this lock. Note that if two or more 
threads are waiting simultaneously, this 
wait-time will only be charged once. If 
you want to know how many threads 
were waiting simultaneously, look at the 
WaitQ Depth statistics.

Depth This field contains the following subfields:

LockQ The minimum, maximum, and average 
number of threads holding the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

SpinQ The minimum, maximum, and average 
number of threads spinning on the lock, 
whether executing or suspended, 
across the analysis interval. This is 
broken down by read-acquisitions, 
write-acquisitions, and all acquisitions 
together.

WaitQ The minimum, maximum, and average 
number of threads in a timed-wait state 
for the lock, across the analysis interval. 
This is broken down by 
read-acquisitions, write-acquisitions, 
and all acquisitions together.

If the -dt or -da options are used, splat reports the thread detail as shown in 
Example 39-13.

Example 39-13   PThread read/write lock (thread detail)

Acquisitions   Miss    Spin Count    Wait Count Busy Percent Held of Total Time
 ThreadID  Write  Read    Rate   Write  Read   Write  Read   CountCPU  Elapse  Spin   Wait
 ~~~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~ ~~~~~~
 1 0 36883860.000 0 0 0 00.00 99.99 0.00 0.00

754 AIX 5L Performance Tools Handbook

The columns are defined as follows:

PThreadID The PThread identifier.

Acquisitions The number of times this thread acquired the lock,
differentiated by write versus read.

Miss Rate The percentage of acquisition attempts by the thread that
failed to secure the lock.

Spin Count The number of unsuccessful attempts by this thread to
secure the lock, differentiated by write versus read.

Wait Count The number of times this thread was forced to wait until the
lock came available, differentiated by write versus read.

Busy Count The number of times this thread used try to acquire the lock,
without success (for example calls to simple_lock_try() that
returned busy).

Percent Held of Total Time contains the following subfields:

CPU The percentage of the elapsed real time that
this thread executed while holding the lock.

Elapse(d) The percentage of the elapsed real time that
this thread held the lock while running or
suspended.

Spin The percentage of elapsed real time that this
thread executed while spinning on the lock.

Wait The percentage of elapsed real time that this
thread spent waiting on the lock.

Condition-Variable report
The PThread condition-variable is a synchronizer but not a lock. A PThread is
suspended until a signal indicates that the condition now holds. A sample report
is shown in Example 39-14.

Example 39-14 PThread Condition-Variable Report

[PThread CondVar] ADDRESS: 0000000020004858
Parent Thread: 0000000000000000 creation time: 18.316493
Creation call-chain ==
00000000D004E42C ._free_pthread
00000000D004CE98 .pthread_init
00000000D01D8E40 .__modinit
000000001000014C .driver_addmulti
===
 | | Spin / Wait Time (18.330873s)
 | Fail Spin Wait | Comb Comb
 Passes | Rate Count Count | Spin Wait

 Chapter 39. The splat command 755

0 | 0.00 0 0 | 0.00 0.00

Depth Min Max Avg
SpinQ 0 0 0
WaitQ 0 0 0

Besides the common header information and the [PThread CondVar] identifier,
this report lists the following details:

Passes The number of times the condition was signaled to hold
during the analysis interval.

Fail Rate The percentage of times that the condition was tested and
was not found to be true.

Spin Count The number of times that the condition was tested and was
not found to be true.

Wait Count The number of times a thread was forced into a suspended
wait state waiting for the condition to be signaled.

Spin / Wait Time This field contains the following subfields:

Comb Spin The total number of CPU seconds that
threads spun while waiting for the
condition.

Comb Wait The total number of elapsed seconds that
threads spent in a wait state for the
condition.

Depth This field contains the following subfields:

SpinQ The minimum, maximum, and average
number of threads spinning while waiting
for the condition, across the analysis
interval.

WaitQ The minimum, maximum, and average
number of threads waiting for the
condition, across the analysis interval.

If the -dt or -da options are used, splat reports the thread detail as shown in
Example 39-15.

Example 39-15 PThread Condition-Variable Report (thread detail)

 Fail Spin Wait % Total Time
 PThreadID Passes Rate Count Count Spin Wait
 ~~~~~~~~~  ~~~~~~~~  ~~~~~~ ~~~~~~ ~~~~~~   ~~~~~~ ~~~~~~
       1    80312    0.0000       0  80312   0.0000  82.4531
     258    80311    0.0000       0  80312   0.0000  82.4409

 

 

 

 

756 AIX 5L Performance Tools Handbook



The columns are defined as follows:

PThreadID The PThread identifier.

Passes The number of times this thread was notified that the 
condition passed.

Fail Rate The percentage of times the thread checked the condition 
and did not find it to be true.

Spin Count The number of times the thread checked the condition 
and did not find it to be true.

Wait Count The number of times this thread was forced to wait until 
the condition came true.

Percent Total Time This field contains the following subfields:

Spin The percentage of elapsed real time that this 
thread spun while testing the condition.

Wait The percentage of elapsed real time that this 
thread spent waiting for the condition to hold.

 

 

 

 

 Chapter 39. The splat command 757



 

 

 

 

758 AIX 5L Performance Tools Handbook



Chapter 40. The trace, trcnm, and trcrpt 
commands

The trace command is a utility that monitors statistics of user and kernel 
subsystems in detail.

Many of the performance tools listed in this book, such as curt (see Chapter 35, 
“The curt command” on page 677), use trace to obtain their data, then format 
the data read from the raw trace report and present it to the user. The trcrpt 
command formats a report from the trace log.

Usually before analyzing the trace file, you would use other performance tools to 
obtain an overview of the system for potential or real performance problems. This 
give an indication of what to look for in the trace for resolving any performance 
bottlenecks. The commonly used methodology is to look at the curt output, then 
other performance command outputs, then the formatted trace file.

The trcnm command generates a list of all symbols with their addresses defined 
in the kernel. This data is used by the trcrpt -n command to interpret addresses 
when formatting a report from a trace log file. 

The trace command resides in /usr/sbin and is linked from /usr/bin. The trcnm 
and trcrpt commands reside in /usr/bin. All of these commands are part of the 
bos.sysmgt.trace fileset, which is installable from the AIX base installation media.

40
 

 

 

 

© Copyright IBM Corp. 2001, 2003 759



40.1  trace
The following syntax applies to the trace command:

trace [ -a [ -g ] ] [ -f | -l ] [ -b | -B] [ -c] [ -C [ CPUList | all ]] [ -d ]
[ -h ] [ -j Event [ ,Event ] ] [ -k Event [ ,Event ] ] 
[ -J Event-group [ ,Event-group ]] [ -K Event-group [ ,Event-group ]]
[ -m Message ] [ -n ] [ -o Name ] [ -o- ] [ -p ] [ -s ] [ -L Size ] 
[ -T Size ]

Flags
-a Runs the trace daemon asynchronously (that is, as a 

background task). Once trace has been started this way, you 
can use the trcon, trcoff, and trcstop commands to 
respectively start tracing, stop tracing, or exit the trace session. 
These commands are implemented as links to trace.

-b Allocates buffers from the kernel heap. If the requested buffer 
space cannot be obtained from the kernel heap, the command 
fails. This flag is only valid for a 32-bit kernel.

-B Allocates buffers in separate segments. This flag is only valid for 
a 32-bit kernel.

-c Saves the trace log file, adding .old to its name.

-C[CPUList | all]
Traces using one set of buffers per CPU in the CPUList. The 
CPUs can be separated by commas, or enclosed in double 
quotation marks and separated by commas or blanks. To trace 
all CPUs, specify all. Because this flag uses one set of buffers 
per CPU, and produces one file per CPU, it can consume large 
amounts of memory and file space and should be used with 
care. The files produced are named trcfile, trcfile-0, trcfile-1, and 
so forth, where then numbers represent the CPU numbers. If -T 
or -L are specified, the sizes apply to each set of buffers and 
each file. On a uniprocessor system, you may specify -C all, but 
the -C flag with a list of CPU numbers is ignored. If the -C flag is 
used to specify more than one CPU, such as -Call or -C "0 1", 
then the associated buffers are not put into the system dump.

-d Disables the automatic start of trace data collection. Normally 
the collection of trace data starts automatically when you issue 
the trace daemon, but when you have specified the trace 
command using the -d flag, the trace will not start until the trcon 
command has been issued.

 

 

 

 

760 AIX 5L Performance Tools Handbook



-f Runs trace in a single mode. Causes the collection of trace data 
to stop as soon as the in-memory buffer is filled up. The trace 
data is then written to the trace log. Use the trcon command to 
restart trace data collection and capture another full buffer of 
data. If you issue the trcoff command before the buffer is full, 
trace data collection is stopped and the current contents of the 
buffer are written to the trace log.

-g Starts a trace session on a generic trace channel (channels 1 
through 7). This flag works only when trace is run 
asynchronously (-a). The return code of the command is the 
channel number; the channel number must subsequently be 
used in the generic trace subroutine calls. To stop the generic 
trace session, use the command trcstop -<channel_number>.

-h Omits the header record from the trace log. Normally, the trace 
daemon writes a header record with the date and time (from the 
date command) at the beginning of the trace log; the system 
name, version and release, the node identification, and the 
machine identification (from the uname -a command); and a 
user-defined message. At the beginning of the trace log, the 
information from the header record is included in the output of 
the trcrpt command.

-j Event[,Event]See the description for the -k flag.

-k Event[,Event]
Specifies the user-defined events for which you want to collect 
(-j) or exclude (-k) trace data. The Event list items can be 
separated by commas, or enclosed in double quotation marks 
and separated by commas or blanks.

The following events are used to determine the PID, the cpuid, 
and the exec path name in the trcrpt report:

106 DISPATCH
10C DISPATCH IDLE PROCESS
134 EXEC SYSTEM CALL
139 FORK SYSTEM CALL
465 KTHREAD CREATE

If any of these events is missing, the information reported by the 
trcrpt command will be incomplete. Consequently, when using 
the -j flag, you should include all of these events in the Event list. 
Conversely, when using the -k flag, you should not include these 
events in the Event list. If starting the trace with smit or the -J 
flag, these events are in the tidhk group. Additional event hooks 
can be read in Appendix B, “Trace hooks” on page 973.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 761



-J Event-group [, Event-group ] 

-K Event-group [, Event-group]
Specifies the event groups to be included (-J) or excluded (-K). 
The -J and -K flags work like -j and -k, except with event groups 
instead of individual hook IDs. All four flags, -j, -J, -k, and -K, 
may be specified. Some important event groups relate to trace 
hooks used by other commands, such as curt and splat. A list 
of these groups can be shown by the command trcevgrp -l.

-l Runs trace in a circular mode. The trace daemon writes the 
trace data to the trace log when the collection of trace data is 
stopped. Only the last buffer of trace data is captured. When you 
stop trace data collection using the trcoff command, restart it 
using the trcon command. 

-L Size Overrides the default trace log file size of 1 MB with the value 
stated. Specifying a file size of zero sets the trace log file size to 
the default size. For a multiple-CPU system, the size limit applies 
to each of the per-CPU logfiles that are generated, rather than 
their collective size.

-m Message Specifies text to be included in the message field of the trace log 
header record.

-n Adds information to the trace log header; lock information, 
hardware information, and, for each loader entry, the symbol 
name, address, and type. 

-o Name Overrides the /var/adm/ras/trcfile default trace log file and writes 
trace data to a user-defined file.

-o - Overrides the default trace log name and writes trace data to 
standard output. The -c flag is ignored when using this flag. An 
error is produced if -o- and -C are specified.

-p Includes the cpuid of the current processor with each hook. This 
flag is only valid for 64-bit kernel traces. The trcrpt command 
can report the cpuid whether or not this option is specified.

-s Stops tracing when the trace log fills. The trace daemon 
normally wraps the trace log when it fills up and continues to 
collect trace data. During asynchronous operation, this flag 
causes the trace daemon to stop trace data collection. During 

Note: In the circular and alternate modes, the trace log file size must be at 
least twice the size of the trace buffer. In the single mode, the trace log file 
must be at least the size of the buffer. See the -T flag for information about 
controlling the trace buffer size.

 

 

 

 

762 AIX 5L Performance Tools Handbook



interactive operations, the quit subcommand must be used to 
stop trace.

-T Size Overrides the default trace buffer size of 128 KB with the value 
stated. You must be root to request more than 1 MB of buffer 
space. The maximum possible size is 268,435,184 bytes (256 
MB) unless the -f flag is used, in which case it is 536,870,368 
bytes (512 MB). The smallest possible size is 8192 bytes, unless 
the -f flag is used, in which case it is 16,392 bytes. Sizes 
between 8,192 and 16,392 will be accepted when using the -f 
flag, but the actual size used will be 16,392 bytes. Note that with 
the -C option allocating one buffer per traced CPU, the size 
applies to each buffer rather than the collective size of all buffers.

Unless the -b or -B flags are specified, the system attempts to allocate the buffer 
space from the kernel heap. If this request cannot be satisfied, the system then 
attempts to allocate the buffers as separate segments.

The -f flag actually uses two buffers, which behave as a single buffer (except that 
a buffer wraparound trace hook will be recorded when the first buffer is filled).

Subcommands
When run interactively, trace recognizes the following subcommands:

trcon Starts the collection of trace data.
trcoff Stops the collection of trace data.
q or quit Stops the collection of trace data and exits trace.
! Runs the shell command specified by the Command parameter.
? Displays the summary of trace subcommands.

Signals
The INTERRUPT signal acts as a toggle to start and stop the collection of trace 
data. Interruptions are set to SIG_IGN for the traced process. 

Files
/usr/include/sys/trcmacros.h Defines trchook and utrchook macros.
/var/adm/ras/trcfile Contains the default trace log file.

Note: In the single mode, the trace log file must be at least the size of the 
buffer. See the -L flag for information about controlling the trace log file size. 
The trace buffers use pinned memory, which means they are not pageable. 
Therefore, the larger the trace buffers, the less physical memory is available to 
applications. In the circular and the alternate modes, the trace buffer size must 
be one-half or less the size of the trace log file.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 763



40.1.1  Information about measurement and sampling
When trace is running, it will require a CPU overhead of less than 2%. When the 
trace buffers are full, trace will write its output to the trace log, which may require 
up to five percent of CPU resource. The trace command claims and pins buffer 
space. If a system is short of memory, then running trace could further degrade 
system performance.

The trace daemon configures a trace session and starts the collection of system 
events. The data collected by the trace function is recorded in the trace log. A 
report from the trace log is a raw file and can be formatted to a readable ASCII 
file with the trcrpt command.

When invoked with the -a flag, the trace daemon runs asynchronously (that is, as a 
background task). Otherwise, it is run interactively and prompts you for 
subcommands as is shown in Example 40-3 on page 768.

You can use the System Management Interface Tool (smit) to run the trace 
daemon. See “Using SMIT to stop and start trace” on page 767 for details.

Operation modes
There are three modes of trace data collection:

� Alternate (the default)

All trace events are captured in the trace log file.

� Circular

The trace events wrap within the in-memory buffers and are not captured in 
the trace log file until the trace data collection is stopped. To choose the 
Circular trace method, use the -l flag.

� Single

The collection of trace events stops when the in-memory trace buffer fills up 
and the contents of the buffer are captured in the trace log file. To choose the 
Single trace method, use the -f flag. 

Buffer allocation 
Trace buffers are either allocated from the kernel heap or put into separate 
segments. By default, buffers are allocated from the kernel heap unless the 
buffer size requested is too large for buffers to fit in the kernel heap, in which 
case they are allocated in separate segments.

Attention: Depending on what trace hooks you are tracing, the trace file can 
become very large.

 

 

 

 

764 AIX 5L Performance Tools Handbook



Allocating buffers from separate segments hinders trace performance somewhat. 
However, buffers in separate segments will not take up paging space; just pinned 
memory. The type of buffer allocation can be specified with the optional -b or -B 
flags when using a 32-bit kernel.

40.1.2  Terminology used for trace
In order to understand how the trace facility (also called trace program) works, it 
is important to know the meaning of some terms.

Trace hooks
A trace hook is a specific event that is to be monitored. For example, if you wish 
to monitor Physical File System (PFS) events, include trace hook 10A in the 
trace. Trace hooks are defined by the kernel and can change with different 
releases of the operating system, but trace hooks can also be defined and used 
by an application. If a specific event in an application does not have a trace hook 
defined, then this event will never show up in a trace report.

Trace hooks can be displayed with trcrpt -j. The example in “AIX 5L trace 
hooks” on page 974 shows trace hooks that are applicable for AIX 5L 
Version 5.2.

It is recommended that you run trcrpt -j to check for any modifications to the 
trace hooks that IBM may make.

Hook ID
A unique number is assigned to a trace hook (for example, a certain event) called 
a hook ID. These hook IDs can either be called by a user application or by the 
kernel. The hook IDs can be found in the file /usr/sys/include/trchkid.h.

Trace daemon
The trace daemon (sometimes also called trace command or trace process) has 
to be activated in order to generate statistics about user processes and kernel 
subsystems. This is actually the process that can be monitored by the ps 
command.

Trace buffer
The data that is collected by the trace daemon is first written to the trace buffer. 
Only one trace buffer is transparent to the user, though it is internally divided into 
two parts, also referred to as a set of trace buffers. By using the -C option with 
the trace command, one set of trace buffers can be created for each CPU of an 
SMP system. This enhances the total trace buffer capacity. 

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 765



Trace log file
Once one of the two internal trace buffers is full, its content is usually written to 
the trace log file. The trace log file does fill up quite quickly, so that in most cases 
only a few seconds are chosen to be monitored by trace.

The sequence followed by the trace facility is shown in Figure 40-1.

Figure 40-1   The trace facility

Either a user process or a kernel subsystem calls a trace hook function (by using 
the hook ID). These trace hook functions check whether the trace daemon is 
running and, if so, pass the data to the trace daemon that then takes the hook ID 
and the according event and writes them (together with a time stamp) 
sequentially to the trace buffer. Depending on the options that were chosen 
when the trace daemon was invoked (see “Operation modes” on page 764), the 
trace data is then written to the trace log file. A report from the trace log can be 
generated with the trcrpt command.

Just as important is to keep in mind that the trace log file can grow huge 
depending on the amount of data that is being collected. A trace on a fully loaded 
24-way SMP can easily accumulate close to 100 MB of trace data in less than a 

The trace facility

user
kernel

trace log file

trace buffers

A B

user
process

kernel
subsystems

trace 
hook calls

trace 
deamon

 

 

 

 

766 AIX 5L Performance Tools Handbook



minute. Some sensibility is required to determine whether all that data is really 
needed. Often a few seconds is enough to catch all the important activities that 
need to be traced. An easy method of limiting the size of the trace log file is to run 
the trace in Single mode as discussed in “Operation modes” on page 764.

40.1.3  Ways to start and stop trace
There are several ways to stop and start trace.

Using SMIT to stop and start trace
A convenient way to stop and start trace is to use the smitty trace command. 
This is especially convenient if you are including or excluding specific trace 
hooks. Using the System Management Interface Tool (SMIT) enables you to view 
a trace hook list using the F4 key and choose the trace hook(s) to include or 
exclude.

To access the trace menus of SMIT, type smitty trace. The menu in 
Example 40-1 will appear.

Example 40-1   The SMIT trace menu

                                     Trace

Move cursor to desired item and press Enter.

  START Trace
  STOP Trace
  Generate a Trace Report
  Manage Event Groups

Enter the START Trace menu and start the trace as shown in Example 40-2.

Example 40-2   Using SMIT to start the trace

# smitty trace
                                  START Trace

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                        [Entry Fields]
  EVENT GROUPS to trace                              []                       +
  ADDITIONAL event IDs to trace                      []                       +
  Event Groups to EXCLUDE from trace                 []                       +
  Event IDs to EXCLUDE from trace                    []                       +
  Trace MODE                                         [alternate]              +
  STOP when log file full?                           [no]                     +

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 767



  LOG FILE                                           [trace.raw]
  SAVE PREVIOUS log file?                            [no]                     +
  Omit PS/NM/LOCK HEADER to log file?                [yes]                    +
  Omit DATE-SYSTEM HEADER to log file?               [no]                     +
  Run in INTERACTIVE mode?                           [no]                     +
  Trace BUFFER SIZE in bytes                         [10000000]                #
  LOG FILE SIZE in bytes                             [10000000]                #
  Buffer Allocation                                  [automatic]              +

You can exit the menu, then select the STOP Trace option of the menu in 
Example 40-1 on page 767 to stop the trace. The trace trace.raw will reside in 
the current directory.

Running trace interactively
Example 40-3 shows how to run trace interactively, tracing the ls command as 
well as other processes running on the system from within the trace command. 
The raw trace file created by trace is called /var/adm/ras/trcfile.

Example 40-3   Running trace interactively

# trace
-> !ls
-> quit
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      1338636 Apr 16 08:53 /var/adm/ras/trcfile

Running trace asynchronously
Example 40-4 shows how to run trace asynchronously, tracing the ls command 
as well as other processes running on the system. This method avoids delays 
when the command finishes. The raw trace file created by trace is called 
/var/adm/ras/trcfile.

Example 40-4   Running trace asynchronously

# trace -a ; ls ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system       208640 Apr 16 08:54 /var/adm/ras/trcfile

Note that by using this method, the trace file is considerably smaller than the 
interactive method shown in Example 40-3.

Running trace on an entire system for 10 seconds
Example 40-5 on page 769 shows how to run trace on the entire system for 10 
seconds. This traces all system activity and includes all trace hooks. The raw 
trace file created by trace is called /var/adm/ras/trcfile.

 

 

 

 

768 AIX 5L Performance Tools Handbook



Example 40-5   Running trace on an entire system for 10 seconds

# trace -a ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      1350792 Apr 16 08:56 /var/adm/ras/trcfile

Tracing to a specific log file
Example 40-6 shows how to run trace asynchronously, tracing the ls command 
and outputting the raw trace file to /tmp/my_trace_log.

Example 40-6   Tracing to a specific log file

# ls -l /tmp/my_trace_log
/tmp/my_trace_log not found
# trace -a -o /tmp/my_trace_log; ls; trcstop
# ls -l /tmp/my_trace_log*
-rw-rw-rw-   1 root     system       206924 Apr 16 08:58 /tmp/my_trace_log

Tracing a command
The following section shows how to trace commands.

Tracing a command that is not already running on the system
Example 40-6 shows how to run trace on a command that you are about to start. 
It allows you to start trace, run the command, and then terminate trace. This 
ensures that all trace events are captured.

Tracing a command that is already running on the system
To trace a command that is already running, run a trace on the entire system as 
in Example 40-5, and use the trcrpt command with the -p flag to specify 
reporting of the specific process.

Tracing using one set of buffers per CPU
Normally, trace groups all CPU buffers into one trace file. Events that occurred 
on the individual CPUs may be separated into CPU-specific files as shown in 
Example 40-7. This increases the total buffered size capacity for collecting trace 
events.

Example 40-7   Tracing using one set of buffers per CPU

# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root    system       37996 Apr 16 08:59 /var/adm/ras/trcfile
-rw-rw-rw-   1 root    system     1313400 Apr 16 09:00 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root    system       94652 Apr 16 09:00 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-10
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-11
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-12

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 769



-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-13
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-14
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-15
-rw-rw-rw-   1 root    system     1313400 Apr 16 09:00 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root    system     1010096 Apr 16 09:00 /var/adm/ras/trcfile-3
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-4
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-5
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-6
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-7
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-8
-rw-rw-rw-   1 root    system         184 Apr 16 08:59 /var/adm/ras/trcfile-9

The example above has four individual files (one for each CPU) plus the master 
file /var/adm/ras/trcfile.

Running the trace -aCall -o mylog command would produce the files mylog, 
mylog-0, mylog-1, mylog-2, mylog-3, and so forth, one for each CPU.

40.1.4  Examples for trace
These are just two examples where trace can be used. The trace command is a 
powerful tool that can be used for many diagnostic purposes.

� Checking return times from called routines

If the system is running slow, then trace can be used to determine how long 
threads are taking to return from functions. Long return times could highlight a 
performance problem. An example of this shown in “Checking return times 
from trace” on page 770.

� Sequential reads and writes

If you are experiencing high disk I/O then you can determine how long the 
disk I/O is taking to perform and what sort of disk accesses are occurring. For 
example, a database may be performing a full table scan on an unindexed file 
to retrieve records. This would be inefficient and may point to problems with 
indexing, or there may not be an index at all. An example of this is shown in 
“Sequential reads and writes” on page 774.

Checking return times from trace
In this section we will check return times from the trace to see if there are any 
long delays.

First, we create a raw trace of all the processes running on the system as in 
Example 40-8 on page 771. Then the individual CPU traces are combined into 
the raw trace file (trace.r). We will then use trcrpt to create the file trcrpt.out.

 

 

 

 

770 AIX 5L Performance Tools Handbook



Example 40-8   Running trace on an entire system for 10 seconds

# trace -aC all ; sleep 10 ; trcstop
# gennames > gennames.out
# trcnm > trace.nm
# cp /etc/trcfmt trace.fmt
# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out

A useful part of the trace report (trcrp.out) is the return times from various 
functions that occurred during the trace. Use the grep command for only the usec 
times for an indication of which processes are using the most time. This can also 
be achieved by using the shell script in Example 40-9. The script greps for the 
usec times, and displays trace file lines of the top 20 highest return times. It 
excludes the trace hook ID 102 (wait).

Example 40-9   Script to check for return times in trace

# Extract the return times from the trace file

TMPFILE1=/tmp/usec1-$$
TMPFILE2=/tmp/usec2-$$

grep "ID  PROCESS NAME" trcrpt.out

grep usec trcrpt.out | grep -vw '102 wait' | awk -F'[' '{ print $2 }' |\
awk '{ print $1 }' > $TMPFILE1

sort -rn $TMPFILE1| head -20 > $TMPFILE2

while read string
do

grep "$string usec" trcrpt.out

done < $TMPFILE2

Example 40-10 shows the output from the script.

Example 40-10   Top 20 highest return times

ID  PROCESS NAME CPU   PID   I  ELAPSED_SEC   DELTA_MSEC APPL SYSCALL KERNEL  INTERRUPT
104 syncd          2   378      4.504329796     0.000216       return from sync [472167 usec]
221 wait           0   516   1  4.882048580     0.002962               SCDISKDD iodone: ipldevice 
bp=30B47200 B_WRITE [392401 usec]
221 wait           0   516   1  4.875472073     0.003951               SCDISKDD iodone: ipldevice 
bp=309D2100 B_WRITE [386128 usec]
106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 771



106 java           0   29944    1.924588685     0.000746               dispatch:   cmd=java pid=29944 
tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
104 java           2   29944    9.930639660     0.001493       return from _select [250117 usec]
104 java           0   29944    4.926771906     0.005855       return from _select [250108 usec]
104 java           0   29944    7.928691841     0.029999       return from _select [250100 usec]
104 java           0   29944    8.929828448     0.019108       return from _select [250097 usec]
104 java           0   29944    4.426232284     0.005662       return from _select [250096 usec]
104 java           0   29944    8.429250350     0.009999       return from _select [250089 usec]
104 java           0   29944    7.678503300     0.016433       return from _select [250088 usec]
104 java           0   29944    4.175869414     0.041926       return from _select [250081 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    4.676462779     0.032481       return from _select [250080 usec]
104 java           0   29944    8.679499786     0.036143       return from _select [250080 usec]
104 java           0   29944    8.179039200     0.021662       return from _select [250075 usec]
104 java           0   29944    2.424882026     0.012939       return from _select [250073 usec]
104 java           0   29944    5.927430839     0.003036       return from _select [250071 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    3.425409815     0.016963       return from _select [250064 usec]
104 java           0   29944    9.180150683     0.015228       return from _select [250064 usec]
104 java           0   29944    6.427796087     0.007108       return from _select [250062 usec]

This example shows some large return times from syncd and java. As the syncd 
only featured once, compared to the java process 29944, we look at the java 
process. syncd may have a lot of data to write to disk because of a problem with 
the java process, and therefore longer return times.

To look at process 29944 in more detail, we run the trcrpt command specifying 
process 29944 in the command line, as in Example 40-11.

Example 40-11   Traces for process 29944 (java)

# trcrpt -O exec=on,pid=on,cpuid=on -o trcrpt.29944 -p 29944 -n trace.nm -t trace.fmt trace.r
# ls trcrpt.29944
trcrpt.29944

We can now look directly at the trace file called trcrpt.29944 using an editor such 
as vi that is able to handle large files. Editing the trace file with vi might produce 
an error stating that there is not enough space in the file system. If you get this 
error, choose a file system with enough free space to edit the trace file (in this 
example, /bigfiles is the name of the file system), then run these commands:

mkdir /bigfiles/tmp ; echo "set dir=/bigfiles/tmp" > $HOME/.exrc

This directs vi to use the /bigfiles/tmp directory for temporary storage.

 

 

 

 

772 AIX 5L Performance Tools Handbook



From Example 40-10 on page 771 we know that we have a potential problem 
with process ID 29944 (java). We can now look further into the java process by 
producing a trace file specific to process 29944 as in the following example (the 
file we will create is called trcrpt.29944).

Search for the return time of 250117 usec (refer to Example 40-10 on page 771) 
in trcrpt.29944. This will display the events for the process as shown in 
Example 40-12.

Example 40-12   A traced routine call for process 29944

# cat trcrpt.29944
...(lines omitted)...
252 java           0   29944         1.674567306       0.003879           SOCK soo_select fp=10006FF0 
so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116 java           0   29944         1.674568077       0.000771                   xmalloc(0020,30000000)
116 java           0   29944         1.674573257       0.005180                   xmalloc(0020,30000000)
2F9 java           0   29944         1.674585184       0.011927                   WLM STOP THREAD: 
pid=29944 class=65 nb_us=112 time=11760
10E java           -1  29944         1.924587939     250.002755                   relock: lock 
addr=1945040  oldtid=517  newtid=40263
106 java           0   29944         1.924588685       0.000746                   dispatch:   cmd=java 
pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200 java           0   29944         1.924589576       0.000891                   resume  java iar=43620 
cpuid=00
104 java           0   29944         1.924604756       0.015180           return from _select [250042 
usec]
...(lines omitted)...

A similar entry is repeated many times throughout the trace file (trcrpt.29944), 
suggesting that the same problem occurs many times throughout the trace.

For ease of reading, Example 40-12 has been split vertically, approximately 
halfway across the page, and shown separately in the next two examples.

Example 40-13 shows the left-hand side with the times.

Example 40-13   A traced routine call for process 29944 (left side)

ID  PROCESS NAME   CPU PID      I    ELAPSED_SEC     DELTA_MSEC
252 java           0   29944         1.674567306       0.003879
116 java           0   29944         1.674568077       0.000771
116 java           0   29944         1.674573257       0.005180
2F9 java           0   29944         1.674585184       0.011927
10E java           -1  29944         1.924587939     250.002755

Attention: As some trace files may be large, be careful that you do not use all 
of the file system space, as this will cause problems for AIX and other 
applications running on the system. 

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 773



106 java           0   29944         1.924588685       0.000746
200 java           0   29944         1.924589576       0.000891
104 java           0   29944         1.924604756       0.015180

The right-hand side with the system calls is shown in Example 40-14. The trace 
hooks have been left in to enable you to associate the two examples.

Example 40-14   A traced routine call for process 29944 (right side)

ID  SYSCALL KERNEL  INTERRUPT
252 SOCK soo_select fp=10006FF0 so=7013B000 corl=12 reqevents=00000001 rtneventsp=F00EFA50
116  xmalloc(0020,30000000)
116  xmalloc(0020,30000000)
2F9  WLM STOP THREAD: pid=29944 class=65 nb_us=112 time=11760
10E  relock: lock addr=1945040  oldtid=517  newtid=40263
106  dispatch:cmd=java pid=29944 tid=40263 priority=181 old_tid=517 old_priority=255 CPUID=0 [250117 usec]
200  resume  java iar=43620 cpuid=00
104 return from _select [250042 usec]

As can be seen from the above example, when the java process was trying to 
reserve memory, the Workload Manager (WLM) stopped the thread from 
running, which caused a relock to occur. The relock took 250.002755 usec 
(microseconds). This should be investigated further. You could, in this instance, 
tune the WLM to allow more time for the java process to complete.

Sequential reads and writes
The trace command can be used to identify reads and writes to files.

When the trace report has been generated, you can determine the type of reads 
and writes that are occurring on file systems when the trace was run.

The following script is useful for displaying the type of file accesses. The script 
extracts readi and writei Physical File System (PFS) calls from the formatted 
trace and sorts the file in order of the ip field (Example 40-15).

Example 40-15   Script to sort PFS trace events

:
egrep "PFS writei|PFS readi" trcrpt.out > readwrite
> trcrpt.pfs
for ip in `cat readwrite | grep 'ip=' | awk -F'ip=' '{ print $2 }' |\
 awk '{ print $1 }' | sort -u`
do
        grep "ip=$ip" readwrite >> trcrpt.pfs
done

The output from these scripts is shown in Example 40-16 on page 775.

 

 

 

 

774 AIX 5L Performance Tools Handbook



Example 40-16   PFS file access in trace file

# cat trcrpt.pfs
...(lines omitted)...
PFS readi  VA.S=0000 3CE000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D0000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D4000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D6000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3D8000.293C5 bcount=2000 ip=1B160270
PFS readi  VA.S=0000 3E0000.293C5 bcount=2000 ip=1B160270
...(lines omitted)...

This example shows that the file at IP address 1B160270 was read from with a 
block size of 8 KB reads (bcount=2000). By looking at the Virtual Address (VA) 
field, you will observe that the VA field mostly incremented by 2000 (the 2000 is 
expressed in hexadecimal). If you see this sequence then you know that the file 
is receiving a lot of sequential reads. In this case, it could be because that file 
does not have an index. For an application to read large files without indexes, in 
some cases, a full table scan is needed to retrieve records. In this case it would 
be advisable to index the file.

To determine what file is being accessed, it is necessary to map the ip to a file 
name. This is done with the ps command.

For efficiency, it is best to perform file accesses in multiples of 4 KB. 

40.2  trcnm
The syntax of the trcnm command is:

trcnm [  -a [ FileName ] ] | [ FileName ] | -K Symbol ... 

Flags
-a Writes all loader symbols to standard output. The default 

is to write loader symbols only for system calls.

-K Symbol... Obtains the value of all command line symbols through 
the knlist system call. 

Parameters
FileName The kernel file that the trcnm command creates the name 

list for. If this parameter is not specified, the default 
FileName is /unix.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 775



Symbol The name list will be created only for the specified 
symbols. To specify multiple symbols, separate the 
symbols by a space.

The trcnm command writes to standard output. When using the output from the 
trcnm command with the trcrpt -n command, save this latest output into a file.

40.2.1  Information about measurement and sampling
The trcnm command generates a list of symbol names and their addresses for 
the specified kernel file, or /unix if no kernel file is specified. The symbol names 
and addresses are read out of the kernel file. The output of the trcnm command 
is similar the output the stripnm -x command provides. The output format differs 
between these commands. Refer to Chapter 40, “The trace, trcnm, and trcrpt 
commands” on page 759 for more information about the stripnm command.

40.2.2  Examples for trcnm
The following command is used to create a name list for the kernel file /unix:

trcnm >/tmp/trcnm.out

To create the name list only for the kernel symbols net_malloc and m_copym, 
use the trcnm -K net_malloc m_copym command as shown in Example 40-17.

Example 40-17   Using trcnm to create the name list for specified symbols

# trcnm -K net_malloc m_copym
net_malloc           001C9FCC
m_copym              001CA11C

For each specified symbol the name and the address is printed.

Note: The trace command flag -n gathers the necessary symbol information 
needed by the trcrpt command and stores this information in the trace log 
file. The symbol information gathered by trace -n includes the symbols from 
the loaded kernel extensions. The trcnm command provides only the symbol 
information for the kernel. The use of the -n flag of trace as a replacement for 
the trcnm command is recommended.

 

 

 

 

776 AIX 5L Performance Tools Handbook



40.3  trcrpt
The following syntax applies to the trcrpt command:

trcrpt [ -c ] [ -C [ CPUList | all ]] [ -d List ] 
[ -D Event-group-list ] [ -e Date ] [ -G ] [ -h ] [ -j ] [ -k List ]
[ -K Group-list ] [ -n Name ] [ -o File ] [ -p List ] [ -r ]
[ -s Date ] [ -t File ] [ -T List ] [ -v ] [ -O Options ] [-x ] [ File ]

Flags
-c Checks the template file for syntax errors.

-C [ CPUList | all ] Generates a report for a multi-CPU trace with trace -C. 
The CPUs can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks. To report on all CPUs, specify trace -C all. The 
-C flag is not necessary unless you want to see only a 
subset of the CPUs traced or have the CPU number show 
up in the report. If -C is not specified, and the trace is a 
multi-CPU trace, trcrpt generates the trace report for all 
CPUs, but the CPU number is not shown for each hook 
unless you specify -O cpu=on. 

-d List Limits report to hook IDs specified with the List variable. 
The List parameter items can be separated by commas, 
or enclosed in double quotation marks and separated by 
commas or blanks.

-D Event-group-list Limits the report to hook IDs in the Event groups list, plus 
any hook IDs specified with the -d flag. List parameter 
items can be separated by commas or enclosed in double 
quotation marks and separated by commas or blanks.

-e Date Ends the report time with entries on or before the 
specified date. The Date variable has the form 
mmddhhmmssyy (month, day, hour, minute, second, and 
year). Date and time are recorded in the trace data only 
when trace data collection is started and stopped. If you 
stop and restart trace data collection multiple times during 
a trace session, date and time are recorded each time you 
start or stop a trace data collection. Use this flag in 
combination with the -s flag to limit the trace to data 
collected during a certain time interval.

    If you specify -e with -C, the -e flag is ignored.

-G List all event groups. The list of groups, the hook IDs in 
each group, and each group’s description is listed to 
standard output.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 777



-h Omits the header information from the trace report and 
writes only formatted trace entries to standard output.

-j Displays the list of hook IDs. The trcrpt -j command 
can be used with the trace -j command that includes 
IDs of trace events, or the trace -k command that 
excludes IDs of trace events.

-k List Excludes from the report hook IDs specified with the List 
variable. The List parameter items can be separated by 
commas, or enclosed in double quotation marks and 
separated by commas or blanks.

-K Event-group-list Excludes from the report hook IDs in the event-groups list, 
plus any hook IDs specified with the -k flag. List 
parameter items can be separated by commas, or 
enclosed in double quotation marks and separated by 
commas or blanks.

-n Name Specifies the kernel name list file to be used to interpret 
addresses for output. Usually this flag is used when 
moving a trace log file to another system.

-o File Writes the report to a file instead of to standard output.

-O Options Specifies options that change the content and 
presentation of the trcrpt command. Arguments to the 
options must be separated by commas. Valid options are:

• 2line=[on|off]
Uses two lines per trace event in the report instead of 
one. The default value is off.

• cpuid=[on|off]
Displays the physical processor number in the trace 
report. The default value is off.

• endtime=Seconds
Displays trace report data for events recorded before 
the seconds specified. Seconds can be given in either 
an integral or rational representation. If this option is 
used with the starttime option, a specific range can be 
displayed.

• exec=[on|off]
Displays exec path names in the trace report. The 
default value is off.

• hist=[on|off]
Logs the number of instances that each hook ID is 
encountered. This data can be used for generating 
histograms. The default value is off. This option cannot 
be run with any other option. 

 

 

 

 

778 AIX 5L Performance Tools Handbook



• ids=[on|off]
Displays trace hook identification numbers in the first 
column of the trace report. The default value is on.

• pagesize=Number
Controls the number of lines per page in the trace 
report and is an integer in the range of 0 through 500. 
The column headings are included on each page. No 
page breaks are present when the default value (zero) 
is set.

• pid=[on|off]
Displays the process IDs in the trace report. The 
default value is off.

• reportedcpus=[on|off]
Displays the number of CPUs remaining. This option is 
only meaningful for a multi-CPU trace; that is, if the 
trace was performed with the -C flag. For example, if a 
report is read from a system having four CPUs, and 
the reported CPUs value goes from four to three, then 
you know that there are no more hooks to be reported 
for that CPU.

• starttime=Seconds
Displays trace report data for events recorded after the 
seconds specified. The specified seconds are from the 
beginning of the trace file. Seconds can be given in 
either an integral or rational representation. If this 
option is used with the endtime option, a specific range 
of seconds can be displayed.

• svc=[on|off]
Displays the value of the system call in the trace 
report. The default value is off.

• tid=[on|off]
Displays the thread ID in the trace report. The default 
value is off. 

• timestamp=[0|1|2|3]
Controls the time stamp associated with an event in 
the trace report. The possible values are:
0 Time elapsed since the trace was started. Values 

for elapsed seconds and milliseconds are 
returned to the nearest nanosecond and 
microsecond, respectively. This is the default 
value.

1 Short elapsed time.
2 Microseconds.
3 No time stamp.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 779



-p List Reports the process IDs for each event specified by the 
List variable. The List variable may be a list of process IDs 
or a list of process names. List items that start with a 
numeric character are assumed to be process IDs. The 
list items can be separated by commas, or enclosed in 
double quotation marks and separated by commas or 
blanks.

-r Outputs unformatted (raw) trace entries and writes the 
contents of the trace log to standard output one entry at a 
time. Use the -h flag with the -r flag to exclude the 
heading. To get a raw report for CPUs in a multi-CPU 
trace, use both the -r and -C flags.

-s Date Starts the report time with entries on or before the 
specified date. The Date variable has the form 
mmddhhmmssyy (month, day, hour, minute, second, and 
year). Date and time are recorded in the trace data only 
when trace data collection is started and stopped. If you 
stop and restart trace data collection multiple times during 
a trace session, date and time are recorded each time you 
start or stop a trace data collection. Use this flag in 
combination with the -e flag to limit the trace to data 
collected during a certain time interval. 

   If you specify -s with -C, the -s flag is ignored.

-t File Uses the file specified in the File variable as the template 
file. The default is the /etc/trcfmt file.

-T List Limits the report to the kernel thread IDs specified by the 
List parameter. The list items are kernel thread IDs 
separated by commas. Starting the list with a kernel 
thread ID limits the report to all kernel thread IDs in the 
list. Starting the list with a ! (exclamation point) followed by 
a kernel thread ID limits the report to all kernel thread IDs 
not in the list.

-v Prints file names as the files are opened. Changes to 
verbose setting. 

-x Displays the exec path name and value of the system call.

Parameters
File Name of the raw trace file.

 

 

 

 

780 AIX 5L Performance Tools Handbook



40.3.1  Information about measurement and sampling
The trcrpt command reads the trace log specified by the File parameter, 
formats the trace entries, and writes a report to standard output. The default file 
from which the system generates a trace report is the /var/adm/ras/trcfile file, but 
you can specify an alternate File parameter. 

40.3.2  Examples for trcrpt
You can use the System Management Interface Tool (SMIT) to run the trcrpt 
command by entering the SMIT fast path smitty trcrpt.

Example 40-18 shows how to run trcrpt using /var/adm/ras/trcfile as the raw 
trace file.

Example 40-18   Running trcrpt via SMIT

                            Generate a Trace Report

Type or select values in entry fields.
Press Enter AFTER making all desired changes.

                                                      [Entry Fields]
  Show exec PATHNAMES for each event?              [yes]                    +
  Show PROCESS IDs for each event?                 [yes]                    +
  Show THREAD IDs for each event?                  [yes]                    +
  Show CURRENT SYSTEM CALL for each event?         [yes]                    +
  Time CALCULATIONS for report                     [elapsed+delta in milli> +
  Event Groups to INCLUDE in report                []                       +
  IDs of events to INCLUDE in report               []                       +X
  Event Groups to EXCLUDE from report              []                       +
  ID's of events to EXCLUDE from report            []                       +X
  STARTING time                                    []
  ENDING time                                      []
  LOG FILE to create report from                   [/var/adm/ras/trcfile]
  FILE NAME for trace report (default is stdout)   []

Combining trace buffers
Normally, trace groups all CPU buffers into one trace file. If you run trace with 
the -C all option, then the events that occurred on the individual CPUs will be 
separated into CPU-specific files as in the following example. To run trcrpt to 
format the trace into a readable file, you must combine the raw trace files into one 
raw trace file., then you can remove the specific raw trace files, as these are no 
longer required and usually are quite large in size. Example 40-19 on page 782 
shows this procedure.

 

 

 

 

 Chapter 40. The trace, trcnm, and trcrpt commands 781



Example 40-19   Tracing using one set of buffers per CPU

# trace -aC all ; sleep 10 ; trcstop
# ls -l /var/adm/ras/trcfile*
-rw-rw-rw-   1 root     system      44468 Apr 16 12:36 /var/adm/ras/trcfile
-rw-rw-rw-   1 root     system     598956 Apr 16 12:37 /var/adm/ras/trcfile-0
-rw-rw-rw-   1 root     system     369984 Apr 16 12:37 /var/adm/ras/trcfile-1
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-10
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-11
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-12
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-13
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-14
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-15
-rw-rw-rw-   1 root     system     394728 Apr 16 12:37 /var/adm/ras/trcfile-2
-rw-rw-rw-   1 root     system     288744 Apr 16 12:37 /var/adm/ras/trcfile-3
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-4
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-5
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-6
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-7
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-8
-rw-rw-rw-   1 root     system        184 Apr 16 12:36 /var/adm/ras/trcfile-9
# trcrpt -C all -r /var/adm/ras/trcfile > trace.r
# ls -l trace.r
-rw-r--r--   1 root     system      1694504 Apr 16 13:55 trace.r
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out
# head -10 trcrpt.out

Wed Apr 16 12:36:57 2003
System: AIX 5.2 Node: lpar05
Machine: 0021768A4C00
Internet Address: 09030445 9.3.4.69
The system contains 16 cpus, of which 16 were traced.
Buffering: Kernel Heap
This is from a 32-bit kernel.
Tracing all hooks.

# rm /var/adm/ras/trcfile*
# trcnm > trace.nm
# cp /etc/trcfmt trace.fmt
# trcrpt -O exec=on,pid=on,cpuid=on -n trace.nm -t trace.fmt trace.r > 
trcrpt.out
# head trcrpt.out
...(lines omitted)...

For other examples, refer to 40.1.4, “Examples for trace” on page 770.

 

 

 

 

782 AIX 5L Performance Tools Handbook



Part 8 Additional 
performance 
topics

Part 8
 

 

 

 

© Copyright IBM Corp. 2001, 2003. All rights reserved. 783



 

 

 

 

784 AIX 5L Performance Tools Handbook



Chapter 41. APIs for performance 
monitoring

In this chapter we describe how to use the different Application Programming 
Interfaces (API) that are available. It contains information about how to use the 
Perfstat API to develop customized performance monitoring applications. We 
also describe the basic use of the System Performance Measurement Interface 
(SPMI) API and the Performance Monitor (PM) API. Additionally, we describe the 
Resource Monitoring and Control (RMC) subsystem and its use. Finally, we show 
some examples of using other performance-monitoring subroutines that are 
available on AIX.

This chapter contains the following sections:

� 41.1, “Perfstat API” on page 786
� 41.2, “System Performance Measurement Interface” on page 805
� 41.3, “Performance Monitor API” on page 818
� 41.4, “Resource Monitoring and Control” on page 824
� 41.5, “Miscellaneous performance monitoring subroutines” on page 842

41
 

 

 

 

© Copyright IBM Corp. 2001, 2003 785



41.1  Perfstat API
The Perfstat API is a collection of C programming language subroutines that 
execute in user space and extract data from the perfstat kernel extension (kex) to 
obtain statistics. This API is available in AIX 5L.

The Perfstat API is both a 32-bit and a 64-bit API, and is thread safe, very simple 
to use, and does not require root security level authentication. It is the preferred 
way to develop monitoring applications, and the kex is also used by most system 
monitoring commands. The API is under development, and will have additional 
API subroutines and data structures in future release. Note that the internal 
perfstat kex access mechanisms are not available. Only the Perfstat Library API 
will be maintained for public use.

The Perfstat API subroutines resides in the libperfstat.a library in the /usr/lib (or 
/lib because /lib is a symbolic link to /usr/lib) and is part of the bos.perf.libperfstat 
fileset, which is installable from the AIX base installation media and requires that 
the bos.perf.perfstat fileset is installed.

The /usr/include/libperfstat.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is also part of the bos.perf.libperfstat fileset. Sample source code is 
also available and resides in the /usr/samples/libperfstat directory.

The documentation for the subroutines can be found in the AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions, Volume 1.

41.1.1  Compiling and linking
After writing a C program that uses the Perfstat API and includes the libperfstat.h 
header file, run cc on it specifying that you want to link to the libperfstat.a library, 
as in Example 41-1.

Example 41-1   Compile and link with libperfstat.a

# cc -lperfstat -o perfstat_program perfstat_program.c

This creates the perfstat_program file from the perfstat_program.c source 
program, linking it with the libperfstat.a library. Then perfstat_program can be 
run as a normal command.

 

 

 

 

786 AIX 5L Performance Tools Handbook



41.1.2  Subroutines
The following subroutines make up the Perfstat API:

perfstat_cpu The perfstat_cpu subroutine retrieves one or more 
individual CPU usage statistics. The same function 
can be used to retrieve the number of available sets 
of CPU statistics.

perfstat_cpu_total The perfstat_cpu_total subroutine returns global 
CPU usage statistics.

perfstat_memory_total The perfstat_memory_total subroutine returns 
global memory usage statistics.

perfstat_disk The perfstat_disk subroutine retrieves one or more 
individual disk usage statistics. The same function 
can also be used to retrieve the number of available 
sets of disk statistics. 

perfstat_disk_total The perfstat_disk_total subroutine returns global 
disk usage statistics.

perfstat_netinterface The perfstat_netinterface subroutine retrieves one 
or more individual network interface usage 
statistics. The same function can also be used to 
retrieve the number of available sets of network 
interface statistics.

perfstat_netinterface_total The perfstat_netinterface_total subroutine returns 
global network interface usage statistics.

The perfstat API only gives raw data. The Perfstat API enables you to acquire the 
data quite easily as can be seen in the following sample programs. Only 
rudimentary error checking is done in the example program. This is done for 
clarity of reading purposes only. Another sample program that calls all the APIs 
are provided in “perfstat_dump_all.c” on page 936.

Note: The Perfstat API subroutines return raw data. To create output similar to 
what is reported by commands such as iostat and vmstat, take a snapshot, 
wait for a specified interval of time, then take another snapshot. After this, 
deduct the first obtained value from the second to get the proper delta for the 
occurrence during the specified interval time. The libperfstat.h file should be 
reviewed to identify the units of each metric.

 

 

 

 

 Chapter 41. APIs for performance monitoring 787



perfstat_cpu
The perfstat_cpu subroutine retrieves one or more individual CPU usage 
statistics. The same function can be used to retrieve the number of available sets 
of CPU statistics.

perfstat_id_t * name;
perfstat_cpu_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_cpu (name, userbuff, sizeof_struct, desired_number)

Parameters
name Contains a name identifying the first CPU for which 

statistics are desired. "" is used to indicate the first 
available CPU. For example: cpu0, cpu1, and so on.

userbuff Points to the memory area that is to be filled with one or 
more perfstat_cpu_t structures.

sizeof_struct Specifies the size of the perfstat_cpu_t structure: 
sizeof(perfstat_cpu_t).

desired_number Specifies the number of perfstat_cpu_t structures to copy 
to userbuff.

Example
Example 41-2 shows a code that uses the perfstat_cpu_t structure to obtain 
information about CPU statistics.

Example 41-2   Sample perfstat_cpu_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {
6     perfstat_id_t   name;
7     perfstat_cpu_t  *ub;
8     int             ncpu,i;
 
9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");
 
12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);

 

 

 

 

788 AIX 5L Performance Tools Handbook



15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
27         }
28 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare the variables for calling the perfstat_cpu subroutine, which we do on line 
12. Note how the usage and reference of structures is done in the call. The first 
call to perfstat_cpu is done to acquire the number of CPUs in the system. This is 
then used to allocate the appropriate number of structures, with malloc, to store 
the information for each CPU. 

The output from the program can look like Example 41-3.

Example 41-3   Sample output from the perfstat_cpu_t program

# perfstat_cpu_t
name    : cpu0
    user    : 63584
    sys     : 29732
    idle    : 13419287
    wait    : 20660
    pswitch : 2122965
    syscall : 6498220
    sysread : 978004
    syswrite: 607014
    sysfork : 3536
    sysexec : 4666
    readch  : 976572598
    writech : 335808673
...(lines omitted)...
name    : cpu3
    user    : 194219
    sys     : 34758
    idle    : 13063504
    wait    : 35837
    pswitch : 2230810
    syscall : 15141865
    sysread : 754259

 

 

 

 

 Chapter 41. APIs for performance monitoring 789



    syswrite: 474751
    sysfork : 6391
    sysexec : 4903
    readch  : 1583351139
    writech : 490560773

These are definitions of each structure element:

name CPU name (cpu0, cpu1, and so on)
user CPU user time (raw ticks)
sys CPU sys time (raw ticks)
idle CPU idle time (raw ticks)
wait CPU wait time (raw ticks)
pswitch Incremented whenever the current running process changes
syscall Number of syscalls
sysread Number of readings
syswrite Number of writings
sysfork Number of forks 
sysexec Number of execs
readch Number of bytes read by CPU
writech Number of bytes written by CPU

perfstat_cpu_total
The perfstat_cpu_total subroutine returns global CPU usage statistics.

perfstat_id_t * name;
perfstat_cpu_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_cpu_total (name, userbuff, sizeof_struct, desired_number)

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff Points to the memory area that is to be filled with the 
perfstat_cpu_total_t structure. 

sizeof_struct Specifies the size of the perfstat_cpu_total_t structure: 
sizeof(perfstat_cpu_total_t). 

desired_number In AIX 5.2, this must always be set to 1. 

Example
The code in Example 41-4 on page 791 uses the perfstat_cpu_total_t structure 
to obtain information about CPU statistics.

 

 

 

 

790 AIX 5L Performance Tools Handbook



Example 41-4   Sample perfstat_cpu_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_cpu_total_t    ub;

7      if (perfstat_cpu_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t),1) >= 0) {
8          printf("ncpus       : %d\n", ub.ncpus);
9          printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
10          printf("description : %s\n", ub.description);
11          printf("processorHZ : %llu\n", ub.processorHZ);
12          printf("user        : %llu\n", ub.user);
13          printf("sys         : %llu\n", ub.sys);
14          printf("idle        : %llu\n", ub.idle);
15          printf("wait        : %llu\n", ub.wait);
16          printf("pswitch     : %llu\n", ub.pswitch);
17          printf("syscall     : %llu\n", ub.syscall);
18          printf("sysread     : %llu\n", ub.sysread);
19          printf("syswrite    : %llu\n", ub.syswrite);
20          printf("sysfork     : %llu\n", ub.sysfork);
21          printf("sysexec     : %llu\n", ub.sysexec);
22          printf("readch      : %llu\n", ub.readch);
23          printf("writech     : %llu\n", ub.writech);
24          printf("devintrs    : %llu\n", ub.devintrs);
25          printf("softintrs   : %llu\n", ub.softintrs);
26          printf("lbolt       : %ld\n", ub.lbolt);
27          printf("loadavg T0  : %llu\n", ub.loadavg[0]);
28          printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
29          printf("loadavg T-15: %llu\n", ub.loadavg[2]);
30          printf("runque      : %llu\n", ub.runque);
31          printf("swpque      : %llu\n", ub.swpque);
32      }
33  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
the only variable we need for calling the perfstat_cpu_total subroutine, which we 
do on line 7. Note how the usage and reference of structures is done in the call, 
especially the reference to NULL for the pointer to the perfstat_id_t reference. 
The output from the program will look like Example 41-5 on page 792.

 

 

 

 

 Chapter 41. APIs for performance monitoring 791



Example 41-5   Sample output from the perfstat_cpu_total_t program

# perfstat_cpu_total_t
ncpus       : 4
ncpus_cfg   : 4
description : PowerPC_POWER4
processorHZ : 1100152416
user        : 23987733
sys         : 1332681
idle        : 146744848
wait        : 10208601
pswitch     : 304218689
syscall     : 1069171832
sysread     : 86134624
syswrite    : 91759560
sysfork     : 122134
sysexec     : 152505
readch      : 30225867708
writech     : 21921375932
devintrs    : 0
softintrs   : 0
lbolt       : 45567458
loadavg T0  : 132391
loadavg T-5 : 132552
loadavg T-15: 132367
runque      : 295136
swpque      : 385398

The following are definitions of each structure element:

ncpus   Number of active CPUs
ncpus_cfg    Number of configured CPUs
description  CPU description
processorHZ  CPU speed in Hz
user     CPU user time (raw ticks)
sys  CPU sys  time (raw ticks)
idle     CPU idle time (raw ticks)
wait     CPU wait time (raw ticks)
pswitch  Number of changes of the current running process
syscall  Number of syscalls executed
sysread  Number of readings
syswrite     Number of writings
sysfork  Number of forks
sysexec  Number of execs
readch   Total number of bytes read
writech Total number of bytes written
devintrs     Total number of interrupts
softintrs    Total number of software interrupts

 

 

 

 

792 AIX 5L Performance Tools Handbook



lbolt    Number of ticks since last reboot
loadavg  Load average now, last 5 minutes, last 15 minutes
runque   Average length of the run queue
swpque   Average length of the swap queue

perfstat_memory_total
The perfstat_memory_total subroutine returns global memory usage statistics.

perfstat_id_t * name;
perfstat_memory_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_memory_total (name, userbuff, sizeof_struct, desired_number)

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_memory_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_memory_total_t 
structure; sizeof(perfstat_memory_total_t).  

desired_number  In AIX 5.2, this must always be set to 1. 

Example
The code in Example 41-6 uses the perfstat_memory_total_t structure to obtain 
information about memory statistics.

Example 41-6   Sample perfstat_memory_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_memory_total_t ub;

7      if (perfstat_memory_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_memory_total_t),1) >= 0) {
8          printf("virt_total: %llu\n", ub.virt_total);
9          printf("real_total: %llu\n", ub.real_total);
10          printf("real_free : %llu\n", ub.real_free);
11          printf("real_inuse: %llu\n", ub.real_inuse);
12          printf("pgbad     : %llu\n", ub.pgbad);
13          printf("pgexct    : %llu\n", ub.pgexct);
14          printf("pgins     : %llu\n", ub.pgins);
15          printf("pgouts    : %llu\n", ub.pgouts);

 

 

 

 

 Chapter 41. APIs for performance monitoring 793



16          printf("pgspins   : %llu\n", ub.pgspins);
17          printf("pgspouts  : %llu\n", ub.pgspouts);
18          printf("scans     : %llu\n", ub.scans);
19          printf("cycles    : %llu\n", ub.cycles);
20          printf("pgsteals  : %llu\n", ub.pgsteals);
21          printf("numperm   : %llu\n", ub.numperm);
22          printf("pgsp_total: %llu\n", ub.pgsp_total);
23          printf("pgsp_free : %llu\n", ub.pgsp_free);
24          printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
25      }
26  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_memory_total subroutine, which we do on line 
7. Note how the usage and reference of structures is done in the call. The output 
from the program can look like Example 41-7.

Example 41-7   Sample output from the perfstat_memory_total_t program

# perfstat_memory_total_t
virt_total: 2621440
real_total: 2097152
real_free : 911629
real_inuse: 1185523
pgbad     : 9
pgexct    : 298073502
pgins     : 5095811
pgouts    : 21968950
pgspins   : 4524147
pgspouts  : 19319465
scans     : 52989124
cycles    : 24
pgsteals  : 19718704
numperm   : 649872
pgsp_total: 524288
pgsp_free : 320133
pgsp_rsvd : 2048

These are definitions of each structure element:

virt_total  Total virtual memory (4K pages)
real_total  Total real memory (4K pages)
real_free   Free real memory (4K pages)
real_pinned  Real memory that is pinned (4K pages)
real_inuse   Real memory that is in use (4K pages)
pgbad    Count of bad pages
pgexct Count of page faults
pgins Count of pages paged in

 

 

 

 

794 AIX 5L Performance Tools Handbook



pgouts Count of pages paged out
pgspins Count of page ins from paging space
pgspouts Count of page outs from paging space
scans Count of page scans by clock
cycles Count of clock hand cycles
pgsteals Count of page steals
numperm Number of non-working frames
pgsp_total   Total paging space (4K pages)
pgsp_free    Free paging space (4K pages)
pgsp_rsvd    Reserved paging space (4K pages)

perfstat_disk
The perfstat_disk subroutine retrieves one or more individual disk usage 
statistics. The same function can also be used to retrieve the number of available 
sets of disk statistics. 

perfstat_id_t * name;
perfstat_disk_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_disk (name, userbuff, sizeof_struct, desired_number)

Parameters
name  Contains a name identifying the first disk for which 

statistics are desired. "" is used to indicate the first 
available disk. For example: hdisk0, hdisk1, and so on.

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_t structure; 
sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_disk_t structures to copy 
to userbuff. 

Example
The code in Example 41-8 uses the perfstat_disk_t structure to obtain 
information about disk statistics.

Example 41-8   Sample perfstat_disk_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 main()
5 {

 

 

 

 

 Chapter 41. APIs for performance monitoring 795



6     perfstat_id_t   name;
7     perfstat_disk_t *ub;
8     int             ndisk,i;

9     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
10     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

11     strcpy(name.name,"");

12     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
13         for (i = 0; i < ndisk; i++) {
14             printf("name       : %s\n",  ub[i].name);
15             printf("\tdescription: %s\n",  ub[i].description);
16             printf("\tvgname     : %s\n",  ub[i].vgname);
17             printf("\tsize       : %llu\n", ub[i].size);
18             printf("\tfree       : %llu\n", ub[i].free);
19             printf("\tbsize      : %llu\n", ub[i].bsize);
20             printf("\txrate      : %llu\n", ub[i].xrate);
21             printf("\txfers      : %llu\n", ub[i].xfers);
22             printf("\twblks      : %llu\n", ub[i].wblks);
23             printf("\trblks      : %llu\n", ub[i].rblks);
24             printf("\tqdepth     : %llu\n", ub[i].qdepth);
25             printf("\ttime       : %llu\n", ub[i].time);
26         }
27 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare variables for calling the perfstat_disk subroutine, which we do on line 
12. Note how the usage and reference of structures is done in the call. The first 
call to perfstat_disk is done to acquire the number of available sets of disk 
statistics in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each statistics set with malloc. The output 
from the program will look something like Example 41-9.

Example 41-9   Sample output from the perfstat_disk_t program

# perfstat_disk_t
name       : hdisk1
    description: 16 Bit SCSI Disk Drive
    vgname     : vg0
    size       : 8672
    free       : 7936
    bsize      : 512
    xrate      : 0
    xfers      : 14104
    wblks      : 148913
    rblks      : 1298481
    qdepth     : 0
    time       : 7498

 

 

 

 

796 AIX 5L Performance Tools Handbook



...(lines omitted)...
name       : cd0
    description: SCSI Multimedia CD-ROM Drive
    vgname     : None
    size       : 0
    free       : 0
    bsize      : 512
    xrate      : 0
    xfers      : 0
    wblks      : 0
    rblks      : 0
    qdepth     : 0
    time       : 0

These are definitions for each structure element:

name     Name of the disk
description  Disk description
vgname   Volume group name
size     Size of the disk (MB)
free     Free portion of the disk (MB)
bsize    Disk block size (bytes)
xrate    KB/sec xfer rate capability
xfers    Total transfers to/from disk
wblks    Blocks written to disk
rblks    Blocks read from disk
qdepth   Queue depth
time     Amount of time disk is active

perfstat_disk_total
The perfstat_disk_total subroutine returns global disk usage statistics.

perfstat_id_t * name;
perfstat_disk_total_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_disk_total (name, userbuff, sizeof_struct, desired_number)

Parameters
name  In AIX 5.2, this must always be set to NULL.  

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_disk_total_t structures.  

sizeof_struct  Specifies the size of the perfstat_disk_total_t structure; 
sizeof(perfstat_cpu_t).

desired_number  In AIX 5.2, this must always be set to 1.  

 

 

 

 

 Chapter 41. APIs for performance monitoring 797



Example
The code in Example 41-10 uses the perfstat_disk_total_t structure to obtain 
information about disk statistics.

Example 41-10   Sample perfstat_disk_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_disk_total_t   ub;

7      if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t),1) >= 0) {
8          printf("number: %d\n", ub.number);
9          printf("size  : %llu\n", ub.size);
10          printf("free  : %llu\n", ub.free);
11          printf("xrate : %llu\n", ub.xrate);
12          printf("xfers : %llu\n", ub.xfers);
13          printf("wblks : %llu\n", ub.wblks);
14          printf("rblks : %llu\n", ub.rblks);
15          printf("time  : %llu\n", ub.time);
16      }
17  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_disk_total subroutine, which we do on line 7. 
Note how the usage and reference of structures is done in the call. The output 
from the program will look like Example 41-11.

Example 41-11   Sample output from the perfstat_disk_total_t program

# perfstat_disk_total_t
number: 5
size  : 34688
free  : 23520
xrate : 0
xfers : 254296
wblks : 3447164
rblks : 5065261
time  : 168958

These are definitions of each structure element as displayed above.

number Number of disks
size Size of the disks (MB)
free Free portion of the disks (MB)

 

 

 

 

798 AIX 5L Performance Tools Handbook



xrate Average kbytes/sec xfer rate capability
xfers Total transfers to/from disks
wblks Blocks written to all disks
rblks Blocks read from all disks
time Amount of time disk is active

perfstat_netinterface
The perfstat_netinterface subroutine retrieves one or more individual network 
interface usage statistics. The same function can also be used to retrieve the 
number of available sets of network interface statistics.

perfstat_id_t * name;
perfstat_netinterface_t * userbuff;
int sizeof_struct;
int desired_number;

int perfstat_netinterface (name, userbuff, sizeof_struct, desired_number)

Parameters
name  Contains a name identifying the first network interface for 

which statistics are desired. "" is used to specify the first 
available interface. For example: en0, tr1, and so on.

userbuff  Points to the memory area that is to be filled with one or 
more perfstat_netinterface_t structures.  

sizeof_struct  Specifies the size of the perfstat_netinterface_t structure; 
sizeof(perfstat_cpu_t).

desired_number  Specifies the number of perfstat_netinterface_t structures 
to copy to userbuff.

Example
The code in Example 41-12 uses the perfstat_netinterface_t structure to obtain 
information about network statistics.

Example 41-12   Sample perfstat_netinterface_t program

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>
4 main()
5 {
6     perfstat_id_t           name;
7     perfstat_netinterface_t *ub;
8     int                     nnetinterface,i;
9     nnetinterface = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0);
10     ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);

 

 

 

 

 Chapter 41. APIs for performance monitoring 799



11     strcpy(name.name,"");
12     if (perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),nnetinterface) >= 0)
13         for (i = 0; i < nnetinterface; i++) {
14             printf("name       : %s\n",     ub[i].name);
15             printf("\tdescription: %s\n",   ub[i].description);
16             printf("\ttype       : %u\n",   ub[i].type);
17             printf("\tmtu        : %llu\n", ub[i].mtu);
18             printf("\tipackets   : %llu\n", ub[i].ipackets);
19             printf("\tibytes     : %llu\n", ub[i].ibytes);
20             printf("\tierrors    : %llu\n", ub[i].ierrors);
21             printf("\topackets   : %llu\n", ub[i].opackets);
22             printf("\tobytes     : %llu\n", ub[i].obytes);
23             printf("\toerrors    : %llu\n", ub[i].oerrors);
24             printf("\tcollisions : %llu\n", ub[i].collisions);
25         }
26 }

On line 3 the libperfstat.h declaration file is included. Then on lines 6 and 7 we 
declare variables for calling the perfstat_netinterface subroutine, which we do 
on line 9. Note how the usage and reference of structures is done in the call. The 
first call to perfstat_netinterface is done to acquire the number of network 
interfaces in the system. This is then used to allocate the appropriate number of 
structures to keep the information for each network interface with malloc.

The output from the program will look something like Example 41-13.

Example 41-13   Sample output from the perfstat_netinterface_t program

# perfstat_netinterface_t
name       : tr0
        description: Token Ring Network Interface
        type       : 9
        mtu        : 1492
        ipackets   : 764483
        ibytes     : 153429823
        ierrors    : 0
        opackets   : 499053
        obytes     : 93898923
        oerrors    : 0
        collisions : 0
name       : en0
        description: Standard Ethernet Network Interface
        type       : 6
        mtu        : 1500
        ipackets   : 0
        ibytes     : 0
        ierrors    : 0
        opackets   : 3

 

 

 

 

800 AIX 5L Performance Tools Handbook



        obytes     : 180
        oerrors    : 3
        collisions : 0
name       : lo0
        description: Loopback Network Interface
        type       : 24
        mtu        : 16896
        ipackets   : 17501
        ibytes     : 2031836
        ierrors    : 0
        opackets   : 17501
        obytes     : 2031432
        oerrors    : 0
        collisions : 0

The output shows only raw data. The Perfstat API enables you to acquire the 
data quite easily, as can be seen in the program in Example 41-12 on page 799. 
Note that the type value of 9, in the output above for token-ring, translates in hex 
to ISO88025 or token-ring as can be seen in Table 41-1. 

The following is a short definition of each structure element as displayed above:

name     Name of the interface
description  Interface description (lscfg type output)
type     Interface types: see /usr/include/net/if_types.h or Table 41-1
mtu  Network frame size
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on CSMA interface

Table 41-1   Interface types from if_types.h

Name Type Name Type

1822 0x2 DS3 0x1e

HDH1822 0x3 SIP 0x1f

X25DDN 0x4 FRELAY 0x20

X25 0x5 RS232 0x21

ETHER 0x6 PARA 0x22

OTHER 0x1 ULTRA 0x1d

 

 

 

 

 Chapter 41. APIs for performance monitoring 801



perfstat_netinterface_total
The perfstat_netinterface_total subroutine returns global network interface usage 
statistics.

perfstat_id_t * name;
perfstat_netinterface_total_t * userbuff;
int sizeof_struct;

ISO88023 0x7 ARCNET 0x23

ISO88024 0x8 ARCNETPLUS 0x24

ISO88025 0x9 ATM 0x25

ISO88026 0xa MIOX25 0x26

STARLAN 0xb SONET 0x27

P10 0xc X25PLE 0x28

P80 0xd ISO88022LLC 0x29

HY 0xe LOCALTALK 0x2a

FDDI 0xf SMDSDXI 0x2b

LAPB 0x10 FRELAYDCE 0x2c

SDLC 0x11 V35 0x2d

T1 0x12 HSSI 0x2e

CEPT 0x13 HIPPI 0x2f

ISDNBASIC 0x14 MODEM 0x30

ISDNPRIMARY 0x15 AAL5 0x31

PTPSERIAL 0x16 SONETPATH 0x32

PPP 0x17 SONETVT 0x33

LOOP 0x18 SMDSICIP 0x34

EON 0x19 PROPVIRTUAL 0x35

XETHER 0x1a PROPMUX 0x36

NSIP 0x1b VIPA 0x37

SLIP 0x1c

Name Type Name Type 

 

 

 

802 AIX 5L Performance Tools Handbook



int desired_number;

int perfstat_netinterface_total (name, userbuff, sizeof_struct, desired_number)

Parameters
name  In AIX 5.2, this must always be set to NULL. 

userbuff  Points to the memory area that is to be filled with the 
perfstat_netinterface_total_t structure.  

sizeof_struct  Specifies the size of the perfstat_netinterface_total_t 
structure; sizeof(perfstat_netinterface_total_t).  

desired_number  In AIX 5.2, this must always be set to 1. 

Example
The code in Example 41-14 uses the perfstat_netinterface_total_t structure to 
obtain information about CPU statistics.

Example 41-14   Sample perfstat_netinterface_total_t program

1  #include <stdio.h>
2  #include <stdlib.h>
3  #include <libperfstat.h>

4  main()
5  {
6      perfstat_netinterface_total_t   ub;

7      if (perfstat_netinterface_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
8          printf("number    : %d\n", ub.number);
9          printf("ipackets  : %llu\n", ub.ipackets);
10          printf("ibytes    : %llu\n", ub.ibytes);
11          printf("ierrors   : %llu\n", ub.ierrors);
12          printf("opackets  : %llu\n", ub.opackets);
13          printf("obytes    : %llu\n", ub.obytes);
14          printf("oerrors   : %llu\n", ub.oerrors);
15          printf("collisions: %llu\n", ub.collisions);
16      }
17  }

On line 3 the libperfstat.h declaration file is included. Then on line 6 we declare 
variables for calling the perfstat_netinterface_total subroutine, which we do 
on line 7. Note how the usage and reference of structures is done in the call. The 
output from the program will look like Example 41-15 on page 804.

 

 

 

 

 Chapter 41. APIs for performance monitoring 803



Example 41-15   Sample output from the perfstat_netinterface_total_t program

# perfstat_netinterface_total_t
number    : 3
ipackets  : 781984
ibytes    : 155461659
ierrors   : 0
opackets  : 516557
obytes    : 95930535
oerrors   : 3
collisions: 0

The following is a short definition of each structure element as displayed above:

number   Interfaces count
ipackets     Packets received on interface
ibytes   Bytes received on interface
ierrors  Input errors on interface
opackets     Packets sent on interface
obytes   Bytes sent on interface
oerrors  Output errors on interface
collisions   Collisions on csma interface

Makefile for Perfstat
Example 41-16 shows a makefile for compiling the perfstat sample programs. 

Example 41-16   Makefile

# nl Makefile
1  CC=cc
2  CFLAGS=-g
3  PERF_LIBS=-lperfstat

4  PERF_PROGRAMS = perfstat_cpu_t perfstat_cpu_total_t perfstat_disk_t 
perfstat_disk_total_t perfstat_memory_total_t perfstat_netinterface_t 
perfstat_netinterface_total_t perfstat_dump_all perfstat_dude

5  all:    $(PERF_PROGRAMS)

6  $(PERF_PROGRAMS):       $$@.c
7          $(CC) $(CFLAGS) $(LIBS) $(PERF_LIBS) $? -o $@

Lines 1-3 are variable declarations that make changing compile parameters 
easier. Line 4 declares a variable for the programs (PERF_PROGRAMS). Line 6 
declares that all of the programs that are targets (declared on line 4) will have a 
source that they depend on (appended .c to each target). Line 7 is the compile 
statement itself; if the program perfstat_dump_all was the target (and the 

 

 

 

 

804 AIX 5L Performance Tools Handbook



source file was changed since the last created target), then the line would be 
parsed to look like the following:

cc -g -lperfstat perfstat_dump_all.c -o perfstat_dump_all

Line 5 declares a target named all that, if we had other target:source lines with 
compile statements, would include them as sources on this line as well. Because 
this line is the first non-declarative line in the Makefile, just typing make in the 
same directory would evaluate it, thus compiling everything that has changed 
sources since the last time they were compiled.

To use the makefile, just run the make command.

Additional Perfstat API subroutines 
The following are new additional Perfstat API subroutines to AIX 5.2. Refer to 
“Perfstat API programming” from AIX 5L Version 5.2 Performance Tool Guide and 
Reference for examples of these subroutines and from the file libperstat.h.

perfstat_diskadapter The subroutine retrieves one or more individual disk 
adapter usage statistics. The same function can be used 
to retrieve the number of available sets of adapter 
statistics.

perfstat_protocol The subroutine retrieves protocol usage statistics such 
as ICMP, ICMPv6, IP, IPv6, TCP, UDP, RPC, NFS, 
NFSv2, NFSv3. 

perfstat_netbuffer The subroutine retrieves network buffer allocation usage 
statistics. The perfstat_netbuffer subroutine retrieves 
statistics about network buffer allocations for each 
possible buffer size. 

perfstat_pagingspace This function retrieves one or more individual 
pagingspace usage statistics.

perfstat_reset The perfstat_reset subroutine flushes the information 
cache for the library and should be called whenever the 
machine configuration has changed.

perfstat_diskpath This subroutine shows the statistic of a particular disk 
path related to MPIO (multipath I/O) devices.

41.2  System Performance Measurement Interface
The System Performance Measurement Interface (SPMI) is an API that provides 
standardized access to local system resource statistics. In AIX 5L, SPMI mainly 
uses the perfstat kernel extension (kex) to obtain statistics. SPMI and Remote 

 

 

 

 

 Chapter 41. APIs for performance monitoring 805



Statistics Interface (RSi) are utilized by the Performance Toolbox and 
Performance Aide Products. 

By developing SPMI application programs, a user can retrieve information about 
system performance with minimum system overhead. The SPMI API is 
supported on both AIX 4.3 and AIX 5L, it has more metrics than the Perfstat API 
and data is more refined as it provides rates and percentages for some statistics. 
It also enables user-created data suppliers to export data for processing by the 
Performance Toolbox. 

The SPMI API is a collection of C programming language subroutines that 
execute in user space and extract data from the running kernel regarding 
performance statistics.

The SPMI API subroutines reside in the libSpmi.a library in the /usr/lib (or /lib 
because /lib is a symbolic link to /usr/lib) and is part of the perfagent.tools fileset, 
which is installable from the AIX base installation media and requires that the 
bos.perf.perfstat fileset be installed.

The /usr/include/sys/Spmidef.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is part of the perfagent.server fileset. 

The documentation for the subroutines can be found in the AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions, Volume 2.

41.2.1  Compiling and linking
After writing a C program that uses the SPMI API and including the 
sys/Spmidef.h header file, you just run cc on it specifying that you want to link to 
the libSpmi.a library as follows:

cc -lSpmi -o spmi_program spmi_program.c

This will create the spmi_program file from the spmi_program.c source program, 
linking it with the libSpmi.a library. Then spmi_program can be run as a normal 
command.

41.2.2  SPMI data organization
SPMI data is organized in a multilevel hierarchy of contexts. A context may have 
subordinate contexts, known as sub contexts, as well as metrics. The 
higher-level context is called a parent context. 

 

 

 

 

806 AIX 5L Performance Tools Handbook



The following example illustrates the SPMI data hierarchy for a metric; see also 
“Traversing and displaying the SPMI hierarchy” on page 816:

CPU/cpu0/kern

The parents in the example above are CPU and cpu0, and the metric that can 
contain statistical value is kern (time executing in kernel mode).

When multiple copies of a resource are available, the SPMI uses a base context 
description as a template. The SPMI creates one instance of that context for 
each copy of the resource or system object. This process is known as 
instantiation. A context is considered instantiable if at least one of its immediate 
sub contexts can exist in more than one copy. 

The SPMI can generate new instances of the subcontracts of instantiable 
contexts prior to the execution of API subroutines that traverse the data hierarchy. 
An application program can also request instantiation explicitly. In either case, 
instantiation is accomplished by requesting the instantiation for the parent 
context of the instances. Some instantiable contexts always generate a fixed 
number of sub context instances in a given system as long as the system 
configuration remains unchanged. Other contexts generate a fixed number of 
subcontracts on one system, but not on another. A final type of context is entirely 
dynamic in that it will add and delete instances as required during operation.

The SPMI uses a shared memory segment created from user space. When an 
SPMI application program starts, the SPMI checks whether another program has 
already set up the SPMI data structures in shared memory. If the SPMI does not 
find the shared memory area, it creates one and generates and initializes all data 
structures. If the SPMI finds the shared memory area, it bypasses the 
initialization process. A counter, called users, shows the number of processes 
currently using the SPMI. 

When an application program terminates, the SPMI releases all memory 
allocated for the application and decrements the users counter. If the counter 
drops to less than 1, the entire common shared memory area is freed. 
Subsequent execution of an SPMI application reallocates the common shared 
memory area. An application program has access to the data hierarchy through 
the API. 

 

 

 

 

 Chapter 41. APIs for performance monitoring 807



41.2.3  Subroutines
For a complete list of the SPMI API subroutines refer to the AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions, Volume 2.

To create a simple monitoring program using the SPMI API, the following 
subroutine sequence could be used to make a snapshot of the current values for 
specified statistics:

SpmiInit Initializes the SPMI for a local data consumer program.

SpmiCreateStatSet Creates an empty set of statistics.

SpmiPathGetCx Returns a handle to use when referencing a context.

SpmiPathAddSetStat Adds a statistics value to a set of statistics.

SpmiGetValue Returns a decoded value based on the type of data value 
extracted from the data field of an SpmiStatVals structure.

Before the program exits, the following subroutines should be called to clean up 
the used SPMI environment (allocated memory is not released until the program 
issues an SpmiExit subroutine call):

SpmiFreeStatSet Erases a set of statistics. 

SpmiExit Terminates a dynamic data supplier (DDS) or local data 
consumer program’s association with the SPMI, and 
releases allocated memory.

After setting up an SPMI environment in a monitoring application, the statistical 
values could be retrieved iteratively by the use of these subroutines:

SpmiFirstVals Returns a pointer to the first SpmiStatVals structure 
belonging to a set of statistics. 

Important: If you need to terminate an SPMI program, use kill <PID> without 
specifying a signal. This sends the SIGTERM signal to the process and it will exit 
properly. If for some reason this is not done, and a SIGKILL signal is sent to 
terminate the process and its threads, you must clean up the shared memory 
areas used by the application. The following steps must be done manually:

1. Make sure no other SPMI program is running.
2. Run the ipcs command and look for segments with segment IDs beginning 

with 0x78.
3. Use the ipcrm command with the -m flag to remove all segments that have 

a segment ID beginning with 0x78.
4. Run the slibclean command.

 

 

 

 

808 AIX 5L Performance Tools Handbook



SpmiGetStat Returns a pointer to the SpmiStat structure corresponding 
to a specified statistic handle. 

SpmiNextVals Returns a pointer to the next SpmiStatVals structure in a 
set of statistics.

SpmiInit
The SpmiInit subroutine initializes the SPMI. During SPMI initialization, a 
memory segment is allocated and the application program obtains basic address 
ability to that segment. An application program must issue the SpmiInit 
subroutine call before issuing any other subroutine calls to the SPMI.

int TimeOut;

int SpmiInit (TimeOut)

Parameters
TimeOut Specifies the number of seconds the SPMI waits for a 

Dynamic Data Supplier (DDS) program to update its 
shared memory segment. If a DDS program does not 
update its shared memory segment in the time specified, 
the SPMI assumes that the DDS program has terminated 
or disconnected from shared memory and removes all 
contexts and statistics added by the DDS program. The 
Time Out value must be either zero or greater than or 
equal to 15 seconds and less than or equal to 600 
seconds. A value of zero overrides any other value from 
any other program that invokes the SPMI and disables the 
checking for terminated DDS programs.

SpmiCreateStatSet
The SpmiCreateStatSet subroutine creates an empty set of statistics and returns 
a pointer to an SpmiStatSet structure:

struct SpmiStatSet *SpmiCreateStatSet()

SpmiPathGetCx
The SpmiPathGetCx subroutine searches the context hierarchy for a given path 
name of a context and returns a handle to use when subsequently referencing 
the context:

char *CxPath;
SpmiCxHdl Parent;

SpmiCxHdl SpmiPathGetCx(CxPath, Parent)

 

 

 

 

 Chapter 41. APIs for performance monitoring 809



Parameters
CxPath Specifies the path name of the context to find. If you 

specify the fully qualified path name in the CxPath 
parameter, you must set the Parent parameter to NULL. If 
the path name is not qualified or is only partly qualified 
(that is, if it does not include the names of all contexts 
higher in the data hierarchy), the SpmiPathGetCx 
subroutine begins searching the hierarchy at the context 
identified by the Parent parameter. If the CxPath 
parameter is either NULL or an empty string, the 
subroutine returns a handle identifying the top context. 

Parent Specifies the anchor context that fully qualifies the CxPath 
parameter. If you specify a fully qualified path name in the 
CxPath parameter, you must set the Parent parameter to 
NULL. 

SpmiPathAddSetStat
The SpmiPathAddSetStat subroutine adds a statistics value to a set of statistics. 
The SpmiStatSet structure that provides the anchor point to the set must exist 
before the SpmiPathAddSetStat subroutine call can succeed.

struct SpmiStatSet *StatSet;
char *StatName;
SpmiCxHdl Parent;

struct SpmiStatVals *SpmiPathAddSetStat(StatSet, StatName, Parent)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

StatName Specifies the name of the statistic within the context 
identified by the Parent parameter. If the Parent 
parameter is NULL, you must specify the fully qualified 
path name of the statistic in the StatName parameter. 

Parent Specifies either a valid SpmiCxHdl handle as obtained by 
another subroutine call or a NULL value. 

SpmiFirstVals
The SpmiFirstVals subroutine returns a pointer to the first SpmiStatVals structure 
belonging to the set of statistics identified by the StatSet parameter.

struct SpmiStatSet *StatSet;
struct SpmiStatVals *SpmiFirstVals(StatSet)

 

 

 

 

810 AIX 5L Performance Tools Handbook



Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

SpmiStatVals structures are accessed in reverse order, so the last statistic added 
to the set of statistics is the first one returned. This subroutine call should only be 
issued after an SpmiGetStatSet subroutine has been issued against the statset. 

SpmiGetValue
The SpmiGetValue subroutine returns a decoded value based on the type of data 
value extracted from the data field of an SpmiStatVals structure.

The SpmiGetValue subroutine performs the following steps: 

1. Verifies that an SpmiStatVals structure exists in the set of statistics identified 
by the StatSet parameter. 

2. Determines the format of the data field as being either SiFloat or SiLong, and 
extracts the data value for further processing. 

3. Determines the data value as being of either type SiQuantity or type 
SiCounter. 

4. If the data value is of type SiQuantity, returns the val field of the SpmiStatVals 
structure. 

5. If the data value is of type SiCounter, returns the value of the val_change field 
of the SpmiStatVals structure divided by the elapsed number of seconds 
since the previous time a data value was requested for this set of statistics. 

This subroutine call should only be issued after an SpmiGetStatSet subroutine 
has been issued against the statset. 

struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

float SpmiGetValue(StatSet, StatVal)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by the SpmiFirstVals or 
SpmiNextVals subroutine calls. 

 

 

 

 

 Chapter 41. APIs for performance monitoring 811



SpmiNextVals
The SpmiNextVals subroutine returns a pointer to the next SpmiStatVals 
structure in a set of statistics, taking the structure identified by the StatVal 
parameter as the current structure. The SpmiStatVals structures are accessed in 
reverse order so the statistic added before the current one is returned. This 
subroutine call should only be issued after an SpmiGetStatSet subroutine has 
been issued against the statset. 

struct SpmiStatSet *StatSet;
struct SpmiStatVals *StatVal;

struct SpmiStatVals *SpmiNextVals(StatSet, StatVal)

Parameters
StatSet Specifies a pointer to a valid structure of type SpmiStatSet 

as created by the SpmiCreateStatSet subroutine call. 

StatVal Specifies a pointer to a valid structure of type 
SpmiStatVals as created by the SpmiPathAddSetStat 
subroutine call, or returned by a previous SpmiFirstVals 
subroutine or SpmiNextVals subroutine call. 

SpmiFreeStatSet
The SpmiFreeStatSet subroutine erases the set of statistics identified by the 
StatSet parameter. All SpmiStatVals structures chained off the SpmiStatSet 
structure are deleted before the set itself is deleted. 

struct SpmiStatSet *StatSet;

int SpmiFreeStatSet(StatSet)

Parameters
StatSet Specifies a pointer to a valid structure of type 

SpmiStatSet as created by the SpmiCreateStatSet 
subroutine call. 

SpmiExit
A successful SpmiInit subroutine or SpmiDdsInit subroutine call allocates 
shared memory. Therefore, a Dynamic Data Supplier (DDS) program that has 
issued a successful SpmiInit or SpmiDdsInit subroutine call should issue an 
SpmiExit subroutine call before the program exits the SPMI. Allocated memory is 
not released until the program issues an SpmiExit subroutine call. 

void SpmiExit()

 

 

 

 

812 AIX 5L Performance Tools Handbook



41.2.4  Examples for SPMI
In this section we show three example programs that use the SPMI API: 

� “Hard-coded metrics” on page 813 uses a hard-coded array to store the 
hierarchical names of the metrics to collect statistics about.

� “Reading metrics from file” on page 814 reads the metrics from a file.

� “Traversing and displaying the SPMI hierarchy” on page 816 traverses the 
SPMI hierarchy and displays all metrics.

Hard-coded metrics
This example uses the spmi_dude program given in “spmi_dude.c” on page 949. 
It shows how the SPMI environment can be set up to collect and display 
statistics. Example 41-17 is a sample output created by the spmi_dude program.

Example 41-17   Sample output from the spmi_dude program

#spmi_dude 1 10
swpq  runq pgspo pgspi pgout  pgin %used %free    fr    sr    us    sy    id    wa
    0     0    39    61     0     0     0     0     0     0    17     1    77     5
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    49     0
    0     2    39    61     0     0     0    11     0     0    50     0    49     1
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0
    0     2    39    61     0     0     0     0     0     0    50     0    49     0
    0     2    39    61     0     0     0     0     0     0    50     0    50     0

Table 41-2 explains the values shown in the columns in the previous output for 
the spmi_dude program.

Table 41-2   Column explanation

Column SPMI metric SPMI description

wa CPU/glwait Systemwide time waiting for I/O (percent)

id CPU/glidle Systemwide time CPU is idle (percent)

sy CPU/glkern Systemwide time executing in kernel mode 
(percent)

us CPU/gluser Systemwide time executing in user mode 
(percent)

fr Mem/Virt/scan Physical memory 4K frames examined by VMM

fr Mem/Virt/steal Physical memory 4K frames stolen by VMM

 

 

 

 

 Chapter 41. APIs for performance monitoring 813



Reading metrics from file
The program in “spmi_file.c” on page 959 shows how to set up the SPMI 
environment to collect and display statistics after reading the SPMI metrics from 
a file. Example 41-18 is sample output created by the spmi_file program shown 
in the previous example.

Example 41-18   Sample output from the spmi_file program 

# spmi_file|pr -t -2
IP/NetIF/en0/oerror      : 0        Mem/Virt/pgspgin         : 0
IP/NetIF/en0/ooctet_kb   : 0        Mem/Virt/pageout         : 0
IP/NetIF/en0/opacket     : 0        Mem/Virt/pagein          : 0
IP/NetIF/en0/ierror      : 0        PagSp/pgspgout           : 0
IP/NetIF/en0/ioctet_kb   : 0        PagSp/pgspgin            : 0
IP/NetIF/en0/ipacket     : 0        PagSp/%totalused         : 39
SysIO/writech_kb         : 0        PagSp/%totalfree         : 61
SysIO/readch_kb          : 0        PagSp/totalfree          : 320219
Syscall/fork             : 0        PagSp/totalsize          : 524288
Syscall/total            : 0        Mem/Real/numclient       : 261066
Proc/ksched              : 0        Mem/Real/numlocal        : 935329
Proc/swpocc              : 88272    Mem/Real/comp            : 536802
Proc/swpque              : 0        Mem/Real/noncomp         : 659593
Proc/runocc              : 182151   Mem/Real/numfrb          : 900748
Proc/runque              : 0        Mem/Real/%clnt           : 13
Proc/pswitch             : 0        Mem/Real/%local          : 57
Mem/Kmem/mbuf/blocks     : 0        Mem/Real/%noncomp        : 32
Mem/Kmem/mbuf/memmax     : 2309     Mem/Real/%comp           : 26
Mem/Kmem/mbuf/memuse     : 2305     Mem/Real/%pinned         : 7
Mem/Kmem/mbuf/failures   : 0        Mem/Real/%free           : 43

%free PagSp/%totalfree Total free disk paging space (percent)

%used PagSp/%totalused Total used disk paging space (percent)

pgin Mem/Virt/pagein 4K pages read by VMM

pgout Mem/Virt/pageout 4K pages written by VMM

pgspi Mem/Virt/pgspgin 4K pages read from paging space by VMM

pgspo Mem/Virt/pgspgou
t 

4K pages written to paging space by VMM

runq Proc/runque Average count of processes that are waiting for 
the CPU

swpq Proc/swpque Average count of processes waiting to be paged 
in

Column SPMI metric SPMI description 

 

 

 

814 AIX 5L Performance Tools Handbook



Mem/Kmem/mbuf/calls      : 0        Mem/Real/size            : 2097143
Mem/Kmem/mbuf/inuse      : 2052     CPU/glidle               : 77
Mem/Virt/steal           : 0        CPU/glwait               : 5
Mem/Virt/scan            : 0        CPU/glkern               : 1
Mem/Virt/pgspgout        : 0        CPU/gluser               : 17

The output was formatted with the pr command so that the columns created by 
the spmi_file program would fit on one screen. The left column shows the SPMI 
hierarchy name, and the value to the right of the separating colon (:) is the 
statistical value. The output Mem/Real/size shows the amount of real memory on 
the system. The value of the metric, in this case 2097143, is the number of 4 KB 
memory pages on the system (8GB).

Example 41-19 shows the input file used with the spmi_file program to create 
the output in Example 41-18 on page 814.

Example 41-19   Sample input file SPMI_METRICS

CPU/gluser             
CPU/glkern             
CPU/glwait             
CPU/glidle             
Mem/Real/size          
Mem/Real/%free         
Mem/Real/%pinned       
Mem/Real/%comp         
Mem/Real/%noncomp      
Mem/Real/%local        
Mem/Real/%clnt         
PagSp/totalsize        
PagSp/totalfree        
PagSp/%totalfree       
PagSp/%totalused       
PagSp/pgspgin          
PagSp/pgspgout         
Mem/Real/size          
Mem/Real/numfrb        
Mem/Real/noncomp       
Mem/Real/comp          
Mem/Real/numlocal      
Mem/Real/numclient     
Mem/Virt/pagein        
Mem/Virt/pageout       
Mem/Virt/pgspgin       
Mem/Virt/pgspgout      
Mem/Virt/scan          
Mem/Virt/steal         
Mem/Kmem/mbuf/inuse    
Mem/Kmem/mbuf/calls    

 

 

 

 

 Chapter 41. APIs for performance monitoring 815



Mem/Kmem/mbuf/failures 
Mem/Kmem/mbuf/memuse   
Mem/Kmem/mbuf/memmax   
Mem/Kmem/mbuf/blocks   
Proc/pswitch           
Proc/runque            
Proc/runocc            
Proc/swpque            
Proc/swpocc            
Proc/ksched 
Syscall/total
Syscall/fork
SysIO/readch_kb
SysIO/writech_kb
IP/NetIF/en0/ipacket
IP/NetIF/en0/ioctet_kb
IP/NetIF/en0/ierror
IP/NetIF/en0/opacket
IP/NetIF/en0/ooctet_kb
IP/NetIF/en0/oerror

Traversing and displaying the SPMI hierarchy
The program in “spmi_traverse.c” on page 961 shows how to set up the SPMI 
environment, and then traverse and display all metrics found in the SPMI 
hierarchy. Example 41-20 shows sample output created by the spmi_traverse 
program.

Example 41-20   Sample output from the spmi_traverse program

CPU/gluser:Systemwide time executing in user mode (percent):Float/Quantity:0-100
CPU/glkern:Systemwide time executing in kernel mode (percent):Float/Quantity:0-100
CPU/glwait:Systemwide time waiting for IO (percent):Float/Quantity:0-100
CPU/glidle:Systemwide time CPU is idle (percent):Float/Quantity:0-100
CPU/gluticks:Systemwide CPU ticks executing in user mode:Long/Counter:0-100
CPU/glkticks:Systemwide CPU ticks executing in kernel mode:Long/Counter:0-100
CPU/glwticks:Systemwide CPU ticks waiting for IO:Long/Counter:0-100
CPU/gliticks:Systemwide CPU ticks while CPU is idle:Long/Counter:0-100
CPU/cpu0/user:Time executing in user mode (percent):Float/Quantity:0-100
CPU/cpu0/kern:Time executing in kernel mode (percent):Float/Quantity:0-100
CPU/cpu0/wait:Time waiting for IO (percent):Float/Quantity:0-100
CPU/cpu0/idle:Time CPU is idle (percent):Float/Quantity:0-100
CPU/cpu0/uticks:CPU ticks executing in user mode:Long/Counter:0-100
CPU/cpu0/kticks:CPU ticks executing in kernel mode:Long/Counter:0-100
CPU/cpu0/wticks:CPU ticks waiting for IO:Long/Counter:0-100
CPU/cpu0/iticks:CPU ticks while CPU is idle:Long/Counter:0-100
...(lines omitted)...
NFS/V3Svr/mknod:NFS server mknode creation requests:Long/Counter:0-200
NFS/V3Svr/remove:NFS server file removal requests:Long/Counter:0-200

 

 

 

 

816 AIX 5L Performance Tools Handbook



NFS/V3Svr/rmdir:NFS server directory removal requests:Long/Counter:0-200
NFS/V3Svr/rename:NFS server file rename requests:Long/Counter:0-200
NFS/V3Svr/link:NFS server link creation requests:Long/Counter:0-200
NFS/V3Svr/readdir:NFS server read-directory requests:Long/Counter:0-200
NFS/V3Svr/readdir+:NFS server read-directory plus requests:Long/Counter:0-200
NFS/V3Svr/fsstat:NFS server file stat requests:Long/Counter:0-200
NFS/V3Svr/fsinfo:NFS server file info requests:Long/Counter:0-200
NFS/V3Svr/pathconf:NFS server path configure requests:Long/Counter:0-200
NFS/V3Svr/commit:NFS server commit requests:Long/Counter:0-200
Spmi/users:Count of common shared memory users:Long/Quantity:0-10
Spmi/statsets:Count of defined StatSets:Long/Quantity:0-50
Spmi/ddscount:Count of active dynamic data suppliers:Long/Quantity:0-10
Spmi/consumers:Count of active data consumers:Long/Quantity:0-10
Spmi/comused:kbytes of common shared memory in use:Long/Quantity:0-200
Spmi/hotsets:Count of defined HotSets:Long/Quantity:0-50

Makefile for SPMI
Example 41-21 shows what a makefile would look like for all of the programs 
described above.

Example 41-21   Makefile

# nl Makefile
     1  CC=cc
     2  CFLAGS=-g
     3  SPMI_LIBS=-lSpmi

     4  SPMI_PROGRAMS = spmi_dude spmi_file spmi_traverse

     5  all:    $(SPMI_PROGRAMS)

     6  $(SPMI_PROGRAMS):       $$@.c
     7          $(CC) $(CFLAGS) $(LIBS) $(SPMI_LIBS) $? -o $@

Lines 1-3 are variable declarations that make changing compile parameters 
easier. Line 4 declares a variable for the programs (SPMI_PROGRAMS). Line 6 
declares that all programs that are targets (declared on line 4) will have a source 
that they depend on (appended .c to each target). Line 7 is the compile 
statement itself. If the program spmi_dude was the target (and the source file was 
changed since the last created target), then the line would be parsed to look like 
the following:

cc -g -lSpmi spmi_dude.c -o spmi_dude

Line 5 declares a target named all so that if we had other target:source lines 
with compile statements, they could be included as sources on this line. Because 
this line is the first non-declarative line in the Makefile, just typing make in the 

 

 

 

 

 Chapter 41. APIs for performance monitoring 817



same directory would evaluate it and thus compile everything that has changed 
sources since the last time they were compiled.

41.3  Performance Monitor API
The Performance Monitor (PM) Application Programming Interface (API) is a 
collection of C programming language subroutines that provide access to some 
of the counting facilities of the Performance Monitor features included in selected 
IBM microprocessors.

The Performance Monitor API and the events available on each of the supported 
processors are separated by design. The events available are different on each 
processor. However, none of the API calls depend on the availability or status of 
any of the events.

The Performance Monitor API includes a set of:

� System level APIs to enable counting of the activity of a whole machine, or of 
a set of processes with a common ancestor.

� First-party kernel thread level APIs to enable threads running in 1:1 mode to 
count their own activity.

� Third-party kernel thread level APIs to enable a debugger to count the activity 
of target threads running in 1:1 mode.

The Performance Monitor API subroutines reside in the libpmapi.a library in the 
/usr/pmapi/lib directory. The libpmapi.a library is linked to from /usr/lib (or /lib 
because /lib is a symbolic link to /usr/lib) and is part of the bos.pmapi.lib fileset, 
which is installable from the AIX base installation media.

The /usr/include/pmapi.h file contains the subroutine declarations and type 
definitions of the data structures to use when calling the subroutines. This 
include file is also part of the bos.pmapi.lib fileset.

Sample source code is available with the distribution, and it resides in the 
/usr/samples/pmapi directory.

The tables describing different events for different processors reside in the 
/usr/pmapi/lib directory. To extract the events available on the specific processor, 
use the API subroutine that extracts this information at run time. Refer to 
Example 41-24 on page 821.

The documentation for the subroutines can be found in the AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions, Volume 1 and the 

 

 

 

 

818 AIX 5L Performance Tools Handbook



RS/6000 Scientific and Technical Computing: POWER3 Introduction and Tuning 
Guide, SG24-5155.

41.3.1  Performance Monitor data access
Hardware counters are extra logic inserted in the processor to count specific 
events. They are updated at every CPU cycle, and can count metrics such as the 
number of cycles, instructions, floating-point and fixed-point operations, loads 
and stores of data, and delays associated with cache. Hardware counters are 
non-intrusive, are very accurate, and have a low overhead, but they are specific 
for each processor. The metrics can be useful if you wish to determine such 
statistics as instructions per cycle and cache hit rates.

Performance Monitor contexts are extensions to the regular processor and 
thread contexts. They include one 64-bit counter per hardware counter and a set 
of control words. The control words define what events get counted and when 
counting is on or off. Because the monitor cannot count every event 
simultaneously, alternating the counted events can provide more data. 

The thread and thread group Performance Monitor contexts are independent. 
This enables each thread or group of threads on a system to program 
themselves to be counted with their own list of events. In other words, except 
when using the system level API, there is no requirement that all threads count 
the same events.

Only events categorized as verified (PM_VERIFIED) have gone through full 
verification and can be trusted to count accurately. Events categorized as caveat 
(PM_CAVEAT) have been verified but are accurate only within the limitations 
documented in the event description (returned by pm_init). Events categorized 
as unverified (PM_UNVERIFIED) have undefined accuracy.

For more detailed information about the Performance Monitoring API, review the 
following documentation:

� AIX 5L Version 5.2 General Programming Concepts

� AIX 5L Version 5.2 Technical Reference: Base Operating System and 
Extensions, Volume 1 

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� http://www.austin.ibm.com/tech/monitor.html

Note: Use caution with unverified events. The PM API software is essentially 
providing a service to read hardware registers, which may or may not have 
any meaningful content.

 

 

 

 

 Chapter 41. APIs for performance monitoring 819

http://www.austin.ibm.com/tech/monitor.html


41.3.2  Compiling and linking
After writing a C program that uses the PM API, and including the pmapi.h and 
sys/types.h header file, run cc on it specifying that you want to link to the 
libpmapi.a library, as in Example 41-22.

Example 41-22   Compile and link with libpmapi.a

# cc -lpmapi -o pmapi_program pmapi_program.c

This creates the pmapi_program file from the pmapi_program.c source program, 
linking it with the libpmapi.a library. Then pmapi_program can be run as a normal 
command.

41.3.3  Subroutines
The following subroutines constitute the basic Performance Monitor API. Each 
subroutine has four additional variations for first-party kernel thread or group 
counting, and third-party kernel thread or group counting. These variations have 
the suffixes _group, _mygroup, _mythread, and _thread:

pm_init Initializes the PM API; always called first.
pm_cycles Measures processor speed in cycles per second.
pm_error Decodes PM API error codes. 
pm_set_program Sets systemwide PM programmation. 
pm_get_program Retrieves systemwide PM settings. 
pm_delete_program Deletes previously established systemwide PM settings. 
pm_start Starts systemwide PM counting.
pm_stop Stops systemwide PM counting. 
pm_get_data Returns systemwide PM data. 
pm_reset_data Resets systemwide PM data. 

For a detailed description of the subroutines, read the AIX 5L Version 5.2 
Technical Reference: Base Operating System and Extensions, Volume 1.

41.3.4  Examples for PM API
A program using the PM API usually consists of three parts:

� Initialization
� Monitoring

Note: If you create a thread-based monitoring application (using the threads 
library), the pthread.h header file must be the first included file of each source 
file. Otherwise, the -D_THREAD_SAFE compilation flag should be used, or 
the cc_r compiler used. In this case, the flag is automatically set.

 

 

 

 

820 AIX 5L Performance Tools Handbook



� Reporting

Example 41-23 shows the basic layout of a program that uses the PM API.

Example 41-23   Basic layout of PM API programs

main ()
{
/* code that is not monitored */

pm_init
pm_set_program
pm_start

/* code that is monitored */
pm_stop
pm_get_data

/* code that is not monitored */
pm_delete_program
printf(...);

}

The sample program in Example 41-24 traverses the available event list (read at 
runtime from the .evs files in /usr/pmapi/lib directory), and displays all events on 
the system.

Example 41-24   Sample pmapi_list.c program for displaying available events

1 #include <sys/types.h>
2 #include <pmapi.h>

3 main(int argc, char *argv[])
4 {
5     static pm_info_t    pminfo;
6     static pm_events_t  *pmeventp;
7     static int          i,j,rc;

8     if ((rc = pm_init(PM_VERIFIED|PM_UNVERIFIED|PM_CAVEAT, &pminfo)) > 0) {
9         pm_error("pm_init", rc);
10         exit(-1);
11     }

12     for (i = 0; i < pminfo.maxpmcs; i++) {
13         pmeventp = pminfo.list_events[i];
14         for (j = 0; j < pminfo.maxevents[i]; j++, pmeventp++) {
15             printf("proc name  : %s\n",pminfo.proc_name);
16             printf("event id   : %d\n",pmeventp->event_id);
17             printf("status     : %c\n",pmeventp->status);
18             printf("threshold  : %c\n",pmeventp->threshold);
19             printf("short name : %s\n",pmeventp->short_name);
20             printf("long name  : %s\n",pmeventp->long_name);
21             printf("description: %s\n",pmeventp->description);

 

 

 

 

 Chapter 41. APIs for performance monitoring 821



22         }
23     }
24 }

Example 41-25 is the sample output from the pmapi_list program shown in 
Example 41-24 on page 821.

Example 41-25   Sample output from the sample pmapi_list program

...(lines omitted)...

proc name  : POWER4
event id   : 1
status     : u
threshold  : g
short name : PM_BRQ_FULL_CYC
long name  : Cycles branch queue full
description: The ISU sends a signal indicating that the issue queue that feeds 
the ifu br unit cannot accept any more group (queue is full of groups).
...(lines omitted)...
proc name  : POWER4
event id   : 19
status     : v
threshold  : g
short name : PM_LSU0_LDF
long name  : LSU0 executed Floating Point load instruction
description: A floating point load was executed from LSU unit 0

proc name  : POWER4
event id   : 20
status     : v
threshold  : g
short name : PM_LSU1_LDF
long name  : LSU1 executed Floating Point load instruction
description: A floating point load was executed from LSU unit 1
....(lines omitted).....

proc name  : POWER4
event id   : 42
status     : v
threshold  : g
short name : PM_L2SC_ST_REQ
long name  : L2 slice C store requests
description: A store request as seen at the L2 directory has been made from the 
core. Stores are counted after gathering in the L2 store queues. The event is 
provided on each of the three slices A,B, and C.

proc name  : POWER4
event id   : 43

 

 

 

 

822 AIX 5L Performance Tools Handbook



status     : v
threshold  : g
short name : PM_L2_PREF
long name  : L2 cache prefetches
description: A request to prefetch data into L2 was made
.....( lines mitted).....
proc name  : POWER4
event id   : 78
status     : v
threshold  : g
short name : PM_INST_FROM_L35
long name  : Instructions fetched from L3.5
description: An instruction fetch group was fetched from the L3 of another 
module. Fetch Groups can contain up to 8 instructions
.....( lines omitted)...............

proc name  : POWER4
event id   : 80
status     : v
threshold  : g
short name : PM_GRP_DISP_REJECT
long name  : Group dispatch rejected
description: A group that previously attempted dispatch was rejected.

proc name  : POWER4
event id   : 81
status     : c
threshold  : g
short name : PM_INST_CMPL
long name  : Instructions completed
description: Number of Eligible Instructions that completed.

.... (line omitted) ....

The output dislays events defined on POWER4™ architecture. The status field 
has the following values:

v verified 
u unverified 
c caveat char 

The threshold field has the following values:

y thresholdable 
g group-only 
G thresholdable group-only 

 

 

 

 

 Chapter 41. APIs for performance monitoring 823



For more examples of using Performance Monitor APIs, refer to AIX 5L Version 
5.2 Performance Tools Guide and Reference. Functional sample codes are 
available in the /usr/samples/pmapi directory.

HPM ToolKit is a Hardware Performace Monitor tool developed by IBM Research 
for performance measurements of applications running on IBM POWER3™ and 
POWER4 systems. Its implementation is based upon PM API. The toolkit can be 
downloaded from the following IBM site:

http://www.alphaworks.ibm.com/tech/hpmtoolkit

41.4  Resource Monitoring and Control
The Resource Monitoring and Control (RMC) application is part of Reliable 
Scalable Cluster Technology (RSCT). RMC is the strategic technology for 
monitoring in AIX 5L. It provides a consistent and comprehensive set of 
monitoring and response capabilities that can assist in detecting system 
resource problems. RMC can monitor many aspects of the system resources and 
specify a wide range of actions to be taken when a threshold or specified 
condition is met. 

By monitoring conditions of interest and providing automated responses when 
these conditions occur, RSCT RMC helps maintain system availability.

RMC is included in the rsct.core package, which is installed automatically when 
AIX 5L Version 5.2 is installed. The RSCT RMC application executables reside in 
/usr/sbin/rsct/bin. 

There are other RSCT packages included with AIX 5.2, but they are not installed 
automatically:

rsct.basic Topology Services (HATS) and Group Services (HAGS)
rsct.compat.basic Event Management (HAEM)
rsct.compat.clients Event Management (HAEM)

HATS, HAGS, and HAEM are used by Parallel System Support Programs 
(PSSP) and High Availability Cluster Multi-Processing/Enhanced Scalability 
(HACMP/ES). Note that HAEM has been moved from the rsct.basic and 
rsct.clients packages to the rsct.compat package. 

RMC can be used by the WebSM Graphical User Interface (GUI), and it also has 
command line programs that can be used to manage it. For additional 
information, see Resource Monitoring and Control Guide and Reference, 
SC23-4345. For the latest information, review the README documents in the 
/usr/sbin/rsct/README directory that accompany the RSCT installation media.

 

 

 

 

824 AIX 5L Performance Tools Handbook

http://www.alphaworks.ibm.com/tech/hpmtoolkit


41.4.1  RMC commands
The following scripts, utilities, commands, and files can be used to control 
monitoring on a system with RMC. See the man pages or AIX 5L Version 5.2 
Commands Reference for detailed usage information. 

These are the primary RMC commands:

chrsrc Changes the persistent attribute values of a resource or 
resource class. 

lsactdef Lists action definitions of a resource or resource class. 

lsrsrc Lists resources or a resource class. 

lsrsrcdef Lists a resource or resource class definition. 

mkrsrc Defines a new resource. 

refrsrc Refreshes the resources within the specified resource 
class. 

rmrsrc Removes a defined resource. 

These are additional RMC commands:

ctsnap Gathers configuration, log, and trace information for the 
RSCT product. 

lsaudrec Lists records from the audit log. 

rmaudrec Removes records from the audit log. 

rmcctrl Manages the RMC subsystem. 

Additional Event Response Resource Manager commands:

chcondition Changes any of the attributes of a defined condition. 

lscondition Lists information about one or more conditions. 

mkcondition Creates a new condition definition that can be monitored. 

rmcondition Removes a condition. 

chresponse Adds or deletes the actions of a response, or renames a 
response. 

lsresponse Lists information about one or more responses. 

mkresponse Creates a new response definition with one action. 

rmresponse Removes a response. 

lscondresp Lists information about a condition and its linked 
responses, if any. 

 

 

 

 

 Chapter 41. APIs for performance monitoring 825



mkcondresp Creates a link between a condition and one or more 
responses. 

rmcondresp Deletes a link between a condition and one or more 
responses. 

startcondresp Starts monitoring a condition that has one or more linked 
responses. 

stopcondresp Stops monitoring a condition that has one or more linked 
responses. 

41.4.2  Information about measurement and sampling
The RMC subsystem and its resource managers are controlled by the System 
Resource Controller (SRC). The basic flow in RMC for monitoring is that 
resource managers provide values for dynamic attributes, which are dynamic 
properties of resources. Resource managers obtain this information from a 
variety of places depending on the resource. RMC applications then register for 
events and specify conditions for dynamic attributes for which they want to 
receive events (event expression/condition). Whenever this condition is true, an 
event notification is returned to the application (response) and the event 
expression is disabled until a rearm1 expression is true.

Comparing RMC with HAEM
Dynamic attributes are the equivalent of resource variables in Event 
Management. A resource manager in RMC is the equivalent of a resource 
monitor in HAEM (with respect to monitoring). The overhead in RMC should be 
about the same as in Event Management with respect to monitoring and event 
generation. The RMC subsystem acts as a broker between the client processes 
that use it and the resource manager processes that control resources.

Refer to Event Management Programming Guide and Reference, SA22-7354 for 
more information about HAEM.

Resource managers
A resource manager is a process that maps resource and resource-class 
abstractions into calls and commands for one or more specific types of 
resources. A resource manager is a stand-alone daemon. The resource 
manager contains definitions of all resource classes that the resource manager 
supports. The following resource managers are provided with the RMC fileset: 

IBM.AuditRM The Audit Log resource manager (AuditRM) provides a 
systemwide facility for recording information about the 

1  The rearm expression is commonly the inverse of the event expression (for example, a dynamic attribute is on or off). It
can also be used with the event expression to define an upper and lower boundary for a condition of interest.

 

 

 

 

826 AIX 5L Performance Tools Handbook



system’s operation, which is particularly useful for tracking 
subsystems running in the background. 

IBM.ERRM The Event Response resource manager (ERRM) provides 
the ability to take actions in response to conditions 
occurring on the system. 

IBM.FSRM The File System resource manager (FSRM) monitors file 
systems. 

IBM.HostRM The Host resource manager (HostRM) monitors 
resources related to an individual machine. The types of 
values that are provided relate to the load (processes, 
paging space, and memory usage) and status of the 
operating system. It also monitors program activity from 
initiation until termination.

Resource classes
A resource class definition includes a description of all attributes, actions, and 
other characteristics of a resource class. The currently supported resource 
classes are:

� IBM.Association     
� IBM.ATMDevice       
� IBM.AuditLog        
� IBM.AuditLogTemplate
� IBM.Condition       
� IBM.EthernetDevice  
� IBM.EventResponse   
� IBM.FDDIDevice 
� IBM.FileSystem      
� IBM.Host            
� IBM.PagingDevice    
� IBM.PhysicalVolume  
� IBM.Processor       
� IBM.Program         
� IBM.TokenRingDevice 
� IBM.Sfp
� IBM.ServiceEvent
� IBM.ManagementServer
� IBM.NetworkInterface
� IBM.HostPublic
� IBM.DRM
� IBM.WLM

The resource class IBM.Host defines a number of dynamic attributes containing 
kernel statistics. There are more kernel stats available than what are currently 

 

 

 

 

 Chapter 41. APIs for performance monitoring 827



defined as dynamic attributes. The IBM.Program resource class enables an 
application to obtain events related to running programs, such as process death 
and rebirth. To find out more about the definition of a class, see “Examining 
resource classes and resources” on page 829.

41.4.3  Examples for RMC
In this section we will show how to use the RMC facilities. (RMC facilities can be 
managed through the WebSM GUI as well.) We show the command line interface 
because it is used for most other performance monitoring and tuning tools, and 
the use of the GUI is explained well in the AIX 5L Differences Guide Version 5.2 
Edition, SG24-5765.. The ordered way to start using monitoring with RMC is to:

1. Know what threshold/resource to monitor.

2. Determine what action to be performed when the event occurs.

3. Create a script that will perform the desired action.

4. Create an RMC condition that meets the monitoring requirements.

5. Create an RMC response for the action script(s).

6. Create an RMC association between the defined RMC condition and RMC 
response.

7. Activate monitoring for the condition.

Verifying that the RMC is active
To verify that the RMC resource managers are active, run the lssrc command as 
shown in Example 41-26.

Example 41-26   Using lssrc

# lssrc -g rsct
Subsystem         Group            PID          Status
 ctrmc            rsct             18330        active
 ctcas            rsct             22188        active
# lssrc -g rsct_rm
Subsystem         Group            PID          Status
 IBM.ERRM         rsct_rm          23736        active
 IBM.CSMAgentRM   rsct_rm          22966        active
 IBM.ServiceRM    rsct_rm          21428        active
 IBM.AuditRM      rsct_rm          19102        active
 IBM.HostRM       rsct_rm          19380        active
 IBM.DRM          rsct_rm          24004        active

The output shows that RMC (ctrmc) is active as well as the default resource 
managers (IBM.ERRM, IBM.AuditRM, and IBM.HostRM).

 

 

 

 

828 AIX 5L Performance Tools Handbook



Normally the ctrmc subsystem will be started by init because the installation 
procedure will create the following entry in /etc/inittab:

ctrmc:2:once:/usr/bin/startsrc -s ctrmc > /dev/console 2>&1

The RMC command rmcctrl controls the operation of the RMC subsystem and 
the RSCT resource managers. It is not normally run from the command line, but 
it can be used in some diagnostic environments. For example, it can be used to 
add, start, stop, or delete an RMC subsystem.

Examining resource classes and resources
Use the lsrsrc command to list the persistent and dynamic attributes and their 
values of either a resource class or a resource. By using lsrsrc without any 
flags, it will show all classes, as in Example 41-27.

Example 41-27   Using lsrsrc

# lsrsrc            
class_name                                      
"IBM.Association"                               
"IBM.ATMDevice"                                 
"IBM.AuditLog"                                  
"IBM.AuditLogTemplate"                          
"IBM.Condition"                                 
"IBM.EthernetDevice"                            
"IBM.EventResponse"                             
"IBM.FDDIDevice"                                
"IBM.Host"                                      
"IBM.FileSystem"                                
"IBM.PagingDevice"                              
"IBM.PhysicalVolume"                            
"IBM.Processor"                                 
"IBM.Program"                                   
"IBM.TokenRingDevice" 
"IBM.Sfp"
"IBM.ServiceEvent"
"IBM.ManagementServer"
"IBM.NetworkInterface"
"IBM.HostPublic"
"IBM.DRM"
"IBM.WLM"

Now we can examine each of these classes in more detail. When we use the -ap 
(default) flags to the lsrsrc command, it will only show the persistent attributes 
defined for the specified class. In Example 41-28 on page 830, we used 
IBM.Host.

 

 

 

 

 Chapter 41. APIs for performance monitoring 829



Example 41-28   Using lsrsrc with the -ap flags

# lsrsrc -ap IBM.Host
Resource Persistent Attributes for: IBM.Host
resource 1:
        Name                = "lpar05"
        NodeNameList        = {"lpar05"}
        NumProcessors       = 16
        RealMemSize         = 8589897728
        OSName              = "AIX"
        KernelVersion       = "5.2"
        DistributionName    = "IBM"
        DistributionVersion = "5.2"
        Architecture        = "ppc"

To look at dynamic attributes, use the -ad flags with the lsrsrc command, as in 
Example 41-29. Note that we get the current value of the attribute as well2.

Example 41-29   Using lsrsrc with the -ad flags

# lsrsrc -ad IBM.Host
Resource Dynamic Attributes for: IBM.Host
resource 1:
        ActiveMgtScopes     = 1
        UpTime              = 535139
        NumUsers            = 8
        LoadAverage         = {490103,473272,470732}
        PctRealMemActive    = 70
        VMActivePageCount   = 1469482
        KMemSizeOther       = 151200
        KMemSizeStreams     = 11776
        KMemSizeMblk        = 65920
        KMemSizeOtherIP     = 4128
        KMemSizeProtcb      = 320
        KMemSizeSock        = 2144
        KMemSizeMbuf        = 2360320
        KMemNumOther        = 24
        KMemNumStreams      = 148
        KMemNumMblk         = 115
        KMemNumOtherIP      = 35
        KMemNumProtcb       = 2
        KMemNumSock         = 6
        KMemNumMbuf         = 2052
        KMemFailOtherRate   = 0
        KMemFailStreamsRate = 0
        KMemFailMblkRate    = 0
        KMemFailOtherIPRate = 0

2  Because some of the dynamic attributes are rates, which require two values obtained over a time interval, it takes a few
seconds to execute the lsrsrc command.

 

 

 

 

830 AIX 5L Performance Tools Handbook



        KMemFailProtcbRate  = 0
        KMemFailSockRate    = 0
        KMemFailMbufRate    = 0
        KMemReqOtherRate    = 0
        KMemReqStreamsRate  = 0
        KMemReqMblkRate     = 0
        KMemReqOtherIPRate  = 0
        KMemReqProtcbRate   = 0
        KMemReqSockRate     = 0
        KMemReqMbufRate     = 0
        VMPgSpOutRate       = 0
        VMPgSpInRate        = 1
        VMPgFaultRate       = 3
        VMPgOutRate         = 0
        VMPgInRate          = 1
        RealMemFramesFree   = 430009
        PctRealMemPinned    = 6
        PctRealMemFree      = 20
        PctTotalTimeKernel  = 0
        PctTotalTimeUser    = 25.2053388090349
        PctTotalTimeWait    = 0
        PctTotalTimeIdle    = 74.7946611909651
        PctTotalPgSpFree    = 56.6489219665527
        PctTotalPgSpUsed    = 43.3510780334473
        TotalPgSpFree       = 594007
        TotalPgSpSize       = 1048576
        ProcSwapQueue       = 4.37159006295268
        ProcRunQueue        = 2.67393331721446

Some classes have a different layout. To look at how the class is structured, use 
the lsrsrcdef command as in Example 41-30 with the IBM.PhysicalVolume 
class.

Example 41-30   Using lsrsrcdef

# lsrsrcdef IBM.PhysicalVolume
Resource Persistent Attribute Definitions for: IBM.PhysicalVolume
attribute 1:
        program_name  = "Name"
        display_name  = ""
        group_name    = ""
        properties    = {"public","read_only","selectable","reqd_for_define"}
        description   = ""
        attribute_id  = 0
        group_id      = 0
        data_type     = "char_ptr"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = ""

 

 

 

 

 Chapter 41. APIs for performance monitoring 831



attribute 2:
        program_name  = "PVId"
        display_name  = ""
        group_name    = ""
        properties    = {"public","inval_for_define","read_only","selectable"}
        description   = ""
        attribute_id  = 4
        group_id      = 0
        data_type     = "binary_ptr"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = ""
attribute 3:
        program_name  = "NodeNameList"
        display_name  = ""
        group_name    = ""
        properties    = {"option_for_define","public","read_only","selectable"}
        description   = ""
        attribute_id  = 2147483647
        group_id      = 0
        data_type     = "char_ptr_array"
        variety_list  = {[1,1]}
        variety_count = 1
        default_value = {}

To examine only specified attributes (in Example 41-31, attributes 1 and 3) from 
the output in the previous example, we can use lsrsrc to show only what is 
defined for the Value and PVId attributes from IBM.PhysicalVolume.

Example 41-31   Using lsrsrc with the -x dAb flags

# lsrsrc -xdAb IBM.PhysicalVolume Name PVId
"hdisk1":"0x0021768a 0x4fe05e1f 0x00000000 0x00000000":
"hdisk0":"0x0021768a 0xabd8785a 0x00000000 0x00000000":
"hdisk7":"0x0021768a 0xca813afd 0x00000000 0x00000000":
"hdisk6":"0x00071542 0xe0f1cc17 0x00000000 0x00000000":
"hdisk5":"0x00071542 0xe0f18309 0x00000000 0x00000000":
"hdisk4":"0x0021768a 0x9378cb88 0x00000000 0x00000000":
"hdisk3":"0x00000000 0x035d72e7 0x00000000 0x00000000":
"hdisk2":"0x00050592 0x247553da 0x00000000 0x00000000":

By using the -x (no header), -d (delimiter separated output), and -ab (both 
persistent and dynamic attributes) the lsrsrc command displays the disk drives 
and their physical volume ID in our system. A similar output can be shown by 
using the -t flag as is in Example 41-32 on page 833, or the -xab flags in 
combination with -t.

 

 

 

 

832 AIX 5L Performance Tools Handbook



Example 41-32   Using lsrsrc with the -t flag

# lsrsrc  -t IBM.PhysicalVolume Name PVId
Resource Persistent Attributes for: IBM.PhysicalVolume
Name     PVId
"hdisk1" "0x0021768a 0x4fe05e1f 0x00000000 0x00000000"
"hdisk0" "0x0021768a 0xabd8785a 0x00000000 0x00000000"
"hdisk7" "0x0021768a 0xca813afd 0x00000000 0x00000000"
"hdisk6" "0x00071542 0xe0f1cc17 0x00000000 0x00000000"
"hdisk5" "0x00071542 0xe0f18309 0x00000000 0x00000000"
"hdisk4" "0x0021768a 0x9378cb88 0x00000000 0x00000000"
"hdisk3" "0x00000000 0x035d72e7 0x00000000 0x00000000"
"hdisk2" "0x00050592 0x247553da 0x00000000 0x00000000"

Writing an event response script
An event response script will have the following environment variables set when it 
is started by RMC:

ERRM_COND_HANDLE The condition resource handle that caused the 
event, represented as a string of six hexadecimal 
integers that are separated by spaces.

ERRM_COND_NAME The name of the condition resource that caused 
the event. It is enclosed within double quotation 
marks.

ERRM_COND_SEVERITY The significance of the Condition resource that 
caused the event. For the severity attribute values 
of 0, 1, and 2, this environment variable has the 
following values; informational, warning, and 
critical. All other Condition resource severity 
attribute values are represented in this environment 
variable as a decimal string.

ERRM_COND_SEVERITYID The significance of the Condition resource that 
caused the event. For the severity attribute values of 
0, 1, and 2, this environment variable has the 
following values: informational, warning, and critical. 
All other Condition resource severity attribute values 
are represented in this environment variable as a 
decimal string.

ERRM_ER_HANDLE The event response resource handle for this event. 
It is represented as a string of six hexadecimal 
integers that are separated by spaces.

ERRM_ER_NAME The name of the event response resource that is 
executing this command. It is enclosed within 
double quotation marks.

 

 

 

 

 Chapter 41. APIs for performance monitoring 833



ERRM_RSRC_HANDLE The resource handle of the resource whose state 
change caused the generation of this event. It is 
represented as a string of six hexadecimal integers 
that are separated by spaces.

ERRM_RSRC_NAME The name of the resource whose dynamic attribute 
changed to cause this event. It is enclosed within 
double quotation marks.

ERRM_RSRC_CLASS_NAME
The name of the resource class of the dynamic 
attribute that caused the event to occur. It is 
enclosed within double quotation marks.

ERRM_RSRC_CLASS_PNAME
The name of the resource class of the dynamic 
attribute (enclosed within double quotation marks) 
that caused the event to occur; set to the 
programmatic name of the class that caused the 
event to occur.

ERRM_TIME The time the event occurred written as a decimal 
string that represents the time since midnight 
January 1, 1970, in seconds, followed by a comma 
and the number of microseconds. 

ERRM_TYPE The type of event that occurred. The two possible 
values for this environment variable are event and 
rearm event. 

ERRM_TYPEID The type of event that occurred. The two possible 
values for this environment variable are event and 
rearm event.

ERRM_EXPR The expression that was evaluated that caused the 
generation of this event. This could be either the 
event or rearm expression, depending on the type 
of event that occurred. This can be determined by 
the value of ERRM_TYPE. 

ERRM_ATTR_NAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
occur. A variable name is restricted to include only 
7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character.

ERRM_ATTR_PNAME The programmatic name of the dynamic attribute 
used in the expression that caused this event to 
occur. A variable name is restricted to include only 

 

 

 

 

834 AIX 5L Performance Tools Handbook



7-bit ASCII characters that are alphanumeric (a-z, 
A-Z, 0-9) and the underscore character (_). The 
name must begin with an alphabetic character. 

ERRM_DATA_TYPE RMC ct_data_type_t of the dynamic attribute that 
changed to cause this event.

ERRM_VALUE The value of the dynamic attribute that caused the 
event to occur for all dynamic attributes except 
those with a data type of CT_NONE. 

ERRM_SD_DATA_TYPES The data type for each element within the 
structured data (SD) variable separated by 
commas. This environment variable is only defined 
when ERRM_DATA_TYPE is CT_SD_PTR.

The ERRM_TIME is a string with the current time in seconds. This must be 
converted into the current time in a more readable format. Example 41-33 uses 
perl for the conversion.

Example 41-33   Using perl to convert ERRM_TIME

perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );'

The basic script in Example 41-34 is an example of how to send an e-mail to the 
root user when a condition occurs that triggers the activation of the event 
response script.

Example 41-34   Example event response script

#!/bin/ksh
_message () {
cat  <<-EOF | tee -a /tmp/debug.out
        TIME OF EVENT : $EVENTTIME
        CONDITION     : $ERRM_COND_NAME
        SERVERITY     : $ERRM_COND_SEVERITY
        EVENT TYPE    : $ERRM_TYPE
        EXPRESSION    : $ERRM_EXPR
        RESOURCE NAME : $ERRM_RSRC_NAME
        RESOURCE CLASS: $ERRM_RSRC_CLASS_NAME
        DATA TYPE     : $ERRM_DATA_TYPE
        DATA VALUE    : $ERRM_VALUE
EOF
}
EVENTTIME=$(perl -e 'use POSIX qw(strftime);print strftime("%Y-%m-%d 
%T",localtime('${ERRM_TIME%,*}') );')
_message | mail -s “RSCT: ERRM_COND_NAME $ERRM_COND_SEVERITY” root

 

 

 

 

 Chapter 41. APIs for performance monitoring 835



Creating a condition
A condition is needed for monitoring of a metric to be performed. To define a 
condition, use the mkcondition command. In Example 41-35 a condition is 
defined to use the IBM.FileSystem resource manager.

Example 41-35   Creating a condition with the mkcondition command

# mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" -E "PercentTotUsed < 
85" -d "Generate event when /home > 90% full" -D "Restart monitoring /home 
again after back down < 85% full" -s 'Name=="/home"' "_EVENT 12345"

This example creates a condition that monitors the /home filesystem and, when 
the evaluation of PercentTotUsed > 90 is true, it generate an event named 
"_EVENT 12345" and the monitoring stops. When the expression PercentTotUsed 
< 85 becomes true, monitoring will restart. This is to prevent an event from being 
generated repeatedly and indefinitely.

By default, conditions generate informational events. Because we did not specify 
anything else, the chcondition command can be used to change it to a critical 
condition.

chcondition -S c "_EVENT 12345"

To check how the definition of the condition looks to RMC, use the lscondition 
command as in Example 41-36.

Example 41-36   Using the lscondition command

# lscondition "_EVENT 12345"
Displaying condition information:

condition 1:
    Name             = "_EVENT 12345"
    MonitorStatus    = "Not monitored"
    ResourceClass    = "IBM.FileSystem"
    EventExpression  = "PercentTotUsed > 90"
    EventDescription = "Generate event when /home > 90% full"
    RearmExpression  = "PercentTotUsed < 85"
    RearmDescription = "Restart monitoring /home again after back down < 85% 
full"
    SelectionString  = 'Name=="/home"'
    Severity         = "c"
    NodeNames        = {"localnode"}

Note: The output is also appended to a debug file in /tmp named debug.out. It 
can be helpful to use logfiles when developing event response scripts.

 

 

 

 

836 AIX 5L Performance Tools Handbook



Creating a response to a condition event
In order to perform an action when a condition is activated, a response is needed. 
In the following example we create a response that activates the script shown in 
Example 41-34 on page 835. We define our event response script to RMC:

mkresponse -n rsct.trapevent -s /rcm/rsct.trapevent rsct.trapevent

This created event response has all stdout discarded (we did not specify the -o 
flag), will be active only when an event occurs (-e flag), and will be active all days 
and hours in the week (we did not specify otherwise with the -d and -t flags).

To check how the definition of our response looks to RMC, we can use the 
lsresponse command as in Example 41-37.

Example 41-37   Using the lsresponse command

# lsresponse rsct.trapevent
Displaying response information:

    ResponseName    = "rsct.trapevent"
    Action          = "rsct.trapevent"
    DaysOfWeek      = 1-7
    TimeOfDay       = 0000-2400
    ActionScript    = "/rcm/rsct.trapevent"
    ReturnCode      = 0
    CheckReturnCode = "n"
    EventType       = "a"
    StandardOut     = "n"

Associating response with condition
To associate an event condition, such as our condition "_EVENT 12345", with an 
event response, such as our response "rsct.trapevent", we use the 
mkcondresp command:

mkcondresp  "_EVENT 12345" "rsct.trapevent"

To check how the definition of our condition/response connection looks to RMC, 
we can use the lscondresp command as in Example 41-38.

Example 41-38   Using the lscondresp command

# lscondresp _EVENT
Displaying condition with response information:

condition-response link 1:
    Condition = "_EVENT 12345"
    Response  = "rsct.trapevent"
    State     = "Not active"

 

 

 

 

 Chapter 41. APIs for performance monitoring 837



Note that we only used the first part of the condition name (_EVENT). It is also 
possible to use wildcards with a similar syntax to the grep command. 
Example 41-39 illustrates how to use wildcards with the lscondresp command.

Example 41-39   Using the lscondresp command with wildcards

# lscondresp "_EVEN.*6"
Displaying condition with response information:        
                                                       
condition-response link 1:                             
        Condition = "_EVENT 12346"                     
        Response  = "rsct.trapevent2"                   
        State     = "Active" 

If we were to leave out the search expression for the lscondresp command, we 
would get a line view of all the condition/response connections that are defined 
on the system as is shown in Example 41-40. Because we prefixed our condition 
name with a underscore (_), it will show up at the top of all listings.

Example 41-40   Using the lscondresp command

# lscondresp
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Not active"
...(lines omitted)...

The output above shows the output from the lscondresp command in the two 
previous examples. The condition/response is not active ("Not active").

Activating monitoring of a condition
To activate monitoring of a condition, we use the startcondresp command. For 
our condition "_EVENT 12345" it would be done as follows:

startcondresp "_EVENT 12345"

After running the startcondresp command, the “_EVENT 12345" condition with 
the "rsct.trapevent" response will be monitored (Active) as is shown in the 
sample output in Example 41-41.

Example 41-41   Using the lscondresp command

# lscondresp
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Active"

 

 

 

 

838 AIX 5L Performance Tools Handbook



When we check the condition again with the lscondition command it will look 
something like the output in Example 41-42 and indicate that the condition is now 
"Monitored".

Example 41-42   Using the lscondition command

# lscondition _EVENT
Displaying condition information:

condition 1:
    Name             = "_EVENT 12345"
    MonitorStatus    = "Monitored"
    ResourceClass    = "IBM.FileSystem"
    EventExpression  = "PercentTotUsed > 90"
    EventDescription = "Generate event when /home > 90% full"
    RearmExpression  = "PercentTotUsed < 85"
    RearmDescription = "Restart monitoring /home again after back down < 85% 
full"
    SelectionString  = 'Name=="/home"'
    Severity         = "c"
    NodeNames        = {"localnode"}

The startcondresp command can also be used to create a condition-response 
association, such as our condition "_EVENT 12345", with a event response, such 
as our response "rsct.trapevent" as the following example shows:

startcondresp  "_EVENT 12345" "rsct.trapevent"

Note, however, that this both creates a condition-response association and 
activates it, as the lscondresp command as Example 41-43 shows. (Refer to 
“Associating response with condition” on page 837.)

Example 41-43   Using the startcondresp and lscondresp commands

# startcondresp "_EVENT 12345" "rsct.trapevent"

# lscondresp _EVENT
Displaying condition with response information:

condition-response link 1:
        Condition = "_EVENT 12345"
        Response  = "rsct.trapevent"
        State     = "Active"

How the condition/response event generation is done
When the event-generating expressions for the “_EVENT 12345” condition 
becomes true, our shell script generates an e-mail message that looks similar to 
the output in Example 41-44 on page 840.

 

 

 

 

 Chapter 41. APIs for performance monitoring 839



Example 41-44   Sample e-mail output

# inc
Incorporating new mail into inbox...

8+ 04/14 To:root@wlmhost    RSCT: 2003-04-14 19:14:41 _EVENT /home >90% USED  
<<TIME O

# show 8
(Message inbox:8)
Received: (from root@localhost) by wlmhost (AIX5.2/8.11.0/8.11.0) id 
f4F0Ffx22176 for root; Mon, 14 April 2003 19:15:41 -0500
Date: Mon, 14 April 2003 19:15:41 -0500
From: root
Message-Id: <200105150015.f4F0Ffx22176@wlmhost>
To: root
Subject: RSCT: 2003-04-14 19:14:41 _EVENT 12345

TIME OF EVENT : 2003-04-14 19:14:41

CONDITION     : _EVENT 12345
SERVERITY     : Informational
EVENT TYPE    : Event
EXPRESSION    : PercentTotUsed > 90

RESOURCE NAME : /home
RESOURCE CLASS: File System
DATA TYPE     : CT_INT32
DATA VALUE    : 77

We used the Mail Handler (MH) commands inc and show; this e-mail is the 
current one (8+). Because our event response script also appended the output to 
a file in the /tmp directory named debug.out, Example 41-45 shows how the 
same event would look in the file.

Example 41-45   Using tail -f to track the /tmp/debug.out file

# tail -f /tmp/debug.out
TIME OF EVENT : 2001-05-14 19:14:41

CONDITION     : _EVENT /home >90% USED
SERVERITY     : Informational
EVENT TYPE    : Event
EXPRESSION    : PercentTotUsed > 90
RESOURCE NAME : /home
RESOURCE CLASS: File System
DATA TYPE     : CT_INT32
DATA VALUE    : 77

 

 

 

 

840 AIX 5L Performance Tools Handbook



Stop monitoring a condition
To stop monitoring a condition, use the stopcondresp command (here applied to 
our sample condition/response monitoring event for the /home filesystem):

stopcondresp "_EVENT 12345"

To verify that the monitoring has stopped, use the lscondresp command as in 
Example 41-46.

Example 41-46   Using the lscondresp command

# lscondresp "_EVENT 12345"
Displaying condition with response information:
Condition      Response         State
"_EVENT 12345" "rsct.trapevent" "Not active"

Removing a response definition
To remove a response definition, you must first remove any condition-response 
associations for the response definition. This can be accomplished by using the -f 
flag with the rmresponse command:

rmresponse -f rsct.trapevent

To perform the same operation in steps, first disassociate the response from the 
condition (in our example, between the "_EVENT 12345" condition and 
“rsct.trapevent” response) as shown below:

rmcondresp "_EVENT 12345" “rsct.trapevent”

After this is done, the response definition can be removed:

rmresponse rsct.trapevent

Removing a condition
To remove a condition, it is first necessary to remove any condition-response 
associations for the condition. This can be accomplished by using the -f flag with 
the rmcondition command as shown below:

rmcondition -f "_EVENT 12345"

To perform the same operation in steps, first disassociate the response from the 
condition (in our example, between the "_EVENT 12345" condition and 
“rsct.trapevent” response):

rmcondresp "_EVENT 12345" “rsct.trapevent”

After this is done the condition can be removed:

rmcondition "_EVENT 12345"

 

 

 

 

 Chapter 41. APIs for performance monitoring 841



41.5  Miscellaneous performance monitoring subroutines
In this section we describe the use of some subroutines that are available to 
programmers from different libraries. The documentation for the subroutines can 
be found in the AIX 5L Version 5.2 Technical Reference: Base Operating System 
and Extensions, Volume 1 & 2.

41.5.1  Compiling and linking
Many of the subroutines described in this section require different libraries to be 
linked with the program. For each subroutine that requires a specific library this is 
mentioned. The general syntax for compiling and linking is:

cc -lLIBRARY -o program program.c

This creates the program executable file from the program.c source program, 
linking it with the libLIBRARY.a library. Then program can be run as a normal 
command.

41.5.2  Subroutines
The following subroutines can be used to obtain statistical metrics:

sys_parm Provides a service for examining or setting kernel 
run-time tunable parameters.

vmgetinfo Retrieves Virtual Memory Manager (VMM) information.

swapqry Returns paging device status.

rstat Gets performance data from remote kernels.

getprocs Gets process table entries.

wlm_get_info Reads the characteristics of superclasses or subclasses.

wlm_get_bio_stats Reads the WLM disk I/O statistics per class or per device.

sys_parm
The sys_parm subroutine is used to query and/or customize run-time operating 
system parameters. This is a replacement service for sysconfig with respect to 
querying or changing information in the var structure. 

Syntax
int cmd;
int parmflag;
struct vario *parmp;

int sys_parm ( cmd, parmflag, parmp)

 

 

 

 

842 AIX 5L Performance Tools Handbook



Parameters
cmd  Specifies the SYSP_GET or SYSP_SET function.  

parmflag  Specifies the parameter upon which the function will act.  

parmp  Points to the user-specified structure from which or to 
which the system parameter value is copied. parmp points 
to a structure of type vario as defined in var.h.  

Library
libc.a

Examples
The code in Example 41-47 uses the vario structure to obtain information about 
the run-time operating system parameters.

Example 41-47   Using sys_param

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
sys_param_()
{
    struct vario    vario;

    if (!sys_parm(SYSP_GET,SYSP_V_BUFHW,&vario))
        printf("v_bufhw (buffer pool high-water mark)                 : %lld\n",vario.v.v_bufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MBUFHW,&vario))
        printf("v_mbufhw (max. mbufs high water mark)                 : %lld\n", vario.v.v_mbufhw.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario))
        printf("v_maxup (max. # of user processes)                    : %lld\n", vario.v.v_maxup.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario))
        printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", vario.v.v_maxpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario))
        printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", vario.v.v_minpout.value);
    if (!sys_parm(SYSP_GET,SYSP_V_IOSTRUN,&vario))
        printf("v_iostrun (enable disk i/o history)                   : %d\n", vario.v.v_iostrun.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LEASTPRIV,&vario))
        printf("v_leastpriv (least privilege enablement)              : %d\n", vario.v.v_leastpriv.value);
    if (!sys_parm(SYSP_GET,SYSP_V_AUTOST,&vario))
        printf("v_autost (automatic boot after halt)                  : %d\n", vario.v.v_autost.value);
    if (!sys_parm(SYSP_GET,SYSP_V_MEMSCRUB,&vario))
        printf("v_memscrub (memory scrubbing enabled)                 : %d\n", vario.v.v_memscrub.value);
    if (!sys_parm(SYSP_GET,SYSP_V_LOCK,&vario))
        printf("v_lock (# entries in record lock table)               : %lld\n", vario.v.v_lock.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario))
        printf("v_file (# entries in open file table)                 : %lld\n", vario.v.v_file.value);
    if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario))
        printf("v_proc (max # of system processes)                    : %lld\n", vario.v.v_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_PROC,&vario))
        printf("ve_proc (process table high water mark (64 Krnl))     : %llu\n", vario.v.ve_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CLIST,&vario))
        printf("v_clist (# of cblocks in cblock array)                : %lld\n", vario.v.v_clist.value);

 

 

 

 

 Chapter 41. APIs for performance monitoring 843



    if (!sys_parm(SYSP_GET,SYSP_V_THREAD,&vario))
        printf("v_thread (max # of system threads)                    : %lld\n", vario.v.v_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VE_THREAD,&vario))
        printf("ve_thread (thread table high water mark (64 Krnl))    : %llu\n", vario.v.ve_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_PROC,&vario))
        printf("vb_proc (beginning of process table (64 Krnl))        : %llu\n", vario.v.vb_proc.value);
    if (!sys_parm(SYSP_GET,SYSP_VB_THREAD,&vario))
        printf("vb_thread (beginning of thread table (64 Krnl))       : %llu\n", vario.v.vb_thread.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        printf("v_ncpus (number of active CPUs)                       : %d\n", vario.v.v_ncpus.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario))
        printf("v_ncpus_cfg (number of processor configured)          : %d\n", vario.v.v_ncpus_cfg.value);
    if (!sys_parm(SYSP_GET,SYSP_V_FULLCORE,&vario))
        printf("v_fullcore (full core enabled (true/false))           : %d\n", vario.v.v_fullcore.value);
    if (!sys_parm(SYSP_GET,SYSP_V_INITLVL,&vario))
        printf("v_initlvl (init level)                                : %s\n", vario.v.v_initlvl.value);
    if (!sys_parm(SYSP_GET,SYSP_V_COREFORMAT,&vario))
        printf("v_coreformat (Core File Format (64 Krnl))             : %s\n", vario.v.v_coreformat.value);
    if (!sys_parm(SYSP_GET,SYSP_V_XMGC,&vario))
        printf("v_xmgc (xmalloc garbage collect delay)                : %d\n", vario.v.v_xmgc.value);
    if (!sys_parm(SYSP_GET,SYSP_V_CPUGUARD,&vario))
        printf("v_cpuguard (CPU Guarding Mode (true/false))           : %d\n", vario.v.v_cpuguard.value);
    if (!sys_parm(SYSP_GET,SYSP_V_NCARGS,&vario))
        printf("v_ncargs (length of args,env for exec())              : %d\n", vario.v.v_ncargs.value);
}
main()                 
{ 
sys_param_();
} 

Example 41-48 shows the output from the program above.

Example 41-48   Sample output from the sys_param subroutine program

v_bufhw (buffer pool high-water mark)                 : 20        
v_mbufhw (max. mbufs high water mark)                 : 0         
v_maxup (max. # of user processes)                    : 1000      
v_maxpout (# of file pageouts at which waiting occurs): 0         
v_minpout (# of file pageout at which ready occurs)   : 0         
v_iostrun (enable disk i/o history)                   : 1         
v_leastpriv (least privilege enablement)              : 0         
v_autost (automatic boot after halt)                  : 0         
v_memscrub (memory scrubbing enabled)                 : 0         
v_lock (# entries in record lock table)               : 200       
v_file (# entries in open file table)                 : 511       
v_proc (max # of system processes)                    : 262144    
ve_proc (process table high water mark (64 Krnl))     : 3791704576
v_clist (# of cblocks in cblock array)                : 16384     
v_thread (max # of system threads)                    : 524288    
ve_thread (thread table high water mark (64 Krnl))    : 3925887872
vb_proc (beginning of process table (64 Krnl))        : 3791650816
vb_thread (beginning of thread table (64 Krnl))       : 3925868544

 

 

 

 

844 AIX 5L Performance Tools Handbook



v_ncpus (number of active CPUs)                       : 4         
v_ncpus_cfg (number of processor configured)          : 4         
v_fullcore (full core enabled (true/false))           : 0         
v_initlvl (init level)                                :           
v_coreformat (Core File Format (64 Krnl))             :           
v_xmgc (xmalloc garbage collect delay)                : 3000      
v_cpuguard (CPU Guarding Mode (true/false))           : 0         
v_ncargs (length of args,env for exec())              : 6 

vmgetinfo
The vmgetinfo subroutine returns the current value of certain Virtual Memory 
Manager parameters. 

Syntax
void *out;
int command;
int arg;

int vmgetinfo(out, command, arg) 

Parameters
arg  Additional parameter that depends on the command parameter.  

command  Specifies which information should be returned. The command 
parameter has the following valid value: VMINFO 

out  Specifies the address where VMM information should be returned.  

Library
libc.a

Example
The code in Example 41-49 uses the vminfo structure to obtain information about 
certain VMM parameters.

Example 41-49   Using vmgetinfo

#include <stdio.h>
#include <stdlib.h>
#include <sys/vminfo.h>                                                                                   
vmgetinfo_()                                                                                              
{                                                                                                         
    struct vminfo   vminfo;                                                                               
                                                                                                          
    if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {                                                      
        printf("vminfo.pgexct (count of page faults)                        : %lld\n",vminfo.pgexct);     
        printf("vminfo.pgrclm (count of page reclaims)                      : %lld\n",vminfo.pgrclm);     
        printf("vminfo.lockexct (count of lockmisse)                        : %lld\n",vminfo.lockexct);   
        printf("vminfo.backtrks (count of backtracks)                       : %lld\n",vminfo.backtrks);   

 

 

 

 

 Chapter 41. APIs for performance monitoring 845



        printf("vminfo.pageins (count of pages paged in)                    : %lld\n",vminfo.pageins);    
        printf("vminfo.pageouts (count of pages paged out)                  : %lld\n",vminfo.pageouts);   
        printf("vminfo.pgspgins (count of page ins from paging space)       : %lld\n",vminfo.pgspgins);   
        printf("vminfo.pgspgouts (count of page outs from paging space)     : %lld\n",vminfo.pgspgouts);  
        printf("vminfo.numsios (count of start I/Os)                        : %lld\n",vminfo.numsios);    
        printf("vminfo.numiodone (count of iodones)                         : %lld\n",vminfo.numiodone);  
        printf("vminfo.zerofills (count of zero filled pages)               : %lld\n",vminfo.zerofills);  
        printf("vminfo.exfills (count of exec filled pages)                 : %lld\n",vminfo.exfills);    
        printf("vminfo.scans (count of page scans by clock)                 : %lld\n",vminfo.scans);      
        printf("vminfo.cycles (count of clock hand cycles)                  : %lld\n",vminfo.cycles);     
        printf("vminfo.pgsteals (count of page steals)                      : %lld\n",vminfo.pgsteals);   
        printf("vminfo.freewts (count of free frame waits)                  : %lld\n",vminfo.freewts);    
        printf("vminfo.extendwts (count of extend XPT waits)                : %lld\n",vminfo.extendwts);  
        printf("vminfo.pendiowts (count of pending I/O waits)               : %lld\n",vminfo.pendiowts);  
        printf("vminfo.pings (count of ping-pongs: source => alias)         : %lld\n",vminfo.pings);      
        printf("vminfo.pangs (count of ping-pongs):alias => alias)          : %lld\n",vminfo.pangs);      
        printf("vminfo.pongs (count of ping-pongs):alias => source)         : %lld\n",vminfo.pongs);      
        printf("vminfo.dpongs (count of ping-pongs):alias page delete)      : %lld\n",vminfo.dpongs);     
        printf("vminfo.wpongs (count of ping-pongs):alias page writes)      : %lld\n",vminfo.wpongs);     
        printf("vminfo.cachef (count of ping-pong cache flushes)            : %lld\n",vminfo.cachef);     
        printf("vminfo.cachei (count of ping-pong cache invalidates)        : %lld\n",vminfo.cachei);     
        printf("vminfo.numfrb (number of pages on free list)                : %lld\n",vminfo.numfrb);     
        printf("vminfo.numclient (number of client frames)                  : %lld\n",vminfo.numclient);  
        printf("vminfo.numcompress (no of frames in compressed segments)    : %lld\n",vminfo.numcompress);
        printf("vminfo.numperm (number frames non-working segments)         : %lld\n",vminfo.numperm);    
        printf("vminfo.maxperm (max number of frames non-working)           : %lld\n",vminfo.maxperm);    
        printf("vminfo.memsizepgs (real memory size in 4K pages)            : %lld\n",vminfo.memsizepgs); 
        printf("vminfo.minperm (no fileonly page steals)                    : %lld\n",vminfo.minperm); 
        printf("vminfo.minfree (minimun pages free list (fblru))            : %lld\n",vminfo.minfree);
        printf("vminfo.maxfree (maxfree pages free list (fblru))            : %lld\n",vminfo.maxfree);
        printf("vminfo.maxclient (max number of client frames)              : %lld\n",vminfo.maxclient);
        printf("vminfo.rpgcnt[0] (repaging cnt)                             : %lld\n",vminfo.rpgcnt[0]);
        printf("vminfo.rpgcnt[1] (repaging cnt)                             : %lld\n",vminfo.rpgcnt[1]);
        printf("vminfo.numpout (number of fblru page-outs)                  : %lld\n",vminfo.numpout);
        printf("vminfo.numremote (number of fblru remote page-outs)         : %lld\n",vminfo.numremote);
        printf("vminfo.numwseguse (count of pages in use for working seg)   : %lld\n",vminfo.numwseguse);
        printf("vminfo.numpseguse (count of pages in use for persistent seg): %lld\n",vminfo.numpseguse);
        printf("vminfo.numclseguse (count of pages in use for client seg)   : %lld\n",vminfo.numclseguse);
        printf("vminfo.numwsegpin (count of pages pinned for working seg)   : %lld\n",vminfo.numwsegpin);
        printf("vminfo.numpsegpin (count of pages pinned for persistent seg): %lld\n",vminfo.numpsegpin);
        printf("vminfo.numclsegpin (count of pages pinned for client seg)   : %lld\n",vminfo.numclsegpin);
        printf("vminfo.numvpages (accessed virtual pages)                   : %lld\n",vminfo.numvpages);
    }
}
main()                 
{ 
vmgetinfo_();        
} 

Example 41-50 on page 847 shows sample output from the previous program.

 

 

 

 

846 AIX 5L Performance Tools Handbook



Example 41-50   Sample output from the vmgetinfo subroutine program

vminfo.pgexct (count of page faults)                        : 14546505012618220
vminfo.pgrclm (count of page reclaims)                      : 536876590        
vminfo.lockexct (count of lockmisses)                        : 536876658        
vminfo.backtrks (count of backtracks)                       : 120109297309366  
vminfo.pageins (count of pages paged in)                    : 2014365968504570 
vminfo.pageouts (count of pages paged out)                  : 1418138608473918 
vminfo.pgspgins (count of page ins from paging space)       : 3805877901186    
vminfo.pgspgouts (count of page outs from paging space)     : 10523206752198   
vminfo.numsios (count of start I/Os)                        : 3372769634949130 
vminfo.numiodone (count of iodones)                         : 1953278648653902 
vminfo.zerofills (count of zero filled pages)               : 4932190655748242 
vminfo.exfills (count of exec filled pages)                 : 657018864015574  
vminfo.scans (count of page scans by clock)                 : 10112917647137050
vminfo.cycles (count of clock hand cycles)                  : 77846288734      
vminfo.pgsteals (count of page steals)                      : 2602183782570402 
vminfo.freewts (count of free frame waits)                  : 877973456558566  
vminfo.extendwts (count of extend XPT waits)                : 536877610        
vminfo.pendiowts (count of pending I/O waits)               : 731223013988974  
vminfo.pings (count of ping-pongs: source => alias)         : 536877746        
vminfo.pangs (count of ping-pongs):alias => alias)          : 536877814        
vminfo.pongs (count of ping-pongs):alias => source)         : 536877882        
vminfo.dpongs (count of ping-pongs):alias page delete)      : 536877950        
vminfo.wpongs (count of ping-pongs):alias page writes)      : 536878018        
vminfo.cachef (count of ping-pong cache flushes)            : 536878086        
vminfo.cachei (count of ping-pong cache invalidates)        : 536878154        
vminfo.numfrb (number of pages on free list)                : 65345            
vminfo.numclient (number of client frames)                  : 23562            
vminfo.numcompress (no of frames in compressed segments)    : 0                
vminfo.numperm (number frames non-working segments)         : 32535            
vminfo.maxperm (max number of frames non-working)           : 32761            
vminfo.memsizepgs (real memory size in 4K pages)            : 131047           
vminfo.minperm (no fileonly page steals)                    : 6552             
vminfo.minfree (minimun pages free list (fblru))            : 120              
vminfo.maxfree (maxfree pages free list (fblru))            : 128              
vminfo.maxclient (max number of client frames)              : 104016           
vminfo.rpgcnt[0] (repaging cnt)                             : 0                
vminfo.rpgcnt[1] (repaging cnt)                             : 0                
vminfo.numpout (number of fblru page-outs)                  : 0                
vminfo.numremote (number of fblru remote page-outs)         : 0                
vminfo.numwseguse (count of pages in use for working seg)   : 33167            
vminfo.numpseguse (count of pages in use for persistent seg): 8973             
vminfo.numclseguse (count of pages in use for client seg)   : 23562
vminfo.numwsegpin (count of pages pinned for working seg)   : 14195
vminfo.numpsegpin (count of pages pinned for persistent seg): 0
vminfo.numclsegpin (count of pages pinned for client seg)   : 0
vminfo.numvpages (accessed virtual pages)                   : 34567

 

 

 

 

 Chapter 41. APIs for performance monitoring 847



swapqry
The swapqry subroutine returns information to a user-designated buffer about 
active paging and swap devices. 

Syntax
char *PathName;
struct pginfo *Buffer;
int swapqry (PathName,  Buffer)

Parameters
PathName  Specifies the full path name of the block device.  
Buffer  Points to the buffer into which the status is stored. 

Library
libc.a

Example
The code in Example 41-51 uses the pginfo structure to obtain information about 
active paging and swap devices.

Example 41-51   Using swapqry

#include <stdio.h>
#include <stdlib.h>
#include <sys/vminfo.h>                                                                                   
swapqry_()
{
    struct pginfo   pginfo;
    char            device[256];
    char            path[256];
    char            cmd[256];
    FILE            *file;

    bzero(cmd,sizeof(cmd));
    sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk '/name/{gsub(\"\\\"\",\"\",$3);print 
$3}'\n");
    if (file = popen(cmd,"r"))
        while (fscanf(file,"%s\n", &device)!=EOF) {
            sprintf(path,"/dev/%s", device);
            if (!swapqry(path,&pginfo)) {
                printf("pagingspace                      : %s\n",path);
                printf("devno (device number)            : %u\n",pginfo.devno);
                printf("size (size in PAGESIZE blocks)   : %u\n",pginfo.size);
                printf("free  (# of free PAGESIZE blocks): %u\n",pginfo.free);
                printf("iocnt (number of pending i/o's)  : %u\n",pginfo.iocnt);
            }
        }
    pclose(file);

 

 

 

 

848 AIX 5L Performance Tools Handbook



}
main()                 
{ 
    swapqry_();        
} 

Example 41-52 shows the output from the program in Example 41-51 on 
page 848.

Example 41-52   Sample output from the swapqry subroutine program

pagingspace                      : /dev/hd6
devno (device number)            : 655362  
size (size in PAGESIZE blocks)   : 262144  
free  (# of free PAGESIZE blocks): 259240  
iocnt (number of pending i/o's)  : 0 

rstat
The rstat subroutine gathers statistics from remote kernels. These statistics are 
available on items such as paging, swapping, and CPU utilization. It 
communicates with the rstatd service.

Syntax
char *host;
struct statstime *statp;

rstat (host, statp) 

Parameters
host  Specifies the name of the machine to be contacted to 

obtain statistics found in the statp parameter.  

statp  Contains statistics from host. 

Library
librpcsvc.a

Example
The code in Example 41-53 uses the statstime structure to obtain statistics from 
the remote host specified in the host variable.

Example 41-53   Using rstat

#include <stdio.h>
#include <stdlib.h>
#include <rpcsvc/rstat.h>
rstat_(char *host)
{

 

 

 

 

 Chapter 41. APIs for performance monitoring 849



    struct statstime statstime;
    if (!rstat(host, &statstime)) {
        printf("host         : %s\n",host);
        printf("cp_time[0]   : %d\n",statstime.cp_time[0]);
        printf("cp_time[1]   : %d\n",statstime.cp_time[1]);
        printf("cp_time[2]   : %d\n",statstime.cp_time[2]);
        printf("cp_time[3]   : %d\n",statstime.cp_time[3]);
        printf("dk_xfer[0]   : %d\n",statstime.dk_xfer[0]);
        printf("dk_xfer[1]   : %d\n",statstime.dk_xfer[1]);
        printf("dk_xfer[2]   : %d\n",statstime.dk_xfer[2]);
        printf("dk_xfer[3]   : %d\n",statstime.dk_xfer[3]);
        printf("v_pgpgin     : %u\n",statstime.v_pgpgin);
        printf("v_pgpgout    : %u\n",statstime.v_pgpgout);
        printf("v_pswpin     : %u\n",statstime.v_pswpin);
        printf("v_pswpout    : %u\n",statstime.v_pswpout);
        printf("v_intr       : %u\n",statstime.v_intr);
        printf("if_ipackets  : %d\n",statstime.if_ipackets);
        printf("if_ierrors   : %d\n",statstime.if_ierrors);
        printf("if_opackets  : %d\n",statstime.if_opackets);
        printf("if_oerrors   : %d\n",statstime.if_oerrors);
        printf("if_collisions: %d\n",statstime.if_collisions);
        printf("v_swtch      : %d\n",statstime.v_swtch);
        printf("avenrun[0]   : %d\n",statstime.avenrun[0]);
        printf("avenrun[1]   : %d\n",statstime.avenrun[1]);
        printf("avenrun[2]   : %d\n",statstime.avenrun[2]);
        printf("boottime     : %s",ctime(&statstime.boottime.tv_sec));
        printf("curtime      : %s",ctime(&statstime.curtime.tv_sec));
    }
}
main()                 
{ 
    rstat_("wlmhost"); 
} 

The librpcsvc.a library contains the rstat subroutine. Link this library to the cc 
command with the -lrpcsvc flag as follows:

cc -lrpcsvc -o <program> <program>.c

Example 41-54 shows the output from running the program above.

Example 41-54   Sample output from the rstat subroutine program

host         : wlmhost                 
cp_time[0]   : 28498                   

Note: This line must be enabled in /etc/inetd.conf for the rstat subroutine to work:

rstatd sunrpc_udp udp wait root /usr/sbin/rpc.rstatd rstatd 100001 1-3

 

 

 

 

850 AIX 5L Performance Tools Handbook



cp_time[1]   : 0                       
cp_time[2]   : 0                       
cp_time[3]   : 10747805                
dk_xfer[0]   : 24944                   
dk_xfer[1]   : 361                     
dk_xfer[2]   : 31                      
dk_xfer[3]   : 31                      
v_pgpgin     : 469012                  
v_pgpgout    : 330709                  
v_pswpin     : 886                     
v_pswpout    : 2458                    
v_intr       : 44313756                
if_ipackets  : 436778                  
if_ierrors   : 0                       
if_opackets  : 240334                  
if_oerrors   : 4                       
if_collisions: 0                       
v_swtch      : 7168446                 
avenrun[0]   : 3                       
avenrun[1]   : 5                       
avenrun[2]   : 3                       
boottime     : Mon Jun  4 08:01:53 2001
curtime      : Tue Jun  5 13:01:36 2001

getprocs
The getprocs subroutine returns information about processes, including process 
table information defined by the procsinfo structure, and information about the 
per-process file descriptors defined by the fdsinfo structure.

Syntax
struct procsinfo *ProcessBuffer;
or struct procsinfo64 *ProcessBuffer;
int ProcessSize;
struct fdsinfo *FileBuffer;
int FileSize;
pid_t *IndexPointer;
int Count;

int getprocs(ProcessBuffer,ProcessSize,FileBuffer,FileSize,IndexPointer,Count)

Parameters
ProcessBuffer Specifies the starting address of an array of procsinfo, 

procsinfo64, or procentry64 structures to be filled in with process 
table entries. If a value of NULL is passed for this parameter, the 
getprocs subroutine scans the process table and sets return 
values as normal, but no process entries are retrieved. 

 

 

 

 

 Chapter 41. APIs for performance monitoring 851



ProcessSize Specifies the size of a single procsinfo, procsinfo64, or 
procentry64 structure. 

FileBuffer Specifies the starting address of an array of fdsinfo or fdsinfo64 
structures to be filled in with per-process file descriptor 
information. If a value of NULL is passed for this parameter, the 
getprocs subroutine scans the process table and sets return 
values as normal, but no file descriptor entries are retrieved. 

FileSize Specifies the size of a single fdsinfo or fdsinfo64 structure. 

IndexPointer Specifies the address of a process identifier, which indicates the 
required process table entry. A process identifier of zero selects 
the first entry in the table. The process identifier is updated to 
indicate the next entry to be retrieved. 

Count Specifies the number of process table entries requested. 

Library
libc.a

Example
The code in Example 41-55 uses the procsinfo structure to obtain information 
about processes.

Example 41-55   Using getprocs

#include <procinfo.h>                                                                      
#include <sys/proc.h>                                                                      
getprocs_()                                                                                
{                                                                                          
    struct procsinfo    ps[8192];                                                          
    pid_t               index = 0;                                                         
    int                 nprocs;                                                            
    int                 i;                                                                 
    char                state;                                                             
                                                                                           
    if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 8192)) > 0) {   
        printf("total # %-8d %3s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",nprocs,        
            "cmd","state","pid","ppid","uid",                                              
            "nice","#thrd","io/4k","size",                                                 
            "%real","io/b");                                                               
        for (i=0; i<nprocs; i++) {                                                         
            if (ps[i].pi_pid == 0) strcpy(ps[i].pi_comm,"swapper");                        
            if (ps[i].pi_comm[0] == '') strcpy(ps[i].pi_comm,"zombie");                    
            switch (ps[i].pi_state) {                                                      
                case SNONE:     state='E'; break;                                          
                case SIDL:      state='C'; break;                                          
                case SZOMB:     state='Z'; break;                                          
                case SSTOP:     state='S'; break;                                          

 

 

 

 

852 AIX 5L Performance Tools Handbook



                case SACTIVE:   state='A'; break;                                          
                case SSWAP:     state='P'; break;                                          
            }                                                                              
            printf("%20s %5c %5d %5d %5d %5d %5d %5d %5d %5d %5d\n",                       
                ps[i].pi_comm, state, ps[i].pi_pid, ps[i].pi_ppid, ps[i].pi_uid,           
                ps[i].pi_nice, ps[i].pi_thcount, ps[i].pi_majflt, ps[i].pi_size,           
                ps[i].pi_prm, ps[i].pi_ioch);                                              
        }                                                                                  
    }                                                                                      
} 
main()                 
{ 
    getprocs_();   
} 

Example 41-56 shows the output from running the example program above.

Example 41-56   Sample output from the getprocs subroutine program

total # 65       cmd state   pid  ppid   uid  nice #thrd io/4k  size %real  io/b
             swapper     A     0     0     0    41     1     7     3     6     0
                init     A     1     0     0    20     1    91   203     0 94344704
                wait     A   516     0     0    41     1     0     2     6     0
                wait     A   774     0     0    41     1     0     2     6     0
                wait     A  1032     0     0    41     1     0     2     6     0
                wait     A  1290     0     0    41     1     0     2     6     0
                lrud     A  1548     0     0    41     1     0     3     6     0
                xmgc     A  1806     0     0    41     1     0     4     6     0
                netm     A  2064     0     0    41     1     1     4     6     0
                 gil     A  2322     0     0    41     5     0    16     6     0
            wlmsched     A  2580     0     0    41     1     0     4     6     0
                 dog     A  3184     1     0    20     4     0    10     6     0
               lvmbb     A  3372     0     0    20     1     0     4     6     0
                 bsh     A  4602     1     0    22     1     0   314     0 10949
...(lines omitted)...

wlm_get_info
The wlm_get_info subroutine is used to get the characteristics of the classes 
defined in the active Workload Manager (WLM) configuration, together with their 
current resource usage statistics. 

Syntax
struct wlm_args *wlmargs;
struct wlm_info *info
int *count

int wlm_get_info ( wlmargs, info, count)

 

 

 

 

 Chapter 41. APIs for performance monitoring 853



Parameters
wlmargs The address of a struct wlm_args data structure. The 

versflags fields of the wlm_args structure must be 
provided and initialized with WLM_VERSION. Optionally, 
the following flag values can be or'ed to WLM_VERSION: 
WLM_SUPER_ONLY, WLM_SUB_ONLY, 
WLM_VERBOSE_MODE. WLM_SUPER_ONLY and 
WLM_SUB_ONLY are mutually exclusive. 

name Contains either a null string or the name of a valid 
superclass or subclass (in the form Super.Sub). This field 
can be used in conjunction with the flags to further narrow 
the scope of wlm_get_info.

All the other fields of the wlm_args structure can be left 
uninitialized. 

info The address of an array of structures of type struct 
wlm_info. Upon successful return from wlm_get_info, this 
array contains the WLM statistics for the classes selected. 

count The address of an integer containing the maximum 
number of elements (of type wlm_info) for wlm_get_info to 
copy into the array above. If the call to wlm_get_info is 
successful, this integer contains the number of elements 
actually copied. If the initial value is equal to zero (0), 
wlm_get_info sets this value to the number of classes 
selected by the specified combination of versflags and 
name above. 

Library
libwlm.a

Example
The code in Example 41-57 uses the wlm_info structure to obtain information 
about characteristics of the active WLM classes.

Example 41-57   Using wlm_get_info

#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_info_()
{
    struct wlm_args wlmargs;
    struct wlm_info *wlminfo;
    int             wlmcount = 0;
    int             i=0;

 

 

 

 

854 AIX 5L Performance Tools Handbook



    if (!wlm_initialize(WLM_VERSION)) {
        wlmargs.versflags = WLM_VERSION;
        bzero(wlmargs.cl_def.data.descr.name,sizeof(wlmargs.cl_def.data.descr.name));
        if (!wlm_get_info(&wlmargs,NULL,&wlmcount) && wlmcount > 0) {
            wlminfo = malloc(wlmcount*sizeof(struct wlm_info));
            if (!wlm_get_info(&wlmargs,wlminfo,&wlmcount)) {
                printf("%-15s %8s %8s %8s %8s %8s %8s\n",

 "Class","Tier","Id","Pri","Inuse","#Pages","ChgLvl");
                for (i = 0; i< wlmcount; i++) {
                    printf("%-15s %8d %8d %8d %8d %8d %8d\n",

wlminfo[i].i_descr.name, wlminfo[i].i_descr.tier, wlminfo[i].i_class_id,
wlminfo[i].i_cl_pri, wlminfo[i].i_cl_inuse, wlminfo[i].i_cl_npages,
wlminfo[i].i_cl_change_level);

                }
            }
        }
    }
}
main()                 
{ 
    wlm_get_info_();   
} 

Example 41-58 shows how the output of the example program above could look.

Example 41-58   Sample output from the wlm_get_info subroutine program

Class               Tier       Id      Pri    Inuse   #Pages   ChgLvl
Unclassified           0        0       10        1    28911        1
Unmanaged              0       16       10        1    14244        1
Default                0       32       47        3        0        2
Shared                 0       48       47        0     4843        2
System                 6       64      145       54    30695        2
db1                    0       80        0        0        0        1
db1.Default            0       81       23        0        0        2
db1.Shared             0       82       23        0        0        2
db1.sub1               0       83        0        0        0        1
db2                    0       96       47        0        0        1
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine. Link this library to the 
cc command with the -lwlm flag as follows:

cc -lwlm -o <program> <program>.c

 

 

 

 

 Chapter 41. APIs for performance monitoring 855



wlm_get_bio_stats
The wlm_get_bio_stats subroutine is used to get the WLM disk I/O statistics. 
There are two types of statistics available: 

� The statistics about disk I/O utilization per class and per devices, returned by 
wlm_get_bio_stats in wlm_bio_class_info_t structures

� The statistics about the disk I/O utilization per device, all classes combined, 
returned by wlm_get_bio_stats in wlm_bio_dev_info_t structures

Syntax
dev_t dev;
void *array;
int *count;
char *class;
int flags;
int wlm_get_bio_stats ( dev, array, count, class, flags)

Parameters
flags  Must be initialized with WLM_VERSION. Optionally, the following 

flag values can be or'ed to WLM_VERSION: WLM_SUPER_ONLY, 
WLM_SUB_ONLY, WLM_BIO_CLASS_INFO, 
WLM_BIO_DEV_INFO, WLM_BIO_ALL_DEV, 
WLM_BIO_ALL_MINOR, WLM_VERBOSE_MODE. One of the 
mutually exclusive flags WLM_BIO_CLASS_INFO or 
WLM_BIO_DEV_INFO must be specified. WLM_SUPER_ONLY 
and WLM_SUB_ONLY are mutually exclusive. 

dev  Device identification (major, minor) of a disk device. If dev is equal 
to 0, the statistics for all devices are returned (even if 
WLM_BIO_ALL_DEV is not specified in the flags argument). 

array  Pointer to an array of wlm_bio_class_info_t structures (when 
WLM_BIO_CLASS_INFO is specified in the flags argument) or an 
array of wlm_bio_dev_info_t  structures (when 
WLM_BIO_DEV_INFO is specified in the flags argument). A NULL 
pointer can be passed together with a count of 0 to determine how 
many elements are in scope for the set of arguments passed.  

count  The address of an integer containing the maximum number of 
elements to be copied into the array above. If the call to 
wlm_get_bio_stats is successful, this integer will contain the 
number of elements actually copied. If the initial value is equal to 0, 

Note: To initialize the WLM API connection, you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.

 

 

 

 

856 AIX 5L Performance Tools Handbook



wlm_get_bio_stats sets this value to the number of elements 
selected by the specified combination of flags and class.  

class  A pointer to a character string containing the name of a superclass 
or subclass. If class is a pointer to an empty string (""), the 
information for all classes is returned. The class parameter is taken 
into account only when the flag WLM_BIO_CLASS_INFO is set.  

Library
libwlm.a

Example
The code in Example 41-59 uses the wlm_bio_dev_info_t structure to obtain 
information about WLM disk I/O statistics.

Example 41-59   Using wlm_get_bio_stats

#include <stdio.h>
#include <stdlib.h>
#include <sys/wlm.h>                                                                                                    
#include <sys/wlm.h>
wlm_get_bio_()
{
    dev_t                       wlmdev = 0;
    struct wlm_bio_dev_info_t   *wlmarray;
    int                         wlmcount = 0;
    char                        *wlmclass = NULL;
    int                         wlmflags = WLM_VERSION|WLM_BIO_ALL_DEV;
    int                         i=0;

    if (!wlm_initialize(WLM_VERSION)) {
        wlmflags |= WLM_BIO_DEV_INFO;
        if (!wlm_get_bio_stats(wlmdev,NULL,&wlmcount,wlmclass,wlmflags) && wlmcount > 0) {
            wlmarray = (struct wlm_bio_dev_info_t*)malloc(wlmcount*sizeof(struct 
wlm_bio_dev_info_t));
            if (!wlm_get_bio_stats(wlmdev,(void*)wlmarray,&wlmcount,wlmclass,wlmflags)) {
                for (i = 0; i< wlmcount; i++) {

printf("device                                     : %ld\n", wlmarray[i].wbd_dev);
printf("active_cntrl (# of active cntrl)           : %d\n", wlmarray[i].wbd_active_cntrl);
printf("in_queue (# of requests in waiting queue)  : %d\n", wlmarray[i].wbd_in_queue);
printf("max_queued (maximum # of requests in queue): %d\n", wlmarray[i].wbd_max_queued);
printf("last[0] (Statistics of last second)        : %d\n", wlmarray[i].wbd_last[0]);
printf("max[0] (Maximum of last second statistics) : %d\n", wlmarray[i].wbd_max[0]);
printf("av[0] (Average of last second statistics)  : %d\n", wlmarray[i].wbd_av[0]);
printf("total[0] (Total of last second statistics) : %d\n", wlmarray[i].wbd_total[0]);
printf("\n");

                }
            }
        }

 

 

 

 

 Chapter 41. APIs for performance monitoring 857



    }
}
main()                 
{ 
    wlm_get_bio_();   
} 

Example 41-60 shows what the output of the program above would look like.

Example 41-60   Sample output from the wlm_get_bio_stats subroutine program

device                                     : 917504
active_cntrl (# of active cntrl)           : 0     
in_queue (# of requests in waiting queue)  : 0     
max_queued (maximum # of requests in queue): 0     
last[0] (Statistics of last second)        : 0     
max[0] (Maximum of last second statistics) : 0     
av[0] (Average of last second statistics)  : 0     
total[0] (Total of last second statistics) : 0 

device                                     : 917504
active_cntrl (# of active cntrl)           : 2 
in_queue (# of requests in waiting queue)  : 0     
max_queued (maximum # of requests in queue): 0     
last[0] (Statistics of last second)        : 0     
max[0] (Maximum of last second statistics) : 72 
av[0] (Average of last second statistics)  : 0     
total[0] (Total of last second statistics) : 0 
...(lines omitted)...

The libwlm.a library contains the wlm_get_info subroutine. Link this library to the 
cc command with the -lwlm flag as follows:

cc -lwlm -o <program> <program>.c

41.5.3  Combined example
The dudestat.c program in “dudestat.c” on page 965 illustrates how the different 
subroutines could be used together. Sample output of the dudestat program is 
shown in Example 41-61 on page 859.

Note: To initialize the WLM API connection, you must use the wlm_initialize 
subroutine before other WLM subroutines can be used. This only needs to be 
done once per process.

 

 

 

 

858 AIX 5L Performance Tools Handbook



Example 41-61   Sample output from the dudestat program

# dudestat root kiwi saffy fuzzy swede
PARTY ON!

The root dude is online and excellent!

There are 4 dudes missing!

Dude, here is some excellent info for you today

v_maxup (max. # of user processes)                    : 1000
v_maxpout (# of file pageouts at which waiting occurs): 0
v_minpout (# of file pageout at which ready occurs)   : 0
v_file (# entries in open file table)                 : 511
v_proc (max # of system processes)                    : 262144
freewts (count of free frame waits)                   : 877973724082172
extendwts (count of extend XPT waits)                 : 0
pendiowts (count of pending I/O waits)                : 740774484377600
numfrb (number of pages on free list)                 : 51945
numclient (number of client frames)                   : 19994
numcompress (no of frames in compressed segments)     : 0
numperm (number frames non-working segments)          : 32628
maxperm (max number of frames non-working)            : 32761
maxclient (max number of client frames)               : 104016
memsizepgs (real memory size in 4K pages)             : 131047
paging space device                                   : /dev/hd6
size (size in PAGESIZE blocks)                        : 262144
free  (# of free PAGESIZE blocks)                     : 259171
iocnt (number of pending i/o's)                       : 0

 

 

 

 

 Chapter 41. APIs for performance monitoring 859



 

 

 

 

860 AIX 5L Performance Tools Handbook



Chapter 42. Workload Manager tools

Workload Manager (WLM) is a subsystem that enables the system administrator 
to manage resources by using management classes and assigning processes to 
these classes. Each class can be designated a specific amount of CPU, physical 
memory, and disk I/O bandwidth by allocating shares and percentages of 
resources depending on its needs. This results in users of a class being able to 
function without the system resources being stolen by another class.

The purpose of this chapter is to discuss WLM performance tools rather than to 
explain the intricacies of setting up WLM. For information about configuring WLM 
refer to AIX 5L Workload Manager (WLM), SG24-5977.

42
 

 

 

 

© Copyright IBM Corp. 2001, 2003 861



42.1  WLM tools overview
The tools discussed in this chapter are only effective when WLM is operative, 
and they are discussed here in that context. These tools are useful for monitoring 
and analyzing WLM activity. This situation may be useful for determining the 
effect of Workload Manager on the system. For example, statistics can be 
collected with Workload Manager in Passive mode or in Active mode.

Active mode In this mode, WLM monitors and regulates the CPU, 
memory, and disk I/O utilization of the processes in the 
various classes.

Passive mode In this mode, WLM only monitors the resource utilization 
without interfering with the standard operating system 
resource allocation mechanisms.

This chapter discusses the use of tools that give current real-time information, as 
in the case of the wlmstat command. Other commands capture data over a 
period of time, such as the wlmmon command that captures data over a 24-hour 
period. wlmperf is similar to wlmmon but will monitor WLM statistics for up to one 
year. wlmmon and wlmperf are graphical; others such as wlmstat are text-based. 
wlmstat, wlmmon, and wlmperf are discussed in great detail in this chapter. 

Other tools capture WLM statistics, but they are not discussed in this chapter 
because of their general nature, such as the topas command (discussed in 
Chapter 11, “The topas command” on page 179). The topas command is useful 
in that it shows the top hot classes as well as their associated processes in WLM 
in real time. In the same way, the ps command (Chapter 8, “The ps command” 
on page 127) can list WLM classes. This can be useful to determine if a process 
belongs to a particular WLM class; see Example 42-7 on page 869 for details. 
The svmon command can display WLM class and tier statistics. Refer to 
Chapter 24, “The svmon command” on page 387 for more information.

The specific purpose of each WLM tool is listed below:

wlmstat -v Checks the WLM configuration.
wlmstat Real-time monitoring tool
topas Real-time monitoring tool on AIX 5L Version 5.2
wlmmon Long-term analysis tool
wlmperf Long-term analysis tool

42.2  wlmstat
The wlmstat command displays resource utilization per class. The information 
displayed is typically CPU, memory, and disk I/O usage for each class. If WLM is 

 

 

 

 

862 AIX 5L Performance Tools Handbook



not running on a system and the wlmstat command is executed, then the 
following error message will be displayed:

1495-576 WLM is not running

This command is useful on systems that have Workload Manager in either active 
or passive mode. 

The wlmstat command resides in /usr/sbin and is part of the bos.rte.control 
fileset. This fileset is installed as part of the default AIX operating system 
installation.

The syntax of the wlmstat command is:

wlmstat [ -l Class | -t Tier ] [ -S | -s ] [ -c | -m | -b ] 
[ -B Device ] [ -q ][ -T ] [ -a ][ -w ] [ -v ] [ Interval ] [ Count ]

Flags
-a Gives absolute figures (relative to the total amount of the 

resource available to the whole system) for subclasses, with a 
0.01% resolution. By default, the figures shown for subclasses 
are a percentage of the amount of the resource consumed by the 
superclass, with a one percent resolution. For instance, if a 
superclass has a CPU target of seven percent and the CPU 
percentage shown by wlmstat without -a for a subclass is five 
percent, wlmstat with -a shows the CPU percentage for the 
subclass as 0.35 percent.

-b Displays only disk I/O statistics.

-B Device Displays disk I/O device statistics. Passing an empty string (-B "") 
displays the statistics for all disks accessed by the class.

-c Shows only CPU statistics.

-l Class Displays statistics for Class name. If not specified, all classes 
display along with a summary for appropriate fields.

-m Shows only physical memory statistics.

-s Displays only subclass statistics.

-S Displays only superclasses statistics.

-t Tier Displays statistics only for the specified Tier.

 

 

 

 

 Chapter 42. Workload Manager tools 863



-T Displays the total numbers for resource utilization since WLM 
was started or the class was created, whichever happened last. 
The units are:

� CPU: The total CPU time consumed by a class in 
microseconds, since that class was started

� MEM: Unused

� DKIO: Total number of 512-byte blocks sent/received by a 
class for all disk devices accessed

� PROCESSES: Number of running processes belonging to 
that class

� THREADS: Number of running threads belonging to that class

� LOGINS: Number of user Logins belonging to that class 
associated with user rules belonging to that class

-v Specifies verbose mode. This flag, intended for troubleshooting, 
also displays some class attributes, resource shares and limits, 
and other WLM parameters including internal parameter values 
intended for AIX support personnel.

-w Displays the memory high-water mark, which is the maximum 
number of pages that a class had in memory at any given time 
since WLM was started or the class was created (whichever 
happened last).

Parameters
Class The name of a collection of processes and their associated 

threads.

Tier The position in the hierarchy of resources that a class is in.

Interval The length of time in seconds between measurements.

Count The number of iterations. If this value is omitted, then the output 
will be continuous.

Device The name of a disk device to be monitored.

42.2.1  Information about measurement and sampling
The results obtained by the wlmstat command from the kernel structures are 
tabulated with the following fields:

CLASS The name of the class field.

 

 

 

 

864 AIX 5L Performance Tools Handbook



CPU The percentage of total CPU time consumed by the class.

MEM The percentage of physical memory consumed by the class.

DKIO The percentage of the disk I/O bandwidth consumed by the class. This 
number is the average of the disk bandwidth on all disk devices 
accessed by the class and usually is not very significant. For instance, 
if a class consumes 80 percent of the bandwidth of one disk and 5 
percent of the bandwidth of two other disks, the DKIO column will show 
30 percent. For details on per-device utilization, use the -B Device 
option.

The wlm_get_info subroutine is used to get the characteristics of the classes 
defined in the active WLM configuration together with their current resource 
usage statistics. The kernel updates the statistics once a second. The values that 
are displayed by the wlmstat command are decayed averages over the sample 
period. 

For more information about the wlm_get_info subroutine, refer to AIX 5L Version 
5.2 Technical Reference: Base Operating System and Extensions, Volume 2.

The sampling interval for the wlmstat command can be supplied when the 
command is issued. If an interval value is not specified on the command line, 
then a single output is displayed, which is a decayed average over the sample 
period. If the wlmstat command is used with an interval figure, then the sampling 
interval will be that supplied value in seconds. The number of iterations is 
determined by the value of the Count parameter on the command line. If this 
value is omitted, and an interval value is used on the command line, then the 
number of iterations is assumed to be infinite.

42.2.2  Examples for wlmstat
Example 42-1 shows the output when no parameters are supplied with the 
wlmstat command.

Example 42-1   Output of the wlmstat command without any flags or parameters

# wlmstat
          CLASS CPU MEM DKIO 
   Unclassified   0  75   0 
      Unmanaged   0  12   0 
        Default   0   0   0 
         Shared   0   6   0 
         System   0  18   0 
            db1   0   0   0 
  db1.Default     -   -   - 
   db1.Shared     -   -   - 
     db1.sub1     -   -   - 

 

 

 

 

 Chapter 42. Workload Manager tools 865



            db2   0   0   0 
          devlt   0   0   0 
devlt.Default     -   -   - 
 devlt.Shared     -   -   - 
devlt.hackers     -   -   - 
   devlt.hogs     -   -   - 
devlt.editors     -   -   - 
  devlt.build     -   -   - 
            VPs   0   0   0 
          acctg   0   0   0 
          TOTAL   0 100   0 

Using the wlmstat command with the -v flag produces the output shown in 
Example 42-2.

Example 42-2   wlmstat -v provides a verbose output

# wlmstat -vc
CLASS tr i #pr CPU sha min smx hmx des  rap urap pri 

     Unclassified  0 0   1   0  -1   0 100 100 100    0   47  10 
        Unmanaged  0 0   1   0  -1   0 100 100 100    0   47  10 
          Default  0 0   3   0  -1   0 100 100 100    0   47  47 
Default.Default    0 0   3   -   1   0 100 100 100  100   23  23 
 Default.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
           Shared  0 0   0   0  -1   0 100 100 100    0   47  47 
 Shared.Default    0 0   0   -   1   0 100 100 100  100   23  23 
  Shared.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
           System  6 0  62   0  -1   0 100 100 100    0  145 145 
 System.Default    0 0  62   -   1   0 100 100 100  100  121 121 
  System.Shared    0 0   0   -  -1   0 100 100   0    0  144 144 
              db1  0 1   0   0   2   0 100 100 100  100    0   0 
    db1.Default    0 0   0   -  -1   0 100 100 100    0   23  23 
     db1.Shared    0 0   0   -  -1   0 100 100 100    0   23  23 
       db1.sub1    0 0   0   -  -1  25 100 100 100  100    0   0 
              db2  0 1   0   0  -1   0 100 100 100    0   47  47 
    db2.Default    0 0   0   -   1   0 100 100 100  100   23  23 
     db2.Shared    0 0   0   -  -1   0 100 100   0    0   46  46 
            devlt  0 0   0   0  30   0 100 100 100  100    0   0 
  devlt.Default    0 0   0   -  -1   0 100 100 100    0   23  23 
   devlt.Shared    0 0   0   -  -1   0 100 100 100    0   23  23 
  devlt.hackers    0 0   0   -  -1   0  20 100 100    0   23  23 
     devlt.hogs    0 0   0   -  -1   0 100 100 100    0   23  23 

 

 

 

 

866 AIX 5L Performance Tools Handbook



The output of the wlmstat -v command will wrap around on the screen if -v is used 
on its own. In the previous example, the -c flag has been added so the statistics 
are only for CPU. Table 42-1 lists information could be of interest to users.

Table 42-1   Output of wlnstat -v

The other columns are for internal use only and bear no meaning for administrators 
and end users. This format is better used with a resource selector (-c, -m, or -b). 
Otherwise the lines might be too long to fit into a line of a display terminal.

In Example 42-3, the wlmstat command is used with various flags together with 
the ps command to resolve a performance and WLM configuration problem.

Example 42-3   wlmstat showing unexpected distribution of resources

root: / =>wlmstat
            Name CPU MEM
    Unclassified   1  18
          System   5   2
         Default  91   5
        DB2_user   0   0
      DB2_system   0   0

Header Description

CLASS Class name.

tr Tier number (0 (zero) to 9).

i Value of the inheritance attribute: 0 (zero) = no, 1 (one) = yes.

#pr Number of processes in the class. If a class has no process assigned 
to it, the values shown in the other columns may not be significant.

CPU CPU utilization of the class expressed as a percentage.

MEM Physical memory utilization of the class expressed as a percentage.

DKIO Disk IO bandwidth utilization for the class expressed as a 
percentage.

sha Number of shares ('-' is represented as -1).

in Resource minimum limit expressed as a percentage.

smx Resource soft maximum limit expressed as a percentage.

hmx Resource hard maximum limit expressed as a percentage.

des (desired): percentage goal (target) calculated by WLM using the 
shares numbers.

npg Number of memory pages owned by the class.

 

 

 

 

 Chapter 42. Workload Manager tools 867



            http   0   0
           notes   0   0

In this example, the Default class unexpectedly has 91 percent of the total CPU 
usage. The other classes, specifically DB2_user, DB2_system, http, and notes, 
have no CPU usage even though processes that are expected to be assigned to 
these classes are running.

Example 42-4   Examining the WLM rules and classes files

root: /etc/wlm/standard =>cat classes
System:
Default:
DB2_user:
        description = "DB2 Clients"
DB2_system:
        description = "DB2 server"
http:
        description = "http testing"
notes:
        description = "Domino"

root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
System   - root   -    -
Default  -    -      -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
http    - nobody  -     -
notes  -  notes   -     -

The problem is in the rules file. The rule for Default is in the second line. 
Because the WLM class assignment algorithm reads through the rules file from 
top to bottom, the Default class is configured prior to the notes, http, DB2_user 
and DB2_system classes. The class assignment algorithm goes through the rules 
in order and assigns the process to the class corresponding to the first rule that 
matches the process attributes. This results in all non-root processes being 
assigned to the Default class. In the ideal WLM rules file, the Default class is 
inserted at the bottom of this file.

Example 42-5   The WLM rules file after the change in class order

root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
System   - root   -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
http    - nobody  -     -

 

 

 

 

868 AIX 5L Performance Tools Handbook



notes  -  notes   -     -
Default  -    -      -    -

In this example, the Default class has been moved and is now the last entry in 
the rules file. Note that the order in the other files such as classes, limits, and 
shares is irrelevant. The rules file in this instance, where the order of the rules is 
incorrect, can be edited using the vi editor. Under normal circumstances, the 
smitty wlm command or Web-based System Manager should be used to modify 
the rules file. For the changes to the rules file to take effect, WLM can be updated 
using the wlmcntrl -u command.

Example 42-6   wlmstat output after the changes to the WLM rules file

root: / =><wlmstat>
            Name CPU MEM
    Unclassified   1  17
          System   5   2
         Default   0   0
        DB2_user  79   6
      DB2_system   0   0
            http   0   0
           notes  13   1

In Example 42-6, the DB2_user and notes classes are now registering resource 
usage. Note that the http and DB2_system classes still have no resource usage.

Example 42-7   The ps command output shows that http processes are running

root: / =>ps -e -o pid,ppid,user,class,args | grep httpd
   PID   PPID     USER                CLASS COMMAND
  9140 159154   nobody               System /usr/HTTPServer/bin/httpd
 18414 159154   nobody               System /usr/HTTPServer/bin/httpd
 21716 159154   nobody               System /usr/HTTPServer/bin/httpd
 24316 159154   nobody               System /usr/HTTPServer/bin/httpd
 24808 159154   nobody               System /usr/HTTPServer/bin/httpd
 31626 159154   nobody               System /usr/HTTPServer/bin/httpd
 39070 159154   nobody               System /usr/HTTPServer/bin/httpd
 41582 159154   nobody               System /usr/HTTPServer/bin/httpd
...(lines omitted)...

There are processes running on the system that are expected to be running in 
the http class. These processes are actually running in the System class, as can 
be seen from the ps command output in Example 42-7. The parent process, 
which has PID 159154 and UID root, is classified in the System class. A process 
will remain in its parent’s class if the inheritance option is enabled for that class, 
regardless of the classification rules. In this case, inheritance should be disabled 
(which is the default). Alternately, classification can be done by application name 

 

 

 

 

 Chapter 42. Workload Manager tools 869



as in Example 42-8. In this way, the parent process starts as member of the http 
class, and all child processes remain in that class. 

Example 42-8   The WLM rules file changed for child processes

root: /etc/wlm/standard =>cat rules
*class  resvd   user    group   application type    tag
http    -      -      -      /usr/HTTPServer/bin/httpd
System   - root   -    -
DB2_system      - db2as   -      -
DB2_user        - db2inst1  -      -
notes  -  notes   -     -
Default  -    -      -    -

The changes to the rules file with the modified entry for the http class can be 
seen in Example 42-8. When the process under the application type heading is 
executed, the child processes will run in that same class.

Example 42-9   wlmstat output 

# wlmstat
          CLASS CPU MEM DKIO 

Unmanaged   0  43   0
        Default   0   0   0
         Shared   0   6   0
         System   3  33   0
            db1   0   0   0
  db1.Default     -   -   -
   db1.Shared     -   -   -
     db1.sub1     -   -   -
            db2   0   0   0
          devlt   0   0   0
devlt.Default     -   -   -
 devlt.Shared     -   -   -
devlt.hackers     -   -   -
   devlt.hogs     -   -   -
devlt.editors     -   -   -
  devlt.build     -   -   -
          acctg   0   0   0
            Red  29  25   2
  Red.Default     0   0   0
   Red.Shared     0   0   0
  Red.Authors    65  48   0
  Red.Editors    34  48 100
          TOTAL  32 100   2

Example 42-9 shows the output of the wlmstat command. The hard maximum 
value of memory set up in the WLM configuration for the Red class is set to 25 

 

 

 

 

870 AIX 5L Performance Tools Handbook



percent. The wlmstat command reports the value of 25 percent of total memory 
consistently used over a period of time. This means that all of the available 
memory for this class is consistently used up. This is an obvious bottleneck on 
performance for this class. It will be necessary to analyze the nature of the work 
type that the Red class does because the running jobs could be of a batch nature 
and the priority may be low. Alternately, the Red class could be a group of users 
trying to process invoices in which performance may be poor and the Red class 
should be allocated more memory. Another problem that will occur when a class 
runs out of memory is that it will start to page. This paging activity will affect the 
entire system’s performance.

Example 42-10   Global paging problem caused by Red class memory shortage

# vmstat 2
kthr     memory             page              faults        cpu     
----- ----------- ------------------------ ------------ -----------
 r  b   avm   fre  re  pi  po  fr   sr  cy  in   sy  cs us sy id wa 
23  7 58807   957   0  21  13 384 752289   6 1052  743 560 48  7 13 31
 6  3 58810   860   0   4  24 336 626827   5 645  809 687  0 12 23 64
 8  4 58811   856   0   5  13 312 375770   3 639  756 663  0  9 30 61
 6  6 58814   833   0  52   6 218 251173   2 657  710 618  0  7 19 74
 7  3 58815   825   0 100   8 359 544865   4 723  672 823  0 11 18 71
 8  3 58837   862   0  67  23 334 697884   5 686  814 712  0 12 20 67
19  8 58872   971   0  70   7 480 877304   7 1148  826 986 48  8  8 36
 8  3 58960   814   0  11  15 312 376204   3 902  829 709  0  9 23 69
10  2 58930   816   0   3 154 384 501383   4 699  895 940  0  9 25 67
10  2 58963   852   0   1  36 395 659926   5 664  793 608  0 13 34 53
19  5 58920   932   0  10  13 349 466821   4 886  640 621 57  6 11 26
7  4 58951   874   0 114  59 336 126230   1 739  773 847  0  6 17 76
8  3 58952   881   0 134   2 408 1742   0 755  700 999  0  5 19 76

 9  3 59023   845   0   0  10 342 645514   5 643  780 539  0 13 36 51
 8  1 59026   908   0   2 102 336 510580   4 689  659 566  0 10 30 59
 8  1 59027   906   0   4  75 360 501603   4 683  661 502  0 10 41 48
20  3 59028   918   0   7  18 576 707263   5 1099 1094 953 46  7 18 29
 7  6 59340   921   0  56  17 456 171002   1 660 34325 873  1  8 20 71
 8  3 59341   835   0   0  52 192 249882   2 612  663 624  0  7 23 70
 7  6 59033   839   0  47  39 288 250585   2 2698 2902 4798  0  2 12 86

From Example 42-10, it can be seen that the system has started to page due to a 
lack of memory in the Red WLM class. It can also be seen that the number of 
jobs in the run and wait queues are consistently high.

 

 

 

 

 Chapter 42. Workload Manager tools 871



42.3  wlmmon / wlmperf
The wlmmon and wlmperf commands graphically display Workload Manager 
resource activity by class. wlmmon only monitors WLM class information over a 
period of up to 24 hours. The wlmperf command can monitor the WLM class 
information for days, weeks, or even months at a time for up to one year. 

The wlmmon command resides in /usr/bin and is part of the perfagent.tools fileset, 
which is installable from the AIX base installation media.

The wlmperf command resides in /usr/bin and is part of the 
perfmgr.analysis.jazizo fileset, which is installable from the Performance Toolbox 
(PTX) media.

The syntax of the xmwlm daemon is:

xmwlm {-d recording_dir} {-n recording_name} {-t trace_level}

where:

-d recording_dir This flag specifies the output directory for the recording 
file(s). By default the directory name is /etc/perf/wlm.

-n recording_name The recording file name is specified by this flag. By 
default the name of the file is xmwlm.date, where date is 
the system date at file creation time and is in the format 
yymmdd.

-t Trace level This is the trace level and can be a whole number in the 
range of one to nine. The higher the trace number, the 
greater the amount of trace information gathered. The 
trace file is useful for debugging problems.

The syntax of the xmtrend daemon is:

xmtrend {-f infile} {-d recording_dir} {-n recording_name} {-t trace_level}

-f infile The name of the configuration file that is used by 
xmtrend to determine which parameters to monitor. The 
default file name is /etc/perf/xmtrend.cf.

Note: In order for the wlmmon and wlmperf commands to function correctly, the 
following Java filesets must be installed:

� Java130.adt
� Java130.ext
� Java130.rte

 

 

 

 

872 AIX 5L Performance Tools Handbook



-d recording_dir This flag specifies the output directory for the recording 
file(s). The default directory is /etc/perf.

-n recording_name This flag specifies the name of the recording file. By 
default, xmtrend creates a recording file named 
xmtrend.date. If -n myfile is specified, the recording files 
will be named myfile.date, where date is the system date 
at file creation time in the format yymmdd.

-t trace_level Trace level can be any whole number from one to nine. 
The log file is located in /etc/perf. The higher the value of 
the trace level, the greater the amount of trace 
information supplied. The log file name is xmtrend.log1 
and xmtrend.log2 when xmtrend.log1 is full.

The wlmmon and wlmperf commands do not have any arguments or flags. These 
commands are graphical in nature, so a graphical display is required to view 
report information from the log files. Both wlmmon and wlmperf can display data 
gathered by the xmwlm daemon in AIX 5L Version 5.2; however, for monitoring 
long-term statistics on AIX 4.3.3, the wlmperf command and the xmtrend daemon 
are required. They are both part of the PTX media.

42.3.1  Information about the xmwlm and xmtrend daemons
This section discusses information about the daemons used by the WLM graphical 
commands. The daemons are used to gather the required information from the 
system. Both xmwlm and xmtrend (the daemons used by wlmmon and wlmperf 
respectively) can run when WLM is not active. The xmwlm daemon is installable 
from the AIX base operating system, and xmtrend is part of the PTX media. 

Starting the daemons
The two daemons are initiated as follows.

xmwlm
The xmwlm daemon is used to gather information for the wlmmon command. If 
there is a requirement to gather information on a daily basis, the xmwlm daemon 
can be started from the /etc/rc.tcpip file. Add this entry as the last line in the file: 

xmwlm -n /etc/perf/myfile -d /etc/perf

The daemon can be started up by typing its name on the command line with the 
required flags, as shown in Example 42-11.

Example 42-11   Starting the xmwlm daemon

# nohup xmwlm -d /etc/perf/wlm -n devsys &
[1]     26292

 

 

 

 

 Chapter 42. Workload Manager tools 873



# Sending nohup output to nohup.out.

The reason for using the nohup command is that the daemon is not terminated 
when the current window from which the command was issued is closed. Also, 
the xmwlm command has been put into background by use of the ‘&’. 

xmtrend
The xmtrend daemon, when used in a WLM environment, gathers information for 
the xmperf command. The xmtrend daemon can be started from the command 
line and, in order to start, needs a configuration file, which can be specified by 
using the -f flag. If the -f flag is not specified, then the xmtrend daemon will search 
in several predefined directories for the configuration file; if does not exist, the 
xmtrend daemon will not know which metrics to collect information for and will die. 
To start the daemon after each reboot, add this command to the /etc/rc.tcpip file:

xmtrend -f /etc/perf/xmtrend.cf -n /etc/perf/myfile -d /etc/perf

If the daemon will not start, it may be due to incorrectly terminating the daemons.
.

Attention: If you need to stop the xmwlm or xmtrend daemons, do not use the 
kill -9 PID command. This may result in the shared memory of the System 
Performance Measurement Interface (SPMI) Application Program Interface 
(API) used by the xmwlm and xmtrend daemons not being re-initialized. If 
changes are made to the WLM configuration, they will not be displayed by 
wlmmon and wlmperf after the kill -9 PID command has been used on them. 
Use the kill PID command instead. If the kill -9 PID command has been 
used to kill the daemons, this procedure can be used to correct the problem:

# ipcs -m

IPC status from /dev/mem as of Fri May 18 10:49:56 CDT 2001

T        ID     KEY        MODE       OWNER    GROUP

Shared Memory:

m    262153 0x7804129c --rw-rw-rw-     root   system

#ipcrm -m 262153

#slibclean

Now restart the xmwlm or xmtrend daemons

Look for any shared memory segments that start with 0x78xxxxxx under the 
column headed KEY. Get the ID number (such as 262153) to remove it.

 

 

 

 

874 AIX 5L Performance Tools Handbook



At least 10 MB of disk space should be available in the directory where the 
recording files are to be kept. 

The recording file created by the xmtrend daemon can also be monitored by the 
PTX tools xmperf and 3dmon. Users may find the three-dimensional reports of the 
3dmon program useful. For more information about setting up metrics in PTX, 
refer to Chapter 43, “Performance Toolbox Version 3 for AIX” on page 891.

42.3.2  Information about measurement and sampling
Before it is possible to view any WLM statistics, it is necessary to ensure that the 
appropriate daemon is active on the system. While the wlmstat command 
provides a per-second view of WLM activity, it is not suited for the long-term 
analysis; it has no means of storing displayed data. To supplement the wlmstat 
command, the wlmmon and wlmperf commands provide reports of WLM activity 
over much longer time periods with minimal impact to system performance. The 
reports generated by these tools are based on samplings made by the 
associated recording daemon. These daemons sample the WLM and system 
statistics at a very high rate in seconds, but only record at a low rate in minutes. 
These values represent the minimum, maximum, mean, and standard deviation 
values for each collected statistic over the recording period. To collect the 
statistics, they use the same mechanism as the wlmstat command. Reports are 
generated from these statistics. For more information about the collection of 
statistics by the wlmstat command, refer to 42.2.1, “Information about 
measurement and sampling” on page 864.

42.3.3  Exploring the graphical windows
Figure 42-1 on page 876 shows the typical default screen of wlmmon and wlmperf 
when they are started. To start wlmmon or wlmperf, merely enter the names on the 
command line. Only users with root authority can run these commands. Across 
the bottom of the graphical display the following fields are displayed:

RunQ The average number of threads in the run queue over the 
reporting period. 

SwapQ The average number of threads in the wait queue over the 
reporting period. 

CPU Busy% The percentage of time during the reporting period that the CPU 
was busy. 

I/O Wait% The amount of time that the CPU was idle while there was an 
outstanding I/O to disk (local or remote). 

 

 

 

 

 Chapter 42. Workload Manager tools 875



PagSp Used% The percentage of paging space used during the reporting 
period. 

Host The name of the host on which the report information was 
captured.

WLM State This field shows the state of WLM at the time of capturing the 
data, for example Active.

Period 1 This field is used when comparisons are made on the same 
report between different time periods. If no comparison is made, 
then this field is blank. This field represents the earlier of the two 
time periods. The format is: month/day start time - month/day 
end time.

Period 2 When comparisons are not being made to determine trends, the 
value in this field shows the date and time of the recording period 
in this format: month/day start time - month/day end time. When 
comparisons are being made, this field has the date and time of 
the second trend period.

The fields cannot be manually adjusted, but some of their contents can be 
changed by using the Selected tab down menu option seen in Figure 42-1.

Figure 42-1   Initial screen when wlmperf and wlmmon are started

 

 

 

 

876 AIX 5L Performance Tools Handbook



The WLM_Console menu
Clicking on the WLM_Console tab down menu displays the following options:

Open log Opens the required log file containing the report data.
Reports Used to open, copy, and delete reports (wlmperf only).
Print Prints the current report.
Exit Exits the tool.

The tab down menu bar with its options is shown in Figure 42-2. Note that 
currently unavailable options are greyed out. 

Figure 42-2   The WLM_Console tab down menu

Open log
Open a log file by choosing Open Log from the tab down bar. If the appropriate 
daemon is running on the system, then a log file or log files with a name similar to 
xmwlm.010517 will be displayed. The first part of the name is the WLM daemon 
name, and the part after the period (.) is the date when the log file was created. 
These files are located in the directory /etc/perf/wlm , as shown in Figure 42-3.

Figure 42-3   The open log option from the tab down bar

 

 

 

 

 Chapter 42. Workload Manager tools 877



Move the mouse pointer to the appropriate file, in this case xmwlm.010517. Click 
the file name, then click Open to open the log file. This opens the reporting 
window in Figure 42-4.

Figure 42-4   The WLM table visual report

Three different reports can be displayed. They are Table View, Bar View, and 
Snapshot View. These views will now be discussed in detail. 

Table View
The Table View provides actual numeric statistics for each class. Notice that the 
Table View shown in Figure 42-4 has a tab down menu. By default this tab down 
menu has the word CPU on it, indicating that CPU statistics are being displayed. 
Clicking on this tab down menu gives the options of MEM and DISK I/O, as 
shown in Figure 42-5.

Figure 42-5   The CPU, memory, and disk I/O tab down menu

Moving the mouse pointer to any of the options available from the tab down menu 
and clicking on the item results in the statistics for that item being displayed.

 

 

 

 

878 AIX 5L Performance Tools Handbook



Across the top of the table view report screen, field headings are displayed. The 
field headings are:

Shares The defined shares in the WLM configuration.

Target The share value target computed by WLM in percentage. 
If the share is undefined, the value will be set to 100.

Min The class minimum as defined in WLM limits.

SMax The class soft maximum value as defined in WLM limits.

HMax The class hard maximum value as defined in WLM limits.

Actual The calculated average value over the sample period.

Low The actual observed minimum value across the time 
period.

High The actual observed maximum value across the time 
period.

Standard Deviation The computed standard deviation of the Actual, High, 
and Low values. This value indicates the actual 
variability of the value across the recording period. A 
high value of standard deviation indicates more 
variability while a lower value of standard deviation 
indicates less variability.

Samples The number of samples for the period.

On the extreme right of the example in Figure 42-4 on page 878, a slide bar is 
available. Often all of the classes cannot be displayed on one screen, and the 
slide bar allows the additional classes to be displayed.

Bar View
The Bar View visual report can be seen in Figure 42-6 on page 880. The class 
information is displayed in bar-graph style, together with the appropriate 
percentage values of the resource used over the specified time period. The 
percentage value is calculated based on the total system resources.

 

 

 

 

 Chapter 42. Workload Manager tools 879



Figure 42-6   The bar-graph-style visual report

Snapshot View
The Snapshot View visual report is a quick reference to check that there are no 
serious eminent problems. No statistical values are displayed; instead, colored 
dots or bulbs indicate the status of a resource for a specific class. The color 
coding of the bulbs can be seen in the Advanced Menu.

The order of the bulbs is shown in Figure 42-7.

Figure 42-7   The order of the snapshot visual report colored bulbs

In the Snapshot View of Figure 42-8 on page 881, the resources are outside of 
the range and lower than the target. This is with the exception of the System class 
where the memory usage is between the inside and outside ranges. See 
advanced options for more details in Figure 42-14 on page 886.

Blue Yellow Green Yellow Red

Colored circles or "bulbs" 
are used to associate 
displacement. Only one 
bulb is displayed at a time

 

 

 

 

880 AIX 5L Performance Tools Handbook



Figure 42-8   The snapshot visual report

The Selected menu
When the Selected menu option is chosen, the tab down menu in Figure 42-9 is 
displayed.

Figure 42-9   The Selected tab down menu

 

 

 

 

 Chapter 42. Workload Manager tools 881



Times
The Times option displays the screen shown in Figure 42-10. If the Trend block 
is checked, then comparisons can be made between different times within the 
report file. In the example, the report period of 11am on May 18 is compared to the 
report period of 1pm on May 18. The width of the monitor interval can also be 
changed; default is five minutes.

Figure 42-10   The time window for setting trend periods

 

 

 

 

882 AIX 5L Performance Tools Handbook



When selecting a trended view, the output of the visual report screens change 
slightly. In Figure 42-11 the figures are shown in parentheses. The Period1 field 
contains the first report period, while the Period2 field contains the second period 
value. The format of the date can be seen in the beginning of this section. In the 
visual reports, the values at the bottom of the screen, for example RunQ, are also 
in parentheses, comparing the difference at the two reporting periods.

Figure 42-11   The table visual report with trend values shown

 

 

 

 

 Chapter 42. Workload Manager tools 883



The bar-graph style report shows two bar graphs for each field of the report. In 
any field, the bottom value, represented by the white bar graph, shows the value 
of the first reporting period. The top, black bar graph shows the second period. 
This can be seen in Figure 42-12. Note that the trend values for the general 
statistics are also visible, at the bottom of the screen and in parentheses.

Figure 42-12   The bar-graph style report showing a trend

 

 

 

 

884 AIX 5L Performance Tools Handbook



The Snapshot visual report can be seen in Figure 42-13. The greater than (>) 
and less than (<) symbols indicate the change. If there is no symbol indicated, 
then there was no change in this value. For example, the CPU usage was less at 
the second report period than at the first report period for the Unmanaged class.

Figure 42-13   The snapshot visual report showing the trend

This example shows a snapshot visual report. This is a trend typeof report, which 
means that there are two period values and trend indicators for the bulbs. 

This snapshot has two report periods: the first is from 08:00 to 10:00 on January 
4, and the second is from 10:00 to 12:00 on January 4. It shows that there is a 
general underutilization of resources; however, take into consideration that this is 
merely a snapshot of two short periods of one day wo it may not be a true 
reflection of the state of the system. Ideally, further investigation should be 
conducted over additional time periods.

The trended view is ideal for a before-and-after view when resources have been 
reallocated on the system. For example, a trended snapshot view can be taken 
prior to increasing the amount of memory and CPU allocated to a class. Taking 
another trended snapshot view afterward will determine the effect of the changes 
on the classes.

Typically, the snapshot view brings to light the underutilization of resources for 
some classes, and overutilization in another. The idea of the snapshot is to 
instantly highlight possible problem areas.

 

 

 

 

 Chapter 42. Workload Manager tools 885



Advanced
The Advanced option in the Selected tab down menu is used together with the 
snapshot visual report. This option is only appropriate for the snapshot visual 
report. The advanced option menu can be seen in Figure 42-14. 

Figure 42-14   Advanced option under the Selected tab down menu

The interpretation of the colored bulbs changes with the option chosen. There 
are two options available: option one ignores the user-defined minimum and 
maximum settings, and option two uses a percentage of difference between the 
defined target and the minimum and maximum values. 

 

 

 

 

886 AIX 5L Performance Tools Handbook



Figure 42-15 shows the Advanced Menu options displayed in a graphical format. 
The graph labeled Class shows the Soft and Hard maximum and minimum 
limits. This graph is of a specific class that has a 50 percent Target (share value), 
a minimum of 20 percent (Min), and a maximum limit of 90 percent (Max).

Figure 42-15   The Advanced Menu options shown in graphical form

The Option1 graph ignores the user-defined maximum and minimum limits. 
Using the settings in Figure 42-14 on page 886, the green range of the graph is 
shown by the label Stdev within 50% of Target, and it is set to a value of 
50 percent. The red range is shown by the label Stdev within 80% of Target 
and is set to a value of 80 percent.

The green range can be determined by the following formula:

Low green range = Target - (Target * green%) = 50 - (50 * 50%) = 25

High green range = Target + (Target * green%) = 50 + (50 * 50%) = 75

Therefore, the range covered by the arrowed line labeled Stdev within 50% of 
Target is from 25 to 75 percent. The values for the red range can be calculated:

Low red range = Target - (Target * red%) = 50 - (50 * 80%) = 10

High red range = Target + (Target * red%) = 50 + (50 * 80%) = 90

 

 

 

 

 Chapter 42. Workload Manager tools 887



The red range, therefore, is from zero to 10 percent and 90 to 100 percent. This 
range is denoted in the figure by the arrowed line labeled Stdev within 80% of 
Target. The yellow range is that region between the red and green regions.

In the Option2 graph, the predefined minimum and maximum settings are taken 
into account. If the same options as in Figure 42-14 on page 886 are selected, 
and the hard minimum (Min) and maximum (Max) values are 20 percent and 90 
percent respectively, the ranges can be determined as follows:

Low green range = Target - ((Target - Min) * green%)

= 50 - ((50 - 20) * 50%) = 35

High green range = Target + ((Max - Target) * green%)

= 50 + ((90 - 50) * 50%) = 70

Low red range = Target - ((Target - Min) * red%)

= 50 - ((50 - 20) * 80%) = 26

High red range = Target + ((Max - Target) * red%)

= 50 + ((90 - 50) * 80%) = 82

Once again, the yellow range is between the red range and the green range. 

Tier/Class
From the Selected menu, the Tier/Class option enables the viewing of a 
selected class or tier. The class/tier pane is shown in Figure 42-16. If the class 
Red was chosen from the list of classes, the snapshot output shown in 
Figure 42-17 on page 889 can be displayed.

Figure 42-16   The class/tier option from the selected tab down menu

 

 

 

 

888 AIX 5L Performance Tools Handbook



Only the Red superclass with its subclasses is shown in Figure 42-17, which 
helps to analyze report information for this specific class.

Figure 42-17   The snapshot report showing only the Red WLM class

 

 

 

 

 Chapter 42. Workload Manager tools 889



 

 

 

 

890 AIX 5L Performance Tools Handbook



Chapter 43. Performance Toolbox 
Version 3 for AIX

This chapter describes the use of some of the utilities available in the AIX 
Performance Toolbox Version 3 (PTX). There are numerous component parts to 
the PTX, and this chapter will explain the use of the most important. For a full 
description of all of the features of the PTX, refer to Performance Toolbox Version 
2 and 3 Guide and Reference.

This chapter shows examples of the use of the popular tools and explains the 
results obtained. The components that are covered in this document are:

� xmperf, which is useful for monitoring system statistics
� 3dmon, which monitors performance of multiple hosts on the same network
� jazizo, which is ideal for monitoring long-term performance

The aim is to invite the reader to use the PTX to arrive at meaningful and useful 
conclusions to performance issues. We will not cover details on the System 
Performance Measurement Interface (SPMI) Application Program Interface (API) 
in depth. For more information about the SPMI, refer to 41.2, “System 
Performance Measurement Interface” on page 805.

43
 

 

 

 

© Copyright IBM Corp. 2001, 2003 891



43.1  Introduction
The Performance Toolbox Version 3 consists of two parts: the manager and the 
agent. The agent, also known as Performance AIDE, must be loaded on all 
nodes that are to be monitored by the manager. The PTX can be useful in 
performing the following functions:

Load monitoring Assists in monitoring system resources to detect 
performance problems. 

Analysis and control When a problem is encountered, determines the correct 
tool for analyzing the problem; determines the root cause 
of the problem so that the necessary corrective action can 
be taken.

Capacity planning Performs long-term monitoring to determine in advance 
the correct quantity of additional resources required. 

The PTX is a graphical tool, so it requires a suitable graphical monitor for display 
purposes.

The PTX filesets are:

� perfagent.server
� perfmgr.analysis.jazizo
� perfmgr.common
� perfmgr.network

The required AIX base fileset is:

� perfagent.tools

These filesets are available on the Performance Toolbox Version 3 media CDs. 
PTX Version 3, both manager and AIDE, is supported on AIX Version 4.3.3 and 
AIX 5L Version 5.2. When AIDE is installed on a remote host (node), it is 
necessary to refresh the inetd daemon. The refreshing of the daemon makes it 
aware of the PTX xmquery protocol. As a user with root authority, run the 
following command: refresh -s inetd.

Where an address of a remote client is outside of the local subnet, PTX requires 
the Rsi.hosts file to be edited on the manager host to include this remote client. 
In the case where there may be a name resolution delay it is recommended that 
the IP address is supplied instead of the hostname in the Rsi.hosts file. For more 
information about setting up the Rsi.hosts file, refer to the Web page:

http://www16.boulder.ibm.com/doc_link/en_US/a_doc_lib/perftool/prfusrgd/ch02bod
y.htm

 

 

 

 

892 AIX 5L Performance Tools Handbook

http://www16.boulder.ibm.com/doc_link/en_US/a_doc_lib/perftool/prfusrgd/ch02body.htm
http://www16.boulder.ibm.com/doc_link/en_US/a_doc_lib/perftool/prfusrgd/ch02body.htm


During the course of this chapter, as a performance tool is used, the specific 
fileset of which it is a component, together with the path name, will be supplied. 
The tools discussed in this chapter are: xmperf, 3dmon, and jazizo.

Some other tools available in PTX:

3dplay A program to play back 3dmon recordings in a 3dmon-like view.

chmon Supplied as an executable as well as in source form, this program 
enables monitoring of vital statistics from a character terminal. 

exmon A program that enables monitoring of alarms generated by the 
filtd daemon running on remote hosts. 

azizo Legacy recording tool replaced by jazizo in PTX Version 3. 
Enables you to analyze any recording of performance data, lets you 
zoom in on sections of the recording, and provides graphical as well 
as tabular views of the entire recording or zoomed-in parts of it. 

ptxtab A program that can format statistics from recording files for printing. 

ptxmerge This program enables merging of up to 10 recording files into one. 
For example, you could merge xmservd recordings from the client 
and server sides of an application into one file to better correlate the 
performance impact of the application on the two sides. 

ptxsplit In cases where recording files are too large to analyze as one file, 
this program enables you to split the file into multiple smaller files for 
better overview and faster analysis. 

ptxrlog A program to create recordings in ASCII or binary format. 

ptxls A program to list the control information of a recording file, including 
a list of the statistics defined in the file. 

a2ptx The a2ptx program can generate recordings from ASCII files in a 
format as produced by the ptxtab or ptxrlog programs or the 
Performance Toolbox for AIX SpmiLogger sample program. The 
generated recording can then be played back by xmperf and 
analyzed with jazizo. 

ptxconv The format of recordings has changed between versions of the 
Performance Toolbox for AIX. As a convenience to users of multiple 
versions of the Performance Toolbox for AIX, this program converts 
recording files between those formats. 

ptx2stat Converts data collected in a recording file to a format that 
resembles the recording format for the statistic set. Permits 
postprocessing of data with the programs that enable playback and 
manipulation of recordings. 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 893



ptxhottab A program that can format and print hotset information collected in 
recording files. 

wlmperf Program for analyzing Workload Management (WLM) activity from 
xmtrend recordings. Provides reports on class activity across hours, 
days, or weeks in a variety of formats. This application is available 
only in PTX Version 3. See 42.3, “wlmmon / wlmperf” on page 872 
for more information.

43.2  xmperf
The xmperf program is used to monitor the statistics of a system. Monitoring 
system performance is one of a system administrator’s most important 
functions.The xmperf program has the ability to monitor statistics on the system 
where it is running as well as on remote systems via a network. The agent 
component must be running on all remote hosts as well as the host where the 
xmperf program is running.

The xmperf program resides in /usr/bin, which is part of the perfmgr.network 
fileset that is installable from the Performance Toolbox Version 3 for AIX media. 
The perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.network. They are also installable from the AIX Performance Toolbox 
Version 3 media. 

The syntax of the xmperf command is:

xmperf [-v auxz] [-w width] [-o options_file] [-p weight] [-h localhostname] 
[-r network_timeout] 

Flags
All command line flags are optional and all except -r and -h correspond to X 
Window System resources that can be used in place of the command line 
arguments.

The options -v, -a, -u, -x, and -z are true or false options. If one of those options is 
set through an X Window System resource, it cannot be overridden by the 
corresponding command line argument. The options are as follows: 

-v Verbose. This option prints the configuration file lines to 
the xmperf log file $HOME/xmperf.log as they are 
processed. Any errors detected for a line will be printed 
immediately below the line. The option is intended as a 
help to find and correct errors in a configuration file. Use 
the option if you do not understand why a line in your 
configuration file does not have the expected effect. 

 

 

 

 

894 AIX 5L Performance Tools Handbook



Setting the X Window System resource BeVerbose to true 
has the same effect as this flag. 

-a Adjusts the path name size that is displayed in an 
instrument to a minimum length. The length can be less 
than the default fixed length (or the length specified by the 
-w option if used) but never longer. The use of this option 
can result in consoles where the time scales are not 
aligned from one instrument to the next. Note that for pie 
chart graphs, adjustment is always done, regardless of 
this command line argument. Setting the X Window 
System resource LegendAdjust to true has the same 
effect as this flag. 

-u Use pop-up menus. As described in Console Windows, 
the overall menu structure can be based upon pull-down 
menus (which is the default) or pop-up menus as 
activated with this flag. Typically, pull-down menus are 
easier for occasional users to understand, while pop-up 
menus provide a faster but less-intuitive interface. Setting 
the X Window System resource PopupMenus to true has 
the same effect as this flag. 

-x Subscribe to exception packets from remote hosts. This 
option makes xmperf inform all the remote hosts it 
identifies that they should forward exception packets 
produced by the filtd daemon, if the daemon is running. 
If this flag is omitted, xmperf will not subscribe to 
exception packets. Setting the X Window System 
resource GetExceptions to true has the same effect as 
this flag. 

-z For monochrome displays and X stations, you might try the 
-z option, which causes xmperf to draw graphical output 
directly to the display rather than always redrawing from a 
pixmap. By default, xmperf first draws graphical output to a 
pixmap and then, when all changes are done, moves the 
pixmap to the display. Generally, with a locally attached 
color display, performance is better when graphical output 
is redrawn from pixmaps. Also, a flaw in some levels of X 
Window System can be bypassed when this option is in 
effect. Setting the X Window System resource DirectDraw 
to true has the same effect as this flag.

-w width Must be followed by a number between 8 and 32 to define 
the number of characters from the value path name to 
display in instruments. The default number of characters 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 895



is 12. Alternatively, the legend width can be set through 
the X Window System resource LegendWidth. 

-o options_file Must be followed by a file name of a configuration file to 
be used in the execution of xmperf. If this option is 
omitted, the configuration file name is assumed to be 
$HOME/xmperf.cf. Alternatively, the configuration file 
name can be set through the X Window System resource 
ConfigFile. 

-p weight If given, this flag must be followed by a number in the 
range 25-100. When specified, this flag turns on 
“averaging” or “weighting” of all observations for state 
graphs before they are plotted. The number is taken as 
the “weight percentage” to use when averaging the values 
plotted in state graphs. The formula used to calculate the 
average is: 

val = new * weight/100 + old * (100-weight) / 100 

where: 

val is the value used to plot. 

new is the latest observation value. 

old is the val calculated for the previous observation. 

-h local hostname Must be followed by the host name of a remote host that is 
to be regarded as Localhost. The Localhost is used to 
qualify all value path names that do not have a host name 
specified. If not specified, Local host defaults to the host 
where xmperf executes. 

-r network_timeout Specifies the timeout, in milliseconds, used when waiting 
for responses from remote hosts. The value specified 
must be between 5 and 10000. If not specified, this value 
defaults to 100 milliseconds. In systems where the 
subnets are large, it is recommended to set the value of 
this flag to 10000.

One indication of too low a timeout value is when the list 
of hosts displayed by xmperf contains many host names 
that are followed by two asterisks. The two asterisks 
indicate that the host did not respond to xmperf 
broadcasts within the expected timeout period. 

Note: On networks that extend over several routers, gateways, or bridges, the 
default value is likely to be too low.

 

 

 

 

896 AIX 5L Performance Tools Handbook



Parameters
width Length of the path name to be used in graphical instruments.

options_file Configuration file name.

weight Weight specified by the -p flag. If a number outside the valid 
range is specified, a value of 50 is used. If this flag is 
omitted, averaging is not used. The averaging weight can be 
set through the X Window System resource Averaging as 
well. The weight also controls calculation of weighted 
average in tabulating windows.

local hostname Name of a remote host.

network_timeout Network timeout value in milliseconds.

43.2.1  Information about measurement and sampling
Over and above the ability to monitor performance in real time, the xmperf 
program has the functionality to record performance and to play back a 
recording. The xmperf program uses the SPMI API to gather information. The 
information is of two types dependant on the instrument type:

SiCounter The value is incremented continuously and the instrument 
shows the change in the value between time intervals.

SiQuantity The value represents a level. The observed value is 
displayed by the instrument.

Display requirements
The xmperf program requires a graphical display for its output, but the display 
need not be the system console. If, for example, the system res07 is an AIX 
system and it has a color graphical monitor ,that is ideal for displaying xmperf 
statistics. The system wlmhost has the manager part of the PTX installed, but 
has no graphical display. To monitor the statistics on the res07 monitor, first run 
the xhost + command on the res07 system. The system will show the message:

access control disabled, clients can connect from any host

The xhost command enables the system wlmhost to output to the X-Window of 
res07. 

It is now necessary to export the display of res07 on the system wlmhost: 

export DISPLAY=res07:0

Ensure that the remote system name, in this case res07, appears in the 
/etc/hosts file of the wlmhost system. Once the X-session has been established, 
the xmperf program can be run. 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 897



Starting xmperf
Start xmperf without any arguments. The window in Figure 43-1 will be displayed.

Figure 43-1   The initial xmperf window

The windows or panes that are displayed by the xmperf program are referred to 
as consoles. Note also that the “Mini Monitor” console is displayed by default as 
seen in Figure 43-2.

Monitoring instruments occupy a rectangular area within a console. An 
instrument has the ability to plot 24 values simultaneously. Only values from the 
same system can be displayed in an instrument.

Figure 43-2   The Mini Monitor window

The xmperf program displays two types of monitoring instruments: recording 
instruments and state instruments. 

 

 

 

 

898 AIX 5L Performance Tools Handbook



Recording instruments
Recording instruments monitor information over a period of time. They should not 
be confused with recording or saving data to a disk. The displayed values are 
pushed to the left as they are replaced by the new values. In Figure 43-3, the 
aged or older data is moved to the left as it is replaced with new data. The data is 
moved to the left at a user-defined time interval.

Figure 43-3   Aged data moved to the left

State instruments
State instruments show the latest information for a system resource. The “Mini 
Monitor” console shown in Figure 43-2 on page 898 is a state instrument.

Primary graphic styles
Various primary graphic styles are available for each of the instrument types. For 
recording instruments, the styles are:

� Skyline 
� Bar graph
� Area

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 899



� Line

For the state instruments, the styles are:

� Pie chart
� State bar
� State light
� Speedometer

The xmperf program enables a system administrator to create consoles. A 
console can consist of more than one graphic type and may consist of both 
recording and state instruments. See 43.2.2, “Examples” on page 904 for details 
on how to set up a user-defined console.

System commands
In addition to the monitoring features, the xmperf program has an enhanced 
interface to system commands. From the initial xmperf window shown in 
Figure 43-1 on page 898, the tab down menus Utilities, Analysis, and Control 
can be used to access the system commands. The tab down menus and some of 
their commands are listed next (Figure 43-4, Figure 43-5 on page 901, and 
Figure 43-6 on page 901).

Figure 43-4   The Utilities tab down menu

Utilities Includes the topas, wlmperf, time, and pstat commands.

 

 

 

 

900 AIX 5L Performance Tools Handbook



Figure 43-5   The Analysis tab down menus

Analysis Includes the tprof, pprof, PDT, rmss, svmon, vmstat, netpmon, 
netstat, nfsstat, filemon, iostat, fileplace, sar, ipfilter, 
and trace commands.

Figure 43-6   The Controls tab down menu

Control Includes the no and chnfs command.

Recording and playback
As previously mentioned, the xmperf program is able to save the recorded 
information to a file. This information can be played back for analysis at a later 
time. To record information from a console, select that console as in Figure 43-3 
on page 899. Choose the Record tab down menu as shown in Figure 43-7 and 
select Console Recording.

Figure 43-7   The Recording tab down menu

In the menu option shown in Figure 43-8 on page 902, choose the option Begin 
Recording to start the recording.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 901



Figure 43-8   The Console Recording options

If the data from this instrument has been recorded before, then the cautionary 
window in Figure 43-9 will be displayed. This is to prevent accidental overwriting 
of the existing file. Note that there is an option to Append to the existing file. 
Choosing the Replace option will overwrite the file.

Figure 43-9   Cautionary window when recording an instrument 

Choosing either the Append or Replace options starts the recording process. To 
stop the recording, select the tab down Recording menu shown in Figure 43-3 
on page 899 and select Console Recording. Select the End Recording option 
as shown in Figure 43-10. This option ends the recording to file.

Figure 43-10   Console Recording tab down menu: End Recording option

In order to play back the recording, select the File tab down menu of the initial 
xmperf window show in Figure 43-1 on page 898. The window in Figure 43-11 on 
page 903 is displayed. From this menu, select Playback. 

 

 

 

 

902 AIX 5L Performance Tools Handbook



Figure 43-11   Options under the initial xmperf window File tab down menu

The window in Figure 43-12 is displayed showing the list of playback files. Select 
the appropriate file by moving the mouse pointer to the file. 

Figure 43-12   The Playback window

Once the file name has been selected, click OK at the bottom of the window. The 
window in Figure 43-13 on page 904 shows the playback monitor.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 903



Figure 43-13   The playback monitor

Click Play to review the monitored data.

43.2.2  Examples
Follow these steps to use the xmperf program to create a user-defined console.

From the xmperf initial window shown in Figure 43-1 on page 898, choose the 
Monitor tab down menu. From this menu, select Add New Console. to display 
the window in Figure 43-14. The number in the top field is constructed by the 
system from the date and time. Overwrite it with a name for the new console. For 
syntax and illegal character information, click Help.

Figure 43-14   Naming the user-defined console

 

 

 

 

904 AIX 5L Performance Tools Handbook



To continue creating the console, click Proceed to display the window in 
Figure 43-15. From the Edit Console menu, select Add Local Instrument.

Figure 43-15   Choose the Edit Console menu

The window in Figure 43-16 shows a list of the resources that can be monitored. 
Make the selection by moving the mouse pointer to the required resource and 
clicking the left mouse button. Several other windows with options for the chosen 
resource will be displayed. These options vary from resource to resource so are 
not displayed here.

Figure 43-16   Dynamic Data Supplier Statistics window

When all required selections have been made, the Changing Properties of a 
Value window (Figure 43-17 on page 906) is displayed. The color and type of 
graph can be changed as well as the maximum, minimum, and threshold values. 
In this example, CPU idle time was monitored. The graph type can be changed to 
either line, area, skyline, or bar. In this example, the default style (line) was used. 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 905



Properties in this window include:

Lower range for value The lowest point to be displayed on the graph. Typically, 
this value would be set to zero.

Upper range of value The highest point plotted on the graph. It determines the 
scale of the graph. This property is not required for the 
state light graph type.

Threshold for value The value at which the state light will change state. This 
property is only required by the state light graph.

Figure 43-17   The Change Properties of a Value window

 

 

 

 

906 AIX 5L Performance Tools Handbook



Finally, the monitoring console can be seen in Figure 43-18. This is a recording 
instrument, and as a new reading is taken, the older or aged values are pushed 
to the left.

Figure 43-18   The final console monitoring CPU idle time

The console can be enhanced further by changing the name from glidle to 
something more meaningful. Click on the instrument to be changed. (When 
selected, the graphic will have a phantom border around it.) From the Edit Value 
menu, select Change Value to open the Change Properties of a Value window 
shown in Figure 43-17 on page 906. Change the label name of the recording 
instrument by typing over the name glidle in the label box and clicking OK.

A more useful instrument in this case may be the pie chart for CPU usage. For 
example, a pie chart would be ideal for representing the percentage of time the 
CPU is in user mode, in kernel mode, idle while an I/O is outstanding, and idle 
(excluding the time that it is waiting for I/O). To change to pie chart style, select 
the instrument to be changed. Click the Edit Console menu and select Modify 
Instrument, as shown in Figure 43-19.

Figure 43-19   The Edit Console tab down menu

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 907



The options are shown in Figure 43-20. Select Style & Stacking from the menu. 

Figure 43-20   The Modify Instrument menu options

This opens the window in Figure 43-21. Select the Pie_Chart option and the 
Stacking option, then click Proceed to close the window.

Figure 43-21   The Style & Stacking menu option

To include the additional CPU statistics, selelct the Edit Value tab down menu in 
the instrument console shown in Figure 43-18 on page 907. This displays the 
menu options shown in Figure 43-22.

Figure 43-22   Menu options from the Edit Value tab down menu

 

 

 

 

908 AIX 5L Performance Tools Handbook



Select Add Value from the menu. This opens the Dynamic Data Supplier 
Statistics window shown in Figure 43-16 on page 905. The procedure from this 
point is the same as for creating a new instrument. Figure 43-23 shows the final 
result, with all of the CPU statistics are being measured by the same instrument.

Figure 43-23   An example of a CPU usage instrument

43.3  3D monitor
The 3dmon program is useful for monitoring the same statistics on numerous 
hosts across a network. The results of the 3dmon program are three-dimensional, 
graphical, chessboard-like outputs. The number of fields can range from one to 
24. This is a graphical program and hence requires a graphical monitor.

The 3dmon program resides in /usr/bin and is part of the perfmgr.network fileset, 
which is installable from the Performance Toolbox Version 3 for AIX media. The 
perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.network. They are also installable from the Performance Toolbox media. 

The syntax of the 3dmon command is:

3dmon [-vng] [-f config_file] [-i seconds_interval] [-h hostname] 
[-w weight_percent] [-s spacing] [-p filter_percent] [-c config] 
[-a "wildcard_match_list"][-t resync_timeout] [-d invitation_delay] 
[-l left_side_tile] [-r right_side_tile] [-m top_tile] 

Flags
-v Verbose mode. Causes the program to display 

warning messages about potential errors in the 
configuration file to standard error. Also causes 
3dmon to print a line for each statset created and for 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 909



each statistic added to the statset, including the 
results of re-synchronizing. 

-n This flag only has an effect if a filter percentage is 
specified with the -p argument. When specified, 
draws only a simple outline of the grid rectangles for 
statistics with values that are filtered out. If not 
specified, a full rectangle is outlined and the 
numerical value is displayed in the rectangle. 

-g Usually, 3dmon attempts to resynthesize for each 
statset; it does not receive data-feeds for 
resync-timeout seconds. If more than half of the 
statsets for any host are found to not supply 
data-feeds, re-synchronizing is attempted for all of 
the statsets of that host. By specifying the -g option, 
you can force re-synchronization of all statsets of a 
host if any one of them becomes inactive. 

-f config_file Allows the specifying of a configuration file name 
other than the default. If not specified, 3dmon looks 
for the $HOME/3dmon.cf file.

-i seconds interval If specified, this argument is taken as the number of 
seconds between sampling of the statistics. If 
omitted, the sampling interval is five seconds. You 
can specify a one- to 60-second sampling interval. 

-h hostname Used to specify which host to monitor. This 
argument is ignored if the specified wildcard is 
hosts. If omitted, the local host is assumed. 

-w weight_percent Modifies the default weight percentage used to 
calculate a weighted average of statistics values 
before plotting them. The default value for the weight 
is 50 percent, meaning that the value plotted for 
statistics is composed of 50 percent of the previously 
plotted value for the same statistic and 50 percent of 
the latest observation. The specified percentage is 
taken as the percentage of the previous value to use. 
For example, if you specify 40 with this argument, 
the value plotted is: 

0.4 * previous + (1 - 0.4) * latest

Weight can be specified as any percentage from 0 
(zero) to 100. 

 

 

 

 

910 AIX 5L Performance Tools Handbook



-s spacing Spacing (in pixels) between the pillars representing 
statistics. The default space is four pixels. You can 
specify from 0 (zero) to 20 pixels. 

-p filter_percent If specified, only statistics with current values of at 
least -p percent of the expected maximum value for 
the statistic are drawn. The idea is to allow you to 
specify monitoring "by exception" so statistics that 
are approaching a limit stand out while others are 
not drawn. Filtering can be specified as any 
percentage from 0 (zero) to 100. The default is 0 
(zero) percent.

-c config When specified, overrides the default configuration 
set and causes 3dmon to configure its graph using the 
named configuration set. The argument specified 
after the -c flag must match one of the wildcard 
stanzas in the configuration file. If this argument is 
omitted, the configuration set used is the first one 
defined in the configuration file. 

-a wildcard_match_list Wildcard match list. When specified, is assumed to 
be a list of host names. If the primary wildcard in the 
selected configuration set is hosts, then the list to 
display host names is suppressed, as 3dmon 
automatically selects the supplied hosts from the list 
of active remote hosts. Depending on the 
configuration set definition, 3dmon then either goes 
directly on with displaying the monitoring screen or, 
when additional wildcards are present, displays the 
secondary selection list. 

The list of host names must be enclosed in double 
quotation marks if it contains more than one host 
name. Individual host names must be separated by 
white space or commas. The primary purpose of this 
option is to allow the invocation of 3dmon from other 
programs. For example, you could customize 
NetView® to invoke 3dmon with a list of host names, 
corresponding to hosts selected in a NetView 
window. 

-t resync_timeout Re-synchronizing timeout. When specified, 
overrides the default time between checks for 
whether synchronizing is required. The default is 30 
seconds; any specified timeout value must be at 
least this long. 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 911



-d invitation delay Enables you to control the time 3dmon waits for 
remote hosts to respond to an invitation. Value must 
be given in seconds; it defaults to 10 seconds. Use 
this flag if the default value results in an incomplete 
list of hosts when you want to monitor remote hosts. 

-l left_side_tile Specifies the number of the tile to use when painting 
the left side of the pillars. Specify a value in the 
range 0 (zero) to 8 (eight). The values correspond to 
the tile names: 

0: foreground (100% foreground) 
            1: 75_foreground (75% foreground) 
            2: 50_foreground (50% foreground) 
            3: 25_foreground (25% foreground) 
            4: background (100% background) 
            5: vertical 
            6: horizontal 
            7: slant_right 
            8: slant_left 

The default tile number for the left side is 
1 (75_foreground). 

-r right_side_tile Specifies the number of the tile to use when painting 
the right side of the pillars. Specify a value in the 
range 0 (zero) to 8 (eight). The values correspond to 
the tile names specified above for option -l. The 
default tile number for the right side is 8 (slant_left). 

-m top_tile Specifies the number of the tile to use when painting 
the top of the pillars. Specify a value in the range 0 
(zero) to 8 (eight). The values correspond to the tile 
name specified above for option -l. The default tile 
number for the top is 0 (foreground). 

43.3.1  Information about measurement and sampling
To start the 3dmon program as the root user, enter the command 3dmon -i1. The 
sampling interval will be one second as selected by the -i flag in the command.

 

 

 

 

912 AIX 5L Performance Tools Handbook



The initial screen in Figure 43-24 is displayed. A host name or host names must 
be selected. To select more than one host name, click on the first host name, 
then hold the Ctrl key and click to highlight the second host name as well. When 
this selection has been made, click on Click here when selection complete. 

Figure 43-24   Initial 3dmon screen

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 913



The window in Figure 43-25 shows a typical chessboard-style three-dimensional 
window output of the 3dmon command. The name of the host can be seen on the 
right-hand side. In front of each graphic bar is the name of the statistic that is 
being monitored and displayed. On top of each bar is the actual value of the 
statistic being measured. In this case, only one host is being monitored. If 
multiple hosts were being monitored, the three-dimensional display would be 
staggered behind the first display.

Figure 43-25   3-D window from 3dmon showing the statistics of a host

The monitored values in Figure 43-25 can be found in the 3dmon.cf configuration 
file. Usually this file is in the user’s home directory. In this case, the file is in 
/usr/lpp/perfmgr. This file can be modified to produce customized graphical 
monitoring instruments. Run the xmpeek -l command for a listing of the metrics 
that can be measured. Example 43-1 shows the 3dmon.cf configuration file. 

Example 43-1   The 3dmon configuration file 3dmon.cf

# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#

 

 

 

 

914 AIX 5L Performance Tools Handbook



# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
wildcard:   hosts           # remote hosts
UDP/fullsock
UDP/noport
UDP/rcvdgrm
UDP/snddgrm
Mem/Virt/steal
PagSp/pgspgout
PagSp/pgspgin
Proc/swpque
Proc/runque
PagSp/%totalused
Syscall/total
SysIO/writech
SysIO/readch

The 3dmon program uses the SPMI API to obtain the kernel statistics. 

43.3.2  Examples
Example 43-2 shows the 3dmon.cf file modified to produce a customized output.

Example 43-2   Customizing the 3dmon.cf file

# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#
# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved
#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
wildcard:   myconfig    hosts
CPU/cpu0/user

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 915



CPU/cpu0/kern
CPU/cpu0/wait
CPU/cpu0/idle
CPU/cpu1/user
CPU/cpu1/kern
CPU/cpu1/wait
CPU/cpu1/idle
CPU/cpu2/user
CPU/cpu2/kern
CPU/cpu2/wait
CPU/cpu2/idle
CPU/cpu3/user
CPU/cpu3/kern
CPU/cpu3/wait
CPU/cpu3/idle

The wildcard stanza has been modified to display the CPU usage of all four of 
the CPUs of the system. The following command was issued to produce the 
graphical display shown in Figure 43-26:

3dmon -i1 -cmyconfig

Figure 43-26   CPU statistics displayed by 3dmon after modifying 3dmon.cf

 

 

 

 

916 AIX 5L Performance Tools Handbook



Figure 43-27 shows a typical example of a multiple-host graphical display 
showing the disk statistics. 

Figure 43-27   3dmon graph showing disk activity for multiple hosts

The configuration file for this can be seen in Example 43-3.

Example 43-3   3dmon.cf showing disk configuration for multiple hosts

# @(#)01   1.7  src/perf/perfmgr/usr/samples/perfmgr/3dmon.cf, perfmgr, 
43perf30
0, 0101A_43perf300 12/3/96 06:52:31

#
# COMPONENT_NAME:   (PERFMGR) - Performance Manager
#
# FUNCTIONS: Configuration file
#
# ORIGINS: 30
#
# (C) COPYRIGHT International Business Machines Corp. 1992, 1993
# All Rights Reserved

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 917



#
# US Government Users Restricted Rights - Use, duplication or
# disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
#
wildcard:   disk    hosts   # disks on remote hosts
Disk/*/busy
Disk/*/xfer
Disk/*/rblk
Disk/*/wblk

43.4  jazizo
The jazizo program is used to analyze system statistics over a long period of 
time. The jazizo program uses the xmtrend daemon to collect data. It can be 
configured to only show areas of interest in concise graphical form or table form. 
The output can be generated for specific time periods.

The jazizo program resides in /usr/bin and is part of the perfmgr.analysis.jazizo 
fileset, which is installable from the Performance Toolbox Version 3 for AIX 
media. The perfmgr.common and perfagent.server filesets are prerequisites for 
perfmgr.analysis.jazizo. They are also installable from the PTX media. 

43.4.1  Syntax of xmtrend
The syntax of the xmtrend command is:

xmtrend {-f infile} {-d recording_dir} {-n recording_name} {-t trace_level}

Flags
-f infile The name of the configuration file that is used by xmtrend 

to determine which parameters to monitor. The default file 
name is /etc/perf/xmtrend.cf.

-d recording_dir This flag specifies the recording file output directory. The 
default directory is /etc/perf.

-n recording_name This flag specifies the name of the recording file. By 
default, xmtrend creates a recording file named 
xmtrend.date. If -n myfile is specified, the recording files 
will be named myfile.date, where date is the system date 
at file creation time in the format yymmdd.

-t trace_level Trace level can be any whole number from one to nine. 
The higher the value of the trace level, the greater the 
amount of trace information supplied. By default the log 

 

 

 

 

918 AIX 5L Performance Tools Handbook



file is created in /etc/perf and is named xmtrend.log1, and 
xmtrend.log2 when xmtrend.log1 is full. If -d mydir is 
specified, then the log file will be created in mydir, and if -n 
myfile is specified, then the logfile is named as myfile.log1 
and myfile.log2.

43.4.2  Syntax of jazizo
The syntax of the jazizo command is:

jazizo -r <recording> -c <configuration file>

Flags
-r <recording> This is the name of the recording file. A directory 

name can be specified in which recording files will 
be located.

-c <configuration file> This is the jazizo configuration file. A sample can 
be found in /usr/lpp/perfmgr/jazizo.cf

The default configuration file can be copied into a working directory and modified 
as required. It is recommended that instead of modifying the original file, make 
and modify a copy and move it to the required directory.

43.4.3  Information about measurement and sampling
The jazizo program is dependant on the xmtrend daemon running on the 
system. To start the xmtrend daemon, perform the following functions:

Determine where the xmtrend.cf file is. This file determines which statistics or 
metrics will be monitored. The sample xmtrend configuration file can be found in 
the /usr/lpp/perfagent directory. It is recommended that the original is left 
untouched. Make a copy of the file in the working directory, for example /etc/perf, 
and make the required changes to that file.

Run the xmtrend daemon in background and use the nohup command as follows:

/etc/perf> nohup xmtrend -f /etc/perf/xmtrend.cf -d /etc/perf -n my_stats

The xmtrend daemon can also be started by placing an entry in the /etc/inittab 
file. This overcomes the problem of restarting the daemon each time the system 
is rebooted. 

To confirm that the xmtrend daemon is running, use the ps command as in 
Example 43-4 on page 920.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 919



Example 43-4   Checking that the xmtrend daemon is running

# ps -ef |grep xmtrend
    root 17544 17834   1 15:51:40  pts/1  0:26 xmtrend -f /etc/perf/xmtrend.cf 
d /etc/perf -n stuart 
    root 21414 14758   1 17:20:49  pts/2  0:00 grep xmtrend 

If the daemon starts successfully, a reporting file will be created in the working 
directory. In this example, the file name will be my_stats.date, where date is the 
system date. The size of this file is dependant on the number of metrics that are 
being measured. A metric can be defined as a measurement of a resource such 
as CPU idle time.

If the daemon fails to start, it may be due to the xmtrend daemon being 
incorrectly stopped on a previous occasion. To correct this problem, refer to the 
Workload Manager (WLM) section in “xmtrend” on page 874.

To start the jazizo program, type the command:

jazizo -c /etc/perf/jazizo.cf -n my_stats.010531.

Exploring the jazizo windows
If the command had been issued without any flags, the jazizo program would 
have searched for a configuration file in order to determine which metrics are to 
be displayed. At this point it is important to remember that the xmtrend daemon 
gathers the data, while the jazizo program displays the results. 

Figure 43-28 on page 921 shows the jazizo program issued without any flags.

 

 

 

 

920 AIX 5L Performance Tools Handbook



Figure 43-28   The jazizo opening window

This is the first screen displayed by jazizo. Click File to open the menu in 
Figure 43-29.

Figure 43-29   The File tab down menu

Click Open Recording File to select the recording file from which the results are 
to be obtained. Figure 43-30 on page 922 shows the list of files in the jazizo 
directory.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 921



Figure 43-30   The Open Recording File window in jazizo

In this example, the directory name is /etc/perf, and xmtrend.010529 is the only 
file that contains monitored data. (All files that contain monitoring information 
have a six-digit date suffix based on creation date.) Select the recording file from 
which the results are required, and click Open. 

 

 

 

 

922 AIX 5L Performance Tools Handbook



The left-hand pane of the Metric Selection window shows a list of metrics that 
can be displayed. In Figure 43-31, the values for the CPU idle, CPU kernel, and 
CPU user metrics have been selected. You can select multiple values using the 
Ctrl or Shift keys.

Figure 43-31   Metric Selection window

To display the metrics, they must be added to the right-hand pane. Click Add to 
move the selected metrics. In the same way, an incorrectly selected metric can 
be removed from the right-hand pane by selecting the metric and clicking 
Remove. Figure 43-32 on page 924 shows the result.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 923



Figure 43-32   The Metric Selection window showing metric selections

The file containing the data on the metrics can have data spanning several 
months, up to a year, so date and time selections are available to crop the view to 
display only a required period. Click Edit Start/Stop to open the window in 
Figure 43-33 on page 925, where you can select the Start Hour and Stop Hour 
for the period to be displayed. 

 

 

 

 

924 AIX 5L Performance Tools Handbook



Figure 43-33   The Time Selection window

Click Start Hour or Stop Hour to select the respective times from the menu 
shown in Figure 43-34.

Figure 43-34   The Stop Hour and Start Hour tab down menus

The desired month can also be selected, as shown in Figure 43-35 on page 926.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 925



Figure 43-35   Adjusting the month in the jazizo Time Selection window

The day of the month can also be changed. Note that in Figure 43-36, only two of 
the blocks in the calendar have a day of the month number; this particular 
recording file contains statistics only for these days. Click one of the days in the 
calendar to open the Set Start Date and Set End Date menu and set the stop 
day for the monitoring period. Perform the same operation for the start time. 
There is no specific order in which the date and time is set. 

Figure 43-36   Adjusting days in the jazizo Time Selection window

When the time and date selections have been made, click Ok to close the Time 
Selection window. Click Apply in the Metric Selection window. The jazizo 
program now displays the selected metrics over the selected monitoring period, 
as shown in Figure 43-37 on page 927. The vertical axis of the graph is shown in 

 

 

 

 

926 AIX 5L Performance Tools Handbook



graduations of 10, and is in percent because this graphic is displaying CPU 
percentage statistics. The horizontal axis has a time graduation over the selected 
monitor period. 

Each of the selected metrics in this example is represented by a colored line 
graph. At the bottom of the window the metrics are listed with the appropriate 
colored selection blocks. These selection blocks are the same color as the line of 
the graph. The selection block is used to select the specific metric on the graph. 
The name of the particular metric is followed by its range minimum and maximum 
in parentheses. (In the interest of clarity, the background color has been changed 
from black to gray.)

Figure 43-37   The jazizo window 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 927



From the Edit menu, select the Metric Selection option shown in Figure 43-38 
to open the Metric Selection window.

Figure 43-38   The jazizo Edit tab down menu

Choosing Graph Selection instead opens the window in Figure 43-39. Several 
options are available here, such as standard deviation and the trend line option. 

Figure 43-39   The Graph Selection window of the jazizo program

Figure 43-40 on page 929 shows the jazizo graphical output within which the 
trend lines have been added. This option is particularly useful when comparing 
the output for one month with another so overall performance for the measured 

 

 

 

 

928 AIX 5L Performance Tools Handbook



metric can be observed quickly. The trend lines are the same color in the graph 
as the metric with which they are associated.

Two Trend Line options are available. The first option, All Data, shows the trend 
for the entire measurement period, as shown in Figure 43-40. The second trend 
option, Visible Data, shows the trend for only the section that is currently visible 
in the display window. Alternately, the Trend Line option can be switched off using 
the Off radio button. Only one of the options can be selected at a time.

Figure 43-40   The trend of the metric can be displayed by jazizo

From the main window, select View to access the options in Figure 43-41 on 
page 930. 

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 929



Figure 43-41   The View tab down menu

When the Reduce Data by Tick box in the tab down menu is checked, the output 
will show less data. For a full display showing all of the time intervals, ensure that 
this box is not checked. (It is checked by default.) The other options in the tab 
down menu determine the displayed time graduation. Day by Hour is the default.

Selecting Report in the main window displays the menu shown in Figure 43-42. 

Figure 43-42   The Report tab down menu

These options supply statistical (non-graphical) information about the metrics. 
Click Summary: All Data for a table with the statistics for all of the currently 
displayed metrics. If specific metric options are required, choose either Selected 
Metric: All Data or Selected Metric: Viewport Data to display statistical data for 
the specific metric.

Figure 43-43   Tabular statistical output that can be obtained from jazizo

The display is in the tabular format seen in Figure 43-43 with these headings:

Timestamp The sample time interval; here it is five minutes between samples.
Mean The mean value monitored over the time interval.
Max The maximum value during the time interval.

 

 

 

 

930 AIX 5L Performance Tools Handbook



Min The minimum value over the time period.
Std Dev The standard deviation during the time interval.

The output can be printed either to file or to a printer by selecting Print. Note that 
the table in Figure 43-43 on page 930 is an extract from the full table listing and 
hence does not show the Print or Close screen buttons that appear at the 
bottom of the table view.

To close the jazizo windows, open the jazizo main window’s File menu, shown in 
Figure 43-44.

Figure 43-44   The File tab down menu when closing jazizo

If any configurations have been changed, they can be saved here using the Save 
Configurations or Save Configurations As options. To exit from the program, 
select the Exit option.

 

 

 

 

 Chapter 43. Performance Toolbox Version 3 for AIX 931



 

 

 

 

932 AIX 5L Performance Tools Handbook



Part 9 Appendixes

Part 9
 

 

 

 

© Copyright IBM Corp. 2001, 2003. All rights reserved. 933



 

 

 

 

934 AIX 5L Performance Tools Handbook



Appendix A. Source code examples

This appendix contains source code that was used to create the examples for 
these sections of this book:

� The perfstat_dude.c program was used in 41.1, “Perfstat API” on page 786.

� The programs spmi_dude.c, spmi_data.c, spmi_file.c, and spmi_traverse.c 
were used in 41.2, “System Performance Measurement Interface” on 
page 805.

� The dudestat.c program was used in 41.5, “Miscellaneous performance 
monitoring subroutines” on page 842.

� The cwhet.c program was used in Chapter 19.2.3, “Examples for gprof” on 
page 302 and 19.4.2, “Examples for prof” on page 322.

Unlike the examples in the chapters, the source code examples in this appendix 
do not have line numbers, making it easier to copy and paste from the online 
version of this book.

A
 

 

 

 

© Copyright IBM Corp. 2001, 2003 935



perfstat_dump_all.c
Example A-1 shows how to combine all examples from 41.1.2, “Subroutines” on 
page 787 to access data provided by AIX 5.2 Perfstat API subroutines. Note that 
the error checking and memory management in this example must be enhanced 
for a production-type program. 

Example: A-1   AIX 5.2 Perfstat API complete example

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <libperfstat.h>

4 cpu()
5 {
6     perfstat_id_t   name;
7     perfstat_cpu_t  *ub;
8     int             ncpu,i;

9     ncpu = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0);
10     ub = malloc(sizeof(perfstat_cpu_t)*ncpu);

11     strcpy(name.name,"");

12     if (perfstat_cpu(&name,ub,sizeof(perfstat_cpu_t),ncpu) >= 0)
13         for (i = 0; i < ncpu; i++) {
14             printf("name    : %s\n",   ub[i].name);
15             printf("\tuser    : %llu\n", ub[i].user);
16             printf("\tsys     : %llu\n", ub[i].sys);
17             printf("\tidle    : %llu\n", ub[i].idle);
18             printf("\twait    : %llu\n", ub[i].wait);
19             printf("\tpswitch : %llu\n", ub[i].pswitch);
20             printf("\tsyscall : %llu\n", ub[i].syscall);
21             printf("\tsysread : %llu\n", ub[i].sysread);
22             printf("\tsyswrite: %llu\n", ub[i].syswrite);
23             printf("\tsysfork : %llu\n", ub[i].sysfork);
24             printf("\tsysexec : %llu\n", ub[i].sysexec);
25             printf("\treadch  : %llu\n", ub[i].readch);
26             printf("\twritech : %llu\n", ub[i].writech);
27         }
28 }
      
29 cpu_total()
30 {
31     perfstat_cpu_total_t    ub;

32     if (perfstat_cpu_total((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_cpu_total_t), 1) >= 0) {
33         printf("ncpus       : %d\n", ub.ncpus);

 

 

 

 

936 AIX 5L Performance Tools Handbook



34         printf("ncpus_cfg   : %d\n", ub.ncpus_cfg);
35         printf("description : %s\n", ub.description);
36         printf("processorHZ : %llu\n", ub.processorHZ);
37         printf("user        : %llu\n", ub.user);
38         printf("sys         : %llu\n", ub.sys);
39         printf("idle        : %llu\n", ub.idle);
40         printf("wait        : %llu\n", ub.wait);
41         printf("pswitch     : %llu\n", ub.pswitch);
42         printf("syscall     : %llu\n", ub.syscall);
43         printf("sysread     : %llu\n", ub.sysread);
44         printf("syswrite    : %llu\n", ub.syswrite);
45         printf("sysfork     : %llu\n", ub.sysfork);
46         printf("sysexec     : %llu\n", ub.sysexec);
47         printf("readch      : %llu\n", ub.readch);
48         printf("writech     : %llu\n", ub.writech);
49         printf("devintrs    : %llu\n", ub.devintrs);
50         printf("softintrs   : %llu\n", ub.softintrs);
51         printf("lbolt       : %ld\n", ub.lbolt);
52         printf("loadavg T0  : %llu\n", ub.loadavg[0]);
53         printf("loadavg T-5 : %llu\n", ub.loadavg[1]);
54         printf("loadavg T-15: %llu\n", ub.loadavg[2]);
55         printf("runque      : %llu\n", ub.runque);
56         printf("swpque      : %llu\n", ub.swpque);
57     }
58 }

59 disk()
60 {
61     perfstat_id_t   name;
62     perfstat_disk_t *ub;
63     int             ndisk,i;

64     ndisk = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0);
65     ub = malloc(sizeof(perfstat_disk_t)*ndisk);

66     strcpy(name.name,"");

67     if (perfstat_disk (&name,ub,sizeof(perfstat_disk_t),ndisk) >= 0)
68         for (i = 0; i < ndisk; i++) {
69             printf("name       : %s\n",  ub[i].name);
70             printf("\tdescription: %s\n",  ub[i].description);
71             printf("\tvgname     : %s\n",  ub[i].vgname);
72             printf("\tsize       : %llu\n", ub[i].size);
73             printf("\tfree       : %llu\n", ub[i].free);
74             printf("\tbsize      : %llu\n", ub[i].bsize);
75             printf("\txrate      : %llu\n", ub[i].xrate);
76             printf("\txfers      : %llu\n", ub[i].xfers);
77             printf("\twblks      : %llu\n", ub[i].wblks);
78             printf("\trblks      : %llu\n", ub[i].rblks);

 

 

 

 

 Appendix A. Source code examples 937



79             printf("\tqdepth     : %llu\n", ub[i].qdepth);
80             printf("\ttime       : %llu\n", ub[i].time);
81         }
82 }

83 disk_total()
84 {
85     perfstat_disk_total_t   ub;

86     if (perfstat_disk_total ((perfstat_id_t*)NULL, &ub, 
sizeof(perfstat_disk_total_t), 1) >= 0) {
87         printf("number: %d\n", ub.number);
88         printf("size  : %llu\n", ub.size);
89         printf("free  : %llu\n", ub.free);
90         printf("xrate : %llu\n", ub.xrate);
91         printf("xfers : %llu\n", ub.xfers);
92         printf("wblks : %llu\n", ub.wblks);
93         printf("rblks : %llu\n", ub.rblks);
94         printf("time  : %llu\n", ub.time);
95     }
96 }

97 memory_total()
98 {
99     perfstat_memory_total_t ub;

100    if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
101        printf("virt_total: %llu\n", ub.virt_total);
102        printf("real_total: %llu\n", ub.real_total);
103        printf("real_free : %llu\n", ub.real_free);
104        printf("real_inuse: %llu\n", ub.real_inuse);
105        printf("pgbad     : %llu\n", ub.pgbad);
106        printf("pgexct    : %llu\n", ub.pgexct);
107        printf("pgins     : %llu\n", ub.pgins);
108        printf("pgouts    : %llu\n", ub.pgouts);
109        printf("pgspins   : %llu\n", ub.pgspins);
110        printf("pgspouts  : %llu\n", ub.pgspouts);
111        printf("scans     : %llu\n", ub.scans);
112        printf("cycles    : %llu\n", ub.cycles);
113        printf("pgsteals  : %llu\n", ub.pgsteals);
114        printf("numperm   : %llu\n", ub.numperm);
115        printf("pgsp_total: %llu\n", ub.pgsp_total);
116        printf("pgsp_free : %llu\n", ub.pgsp_free);
117        printf("pgsp_rsvd : %llu\n", ub.pgsp_rsvd);
118    }
119}

120netinterface()

 

 

 

 

938 AIX 5L Performance Tools Handbook



121{
122    perfstat_id_t           name;
123    perfstat_netinterface_t *ub;
124    int                     nnetinterface,i;
      
125    nnetinterface = perfstat_netinterface (NULL,NULL, 
sizeof(perfstat_netinterface_t), 0);
126    ub = malloc(sizeof(perfstat_netinterface_t)*nnetinterface);

127    strcpy(name.name,"");

128    if (perfstat_netinterface (&name,ub, sizeof(perfstat_netinterface_t), 
nnetinterface) >= 0)
129        for (i = 0; i < nnetinterface; i++) {
130            printf("name       : %s\n",     ub[i].name);
131            printf("\tdescription: %s\n",   ub[i].description);
132            printf("\ttype       : %u\n",   ub[i].type);
133            printf("\tmtu        : %llu\n", ub[i].mtu);
134            printf("\tipackets   : %llu\n", ub[i].ipackets);
135            printf("\tibytes     : %llu\n", ub[i].ibytes);
136            printf("\tierrors    : %llu\n", ub[i].ierrors);
137            printf("\topackets   : %llu\n", ub[i].opackets);
138            printf("\tobytes     : %llu\n", ub[i].obytes);
139            printf("\toerrors    : %llu\n", ub[i].oerrors);
140            printf("\tcollisions : %llu\n", ub[i].collisions);
141        }
142}

143netinterface_total()
144{
145    perfstat_netinterface_total_t   ub;

146    if (perfstat_netinterface_total ((perfstat_id_t*)NULL,&ub, 
sizeof(perfstat_netinterface_total_t),1) >= 0) {
147        printf("number    : %d\n", ub.number);
148        printf("ipackets  : %llu\n", ub.ipackets);
149        printf("ibytes    : %llu\n", ub.ibytes);
150        printf("ierrors   : %llu\n", ub.ierrors);
151        printf("opackets  : %llu\n", ub.opackets);
152        printf("obytes    : %llu\n", ub.obytes);
153        printf("oerrors   : %llu\n", ub.oerrors);
154        printf("collisions: %llu\n", ub.collisions);
155    }
156}

157main()
158{
159    cpu_total();
160    cpu();

 

 

 

 

 Appendix A. Source code examples 939



161    disk_total();
162    disk();
163    memory_total();
164    netinterface_total();
165    netinterface();
166}

perfstat_dude.c
The perfstat_dude.c program in Example A-2 makes one reading of a selected 
number of statistics, then waits for a specified amount of time before it takes the 
other reading. 

Example: A-2   perfstat_dude.c program

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <libperfstat.h>

#defineNCPU1024
#defineNDISK1024
#defineNNETWORK1024

static intncpu = NCPU;
static intndisk = NDISK;
static intnnetwork = NNETWORK;

cpu_t(int t)
{

perfstat_id_tname;
perfstat_cpu_tub[NCPU];
int i, rc;
static u_longlong_tttime[NCPU];
static u_longlong_tuser[NCPU];
static u_longlong_tsys[NCPU];
static u_longlong_tidle[NCPU];
static u_longlong_twait[NCPU];
static u_longlong_tsysfork[NCPU];
static u_longlong_tsyscall[NCPU];
static u_longlong_tpswitch[NCPU];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {

 

 

 

 

940 AIX 5L Performance Tools Handbook



printf("%6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s %3.3s\n",
"cpu","fk","sy","cs"," us"," sy","id","wa");

for (i=0;i<rc;i++) {
ttime[i] = 

(ub[i].user-user[i])+(ub[i].sys-sys[i])+(ub[i].idle-idle[i])+(ub[i].wait-wait[i
]);

printf("%6.6s ", ub[i].name);
printf("%6lld ", ub[i].sysfork-sysfork[i]);
printf("%6lld ", ub[i].syscall-syscall[i]);
printf("%6lld ", ub[i].pswitch-pswitch[i]);
printf("%3lld ", (ub[i].user-user[i])*100/ttime[i]);
printf("%3lld ", (ub[i].sys-sys[i])*100/ttime[i]);
printf("%3lld ", (ub[i].idle-idle[i])*100/ttime[i]);
printf("%3lld ", (ub[i].wait-wait[i])*100/ttime[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_cpu 1");

}
} else {

if ((rc = perfstat_cpu (&name,ub,sizeof(perfstat_cpu_t),NCPU)) >= 0) {
for (i=0;i<rc;i++) {

user[i] = ub[i].user;
sys[i] = ub[i].sys;
idle[i] = ub[i].idle;
wait[i] = ub[i].wait;
sysfork[i] = ub[i].sysfork;
syscall[i] = ub[i].syscall;
pswitch[i] = ub[i].pswitch;

}
} else {

perror("perfstat_cpu 0");
}

}
}
cpu_total_t(int t)
{

perfstat_cpu_total_tub;
static int ncpus;
static u_longlong_tttime;
static u_longlong_trunque;
static u_longlong_tswpque;
static u_longlong_tdevintrs;
static u_longlong_tsoftintrs;
static u_longlong_tsysfork;
static u_longlong_tsyscall;
static u_longlong_tpswitch;
static u_longlong_tuser;

 

 

 

 

 Appendix A. Source code examples 941



static u_longlong_tsys;
static u_longlong_tidle;
static u_longlong_twait;

if (t) {
if (perfstat_cpu_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {
ttime = (ub.user-user)+(ub.sys-sys)+(ub.idle-idle)+(ub.wait-wait);
printf("Que     Faults                      Cpu\n");
printf("%3.3s %3.3s %6.6s %6.6s %6.6s %6.6s %3.3s %3.3s %3.3s 

%3.3s\n",
"rq","sq","fk","in","sy","cs","us","sy","id","wa");
printf("%3lld ", ub.runque-runque);
printf("%3lld ", ub.swpque-swpque);
printf("%6lld ", ub.sysfork-sysfork);
printf("%6lld ", (ub.devintrs+ub.softintrs)-(devintrs+softintrs));
printf("%6lld ", ub.syscall-syscall);
printf("%6lld ", ub.pswitch-pswitch);
printf("%3lld ", (ub.user-user)*100/ttime);
printf("%3lld ", (ub.sys-sys)*100/ttime);
printf("%3lld ", (ub.idle-idle)*100/ttime);
printf("%3lld ", (ub.wait-wait)*100/ttime);
printf("\n\n");

} else {
perror("perfstat_cpu_total 1");

}
} else {

if (perfstat_cpu_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_cpu_total_t),1) >= 0) {

ncpus = ub.ncpus;
runque = ub.runque;
swpque = ub.swpque;
sysfork = ub.sysfork;
syscall = ub.syscall;
devintrs = ub.devintrs;
softintrs = ub.softintrs;
pswitch = ub.pswitch;
user = ub.user;
sys = ub.sys;
idle = ub.idle;
wait = ub.wait;

} else {
perror("perfstat_cpu_total 0");

}
}

}

disk_t(int t)

 

 

 

 

942 AIX 5L Performance Tools Handbook



{
perfstat_id_tname;
perfstat_disk_tub[NDISK];
int i,rc;
static u_longlong_tqdepth[NDISK];
static u_longlong_ttime[NDISK];
static u_longlong_txrate[NDISK];
static u_longlong_txfers[NDISK];
static u_longlong_trblks[NDISK];
static u_longlong_twblks[NDISK];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 

{
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"disk","vg","qd","busy","KB/s","xfers","KBrd","KBwr");
for (i=0;i<rc;i++) {

printf("%6s ", ub[i].name);
printf("%6s ", ub[i].vgname);
printf("%6lld ", ub[i].qdepth-qdepth[i]);
printf("%6lld ", ub[i].time-time[i]);
printf("%6lld ", ub[i].xrate-xrate[i]);
printf("%6lld ", ub[i].xfers-xfers[i]);
printf("%6lld ", ub[i].rblks-rblks[i]);
printf("%6lld ", ub[i].wblks-wblks[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_disk 1");

}
} else {

if ((rc = perfstat_disk (&name,ub,sizeof(perfstat_disk_t),NDISK)) >= 0) 
{

for (i=0;i<rc;i++) {
qdepth[i] = ub[i].qdepth;
time[i] = ub[i].time;
xrate[i] = ub[i].xrate;
xfers[i] = ub[i].xfers;
rblks[i] = ub[i].rblks;
wblks[i] = ub[i].wblks;

}
} else {

perror("perfstat_disk 0");
}

}
}

 

 

 

 

 Appendix A. Source code examples 943



disk_total_t(int t)
{

perfstat_disk_total_tub;
static u_longlong_ttime;
static u_longlong_txrate;
static u_longlong_txfers;
static u_longlong_trblks;
static u_longlong_twblks;

if (t) {
if (perfstat_disk_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s\n",

"busy"," KB/s","xfers","KBrd","KBwr");
printf("%6lld ", ub.time-time);
printf("%6lld ", ub.xrate-xrate);
printf("%6lld ", ub.xfers-xfers);
printf("%6lld ", ub.rblks-rblks);
printf("%6lld ", ub.wblks-wblks);
printf("\n\n");

} else {
perror("perfstat_disk_total 1");

}
} else {

if (perfstat_disk_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_disk_total_t),1) >= 0) {

time = ub.time;
xrate = ub.xrate;
xfers = ub.xfers;
rblks = ub.rblks;
wblks = ub.wblks;

} else {
perror("perfstat_disk_total 0");

}
}

}

memory_total_t(int t)
{

perfstat_memory_total_tub;
static u_longlong_treal_free;
static u_longlong_treal_inuse;
static u_longlong_tpgsp_free;
static u_longlong_tpgspins;
static u_longlong_tpgspouts;
static u_longlong_tpgins;
static u_longlong_tpgouts;
static u_longlong_tpgexct;

 

 

 

 

944 AIX 5L Performance Tools Handbook



static u_longlong_tpgsteals;
static u_longlong_tscans;
static u_longlong_tnumperm;

if (t) {
if (perfstat_memory_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {
printf("Real memory          Paging space Virtual\n");
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s 

%6.6s\n",

"free","use","free","psi","pso","pi","po","fault","fr","sr","num");
printf("%6lld ", ub.real_free);
printf("%6lld ", ub.real_inuse);
printf("%6lld ", ub.pgsp_free);
printf("%6lld ", ub.pgspins);
printf("%6lld ", ub.pgspouts);
printf("%6lld ", ub.pgins);
printf("%6lld ", ub.pgouts);
printf("%6lld ", ub.pgexct);
printf("%6lld ", ub.pgsteals);
printf("%6lld ", ub.scans);
printf("%6lld ", ub.numperm);
printf("\n\n");

} else {
perror("perfstat_memory_total 1");

}
} else {

if (perfstat_memory_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_memory_total_t),1) >= 0) {

real_free = ub.real_free;
real_inuse = ub.real_inuse;
pgsp_free = ub.pgsp_free;
pgspins = ub.pgspins;
pgspouts = ub.pgspouts;
pgins = ub.pgins;
pgouts = ub.pgouts;
pgexct = ub.pgexct;
pgsteals = ub.pgsteals;
scans = ub.scans;
numperm = ub.numperm;

} else {
perror("perfstat_memory_total 1");

}
}

}

netinterface_t(int t)
{

 

 

 

 

 Appendix A. Source code examples 945



perfstat_id_tname;
perfstat_netinterface_tub[NDISK];
int i,rc;
static u_longlong_tipackets[NDISK];
static u_longlong_tibytes[NDISK];
static u_longlong_tierrors[NDISK];
static u_longlong_topackets[NDISK];
static u_longlong_tobytes[NDISK];
static u_longlong_toerrors[NDISK];
static u_longlong_tcollisions[NDISK];

strcpy(name.name,"");

if (t) {
if ((rc = perfstat_netinterface 

(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {
printf("%7.7s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"network","mtu","ipack","ibyte","ierr","opack"," obyte"," 
oerr","coll");

for (i=0;i<rc;i++) {
printf("%7s ", ub[i].name);
printf("%6lld ", ub[i].mtu);
printf("%6lld ", ub[i].ipackets-ipackets[i]);
printf("%6lld ", ub[i].ibytes-ibytes[i]);
printf("%6lld ", ub[i].ierrors-ierrors[i]);
printf("%6lld ", ub[i].opackets-opackets[i]);
printf("%6lld ", ub[i].obytes-obytes[i]);
printf("%6lld ", ub[i].oerrors-oerrors[i]);
printf("%6lld ", ub[i].collisions-collisions[i]);
printf("\n");

}
printf("\n");

} else {
perror("perfstat_netinterface 1");

}
} else {

if ((rc = perfstat_netinterface 
(&name,ub,sizeof(perfstat_netinterface_t),NNETWORK)) >= 0) {

for (i=0;i<rc;i++) {
ipackets[i] = ub[i].ipackets;
ibytes[i] = ub[i].ibytes;
ierrors[i] = ub[i].ierrors;
opackets[i] = ub[i].opackets;
obytes[i] = ub[i].obytes;
oerrors[i] = ub[i].oerrors;
collisions[i] = ub[i].collisions;

}
} else {

perror("perfstat_netinterface 1");

 

 

 

 

946 AIX 5L Performance Tools Handbook



}
}

}

netinterface_total_t(int t)
{

perfstat_netinterface_total_tub;
static u_longlong_tipackets;
static u_longlong_tibytes;
static u_longlong_tierrors;
static u_longlong_topackets;
static u_longlong_tobytes;
static u_longlong_toerrors;
static u_longlong_tcollisions;

if (t) {
if (perfstat_netinterface_total 

((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {
printf("%6.6s %6.6s %6.6s %6.6s %6.6s %6.6s %6.6s\n",

"ipack","ibyte","ierr","opack"," obyte"," oerr","coll");
printf("%6lld ", ub.ipackets-ipackets);
printf("%6lld ", ub.ibytes-ibytes);
printf("%6lld ", ub.ierrors-ierrors);
printf("%6lld ", ub.opackets-opackets);
printf("%6lld ", ub.obytes-obytes);
printf("%6lld ", ub.oerrors-oerrors);
printf("%6lld ", ub.collisions-collisions);
printf("\n\n");

} else {
perror("perfstat_netinterface_total 1");

}
} else {

if (perfstat_netinterface_total 
((perfstat_id_t*)NULL,&ub,sizeof(perfstat_netinterface_total_t),1) >= 0) {

ipackets = ub.ipackets;
ibytes = ub.ibytes;
ierrors = ub.ierrors;
opackets = ub.opackets;
obytes = ub.obytes;
oerrors = ub.oerrors;
collisions = ub.collisions;

} else {
perror("perfstat_netinterface_total 0");

}
}

}

main()
{

 

 

 

 

 Appendix A. Source code examples 947



struct variovario;
int rc;

if (!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario))
        ncpu = vario.v.v_ncpus_cfg.value;

if ((rc = perfstat_cpu (NULL,NULL,sizeof(perfstat_cpu_t),0)) > 0)
        ncpu = rc;

if ((rc = perfstat_disk (NULL,NULL,sizeof(perfstat_disk_t),0)) > 0)
        ndisk = rc;

if ((rc = perfstat_netinterface 
(NULL,NULL,sizeof(perfstat_netinterface_t),0)) > 0)
        nnetwork = rc;

cpu_total_t(0);
cpu_t(0);
memory_total_t(0);
disk_total_t(0);
disk_t(0);
netinterface_total_t(0);
netinterface_t(0);

sleep(1);

cpu_total_t(1);
cpu_t(1);
memory_total_t(1);
disk_total_t(1);
disk_t(1);
netinterface_total_t(1);
netinterface_t(1);

}

Example A-3 shows a sample output from perfstat_dude program.

Example: A-3   Output from perfstat_dude

# perfstat_dude
Que     Faults                      Cpu
 rq  sq     fk     in     sy     cs  us  sy  id  wa
  0   0      0      0   2359   1473   0   0  86  13

   cpu     fk     sy     cs  us  sy  id  wa
  cpu0      0    240    240   0   0  99   0
  cpu1      0    289    300   0   0 100   0
  cpu2      0    337    336   0   0  99   0
  cpu3      0   1231    594   0   0  45  52

 

 

 

 

948 AIX 5L Performance Tools Handbook



Real memory          Paging space Virtual
  free    use   free    psi    pso     pi     po  fault     fr     sr    num
1753170 343982 1046751 614369 4217286 716225 5114271 143100457 4224489 70493357  
95299

  busy   KB/s  xfers   KBrd   KBwr
   116      0    228  21054    256

  disk     vg     qd   busy   KB/s  xfers   KBrd   KBwr
hdisk0 rootvg      0     22      0     55   4210    248
hdisk1 datavg      0      7      0     24   4210      0
hdisk2  ssavg      0     79      0     96   8420      0
hdisk4   None      0      0      0      0      0      0
hdisk6   None      0      0      0      0      0      0
hdisk5   None      0      0      0      0      0      0
hdisk7 ssavg2      0      3      0     48   4210      0
hdisk3  ssavg      0      3      0      4      4      0
   cd0 not available      0      0      0      0      0      0

 ipack  ibyte   ierr  opack  obyte   oerr   coll
    14   1074      0      0      0      0      0

network    mtu  ipack  ibyte   ierr  opack  obyte   oerr   coll
    en0   1500      7    537      0      0      0      0      0
    en1   1500      7    537      0      0      0      0      0
    lo0  16896      0      0      0      0      0      0      0

spmi_dude.c
Example A-4 shows the source code for the spmi_dude.c program.

Example: A-4   spmi_dude.c source code

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <sys/Spmidef.h>

#if defined(DEBUG)
#define PDEBUG(x,y) printf(x,y)

#else
#define PDEBUG(x,y)

#endif

extern errno;
extern charSpmiErrmsg[]; 

 

 

 

 

 Appendix A. Source code examples 949



extern intSpmiErrno; 
/*
 * Since we need this structure pointer in our cleanup() function
 * we declare it as a global variable.
 */
struct SpmiStatSet*SPMIset = NULL;
/*
 * These are the statistics we are interested in monitoring.
 * To the left of the last slash (/) is the context, to the
 * right of this slash (/) is the actual statistic within
 * the context. Note that statistics can have the same
 * name but belong to different contexts.
 */
char *stats[] = {

"CPU/glwait",
"CPU/glidle",
"CPU/glkern",
"CPU/gluser",
"Mem/Virt/scan",
"Mem/Virt/steal",
"PagSp/%totalfree",
"PagSp/%totalused",
"Mem/Virt/pagein",
"Mem/Virt/pageout",
"Mem/Virt/pgspgin",
"Mem/Virt/pgspgout",
"Proc/runque",
"Proc/swpque",
NULL
};

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format.
 */
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.

 

 

 

 

950 AIX 5L Performance Tools Handbook



 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

#define MAXDELAY2
#define MAXCOUNT-1

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;
struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
char context[128];
char *statistic;
float statvalue;
int i, hardcore = 0, bailout = 0;
int maxdelay = MAXDELAY;
uint maxcount = MAXCOUNT;
/*
 * Here we initialize the SPMI environment for our process.
 */
if (SpmiInit(15)) {

SPMIerror("SpmiInit");
exit(SpmiErrno);

}
if (argc == 2)

maxdelay = atoi(argv[1]);
else if (argc == 3) {

maxdelay = atoi(argv[1]);
maxcount = atoi(argv[2]);

}
/*
 * To illustrate enhanced durability of our simple program.
 */
hardcore = atoi(getenv("HARDCORE"));
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could 
 * generate and cleanup then as well.

 

 

 

 

 Appendix A. Source code examples 951



 */
atexit(cleanup);
signal(SIGINT,cleanup); 
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);
/*
 * Here we create the base for our SPMI statistical data hierarchy.
 */
if ((SPMIset = SpmiCreateStatSet()) == NULL) {

SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set.
 */

    for (i = 0; stats[i] != NULL; i++) {
if (SpmiPathAddSetStat(SPMIset,stats[i],SPMIcxhdl) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }

printf ("%5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s %5s\n",
"swpq","runq","pgspo","pgspi","pgout","pgin",
"%used","%free","fr","sr","us","sy","id","wa");

/*
 * In this for loop we collect all statistics that we have specified
 * to SPMI that we want to monitor.  Each of the data values selected 
 * for the set is represented by an SpmiStatVals structure. 
 * Whenever Spmi executes a request from the to read the data values 
 * for a set all SpmiStatVals structures in the set are updated.
 * The application program will then have to traverse the list of 
 * SpmiStatVals structures through the SpmiFirstVals() and SpmiNextVals()
 * function calls.
 */
for (i=0; i< maxcount; i++) {

again:
/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.

  */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

/*
 * if the hardcore variable is set (environment variable HARDCORE),
 * then we discard runtime errors from SpmiGetStatSet (up to three
 * times). This can happen some time if many processes use the SPMI 
 * shared resources simultaneously. 
 */

 

 

 

 

952 AIX 5L Performance Tools Handbook



if (hardcore && (3 > bailout++)) goto again;
SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
bailout = 0;
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%5.0f ",statvalue);
PDEBUG("\t%s\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat, 0));

/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));
printf("\n");
sleep(maxdelay);

}
}

spmi_data.c
Example A-5 shows the source code for the spmi_data.c program.

Example: A-5   spmi_data.c source code

/*  The following statistics are added by the SpmiPathAddSetStat
 *  subroutine to form a set of statistics:
 *     CPU/cpu0/kern
 *     CPU/cpu0/idle
 *     Mem/Real/%free
 *     PagSp/%free
 *     Proc/runque
 *     Proc/swpque
 *  These statistics are then retrieved every 2 seconds and their
 *  value is displayed to the user.
 */
#include <sys/types.h>
#include <sys/errno.h>

 

 

 

 

 Appendix A. Source code examples 953



#include <signal.h>
#include <stdio.h>
#include <sys/Spmidef.h>

#define TIME_DELAY 2            /* time between samplings */

extern char   SpmiErrmsg[];     /* Spmi Error message array */
extern int    SpmiErrno;        /* Spmi Error indicator */

struct SpmiStatSet *statset;    /* statistics set */

/*====================== must_exit() ==========================*/
/* This subroutine is called when the program is ready to exit.
 * It frees any statsets that were defined and exits the
 * interface.
 */
/*=============================================================*/

void must_exit()
{
    /* free statsets */
    if (statset)
    if (SpmiFreeStatSet(statset))
       if (SpmiErrno)
       printf("%s", SpmiErrmsg);

/* exit SPMI */
    SpmiExit();
    if (SpmiErrno)
       printf("%s", SpmiErrmsg);
    exit(0);
}

/*======================== getstats() =========================*/
/* getstats() traverses the set of statistics and outputs the
 * statistics values.
 */
/*=============================================================*/

void getstats()
{
    int                  counter=20;    /* every 20 lines output
                                         * the header
                                         */
    struct SpmiStatVals   *statval1;
    float                 spmivalue;

/* loop until a stop signal is received. */
    while (1) {

 

 

 

 

954 AIX 5L Performance Tools Handbook



       if(counter == 20) {
          printf("\nCPU/cpu0   CPU/cpu0  Mem/Real   PagSp     ");
          printf("Proc       Proc\n");
          printf("    kern       idle    %%free     %%free    ");
          printf("runque     swpque\n");
          printf("============================================");
          printf("===============\n");
          counter=0;
       }

       /* retrieve set of statistics */
       if (SpmiGetStatSet(statset, TRUE) != 0) {
          printf("SpmiGetStatSet failed.\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* retrieve first statistic */
       statval1 = SpmiFirstVals(statset);
       if (statval1 == NULL) {
          printf("SpmiFirstVals Failed\n");
          if (SpmiErrno)
             printf("%s", SpmiErrmsg);
          must_exit();
       }

       /* traverse the set of statistics */
       while (statval1 != NULL) {
          /* value to be displayed */
          spmivalue = SpmiGetValue(statset, statval1);
          if (spmivalue < 0.0) {
             printf("SpmiGetValue Failed\n");
             if (SpmiErrno)
                printf("%s", SpmiErrmsg);
             must_exit();
          }
          printf("  %6.2f   ",spmivalue);

          statval1 = SpmiNextVals(statset, statval1);
       }  /* end while (statval1) */
       printf("\n");
       counter++;
       sleep(TIME_DELAY);
    }
}

/*======================== addstats() =========================*/
/* addstats() adds statistics to the statistics set. */

 

 

 

 

 Appendix A. Source code examples 955



/* addstats() also takes advantage of the different ways a
 * statistic may be added to the set.
 */
/*=============================================================*/
void addstats()
{
    SpmiCxHdl   cxhdl, parenthdl;

    /* initialize the statistics set */
    statset = SpmiCreateStatSet();
    if (statset == NULL)
    {
       printf("SpmiCreateStatSet Failed\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("Proc", NULL)))
    {
       printf("SpmiPathGetCx failed for Proc context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

/* Pass SpmiPathAddSetStat the name of the statistic */
    /* & the handle of the parent */
    if (!SpmiPathAddSetStat(statset,"swpque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/swpque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

if (!SpmiPathAddSetStat(statset,"runque", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Proc/runque statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

/* Pass SpmiPathAddSetStat the fully qualified name of the

 

 

 

 

956 AIX 5L Performance Tools Handbook



     * statistic
     */
    if (!SpmiPathAddSetStat(statset,"PagSp/%totalfree", NULL))
    {
       printf("SpmiPathAddSetStat failed for PagSp/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

if (!(parenthdl = SpmiPathGetCx("Mem", NULL)))
    {
       printf("SpmiPathGetCx failed for Mem context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

/* Pass SpmiPathGetCx the name of the context */
    /* & the handle of the parent context */
    if (!(cxhdl = SpmiPathGetCx("Real", parenthdl)))
    {
       printf("SpmiPathGetCx failed for Mem/Real context.\n");
       if (SpmiErrmsg)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"%free", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for Mem/Real/%%free statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    /* Pass SpmiPathGetCx the fully qualified path name of the
     * context
     */
    if (!(cxhdl = SpmiPathGetCx("CPU/cpu0", NULL)))
    {
       printf("SpmiPathGetCx failed for CPU/cpu0 context.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"idle", cxhdl))
    {

 

 

 

 

 Appendix A. Source code examples 957



       printf("SpmiPathAddSetStat failed for CPU/cpu0/idle statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    if (!SpmiPathAddSetStat(statset,"kern", cxhdl))
    {
       printf("SpmiPathAddSetStat failed for CPU/cpu0/kern statistic.\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       must_exit();
    }

    return;
}

/*=============================================================*/
main(int argc, char **argv)
{
    int   spmierr=0;

/* Initialize SPMI */
    if ((spmierr = SpmiInit(15)) != 0)
    {
       printf("Unable to initialize SPMI interface\n");
       if (SpmiErrno)
          printf("%s", SpmiErrmsg);
       exit(-98);
    }

    /* set up interrupt signals */
    signal(SIGINT,must_exit);
    signal(SIGTERM,must_exit);
    signal(SIGSEGV,must_exit);
    signal(SIGQUIT,must_exit);
 
    /* Go to statistics routines. */
    addstats();
    getstats();
 
    /* Exit SPMI */
    must_exit();
}

 

 

 

 

958 AIX 5L Performance Tools Handbook



spmi_file.c
Example A-6 shows the source code for the spmi_file.c program.

Example: A-6   spmi_file.c source code

#include <stdio.h>
#include <stdlib.h>
#include <sys/Spmidef.h>

extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 

struct SpmiStatSet*SPMIset = NULL;

void
SPMIerror(char *s)
{

/* We do not want the \n that the SpmiErrmsg have at the 
 * end since we will use our own error reporting format. 
 */                                                      
SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)
{
    if (SPMIset)

if (SpmiFreeStatSet(SPMIset))
SPMIerror("SpmiFreeStatSet");

SpmiExit();
_cleanup();
_exit(0);

}

main(int argc, char *argv[])
{

struct SpmiStatVals*SPMIval = NULL;

 

 

 

 

 Appendix A. Source code examples 959



struct SpmiStat*SPMIstat = NULL;
SpmiCxHdl SPMIcxhdl = 0;
FILE *file;

    char stats[4096];
    float statvalue;
    /*
     * Here we initialize the SPMI environment for our process.
     */

if (SpmiInit(15)) {
SPMIerror("SpmiInit");
exit(SpmiErrno);

}
    /*
     * We make sure that we clean up the SPMI memory that we use
     * before we terminate the process. atexit() is called when
     * the process is normally terminated, and we trap signals
     * that a terminal user, or program malfunction could
     * generate and cleanup then as well.
     */

atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

    /*
     * Here we create the base for our SPMI statistical data hierarchy.
     */ 

if ((SPMIset = SpmiCreateStatSet()) == NULL) {
SPMIerror("SpmiCreateStatSet");
exit(SpmiErrno);

}
    /*
     * Open the file we have the SPMI metrics stored in
     */ 

if ((file = fopen("SPMI_METRICS", "r")) == NULL) exit(1);
    /*
     * Read all lines in the file
     */ 
    while (fscanf(file,"%s",&stats) != EOF) {

/*
 * For each metric we want to monitor we need to add it to
 * our statistical collection set (assuming the input file syntax is 

correct).
 */
if ((SPMIval = SpmiPathAddSetStat(SPMIset,stats,SPMIcxhdl)) == NULL) {

SPMIerror("SpmiPathAddSetStats");
exit(SpmiErrno);

}
    }

 

 

 

 

960 AIX 5L Performance Tools Handbook



    fclose(file);
/*
 * First we must request that SPMI refresh our statistical
 * data hierarchy.
 */
if ((SpmiGetStatSet(SPMIset,TRUE)) != 0) {

SPMIerror("SpmiGetStatSet");
exit(SpmiErrno);

}
/*
 * Here we get the first entry point in our statistical data hierarchy.
 * Note that SPMI will return the values in the reverse order of the one
 * used to add them to our statistical set.
 */
SPMIval = SpmiFirstVals(SPMIset);
do {

if ((statvalue = SpmiGetValue(SPMIset,SPMIval)) < 0) {
SPMIerror("SpmiGetValue");
exit(SpmiErrno);

}
printf("%-25s: 

%.0f\n",SpmiStatGetPath(SPMIval->context,SPMIval->stat,0),statvalue);
/*
 * Finaly we get the next statistic in our data hierarchy.
 * And if this is NULL, then we have retreived all our statistics.
 */
} while ((SPMIval = SpmiNextVals(SPMIset,SPMIval)));

}

spmi_traverse.c
Example A-7 shows the source code for the spmi_traverse.c program.

Example: A-7   spmi_traverse.c source code

#include <sys/types.h>
#include <sys/errno.h>
#include <stdio.h>
#include <sys/Spmidef.h>
 
extern errno;
extern charSpmiErrmsg[]; 
extern intSpmiErrno; 

SPMIerror(char *s)
{
    /* We do not want the \n that the SpmiErrmsg have at the

 

 

 

 

 Appendix A. Source code examples 961



     * end since we will use our own error reporting format.
     */

SpmiErrmsg[strlen(SpmiErrmsg)-1] = 0x0;
fprintf(stderr,"%s: %s (%d)\n",s,SpmiErrmsg,SpmiErrno);

}
/*
 * This subroutine is called when a user interrupts it or
 * when the main program exits. If called by a signal handler
 * it will have a value in parameter s. If s is not set, then
 * it is called when the main program exits. To not have this
 * subroutine called when calling exit() to terminate the
 * process, we use _exit() instead. Since exit() would call
 * _cleanup() and any atexit() registred functions, we call
 * _cleanup() ourselves.
 */
void
cleanup(int s)                                 
{                                         
    SpmiExit();                           

_cleanup ();
_exit (0);

}
/*
 * This function that traverses recursively down a
 * context link.  When the end of the context link is found,
 * findstats traverses down the statistics links and writes the
 * statistic name to stdout.  findstats is originally passed the
 * context handle for the TOP context.
 */
findstats(SpmiCxHdl SPMIcxhdl)
{

struct SpmiCxLink   *SPMIcxlink;
struct SpmiStatLink *SPMIstatlink;
struct SpmiCx       *SPMIcx, *SPMIcxparent;
struct SpmiStat     *SPMIstat;
int                 instantiable;
/*
 * Get the first context.
 */
if (SPMIcxlink = SpmiFirstCx(SPMIcxhdl)) {

while (SPMIcxlink) {
SPMIcx = SpmiGetCx(SPMIcxlink->context);
/*
 * Determine if the context's parent is instantiable
 * because we do not want to have to print the metrics
 * for every child of that parent, ie Procs/<PID>/metric
 * will be the same for every process.
 */
SPMIcxparent = SpmiGetCx(SPMIcx->parent);

 

 

 

 

962 AIX 5L Performance Tools Handbook



if (SPMIcxparent->inst_freq == SiContInst)
instantiable++;

else
instantiable = 0;

/*
 * We only want to print out the stats for any contexts
 * whose parents aren't instantiable. If the parent
 * is instantiable then we only want to print out
 * the stats for the first instance of that parent.
 */
if (instantiable > 1) {

/*
  * Output the name of the metric with instantiable parents.
  */

fprintf(stdout,"%s/%s/.....\n",SPMIcxparent->name,SPMIcx->name);
} else {

/*
  * Traverse the stats list for the context.
  */

if (SPMIstatlink = SpmiFirstStat(SPMIcxlink->context)) {
while (SPMIstatlink) {

SPMIstat = SpmiGetStat(SPMIstatlink->stat);
/*

  * Output name of the statistic.
  */

fprintf(stdout, "%s:%s",

SpmiStatGetPath(SPMIcxlink->context,SPMIstatlink->stat,10),
SPMIstat->description);

/*
  * Output data type/value type about the metric
  */

fprintf(stdout, ":%s/%s",
(SPMIstat->data_type == SiLong?"Long":"Float"),
(SPMIstat->value_type == 

SiCounter?"Counter":"Quantity"));
/*

  * Output max/min information about the metric.
  */

fprintf(stdout,":%ld-%ld\n",SPMIstat->min,SPMIstat->max);
/*

  * Get next SPMIstatlink
  */

SPMIstatlink = SpmiNextStat(SPMIstatlink);
}

}
}   
/*

  * Recursive call to this function, this gets the next context link

 

 

 

 

 Appendix A. Source code examples 963



  */
findstats(SPMIcxlink->context);
/*

  * After returning from the previous link, we go to the next context
  */

SPMIcxlink = SpmiNextCx(SPMIcxlink);
}

}
}

main(int argc, char *argv[])
{

int    spmierr=0;
SpmiCxHdlSPMIcxhdl;
/*
 * Here we initialize the SPMI environment for our process.
 */
if ((spmierr = SpmiInit(15)) != 0) {

SPMIerror("SpmiInit");
exit(errno);

}
/*
 * We make sure that we clean up the SPMI memory that we use
 * before we terminate the process. atexit() is called when
 * the process is normally terminated, and we trap signals
 * that a terminal user, or program malfunction could
 * generate and cleanup then as well.
 */
atexit(cleanup);
signal(SIGINT,cleanup);
signal(SIGTERM,cleanup);
signal(SIGSEGV,cleanup);
signal(SIGQUIT,cleanup);

if ((SPMIcxhdl = SpmiPathGetCx(NULL, NULL)) == NULL)
SPMIerror("SpmiPathGetCx");

else
/*
 * Traverse the SPMI statistical data hierarchy.
 */
findstats(SPMIcxhdl);

}

 

 

 

 

964 AIX 5L Performance Tools Handbook



dudestat.c
Example A-8 shows the source code for the dudestat.c program. 

Example: A-8   dudestat.c source code

#include <stdio.h>
#include <stdlib.h>
#include <sys/var.h>
#include <sys/vminfo.h> 
#include <sys/wlm.h>
#include <procinfo.h>
#include <sys/proc.h>
#include <usersec.h>

sys_param_dude()
{

struct variovario;

if (!sys_parm(SYSP_GET,SYSP_V_MAXUP,&vario)) 
printf("v_maxup (max. # of user processes)                    : %lld\n", 

vario.v.v_maxup.value);
if (!sys_parm(SYSP_GET,SYSP_V_MAXPOUT,&vario)) 

printf("v_maxpout (# of file pageouts at which waiting occurs): %lld\n", 
vario.v.v_maxpout.value);

if (!sys_parm(SYSP_GET,SYSP_V_MINPOUT,&vario)) 
printf("v_minpout (# of file pageout at which ready occurs)   : %lld\n", 

vario.v.v_minpout.value);
if (!sys_parm(SYSP_GET,SYSP_V_FILE,&vario)) 

printf("v_file (# entries in open file table)                 : %lld\n", 
vario.v.v_file.value);

if (!sys_parm(SYSP_GET,SYSP_V_PROC,&vario)) 
printf("v_proc (max # of system processes)                    : %lld\n", 

vario.v.v_proc.value);

if ((!sys_parm(SYSP_GET,SYSP_V_NCPUS,&vario)) != 
(!sys_parm(SYSP_GET,SYSP_V_NCPUS_CFG,&vario)))

printf("Dude! v_ncpus %d (number of active CPUs) \
does not match v_ncpus_cfg %d (number of processor configured)\n",
vario.v.v_ncpus_cfg.value,
vario.v.v_ncpus_cfg.value);

}

vmgetinfo_dude()
{

struct vminfovminfo;

if (!vmgetinfo(&vminfo,VMINFO,sizeof(vminfo))) {

 

 

 

 

 Appendix A. Source code examples 965



printf("freewts (count of free frame waits)                   : 
%lld\n",vminfo.freewts);

printf("extendwts (count of extend XPT waits)                 : 
%lld\n",vminfo.extendwts);

printf("pendiowts (count of pending I/O waits)                : 
%lld\n",vminfo.pendiowts);

printf("numfrb (number of pages on free list)                 : 
%lld\n",vminfo.numfrb);

printf("numclient (number of client frames)                   : 
%lld\n",vminfo.numclient);

printf("numcompress (no of frames in compressed segments)     : 
%lld\n",vminfo.numcompress);

printf("numperm (number frames non-working segments)          : 
%lld\n",vminfo.numperm);

printf("maxperm (max number of frames non-working)            : 
%lld\n",vminfo.maxperm);

printf("maxclient (max number of client frames)               : 
%lld\n",vminfo.maxclient);

printf("memsizepgs (real memory size in 4K pages)             : 
%lld\n",vminfo.memsizepgs);

}
}

swapqry_dude()
{

struct pginfopginfo;
char device[256];
char path[256];
char cmd[256];
FILE *file;

bzero(cmd,sizeof(cmd));
sprintf(cmd,"odmget -q \"value = paging\" CuAt|awk 

'/name/{gsub(\"\\\"\",\"\",$3);print $3}'\n");
if (file = popen(cmd,"r"))

while (fscanf(file,"%s\n", &device)!=EOF) {
sprintf(path,"/dev/%s", device);
if (!swapqry(path,&pginfo)) {

printf("paging space device                                   : 
%s\n",path);

printf("size (size in PAGESIZE blocks)                        : 
%u\n",pginfo.size);

printf("free  (# of free PAGESIZE blocks)                     : 
%u\n",pginfo.free);

printf("iocnt (number of pending i/o's)                       : 
%u\n",pginfo.iocnt);

}
}

pclose(file);

 

 

 

 

966 AIX 5L Performance Tools Handbook



}

getprocs_dude(char *dudes[])
{

struct procsinfops[8192]; 
int uids[12]; 
pid_t index = 0;
int nprocs;
int i,j,k;
char *p;

if (dudes[0] != NULL)
if ((nprocs = getprocs(&ps, sizeof(struct procsinfo), NULL, 0, &index, 

8192)) > 0)
for (i = 0,k = 0; dudes[i] != NULL; i++)

for (j=0; j<nprocs; j++) {
p = IDtouser(ps[j].pi_uid);
if (!strcmp(dudes[i],p)) {

printf ("The %s dude is online and 
excellent!\n\n",dudes[i]);

uids[k++] = ps[j].pi_uid;
break;

}
}

if (i != k) {
j = i - k;
printf ("There %s %d dude%s 

missing!\n\n",(j>1)?"are":"is",j,(j>1)?"s":"");
}

}

main(int argc, char *argv[])
{

printf("PARTY ON!\n\n");
getprocs_dude(argc>1?&argv[1]:NULL);
printf("Dude, here are some excellent info for you today\n\n");
sys_param_dude();
vmgetinfo_dude();
swapqry_dude();

}

 

 

 

 

 Appendix A. Source code examples 967



cwhet.c
Example A-9 shows the source for the cwhet.c program. This Whetstone 
benchmark was written by Harold Curnow of CCTA, the British government 
computer procurement agency, based on work by Brian Wichmann of the 
National Physical Laboratory.

Example: A-9   The cwhet.c file

/* HARDENED WHETSTONE.
      Module 8 changed. Inlining will not throw Module 8 away now.
      Remove <#define HARD> to get the soft version
*/

/*  Whetstone benchmark -- Double Precision.
    This program has a long history and is well described in "A Synthetic
    Benchmark" by H.J. Curnow and B.A. Wichman in Computer Journal, Vol.
    19 #1, February 1976.

    The number of ITERATIONS was increased from 10 to 10000 to minimize
    system overhead.
 */

#define ITERATIONS      10000
#define POUT
#define HARD

#include "math.h"
#include <stdio.h>

double   x1, x2, x3, x4, x, y, z, t, t1, t2;
double   e1[4];
int      i, j, k, l, n1, n2, n3, n4, n5, n6, n7, n8, n9, n10, n11;

main()
{
    t = 0.499975;
    t1 = 0.50025;
    t2 = 2.0;

    n1 =   0;
    n2 =  12 * ITERATIONS;
    n3 =  14 * ITERATIONS;
    n4 = 345 * ITERATIONS;
    n5 =   0;
    n6 = 210 * ITERATIONS;
    n7 =  32 * ITERATIONS;
    n8 = 899 * ITERATIONS;
    n9 = 616 * ITERATIONS;

 

 

 

 

968 AIX 5L Performance Tools Handbook



    n10 =  0;
    n11 = 93 * ITERATIONS;

    /**** Module 1: Simple Identifier ****/

    x1 = 1.0;
    x2 = x3 = x4 = -1.0;
    for (i = 1; i <= n1; i++) {

x1 = ( x1 + x2 + x3 - x4) * t;
x2 = ( x1 + x2 - x3 + x4) * t;
x3 = ( x1 - x2 + x3 + x4) * t;
x4 = (-x1 + x2 + x3 + x4) * t;

    }
#ifdef POUT
   pout(n1, n1, n1, x1, x2, x3, x4);
#endif

    /**** Module 2: array elements ****/

    e1[0] = 1.0;
    e1[1] = e1[2] = e1[3] = -1.0;
    for (i = 1; i <= n2; i++) {

e1[0] = (  e1[0] + e1[1] + e1[2] - e1[3]) * t;
e1[1] = (  e1[0] + e1[1] - e1[2] + e1[3]) * t;
e1[2] = (  e1[0] - e1[1] + e1[2] + e1[3]) * t;
e1[3] = ( -e1[0] + e1[1] + e1[2] + e1[3]) * t;

    }
#ifdef POUT
    pout(n2, n3, n2, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 3: Array as Parameter ****/

    for (i = 1; i <= n3; i++) {
mod3(e1);

    }
#ifdef POUT
    pout(n3, n2, n2, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 4: Conditional Jumps ****/

    j = 1;
    for (i = 1; i <= n4; i++) {

if (j == 1) j = 2;
else j = 3;
if (j > 2) j = 0;
else j = 1;
if (j < 1) j = 1;

 

 

 

 

 Appendix A. Source code examples 969



else j = 0;
    }
#ifdef POUT
    pout(n4, j, j, x1, x2, x3, x4);
#endif

    /**** Module 6: Integer Arithmetic Using Arrays ***/

    j = 1; k = 2; l = 3;
    for (i = 1; i <= n6; i++) {

j = j * (k - j) * (l - k);
k = l * k - (l - j ) * k;
l = (l - k) * (k + j);
e1[l - 2] = j + k + l;
e1[k - 2] = j * k * l;

    }
#ifdef POUT
    pout(n6, j, k, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 7 : Trigonometric functions ****/

    x = y = 0.5;
    for (i = 1; i <= n7; i++) {
       x = t * atan(t2 * sin(x) * cos(x) / (cos(x + y) + cos(x - y) - 1.0));
       y = t * atan(t2 * sin(y) * cos(y) / (cos(x + y) + cos(x - y) - 1.0));
    }
#ifdef POUT
    pout(n7, j, k, x, x, y, y);
#endif

    /**** Module 8 Procedure Call ****/

    x = y = z = 1.0;
    for (i = 1; i <= n8; i++) {

mod8(x, y, &z);
#ifdef HARD

x = z;
#endif
    }
#ifdef POUT
    pout(n8, j, k, x, y, z, z);
#endif

    /**** Module 9: Array References ****/

    j = 1;
    k = 2;
    l = 3;

 

 

 

 

970 AIX 5L Performance Tools Handbook



    e1[1] = 1.0;
    e1[2] = 2.0;
    e1[3] = 3.0;
    for (i = 1; i <= n9; i++) {

mod9();
    }
#ifdef POUT
    pout(n9, j, k, e1[0], e1[1], e1[2], e1[3]);
#endif

    /**** Module 10: Integer Arithmetic ****/

    j = 2;
    k = 3;
    for (i = 1; i <= n10; i++) {

j = j + k;
k = j + k;
j = k - j;
k = k - j - j;

    }
#ifdef POUT
    pout(n10, j, k, x1, x2, x3, x4);
#endif

    /**** Module 11: Standard Functions ****/

    x = 0.75;
    for (i = 1; i <= n11; i++) {

x = sqrt(exp(log(x) / t1));
    }
#ifdef POUT
    pout(n11, j, k, x, x, x, x);
#endif

} /* End of Main */

/**** Module 3 Routine ****/
mod3(a)
double a[4];
{
    register int j;
    for (j = 0; j < 6; j++) {

a[0] = ( a[0] + a[1] + a[2] - a[3]) * t;
a[1] = ( a[0] + a[1] - a[2] + a[3]) * t;
a[2] = ( a[0] - a[1] + a[2] + a[3]) * t;
a[3] = (-a[0] + a[1] + a[2] + a[3]) / t2;

    }
}

 

 

 

 

 Appendix A. Source code examples 971



/**** Module 8 Routine ****/
mod8(x, y, z)
double x, y, *z;
{
    x = t * (x + y);
    y = t * (x + y);
    *z = (x + y) / t2;
}

/**** Module 9 Routine ****/
mod9()
{
    e1[j] = e1[k];
    e1[k] = e1[l];
    e1[l] = e1[j];
}

#ifdef POUT
pout(n, j, k, x1, x2, x3, x4)
int n, j, k;
double x1, x2, x3, x4;
{
   printf("%6d %6d %6d %5e %5e %5e %5e\n",

   n, j, k, x1, x2, x3, x4);
}
#endif

 

 

 

 

972 AIX 5L Performance Tools Handbook



Appendix B. Trace hooks

This appendix contains a listing of the AIX 5L trace hook IDs. Trace hooks can be 
thought of as markers in a trace report that mark certain events. After creating 
the trace report, the trace hooks can then be used to search for these events. 

A trace report can be taken with all trace hooks active, or with only certain trace 
hooks active. It is a particularly good idea to limit the number of events that are 
captured (by limiting the number of trace hooks) on systems that are very busy, 
especially large SMP systems. Because the trace buffers are limited in size and 
can grow extremely quickly, avoid filling the buffer by limiting the number of trace 
hooks. Refer to Chapter 40, “The trace, trcnm, and trcrpt commands” on 
page 759 for further information about trace. The trace hooks that are needed by 
AIX trace post-processing tools, such as filemon, netpmon, tprof, or curt, are 
specified in the AIX documentation that can be found at:

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/

B
 

 

 

 

© Copyright IBM Corp. 2001, 2003 973

http://www.rs6000.ibm.com/doc_link/en_US/a_doc_lib/aixgen/


AIX 5L trace hooks
The following list of trace hooks and their respective hook IDs can be obtained by 
running the trcrpt -j command. It is recommended that you run trcrpt -j 
every time the operating system is updated to check for any modifications to the 
trace hooks that IBM may make.

Example: B-1   AIX 5.2 trace hooks using trcrpt -j

#uname -a
AIX lpar05 2 5 0021768A4C00
#trcrpt -j
001 TRACE ON
002 TRACE OFF
003 TRACE HEADER
004 TRACEID IS ZERO
005 LOGFILE WRAPAROUND
006 TRACEBUFFER WRAPAROUND
007 UNDEFINED TRACE ID
008 DEFAULT TEMPLATE
00a TRACE_UTIL
100 FLIH
101 SYSTEM CALL
102 SLIH
103 RETURN FROM SLIH
104 RETURN FROM SYSTEM CALL
105 LVM EVENTS
106 DISPATCH
107 FILENAME TO VNODE (lookuppn)
108 FILE ORIENTED SYSTEM CALLS
10a KERN_PFS
10b LVM BUF STRUCT FLOW
10c DISPATCH IDLE PROCESS
10d FILE VFS AND INODE
10e LOCK OWNERSHIP CHANGE
10f KERN_EOF
110 KERN_STDERR
111 KERN_LOCKF
112 LOCK
113 UNLOCK
114 LOCKALLOC
115 SETRECURSIVE
116 XMALLOC size,align,heap
117 XMFREE address,heap
118 FORKCOPY
119 SENDSIGNAL
11a KERN_RCVSIGNAL
11c P_SLIH
11d KERN_SIGDELIVER

 

 

 

 

974 AIX 5L Performance Tools Handbook



11e ISSIG
11f SET ON READY QUEUE
120 ACCESS SYSTEM CALL
121 SYSC_ACCT
122 ALARM SYSTEM CALL
12e CLOSE SYSTEM CALL
130 CREAT SYSTEM CALL
131 DISCLAIM SYSTEM CALL
134 EXEC SYSTEM CALL
135 EXIT SYSTEM CALL
137 FCNTL SYSTEM CALL
139 FORK SYSTEM CALL
13a FSTAT SYSTEM CALL
13b FSTATFS SYSTEM CALL
13e FULLSTAT SYSTEM CALL
14c IOCTL SYSTEM CALL
14e KILL SYSTEM CALL
152 LOCKF SYSTEM CALL
154 LSEEK SYSTEM CALL
15b OPEN SYSTEM CALL
15f PIPE SYSTEM CALL
160 PLOCK
163 READ SYSTEM CALL
169 SBREAK SYSTEM CALL
16a SELECT SYSTEM CALL
16e SETPGRP
16f SBREAK
180 SIGACTION SYSTEM CALL
181 SIGCLEANUP
183 SIGRETURN
18e TIMES
18f ULIMIT SYSTEM CALL
195 USRINFO SYSTEM CALL
19b WAIT SYSTEM CALL
19c WRITE SYSTEM CALL
1a4 GETRLIMIT SYSTEM CALL
1a5 SETRLIMIT SYSTEM CALL
1a6 GETRUSAGE SYSTEM CALL
1a7 GETPRIORITY SYSTEM CALL
1a8 SETPRIORITY SYSTEM CALL
1a9 ABSINTERVAL SYSTEM CALL
1aa GETINTERVAL SYSTEM CALL
1ab GETTIMER SYSTEM CALL
1ac INCINTERVAL SYSTEM CALL
1ad RESTIMER SYSTEM CALL
1ae RESABS SYSTEM CALL
1af RESINC SYSTEM CALL
1b0 VMM_ASSIGN (assign virtual page to a physical page)
1b1 VMM_DELETE (delete a virtual page)

 

 

 

 

 Appendix B. Trace hooks 975



1b2 VMM_PGEXCT (pagefault)
1b3 VMM_PROTEXCT (protection fault)
1b4 VMM_LOCKEXCT (lockmiss)
1b5 VMM_RECLAIM
1b6 VMM_GETPARENT
1b7 VMM_COPYPARENT
1b8 VMM_VMAP (fault on a shared process private segment)
1b9 VMM_ZFOD (zero fill a page)
1ba VMM_PAGEIO
1bb VMM_SEGCREATE (segment create)
1bc VMM_SEGDELETE (segment delete)
1bd VMM_DALLOC
1be VMM_PFEND
1bf VMM_EXCEPT
1c8 PPDD
1ca TAPEDD
1cf C327DD
1d0 DDSPEC_GRAPHIO
1d1 ERRLG
1d2 DUMP
1d9 VMM_ZERO
1da VMM_MKP
1db VMM_FPGIN
1dc VMM_SPACEOK
1dd VMM_LRU
1f0 SETTIMER SYSTEM CALL
200 RESUME
201 KERN_HFT
202 KERN_KTSM
204 SWAPPER swapin process
205 SWAPPER swapout process
206 SWAPPER post process for suspension
207 SWAPPER sched stats
208 SWAPPER process stats
209 SWAPPER sched stats
20a MEMORY SCRUBBING disable
20b MEMORY SCRUBBING enable
20c MEMORY SCRUBBING choose segment of memory
20d MEMORY SCRUBBING report single bit errors
20e LOCKL locks a conventional process lock
20f UNLOCKL unlocks a conventional process lock
211 NFS: Client VNOP read/write routines
212 NFS: Client VNOP routines
213 NFS: Server read/write services
214 NFS: Server services
215 NFS: Server dispatch
216 NFS: Client call
217 NFS: RPC Debug
218 NFS: rpc.lockd hooks

 

 

 

 

976 AIX 5L Performance Tools Handbook



220 FDDD
221 SCDISKDD
222 BADISKDD
223 SCSIDD
226 GIODD
228 SERDASDD
229 TMSCSIDD
22c tsdd
232 SCARRAYDD
233 SCARRAY
234 CLOCK
250
251 NETERR
252 SOCK
254 MBUF
255 NETIF_EN
256 NETIF_TOK
257 NETIF_802.3
258 NETIF_X25
259 NETIF_SER
25a TCPDBG
272 PSLA DR. OPEN(X) CALL
273 PSLA DR. CLOSE CALL
274 PSLA DR. READ CALL
275 PSLA DR. WRITE CALL
276 PSLA DR. IOCTL CALLS
277 PSLA INTERRUPT HANDLER
278 PSLA DR. CONFIG CALL
280 HIADD
292 VCA DEVICE DRIVER
2a1 IDEDISKDD
2a2 IDECDROMDD
2a4 kentdd
2a5 kentdd
2a6 kentdd
2a7 stokdd
2a8 stokdd
2a9 stokdd
2aa stokdd
2c7 chatmdd
2c8 chatmdd
2c9 chatmdd
2ca bbatmdd
2d9 NFS: krpc network hooks
2da cstokdd
2db cstokdd
2dc cstokdd
2e6 phxentdd
2e7 phxentdd

 

 

 

 

 Appendix B. Trace hooks 977



2e8 phxentdd
2ea gxentdd
2eb gxentdd
2ec gxentdd
2ed nbc
2f9 WLM
2fa ethchandd
2fb ethchandd
2fc  VMM_VWAIT EVENT
2fd RPDP:
2fe System freeze:
300 ODM EVENTS
339 ATM SIGNALING-DD -
33a if_at
340
355 PDIAGEX
38d AIO: Asynchronous I/O
38e SISADD
38f DYNAMIC RECONFIG:
393 LVM NON-I/O EVENTS
3a0 atmcm
3a5 atmsock
3a7 jatmdd
3a8 SCSESDD
3a9 dpmpdd
3aa dpmpdd
3ab dpmpdd
3ac sciedd
3af NFS: cachefs hooks
3b0 AutoFS: Client VNOP read/write routines
3b4 TMSSA Device
3b5 ecpadd
3b6 ecpadd
3b7 SECURITY:
3b8 SEC DATA:
3b9 FCDD
3c0 ecpadd
3c1 ecpadd
3c2 ecpadd
3c4 FCPS
3c5  IPCACCESS EVENT
3c6  IPCGET EVENT
3c7  MSGCONV EVENT
3c8  MSGCTL SYSTEM CALL
3c9  MSGGET SYSTEM CALL
3ca  MSGRCV SYSTEM CALL
3cb  MSGSELECT SYSTEM CALL
3cc  MSGSND SYSTEM CALL
3cd  MSGXRCV SYSTEM CALL

 

 

 

 

978 AIX 5L Performance Tools Handbook



3ce  SEMCONV EVENT
3cf  SEMCTL SYSTEM CALL
3d0  SEMGET SYSTEM CALL
3d1  SEMOP SYSTEM CALL
3d2  SEM EVENT
3d3  SHMAT SYSTEM CALL
3d4  SHMCONV EVENT
3d5  SHMCTL SYSTEM CALL
3d6  SHMDT SYSTEM CALL
3d7  SHMGET SYSTEM CALL
3d8  MADVISE SYSTEM CALL
3d9  MINCORE SYSTEM CALL
3da  MMAP SYSTEM CALL
3db  MPROTECT SYSTEM CALL
3dc  MSYNC SYSTEM CALL
3dd  MUNMAP SYSTEM CALL
3de  MVALID SYSTEM CALL
3df  MSEM_INIT SYSTEM CALL
3e0  MSEM_LOCK SYSTEM CALL
3e1  MSEM_REMOVE SYSTEM CALL
3e2  MSEM_UNLOCK SYSTEM CALL
3e3 ecpadd
3e4 ecpadd
3e8 bbatmdd
3e9 bbatmdd
3ea bbatmdd
3f7 J2 - VNODE
3f8 J2 - PAGER
3fd vlandd
3fe vlandd
3ff vlandd
400 STTY
401 STTY STRTTY
402 STTY LDTERM
403 STTY SPTR
404 STTY NLS
405 STTY PTY
406 STTY RS
407 STTY LION
408 STTY CXMA
409 STTY SF
417 STTY VCON
45a SSA Adapter
45b SSA DASD
460 ASSERT WAIT
461 CLEAR WAIT
462 THREAD BLOCK
463 EMPSLEEP
464 EWAKEUPONE

 

 

 

 

 Appendix B. Trace hooks 979



465 THREAD_CREATE SYSTEM CALL
466 KTHREAD_START
467 THREAD_TERMINATE SYSTEM CALL
468 KSUSPEND
469 THREAD_SETSTATE
46a THREAD_TERMINATE_ACK
46b THREAD_SETSCHED
46c TIDSIG
46d WAIT_ON_LOCK
46e WAKEUP_LOCK
470 scentdd
471 scentdd
472 scentdd
473 goentdd
474 goentdd
475 goentdd
502 GSC
503 GSC
522 ICA:        IBM Crypto Accelerator Error Traces
523 ICA:        IBM Crypto Accelerator Verbose Traces
524 ICA:        IBM Crypto Accelerator Verbose Traces
527  UDI MANAGEMENT AGENT
528  UDI SCSI MAPPER
529  UDI BRIDGE MAPPER
52a  UDI NETMAPPER (
52b  UDI GIO MAPPER
52c  UDI NETWORK DRIVER
52d  UDI SCSI DRIVER
535 TCP
536 UDP
537 IP
538 IP6
539 PCB
590 ATM DdMain trc,
591 ATM ERROR trc,
592 ATM Common trc,
593 ATM ILMI trace,
594 ATM QSAAL trc,
595 ATM SVC trace,
5a0 sysldr/mods
5a1 load/kxent
5a2 sysldr/execld
5a3 sysldr/errs:
5a4 sysldr/chkpt:
600 Pthread user scheduler thread
603 Pthread timer thread
605 Pthread vp sleep
606 Pthread condition variable
607 Pthread mutex

 

 

 

 

980 AIX 5L Performance Tools Handbook



608 Pthread read/write lock
609 General pthread library call
60a HKWD_LIBC_MALL_COMMON
60b HKWD_LIBC_MALL_INTERNAL
707 LFTDD:
709 INPUTDD:
71f BLDD:
722 SGIODD:
72d MIRDD:
730 SONDD:
733 MOJDD:
734 USBKBD:
735 USBMSE:
736 USBOHCD:
7ff STREAMS (PSE)

 

 

 

 

 Appendix B. Trace hooks 981



 

 

 

 

982 AIX 5L Performance Tools Handbook



acronyms
AIO Asynchronous Input Output

AIX Advanced Interactive 
Executive

API Application Programming 
Interface

ARP Address Resolution Protocol

ASCII American Standard Code for 
Information Interchange

ATM Asynchronous Transfer Mode

BPF Berkeley Packet Filter

CCTA Central Computer and 
Telecommunications Agency

CD-ROM Compact Disk Read-Only 
Memory

CDT Central Daylight Saving Time

COBOL Common Business Oriented 
Language

CPID Channel Path ID

CPU Central Processing Unit

CRC Cyclic Redundancy Code

CSECT Code Segment

CSMA Carrier Sense Multiple Access

CWD Current Working Directory

DASD Direct Access Storage Device

DB2® Database 2

DDS Dynamic Data Supplier

DLPI Data Link Provider Interface

DMA Direct Memory Access

DNS Domain Name Service

DPSA Deferred Paging Space 
Allocation

EBCDIC Extended Binary Coded 
Decimal Instruction Code

EOF End of file

Abbreviations and  

 

 

© Copyright IBM Corp. 2001, 2003. All rights reserved
EPSA Early Paging Space Allocation

ERRM Event Response Resource 
Manager

ESS Enterprise Storage System

EXTSHM Extended Shared Memory

FDDI Fiber Distributed Data 
Interface 

FDPR Feedback Directed Program 
Restructuring

FLIH First Level Interrupt Handler

FORTRAN Formula Translation

FRCA Fast Response Cache 
Accelerator

FSRM File System Resource 
Manager

FTP File Transfer Protocol

GSA General Services 
Administration

GUI Graphical User Interface

HACMP High Availability Cluster 
Management Program

HAEM High Availability Event 
Management

HAGS High Availability Group 
Services

HATS High Availability Topology 
Services

HPC High Performance Computing

HPM Hardware Performance 
Monitor toolkit

HTTP Hypertext Transfer Protocol

IBM International Business 
Machine

ICA IBM Crypto Accelerator

 

.  983



ICMP Internet Control Message 
Protocol

IGMP Internet Group Management 
Protocol

IOCTL Input Output Controller

IP Internet Protocol

IPX Internetwork Packet 
Exchange 

ISNO Interface Specific Network 
Option

ITSO International Technical 
Support Organization

JFS Journalled File Systems

KEX Kernel Extension

LAN Local Area Network

LFS Local File System

LLC Logical Link Control

LPID Logical Page Identifier

LPSA Late Paging Space Allocation

LRU Least Recently Used

LSU Logical Storage Unit

LTG Linux Technology Group

LVDD Logical Volume Device Driver

LVM Logical Volume Manager

LVMDD LVM Device Driver

MB Megabyte

MCA Microchannel Architecture

MP64 64-bit Multiprocessor

MPIO Multi Path Input Output device

MTU Maximum Transmission Unit 

MWC Multi-write Consistency

MWCC Multi-write Consistency 
Cache

NBC Network Buffer Cache

NDD Network Device Driver

NFS Network File Systems

NLS Network Language 
Translation

NOP NO-operation

ODM Object Data Manager 

OSPF Open Shortest Path First

PCB Program Control Block

PCI Peripheral Component 
Interconnect

PDT Performance Diagnostic Tool

PFS Physical File System

PFT Page Frame Table

PGID Page Identifier

PID Process Identifier

POSIX Portable Operating System 
Interface

SSP Parallel Systems Support 
Program

PTX Performance Toolbox

PV Physical Volume

RAID Redundant Array of 
Independent Drives

RAM Random Access Memory

RFC Request for Comment

RMC Resource Monitoring and 
Control

ROM Read-only Memory

RPC Remote Procedure Call

RPM Rotation per Minute

RS/6000 RISC Systems/6000

RSCT Reliable Scalable Cluster 
Technology

RSS Real Storage Size

SCSI Small Computer System 
Interface

SHM Shared Memory

SLIH Second Level Interrupt 
Handler

 

 

 

 

984 AIX 5L Performance Tools Handbook



SMIT Systems Management 
Interface Tools

SMP Symmetric Multiprocessor

SPMI Systems Performance 
Measurement Interface

SRC System Resource Controller

SSA Systems Storage Adapter

SVC Supervisory Call

TCP/IP Transmission Control 
Protocol/Internet Protocol

TID Thread ID

TLB Translation Look-aside Buffer

TOC Table of Contents

TTY Teletype 

UDP User Datagram Protocol

VFS Virtual File Systems

VMM Virtual Memory Manager

VSID Virtual Segment Identifier

WLM Workload Manager

 

 

 

 

 Abbreviations and acronyms 985



 

 

 

 

986 AIX 5L Performance Tools Handbook



Related publications

The publications listed in this section are considered particularly suitable for a 
more detailed discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM 
Redbooks” on page 989. Note that some of the documents referenced here may 
be available only in softcopy. 

� AIX 5L Differences Guide Version 5.2 Edition, SG24-5765

� AIX 5L Workload Manager (WLM), SG24-5977

� RS/6000 and Asynchronous Transfer Mode, SG24-4796

� RS/6000 Scientific and Technical Computing: POWER3 Introduction and 
Tuning Guide, SG24-5155

� RS/6000 SP System Performance Tuning Update, SG24-5340

� TCP/IP Tutorial and Technical Overview, GG24-3376

� Understanding IBM ^ pSeries Performance and Sizing, SG24-4810

Other publications
These publications are also relevant as further information sources:

� AIX 5L publication, available in softcopy only:

– AIX 5L Version 5.1 Commands Reference, SBOF-1877

– AIX 5L Version 5.1 Commands Reference, Volume 5, SBOF-1857

– AIX 5L Version 5.1 Files Reference

– AIX 5L Version 5.1 General Programming Concepts

– AIX 5L Version 5.1 Kernel Extensions and Device Support Programming 
Concepts

– AIX 5L Version 5.1 Performance Management Guide

– AIX 5L Version 5.1 Performance Management Guide: Communications 
and Networks

 

 

 

 

© Copyright IBM Corp. 2003. All rights reserved. 987



– AIX 5L Version 5.2 Performance Management Guide: Operating System 
and Devices

– AIX 5L Version 5.1 System Management Concepts: Operating System 
and Devices

– AIX 5L Version 5.2 System User's Guide: Communications and Networks

– AIX 5L Version 5.2 System User's Guide: Operating System and Devices

– AIX 5L Version 5.2 Technical Reference: Base Operating System and 
Extensions, Volume 1

– AIX 5L Version 5.2 Technical Reference: Base Operating System and 
Extensions, Volume 2

– AIX 5L Version 5.2 Technical Reference: Communications, Volume 2

– AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems, 
Volume 1

– AIX 5L Version 5.2 Technical Reference: Kernel and Subsystems, 
Volume 2

� Other IBM publications

– Event Management Programming Guide and Reference, SA22-7354

– Performance Toolbox Version 2 and 3 Guide and Reference

– Resource Monitoring and Control Guide and Reference, SC23-4345

� RFC 1180 A TCP/IP Tutorial

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM ^ pSeries support page

https://techsupport.services.ibm.com/server/support?view=pSeries

� Request for comment pages for TCP/IP protocol specification

http://www.rfc-editor.org
http://www.ietf.org/rfc.html

� IBM Networking product page

http://www.networking.ibm.com/netprod.html

� AIX software support FTP site

ftp://ftp.software.ibm.com/aix
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf52/perf52.tar.Z

 

 

 

 

988 AIX 5L Performance Tools Handbook

http://www.ietf.org/rfc.html
https://techsupport.services.ibm.com/server/support?view=pSeries
http://www.rfc-editor.org
http://www.networking.ibm.com/netprod.html
ftp://ftp.software.ibm.com/aix
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr
ftp://ftp.software.ibm.com/aix/tools/perftools/perfpmr/perf52/perf52.tar.Z


� AIX 5L documentation page

http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm

� TCP dump Web page

http://www.tcpdump.org

� Toolkit page from Alphaworks

http://www.alphaworks.ibm.com/tech/hpmtoolkit

� IBM Redbooks homepage

ftp://www.redbooks.ibm.com/redbooks

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, 
draft publications and Additional materials, as well as order hardcopy Redbooks 
or CD-ROMs, at this Web site: 

ibm.com/redbooks

 

 

 

 

 Related publications 989

http://www.redbooks.ibm.com/
http://www.ibm.com/redbooks/
http://www.ibm.com/redbooks/
http://publib16.boulder.ibm.com/pseries/en_US/infocenter/base/aix.htm
http://www.tcpdump.org
http://www.alphaworks.ibm.com/tech/hpmtoolkit
ftp://www.redbooks.ibm.com/redbooks


 

 

 

 

990 AIX 5L Performance Tools Handbook



Index

Symbols
.files file   108
.nodes file   109
.SM_RAW_REPORT file   112
.thresholds file   109

Numerics
3dmon command   875, 909

A
access time   21

rotational   21
seek   21
transfer   21

accumulated CPU time   135
active socket connections   622
Active Virtual Memory   214
adapter throughput report   91
Address Resolution Protocol, see ARP
address space   13
address space map   271
adm user   108
AIX maintenance level   120
AIX Performance Toolbox   891
AIX processes   6
AIX thread   6
alignment exception   281
allocated page range   412
allocation policies   15
alstat command   283

examples   283
analysis interval   733
API   181, 785, 891
application profiling   335
Application Program Interface, see API
Application Programming Interfaces, see API
ARP   42
ARP cache thrashing   605
ARP handling   605
as file   49
ASCII   568
Asynchronous Transfer Mode, see ATM

 

 

 

© Copyright IBM Corp. 2001, 2003. All rights reserved
ATM   539
atmstat command   33, 540, 622

examples   541
fields of interest   543

B
base priority   7
baseline performance information   60
bc command   593
benchmarking program   302
Berkeley Packet Filter, see BPF
bindintcpu command   9, 290
bindprocessor command   9, 137, 292
biod   218
block device activity   153
block I/O daemon   218
bos.acct   81, 211, 355
bos.adt.prof   298
bos.adt.samples   165, 229
bos.mp   289
bos.net.nfs.client   655
bos.net.tcp.server   567
bos.perf.diag_tool   105
bos.perf.tools   93, 139, 179, 281, 298–299, 379, 
387, 457, 677, 703, 729
bos.perf.tune   165, 229, 255
bos.rte.control   349, 365
bos.rte.lvm   501, 519
bos.rte.misc_cmds   355
bos.sysmgt.serv_aid   191
bosboot command   45, 230, 719
BPF   571
buffer activity   150
buffer size   671
buffer utilization   150

C
C program   786, 806, 820
cache coherency   9
caveat   819
cc command   288, 786
CC_IN   602
chcondition command   825

 

.  991



chdev command   544, 629
child processes   276
chresponse command   825
chrsrc command   825
client segments   13, 392, 409
clock interrupt   6
clock-algorithm   225
commands

3dmon   875, 909
alstat   283
atmstat   33, 540, 622
bc   593
bindintcpu   9, 290
bindprocessor   137, 292
bosboot   45, 230, 719
cc   288, 786
chcondition   825
chdev   544, 629
chresponse   825
chrsrc   825
cronadm   108
ctsnap   825
curt   678
date   197
dd   198, 450, 494
defragfs   481
df   47, 494
Driver_   108
du   493
emstat   285
entstat   33, 546, 622
estat   33, 552
fddistat   33, 555, 622
fdpr   71–72
filemon   219, 458, 508, 512, 705
fileplace   64, 464, 480, 512
frcactrl   623
fsck   29
ftp   33, 98
genkex   713
genkld   712
genld   710
gennames   94, 678, 704, 730–731, 734
gensyms   327, 715, 731, 734
gprof   300, 689
inetd   45
ioo   18, 239
iostat   64, 82, 340, 505, 660, 787
ipcrm   365, 808

ipcs   366, 808
ipfilter   34, 573
ipreport   34, 572
iptrace   34, 569, 633
jazizo   918
kill   808
locktrace   720
logform   29
lsactdef   825
lsattr   35, 39, 91, 544, 629
lsaudrec   825
lscondition   825
lscondresp   825
lsfs   464, 525
lslv   87, 463, 502, 523
lspv   212, 463, 502
lsresponse   825
lsrsrc   825, 830
lsrsrcdef   825
lsvg   463, 503
lvmstat   508, 520
make   208, 805
migratelp   523
mkcondition   825
mkcondresp   826
mkresponse   825
mkrsrc   825
mkvg   24, 503
mount   47, 663
ncheck   396
netpmon   94
netstat   33, 620
nfso   646
nfsstat   33, 656
nice   6, 350
no   34, 623, 666
odmget   540
pdt_config   106
perfpmr   116
ping   33
pprof   309
proccred   270
procfiles   268
procflags   270
procldd   272
procmap   271
procrun   275
procsig   273
procstack   274

 

 

 

 

992 AIX 5L Performance Tools Handbook



procstop   275
proctree   276
procwait   276
procwdx   268
prof   305, 320
ps   6, 49, 128, 351
refrsrc   825
renice   6, 352
rmaudrec   825
rmcctrl   825, 829
rmcondition   825, 841
rmcondresp   826
rmresponse   825, 841
rmrsrc   825
rmss   380, 399
route   620, 628
rstatd   849
sadc   142
sar   9, 62, 140, 219, 375
schedo   7, 15, 166, 219
schedtune   177
slibclean   365, 808
snap   32
splat   730
ssaraid   517
ssaxlate   516
startcondresp   826
stopcondresp   826
stripnm   704, 715, 724
svmon   369, 388
svmon_back   387
sync   481
syncd   244
syncvg   28
tcpdump   34, 587, 633
timex   357
tokstat   33, 560, 622
topas   53, 180, 369
tprof   61, 283, 324, 376, 704–705, 715
trace   62, 760
traceroute   33
trcevgrp   95
trcnm   775
trcoff   760
trcon   760
trcrpt   680, 777
trcstop   760
truss   192, 376
tunchange   44

tuncheck   44, 256
tundefault   44
tunrestore   44, 258
tunsave   44
vmo   12, 16, 215, 230
vmstat   157, 212, 245, 291, 340, 544, 660, 787
vmtune   54, 251
wlmmon   872
wlmperf   872
wlmstat   862
xmperf   875, 894
xmtrend   874, 918
xmwlm   873

communication direction   590
compiling   786, 806, 820
complex kernel lock   738
computational pages   233
condition   836
condition-variable   739
context switching   162, 217
CPU consuming processes   131
CPU context switch   226
CPU decay factor   7
CPU overhead   764
CPU penalty factor   7
CPU performance   5
CPU throughput   5
CPU ticks   356
CPU usage   335, 339
CPU Usage Reporting Tool   677
CPU usage value   6–7
cred data structure   52
credentials   270
cronadm command   108
crontab   106, 146
crontab file   108
ctsnap command   825
cumulative CPU time   737
curt command   678

additional information   696
application summary by process ID   689
application summary by process type   689
application summary by thread ID   687
default report   683
detailed process information   700
detailed thread status   698
errors by system calls   697
FLIH summary   693
general information report   683

 

 

 

 

 Index 993



Kproc summary by thread ID   690
pending system calls summary   692
processor summary report   686
SLIH summary   694
system calls summary   691
system summary report   684
trace hooks   679

cwhet.c   968
Cylinder   21

D
Data Link Provider Interface, see DLPI
date command   197
dd command   198, 450, 494
DDS   808
Dead Man Switch, see DMS
decrementer interrupt   326
Deferred Paging Space Allocation, see DPSA
defps   16
defragfs command   481
destination address   615
devices.chrp.base.rte   289
devices.common.IBM.atm.rte   539
devices.common.IBM.ethernet.rte   539
devices.common.IBM.fddi.rte   539
devices.common.IBM.tokenring.rte   539
df command   47, 494
Direct Memory Access, see DMA
disk I/O   18

access time   21
design approach   19

disk placement   523
disk striping   249
disk utilization report   89
dispatching priority   349
DLPI   623
DMA   546
DMS   123
DNS   577
DNS tracing   577
document organization   2
Domain Name Server, see DNS
DPSA   16, 234
Driver_ command   108
du command   493
dudestat.c   965
duplex communication   590
dynamic data supplier, see DDS

dynamic libraries   272

E
Early Paging Space Allocation, see EPSA
EBCDIC   568
ECHO_REPLY package   574
ECHO_REQUEST package   574
emstat command   285

examples   286
emulation exception   281
Enhanced Journaled File System, see JFS2
Enterprise Storage Server, see ESS
entstat command   33, 546, 622

examples   548
fields of interest   549

environment variables   205
PSALLOC   15
SPINLOOPTIME   11
YIELDLOOPTIME   11

EPSA   15
ERRM   827
ESS   90
estat command   33, 552

examples   552
fields of interest   553

Ethernet device driver   539
Event Response resource manager, see ERRM
event response script   833
execution interval   733
expectations   4
Extended Common Object File Format, see XCOFF
extended shared memory   17
extendednetstats   630
extra nice value   7

F
F80   2
facility access modes   368
failovers   123
fault name   197
FD   459
FDDI   539
fddistat command   33, 555, 622

examples   556
fields of interest   558

fdpr command   71–72
example   76
instrumentation   76

 

 

 

 

994 AIX 5L Performance Tools Handbook



phases   75
source code   76

Fiber Distributed Data Interface, see FDDI
file access system routines   149
file descriptor, see FD
file descriptors   268
file pages   233
file system caching   233
File System resource manager, see FSRM
filemon command   219, 458, 508, 512, 705

access pattern analysis   460
detailed file report   470
examples   462
file report   468
file summary section   469
fragmentation analysis   461
I/O activity   459
interpreting reports   460
logical volume detail   463
monitoring   462
most active files   464
most active logical volumes   463, 472
most active physical volumes   462
Most Active Segments report   461
physical volume detail   466
physical volume reports   464
physical volume summary   466
trace hooks   460
virtual memory segments report   475

filemon.out file   462
fileplace command   64, 464, 480, 512

examples   481
indirect block report   486
logical report   482
physical address   484
physical mapping   499
physical report   483
volume report   488

filesystems   507
First Level Interrupt Handler, see FLIH
fixed_pri_global   8, 170
FLIH   98, 682
FLIH CPU statistic   101
floating point double load   282
fork   219
fork report   219
four way close   599
fragment size   485
fragmentation   461

frcactrl command   623
free list   14
fsck command   29
FSRM   827
ftp command   33, 98

G
gaps   491
genkex command   713
genkld command   712
genld command   710
gennames command   94, 678, 704, 730–731, 734

file system information   709
loaded kernel extensions   707
loaded libraries per process   711
loaded processes   708
loaded shared libraries   707
name-to-address mapping   706

gensyms command   327, 715, 731, 734
name-to-address mapping   715

gprof command   300, 689
cross-reference index   306
detailed function report   302
flat profile report   305

Graphical User Interface, see GUI
GUI   298, 824

H
HACMP   123
HAEM   826
hd_pbuf_cnt   22, 246
hdisk   517
Head   21
hit ratios   140
HKWD_KERN_PIDSIG   680
HKWD_KERN_SVC   680
hook ID   765
human expectations   3

I
I/O activity levels   459
I/O bottleneck   87
I/O operations   359
ICMP   96, 634
ICMP packets   609
ICMP tracing   586
ifconfig command   35

 

 

 

 

 Index 995



iget routines   149
IGMP   634
illegal instruction program   282
indirect block   487
inetd command   45
inittab   258
inode   493
inode lookup routines   149
inode number   50
inode table   480
instantiation   807
Inter Process Communication, see IPC
inter-disk allocation policy   26
Interface Specific Network Options, see ISNO
Internet Control Message Protocol, see ICMP
Internet Group Multicast Protocol, see IGMP
interrupt handlers   9
interrupt level   290
interrupt priority   220
interrupt redirection   290
intra-disk allocation policy   25
ioo command   18, 239
ioo tunable   239

hd_pbuf_cnt   22, 246
j2_maxRandomWrite   245
j2_nBufferPerPagerDevice   246
j2_nPagesPerWriteBehindCluster   244
j2_nRandomCluster   245
lvm_bufcnt   246
maxpgahead   241–242
maxrandwrt   244
minpgahead   242
numclust   241
numfsbuf   241
numfsbufs   245
pd_npages   246
sync_release_ilock   245

iostat command   64, 82, 340, 505, 660, 787
adapter throughput report   91
disk utilization report   89
reports   83
system throughput report   84
tty and CPU utilization report   88

IPC   155
IPC message queue   367
ipcrm command   365, 808
ipcs command   366, 808

examples   366
IPC message queues   367

semaphores   375
shared memory   368

ipfilter command   34, 573
ipforwarding   671–672
ipreport command   34, 572
iptrace command   34, 569, 633
IPX tracing   586
ISNO   31, 34, 637
IY43857   711

J
j2_maxRandomWrite   245
j2_nBufferPerPagerDevice   246
j2_nPagesPerWriteBehindCluster   244
j2_nRandomCluster   245
jazizo command   918
JBOD   517
JFS   87, 392, 507
JFS inode table   480
JFS log   29
JFS superblock   480
JFS2   507, 516
JFS2 client pages   235
Journaled File System, see JFS
Just a Bunch Of Disks, see JBOD

K
kernel   5

operation   5
kernel block buffer cache   140
kernel extension   9, 142, 713

name   705
kernel mode   9
kernel process activity   154
kernel processes   9, 217
kernel scheduling queue   156
kernel service   292
kernel thread state changes   214
kernel threads   309
kerrnel table utilization   160
kill command   808

L
Late Paging Space Allocation, see LPSA
Least Recently Used, see LRU
lgpg_regions   238
lgpg_size   238

 

 

 

 

996 AIX 5L Performance Tools Handbook



libperfstat.a   786
libperfstat.h   786
libpmapi.a   820
libSpmi.a   806
limbo state   545
linking   786, 806, 820
loaded kernel extension   705
loader entry   712
loading dynamic library   272
lock   10
lock classes   720
lock types   10, 742

mutual exclusion locks   11
read-write locks   11
sleeping locks   11
spin locks   10

lockname.h file   720
locks usage   720
locktrace command   720

lock usage   720
logform command   29
logical file system   459
logical fragment numbers   488
logical fragmentation   481
logical partitions   523
logical processor   292
Logical Track Groups   28
Logical Volume Device Driver, see LVDD
Logical Volume Manager Device Driver, see LVM-
DD
Logical Volume Manager, see LVM
logical volume report   471
logical volume striping   249
logical volume utilization   522
logical volumes   459, 507, 705
LPSA   15, 234
LRU   171, 225
lrud   446
lrud kernel process   14
lsactdef command   825
lsattr command   35, 39, 91, 544, 629
lsaudrec command   825
lscondition command   825
lscondresp command   825
lsfs command   464, 525
lslv command   87, 463, 502, 523

examples   505
usage   512

lsps command   17

lspv command   212, 463, 502
examples   505
usage   513

lsresponse command   825
lsrsrc command   825, 830
lsrsrcdef command   825
lsvg command   463, 503

examples   505
usage   515

LVDD   28, 484
LVM   22, 24, 501
lvm_bufcnt   246
LVMDD   510, 520
lvmstat command   508, 520

examples   521
logical volume utilization   522
monitoring logical volume   526
monitoring logical volumes   524
summarizing I/O utilization   528

M
MAC   581
MAC address   606
machine fault numbers   194
Mail Handler, see MH
maintenance level   120
major device number   50
make command   208, 805
mapping segment   415
mapping segments   392
maxclient%   235
maxfree   14, 219, 231–232
Maximum Segment Size, see MSS
Maximum Transfer Unit, see MTU
maxperm   233
maxperm%   231
maxpgahead   241–242
maxpin   233
maxrandwrt   244
maxspin   11, 170
MCA   541
Media Access Control, see MAC
memory consuming processes   132
memory leak   394
memory leaks   17
memory pinning   233
memory pools   232
memory segment   13, 392

 

 

 

 

 Index 997



types   13
memory utilization   393

per user   400
mempools   232
message utilization   155
MH   840
MicroChannel Adapter, see MCA
microprofiling   324, 336
migratelp command   523
minfree   14, 219, 231–232, 446
minor device number   50
minperm   233
minperm%   231
minpgahead   242
mirror write consistency   28
mkcondition command   825
mkcondresp command   826
mkresponse command   825
mkrsrc command   825
mkvg command   24, 503
mode switching   9
module handler   221
mon.sum file   323
mount command   47, 663
mounted file system   662
MPIO   90
msgget subroutine   367
msgrcv system call   368
msgsnd system call   368
MSS   607
MTU   31, 671
MTU sizes   671
multi-path input-output, see MPIO
mutex   739
mutual exclusion locks   11
MWC Check   28
MWC record   28

N
name resolution   611
name-to-address mapping   705, 715
NBC   622, 642
nbc_limit   642
nbc_max_cache   643
nbc_min_cache   643
nbc_pseg   643
nbc_pseg_limit   643
ncheck command   396

NDD   540, 547, 556, 561
ndd_genstats   547
netpmon command   94

detailed statistics   103
example   96
FLIH and SLIH CPU statistics   101
process statistics   99
TCP socket call statistics   102
trace hooks   95

netstat command   33, 620
communications subsystems statistics   638
examples   624
kernel malloc statistics   628
network buffer cache   642
network interfaces   624
network routing   627
protocol statistic   632
state of all sockets   640

network buffer cache, see NBC
network buffer size   671
Network Device Driver, see NDD
Network File System, see NFS
network interface layer   584
network layer   584
network MTU sizes   671
network ports   570
network protocol statistics   632
network routes   622
network services   570
network traffic   568
network tuning   31
NFS   95, 218, 645, 655
NFS client pages   235
NFS clients   662
NFS tracing   584
nfs_dynamic_retrans   651
nfso command   646

examples   648
nfso tunable

nfs_dynamic_retrans   651
nfsstat command   33, 656

client NFS statistics   661
mounted file systems   662
NFS statistics   659
RPC statistics   657, 660

nice command   6, 350
decreasing the nice value   352
improving priority   352
increasing the nice value   352

 

 

 

 

998 AIX 5L Performance Tools Handbook



reducing priority   352
nice value   6, 350, 352
niced priority   7
no command   34, 623, 666

buffer size   671
MTU sizes   671
permanent change   671

no fragment flag   597
no tunable

extendednetstats   630
ipforwarding   672
mtu   671
nbc_limit   642
nbc_max_cache   643
nbc_min_cache   643
nbc_pseg   643
nbc_pseg_limit   643
rfc1323   671
sb_max   671
sockthresh   631
subnetsarelocal   609
tcp_nagle_limit   637
tcp_pmut_discover   628
tcp_recvspace   670–671
tcp_sendspace   671
udp_pmtu_discover   628
use_isno   34

nointegrity   29
nokilluid   16
non-arbitrated loop protocol   20
non-preemptive scheduling   8
npskill   16, 231
npswarn   16, 231
numclust   241
numfsbuf   241
numfsbufs   245

O
Object Data Manager, see ODM
ODM   501, 540, 547
odmget command   540
offline processing   703
Open Shortest Path First, see OSPF
optimized executable   75
OSPF   610
Other subroutines   842

P
pacefork   16, 170
packet-sequencing information   616
page fault   14
Page Frame Table, see PFT
page frames   13
page in   136
page reclaims   215
page replacement algorithm   14, 232
page stealer   14, 216
page-replacement algorithm   216
pages out   215
paging space   12, 30
paging space usage   394
paging statistic   157
Parallel System Support Programs, see PSSP
Path Maximum Transfer Unit, see PMTU
pbuf   22
PCB, see protocol control block
PCI   541
PCI bus   20
pd_npages   246
PDT   105

.files file   108

.nodes file   109

.SM_RAW_REPORT file   112

.threshold file   109
configuration files   108
manual collection   114
report   111

PDT directories   108
PDT files   108
pdt_config command   106

interface   107
penalized processes   133
perfagent.tools   71
perfmgr.analysis.jazizo   872
performance

response time   4
throughput   4

Performance AIDE   892
performance concept   3
Performance Diagnostic Tool, see PDT
Performance Monitor, see PM
Performance Toolbox, see PTX
performance tuning   3
perfpmr command   32, 116

filesets   120
installation   122

 

 

 

 

 Index 999



PROBLEM.INFO file   124
perfpmr files

config.sh   116
emstat.sh   116
filemon.sh   117
iostat.sh   117
iptrace.sh   117
monitor.sh   117
netstat.sh   118
nfsstat.sh   118
pprof.sh   118
ps.sh   118
sar.sh   119
tcpdump.sh   119
tprof.sh   119
trace.sh   119
vmstat.sh   119

Perfstat API
compiling and linking   786
interface types   801

perfstat kernel extension   786
perfstat_cpu subroutine   788
perfstat_cpu_total subroutine   790
perfstat_disk subroutine   795
perfstat_disk_total subroutine   797
perfstat_diskadapter subroutine   805
perfstat_diskpath subroutine   805
perfstat_dude.c   940
perfstat_dump_all.c   936
perfstat_memory_total subroutine   793
perfstat_netbuffer subroutine   805
perfstat_netinterface subroutine   799
perfstat_netinterface_total subroutine   802
perfstat_pagingspace subroutine   805
perfstat_protocol subroutine   805
perfstat_reset subroutine   805
Peripheral Component Interconnect, see PCI
persistent segments   13, 392, 410
PFS   765, 774
PFT   14, 215, 446
PGIN value   136
physical disk   517
Physical File System, see PFS
physical fragment numbers   490
physical fragmentation   481
physical partition   24, 507, 528
physical processor   292
physical volume   24, 459, 705
PID   102

ping command   33
pinned pages   407
pinning memory   233
PM   785
PM API   818

compiling and linking   820
PMTU   627
ppe.xprofiler   298
pprof command   309

pprof.famcpu report   319
pprof.famind report   316
pprof.namecpu report   315
pprof.start report   313
reports   310
trace hooks   311

pprof.cpu   310
pprof.famcpu   311
pprof.famind   310
pprof.namecpu   310
pprof.start   310
PR_REQUESTED event   275
proccred command   270
process address space map   271
process addresses   274
process credentials   270
process dynamic libraries   272
process file descriptors   268
process identification, see PID
process scheduling   5
process stack frames   274
process tracing flags   270
process tree   276
process working directory   268
processes   6
processor affinity   10
processor utilization   158
procfiles command   268
procflags command   270
procldd command   272
procmap command   271
procrun command   275
procsig command   273
procstack command   274
procstop command   275
proctree command   276
procwait command   276
procwdx command   268
prof command   305, 320

mon.sum   323

 

 

 

 

1000 AIX 5L Performance Tools Handbook



summary report   323
Program Temporary Fix, see PTF
protocol control block   613, 617
protocol types   570
ps command   6, 49, 128, 351

Berkeley standard   128
CPU consuming processes   131
displaying threads   138
memory consuming processes   132
penalized processes   133
PGIN value   136
RSS value   135
X/Open standard   128

PSALLOC   15
PSSP   539, 824
PTF   120
Pthread condition-variable   738
Pthread mutex   738
Pthread read/write lock   738
PTX   872

R
RAID   24
random access   460
Random write-behind   244
RAW I/O   246
raw trace   680
read file descriptors   202
read-locking   746
read-write locks   11
real memory   12, 392
real memory map   392
real memory pages   408
real memory usage   394
recursive locking   746
Reduced-Memory System Simulator   379
Redundant Array of Independent Disks, see RAID
refrsrc command   825
Regatta   1
Remote Procedure Call, see RPC
renice command   6, 352
reserved paging space   406
resource bottleneck   340
resource class   827
resource manager   826
Resource Monitoring and Control, see RMC
resource utilization   862
response time   4

rfc1323   671
rmaudrec command   825
RMC   824

activating monitoring   838
active WLM classes   854
associating response with condition   837
condition

creation   836
event response creation   837
event response script   833
examples   843
resource class   827
resource manager   826
RMC

listing   836
vmgetinfo   845

rmcctrl command   825, 829
rmcondition command   825, 841
rmcondresp command   826
rmresponse command   825, 841
rmrsrc command   825
rmss command   380, 399

changing memory size   383
displaying memory size   383
examples   382
resetting memory size   383
testing executable run time   383

route command   620, 628
RPC   96, 572, 655
rpoolsize   554
rsct.basic   824
rsct.compat.basic   824
rsct.compat.clients   824
RSS value   135
rstatd command   849
run queue   8
RunQ lock   738

S
sadc command   142
sar command   9, 62, 140, 219, 375

combining option   144
file access system routines   149
monitoring block device   153
monitoring buffer activity   150
monitoring buffer utilization   150
monitoring context switching   162
monitoring kernel process   154

 

 

 

 

 Index 1001



monitoring kernel scheduling   156
monitoring kernel table   160
monitoring message utilization   155
monitoring one CPU   142
monitoring processor utilization   158
monitoring semaphore utilization   155
monitoring system calls   151
monitoring tty device   160
paging statistic   157
using crontab entries   146

sb_max   671
sched_D   167
SCHED_FIFO   8
SCHED_FIFO2   8
SCHED_FIFO3   8
SCHED_OTHER   8
sched_R   167
SCHED_RR   7
schedo command   7, 15–16, 166, 219
schedo tunable   166

fixed_pri_global   8, 170
maxspin   11, 170
pacefork   170
sched_D   167
sched_R   167
timeslice   8, 170
v_exempt_secs   172
v_min_process   167, 172
v_repage_hi   167, 171, 381
v_repage_proc   172
v_sec_wait   168, 172

schedtune command   177
scheduling   5
scheduling policies   7
scheduling queue   156
SCSI   20
SD   835
Second Level Interrupt Handler, see SLIH
Sector   20
segment   13, 392
segmentation layout   393
SEM_LOCK_CLASS lock type   721
semaphore utilization   155
semaphores   375
sequential access   460
sequential reads and writes   774
Sequential write-behind   244
sequentiality   489
Serial Storage Architecture, see SSA

serialize access   12
SF_SYNC_CACHE   622
SF_SYNC_CACHE flag   642
shared memory   17, 368
shared memory program   372
shared memory segment   369–370, 395
shared objects   712
shared segment   403
SHM_LGPAGE   234
SHM_PIN flag   233
short IP packets   607
showing process tree   276
SIGDANGER signal   16
SIGKILL signal   16
signal actions   273
signal name   197
signals   195
simple kernel lock   738
Simple Performance Lock Analysis Tool   729
simplex communication   590
sleeping locks   11
slibclean command   365, 808
SLIH   98, 682
SLIH CPU statistic   101
SMIT   545, 781
SMP   9, 289
SMP machines   5
snap command   32
sockthresh   631
source address   615
source code   935
source segments   415
SP Switch   571
SP switch device driver   539
space efficiency   489
sparse file   490, 492

creation   494
determining   494
finding   498
large file enabled filesystems   496

spin locks   10
SPINLOOPTIME   11
splat command   730

AIX kernel lock details   739
analysis interval   733
complex-lock report   746
execution interval   733
execution summary   735
function detail report   743

 

 

 

 

1002 AIX 5L Performance Tools Handbook



gross lock summary report   736
lock details   739
mutex reports   750
per-lock summary report   737
PThread synchronizer reports   749
read/write lock reports   752
thread detail report   745
trace discontinuities   733
trace hooks   732
trace interval   733

SPMI   181, 369, 805, 891
SPMI API

basic program layout   821
compiling and linking   806
data organization   806
makefile   817

SPMI hierarchy   816
spmi_data.c   953
spmi_dude.c   949
spmi_file.c   959
spmi_traverse.c   961
SpmiCreateStatSet subroutine   809
SpmiFreeStatSet subroutine   812
SpmiGetValue subroutine   811
SpmiInit subroutine   809
SpmiNextVals subroutine   812
SpmiPathAddSetStat subroutine   810
SpmiPathGetCx subroutine   809
spoolsize   554
SRC   571, 583
SSA   20, 22
ssaraid command   517
ssaxlate command   516
ssp.css   539
stack frames   274
stale partition   509
standard deviation   460
startcondresp command   826
stopcondresp command   826
Strict   26
strict_maxperm   234
stripnm command   704, 715, 724

examples   725
structured data, see SD
subnetsarelocal   609
superblock   480
superstrict   26
svmon command   17, 369, 388

allocated page ranges   412

allocated page ranges by process   421
allocated page ranges for a command   436
client segments   409
client segments by process   419
client segments for a command   432
detailed reports   446
displaying persistent segment   396
examples   393
frame reports   448
global report   398
mapping segment   415
mapping segment for a command   424
memory utilization per user   400
monitoring frame reuse   450
most utilized segments   395
non-system segments   411
non-system segments by process   421
non-system segments for a command   435
paging space usage   394
persistent segments   410
persistent segments by process   419
persistent segments for a command   433
pinned pages   407
pinned pages by process   418
pinned pages for a command   430
processes by user   403
processes reports   413
real memory pages   408
real memory pages by process   418
real memory pages for a command   431
real memory usage   394
reserved paging space by process   417
reserved paging space for a command   429
reserved paging space pages   406
segment utilization   438
segments usage of paging space   396
source segment   415
source segment for a command   424
system segments   411
system segments by process   420
system segments for a command   435
time interval monitoring   447
virtual pages by process   417
virtual pages for a command   428
virtual space   405
WLM class memory usage   395
working segment   410
working segments by process   420
working segments for a command   433

 

 

 

 

 Index 1003



svmon_back command   387
swapqry   848
symbol names

list   776
symbolic names   274
Symmetrical Multiprocessor, see SMP
sync command   481
sync_release_ilock   245
syncd command   244
syncd daemon   245
syncvg command   28
Syscall name   197
system call statistics   151
System Management Interface Tool, see SMIT
system memory   12
System Performance Measurement Interface, see 
SPMI
System Resource Controller, see SRC
SYSTEM SEGMENT   425
system segments   411
system throughput report   84

T
TCP   33, 96, 568, 656
TCP socket call statistic   102
TCP tracing   575, 585
TCP/IP traffic tracing   583
tcp_nagle_limit   637
tcp_pmut_discover   628
tcp_recvspace   670–671
tcp_sendspace   671
tcpdump command   34, 587, 633

abbreviations   592
device types primitives   591
examples   594
expressions   590
ICMP packet   609
interpreting link-level headers   604
monitoring all packets   603
monitoring ARP packets   604
monitoring of TCP connections   607
monitoring TCP   595
monitoring UDP packets   599
packet data   593
protocol abbreviation   592
relational expressions   592
transfer direction primitives   591
using expressions   606

thrashing   15
thread   6

base priority   7
thread aging   6
thread information   138
thread scheduling   5
thread state   742
thread_create kernel service   292
threads concept   5
Threads ID, see TID
three-way handshake   597
throughput   4
throughput data   33
TID   138
timeslice   8, 170
timex command   357
TLB   234
Token-ring device driver   539
tokstat command   33, 560, 622

examples   562
fields of interest   563

topas command   53, 180, 369
CPU statistics   188
CPU utilization   182
disk drive statistics   183
examples   181
file statistic   184
hot processes   183
memory statistics   185
monitoring CPU usage   187
monitoring disk problem   189
network statistics   182
paging statistics   184
system global events   183
system queues   183
tty statistic   184
WLM statistics   183

tprof command   61, 283, 324, 376, 704–705, 715
application profiling   335
detecting resource bottleneck   340
examples   329
global profiling   330
manual offline processing   333
offline profiling   332
online profiliing   330
post-processing   333
process level profiling   335
report   329
trace hook 234   327

 

 

 

 

1004 AIX 5L Performance Tools Handbook



trace buffer   764–766
trace command   62, 760

CPU overhead   764
data collection   764
examples   770
INTERRUPT signals   763
return times   770
running asynchronously   768
running interactively   768
sequential read and write   774
subcommands   763
tracing a command   769
tracing to log file   769

trace facility   765
trace hook   765

list   973
trace hook function   766
trace interval   733
trace log file   766
traceroute command   33
tracing

DNS   577
ICMP   586
IPX   586
NFS   584
TCP   575, 585
TCP/IP traffic   583
UDP   576, 586

tracing flags   270
Track   20
Translation Look-Aside Buffer, see TLB
Transmission Control Protocol, see TCP
transport layer   584
trcevgrp command   95
trcnm

symbol names   776
trcnm command   775

examples   776
trcoff command   760
trcon command   760
trcrpt command   680, 777

combining trace buffers   781
trcstop command   760
trpt command

stored trace records   614
truss command   192, 376

analyzing file descriptor I/O   202
checking environment variable   205
checking library call   209

combining flags   204
examples   197
machine fault list   194
monitoring running processes   200
read file descriptors   202
signal list   195
summary output   198
tracking child processes   206
write file descriptors   203

tty and CPU utilization report   88
tty device utilization   160
tunable   166, 230, 239
tunchange command   44
tuncheck command   44, 256

validation   256
tundefault command   44
tunrestore command   44, 258

limitation   258
tunsave command   44

U
UDP   33, 96, 656
UDP tracing   576, 586
udp_pmtu_discover   628
UltraSCSI   20
unallocated logical blocks   483
unknown files   461
unused shared memory segment   370
unverified   819
use_isno   34
User Datagram Protocol, see UDP
user library call   209
user mode   9

V
v_exempt_secs   172
v_min_process   167, 172
v_pinshm   238
v_repage_hi   167, 171, 381
v_repage_proc   172
v_sec_wait   168, 172
vario structure   843
verified   819
virtual file system   705
virtual memory   392
virtual memory activity   213
Virtual Memory Manager, see VMM
virtual memory system   459

 

 

 

 

 Index 1005



vmgetinfo   845
VMM   12, 215, 231, 234, 242, 403, 842
VMM write-behind   244
vmo command   12, 14, 16, 215, 230
vmo tunable   230

defps   16
lgpg_regions   238
lgpg_size   238
maxclient%   235
maxfree   14, 219, 231–232
maxperm   233
maxperm%   231
maxpin   233
mempools   232
minfree   14, 219, 231–232, 446
minperm   233
minperm%   231
nokilluid   16
npskill   16, 231
npswarn   16, 231
strict_maxperm   234
v_pinshm   238

vmstat command   9, 157, 212, 245, 291, 340, 544, 
660, 787

examples   213
fork report   219
I/O report   226
interrupt report   220
sum structure report   224
virtual memory activity   213
VMM statistics   221

vmtune command   54, 251
vnode address   149
volume group   24, 507

W
Whetstone benchmark   968
WLM   128, 137, 774, 861

active mode   862
memory usage   395
passive mode   862

wlm_bio_class_info_t   856
wlm_get_bio_stats subroutine   856
wlm_get_info subroutine   853, 865
wlmmon command   872
wlmperf command   872
wlmstat command   862

examples   865

working directory   268
working segment   13, 410
working segments   392
Workload Manager, see WLM
write activity throughput   251
write file descriptors   203
write-locking   746
write-verify policy   28

X
XCOFF   727
XLATE ioctl operation   484
xmperf command   875, 894
xmtrend command   874, 918
xmtrend daemon   872–873
xmwlm command   873
xmwlm daemon   873
xnice factor   7

Y
YIELDLOOPTIME   11

 

 

 

 

1006 AIX 5L Performance Tools Handbook



 

(1.5” spine)
1.5”<->

 1.998”
789 <

->1051 pages

AIX 5L Perform
ance Tools 

Handbook

 

 

 

 



 

 

 

 



 

 

 

 



®

SG24-6039-01 ISBN 0738499765

INTERNATIONAL 
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE 

IBM Redbooks are developed by 
the IBM International Technical 
Support Organization. Experts 
from IBM, Customers and 
Partners from around the world 
create timely technical 
information based on realistic 
scenarios. Specific 
recommendations are provided 
to help you implement IT 
solutions more effectively in 
your environment.

For more information:
ibm.com/redbooks

AIX 5L Performance 
Tools Handbook

Efficient use of 
AIX 5L performance 
monitoring and 
tuning tools

In-depth 
understanding of AIX 
system performance 
issues

Statistical report 
interpretation 
explained

This IBM Redbook takes an insightful look at the performance 
monitoring and tuning tools that are provided with AIX 5L. It 
discusses the use of the tools as well as the interpretation of the 
results in many examples.

This book is meant as a reference for system administrators and AIX 
technical support professionals so they can use the performance 
tools efficiently and interpret the outputs when analyzing AIX system 
performance.

A general concept and introduction to the tools is presented to 
introduce the reader to the process of AIX performance analysis. 

The individual performance tools discussed in this book fall into 
these categories:
- Multi-resource monitoring and tuning tools
- CPU-related performance tools
- Memory-related performance tools
- Disk I/O-related performance tools
- Network-related performance tools
- Performance tracing tools
- Additional performance topics, including performance monitoring 
API, Workload Manager tools, and performance toolbox for AIX.

Back cover
 

 

 

 


	Front cover
	Contents
	Figures
	Tables
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Summary of changes
	August 2003, Second Edition

	Part 1 AIX 5L performance tools
	Chapter 1. Introduction to AIX performance monitoring and tuning
	1.1 Performance expectation
	1.2 CPU performance
	1.2.1 Initial advice
	1.2.2 Processes and threads
	1.2.3 Scheduling
	1.2.4 SMP performance

	1.3 Memory performance
	1.3.1 Initial advice
	1.3.2 Memory segments
	1.3.3 Paging mechanism
	1.3.4 Memory load control mechanism
	1.3.5 Paging space allocation policies
	1.3.6 Memory leaks
	1.3.7 Shared memory

	1.4 Disk I/O performance
	1.4.1 Initial advice
	1.4.2 Disk subsystem design approach
	1.4.3 Bandwidth-related performance considerations
	1.4.4 Disk design
	1.4.5 Logical Volume Manager concepts

	1.5 Network performance
	1.5.1 Initial advice
	1.5.2 TCP/IP protocols
	1.5.3 Network tunables

	1.6 Kernel tunables
	1.6.1 Tunables commands
	1.6.2 Tunable files

	1.7 The /proc file system

	Chapter 2. Getting started
	2.1 Tools and filesets
	2.2 Tools by resource matrix
	2.3 Performance tuning approach
	2.3.1 CPU bound system
	2.3.2 Memory bound system
	2.3.3 Disk I/O bound system
	2.3.4 Network I/O bound system


	Part 2 Multi-resource monitoring and tuning tools
	Chapter 3. The fdpr command
	3.1 fdpr
	3.1.1 Information about measurement and sampling

	3.2 Examples for fdpr

	Chapter 4. The iostat command
	4.1 iostat
	4.1.1 Information about measurement and sampling

	4.2 Examples for iostat
	4.2.1 System throughput report
	4.2.2 tty and CPU utilization report
	4.2.3 Disk utilization report
	4.2.4 Disk utilization report for MPIO
	4.2.5 Adapter throughput report


	Chapter 5. The netpmon command
	5.1 netpmon
	5.1.1 Information about measurement and sampling

	5.2 Examples for netpmon
	5.2.1 Process statistics
	5.2.2 FLIH and SLIH CPU statistics
	5.2.3 TCP socket call statistics
	5.2.4 Detailed statistics


	Chapter 6. Performance Diagnostic Tool (PDT)
	6.1 PDT
	6.1.1 Information about measurement and sampling

	6.2 Examples for PDT
	6.2.1 Editing the configuration files
	6.2.2 Using reports generated by PDT
	6.2.3 Creating a PDT report manually


	Chapter 7. The perfpmr command
	7.1 perfpmr
	7.1.1 Information about measurement and sampling
	7.1.2 Building and submitting a test case

	7.2 Examples for perfpmr

	Chapter 8. The ps command
	8.1 ps
	8.1.1 Information about measurement and sampling

	8.2 Examples for ps
	8.2.1 Displaying the top 10 CPU-consuming processes
	8.2.2 Displaying the top 10 memory-consuming processes
	8.2.3 Displaying the processes in order of being penalized
	8.2.4 Displaying the processes in order of priority
	8.2.5 Displaying the processes in order of nice value
	8.2.6 Displaying the processes in order of real memory use
	8.2.7 Displaying the processes in order of I/O
	8.2.8 Displaying WLM classes
	8.2.9 Viewing threads


	Chapter 9. The sar command
	9.1 sar
	9.1.1 Information about measurement and sampling

	9.2 Examples for sar
	9.2.1 Monitoring one CPU at a time
	9.2.2 Collecting statistics by using cron
	9.2.3 Displaying access time system routines
	9.2.4 Monitoring buffer activity for transfers, access, and caching
	9.2.5 Monitoring system calls
	9.2.6 Monitoring activity for each block device
	9.2.7 Monitoring kernel process activity
	9.2.8 Monitoring the message and semaphore activities
	9.2.9 Monitoring the kernel scheduling queue statistics
	9.2.10 Monitoring the paging statistics
	9.2.11 Monitoring the processor utilization
	9.2.12 Monitoring tty device activity
	9.2.13 Monitoring kernel tables
	9.2.14 Monitoring system context switching activity


	Chapter 10. The schedo and schedtune commands
	10.1 schedo
	10.1.1 Recommendations and precautions

	10.2 Examples for schedo
	10.2.1 Displaying current settings
	10.2.2 Tuning CPU parameters
	10.2.3 Tuning memory parameters

	10.3 schedtune

	Chapter 11. The topas command
	11.1 topas
	11.1.1 Information about measurement and sampling

	11.2 Examples for topas
	11.2.1 Common uses of the topas command
	11.2.2 Using subcommands
	11.2.3 Monitoring CPU usage
	11.2.4 Monitoring disk problem


	Chapter 12. The truss command
	12.1 truss
	12.1.1 Information about measurement and sampling

	12.2 Examples for truss
	12.2.1 Using truss
	12.2.2 Using the summary output
	12.2.3 Monitoring running processes
	12.2.4 Analyzing file descriptor I/O
	12.2.5 Checking program parameters
	12.2.6 Checking program environment variables
	12.2.7 Tracking child processes
	12.2.8 Checking user library call


	Chapter 13. The vmstat command
	13.1 vmstat
	13.1.1 Information about measurement and sampling

	13.2 Examples for vmstat
	13.2.1 Virtual memory activity
	13.2.2 Forks report
	13.2.3 Interrupts report
	13.2.4 VMM statisics report
	13.2.5 Sum structure report
	13.2.6 I/O report


	Chapter 14. The vmo, ioo, and vmtune commands
	14.1 vmo
	14.1.1 Information about measurement and sampling
	14.1.2 Recommendations and precautions for vmo

	14.2 Examples for vmo
	14.3 ioo
	14.3.1 Information about measurement and sampling
	14.3.2 Recommendations and precautions

	14.4 Examples for ioo
	14.4.1 Displaying I/O setting
	14.4.2 Changing tunable values
	14.4.3 Logical volume striping
	14.4.4 Increasing write activity throughput

	14.5 vmtune

	Chapter 15. Kernel tunables commands
	15.1 tuncheck
	15.1.1 Examples for tuncheck

	15.2 tunrestore
	15.2.1 Examples for tunrestore

	15.3 tunsave
	15.3.1 Examples for tunsave

	15.4 tundefault
	15.4.1 Examples for tundefault

	15.5 tunchange
	15.5.1 Examples for tunchange


	Chapter 16. Process-related commands
	16.1 procwdx
	16.2 procfiles
	16.3 procflags
	16.4 proccred
	16.5 procmap
	16.6 procldd
	16.7 procsig
	16.8 procstack
	16.9 procstop
	16.10 procrun
	16.11 procwait
	16.12 proctree

	Part 3 CPU-related performance tools
	Chapter 17. The alstat and emstat commands
	17.1 Alignment and emulation exception
	17.2 alstat
	17.2.1 Information about measurement and sampling
	17.2.2 Examples for alstat
	17.2.3 Detecting and resolving alignment problems

	17.3 emstat
	17.3.1 Information about measurement and sampling
	17.3.2 Examples for emstat
	17.3.3 Detecting and resolving emulation problems


	Chapter 18. The bindintcpu and bindprocessor commands
	18.1 bindintcpu
	18.1.1 Examples for bindintcpu

	18.2 bindprocessor
	18.2.1 Information about measurement and sampling
	18.2.2 Examples for bindprocessor


	Chapter 19. The gprof, pprof, prof, and tprof commands
	19.1 CPU profiling tools
	19.1.1 Comparison of tprof versus prof and gprof

	19.2 gprof
	19.2.1 Information about measurement and sampling
	19.2.2 Profiling with the fork and exec subroutines
	19.2.3 Examples for gprof

	19.3 pprof
	19.3.1 Information about measurement and sampling
	19.3.2 Examples for pprof

	19.4 prof
	19.4.1 Information about measurement and sampling
	19.4.2 Examples for prof

	19.5 tprof
	19.5.1 Information about measurement and sampling
	19.5.2 Examples for tprof


	Chapter 20. The nice and renice commands
	20.1 nice
	20.1.1 Information about measurement and sampling

	20.2 Examples for nice
	20.2.1 Reducing the priority of a process
	20.2.2 Improving the priority of a process

	20.3 renice
	20.3.1 Information about measurement and sampling

	20.4 Examples for renice

	Chapter 21. The time and timex commands
	21.1 time
	21.1.1 Information about measurement and sampling
	21.1.2 Examples for time

	21.2 timex
	21.2.1 Information about measurement and sampling
	21.2.2 Examples for timex


	Part 4 Memory-related performance tools
	Chapter 22. The ipcs command
	22.1 ipcs
	22.1.1 Information about measurement and sampling
	22.1.2 Examples for ipcs


	Chapter 23. The rmss command
	23.1 rmss
	23.1.1 Information about measurement and sampling
	23.1.2 Recommendations and precautions
	23.1.3 Examples for rmss


	Chapter 24. The svmon command
	24.1 svmon
	24.1.1 Information about measurement and sampling
	24.1.2 Examples for svmon


	Part 5 Disk I/O–related performance tools
	Chapter 25. The filemon command
	25.1 filemon
	25.1.1 Information about measurement and sampling
	25.1.2 Examples for filemon


	Chapter 26. The fileplace command
	26.1 fileplace
	26.1.1 Information about measurement and sampling
	26.1.2 Examples for fileplace
	26.1.3 Analyzing the physical report


	Chapter 27. The lslv, lspv, and lsvg commands
	27.1 lslv
	27.2 lspv
	27.3 lsvg
	27.4 Examples for lslv, lspv, and lsvg
	27.4.1 Using lslv
	27.4.2 Using lspv
	27.4.3 Using lsvg
	27.4.4 Acquiring more disk information


	Chapter 28. The lvmstat command
	28.1 lvmstat
	28.1.1 Information about measurement and sampling
	28.1.2 Examples for lvmstat


	Part 6 Network-related performance tools
	Chapter 29. atmstat, entstat, estat, fddistat, and tokstat commands
	29.1 atmstat
	29.1.1 Information about measurement and sampling
	29.1.2 Examples for atmstat

	29.2 entstat
	29.2.1 Information about measurement and sampling
	29.2.2 Examples for entstat

	29.3 estat
	29.3.1 Information about measurement and sampling
	29.3.2 Examples for estat

	29.4 fddistat
	29.4.1 Information about measurement and sampling
	29.4.2 Examples for fddistat

	29.5 tokstat
	29.5.1 Information about measurement and sampling
	29.5.2 Examples for tokstat


	Chapter 30. TCP/IP packet tracing tools
	30.1 Network packet tracing tools
	30.2 iptrace
	30.2.1 Information about measurement and sampling

	30.3 ipreport
	30.3.1 Information about measurement and sampling

	30.4 ipfilter
	30.4.1 Information about measurement and sampling
	30.4.2 Protocols and header type options

	30.5 Examples for iptrace, ipreport, and ipfilter
	30.5.1 TCP packets
	30.5.2 UDP packets
	30.5.3 UDP domain name server requests and responses

	30.6 Examples for ipreport
	30.6.1 Using ipreport with tcpdump
	30.6.2 Using ipreport with iptrace

	30.7 Examples for ipfilter
	30.7.1 Tracing TCP/IP traffic
	30.7.2 NFS tracing
	30.7.3 TCP tracing
	30.7.4 UDP tracing
	30.7.5 ICMP tracing
	30.7.6 IPX tracing
	30.7.7 ALL protocol tracing

	30.8 tcpdump
	30.8.1 Information about measurement and sampling

	30.9 Examples for tcpdump
	30.10 trpt
	30.10.1 Information about measurement and sampling

	30.11 Examples for trpt
	30.11.1 Displaying all stored trace records
	30.11.2 Displaying source and destination addresses
	30.11.3 Displaying packet-sequencing information
	30.11.4 Displaying timers at each point in the trace
	30.11.5 Printing trace records for a single protocol control block


	Chapter 31. The netstat command
	31.1 netstat
	31.1.1 Information about measurement and sampling
	31.1.2 Examples for netstat


	Chapter 32. The nfso command
	32.1 nfso
	32.1.1 Information about measurement and sampling

	32.2 Examples for nfso
	32.2.1 Listing all of the tunables and their current values
	32.2.2 Displaying characteristics of all tunables
	32.2.3 Displaying and changing a tunable with the nfso command
	32.2.4 Resetting a tunable value to its default
	32.2.5 Displaying help information about a tunable
	32.2.6 Permanently changing an nfso tunable
	32.2.7 Changing a tunable after reboot


	Chapter 33. The nfsstat command
	33.1 nfsstat
	33.1.1 Information about measurement and sampling

	33.2 Examples for nfsstat
	33.2.1 NFS server RPC statistics
	33.2.2 NFS server NFS statistics
	33.2.3 NFS client RPC statistics
	33.2.4 NFS client NFS statistics
	33.2.5 Statistics on mounted file systems


	Chapter 34. The no command
	34.1 no
	34.2 Examples for no

	Part 7 Tracing performance problems
	Chapter 35. The curt command
	35.1 curt
	35.1.1 Information about measurement and sampling

	35.2 Examples for curt

	Chapter 36. The gennames, genld, genkld, genkex, and gensyms commands
	36.1 Offline generation tools
	36.2 gennames
	36.2.1 Information about measurement and sampling
	36.2.2 Examples for gennames

	36.3 genld
	36.3.1 Information about measurement and sampling
	36.3.2 Examples for genld

	36.4 genkld
	36.4.1 Information about measurement and sampling
	36.4.2 Examples for genkld

	36.5 genkex
	36.5.1 Information about measurement and sampling
	36.5.2 Examples for genkex

	36.6 gensyms
	36.6.1 Information about measurement and sampling
	36.6.2 Examples for gensyms


	Chapter 37. The locktrace command
	37.1 locktrace
	37.1.1 Information about measurement and sampling
	37.1.2 Examples for locktrace


	Chapter 38. The stripnm command
	38.1 stripnm
	38.1.1 Information about measurement and sampling

	38.2 Examples for stripnm

	Chapter 39. The splat command
	39.1 splat
	39.1.1 Information about measurement and sampling

	39.2 Examples for splat
	39.2.1 Execution summary
	39.2.2 Gross lock summary
	39.2.3 Per-lock summary
	39.2.4 AIX kernel lock details
	39.2.5 PThread synchronizer reports


	Chapter 40. The trace, trcnm, and trcrpt commands
	40.1 trace
	40.1.1 Information about measurement and sampling
	40.1.2 Terminology used for trace
	40.1.3 Ways to start and stop trace
	40.1.4 Examples for trace

	40.2 trcnm
	40.2.1 Information about measurement and sampling
	40.2.2 Examples for trcnm

	40.3 trcrpt
	40.3.1 Information about measurement and sampling
	40.3.2 Examples for trcrpt


	Part 8 Additional performance topics
	Chapter 41. APIs for performance monitoring
	41.1 Perfstat API
	41.1.1 Compiling and linking
	41.1.2 Subroutines

	41.2 System Performance Measurement Interface
	41.2.1 Compiling and linking
	41.2.2 SPMI data organization
	41.2.3 Subroutines
	41.2.4 Examples for SPMI

	41.3 Performance Monitor API
	41.3.1 Performance Monitor data access
	41.3.2 Compiling and linking
	41.3.3 Subroutines
	41.3.4 Examples for PM API

	41.4 Resource Monitoring and Control
	41.4.1 RMC commands
	41.4.2 Information about measurement and sampling
	41.4.3 Examples for RMC

	41.5 Miscellaneous performance monitoring subroutines
	41.5.1 Compiling and linking
	41.5.2 Subroutines
	41.5.3 Combined example


	Chapter 42. Workload Manager tools
	42.1 WLM tools overview
	42.2 wlmstat
	42.2.1 Information about measurement and sampling
	42.2.2 Examples for wlmstat

	42.3 wlmmon / wlmperf
	42.3.1 Information about the xmwlm and xmtrend daemons
	42.3.2 Information about measurement and sampling
	42.3.3 Exploring the graphical windows


	Chapter 43. Performance Toolbox Version 3 for AIX
	43.1 Introduction
	43.2 xmperf
	43.2.1 Information about measurement and sampling
	43.2.2 Examples

	43.3 3D monitor
	43.3.1 Information about measurement and sampling
	43.3.2 Examples

	43.4 jazizo
	43.4.1 Syntax of xmtrend
	43.4.2 Syntax of jazizo
	43.4.3 Information about measurement and sampling


	Part 9 Appendixes
	Appendix A. Source code examples
	perfstat_dump_all.c
	perfstat_dude.c
	spmi_dude.c
	spmi_data.c
	spmi_file.c
	spmi_traverse.c
	dudestat.c
	cwhet.c

	Appendix B. Trace hooks
	AIX 5L trace hooks

	Abbreviations and acronyms
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks

	Index
	Back cover

